CHARACTERIZATION  OF  THE  DEVELOPMENT  OF  THE  TONSILLAR  MICROBIOME  IN  PIGS     By     Luis  Carlos  Peña  Cortes                                 A  DISSERTATION   Submitted  to
   Michigan  State  University
   in  partial  fulfillment  of  the  requirements     for  the  degree  of     Comparative  Medicine  and  Integrative  Biology  –  Doctor  of  Philosophy     2017       ABSTRACT     CHARACTERIZATION  OF  THE  DEVELOPMENT  OF  THE  TONSILLAR  MICROBIOME  IN  PIGS     By     Luis  Carlos  Peña  Cortes     Pig   tonsils   are   identified   as   a   potential   reservoir   for   many   bacterial   and   viral   pathogens  that  can  survive  asymptomatically  in  this  location  and  may  have  a  high  potential   of   being   zoonotic.   It   has   been   suggested   that   the   microbiome   plays   a   significant/   substantial   role   in   host   colonization   by   pathogenic   microorganisms   and   also   exerts   regulatory  roles  in  the  resistance  to  infection.  Despite  the  important  role  that  the  tonsillar   microbiome  could  play  in  the  colonization  and  persistence  of  pathogens  in  the  host,  there   are  no  in-­‐‑depth  studies  characterizing  the  development  of  tonsillar  microbiome  in  pigs  or   how  this  microbiome  is  structured  over  time.  Surprisingly  a  similar  study  is  also  absent  in   humans.  There  was  a  clear  need  to  investigate  the  development  of  the  tonsillar  microbiome   in   pigs   to   lay   the   basis   for   future   studies   focused   on   more   complex   subjects   such   as   the   relationship   between   the   normal   tonsillar   microbiome   and   pathogens   in   the   tonsils.   Understanding  the  development  of  the  pig  tonsillar  microbiome  over  time  and  the  role  of   the   tonsillar   microbiome   in   the   acquisition   and   persistence   of   a   pathogenic   microorganism   will  lay  the  basis  for  the  design  of  novel  intervention  strategies  to  control  the  presence  of   the   pathogen   and   reduce   the   risk   of   transmission   to   other   animals   or   humans.   Moreover,   these   studies   are   expected   to   provide   an   animal   model   to   test   hypotheses   generated   by   microbiome   data   that   cannot   be   tested   in   humans.   The   goal   of   this   study   was   to   characterize   tonsillar   microbiome   development   in   pigs,   and   how   this   microbiome   is   structured   and   how   the   structure   changes   through   different   times   in   the   life   of   pigs.   The   chapters  in  this  thesis  will  present  pertinent  data  related  with  the  composition  of  the  pig   tonsillar  microbiome  and  how  it  alters  through  the  life  of  pigs,  possible  maternal  sources   for  some  of  the  identified  members  of  this  microbiome,  as  well  as  the  microbiome  structure     and   progressive   change   through   their   life.   Furthermore,   the   results   will   show   that   challenges   associated   with   management   procedures   typically   present   in   swine   farms   generate   prominent   changes   in   the   microbiome   composition   and   abundance   of   diverse   bacterial   families.   Finally,   the   study   will   show   the   microscopic   structure   of   the   tonsillar   epithelium  and  crypts  and  the  presence  of  diverse  bacterial  communities  on  the  surface  of   pig  tonsils  throughout  different  time  points  of  their  life.  The  final  chapter  will  also  describe   the  morphological  changes  of  the  tonsillar  surface  in  pigs  that  are  seen  and  are  associated   with   changes   in   the   microbial   communities   observed   through   different   time   points   in   their   life.   Taken   together,   the   results   presented   here   demonstrate   that   there   is   a   temporal   succession  in  the  development  of  the  pig  tonsillar  microbiome  through  the  life  of  pigs.     ACKNOWLEDGEMENTS     To  God.   I   would   like   to   thank   my   parents   Lucila   Elsa   Cortés   de   Peña,   Jairo   Peña   Nieto,   and   brothers   Jairo   Ricardo   Peña   Cortés   and   Cesar   Augusto   Peña   Cortés.   Most   of   what   I   am   is   because  of  your  help  and  guidance.  Thank  you  for  all  your  continued  blessings,  support  and   encouragement   every   day   of   my   life.   To   my   sisters-­‐‑in-­‐‑law,   Aileen   Agüero   and   Luz   Angela   Moreno,  for  joining  our  family  and  for  the  happiness  that  you  have  brought  to  me  and  my   family.   And   to   my   “novia”,   Puja   Basu   “Pujita   Maria”   for   her  constant   nagging,   unconditional   love  and  precious  years  we  have  spent  together  and  for  all  the  ones  coming.   I  also  would  like  to  thank  my  sponsors:  Colciencias  programa  becas  Francisco  Jose   de  Caldas  –  Convocatoria  519  –  2011,  for  making  this  dream  a  reality  and  supporting  me   financially   during   my   studies   at   Michigan   State   University.   Universidad   de   Pamplona   -­‐‑   Colombia,   for   the   support   and   helping   me   with   the   study   commission   which   allowed   me   to   continue  my  professional  development.   A  huge  thank  you  to    Dr.  Martha  Mulks  for  her  guidance  and  support  for  allowing  me   to   work   and   learn   at   a   pace   that   made   me   feel   comfortable   and   allowed   me   to   grow   as   a   researcher  and  a  scientist.  For  pushing  me  to  learn  and  adapt  to  our  project’s  needs  and  for   encouraging  me  to  think  out  of  the  box.     I   would   like   to   thank   Dr.   Vilma   Yuzbasiyan-­‐‑Gurkan   for   being   my   steadfast   anchor   during  the  past  five  years  of  my  life,  here  at  Michigan  State.  I  cannot  thank  her  enough  for   her  continuous  guidance,  generosity  and    for  being  that  person  who  is  always  beside  us  in     iv   the   good   and   bad   moments.   Thank   you   for   all   you   do   because   I   wouldn’t   be   at   this   important  juncture  without    your  support.   I   acknowledge   my   graduate   committee   members:   Dr.   Terence   Marsh,   Dr.   Julie   Funk,   Dr.   Shannon   Manning,   Dr.   Matti   Kiupel.   Thank   you   for   your   continuous   help,   guidance,   support  and  encouragement  during  these  past  few  years.     I   would   also   like   to   thank   my   current   and   past   lab   members,   Rachel   Greenberg,   Rhiannon  LeVeque,  and  Scott  Kramer.  Much  of  my  field  work  was  made  easier  because  of   you  guys.  Rachel,  thank  you  for  helping  me  out  in  the  lab.   To   my   good   friend   Astrith   Rubiano,   thanks   for   everything,   specially   you   encouragement  in  the  difficult  moments.     Finally,   I   would   like   to   thank   all   the   people   who   have   supported   me,   either   those   who  work  in  different  departments  of  Michigan  State  University  who  have  helped  me  with   my  project,  and/or  those  who  have  helped  to  enrich  my  stay  in  the  United  States.  Specially  I   have   to   thank   Kevin   Turner,   Chris   Rowboom,   Kent   Ames,   Madonna   Benjamin,   Thomas   Wood,  Amy  Porter,  Kathy  Joseph,  Amy  Albin,  Melinda  Frame,  Rheannon  Bateman,  Poorna   Viswanathan,   Dimity   Palazzola,   Vicky   Maddox,   Marilia   Takada,   Paulo   Vilar,   Laura   Ortiz,   Daniel  Parrell,  Jake  Baker,  Pallavi  Sing,  Robert  Parker,  Woonie  Cha,  Alessandra  Hunt,    Laura   Gualdron,  David  Tarazona,  Yenni  Bernal,  Lyonel  Laulie,  Javiera  Ortiz,  Sarah  Corner,  Kailey   Vincent,  Tina  Yang,  Shikha  Sigh,  Ben  Jhonson,  Geoffrey  Severin,  Clarissa  Strieder-­‐‑Barbosa,   Oscar   Benitez,   Marianna   Bacellar,   Vinicius   Galdinho,   Cristina   Venegas,   Phillip   Brooks,   Maciej  Parys,    Geoffrey  Grzesiak  and  Arianna  Smith.         v   TABLE  OF  CONTENTS         LIST  OF  TABLES…………………………………………………………………………………………………………….  ix     LIST  OF  FIGURES………………………………………………………………………………………………………...….  x       KEY  TO  ABBREVIATIONS……………………………………………………………………………………………...  xii     CHAPTER  1.  INTRODUCTION  AND  LITERATURE  REVIEW……………………………………………..…  1   TONSILS  AND  MICROBIOME  IN  HUMAN  AND  PIGS………………………………………………………….  2   ANIMAL   MODELS   AND   THE   STUDY   OF   HUMAN   RESPIRATORY   DISEASES………………………………………………………………………………………….…………………………...  3   ANATOMY  AND  HISTOLOGY  OF  TONSILS…………….………………………………………………………….  6   TONSIL  DEVELOPMENT………………………..…………….………………………………………….…………….  12   Human  tonsil  development……………………………………………………………………………...…  12     Pig  tonsil  development………………………………………………………………………………….……  14   MICROBIOME  AND  TONSILS……………….……………………………………………………………………...…  15   Human   tonsillar   microbiome:   culture-­‐‑dependent   vs   culture-­‐‑independent                 approach  …………………………………………………………………………………………………………..  16   Pig   tonsillar   microbiome:   culture-­‐‑dependent   vs   culture-­‐‑independent                                         approach  ……………………………………………………………………….…………………………………  20   GOAL  OF  THIS  THESIS…………….……………………………………………………………………………………  23   REFERENCES……………………………………………………………………………………………………………….  24     CHAPTER  2.  DEVELOPMENT  OF  THE  TONSILLAR  MICROBIOME  IN  PIGS  FROM  NEWBORN   THROUGH  WEANING……………………………………………………………………………………………………  37   INTRODUCTION…………………………………………………………………………………………………………...  38   MATERIAL  AND  METHODS…………………………………………………………………………………………...  40     Animals……………………………………………………………………………………………………………..  40     Collection  of  microbiome  samples………………………………………………………………………  41     Isolation  of  community  DNA…………………………………………………………………………….…  42     Illumina  sequencing  and  sequence  analysis…………………………………………………………  43     Diversity  and  statistical  analysis…………………………………………………………………………  44     Availability  of  supporting  data…………………………………………………………………………....  45   RESULTS……………………………………………………………………………………………………………………...  46     The  tonsillar  microbiome  found  in  PB  samples  clusters  by  litter….………………………  46   A   significant   proportion   of   the   microbiome   of   the   piglets   came   from   maternal   sources……………………………………………………………………………………………………………..  49   Tonsil  communities  of  newborn  piglets  differed  initially  between  litters  but  by  three   weeks  of  age  clustered  together  reflecting  similar  composition……………………………  51   The   transition   between   third   and   fourth   week   represents   a   critical   period   for   the   development  of  the  microbiome……………………………………………………………………..….  54   DISCUSSION………………………………………………………………………………………………………………...  57   CONCLUSIONS…………………………………………………………………………………………………………..…  64     vi   APPENDIX  ….………………………………………………………………………………………………………………..  65   REFERENCES……………………………………………………………………………………………………………….  71     CHAPTER  3.  DEVELOPMENT  OF  THE  TONSILLAR  MICROBIOME  IN  PIGS  FROM  NEWBORN   TO  MARKET  AGE………………………………………………………………………………………………………….  77   INTRODUCTION…………………………………………………………………………………………………………...  78   MATERIAL  AND  METHODS…………………………………………………………………………………………...  80     Animals……………………………………………………………………………………………………………..  80     Collection  of  microbiome  samples……………………………………………………………………....  81     Isolation  of  community  DNA…………………………………………………………………………….…  82     Illumina  sequencing  and  sequence  analysis………………………………………………………...  82     Diversity  and  statistical  analysis…………………………………………………………………………  83     Availability  of  supporting  data…………………………………………………………………………....  84   RESULTS…………………………………………………………………………………………………………………...…  85     Management  practices  are  related  with  changes  in  population  diversity……………….  86   Challenging   management   conditions   during   development   of   the   pigs   generated   disruption  in  the  microbiome……………………………………………………………………………..  88     Tonsil  microbiome  membership  throughout  the  life  of  the  pigs…………………………….  92     Disruption  of  specific  OTUs  throughout  the  life  of  the  pigs……………………………………  98   Aerobic,  anaerobic,  and  facultative  anaerobic  organisms  in  the  tonsils………………….  99   DISCUSSION……………………………………………………………………………………………………………....    101     CONCLUSIONS……………………………………………………………………………………………………………  111   APPENDIX….……………………………………………………………………………………………………………...    113   REFERENCES…………………………………………………………………………………………………………..…  117     CHAPTER   4.   SPATIOTEMPORAL   DEVELOPMENT   OF   THE   TONSIL   MICROBIOME   IN   PIGS………………………………………………………………………………………………………………………..…  123   INTRODUCTION…………………………………………………………………………………………………….…...  124   MATERIAL  AND  METHODS…………………………………………………………………………………………  126     Animals………………………………………………………………………………………………………......  126     Tissue  collection………………………………………………………………………………………………  127     Bacterial  strains  and  smears  on  slides………………………………………………………………  128     Bacterial  strains  and  muscle  slides……………………………………………………………………  128     Oligonucleotide  probes……………………………………………………………………………….……  129     Fluorecent  In  Situ  Hibridization  (FISH)…………………………………………………………..…  129     Confocal  Laser  Scan  Microscopy  (CLSM)……………………………………………………………  130     Scanning  Electron  Microscopy  (SEM)……………………………………………………………..…  131   RESULTS……………………………………………………………………………………………………………….......  131     Validation  of  probes…………………………………………………………………………………………  132     Spatial  structure  of  communities  on  the  tonsils  using  FISH……………………………..…  132     Spatial  structure  of  communities  on  the  tonsils  using  SEM…………………………..........  137   DISCUSSION……………………………………………………………………………………………………………….  155   REFERENCES……………………………………………………………………………………………………………..  162     CHAPTER  5.  SUMMARY  AND  FUTURE  DIRECTIONS…………………………………………………….  168   SUMMARY………………………………………………………………………………………………………...............  169     vii   FUTURE  DIRECTIONS………………………………………………………………………………………………...  174   REFERENCES………………………………………………………………………………………………………..……  175         viii   LIST  OF  TABLES         Table  1.1.  Characteristics  from  the  main  tonsils  identified  in  different  species…………………..  7     Table  2.1.  Identification  of  sows,  litters,  sample  collection  and  times  of  collection  ...…………  47     Table  2.2.  Core  microbiome  at  OTU  level  for  litters  and  sow  samples………………………………  66     Table  2.3.  SIMPER  analysis  between  litters  through  different  sampling  times………………….  68     Table  2.4.  Core  microbiome  at  OTU  level  for  third  week………………………………………………….  69     Table  2.5.  Core  microbiome  at  OTU  level  for  fourth  week……………………………………………….  70     Table  3.1.  Samples  processed  by  sampling  time  and  litter……………………………………………….  85     Table  3.2.  Number  of  observed  OTUs  (sobs)  during  the  different  sampling  times…………….  88     Table  3.3.  Top  20  most  abundant  families  per  sampling  time……………………………………….  114       Table  4.1.  Oligonucleotide  probes……………………………………………………………………………….  129       ix   LIST  OF  FIGURES     Figure  2.1.  Unrooted  Bray-­‐‑Curtis  dendrogram  of  PB  and  sow  microbiomes……………………..  48     Figure  2.2.  Thirty  most  abundant  Operational  Taxonomic  Units  (OTUs)  for  piglets  and  sow   samples……………………………………………………………………………………………………………………….  49     Figure   2.3.   Twenty   most   abundant   families   identified   in   sows   and   PB     microbiome   samples……………………………………………………………………………………………………………………….  52     Figure   2.4.   Principal   Coordinate   Analysis   (PCoA)   characterizing   the   tonsillar   microbiome   from  PB  piglets  through  the  different  sampling  times…………………………………………………….  53     Figure  2.5.  The  abundance  of  the  twenty  most  common  families  in  PB  piglets  sampled  from   newborn  through  four  weeks…………..…………………………………………………………………………....  55     Figure  3.1.  Significant  management  practices  at  the  swine  farm  during  the  life  of  the  pigs  in   this  study……………………………………………………………………………………………………………………..  86     Figure  3.2.  Unrooted  Bray-­‐‑Curtis  dendrogram  for  all  sampled  weeks………………………………  89       Figure  3.3.  Unrooted  Bray-­‐‑Curtis  dendrogram  for  three  pre-­‐‑transition  times  …………………  91     Figure   3.4.   Twenty   most   abundant   families   identified   in   the   tonsillar   microbiome   of   pigs   from  newborn  to  market  age  and  in  the  sows………………………………………………………………….  93     Figure   3.5.   Forty   most   abundant   Operational   Taxonomic   Units   (OTUs)   for   pigs   through   different  sampling  times…………………………………………..…………………………………………………...  99       Figure   3.6.   Top   20   most   abundant   families   per   sampling   time   for   4   selected                                                         pigs  ……………………………………………………..…………………………………..............................……………  115     Figure  3.7.  Proportions  of  aerobes,  anaerobes  and  facultative  bacteria…………………………  116     Figure   4.1.   Representative   images   for   the   validation   of   FISH   probes   and   identification   of   Streptococcus  cells  on  the  tonsillar  surface………………………………………………………………..…  134       Figure  4.2.  Representative  images  of  bacterial  cells  and  cellular  debris  in  tonsils  using  FISH   and  SEM…………………………………………………………………………………………………………………….  135     Figure   4.3.   Representative   scanning   electron   microscopy   images   of   tonsil   tissue   from   one   week  old  pigs.…………………………………………………………………………………………………………….  138       x   Figure   4.4.   Representative   scanning   electron   microscopy   images   of   tonsil   tissue   from   three   week  old  pigs……………………………………………………………………………………………………………..  140     Figure  4.5.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue  from  four   week  old  pigs……………………………………………………………………………………………………………..  143     Figure  4.6.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue  from  eight   week  old  pigs……………………………………………………………………………………………………………...  145     Figure   4.7.   Representative   scanning   electron   microscopy   images   of   tonsil   tissue   from   ten   week  old  pigs…………………………………………………………………………………………………………...…  149     Figure   4.8.   Representative   scanning   electron   microscopy   images   of   tonsil   tissue   from   seventeen  week  old  pigs……………………………………………………………………………………………..  151     Figure  4.9.  Representative  bacterial  micro-­‐‑colonies  identified  through  the  different  sampling   times………………………………………………………………………………………………………………………….  153         xi   rRNA       OTUs       SIMPER       FISH       CLSM       SEM       KEY  ABBREVIATIONS         ribosomal  Ribonucleic  acid   Operational  Taxonomic  Units   Similarity-­‐‑Percentage   Fluorescent  In  Situ  Hibridization   Confocal  Laser  Scanning  Microscopy   Scanning  Electron  Microscopy   xii   CHAPTER  I.  INTRODUCTION  AND  LITERATURE  REVIEW                                                 1   TONSILS  AND  MICROBIOME  IN  HUMAN  AND  PIGS     Recently   humans   have   become   more   aware   of   the   role   played   by   bacterial   communities   in   human   and   animal   health.     These   bacterial   communities   can   reduce   acquisition   of   pathogens   by   competitive   exclusion,   improve   many   physiological   functions   and  play  a  complex  role  in  shaping/regulating  tissue  homeostasis  and  health.  In  the  last  few   years   since   the   advent   of   advanced   sequencing   technologies   and   increased   affordability,   there  has  been  a  bloom  in  studies  identifying  the  presence  of  a  normal  bacterial  population   in   different   hosts   and   host   tissues.   Sequencing   has   enabled   identification   of   complex   relationships   between   diverse   bacterial   populations   in   host   tissues,   including  the  presence   of  pathogenic  microbes  and  the  relationship  of  the  normal  microbiota  to  other  microbes  and   disease  states.  For  example,  a  recent  study  showed  how  the  presence  of  bacterial  members   of  order  Clostridiales  enhanced  the  resistance  of  mice  to  experimental  infections  with  enteric   pathogens  such  as  Salmonella  enterica    Typhimurium  and  Citrobacter  rodentium  [1].   It   is   broadly   acknowledged   that   tonsils   act   as   a   first   line   of   defense,   continually   surveilling  for  pathogens  entering  the  host  through  the  nasal  or  oral  routes.  Further,  tonsils   function  as  a  site  of  colonization  and  primary  replication  for  bacterial  and  viral  pathogens   that   can   be   host-­‐‑specific   or   zoonotic   organisms   transmitted   from   animals   to   humans   [2].     Currently,  there  are  no  studies  identifying  the  interaction  of  the  normal  microbial  population   in  human  tonsils  with  pathogenic  microorganisms  and,  more  importantly,  no  worthy  animal   models   to   study   and   test   hypotheses   about   relationships   between   normal   tonsillar   microbiota  and  pathogenic  bacteria  in  humans  have  been  described.       2   In   this   review,   we   will   briefly   discuss   the   use   and   role   of   animal   models   to   study   bacterial   respiratory   diseases   in   humans,   particularly   the   use   of   pigs   to   study   diseases   in   humans.  The  review  will  further  discuss  tonsils,  including  their  structure  and  their  role  and   relevance  as  a  first  barrier  to  prevent  the  colonization  of  the  host  by  pathogenic  bacteria.   Additionally,   the   review   will   elucidate   some   particularities   of   tonsillar   development   in   human   and   pigs.   Finally,   the   review   will   summarize   the   current   base   of   knowledge   of   microbial  populations  in  human  and  pig  tonsils.     ANIMAL  MODELS  AND  THE  STUDY  OF  HUMAN  RESPIRATORY  DISEASES.       Animals  have  been  used  as    models  to  study  human  diseases  for  many  years,  and  have   helped  researchers  fathom  the  mechanisms  of  pathogenesis  of  some  diseases  as  well  as  to   develop  therapies  to  cure  those  conditions  in  humans  [3,  4].  Many  of  the  “traditional”  models   are   selected   based   on   simplicity   to   manage   and   celerity   to   conduct   studies,   sometimes   leaving  aside  the  intricacies  of  certain  physiological  aspects  [4].  One  of  the  most  common   animal  models  used  is  the  humanized  mouse  model;  however  this  model  frequently  does  not   mimic   the   human   conditions   [3].   This   becomes   more   relevant   when   working   on   microorganism-­‐‑associated  disease,  due  to  the  fact  that  mice  and  other  laboratory  species  are   usually   not   infected   by   microorganisms   that   infect   humans   [5].     Other   cheap   or   easier   to   handle  models  broadly  used  in  comparison/translational  studies  are  the  rodent  models  such   as   rat   and   guinea   pigs.     Although   these   rodents   are   readily   available,   their   lack   of   differentiated  tonsillar  tissue  [6,  7]  makes  them  a  very  poor  model  for  tonsillar  microbiome   research.         3   There   is   not   an   animal   model   that   meets   all   the   specific   requirements   for   a   translational   study   [8].   The   selection   of   a   good   animal   model   depends   on   the   special   conditions  required  for  the  study.  The  pig  has  been  used  as  a  relevant  model  for  a  wide  range   of   human   diseases,   such   as   atherosclerosis,   diabetes,   and   skin   disease,   because   of   the   similarities  it  shares  with  humans,  including  anatomy,  physiology,  organ  development  and   disease  progression  [3,  4,  9].       Growing  interest  in  the  use  of  pigs  as  a  translational  model  have  been  the  object  of   international   interest   represented   in   symposiums   to   discuss   their   prospective   uses,   advantages   and   disadvantages   [8,   10,   11].   Examples   of   the   use   of   pigs   as   a   translational   model   to   provide   new   understanding   of   the   pathogenesis   of   relevant   disease   affecting   humans   are   multiple.   Pigs   have   been   genetically   modified   to   generate   models   of   cystic   fibrosis   (an   inherited   and   fatal   disease   of   Caucasians),   providing   better   approaches   to   understand   the   disease   mechanism,   especially   based   on   the   organs   involved   in   the   pathology,  which  is  not  provided  by  the  existing  mouse  models  [12-­‐‑14].  Pigs  have  been  used   as   model   to   study   organic   responses   to   Pseudomonas   aeruginosa   in   sepsis   [15]   and   in   ventilator-­‐‑associated  pneumonia  [16]  as  well  as  in  lung  infections  [17].  Pigs  have  been  used   to  study  the  pathogenesis  of  influenza  and  infection  with  secondary  bacterial  pathogens  such   as   Bordetella   bronchiseptica   [18]   or   Staphylococcus   aureus   [19],   as   well   as   a   model   to   study   the   pathogenesis   of   respiratory   infection   by   Bordetella   pertussis   [20]   and   Bordetella   parapertussis  [21].   Humans   and   pigs   share   significant   similarities   in   anatomical   features   of   the   upper   respiratory   tract,   such   as   the   arrangement   of   the   pharyngeal   “Waldeyer´s   ring”   lymphoid   tissue.   With   the   exception   of   primates,   the   pig   resembles   the   human   upper   respiratory     4   anatomy  most  closely  [2].  Further,  pigs  have  a  distinct  advantage  over  rodents  due    to  the   high  similarity  of  immune  parameters  with  humans  (higher  than  80%,  compared  with  less   than  10%  of  similarity  that  has  been  reported  for  mice)  [9].   Pigs   and   humans   share   common   pathogens   that   are   able   to   induce   disease   or   be   transmitted  between  the  two  species.  Examples  of  such  pathogens  include  Streptococcus  suis,   which  is  an  important  respiratory  and  neurologic  pathogen  of  pigs  that  is  now  identified  as   a   cause   of   meningitis   in   humans   worldwide   and   an   important   emerging   disease   of   humans   [22-­‐‑39],  and  influenza,    a  viral  pathogen  shared  with  humans  [40-­‐‑49].  The  fact  that  many   respiratory  pathogens  have  similar  pathogenic  mechanisms  in  humans  and  pigs  has  led  to   increased  use  of  pigs  as  a  model  to  study  human  respiratory  pathogens  [9].     Tonsils  have  been  reported  as  a  primary  portal  of  entrance  and  colonization  for  some   of   these   pathogens,   from   where   they   are   routinely   isolated   [50].   Studies   of   bacterial   interactions  with  normal  tonsils  in  humans  are  complicated  due  to  the  reported   difficulties   in   obtaining   normal   human   tonsillar   tissue   [51]   and   the   inability   to   study   the   effects   of   acquisition   of   pathogens   in   humans.   Human   tonsil   explants   have   been   used   to   study   the   interactions  of  human  tissue  with  diverse  infectious  agents  [52].  However,  this  model  lacks   certain   aspects   present   in   normal   tissue   interactions,   such   as   the   presence   of   an   intact   immune   system.   The   potential   contamination   inherent   to   the   non-­‐‑sterile   nature   of   these   explants  is  another  serious  problem  [52].  Because  of  the  high  similarities  between  pig  and   human   tonsils,   described   below,   it   is   reasonable   to   propose   the   use   of   pigs   as   a   good   exploratory   translational   model   to   study   the   tonsillar   microbiome   and   to   test   hypotheses   about  the  interaction  between  tonsils  and  the  microbiome.       5   ANATOMY  AND  HISTOLOGY  OF  TONSILS       The  pharyngeal  region  of  some  species  is  characterized  by  the  presence  of  lymphoid   cell   aggregations   located   in   the   wall   of   its   lamina   propria.   These   aggregations   are   called   tonsils   [53],   and     include   the   lingual   tonsils,   palatine   tonsils,   paraepiglottic   tonsils,   pharyngeal  tonsils,  tubal  tonsils  and  the  tonsils  of  soft  palate.  From  the  aforementioned,  the   single   nasopharyngeal   tonsils   or   adenoid,   lingual   tonsil,   paired   palatine   and   tubal   tonsils,   form  the  vast  majority  of  the  subepithelial  secondary  lymphoid  organs  located  in  pharynx   known   as   Waldeyer´s   ring   [53],   which   have   been   suggested   to   play   a   role   in   local   B   cell   dissemination   [54].     The   number   of   tonsils   present   in   each   species   and   the   features   of   each   one  can  vary  widely  (Table  1.1.)   First,   it   is   important   to   mention   the   confusion   related   to   the   existence   of   palatine   tonsils  in  pigs,  which  have  been  clarified  recently  by  Casteleyn  et  al  [55,  56]  to  actually  be   tonsils  of  the  soft  palate  and  not  palatine  tonsils.  Previous  to  Casteleyn´s  detailed  report  on   the  structure  of  tonsils  in  many  species  of  mammals,  some  reference  text  books  [57]  as  well   as  research  papers  [50,  58-­‐‑63]  regularly  referred  to  the  use  of  palatine  tonsils  in  pigs  for   their  research  work.  Because  of  that,  most  of  the  references  previous  to  Casteleyn´s  report   in   2011   can   generate   a   confusion.     We   will   use   the   term   tonsils   of   the   soft   palate   in   this   review.   Tonsils  as  aggregations  of  mucosa-­‐‑associated  lymphoid  tissue  (MALT)  are  formed  by   areas  of  B-­‐‑cell  collections  (lymphoid  follicles)  surrounded  by  T-­‐‑cells  (interfollicular  regions)   [53].  Approximately  90%  of  tonsils  are  comprised  of    lymphoid  tissue  [64],  clustered  as         6   Table  1.1.  Characteristics  from  the  main  tonsils  identified  in  different  species     All  the  data  contained  in  this  table,  except  *  was  extracted  from  [56].  *  data  was  extracted  from  [53]     7   Table  1.1.  (cont´d).       All  the  data  contained  in  this  table,  except  *  was  extracted  from  [56].  *  data  was  extracted  from  [53]               8   lymphoid   follicles       where       B       cells     mature       and       differentiate       and     T     cells     are     activated,    while    the  interfollicular  regions  are  the  location  of  specialized  venules  (High   Endothelial  Venules:  HEV)  which  play  a  role  in  the  migration  of  T  and  B  cell    from  blood   to  tonsils  [65].     The    lymphoid    follicles    are    spread  uniformly  in    the    subepithelial    mucosal   layer   [64]   and   have   been   classified   as   primary   lymphoid   follicles   and   secondary   lymphoid  follicles.  Primary  follicles,  or  resting  follicles,  are  not  involved  in  response  to   antigens  [66],  while  secondary  follicles  are  busily  involved  in  antigen-­‐‑driven  processes   [67]    Within  the  secondary  follicles,  immune  activated  B  cells  proliferate  centrally.  The   B-­‐‑cells  also  form  zones  with  diverse  degrees  of  differentiation  and  stratification  known   as  dark,  light  and  mantle  zones  [68].  The  anatomical  location  makes  the  palatine  tonsils   easily  accessible  thereby  making  them  one  of  the  most  widely  studied  lymphoid  organs   to  understand  interactions  of  immunological  cells  and  antigens  [65].  The  remainder  of   this  review  will  primarily  focus  on  these  particular  tonsils  for  humans  and  the  tonsils   of  the  soft  palate  for  pigs  and  their  resident  microbiome.   Palatine  tonsils  play  an  important  role  in  immune  defense,  preventing  foreign   antigens  from  entering  the  organism  via  the  respiratory  and  gastrointestinal  pathways   [69,  70],  suggesting  an  active  role  as  one  of  the  first  components  of  the  immune  system   to  be  exposed  to  antigenic  stimulation  after  birth  [71].  The  tonsil  surface  possesses  thin   channels  known  as    crypts,  which  facilitate  the  interaction  between  foreign  antigens   and   the   immune   system   [72].Their   numbers   vary   between   species   and   type   of   tonsils.   For  palatine  tonsils,  in  particular,  cats  do  not  have  crypts  [73],  rabbits  only  have  one   [7],  ovine  have  1  –  3  [74],  and  humans  possess  10  –  30  [75],  while  the  tonsils  of  soft     9   palate  in  pigs  have  between  160  -­‐‑190  [76].  These  crypts  are  present  at  birth,  and  the   length  and  size  of  tonsillar  crypts  continues  to  grow  after  birth  [77].  The  crypt  shape   can   vary   between   species,   however   tonsils   of   human   and   pigs   have   characteristic   tubular  crypts  [76,  78].  Tonsils    act    as    a  first    interacting    organ  with    antigens    entering     by  the  oral  route  [79],    where  the  epithelial  layer  lining  the  tonsillar  surface  and  crypts   plays  a  critical  role  in  sensing  antigens  [80].  Because  tonsillar  lymphoid  follicles  lack   afferent   lymphatic   vessels,   the   intraepithelial   passage-­‐‑ways   present   in   the   reticular   epithelium   allow   the   flow   of   intercellular   fluid   and   lymphoid   cells,   which   will   finally   reach  lymphatic  vessels  and  follicles  [81].   Ultrastructural  studies  of  the  epithelial  surface  in  palatine  tonsils  have  shown   that  there  are  two  distinguishable  types  of  epithelium  lining  the  tonsil  surface,  reticular   and   non-­‐‑reticular   [80,   82].   The   non-­‐‑reticular   epithelium   is   composed   of   non-­‐‑ keratinized  stratified  squamous  cells  that  cover  the  tonsillar  surface  and  entrance  of   the  crypts.  The  non-­‐‑reticular  epithelial  cells  have  characteristic  microscopic  folds  on   the  surface,  whose  shape  varies  and  is  more  noticeable  through  the  crypt  extension,   especially  in  the  deeper  parts  of  the  crypt.    A  second  and  major  component,  covering   most  of  the  crypt  is  a  reticular  epithelium  invaded  by  lymphoid  cells  [76,  82].  In  the   junction   of   the   borders   of   both   epithelia,   the   borders   of   the   reticular   epithelial   are   depressed  and  might  provide  a  surface  for  bacteria  to  adhere  to  [82].       The  epithelium  lining  the  tonsil  surface  is  formed  by  polygonal  cells  whose  apical   surface  is  covered  by  patterns  of  characteristic  microscopic  folds  (microridges)  [83],  or   identified  as  microvilli  or  microplications  on  the  surface  of  epithelium  [76],  which  may   assist   bacterial   attachment   [83],   since   it   has   been   demonstrated   that   the   bacteria,     10   Streptococcus  pyogenes,  use  the  crest  of  these  microridges  for  initial  attachment,  a  first   step  in  the  colonization  process  [84].      Another  characteristic  cell,  the  fungiform  cell   [82]  has  been  described  and  appears  to  be  the  same  cell  identified  by  other  authors  as   the  specialized  surface  cell  (M  cell),  characterized  by  the  presence  of  microvilli  which   suggest  a  critical  role  in  the  antigen  uptake  [85].  The  M  cells  vary  morphologically,  but   frequently  are  characterized  by  large  and  developed  folds  of  the  apical  membrane  [76,   80]  that  are  tightly  associated  to  intraepithelial  lymphocytes  [76].  The  characteristic   shape   of   M   cells   seems   to   provide   a   large   contact   surface,   facilitating   the   uptake   of   foreign  material  [80].  M  cells  were  found  disseminated  through  the  crypt  epithelium   especially  at  projections  of  the  crypt  surface  and  comprise  up  to  35%  of  epithelial  cells   [86]   in   the   tonsillar   crypts.   They   play   a   significant   role   in   mucosal   defense   [80],   being   capable  to  transporting  antigens  across  the  epithelium  [87].  It  has  been  proposed  that   tonsillar  M  cells  are  constantly  sampling  antigens,  such  as  bacteria  and  other  microbes   which  are  continuous  tonsillar  colonizers,    and  may  assist  with  tolerance  and  defense   mechanisms,  either  local  or  systemic,  against  these  microorganisms  [88]                       Tonsillar  crypts  provide  a  large  surface  area  for  antigen  contact  [75],  and  the   stratified   squamous   epithelia   lining   the   crypts   of   palatine  tonsils   are   characterized   by   the   presence   of   multiple   channels   infiltrated   by   diverse   cells   including   lymphocytes,   plasma   cells   and   mononuclear   phagocytic   cells   [85].   Abundance   of   infiltrating   non-­‐‑ epithelial   cells   (specially   lymphocytes   B   and   T),   macrophages,   dendritic   langerhans   cells  and  Natural  Killer  (NK)  cells  and  intraepithelial  small  vessels  scattered  through   epithelial   layer   [89,   90]   have   been   reported,   as   well   as   the   presence   of     neutrophils   in   the  crypt  lumen  [90].  Goblet  cells,  characterized  by  the  presence  of  mucous  cytoplasmic     11   granules,   have   also   been   described   in   the   middle   and   terminal   regions   of   the   crypts,   often  tightly  associated  to  M  cells  [76].  Also,  diverse  leucocytes,  epithelial  cells,  Periodic   acid-­‐‑Shiff   (PAS)   positive   content   (polysaccharides   and   mucosubstances)   and   free   or   phagocytosed  bacteria  have  been  observed  in  the  lumen  of  crypts  [91]  and  seems  to  be   sloughed  off  from  the  area  [64].       TONSIL  DEVELOPMENT       Human   tonsil   development.   The   second   branchial   pouch,   known   to   be   the   precursor  of  palatine  tonsils  in  the  fetus,  is  identifiable  in  the  first  month  of  gestation   and  by  the  second  month  the  epithelium  begins  to  evaginate  to  form  the  early  tonsillar   fossa  and  there  is  evidence  of  canalization  and  branching  into  early  crypts  present  in   the   structure   [92].   By   the   seventh   month   of   gestation   there   is   evidence   of   lymphoid   infiltration   into   the   lamina   propria,   and   by   the   last   trimester   of   gestation,   the   primary   follicles   can   be   identified   [92].   However,   newborn   infants   lack   tonsillar   lymphoid   follicles,  which  are  numerous  in  adults  [93].     The   tonsillar   crypt   structure   in   humans   has   been   reported   as   beginning   to   appear  at  the  third  month  of  fetus  development  and  to  reach  an  approximately  constant   number   at   birth   [77].   Minear   et   al.   showed   that   the   number   of   crypts   seems   to   be   constant  even  in  adulthood,  reaching  a  maximum  of  thirty  eight  [77].  This    is  in  contrast   to  the  studies  done  by  Kassay  and  Sandor  which  reported  that  the  age  and  size  of  the   tonsil   have   a   higher   influence   on   the   numbers   of   crypts   observed,   with   the   number   of   crypts  varying  from  16  to  up  to  25,  depending  on  whether  it  is  a  small  or  a  giant  tonsil     12   [75].   However,   more   important   than   the   number   of   crypts   are   the   number   and  length   of  the  crypt  branches,  which  expands  the  surface  area  of  the  tonsils  significantly  [75].     Tonsillar  germinal  centers  appear  only  after  birth  once  they  are  stimulated  by   antigens  and  continue  to  proliferate  during  the  first  year  of  life  [92,  94],  reaching  their   highest  abundance  during  the  first  2-­‐‑3  years  of  childhood  and  declining  around  8  –  14   years   [95],   they   revert   with   age,   which   involves   a   decrease   in   the   proliferating   pool   of   the   B   cell   population   [96].   It   has   been   shown   that   the   presence   of   immunoglobulin   positive  cells  in  tonsils  is  negatively  correlated  with  age,  meaning  that  number  of  cells   positive  for  immunoglobulin  decreases  as  age  increases  [69].   Human   tonsils   are   characterized   by   the   absence   of   sinuses   and   the   presence   of   epithelial  infiltrates  of  macrophages  and  lymphoid  cells  [97],  where  the  luminal  side  of   the  mucosa  is  particularly  populated  by  B  cells  and  the  apical  side  by  mature  plasma   cells  predominantly  positive  for  IgG  and  in  lower  numbers  positive  to  IgA,  IgM  and  IgD   [90].   