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ABSTRACT

NOVEL ALGORITHMS FOR X-RAY COMPUTED TOMOGRAPHY

By

Peter Lekeaka-Takunju

X-ray computed tomography (CT) is a non-destructive technique for assessing the structural in-

tegrity of an object without compromising its usefulness. This imaging modality uses a number

of projection measurements of the attenuated X-rays after passing through the object at different

angles of incident beam orientation. The object is reconstructed from these projection measure-

ment data usually using Filtered Backprojection (FBP) Algorithm which is based on Fourier Slice

Theorem. FBP however assumes ideal conditions, notably monoenergetic X-ray photons and the

availability of a very large number (hundreds and even thousands) of projections.

However in practice, X-ray sources are polychromatic producing X-rays photons of varying

energies and intensities. The X-ray attenuation of a material depends on energy, being high at low

incident energy and decreasing as incident energy increases. This leads to an undesirable effect

called beam hardening (BH). BH results in an underestimation of the attenuation values of the FBP

reconstructed image, degrading it and thus potentially rendering it diagnostically unusable. In this

thesis we propose a novel model-based correction scheme for BH based on the Lambert-Beer’s law

for polychromatic X-rays, knowledge of source spectrum and computer-aided design (CAD) model

of the specimen. The validity of the correction scheme is demonstrated on a uniform tungsten alloy

rod through simulation and experiment conducted using a 320 kVp X-ray source. It is found that

the application of this correction scheme improves the beam hardened CT reconstructed image,

particularly reducing the BH cupping artifact inherent in FBP reconstructed images. The proposed



technique is evaluated using two quantitative metrics of the reconstructed image.

The application of X-ray CT in the nuclear industry to inspect nuclear fuel rods is discussed

in this thesis. For real-time tomography, data acquisition time is critical. In order to reduce the

time for imaging there is a need to develop reconstruction algorithms using as few projections as

possible. However limited number of projections implies an insufficiently filled Radon Space ren-

dering imaging via FBP algorithm unsuitable. Any attempt to invert from the insufficiently filled

Radon space back to the object space during the reconstruction problem gives rise to undesired ar-

tifacts which should be removed. In this thesis a novel artifact removal algorithm is proposed and

its performance is demonstrated using both simulation and experimental data. A statistical recon-

struction algorithm for reconstruction from a limited number of projections is also presented. The

reconstruction results proves the technique to be promising in obtaining accurate inversion results,

even in the presence of an extremely limited number of X-ray projections and noise. Availability

of limited projections renders the X-ray CT problem ill-posed. In this thesis, X-ray CT problem

is reformulated in terms of matrix product to facilitate the application of Tikhonov inversion tech-

nique. Reconstruction results obtained using a limited number of simulation and experimental data

are shown and compared with FBP reconstructed results. It is relevant to note here that the new

inversion technique is independent of any a priori information.
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Chapter 1

Introduction

1.1 Background and Motivation

In 1895, the German Physicist Wilhelm Conrad Röntgen (1845-1923) discovered X-rays while

attempting to see if any radiation could be produced which would traverse matter opaque to or-

dinary light. While experimenting with an electric discharge through a highly evacuated tube,

Röntgen noticed that a phosphor screen located at some distance from the tube fluoresced. In

an attempt to stop this fluorescence, he put various objects in the way of this unknown radiation,

finally putting his hand in front of the screen and seeing a shadowed image of his bones. This

was the first radiograph and hence the birth of radiography. He named this radiation as X-rays

indicating their unknown nature, though many referred to the radiation as Röntgen rays for several

decades after their discoverer. Röntgen has been accredited as the discoverer of X-rays because he

was the first to perform a systematic study on them, though he was not the first to have observed

their effects.
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Although in imaging, a radiograph represents a two dimensional image of a three dimensional

object, it does not give any information about the depth. For example, a shadow image (radiograph)

of a patient may reveal a broken bone but not other subtle problems present. Also in radiography,

there is superimposition of images of structure outside the region of interest. Hence, there is

a need of a better imaging technique. These problems can be overcome by reconstructing an

object using projection data about the object obtained by illuminating the object with X-rays from

many different directions and orientations. This type of imaging is known as X-ray Computed

Tomographic (X-ray CT) Imaging. Tomography comes from two Greek words: tomos (meaning:

slice or section) and graphein (meaning: to write). Thus tomography is imaging by section or

sections using information about the interaction of energy with the object being imaged. CT was

the first non-invasive radiological method allowing the generation of tomographic images of every

part of an object without superimposition of adjacent structures.

The first CT scanner was invented by Sir Godfrey Hounsfield in Hayes, United Kingdom at

EMI Central Research Laboratories using X-rays for which he received a Nobel Prize in 1979.

This was the major breakthrough from which the current excitement in tomographic imaging orig-

inated although back in 1917 the Austrian Mathematician Johann Karl August Radon (1887-1956)

provided solution to the mathematical problem on how to reconstruct a function from its projec-

tions.

According to Radon theory, given an unknown function f of an object, then the line integral

of f along a straight line inclined at an angle θ is called the projection or Radon Transform of f at

that angle θ. Thus projections of an object represent an analytic transform for that object. Hence

the inverse of the Radon Transform can be used to reconstruct the original function f from the

projection data and thus this forms the mathematical basis for tomographic reconstruction.
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The transmitted intensity I of a monochromatic beam of photons of incident intensity I0 as it

passes through a homogeneous material of mass thickness t and attenuation coefficient µ is given

by the Beer-Lambert’s law:

I (t) = I0 e
−µt ⇒ − ln

(
I

I0

)
= µt (1.1)

From Equation (1.1), the attenuation is a linear function of the mass thickness t.

If the material is heterogeneous, the simple product µt in Equation (1.1) can be replaced by a

line integral and the transmitted intensity through the material with spatial distribution of attenua-

tion coefficient µ(x, y) at the point (x, y) can be expressed as [1]:

I = I0 e
−
∫
L
µ (x, y) du

(1.2)

where L is the path of the ray and u is the length along L. By measuring the natural logarithm of

the intensity ratio at different sensor positions s on the detector array and several source locations

θ, we obtain:

p (s, θ) = ln

(
I0
I

)
=

∫
L
µ (x, y) du (1.3)

The quantity p(s, θ) is termed the projection or Radon Transform of µ at an angle θ.

CT scanners record the X-ray projection data at different angles of incident beam orienta-

tion. These recorded projection data are then used to reconstruct the object using an image recon-

struction algorithm. There are several image reconstruction algorithms available and these can be

grouped into analytical, algebraic and statistical. Of these available algorithms, the most widely

used is the analytical algorithm called the Filtered-Backprojection (FBP) algorithm. FBP is based

3



on Radon Transform and the Fourier Slice Theorem and is used in almost all available commercial

CT scanners thanks to its easy practical implementation which takes advantage of the Fast Fourier

Transform (FFT). FBP is fast and deterministic, and its properties are very well understood.

The Radon Transform however assumes ideal conditions, namely: monoenergetic X-ray pho-

tons, infinite number of projections with infinitely thin X-ray beams, noiseless data, etc. Any

deviation from these ideal conditions will lead to artifacts in the reconstructed image. Of particular

significance is the problem of assuming a monochromatic X-ray source. The attenuation of an

object is linearly dependent on mass thickness of that object according to the Beer-Lambert’s law

of Equation (1.1) when a monochromatic source is assumed. However in practice, monochromatic

X-ray sources do not exist. All X-ray sources are polychromatic, producing photons of varying

energies and intensities. X-ray photon attenuation coefficient of a material depends on energy,

being high at low photon energy and decreases as the photon energy increases. Figures 1.1 and

1.2 illustrate the energy dependence of a polychromatic beam of X-rays and material attenuation

respectively. The peak energy of the X-ray source is 300 kVp and the material is Tungsten alloy

(with density 18.5 g/cm3).

Because of this energy dependence of the attenuation coefficients, each of the photons in the

polychromatic beam will experience a different attenuation. This can be described mathematically

by the following relationship [2]:

I = I0

∫
Ω (E) e

−
∫
L
µ (x, y, E) du

dE (1.4)

Here Ω (E) represents the incident X-ray spectrum, the area under which is unity. Obtaining the

projections from Equation (1.4) by taking the natural logarithm of the transmitted to incident ratio

4



Figure 1.1: Energy dependence of X-ray beam

Figure 1.2: Energy dependence of material attenuation

gives:

p (s, θ) = − ln

(
I

I0

)
= − ln

∫ Ω (E) e
−
∫
L
µ (x, y, E) du

dE

 (1.5)

Comparing Equation (1.5) to Equation (1.1), the linear relationship between the logarithmic

attenuation (measured projection p) and the path length of the material no longer holds for actual

polychromatic sources as shown in Figure 1.3 [3].
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Figure 1.3: Logarithmic Attenuation as a function of mass absorption thickness [3]

BH results in an underestimation of the attenuation values in the reconstructed image using FBP

especially along the ray path where this phenomenon is well-pronounced. This results in artifacts

such as streaks, edges and cupping which are generally referred to as beam hardening artifacts. In

Figure 1.4, a circular uniform homogeneous phantom was simulated and used to illustrate cupping

artifact. Monochromatic and polychromatic projections were acquired from this phantom using at

300 kVp peak voltage of the X-ray source. Reconstruction from these projection data was done

using the FBP algorithm with 180 projections and 258 parallel rays in each projection. Figures

1.4a and 1.4b show the reconstructed phantom for both the monochromatic and polychromatic

cases respectively. For comparison, horizontal line profiles taken through the middle part of the

CT reconstructed images are shown in Figures 1.4c and 1.4d, from where the cupping artifact due

to BH can be observed.

Apart from the visual effects associated with these artifacts, it can be difficult to interpret the re-

constructed images quantitatively especially in medical imaging because these artifacts change the
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(a) (b)

(c) (d)

Figure 1.4: Reconstructed Images: (a) Monochromatic (b) Polychromatic; and their horizontal line
profiles: (c) Monochromatic and (d) Polychromatic illustrating cupping artifact due to Polychro-
maticity.

attenuation of the object [4] resulting in diagnostic errors. In diagnostic imaging, the attenuation

values of the reconstructed image is translated to an integer (CT number) measured in Hounsfield

units (HU). CT numbers are relative to the attenuation of water, which is assigned a value of 0 HU.

Other examples include bone (+1000 HU), liver (40-60 HU), blood (40 HU), fat (-50 to -100 HU)

and air (-1000). The accuracy of the CT number plays an important role in accurate diagnosis, es-

pecially in cases where threshold identification is used [5]. This accuracy is remarkably degraded

by the artifacts induced by BH effects.

The problem of beam hardening correction (BHC) or reduction in CT has been an active re-

search area for over four decades [6, 7]. Several schemes have been proposed and used to correct

BH and they generally fall under:

7



1. Hardware filtering, the most popular method where a filter such a thin aluminum plate is

placed between the source and the object. This helps to absorb the lower energy photons and

allow only the higher energy photons to go through the object under test. But this scheme

results in very low signal-to-noise ratio and the reconstructed image is very noisy [8]. Also

the choice of filter should be appropriate for maximum effect and details on choice of filter

materials are given in [9].

2. Pre-processing, a technique that mainly involves compensating for the departure from lin-

earity of the relationship between the measured projection data and path length of the object

[10]. This approach generally works well for low attenuating materials like soft tissues but

fails in the presence of high attenuation materials.

3. Post-processing, , this involves an initial reconstruction from which the material distribution

is estimated [11]. A BH factor is then estimated from this distribution and used to correct

the measured projection data. A new reconstruction is then computed from these corrected

measurements. The process is time-consuming as it is iterative and this technique does not

offer much improvement in the presence of a material with very high atomic number.

4. Dual energy imaging, a technique whereby two separate scans are taken at two different

energy windows [7]. However, this technique is complex to implement, very sensitive to

noise, requires more exposure to radiation and data acquisition and is material dependent.

Apart from the above-mentioned correction techniques, there have been significant interest re-

cently in applying different reconstruction approach for tomographic reconstruction, particularly

statistical iterative algorithms [12, 13] which have been motivated by their success in emission to-

mography namely: Positron Emission Tomography (PET) and Single Photon Emission Computed
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Tomography (SPECT). These statistical reconstruction algorithms however already have very long

computation time and difficult to implement in a commercial CT scanner as compared to the stan-

dard FBP algorithm. Owing to the fact that almost all commercial CT scanners today produced by

major CT manufacturers still implement FBP, there is a motivation to continue developing novel

versions of FBP algorithms that can overcome the existing drawbacks. This thesis presents novel

FBP algorithms that can overcome the existing inherent beam hardening effects due to polychro-

maticity faced by the standard FBP algorithm. For real time tomography, data acquisition time is

critical. This calls for the need of tomographic reconstruction from limited number of projections.

