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ABSTRACT 

MACHINE LEARNING FOR THE STUDY OF GENE REGULATION AND COMPLEX 

TRAITS 

  

By 

 

Anne Sonnenschein 

Functional elements are found in DNA outside of protein coding regions; an important class of 

these elements are 'enhancers', which govern when and where transcription occurs. Predicting the 

identity and function of potential enhancers based on DNA sequence remains a major goal of 

genomics. A number of features are associated with the enhancer state, but even combinations of 

these features in well-studied systems such as Drosophila have limited predictive accuracy. I 

have examined the current limits of computational enhancer prediction, and analyzed which 

features are most useful for this task, by applying machine-learning methods to an extensive set 

of  genomic features.  

Inferring the genetic underpinning of even well-characterized phenotypes is equally challenging, 

although similar analytical methods can be applied. Phenotypes are frequently defined based on a 

set of characteristic features; when images are used as specimens, these features are frequently 

based on morphometric landmarks, although computational pattern-recognition has been used as 

an alternative. I use Drosophila wing shape as a model for a complex phenotype, and use 

machine learning to predict underlying genotype using both traditional landmarks and features 

extracted using 'computer vision'.  
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Introduction 

Advances in biotechnology and computing have led to an enormous expansion of available data 

in the life sciences1,2. These developments have contributed to a movement toward accessibility 

of results, public data sharing, and the development of new analytical tools for combining 

heterogeneous datasets3,4. Interpreting the available data has become an overarching challenge 

for modern biology5. However, a bottleneck exists at making biological inferences across 

disciplines; translating findings from molecular biology through to physiology and behavior in 

evolving populations, and vice versa. Drawing conclusions about phenotype from genotype (e.g. 

determining if a pathogen is resistant to a treatment based on its DNA sequence) and genotype 

from phenotype (e.g. which genetic variants are causing a complex disease in a patient) are 

equally challenging problems6,7. Machine learning is a common approach to addressing these 

questions. 

Machine learning algorithms identify the features associated with a concept, and optimize or 

'learn' with the addition of new data. They allow incorporation of very heterogeneous data into  

models, a feature that is well suited to addressing biological questions. Current tasks that profit 

from such an approach include combining DNA sequence and protein binding information to 

predict genomic features, or using different metabolic and environmental factors to identify a 

disease state. In the life sciences, machine learning approaches have been effectively applied 

across a wide range of disciplines and questions8–10. Machine learning can approach two related 

goals: identifying potentially informative trends from data by looking at the distributions of 

different states (sometimes referred to as generative models), or making classifications or 

predictions by finding the most effective way to separate subgroups within data (discriminative 

models)9. Depending on the goals of the experiment and the availability of pre-existing data, 
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machine learning algorithms may be 'supervised', that is, optimized on a training set, or 'un-

supervised', in which they learn from the patterns that exist within the data9,10. Within these 

categories there are a variety of frequently used algorithms, best suited to different kinds of data 

and questions8,11. 

Since the 1980s, these methods have been extensively applied in the life sciences, in fields 

ranging from determining the conditions best suited for plants12 diagnosing and predicting the 

development of cancer13,14 and identifying the conditions that might be contributing to 

population changes in endangered species15. In molecular biology machine learning has been 

used for interpreting data from next generation sequencing16 and extensively applied to the study 

of gene regulation. The development of large publicly available datasets focused on features 

associated with gene regulation, such as ENCODE and modENCODE, have stimulated studies 

that make inferences about genes that are co-regulated in gene regulatory networks17–19. These 

genome-wide data sets have also been used directly for genome annotation, identifying the 

location of open reading frames, splice sites, and regulatory regions such as enhancers10. The 

relatively constrained features of transcription units and exons facilitate their genomic 

annotation, but the more flexible nature of enhancers has made their characterization a 

challenging problem. 

Identification and interpretation of cis-regulatory elements  

In 1933, while discussing the transfer of biological information between generations, Thomas 

Hunt Morgan observed that it was irrelevant if genes were real or a 'purely 

fictitious...hypothetical unit'20. Either way the information was clearly there, localized in 

chromosomes, and passed from parent to offspring. Within thirty years, genes had been 

established as definitively real, embodied in nucleic acids, expressed through transcription into 
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messenger RNA and translation into protein. However, the sequencing of the human genome 

revealed that only ~2% of the information is protein coding21. Regulatory information, 

determining when, where and to what extent these protein-coding genes are expressed, is 

believed to occupy a much greater percentage of the genome (estimates vary from ~8% to 

~80%)22. Changes in genomic regulatory regions are believed to be critically important to the 

differences between species, and evolutionary change over time. Countless studies have linked 

mutations in regulatory DNA sequences to disease, as well as to both small differences between 

species and major reorganizations in body-plan patterning between phylogenetic groups23,24.  