This   epithelial   cell   infiltration   and   the   presence   of   pores   in   the   basement   membrane   of   the   tonsillar   crypt   epithelium   is   a   natural   developmental   finding   in   prenatal  and  postnatal  human  crypts  [98]   Immunoglobulin   production   by   cells   from   normal   human   palatine   tonsils   was   initially   investigated   by   Brandtzaeg   et   al.   [99]   and   they   demonstrated   that   B   cells   differentiate  into  IgG  blast-­‐‑cells  in  the  germinal  centers  of  tonsils,  and  that  this  B  cell   system  is  highly  activated  throughout  human  life.  The  B  cell  system  plays  a  significant   role  in  identifying  foreign  material  and  driving  clonal  expansion  and  differentiation,  in   order  to  control  antigenic  agents  [98,  99].  It  has  been  demonstrated  that  tonsils  have  a     13   role  in  the  generation  of  local  and  disseminated  antibody  responses,  and  contribute  to   the  development  of  immunological  memory  [100].       Pig  tonsil  development.  The  pig  tonsils  also  arise  from  the  pharyngeal  pouches   [101],  as  in  humans.  The  first  evidence  of  formation  of  tonsillar  tissue  appears  in  fetuses   of    90  mm    (approximately  70/114  days  of  gestation),  evidence  of  crypts  appears  in  the   142   mm   stage   (approximately   80/114   days   of   gestation),   and   defined   lymphoid   nodules  appear  in  the  275  mm  stage  (approximately  110/114  days  of  gestation)    [101].   Germinal  centers  in  tonsils  are  absent  in  germ-­‐‑free  piglets  under  4  weeks  of  age  [102].   However,  the  presence  of  bacterial  antigens  is  able  to  induce  the  formation  of  germinal   centers  in  tonsillar  tissue  [103].  In  tonsils,  the  lymphoid  follicles  develop  as  piglets  age,   where  1  week  old  piglets    have  less  developed  lymphoid  follicles  when  compared  with     6  month  old  pigs  [79].     Tonsil   dimensions   vary   with   age   and   can   range     from   3.3   x   1.8   cm   for   pigs   between  6  –  10  weeks  old  [76]  to  approximate  4.5  x  2  cm  in  adult  animals  [101].  Pig   tonsils   have   been   reported   to   have   160   to   190   oval   to   circular   surface   openings,   corresponding   to   the   entrances   of   tonsillar   crypts   [76].   Tonsillar   crypts   in   pigs   are   covered   by   a   non-­‐‑keratinized   squamous   epithelium,   supported   by   dense   connective   tissue   and   with   a   parenchyma   uniformly   populated   with   lymphocytes   [103].   They   are   characterized  by  the  presence  of  intraepithelial  mucous  cells,  which  suggests  a  possible   role   in   the   elimination   of   debris   due   to   its   secretory   role   [79].   Tonsillar   lymphoid   follicles  are  characterized  by  an  oval  shape  with  the  long  axis  oriented  perpendicular   to  the  epithelial  layer  of  crypts  [79].       14   Studies  show  that  during  the  development  of  tonsils  in  pigs,  follicles  are  formed   mainly  by  B-­‐‑cells  and  T-­‐‑cells  present  in  the  interfollicular  area.  IgM+  cells  are  found   in   follicles  of  new  born  to  9  month  old  animals,  while  IgG+  and  IgA+  cells  are  only  seen  after   4  weeks  of  age  [104].  Activation  of  tonsillar  T  cell  increases  with  age,  and  suggests  a   direct   relation   of   levels   of   activation   and   differentiation   of   T   cells   with   colonization   of   microbial  flora.  There  is  an  association  of  microbial  colonization  with  changes  in  the   size  and  structure  of  follicles,  which  increased  with  the  age,  when  compared  pigs  from   birth  to  4  weeks  of  age  [104].    As   can   be   seen   in   the   above   paragraphs,   pig   and   human   tonsils   share   many   similarities  and  the  possibilities  to  use  pigs  as  translational  models  for  studies  involving   tonsils  are  promising.  The  development  of  such  important  tissue  as  the  tonsils  involves   many   important   features   that   are   not   the   objective   of   this   brief   review.   For   readers   interested   in   a   more   extensive   review   of   pig   and   human   tonsils,   the   articles   by   Horter   et  al  [2]  and  Perry  and  White  [53]  are  good  sources.     MICROBIOME  AND  TONSILS         It   was   mentioned   previously   that   in   recent   years   there   has   been   a   bloom   in   microbiome  publications  in  different  sources  using  a  sequencing  approach.  The  study   of  the  human  microbiome  has  been  led  by  a  giant  consortium  of  scientists  that  want  to   study  the  various  aspects  of  the  human  microbiome,  such  as    the  structure,  function  and   diversity   in   healthy   populations   and   how   disease   correlates   with   changes   in   the   microbiome   [105,   106].   However,   very   few   studies   focus   particularly   on   the   tonsil     15   microbiome.  Most  available  studies  are  focused  on  the  oral  cavity  as  a  whole  [107-­‐‑110]   or  studied  multiple  body  sites  without  a  particular  focus  on  the  tonsils  [111].  The  only   available   study   focused   particularly   on   human   tonsils   analyzed   the   microbiota   of   tonsillar   crypts   in   children   and   healthy   adult     patients   diagnosed   with   tonsillar   hyperplasia  compared  to  patients  with  recurrent  tonsillitis  [112].  However  there  are   no  studies  characterizing  the  development  of  the  tonsil  microbiome  in  humans,  using  a   sequencing  approach.  Similarly,  there  are  multiple  studies  focused  on  the  microbiome   of  pigs  in  different  body  regions,  particularly  the  intestinal  microbiome,  using  a  culture-­‐‑ independent  approach.    There  are  a  few  studies  focused  on  the  tonsillar  microbiome  of   pigs  [113-­‐‑115]    but  none  have  studied  the  development  of  tonsillar  microbiome  of  pigs.     Use   of   a   pig   model   as   a   model   of   human   infants   has   been   suggested,   where   pigs   inoculated   with   human   microbiota   have   the   potential   to   simulate   closely   an   overall   human   system   behavior,   especially   because   of   the   similarities   shared   between   both   species  [116].  Further,  it  has  been  reported  that  92%  of  the  bacterial  families  identified   in  human  tonsils  are  also  present  in  pig  tonsils  [117],  although  different,  often  host-­‐‑ specific  species  are  found.  The  following  section  will  review  what  is  known  about  the   tonsillar  microbiome  of  humans  and  pigs,  focusing  on  the  different  methodologies  used.     Human  tonsillar  microbiome:  culture-­‐‑dependent  vs  culture-­‐‑independent   approach.   The   initial   studies   characterizing   the   human   tonsil   microbiome   were   performed  using  a  culture-­‐‑dependent  approach  in  order  to  establish  the  members  of   the   tonsillar   flora.   Predominantly   these   studies   were   focused   on   characterizing   the   aerobic   tonsillar   bacterial   population   while   a   smaller   number   of   studies   have     16   characterized   the   anaerobic   population.   Most   of   these   studies   were   based   on   young   patients,  mainly  children  between  1  and  13  years  old  (usually  after  tonsillectomy)  [118-­‐‑ 120],  while  a  few  others  have  also  been  done  in  older  patients  [121,  122].   Studies  done  in  1  -­‐‑   3  years  old  children  [118]  as  well  as  between  5  –  13  years   [119],  identified  members  of  the  genera  Streptococcus  and  Staphylococcus    as  the  main   aerobic  organisms  isolated  and  members  of  genera  Bacteroides  and  Fusobacterium  as   the   predominant   anaerobic   organisms   isolated.   β-­‐‑haemolytic   Streptococcus,   Streptococcus   pneumoniae   and   Haemophilus   influenzae   were   the   prevalent   aerobic   bacteria  [118,  121],  followed  by  Staphylococcus  aureus  [121],    while  Bacteroides  fragilis   was  the  most  common  anaerobe  isolated  from  the  surface  and  core  of  tonsils  of  very   young   children   [118].   H   influenzae   was   most   prevalent   in   youngsters     vs   adults   and   β-­‐‑   haemolytic    Streptococcus  was  less  prevalent  in  younger  children  (2-­‐‑7)  years,  compared   to   older   adults   [121].   A   predominance   of   anaerobic   bacteria   was   found   in   adults   compared   to   younger   ages,     identifying   higher   proportions   of   isolated   anaerobes   in   adults  (older  than  15  years)  vs  younger  children  [121].   Using  a  culture-­‐‑dependent  approach,  Kasenõmm  et  al.  found  mixed  anaerobic   and   aerobic   bacteria   as   core   microorganisms   in   adult   patients   with   acute   tonsillitis   [123].     The   authors   reported   the   frequent   isolation   of   α-­‐‑   and   β-­‐‑haemolytic   Streptococcus,   Staphylococcus   aureus   and   coagulase   negative   Staphylococci,   and   Corynebacterium   spp   as   the   aerobic   population   and   members   of   Peptostreptococcus,   Propionibacterium,  Actinomyces,  Prevotella,  Bacteroides  and  Fusobacterium  species  as   the  most  frequent  anaerobes.         17    Although  what  is  known  about  microbiome  of  tonsils  by  the  culture-­‐‑dependent   approach  is  based  on  studies  of  samples  of  patients  with  acute  tonsillitis,  it  has  been   reported  that  there  is  similarity  in  the  organisms  that  form  the  tonsillar  microbial  flora   of  normal  patients  and  patients  with  recurrent  history  of  tonsillitis.  However,  a  higher   concentration  of  some  bacterial  members  was  present  in  the  patients  with  tonsillitis.   [119].   The  use  of  culture-­‐‑independent  approaches  to  identify  the  tonsillar  microbiome   in  humans  has  produced  new  insights.  Using  clone  libraries  of  16S  rRNA  genes,  Aas  et.   al.   studied   the   microbiome   of   5   different   patients/subjects   in   nine   different   oral   locations   including   the   tonsils   [108].   They   were   able   to   identify   that   there   is   diversity   in  the  bacteria  identified  in  the  study  subjects  where  some  bacterial  species  were  found   only   in   one   subject,   while   others   were   present   in   all   or   most   of   the   subjects.   However,   they  emphasized  that  the  tonsils  had  the  highest  numbers  of  different  species  compared   to  the  other  oral  sites  sampled.     Other   studies   have   also   examined   the   tonsillar   microbiome,   but   using   a   454   pyrosequencing  approach.  Liu  et  al  [124]  studied  the  composition  of  tonsillar  bacterial   microbiota  in  a  8  year  old  patient  suffering  chronic  serous  otitis  media.  The  authors   detected   9   different   families   in   the   tonsillar   microbiome   (Pseudomonadaceae,   Streptococcaceae,  Fusobacteriaceae,  Pasteurellaceae,  Prevotellaceae,  Flavobacteriaceae,   Bacillales   family   XI,   Carnobacteriaceae   and   Neisseriaceae),   and   identified   Streptococcaceae   as   the   most   dominant,   with   a   relative   abundance   of   approximately   69.2  %.  Similarly,  other  authors  have  reported  that  multiple  OTUs  assigned  to  the  genus   Streptococcus   were   abundant   in   the   tonsils,   as   well   as   others   assigned   to   the   genera     18   Prevotella,   Fusobacterium,   and   Neisseria   [111].   Some   OTUs   that   could   not   be   classified   further  than  family  level  and  belonging  to  the  families  Neisseriaceae,  Pasteurellaceae   and   Prevotellaceae   were   also   identified  [111].   Segata   et   al   [125]   studied   the   microbial   communities   in   ten   different   sites   of   the   digestive   tract   (seven   mouth   surfaces,   throat,   palatine   tonsils   and   colon   (stools)),   and   they   found   that   the   community   structure   allowed   them   to   group   the   samples   in   four   distinct   community   types,   where   saliva,   tongue,   tonsils   and   throat   formed   one   group.   This   group   was   characterized   by   a   decreased   relative   abundance   of   the   phylum   Firmicutes   and   increased   presence   of   members   of   the   phyla   Bacteroidetes,   Fusobacteria,   Actinobacteria   and   TM7.   Also,   members  of  the  genera  Streptococcus,  Veillonella,  Prevotella,  Neisseria,  Fusobacterium,   Actinomyces   and   Leptotrichia   were   identified   evenly   distributed   and   present   at   an   abundance  of  ≥2%  on  average,  while  members  of  the  genus  Moraxella  were  detected  in   low  relative  abundance.  In  contrast,  Jensen  et  al  [112],  identified  bacteria  from  different   genera,   including   Prevotella,     Streptococcus,   Haemophilus,   Fusobacterium,   Porphyromonas,   Gemella,   Neisseria,   Veillonella,   Capnocytophaga,   Parvimonas,   Rothia,   Actinomyces  and  Treponema,  as  the  predominant  members  of  the  core  microbiota  in   tonsillar  crypts,  which  include  both  Gram  (+)  and  Gram  (-­‐‑)  bacteria,  as  well  as  aerobic   and  anaerobic  organisms  .     Finally,   another   approach   used   to   investigate   the   components   of   the   human   tonsillar  microbiome  was  the  use  of  a  selective  isolation  combined  with  the  use  of    PCR   denaturing   gradient   gel   electrophoresis   [126].   The   authors   profiled   the   microbiota   from  10  healthy  adults  and  identified  three  phyla  as  predominant  in  tonsils  (Firmicutes,     19   Proteobacteria   and   Fusobacteria),   and   further   identified   members   of   the   genus   Streptococcus  as  abundant  in  tonsils.        Pig   tonsillar   microbiome:   culture-­‐‑dependent   vs   culture-­‐‑independent   approach.  The  majority  of  what  is  known  about  tonsillar  microbiome  of  pigs  based  on   culture-­‐‑dependent  approach  studies  is  based  on  studies  focused  on  identifying  tonsillar   bacterial   isolates   from   specific   genera.   Devriese   et   al   [127]   studied   the   tonsillar   bacterial  population  of  pigs  brought  for  necropsy  suffering  from  a  variety  of  conditions   distinct  from  streptococcal  infection,  and  yet  isolated  Streptococcus  suis  predominantly,   followed   by   S.   dysgalactiae   and   Enterococcus   faecalis.   In   another   study   directed   to   identify  the  tonsillar  Gram  (+)  flora  of  piglets  before  and  after  weaning,  Baele  et  al  [128]   showed   that   the   most   prevalent   bacterial   genera   found   were   Streptococcus   (Streptococcus   suis,   S.   dysgalactiae),   as   well   as   Staphylococcus   (S.   hyicus,   S.   aureus).   Arcanobacterium  pyogenes  and  Actinomyces  hyovaginalis  were  also  frequently  isolated.   The   authors   found   marginal   numbers   of   members   of   the   genus   Lactobacillus   that   appeared   post-­‐‑weaning.   MacInnes   et   al   [129]   studied   the   prevalence   of   important   respiratory  bacterial  pathogens  in  swine  herds  in  Ontario,  using  a  culture-­‐‑dependent   approach   but   also   using   serological   and   PCR-­‐‑based   tests,   and   identified   a   high   prevalence   of   Haemophilus   parasuis,   Actinobacillus   pleuropneumoniae,   Actinobacillus   suis,  and  S.  suis  .  O´Sullivan  et  al  [130]  identified  the  prevalence  of  porcine  pathogens   from   pig   tonsils   collected   at   slaughter   houses.   This   study   determined   that   most   prevalent   bacteria   isolated   from   pig   tonsils   were   members   of   the   genus   Streptococcus   (S.   suis,   S.   equisimilis,   S.   porcinus),   followed   by   Arcanobacterium   (Arcanobacterium   pyogenes),  Pasteurella  (Pasteurella  multocida),  Staphylococcus  (S.  hyicus,  S.  aureus),  as     20   well   as   a   lower   prevalence   of   other   pathogenic   bacteria   such   as   Actinobacillus   pleuropneumoniae,   Yersinia   enterocolitica,   Haemophilus   parasuis,   Erysipelothrix   spp,   Listeria   monocytogenes,   Actinomyces   sp   and   Salmonella   spp..   Finally,   a   culture-­‐‑ dependent  approach  to  identify  the  microbial  communities  in  pig  tonsils,  was  done  by   Lowe  et  al  [115]  and  by  using  aerobic  cultivation,  they  isolated  Pasteurella  multocida,   Actinobacillus  spp.,  Staphylococcus  (S.  aureus,  S.  epidermidis),  Streptococcus  (S.  suis,  S.   dysgalactiae),   and   Escherichia   coli   in   half   of   the   tonsil   samples   collected   from   two   different  herds.  The  same  study  also  had  a  culture-­‐‑independent  approach  using  clone   libraries  of  16s  rRNA  genes.  This  study  concluded  that  ~74%  of  the  members  of  the   microbial   communities   in   pigs   sampled   from   two   different   herds   belonged   to   the   families  Pasteurellaceae,  Porphyromonadaceae,  Bacteroidaceae  and  Prevotellaceae.  The   authors   reported   members   of   the   genus   Actinobacillus,   Haemophilus,   Pasteurella,   Porphyromonas,   Fusobacterium,   Bacteroides,   and   Prevotella   as   the   dominant   genera   identified  in  both  herds.    It  was  highlighted  from  this  study  that  although  there  were   strong  similarities  between  the  herds,  there  were  also  unique  genera  that  differentiated   them.     Two  other  studies  have  been  published  using  a  culture-­‐‑independent  approach   to   identify   the   bacterial   population   in   pig   tonsils.   Lowe   et   al   [114]   used   a   454-­‐‑ pyrosequencing  approach  to  identify  the  core  microbial  communities  in  tonsils,  using   samples   from   18   –   20   week   old   pigs,   which   included   the   same   samples   from   their   previous  study  in  2011  [115]  as  well  as  new  samples  which  were  used  to  validate  a  non-­‐‑ invasive  approach  to  collect  samples  to  study  the  pig  tonsillar  communities,  since  the   previous   study   involved   the   euthanasia   of   the   animals   and   collection   of   tonsils.   In   this     21   study,   the   authors   defined   a   core   microbiome   for   pig   tonsils   [114].   This   core   microbiome  was  defined  as  composed  of  5  phyla  (out  of  17  identified),  which  are  in   order   of   abundance   Proteobacteria,   Firmicutes,   Fusobacteria,   Actinobacteria   and   Bacteroidetes,  which  comprised  ~98.8%  of  the  identified  organisms.  At  the  family  level,   the   authors   identified   that   8   families   (out   of   61   identified)     comprised   90.4%   of   the   members   of   the   microbiome,   and   were   in   order   of   abundance   Pasteurellaceae,   Moraxellaceae,  Fusobacteriaceae,  Veillonellaceae,  Neisseriaceae,  Peptostreptococcaceae,   Enterobacteriaceae  and  Streptococcaceae.  Finally,  at  the  genus  level,  8  out  of  101  genera   formed   the   core   microbiome   and   were   identified   as   Actinobacillus,   Pasteurella,   Alkanindiges,   Fusobacterium,   Haemophilus,   Veillonella,   Peptostreptococcus   and   Streptococcus,  comprising  85.1%  of  the  identified  genera.     The   most   recent   identified   study   on   the   tonsillar   microbiome   of   pigs   was   performed  by    Mann  et  al  [113],  who  studied  the  metabolically  active  bacteria  in  tonsils   from  slaughter  pigs  and  identified  members  of  five  phyla  (Bacteroidetes,  Proteobacteria,   Firmicutes,   Spirochaetes   and   Fusobacterium)   as   the   most   abundant   in   the   sampled   animals,  comprising    ~95.7  %  of  the  identified  phyla.  Within  those  five  phyla,  members   of  14  different  genera  had  the  highest  relative  abundance  (Prevotella,  Porphyromonas,   Campylobacter,   Treponema,   Streptococcus,   Serratia,   Paraprevotella,   Bacteroides,   Fusobacterium,  Herbaspirillum,  Flavitalea,  Dehalospirillum,  Alysiella  and  Pseudomonas).   Taken  together,  the  information  summarized  above  allows  us  to  conclude  that   there   are   multiple   members   of   the   microbiome   shared   between   humans   and   pigs   at   phylum,   family   and   even   genus   level.   Further,   there   are   multiple   similarities   shared   between  humans  and  pigs  at  the  level  of  tonsil  structure  as  well  as  the  development  of     22   the   tonsils   as   lymphoid   organs.     This   data   leads   us   to   believe   that   the   pig   can   be   an   excellent  translational  model  to  study  and  test  hypotheses  about  relationships  between   normal  tonsillar  microbiota  and  pathogenic  bacteria  in  humans.     GOAL  OF  THIS  THESIS       Prior  research  in  the  Mulks’  laboratory  developed  and  validated  a  non-­‐‑invasive   method   to   collect   tonsil   samples   and   used   this   method   to   describe   the   core   tonsil   microbiome   in   grower-­‐‑finisher   pigs   [114].   One   goal   of   this   thesis   project   was   to   characterize   the   development   of   the   tonsil   microbiome   in   pigs   from   birth   to   market   weight,   by   sequencing   the   16s   rRNA   gene   to   classify   or   categorize   the   members   of   the   microbiome  and  determine  how  those  members  change  over  time.  Another  goal  was  to   use  microscopy,  both  confocal  laser  and  scanning  electron  microscopy,  to  examine  the   physical  structure  of  tonsils  and  their  attached  microbial  communities.                       23                         REFERENCES                             24   REFERENCES         1.     2.     3.     4.     5.     6.     7.     8.     9.     10.     11.     12.     Kim  Y-­‐‑G,  Sakamoto  K,  Seo  S-­‐‑U,  Pickard  JM,  Gillilland  MG,  III,  Pudlo  NA,  Hoostal   M,   Li   X,   Wang   TD,   Feehley   T,   et   al:   Neonatal   acquisition   of   Clostridia   species   protects   against   colonization   by   bacterial   pathogens.   Science   2017,   356:312-­‐‑315.   Horter  DC,  Yoon  KJ,  Zimmerman  JJ:  A  review  of  porcine  tonsils  in  immunity   and  disease.  Anim  Health  Res  Rev  2003,  4:143-­‐‑155.   Lunney   JK:   Advances   in   swine   biomedical   model   genomics.   International   Journal  of  Biological  Sciences  2007,  3:179-­‐‑184.   Bassols  A,  Costa  C,  Eckersall  PD,  Osada  J,  Sabria  J,  Tibau  J:  The  pig  as  an  animal   model  for  human  pathologies:  a  proteomics  perspective.  Proteomics  Clinical   Applications  2014,  8:715-­‐‑731.   Shultz   LD,   Ishikawa   F,   Greiner   DL:   Humanized   mice   in   translational   biomedical  research.  Nature  Reviews  Immunology  2007,  7:118-­‐‑130.   Kingsbury   BF,   Rogers   WM:   The   development   of   the   palatine   tonsil   calf   (Bos   taurus).  American  Journal  of  Anatomy  1927,  39:379-­‐‑435.   Slipka   J:   Palatine   tonsils:   their   evolution   and   ontogeny.   Acta   Oto-­‐‑ Laryngologica  1988:18-­‐‑22.   Dodds   WJ:   The   pig   model   for   biomedical   research.   Federation   Proceedings   1982,  41:10.   Meurens  F,  Summerfield  A,  Nauwynck  H,  Saif  L,  Gerdts  V:  The  pig:  a  model  for   human  infectious  diseases.  Trends  in  Microbiology  2012,  20:50-­‐‑57.   Bustad   LK,   McClellan   RO:   Swine   in   biomedical   research.   Science   1966,   152:1526-­‐‑1528;1530.   Schook   L,   Beattie   C,   Beever   J,   Donovan   S,   Jamison   R,   Zuckermann   F,   Niemi   S,   Rothschild  M,  Rutherford  M,  Smith  D:  Swine  in  biomedical  research:  Creating   the   building   blocks   of   animal   models.   Animal   Biotechnology   2005,   16:183-­‐‑ 190.   Klymiuk  N,  Mundhenk  L,  Kraehe  K,  Wuensch  A,  Plog  S,  Emrich  D,  Langenmayer   MC,  Stehr  M,  Holzinger  A,  Kroner  C,  et  al:  Sequential  targeting  of  CFTR  by  BAC   vectors  generates  a  novel  pig  model  of  cystic  fibrosis.  J  Mol  Med  (Berl)  2012,   90:597-­‐‑608.   25     13.     14.     15.     16.     17.     18.     19.     20.     21.     22.     Rogers  CS,  Stoltz  DA,  Meyerholz  DK,  Ostedgaard  LS,  Rokhlina  T,  Taft  PJ,  Rogan   MP,  Pezzulo  AA,  Karp  PH,  Itani  OA,  et  al:  Disruption  of  the  CFTR  gene  produces   a  model  of  cystic  fibrosis  in  newborn  pigs.  Science  2008,  321:1837-­‐‑1841.   Meyerholz  DK,  Stoltz  DA,  Pezzulo  AA,  Welsh  MJ:  Pathology  of  gastrointestinal   organs  in  a  porcine  model  of  cystic  fibrosis.  American  Journal  of  Pathology   2010,  176:1377-­‐‑1389.   Mustard  RA,  Fisher  J,  Hayman  S,  Matlow  A,  Mullen  JB,  Odumeru  J,  Roomi  MW,   Schouten   BD,   Swanson   HT:   Cardiopulmonary   responses   to   Pseudomonas   septicemia  in  swine:  an  improved  model  of  the  adult  respiratory  distress   syndrome.  Lab  Anim  Sci  1989,  39:37-­‐‑43.   Li  Bassi  G,  Rigol  M,  Marti  JD,  Saucedo  L,  Ranzani  OT,  Roca  I,  Cabanas  M,  Munoz  L,   Giunta   V,   Luque   N,   et   al:   A   novel   porcine   model   of   ventilator-­‐‑associated   pneumonia   caused   by   oropharyngeal   challenge   with   Pseudomonas   aeruginosa.  Anesthesiology  2014,  120:1205-­‐‑1215.   Chevaleyre  C,  Riou  M,  Brea  D,  Vandebrouck  C,  Barc  C,  Pezant  J,  Melo  S,  Olivier  M,   Delaunay   R,   Boulesteix   O,   et   al:   The   pig:   a   relevant   model   for   evaluating   the   neutrophil   serine   protease   activities   during   acute   Pseudomonas   aeruginosa  lung  infection.  PLoS  One  2016,  11:17.   Loving   CL,   Brockmeier   SL,   Vincent   AL,   Palmer   MV,   Sacco   RE,   Nicholson   TL:   Influenza   virus   coinfection   with   Bordetella   bronchiseptica   enhances   bacterial   colonization   and   host   responses   exacerbating   pulmonary   lesions.  Microb  Pathog  2010,  49:237-­‐‑245.   Smith   EA,   Kumar   SR,   Deventhiran   J,   Cecere   TE,   Leroith   T,   McGilliard   M,   Elankumaran   S,   Mullarky   IK:   A   time   course   for   susceptibility   to  Staphylococcus  aureus  respiratory  infection  during  Influenza  in  a  swine   model.  Influenza  Res  Treat  2011,  2011:10.   Elahi   S,   Brownlie   R,   Korzeniowski   J,   Buchanan   R,   O'Connor   B,   Peppler   MS,   Halperin  SA,  Lee  SF,  Babiuk  LA,  Gerdts  V:  Infection  of  newborn  piglets  with   Bordetella  pertussis:  a  new  model  for  pertussis.  Infect  Immun  2005,  73:3636-­‐‑ 3645.   Elahi  S,  Thompson  DR,  Strom  S,  O'Connor  B,  Babiuk  LA,  Gerdts  V:  Infection  with   Bordetella  parapertussis  but  not  Bordetella  pertussis  causes  pertussis-­‐‑like   disease  in  older  pigs.  J  Infect  Dis  2008,  198:384-­‐‑392.   Koch  E,  Fuentes  G,  Carvajal  R,  Palma  R,  Aguirre  V,  Cruz  C,  Henriquez  R,  Calvo  M:   Streptococcus   suis   meningitis   in   pig   farmers:   report   of   first   two   cases   in   Chile.  Revista  Chilena  De  Infectologia  2013,  30:557-­‐‑561.   26     23.     24.     25.     26.     27.     28.     29.     30.     31.     32.     33.     34.       Lun   ZR,   Wang   QP,   Chen   XG,   Li   AX,   Zhu   XQ:   Streptococcus   suis:   an   emerging   zoonotic  pathogen.  Lancet  Infectious  Diseases  2007,  7:201-­‐‑209.   Robertson   ID,   Blackmore   DK:   Prevalence   of   Streptococcus   suis   type   1   and   type   2   in   domestic   pigs   in   Australia   and   New   Zealand.   Veterinary   Record   1989,  124:391-­‐‑394.   Perch  B,  Kristjan.P,  Skadhaug.K:  Group  R  Streptococci  pathogenic  for  man  -­‐‑  2   cases   of   meningitis   and   one   fatal   case   of   sepsis.   Acta   Pathologica   Et   Microbiologica  Scandinavica  1968,  74:69-­‐‑76.   Huong  VTL,  Ha  N,  Huy  NT,  Horby  P,  Nghia  HDT,  Thiem  VD,  Zhu  XT,  Hoa  NT,  Hien   TT,  Zamora  J,  et  al:  Epidemiology,  clinical  manifestations,  and  outcomes  of   Streptococcus   suis   infection   in   humans.   Emerging   Infectious   Diseases   2014,   20:1105-­‐‑1114.   Rajahram   GS,   Hameed   AA,   Menon   J,   William   T,   Tambyah   PA,   Yeo   TW:   Case   report:   two   human   Streptococcus   suis   infections   in   Borneo,   Sabah,   Malaysia.  Bmc  Infectious  Diseases  2017,  17:3.   Gustavsson   C,   Ramussen   M:   Septic   arthritis   caused   by   Streptococcus   suis   serotype  5  in  pig  farmer.  Emerging  Infectious  Diseases  2014,  20:489-­‐‑490.   Haleis  A,  Alfa  M,  Gottschalk  M,  Bernard  K,  Ronald  A,  Manickam  K:  Meningitis   caused   by   Streptococcus   suis   serotype   14,   North   America.   Emerging   Infectious  Diseases  2009,  15:350-­‐‑352.   Rao   SS,   Mariathas   A,   Teare   L:   Meningitis   in   a   butcher.   Emergency   Medicine   Journal  2008,  25:607-­‐‑608.   Taipa   R:   Streptococcus   suis   meningitis:   first   case   report   from   Portugal.   Journal  of  Infection  2008,  56:482-­‐‑483.   van   de   Beek   D,   Spanjaard   L,   de   Gans   J:   Streptococcus   suis   meningitis   in   the   Netherlands.  Journal  of  Infection  2008,  57:158-­‐‑161.   Nguyen   THM,   Ngo   TH,   Tran   VTN,   Le   DL,   Tran   THC,   Dinh   XS,   Nguyen   HP,   Ly   VC,   To   SD,   James   C,   et   al:   Streptococcus   suis   meningitis   in   adults   in   Vietnam.   Clinical  Infectious  Diseases  2008,  46:659-­‐‑667.   Willenburg   KS,   Sentochnik   DE,   Zadoks   RN:   Human   Streptococcus   suis   meningitis   in   the   United   States.   New   England   Journal   of   Medicine   2006,   354:1325-­‐‑1325.   27   35.     36.     37.     38.     39.     40.     41.     42.     43.     44.     45.     Lee  GT,  Chiu  CY,  Haller  BL,  Denn  PM,  Hall  CS,  Gerberding  JL:  Streptococcus  suis   meningitis,  United  States.  Emerging  Infectious  Diseases  2008,  14:183-­‐‑185.   Strangmann   E,   Froleke   H,   Kohse   KP:   Septic   shock   caused   by   Streptococcus   suis:  case  report  and  investigation  of  a  risk  group.  International  Journal  of   Hygiene  and  Environmental  Health  2002,  205:385-­‐‑392.   Chang   B,   Wada   A,   Ikebe   T,   Ohnishi   M,   Mita   K,   Endo   M,   Matsuo   H,   Asatuma   Y,   Kuramoto  S,  Sekiguchi  H,  et  al:  Characteristics  of  Streptococcus  suis  isolated   from  patients  in  Japan.  Japanese  Journal  of  Infectious  Diseases  2006,  59:397-­‐‑ 399.   Prince-­‐‑David   M,   Salou   M,   Marois-­‐‑Crehan   C,   Assogba   K,   Plainvert   C,   Balogou   KA,   Poyart  C,  Tazi  A:  Human  meningitis  due  to  Streptococcus  suis  in  Lome,  Togo:   a  case  report.  Bmc  Infectious  Diseases  2016,  16:4.   Halaby  T,  Hoitsma  E,  Hupperts  R,  Spanjaard  L,  Luirink  M,  Jacobs  J:  Streptococcus   suis   meningitis,   a   poacher's   risk.   European   Journal   of   Clinical   Microbiology   &  Infectious  Diseases  2000,  19:943-­‐‑945.   Rith  S,  Netrabukkana  P,  Sorn  S,  Mumford  E,  Mey  C,  Holl  D,  Goutard  F,  Bunthin  Y,   Fenwick   S,   Robertson   I,   et   al:   Serologic   evidence   of   human   influenza   virus   infections  in  swine  populations,  Cambodia.  Influenza  and  Other  Respiratory   Viruses  2013,  7:271-­‐‑279.   Killian   ML,   Swenson   SL,   Vincent   AL,   Landgraf   JG,   Shu   B,   Lindstrom   S,   Xu   X,   Klimov  A,  Zhang  Y,  Bowman  AS:  Simultaneous  infection  of  pigs  and  people   with   triple-­‐‑reassortant   swine   influenza   virus   H1N1   at   a   U.S.   county   fair.   Zoonoses  and  Public  Health  2013,  60:196-­‐‑201.   Holyoake  PK,  Kirkland  PD,  Davis  RJ,  Arzey  KE,  Watson  J,  Lunt  RA,  Wang  J,  Wong   F,  Moloney  BJ,  Dunn  SE:  The  first  identified  case  of  pandemic  H1N1  influenza   in  pigs  in  Australia.  Australian  Veterinary  Journal  2011,  89:427-­‐‑431.   Vincent   AL,   Swenson   SL,   Lager   KM,   Gauger   PC,   Loiacono   C,   Zhang   Y:   Characterization   of   an   influenza   A   virus   isolated   from   pigs   during   an   outbreak  of  respiratory  disease  in  swine  and  people  during  a  county  fair   in  the  United  States.  Veterinary  Microbiology  2009,  137:51-­‐‑59.   Thompson  RL,  Sande  MA,  Wenzel  RP,  Hoke  CH,  Gwaltney  JM:   Swine  influenza   infection  in  civilians:  report  of  2  cases.  New  England  Journal  of  Medicine  1976,   295:714-­‐‑715.   Gray  GC,  McCarthy  T,  Capuano  AW,  Setterquist  SF,  Olsen  CW,  Alavania  MC,  Lynch   CF:  Swine  workers  and  swine  influenza  virus  infections.  Emerging  Infectious   Diseases  2007,  13:1871-­‐‑1878.   28     46.     47.     48.     49.     50.     51.     52.     53.     54.     55.     56.       Schnurrenberger   PR,   Woods   GT,   Martin   RJ:   Serologic   evidence   of   human   infection   with   swine   influenza   virus.   American   Review   of   Respiratory   Disease   1970,  102:6.   Wentworth   DE,   McGregor   MW,   Macklin   MD,   Neumann   V,   Hinshaw   VS:   Transmission   of   swine   influenza   virus   to   humans   after   exposure   to   experimentally  infected  pigs.  Journal  of  Infectious  Diseases  1997,  175:7-­‐‑15.   Gregory  V,  Bennett  M,  Thomas  Y,  Kaiser  L,  Wunderli  W,  Matter  H,  Hay  A,  Lin  YP:   Human   infection   by   a   swine   influenza   A   (H1N1)   virus   in   Switzerland.   Archives  of  Virology  2003,  148:793-­‐‑802.   Wells   DL,   Hopfensperger   DJ,   Arden   NH,   Harmon   MW,   Davis   JP,   Tipple   MA,   Schonberger  LB:  Swine  influenza  virus  infections:  transmission  from  ill  pigs   to   humans   at   a   Wisconsin   agricultural   fair   and   subsequent   probable   person   to   person   transmission.   Jama-­‐‑Journal   of   the   American   Medical   Association  1991,  265:478-­‐‑481.   Williams   DM,   Lawson   GHK,   Rowland   AC:   Streptococcal   infection   in   piglets-­‐‑ palatine   tonsils   as   portals   of   entry   for   Streptococcus   suis.   Research   in   Veterinary  Science  1973,  15:352-­‐‑362.   Surjan  L,  Brandtzaeg  P,  Berdal  P:  Immunoglobulin  systems  of  human  tonsils.   II.  Patients  with  chronic  tonsillitis  or  tonsillar  hyperplasia:  quantification   of  Ig-­‐‑producing  cells,  tonsillar  morphometry  and  serum  Ig  concentrations.   Clinical  and  Experimental  Immunology  1978,  31:382-­‐‑390.   Grivel   J-­‐‑C,   Margolis   L:   Use   of   human   tissue   explants   to   study   human   infectious  agents.  Nature  Protocols  2009,  4:256-­‐‑269.   Perry   M,   Whyte   A:   Immunology   of   the   tonsils.   Immunology   Today   1998,   19:414-­‐‑421.   Brandtzaeg   P:   Regionalized   immune   function   of   tonsils   and   adenoids.   Immunology  Today  1999,  20:383-­‐‑384.   Casteleyn   C,   Simoens   P,   Van   den   Broeck   W:   Terminology   of   the   tonsils.   Anatomia  Histologia  Embryologia  2011,  40:204-­‐‑209.   Casteleyn   C,   Breugelmans   S,   Simoens   P,   Van   den   Broeck   W:   The   tonsils   revisited:   review   of   the   anatomical   localization   and   histological   characteristics  of  the  tonsils  of  domestic  and  laboratory  animals.  Clinical  &   Developmental  Immunology  2011:1-­‐‑14.   29   57.     58.     59.     60.     61.     62.     63.     64.     65.     66.     67.     68.     69.   Banks   WJ:   Applied   veterinary   histology.   Third   edn:   St.   Louis,   Mo.   :   Mosby   -­‐‑   Year  Book;  1993.   Effat   KG,   Milad   M:   Comparative   study   of   palatine   tonsil   histology   in   mammals,   with   special   reference   to   tonsillar   salivary   glands.   Journal   of   Laryngology  and  Otology  2007,  121:468-­‐‑471.   Arends   JP,   Hartwig   N,   Rudolphy   M,   Zanen   HC:   Carrier   rate   of   Streptococcus   suis  capsular  type  2  in  palatine  tonsils  of  slaughtered  pigs.  Journal  of  Clinical   Microbiology  1984,  20:945-­‐‑947.   Williams  DM:  Palatine  tonsils  of  pig.  Journal  of  Anatomy  1971,  110:156.   Williams  DM,  Rowland  AC:  Palatine  tonsils  of  pig:  afferent  route  to  lymphoid   tissue.  Journal  of  Anatomy  1972,  113:7.   Wilson   SM,   Norton   P,   Haverson   K,   Leigh   J,   Bailey   M:   Interactions   between   Streptococcus   suis   serotype   2   and   cells   of   the   myeloid   lineage   in   the   palatine  tonsil  of  the  pig.  Veterinary  Immunology  and  Immunopathology  2007,   117:116-­‐‑123.   Wood  RL,  Rose  R:  Populations  of  Salmonella  typhimurium  in  internal  organs   of   experimentally   infected   carrier   swine.   American   Journal   of   Veterinary   Research  1992,  53:653-­‐‑658.   Kumar  P,  Timoney  JF:  Histology,  immunohistochemistry  and  ultrastructure   of   the   equine   palatine   tonsil.   Anatomia   Histologia   Embryologia-­‐‑Journal   of   Veterinary  Medicine  Series  C  2005,  34:192-­‐‑198.   Nave   H,   Gebert   A,   Pabst   R:   Morphology   and   immunology   of   the   human   palatine  tonsil.  Anatomy  and  Embryology  2001,  204:367-­‐‑373.   Howard   JC,   Hunt   SV,   Gowans   JL:   Identification  of   marrow-­‐‑derived   and   thymus-­‐‑derived  small  lymphocytes  in  lymphoid-­‐‑tissue  and  thoracic-­‐‑duct   lymph  of  normal  rats.  Journal  of  Experimental  Medicine  1972,  135:200-­‐‑219.   Maclennan   ICM:   Germinal   centers.   Annual   Review   of   Immunology   1994,   12:117-­‐‑139.   Brandtzaeg  P:  The  B-­‐‑cell  development  in  tonsillar  lymphoid  follicles.  Acta   Oto-­‐‑Laryngologica  1996:55-­‐‑59.   Kataura   A,   Harabuchi   Y,   Matsuyama   H,   Yamanaka   N:   Immunohistological   studies   on   immunocompetent   cells   in   palatine   tonsil.   Tonsils:   a   clinically   oriented  update  1992,  47:97-­‐‑100.       30   70.     71.     72.     73.     74.     75.     76.     77.     78.     79.     80.     81.     82.     Tohya   K,   Kimura   M:   Scanning,   transmission   and   immunoelectron   microscopic   studies   on   crypt   epithelium   of   palatine   tonsil   in   laboratory   musk  shrew  (Suncus  murinus).  Electron  Microscopy  II  1992,  2:256-­‐‑257.   van  Buchem  FL,  Kuijpers  W:  On  the  origin  of  lymphoid  cells  in  the  palatine   tonsil.  Acta  Otolaryngol  1973,  75:527-­‐‑534.   Ruco   LP,   Uccini   S,   Stoppacciaro   A,   Pilozzi   E,   Morrone   S,   Gallo   A,   Devincentiis   M,   Santoni   A,   Baroni   CD:   The   lymphoepithelial   organization   of   the   tonsil:   an   immunohistochemical   study   in   chronic   recurrent   tonsillitis.   Journal   of   Pathology  1995,  176:391-­‐‑398.   Ramsay  AJ:  The  development  of  the  palatine  tonsil  (cat).  American  Journal  of   Anatomy  1935,  57:171-­‐‑203.   Casteleyn  C,  Van  den  Broeck  W,  Simoens  P:  Histological  characteristics  and   stereological   volume   assessment   of   the   ovine   tonsils.   Veterinary   Immunology  and  Immunopathology  2007,  120:124-­‐‑135.   Kassay   D,   Sandor   A:   The   crypt   system   of   the   palatine   tonsils.   Archives   of   Otolaryngology  1962,  75:144-­‐‑155.   Belz  GT,  Heath  TJ:  Tonsils  of  the  soft  palate  of  young  pigs:  crypt  structure   and  lymphoepithelium.  Anatomical  Record  1996,  245:102-­‐‑113.   Minear   WL,   Arey   LB,   Milton   JT:   Prenatal   and   postnatal   development   and   form   of   crypts   of   human   palatine   tonsil.   Archives   of   Otolaryngology   1937,   25:487-­‐‑519.   Sato   Y,   Wake   K,   Watanabe   I:   Differentiation   of   crypt   epithelium   in   human   palatine   tonsils:   the   microenvironment   of   crypt   epithelium   as   a   lymphoepithelial  organ.  Archives  of  Histology  and  Cytology  1990,  53:41-­‐‑54.   Ramos  JA,  Ramis  AJ,  Marco  A,  Domingo  M,  Rabanal  R,  Ferrer  L:  Histochemical   and  immunohistochemical  study  of  the  mucosal  lymphoid  system  in  swine.   American  Journal  of  Veterinary  Research  1992,  53:1418-­‐‑1426.   Belz   GT,   Heath   TJ:   The   epithelium   of   canine   palatine   tonsils.   Anatomy   and   Embryology  1995,  192:189-­‐‑194.   Belz   GT,   Heath   TJ:   Intercellular   and   lymphatic   pathways   of   the   canine   palatine  tonsils.  Journal  of  Anatomy  1995,  187:93-­‐‑105.   Olah  I,  Everett  NB:  Surface  epithelium  of  the  rabbit  palatine  tonsil:  scanning   and   transmission   electron   microscopic   study.   J   Reticuloendothel   Soc   1975,   18:53-­‐‑62.   31     83.     84.     85.     86.     87.     88.     89.     90.     91.     92.     93.     94.     Fredriksen  F,  Raisanen  S,  Myklebust  R,  Stenfors  LE:  Bacterial  adherence  to  the   surface   and   isolated   cell   epithelium   of   the   palatine   tonsils.   Acta   Oto-­‐‑ Laryngologica  1996,  116:620-­‐‑626.   