This thesis also presents the development of novel algorithms for tomographic reconstruction from

limited number of X-ray projections and their application in the nuclear industry to inspect nuclear

fuel rods.

1.2 Organization

In this chapter, the background and the motivation behind this thesis is discussed. In particular,

beam hardening phenomenon is illustrated by simulation. An overview of existing beam hardening

correction schemes is presented together with their drawbacks. The chapter concludes with an

outline of the contributions of this thesis. Chapter 2 discusses some fundamentals of X-ray physics

including their production, interaction with matter and detection. In Chapter 3, the principles of X-

ray CT are presented. Radon Transform and the Fourier Slice Theorem, which form the basis of the

FBP algorithm, are covered. Artifacts in X-ray computed tomographic images are also introduced.

Chapter 4 presents a model-based correction scheme for beam hardening artifacts in X-ray CT.

Both simulation and experimental results are presented. A systematic study of the influence of the

beam hardening effect at different energy levels is also presented in this chapter. The evaluation of
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the performance of the proposed model-based correction scheme is also presented as a function of

contrast. Chapter 5 describes the application of nuclear fuel rods inspection in the nuclear industry.

Current methods of nuclear fuel rods inspection are presented together with their drawbacks. The

application of X-ray CT in the nuclear industry to inspect nuclear fuel rods is discussed. X-ray

tomographic inspection of nuclear fuel rods using a limited number of projections is given in

Chapter 6. A statistical reconstruction technique is presented together with experimental results.

X-ray CT problem is reformulated in Chapter 7 in terms of matrix product. Tikhonov inversion

technique is then applied to solve the ill-posed X-ray tomographic reconstruction problem without

any a priori. Chapter 8 concludes the thesis with a summary of the accomplished research work.

A discussion on the future work stemming from this research is also presented.

1.3 Contributions

In this thesis, novel algorithms for beam hardening correction and reconstruction from limited

projections in X-ray CT are presented. These algorithms are applied to reduce cupping artifacts

caused by beam hardening and also to the problem of nuclear fuel rod inspection in the nuclear

industry. To this end, the following contributions are made by the thesis:

• A model-based correction scheme for beam hardening artifacts in X-ray CT is proposed

[14]. This correction scheme is based on the Lambert-Beer’s law for polychromatic X-rays,

knowledge of source spectrum and CAD model of the specimen. The validity of the cor-

rection scheme is demonstrated on a uniform tungsten alloy rod through simulation and

experiment conducted using a 320 kVp X-ray source. It is found that the application of this

correction scheme improves the beam hardened CT reconstructed image, particularly reduc-

ing the BH cupping artifact inherent in FBP reconstructed images. The proposed technique
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is evaluated using two quantitative metrics of the reconstructed image. A systematic study

of the influence of the beam hardening effect at different energy levels is also presented.

The evaluation of the performance of the proposed model-based correction scheme is also

presented as a function of contrast.

• Assessment of nuclear fuel pellets using X-ray CT is investigated in this thesis [15]. Current

methods of nuclear fuel rods inspection are presented together with their drawbacks. The

application of X-ray CT in the nuclear industry to inspect nuclear fuel rods is discussed.

In this work, a novel convex interpolation method is proposed and used to interpolate the

projection data and completely fill up the Radon space which was otherwise partially filled

with limited projections.

• Experimental validation of the convex interpolation technique on data acquired from a high

density polyethylene rod with machined defects [16]. The experimental projections were

acquired using a GE vertical X-ray inspection system having a 150 kVp microfocus X-ray

source from Hamamatsu and peak current of 500 µA. Since the X-ray source and detector

are both fixed, the sample was mounted on a rotational stage to get a complete tomographic

scan. This rotational stage was controlled by labview software. The sample was rotated at

regular angular intervals over a complete range (0 to 360◦) to collect projection data from

different directions. Reconstruction of a cross-sectional slice of the rod using 18 experimen-

tal projections with convex interpolation is shown and compared with results obtained using

conventional methods.

• The feasibility of using X-ray tomographic inspection technique for detection and charac-

terization of defects in fuel pellets using a limited number of projections is investigated

[17]. In this work, a statistical recursive algorithm is proposed and implemented on eight
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experimental projections obtained using 320 kVp and 13 mA X-ray source. Tomographic

reconstruction results of the cross-section of the nuclear fuel rod are presented.

• The use of Tikhonov inversion technique in X-ray CT using a limited number of projections

is given [18]. In this work, X-ray CT problem is reformulated in terms of matrix prod-

uct. This reformulation enables the application of Tikhonov inversion technique to solve the

ill-posed X-ray tomographic reconstruction problem. Reconstruction results with a limited

number of simulation and experimental data are presented and compared with FBP recon-

structed results. It is relevant to note here that the new inversion technique is independent of

any a priori information.
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Chapter 2

X-ray Physics

2.1 Introduction

X-rays are a form of electromagnetic radiation having wavelengths in the range from 10 nm

down to 10 pm, corresponding to frequencies in the range from 30 PHz to 30 EHz (3 × 1016

Hz to 3 × 1019 Hz). They are longer in wavelength than gamma rays but shorter than ultra-

violet radiation. X-rays are described by the intensity I(number of photons) and energy E of their

photons. The energy E is proportional to the frequency, ν of the radiation by [2]:

E = hν = h
c

λ
(2.1)

where

h is Planck’s constant (6.63× 10−34 Js)

c is the speed of light in free space (3× 108 m/s)

λ is the wavelength of the X-ray radiation
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This chapter describes the types of interaction that lead to the production of X-rays and the

mechanisms of interactions of these X-rays with matter. The underlying principles of operation

and types of X-ray detectors are also discussed in the chapter.

2.2 Production of X-rays

X-rays are produced when fast-moving electrons bombard a target material. Upon this col-

lision, part of the kinetic energy of the projectile electrons is transformed to the energy of the

released X-rays and part (about 99 %) is lost as heat in the target material.

2.2.1 The X-ray Source

Figure 2.1 is a schematic overview of an X-ray source consisting of a cathode and an anode

inside a vacuum tube [19].

Figure 2.1: Schematic overview of an X-ray source and its components [19]. For interpretation of
the references to color in this and all other figures, the reader is referred to the electronic version
of this dissertation.

The cathode is the negative electrode which consists of a helical filament made up of tungsten

wire. The filament provides the electrons for acceleration to the target electrode (anode). The

anode is the positive terminal of the X-ray tube and is made up of a material with very high atomic
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number and melting point. Tungsten metal is the most commonly used anode material. The anode

serves three important functions, namely:

1. It completes the circuit for providing potential difference to accelerate electrons

2. It houses the target material for X-ray production

3. It helps to dissipate the heat produced in the tube

High-speed electrons are released from the heated filament of the cathode by thermionic emis-

sion. These electrons are accelerated towards the anode by the potential difference applied between

the cathode and the anode. When these accelerated electrons strike the target material of the anode,

two types of X-ray radiation are produced, namely: Bremsstrahlung and Characteristic radiation.

The particular type of radiation produced depends on the mode of interaction of the high-speed

electrons with the atoms of the target material as illustrated in Figure 2.2 [2].

2.2.2 Bremsstrahlung Radiation

Bremsstrahlung Radiation is generated by the interaction of an electron with the nucleus of an

atom. A high-speed electron traveling near a nucleus experiences a sudden deceleration due to

the coulomb’s force of attraction between these oppositely charged particles as shown in Figure

2.2a. The partial loss of kinetic energy of the high-speed electron is given off as bremsstrahlung

radiation, whose energy increases with the amount of the kinetic energy loss. This radiation covers

a wide range of a continuous spectrum.

In a rare case when a high-speed electron collides head on with a nucleus, the total kinetic en-

ergy of the electron is given off to form a single photon with the highest energy in the bremsstrahlung

spectrum. This type of interaction is illustrated in Figure 2.2c with an example of a 120 kVp X-ray
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Figure 2.2: Illustration of electron interaction with an atom of the target and X-ray production
(a) Bremsstrahlung Radiation, (b) Characteristic Radiation, and (c) Bremsstrahlung Radiation [2]

tube producing X-ray photons of 120 keV energy. However, the overall probability of occurrence

of this type of bremsstrahlung radiation is very low as shown by the negligible magnitude in the

spectrum. The X-ray energy produced by this interaction represents the upper energy limit in the

X-ray spectrum.

2.2.3 Characteristic Radiation

A high-speed electron emitted by the cathode can also interact through collision with one of the

inner-shell electrons of the target atom. If the kinetic energy of the high-speed electron exceeds the

binding energy of the inner-shell electron, the inner-shell electron will be liberated leaving behind
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a hole. When an electron from a higher energy outer shell fills this hole, a characteristic radiation

is emitted with energy equal to the difference between the binding energies of the two shells as

illustrated in Figure 2.2b for tungsten material. The radiation is discrete in nature and material

dependent as each element of the periodic table has its own unique shell binding energies. Details

on these binding energies and the characteristic X-rays produced during transition of an orbital

electron from an outer shell to an inner shell for various elements can be found in [20].

2.3 X-ray Interaction with Matter

X-rays have wavelengths comparable to sizes of atoms and hence will penetrate deeply into a

material before interacting with an individual atom leading to either their scattering or absorption.

Generally, there are five basic modes of interaction of X-rays with matter with the probability of

occurrence of each mode determined primarily by the energy of the incident X-ray photon and

the atomic number of the matter. These modes of interaction are: classical (Coherent) scattering,

photoelectric effect, Compton scattering, pair production and photodisintegration. All these modes

of interaction of X-rays with matter lead to either scattering or the absorption of the X-ray photons.

2.3.1 Classical (Coherent) Scattering

Classical or coherent scattering is the mode of scattering experienced by low energy X-rays of

about 10 keV when they interact with matter. Here the incident photon interacts with the whole

atom of the matter. Upon incidence of an X-ray photon on the atom, the atom absorbs the photon

and electrons of the atom oscillate at the frequency of the incident photon. The atom becomes

unstable and emits a secondary photon at the same frequency as the incident photon. In this type

of interaction, there is no energy transferred and no ionization occurs. The only effect is that the

incident photon is scattered in the forward hemisphere and its direction is changed as shown in

17



Figure 2.3.

Figure 2.3: Illustration of coherent scattering

2.3.2 Photoelectric Effect

Photoelectric effect is a photon absorption effect which occurs when the X-ray photon incident

on an atom of a material has energy greater than the binding energy of an electron of that atom.

Some of the energy of the incident photon is used to overcome the binding energy of the interacting

electron, thus ejecting the electron off from an inner electronic shell deep inside the atom leaving

behind a hole. The free electron is often called a photoelectron. The incident photon ceases to

exist as it also gives up its remaining energy as kinetic energy of the photoelectron, with which

the photoelectron escapes. An electron dropping from a higher-energy-state outer shell to fill the

hole will generate characteristic (secondary) X-rays with energy equal to the difference between

the two energy states. This effect is illustrated in Figure 2.4.

The photoelectric effect is most probable when the incident photon energy is approximately

equals to the binding energy of the electron. This gives rise to the so-called K-edge and L-edge

in the absorption coefficient. The probability of occurrence of the photoelectric effect is roughly

inversely proportional to the cube of the excess photon energy [21] and directly proportional to the

cube of the atomic number [4]. A photoelectric interaction cannot occur unless the incident X-ray

18



Figure 2.4: Illustration of the photoelectric effect

photon has energy equal to or greater than the electron binding energy.

2.3.3 Compton Scattering

Compton scattering, also known as incoherent scattering is the most important mechanism

of interaction of X-rays in tissue-like materials [4]. It occurs when the incident X-ray photon

has energy considerably higher than the binding energy of an outer-shell (free or valence) electron.

When the incident X-ray photon strikes the outer-shell electron, it frees the electron from the atom.

This mode on interaction of X-rays with matter gives rise to a positive ion, a ”recoil” electron, and

a scattered photon, which may be deflected at any angle from 0◦to 180◦as shown in Figure 2.5.

Figure 2.5: Illustration of Compton scattering

The incident X-ray photon suffers some partial loss of its initial energy. The amount of energy

loss depends on the angle of deflection and initial energy of the incident photon. This amount
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equals the binding energy plus the kinetic energy with which the electron leaves the atom. For an

incident photon energy E, the scattered photon energy E’ is given by [20]:

E’ =
E

1 + E
mec2

(1− cos θ)
(2.2)

where

me is the rest mass of the electron

c is the speed of light in free space

θ is the scattering angle

If E is lower than mec2 (rest energy of an electron, which is 511 keV), then E’ is roughly

independent of θ. If E is higher than mec2, then E’ is higher for small θ. Scattered photons

with higher energies will continue in approximately the same direction as most of the energy is

retained by the photon after a Compton scattering. Thus scattered photon interact many times with

the matter before it losses all of its energy. It is worth noting here that, Equation (2.2) is valid only

if the electron was free, i.e. we can neglect the original binding energy.