Many elements of gene regulation are common to all eukaryotes, and predate the existence of a 

common ancestor of plants and animals over a billion years ago. A number of gene families 

encoding transcription factors important to cell cycle regulation and multi-cellular body-

planning, such as E2F and MADs-box genes, originated before this split, though they are 

deployed in very different ways across different phyla25,26. All eukaryotic genes are regulated by 

a core promoter coincident with the transcriptional initiation site, and generally require distally-

acting enhancer elements for more than basal transcription. These enhancers are characterized by 

open chromatin, and physically interact with the promoter via the co-activator Mediator protein. 

Unlike the simpler regulatory landscape found in yeast, control of animal genes can feature a 

complexity of enhancer architecture, with multiple enhancers sometimes acting at great genomic 

distances to regulate spatial and temporal expression (reviewed in Shlyueva et al. 2014)27. 

Core promoters are comparatively well understood, representing compact regions of DNA 

flanking the transcription start site. Sequence elements in the core promoter permit interactions 

with the highly conserved general transcription factors necessary for basal transcription in 

eukaryotes. There are several common motifs that frequently occur at the core promoter (e.g. 
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TATA, Inr), though the composition and identities of these are variable between genes, and 

between species28,29. Promoters have been categorized based on a number of criteria, including 

the distribution of dinucleotides, CAGE peaks, histone tail modifications, general transcription 

factors, and the presence or absence of bi-directional transcription29,30. A common organization is 

differentiating 'dispersed' promoters (weaker transcription, multiple transcription start sites), and 

'focused' promoters (stronger transcription, one or few transcription start sites). The former is 

functionally associated with housekeeping genes, and is more common in metazoans than in 

single-celled eukaryotes like yeast30,31.  

By comparison, enhancers are far more variable between and within species, and less clearly 

defined. Enhancers typically are stretches of DNA bound by transcription factors, and were 

originally differentiated from proximal-acting regulatory sequences by their ability to activate 

gene expression from distal locations, in either orientation. Virtually all genes from multi-cellular 

eukaryotes require enhancers for activation. They are incredibly diverse in terms of size32, 

organization33 and function27,34. Much like Morgan's 'hypothetical' genes, it is not clear what 

characteristics are distinct to enhancers, how their unique qualities contribute to their biological 

function, and what distinguishes them from background DNA.  

In metazoans, enhancers are typically characterized by clusters of sequence motifs associated 

with the binding of specific transcription factors21. In the course of development, enhancers can 

be initially first bound by pioneer transcription factors, which recruit proteins to promote 

chromatin-remodeling, before recruitment of additional transcription factors and co-activators 

(Schulz 2015). The degree to which different transcription factors bound to the same enhancer 

influence each other and cooperate to regulate gene expression is highly variable. Although a 

common repertoire of regulatory mechanisms can be found across many pathways35, how they 
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are specifically deployed within enhancers can be associated with specific regulatory pathways 

and functions36.  

Several models have been proposed as broad categories for enhancers based on the interactions 

of constituent transcription factors. The most highly structured enhancers are classified as 

'enhanceosomes', with proteins that exhibit highly interdependent binding, in which single-base 

pair changes in the sequence lead to total loss of function. In contrast, some enhancers are more 

analogous to 'billboards', wherein transcription factors are more loosely organized, and largely 

direct gene expression independently37. Loss of a single transcription factor binding site might 

only partially alter the enhancer's function, or have no impact at all due to built-in redundancy. 

Such enhancers are not entirely unconstrained in their organization; they can still demonstrate 

cis-regulatory grammar, that is the constraints on regulatory DNA sequences as a consequence of 

the way that arrangements and affinities of transcription factor binding motifs generate 

differential outputs37,38. Interestingly, simulations have suggested that in some cases, such 

apparent constraints may be entirely an artifact of neutral sequence evolution leading to 

clustering of independent regulatory regions, that are adjacent but otherwise unrelated39.  A third 

model proposed to describe a category of enhancer organization is the “transcription factor 

collective”, in which the binding of transcription factors and co-activators has a strong impact on 

the binding of additional proteins, which themselves may not rely on sequence motifs40. There 

are numerous biological examples that fit each of these models, but without extensive 

experimental manipulation it is difficult to categorize newly discovered enhancers, or make 

general statements about the relative frequency of enhanceosomes, billboards and collectives.  