Lilja   M,   Silvola   J,   Raisanen   S,   Stenfors   LE:   Where   are   the   receptors   for   Streptococcus   pyogenes   located   on   the   tonsillar   surface   epithelium?   International  Journal  of  Pediatric  Otorhinolaryngology  1999,  50:37-­‐‑43.   Howie   AJ:   Scanning   and   transmission   electron-­‐‑microscopy   on   the   epithelium  of  human  palatine  tonsils.  Journal  of  Pathology  1980,  130:8.   Gebert   A:   M   cells   in   the   rabbit   palatine   tonsil:   the   distribution,   spatial   arrangement   and   membrane   subdomains   as   defined   by   confocal   lectin   histochemistry.  Anatomy  and  Embryology  1997,  195:353-­‐‑358.   Gebert  A,  Pabst  R:  M  cells  at  locations  outside  the  gut.  Seminars  in  Immunology   1999,  11:165-­‐‑170.   Gebert   A:   Identification   of   M   cells   in   the   rabbit   tonsil   by   vimentin   immunohistochemistry   and   in   vivo   protein   transport.   Histochemistry   and   Cell  Biology  1995,  104:211-­‐‑220.   Perry   ME:   The   specialized   structure   of   crypt   epithelium   in   the   human   palatine   tonsil   and   its   functional   significance.   Journal   of   Anatomy   1994,   185:111-­‐‑127.   Tang   XY,   Hori   S,   Osamura   RY,   Tsutsumi   Y:   Reticular   crypt   epithelium   and   intraepithelial  lymphoid  cells  in  the  hyperplastic  human  palatine  tonsil  -­‐‑   an  immunohistochemical  analysis.  Pathology  International  1995,  45:34-­‐‑44.   Baykan   M,   Celik   I,   Gezici   M,   Donmez   HH,   Eken   E,   Sur   E,   Ozkan   Y:   A   light   microscopic   study   on   the   uptake   and   transportation   route   of   carbon   particles  in  the  canine  palatine  tonsil.  Revue  De  Medecine  Veterinaire  2001,   152:709-­‐‑715.   Isaacson   G,   Parikh   T:   Developmental   anatomy   of   the   tonsil   and   its   implications   for   intracapsular   tonsillectomy.   International   Journal   of   Pediatric  Otorhinolaryngology  2008,  72:89-­‐‑96.   Muretto   P:   Immunohistochemical   study   of   tonsils   from   newborn   infants   with   emphasis   on   follicular   dendritic   reticulum   cells.   European   Journal   of   Histochemistry  1998,  42:189-­‐‑195.   Brandtzaeg  P,  Halstensen  TS:  Immunology  and  immunopathology  of  tonsils.   Tonsils  :  a  Clinically  Oriented  Update  1992,  47:12.   32     95.     96.     97.     98.     99.   Vallesayoub  Y,  Govan  HL,  Braun  J:  Evolving  abundance  and  clonal  pattern  of   human  germinal  center  B-­‐‑cells  during  childhood.  Blood  1990,  76:17-­‐‑23.   Siegel  G,  Linse  R,  Macheleidt  S:  Factors  of  tonsillar  involution:  age-­‐‑dependent   changes   in   B-­‐‑cell   activation   and   Langerhans   cell   density.   Archives   of   Oto-­‐‑ Rhino-­‐‑Laryngology-­‐‑Archiv   Fur   Ohren-­‐‑Nasen-­‐‑Und   Kehlkopfheilkunde   1982,   236:261-­‐‑269.   Morente   M,   Piris   MA,   Orradre   JL,   Rivas   C,   Villuendas   R:   Human   tonsil   intraepithelial   B-­‐‑cells:   a   marginal   zone-­‐‑related   subpopulation.   Journal   of   Clinical  Pathology  1992,  45:668-­‐‑672.   Choi  G,  Suh  YL,  Lee  HM,  Jung  KY,  Hwang  SJ:  Prenatal  and  postnatal  changes  of   the  human  tonsillar  crypt  epithelium.  Acta  Oto-­‐‑Laryngologica  1996:28-­‐‑33.   Brandtzaeg  P,  Surjan  L,  Berdal  P:  Immunoglobulin  systems  of  human  tonsils   .1.  Control  subjects  of  various  ages  -­‐‑   quantification  of  Ig-­‐‑producing  cells,   tonsillar   morphometry   and   serum   Ig   concentrations.   Clinical   and   Experimental  Immunology  1978,  31:367-­‐‑381.     100.   Quidingjarbrink   M,   Granstrom   G,   Nordstrom   I,   Holmgren   J,   Czerkinsky   C:   Induction   of   compartmentalized   B-­‐‑cell   responses   in   human   tonsils.   Infection  and  Immunity  1995,  63:853-­‐‑857.     101.   Levin   PM:   The   development   of   the   tonsil   of   the   domestic   pig.   Anatomical   Record  1930,  45:189-­‐‑201.     102.   Anderson  JC:  The  use  of  germ-­‐‑free  piglets  in  the  study  of  lymphoid  tissue   and  germinal  centre  formation.  Advances  in  experimental  medicine  and  biology   1973,  29:643-­‐‑649.     103.   Anderson   JC:   The   response   of   the   tonsil   and   associated   lymph   nodes   of   gnotobiotic  piglets  to  the  presence  of  bacterial  antigen  in  the  oral  cavity.  J   Anat  1974,  117:191-­‐‑198.     104.   Wilson  S,  Norton  P,  Haverson  K,  Leigh  J,  Bailey  M:  Development  of  the  palatine   tonsil  in  conventional  and  germ-­‐‑free  piglets.  Developmental  and  Comparative   Immunology  2005,  29:977-­‐‑987.     105.   Human   Microbiome   Project   C:   A   framework   for   human   microbiome   research.  Nature  2012,  486:215-­‐‑221.     106.   Human   Microbiome   Project   C:   Structure,   function   and   diversity   of   the   healthy  human  microbiome.  Nature  2012,  486:207-­‐‑214.       33   107.   Eren  AM,  Borisy  GG,  Huse  SM,  Welch  JLM:  Oligotyping  analysis  of  the  human   oral  microbiome.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United   States  of  America  2014,  111:E2875-­‐‑E2884.     108.   Aas   JA,   Paster   BJ,   Stokes   LN,   Olsen   I,   Dewhirst   FE:   Defining   the   normal   bacterial   flora   of   the   oral   cavity.   Journal   of   Clinical   Microbiology   2005,   43:5721-­‐‑5732.     109.   Dewhirst   FE,   Chen   T,   Izard   J,   Paster   BJ,   Tanner   ACR,   Yu   WH,   Lakshmanan   A,   Wade   WG:   The   Human   Oral   Microbiome.   Journal   of   Bacteriology   2010,   192:5002-­‐‑5017.     110.   Chen  T,  Yu  WH,  Izard  J,  Baranova  OV,  Lakshmanan  A,  Dewhirst  FE:  The  human   oral  microbiome  database:  a  web  accessible  resource  for  investigating  oral   microbe   taxonomic   and   genomic   information.   Database-­‐‑the   Journal   of   Biological  Databases  and  Curation  2010.     111.   Huse   SM,   Ye   YZ,   Zhou   YJ,   Fodor   AA:   A   core   human   microbiome   as   viewed   through  16s  rRNA  sequence  clusters.  Plos  One  2012,  7:12.     112.   Jensen  A,  Fago-­‐‑Olsen  H,  Sorensen  CH,  Kilian  M:  Molecular  mapping  to  species   level  of  the  tonsillar  crypt  microbiota  associated  with  health  and  recurrent   tonsillitis.  Plos  One  2013,  8:15.     113.   Mann   E,   Pinior   B,   Wetzels   SU,   Metzler-­‐‑Zebeli   BU,   Wagner   M,   Schmitz-­‐‑Esser   S:   The  metabolically  active  bacterial  microbiome  of  tonsils  and  mandibular   lymph  nodes  of  slaughter  pigs.  Frontiers  in  Microbiology  2015,  6:10.     114.   Lowe   BA,   Marsh   TL,   Isaacs-­‐‑Cosgrove   N,   Kirkwood   RN,   Kiupel   M,   Mulks   MH:   Defining   the   "core   microbiome"   of   the   microbial   communities   in   the   tonsils  of  healthy  pigs.  Bmc  Microbiology  2012,  12:14.     115.   Lowe   BA,   Marsh   TL,   Isaacs-­‐‑Cosgrove   N,   Kirkwood   RN,   Kiupel   M,   Mulks   MH:   Microbial  communities  in  the  tonsils  of  healthy  pigs.  Veterinary  Microbiology   2011,  147:346-­‐‑357.     116.   Hvistendahl   M:   Pigs   as   Stand-­‐‑Ins   for   microbiome   studies.   Science   2012,   336:1250-­‐‑1250.     117.   Kernaghan   S,   Bujold   AR,   MacInnes   JI:   The   microbiome   of   the   soft   palate   of   swine.  Animal  Health  Research  Reviews  2012,  13:110-­‐‑120.     118.   Toner   JG,   Stewart   TJ,   Campbell   JB,   Hunter   J:   Tonsil   flora   in   the   very   young   tonsillectomy  patient.  Clinical  Otolaryngology  1986,  11:171-­‐‑174.       34   119.   Brook  I,  Foote  PA:  Microbiology  of  normal  tonsils.  Annals  of  Otology  Rhinology   and  Laryngology  1990,  99:980-­‐‑983.     120.   Gaffney   RJ,   Timon   CI,   Freeman   DF,   Walsh   MA,   Cafferkey   MT:   Bacteriology   of   tonsil   and   adenoid   and   sampling   techniques   of   adenoidal   bacteriology.   Respiratory  Medicine  1993,  87:303-­‐‑308.     121.   Gaffney   RJ,   Freeman   DJ,   Walsh   MA,   Cafferkey   MT:   Differences   in   tonsil   core   bacteriology  in  adults  and  children  -­‐‑   a  prospective  study  of  262  patients.   Respiratory  Medicine  1991,  85:383-­‐‑388.     122.   Gaffney   RJ,   Cafferkey   MT:   Bacteriology   of   normal   and   diseased   tonsils   assessed   by   fine-­‐‑needle   aspiration:   Haemophilus   influenzae   and   the   pathogenesis  of  recurrent  acute  tonsillitis.  Clin  Otolaryngol  Allied  Sci  1998,   23:181-­‐‑185.     123.   Kasenõmm   P,   Kull   M,   Mikelsaar   M:   Association   between   tonsillar   core   microflora   and   post-­‐‑tonsillectomy   bacteremia.   Microbial   Ecology   in   Health   and  Disease  2002,  14:122-­‐‑127.     124.   Liu  CM,  Cosetti  MK,  Aziz  M,  Buchhagen  JL,  Contente-­‐‑Cuomo  TL,  Price  LB,  Keim   PS,   Lalwani   AK:   The   otologic   microbiome   -­‐‑   a   study   of   the   bacterial   microbiota   in   a   pediatric   patient   with   chronic   serous   otitis   media   using   16S   rRNA   gene-­‐‑based   pyrosequencing.   Archives   of   Otolaryngology-­‐‑Head   &  Neck  Surgery  2011,  137:664-­‐‑668.     125.   Segata  N,  Haake  SK,  Mannon  P,  Lemon  KP,  Waldron  L,  Gevers  D,  Huttenhower  C,   Izard   J:   Composition   of   the   adult   digestive   tract   bacterial   microbiome   based   on   seven   mouth   surfaces,   tonsils,   throat   and   stool   samples.   Genome   Biology  2012,  13:18.     126.   Humphreys   GJ,   McBain   AJ:   Continuous   culture   of   sessile   human   oropharyngeal   microbiotas.   Journal   of   Medical   Microbiology   2013,   62:906-­‐‑ 916.     127.   Devriese  LA,  Hommez  J,  Pot  B,  Haesebrouck  F:  Identification  and  composition   of  the  streptococcal  and  enterococcal  flora  of  tonsils,  intestines  and  feces   of  pigs.  Journal  of  Applied  Bacteriology  1994,  77:31-­‐‑36.     128.   Baele   M,   Chiers   K,   Devriese   LA,   Smith   HJ,   Wisselink   HJ,   Vaneechoutte   M,   Haesebrouck  F:  The  Gram-­‐‑positive  tonsillar  and  nasal  flora  of  piglets  before   and  after  weaning.  Journal  of  Applied  Microbiology  2001,  91:997-­‐‑1003.     129.   MacInnes   JI,   Gottschalk   M,   Lone   AG,   Metcalf   DS,   Ojha   S,   Rosendal   T,   Watson   SB,   Friendship   RM:   Prevalence   of   Actinobacillus   pleuropneumoniae,   Actinobacillus   suis,   Haemophilus   parasuis,   Pasteurella   multocida,   and     35   Streptococcus  suis  in  representative  Ontario  swine  herds.  Canadian  Journal   of   Veterinary   Research-­‐‑Revue   Canadienne   De   Recherche   Veterinaire   2008,   72:242-­‐‑248.     130.   O'Sullivan   T,   Friendship   R,   Blackwell   T,   Pearl   D,   McEwen   B,   Carman   S,   Slavic   D,   Dewey   C:   Microbiological   identification   and   analysis   of   swine   tonsils   collected   from   carcasses   at   slaughter.   Canadian   Journal   of   Veterinary   Research-­‐‑Revue  Canadienne  De  Recherche  Veterinaire  2011,  75:106-­‐‑111.       36   CHAPTER  2.  DEVELOPMENT  OF  THE  TONSILLAR  MICROBIOME  IN  PIGS  FROM  NEWBORN   THROUGH  WEANING                                               37   INTRODUCTION     Tonsils  are  lympho-­‐‑epithelial  tissues  located  at  the  junction  of  the  oropharynx  and   nasopharynx  that  play  a  key  role  in  surveillance  of  inhaled  or  ingested  pathogens  [1].  In  pigs,   the   tonsils   are   colonized   by   numerous   microbes,   and   serve   as   a   reservoir   for   both   pig   pathogens  and  zoonotic  pathogens  with  a  high  potential  of  transmission  to  humans  [1-­‐‑4].   Bacterial   pathogens   such   as   Actinobacillus   pleuropneumoniae,   Streptococcus   suis,   and   Salmonella   enterica   are   frequently   found   in   tonsils   of   asymptomatic   animals.   Under   conditions   of   stress,   such   as   animal   transport,   these   pathogens   can   spread   to   the   lower   respiratory   and   gastrointestinal   tracts   and   be   transmitted   to   other   animals,   including   humans   [5].   It   has   been   suggested   that   the   microbiome   plays   a   preventive   role   in   host   colonization   by   pathogenic   microorganisms   [6-­‐‑9]   and   also   exerts   regulatory   roles   in   maintaining  immune  homeostasis,  providing  resistance  to  infection  [10,  11].     In  contrast  to  the  rising  number  of  studies  characterizing  the  intestinal  microbiome   of  mammals,  there  are  few  available  studies  characterizing  the  tonsillar  microbiome  and  its   development  in  those  species.  We  have  previously  characterized  the  core  microbiome  of  the   tonsils   in   healthy   18-­‐‑20   week   old   pigs   [12].   In   that   study,   members   of   the   families   Pasteurellaceae,   Moraxellaceae,   Streptococcaceae,   Fusobacteriaceae,   Veillonellaceae,   Enterobacteriaceae,   Neisseriaceae,   and   Peptostreptococcaceae,   as   well   as   the   order   Clostridiales,  constituted  the  core  tonsil  microbiome  in  these  grower-­‐‑finisher  pigs.  Tonsils   remain   an   under-­‐‑explored   habitat   of   the   mammalian   microbiome,   and   how   the   tonsil   microbiome   is   established,   how   the   structure   of   this   community   affects   acquisition   and     38   carriage  of  pathogens,  and  how  it  contributes  to  health  and  disease,  in  animals  or  in  humans,   are  not  well  understood.   Currently,  there  are  no  studies  following  the  development  of  tonsillar  microbiomes  in   humans  or  in  pigs,  while  other  microbiomes,  such  as  the  intestinal  microbiome  in  mammals,   have  been  more  broadly  studied  in  the  last  decade.  Studies  conducted  in  pigs  and  humans   have   suggested   that   the   development   of   the   intestinal   microbiome   is   a   gradual   and   successional  process  [13-­‐‑16]  with  a  significant  fluctuation  after  weaning  [17].  The  cessation   of   milk   feeding   as   well   as   supplementation   of   other   diets   and   feeding   sources   generate   changes  in  the  intestinal  microbiota  [18-­‐‑22].  It  is  unknown  if  a  similar  successional  process   occurs  in  tonsils.   It  has  been  shown  for  humans  and  pigs  that  in  the  development  of  intestinal  microbial   communities  there  is,  initially,  substantial  individual  variation  in  community  composition   that   tends   to   shift   over   time,   eventually   becoming   similar   in   the   major   phyla   across   individuals  [15].  Environmental  factors  such  as  the  maternal  microbiota  can  play  a  relevant   role   in   the   initial   development   of   the   intestinal   microbiota   [13,   15,   23].   Nevertheless,   the   developing   microbiome   is   composed   of   interacting   bacteria   and   not   simply   randomly   assembled  microorganisms  [14].     The   goal   of   the   current   study   was   to   utilize   culture-­‐‑independent,   high-­‐‑throughput   sequencing   of   16S   rRNA   genes   to   follow   the   development   of   the   tonsillar   microbial   communities  in  pigs  from  birth  through  weaning.               39   MATERIAL  AND  METHODS     Animals.  The  Michigan  State  University  Institutional  Animal  Care  and  Use  Committee   approved   this   study   and   the   animal   procedures.   Ten   crossbred   sows   (Yorkshire   x   Hampshire)  from  a  high  health  status  herd  were  used  in  this  study.    This  herd  has  no  history   of   recent   respiratory   disease   and   is   considered   free   of   Actinobacillus   pleuropneumoniae,   Mycoplasma  hyopneumoniae,  and  Porcine  Respiratory  and  Reproductive  Syndrome  virus  by   medical  history.    This  herd  experienced  a  recent  outbreak  of  porcine  epidemic  diarrhea  virus   (PEDV),  which  was  under  control  at  the  time  this  study  was  initiated.    The  herd  has  a  history   of  vaccination  against  porcine  circovirus  type  2  (PCV2),  erysipelas  and  atrophic  rhinitis.   This  herd  was  managed  as  a  farrow  to  finishing  facility  with  ~200  sows.    Newborn   piglets   received   a   single   intramuscular   injection   of   Iron-­‐‑Dextran.     Piglets   were   weaned   at   three  weeks  of  age  (21  to  24  days  –  average  weight  18  pounds)  and  moved  to  a  nursery  room,   with   litters   maintained   as   pen   mates.   The   weaned   piglets   were   introduced   to   a   solid   diet   based   on   a   pellet   ration   (Pig   1300 ,   Akey   Nutrition,   Brookville,   OH)   supplemented   with   ® Carbadox  at  a  dose  of  50  g/ton.     ® Individually  identified  sows  of  different  parity,  from  primiparous  (pregnant  for  the   first  time)  to  multiparous  (pregnant  multiple  times),  were  purposely  selected  for  this  study   and  included  two  first  parity  sows  (ear  tags  1700  and  1707,  respectively),  one  second  parity   sow  (1631),  one  fifth  parity  sow  (1445),  one  sixth  parity  sow  (1402)  and  one  tenth  parity   sow   (1711).     Four   piglets   from   each   of   these   six   sows,   selected   randomly,   were   sampled   within  a  period  no  longer  than  8  hours  post-­‐‑birth  (PB)  (PB  were  piglets  which  might  have   interacted  with  other  piglets  or  the  sow  before  sampling)    and  then  at  1,  2,  3  and  4  weeks  of     40   age.    An  additional  four  freshly  delivered  piglets  were  randomly  selected  (N=16  piglets)  from   each   of   4   crossbred   Yorkshire   x   Hampshire   sows   (one   second   parity   sow   (1785),   two   third   parity  sows  (1604,  1760)  and  one  fourth  parity  sow  (1704)),  and  sampled  immediately  at   birth  (AB)  (AB  piglets  were  sampled  before  they  had  any  contact  with  external  sources  other   than  vaginal  sources),  avoiding  any  contact  of  the  piglet  with  either  the  sow  teats  or  the  pen   environment   prior   to   sampling,   with   the   purpose   of   determining   the   status   of   the   microbiome  right  at  birth.  The  litter  from  sow  1604  was  sampled  in  2014;  the  remaining   three  litters  were  sampled  in  2015.   Collection   of   microbiome   samples.   Samples   of   the   tonsil   microbiome   were   collected  from  sows  and  piglets  using  either  cytology  brushes  (CytosoftTM,  Medical  Packaging   Corporation,  Camarillo,  CA)  for  very  small  piglets  or  tonsil  brushes  developed  by  our  group   and  validated  in  previous  studies   [12].  Collection  of  samples  was  done  by  the  same  person,   and  as  previously  described  [12].  Briefly,  samples  were  collected  at  approximately  the  same   time  of  day  for  each  sampling  time.  Sow  tonsillar  samples  were  collected  before  they  were   fed.  The  pigs’  movement  was  restricted  either  by  holding  them  firmly  wrapped  with  a  towel,   or  by  using  a  snare  on  larger  animals.    The  mouth  was  held  open  with  a  mouth  speculum   while  the  tonsils  were  brushed.  Right  and  left  tonsils  were  brushed  approximately  ten  times   each,  rotating  the  brush  in  a  clockwise  fashion.  Brushes  were  removed  from  the  pig’s  mouth   and   placed   into   a   50   ml   sterile   test   tube   containing   20   ml   of   80%   ice-­‐‑cold   ethanol.   Samples   were  stored  at  -­‐‑20  °C  until  processed.     The   sow   vaginal   microbiome   was   sampled   by   introducing   a   sterile   cotton   swab   approximately  8  cm  into  the  vaginal  tract  and  rubbing  the  vaginal  walls  with  the  swab  while   turning   the   swab   in   a   clockwise   fashion.   The   teat   microbiome   was   also   collected   by   using   a     41   cotton  swab  and  rubbing  the  teat  surface  of  at  least  10  teats  per  sow.  Vaginal  and  teat  swabs   were   placed   individually   into   50   ml   sterile   test   tubes   containing   20   ml   of   80%   ice-­‐‑cold   ethanol.  Samples  were  stored  at  -­‐‑20  °C  until  processed.   The  sow  fecal  microbiome  was  sampled  by  collecting  approximately  5  grams  of  feces   directly   from   the   rectum.   Samples   were   placed   individually   into   50   ml   sterile   test   tubes   containing  20  ml  of  80%  ice-­‐‑cold  ethanol.  Samples  were  stored  at  -­‐‑20  °C  until  processed.   Isolation   of   community   DNA.   Sample   extraction   was   performed   as   previously   described   [12].   Briefly,   the   20   ml   of   80%   ice-­‐‑cold   ethanol   containing   the   brushes,   swabs   or   feces   with   the   microbiome   samples   were   thoroughly   vortexed   for   one   minute,   divided   into   equal  volumes  and  transferred  to  two  sterile  acid  washed  Corex®  tubes,  and  centrifuged  in  a   refrigerated   Sorvall   SS-­‐‑34   rotor   at   16,000   x   g   for   30   min.   After   centrifugation,   the   supernatant  was  removed  and  discarded.  The  pellet  of  one  tube  was  suspended  in  5  ml  of   ice-­‐‑cold  80%  ethanol  and  archived  at  -­‐‑20  °C.  The  second  pellet  was  suspended  in  0.25  ml  of   phosphate  buffered  saline,  pH  7,  and  transferred  to  PowerBead  tubes  (MoBio  Laboratories,   Carlsbad,   CA)   and   vigorously   shaken   for   approximately   2   min   at   room   temperature   using   a   MiniBeadBeater-­‐‑16  (BioSpec  Products,  Inc.,  Bartlesville,  OK).  An  exception  to  this  protocol   was  followed  with  fecal  samples,  where  both  pellets  were  suspended  in  0.5  ml  of  phosphate   buffered  saline,  pH  7.  Community  DNA  was  then  extracted  using  a  PowerSoil  DNA  Isolation   Kit   (MoBio   Laboratories,   Carlsbad,   CA)   following   the   manufacturer´s   instructions.   The   concentration  of  extracted  community  DNA  was  determined  by  spectrophotometry,  using  a   Nanodrop  (Thermo  Scientific,  Wilmington,  DE).    Each  sample  was  then  split  in  two  vials;  one   was  archived  at  -­‐‑80  °C  and  the  other  was  processed  for  sequencing.     42   Illumina   sequencing   and   sequence   analysis.   For   Illumina   sequencing,   samples   were   processed   at   the   Michigan   State   University   Research   Technology   Support   Facility   (RTSF)  using  an  Illumina  MiSeq  platform.    Negative  controls  consisting  of  either  DNA-­‐‑free   water  or  MoBio  C6  solution  (“blank  library  controls”,  [24])  and  positive  controls  consisting   of   either   Escherichia   coli   DH5α   genomic   DNA   or   a   well-­‐‑characterized   activated   sludge   polymicrobial  community  [25]  were  included  in  the  sequencing  runs.   Briefly,  the  V4  region   of  the  16S  rRNA  gene  of  the  community  DNA  was  amplified  using  uniquely  indexed  primers   for   each   sample,   as   described   by   Caporaso   [26].   After   PCR,   amplification   products   were   normalized   using   an   Invitrogen   SequalPrep   normalization   plate.   The   normalized   samples   were  pooled  and  PCR  reaction  cleanup  was  done  with  AMPure  XP  beads.  After  quality  control   and  quantitation,  the  pool  was  loaded  on  an  Illumina  MiSeq  v2  flow  cell  and  sequenced  with   a  500-­‐‑cycle  v2  reagent  kit  (PE250  reads).  Base  calling  was  performed  by  Illumina  Real  Time   Analysis  Software  (RTA)  v1.18.54  and  output  of  RTA  demultiplexed  and  converted  to  FastQ   files  with  Illumina  Bcl2fastq  v1.8.4.     Amplicon   analysis   was   performed   using   the   open-­‐‑source,   platform-­‐‑independent,   community-­‐‑supported   software   program   mothur   v.1.38.0   (http://www.mothur.org)   [27].   Processing  of  the  raw  sequencing  data  was  done  according  to  the  mothur  standard  operating   procedure   (http://www.mothur.org/wiki/MiSeq_SOP)   [28].   Alignment   was   accomplished   using  the  mothur-­‐‑formatted  version  123  of  Silva  16S  rRNA  gene  database  [29].  Sequences   were   classified   and   any   sequences   classified   as   Chloroplast,   Mitochondria,   unknown,   Archaea,  or  Eukaryota  were  removed  from  the  data  set.  Subsampling  at  5907  sequences  per   sample  was  performed,  followed  by  a  preclustering  of  the  sequences  and  removal  of  chimeric   sequences   using   a   mothur-­‐‑formatted   version   of   the   Ribosomal   Database   Project   (RDP)     43   training  set  version  14  and  uchime,  based  on  the  mothur  protocol.  Sequences  were  classified   into   Operational   Taxonomic   Units   (OTUs)   of   ≥97%   sequence   identity.   Singleton   and   doubleton   reads   were   removed,   followed   by   subsampling   at   3776   sequences   per   sample.   Because  the  negative  controls  consistently  showed  high  levels  of  contaminants  that  skewed   the   results   seen   with   some   of   the   low   biomass   samples   such   as   those   from   the   newborn   piglets,    especially  those  from  Litter  1700,  4  OTUs  (Ralstonia,  Bacillaceae  1,  Burkholderia,  and   Brevundimonas)   were   also   removed   from   the   data   set   prior   to   final   analysis.     A   SIMPER   comparison  of  Litter  1700  piglet  and  sow  samples  to  the  relevant  negative  controls  showed   66.1%  or  greater  dissimilarity  between  the  negative  controls  and  the  pig  samples,  rejecting   the   hypothesis   that   the   sequence   data   for   Litter   and   sow   1700   samples   is   due   to   contamination  only  [24].    Therefore  these  samples  were  included  in  the  final  data  set.  For   the   final   analysis   of   the   data,   samples   were   subsampled   to   1979   reads   per   sample.   The   full   data   set   analyzed   is   available   as   a   supplemental   file   at   (https://figshare.com/s/1ac201b155d662dcc646).   Diversity   and   statistical   analysis.   The   statistical   analysis   was   performed   using   a   clustering   cutoff   of   3%   for   the   processed   sequences.   Mothur   output   files   were   used   to   estimate   diversity   indexes   and   core   microbiomes.   PAST3   was   used   for   generation   of   the   UPGMA  dendogram  file,  SIMPER,  coordinate  analysis  of  the  samples,  two  dimensional  scatter   plot  and  95%  concentration  ellipses  [30].  ImageJ  was  used  to  measure  the  area  of  the  ellipses   for   the   two   dimensional   scatter   plot   [31].   Dendogram   construction   was   performed   using   FigTree   v.1.4.2.   (http://tree.bio.ed.ac.uk/software/figtree/).   RStudio   (Version   0.99.446;   https://www.rstudio.com/)   and   libraries:   gplots   (https://CRAN.R-­‐‑ project.org/package=gplots),  plot3D  (https://CRAN.R-­‐‑project.org/package=plot3D),  and  rgl     44   (https://CRAN.R-­‐‑project.org/package=rgl)   were   used   to   generate   heatmaps   and   tridimensional   scatter   plots,   respectively.   Inkscape   0.91   (https://inkscape.org/en/download/mac-­‐‑os/),  was  used  to  process  images  and  edit  labels.   Availability  of  supporting  data.  Raw  sequence  data  is  available  at  the  NCBI  database   (SRA   accession   number:   SRP110992)   and   the   code   for   the   mothur   analysis   is   available   at   (https://figshare.com/s/2c98593a953cc9bb1366).       45     RESULTS     A   total   of   171   samples   derived   from   the   tonsillar   microbiome   of   piglets   and   sow   tonsils,  teat  skin,  vagina  and  feces  as  well  as  control  samples  were  processed.  One  hundred   forty-­‐‑four  pig  samples  were  collected  in  Spring  2014,  and  an  additional  12  pig  samples  were   collected  in  Fall  2015.  A  total  of  26  samples  with  less  than  3776  final  reads  after  singleton   and  doubleton  removal,  were  not  included  in  the  final  analysis.    One  of  the  approaches  that   we  used  was  comparative  analysis  of  core  microbiomes.  We  defined  the  core  microbiome  for   a  specific  litter  as  the  OTU  members  of  the  microbiome  that  were  present  in  at  least  75%  of   piglets   of   a   litter,   when   litters   had   at  least   4   samples;   otherwise   core   OTUs   were  defined   as   OTUs   present   in   all   the   samples.   For   the   sow   samples,   where   6   samples   were   analyzed,   we   considered  OTUs  present  in  66.6%  of  the  samples  to  be  core  OTUs.  Further,  core  OTUs  were   defined  as  present  in  a  minimum  relative  abundance  equal  or  higher  than  1%  and/or  0.1%   of  total  reads  for  a  selected  litter  and/or  period  (Table  2.2.).   The  tonsillar  microbiome  found  in  PB  samples  clusters  by  litter.    Among  the  156   samples  collected,  40  samples  contain  the  tonsillar  microbiome  of  newborn  piglets  (Table   2.1.).  Twenty  four  of  these  40  samples  were  collected  from  PB  piglets  and  the  remaining  16   samples  were  collected  from  AB  piglets.  Six  samples  were  discarded  from  the  analysis  due   to  low  number  of  reads.             46   Table  2.1.  Identification  of  sows,  litters,  sample  collection  and  times  of  collection     PB.  Samples  were  collected  from  newborn  piglets  in  a  period  not  greater  than  8  hours  post  birth.   AB.  Samples  were  collected  from  newborn  piglets  immediately  after  birth.     A  dendrogram  clustering  of  PB  piglet  samples  and  sow  derived  samples,  based  on  the   Bray-­‐‑Curtis  dissimilarity  index  (Figure  2.1.)  showed  that  samples  from  each  litter  clustered   together  with  littermates.  Microbiomes  derived  from  piglets  from  primiparous  sows  (Litter   1700  and  1707)  clustered  in  separated  clades,  as  did  the  piglets  from  sow  1402.  In  general,   PB   piglet   samples   were   more   closely   associated   with   samples   derived   from   the   sow   teat   microbiome   as   opposed   to   other   sow   samples.   However,   piglets   from   litter   1700   also   clustered  with  the  sample  from  the  sow  vaginal  microbiome.   Samples  from  the  sow  tonsils  and  sow  feces  clustered  together  by  source.  Samples   from  the  vaginal  tract  of  multiparous  sows  clustered  together,  but  were  distinct  from  those   from  the  two  primiparous  sows.   A   heat-­‐‑map   representation   of   the   major   OTUs   reveals   the   differences   driving   the   clustering   (Figure   2.2.).     In   the   PB   piglets   from   sows   1445,   1631,   and   1711,   all   multiparous   sows,  the  most  abundant  OTUs  were  Pasteurellaceae,  Streptococcus,  Moraxella,  Rothia,  and   Staphylococcus  (OTUs  001,  002,  003,  007,  and  009,  respectively).    PB  piglets  from  sow  1402     47   (parity   6)   contained   significant   numbers   of   Pasteurellaceae,   Streptococcus,   and   Moraxella   (OTUs  001,  002,  and  003)  but  also  contained  large  numbers  of  Enterobacteriaceae  (OTU005)   and  Clostridium  sensu  strictu  (OTU010).  In  contrast,  piglets  derived  from  primiparous  sows   1700  and  1707  had  a  very  low  abundance  of  Pasteurellaceae,  Streptococcus,  and  Moraxella   (OTUs   001,   002   and   003),   but   a   high   abundance   of   Staphylococcus   (OTU009)   as   well   as   several  anaerobic  organisms.       Figure   2.1.   Unrooted   Bray-­‐‑Curtis   dendrogram   of   PB   and   sow   microbiomes.   The   samples  are  color  coded  by  the  source.  Bootstrap  values  higher  than  70  %  at  1000  iterations   are  shown.       48   Parity 1 Parity 1 Parity 2 Parity 5 Parity 6 Parity 10 10A 11A 12A 13A Litter 1700 Sow 1700 Teats Sow 1700 Vagina Sow 1700 Tonsils Sow 1700 Feces 31A 34A 35A Litter 1707 Sow 1707 Teats Sow 1707 Vagina Sow 1707 Tonsils 15A 16A 17A 18A Litter 1631 Sow 1631 Teats Sow 1631 Vagina Sow 1631 Tonsils 36A 39A 40A 42A Litter 1445 Sow 1445 Teats Sow 1445 Vagina Sow 1445 Tonsils 1A 4A 6A Litter 1402 Sow 1402 Teats Sow 1402 Vagina Sow 1402 Tonsils 22A 23A 24A 26A Litter 1711 Sow 1711 Teats Sow 1711 Vagina Sow 1711 Tonsils Sow 1711 Feces Sows Teats Sows Vagina Sows Tonsils Sows Feces Otu00001__Pasteurellaceae__ Otu00002__Streptococcaceae__Streptococcus Otu00003__Moraxellaceae__Moraxella Otu00004__Comamonadaceae__ Otu00005__Enterobacteriaceae__Escherichia/Shigella Otu00007__Micrococcaceae__Rothia Otu00009__Staphylococcaceae__Staphylococcus Otu00010__Clostridiaceae_1__Clostridium_sensu_stricto Otu00012__Streptococcaceae__Streptococcus Otu00016__Clostridiaceae_1__Clostridium_sensu_stricto Otu00018__Peptostreptococcaceae__Clostridium_XI Otu00020__Erysipelotrichaceae__Turicibacter Otu00021__Aerococcaceae__Aerococcus Otu00023__Clostridiaceae_1__Clostridium_sensu_stricto Otu00025__Peptostreptococcaceae__Clostridium_XI Otu00027__Veillonellaceae__Veillonella Otu00030__Clostridiaceae_1__Clostridium_sensu_stricto Otu00034__Corynebacteriaceae__Corynebacterium Otu00037__Clostridiales_Incertae_Sedis_XI__Tissierella Otu00038__Micrococcaceae__Micrococcus Otu00042__Ruminococcaceae__ Otu00045__Moraxellaceae__Acinetobacter Otu00046__Comamonadaceae__ Otu00047__Streptococcaceae__Streptococcus Otu00048__Lactobacillaceae__Lactobacillus Otu00051__Corynebacteriaceae__Corynebacterium Otu00054__Clostridiales_Incertae_Sedis_XI__Sedimentibacter Otu00056__Enterobacteriaceae__Yersinia Otu00070__Pasteurellaceae__Actinobacillus Otu00080__Bifidobacteriaceae__Bifidobacterium PB piglets, litter avg. and sow microbiome samples 0 10 20 30 40 50 60 % OTU relative abundance Sow avg.   Figure  2.2.  Thirty  most  abundant  Operational  Taxonomic  Units  (OTUs)  for  piglets  and   sow  samples.  Heat-­‐‑map  showing  the  relative  abundance  of  the  top  30  OTUs  identified  for   all  samples.  The  figure  shows  the  relative  abundance  of  the  OTUs  for  each  PB  piglet  and  sow   samples,  as  well  as  the  average  for  the  litters  and  sow  samples.     A  significant  proportion  of  the  microbiome  of  the  piglets  came  from  maternal   sources.   We   processed   samples   derived   from   teat   skin,   vagina   and   tonsil   from   six   sows   belonging   to   the   PB   group   (Table   2.1.),   and   fecal   samples   from   two   of   these   sows.   We   compared   and   traced   which   OTUs   were   identified   as   core   microbiome   for   each   litter   and   if   they  were  identified  as  core  for  microbiomes  derived  from  the  different  sow  sources  (Table   2.2).       49   The  OTUs  identified  as  core  for  PB  litters  varied  between  litters.  As  was  seen  in  Figure   2.2.,  Pasteurellaceae,  Streptococcus  and  Moraxella  (OTUs  001,  002  and  003)  were  identified   as  core  with  a  minimum  relative  abundance  equal  or  higher  than  1%  and  were  found  in  high   proportions   in   most   piglets   from   multiparous   sows   but   not   piglets   from   primiparous   sows.     When   sow   sources   for   these   three   OTUs   were   examined,   OTU001   (Pasteurellaceae)   was   identified  as  a  core  organism  in  the  sow  vaginal  tract,  representing  on  average  20.1%  of  the   vaginal   microbiome.     However,   OTU001   was   present   in   only   low   amounts   in   the   vaginal   tracts   from   primiparous   sows.   In   contrast,   OTU002   (Streptococcus)   was   found   in   both   vaginal   and   teat   skin   samples,   while   OTU003   (Moraxella)   was   found   mainly   in   teat   skin   samples;   both   were   more   prevalent   in   samples   from   multiparous   sows.     In   addition,   Rothia   (OTU007)  and  Staphylococcus  (OTU009)  were  identified  in  high  proportions  and  as  core  for   most  PB  litters  regardless  of  sow  parity,  as  well  as  core  for  the  sow  teat  microbiome,  but  not   as  part  of  the  core  microbiome  for  other  sow  samples.     These  results  suggested  that  the  PB  piglets  had  acquired  new  organisms  from  teat   skin   or   other   sources   within   the   first   few   hours   of   life.   To   test  this   hypothesis,   we   collected   samples  from  piglets  immediately  at  birth  (AB),  prior  to  any  contact  with  sources  other  than   the   uterus   and   the   sow   vaginal   tract.   These   samples   were   very   sparse   in   content,   and   unfortunately   the   resulting   sequence   data   was   dominated   by   organisms   known   to   be   frequent   contaminants   in   DNA   extraction   kits   and   library   preparation   kits,   including   Comamonadaceae,  Sphingomonadaceae  and  Xanthomonadaceae  [24].    However,  when  these   likely   contaminants   were   deleted   from   the   data,   it   was   clear   that   the   organisms   most   frequently   seen   were   organisms   associated   mainly   with   the   sow   vaginal   tract,   including   OTU002   Streptococcus,   Corynebacterium   (OTU034   and   051),   and   several   anaerobic     50   organisms   including   multiple   OTUs   of   Clostridiaceae   and   Peptostreptococcaceae.   OTU001   (Pasteurellaceae)  was  also  found  although  in  low  numbers.     An  analysis  of  the  microbiome  derived  from  sow  sources  as  well  as  from  PB  piglets  at   the  family  level  showing  the  20  most  abundant  taxa  is  presented  in  Figure  2.3.  These  taxa   generally  include  multiple  OTUs.    Streptococcaceae  (20  OTUs),  Staphylococcaceae  (4  OTUs),   Micrococcaceae  (10  OTUs),  Pasteurellaceae  (21  OTUs)  Moraxellaceae  (29  OTUs)  and  families   belonging  to  the  Clostridiales  (746  OTUs)  were  present  in  high  abundance  in  the  PB  piglets,   and  were  also  found  in  the  sow  vagina  samples  and/or  the  sow  teat  skin  samples.     Tonsil  communities  of  newborn  piglets  differed  initially  between  litters  but  by   three  weeks  of  age  clustered  together  reflecting  similar  composition.  We  inquired  if,   over  time,  the  tonsillar  communities  of  piglets  reached  a  common  microbiome.  A  principal   coordinate   analysis   (PCoA)   based   on   Bray-­‐‑Curtis   distances   for   the   PB   newborn   through   week  4  samples  (Figure  2.4.A.  and  2.4.B.)  showed  a  dynamic  pattern  in  the  samples.    The  PB   newborns  were  widely  spread  although  two  distinct  clusters  were  detectable.  Over  the  next   three   weeks   the   microbiomes   formed   increasingly   tighter   clusters   reflecting   greater   similarity   as   the   animals   aged.   However,   in   the   fourth   week   there   was   a   dramatic   shift,   where,  instead  of  continuing  to  cluster  together  more  tightly  as  observed  in  previous  weeks,   samples  were  scattered.   Further  analysis  using  a  SIMPER  approach  based  on  Bray-­‐‑Curtis  distances  (Table  2.3.)   reinforced   what   we   observed   in   the   PCoA   plots.   Microbiome   samples   from   PB   piglets   were   dissimilar   when   compared   with   others   and   the   value   of   dissimilarity   fluctuated,   with   the   lowest  dissimilarity  being  45.8%  for  litter  1445  vs  1711  and  the  highest  being  94.04%  for   litter   1631   vs   1707.   Although   there   was   a   substantial   variability   in   the   overall   dissimilarity     51   between   litters,   as   time   advanced   the   dissimilarity   value   between   litters   decreased   and   reached  the  lowest  values  in  the  third  week,  when  values  were  as  low  as  23.5  %  for  litters   1402  vs  1707  and  the  highest  was  37.3%  for  litters  1402  vs  1445.     100% 90% Others Xanthomonadaceae 80% Moraxellaceae Pasteurellaceae 70% Enterobacteriaceae Comamonadaceae Veillonellaceae 60% Erysipelotrichaceae Ruminococcaceae Peptostreptococcaceae 50% Lachnospiraceae Clostridiales_Incertae_Sedis_XI 40% Clostridiaceae_1 Streptococcaceae Lactobacillaceae 30% Aerococcaceae Staphylococcaceae Prevotellaceae 20% Porphyromonadaceae Micrococcaceae 10% 0% Corynebacteriaceae Sow feces Sow tonsils Sow teat Sow vagina Litter 1700 Litter 1707 Litter 1631 Litter 1445 Litter 1402 Litter 1711 All PB piglets   Figure   2.3.   Twenty   most   abundant   families   identified   in   sows   and   PB     microbiome   samples.  Bar  plot  shows  the  mean  values  for  each  family  in  Sow  and  PB  samples,  including   each   PB   litter   (percent   of   total   OTUs).   “Others”   represent   members   of   bacterial   families   different  from  the  20  most  abundant  families  identified.           52     Figure   2.4.   Principal   Coordinate   Analysis   (PCoA)   characterizing   the   tonsillar   microbiome   from   PB   piglets   through   the   different   sampling   times.   Two   dimensional   plotting      illustrating      the      distribution      of      microbiome      in      the      first      two      axes,    the    95%     53   Figure  2.4.  (cont´d).  concentration  ellipses  for  newborn  piglets  through  four  weeks  and  the   relative  area  for  the  ellipses  (A).  Three-­‐‑dimensional  plot  illustrating  the  main  three  axes  for   the  distribution  of  the  microbiome  of  PB  piglets  aged  newborn  through  four  weeks  (B).         To  visualize  the  temporal  patterns  of  distribution  of  different  bacterial  families,  we   charted   the   mean   value   for   the   20   most   commonly   identified   families   per   sampling   time   (Figure  2.5.).  While  there  were  litter  to  litter  variations  in  the  microbiome  of  PB  newborn   piglets,   as   shown   in   Figure   3,   the   differences   between   litters   disappeared   through   the   successional  development  of  the  microbiome  in  the  following  weeks.     Members  of  the  families  Micrococcaceae  and  Staphylococcaceae  were  abundant  in  PB   newborns   but   decreased   drastically   and   almost   disappeared   in   the   following   weeks.   By   1   week   of   age,   the   tonsil   microbiome   was   dominated   by   members   of   the   Pasteurellaceae,   Moraxellaceae,   and   Streptococcaceae   families,   a   dominance   that   remained   throughout   the   lives   of   these   pigs   (unpublished   data).     In   contrast,   some   members   of   the   microbiome   appeared  and  disappeared  over  time,  such  as  Porphyromonadaceae  and  Flavobacteriaceae   which  appeared  at  weeks  1  to  3,  as  well  as  Fusobacteriaceae  and  Leptotrichiaceae  that  were   present  only  during  weeks  2  and  3.     The  transition  between  third  and  fourth  week  represents  a  critical  period  for   the   development   of   the   microbiome.   According   to   MSU   farm   management   practices,   piglets  were  weaned  between  the  third  and  fourth  week.  We  investigated  if  the  management   practices  experienced  by  the  piglets  (weaning,  shift  to  a  nursery  room  and  introduction  to  a   pelleted   ration   supplemented   with   Carbadox ),   correlated   with   the   timing   of   shifts   in   ® community  structures.     54   100% Others 90% Moraxellaceae Pasteurellaceae 80% Enterobacteriaceae Neisseriaceae 70% Leptotrichiaceae Fusobacteriaceae 60% Veillonellaceae Ruminococcaceae Peptostreptococcaceae 50% Lachnospiraceae Clostridiales_Incertae_Sedis_XI 40% Clostridiaceae_1 Streptococcaceae 30% Lactobacillaceae Staphylococcaceae Bacillales_Incertae_Sedis_XI 20% Flavobacteriaceae Prevotellaceae 10% Porphyromonadaceae Micrococcaceae 0% PB Newborn First week Second week Third week Fourth week     Figure  2.5.  The  abundance  of  the  twenty  most  common  families  in  PB  piglets  sampled   from   newborn   through   four   weeks.   Bar   plot   shows   the   mean   values   for   the   twenty   most   abundant  families  identified  over  the  first  four  weeks  of  life  (percent  of  total  OTUs).     An   analysis   of   the   members   of   core   microbiome   (Table   2.4.   and   Table   2.5.)   demonstrated  that  for  the  third  week,  OTU001  (Pasteurellaceae),  OTU002  (Streptococcus),   OTU003   (Moraxella),   OTU006   (Porphyromonas),   OTU017   (Fusobacterium)   and   OTU026   (Flavobacteriaceae),   identified   as   core   with   a   minimum   relative   abundance   equal   or   higher     55   than   1%,   were   shared   among   all   the   litters,   and   represented   on   average   70.1%   of   the   identified   OTUs.   In   addition,   OTU012   (Streptococcus),   OTU15   (Prevotellaceae),   OTU018   (Peptostreptococcaceae)  and  OTU024  (Bacillales  Incertae  Sedis  XI)  were  core  members  at  a   minimum   relative   abundance   of   0.1%   or   higher.   OTU001   (Pasteurellaceae),   OTU002   (Streptococcus)  and  OTU003  (Moraxella)  dominated  the  microbiome,  together  representing   on  average  59.5%  of  the  identified  OTUs.  An  analysis  at  the  family  level  (Figure  2.5.)  for  the   same   period   shows   the   families   Moraxellaceae   and   Pasteurellaceae   as   the   most   abundant   families   with   an   abundance   of   almost   55.6%,   followed   by   members   of   the   families   Streptococcaceae,   Porphyromonadaceae,   Fusobacteriaceae,   Leptotrichiaceae   and   Flavobacteriaceae,  together  with  an  abundance  of  24.5%.   The   fourth   week   showed   a   different   panorama,   where   only   two   OTUs,   OTU001   (Pasteurellaceae)   and   OTU002   (Streptococcus),   were   identified   as   core   at   1%   for   all   the   litters.   However,   in   contrast   to   the   third   week,   these   two   OTUs   represented   on   average   67.6%  of  the  identified  OTUs.  In  the  fourth  week,  members  of  the  Streptococcaceae  family   increased   dramatically   5-­‐‑6   fold   compared   to   week   3,   Pasteurellaceae   remained   at   the   same   levels,  and  members  of  Moraxellaceae  decreased  4  fold.  Members  of  Porphyromonadaceae,   Flavobacteriaceae,   Fusobacteriaceae,   and   Leptotrichiaceae   decreased   to   negligible   numbers   in  week  4.       Furthermore,   a   SIMPER   analysis   (Table   2.3.)   indicates   that   the   dissimilarity   in   percentages  between  litters  showed  changes;  instead  of  continuing  the  downward  trend  as   observed  in  previous  weeks,  the  dissimilarity  values  generally  increased  by  10-­‐‑20%,  with   the  lowest  being  32.04%  between  litters  1631  and  1402  and  the  highest  47.98  %  between   1700  and  1445.         56     DISCUSSION     In  this  study,  we  followed  the  development  of  the  tonsillar  microbial  communities  in   pigs   from   birth   through   weaning.     We   focused   on   identification   of   the   source   of   bacteria   found  in  the  tonsils,  the  successional  development,  and  the  apparent  effect  of  weaning  on  the   tonsillar  microbiome.   Analysis   of   the   microbiome   in   the   PB   piglets   showed   that   the   most   abundant   organisms  were  Streptococcus,  Staphylococcus,  Moraxella,  Rothia,  and  Pasteurellaceae  (OTUs   002,  009,  003,  007,  and  001  respectively).  Based  on  comparative  analysis  of  putative  source   microbiomes  and  piglet  tonsil  microbiomes,  as  well  as  cultivation  studies,  we  concluded  that   while  the  Pasteurellaceae  and  Streptococcus  were  most  likely  acquired  from  the  sow  vaginal   tract   during   the   birth   process,   Moraxella,   Staphylococcus   and   Rothia   were   likely   acquired   from  the  sow  teat  skin  (or  milk,  which  we  did  not  sample)  within  a  few  hours  after  birth.       To   determine   what   organisms   were   actually   acquired   during   birth,   we   collected   samples  from  piglets  immediately  after  they  were  born  (AB  piglets),  prior  to  contact  with   teat  skin  or  other  sources  except  the  sow  vaginal  tract.    As  described  in  results,  these  samples   were   very   sparse   and   the   microbiome   identified   in   them   was   heavily   biased   by   likely   contaminants  from  either  the  DNA  extraction  kit  or  library  construction  kit  used.    This  has   recently   become   a   recognized   problem   in   microbiome   studies   on   low   microbial   biomass   samples  [24,  32,  33].    While  we  ran  appropriate  positive  controls  and  no  template  library   construction  controls,  we  did  not  run  DNA  extraction  controls  with  the  same  kit  used  in  this   study.   We   have   done   this   with   a   different   lot   number   of   the   same   kit,   and   used   the     57   information  from  that  experiment  as  well  as  other  published  studies  [24]  to  help  analyze  the   data  on  the  microbiome  in  AB  piglets.       When   we   removed   what   we   considered   to   be   contaminants   from   the   data   set   for   AB   piglets,   the   remaining   organisms   included   OTU002   Streptococcus   and   OTU001   Pasteurellaceae,  both  of  which  colonized,  multiplied,  and  persisted  for  the  life  of  these  pigs.   It  should  be  noted  that  we  have  cultured  Streptococcus  suis  from  at  least  half  of  these  AB   piglet  samples,  as  well  as  from  sow  vaginal  samples,  providing  additional  support  for  the   conclusion   that   this   organism   is   acquired   during   the   birth   process.   We   also   identified   organisms  such  as  OTU016  Clostridium  sensu  strictu  and  two  OTUs  (034  and  051)  identified   as  Corynebacterium  that  were  found  in  the  sow  vaginal  tract  and  in  AB  and  PB  piglets,  but   not  older  piglets,  demonstrating  that  some  of  the  organisms  acquired  during  birth  do  not   persist  in  the  tonsils.       If  these  organisms  failed  to  adhere  to  the  tonsil  epithelium,  they  would  be  washed  out   of   the   oropharynx,   and   other   organisms   acquired   from   the   vaginal   tract,   such   as   Streptococcus,   which   do   adhere   to   the   tonsil   epithelium,   would   be   able   to   colonize   and   multiply.    Further,  once  the  piglets  had  contact  with  other  sow  sources  such  as  the  teat  skin   or   milk,   new   colonizers   such   as   Staphylococcus   could   be   acquired,   leading   to   a   sequential   development   of   the   tonsil   microbiome   starting   within   the   first   few   hours   of   life.     The   clustering  pattern  observed  in  Figure  2.1.,  where  samples  from  three  of  the  four  multiparous   litters   clustered   together   as   a   group   with   sow   teat   skin   samples   and   litters   born   from   primiparous  sows  clustered  with  the  cognate  teat  and  vaginal  or  just  teat  samples,  reinforce   that  teat  and/or  vaginal  samples  from  sow  are  the  initial  source  of  the  microbiome  for  PB   newborns.  Our  findings  are  supported  by  the  results  of  other  studies,  such  as  the  study  of     58   Mandar  and  Mikelsaar  [34],  which   characterized   the  initial  colonization  of  the  external   ear   canal  in  newborn  humans  and  compared  the  microorganisms  found  with  the  vaginal  flora  of   their  mothers  and  concluded  that  there  is  a  significant  influence  of  the  vaginal  microflora  in   the  initial  microbial  population  found  in  the  newborns.    Further,  Bokulich  et  al  [13],  studying   the   effect   of   antibiotics,   birthmode   and   diet   in   the   development   of   fecal   microbiota   in   children  during  early  life,  suggested  that  early  colonizers  are  transmitted  to  children  from   maternal   microbiota.   They   found   that   children   delivered   vaginally   shared   more   OTUs   derived  from  the  vagina  than  children  delivered  by  caesarean.  Additionally,  they  identified   that   the   infant   fecal   microbiota   was   initially   associated   with   vaginal   and   rectal   maternal   microbiota,  but  later  was  more  associated  with  maternal  fecal  microbiota.  Further,  a  study   of   the   development   of   the   human   intestinal   microbiome   suggested   that   the   bacterial   population  detected  in  human  infants  in  early  stages  of  life  might  be  determined  by  specific   bacteria   to   which   infant   was   previously   exposed,   based   on   similarity   patterns   observed   between  infant  samples  and  maternal  sources  as  breast  milk  and  vaginal  swabs  [15].  These   authors   identified   Streptococcus   and   Staphylococcus   as   well   as   other   aerobes   as   first   colonizers  [15].  Similarly,  we  observed  that  piglets  sampled  within  short  period  after  being   born  had  high  proportions  of  Streptococcus,  Moraxella  and  Staphylococcus  in  their  tonsils.   Our   results   demonstrated   a   strong   litter   effect   in   the   tonsillar   microbiome   in   PB   piglets   (Figure   2.3.).     However,   over   the   following   three   weeks   there   was   a   gradual   successional  development  in  the  tonsil  microbiomes  of  all  piglets  and  by  the  third  week  the   microbiomes  of  all  piglets  from  all  litters  were  highly  similar  (Figure  2.4.).    This  was  true   even  for  a  litter  that  did  not  share  the  same  farrowing  room,  as  was  the  case  for  piglets  from   litter   1445   (data   not   shown).     This   is   in   contrast   to   the   reported   development   of   the   pig     59   intestinal   microbiome   over   the   first   few   weeks   of   life,   where   no   obvious   effect   of   litter   was   seen  [35].     In   this   successional   development,   some   organisms   such   as   Staphylococcus   and   Micrococcaceae  that  were  found  in  high  proportions  in  the  PB  piglets  decreased  dramatically   within   the   next   2   weeks,   suggesting   a   role   only   as   initial   weak   colonizers.   These   organisms   are  commonly  isolated  from  multiple  skin  locations  [36,  37]  and  vagina  [38]  and  are  likely   to   be   vertically   transmitted   from   sow   to   offspring.   Over   the   same   period   there   was   a   concomitant   increase   in   stronger   colonizers,   particularly   members   of   the   families   Pasteurellaceae  and  Moraxellaceae,  as  well  as  maintenance  of  the  levels  of  Streptococcaceae.   These  three  families,  which  contain  both  commensals  and  pathogens  that  are  residents  of   mucosal   surfaces   of   animals   and   humans,   comprise   a   large   proportion   of   the   tonsil   microbiome   throughout   the   lives   of   pigs.   Members   of   the   order   Clostridiales   were   also   identified   as   a   small   but   consistent   part   of   the   microbiome   throughout   the   first   3   weeks,   which  is  not  surprising  since  they  were  identified  as  part  of  the  core  tonsillar  microbiome  of   pigs  [12]  as  well  as  members  of  intestinal  microbiome  [16,  19,  35,  39].   Over  this  period  we  also  found  several  transitory  OTUs  or  families  that  appeared  and   disappeared  at  specific  time  points.    For  example,  Porphyromonadaceae,  Prevotellaceae,  and   Flavobacteriaceae   appeared   at   week   1   and   increased   slightly   over   the   next   2   weeks.     Similarly,  Fusobacteriaceae  and  Leptotrichiaceae  appeared  at  weeks  2  and  3.    By  week  three,   this   successional   development   of   the   tonsil   microbiome   of   all   of   the   piglets,   regardless   of   litter,  led  to  a  distinct  common  consortium  of  bacterial  species.     Similarly,  Palmer  et  al  [15],  studied  the  microbiome  profiles  from  human  infant  stool   samples   and   suggested   that   although   initially   the   microbiome   was   very   distinct   between     60   individuals,   over   time   it   converged   towards   a   common   profile.   The   authors   followed   the   development   of   the   intestinal   microbiome   in   14   human   infants,   and   showed   that   there   was   a   considerable   variation   in   the   colonization   process   among   individuals.   Each   infant   had   a   distinct   arrangement   of   bacterial   species   that   it   acquired   and   maintained.   The   acquired   microorganisms  had  a  temporal  pattern  in  which  they  appeared  and  disappeared;  however,   they  reached  a  stable  population  over  time,  with  some  taxonomic  groups  persisting  while   the   presence   of   other   taxa   was   only   transient   [15].   The   authors   reported   the   occurrence   of   significant  shifts  in  the  population  assembly,  which  seemed  to  stabilize  over  time.       At  3  weeks  of  age,  the  piglets  were  weaned  onto  a  solid  ration  containing  the  growth   promoter  Carbadox  and  were  moved  from  the  farrowing  room  to  the  nursery,  while  kept  in   ® groups  with  their  littermates.  Comparison  of  the  microbiome  composition  for  the  third  and   fourth  weeks  showed  a  major  shift  associated  with  the  significant  stress  event  of  weaning,   with  its  environmental,  social  and  feed  changes.  Our  results  are  in  concordance  with  other   studies   following   the   development   of   the   intestinal   microbiome   in   humans   and   pigs,   which   reported  significant  changes  in  microbiome  composition  associated  with  life  events  [14,  15].   In   pigs,   it   has   been   demonstrated   that   the   transition   from   nursery   to   weaning   is   associated   with   a   significant   change   in   the   intestinal   microbiota   [19,   40].   However,   the   effect   of   this   transition  on  the  tonsillar  microbiome  has  not  previously  been  studied  in  pigs  or  humans.  In   this  study,  we  have  demonstrated  that  the  transition  from  farrowing  to  a  nursery  room  in   parallel   with   weaning   and   supplementation   of   the   diet   with   Carbadox   was   associated   with   ® a  major  shift  in  the  tonsil  microbiota.     The   most   obvious   effect   of   weaning   was   the   5-­‐‑6   fold   increase   in   members   of   the   Streptococcaceae,   from   an   average   of   8%   before   weaning   to   ~43%   of   the   total   identified     61   families   after   weaning.   These   organisms   were   primarily   members   of   the   genus   Streptococcus.  There  was  a  concomitant  decrease  for  members  of  the  Moraxellaceae  family,   which  decreased  approximately  4-­‐‑fold,  from  ~32%  before  weaning  to  ~8%  after  weaning.   In   addition,   Fusobacteriaceae,   Leptotrichiaceae,   Porphyromonadaceae,   and   Flavobacteriaceae   decreased   dramatically.   However,   at   the   same   time,   the   proportion   represented  by  Pasteurellaceae  remained  constant.       It  is  not  clear  whether  a  single  stress,  such  as  change  in  food  or  change  in  environment   or   application   of   antibiotic,   or   a   combination   of   stresses   was   responsible   for   the   major   disruption  in  the  tonsil  microbiome  at  this  time.  It  has  been  demonstrated  in  multiple  studies   that  the  intestinal  microbiota  composition  was  deeply  perturbed  when  the  host  was  treated   with   antibiotics   [8,   13,   15,   41-­‐‑44].   In   our   study,   the   piglets   were   supplemented   with   Carbadox   in   food   at   the   time   of   weaning.       It   was   reported   by   Looft   et   al   [41]   that   the   ® structure  and  composition  of  the  intestinal  community  of  pigs  supplemented  with  Carbadox   ® changed  significantly,  where  the  relative  abundance  of  Prevotella  increased  associated  with   Carbadox   administration   as   a   result   of   decreased   abundance   of   other   bacteria.   Another   ® study  correlating  changes  in  microbiota  with  changes  of  diet  during  nursing  and  weaning   found   that   the   fecal   population   of   Prevotellaceae   increased   ~50-­‐‑fold   in   weaned   pigs     compared   with   nursing   animals   [19].   In   our   study,   members   of   Prevotellaceae,   a   minor   population  in  the  tonsils,  decreased  slightly  from  2.7  %  for  week  three  to  1.9%  for  week  four.   We   can   only   speculate   about   the   opposite   results   identified   in   our   studies,   since   we   are   comparing  different  niches  (feces  vs  tonsils)  and  we  did  not  have  controls  that  were  not  fed   Carbadox  as  this  was  not  a  goal  of  our  study.   ®   62   It   has   been   suggested   that   the   environment   also   plays   a   relevant   role   in   the   initial   acquisition  of  the  microbiome.  Mulder  et  al  [11],  followed  the  development  of  gut  microbiota   and  the  potential  impacts  of  early  environmental  changes,  and  demonstrated  a  major  impact   in  the  microbial  diversity  related  with  those  changes  and  that  the  impact  of  those  changes   are   preserved   through   adulthood.   One   of   the   major   changes   experienced   by   the   weaned   piglets  is  the  separation  from  the  sow  and  the  introduction  to  new  food.  A  deep  impact  in  the   intestinal  microbial  composition  has  been  seen  associated  with  cessation  of  breast  feeding   and  introduction  to  a  different  diet  [20].         We  observed  members  of  the  microbiota  that  were  present  all  the  time,  some  in  high   relative  abundance  while  others  were  found  in  low  abundance.  Similarly,  there  were  also   transient  members  whose  exact  role  in  the  development  of  the  tonsil  microbiome  is  unclear   but   worth   investigating   in   future   studies.   It   is   possible   that   these   transient   organisms   appeared   as   secondary   colonizers   but   were   displaced   by   other   members   of   the   microbiota,   or   that   these   microorganisms   were   adversely   affected   by   the   stressful   event   of   weaning   and/or   the   Carbadox  supplementation  and  thus  disappeared.  We   have  an  imprecise  idea   ® about  the  true  role  of  Carbadox  in  the  development  of  the  tonsillar  microbiome,  since  our   ® study  was  not  specifically  intended  to  answer  this  question.  We  unfortunately  did  not  collect   sow  milk  samples,  or  samples  from  the  pen/cage  floor  which  might  have  given  us  a  better   idea  of  the  possible  sources  of  the  PB  and  subsequent  microbiome.     There  are  many  questions  that  arise  from  our  work  that  will  be  the  subject  of  future   research.   However,   this   study   lays   the   foundation   of   our   knowledge   of   how   the   tonsillar   microbiome  develops  in  pigs  in  the  first  hours  and  weeks  of  age  and  how  weaning  affects     63   this  microbiome.  To  the  best  of  our  knowledge,  this  is  the  first  published  study  that  follows   the  development  of  the  tonsillar  microbiome  in  any  mammal  during  the  first  weeks  of  life.       CONCLUSIONS     Our  data  demonstrate  a  temporal  succession  in  the  development  of  the  pig  tonsillar   microbiome   through   the   first   weeks   of   life.     Many   of   the   organisms   found   in   the   piglet   oropharynx  and  tonsils  immediately  after  birth  disappear  rapidly,  within  the  first  few  hours   of  life,  while  other  organisms  acquired  from  the  vaginal  tract,  such  as  Streptococcaceae  and   Pasteurellaceae,  colonize  and  multiply.  Additional  organisms  are  also  acquired  rapidly  from   the  sow  teat  skin,  and  possibly  from  milk,  and  eventually  also  from  feces.  The  composition   of   the   PB   newborn   piglet   tonsil   microbiome   initially   can   be   differentiated   by   litter   and   clusters  mainly  with  the  sow  teat  skin  microbiome.  Nevertheless,  over  the  next  three  weeks,   the   composition   and   structure   of   the   tonsil   microbiome   reaches   a   common   point   of   development,   showing   a   high   degree   of   similarity   among   all   piglets,   regardless   of   litter   and   just  prior  to  weaning.  However,  there  was  a  dramatic  change  in  the  post  weaning  tonsillar   microbiome,   which   was   likely   engendered   by   a   combination   of   change   in   diet,   change   in   environment,   and   addition   of   in-­‐‑   feed   antibiotic,   demonstrating   the   effect   that   weaning   management   practices   exert   in   shaping   tonsillar   microbial   communities.   This   research   demonstrates  the  need  for  further  studies  to  elucidate  the  role  of  antibiotic  supplementation   of   feed   in   the   development   of   tonsillar   microbial   communities,   specifically   when   administered  during  the  highly  susceptible  time  of  weaning.       64                           APPENDIX                           65   Table  2.2.  Core  microbiome  at  OTU  level  for  litters  and  sow  samples.       Numbers   in   different   colors   identify   core   OTUs   at   different   percentages   of   relative   abundance.  Red  shows  core  OTUs  at  1%  relative  abundance.  Blue  identify  core  OTUs  at  0.1%   relative  abundance.  Black  color  denotes  OTUs  that  were  not  core.       66   Table  2.2.  (cont´d).       Numbers   in   different   colors   identify   core   OTUs   at   different   percentages   of   relative   abundance.  Red  shows  core  OTUs  at  1%  relative  abundance.  Blue  identify  core  OTUs  at  0.1%   relative  abundance.  Black  color  denotes  OTUs  that  were  not  core.               67   Table  2.3.  SIMPER  analysis  between  litters  through  different  sampling  times       Data   displayed   represent   values   of   overall   average   dissimilarity,   when   a   comparison   between  litter  was  performed  for  the  different  sampling  times.   n.i.:   Number  of  samples  included  in  the  analysis   parity:  Total  number  of  deliveries  that  the  sow  had  when  was  sampled                 68   Table  2.4.  Core  microbiome  at  OTU  level  for  third  week   OTUs Otu00001__Pasteurellaceae__ Otu00002__Streptococcaceae__Streptococcus Otu00003__Moraxellaceae__Moraxella Otu00006__Porphyromonadaceae__ Otu00007__Micrococcaceae__Rothia Otu00008__Moraxellaceae__ Otu00010__Clostridiaceae_1__Clostridium_sensu_stricto Otu00012__Streptococcaceae__Streptococcus Otu00015__Prevotellaceae__ Otu00016__Clostridiaceae_1__Clostridium_sensu_stricto Otu00017__Fusobacteriaceae__Fusobacterium Otu00018__Peptostreptococcaceae__Clostridium_XI Otu00020__Erysipelotrichaceae__Turicibacter Otu00023__Clostridiaceae_1__Clostridium_sensu_stricto Otu00024__Bacillales_Incertae_Sedis_XI__Gemella Otu00025__Peptostreptococcaceae__Clostridium_XI Otu00026__Flavobacteriaceae__ Otu00027__Veillonellaceae__Veillonella Otu00028__Leptotrichiaceae__ Otu00030__Clostridiaceae_1__Clostridium_sensu_stricto Otu00035__Pasteurellaceae__Pasteurella Otu00041__Neisseriaceae__Neisseria Otu00042__Ruminococcaceae__ Otu00043__Flavobacteriaceae__ Otu00044__Neisseriaceae__ Otu00045__Moraxellaceae__Acinetobacter Otu00048__Lactobacillaceae__Lactobacillus Otu00050__Bacteroidaceae__Bacteroides Otu00051__Corynebacteriaceae__Corynebacterium Otu00064__Aerococcaceae__ Otu00070__Pasteurellaceae__Actinobacillus Otu00071__Prevotellaceae__Prevotella Otu00072__Ruminococcaceae__ Otu00076__Lachnospiraceae__ Otu00077__Carnobacteriaceae__ Otu00078__Ruminococcaceae__ Otu00079__Bacteroidaceae__Bacteroides Otu00085__Streptococcaceae__Streptococcus Otu00091__Lachnospiraceae__Roseburia Otu00094__Streptococcaceae__Lactococcus Otu00097__Alcaligenaceae__ Otu00098__Clostridiales_Incertae_Sedis_XI__Helcococcus Otu00108__Lachnospiraceae__ Otu00122__Leptotrichiaceae__Leptotrichia Otu00127__Fusobacteriaceae__Fusobacterium Otu00130__Propionibacteriaceae__Propionibacterium Otu00143__Campylobacteraceae__Campylobacter Otu00147__Erysipelotrichaceae__ Otu00149__Bacteria_unclassified__ Otu00156__Leptotrichiaceae__Sneathia Otu00159__Alcaligenaceae__ Otu00162__Succinivibrionaceae__Succinivibrio Otu00174__Erysipelotrichaceae__ Otu00176__Dermabacteraceae__Brachybacterium Otu00183__Actinomycetaceae__Actinomyces Otu00195__Spirochaetaceae__ Otu00200__Moraxellaceae__Moraxella Otu00204__Ruminococcaceae__ Otu00205__Lachnospiraceae__ Otu00209__Aerococcaceae__Facklamia Otu00225__Leptotrichiaceae__ Otu00232__Fusobacteriaceae__Fusobacterium Otu00280__Spirochaetaceae__ Otu00288__Dietziaceae__Dietzia Otu00292__Bacteroidaceae__Bacteroides Otu00311__Xanthomonadaceae__Stenotrophomonas Otu00324__Lachnospiraceae__ Otu00338__Lachnospiraceae__ Otu00346__Leptotrichiaceae__ Otu00347__Ruminococcaceae__ Otu00510__Lachnospiraceae__ Otu00545__Cardiobacteriaceae__Suttonella Otu00582__Lachnospiraceae__Clostridium_XlVa Otu00653__Ruminococcaceae__ Otu00982__Clostridiales_Incertae_Sedis_XI__Anaerococcus Otu01018__Oligosphaeraceae__Oligosphaera Otu01058__Ruminococcaceae__Butyricicoccus Otu01160__Ruminococcaceae__Faecalibacterium Otu01326__Alcanivoracaceae__Alcanivorax Otu01828__Lachnospiraceae__Clostridium_XlVa Otu02516__Ruminococcaceae__ Otu03039__Moraxellaceae__Moraxella Litter 1700 23.1 5.6 27.6 4.6 0.4 5.7 0.1 0.3 0.6 0.0 4.0 0.2 0.1 0.0 2.1 0.1 2.3 0.1 3.2 0.0 0.1 0.2 0.0 0.6 0.2 0.0 0.0 0.3 0.0 0.0 0.0 0.1 2.5 0.2 0.2 0.0 0.4 0.1 0.0 0.0 0.2 0.1 0.1 0.0 0.2 0.0 0.1 0.1 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 *Litter 1707 16.5 10.3 40.7 2.6 0.5 3.8 0.6 0.6 3.2 0.2 1.1 0.1 0.1 0.0 1.0 0.0 2.3 0.2 0.3 0.0 0.0 0.0 0.8 0.0 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.4 2.0 0.0 0.6 0.0 0.0 0.3 0.0 0.3 0.3 0.0 0.0 0.3 0.0 1.9 0.0 0.2 0.0 0.0 0.3 0.0 0.2 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 Litter 1631 23.3 6.2 24.1 7.2 0.5 10.1 0.5 2.0 1.3 0.1 3.0 0.6 0.3 0.0 0.8 0.3 2.7 0.2 3.2 0.2 0.1 0.6 0.1 0.3 0.4 0.1 0.0 0.4 0.0 0.1 0.0 0.4 0.0 0.2 0.3 0.1 0.5 0.0 0.0 0.0 0.3 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Litter 1445 22.3 7.3 26.3 5.9 0.6 0.2 0.4 0.2 1.9 0.1 5.3 0.3 0.1 0.1 0.8 0.2 5.1 0.4 1.9 0.0 0.1 0.2 0.1 0.8 2.8 0.0 0.1 0.5 0.0 0.2 0.0 0.7 1.0 0.3 0.1 0.1 0.8 0.1 0.0 0.0 0.3 0.6 0.1 0.1 0.2 0.0 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 *Litter 1402 18.5 5.6 38.9 2.8 0.7 5.5 3.6 1.1 0.7 0.2 1.4 1.6 1.0 0.0 0.8 2.0 1.2 0.0 0.1 0.8 0.3 0.4 0.3 0.4 0.0 0.0 0.1 0.0 0.0 0.3 0.2 0.0 0.3 0.0 0.8 0.1 0.2 0.1 0.5 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.0 0.2 0.1 0.0 0.0 0.1 0.2 0.1 0.1 0.2 0.3 0.0 0.3 0.4 0.3 0.1 0.2 0.4 0.3 0.1 0.1 0.0 Litter 1711 23.7 8.6 28.4 4.2 0.1 1.8 0.2 0.4 1.9 0.1 4.4 0.1 0.1 0.0 0.6 0.0 3.8 0.1 3.9 0.0 0.1 0.2 0.0 0.9 0.1 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4 0.0 1.3 0.0 0.0 0.0 0.0 0.7 0.0 0.6 0.1 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Average 21.2 7.3 31.0 4.5 0.4 4.5 0.9 0.8 1.6 0.1 3.2 0.5 0.3 0.0 1.0 0.4 2.9 0.2 2.1 0.2 0.1 0.2 0.2 0.5 0.6 0.0 0.0 0.4 0.1 0.1 0.0 0.3 0.9 0.2 0.4 0.1 0.5 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.1 0.3 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0   Numbers   in   different   colors   identify   core   OTUs   at   different   percentages   of   relative   abundance.  Red  shows  core  OTUs  at  1%  relative  abundance.  Blue  identify  core  OTUs  at   0.1%   relative   abundance.   Black   color   denotes   OTUs   that   were   not   core.   *   indicates   litters   with  less  than  4  samples  for  this  specific  time.       69   Table  2.5.  Core  microbiome  at  OTU  level  for  fourth  week   OTUs Otu00001__Pasteurellaceae__ Otu00002__Streptococcaceae__Streptococcus Otu00003__Moraxellaceae__Moraxella Otu00005__Enterobacteriaceae__Escherichia/Shigella Otu00007__Micrococcaceae__Rothia Otu00008__Moraxellaceae__ Otu00010__Clostridiaceae_1__Clostridium_sensu_stricto Otu00012__Streptococcaceae__Streptococcus Otu00018__Peptostreptococcaceae__Clostridium_XI Otu00019__Sphingomonadaceae__Sphingomonas Otu00024__Bacillales_Incertae_Sedis_XI__Gemella Otu00026__Flavobacteriaceae__ Otu00027__Veillonellaceae__Veillonella Otu00034__Corynebacteriaceae__Corynebacterium Otu00035__Pasteurellaceae__Pasteurella Otu00037__Clostridiales_Incertae_Sedis_XI__Tissierella Otu00041__Neisseriaceae__Neisseria Otu00042__Ruminococcaceae__ Otu00044__Neisseriaceae__ Otu00045__Moraxellaceae__Acinetobacter Otu00047__Streptococcaceae__Streptococcus Otu00051__Corynebacteriaceae__Corynebacterium Otu00052__Lactobacillaceae__Lactobacillus Otu00054__Clostridiales_Incertae_Sedis_XI__Sedimentibacter Otu00056__Enterobacteriaceae__Yersinia Otu00059__Lactobacillaceae__Lactobacillus Otu00064__Aerococcaceae__ Otu00066__Planococcaceae__ Otu00070__Pasteurellaceae__Actinobacillus Otu00082__Ruminococcaceae__Faecalibacterium Otu00091__Lachnospiraceae__Roseburia Otu00097__Alcaligenaceae__ Otu00100__Lachnospiraceae__Blautia Otu00104__Erysipelotrichaceae__Sharpea Otu00105__Ruminococcaceae__ Otu00109__Prevotellaceae__ Otu00114__Veillonellaceae__Megasphaera Otu00118__Prevotellaceae__Paraprevotella Otu00124__Prevotellaceae__Prevotella Otu00125__Corynebacteriaceae__Turicella Otu00130__Propionibacteriaceae__Propionibacterium Otu00135__Veillonellaceae__ Otu00140__Planococcaceae__ Otu00174__Erysipelotrichaceae__ Otu00181__Enterococcaceae__Enterococcus Otu00193__Porphyromonadaceae__ Otu00194__Prevotellaceae__Prevotella Otu00200__Moraxellaceae__Moraxella Otu00240__Acidaminococcaceae__Acidaminococcus Otu00261__Ruminococcaceae__Butyricicoccus Otu00262__Prevotellaceae__Prevotella Otu00269__Ruminococcaceae__ Otu00284__Veillonellaceae__Mitsuokella Otu00307__Prevotellaceae__Prevotella Otu00313__Lachnospiraceae__Dorea Otu00315__Prevotellaceae__Alloprevotella Otu00338__Lachnospiraceae__ Otu00352__Sutterellaceae__Sutterella Otu00367__Ruminococcaceae__ Otu00438__Streptococcaceae__Streptococcus Otu00480__Prevotellaceae__Alloprevotella Otu00517__Lachnospiraceae__Blautia Otu00519__Prevotellaceae__Prevotella Otu00543__Ruminococcaceae__Ruminococcus Otu00609__Lachnospiraceae__Ruminococcus2 Otu00637__Ruminococcaceae__ Otu00660__Erysipelotrichaceae__ Otu00675__Erysipelotrichaceae__ Otu00694__Streptococcaceae__Streptococcus Otu00783__Streptococcaceae__Streptococcus Otu01058__Ruminococcaceae__Butyricicoccus Otu01339__Alcaligenaceae__Oligella Litter 1700 Litter 1631 Litter 1445 *Litter 1402 Litter 1711 Average 28.8 46.3 3.0 0.5 1.2 0.1 0.1 1.9 0.0 0.0 0.3 0.1 1.1 0.3 0.0 0.1 0.3 0.0 0.0 0.2 0.1 0.0 4.8 0.3 0.1 0.8 0.1 0.1 0.3 0.3 0.2 0.1 0.2 0.2 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 23.1 51.0 0.9 0.2 0.7 0.0 0.4 2.5 0.0 0.3 0.1 0.0 0.7 0.0 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.6 0.0 0.0 0.1 0.0 0.0 0.1 0.6 0.5 0.0 0.5 0.1 0.1 0.2 0.1 0.0 0.3 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.2 0.3 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.3 28.8 9.0 0.3 2.5 2.9 0.7 0.5 0.2 0.1 1.0 0.1 1.5 0.0 0.2 0.2 3.9 0.2 1.9 0.0 0.0 0.0 1.2 0.0 0.0 0.4 0.1 0.0 0.0 0.6 0.4 0.1 0.9 0.9 0.2 0.2 0.3 0.2 0.6 0.0 0.0 0.4 0.0 0.1 0.2 0.2 0.5 0.0 0.3 0.2 0.2 0.0 0.5 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.3 0.0 0.0 0.1 0.1 0.0 15.2 63.2 5.1 0.0 4.3 1.1 0.6 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 0.0 0.7 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.9 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.3 1.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.1 0.3 0.2 0.0 0.3 20.3 40.0 13.1 0.1 1.3 2.9 0.3 0.6 0.0 0.0 0.3 0.3 0.4 0.2 0.0 0.2 1.0 0.1 0.8 0.2 0.2 0.1 0.4 0.5 0.2 0.3 0.2 0.2 0.2 0.5 0.7 0.3 0.6 0.3 0.1 0.3 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 21.7 45.9 6.2 0.2 2.0 1.4 0.4 1.1 0.1 0.1 0.6 0.1 0.7 0.1 0.1 0.1 1.1 0.1 0.6 0.2 0.1 0.1 1.4 0.2 0.1 0.3 0.1 0.1 0.1 0.5 0.5 0.1 0.6 0.3 0.1 0.2 0.1 0.0 0.3 0.0 0.0 0.2 0.0 0.2 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.1   Numbers   in   different   colors   identify   core   OTUs   at   different   percentages   of   relative   abundance.  Red  shows  core  OTUs  at  1%  relative  abundance.  Blue  identify  core  OTUs  at  0.1%   relative  abundance.  Black  color  denotes  OTUs  that  were  not  core.  *  indicates  litters  with  less   than  4  samples  for  this  specific  time.  The  absence  of  litter  1707  samples  means  that  there   were  not  available  samples  in  this  time.     70                         REFERENCES                           71   REFERENCES         1.     2.     3.     4.     5.     6.     7.     8.     9.     10.     11.     Horter  DC,  Yoon  KJ,  Zimmerman  JJ:  A  review  of  porcine  tonsils  in  immunity  and   disease.  Anim  Health  Res  Rev  2003,  4:143-­‐‑155.   Smith   TC,   Harper   AL,   Nair   R,   Wardyn   SE,   Hanson   BM,   Ferguson   DD,   Dressler   AE:   Emerging   swine   zoonoses.   Vector-­‐‑Borne   and   Zoonotic   Diseases   2011,   11:1225-­‐‑ 1234.   MacInnes   JI,   Gottschalk   M,   Lone   AG,   Metcalf   DS,   Ojha   S,   Rosendal   T,   Watson   SB,   Friendship   RM:   Prevalence   of   Actinobacillus   pleuropneumoniae,   Actinobacillus   suis,   Haemophilus   parasuis,   Pasteurella   multocida,   and   Streptococcus   suis   in   representative   Ontario   swine   herds.   Canadian   Journal   of   Veterinary   Research-­‐‑ Revue  Canadienne  De  Recherche  Veterinaire  2008,  72:242-­‐‑248.   Kernaghan  S,  Bujold  AR,  MacInnes  JI:  The  microbiome  of  the  soft  palate  of  swine.   Animal  Health  Research  Reviews  2012,  13:110-­‐‑120.   Williams  LP,  Newell  KW:  Salmonella  excretion  in  joy-­‐‑riding  pigs.  American  Journal   of  Public  Health  and  the  Nations  Health  1970,  60:926-­‐‑929.   Weyrich   LS,   Feaga   HA,   Park   J,   Muse   SJ,   Safi   CY,   Rolin   OY,   Young   SE,   Harvill   ET:   Resident   microbiota   affect  Bordetella   pertussis  infectious   dose   and   host   specificity.  Journal  of  Infectious  Diseases  2014,  209:913-­‐‑921.   Ghartey   JP,   Smith   BC,   Chen   ZG,   Buckley   N,   Lo   YT,   Ratner   AJ,   Herold   BC,   Burk   RD:   Lactobacillus   crispatus   dominant   vaginal   microbiome   is   associated   with   inhibitory   activity   of   female   genital   tract   secretions   against  Escherichia   coli.   Plos  One  2014,  9:8.   Croswell   A,   Amir   E,   Teggatz   P,   Barman   M,   Salzman   NH:   Prolonged   impact   of   antibiotics   on   intestinal   microbial   ecology   and   susceptibility   to   enteric  Salmonella  infection.  Infection  and  Immunity  2009,  77:2741-­‐‑2753.   Kim   Y-­‐‑G,   Sakamoto   K,   Seo   S-­‐‑U,   Pickard   JM,   Gillilland   MG,   III,   Pudlo   NA,   Hoostal   M,   Li   X,  Wang  TD,  Feehley  T,  et  al:  Neonatal  acquisition  of  Clostridia  species  protects   against  colonization  by  bacterial  pathogens.  Science  2017,  356:312-­‐‑315.   Willing   BP,   Vacharaksa   A,   Croxen   M,   Thanachayanont   T,   Finlay   BB:   Altering   host   resistance  to  infections  through  microbial  transplantation.  Plos  One  2011,  6:9.   Mulder  IE,  Schmidt  B,  Stokes  CR,  Lewis  M,  Bailey  M,  Aminov  RI,  Prosser  JI,  Gill  BP,   Pluske   JR,   Mayer   CD,   et   al:   Environmentally-­‐‑acquired   bacteria   influence   72     12.     13.     14.     15.     16.     17.     18.     19.     20.     21.     22.     microbial   diversity   and   natural   innate   immune   responses   at   gut   surfaces.   Bmc   Biology  2009,  7:20.   Lowe  BA,  Marsh  TL,  Isaacs-­‐‑Cosgrove  N,  Kirkwood  RN,  Kiupel  M,  Mulks  MH:  Defining   the  "core  microbiome"  of  the  microbial  communities  in  the  tonsils  of  healthy   pigs.  Bmc  Microbiology  2012,  12:14.   Bokulich   NA,   Chung   J,   Battaglia   T,   Henderson   N,   Jay   M,   Li   H,   Lieber   AD,   Wu   F,   Perez-­‐‑ Perez   GI,   Chen   Y,   et   al:   Antibiotics,   birth   mode,   and   diet   shape   microbiome   maturation  during  early  life.  Science  Translational  Medicine  2016,  8:13.   Koenig  JE,  Spor  A,  Scalfone  N,  Fricker  AD,  Stombaugh  J,  Knight  R,  Angenent  LT,  Ley   RE:  Succession  of  microbial  consortia  in  the  developing  infant  gut  microbiome.   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  2011,   108:4578-­‐‑4585.   Palmer   C,   Bik   EM,   DiGiulio   DB,   Relman   DA,   Brown   PO:   Development   of   the   human   infant  intestinal  microbiota.  Plos  Biology  2007,  5:1556-­‐‑1573.   Inoue   R,   Tsukahara   T,   Nakanishi   N,   Ushida   K:   Development   of   the   intestinal   microbiota  in  the  piglet.  Journal  of  General  and  Applied  Microbiology  2005,  51:257-­‐‑ 265.   Konstantinov  SR,  Awati  AA,  Williams  BA,  Miller  BG,  Jones  P,  Stokes  CR,  Akkermans   ADL,   Smidt   H,   De   Vos   WM:   Post-­‐‑natal   development   of   the   porcine   microbiota   composition  and  activities.  Environmental  Microbiology  2006,  8:1191-­‐‑1199.   Stephens  WZ,  Burns  AR,  Stagaman  K,  Wong  S,  Rawls  JF,  Guillemin  K,  Bohannan  BJM:   The  composition  of  the  zebrafish  intestinal  microbial  community  varies  across   development.  Isme  Journal  2016,  10:644-­‐‑654.   Frese  SA,  Parker  K,  Calvert  CC,  Mills  DA:  Diet  shapes  the  gut  microbiome  of  pigs   during  nursing  and  weaning.  Microbiome  2015,  3:10.   Bergstrom   A,   Skov   TH,   Bahl   MI,   Roager   HM,   Christensen   LB,   Ejlerskov   KT,   Molgaard   C,  Michaelsen  KF,  Licht  TR:  Establishment  of  intestinal  microbiota  during  early   life:  a  longitudinal,  explorative  study  of  a  large  cohort  of  Danish  infants.  Applied   and  Environmental  Microbiology  2014,  80:2889-­‐‑2900.   Konstantinov  SR,  Favier  CF,  Zhu  WY,  Williams  BA,  Kluss  J,  Souffrant  WB,  de  Vos  WM,   Akkermans   ADL,   Smidt   H:   Microbial   diversity   studies   of   the   porcine   gastrointestinal   ecosystem   during   weaning   transition.   