Unlike photoelectric effect, the probability of occurrence of Compton scattering does not de-

pend on the atomic number of the material but instead on the electronic density of the material.

Figure 2.6 shows, for example, the percentage of the above three different types of interactions of

X-rays with matter as a function of energy in water [2].

2.3.4 Pair Production

Pair production is a form of interaction of X-ray with matter characterized by photon-nucleus

interaction. If the incident X-ray photon has sufficiently large amount of energy (>1.02 MeV),
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Figure 2.6: Percentage of different types of interactions as a function of energy in water [2]

it may escape the electron cloud and come close enough to the nucleus to experience the strong

electrostatic field of the nucleus. This strong electrostatic field causes the nucleus to absorb the

high-energy photon and emit a pair of charged particles: a positron (positively charged) along

with an electron (negatively charged). This mechanism is illustrated in Figure 2.7 and describes

antimatter formation used in Positron Emission Tomography (PET) imaging.

Figure 2.7: Illustration of pair production mechanism
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2.3.5 Photodisintegration

When the energy of the incident X-ray photon exceeds 8 MeV, the photon can escape inter-

action with both the electrons and the strong electrostatic fields of the nucleus and gets absorbed

directly by the nucleus of the atom. This absorption excites the nucleus which results in one or

more particles being ejected and the transformation of one element to the other. Figure 2.8 illus-

trates the process of photodisintegration.

Figure 2.8: Illustration of photodisintegration mechanism

2.4 X-ray Detectors

An X-ray photon, after going through and interacting with matter is detected by an X-ray

detector. X-ray detectors are very important part of an imaging system as they determine the quality

of an X-ray image. There are several different types of X-ray detector technology available. No

single type of X-ray detector is best for all applications. The choice of an X-ray detector largely

depends on the application at hand and on several other factors, namely: the size of the object to be

imaged, how fast we want to image the object, the material of which the object is made, the level

of details we want to see in the image, imaging technique, the X-ray source parameters, etc.
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2.4.1 X-ray Photographic Plates, Films and Fluoroscopy

Photographic plates were used at the early stage of radiography to produce most radiographic

images before the coming of digital computer and the birth of digital imaging. These plates,

made of glass were sensitive to X-rays and were able to convert the X-ray pulses into images

with the main drawback being their weight and longer exposure time needed to detect the image.

These photographic plates were later replaced by thinner and easier-to-use X-ray films which are

essentially baryta paper coated with silver nitrate. Molecules of this silver nitrate coating detect

and absorb the incident X-ray photons, and convert them into images. Though this process still

requires some exposure, the exposure time and intensity is less than for photographic plates. Due

to the fact that silver is considered as a non-renewable resource, fluorescent chemicals are instead

used to detect and absorb light given off by X-rays in a process called fluoroscopy. The formation

of an image is a result of the chemical reaction that takes place when the fluorescent screen absorbs

the light.

However, with the advent of digital computers, the above traditional X-ray detectors were re-

placed by digital X-ray sensors in X-ray digital radiography which offers the potential of improved

image quality. Advantages of this form of radiography include: fastness, easiness to transfer data to

the computer and storage of data in digital form for later use, better image quality and less radiation

exposure than conventional radiography. The function of any X-ray detector can fundamentally be

outlined in the following steps:

1. X-ray photons are absorbed

2. The absorbed energy is converted to a usable signal, generally light or electric charge
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3. This usable signal is collected

4. In the case of phosphor-based detectors, light signal is converted to electrical signal

5. The electrical signal is readout, amplified and digitized

For the detectors to provide high-quality images at appropriate dosage levels, the steps outlined

above must be optimized since several detector parameters can affect image quality. These param-

eters include field coverage, geometrical characteristics, quantum efficiency, sensitivity, spatial

resolution, noise characteristics, dynamic range, uniformity, acquisition, frame rate [22].

2.4.2 Flat Panel Detectors

Flat panel detectors are usually amorphous silicon (a-Si) or amorphous selenium (a-Se). The

former requires scintillators while the later can be used as an intrinsic detector.

2.4.2.1 Amorphous Silicon Flat Panel Detectors

Amorphous Silicon FPD is the most frequent type of FPD in use today. It is based on an indirect

detection of X-rays as illustrated in Figure 2.9 [23]. The scintillators or phosphors absorb X-ray

photons, convert their energy to light photons emission and channel the light photons towards

the a-Si photodiode array. Each photodiode represents a pixel. The low-noise photodiode after

absorbing the light converts it to electrical signal. The low-noise readout electronics reads out the

charge at each pixel and send it to the computer for processing.

The scintillator is made up of Caesium Iodide (CsI) or Gadolinium Oxysulphide (Gd2O2S also

called GADOX) materials. These are crystalline semiconductor materials doped with impurities to

create intermediate energy levels in the forbidden gap between the valence and conduction bands

as illustrated in Figure 2.10.
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Figure 2.9: Schematic drawing of a-Si FPD [23]

Figure 2.10: Principle of operation of Indirect X-ray detector

As shown in Figure 2.10, X-rays photons upon incidence on the material (A) excite electrons

in the conduction band (B) and these excited electrons are captured by the impurities center (C)

and rapidly released to the valence band there releasing some energy in the form of light (D). The

choice of the impurities levels are made such that the difference in energy between these levels and

the valence band ∆E should give radiation in the visible spectrum, whose wavelength λ is given,
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following Equation 2.1, by:

λ =
hc

∆E
(2.3)

where

h is Planck’s constant

c is the speed of light in free space

The phosphor GADOX, which has become the standard for phosphor-based detection, absorbs

and emits visible photons predominantly at 545 nm (2.28 eV) with approximately a conversion

efficiency of 15 %. That is, the number of visible photons N emitted per absorbed X-ray photon

of energy E (eV) will be given by:

N =
E × 0.15

2.28
(2.4)

Due to the inherent scattering in the phosphor itself, the process of absorption-emission is a

noisy one both in terms of intensity and spatial distribution. Figure 2.11 is a photograph of an a-Si

FPD of field size 24 x 30 cm and 14-bit digitization produced by General Electric Medical Systems

(Milwaukee, WI) [24].

The major advantages of flat panel detectors are that they are fast, very sensitive and have a

simple assembly. However they have a major disadvantage in their limited dynamic range which

is further reduced by crosstalk and scattering. This indirect FPD has additional advantages over

direct FPD which include: increased dynamic range especially at higher photon energies due to the

fact that fewer photoelectrons are produced in the device per each X-ray photon detected; also the

extra phosphor coating can be tailored to suit any applications providing wide range of usability

and also protecting the a-Si photodiodes from the X-ray radiation.

26



Figure 2.11: Photograph of an a-Si Flat Panel Detector [24]

2.4.2.2 Amorphous Selenium Flat Panel Detectors

Unlike a-Si FPD, a-Se FPD are direct detectors because X-rays photons are converted to elec-

trical charge directly. The design of an a-Se FPD has a high-voltage bias electrode on the outer

layer followed by thin layer (100-200 µm) as shown in Figure 2.12 [25].

Figure 2.12: Schematic diagram showing concept of a-Se FPD [25]
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When exposed to X-rays, the captured X-ray photons are accelerated through the amorphous

selenium layer by the bias electrode, interacting with selenium and producing energetic photoelec-

trons. The X-ray photons lose their kinetic energy through multiple interactions with outer-shell

electrons of the selenium atoms, releasing these electrons and leaving behind corresponding holes.

The number N of electron-hole pairs formed is given by:

N =
E

εi
(2.5)

where

E is the absorbed energy

εi is the bandgap energy of the element of the material

The electron-hole pair constitutes a usable signal and is separated by an internal electric field

and subsequently read-out electronically by a 2-D array of thin film transistors (TFTs). The TFTs

are switched on and off one row at a time by the pulses generated by the scanning control circuit

and the image charge is transferred from the pixel to external charge sensitive amplifiers subse-

quently to the computer for processing.
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Chapter 3

X-ray Computed Tomography

3.1 Introduction to X-ray Computed Tomography

X-ray computed tomography (CT) is the non-destructive visualization of the internal structure

of objects using information of the interaction of X-rays with the object in question, particularly

the attenuation information. The X-ray beam produced by the X-ray source in the CT scanner can

be parallel or fan-shaped depending on the scanner. Figure 3.1 illustrates the basic principles of

X-ray CT using fan-beam geometry [26].

In Fan-beam X-ray CT as shown in Figure 3.1, a cross-section of the beam generated by the

X-ray source is shaped by a collimator to produce a fan-beam and transmitted through the sample.

The attenuated X-ray data after passing through the sample is collected by a detector array. The

sample is rotated at regular angular intervals over a complete range [0◦- 360◦] to collect projection

data from different directions which are used to reconstruct a cross-sectional slice of the sample.
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Figure 3.1: Principles of Fan-beam X-ray Computed Tomography [26]

3.2 Applications of X-ray Computed Tomography

X-ray CT has numerous industrial and biomedical applications. In industrial applications,

resolution is important and some of these applications include:

• Research - Material Structure, New Material Analysis

• Non-destructive testing or Inspections of materials - Inclusions, Cracks, Porosities, Displace-

ment, Quality Control

• Aviation - aircraft wings and other parts

• Reverse Engineering - Rapid Prototyping, Surface Rendering, CAD, Drawing and Design

• Measurements and Meterology

• Assembly analysis
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In biomedical applications, low attenuating tissues are being imaged. In these types of appli-

cation contrast is very important. This is to be able to distinguish between tissues which are very

close in attenuation of the X-rays. Biomedical applications of X-ray CT include:

• Head CT

• Cardiac CT

• CT of the lungs

• Abdominal and pelvic CT

3.3 Radon Transform and the Fourier Slice Theorem

Given a two-dimensional function f(x, y) in Figure 3.2 [27], the line integral of f(x, y) along

a straight line inclined at an angle θ to the x-axis is given as [28]:

p(s, θ) =

∫
(θ,s)line

f(x, y)du (3.1)

Equation (3.1) can be rewritten using delta function as:

p(s, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ (x cos θ + y sin θ − s) dxdy (3.2)

The function, p(s, θ) is called the Radon Transform of f(x, y) and represents an analytic transform

for that object. A set of line integrals combine to form a projection, with the simplest projection

being a collection of parallel ray integrals as given by p(s,θ) in Equations (3.1) and (3.2) for a

constant θ.
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Figure 3.2: An object, f(x,y), and its object, P(s1, θ) are shown for an angle of θ [27]

The Fourier Slice theorem is presented here following the derivation given in [28]. Given an

object function f(x, y), the two-dimensional Fourier transform (FT) of f(x, y) is given as:

F (kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−j2π(kxx+kyy)dxdy (3.3)

Given a projection p(s, θ), its Fourier transform is given by:

P (ω, θ) =

∫ ∞
−∞

p(s, θ) e−j2πωsds (3.4)

For simplicity θ = 0◦ which leads to ky = 0, the Fourier transform of Equation (3.3) simplifies
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to:

F (kx, 0) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−j2πkxxdxdy (3.5)

Since the phase factor of the integrand in Equation (3.5) no longer depends on y, rearranging

the integral gives:

F (kx, 0) =

∫ ∞
−∞

[∫ ∞
−∞

f(x, y)dy

]
e−j2πkxxdx (3.6)

The integral in brackets of Equation (3.6) is effectively the equation for a projection along lines

of constant x:

p
θ=0(x) =

∫ ∞
−∞

f(x, y)dy (3.7)

Substituting Equation (3.7) into Equation (3.6), we get:

F (kx, 0) =

∫ ∞
−∞

pθ=0(x) e−j2πkxxdx (3.8)

The right hand side of Equation (3.8) represents the one-dimensional Fourier transform of the

projection p
θ=0; thus giving the following relationship between the vertical projection and the

2-D transform of the object function:

F (kx, 0) = P
θ=0(kx) (3.9)

i.e. the line along ky = 0 in the 2-D FT = the FT of the projection at θ = 0◦. This is the simplest

form of the Fourier Slice Theorem but is clearly independent of the orientation between the object

and the coordinate system. Hence it is easily generalized by using the rotated co-ordinate system
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(s, u): s
u

 =

 cos θ sin θ

− sin θ cos θ


x
y

 (3.10)

The Fourier Slice Theorem states that the 1-D Fourier Transform of a projection taken at an angle

θ equals the central radial slice at angle θ of the 2-D Fourier Transform of the original object. This

theorem makes it possible to reconstruct the original object by simply performing the 2-D inverse

Fourier Transform as depicted in Figure 3.3 and has been shown to be extremely accurate [28, 29].