In-depth analysis of specific enhancers has also highlighted examples that do not clearly fit 

within previously defined models in which enhancers act as small independent modules. In 
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Drosophila melanogaster, a single wing gene was found to have clusters of transcription factor 

binding dispersed over a region spanning about 10kb; these clusters direct a single gene in 

unique but highly overlapping expression patterns41. Several of these clusters could be removed 

without causing any visible phenotypic changes42. With enhancer information distributed semi-

redundantly over a large area, it is not clear whether each cluster should be viewed as a discrete 

enhancer, or as part of a larger regulatory 'billboard'. Similarly, the insulin receptor gene in 

Drosophila has complex and partially redundant regulatory information for various 

developmental stages extending across over forty kilobases that may represent cis-regulatory 

elements that necessarily act in concert rather than independently43. In mammalian genomes, 

large regulatory regions with very high levels of transcriptional output have been referred to as 

'super-enhancers', and hypothesized to have functionality that is distinct from smaller regulatory 

elements, and a role in defining cell-type specificity. In some cases, these regions have been 

shown to act as a cooperative unit, in which subsections do not function independently44. Even 

for smaller enhancers, the exact borders of the functional region are not readily defined; 

sequences with no known protein binding have been shown to influence or modify enhancer 

function45. In some cases, large regions of AT-rich DNA may modify chromatin structure to act 

as a booster sequence for a single enhancer, without containing any transcription factor binding 

motifs46.   

Evolutionary conservation is of limited use for predicting the functional boundaries of enhancers, 

or categorizing different classes of enhancer types. There are a number of well-studied enhancers 

that have substantially diverged in sequence over evolutionary time, while the timing and 

location of transcriptional output are maintained47,48. However, there are also some cases where 

regulatory elements are conserved across very long phylogenetic distances49,50; it has been 
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speculated that these may represent enhancers that conform to 'enhanceosome' type architecture, 

where small changes in sequence are highly detrimental to function51. However, this type of 

distinction is difficult to make in Drosophila, which possesses a genome in which both intergenic 

and intronic regions exhibit a high degree of conservation52. Conservation of regulatory elements 

tends to be more common in organisms with greater biological complexity or larger genomes 

such as mammals, but even in humans the percentage of the genome that is predicted to have 

regulatory importance is much greater than the portion that is highly conserved53. Changes in 

sequence also do not consistently correspond to proportional differences in expression54–56. In 

some cases, transcription-factor binding sites for a single protein have been found to be under 

different levels of purifying selection throughout the genome; some sites are unchanged over 

long periods of time while others are subject to rapid turnover. It has been speculated that this is 

due to these transcription factors having different functions (with correspondingly different 

specificity requirements) for these sites51. 

Within populations, variation in regulatory elements is common in the form of single nucleotide 

polymorphisms, insertions and deletions57. Entire regulatory elements are sometimes present in 

subsets of a population58. Some of this variation is likely due to genetic drift; in humans, this 

variation likely plays a role in the inheritance of complex diseases57. In other cases, it may 

contribute to standing cryptic genetic variation, and only influence phenotype under certain 

conditions59. Many regulatory elements have a certain amount of internal redundancy, in the 

form of extra potential binding sites60,61, or backup 'shadow' enhancers, which can contribute to 

buffering of transcriptional precision62,63. Even highly conserved regulatory elements that are 

clearly under strong purifying selection appear to have some level of redundancy; removal of 

classical 'enhanceosomes' does not always show a visible phenotypic effect64. 
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Enhancer variation can also come from directional selection. Gene regulatory elements are a 

major source of adaptation, ranging from subtle shifts in phenotype65 to rewiring of entire gene 

networks66. It is frequently suggested that changes in cis-regulatory elements are in fact the most 

important drivers of evolutionary change23. In Drosophila, the changes necessary to lead to 

pigmentation in the adult wing (which has a marked effect on Drosophila behavior and 

courtship) can be reached with modifications of a few nucleotides24. At the other end of the 

spectrum, extensive changes in regulatory interactions may be consistent with conserved 

function of genetic interactions. For instance, the HOX genes that pattern appendages include 

genes that have largely conserved function across all metazoans23. The human eye development 

gene Pax6 can be substituted for its fruit fly ortholog, eyeless, and drive eye formation in 

Drosophila, despite the profound differences in these organs across this evolutionary distance67–

69. While primary function is conserved, there have clearly been substantial changes in how these 

genes are deployed in their respective networks68. 