Animal   Research   2004,   53:317-­‐‑324.   Konstantinov  SR,  Zhu  WY,  Williams  BA,  Tamminga  S,  de  Vos  WM,  Akkermans  ADL:   Effect  of  fermentable  carbohydrates  on  piglet  faecal  bacterial  communities  as   73     23.     24.     25.     26.     27.     28.     29.     30.     31.     32.       revealed  by  denaturing  gradient  gel  electrophoresis  analysis  of  16S  ribosomal   DNA.  Fems  Microbiology  Ecology  2003,  43:225-­‐‑235.   Thompson  CL,  Wang  B,  Holmes  AJ:  The  immediate  environment  during  postnatal   development   has   long-­‐‑term   impact   on   gut   community   structure   in   pigs.   Isme   Journal  2008,  2:739-­‐‑748.   Kim  D,  Hofstaedter  CE,  Zhao  C,  Mattei  L,  Tanes  C,  Clarke  E,  Lauder  A,  Sherrill-­‐‑Mix  S,   Chehoud   C,   Kelsen   J,   et   al:   Optimizing   methods   and   dodging   pitfalls   in   microbiome  research.  Microbiome  2017,  5:14.   Liu  WT,  Marsh  TL,  Cheng  H,  Forney  LJ:  Characterization  of  microbial  diversity  by   determining   terminal   restriction   fragment   length   polymorphisms   of   genes   encoding  16S  rRNA.  Applied  and  Environmental  Microbiology  1997,  63:4516-­‐‑4522.   Caporaso   JG,   Lauber   CL,   Walters   WA,   Berg-­‐‑Lyons   D,   Lozupone   CA,   Turnbaugh   PJ,   Fierer  N,  Knight  R:  Global  patterns  of  16S  rRNA  diversity  at  a  depth  of  millions  of   sequences  per  sample.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United   States  of  America  2011,  108:4516-­‐‑4522.   Schloss  PD,  Westcott  SL,  Ryabin  T,  Hall  JR,  Hartmann  M,  Hollister  EB,  Lesniewski  RA,   Oakley   BB,   Parks   DH,   Robinson   CJ,   et   al:   Introducing   mothur:   open-­‐‑source,   platform-­‐‑independent,   community-­‐‑supported   software   for   describing   and   comparing  microbial  communities.  Applied  and  Environmental  Microbiology  2009,   75:7537-­‐‑7541.   Kozich  JJ,  Westcott  SL,  Baxter  NT,  Highlander  SK,  Schloss  PD:  Development  of  a  dual-­‐‑ index   sequencing   strategy   and   curation   pipeline   for   analyzing   amplicon   sequence   data   on   the   MiSeq   Illumina   sequencing   platform.   Applied   and   Environmental  Microbiology  2013,  79:5112-­‐‑5120.   Quast  C,  Pruesse  E,  Yilmaz  P,  Gerken  J,  Schweer  T,  Yarza  P,  Peplies  J,  Gloeckner  FO:   The  SILVA  ribosomal  RNA  gene  database  project:  improved  data  processing  and   web-­‐‑based  tools.  Nucleic  Acids  Research  2013,  41:D590-­‐‑D596.   Hammer   O,   Harper   DAT,   Ryan   PD:   PAST:   paleontological   statistics   software   package  for  education  and  data  analysis.  Palaeontologia  Electronica  2001,  4.   Schneider  CA,  Rasband  WS,  Eliceiri  KW:  NIH  Image  to  ImageJ:  25  years  of  image   analysis.  Nature  Methods  2012,  9:671-­‐‑675.   Glassing   A,   Dowd   SE,   Galandiuk   S,   Davis   B,   Chiodini   RJ:   Inherent   bacterial   DNA   contamination  of  extraction  and  sequencing  reagents  may  affect  interpretation   of  microbiota  in  low  bacterial  biomass  samples.  Gut  Pathogens  2016,  8:12.   74   33.     34.     35.     36.     37.     38.     39.     40.     41.     42.     43.       Lauder  AP,  Roche  AM,  Sherrill-­‐‑Mix  S,  Bailey  A,  Laughlin  AL,  Bittinger  K,  Leite  R,  Elovitz   MA,  Parry  S,  Bushman  FD:  Comparison  of  placenta  samples  with  contamination   controls   does   not   provide   evidence   for   a   distinct   placenta   microbiota.   Microbiome  2016,  4:29.   Mandar   R,   Mikelsaar   M:   Transmission   of   mother's   microflora   to   the   newborn   at   birth.  Biology  of  the  Neonate  1996,  69:30-­‐‑35.   Park  SJ,  Kim  J,  Lee  TS,  Rhee  SK,  Kim  H:  Characterization  of  the  fecal  microbiome  in   different  swine  groups  by  high-­‐‑throughput  sequencing.  Anaerobe  2014,  28:157-­‐‑ 162.   Braem   G,   De   Vliegher   S,   Verbist   B,   Heyndrickx   M,   Leroy   F,   De   Vuyst   L:   Culture-­‐‑ independent   exploration   of   the   teat   apex   microbiota   of   dairy   cows   reveals   a   wide  bacterial  species  diversity.  Veterinary  Microbiology  2012,  157:383-­‐‑390.   Grice  EA,  Kong  HH,  Conlan  S,  Deming  CB,  Davis  J,  Young  AC,  Bouffard  GG,  Blakesley   RW,   Murray   PR,   Green   ED,   et   al:   Topographical   and   temporal   diversity   of   the   human  skin  microbiome.  Science  2009,  324:1190-­‐‑1192.   Wegener   HC,   Skovjensen   EW:   A   longitudinal   study   of   Staphylococcus   hyicus   colonization   of   vagina   of   gilts   and   transmission   to   piglets.   Epidemiology   and   Infection  1992,  109:433-­‐‑444.   Mach  N,  Berri  M,  Estelle  J,  Levenez  F,  Lemonnier  G,  Denis  C,  Leplat  JJ,  Chevaleyre  C,   Billon  Y,  Dore  J,  et  al:  Early-­‐‑life  establishment  of  the  swine  gut  microbiome  and   impact  on  host  phenotypes.  Environmental  Microbiology  Reports  2015,  7:554-­‐‑569.   Alain  B  Pajarillo  E,  Chae  J-­‐‑P,  Balolong  MP,  Bum  Kim  H,  Kang  D-­‐‑K:  Assessment  of  fecal   bacterial   diversity   among   healthy   piglets   during   the   weaning   transition.   The   Journal  of  general  and  applied  microbiology  2014,  60:140-­‐‑146.   Looft  T,  Allen  HK,  Casey  TA,  Alt  DP,  Stanton  TB:  Carbadox  has  both  temporary  and   lasting  effects  on  the  swine  gut  microbiota.  Frontiers  in  Microbiology  2014,  5:9.   Looft   T,   Johnson   TA,   Allen   HK,   Bayles   DO,   Alt   DP,   Stedtfeld   RD,   Sul   WJ,   Stedtfeld   TM,   Chai   BL,   Cole   JR,   et   al:   In-­‐‑feed   antibiotic   effects   on   the   swine   intestinal   microbiome.   Proceedings   of   the   National   Academy   of   Sciences   of   the   United   States   of   America  2012,  109:1691-­‐‑1696.   Rettedal  E,  Vilain  S,  Lindblom  S,  Lehnert  K,  Scofield  C,  George  S,  Clay  S,  Kaushik  RS,   Rosa   AJM,   Francis   D,   Brozel   VS:   Alteration   of   the  ileal   microbiota   of   weanling   piglets   by   the   growth-­‐‑promoting   antibiotic   chlortetracycline.   Applied   and   Environmental  Microbiology  2009,  75:5489-­‐‑5495.   75   44.   Sekirov   I,   Tam   NM,   Jogova   M,   Robertson   ML,   Li   YL,   Lupp   C,   Finlay   BB:   Antibiotic-­‐‑ induced  perturbations  of  the  intestinal  microbiota  alter  host  susceptibility  to   enteric  infection.  Infection  and  Immunity  2008,  76:4726-­‐‑4736.       76   CHAPTER!3.!DEVELOPMENT!OF!THE!TONSILLAR!MICROBIOME!IN!PIGS!FROM! NEWBORN!TO!MARKET!AGE! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 77! INTRODUCTION! ! Numerous!bacteria!and!viruses!can!access!the!host!using!the!oropharynx!and! nasopharynx!as!portals!of!entrance.!Tonsils,!!lymphoQepithelial!tissues!located!at!their! junction,!play!a!key!role!in!surveillance!of!pathogens!accessing!host![1].!Tonsils!play!a! significant!role!in!the!initial!process!of!pathogenQhost!colonization!and!as!a!reservoir!of! hostQspecific!pathogens!as!well!as!zoonotic!pathogens!highly!transmissible!to!humans! [2].!Multiple!bacterial!pathogens!are!regularly!isolated!from!tonsils!of!asymptomatic! animals.!Pathogens!residing!in!the!tonsils!can!spread!systemically!or!be!transmitted!to! other!animals!including!humans,!with!such!transmission!often!triggered!by!stressful! conditions! such! as! transport! [3].! It! has! been! suggested! that! in! the! process! of! the! colonization!of!host!by!pathogenic!microorganisms,!the!microbiome!plays!an!important! preventive!role![4Q7]!as!well!as!a!regulatory!role!in!resistance!to!infection![8,!9].!! There! are! limited! numbers! of! studies! addressing! the! tonsillar! microbiome! in! humans!or!pigs![10Q16].!Conversely,!there!is!a!growing!number!of!studies!on!intestinal! microbiome!in!different!species.!Some!studies!suggest!a!gradual!and!sequential!process! in!the!development!of!intestinal!microbiome![17,!18],!where!some!taxa!persisted!and! were! stable! while! others! were! acquired! over! time.! However,! microbial! communities! tended!to!achieve!an!adultQlike!profile!as!time!progressed![17,!19].!This!trend!was!seen! despite!the!fact!that!during!development!there!were!significant!shifts!in!the!structure! of!the!population![19]!as!well!as!in!the!diversity![18],!and!many!of!these!shifts!were! associated!with!life!events,!for!example!diet!changes!and!antibiotic!treatment,!among! others![17].! ! 78! It!has!been!demonstrated!that!common!management!practices!such!as!the!use! of!antibiotic!treatments!can!significantly!affect!microbial!communities!and!predispose! the! host! to! infections! [20].! However,! the! microbiota! also! can! be! shifted! towards! a! microbial!community!that!would!protect!the!host!from!potential!infections,!as!in!the! case!of!altering!the!intestinal!microbiota!through!fecal!microbiota!transplantation![6].! Notwithstanding!the!relevant!role!that!the!microbiota!can!play!in!maintaining!a!good! health!status!in!the!host,!very!little!is!known!about!the!tonsillar!microbial!communities! of! pigs! based! on! a! cultureQindependent! approach.! Two! studies! have! described! the! normal!tonsillar!microbiome!in!finishing!pigs![12,!15]!and!one!study!has!described!the! metabolically!active!microbiome!of!slaughter!pigs![10].!The!core!tonsil!microbiome!in! 18Q20! week! old! growerQfinisher! pigs! was! comprised! of! members! of! the! families! Pasteurellaceae,! Moraxellaceae,. Streptococcaceae,. Fusobacteriaceae,! Veillonellaceae,. Enterobacteriaceae,. Neisseriaceae,. and! Peptostreptococcaceae,. as! well! as. the! order! Clostridiales.! Currently,! tonsils! are! an! underQexplored! habitat! of! the! mammalian! microbiome.!How!the!microbial!community!in!the!tonsils!is!established!and!develops! over!time!and!!what!!role!it!plays!in!the!acquisition!and!carriage!of!pathogens!!and!thus! in! host! health! and! disease! is! not! known! at! this! time.! ! Microbiome! development! is! suggested!to!be!based!on!specific!bacterial!interactions!and!not!on!random!assembly!of! microorganisms! [17].! Numerous! authors! have! shown! that! human! or! animal! microbiome!development!in!different!body!locations!frequently!follows!a!gradual!and! successional!process![17Q19,!21].!Whether!a!similar!process!occurs!in!tonsils!remains! to!be!established.! ! 79! The! goal! of! the! current! study! was! to! utilize! a! cultureQindependent! approach! using! highQthroughput! sequencing! of! 16S! rRNA! genes! to! follow! and! describe! the! development!of!the!tonsillar!microbial!communities!in!pigs!from!birth!through!market! age.!This!characterization!of!the!development!of!the!swine!tonsillar!microbiome!lays!a! base!for!future!studies!to!alter!this!microbiome!to!reduce!pathogen!load!and!improve! overall!animal!health.! ! MATERIALS!AND!METHODS! ! Animals.) The! Michigan! State! University! Institutional! Animal! Care! and! Use! Committee!approved!this!study!and!the!animal!procedures.!The!pigs!used!in!this!study! were!from!a!high!health!status!farrowQtoQfinish!herd!with!~200!sows.!!Relevant!medical! history! for! this! herd! included! no! recent! respiratory! disease;! freedom! from! Actinobacillus. pleuropneumoniae,. Mycoplasma. hyopneumoniae,! and! PRRSV;! a! recent! outbreak!of!porcine!epidemic!diarrhea!virus!(PEDV),!under!control!prior!to!this!study;! and! routine! vaccination! against! erysipelas,! atrophic! rhinitis,! and! porcine! circovirus! type!2!(PCV2).) Four! crossbred! sows! (Yorkshire! X! Hampshire)! of! different! parity! (number! of! pregnancies)! were! selected! for! this! study! and! included! sow! 1700! (first! parity),! sow! 1631! (second! parity),! sow! 1445! (fifth! parity)! and! sow! 1711! (tenth! parity).! ! Four! randomly!selected!piglets!from!each!of!the!four!sows!were!sampled!within!a!period!no! longer! than! 8! hours! after! birth! (newborn)! and! the! same! piglets! were! sampled! subsequently!at!1,!2,!3,!4,!6,!8,!10,!12,!16,!and!19!weeks!of!age.!! ! 80! Newborn! piglets! received! a! single! intramuscular! injection! of! IronQDextran! during!their!first!week!of!life.!Between!the!third!and!fourth!weeks!of!age!(21!to!24!days! –! average! weight! 18! pounds)! piglets! were! weaned,! vaccinated,! and! moved! from! the! farrowing! room! where! they! were! housed! with! the! sow! and! littermates! to! a! nursery! room,!with!litters!maintained!as!pen!mates.!At!this!time!the!piglets!were!weaned!from! milk! to! a! solid! pellet! ration! diet! (Pig! 1300®,! Akey! Nutrition,! Brookville! OH)! supplemented!with!Carbadox®!at!a!dose!of!50!g/ton.!Two!weeks!after!being!moved!to! the!nursery!facility!(at!5!weeks!of!age),!Carbadox®!supplementation!was!removed!from! the!feed,!and!food!was!changed!to!a!ground!ration!supplemented!with!Tylan®!at!a!dose! of!100!g/ton.!!At!~nine!weeks!of!age!(63!to!67!days!–!average!weight!60!pounds),!piglets! were!moved!to!a!finishing!room!and!were!assigned!to!different!pens!based!on!criteria! such!as!gender!and!weight;!separation!by!litter!was!no!longer!maintained.!At!this!time,! Tylan®! supplementation! was! discontinued! and! a! ground! ration! without! supplementation!was!provided.!Finally,!at!~eighteen!weeks!of!age,!piglets!were!moved! again!to!another!finishing!room!(with!mixing!of!prior!penmates)!where!they!remained! until! being! moved! to! the! slaughterhouse! (average! weight! 240! pounds).! ! These! management!practices!are!summarized!in!Figure!3.1.! Collection) of) microbiome) samples.! Tonsil! brushes! developed! by! our! group! and!validated!in!previous!studies![12]!were!used!to!collect!tonsil!microbiome!samples! from! sows! and! larger! piglets,! while! CytosoftTM! cytology! brushes! (Medical! Packaging! Corporation,! Camarillo,! CA)! were! used! for! smaller! piglets.! Collection! and! storage! of! samples!was!as!previously!described![12].!! ! 81! Isolation)of)community)DNA.!Extraction!of!community!DNA!from!samples!!was! performed! using! a! PowerSoil! DNA! Isolation! Kit! and! PowerBead! tubes! (MoBio! Laboratories,!Carlsbad,!CA)!as!previously!described![12,!22].! Illumina) sequencing) and) sequence) analysis.! Sequencing! was! performed! at! the! MSU! Research! Technology! Support! Facility! (RTSF)! as! previously! described! [22].!! Negative! controls! consisting! of! DNAQfree! water! or! MoBio! C6! reagent! were! used! as! “blank! library! controls”! [23]! and! included! in! each! sequencing! run.! Briefly,! uniquely! indexed!primers!were!used!to!amplify!the!V4!region!of!the!16S!rRNA!gene!from!the! community! DNA,! as! described! by! Caporaso! [24].! A! SequalPrep! normalization! plate! (Invitrogen)!was!used!to!normalize!the!amplification!products,!which!were!then!pooled! and!the!reaction!cleaned!using!AMPure!XP!beads.!The!pooled!sample!was!sequenced!on! an! Illumina! MiSeq! v2! flow! cell! using! a! 500! cycle! v2! reagent! kit! (PE250! reads).! Base! calling!was!performed!using!Illumina!Real!Time!Analysis!Software!(RTA)!v1.18.54!and! output! of! RTA! demultiplexed! and! converted! to! FastQ! files! using! Illumina! Bcl2fastq! v1.8.4.! The! openQsource,! platformQindependent,! communityQsupported! software! program! mothur! v.1.35.0! (http://www.mothur.org)! [25]! was! used! for! amplicon! analysis.! Raw! sequencing! data! was! processed! according! to! the! mothur! standard! operating! procedure! (http://www.mothur.org/wiki/MiSeq_SOP)! [26]! and! aligned! using! the! mothurQformatted! version! 123! of! Silva! 16S! ribosomal! gene! database! [27].! After!sequences!were!classified,!all!sequences!classified!as!Chloroplast,!Mitochondria,! unknown,!Archaea,!or!Eukaryota!were!removed!from!the!data!set.!Subsampling!at!7000! sequences! per! sample! was! done,! followed! by! a! preclustering! of! the! sequences! and! ! 82! removal! of! chimeric! sequences! using! a! mothur! formatted! version! of! the! Ribosomal! Database!Project!(RDP)!training!set!version!14!and!uchime,!based!on!mothur!protocol.! A! cutoff! of! ≥97%! sequence! identity! was! used! to! classify! sequences! into! Operational! Taxonomic!Units!(OTUs).!Singleton!and!doubleton!reads!were!removed!before!the!final! analysis.!For!the!final!analysis!of!the!data,!samples!were!subsampled!to!5179!reads!per! sample.! ! The! full! data! set! analyzed! is! available! as! a! supplemental! file! at! (https://figshare.com/s/e910143b694abb664fcc).! Samples! from! newborn! piglets! through!weaning!were!used!in!a!smaller!study![22]!!! Diversity)and)statistical)analysis.)A!clustering!cutoff!of!3%!for!the!processed! sequences! was! used! in! the! statistical! analysis.! Mothur! output! files! were! used! to! estimate! alpha! diversity! (sobs)! and! beta! diversity! indexes,! as! well! as! representative! sequences,!all!of!which!were!calculated!in!mothur!v.1.35.0!(http://www.mothur.org)! [25].!PAST3!(Version!3.14;!http://folk.uio.no/ohammer/past/)!was!used!for!statistical! analysis! of! the! samples.! FigTree! (Version! 1.4.3;! http://tree.bio.ed.ac.uk/software/figtree/)!was!used!for!construction!of!dendrogram! figures.!ImageJ!was!used!to!measure!the!area!of!the!ellipses!for!the!two!dimensional! scatter! plot! [28].! RStudio! (Version! 0.99.446;! https://www.rstudio.com/)! and! library! gplots!(https://CRAN.RQproject.org/package=gplots)!were!used!to!generate!heatmaps.! Inkscape! 0.91! (https://inkscape.org/en/download/macQos/),! was! used! to! process! images!and!edit!labels.!Taxonomy!tables!and!OTU!plots!were!generated!in!Microsoft ! ® Excel !2011,!where!the!analysis!of!samples!was!done!with!data!that!represented!higher! ® than!0.1%!of!the!total!reads!for!the!samples!analyzed.! ! 83! Availability)of)supporting)data.!Raw!sequence!data!and!metadata!is!available! at!NCBI!database!(SRA!accession!number:!!in!submission!process).!! ! ! ! 84! RESULTS! ! A!total!of!128!tonsil!microbiome!samples!from!pigs!from!birth!through!market! age! were! sequenced! and! analyzed.! Of! these,! 64! samples! were! collected! from! piglets! before!weaning!(newborn!–!third!week),!which!included!samples!from!16!piglets!(4!per! sow)!at!each!time!point.!!In!addition,!64!samples!were!collected!from!pigs!after!weaning,! which! included! samples! from! 16! piglets! at! week! 4! and! 8! piglets! (2! per! sow)! at! all! subsequent!time!points!(Table!3.1.).!! Table!3.1.)Samples)processed)by)sampling)time)and)litter! ! ! ! ! ! ! ! ! ! 85! Management) practices) are) related) with) changes) in) population) diversity.) Tonsil!samples!for!microbiome!analysis!were!collected!at!eleven!time!points!during!the! life! of! the! pigs! in! this! study.! Some! of! the! sampling! times! were! chosen! specifically! to! represent!times!associated!with!management!practices!significant!in!the!life!of!the!pigs,! including!immediately!prior!to!and!after!weaning,!alteration!in!feed!and!inQfeed!growth! promoters,!and!movement!to!new!rooms!(Figure!3.1.)!! ! ! Figure)3.1.)Significant)management)practices)at)the)swine)farm)during)the)life)of) the)pigs)in)this)study.)General!management!features!experienced!by!the!pigs!during! their! life! at! the! farm! are! depicted! here,! including! changes! in! feed,! use! of! in! feed! antibiotics,!and!movement!to!new!housing.! Analysis! of! the! alpha! diversity! of! the! tonsil! microbiome! (sobs:! refers! to! the! number!of!observed!OTUs)!and!the!relation!with!the!different!changes!experienced!by! the!pigs!during!their!life!showed!that!the!alpha!diversity!varied!widely!(Table!3.2).!For! newborn!piglets,!the!average!value!of!sobs!was!110!(range!=!26Q376,!SD!=!101).!!The! average! sobs! value! decreased! steadily! in! the! following! weeks! (first! to! third! week),!!! ! 86! reaching!a!value!of!83!(range!=!57Q132).!This!was!accompanied!by!a!marked!decrease! in!the!standard!deviation!to!24,!indicating!that!the!microbiome!became!very!similar!in! all!pigs!by!3!weeks!of!age.!In!contrast,!from!week!four!to!ten!there!was!an!abundant! increase!in!diversity!that!coincided!with!specific!challenging!events!experienced!by!the! piglets.!Between!the!third!and!fourth!week,!the!piglets!were!weaned,!and!at!the!same! time!they!were!moved!to!a!nursery!room,!vaccinated!and!their!diet!was!changed.!These! changes!were!reflected!in!a!slight!increase!in!the!average!and!maximum!sobs!as!well!as! the!standard!deviation.!However,!the!biggest!change!in!the!diversity!occurred!during! the!period!where!Carbadox !was!removed!from!the!diet!and!Tylan !was!supplemented.! ® ® Diversity!increased!to!over!three!times!the!previous!registered!values!for!average!sobs.! Conversely,!the!removal!of!Tylan ,!accompanied!by!the!transfer!of!pigs!to!a!finishing! ® room! where! they! were! no! longer! segregated! by! litter,! led! to! trend! of! decreasing! diversity.!By!week!nineteen,!this!progressive!decrease!in!the!diversity!led!to!a!value!of! average! sobs! of! 108! (range! =! 73Q178,! SD! =! 35).! ! Overall,! there! was! a! pattern! demonstrating! that! extended! time! under! constant! conditions! led! to! fewer! sobs! and! reduced!standard!deviation.! ! ) ! ) 87! Table)3.2.)Number)of)observed)OTUs)(sobs))during)the)different)sampling)times)) ! ! sobs:!number!of!observed!OTUs! Min!sobs:!Minimum!number!of!observed!sobs! Max!sobs:!Maximum!number!of!observed!sobs! ! Challenging) management) conditions) during) development) of) the) pigs) generated)disruption)in)the)microbiome.!We!wondered!if!the!development!of!the! tonsillar!microbiome!followed!a!succession!in!time!and!if!there!was!any!similarity!in! the! microbiome! between! the! different! sampling! periods.! An! unrooted! dendrogram! based!on!a!BrayQCurtis!analysis!(Figure!3.2.)!shows!the!clustering!of!the!pig!tonsillar! microbiome! samples! from! newborn! through! the! nineteenth! week.! Samples! from! newborn!piglets!were!mainly!distributed!in!two!groups,!one!corresponding!to!pigs!from! a!first!parity!sow!(4/16;!25%)!and!the!other!from!pigs!of!multiparous!sows!(10/16;! 62.5%),!the!remaining!two!samples!were!clustered!with!microbiome!samples!of!older! pigs.! At! one! week! of! age,! the! microbiome! samples! were! clustered! by! litter! in! four! different!groups.!!! ! 88! A G, H, I A, F 1 1 5 1F A 18A 26A 22 A 24 A 23A 36A 3 4 29AA 17A 16A E 248EE 1 17 1E 1 0E 4 5EE 113 10 42E 40 A 39E 263EE 2 16EH 1 55 F 1 E 11 1 G 1 21 H 15 G G 23 G 2135 I I A, E, F, H 92 E J 11 2JJ 1156J 1 K 11 K 12 B E, H 2 2 6B 22243BB 1 B 122EH 75 36K 42K 22 2 3 KK 16K K E 80 99 78 70 I 16 2422JJI 42 23J 88 79 36I 36J 1631 170 0 1711 94 77 36E 22E I, J, K, Sow 92 75 100 B, C, H 40C 42B 40B 39B 36 B 16 H 18C 11I 12I 22 I H 222 3H 97 71 23F 42C 36C B G 16 2G 4 B 12F 16F 22G 36 42 H 22 H 36 F 42 F 36 F 14 G 45 B 11 B 102B 1 3B 1 K 156BB 1 B 18 17 B C 15 K 16C 23C 22 3 C 11 9 C 1 778DD 2 C 23 96 D 4 04 DD D 2234D C D 11 2D 131D 10 D F A - Newborns 1 32CC 11 1 CC 10 D 1 65 DC 11 5 D 43262DD 2 6C 2 C, D H, I F, G, H, Sow A 11 A 12 A 13 A 10 A 0.1 B - First week C - Second week D - Third week Weaning. Carbadox supplementation E - Fourth week Carbadox removed. Tylan supplementation F - Sixth week G - Eighth week Tylan removed. Moved to finishing room 1 H - Tenth week I - Twelfth week J - Sixteenth week Moved to finishing room 2 K - Nineteenth week Sow tonsils ! Figure'3.2.'Unrooted'Bray3Curtis'dendrogram'for'all'sampled'weeks.!The!dendrogram!shows!the!clustering!of!the!samples! collected!from!pigs!from!newborn!through!nineteen!weeks,!as!well!as!sow!tonsillar!samples.!Samples!are!color!coded!by!week! of!sampling.!Small!legends!indicate!some!of!the!challenges!that!took!place!in!specific!times. ! 89! ! The!following!weeks!showed!that!as!pigs!aged,!their!tonsil!microbiomes!tended! to! become! more! similar.! During! the! second! week,! the! samples! clustered! together! in! three!related!groups.!In!the!third!week,!all!sixteen!samples!clustered!together!in!one! group,!which!also!included!ten!of!the!week!2!samples.!The!fourth!week,!which!marked! a!transitional!time!after!a!challenge,!i.e.,!weaning!plus!movement!to!new!housing!plus! addition! of! Carbadox ! to! the! new! solid! feed,! showed! a! split! of! the! previously! tightly! ® clustered!samples!into!four!separate!groups,!which!were!not!clustered!by!litter.!The! sixth!week,!again!marked!by!a!transition!after!a!challenge,!i.e.,!removal!of!Carbadox !and! ® addition!of!Tylan !to!the!feed,!again!showed!samples!clustered!in!four!separate!groups,! ® which!were!neither!clustered!by!litter!nor!the!same,!with!one!exception,!as!the!groups! for!the!fourth!week!samples.!However,!for!the!eighth!week,!samples!clustered!in!only! two! groups.! Once! again,! in! the! tenth! week,! which! marked! the! transition! after! a! challenging! condition,! i.e.,! removal! of! Tylan ! from! feed! and! reassignment! to! new! ® finishing! rooms! with! litter! groups! broken! up,! showed! a! major! disruption! in! the! clustering! pattern! with! samples! falling! into! six! different! groups.! The! sampling! times! corresponding!to!weeks!twelve!and!sixteen,!a!time!of!stability!for!the!piglets,!once!again! showed! coalescing! of! the! microbiota;! the! twelfth! week! samples! clustered! into! three! groups,!while!the!sixteenth!week!samples!all!clustered!into!a!single!group.!Finally,!for! the!last!sampling!period!corresponding!to!the!nineteenth!week,!also!a!transitional!time! after! a! challenge,! i.e.,! movement! to! new! finishing! rooms! with! reGassortment! of! the! groups,! the! samples! once! again! showed! a! split! into! three! different! groups.! The! clustering! pattern! also! showed! that! as! the! pigs! aged,! most! samples! clustered! with! ! 90! tonsillar!samples!from!sows,!despite!no!longer!having!contact!with!the!sows.!Based!on! the! above! analysis! we! identified! three! sampling! times! (third,! eighth! and! sixteenth! weeks),!which!were!immediately!before!a!challenging!condition,!where!the!microbiome! tended!to!be!more!similar!between!pigs.!Statistical!support!for!this!clustering!pattern! is!shown!in!an!unrooted!dendrogram!based!on!BrayGCurtis!analysis!(Figure!3.3.),!where! samples! derived! from! the! third,! eighth! and! sixteenth! weeks! formed! three! distinct! 22D D 23 40 D D 13 D 11D D 12 26 39 24 D D 10 D groups!which!were!supported!by!bootstrap!values!higher!than!70.! D 36 D 42 18D 17 D 15D 16 D 99 70 71 85 15 G 78 12G 11 98 22J 42J 97 G 81 G 11 J J 12 J 15 16J 16 G 42G 36J 22 G 36 G 23 23 J D - Third week G - Eighth week J - Sixteenth week Litter 1700 Litter 1631 Litter 1445 Litter 1711 0.09 ! Figure'3.3.'Unrooted'Bray2Curtis'dendrogram'for'three'pre2transition'times'.!The! dendrogram! shows! the! clustering! of! tonsil! microbiome! samples! from! pigs! at! three! times!immediately!before!challenging!events:!week!3,!week!8,!and!week!16.!Samples! are!color!coded!by!week!of!sampling.!Bootstrap!values!higher!than!70!are!shown.! ! 91! ! We!also!analyzed!the!clustering!shown!in!Figure!3.2.!to!determine!whether!there! were!effects!of!litter!or!of!pen!on!the!clustering.!!Samples!from!newborn!and!1!week!old! pigs! clustered! by! litter,! but! older! animals! did! not.! ! We! saw! no! correlation! of! the! clustering! with! groups! in! the! same! pens! except! as! related! to! the! litter! effect! seen! in! newborn!and!1!week!old!animals! Tonsil'microbiome'membership'throughout'the'life'of'the'pigs.'To!visualize! how!the!membership!of!the!tonsillar!microbiome!changes!through!the!life!of!the!pigs,! we! plotted! the! proportion! of! the! 20! most! commonly! identified! bacterial! families! in! piglets!at!each!sampling!time,!as!well!as!in!sows!(Figure!3.4.).!!Members!of!the!phyla! Actinobacteria! (Family! Micrococcaceae),! Bacteroidetes! (Families! Bacteroidaceae,! Porphyromonadaceae,! Prevotellaceae,! Flavobacteriaceae),! Firmicutes! (Families! Bacillaceae9 1,! Staphylococcaceae,! Streptococcaceae,! Clostridiaceae9 1,! Clostridiales9 Incertae9 Sedis9 XI,! Lachnospiraceae,! Peptostreptococcaceae,! Ruminococcaceae,! Erysipelotrichaceae,! Veillonellaceae),! Fusobacteria! (Family! Fusobacteriaceae),! and! Proteobacteria9 (Families! Burkholderiaceae,! Neisseriaceae,! Pasteurellaceae! and! Moraxellaceae)9were!identified!as!the!most!abundant!bacterial!phyla!and!families!in!pig! tonsils.!!The!distribution!and!proportions!of!these!bacterial!families!fluctuated!through! the! sampling! period! (Table! 3.3.),! with! the! largest! shifts! related! with! challenging! conditions! experienced! by! the! pigs.! Three! families! that! consistently! represented! a! major! portion! of! the! tonsil! microbiome! across! all! time! points! were! the! Streptococcaceae,9Pasteurellaceae,9and!Moraxellaceae.9 ! 92! ! Figure!3.4.!Twenty!most!abundant!families!identified!in!the!tonsillar!microbiome!of!pigs!from!newborn!to!market!age! and!in!the!sows.!The!chart!shows!the!twenty!most!abundant!families!identified!in!the!tonsillar!microbiome!of!the!sampled!!! ! 93! Figure!3.4!(cont´d).!!piglets!from!newborn!through!market!age!as!well!as!the!sows.!Text!boxes!in!the!plot!indicate!times!when! a!challenging!event!occurred.!“Others”!represent!members!of!bacterial!families!different!from!the!20!most!abundant!families! identified.!! ! ! ! 94! The! microbiome! of! newborns! was! characterized! by! the! abundant! presence! of! the! families! Streptococcaceae,! Moraxellaceae,! Staphylococcaceae. and! Micrococcaceae,! each! representing! 10! to! 23%! of! the! total;! members! of! families! Pasteurellaceae,! Burkholderiaceae!and!Bacillaceae!as!well!as!members!of!the!order!Clostridiales!were! identified! in! smaller! proportions.! In! the! first! week,! Pasteurellaceae! and! Porphyromonadaceae! increased! dramatically,! to! 25%! and! 8.1%,! respectively.! Moraxellaceae! also! increased! slightly,! while! there! was! a! slight! decrease! in! Streptococacceae..A!more!dramatic!decrease!was!evident!for!Staphylococcaceae,!which! almost! disappeared,! and! Micrococcaceae.! Over! the! next! two! weeks,! members! of! the! Streptococcaceae!continued!to!decrease,!and!Micrococcaceae!virtually!disappeared.!In! contrast,!members!of!Moraxellaceae!continued!to!increase.!!Members!of!Pasteurellaceae. remained! constant.! Fusobacteriaceae. appeared! in! week! 2! and! remained! present! in! week! 3.! Multiple! members! of! the! order! Clostridiales! (Clostridiaceae. 1,! Clostridiales! Incertae!Sedis!XI,!Lachnospiraceae,!Peptostreptococcaceae!and!Ruminococcaceae)!were! present!in!proportions!lower!than!one!percent,!each,!throughout!the!first!3!weeks!of! life!in!these!piglets.!!! The! transition! between! the! third! and! fourth! weeks,! when! the! piglets! were! weaned!and!shifted!to!solid!food!containing!Carbadox ,!was!marked!by!drastic!shifts!in! ® the!tonsil!microbiome.!!Moraxellaceae!decreased!dramatically!from!31.2!%!in!week!3!to! 7.9!%!in!week!4,!Streptococcaceae!bloomed!from!7.4!%!to!41.6!%,!while!Pasteurellaceae. and! Clostridiales! remained! steady.! Members! Porphyromonadaceae!almost!disappeared.! ! 95! of! Fusobacteriaceae! and! Week!6,!after!another!major!transition!when!Carbadox !was!removed!from!feed! ® and!Tylan !added,!was!again!marked!by!drastic!shifts!in!the!tonsil!microbiome.!!Overall! ® sobs,!as!described!above,!increased!from!111!to!368,!indicating!a!massive!increase!in! diversity.! Members! of! the! Streptococcaceae! and! Pasteurellaceae! both! decreased! dramatically,!from!41.6%!to!11.6%!and!23.2!%!to!10%,!respectively,!and!Moraxellaceae! decreased! and! almost! disappeared.! However,! members! of! Bacillaceae. 1! and! some! members!of!the!order!Clostridiales!(Clostridiales.Incertae.Sedis.XI,!Lachnospiraceae.and! Ruminococcaceae)! began! to! flourish! and! increased! substantially,! particularly! Bacillaceae. 1! which! increased! from! 0.9! to! 13.1%.! Interestingly,! almost! 44%! of! the! members! of! the! tonsillar! microbiome! did! not! fit! into! these! twenty! most! abundant! bacterial!families!for!this!time!point.!!! In! the! eighth! week,! the! decreasing! trend! for! Streptococcaceae! and! Pasteurellaceae! continued! and! each! family! dropped! to! a! relative! abundance! of! 7%.! Moraxellaceae! remained! in! very! low! abundance.! However,! Clostridiales,. particularly! Clostridiaceae.1,!increased,!!!as!did!Bacteroidales..The!proportion!of!identified!bacterial! families! that! were! not! included! in! the! twenty! most! abundant! was! still! close! to! forty! percent.!! The!tenth!week,!which!corresponded!to!another!significant!transition!period!for! the!pigs,!i.e.,!removal!of!Tylan !from!feed!as!well!as!movement!to!finishing!rooms!and! ® reassortment!of!litter!members,!was!again!marked!by!a!major!shift!in!the!microbiome.! The!three!predominant!families,!Pasteurellaceae,.Streptococcaceae,.and!Moraxellaceae,. all! increased,! particularly! the! Pasteurellaceae! that! increased! from! 7%! to! 30.7%.! In! contrast,!members!of!the!Clostridiales!(Clostridiaceae.1,!Clostridiales.Incertae.Sedis.XI,! ! 96! Lachnospiraceae! and. Ruminococcaceae)! and! Prevotellaceae. decreased,! as! did! the! proportion!of!the!microbiome!classified!as!“Others”.!! Over!the!next!6!weeks,!represented!by!sampling!times!at!12!weeks!and!16!weeks,! the! tonsil! microbiomes! in! all! of! the! pigs! coalesced! to! a! common! core! (Figure! 3.2.).! Overall,!there!was!a!massive!increase!in!the!Clostridiales,!particularly.Clostridiaceae.1! and! Peptostreptococcaceae,! from! 2.2%! and! 0.6%! in! week! 10! to! 44.1%! and! 7%,! respectively!in!week!16.!Over!the!same!period,!Pasteurellaceae.decreased!from!30.7%! to! 7.1%,! and. Bacillaceae. 1. decreased! from! 10.1%! to! 0.6%.! Streptococcaceae,.! Moraxellaceae,. and. Bacteroidales. ! remained! relatively! stable.! The! proportion! of! identified! bacterial! families! that! were! not! included! into! the! twenty! most! abundant! families! decreased! to! ~10%.! ! By! week! 16,! Fusobacteriaceae! and! Neisseriaceae! reappeared!in!low!proportions.! !Finally,! the! nineteenth! week,! which! coincided! with! a! transitional! period! in! which!penmates!were!reassorted!into!new!rooms,!was!marked!by!another!significant! disruption! of! the! microbiome.! Overall,! an! increase! in! Pasteurellaceae,. Moraxellaceae,. Neisseriaceae! and! Fusobacteriaceae! was! paired! with! a! dramatic! decrease! in! Clostridiales,!particularly!!Clostriaceae.1.and.Peptostreptococacceae.!! It!should!be!noted!that,!after!the!first!3!weeks!and!weaning,!these!shifts!in!the! microbiome!were!not!synchronous!in!all!piglets.!Figure!3.2.!shows!several!clusters!that! contain!samples!from!sequential!weeks,!e.g.,!weeks!6,!8!and!10;!!weeks!8,!10,!and!12;! and!weeks!10,!12,!and!16,!indicating!that!common!microbiomes,!represented!by!the! clusters,!!were!reached!at!different!times!in!different!pigs.!This!is!further!illustrated!in! Figure!3.6.!which!shows!the!most!abundant!microbial!families!over!time!in!4!different! ! 97! pigs.!!As!examples,!a!microbiome!with!a!preponderance!of!Pasteurellaceae!is!seen!in! week!10!in!pig!23,!week!12!in!pig!11,!both!weeks!10!and!12!in!pig!22,!and!not!at!all!in! pig!36.!!A!microbiome!with!a!preponderance!of!Clostridiaceae,!mainly!Clostridiaceae.1! and!Peptostreptococcaceae,!is!seen!in!weeks!12!and!16!in!pig!36,!week!16!in!pigs!22!and! 23,!and!weeks!16!and!19!in!pig!11.! The!tonsillar!microbiome!of!sows!was!dominated!by!members!of!Clostridiaceae. 1! (~23%)! and! Peptostreptococcaceae! (~12%).! Other! families! present! in! proportions! between! 1! and! 8%! included! Erysipelotrichaceae,! Pasteurellaceae,! Bacillaceae. 1,! Streptococcaceae,!Burkholderiaceae,!Moraxellaceae,!Neisseriaceae.!Micrococcaceae!and! other!members!of!the!Clostridiales!(Clostridiales.Incertae.Sedis.XI,!Lachnospiraceae!and! Ruminococcaceae).! Distribution* of* specific* OTUs* throughout* the* life* of* the* pigs.* While! presentation! of! the! microbiome! data! at! the! taxonomic! level! of! family! gives! the! best! overview! of! the! data! over! time,! we! also! examined! the! presence! and! abundance! of! specific! OTUs! over! time! (Figure! 3.5.).! At! the! family! level,! Pasteurellaceae,! Streptococcaceae,. and. Moraxellaceae! predominate! throughout! the! life! of! the! pigs.! However,! within! the! top! 40! OTUs! there! were! three! OTUs! of! Pasteurellaceae. seen,! including! OTU0001,! which! was! present! in! high! concentration! during! weeks! 1Z4! but! never! lost,! OTU0016! which! appeared! in! weeks! 6,! 10Z12;! and! OTU0031,! which! was! mainly! seen! in! one! week! old! piglets.! Similarly,! there! were! three! OTUs! of! Streptococcaceae,!including!OTU002!which!was!seen!throughout!the!lives!of!the!pigs,! OTU009!which!was!seen!in!newborns!and!weeks!1Z4,!and!OTU0024,!which!was!seen! mainly! in! older! piglets.! Finally,! there! were! three! OTUs! of! Moraxellaceae,! including! ! 98! OTU003,!which!was!a!major!component!of!the!microbiome!in!newborns!through!week! 4!and!then!disappeared!to!return!in!the!week!19!samples;!OTU0006,!which!was!present! in!lower!amounts!than!OTU0003!in!weeks!1Z4!but!in!much!higher!amounts!in!weeks!16! and!19;!and!OTU0046,!which!was!a!minor!component!of!the!microbiome.!!! Nineteenth week Sixteeenth week Twelfth week Tenth week Eighth week Sixth week Fourth week Third week Second week First week Newborn Otu00001__Pasteurellaceae__ Otu00002__Streptococcaceae__Streptococcus Otu00003__Moraxellaceae__Moraxella Otu00004__Bacillaceae_1__ Otu00005__Clostridiaceae_1__Clostridium_sensu_stricto Otu00006__Moraxellaceae__ Otu00007__Micrococcaceae__Rothia Otu00008__Porphyromonadaceae__Porphyromonas Otu00009__Streptococcaceae__Streptococcus Otu00010__Bacillaceae_1__ Otu00011__Staphylococcaceae__Staphylococcus Otu00012__Bacillaceae_1__Bacillus Otu00013__Fusobacteriaceae__Fusobacterium Otu00014__Clostridiales_Incertae_Sedis_XI__Tissierella Otu00015__Burkholderiaceae__Ralstonia Otu00016__Pasteurellaceae__Actinobacillus Otu00017__Neisseriaceae__ Otu00020__Ruminococcaceae__ Otu00021__Peptostreptococcaceae__Clostridium_XI Otu00022__Planococcaceae__Lysinibacillus Otu00023__Prevotellaceae__Prevotella Otu00024__Streptococcaceae__Streptococcus Otu00027__Veillonellaceae__Veillonella Otu00029__Flavobacteriaceae__ Otu00031__Pasteurellaceae__Pasteurella Otu00032__Bacillales_Incertae_Sedis_XI__Gemella Otu00033__Prevotellaceae__ Otu00035__Leptotrichiaceae__ Otu00036__Enterobacteriaceae__Escherichia.Shigella Otu00037__Bacteroidaceae__Bacteroides Otu00038__Xanthomonadaceae__Ignatzschineria Otu00039__Fusobacteriaceae__Fusobacterium Otu00040__Bacteroidaceae__Bacteroides Otu00041__Erysipelotrichaceae__Turicibacter Otu00046__Moraxellaceae__Acinetobacter Otu00051__Lachnospiraceae__Clostridium_XlVb Otu00053__Peptostreptococcaceae__Clostridium_XI Otu00055__Flavobacteriaceae__ Otu00056__Clostridiaceae_1__Clostridium_sensu_stricto Otu00059__Burkholderiaceae__Burkholderia 0 10 20 30 40 % OTU relative abundance ! Figure* 3.5.* Forty* most* abundant* Operational* Taxonomic* Units* (OTUs)* for* pigs* through*different*sampling*times.!HeatZmap!showing!the!relative!abundance!of!the! top!40!OTUs!identified!per!sampling!time!through!the!life!of!these!pigs.!Note!that!any! OTUs!identified!as!“unclassified”!at!the!family!level!were!not!included!in!this!list.! ! Aerobic,* anaerobic,* and* facultatively* anaerobic* organisms* in* the* tonsils.! An!analysis!of!the!distribution!of!the!bacterial!families!identified!in!the!tonsils!based!on! ! 99! their! classification! by! use! of! oxygen! as! aerobes,! anaerobes! or! facultative! anaerobes! (Figure!3.7)!showed!that!in!piglets!aged!newborn!to!4!weeks!the!microbial!population! was! comprised! of! ~70%! aerobes! and! facultative! anaerobes.! ! The! abundance! of! facultative! anaerobes! decreased! from! birth! through! week! 3,! but! increased! after! weaning,! most! likely! due! to! the! bloom! in. Streptococcaceae.! ! The! proportion! of! anaerobes! increased! after! the! weaning! period,! with! a! concomitant! decrease! in! facultative!anaerobes!and!aerobes,!and!reached!~65%!of!the!total!microbiome!in!week! 16.!!! ! ! ! ! 100! DISCUSSION! ! We!have!previously!characterized!the!tonsil!microbiome!in!healthy!18Z20!week! old!growerZfinisher!pigs![12]!and!sought!in!this!study!to!characterize!how!that!tonsil! microbial!community!develops!during!the!life!of!pigs!from!newborn!to!market!age.!!In! particular,! we! wished! to! determine! when! specific! members! of! the! tonsil! microbial! community! appeared,! and! whether! there! was! a! temporal! succession! in! the! development!of!the!community.! There! are! strong! parallels! between! our! current! data! and! that! from! the! prior! study! [12].! In! both! studies,! members! of! the! tonsil! microbiome! were! found! to! predominantly! belong! to! 5! phyla:! Proteobacteria,. Firmicutes,. Bacteroidetes,. Fusobacteria,. and! Actinobacteria,! with! Proteobacteria. ! and! Firmicutes! together! representing! ~85Z90%! of! the! tonsil! microbiome.! In! both! studies,! Pasteurellaceae,. Moraxellaceae,.Neisseriaceae,.Streptococcaceae,.Peptostreptococcaceae,.Veillonallaceae,. and!Fusobacteriaceae.!were!identified!as!among!the!most!abundant!bacterial!families! found.!!In!the!current!study,!many!families!in!the!orders!Clostridiales!and!Bacteroidetes! were!also!found!to!be!among!the!most!abundant!taxa!seen.!!Improvements!in!both!the! sequencing! technology! and! the! databases! that! facilitate! identification! of! bacteria! via! 16s!rRNA!gene!sequencing!likely!account!for!these!differences.!!In!the!earlier!study,!it! was! not! possible! to! identify! most! Clostridiales! below! the! order! level,! which! is! now! possible.! ! Further,! in! the! earlier! study! it! was! recognized! that! Bacteroidetes! were! underrepresented!in!the!final!data,!possibly!due!to!amplification!bias!with!the!primers! used!in!that!study![12].! ! 