Figure 3.3: The Fourier Slice Theorem relates the Fourier transform of a projection to the Fourier
transform of the object along a radial line

3.4 Image Reconstruction by Filtered Backprojection Algorithm

Image reconstruction from X-ray projections is usually performed using the classical Filtered-

Back Projection (FBP) algorithm. This algorithm is based on Radon transform and the Fourier

slice theorem, assuming ideal conditions such as monochromatic X-ray beam and infinite number
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of projections. According to Beer-Lambert’s law, the transmitted intensity I of a monochromatic

beam of photons of incident intensity I0 as it passes through a material with spatial distribution of

attenuation coefficient µ(x, y) at the point (x, y) can be expressed as [1]:

I = I0 e
−
∫
L
µ (x, y) du

(3.11)

where L is the path of the ray and u is the length along L. By measuring the natural logarithm of

the intensity ratio at different sensor positions s on the detector array and several source locations

θ, we obtain:

P (s, θ) = ln

(
I0
I

)
=

∫
L
µ (x, y) du (3.12)

Equation (3.12) is the projection or Radon Transform of µ at an angle θ. Therefore, the inver-

sion of the transform in Equation (3.12) gives a direct solution to the reconstruction problem as

[21, 28]:

µ̂ (x, y) =

∫ π

0

∫ ∞
−∞

P (ω, θ) |ω|︸ ︷︷ ︸
filtering

ej2πω(x cos θ+y sin θ)dω

︸ ︷︷ ︸
inverse Fourier transform

dθ

︸ ︷︷ ︸
Backprojection

(3.13)

where in Equation (3.13) P (ω, θ)|ω| is the filtering process of the projections, the inner integral

(over ω) is the inverse Fourier Transform of the filtered projections P (ω, θ)|ω| and the outer integral

is the backprojection. The entire reconstruction process can be summarized in Figure 3.4.

3.5 Artifacts in X-ray Computed Tomographic Images

Artifacts in X-ray computed tomographic (CT) reconstructed images generally refer to any

systematic discrepancy between the reconstructed value and the true attenuation coefficients of the
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Figure 3.4: Steps involved in Filtered-Backprojection Reconstruction Algorithm

object. Artifacts can seriously degrade the quality of CT images, at times making them diagnosti-

cally unusable. CT images often have these artifacts because they are reconstructed from million of

detector measurements and the reconstruction algorithms always assume that these measurements

are consistent. So any discrepancy in the measurement will reflect as a discrepancy in the recon-

structed image. The types of artifacts generally encountered in CT images are: streaking artifacts

which are intense straight but not necessarily parallel lines across the image and caused by incon-

sistency in a single measurement; shading artifacts which appear near objects of high contrasts and

are due to some projection measurements deviating gradually from the true measurements; ring ar-

tifacts which appear as rings in the reconstructed image and are due to an individual detector error

over all projections; artifacts due to limited number of projections as a result of insufficiently filled

Radon space.

Also based on their origin, these artifacts can be grouped in the following categories: physics-

based artifacts, which are brought about by the physical processes involved in the CT data acquisi-

tion, patient-based artifacts, which are caused by factors such as patient movement or the presence

of metallic materials in the patient, scanner-based artifacts, which results from the imperfection of

scanner function. Of all the aforementioned artifacts, the physics-based artifacts due to beam hard-

ening and limited number of projections are of interest in this thesis. These artifacts are addressed

in subsequent chapters.
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Chapter 4

A Model-based Correction Scheme for

Beam Hardening in X-ray Computed

Tomography

4.1 Proposed Model-Based Correction Scheme

Beam hardening (BH), as discussed in Section 1.1, is an undesirable effect which results in

artifacts in images reconstructed using Filtered Back Projection (FBP) algorithm. FBP, based on

Radon Theory and the Fourier Slice Theorem, assumes the X-ray source to be monochromatic

though polychromatic. In Section 1.1, several existing techniques for correcting BH artifacts were

introduced. In this thesis we propose a novel model-based correction scheme for BH based on the

Lambert-Beer’s law for polychromatic X-rays, knowledge of source spectrum and CAD model of

the specimen. The proposed correction scheme is summarized in Figure 4.1 and explained below

[14].
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Figure 4.1: An Overview of the Correction Technique for reducing BH effects

The steps in boxes A to D of Figure 4.1 describe the standard procedure to acquire X-ray

projection data. This projection data is then used to reconstruct the object. The novelty of the

proposed technique is the introduction of additional steps described by steps E through K.

Consider an object with two dimensional spatial distribution of mass attenuation coefficient

µ(x, y). Figure 4.2 shows the coordinate transformation from spatial domain (x, y) to the projec-

tion domain (s, θ) [28].
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Figure 4.2: Coordinate Transformation from (x, y) to (s, θ) [28]

The forward propagation model is based on polychromatic Lambert-Beer’s law described math-

ematically as [2]:

I = I0

∫
Ω (E) e

−
∫
L
µ (x, y, E) du

dE (4.1)

where Ω (E) is the incident spectrum acquired from the X-ray source (step E) and µ(x, y) is the

energy dependent model of the object (step F ). Describing an X-ray spectrum in terms of quality

(the energy E of the photons) and quantity (the number of photons N = I with energy E), its
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effective energy Eeff at each pixel location (x, y) is computed as (step G):

Eeff (x, y) =

e=Emax∑
e=1

Ne · Ee

e=Emax∑
e=1

Ne

(4.2)

At a particular pixel (x, y) error in µ values due to beam hardening is given as (step H):

∆µ(x, y) = µ(x, y, E0)− µ(x, y, Epixel(x, y)) (4.3)

where E0 and Epixel are the effective spectrum energies of the calibration scan (no object) and at

each pixel location (with the object present) respectively, computed using Equation (4.2). Figure

4.3 below shows a spectral plot of mass attenuation coefficient of tungsten up to 300 keV. The

effective energy of the calibration scan of this spectrum, E0 is 120 keV. The pixel is located at the

center of the object where due to beam hardening, the effective energy, Eeff of the spectrum at

this point is 265 keV. This shift in the effective energy due to beam hardening corresponds to ∆µ

= 0.5480 cm2/g at that pixel location as given by Equation (4.3).

For a particular ray s in each projection θ, the cumulative error in µ values at all pixels traversed

by that ray (error in raysums) is given as (step I):

∆P (s, θ) =
∑
x,y

∆µ(x, y)δ(x cos θ + y sin θ − s) (4.4)

where s = x cos θ+ y sin θ is the equation of the line defining the ray path as shown in Figure 4.2.

For a given BH polychromatic projection Ppoly(s, θ) obtained from the detector measure-
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Figure 4.3: Spectral Plot of Mass Attenuation Coefficients of Tungsten up to 300 keV

ments, a corrected projection Pcorr(s, θ) is computed as (step J):

Pcorr(s, θ) = Ppoly(s, θ) + ∆P (s, θ) (4.5)

In step K, the object is reconstructed from the corrected polychromatic projection using FBP

algorithm.

4.2 Results with Simulation Data

To demonstrate the validity of the technique proposed in Section 4.1, a uniform circular phan-

tom was simulated using attenuation coefficients values of tungsten obtained from the National

Institute of Science and Technology (NIST) database [30] for photon energies up to 320 keV.

X-ray polychromatic projections were then obtained from the simulated phantom in an M × N

imaging space. The following step-wise procedure is used for obtaining all projection angles:

1. Let the rows be represented by i = 1 : M and the columns, by j = 1 : N
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2. Set the incident intensity at the first row i = 1 to a reference value of 65536 which corre-

sponds to the 16-bit dynamic range of the detector used in the experimental work

3. For rows i = 2 : M and at the jth column, the polychromatic transmitted beam I(i, j, E)

through a particular pixel (i, j) follows from Equation (4.1) as:

I(i, j, E) = I(i− 1, j, E) e−µ(i,j,E) (4.6)

4. The raysum (Rsm) corresponding to column j on exiting the imaging space at the last row

i = M , will be given be as:

Rsm(j) = −ln
(
I(M, j,E)

I(1, j, E)

)
(4.7)

5. The BH sinogram is obtained by repeating steps 1 to 4 for different projection angles

The BH projections are corrected using the steps outlined in Equations (4.1) to (4.5) above.

Figure 4.4 shows the BH polychromatic projection data for the case of θ = 0◦. Also shown for

comparison are the ideal (monochromatic) projection and the corrected polychromatic projection.

Reconstructions from these projection data were performed by applying the FBP algorithm us-

ing 180 projections with 194 rays per projection. Figure 4.5 shows the 134×134 CT reconstructed

images from the BH polychromatic projections before and after correction.

Figure 4.6 are horizontal line profiles taken through the middle part of the CT reconstructed

images, from where the cupping effect due to BH can be observed.
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Figure 4.4: Comparison of projection data

(a) (b)

Figure 4.5: CT reconstructed images [14]: (a) Before correction (b) After correction

The effect of beam-hardening in non-destructive evaluation of an object was investigated by

introducing 3 very low contrast circular defects in the simulated uniform circular phantom shown

in Figure 4.7.

Figure 4.8 shows the FBP reconstructed results using 180 projections with 194 rays per pro-

jection; where as a result of beam-hardening, the defects are not clearly visible in Figure 4.8a.
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Figure 4.6: CT reconstructed attenuation values showing cupping artifact

Figure 4.7: Phantom with Defects

However, after applying the proposed correction scheme, the beam hardened CT reconstructed

image is greatly improved thus revealing the low contrast defects as seen in Figure 4.8b.

4.3 Results with Experimental Data

The validity of the proposed technique was further tested using experimental projection data.

The sample used in the experiment was a 12" rod of heavy tungsten alloy 18.5 (18.5 refers to the
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(a) (b)

Figure 4.8: CT reconstructed images with defects [14]: (a) Before correction (b) After correction

density of the alloy in g/cm3). This alloy is made up of 97 % Tungsten, 2.1 % Nickel and 0.9 %

Iron. The diameter of the rod is 0.375". Figure 4.9 below shows the experimental set-up where an

X-ray source of 320 kVp and 10mA was used together with a photostimulable phosphor detector

of spatial resolution of 500 µm. The Source-to-detector distance and the focal spot were 60" and

4.0 mm respectively.

Figure 4.9: Experimental set-up
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Projection data (raysums) of the tungsten rod sample were acquired at different angles by ro-

tating the cylindrical tungsten sample. Figure 4.10 below shows an acquired 0◦polychromatic

projection data after calibration and log-processing.

Figure 4.10: Experimental projection data

The proposed correction scheme was then applied to the experimental data following the steps

outlined in Section 4.1, Equations (4.1) to (4.5). The reconstructed CT images from the experi-

mental projection data are given in Figure 4.11 before and after correction.

To further evaluate the proposed correction scheme, two quantitative metrics of the CT re-

constructed images are used namely: Mean-Square-Error (MSE) and Peak Signal-to-Noise Ratio

(PSNR). Let µ̂(i, j) be the reconstructed M × N image and µ(i, j) represent the corresponding

true image. The metrics MSE and PSNR are computed respectively as [31]:

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

[
|µ(i, j)− µ̂(i, j)|2

]
(4.8)
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(a) (b)

Figure 4.11: Experimental CT reconstructed images [14]: (a) Before correction (b) After correction

PSNR = 10 log

(
(255)2

MSE

)
(4.9)

Table 4.1 shows the results for the MSE and PSNR of both the beam-hardened CT reconstructed

image and the CT image reconstructed using the proposed correction scheme of Figure 4.1.

Table 4.1: Quantitative Measures

CT Image MSE PSNR [dB]

Beam-hardened 0.0011 77.72
Corrected 0.0003 83.35

As evident from the table, there is an improvement in both the MSE and PSNR when the

correction scheme is applied.

4.4 Parametric Study

4.4.1 Cupping Artifact as a Function of Source Energy

A systematic study of the beam hardening phenomenon as a function of the peak voltage of the

X-ray source was performed. Cupping artifact was simulated at 100 keV, 200 keV and 300 keV
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using the procedure outlined in Section 4.2. Figure 4.12 are horizontal line profiles taken through

the middle part of the respective CT reconstructed images, from where the cupping effect due to

BH can be observed to increase with peak energy of the X-ray source.