101! We!collected!samples!from!eleven!different!sampling!periods!from!newborn!to! 19!weeks!of!age!(Figure!3.1.)!as!well!as!the!tonsillar!microbiome!of!the!sows.!In!our! analysis!of!the!taxa!(at!the!family!level!and!the!OTU!level)!in!these!samples,!we!observed! that!the!development!of!tonsillar!communities!in!pigs!followed!a!successional!process.!! Some!members!of!the!community!were!acquired!very!early!in!life,!from!the!sow!vaginal! tract!and!the!teat!skin!or!milk![22],!while!others!were!acquired!later.!!Some!members! of! the! community,! particularly! Streptococcus,. Pasteurellaceae,! and! Moraxella,! were! present! throughout! the! life! of! the! pigs,! while! others! such! as! Staphylococcus. and! Fusobacterium.seemed!to!be!transient!(Figure!3.4.).!!Further,!specific!OTUs!of!some!of! these!major!taxa!also!appeared!to!be!either!permanent!or!transient!(Figure!3.5.).!The! relative!proportions!of!the!major!members!of!the!microbiome!did!change!through!time,! however,! as! pigs! aged,! their! microbiome! seemed! to! become! more! similar! to! the! microbiome!of!older!pigs!(Table!3.3.).!This!process!was!not!always!synchronous,!but! the!overall!progression!was!very!similar!in!most!pigs.! As!we!examined!the!changes!in!the!microbiome!over!time,!it!became!clear!that! at!certain!time!points,!e.g.,!at!3,!8,!and!16!weeks,!the!microbiomes!of!all!of!the!animals! became! very! similar,! or! coalesced! (Figure! 3.2.! and! 3.3.! and! Table! 3.2.).! When! we! analyzed!this!in!comparison!to!management!of!the!pigs!(Figure!3.1.),!we!concluded!that! stretches!of!time!with!constant!conditions,!such!as!newborn!through!week!3,!led!to!this! coalescing!of!the!microbiome.!This!coalescing!occurred!regardless!of!litter!source!for! the! pigs! or! room! in! which! they! were! housed.! In! contrast,! times! where! there! were! changes! in! management! conditions,! such! as! addition! or! removal! of! in! feed! growth! promoter!antibiotics!or!movement!of!pigs!to!new!housing,!and!especially!weaning,!led! ! 102! to!perturbations!in!the!microbiome!(e.g.,!weeks!4,!6!,10!and!19.!The!taxonomic!data!was! supported!by!an!analysis!of!the!alpha!diversity!(sobs:!number!of!observed!OTUs,!Table! 3.2.).! Whether! these! perturbations! occurred! in! response! to! specific! stresses,! such! as! presence!of!antibiotics,!or!were!adaptations!of!the!microbiome!to!new!conditions,!such! as!new!feed,!remains!unclear.!! There! are! no! studies! available! that! describe! the! development! of! the! tonsillar! microbiome!of!pigs!or!other!mammals,!except!this!study!and!one!recently!submitted!by! our! lab! that! followed! the! development! of! the! tonsillar! microbiome! of! piglets! from! newborn!to!weaning,!focusing!on!the!source!of!members!of!the!microbiome!and!the! litter!effect!as!well!as!the!overall!development!and!the!effect!of!weaning![22].!!Most!of! the! available! data! following! the! development! of! microbial! communities! in! mammals! has! been! focused! on! the! gastrointestinal! tract.! Pajarillo! et! al! [29]! assessed! the! fecal! bacterial!diversity!of!healthy!piglets!during!the!weaning!transition,!and!suggested!that! this!period!was!related!to!a!trend!of!increasing!bacterial!diversity,!which!may!be!related! with!the!changes!in!diet.!However,!they!did!not!discard!a!possible!additional!influence! of!stress!or!disruption!associated!with!the!weaning!period.!Another!study!describing! the! bacterial! diversity! of! pig! feces! over! time! followed! the! development! of! fecal! microbiome! from! pigs,! between! 10! to! 22! weeks! old,! ! and! identified! that! calculated! diversity!indices!suggested!similar!diversity!profiles!for!all!the!samples![30].!Although! these! prior! studies! examined! the! fecal! microbiome,! they! support! our! results! of!! increased!bacterial!diversity!when!the!piglets!were!weaned,!which!decreased!after!10Z 12!weeks,!following!challenges!or!disruptions,!such!as!addition!or!removal!of!in!feed! antibiotics.!! ! 103! It!should!be!noted!that!the!shifts!in!the!membership!and!diversity!of!the!tonsil! microbiota! that! we! observed! were! often! associated! with! challenges! that! occurred! in! several! combinations! and! rarely! were! associated! with! a! singular! change! in! the! management! of! the! pigs.! Changes! in! diet,! the! administration! of! antibiotics,! and! the! environment! frequently! occurred! simultaneously,! making! it! difficult! to! determine! which! challenges! were! associated! with! the! observed! microbiota! shifts.! However,! absence!of!challenges!or!disruptions!led!to!stabilization!of!the!microbiome,!with!most! pigs!developing!similar!microbiomes!over!times!with!constant!conditions.! There! is! extensive! research! data! showing! that! that! the! balance! of! microbial! communities!is!altered!by!the!use!of!antibiotic!treatments![20,!31].!Rettedal!et!al![32]! studied!the!effect!of!the!growth!promoter!chlortetracycline!on!the!ileal!microbiota!of! pigs!and!found!that!use!of!this!antibiotic!was!associated!with!a!significant!shift!in!the! gut!!microbiota,!including!a!replacement!of!the!dominant!species!of!Lactobacillus!and! decrease!in!relative!abundance!of!Turicibacter!.!However,!Poole!et!al![33]!did!not!find! changes! in! diversity! in! feces! associated! with! a! similar! dose! of! chlortetracycline! supplementation! .! The! inZfeed! supplementation! of! pigs! with! a! mixture! of! antibiotics! known! as! ASP250,! containing! chlortetracycline,! sulfamethazine! and! penicillin,! was! correlated! with! a! shift! in! the! bacterial! phylotypes! present! in! the! intestine,! where! microbial!community!membership!changed!over!time!associated!with!administration! of! the! product.! The! changes! were! related! mainly! with! a! decrease! in! Bacteroidetes. abundance! and! an! increase! in! Proteobacteria,! among! other! changes! [34].! Carbadox ! ® supplementation! inZfeed! was! associated! with! significant! changes! in! community! structure!and!bacterial!membership!in!the!intestinal!microbiota!of!pigs.!An!immediate! ! 104! effect! was! noticed! in! the! bacterial! community! after! the! administration! of! this! drug,! although! the! microbiome! structure! recovered! later! despite! the! continued! use! of! the! medication.! The! authors! reported! a! relative! increase! in! Prevotella! associated! with! Carbadox !administration,!while!Carbadox !withdrawal!was!associated!with!an!increase! ® ® in!the!E..coli!population![35].!The!use!of!the!growth!promoter!Tylosin!(also!known!as! Tylan )! was! associated! with! a! pronounced! shift! in! the! intestinal! microbiome! ® distribution! and! quantity,! altering! the! abundance! of! specific! genera! such! as! Lactobacillus.among!others.!These!changes!occurred!at!specific!times!in!the!growing!pig! as!the!pigs!aged![36].!!!These!prior!studies!have!tried!to!identify!the!effects!of!medicated! food!on!the!gut/feces!microbiome,!but!there!are!no!studies!that!characterize!the!effect! of!ingested!medications!on!the!tonsillar!microbiome.!However,!it!can!be!concluded!that! regardless!of!the!medication,!the!administration!of!antibiotics!or!growth!promoters!in! food! exerts! an! effect! on! the! bacterial! communities.! In! this! study,! we! observed! large! shifts!in!the!tonsil!microbiome!related!to!specific!periods!where!medicated!food!was! added,!changed!or!removed.!However,!because!in!feed!medication!was!not!an!isolated! factor! but! supplementary! to! other! changes! at! the! same! time,! we! cannot! make! a! definitive!conclusion!about!the!specific!effect!of!the!administration!of!this!medication.! We!do!consider!the!microbiome!shifts!seen!to!be!relevant!!and!the!potential!subject!of! further!research.!! We!identified!the!first!major!shift!associated!with!supplementation!of!Carbadox !! ® coinciding! with! a! huge! bloom! in! members! of! Streptococcaceae! and! a! decrease! in! Moraxellaceae,.Fusobacteriaceae!and!Porphyromonadaceae,!reported!previously!by!our! group! [22].! Another! shift! was! associated! with! the! removal! of! Carbadox ! and! ® ! 105! supplementation!with!Tylan ,!with!a!major!decrease!in!members!of!Streptococcaceae,! ® Moraxellaceae! and! Pasteurellaceae! with! a! concurrent! increase! in! members! of! Clostridiales!and!Bacillaceae.1.!The!removal!of!Tylan !from!the!diet!was!associated!with! ® a!slight!increase!in!members!of!Streptococcaceae!and!Moraxellaceae,!parallel!to!a!higher! increase!in!members!of!Pasteurellaceae.!We!believe!it!is!relevant!to!highlight!that!the! presence!of!Tylan !in!the!diet!is!associated!with!an!increase!in!the!bacterial!diversity! ® (Table!3.2.!and!Figure!3.4.).!We!emphasize!that!our!goal!was!not!directed!towards!the! identification!of!specific!effects!of!antibiotics!or!growth!promoters!in!the!development! of!the!tonsil!microbiome,!but!instead!towards!characterization!of!the!development!of! tonsillar!microbiome!of!pigs!from!a!healthy!farm.!Our!results!open!an!avenue!for!future! research! on! the! specific! effect! of! these! medications! on! the! tonsillar! microbiome! and! how!they!can!potentially!influence!the!acquisition!of!pathogenic!flora.!! Another!big!change!experienced!by!the!pigs!was!dietary,!particularly!at!weaning.! In! human! infants,! the! introduction! to! a! new! diet! associated! with! cessation! of! breast! feeding!has!been!shown!to!be!associated!with!profound!changes!in!the!composition!of! the! intestinal! microbiome! [37].! It! has! been! suggested! that! the! diet! to! which! an! individual! has! been! exposed! rapidly! alters! the! structure! of! the! intestinal! microbial! communities![38].!Similarly,!in!pigs!it!has!been!shown!that!the!diet!can!have!an!effect! in!the!intestinal!microbiome![39],!and!in!particular!that!the!diet!supplemented!after! weaning! in! piglets! can! alter! the! fecal! microbiota! considerably.! A! diet! supplemented! with! fermentable! carbohydrates! was! related! with! greater! bacterial! diversity! when! compared!to!control!diets![39].!Diet!changes!during!weaning!transition!can!exert!an! ! 106! effect! on! the! composition! of! the! intestinal! microbiota! [40,! 41]! where! bacterial! community!structure!can!change!as!the!diet!changes![42].! Finally,!the!environmental!changes!experienced!by!the!pigs!could!play!a!role!in! the!development!of!the!tonsillar!microbiome.!!These!can!include!both!changes!in!the! physical!environment!and!exposure!to!new!penmates!after!reassortment!of!pigs!into! new!housing.!The!immediate!environment!in!which!pigs!grow!has!been!suggested!to! have! a! profound! influence! on! the! initial! acquisition! and! development! of! fecal! and! colonic!microbiota![43].!!A!recent!study!following!the!development!of!gut!microbiota! and! the! effect! of! early! changes! in! the! environment! demonstrated! that! microbial! diversity!was!disturbed!by!changes!in!environmental!hygiene,!and!that!the!effect!of!the! generated!changes!remained!for!a!long!time!in!the!affected!animals![8].!!In!our!study,! we!saw!increased!fecal!anaerobes,!such!as!Clostridiales,!in!the!tonsils!(Figure!3.4.!and! Figure!3.7.)!after!weaning!and!especially!after!Tylan !was!removed!from!feed.!!Pigs!are! ® coprophagic,!and!it!is!likely!that!these!anaerobes!were!acquired!from!ingestion!of!feces! from!the!pen!floors.!!In!the!older!pigs,!crypt!abscesses!in!the!deeper!areas!of!elongating! crypts!might!provide!a!niche!for!colonization!by!the!acquired!anaerobes,!or!conversely! these!anaerobes!may!cause!the!formation!of!the!crypt!abscesses.!We!have!previously! observed!that!pigs!housed!in!a!very!clean!high!biosecurity!environment!had!almost!no! Clostridiales!in!the!tonsils!(unpublished!data).! The! sixteenth! week! constituted! the! highest! threshold! for! members! of! Clostridiales!with!Clostridiaceae.1.and!Peptostreptococcaceae!comprising!~51%!of!the! identified! members! of! the! microbiome! for! this! period.! Our! results! are! supported! by! Bokulich!et!al![31],!who!studied!the!development!of!fecal!microbiota!in!children!during! ! 107! early! life! and! associated! the! administration! of! antibiotics! in! children! during! first! months!of!life!with!deficit!in!members!of!Clostridiales.!Further,!the!authors!associated! a!gradual!increase!in!members!of!this!order!with!the!introduction!to!solid!food.!!Our! findings!become!especially!relevant!when!compared!with!recent!findings!reported!by! Kim!et!al![7],!which!found!that!the!presence!of!members!of!Clostridiales!in!the!enteric! microbiota!of!mice!is!critical!to!prevent!the!growth!of!enteric!pathogens!in!the!intestine.! We!do!not!know!how!this!finding!can!be!translated!to!the!tonsillar!microbiome!of!pigs,! but!it!is!interesting!to!see!that!one!of!the!most!vulnerable!periods!for!pigs!to!acquire! diseases!(weaning!through!eighth!week)!was!marked!by!a!low!abundance!of!members! of!the!Clostridiales.!! We! need! to! emphasize! that! the! goal! of! this! research! was! not! to! examine! the! individual! effect! of! each! one! of! the! possible! factors! associated! with! the! challenges! experienced!by!the!pigs!during!their!lives!but!on!the!contrary,!the!purpose!of!this!work! was!to!characterize!the!development!of!porcine!tonsillar!microbiome!of!healthy!pigs! from!newborn!through!market!age!under!normal!management!conditions!and!thus!to! create!a!base!knowledge!in!a!topic!so!far!little!studied.!!! In!this!study,!we!found!that!there!were!some!bacterial!families!that!dominated! the!tonsillar!microbiome!throughout!the!life!of!pigs;!however,!their!relative!abundance! often! changed! significantly! after! the! challenging! events.! Similarly,! other! bacterial! families!appeared!and/or!disappeared!at!specific!ages.!We!identified!that!members!of! Pasteurellaceae,!Streptococcaceae!and!Moraxellaceae!were!the!most!abundant!families! through! the! life! of! pigs! despite! their! fluctuation! at! certain! ages.! Nevertheless,! Pasteurellaceae!was!the!most!abundant!family!throughout!the!study!period.!The!greater! ! 108! presence! of! members! of! Clostridiales! particularly! Clostridiaceae. 1! and! Peptostreptococcaceae! in! older! pigs! needs! to! be! highlighted,! as! well! as! the! sudden! increase! in! members! of! Fusobacteriaceae! at! certain! ages.! A! longitudinal! study! of! bacterial!diversity!in!feces!of!commercial!pigs!found!that!some!phyla!dominated!the! microbiome!regardless!of!the!age!of!the!animals,!supporting!our!findings!in!the!tonsils.! Further,! it! was! observed! that! a! small! group! of! organisms! were! the! most! prevalent! microbes!as!pigs!aged,!and!their!microbiome!converged!with!the!time!when!they!were! maintained!under!similar!conditions![30].!Although!this!study!was!focused!on!the!fecal! microbiome,!it!supports!our!results!in!the!development!of!tonsillar!microbiome,!where! we!identified!some!bacterial!families!that!dominated!and!were!present!throughout!the! study!period,!as!well!as!other!bacterial!families!that!were!transient!and!appeared!at! different!times,!and!further!saw!a!convergence!of!the!tonsil!microbiome!in!all!the!pigs! when!they!were!maintained!under!constant!conditions.! Jensen! et! al! [11]! characterized! the! microbiome! of! tonsillar! crypts! of! human! patients! either! with! chronic! tonsillitis! or! tonsils! from! healthy! patients! which! were! removed! because! of! hyperplasia.! The! authors! could! identify! a! core! microbiome! population! at! the! species! level! in! the! crypts! of! humans! independent! of! their! health! status! and! age,! which! involved! the! genus! Streptococcus,! Prevotella,! Fusobacterium,! Porphyromonas,! Neisseria,! Parvimonas,! Haemophilus,! Actinomyces,! Rothia,! Granulicatella!and!Gemella.!The!above!identified!genera!are!members!of!the!families! Streptococcaceae,! Prevotellaceae,! Fusobacteriaceae,! Porphyromonadaceae,! Neisseriaceae,! Clostridiales! Incertae! Sedis. XI,! Pasteurellaceae,! Actinomycetaceae,! Micrococcaceae,! Carnobacteriaceae! and! Bacillales! Incertae! Sedis. XI,! respectively.! ! 109! Similarly,! other! studies! identifying! the! human! microbiome,! recognize! members! of! families! Streptococcaceae,! Prevotellaceae! and! Fusobacteriaceae! as! abundant! in! the! tonsillar!microbiome!of!healthy!humans![13,!16,!44].!!!Although!we!did!not!characterize! specifically!the!microbiome!of!tonsillar!crypts!and!we!were!not!able!to!characterize!the! members!of!the!community!further!than!family!or!genus!level!for!some!taxa,!our!results! also!show!that!members!of!the!above!mentioned!families!except!Actinomycetaceae.and! Carnobacteriaceae,. comprised! some! of! the! most! abundant! families! identified! in! pig! tonsils.!It!was!found!that!members!of!the!genus!Staphylococcus.were!present!only!in! low! proportions! in! human! tonsils! [11].! Similarly,! we! identified! that! members! of! the! family! Staphylococcaceae! were! abundant! only! in! the! newborns! and! decreased! noticeably!and!almost!disappeared!on!the!following!weeks.! A! BrayZCurtis! analysis! of! the! development! of! pigs! microbiome! from! birth! to! market!age!(Figure!3.2.)!showed!us!that!as!the!pigs!were!getting!older,!the!acquired! microbial!population!tended!to!be!more!similar!to!the!microbiome!present!in!adult!pigs,! i.e.,!the!tonsillar!microbiome!of!sows!(Figure!3.4).!We!identified!that!between!the!sixth! to!tenth!week,!some!samples!clustered!with!a!sample!from!the!tonsillar!microbiome!of! sows.! However! a! higher! percentage! of! samples! from! older! pigs,! especially! between! twelfth! to! nineteenth! weeks,! were! clustered! together! with! samples! from! tonsillar! microbiome!of!sows.!These!findings!demonstrate!both!that!there!is!a!succession!in!the! development!of!tonsillar!microbiome!in!pigs!and!that!the!final!status!of!the!microbiome! in! grower/finisher! pigs! develops! to! resemble! that! of! adult! animals.! Similar! findings! were! reported! by! other! authors! studying! the! development! of! the! human! intestinal! microbiota![19,!31],!which!found!that!as!infants!aged,!their!gut!microbiome!began!to! ! 110! look!like!the!adult!microbiome,!although!it!did!not!reach!a!mature!stage!found!in!adults.! Our!results!shows!that!although!the!microbiome!of!older!pigs!was!more!similar!to!the! microbiome! of! the! sows,! there! are! still! observable! differences! in! the! abundance! of! certain! families,! as! the! case! of! members! of! families! Peptostreptococacceae,! Erysipelotrichaceae! and! Burkholderiales! which! were! more! prominent! in! sow! microbiome.! Many! other! studies! have! also! shown! that! there! is! a! succession/sequentiality!in!the!development!of!microbial!communities!in!mammalian! tissue![17,!18,!30,!45,!46]! ! CONCLUSIONS! ! This! study! provides! baseline! information! on! the! development! of! tonsillar! microbiome!of!piglets!from!newborn!to!market!age,!as!well!as!the!tonsillar!microbiome! of!sows.!We!demonstrate!that!there!was!a!succession!in!the!development!of!the!tonsillar! microbiome!of!piglets!as!they!age,!which!was!not!synchronous!on!all!pigs!but!was!highly! similar.! ! The! tonsil! microbiome! tended! to! stabilize! and! become! very! similar! in! all! animals! over! times! where! management! conditions! are! constant.! ! However,! the! challenges!associated!with!management!procedures!typical!in!a!swine!farm!generated! prominent! changes! in! the! microbiome! composition! and! the! abundance! of! diverse! bacterial!families.!Nonetheless,!over!time!the!microbiome!of!these!young!pigs!tended! to!be!more!similar!to!the!microbiome!of!older.!We!do!not!know!if!the!observed!patterns! would!be!similar!for!all!pigs!from!this!farm,!or!if!the!same!pattern!would!be!observed! independent!of!the!breed!or!the!specific!farm.!!This!study!lays!the!baseline!for!future! ! 111! research!to!examine!the!effect!of!specific!conditions,!such!as!use!of!antibiotics,!on!the! development!of!the!tonsil!microbiome!and!of!acquisition!of!specific!pathogens!on!the! tonsil!microbiome!and!conversely!of!the!effect!of!the!composition!and!structure!of!the! tonsil!microbiome!on!acquisition!of!pathogens.!!Manipulation!of!the!tonsil!microbiome! to!provide!enhanced!resistance!to!acquisition!and!carriage!of!pathogens!is!a!potential! outcome!of!these!studies.! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 112! ! ! ! ! ! ! ! ! ! ! ! APPENDIX! ! ! ! ! ! ! ! ! 113! ! Table!3.3.!Top!20!most!abundant!families!per!sampling!time! ! Row Labels Corynebacteriaceae Micrococcaceae Bacteroidaceae Porphyromonadaceae Prevotellaceae Rikenellaceae Flavobacteriaceae Chitinophagaceae Bacillaceae_1 Bacillales_Incertae_Sedis_XI Planococcaceae Staphylococcaceae Aerococcaceae Lactobacillaceae Streptococcaceae Clostridiaceae_1 Clostridiales_Incertae_Sedis_XI Lachnospiraceae Peptostreptococcaceae Ruminococcaceae Erysipelotrichaceae Veillonellaceae Fusobacteriaceae Leptotrichiaceae Caulobacteraceae Sphingomonadaceae Burkholderiaceae Comamonadaceae Neisseriaceae Succinivibrionaceae Enterobacteriaceae Pasteurellaceae Moraxellaceae Pseudomonadaceae Xanthomonadaceae Spirochaetaceae Others Newborns 2.02 10.25 0.30 0.85 0.51 0.24 0.59 0.17 2.40 0.19 0.15 11.60 0.36 0.16 22.77 1.30 2.25 0.78 0.24 1.21 0.69 0.59 0.09 0.00 2.20 0.31 3.73 0.75 0.17 0.04 0.93 7.68 13.19 0.12 1.15 0.23 9.80 First week 0.14 2.63 1.14 8.11 1.79 0.07 2.06 0.01 2.10 1.32 0.16 0.07 0.57 0.60 16.71 0.67 0.49 0.87 0.45 0.67 0.47 1.28 0.23 0.00 0.05 0.10 0.38 0.17 0.43 0.01 0.49 24.90 17.67 0.06 0.16 0.22 12.76 Second week 0.07 0.74 0.74 6.11 1.58 0.02 2.38 0.00 1.29 1.93 0.10 0.06 0.18 0.31 10.23 1.21 0.73 0.85 0.67 1.41 0.41 0.61 4.11 2.58 0.02 0.01 0.13 0.11 1.87 0.02 0.25 24.93 24.72 0.01 0.05 0.47 9.07 Third week 0.07 0.42 1.33 5.69 2.97 0.00 4.22 0.01 0.13 1.22 0.03 0.03 0.07 0.03 7.45 0.49 0.59 0.49 0.50 1.24 0.32 0.28 4.29 3.55 0.07 0.03 0.08 0.02 1.07 0.00 0.04 23.40 31.22 0.01 0.01 0.11 8.51 Fourth week 0.22 1.68 0.29 0.21 2.05 0.04 0.18 0.04 0.94 0.51 0.10 0.08 0.09 2.25 41.64 0.58 0.59 2.06 0.11 1.64 0.54 1.57 0.12 0.00 0.26 0.31 1.68 0.27 2.17 0.05 0.49 23.25 7.85 0.09 0.23 0.08 5.71 Sixth week 0.68 0.43 0.93 1.34 1.90 1.16 0.25 0.15 13.13 0.06 0.82 0.34 0.00 0.55 11.63 1.35 3.82 3.21 0.08 4.18 0.06 0.27 0.01 0.06 0.06 0.52 1.54 0.97 0.36 0.05 2.32 10.00 0.87 0.33 1.47 0.56 34.54 Eighth week 0.68 0.38 2.94 0.78 5.40 0.54 0.11 0.10 14.60 0.14 0.88 0.30 0.00 0.21 7.09 6.90 3.29 4.92 0.65 4.19 0.29 0.93 0.13 0.01 0.07 0.51 1.73 1.11 0.48 1.45 1.10 7.02 1.15 0.71 0.95 1.39 26.88 Tenth week 0.28 0.29 1.07 0.81 3.75 0.70 0.17 0.14 10.07 0.09 0.65 0.25 0.04 0.19 11.86 2.21 2.48 2.18 0.63 2.52 0.25 1.05 0.34 0.00 0.14 0.33 0.62 0.73 1.01 0.03 0.86 30.70 3.68 0.45 0.67 0.57 18.22 Twelfth week 0.10 0.30 1.60 3.54 5.52 0.04 0.10 0.56 1.83 0.04 0.08 0.19 0.17 0.23 4.90 24.10 0.32 2.30 4.75 2.17 0.53 1.20 0.54 0.01 0.04 0.19 1.39 0.40 0.40 0.06 0.37 31.87 1.16 0.91 0.34 0.33 7.43 Sixteenth week 0.25 0.23 2.33 3.34 2.92 0.02 0.08 0.28 0.65 0.44 0.24 0.08 0.33 0.22 7.83 44.14 0.56 0.77 7.09 1.21 1.33 0.39 2.28 0.16 0.00 0.03 0.69 0.18 2.39 0.02 0.43 7.16 5.28 0.03 0.11 0.35 6.15 Nineteenth week 0.30 0.26 3.78 5.11 2.21 0.11 1.67 0.04 1.37 0.82 0.11 0.36 1.23 0.06 7.58 10.19 0.43 0.72 1.97 0.53 0.39 0.95 4.96 1.88 0.00 0.20 0.35 0.04 8.90 0.00 0.27 15.47 18.87 0.00 0.04 1.50 7.33 Sow tonsils 1.50 1.11 0.93 0.59 0.55 0.00 0.18 0.11 6.83 0.76 1.25 0.35 0.15 0.08 4.56 22.48 2.03 1.17 12.31 1.00 7.77 0.39 0.49 0.49 0.48 0.98 3.32 0.98 1.08 0.14 0.78 7.17 2.61 0.38 0.36 0.81 13.84 ! !! The!!!table!shows!the!twenty!most!abundant!families!identified!in!the!tonsillar!microbiome!of!the!sampled!!!piglets!from!newborn! through!market!age!as!well!as!the!sows.!The!color!code!!shows!in!red,!the!families!that!!represents!the!top!twenty!most!abundant! families!for!a!specific!period!or!sample.!The!blue!color!represents!!families!that!were!not!part!of!the!top!20!families!for!that! period.!In!black!color!are!other!members!of!microbiome!not!shown!in!the!table.! ! 114! 100% 100% Others 90% 90% Others Xanthomonadaceae Moraxellaceae Moraxellaceae 80% Pasteurellaceae 80% Pasteurellaceae Enterobacteriaceae Neisseriaceae 70% Neisseriaceae 70% Burkholderiaceae Burkholderiaceae Caulobacteraceae Leptotrichiaceae Fusobacteriaceae 60% Fusobacteriaceae 60% Ruminococcaceae Veillonellaceae Peptostreptococcaceae 50% Ruminococcaceae 50% Lachnospiraceae Peptostreptococcaceae Lachnospiraceae Clostridiales_Incertae_Sedis_XI Clostridiaceae_1 40% Clostridiales_Incertae_Sedis_XI 40% Clostridiaceae_1 Streptococcaceae Streptococcaceae Lactobacillaceae 30% Bacillales_Incertae_Sedis_XI 30% Staphylococcaceae Flavobacteriaceae Bacillaceae_1 20% Prevotellaceae 20% Flavobacteriaceae Porphyromonadaceae Prevotellaceae Bacteroidaceae Porphyromonadaceae 10% 10% Micrococcaceae Corynebacteriaceae A 0% 11A 11B 11C 11D 11E 11F 11G 11H 11I 11J 11K 100% B 0% 22A 22B 22C 22D 22E 22F 22G 22H 22I 22J 22K 100% 90% 90% Others Others Moraxellaceae Spirochaetaceae Pasteurellaceae 80% Moraxellaceae 80% Neisseriaceae Pasteurellaceae Burkholderiaceae 70% Neisseriaceae 70% Leptotrichiaceae Leptotrichiaceae Fusobacteriaceae Fusobacteriaceae Veillonellaceae 60% Veillonellaceae 60% Ruminococcaceae Ruminococcaceae Peptostreptococcaceae 50% Peptostreptococcaceae 50% Lachnospiraceae Lachnospiraceae Clostridiales_Incertae_Sedis_XI Clostridiaceae_1 40% Clostridiales_Incertae_Sedis_XI Clostridiaceae_1 40% Streptococcaceae Streptococcaceae Staphylococcaceae 30% Staphylococcaceae 30% Bacillaceae_1 Bacillaceae_1 Flavobacteriaceae Flavobacteriaceae Prevotellaceae 20% Prevotellaceae 20% Porphyromonadaceae Porphyromonadaceae Bacteroidaceae Bacteroidaceae 10% 10% Micrococcaceae 0% 23A 23B 23C 23D 23E 23F 23G 23H 23I 23J 23K C Micrococcaceae 0% 36A 36B 36C 36D 36E 36F 36G 36H 36I 36J 36K D ! Figure!3.6.!Top!20!most!abundant!families!per!sampling!time!for!4!selected!pigs.!Top!20!families!through!the!time!for!pig!! ! 11!(A),!pig!22!(B),!pig!23!(C),!pig!36!(D)! ! 115! ! 100% 90% 80% 70% 60% Not included 50% Anaerobes Facultative 40% Aerobes 30% 20% 10% 0% Newborns First week Second week Third week Fourth week Sixth week Eighth week Tenth week Twelfth Sixteenth Nineteenth Sow week week week tonsils ! Figure!3.7.!Proportions!of!aerobes,!anaerobes!and!facultative!bacteria.!The!plot!chart!shows!the!twenty!most!abundant! families!identified!in!the!tonsillar!microbiome!of!the!sampled!pigs!from!newborn!through!market!age!as!well!as!sows!and!their! proportion!once!classified!as!aerobes,!anaerobes!or!facultative!organisms!based!on!Bergey´s!Manual!of!Systematic! Bacteriology![47]! ! 116! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! REFERENCES! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 117! REFERENCES! ! ! ! 1.! ! 2.! ! 3.! ! 4.! ! 5.! ! 6.! ! 7.! ! 8.! ! 9.! ! 10.! ! ! Horter!DC,!Yoon!KJ,!Zimmerman!JJ:!A"review"of"porcine"tonsils"in"immunity" and"disease.!Anim%Health%Res%Rev%2003,!4:143@155.! Smith!TC,!Harper!AL,!Nair!R,!Wardyn!SE,!Hanson!BM,!Ferguson!DD,!Dressler!AE:! Emerging"swine"zoonoses.!Vector3Borne%and%Zoonotic%Diseases%2011,!11:1225@ 1234.! Williams! LP,! Newell! KW:! Salmonella" excretion" in" joy>riding" pigs.! American% Journal%of%Public%Health%and%the%Nations%Health%1970,!60:926@929.! Weyrich!LS,!Feaga!HA,!Park!J,!Muse!SJ,!Safi!CY,!Rolin!OY,!Young!SE,!Harvill!ET:! Resident" microbiota" affect"Bordetella, pertussis"infectious" dose" and" host" specificity.!Journal%of%Infectious%Diseases%2014,!209:913@921.! Ghartey!JP,!Smith!BC,!Chen!ZG,!Buckley!N,!Lo!YT,!Ratner!AJ,!Herold!BC,!Burk!RD:! Lactobacillus, crispatus" dominant" vaginal" microbiome" is" associated" with" inhibitory" activity" of" female" genital" tract" secretions" against"Escherichia, coli.!Plos%One%2014,!9:8.! Willing! BP,! Vacharaksa! A,! Croxen! M,! Thanachayanont! T,! Finlay! BB:! Altering" host" resistance" to" infections" through" microbial" transplantation.! Plos% One% 2011,!6:9.! Kim!Y@G,!Sakamoto!K,!Seo!S@U,!Pickard!JM,!Gillilland!MG,!III,!Pudlo!NA,!Hoostal! M,!Li!X,!Wang!TD,!Feehley!T,!et!al:!Neonatal"acquisition"of"Clostridia"species" protects" against" colonization" by" bacterial" pathogens.! Science% 2017,! 356:312@315.! Mulder!IE,!Schmidt!B,!Stokes!CR,!Lewis!M,!Bailey!M,!Aminov!RI,!Prosser!JI,!Gill! BP,!Pluske!JR,!Mayer!CD,!et!al:!Environmentally>acquired"bacteria"influence" microbial"diversity"and"natural"innate"immune"responses"at"gut"surfaces.! Bmc%Biology%2009,!7:20.! Croswell!A,!Amir!E,!Teggatz!P,!Barman!M,!Salzman!NH:!Prolonged"impact"of" antibiotics" on" intestinal" microbial" ecology" and" susceptibility" to" enteric"Salmonella,infection.!Infection%and%Immunity%2009,!77:2741@2753.! Mann! E,! Pinior! B,! Wetzels! SU,! Metzler@Zebeli! BU,! Wagner! M,! Schmitz@Esser! S:! The"metabolically"active"bacterial"microbiome"of"tonsils"and"mandibular" lymph"nodes"of"slaughter"pigs.!Frontiers%in%Microbiology%2015,!6:10.! 118! 11.! ! 12.! ! 13.! ! 14.! ! 15.! ! 16.! ! 17.! ! 18.! ! 19.! ! 20.! ! 21.! ! Jensen!A,!Fago@Olsen!H,!Sorensen!CH,!Kilian!M:!Molecular"mapping"to"species" level"of"the"tonsillar"crypt"microbiota"associated"with"health"and"recurrent" tonsillitis.!Plos%One%2013,!8:15.! Lowe! BA,! Marsh! TL,! Isaacs@Cosgrove! N,! Kirkwood! RN,! Kiupel! M,! Mulks! MH:! Defining" the" "core" microbiome"" of" the" microbial" communities" in" the" tonsils"of"healthy"pigs.!Bmc%Microbiology%2012,!12:14.! Segata!N,!Haake!SK,!Mannon!P,!Lemon!KP,!Waldron!L,!Gevers!D,!Huttenhower!C,! Izard! J:! Composition" of" the" adult" digestive" tract" bacterial" microbiome" based"on"seven"mouth"surfaces,"tonsils,"throat"and"stool"samples.!Genome% Biology%2012,!13:18.! Liu!CM,!Cosetti!MK,!Aziz!M,!Buchhagen!JL,!Contente@Cuomo!TL,!Price!LB,!Keim! PS,! Lalwani! AK:! The" otologic" microbiome" >" a" study" of" the" bacterial" microbiota" in" a" pediatric" patient" with" chronic" serous" otitis" media" using" 16S" rRNA" gene>based" pyrosequencing.! Archives% of% Otolaryngology3Head% &%Neck%Surgery%2011,!137:664@668.! Lowe! BA,! Marsh! TL,! Isaacs@Cosgrove! N,! Kirkwood! RN,! Kiupel! M,! Mulks! MH:! Microbial"communities"in"the"tonsils"of"healthy"pigs.!Veterinary%Microbiology% 2011,!147:346@357.! Aas! JA,! Paster! BJ,! Stokes! LN,! Olsen! I,! Dewhirst! FE:! Defining" the" normal" bacterial" flora" of" the" oral" cavity.! Journal% of% Clinical% Microbiology% 2005,! 43:5721@5732.! Koenig!JE,!Spor!A,!Scalfone!N,!Fricker!AD,!Stombaugh!J,!Knight!R,!Angenent!LT,! Ley! RE:! Succession" of" microbial" consortia" in" the" developing" infant" gut" microbiome.! Proceedings% of% the% National% Academy% of% Sciences% of% the% United% States%of%America%2011,!108:4578@4585.! Inoue!R,!Tsukahara!T,!Nakanishi!N,!Ushida!K:!Development"of"the"intestinal" microbiota" in" the" piglet.! Journal% of% General% and% Applied% Microbiology% 2005,! 51:257@265.! Palmer! C,! Bik! EM,! DiGiulio! DB,! Relman! DA,! Brown! PO:! Development" of" the" human"infant"intestinal"microbiota.!Plos%Biology%2007,!5:1556@1573.! Sekirov!I,!Tam!NM,!Jogova!M,!Robertson!ML,!Li!YL,!Lupp!C,!Finlay!BB:!Antibiotic> induced"perturbations"of"the"intestinal"microbiota"alter"host"susceptibility" to"enteric"infection.!Infection%and%Immunity%2008,!76:4726@4736.! Yin! Y,! Lei! F,! Zhu! L,! Li! S,! Wu! Z,! Zhang! R,! Gao! GF,! Zhu! B,! Wang! X:!Exposure"of" different" bacterial" inocula" to" newborn" chicken" affects" gut" microbiota" development"and"ileum"gene"expression.!Isme%Journal%2010,!4:367@376.! 119! ! 22.! ! 23.! ! 24.! ! 25.! ! 26.! ! 27.! ! 28.! ! 29.! ! 30.! ! 31.! ! ! Peña@Cortes!LC,!LeVeque!RM,!Funk!J,!Marsh!TL,!Mulks!MH:!Development"of"the" tonsillar"microbiome"in"pigs"from"newborn"through"weaning.!!(University! MS!ed.;!2017.! Kim!D,!Hofstaedter!CE,!Zhao!C,!Mattei!L,!Tanes!C,!Clarke!E,!Lauder!A,!Sherrill@Mix! S,! Chehoud! C,! Kelsen! J,! et! al:! Optimizing" methods" and" dodging" pitfalls" in" microbiome"research.!Microbiome%2017,!5:14.! Caporaso!JG,!Lauber!CL,!Walters!WA,!Berg@Lyons!D,!Lozupone!CA,!Turnbaugh!PJ,! Fierer! N,! Knight! R:! Global" patterns" of" 16S" rRNA" diversity" at" a" depth" of" millions" of" sequences" per" sample.! Proceedings% of% the% National% Academy% of% Sciences%of%the%United%States%of%America%2011,!108:4516@4522.! Schloss!PD,!Westcott!SL,!Ryabin!T,!Hall!JR,!Hartmann!M,!Hollister!EB,!Lesniewski! RA,!Oakley!BB,!Parks!DH,!Robinson!CJ,!et!al:!Introducing"mothur:"open>source," platform>independent,"community>supported"software"for"describing"and" comparing"microbial"communities.!Applied%and%Environmental%Microbiology% 2009,!75:7537@7541.! Kozich!JJ,!Westcott!SL,!Baxter!NT,!Highlander!SK,!Schloss!PD:!Development"of"a" dual>index" sequencing" strategy" and" curation" pipeline" for" analyzing" amplicon" sequence" data" on" the" MiSeq" Illumina" sequencing" platform.! Applied%and%Environmental%Microbiology%2013,!79:5112@5120.! Quast!C,!Pruesse!E,!Yilmaz!P,!Gerken!J,!Schweer!T,!Yarza!P,!Peplies!J,!Gloeckner! FO:! The" SILVA" ribosomal" RNA" gene" database" project:" improved" data" processing"and"web>based"tools.!Nucleic%Acids%Research%2013,!41:D590@D596.! Schneider! CA,! Rasband! WS,! Eliceiri! KW:! NIH" Image" to" ImageJ:" 25" years" of" image"analysis.!Nature%Methods%2012,!9:671@675.! Alain!B!Pajarillo!E,!Chae!J@P,!Balolong!MP,!Bum!Kim!H,!Kang!D@K:!Assessment"of" fecal" bacterial" diversity" among" healthy" piglets" during" the" weaning" transition.!The%Journal%of%general%and%applied%microbiology%2014,!60:140@146.! Kim! HB,! Borewicz! K,! White! BA,! Singer! RS,! Sreevatsan! S,! Tu! ZJ,! Isaacson! RE:! Longitudinal" investigation" of" the" age>related" bacterial" diversity" in" the" feces"of"commercial"pigs.!Veterinary%Microbiology%2011,!153:124@133.! Bokulich!NA,!Chung!J,!Battaglia!T,!Henderson!N,!Jay!M,!Li!H,!Lieber!AD,!Wu!F,! Perez@Perez! GI,! Chen! Y,! et! al:! Antibiotics," birth" mode," and" diet" shape" microbiome" maturation" during" early" life.! Science% Translational% Medicine% 2016,!8:13.! 120! 32.! ! 33.! ! 34.! ! 35.! ! 36.! ! 37.! ! 38.! ! 39.! ! 40.! ! 41.! Rettedal!E,!Vilain!S,!Lindblom!S,!Lehnert!K,!Scofield!C,!George!S,!Clay!S,!Kaushik! RS,! Rosa! AJM,! Francis! D,! Brozel! VS:! Alteration" of" the"ileal" microbiota" of" weanling" piglets" by" the" growth>promoting" antibiotic" chlortetracycline.! Applied%and%Environmental%Microbiology%2009,!75:5489@5495.! Poole!TL,!Suchodolski!JS,!Callaway!TR,!Farrow!RL,!Loneragan!GH,!Nisbet!DJ:!The" effect" of" chlortetracycline" on" faecal" microbial" populations" in" growing" swine.!Journal%of%Global%Antimicrobial%Resistance%2013,!1:171@174.! Looft!T,!Johnson!TA,!Allen!HK,!Bayles!DO,!Alt!DP,!Stedtfeld!RD,!Sul!WJ,!Stedtfeld! TM,!Chai!BL,!Cole!JR,!et!al:!In>feed"antibiotic"effects"on"the"swine"intestinal" microbiome.! Proceedings% of% the% National% Academy% of% Sciences% of% the% United% States%of%America%2012,!109:1691@1696.! Looft!T,!Allen!HK,!Casey!TA,!Alt!DP,!Stanton!TB:!Carbadox"has"both"temporary" and" lasting" effects" on" the" swine" gut" microbiota.! Frontiers% in% Microbiology% 2014,!5:9.! Kim! HB,! Borewicz! K,! White! BA,! Singer! RS,! Sreevatsan! S,! Tu! ZJ,! Isaacson! RE:! Microbial"shifts"in"the"swine"distal"gut"in"response"to"the"treatment"with" antimicrobial"growth"promoter,"tylosin.!Proceedings%of%the%National%Academy% of%Sciences%of%the%United%States%of%America%2012,!109:15485@15490.! Bergstrom! A,! Skov! TH,! Bahl! MI,! Roager! HM,! Christensen! LB,! Ejlerskov! KT,! Molgaard!C,!Michaelsen!KF,!Licht!TR:!Establishment"of"intestinal"microbiota" during" early" life:" a" longitudinal," explorative" study" of" a" large" cohort" of"Danish" infants.! Applied% and% Environmental% Microbiology% 2014,! 80:2889@ 2900.! David!LA,!Maurice!CF,!Carmody!RN,!Gootenberg!DB,!Button!JE,!Wolfe!BE,!Ling! AV,! Devlin! AS,! Varma! Y,! Fischbach! MA,! et! al:! Diet" rapidly" and" reproducibly" alters"the"human"gut"microbiome.!Nature%2014,!505:559@563.! Konstantinov!SR,!Zhu!WY,!Williams!BA,!Tamminga!S,!de!Vos!WM,!Akkermans! ADL:! Effect" of" fermentable" carbohydrates" on" piglet" faecal" bacterial" communities" as" revealed" by" denaturing" gradient" gel" electrophoresis" analysis"of"16S"ribosomal"DNA.!Fems%Microbiology%Ecology%2003,!43:225@235.! Frese!SA,!Parker!K,!Calvert!CC,!Mills!DA:!Diet"shapes"the"gut"microbiome"of" pigs"during"nursing"and"weaning.!Microbiome%2015,!3:10.! Konstantinov!SR,!Favier!CF,!Zhu!WY,!Williams!BA,!Kluss!J,!Souffrant!WB,!de!Vos! WM,! Akkermans! ADL,! Smidt! H:! Microbial" diversity" studies" of" the" porcine" gastrointestinal" ecosystem" during" weaning" transition.! Animal% Research% 2004,!53:317@324.! ! ! 121! 42.! ! 43.! ! 44.! ! 45.! ! 46.! ! 47.! ! ! Leser!TD,!Lindecrona!RH,!Jensen!TK,!Jensen!BB,!Moller!K:!Changes"in"bacterial" community"structure"in"the"colon"of"pigs"fed"different"experimental"diets" and" after" infection" with" Brachyspira, hyodysenteriae.! Applied% and% Environmental%Microbiology%2000,!66:3290@3296.! Thompson! CL,! Wang! B,! Holmes! AJ:! The" immediate" environment" during" postnatal"development"has"long>term"impact"on"gut"community"structure" in"pigs.!Isme%Journal%2008,!2:739@748.! Huse! SM,! Ye! YZ,! Zhou! YJ,! Fodor! AA:! A" core" human" microbiome" as" viewed" through"16s"rRNA"sequence"clusters.!Plos%One%2012,!7:12.! Mortensen!MS,!Brejnrod!AD,!Roggenbuck!M,!Abu!Al@Soud!W,!Balle!C,!Krogfelt!KA,! Stokholm! J,! Thorsen! J,! Waage! J,! Rasmussen! MA,! et! al:! The" developing" hypopharyngeal"microbiota"in"early"life.!Microbiome%2016,!4.! Borewicz!KA,!Kim!HB,!Singer!RS,!Gebhart!CJ,!Sreevatsan!S,!Johnson!T,!Isaacson! RE:!Changes"in"the"porcine"intestinal"microbiome"in"response"to"infection" with"Salmonella,enterica"and"Lawsonia,intracellularis.!Plos%One%2015,!10.! Krieg! NR,! Staley! JT,! Brown! DR,! Hedlund! BP,! Paster! BJ,! Ward! NL,! Ludwig! W,! Whitman! W:! Bergey's" Manual" of" Systematic" Bacteriology,% Vol% 4,% Second% Edition.!Springer;!2011.! 122! CHAPTER  4.  SPATIOTEMPORAL  DEVELOPMENT  OF  THE  TONSIL  MICROBIOME  IN   PIGS                                                 123   INTRODUCTION       Tonsils   are   lympho-­‐‑epithelial   tissues   strategically   located   at   the   junction   of   oropharynx   and   nasopharynx   where   they   fulfill   an   important   role   in   immune   surveillance   and   protection   of   the   host   from   pathogens   gaining   access   via   oral   or   respiratory   routes   [1].   Numerous   host-­‐‑specific   and   zoonotic   pathogens   such   as   bacteria   and   viruses   can   colonize   tonsils   and   use   them   as   a   reservoir,   generating   a   source   that   has   high   potential   for   transmission   to   other   animals   and   to   humans   [2].   There  is  a  paucity  of  data  pertaining  to  the  tonsillar  microbiome  in  mammals.  Further,   there  are  no  published  studies  about  the  development  of  the  spatiotemporal  structure   of  microbial  communities  of  pig  tonsils  or  tonsils  of  any  other  mammal.     Studies   on   the   development   of   the   spatiotemporal   structure   of   microbial   communities  of  other  regions  of  the  oral  cavity,  such  as  dental  plaque  in  humans,  have   shown  that  a  key  characteristic  of  oral  microbiome  communities  is  the  presence  of  a   high   diversity   and   temporal   succession   in   their   population   [3].     In   dental   plaque,   members  of  the  genus  Streptococcus  function  as  early  colonizers  opening  the  way  for   attachment   of   other   bacteria,   creating   the   conditions   suitable   for   the   arrival   of   late   colonizers   which   are   frequently   pathogenic   bacteria   [4].   Bacteria  in   the   oral   cavity,   as   well  as  in  other  tissues,  have  specific  adherence  molecules  on  their  surface  which  are   necessary  for  initiating  colonization  [4].  In  the  development  of  microbial  communities   of   oral   plaque,   the   community   is   structured   spatially   by   the   temporal   succession   of   colonizing   bacteria,   where   members   of   the   genus   Streptococcus   are   early   colonizers   and  have  receptors  for  co-­‐‑aggregation  of  other  early  colonizers,  such  as  members  of     124   the   genera   Actinomyces   and   Veillonella.   After   the   initial   development   of   the   microbiome   of   the   human   dental   plaque,   interbacterial   cell-­‐‑cell   recognition   plays   a   significant  role  in  the  spatiotemporal  development  of  these  communities  [5].     After   attachment   of   early   colonizers   to   the   dental   surface,   members   of   the   genus   Fusobacterium   arrive   and   act   as   a   bridge   between   early   and   late   colonizers,   which   are   frequently   known   pathogenic   bacteria   such   as   Porphyromonas   and   Treponema,  among  others  [6].  An  important  characteristic  of  these  associations  is  that   there   is   no   coadhesion   or   coaggregation   between   early   and   late   colonizers;   only   Fusobacterium  can  coaggregate  first  with  early  and  then  with  late  colonizers  [6].     Coaggregation   is   the   cell-­‐‑cell   recognition   between   different   types   of   bacteria   [7].  It  has  been  suggested  that  relationships  between  coaggregation  partners  lead  to  a   temporal  relationship  with  respect  to  colonization  of  surfaces.  Studies  done  by  Palmer   et   al.   [5],   using   fluorescent   labeled   antibodies   and   confocal   laser   scanning   microscopy   (CLSM),     for   the   first   time   showed   the   significance   of   coaggregation   in   the   development   of   microbial   communities   and   emphasized   its   importance   in   the   spatiotemporal  development  of  microbial  communities.   The   spatial   distribution/localization   of   diverse   bacteria   has   been   studied   in   different  tissues  [8-­‐‑13],    using  methods  such  as  Scanning  Electron  Microscopy  (SEM)   [13],     immunohistochemistry   [9],   and   FISH   (Fluorescence   In   Situ   Hybridization)   and   detection  of  bacteria  using  epifluorescence  and  CLSM  [8,  11,  13-­‐‑16].  These  techniques   have   helped   understand   the   interplay   of   microbes   in   different   tissues.   However,   limited  knowledge  is  available  about  the  spatial  distribution,  assembly  and  structure   of  tonsillar  microbial  communities  in  any  mammal,  including  pigs.     125   Tonsils   are   colonized   by   bacteria   from   the   genus   Streptococcus,   specifically   Streptococcus  suis,  early  in  the  lives  of  pigs,  as  early  as  during  the  birth  process  [17-­‐‑ 19].   Studies   using   segregated   early   weaned   pigs   have   suggested   a   temporality   in   colonization  by  other  bacteria,  such  as  Haemophilus  parasuis,  which  were  detected  in   the  first  day  of  life,  followed  by  other  bacterial  species,  such  as  Pasteurella  multocida   and  Bordetella  bronchiseptica,  which  arrive  after  the  second  week  of  life  or  later  [17,   20].   Although   there   has   been   no   comprehensive   study   of   the   patterns   of   tonsillar   colonization   by   different   bacteria   or   spatiotemporal   structure   of   the   bacterial   communities  in  tonsils,  the  aforementioned  studies  suggest  that  there  is  a  pattern  of   temporality  in  the  building  of  tonsillar  communities  of  pigs,  at  least  in  early  life.     The   goal   of   this   study   was   to   characterize   how   the   three   most   abundant   members   of   the   pig   tonsillar   microbiome,   Pasteurellaceae,   Streptococcaceaae   and   Moraxellaceae  [21,  22],  are  spatially  localized  at  different  times  in  the  life  of  pigs.  The   use   of   FISH   probes   targeting   bacterial   16S   rRNA   genes   and   CLSM   allowed   us   to   identify   the   presence   of   these   different   bacterial   taxa   in   tonsils.   Scanning   Electron   Microscopy   (SEM)   gave   us   a   detailed   view   of   the   tonsils,   their   general   appearance   over  time,  and  an  overview  of  the  organization  of  the  microbial  communities  and  how   they  developed  over  time.     MATERIALS  AND  METHODS     Animals.   Approval   for   all   experimental   procedures   was   obtained   from   The   Michigan   State   University   Institutional   Animal   Care   and   Use   Committee   (IACUC).     126   Piglets   derived   from   three   crossbred   sows   (Yorkshire   x   Hampshire)   from   a   high   health   status   herd   were   used   in   this   study.     A   detailed   description   of   this   herd   has   been  published  previously  elsewhere  [21].  One  piglet  from  each  of  the  three  sows  was   selected  randomly  from  the  litter  at  each  sampling  time:  1,  3,  4,  8,  10  and  17  weeks.   Pigs  were  initially  anesthetized  with  a  combination  of  Tiletamine-­‐‑Zolazepam  (Telazol ,   ® Zoetis,   USA)   and   Ketamine   (Kethatesia,   Henry   Schein   Animal   Health,   Dublin,   OH),   administered  intramuscularly.    Once  anesthetized,  they  were  euthanized  by  overdose   of   a   pentobarbital   solution   (Fatal-­‐‑Plus,   Vortech   Pharmaceuticals   -­‐‑   Dearborn,   MI),   delivered  intravenously  into  the  vena  cava,  following  standard  procedures  approved   by  IACUC.   Tissue   collection.       The   entire   right   soft   palate   tonsil   from   each   piglet   was   collected  and  the  excess  connective  tissue  removed  using  sterile  scalpels  and  forceps.   Each  right  tonsil  was  placed  in  a  sterile  glass  Petri  dish  and  divided  into  quarters.  A   random   quarter   of   the   tissue   was   carefully   placed   in   a   labeled   disposable   tissue   cassette   previously   covered   with   a   thin   film   of   HistoPrep   embedding   medium   (Fisher,   Fair   Lawn,   NJ).   Samples   were   oriented   carefully   to   allow   access   to   tonsillar   crypts   when  trimming.  Following  this,  the  cassette  was  fully  filled  with  the  embedding  media   and  immediately  frozen  at  -­‐‑80°C.  After  solidification,  the  sample  blocks  were  removed   from   the   cassettes,   wrapped   in   aluminum   foil,   labeled   and   stored   at   -­‐‑80°C   until   processing.   Blocks   were   sectioned   on   a   Leica   Cryostat   (Leica   Microsystems,   Vienna,   Austria).   Tissue   sections   (5   µm)   were   collected   on   positively   charged   microscope   slides,  Leica  BONDTM  Plus  Slide  (Leica  Biosystems  Richmond,  Illinois,  USA),  and  stored   at  -­‐‑20°C  until  processing  for  FISH.  Another  random  tonsil  quarter  was  placed  into  a  15     127   ml   sterile   test   tube   containing   10   ml   of   4%   paraformaldehyde   (PFA)   for   4   -­‐‑   6   h   and   then  removed  and  stored  in  50%  ethanol  until  processed.     Bacterial  strains  and  smears  on  slides.   To   validate   the   FISH   probes,   we   used   the   following   bacterial   isolates:   Streptococcus   suis,   Staphylococcus   aureus,   Pasteurella   multocida,  Escherichia  coli  (all  from  the  laboratory  collection  of  MHM)  and  Moraxella   bovis   (kindly   provided   by   Dr.   Rinosh   Mani).   Overnight   cultures   of   BHI   agar   (BBLTM   Brain  Heart  Infusion,  Becton  Dickinson  and  Company,  Sparks,  MD)  streaked  with  each   individual  isolate  were  used  to  inoculate  5  ml  of  BHI  broth  to  an  initial  optical  density   at   520nm   (OD520)   of   0.15.   Inoculated   broths   were   incubated   at   35°C   shaking   at   160   rpm   until   an   OD520   of   approximately   0.5   was   reached.   Bacterial   suspensions   were   mixed  with  equal  amounts  of  4%  paraformaldehyde  (4%  PFA)  and  fixed  for  1.5  hours,   followed  by  three  washes  in  PBS,  pH  7.4.  Pellets  were  suspended  in  equal  amounts  of   PBS  and  absolute  ethanol  and  stored  at  -­‐‑20°C  in  aliquots  until  used  for  validation  of   the  probes  in  slide  smears  and  muscle  tissue.   Bacterial   strains   and   muscle   slides.   To   validate   the   FISH   probes   against   bacterial   cells   present   in   mammalian   tissue,   50   ml   of   overnight   cultures   of   Streptococcus   suis,   Pasteurella   multocida,   Escherichia   coli   and   Moraxella   bovis   were   pelleted  by  centrifugation  and  suspended  in  5  ml  of  sterile  broth.    Equal  proportions   of   all   the   bacterial   isolates   were   mixed   in   a   sterile   10   ml   tube   and   inoculated   onto   samples   of   muscle   of   approximately   3   x   3   x   10mm,   which   were   collected   aseptically   and   randomly   from   a   euthanized   pig   used   in   the   study.   Inoculated   muscle   was   processed  in  the  same  way  as  tonsil  tissue.         128   Oligonucleotide  probes.   FISH   experiments   were   carried   out   using   the   probe   EUB338  [23]  which  targets  a  region  of  the  bacterial  16S  rRNA  genes,  present  in  most   bacteria,   and   the   nonsense   probe   NON338   [24],   which   is   the   antisense   probe   of   EUB338   and   was   used   to   exclude   non-­‐‑specific   probe   binding.   Specific   nucleotide   probes   for   the   family   Pasteurellaceae   PAS111   [16],   the   genus   Streptococcus   STR405   [25]   and   the   genus   Moraxella   MOR575   (designed   in   this   study),   were   selected   to   target   the   three   most   abundant   taxa   identified   in   the   tonsillar   microbiome   of   pigs   [21,   22]  (Table  4.1.).  The  sequences  for  these  FISH  probes  were  obtained  after  a  search  of   available  journal  publications  or  in  probeBase   [26]  or  using  the  probe  design  function   of   ARB   [27],   and   compared   with   representative   sequences   for   the   respective   OTUs,   using  the  ribosomal  database  project  (RDP)  sequence  analysis  tools  [28].    Probes  were   custom  synthesized  by  IDT  (Integrated  DNA  Technologies,  Coralville,  IA).   ® Table  4.1.  Oligonucleotide  probes       Fluorescent   In   Situ   Hybridization   (FISH).   For   this   procedure   the   probes   were   first   validated   against   PFA-­‐‑fixed   pure   cultures   of   the   bacterial   strains   and   mixtures   of   the   strains   spread   on   positively   charged   slides,   Leica   BONDTM   Plus   Slide   (Leica   Biosystems   Richmond,   Illinois,   USA),   and   against   samples   of   muscle   tissue   inoculated   with   a   mix   of   bacterial   cells   as   explained   above.   These   slides   were   also     129   used   as   positive   controls   for   probe   hybridization   and   were   included   in   all   hybridization   experiments.   From   every   tonsil   sample,   four   sequential   sections   were   hybridized,   each   with   a   different   set   of   probes.   Section   one   was   hybridized   with   the   EUB338    and  NON338    probes;  section  two  was  hybridized  with  the  EUB338,  MOR575   and   PAS111     probes;   section   three   was   hybridized   with   the   EUB338,   STR405   and   PAS111  probes;  and  finally  a  fourth  section  was  hybridized  with  the  MOR575,  STR405   and   PAS111   probes.   Tissues   were   initially   immersed   in   a   PBS-­‐‑Tween   20,   pH   7.4   buffer,  then  incubated  with  a  lysis  buffer  (100  µg/ml  lysozyme  in  0.1  mM  Tris-­‐‑HCl,  pH   8.0)  at  37°C  for  10  min,  serially  washed  with  PBS-­‐‑Tween  buffer  and  then  submitted  to   the   hybridization   protocol.   A   pre-­‐‑warmed   (46°C)   solution   containing   4   µl   of   each   selected   oligonucleotide   probe   (50   ng/µl)   was   mixed   with   hybridization   buffer   containing  0.9  M  NaCl,  20  mM  Tris-­‐‑HCl,  pH  8,  20%  formamide  (Fisher,  Fair  Lawn,  NJ)   and   0.01%   SDS,   to   make   up   a   volume   of   100   µl   per   hybridized   slide.   The   solution   was   applied  on  the  tissue  sections  and  incubated  in  a  dark-­‐‑humid  histochemistry  staining   tray   (IBI   Scientific,   Kapp   Court   Peosta,   IA)   for   3h   at   46°C.   Immediately   following   hybridization,   slides   were   washed   twice   for   25   min   at   48°C   each,   with   pre-­‐‑warmed   (48°C)  washing  buffer  containing  0.9  M  NaCl,  20  mM  Tris-­‐‑HCl,  pH  8,  and  0.01%  SDS.   Finally,  the  slides  were  rinsed  with  ice-­‐‑cold  ultrapure  water,  gently  dried  with  a  paper   towel  and  mounted  with  ProLong  Diamond  antifade  mountant  with  DAPI  (Molecular   ® Probes,  USA).  The  mounting  media  was  cured  for  at  least  24  h  at  room  temperature   before  analysis  of  the  slides.     Confocal  Laser  Scan  Microscopy  (CLSM).  A  Nikon  C2  Laser  Scanning  Confocal   Microscope   (Nikon   Instruments   Inc.,   Melville,   NY)   equipped   with   405nm,   488nm,     130   561nm   and   633   nm   lasers   was   used   to   acquire   the   images.   Image   processing   was   performed  with  NIS  Element  viewer  software    (Nikon,  version  4.1.11).   Scanning  Electron  Microscopy  (SEM).  Tissue  samples  stored  in  50%  ethanol   were  dehydrated  in  a  series  of  graded  ethanol  solutions  (50%,  75%,  95%)  for  20  min   at  each  gradation  followed  by  three  10  min  changes  in  100%  ethanol,   dried   by   critical   point   drying   with   a   Leica   Microsystems   model   EM   CPD   300   (Leica   Microsystems,   Vienna,   Austria),   mounted   on   aluminum   stubs   using   carbon   suspension   cement   (SPI   Supplies,   West   Chester,   PA)   and   adhesive   tabs   (M.E.   Taylor   Engineering,   Brookville,   MD),   coated  with  iridium   for  30  sec   in  a  Quorum  Technologies/Electron  Microscopy   sciences  Q150T  turbo  pumped  sputter  coater  (Quorum  Technologies,  Laughton,  East   Sussex,  England  BN8  6BN),  and  observed  with  a  JEOL  7500F  (field  emission  emitter)   scanning  electron  microscope  (JEOL  LTd.,  Tokyo,  Japan).     RESULTS     Previous  research  by  our  group  analyzing  the  composition  and  development  of   microbial   communities   present   in   the   tonsillar   tissue   of   pigs   using   culture-­‐‑ independent   sequencing   of   bacterial   16s   rRNA   genes   demonstrated   both   the   successional  development  of  the  tonsil  microbiome  and  that  the  three  most  common   taxa   seen   throughout   the   lives   of   pigs   were   Streptococcus,   Pasteurellaceae,   and   Moraxella    [21,  22,  29,  30].  Here  we  used  both  FISH  to  localize  these  three  major  taxa   in  tonsil  tissue  and  SEM  to  characterize  the  overall  structure  of  the  tonsil  tissue  over   the  lives  of  pigs.     131   Validation   of   the   probes.   We   validated   our   specific   probes   using   fixed   cells   from   pure   cultures   of   the   bacteria   Streptococcus   suis,   Staphylococcus   aureus,   Pasteurella  multocida,  Escherichia  coli  and  Moraxella  bovis.  Smears  of  mixed  bacterial   cells   and   the   above   mentioned   combinations   of   probes   were   used   to   identify   the   positive   labeling   of   cells   with   the   morphological   features   of   members   of   the   genera   Streptococcus,   Pasteurella   and   Moraxella,   when   hybridized   with   their   specific   probe   and  when  stained  with  DAPI,  which  stains  nuclear  DNA  (Figure  4.1.A.).  Bacterial  cells   inoculated  onto  muscle  tissue  showed  similar  results  to  those  obtained  with  smears  of   mixed  bacterial  cells  (Figure  4.1.B).     Spatial  structure  of  communities  on  the  tonsils  using  FISH.   After   validating   the   probes,   tonsil   samples   were   processed   from   all   the   1,   3,   4   and   17   week   piglets.   FISH   was   performed   with   combinations   of   probes   EUB338-­‐‑NON338,   EUB338-­‐‑ STR405-­‐‑PAS11,   MOR575-­‐‑EUB338-­‐‑PAS11   or   MOR575-­‐‑STR405-­‐‑PAS11,   all   mounted   with  ProLong  Diamond  antifade  mountant  with  DAPI.  There  was  positive  labeling  of   ® Streptococcus  cells  with  EUB338  or  STR405  probes,  and  positive  staining  with  DAPI  in   pig  tonsil  tissue;  however  there  was  no  consistent  specific  labeling  of  tonsil  specimens   with   either   the   PAS111   or   MOR575   probes   at   any   time   point   tested   (Figure   4.1.C   to   4.1.F).  There  was  extensive  non-­‐‑specific  labeling  of  granular  structures  disseminated   on   the   epithelial   surface   (Figure   4.1.F   and   Figure   4.2.A.)   as   well   as   in   other   tissue   locations   (intraepithelial   and   in   submucosa).   The   non-­‐‑specific   labeling   was   evident   with   all   combinations   of   probes   and   made   the   definitive   identification   of   positively   labeled  bacterial  cells  extremely  difficult.  An  SEM  image  of  the  tonsillar  surface  from   an   eight   week   old   pig   showed   some   elements   that   could   have   been   part   of   the     132   unspecific  labeled  material  observed  in  FISH  (Figure  4.2.B),  and  demonstrated  all  the   material   observed   on   the   tonsillar   surface   that   made   the   use   of   FISH   difficult   and   problem  prone.     Although   previous   research   by   our   group   [21,   22,   29,   30]   using   culture-­‐‑ independent   sequencing   of   bacterial   16s   rRNA   genes   showed   that   Streptococcus,   Pasteurellaceae,   and   Moraxellaceae   as   well   as   many   other   taxa   are   present   in   pig   tonsils,   we   were   not   able   to   reliably   identify   bacterial   taxa   other   than   members   of   genus  Streptococcus  or  bacterial  cells  stained  with  the  generic  eubacterial  probe  using   FISH.   Therefore,   we   decided   to   use   SEM   to   identify   the   presence   and   appearance   of   microbial  communities  in  the  tonsillar  tissue  of  the  sampled  pigs.       133     Figure   4.1.   Representative   images   for   the   validation   of   FISH   probes   and   identification   of   Streptococcus   cells   on   the   tonsillar   surface.   A,   Oligonucleotide   probes   were   validated   with   bacterial   cell   smears   using   DAPI   staining   (blue)   and   probes   specific   for   Moraxella   (green),   Streptococcus   (orange)   and   Pasteurellaceae   (purple).   B,   Validated   oligonucleotide   probes   using   aseptically   collected   muscle   inoculated     with   a   mixed   bacterial   population.   Nuclear   DNA   of   myocytes   (blue),     134   Figure   4.1.   (cont´d).    Moraxella  (green),  Streptococcus  (orange)    and    Pasteurellaceae     (purple).  C,      Tonsil  tissue  from  a  one  week  old  pig.  Streptococcus  cells  are  visualized  in   orange  (short  arrow),  lying  on  the  surface  of  the  nonkeratinized  stratified  squamous   epithelia  of  tonsils  (*).  D,  Tonsil  tissue  from  a  three  week  old  pig.  Streptococcus  cells   barely  visualized  in  orange  (short  arrow),  on  the  surface  of  the  epithelium  (*),  covered   by   a   layer   of   cellular   debris   (long   arrow).   E,   Tonsil   tissue   from   a   four   week   old   pig.   Chain   of   Streptococcus   (orange   –   short   arrow)   lying   on   the   epithelial   surface   (*).   Cellular   debris   (long   arrow).   F,   Tonsil   tissue   from   a   ten   week   old   pig.   Long   chain   of   Streptococcus   (orange   -­‐‑   short   arrow)   and   cellular   debris   (long   arrow),   lying   on   the   epithelial  surface  (*).  Multiple  structures  with  granular  appearance  and  different  sizes   (arrow  heads)  are  evident  as  well  as  cellular  debris  (long  arrow)  staining  with  DAPI   (blue).       Figure  4.2.  Representative  images  of  bacterial  cells  and  cellular  debris  in  tonsils   using   FISH   and   SEM.   A,   Confocal   image   of   tonsil   tissue   from   a   one   week   old   pig   showing   positively   hybridized   Streptococus   (orange   -­‐‑   short   arrow)   on   the   epithelial   surface   (*)   and   structures   of   diverse   sizes   displaying   non-­‐‑specific   labeling   (orange   –       135   Figure   4.2.   (cont´d).     arrow   heads)   and       cellular       debris   (long   arrows).     B,     SEM     image     from     an     eight     week     old   pig   showing   bacterial   cells   (short   arrows)   on   the   tonsillar  epithelial  surface  (*),  surrounded  by  cellular  debris  (long  arrows)  and  a  layer   of  mucous/exopolysaccharide  material  (+).                                           136   Spatial   structure   of   communities   on   the   tonsils   using   SEM.   Using   SEM,     tonsillar  tissues  of  one,  three,  four,  eight,  ten  and  seventeen  week  old  piglets  showed  a   pattern   of   succession   in   the   development   of   microbial   communities   in   the   tonsillar   tissue   of   pigs.   The   characteristics   of   tonsils   tended   to   vary   between   animals   of   the   same   age,   with   respect   to   the   number   of   bacterial   cells   and   amount   of   detritus   identified.     However,   there   were   general   features   displayed   by   the   pigs   at   each   time   point.   The   tonsillar   surface   of   one   week   old   pigs   showed   a   smooth,   clean   surface   with   little   debris   (Figure   4.3.A),   with   crypts   relatively   clean   and   devoid   of   debris   (Figure   4.3.B-­‐‑4.3.C).  There  were  scattered  small  communities  of  bacterial  cells  (Figure  4.3.D-­‐‑ 4.3.E)   composed   mainly   of   lancet-­‐‑shaped   diplococci,   long   rods,   short   rods   and   diplobacilli.   Also,   two   types   of   epithelial   cell   surfaces   were   evident:   those   with   loosely   arranged   microplicae   in   microridges,   and   those   with   densely   packed   microplicae   appearing   as   very   short   microvilli   [31].   The   initial   attachment   of   bacterial   cells   to   surface   microplicae   of   the   epithelial   cells   (Figure   4.3.F),   using   their   pili,   was   clearly   seen.       In  three  week  old  piglets,  the  tonsils  were  characterized  by  a  tonsillar  surface   with   a   more   rugose   appearance   (Figure   4.4.A)   and   wider   crypt   entrances.   Increased   debris   was   evident   in   the   lumen   of   crypts   (Figure   4.4.B   to   4.4.D)   and   larger   micro-­‐‑ communities   of   diverse   bacteria   were   seen   (Figure   4.4.C   to   4.4.E).   The   random   appearance   of   an   echynocite   was   also   observed   (Figure   4.4.D).   Bacterial   micro-­‐‑ communities   composed   mainly   of   short   rods,   diplococci,   diplobacilli   and   cocci   were   observed  (Figure  4.4.E  –  4.4.F).       137     Figure  4.3.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue   from   one   week   old   pigs.   A,   tonsillar   tissue   of   one   week   old   pigs   showing   shallow   crypts  (c)  with  little  debris  (long  arrow)  and  a  very  clean  and  smooth  tonsil  surface.  B,   Crypt   (c)   showing   presence   of   a   small   amount   of   debris   (long   arrow)   and   desquamating  epithelial    cells    (d).    C,    Demonstration    of    small    sparse    micro-­‐‑colonies         138   Figure   4.3.   (cont´d).   (short   arrow)   around   a   crypt   (c)   entrance.   D,   Small   micro-­‐‑ colonies   of   bacterial   cells   (short   arrows)   on   the   epithelial   surface   as   well   as   few   dispersed   bacterial   cells.   Two   types   of   epithelial   cell   surfaces   with   loosely   arranged   (e1)  or  densely  packed  (e2)  microplicae  are  shown.  E,  Detailed  view  of  a  small  micro-­‐‑ colony  (short  arrow)  on  epithelial  cells  showing  the  two  types  of  epithelial  cells  with   surface   microplicae.   Diverse   bacterial   morphologies:   lancet-­‐‑shaped   diplococci   (dc),   long  rods  (lr),  short  rods  (sr),  diplobacillus  (db),  were  present.  F,  Diplococci  (dc)  using   pili  (arrow  head)  to  attach  to  the  crests  of  microplicae  (long  arrow).                                     139     Figure  4.4.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue   from   three   week   old   pigs.   A,   tonsillar   tissue   showing   the   edges   of   crypts   (c)   becoming   more   rugose,   and   crypt   entrance   wider   and   with   debris   (long   arrow).   B,   Lots  of  debris  (long  arrow)  within  crypts  and  some  desquamating  epithelial  cells  (d).     C,  Small  clusters  of    bacteria      micro-­‐‑colonies    (short  arrow)    scattered    around  a  crypt     140    Figure  4.4.   (cont´d).     entrance.    D,  An  echynocite  (ec)  lying  beside  a  bacterial  micro-­‐‑ colony  on  the  epithelial  surface.  Bacterial  cells  are  densely  packed.    E,  Detailed  view  of   a  small  micro-­‐‑colony  (short  arrow)  on  an  epithelial  cell  showing  a  population  formed   mainly   by   small   rods   (sr).   F,   Diverse   bacterial   morphologies:   diplococci   (dc),   diplobacilli   (db),   cocci   (co)   and   small   rods   (sr)   interacting   using   their   pili   (arrow   head).                                     141   The   fourth   week,   which   is   marked   as   a   stressful   post   weaning   time   with   movement   of   the   animals   to   new   rooms,   as   well   as   switching   to   solid   feed     supplemented    with    an    antibiotic    growth    promoter    in    the    diet,    showed  a  different   view.   Tonsillar   crypt   width   continued   to   increase   (Figure   4.5.A)   and   parts   of   the   tonsillar   surface   were   covered   by   patches   and   strands   of   debris   and/or   mucous/exopolysaccharide   material   (Figure   4.5.A   to   4.5.E).   The   lumen   of   crypts   appeared   particularly   empty.   However,   small   micro-­‐‑communities,   mainly   composed   of   diplococci   and   short   rods   and   few   large   rods   were   identified   around   crypts   (Figure   4.5.C  to  4.5.F).     By   the   eighth   week,   after   the   piglets   were   on   a   solid   diet   supplemented   with   two  different  antibiotics  used  as  growth  promoters  in  feed  for  4-­‐‑5  weeks,  the  rugose   appearance   of   the   tonsillar   surface   returned   and   there   was   a   noticeable   amount   of   debris  and  mucous/exopolysaccharide  material  covering  the  lumen  of  crypts  and  the   tonsillar   surface   (Figure   4.6.A   –   4.6.B).   Small   clusters   of   micro-­‐‑communities   were   evident   in   the   periphery   of   the   crypts   (Figure   4.6.C).   Long   rods   displaying   a   characteristic   boxcar   shaped   morphology   were   widely   seen   (Figure   4.6.D   –   4.6.E)   as   well  as  lower  proportions  of  cocci,  short  rods  and  diplococci  interacting  and  attaching   to  the  cell  surface  and  to  the  neighboring  bacterial  cells  (Figure  4.6.E  –  4.6.F).       142     Figure  4.5.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue   from   four   week   old   pigs.   A,   tonsillar   tissue   of   four   week   old   pigs   showing   few   patches   of   debris   (long   arrow)   in   the   crypts   (c),   which   had   wider   entrances,   and   covering  the  surface  of  tonsils.  B,      Crypt      (c)      almost      empty,      with      very  little  debris   (long  arrow).    C,    Small      clusters      of    bacterial    micro-­‐‑colonies    (short  arrow)    scattered       143   Figure  4.5.  (cont´d).     around   a   crypt   entrance   (c),   surrounded   and/or   covered   with   strands   of   mucous/exopolysaccharide   material   (*).     D,   Bacterial   micro-­‐‑colony   (short   arrow)  on  epithelial  surface.  Bacterial  cells  are  densely  packed  and  covered  by  strands   and   patches   of   mucous/exopolysaccharide   material   (*).   E,   Detailed   view   of   a   small   micro-­‐‑colony   (short   arrow)   on   an   epithelial   cell   (e1)   showing   a   relatively   clear   epithelial   surface   with   presence   of   strands   of   mucous/exopolysaccharide   material   (*).   Bacterial  cells  of  the  type  diplococci  (dc)  as  well  as  small  rods  (sr)  and  a  large  curved   rod   (lr)   were   evident.   F,   Lancet-­‐‑shaped   diplococci   (dc)   and   long   rods   (lr)   interacting   and  covered  by  strands  of  mucous/exopolysaccharide  material  (*).                               144     Figure  4.6.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue   from  eight  week  old  pigs.   A,   Tonsillar   tissue   showing   rugose   crypts   (c)   and   a   rugose   appearance   of   the   surface,   with   patches   of   scattered   mucous/exopolysaccharide   material  (*)  covering  the  surface  of  tonsils.  B,  Crypt  (c)  packed  with  abundant  debris   and        some        desquamating        epithelial        cells        (d).      C,        Small        clusters        of      bacterial     145   Figure   4.6.   (cont´d).     micro-­‐‑colonies   (arrow)   scattered   around   a   crypt,   with   some   desquamating   cells   (d)   and   debris   (long   arrow).   D,   Bacterial   micro-­‐‑colony   (short   arrow)   on   the   epithelial   surface   and   on   an   apparently   desquamating   cell   (d).   Bacterial   cell  morphology  was  dominated  by  large  boxcar-­‐‑shaped  rods  (lr).  E,  Detailed  view  of  a   small   micro-­‐‑colony   (short   arrow)   on   an   epithelial   cell   showing   large   boxcar-­‐‑shaped   rods  (lr)  intermingled  with  some  cocci  (co)  and  small  rods  (sr).  F,  Chain  of  diplococci   (dc)   and   small   rods   (sr),   using   their   pili   (arrow   head)   to   attach   to   the   crests   of   microplicae  and  to  the  neighboring  bacterial  cells.                                 146   The   panorama   for   the   tenth   week   looked   similar   to   week   eight,   where   the   tonsillar  surface  and  crypts  had  a  rugose  appearance,  crypts  appeared  wider,  and  the   presence   of   debris   and   mucous/exopolysaccharide   material   was   evident   (Figure   4.7.A   –  4.7.B).  Broad  micro-­‐‑communities  were  observed  in  the  periphery  of  the  crypt  lumen   (Figure   4.7.C   –   4.7.D),   and   were   characterized   by   the   presence   of   multiple   cell   morphologies:   cocci,   diplococci,   and   large   and   small   rods,   which   were   interacting   closely  via  pili  with  each  other  and  with  the  epithelial  surface  (Figures  4.7.E  –  4.7.F).     Finally,   tonsils   in   the   seventeenth   week   displayed   a   very   rugose   tonsillar   surface,   extensively   covered   by   a   layer   of   mucous/exopolysaccharide   material,   with   crypts   that   were   very   wide   and   full   of   debris   (Figure   4.8.A   –   4.8.B).   There   was   considerable  debris  covering  the  epithelial  surface  (Figure  4.8.C),  as    well    as  extensive     bacterial    micro-­‐‑communities    (Figure  4.8.D),    some    of    which  were  covered  by  a  layer   of   mucous/exopolysaccharide   material   (Figure   4.8.E).   Many   bacterial   cells   appeared   almost   embedded   in   the   surface   of   the   tonsil   epithelium.   The   bacterial   cells   were   interconnecting   extensively   with   the   neighbor   cells   as   depicted   by   the   presence   of   multiple  pili  intermingling  (Figure  4.8.F).   Similarly  to  the  changes  observed  in  the  tonsillar  surface  of  tonsils  throughout   the   different   samples,   multiple   bacterial   members   of   micro-­‐‑communities   were   identified  through  the  different  sampling  times.  These  bacteria  were  characterized  by   diverse   cellular   morphologies,   varying   from   lancet-­‐‑shaped   diplococci   and   small   thin   rods  in  the  first  week  (Figure  4.9.A);  large  chains  of  palisade  shaped  Alyssiella,  chains   of   cocci,   short   rods   and   long   rods,   in   the   third   week     (Figure   4.9.B);   diplococci,   long   rods   and   short   rods,   in   the   fourth   week   (Figure   4.9.C);   box-­‐‑car   shaped   rods,   lancet-­‐‑   147   shaped   diplococci,   cocci   and   long   rods,   in   the   eighth   week   (Figure   4.9.D);   long   rods,   cocci,   lancet-­‐‑shaped   diplococci   and   small   rods,   in   the   tenth   week   (Figure   4.9.E);   and   finally,  cocci  and  small  rods  in  the  seventeenth  week  (Figure  4.9.F).                                     148     Figure  4.7.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue   from  ten  week  old  pigs.   A,   Tonsillar   tissue   showing   rugose   crypts   (c)   and   a   rugose   appearance   of   the   surface.   Abundant   debris   (long   arrow)   in   the   crypt   entrance   and   mucous/exopolysaccharide   material   (*)   covering   patches   of   the   tonsil   surface.   B,     Crypt    (c)    with    abundant    debris    (long  arrow)    in    the    lumen    and    covering    the  walls.       149   Figure   4.7.   (cont´d).  C,  Large  bacterial  micro-­‐‑colony  (short  arrow)  in  the  entrance  of   a   crypt   (c),   surrounded   by   scattered   debris   (long   arrow).   D,   Bacterial   micro-­‐‑colonies   (short   arrows)   with   diverse   clustered   cells   covering   large   areas   of   the   epithelial   surface.   E,   Detailed   view   of   a   bacterial   micro-­‐‑colony   showing   an   intermingled   population  of  cocci  (co),  large  rods  (lr),  small  rods  (sr)  and  diplococci  (dc).  F,  A  diverse   bacterial   community   showing   interactions   between   small   rods   (sr),   cocci   (co),   diplococci  (dc)  extending  their  pili  (arrow  head)  to  the  neighboring  cells.                             150     Figure  4.8.  Representative  scanning  electron  microscopy  images  of  tonsil  tissue   from  seventeen  week  old  pigs.   A,   Tonsillar   surface   extensively   covered   by   a   layer   of   mucous/exopolysaccharide   material   (*)   and   crypts   (c)   full   of   debris   (long   arrow).   The   epithelial   surface   has   a   very   rugose   appearance.   B,   Crypt   fully   clogged   with   debris   (long  arrow).  Clear      presence      of      round      structures      with    smooth    surface,    likely         151   Figure   4.8.   (cont´d).   lymphocytes   (l).   C,   Epithelial   surface   extensively   covered   with   debris   (long   arrow).   A   bacterial   micro-­‐‑colony   (short   arrow)   and   multiple   round   and   smooth   structures,   likely   lymphocytes   (l)   are   present.   D,   Epithelial   surface   extensively   covered  by  a  bacterial  micro-­‐‑colony  (short  arrow).  E,  Detailed  view  of  diplococci  (dc)   and   small   rods   (sr),   appearing   almost   embedded   in   the   tonsil   epithelial   surface   and   covered   by   a   layer   of   mucous/exopolysaccharide   material   (*).   F,   Diplococci   (dc)   and   cocci  (co)  interacting  extensively,    with  pili  (arrow  head)  extended  to  the  neighboring   cells.                                 152     Figure   4.9.   Representative   bacterial   micro-­‐‑colonies   identified   through   the   different   sampling   times.  Scanning  electron  microscopy  images  from  tonsil  samples   of   pigs   in   different   times   of   their   life.   A,   Micro-­‐‑colony   formed   by   lancet-­‐‑shaped   diplococci   (dc)   and   small   thin   rods   (sr),   identified   in   one   week   old   pigs.   Bacterial   cells   are      loosely      disseminated    on      the    epithelial    surface.    B,    Micro-­‐‑colony    composed    of     153   Figure   4.9.   (cont´d).     several   large   palisade-­‐‑shaped   chains   of   actively   dividing   bacteria   with   pili   along   one   short   end   of   each   cell,   which   are   likely   Alyssiella   [32](arrow  head),  interacting  with  a  chain  of  cocci  (short  arrow),  short  rods  (sr)  and   long  rods  (large  arrow),  identified  in  a  three  week  old  pig.  C,  Micro-­‐‑colony  composed   of  diplococci  (dc),  long  rods  (lr),  and  short  rods  (sr),  identified  in  a  four  week  old  pig.   D,   Micro-­‐‑colony   composed   of   box-­‐‑car   shaped   rods   (arrow   head),   lancet-­‐‑shaped   diplococci  (short  arrow),  cocci  (long  arrow)  and  long  rods  (lr),  identified  in  an  eight   week  old  pig.    E.  Micro-­‐‑colony  composed  of  long  rods  (lr),  cocci  (arrow  head),  lancet-­‐‑ shaped  diplococci  (short  arrow),  small  rods  (long  arrow),  identified  in  a  ten  week  old   pig.   Extensive   interactions   between   bacteria.   F.   Micro-­‐‑colony   composed   of   cocci   (short   arrow)   and   small   rods   (large   arrow),   closely   interacting.   Bacterial   cells   seem   embedded  in  the  surface  of  the  epithelial  cells.                                           154   DISCUSSION     The   present   study   allowed   us   to   investigate   the   temporal   succession   of   tonsillar   bacterial   community   structures   in   pigs,   from   one   week   through   seventeen   weeks  old.  The  validation  of  the  oligonucleotide  probes  with  smears  of  bacterial  cells   as   wells   as   with   muscle   inoculated   with   bacterial   cells   was   successful.   However,   when   the   FISH   probes   were   used   on   tissues   derived   from   pig   tonsils,   only   bacteria   from   genus   Streptococcus   were   reliably   identified   on   the   epithelial   surface   of   tonsils   from   the  sampled  pigs.  While  Streptococcus  was  not  present  in  every  slide  for  each  animal,     there  was  positive  identification  of  Streptococcus  in  at  least  one  sample  examined  for   each  sampling  time.  The  initial  aim  of  this  study  was  to  characterize  the  assembly  of   the  three  most  abundant  taxa  identified  -­‐‑  Pasteurellaceae,  Streptococcus  and  Moraxella   -­‐‑   through   the   development   of   the   tonsillar   microbiome   of   pigs,   which   have   been   reported   as   being   present   throughout   the   lives   of   the   pigs   from   this   farm   [21,   22].   Nevertheless,   the   presence   of   marked   nonspecific   staining   of   multiple   structures   (Figure   4.1.F   and   4.2.A)   in   most   of   the   samples   with   all   the   fluorophores   used,   especially   Cy3   and   Cy5,   as   well   as   the   marked   autofluorescence   of   the   tonsil   tissue,   made   this   aim   unattainable   in   the   given   circumstances.   The   issues   of   non-­‐‑specific   background  and  the  possible  biases  when  analyzing  eukaryotic  tissues  processed    by     FISH    have    been  reported  previously  [33].  Further,  tissue  autofluorescence  has  been   associated   with   a   decrease   in   the   signal-­‐‑to-­‐‑noise   ratio   and   with   masking   the   true   fluorescent   signal,   when   working   with   FISH   [34].   We   did   not   quantify   these   phenomena   in   our   study,   but   certainly   the   high   presence   of   non-­‐‑specific   background     155   and  autofluorescence  negatively  influenced  our  ability  to  detect  reliably  the  signal  of   the  hybridized  probes.     It   is   difficult   to   detect   bacteria   when   using   FISH   probes   in   eukaryotic   tissue   when   the   bacterial   concentration   is   lower   than   105/ml   [35].   Hogart   et   al   [36]   demonstrated   that   FISH   is   a   highly   specific   technique,   albeit   with   a   moderate   sensitivity  when  dealing  with  bacteria  with  concentrations  lower  than  4  x  105  CFU/ml   in  sputum  samples.  Stepinska  et  al  [37]  compared  the  use  of  culture  isolation  vs  FISH   techniques   for   the   identification   of   bacterial   cells   from   lysates   of   CD14   cells   from   adenoids   and   tonsil   tissue,   and   although   they   stated   that   FISH   was   twice   more   effective  than  cultivation  in  detecting  bacteria,  they  also  could  not  obtain  positive  FISH   results   in   some   of   the   samples,   in   spite   of   being   able   to   isolate   bacterial   cells   from   them.  We  do  not  know  the  exact  concentration  of  bacterial  cells  in  each  of  our  samples,   although  we  have  previously  found  1  X  106  –  1.5  X  107  cfu  per  gram  of  tonsil  tissue  in   healthy   grower-­‐‑finisher   pigs.   Certainly,   using   a   culture-­‐‑independent   approach   by   sequencing  the  16s  rRNA  genes  of  tonsillar  samples  collected  from  pigs  from  the  same   farm,   we   characterized   these   three   bacterial   families   (Pasteurellaceae,   Streptococcaceae  and  Moraxellaceae)  as  present  in  a  high  relative  abundance  through   the  pigs’  life  [21,  22].   Moter   and   Göbel   [34]   have   described   the   possible   problems   and   pitfalls   in   using   FISH   for   visualization   of   microorganisms.   