Figure 4.12: CT reconstructed attenuation values showing cupping artifact at 100 keV, 200 keV
and 300 keV

4.4.2 Performance of Correction Scheme at Different Contrasts

In X-ray CT, the ability to detect very small low contrast defects is very important. Depending

on the applications, contrast will be the primary concern as in biomedical imaging. In the non-

destructive evaluation of a material, the size of the defect is critical. The performance of the

proposed correction scheme was evaluated using the phantom with defects of Figure 4.7. The

evaluation was done for 5%, 10% and 15% contrast between the defects and host material at 300

keV. CT reconstructed images before and after correction are shown in Figures 4.13, 4.14, and 4.15

for contrast levels of 5%, 10% and 15% respectively.
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(a) (b)

Figure 4.13: CT reconstructed images with 5 % defects: (a) Before correction (b) After correction

(a) (b)

Figure 4.14: CT reconstructed images with 10 % defects: (a) Before correction (b) After correction

(a) (b)

Figure 4.15: CT reconstructed images with 15 % defects: (a) Before correction (b) After correction
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4.5 Conclusion

Beam hardening is an undesirable effect in X-ray Computed Tomography (CT) which results

in artifacts, particularly, cupping artifacts in images reconstructed using Filtered Back Projection

(FBP) algorithm. In this chapter, a physics-based beam hardening correction scheme in X-ray

CT is presented. This scheme, using information of the source spectrum and CAD model of the

object, exploits the underlying physics of beam hardening phenomenon by incorporating energy

dependence in the Lambert-Beer’s attenuation law.

The proposed model-based correction scheme has been applied to both simulation and exper-

imental X-ray data. The performance of the correction scheme was evaluated as a function of

contrast level between the defects and the host materials. The simulation results clearly demon-

strate the importance of the correction scheme particularly when there is a low contrast defect in a

sample. In the case of experimental data of a heavy tungsten sample, where the inherent cupping

artifact due to beam hardening is apparent, the FBP reconstructed on BH corrected projection data

has greatly reduced the artifacts as quantified in Table 4.1.

A parametric study of the dependence of cupping artifact on source energy shows that, this

artifact becomes more prominent as the tube peak voltage increases as shown in Figure 4.12. This

observation can be further explained by referring to the spectral plot of mass attenuation coefficient

of Tungsten upto 320 keV in Figure 4.3. As seen in the figure, this attenuation coefficient is

relatively high at lower energy, decreasing with increase in energy. Thus cupping artifact is more

pronounced with higher peak source voltages.
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Chapter 5

Nuclear Fuel Rods Inspection using X-ray

Computed Tomography

5.1 Introduction

Nuclear fuel material, such as the uranium isotope U-235 (235U) and the plutonium isotope

Pu-239 (239Pu), is consumed in nuclear power plants to generate energy. This energy is used

to heat water to pressurized steam, which drives the turbine generator. For use as nuclear fuel,

enriched UF6 is converted into uranium dioxide (UO2) powder that is then processed into pellet

form. The ceramic oxide pellets are stacked, according to each reactor core’s design specifications,

into tubes of corrosion-resistant metal alloy, usually zirconium alloys to form nuclear fuel rods.

There is a very thin layer of gap between the cladding and the oxide pellets. This gap is filled with

pressurized helium in normal conditions but in the presence of a flaw, water partially fills the gap.

These fuel rods are subject to extreme conditions such as high temperature, pressure and radiation

level. In nuclear reactors, an interaction between the ceramic oxide pellet and the surrounding
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zircaloy cladding can occur during transient power condition leading to cladding failure by stress

corrosion cracking [32]. Such an interaction is termed Pellet-Cladding Interaction (PCI). The inner

surface cracks continue as radial fuel cracks and are highly concentrated in the vicinity of pellet-

pellet interface. Figure 5.1 shows a real photographic image of a Missing Pellet Surface (MPS)

and through-wall crack of a failed rod caused by PCI, revealing the propagation of a defect from

one region to another [33].

Figure 5.1: A missing pellet surface and through-wall crack of a failed fuel rod [33]

In order to avoid failures during the operation of a nuclear power plant under normal and tran-

sient conditions, it is necessary to maintain a high quality assurance of the components, especially

the fuel pellets enclosed in zircaloy cladding. It is vitally important for the pellet surface to remain

free from pits, cracks and chipping defects after it is loaded into the tubes to prevent local hot

spots during reactor operation. The correct identification of failed rods, including fuel pellets, is

important for safe operation of the power plant. The inspection of the fuel rod, however, presents

several challenges [34]. There exist several methods of inspecting nuclear fuel pellets in a nuclear

power plant. However, some of these methods have some inherent drawbacks as presented in the

next section. X-ray computed tomography is proposed here in this thesis as a viable approach for

inspecting pellets contained within the zircaloy tube.
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5.2 Existing Methods of Nuclear Fuel Rods Inspection

5.2.1 Ultrasonic Inspection

Ultrasonic Testing (UT) uses high frequency sound energy to conduct examinations and make

measurements. UT methods proposed and/or used in nuclear power plant include: ultrasonic

pulse-echo technique, ultrasonic guided wave inspection and ultrasonic resonance phenomena.

The ultrasonic pulse-echo technique as described in [35] is based on the ability of the ultrasonic

wave to distinguish between the presence of gas or water inside the rod gap. The difference in

acoustic impedances of water and gas forms the physical basis for the inspection. The presence of

water inside the gap thus indicates the presence of defect and hence rod failure. The drawbacks of

this technique include the following:

• Due to the curvature of the fuel rod, the complicated nature of the reflected waveform would

make the ultrasonic pulse-echo technique inapplicable.

• The signal to noise SNR ratio will be very low due to the discontinuity between the cladding

and the fuel pellet.

• Based on the physical principle of the inspection method (which is the presence of water or

gas inside the gap), defects located inside the pellets layer will not be detected.

The ultrasonic guided wave inspection is an active technique whereby an ultrasonic pulse is

sent to interrogate a long path through the fuel rod. This guided wave propagates in the axial

direction of a layer, while behaving as a standing wave through the rod [36]. A guided-wave probe,

based on magnetostrictive sensor (MsS) technology operates at 250 kHz and detects the returned
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guided wave signals from the end of the rods. A defect will be indicated by partial reflected signals

along the length of the rod. The drawbacks of this technique include the following:

• This technique will detect flaws along the surface of the rod, but not flaws that originate from

the surface and propagate into the inner pellet layer of the rod.

• It can only detect the presence of a defect but cannot characterize the defect. A separate

additional sophisticated technique will be needed to characterize the defect.

• Guided waves inspection techniques have been used in geometries like beams and plates

because of their simple geometries. However, the mechanics of propagation of guided cir-

cumferential waves has to be fully understood before the ultrasonic guided wave inspection

technique can be applied to the inspection of nuclear fuel rods.

The ultrasonic resonance phenomena is used to detect leak-defective fuel rods using the cir-

cumferential Lamb waves excited by the resonance backscattering of ultrasonic pulses. These

circumferential waves are elastic waves circumnavigating the cladding tube of the nuclear fuel rod

and undergo transition to Lamb waves as the curvature of the tube is increased [37]. Depending

on the curvature of the tube, there is a characteristic frequency region where each circumferential

wave mode propagates well [38]. The lowest order symmetric (S0) mode is used to detect the

presence of water in the nuclear fuel rod. The drawbacks of this technique include the following:

• This technique will not be able to inspect assembled fuel rods because the inter-rod spacing

in the assembly is too narrow (2-3 mm) to insert sensors with center frequency of 1 MHz, a

frequency region at which the S0 mode propagates well.

• In the presence of ambient noise, an otherwise healthy post-irradiated rod can be diagnosed
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as failed rod because their very weak periodic resonance echoes are embedded in the noise.

This will lead to a false alarm which can be cost-expensive.

• The technique will only detect a water-filled rod but not the actual amount of water which

can be used to compare against any given threshold value for failed and sound fuel rods.

5.2.2 Visual Inspection and Photography

Visual inspections include both human-based vision system and automated vision system. The

human-based vision inspection method is the use of the naked eye or a periscope to judge which

fuel rods are good or bad. The inherent drawbacks are:

• Very laborious and subject to inconsistencies and error.

• The inspection personnel is exposed to radiation.

• Very time-consuming and hence economically inefficient.

Automated visual system consists of a handling system to feed the fuel rods, an imaging system

and image processing software [39]. One such system described in [40] uses photographic images

of pellets and three artificial intelligence techniques for image analysis and defect classification. In

the method, each nuclear fuel pellet was photographed 4 times at rotations of 90◦each to provide

the inspector with a 360◦view of each pellet [41]. Each black and white negative was then scanned

into the computer in a 256 grayscale image. These grayscale images are then pre-processed for

pellet defect enhancement and features extraction. The output from this pre-processing stage is

then given simultaneously to fuzzy logic, decision tree and neural network for automatic detection

and classification of defects. The main drawbacks of these techniques are:
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• It fails when inspecting fuel pellets already enclosed in the zircaloy cladding.

• Using photography, it can only image defects on the surface of the pellets.

• In the pre-processing part, the reference model has to be searched each time for each pellet.

5.2.3 Eddy Current Inspection

Eddy current inspection for nuclear fuel rods inspection has been proposed to inspect fuel

cladding imperfections [42]. The apparatus used here consists of two differential coils through

which the fuel rod is drawn. The output signal from the coil is displayed on the screen. A standard

Zircaloy tube containing both internal and external defects is used to calibrate the eddy current

system. The main drawbacks here are:

• The measured values of electrical conductivity of nearly stoichiometric single-crystal and

polycrystalline uranium dioxide (UO2) from room temperature to 3000◦K as given in [43]

indicate that it will be impossible to detect defects in the uranium dioxide pellet region

because UO2 is non-conducting.

• The eddy current method cannot be used in a fuel bundle without disassembling it.

5.2.4 Sipping Test

Sipping is an inspection technique used to inspect suspected nuclear fuel rod by investigating

the fission product released in a fixed volume of circulating reactor cooling water [44]. In this test,

the fuel rod to be inspected is placed in the sipping assembly which is a fixed volume of water in a

container with two hoses attached; one at the bottom and one at the top for circulating this volume

of water through the container containing the fuel rod. A failed nuclear fuel rod would release the
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radioactive products of nuclear fission reaction through the zircaloy cladding into the circulating

water. As time goes on, the concentration of these radioactive products in the sipping water will

increase thus indicating the presence of a failed rod. This method of fuel rod inspection has some

drawbacks namely:

• It may indicate the presence of a defected rod but not its exact location in the fuel bundle.

• A failed fuel rod with defects in the pellet region with an otherwise healthy cladding will

go undetected since there will not be any release of radioactive products into the circulating

water.

5.3 Assessment of Nuclear Fuel Pellets using X-ray Computed

Tomography

X-ray computed tomography is proposed as a viable approach capable of overcoming the afore-

mentioned drawbacks of the existing inspection methods. Using an X-ray source of appropriate

energy capable of penetrating a cross-section of the tube, the transmitted X-rays photons recorded

and used with a reconstruction algorithm to image flaws in the pellets. However, given the high

atomic number of Zirconium (which makes up about 98% composition by weight of Zircaloy

[45]), the incident X-ray beam will be severely attenuated as it passes through the cross-section

of the rod leading to increased exposure times for measuring a projection. In order to reduce the

time for imaging there is a need to develop reconstruction algorithms using as few projections

as possible. However limited number of projections implies an insufficiently filled Radon Space

rendering imaging via inverse Radon transform unsuitable [46]. Any attempt to invert from the

insufficiently filled Radon space back to the object space during the reconstruction problem gives
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rise to undesired artifacts which should be removed. In this thesis, the feasibility of using X-ray

inspection techniques for imaging fuel pellets using limited number of projections is presented. A

novel artifact removal algorithm is proposed and its performance is demonstrated using simulation

data [15].

5.3.1 Convex Interpolation in the projection domain

Given an object with spatial distribution of attenuation coefficient µ(x, y), the X-ray projection

p(s, θ) or Radon Transform of the object at different detector element positions s and for several

source locations θ is given by [1]:

p (s, θ) =

∫
L
µ (x, y) du (5.1)

where

L is the path of the ray

u is the distance along L

Each point in the Radon domain is called a ray-sum while the resulting image over all values

of θ is called a sinogram. Image reconstruction is the problem of inverting the finite number of

projections to yield an estimate of µ(x, y).

Estimating µ(x, y) in Equation (5.1) using a limited number of projections gives rise to un-

desired artifacts. One way to reduce and/or eliminate these lines is to interpolate the projection

data to completely fill up the Radon space before inverting back to the image space. There are

diverse interpolation algorithms with the simplest being nearest-neighbor replication which, how-

ever, suffers from a blocky effect [47]. A novel interpolation approach proposed in this thesis
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is the convex interpolation [15]. Given two measured projections P1(s, θ1) and P2(s, θ2) where

s ∈ [−smax , smax] and θi ∈
[
0◦ , 360◦

]
, an interpolated projection P ′(s, θ) is expressed as:

P ′(s, θ) = λP1(s, θ1) + (1− λ)P2(s, θ2) 0 ≤ λ ≤ 1 (5.2)

These interpolated projections are used to fill up the Radon space in a continuous manner as λ

varies continuously from 0 to 1. When λ = 0, P ′(s, θ) = P2(s, θ2). When λ = 1, P ′(s, θ) =

P1(s, θ1).