The   authors   mentioned   autofluorescence  and  lack  of  specificity  of  nucleotide  probes  as  possible  causes  of  false   positive   results   in   FISH   procedures.   Additionally,   they   mentioned   the   insufficient   penetration  of  the  probes,  higher  order  structure  of  target/probe,  low  RNA  content,  as     156   well   as   photobleaching   and   failure   to   use   a   probe   targeting   bacteria   in   general,   as   a   cause   of   false   negative   results.   In   the   present   study,   it   is   possible   that   the   non-­‐‑ detection   of   the   expected   microorganisms   in   the   samples   may   be   due   to   our   strict   quality   control,   where   we   did   not   accept   what   we   considered   to   be   possible   false   positive   results   where   we   saw   tissue   autofluorescence   or   non-­‐‑specific   labeling   of   eukaryotic   cells   or   granules   with   our   probes.   Since   the   oligonucleotide   probes   were   validated   with   bacterial   isolates   from   the   desired   taxa,   we   considered   that   we   were   targeting   the   specific   desired   microorganisms.   Probes   STR405,   PAS111   and   EUB338   were  validated  under  our  experimental  conditions.  These  probes  have  been  validated   in  previous  studies  of  microbial  communities  in  the  oral  cavity  of  humans  [16].    The   aforementioned  probes  targeted  a  very  broad  spectrum  of  microorganisms  in  each  of   the  desired  taxa.  We  also  validated  them  in  silico  against  representative  sequences  for   the   taxa   identified   as   more   abundant   in   samples   from   the   sampled   farm   (data   not   shown).  We  were  expecting  positive  identification  of  members  of  bacterial  taxa  related   with  the  probes.  On  the  other  hand,  we  designed  a  probe  targeting  a  broad  spectrum   of   microorganisms   of   the   genus   Moraxella   (MOR831),   that   was   tested   in   silico   as   a   good   probe   however,   we   were   not   able   to   validate   the   probe   against   multiple   Moraxella   isolates   (data   not   shown).   After   analyzing   our   designed   probe,   we   found   that   it   was   targeting   a   16s   rRNA   location   characterized   by   difficult   accessibility   and   giving  a  very  poor  fluorescence  [38].  We  designed  a  second  probe  (MOR575)  targeting   members   of   genus   Moraxella.   Unfortunately,   the   designed   probe   only   targeted   a   narrow   group   of   microorganisms   in   this   genus;   however   we   validated   the   probe   in   silico   against   representative   sequences   of   this   taxa   identified   in   our   previous   studies     157   [21,   22],   as   well   as   against   diverse   Moraxella   isolates   stored   in   our   lab   collection   of   microorganisms.  We  did  not  culture  Moraxella  isolates  from  the  sampled  pigs,  which   would   have   been   the   ideal   to   validate   our   probe   with   even   more   specificity.   The   designed   probe   when   examined,   still   provided   a   relative   low   fluorescence   intensity   (40%)  as  mentioned   by   Fush   et   al  [38].  It  may  be  possible  that  the  inability  to  identify   microorganisms   from   the   genus   Moraxella   in   the   samples,   was   due   to   the   excessive   autofluorescence  of  the  tissue  samples  and  the  low  signal-­‐‑to-­‐‑noise  ratio  of  the  probe.   It  also  may  be  due  to  the  fact  that  the  microorganisms  from  this  genus  present  in  the     samples  were  not  targeted  specifically  by  the  probe.     Swidsinski   and   Loening-­‐‑Baucke   [39],   reported   the   almost   total   absence   of   bacteria   in   the   epithelial   surface   of   human   tonsils,   even   in   samples   derived   from   tonsillectomy   of   patients   with   chronic   tonsillitis.   However,   the   positive   identification   of  bacteria  by  FISH,  in  tonsils  derived  from  patients  with  chronic  tonsillitis  has  been   reported   [35,   39].   The   authors   identified   high   concentrations   of   bacteria   attached   to   tonsils/adenoids   epithelia,   bacterial   infiltrations   of   superficial   epithelia,   bacteria   in   tissue   fistulas   and/or   fissures,   as   well   as   bacteria   contained   in   macrophages,   in   regions   of   tissue   associated   with   an   inflammatory   response.   In   the   present   study,   it   may   be   possible   that   what   we   sometimes   identified   as   non-­‐‑specific   labeling   of   granular  structures  in  the  submucosa  may  in  fact  be  positive  hybridization  to  bacterial   cells  inside  or  attached  to  phagocytic  cells,  masked  by  the  autofluorescence  and  non-­‐‑ specific   labeling   of   other   tissue   components   that   we   observed.       Further,   the   large   amount  of  mucous/exopolysaccharide  often  seen  on  the  tonsil  surface  and  within  the     158   crypts,  as  well  as  the  layers  of  bacteria  seen  in  colonies  in  the  older  piglets,  may  have   blocked  access  of  the  probes  to  many  bacteria.   Despite   the   negative   results   attained   in   this   study   to   investigate   the   temporal   succession  of  tonsillar  bacterial  community  structures  in  pigs  by  using  FISH,  when  we   used   SEM,   we   were   able   to   identify   a   pattern   of   succession   in   the   appearance   of   the     tonsillar   surface   as   well   as   in   the   width   of   the   crypts   and   more   importantly,   in   the   structure  of  the  tonsillar  micro-­‐‑communities  observed.  Initially  for  newborn  pigs,  the   tonsillar   surface   had   a   smooth   and   relatively   clean   surface   but   as   pigs   aged,   the   tonsillar  surface  acquired  a  more  rugose  texture.  The  crypt  entrances  also  changed  as   pigs   aged,   with   the   width   of   the   crypts   on   average   increasing   and   the   crypts   being   filled   with   debris   including   mucous/exopolysaccharide   material,   lymphocytes   and   cellular  detritus,  among  other  material.  The  presence  of  leucocytes,  Periodic  acid-­‐‑Shiff   (PAS)  positive  content  and  bacteria  in  the  lumen  of  crypts  has  been  reported  [40].   Samples   from   one   week   old   pigs   were   characterized   by   small   micro-­‐‑ communities   composed   mainly   of   lancet-­‐‑shaped   diplococci   and   small   rods.   We   identified  the  clear  attachment  of  many  of  these  diplococci  to  the  crest  of  microplicae   in   the   epithelial   surface   of   tonsils.   It   has   been   suggested   that   the   crest   of   epithelial   microplicae  are  used  for  initial  attachment  of  bacteria  [41]  and  this  was  demonstrated   for   Streptococcus  pyogenes   [42].     Certainly,   the   number   of   members   of   the   identified   micro-­‐‑communities   increased   with   the   time   as   well   as   the   interactions   between   individual  cells  with  the  neighboring  cells.  We  observed  micro-­‐‑colonies  with  bacterial   cells   apparently   embedded   in   the   epithelial   surface.   Similar   findings   of   bacteria   forming  apparent  depressions  in  the  cell  surface  of  epithelial  cells  in  tonsils  have  been     159   reported  [41].    We  saw  a  greater  number  of  cells  connected  via  pili  to  neighboring  cells   as  the   pigs  aged.  The  microbial  communities  identified  for  seventeen  weeks  old  pigs   seemed  to  be  covered  by  a  layer  of  mucous/exopolysaccharide  material.  It  was  not  an   aim  of  this  study  to  classify  the  chemical  nature  of  this  material.  However,  Kania  et  al   [43],   with   the   use   of   SEM,   FISH   and   special   stains,   demonstrated   the   presence   of   bacterial   micro-­‐‑colonies   immersed   in   a   matrix   of   glycocalix   in   tonsils   from   children   with   chronic   or   recurrent   tonsilitis,   which   they   called   biofilms.   We   only   can   say   that   the  structure  of  the  micro-­‐‑communities  or  micro-­‐‑colonies  changed  with  time  as  more   cells   were   included   in   the   micro-­‐‑community.   Similarly,   the   interactions   of   the   members  of  those  micro-­‐‑communities  seemed  to  increase  with  the  age  of  the  pigs,  as   we   observed   more   cells   interacting   via   pili   with   the   neighboring   cells   in   the   micro-­‐‑ community.    We  also  saw  large  numbers  of  lymphocytes  and  red  blood  cells,  as  well  as   echynocytes  (deformed  red  blood  cells)  in  many  of  the  samples.   Although   unfortunately,   we   cannot   classify   the   bacterial   cells   observed   with   SEM   taxonomically   beyond   the   cell   morphology,   we   certainly   saw   different   bacterial   shapes  forming  the  micro-­‐‑communities  throughout  the  life  of  the  pigs.  We  have  been   able  to  isolate  Streptococcus  suis  in  many  piglets  from  this  farm  at  birth,  and  from  all   the  piglets  from  the  same  litter  by  one  day  of  age  (unpublished  data).  We  studied  the   development   of   the   tonsillar   microbiome   in   pigs   from   the   farm   and   we   identified   different   OTUs   assigned   to   Streptococcus,   but   particularly   Streptococcus  suis   in   at   birth   piglets   as   well   as   constantly   throughout   the   life   of   pigs   [21,   22].   It   has   been   demonstrated  that  in  the  formation  of  dental  plaque  in  humans,  Streptococcus  acts  as  a   first   colonizer   and   facilitates   the   attachment/aggregation   of   other   members   of   the     160   bacterial   community   [7].   This   pattern   of   adhesions   and   interactions   between   mixed   species   forms   the   basis   of   spatiotemporal   development   of   the   dental   plaque   [5].   We   can  only  speculate  that  the  diplococcus-­‐‑shape  cells  that  we  saw  almost  constantly  in   all  the  samples  may  be  a  member  of  genus  Streptococcus  acting  as  first  colonizer  and   facilitating   the   building   up   of   the   bacterial   micro-­‐‑communities   observed   in   all   our   samples.   Members   of   genus   Streptococcus   were   positively   identified   in   samples   from   these   pigs,   using   FISH   probes   targeting   members   of   this   genus.   It   is   possible   that   bacteria   from   genus   Streptococcus   are   facilitating   the   attachment   of   bacterial   cells   from   other   taxa   (different   bacterial   shapes   observed)   and   building   up   the   communities  identified.       In  conclusion,  we  used  FISH  and  SEM  to  identify  the  structure  and  presence  of   diverse  bacterial  communities  on  the  surface  of  pig  tonsils  through  different  times  in   their  life.  We  identified  morphological  changes  in  the  appearance  of  pig  tonsils  and  the   bacterial  members  of  the  communities  on  tonsils  from  one,  three,  four,  eight,  ten  and   seventeen   weeks   old.   To   the   best   of   our   knowledge,   this   is   the   first   published   study   describing  the  morphological  changes  of  the  tonsillar  surface  in  pigs  associated  with     changes  in  the  microbial  communities  observed  through  different  times  in  their  life.                 161                         REFERENCES                           162   1.     2.     3.     4.     5.     6.     7.     8.     9.     10.     11.     REFERENCES         Horter  DC,  Yoon  KJ,  Zimmerman  JJ:  A  review  of  porcine  tonsils  in  immunity   and  disease.  Anim  Health  Res  Rev  2003,  4:143-­‐‑155.   Smith   TC,   Harper   AL,   Nair   R,   Wardyn   SE,   Hanson   BM,   Ferguson   DD,   Dressler   AE:   Emerging   swine   zoonoses.   Vector-­‐‑Borne   and   Zoonotic   Diseases   2011,   11:1225-­‐‑1234.   Kolenbrander   PE,   Palmer   RJ,   Periasamy   S,   Jakubovics   NS:   Oral   multispecies   biofilm  development  and  the  key  role  of  cell-­‐‑cell  distance.  Nature  Reviews   Microbiology  2010,  8:471-­‐‑480.   Kolenbrander   PE,   London   J:   Adhere   today,   here   tomorrow:   oral   bacterial   adherence.  Journal  of  Bacteriology  1993,  175:3247-­‐‑3252.   Palmer   RJ,   Gordon   SM,   Cisar   JO,   Kolenbrander   PE:   Coaggregation-­‐‑mediated   interactions   of   Streptococci   and   Actinomyces   detected   in   initial   human   dental  plaque.  Journal  of  Bacteriology  2003,  185:3400-­‐‑3409.   Kolenbrander   PE,   Andersen   RN,   Blehert   DS,   Egland   PG,   Foster   JS,   Palmer   RJ:   Communication   among   oral   bacteria.   Microbiology   and   Molecular   Biology   Reviews  2002,  66:486-­‐‑505.   Kolenbrander   PE,   Ganeshkumar   N,   Cassels   FJ,   Hughes   CV:   Coaggregation-­‐‑ specific   adherence   among   human   oral   plaque   bacteria.  Faseb  Journal  1993,   7:406-­‐‑413.   Moter   A,   Leist   G,   Rudolph   R,   Schrank   K,   Choi   BK,   Wagner   M,   Gobel   UB:   Fluorescence   in   situ   hybridization   shows   spatial   distribution   of   as   yet   uncultured   treponemes   in   biopsies   from   digital   dermatitis   lesions.   Microbiology-­‐‑Uk  1998,  144:2459-­‐‑2467.   Noiri   Y,   Li   L,   Ebisu   S:   The   localization   of   periodontal-­‐‑disease-­‐‑associated   bacteria   in   human   periodontal   pockets.   Journal   of   Dental   Research   2001,   80:1930-­‐‑1934.   Swidsinski   A,   Loening-­‐‑Baucke   V,   Verstraelen   H,   Osowska   S,   Doerffel   Y:   Biostructure   of   fecal   microbiota   in   healthy   subjects   and   patients   with   chronic  idiopathic  diarrhea.  Gastroenterology  2008,  135:568-­‐‑579.   Zijnge   V,   van   Leeuwen   MBM,   Degener   JE,   Abbas   F,   Thurnheer   T,   Gmur   R,   Harmsen   HJM:   Oral   biofilm   architecture   on   natural   teeth.   Plos   One   2010,   5:9.   163     12.     13.     14.     15.     16.     17.     18.     19.   Drescher  J,  Schlafer  S,  Schaudinn  C,  Riep  B,  Neumann  K,  Friedmann  A,  Petrich   A,   Gobel   UB,   Moter   A:   Molecular   epidemiology   and   spatial   distribution   of   Selenomonas  spp.  in  subgingival  biofilms.   European   Journal   of   Oral   Sciences   2010,  118:466-­‐‑474.   Da   Silva   S,   Robbe-­‐‑Masselot   C,   Raymond   A,   Mercade-­‐‑Loubiere   M,   Salvador-­‐‑ Cartier  C,  Ringot  B,  Leonard  R,  Fourquaux  I,  Ait-­‐‑Belgnaoui  A,  Loubiere  P,  et  al:   Spatial   localization   and   binding   of   the   probiotic   Lactobacillus   farciminis   to   the   rat   intestinal   mucosa:   influence   of   chronic   stress.   Plos   One   2015,   10:16.   Al-­‐‑Ahmad   A,   Wunder   A,   Auschill   TM,   Follo   M,   Braun   G,   Hellwig   E,   Arweiler   NB:   The   in   vivo   dynamics   of   Streptococcus   spp.,   Actinomyces   naeslundii,   Fusobacterium  nucleatum  and  Veillonella  spp.  in  dental  plaque  biofilm  as   analysed   by   five-­‐‑colour   multiplex   fluorescence   in   situ   hybridization.   Journal  of  Medical  Microbiology  2007,  56:681-­‐‑687.   Dige  I,  Nilsson  H,  Kilian  M,  Nyvad  B:  In  situ  identification  of  Streptococci  and   other   bacteria   in   initial   dental   biofilm   by   confocal   laser   scanning   microscopy  and  fluorescence  in  situ  hybridization.   European  Journal  of  Oral   Sciences  2007,  115:459-­‐‑467.   Valm   AM,   Welch   JLM,   Rieken   CW,   Hasegawa   Y,   Sogin   ML,   Oldenbourg   R,   Dewhirst   FE,   Borisy   GG:   Systems-­‐‑level   analysis   of   microbial   community   organization   through   combinatorial   labeling   and   spectral   imaging.   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America   2011,  108:4152-­‐‑4157.   Dritz   SS,   Changappa   MM,   Nelssen   JL,   Tokach   MD,   Goodband   RD,   Nietfeld   JC,   Staats   JJ:   Growth   and   microbial   flora   of   nonmedicated,   segregated,   early   weaned   pigs   from   a   commercial   swine   operation.   Journal  of  the  American   Veterinary  Medical  Association  1996,  208:711-­‐‑715.   Torremorell   M,   Calsamiglia   M,   Pijoan   C:   Colonization   of   suckling   pigs   by   Streptococcus   suis   with   particular   reference   to   pathogenic   serotype   2   strains.   Canadian   Journal   of   Veterinary   Research-­‐‑Revue   Canadienne   De   Recherche  Veterinaire  1998,  62:21-­‐‑26.   Swildens   B,   Nielen   M,   Wisselink   HJ,   Verheijden   JHM,   Stegeman   JA:   Elimination   of  strains  of  Streptococcus  suis  serotype  2  from  the  tonsils  of  carrier  sows   by  combined  medication  and  vaccination.   Veterinary  Record  2007,   160:619-­‐‑ 621.       164   20.   21.     22.     23.     24.     25.     26.     27.     28.     29.     30.       Alexander   TJL,   Thornton   K,   Boon   G,   Gush   AF,   Lysons   RJ:   Medicated  early   weaning  to  obtain  pigs  free  from  pathogens  endemic  in  the  herd  of  origin.   Veterinary  Record  1980,  106:114-­‐‑119.   Peña-­‐‑Cortes   LC,   LeVeque   RM,   Funk   J,   Marsh   TL,   Mulks   MH:   Development   of   the   tonsillar   microbiome   in   pigs   from   newborn   through   weaning.     (University  MS  ed.;  2017.   Peña-­‐‑Cortes   LC,   LeVeque   RM,   Funk   J,   Marsh   TL,   Mulks   MH:   Development   of   tonsillar   microbiome   in   pigs   from   newborn   to   market   age.    (University  MS   ed.;  2017.   Amann   RI,   Binder   BJ,   Olson   RJ,   Chisholm   SW,   Devereux   R,   Stahl   DA:   Combination   of   16S   rRNA-­‐‑targeted   oligonucleotide   probes   with   flow   cytometry   for   analyzing   mixed   microbial   populations.   Applied   and   Environmental  Microbiology  1990,  56:1919-­‐‑1925.   Wallner   G,   Amann   R,   Beisker   W:   Optimizing   fluorescent   in   situ   hybridization   with   rRNA-­‐‑targeted   oligonucleotide   probes   for   flow   cytometric  identification  of  microorganisms.  Cytometry  1993,  14:136-­‐‑143.   Paster   BJ,   Bartoszyk   IM,   Dewhirst   FE:   Identification   of   oral   streptococci   using   PCR-­‐‑based,   reverse-­‐‑capture,   checkerboard   hybridization.   Methods   in  Cell  Science  1998,  20:223-­‐‑231.   Loy   A,   Maixner   F,   Wagner   M,   Horn   M:   probeBase   -­‐‑   an   online   resource   for   rRNA-­‐‑targeted   oligonucleotide   probes:   new   features   2007.   Nucleic   Acids   Research  2007,  35:D800-­‐‑D804.   Ludwig  W,  Strunk  O,  Westram  R,  Richter  L,  Meier  H,  Yadhukumar,  Buchner  A,   Lai   T,   Steppi   S,   Jobb   G,   et   al:   ARB:   a   software   environment   for   sequence   data.  Nucleic  Acids  Research  2004,  32:1363-­‐‑1371.   Cole   JR,   Wang   Q,   Fish   JA,   Chai   BL,   McGarrell   DM,   Sun   YN,   Brown   CT,   Porras-­‐‑ Alfaro   A,   Kuske   CR,   Tiedje   JM:   Ribosomal  Database  Project:  data  and  tools   for   high   throughput   rRNA   analysis.   Nucleic  Acids  Research  2014,   42:D633-­‐‑ D642.   Lowe   BA,   Marsh   TL,   Isaacs-­‐‑Cosgrove   N,   Kirkwood   RN,   Kiupel   M,   Mulks   MH:   Defining   the   "core   microbiome"   of   the   microbial   communities   in   the   tonsils  of  healthy  pigs.  Bmc  Microbiology  2012,  12:14.   Lowe   BA,   Marsh   TL,   Isaacs-­‐‑Cosgrove   N,   Kirkwood   RN,   Kiupel   M,   Mulks   MH:   Microbial   communities   in   the   tonsils   of   healthy   pigs.   Veterinary   Microbiology  2011,  147:346-­‐‑357.   165   31.   32.     33.     34.     35.     36.     37.     38.     39.     40.   Casteleyn  C,  Cornelissen  M,  Simoens  P,  Van  Den  Broeck  W:  Ultramicroscopic   examination  of  the  ovine  tonsillar  epithelia.  Anatomical  Record-­‐‑Advances  in   Integrative  Anatomy  and  Evolutionary  Biology  2010,  293:879-­‐‑889.   McCowan   RP,   Cheng   KJ,   Costerton   JW:   Colonization   of   a   portion   of   the   bovine  tongue  by  unusual  filamentous  bacteria.  Applied  and  Environmental   Microbiology  1979,  37:1224-­‐‑1229.   Swidsinski  A:  Standards   for   bacterial   identification   by   fluorescence   in   situ   hybridization   within   eukaryotic   tissue   using   ribosornal   rRNA-­‐‑based   probes.  Inflammatory  Bowel  Diseases  2006,  12:824-­‐‑826.   Moter   A,   Gobel   UB:   Fluorescence   in   situ   hybridization   (FISH)   for   direct   visualization   of   microorganisms.   Journal   of   Microbiological   Methods   2000,   41:85-­‐‑112.   Swidsinski   A,   Goektas   O,   Bessler   C,   Loening-­‐‑Baucke   V,   Hale   LP,   Andree   H,   Weizenegger   M,   Hoelzl   M,   Scherer   H,   Lochs   H:   Spatial   organisation   of   microbiota   in   quiescent   adenoiditis   and   tonsillitis.   Journal   of   Clinical   Pathology  2007,  60:253-­‐‑260.   Hogardt   M,   Trebesius   K,   Geiger   AM,   Hornef   M,   Rosenecker   J,   Heesemann   J:   Specific   and   rapid   detection   by   fluorescent   in   situ   hybridization   of   bacteria  in  clinical  samples  obtained  from  cystic  fibrosis  patients.  Journal   of  Clinical  Microbiology  2000,  38:818-­‐‑825.   Stepinska   M,   Olszewska-­‐‑Sosinska   O,   Lau-­‐‑Dworak   M,   Zielnik-­‐‑Jurkiewicz   B,   Trafny   EA:   Identification   of   intracellular   bacteria   in   adenoid   and   tonsil   tissue   specimens:   the   efficiency   of   culture   versus   fluorescent   in   situ   hybridization  (FISH).  Current  Microbiology  2014,  68:21-­‐‑29.   Fuchs   BM,   Wallner   G,   Beisker   W,   Schwippl   I,   Ludwig   W,   Amann   R:   Flow   cytometric  analysis  of  the  in  situ  accessibility  of  Escherichia  coli  16S  rRNA   for   fluorescently   labeled   oligonucleotide   probes.   Applied   and   Environmental  Microbiology  1998,  64:4973-­‐‑4982.   Swidsinski   A,   Loening-­‐‑Baucke   V:   Functional   structure   of   intestinal   microbiota   in   health   and   disease.   Human   Microbiota:   How   Microbial   Communities  Affect  Health  and  Disease  2013:211-­‐‑253.   Baykan   M,   Celik   I,   Gezici   M,   Donmez   HH,   Eken   E,   Sur   E,   Ozkan   Y:   A   light   microscopic   study   on   the   uptake   and   transportation   route   of   carbon   particles   in   the   canine   palatine   tonsil.   Revue  De  Medecine  Veterinaire  2001,   152:709-­‐‑715.       166   41.     42.     43.     Fredriksen   F,   Raisanen   S,   Myklebust   R,   Stenfors   LE:   Bacterial   adherence   to   the   surface   and   isolated   cell   epithelium   of   the   palatine   tonsils.   Acta  Oto-­‐‑ Laryngologica  1996,  116:620-­‐‑626.   Lilja   M,   Silvola   J,   Raisanen   S,   Stenfors   LE:   Where   are   the   receptors   for   Streptococcus   pyogenes   located   on   the   tonsillar   surface   epithelium?   International  Journal  of  Pediatric  Otorhinolaryngology  1999,  50:37-­‐‑43.   Kania  RE,  Lamers  GEM,  Vonk  MJ,  Huy  PTB,  Hiemstra  PS,  Bloemberg  GV,  Grote   JJ:   Demonstration   of   bacterial   cells   and   glycocalyx   in   biofilms   on   human   tonsils.  Archives  of  Otolaryngology-­‐‑Head  &  Neck  Surgery  2007,  133:115-­‐‑121.     167   CHAPTER  5.  SUMMARY  AND  FUTURE  DIRECTIONS                                                                                               168   SUMMARY     Tonsils   are   recognized   as   one   of   the   first   tissues   that   can   be   colonized   by   pathogens   entering   the   respiratory   or   oral   pathway.   Tonsils   can   be   used   as   a   primary   site   of   replication  for  some  bacterial  and  viral  agents  that  can  be  either  host-­‐‑specific  or  zoonotic   organisms.   Some   of   these   bacterial   agents,   such   as   Streptococcus   suis,   are   isolated   continuously   from   pig   tonsils   and   deserve   special   attention   especially   because   of   its   zoonotic    potential  and  economic  impact.  Further,  it  is  recognized  that  the  tissue-­‐‑resident   bacterial  microbiome  may  play  an  important  role  in  host  protection  against  colonization  by   pathogenic  microorganisms.  The  goal  of  this  study  was  to  characterize  the  development  of   the   composition   and   structure   of   the   tonsillar   microbiome   in   pigs   from   birth   through   market   age,   thus   laying   the   foundation   for   future   studies   concerning   the   interaction   of   pathogens  with  resident  microbial  communities  in  the  tonsils.   Studies   of   the   tonsillar   microbiome   of   pigs,   using   a   culture-­‐‑independent   approach   based   on   the   use   of   cloning   libraries,   have   identified   that   in   18   to   20   week   old   pigs   from   two   different   healthy   herds,   ~74%   of   the   microbiome     was   composed   of   members   of   the   families   Pasteurellaceae,   Porphyromonadaceae,   Bacteroidaceae   and   Prevotellaceae   [1].   However,   using   a   454-­‐‑pyrosequencing   approach   to   study   the   same   samples   and   new   samples  from  the  same  farm,  it  was  found  that  ~  90.4%  of  the  microbiome  was  composed   by   members   of   families   Pasteurellaceae,   Moraxellaceae,   Fusobacteriaceae,   Veillonellaceae,   Neisseriaceae,   Peptostreptococcaceae,   Enterobacteriaceae   and   Streptococcaceae   [2].   Notwhitstanding  these  previous  reports  studying  the  microbiome  in  pig  tonsils,  there  are   no  studies  focused  on  characterizing  the  development  of  the  tonsil  microbiome  in  pigs.     169   Based  on  studies  conducted  in  pigs  and  humans,  it  has  been  suggested  that  there  is  a     gradual   and   successional   process   in   the   development   of   the   intestinal   microbiome   [3-­‐‑6].   We   hypothesized   that   the   development   of   tonsillar   microbial   communities   in   pigs   also   follows   a   temporal   succession   process.   Since   there   are   no   published   reports   characterizing   the   development   of   microbial   communities   in   pig   tonsils,   we   decided   to   study   and   understand   the   development   of   the   microbiome   in   pig   tonsils,   in   continuance   of   the   previous  work  done  in  this  field  by  our  laboratory.   Our   lab   has   previously   developed   and   validated   a   non-­‐‑invasive   method   to   collect   tonsil   samples   and   used   this   method   to   describe   the   core   tonsil   microbiome   in   grower-­‐‑ finisher  pigs.  The  use  of  this  validated  methodology  allowed  us  to  follow  the  microbiome   development  of  each  animal  continuously  from  birth  (day  0)  up  to  market  age  (17  weeks).   Our  initial  approach  was  to  analyze  the  development  of  tonsillar  microbiome  in  pigs  during   the  first  few  weeks  of  age,  giving  special  attention  to  the  possible  sources  of  the  members   of   the   tonsil   community   and   to   the   challenging   time   of   weaning   and   the   effects   of   post   weaning   in   the   tonsillar   microbiome   communities.   We   found   that   the   microbiome   in   piglets,   collected   a   few   hour   post   birth   (PB),   showed   organisms   including   Streptococcus,   Staphylococcus,  Moraxella,  Rothia,  and  Pasteurellaceae  (OTUs  002,  009,  003,  007,  and  001   respectively)  as  the  most  abundant  in  tonsils  at  that  time.  We  compared  these  with  OTUs   found   in   maternal   vaginal,   teat   skin,   tonsil   and   fecal   samples   and   traced   that,   piglets   acquired   Pasteurellaceae   and   Streptococcus   from   the   sow   vaginal   tract   most   likely   during   parturition,  while    sow  teat  skin  (or  milk,  which  we  did  not  sample)  was  the  likely  source   for   Moraxella,   Staphylococcus   and   Rothia.     These   results   are   in   agreement   with   studies   of   Mandar   and   Mikelsaar   [5],   which   compared   vaginal   flora   of   human   mothers   with   the     170   microorganisms   that   initially   colonize   the   external   ear   canal   in   their   newborns   and   concluded   that   there   is   a   significant   influence   of   the   vaginal   microflora   in   the   initial   microbial   population   found   in   the   newborns.   Streptococcus   and   Staphylococcus   as   well   as   other  aerobes  have  been  commonly  reported  as  first  colonizers  in  infants,  possibly  derived   from  maternal  sources,  such  as  breast  milk  and  vagina.     Our   results   also   demonstrated   a   strong   litter   effect   in   the   initial   development   of   tonsillar   microbiome   in   pigs,   followed   by   a   gradual   successional   development,   where,   by   the   third   week,   the   microbiomes   of   all   piglets   was   highly   similar.   The   piglet   tonsil   microbiomes   were   clustered   tightly   by   litter   at   birth   and   at   week   1.   However,   this   clustering   was   no   longer   apparent   by   3   weeks   of   age.   In   the   successional   development,   some   organisms   found   in   high   proportions   initially   in   piglets   PB,   such   as   Staphylococcus   and  Micrococcaceae,  decreased  dramatically  within  the  next  2  weeks.  However,  members  of   the  families  Pasteurellaceae  and  Moraxellaceae,  increased  their  levels  in  parallel,  while  the   levels  of  others  decreased  mild  to  moderate,  as  the  case  of  Streptococcaceae.  Furthermore,   there   were   also   several   transitory   OTUs   or   families   that   appeared   and   disappeared   at   specific   time   points   such   as   Porphyromonadaceae,   Prevotellaceae,   and   Flavobacteriaceae   that   appeared   at   week   1   and   increased   slightly   over   the   next   2   weeks   or   such   as   Fusobacteriaceae   and   Leptotrichiaceae,   that   appeared   for   two   weeks   and   then   almost   disappeared.     Similar   results   in   the   succession   and   shifts   in   the   population   assembly   which   seemed  to  stabilize  over  time,  were  reported  in  the  development  of  intestinal  microbiome   in  humans  and  pigs  [5,  6].   Our   work   has   demonstrated   that   weaning   and   the   significant   stress   events   associated  with  it,  such  as  environmental,  social  and  feed  changes,  were  associated  with  a     171   major   shift   in   the   microbiome.   These   results   are   in   concordance   with   studies   of   development   of   intestinal   microbiome   which   demonstrated   that   transition   from   nursery   to   weaning  is  associated  with  a  significant  change  in  the  intestinal  microbiota  [8,  9].   After   having   identified   that   there   is   a   succession   in   the   microbiome   in   the   first   weeks  of  life  and  that  weaning  generated  significant  shifts  in  the  microbiome,  we  followed   how   the   microbiome   develops   further   during   the   life   of   pigs,   particularly   where   they   are   exposed   to   different   challenges   associated   with   normal   management   practices   in   a   swine   farm.   We   identified   four   major   challenging   conditions   that   were   related   with   perceptible   changes   in   the   relative   abundance   of   the   tonsillar   microbiome   populations.   The   first   challenge   was   previously   described   as   weaning,   which   occurred   in   parallel   with   the   vaccination   of   piglets,   movement   to   a   nursery   room,     and   introduction   to   a   solid   diet   based   on  pellet  ration  supplemented  with  Carbadox®.  The  second  challenge  was  associated  with   withdrawal   of   Carbadox®   supplementation   and   a   shift   to   feeding   with   a   ground   ration   supplemented  with  Tylan®.  The  third  challenge  was  associated  with  the  move  to  a  finishing   room,   as   well   as   the   separation   from   litter   mates   and   discontinuation   of   Tylan®   supplementation  from  the  ground  ration.  The  final  identified  challenge  was  associated  with   another  move  to  the    final  finishing  room.     The  identified  challenges  were  associated  with  shifts  in  the  composition  and  relative   percentages   of   families   of   the   microbiota.   These   challenges   frequently   occurred   as   combinations   of   several   stress   and   rarely   involved   a   singular   change   in   the   management   of   the   pigs.   Nevertheless,   supplementation   with   Carbadox®   or   Tylan®   have   been   associated   with  shifts  in  the  distribution  of  microbial  communities  in  the  intestine  [10,  11].  Similarly,   changes   in   the   environment   where   pigs   grow   [12,   13],   and   changes   in   their   diet   [8,   14,   15],     172   have  been  associated  also  with  shifts  in  the  microbial  communities  in  intestine.  However,   there  are  not  specific  studies  that  refer  to  changes  experienced  by  microbial  communities   of  pig  tonsils  when  the  aforementioned  conditions  are  present.     The   study   of   microbial   communities   in   tonsils   from   newborn   to   market   age   confirmed   that   there   is   a   succession   in   the   development   of   the   communities   through   different  ages  of  the  pigs.  However,  there  were  some  bacterial  families  that  dominated  the   tonsillar   microbiome   through-­‐‑out   the   life   of   pigs   such   as   members   of   Pasteurellaceae,   Streptococcaceae   and   Moraxellaceae,   although   their   relative   abundance   experienced   changes   after   the   challenging   events.   These   findings   are   supported   by   studies   done   in   fecal   microbiome  in  pigs,  reporting  that  some  phyla  dominate  the  microbiome  regardless  of  the   age   [16].   On   other   hand,   we   found   that   older   pigs   (16   weeks)   tended   to   have   a   microbiome   more   similar   to   the   microbiome   of   older   animals,   for   example   sows.   Similarly,   studies   in   human   intestinal   microbiota   have   shown   that   as   infants   age,   their   microbiota   was   more   similar  to  adults  microbiota  [3,  5].   Finally,   using   FISH   and   SEM,   we   confirmed   the   presence   of   diverse   bacterial   communities   on   the   surface   of   pig   tonsils   and   how   these   changed   through   their   life.   Further,  we  confirmed  the  presence  of  members  of  genus  Streptococcus  on  tonsillar  surface   of   pigs.   Finally,     we   have   also   identified   morphological   changes   in   the   appearance   of   pig   tonsils  and  the  bacterial  members  of  the  tonsil  communities  throughout  the  life  of  pigs.               173   FUTURE  DIRECTIONS     The  results  of  this  study  demonstrated  that  there  is  a  succession  in  the  development   of   tonsillar   communities   in   pigs.   We   identified   the   presence   of   some   bacterial   families   all   through   the   life   of   pigs   while   others   fluctuate   or   appeared   and   disappeared   sporadically.     We   can   only   speculate   on   the   initial   sources   of   tonsillar   microbiome.   We   don´t   know   the   effect   of   the   use   of     Carbadox   and   Tylan   or   other   antibiotics   in   the   development   and   ® ® succession  of  the  tonsillar  communities.  More  importantly,  we  don´t  know  the  role  played   by  normal  microbiota  in  the  acquisition  of  a  pathogenic  microorganism.  We  may  have  also   ignored   the   exact   role   played   by   some   members   of   the   microbial   communities   in   the   development  of  microbiome  structure  and  in  the  acquisition  of  potential  pathogens.  Finally,   we    do  not  know  if  the  arrival  of  these  pathogens  can  be  prevented  by  the  use  of  probiotics   or  specific  changes  in  the  management  practices.  All  these  questions  will  be  addressed  in   future  works  however;  initially  we  want  to  address  the  following  topics:   Future  direction  1.   Follow  the  development  of  the  tonsil  microbiome  in  a  second   herd,  possibly  one  with  a  chronic  problem  such  as  Salmonella.   Future  direction  2.  Examine  effect  of  acquisition  of  a  pathogen  known  to  colonize   the   tonsils,   such   as   Actinobacilllus   pleuropneumoniae   or   Salmonella   enterica,   on   the   composition  of  the  tonsil  microbiome.             174                         REFERENCES                               175   1.     2.     3.     4.     5.     6.     7.     8.     9.     10.     11.   REFERENCES         Lowe   BA,   Marsh   TL,   Isaacs-­‐‑Cosgrove   N,   Kirkwood   RN,   Kiupel   M,   Mulks   MH:   Microbial   communities   in   the   tonsils   of   healthy   pigs.   Veterinary   Microbiology   2011,  147:346-­‐‑357.   Lowe   BA,   Marsh   TL,   Isaacs-­‐‑Cosgrove   N,   Kirkwood   RN,   Kiupel   M,   Mulks   MH:   Defining   the   "core   microbiome"   of   the   microbial   communities   in   the   tonsils   of   healthy  pigs.  Bmc  Microbiology  2012,  12:14.   Bokulich   NA,   Chung   J,   Battaglia   T,   Henderson   N,   Jay   M,   Li   H,   Lieber   AD,   Wu   F,   Perez-­‐‑ Perez   GI,   Chen   Y,   et   al:   Antibiotics,   birth   mode,   and   diet   shape   microbiome   maturation  during  early  life.  Science  Translational  Medicine  2016,  8:13.   Koenig  JE,  Spor  A,  Scalfone  N,  Fricker  AD,  Stombaugh  J,  Knight  R,  Angenent  LT,  Ley   RE:  Succession  of  microbial  consortia  in  the  developing  infant  gut  microbiome.   Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  2011,   108:4578-­‐‑4585.   Palmer   C,   Bik   EM,   DiGiulio   DB,   Relman   DA,   Brown   PO:   Development   of   the   human   infant  intestinal  microbiota.  Plos  Biology  2007,  5:1556-­‐‑1573.   Inoue   R,   Tsukahara   T,   Nakanishi   N,   Ushida   K:   Development   of   the   intestinal   microbiota  in  the  piglet.  Journal  of  General  and  Applied  Microbiology  2005,  51:257-­‐‑ 265.   Mandar   R,   Mikelsaar   M:   Transmission   of   mother's   microflora   to   the   newborn   at   birth.  Biology  of  the  Neonate  1996,  69:30-­‐‑35.   Frese  SA,  Parker  K,  Calvert  CC,  Mills  DA:  Diet  shapes  the  gut  microbiome  of  pigs   during  nursing  and  weaning.  Microbiome  2015,  3:10.   Alain   B   Pajarillo   E,   Chae   J-­‐‑P,   Balolong   MP,   Bum   Kim   H,   Kang   D-­‐‑K:   Assessment   of   fecal  bacterial  diversity  among  healthy  piglets  during  the  weaning  transition.   The  Journal  of  general  and  applied  microbiology  2014,  60:140-­‐‑146.   Looft  T,  Allen  HK,  Casey  TA,  Alt  DP,  Stanton  TB:  Carbadox  has  both  temporary  and   lasting  effects  on  the  swine  gut  microbiota.  Frontiers  in  Microbiology  2014,  5:9.   Kim   HB,   Borewicz   K,   White   BA,   Singer   RS,   Sreevatsan   S,   Tu   ZJ,   Isaacson   RE:   Microbial   shifts   in   the   swine   distal   gut   in   response   to   the   treatment   with   antimicrobial   growth   promoter,   tylosin.   Proceedings   of   the   National   Academy   of   Sciences  of  the  United  States  of  America  2012,  109:15485-­‐‑15490.       176   12.     13.     14.     15.     16.     Mulder  IE,  Schmidt  B,  Stokes  CR,  Lewis  M,  Bailey  M,  Aminov  RI,  Prosser  JI,  Gill  BP,   Pluske   JR,   Mayer   CD,   et   al:   Environmentally-­‐‑acquired   bacteria   influence   microbial   diversity   and   natural   innate   immune   responses   at   gut   surfaces.   Bmc   Biology  2009,  7:20.   Thompson  CL,  Wang  B,  Holmes  AJ:  The  immediate  environment  during  postnatal   development   has   long-­‐‑term   impact   on   gut   community   structure   in   pigs.   Isme   Journal  2008,  2:739-­‐‑748.   Konstantinov  SR,  Zhu  WY,  Williams  BA,  Tamminga  S,  de  Vos  WM,  Akkermans  ADL:   Effect  of  fermentable  carbohydrates  on  piglet  faecal  bacterial  communities  as   revealed  by  denaturing  gradient  gel  electrophoresis  analysis  of  16S  ribosomal   DNA.  Fems  Microbiology  Ecology  2003,  43:225-­‐‑235.   Konstantinov  SR,  Favier  CF,  Zhu  WY,  Williams  BA,  Kluss  J,  Souffrant  WB,  de  Vos  WM,   Akkermans   ADL,   Smidt   H:   Microbial   diversity   studies   of   the   porcine   gastrointestinal   ecosystem   during   weaning   transition.   Animal   Research   2004,   53:317-­‐‑324.   Kim   HB,   Borewicz   K,   White   BA,   Singer   RS,   Sreevatsan   S,   Tu   ZJ,   Isaacson   RE:   Longitudinal   investigation   of   the   age-­‐‑related   bacterial   diversity   in   the   feces   of   commercial  pigs.  Veterinary  Microbiology  2011,  153:124-­‐‑133.     177