The implementation for this interpolation technique is described next. Consider the availability

of N number of X-ray projections, acquired over complete 360◦ rotation at regular interval, where

N is a factor of 360.

Let P1, P2,. . .,PN be the projections acquired respectively at orientations θ1, θ2,. . .,θN . The

following step-wise procedure is used to fill up the Radon space (sinogram):

1. Create a vector λ of ∆N elements linearly spaced between 0 and 1 inclusive, where ∆N =

360
N

2. Initialize the sinogram (Radon space) by creating a zero matrix R of size S×360, where S

is the number of sensors in the detector array.

3. Using the first consecutive pair of acquired projections P1 and P2, interpolate following

Equation (5.2) to obtain ∆N projections between them as:

Pi =
(
1− λi

)
P1(:, θ1) + λiP2(:, θ2), 0 ≤ λi ≤ 1, i = 1, . . . ,∆N

Then fill Radon space as: R (:, i) = Pi

4. For subsequent consecutive pairs of acquired projections Pk−1 and Pk (k > 1), interpolate
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following Equation (5.2) to obtain ∆N projections between them as:

Pi =
(
1− λi

)
Pk−1(:, θk−1) + λiPk(:, θk), 0 ≤ λi ≤ 1, i = 1, . . . ,∆N

Then fill Radon space as: R (:, (k − 1) ∆N + i) = Pi

5. Reconstruct the image using the filled Radon space R.

5.3.2 Simulation and Results

A cross-section of the rod of inner and outer radii of 0.38" and 0.44" respectively was simu-

lated with a notch defect of size 0.04"×0.02" introduced at the UO2/zircaloy interface as shown

in Figure 5.2.

Figure 5.2: Sample 1 with notch defect at UO2/zircaloy interface

The sample is illuminated by a 200 kVp X-ray source located at an optimum (measured from

the fan-beam vertex to the center of rotation) distance D =
√

2N (N ×N is the size of the entire

image). X-ray fan-beam projections were obtained from sample 1 and used to reconstruct images

of the sample. The original sinogram with 9 projections is shown in Figure 5.3a and compared

with the sinogram of Figure 5.3b obtained using the proposed convex interpolation scheme.

Figures 5.4a and 5.4b show the reconstructed images for the sample with notch defect using 60

projections without and with convex interpolation in the projection domain respectively.
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(a) (b)

Figure 5.3: Original and interpolated sinograms with 9 projections: (a) Original (b) Interpolated.
For interpretation of the references to color in this and all other figures, the reader is referred to the
electronic version of this dissertation.

(a) (b)

Figure 5.4: Reconstructed Images with 60 projections [15]: (a) Without and (b) With convex
interpolation

The reconstructed images of sample 1 using 9 fan-beam projections without and with convex

interpolation in the projection domain are also shown in Figures 5.5a and 5.5b respectively.

(a) (b)

Figure 5.5: Reconstructed Images with 9 projections [15]: (a) Without and (b) With convex inter-
polation
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The performance of the proposed interpolation technique was evaluated by introducing a non-

symmetric defect of size 0.02"×0.02" in the UO2 layer of sample 2. This sample was recon-

structed using 9 projections acquired at 200 kVp and the results are given in Figure 5.6.

(a) (b)

Figure 5.6: Performance on non-symmetric defect using 9 projections: (a) Without and (b) With
convex interpolation

To show the performance of the proposed technique in the presence of multiple defects, sample

3 was simulated with 3 circular defects of 0.04" diameter introduced as shown in Figure 5.7a.

This cross-section was illuminated by a 200 kVp X-ray source and 9 fan-beam projections were

acquired. Figures 5.7b and 5.7c show the reconstructed images without and with convex interpola-

tion in the projection domain respectively. The reconstructed image in Figure 5.7c after applying

convex interpolation was further thresholded to detect the 3 defects as shown in Figure 5.7d.

To further evaluate the performance of the proposed technique, a real photographic image of

a Missing Pellet Surface (MPS) and through-wall crack of a failed fuel rod shown in Figure 5.8a

[33] was preprocessed and then used as input into the tomographic imaging algorithm. Figure 5.8b

shows the preprocessed binary image while the reconstructed image of the real defect sample using

30 fan-beam projections with the application of convex interpolation in the projection domain is

shown in Figure 5.8c. Applying thresholding, the final reconstructed image is given in Figure 5.8d.
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(a) (b)

(c) (d)

Figure 5.7: Results using 9 projections [15]: (a) Phantom with defects; (b) Reconstruction without
convex interpolation; (c) Reconstruction with convex interpolation; (d) After thresholding (c)
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(a) (b)

(c) (d)

Figure 5.8: Results using 30 projections on sample with real defect [15]: (a) Optical image;
(b) Preprocessed image; (c) Reconstruction with convex interpolation; (d) After thresholding (c)
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5.3.3 Experimental Validation of Convex Interpolation Technique

The validity of the technique was tested using experimental data. The sample used in the ex-

periment was a high density (HDPE) rod of diameter 1.56". Four defects, each of diameter 0.11",

were machined along the axial direction of the rod. Figure 5.9 is a schematic diagram of the cross-

section of the HDPE rod showing the machined defects (holes) with specified dimensions. The

mass attenuation coefficient for HDPE is 0.182 cm2/g at 80 keV [30]. Experimental projections

Figure 5.9: Cross-sectional diagram of the test sample with machined defects

were acquired using a GE vertical X-ray inspection system having a 150 kVp microfocus X-ray

source from Hamamatsu with peak current of 500 µA. The detector is a high resolution 12-bit CCD

with 1024×1024 pixels, 4096 gray levels. The source-to-object and source-to-detector distances

were 20" and 36" respectively. Since the X-ray source and detector are both fixed, the sample

was mounted on a rotational stage to get a complete tomographic scan. This rotational stage was

controlled by Labview software. The sample was rotated at regular angular intervals over a com-

plete range (0◦ to 360◦) to collect projection data from different directions. Figure 5.10 shows

the side view of the sample mounted on the rotational stage inside the X-ray chamber. The tube

voltage and current were optimized to acquire the best signal (radiographic data). The optimum
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Figure 5.10: Side view of the sample mounted on a rotational stage. Front view of the sample also
inserted

values used for the sample in this experiment were 77.7 kVp and 122 µA. X-ray measurements

were taken at 18 different orientations at angular increments of 18◦. Figure 5.11 shows the raw

2-D radiographic data of the sample taken at angle 0◦ relative to the X-ray source.

Figure 5.11: Raw 2-D radiographic data of the sample taken at angle 0◦
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The 2-D raw data was preprocessed and log-normalized to give a 2-D projection data at that

particular angle θ = 0◦. For 2-D tomographic reconstruction of the sample, a 1-D projection data

was taken from the 2-D projection data along the line A-A’ indicated in Figure 5.11. The 1-D

projection data for this orientation is shown in Figure 5.12.

Figure 5.12: Projection data acquired at angle 0◦

A cross-sectional slice of the sample (with machined defects) was reconstructed by implement-

ing the technique proposed above using 18 experimental projections and the reconstructed result is

shown in Figure 5.13. This reconstructed image was further thresholded to detect the four defects

as shown in Figure 5.14.

FBP result, reconstructed using the same experimental projection without convex interpolation

applied in the projection domain, is also given in Figure 5.15 for comparison. As shown in Fig-

ure 5.15, data insufficiency in the projection domain leads to undesired artifact lines in the FBP

reconstructed image rendering it unusable to detect the presence of defects. Even though, there
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Figure 5.13: Reconstructed result with convex interpolation

Figure 5.14: Result with convex interpolation and thresholding

is still some indication of the presence of defects in Figure 5.15, it is however difficult to tell ex-

actly where and how many defects are there without any prior knowledge about the sample. But

by applying convex interpolation to the limited number of projections available, it is possible to

reconstruct a cross-sectional slice of the sample and detect defects as evident from the result in

Figure 5.13. Thresholding even enhances the detectability of the defects even further as shown in

Figure 5.14.
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Figure 5.15: FBP reconstructed result without convex interpolation

5.3.4 Implementation Results with Low Contrast Data

The performance of the proposed interpolation technique was further investigated by using a

phantom with very low (10 %) contrast defects shown in Figure 5.16. The sample consists of 2

concentric circles with inner and outer radii of 0.38" and 0.44" respectively. The materials in the 2

concentric layers are Uranium dioxide (inner) and Zirconium alloy (outer), whose mass attenuation

coefficients at 300 keV are 0.4704 cm2/g and 0.1322 cm2/g respectively.

The phantom shown in Figure 5.16 was reconstructed by implementing the proposed convex

interpolation technique on 9 acquired X-ray projections at 300 keV. The reconstructed results are

shown in Figure 5.17 for the case obtained with FBP without convex interpolation (a) and with

convex interpolation applied (b).
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Figure 5.16: Phantom with defects

(a) (b)

Figure 5.17: Reconstructed Images with 9 projections: (a) Without and (b) With convex interpola-
tion

5.3.5 Reconstruction Error as a Function of Number of Projections

The effect of the number of projections on the quality of a reconstructed image was evaluated

by computing the mean-square-error (MSE) of the reconstructed image as a function of number of

projection. MSE is computed using Equation (4.8) and the result is shown in Figure 5.18 from 1

to 360 projections.
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Figure 5.18: Mean square error as a function of number of projections

As seen in Figure 5.18, MSE decreases with increase in the number of projections from which

the image is reconstructed. An ideal number of projections can be recommended based on the

desired image quality of the reconstructed image.

5.4 Conclusion

Fuel rods in nuclear power plants consist of ceramic uranium dioxide pellets enclosed in

Zircaloy tubes. It is vitally important for the pellet surface to remain free from pits, cracks and

chipping defects after it is loaded into the tubes to prevent local hot spots during reactor operation.

The inspection of the fuel rod presents several challenges. Low frequency electromagnetic meth-

ods cannot be used since the ceramic pellets are nonconducting. Microwave methods cannot be

employed since the cladding acts as a shield and would prevent the energy from entering the tube.

Ultrasonic methods (UT) offer poor signal-to-noise ratio due to the ceramic nature of the pellet.

Flaws that are located close to the axis of the tube are particularly difficult to detect using UT.

The feasibility of using X-ray Computed Tomography (CT) to inspect nuclear fuel rods has
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been investigated in this chapter. Simulation and experimental results show that, using an X-ray

source of 320 keV, it should be possible to image defects of size 0.04"×0.02" in nuclear fuel rods.

For real-time tomography, data acquisition time is critical. This calls for the need to reconstruct

from limited number of projections. However, projection data insufficiency leads to undesired

artifacts in FBP reconstructed image. Filling up the Radon space is essential to remove these

artifacts.

This chapter has presented a convex interpolation technique for filling up the Radon space. The

performance of the technique has been demonstrated using simulation data. Experimental valida-

tion of the proposed technique on experimental data acquired from an HDPE rod with machined

defects is also presented. The reconstruction results presented here indicate that convex interpo-

lation technique is an effective technique for filling up insufficiently filled sinogram in X-ray CT.

This technique is effective even in the presence of very low contrast defects as shown in the results

in Section 5.3.4.

Instead of using energy of X-rays to inspect uranium dioxide pellets in the nuclear power plant,

an interesting technique will be to use the uranium dioxide pellet itself as the source of the energy.

These pellets are made up of uranium-235 (U-235), an isotope of uranium making up 0.72% of

natural uranium. The fission of one atom of U-235 generates 202.5 MeV of energy [50]. This

energy is made up of energy of different products of the fission reaction including gamma rays,

beta particles, neutrons etc. If an least one neutron from U-235 fission strikes another nucleus

and causes it to fission, then the chain reaction will continue. This fission chain reaction produces

intermediate mass fragments which are highly radioactive and produce further energy by their

radioactive decay. An understanding and modeling of this fission chain reaction could open up a

new research window in using uranium as a source of energy for computed tomography.
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Chapter 6

X-ray Tomographic Inspection of Nuclear

Fuel Rods using a Limited Number of

Projections

6.1 Introduction

For real-time X-ray CT imaging of nuclear fuel rods, data acquisition and processing speed

are very critical. Thus there is a need to reduce the number of projections. However limited

number of projections implies an insufficiently filled Radon Space rendering imaging via inverse

Radon transform unsuitable [46]. Any attempt to invert from the insufficiently filled Radon space

back to the object space using a conventional Filtered Back Projection (FBP) algorithm gives rise

to undesired artifacts. In [17] the feasibility of using x-ray inspection techniques for imaging

fuel pellets using a limited number of projections was investigated and a statistical reconstruction

algorithm is presented along with results on experimental data.
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6.2 Experimental work and Projections

Given the radioactive nature of Uranium, for the purpose of experimental work, heavy Tungsten

Alloy was used as a surrogate material for UO2 [48]. Tungsten Alloy 18.5 was selected based on

the close resemblance of their attenuation coefficients as shown in Figure 6.1. Tungsten Alloy 18.5

is a heavy metal alloy made up of 97% tungsten, 2.1% nickel and 0.9% iron. 18.5 refers to the

density of the alloy in g/cm3.

Figure 6.1: Photon mass attenuation coefficients for Uranium dioxide and Tungsten alloy 18.5

A 12" tungsten rod of 0.375" diameter was acquired and a circular notch of diameter 0.065"

and depth 0.045" was machined on it. Figure 6.2 shows a photograph of the tungsten rod alongside

a zirconium alloy (zircaloy) tube that is used as cladding to enclose the nuclear fuel (UO2) pellet.

This specimen (UO2 pellet inside zircaloy cladding) served as a surrogate for a nuclear fuel rod.
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Figure 6.2: Photograph of Tungsten rod alongside Zircaloy cladding

Figure 6.3 below shows a side view of the experimental set-up using a computed radiography

system where the Source-to-Film distance was 60" and the focal spot was 4.0 mm. A 1/32" lead

filter was placed between the X-ray source and the sample to minimize beam hardening effect

caused by the polychromatic beam produced by the X-ray source [49]. The spatial resolution of

the computed radiography plate used was 500 µm

Figure 6.3: Experimental Set-Up (side view) of CR system

The values for the tube voltage, current and exposure time were optimized to acquire the best

signal (projection data). X-ray projection measurements were taken at eight different orientations
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at angular increments of 45◦using a 320 KVp and 13 mA X-ray source with the notch defect di-

rectly beneath the X-ray source for 4 min. Figures 6.4 - 6.7 show the eight experimental projection

data (ray-sums) of the tungsten rod sample inside the Zircaloy tube after processing the raw data

based on Equation (5.1).

Figure 6.4: Projection data acquired at 0◦and 180◦

Figure 6.5: Projection data acquired at 45◦and 135◦
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Figure 6.6: Projection data acquired at 90◦and 270◦

Figure 6.7: Projection data acquired at 225◦and 315◦

6.3 Tomographic Reconstruction

6.3.1 The Filtered Back-projection Algorithm

Filtered Back-projection (FBP) is an analytical reconstruction technique that is used in com-

mercial computed tomography scanners. It is based on the Radon transform and Fourier slice
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theorem (described in Section 3.3), and its practical implementation takes advantage of the fast

Fourier transform. The Radon Transform however assumes ideal conditions namely: infinite num-

ber of projections with infinitely thin X-ray beams, noiseless data, monoenergetic X-rays, etc.

Thus for the case of limited number of X-ray projections, these conditions are violated and the

FBP algorithm fails. There is thus the need of a more robust statistical reconstruction algorithm

for image reconstruction from extremely limited number of X-ray projections.

6.3.2 Statistical Reconstruction Algorithm

Statistical reconstruction algorithms are typically based on accurate statistical modeling. Using

the statistical model, a derived cost function is optimized by an iterative procedure that is subject

to certain constraints.

According to Radon Theory, the projection p(s, θ) or Radon Transform of an object µ(x, y) at

an angle θ represents an analytic transform for that object and is given by [1]:

p (s, θ) = ln

(
I0
I

)
=

∫
L
µ (x, y) du (6.1)

In matrix form, Equation (6.1) can be written as:

p = Tµ (6.2)

where

p is the projection data

T is the projection operator

µ is the mass attenuation coefficient
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The inverse problem is the evaluation of µ from p. The ill-posed inversion problem in Equation

(6.2) can be written in terms of a variational problem:

µ̂ = argminµ∈D {A(p, Tµ) + αB(µ)} (6.3)

where

A is the cost function

B is the smoothness constraint function

α is the regularization parameter

D is the set of admissible solutions

A statistical iterative algorithm (Binary Minimization Algorithm) for minimizing Equation

(6.3) is presented in [46] for binary materials using a limited number of X-ray projections. Here, a

binary material is defined as a sample that is characterized in terms of two states: 0 in regions of

the host sample and 1 in the location of a defect. In solving Equation (6.3), start from a zero-level

approximation µ(0) (determined after the first step of reconstruction) and introduce an iterative

sequence of approximations. At the end of the iteration, pixel values are inverted based on a crite-

rion with a value that dictates the probability, ωj , of inverting the value of pixel j. This transition

probability, ωj , is defined by [46]:

ωj =



|gj | if
(
µ

(k)
j = 1 and gj < 0

)
or

(
µ

(k)
j = 0 and gj > 0

)
0 otherwise

(6.4)
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where gj represents the gradient of the weighted sum of the functionals A and B in Equation (6.3)

at pixel j.

The value of gj after the kth iteration is expressed as [46]:

gj = −2
N∑
n=1

I∑
i=1

Ii,n

(
Pi,n − P

(k)
i,n

)
σ2
i,n

− 54α
27∑
a=1

(
µj,a − µj

)
(6.5)

6.4 Proposed Technique

The cross-section of a nuclear fuel rod consists of two concentric layers of zircaloy tube and

uranium dioxide pellet (UO2). A defect can occur in the zircaloy layer, the UO2 layer, or both.

The technique given in Section 6.3.2 is valid for a problem containing two regions. In [17], an

approach which extends the Binary Minimization Algorithm for a more complex test geometry

comprising three materials was presented. In this approach, an a priori knowledge about the

structure of the material is incorporated in the algorithm. The region of interest (ROI) is divided

into 2 sub-regions: zircaloy tube layer and UO2 pellet layer. Each of the sub-regions is a two-

material problem. Region 1 contains a zircaloy layer with/without defect. Region 2 contains a

UO2 pellet with/without defect. Therefore, the reconstruction of each sub-region can be performed

using the binary minimization procedure. In some cases, however, a defect can propagate from one

region in to another, as shown in the photographic image of a Missing Pellet Surface (MPS) and

through-wall crack of a failed fuel Rod in Figure 5.1 [33]. This situation is incorporated in the

choice of B, the smoothness constraint function, in Equation (6.3).

Reconstructing a cross-section of the fuel rod was from the experimental projections in Figures
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6.4 - 6.7 using the FBP algorithm gives the result shown in Figure 6.8, from where undesired

artifact lines due to data insufficiency can be seen.

Figure 6.8: Reconstruction using FBP algorithm

The a priori knowledge about the location of the different materials was then added to the FBP

reconstructed image of Figure 6.8 to create a virtual defect space (VDS). The set of admissible

solutions D can be determined with the help of VDS [46]:

D =

µ : µj =


0 or 1 j ∈ V DS

0 j /∈ V DS
, j = 1, . . . , J

 (6.6)

The set of admissible solutions, D is a binary image shown in Figure 6.9. This is effectively

the zero-level approximation used as the starting point in the proposed statistical reconstruction

image. The algorithm then ran to adjust the values of the reconstructed attenuation coefficient at

each pixel location.
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Figure 6.9: Initial guess

6.5 Results with Experimental data

A cross-sectional slice of the Tungsten rod (with machined notch defect) inside the Zircaloy

tube was reconstructed by implementing the technique proposed above using the eight experimen-

tal projections of Figure 6.4, and acquired by the experimental procedure explained in Section 6.2.

The reconstruction time varied with the regularization parameter, α, as the value of α controls the

convergence of the reconstruction algorithm at each pixel location. The computational cost is 10

min. on a machine with 16 GB of memory and eight processors (each of 2.66 GHz speed) for

the chosen value of α=50 and imaging space of 512×512 pixels. Figures 6.10 and 6.11 show the

reconstructed cross-sections of the nuclear fuel rod without and with zircaloy tube respectively.

Figure 6.10: Reconstructed cross-section using eight experimental projections without tube
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Figure 6.11: Reconstructed cross-section using eight experimental projections with tube

The results show that the presented statistical reconstruction technique is a promising technique

to obtain accurate inversion results, even in the presence of an extremely limited number of X-ray

projections and noise. The technique exploits the advantages of iteration methods, which make the

solution more stable if an a priori information is introduced. Since standard FBP algorithm was

employed as our first-level of reconstruction, the proposed reconstructed technique can be regarded

as an improvement to FBP reconstruction in the case of an extremely low number of projections.
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Chapter 7

Tikhonov Inversion Technique in X-ray

Computed Tomography

7.1 Introduction

Given an object with 2-D spatial distribution of mass attenuation coefficients µ(x, y), the pro-

jection p(s, θ) or Radon Transform of µ at an angle θ is given as:

p (s, θ) = ln

(
I0
I

)
=

∫
L
µ (x, y) du (7.1)

where

L is the path of the ray

u is the length along L

s are the sensor positions on the detector array
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The object µ is usually reconstructed from these measured projections p using Filtered Back-

projection (FBP) algorithm which is based on Radon Transform and the Fourier Slice theorem as

discussed in Chapter 3 of this thesis. FBP however requires a very large number (hundreds and

even thousands) of projections at uniformly-spaced axial or angular intervals. Any deviation from

these strict requirements will produce undesirable artifacts in the FBP reconstructed image. In

particular, in the presence of a limited number of projections, these artifacts are caused by insuffi-

ciently filled Radon space.

The mathematical problem of reconstructing an image from a limited number of X-ray pro-

jections is in general ill-posed and various statistical techniques have been developed to estimate

solutions of such ill-posed problems [17, 51, 52] . However, these techniques are based on exploit-

ing a priori knowledge introduced in iterative procedures. In this thesis, we use Tikhonov inversion

technique for X-ray Computed Tomography that does not require any a priori information. The

X-ray CT problem is reformulated in terms of matrix-vector product with incorporation of direct

Tikhonov inversion technique.

7.2 Problem Formulation

Given the 2-D attenuation coefficient of size M×N in discrete form, the raysum pj of Equation

(7.1) for a particular projection θ of parallel ray geometry with N rays can be written as:

pj =
M∑
i=1

lijµij , j = 1, 2, . . . , N (7.2)

where lij is the length of the jth ray in the ith cell.
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Rewriting Equation (7.2) in matrix form, we get:

p = Tµ (7.3)

where

p is the projection data

T is the projection operator

µ is the attenuation coefficient

For the case of limited number of projections, the inversion problem of evaluating µ from p

in Equation (7.3) is ill-posed and underdetermined. For an underdetermined situation with a non-

square T matrix, the general approach is to determine the least squares estimate of the solution

obtained by minimizing the error function:

f(µ) = ‖p− T · µ‖2 (7.4)

The least square estimate is then given by:

µ̂ =
[
T
ᵀ
· T
]−1

· T
ᵀ
· p (7.5)

where T
ᵀ

denotes transpose of T .

The solution obtained using Equation (7.5) is in general noisy and unstable. In order to obtain

solutions to Equation (7.3) which are physically meaningful, additional constraints or regulariza-

tion of the solution is necessary.
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Regularization is a technique to solve inverse problems where additional information pertain-

ing directly to the system parameters, is introduced as a penalty term. It takes into account the

finiteness and imperfection of the data. Here the classical Tikhonov regularization technique is

used [53]. The cost function in Equation (7.4) is modified by adding the regularization term and

the solution is obtained by minimizing the cost function [53]:

f(µ) = ‖p− T · µ‖2 + λ ‖µ‖2 (7.6)

where λ ≥ 0 is the regularization parameter. This is the Tikhonov minimization problem. The

first term on the right hand side of Equation (7.6) is the model error function and the second term

is the regularization term. Using norm of the solution as the regularization term ensures that the

value of the solution is restricted within some bounds. The regularization parameter controls the

contribution of the regularization term. The functional f(µ) can be minimized for a given λ by:

µ̂ =
[
T
ᵀ
· T + I · λ

]−1
· T

ᵀ
· p (7.7)

The proper choice of λ is the key element in the use of Equation (7.6). In choosing λ there

is a tradeoff between fidelity to the measurements (λ → 0) and small norm of the solution (λ →

∞) [54]. If λ is chosen to be too small (under-regularization), then large high-frequency noise

components will dominate the reconstruction. On the other hand, if λ is chosen to be too large

(over-regularization), then important information in the data will be lost as the solution will be

dominated by the effect of the regularization term.

There are several regularization methods at our disposal for choosing the Tikhonov regulariza-

tion parameter λ in Equation (7.6) [55, 56, 57]. These methods include the discrepancy principle,
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L-curve criterion, normalized cumulative periodogram (NCP) and Generalized Cross-Validation

(GCV) criterion. Of all these methods, GCV is the most robust method and provides a scheme for

which λ is independent of any orthogonal transformation of the measurement data p.

The basic principle of GCV is to perform the minimization by leaving out the measurement data

points one at a time and to choose the value of λ which gives the best prediction of the missing

data points as described next. Let µ
λ,k

be the regularized solution obtained by minimizing the

function:

Φ
λ,k

(µ) =
∑
q 6=k

∣∣∣(Tµ)q − pq
∣∣∣2 + λ ‖µ‖2 (7.8)

The cross validation function is defined as:

V0 (λ) =
M∑
k=1

∣∣∣(Tµλ,k)k − pk
∣∣∣2 (7.9)

The quantity
(
Tµλ,k

)
k
− pk of Equation (7.9) is the discrepancy on component k. Thus, λ is

chosen so as to minimize the error V0(λ).

The GCV function is defined as:

V (λ) =

∥∥∥Tµλ − p∥∥∥2

[trace (I − T (λ))]2
(7.10)

where T (λ) is defined as:

T (λ) = T · T
ᵀ
·
(
T · T

ᵀ
+ λ · I

)−1
(7.11)

The regularization parameter λ in Equation (7.6) is thus chosen as the minimizer of the gener-
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alized cross-validation function given as [58]:

V (λ) =

 r∑
k=1

(
λ

µ2
k

+ λ

)2

· p2
k

+
m∑

k=r+1

p2
k


 m∑
k=1

λ

µ2
k

+ λ

2
(7.12)

Here r and m are the rank and number of rows of the projection operator matrix T , and pk is given

as:

pk = uk
ᵀ
· p (7.13)

where uk is the kth column vector of the left singular matrix U obtained by singular value decom-

position (SVD) of the projection operator matrix T .

The implementation of the Tikhonov inversion technique is described next. Consider an object

in an M×N imaging space, an X-ray source and detector with S sensors as shown in Figure 7.1.

Figure 7.1: M×N imaging space in fan-beam geometry
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In discrete form, Equation (7.3) can be written as a ray-sum for a particular projection:

pr =
MN∑
j=1

lrj µj r = 1, ..., S (7.14)

where µj is the attenuation of pixel j and r is a detector element of a detector array of S sensors.

For a particular projection, the matrix equation of Equation (7.3) will take the form:



p1
...

pr

...

pS


︸ ︷︷ ︸
S×1

=



γ1,1 · · · γ1,j · · · γ1,N · · · γ1,MN
... . . . ... . . . ... . . . ...

γr,1 · · · γr,j · · · γr,N · · · γr,MN
... . . . ... . . . ... . . . ...

γS,1 · · · γS,j · · · γS,N · · · γS,MN


︸ ︷︷ ︸

S×MN



µ1
...

µj
...

µN
...

µMN


︸ ︷︷ ︸
MN×1

(7.15)

where the elements of the projection operator matrix T in Equation (7.3) can be described follow-

ing Equation (7.14) as:

[T ] = Trj = γrj =


1 if µj ∈ Ray Path

0 otherwise
(7.16)
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7.3 Implementation Results with Simulation Data

To demonstrate the validity of the Tikhonov inversion for tomographic reconstruction proposed

in Section 7.2, a uniform circular phantom was simulated in a 128×128 imaging space using

attenuation coefficients values of Tungsten obtained from the National Institute of Science and

Technology (NIST) database [30]. The incident photon energy used in the simulation was 300

keV. Four low contrast circular defects were introduced in the simulated uniform circular phantom

as shown Figure 7.2. The diameters of the phantom and each of the defects are 1.56" and 0.11"

respectively. The mass attenuation coefficients of the host material and defects at 300 keV are

0.324 cm2/g and 0.292 cm2/g respectively.

Figure 7.2: Phantom with Defects

X-ray projections were then obtained from the simulated phantom using Equation (7.2) for

fan beam geometry over a complete rotation at angular increment of 36◦. There are 185 rays per

projection. A typical projection data obtained is shown in Figure (7.3) for the case of projection at

angle 0◦.
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Figure 7.3: Simulated projection data acquired at angle 0◦

The novelty of the proposed technique lies in the determination of the projection operator

matrix T given in Equations (7.7) and (7.16). The following step-wise procedure is used for filling

up the T matrix and reconstructing the object for all projection angles:

1. Initialize an M×N imaging space with no object

2. Initialize T matrix by creating a matrix of zeros

3. To provide complete fan coverage of the X-ray beam for all projections, pad the image space

to M2×N2, where:

M2 = M +D

N2 = N +D

D =
√
M2 +N2

(7.17)

4. for j=1:N2

for i=1:M2

Set R1(i,j)=j;
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5. for th=1:Nproj ; where Nproj is the number of projections

Rotate R1 by angle θth to get R2

Unpad R2 back to size M×N to get R3

for jj=1:N

R4 = (Find R3=
⌊
D
2

⌋
+ jj)

R5 = Reshape the transpose of R4 to 1×MN

Set Tth(jj, :)=R5

ˆµth =
(
T
ᵀ
th · Tth + I · λ

)−1
· T

ᵀ
th · pth

6. Final reconstruction: µ̂ =

∑Nproj
th=1

ˆµth
Nproj

The reconstruction result with 10 simulated projections is shown in Figure 7.4. For comparison,

the reconstruction was performed on the same 10 simulated projections using FBP algorithm and

the result is shown in Figure 7.5.

Figure 7.4: Reconstructed cross-section using 10 simulated projections

It is evident by comparing the reconstructed results in Figures 7.4 and 7.5 that the proposed

technique is a promising technique for reconstruction from a limited number of projections.

93



Figure 7.5: FBP reconstructed cross-section using 10 simulated projections

7.4 Results with Experimental Data

The validity of the technique was next tested using experimental data. The sample used in

the experiment was an HDPE rod of diameter 1.56". Four defects, each of diameter 0.11", were

machined along the axial direction of the rod. Figure 7.6 is a schematic diagram of the cross-

section of the HDPE rod showing the machined defects with specified dimensions. The machined

holes were filled with wood in order to reduce the contrast between the defect and the host material.

The mass attenuation coefficient for HDPE is 0.203 cm2/g at 60 keV [30], while that for wood is

0.197 cm2/g at 59.54 keV [60].

Experimental projections were acquired using a GE vertical X-ray inspection system having a

150 kVp microfocus X-ray source from Hamamatsu with peak current of 500 µA. The detector is

a high resolution 12-bit CCD with 1024×1024 pixels, 4096 gray levels. The source-to-object and

source-to-detector distances were 20" and 36" respectively. Since the X-ray source and detector

are both fixed, the sample was mounted on a rotational stage to get a complete tomographic scan.

This rotational stage was controlled by Labview software. The sample was rotated at regular
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Figure 7.6: Cross-sectional diagram of the test sample with machined defects

angular intervals over a complete range (0◦ to 360◦) to collect projection data from different

directions. Figure 7.7 shows the side view of the sample mounted on the rotational stage inside the

X-ray chamber. The X-ray source and the detector are not shown in the photo. A front view of the

sample is also inserted in Figure 7.7.

Figure 7.7: Side view of the sample mounted on a rotational stage. Front view of the sample also
inserted

The tube voltage and current were optimized to acquire the best signal (radiographic data).

The optimum values used for the sample in this experiment were 77.7 kVp and 122 µA. X-ray

measurements were taken at 12 different orientations at angular increments of 30◦. Figure 7.8
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shows the raw 2-D radiographic data of the sample taken at angle 0◦ relative to the X-ray source.

Figure 7.8: Raw 2-D radiographic data of the sample taken at angle 0◦

The 2-D raw data was preprocessed and log-normalized according to Equation (7.1) to give

a 2-D projection data at that particular angle θ = 0◦. For 2-D tomographic reconstruction of the

sample, a 1-D projection data was taken from the 2-D projection data along the line A-A’ indicated

in Figure 7.8. The 1-D projection data for this orientation is shown in Figure 7.9.

A cross-sectional slice of the sample (with machined defects) was reconstructed by implement-

ing the technique proposed above using 12 experimental projections. Figure 7.10 shows the recon-

structed cross-section. Reconstructed result applying FBP on the same experimental projection is

also given in Figure 7.11 for comparison.

As shown in Figure 7.11, the circular geometry as well as defects in the sample are not captured

successfully using FBP technique due to insufficient number of projections. The reconstruction by

the proposed technique is significantly better as compared to the FBP based reconstruction. The

reconstructed values of µ for HDPE and wood are 0.157 cm2/g and 0.139 cm2/g respectively.
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Figure 7.9: Projection data acquired at angle 0◦

Figure 7.10: Reconstructed cross-section using 12 experimental projections
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Figure 7.11: FBP reconstructed cross-section using 12 experimental projections
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Chapter 8

Conclusion and Future Work

X-ray Computed Tomography (CT) is an important imaging modality in Nondestructive Evalu-

ation and Biomedical applications, and will continue to be in the future. Its usage has dramati-

cally increased over the last two decades. This calls for more research and development of new

reconstruction algorithms that offer enhanced accuracy of images. This thesis presented novel

algorithms for enhancing the quality of current X-ray CT images.

• Chapter 4 of this thesis proposes a physics-based beam-hardening correction scheme in X-

ray CT given the source spectrum and CAD model of the object. This new technique ex-

ploits the underlying physics of beam hardening phenomenon by incorporating energy de-

pendence in the Lambert-Beer’s attenuation law. The proposed technique has been applied

to both simulation and experimental X-ray data. The simulation results clearly demonstrate

the importance of the correction scheme particularly when there is a low contrast defect in

a sample. In the case of experimental data of a heavy tungsten sample, where the inherent

cupping artifact due to beam hardening is apparent, the FBP reconstructed on BH corrected
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projection data has greatly reduced the artifacts. Future work on the evaluation of the per-

formance of the algorithm on more complex defect shapes and extensions of the algorithm

to 3D reconstruction will further prove the efficacy of the technique.

• The problem of nuclear fuel rods inspection in the nuclear industry was discussed in Chapter

5. Current methods of nuclear fuel rods inspection were presented together with their draw-

backs. The feasibility of using an X-ray tomographic inspection technique for detection and

characterization of defects in fuel pellets was investigated. Limited number of projections

is considered for reducing time for projection data acquisition. However a limited number

of projections implies an insufficiently filled Radon Space rendering imaging via FBP algo-

rithm not suitable. Filling up the Radon Space is essential to remove the artifact lines created

in the reconstructed image by data insufficiency. Method of convex interpolation is simple

and effective.

• A statistical reconstruction algorithm for reconstruction from a limited number of projections

was presented in Chapter 6. The results from this study show that the presented statistical

reconstruction technique is a promising technique to obtain accurate inversion results, even

in the presence of an extremely limited number of X-ray projections and noise. Evaluation

of the performance of the algorithm on more complex anomaly shapes is under progress.

Work on optimizing the reconstruction algorithm with respect to computation time and re-

construction accuracy is also in process. Future work on the evaluation of the performance

of the algorithm on more complex defect shapes and extensions of the algorithm to 3D re-

construction will further prove the efficacy of the technique.

• Availability of limited projection data renders computed tomography problem ill-posed.

The X-ray CT imaging problem is reformulated in Chapter 7 to facilitate the application
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of Tikhonov inversion technique. The ill-posedness in X-ray CT problem is addressed by

Tikhonov inversion technique. Regularization parameter required in Tikhonov based in-

version is computed using GCV method. Other variants of computing the regularization

parameter will also be tried out in the future. There is also a strong potential of extending

the proposed technique for imaging sample containing multiple materials as the technique

does not require any a priori knowledge of the material distribution within the sample.

• For real time tomography, data acquisition time is critical. This calls for the need of tomo-

graphic reconstruction from limited number of projections. This thesis has presented novel

algorithms for tomographic reconstruction from limited number of projection. These algo-

rithms have strong potentials in biomedical applications where radiation dose to the patient

is of paramount concern. One way to reduce such high radiation dose in current CT scanners

is to perform tomographic reconstruction from fewer projections than presently used.

• The basic principle of conventional X-ray imaging is the absorption of the X-rays as they

travel through an object. On the other hand, because X-rays are electromagnetic waves sim-

ilar to visible light rays, their phase changes as they travel through an object. This phase

change is generally observed as a refraction or interference and forms the basis of phase

contrast imaging (PCI). PCI offers improved contrast sensitivity, especially in biomedical

applications when imaging soft-tissue like breast. PCI is a promising technique to revolu-

tionize breast imaging and diagnostic radiology.
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