There are many models of regulatory evolution70, and the relationships between the structure, 

function, and evolution of regulatory elements are not fully understood.  These complexities 

make it difficult to accurately predict how changes in regulatory DNA leads to changes in 

function, or how to measure different types of selective pressure71. In several studies, the precise 

changes that led to phenotypic changes have been mapped out. In the case of the Drosophila 

enhancer sparkling, rapid sequence change over time was directly connected to cis-regulatory 

architecture. The enhancer produced the correct level of expression when it included several 

weak binding sites, as opposed to fewer strong binding sites. Weak binding sites require a less 

specific consensus sequence72. Also in Drosophila, an enhancer that drives expression of a gene 

in the optic lobe was compared between two very closely related species. Although there had 
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been a number of changes, the function was conserved; however, not all paths to sequence 

divergence were equally neutral. Many mutations in this regulatory element would have led to 

ectopic expression55. Presumably, purifying selection was playing a role despite the overall high 

levels of sequence turnover. It is plausible that similar mechanisms have been at work in the 

enhancer for the even-skipped gene in Drosophila. The enhancer that drives the 'stripe two' 

expression pattern has conserved function between different species of Drosophila, despite 

substantial sequence divergence. However, chimeric fusions of the two enhancers do not produce 

a normal expression pattern, suggesting that compensatory mutations have accompanied the 

turnover of binding sites73,74. 

Predicting the output of enhancers 

Experimental results like those from the even-skipped enhancer have led to another approach for 

studying the rules governing enhancer function, that is, building it from first principles, either 

using quantitative models or synthetic biology approaches (reviewed in Ay and Arnosti 201175). 

Modeling approaches can generally be grouped into several categories. These include boolean 

approaches, simple decision trees with binary outcomes, very analogous to the 'genetic switch' 

terminology, thermodynamic or fractional occupancy models that model that treat gene activity 

as a statistical scenario based on the probability of individual transcription factors associating 

with the available binding sites, and interacting with each other and key co-activators, and 

differential equations models that predict output of a gene as a function. Dynamic parameters 

representing time and transcription factor availability are estimated75. A limitation to these 

approaches is that we don't know all the essential inputs even for well-studied of regulatory 

regions76. Furthermore, the more biologically accurate methods are extremely computationally 

intensive, and require a very solid biological understanding of what proteins are involved in a 
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given regulon (a question which is complicated by extensive cross-binding between different 

regulatory networks, and the key role of co-activators that do not themselves bind to the DNA as 

illustrated by the 'transcription factor collective' described in Spitz and Furlong 201240). It is also 

challenging to apply the rules governing expression for one gene to another gene or even another 

regulatory element, as the degree to which transcription factors interact with each other in 

different enhancers is highly variable77,78. It has been suggested that enhancers can be roughly 

grouped into three categories based on the biological function of the genes they regulate-- simple 

binary switches for housekeeping genes, multiple homotypic binding sites for genes regulated by 

a gradient, and complex heterotypic regulatory architecture for genes associated with cell 

differentiation, that are highly tissue or time specific79. However, experimental evidence has 

suggested that even ostensible housekeeping genes like that encoding the Insulin-like receptor 

protein have regulatory architecture that is highly complex, and not easy to categorize43. 

It would be easier to make inferences about which changes in DNA sequence will lead to 

changes in enhancer function if it were better understood how common different types of 

enhancers are throughout the genome. Are the majority of enhancers like sparkling, with a 

number of weak binding sites72? Are enhancers of a certain size more likely to be highly 

interdependent 'super-enhancers'32 or 'enhanceosomes'37? Does cooperativity between different 

transcription factors within binding sites influence evolutionary rates within binding sites80? Can 

enhancers be described as a single group with some traits in common, or even broken down into 

sub-categories, or are enhancers highly individual?  Regulatory elements identified through the 

same methods will share some features that may not be universal; some methods for 

experimentally identifying enhancers can lead to a false appearance of uniformity with respect to 

size, conservation, and chromatin state33. The availability of new molecular biology and 
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genomics tools has contributed to the protean understanding of what constitutes an enhancer79. 

Experimental identification of enhancers 

Gene regulation was first worked out in bacterial and phage systems, with the lytic 'genetic 

switch' in phage lambda and the operons defined by Jacob and Monod in bacterial systems. 

Mutations in regulatory DNA produced characteristic phenotypes, such as constitutive 

expression of LacZ.  There, the concept of regulatory effects operating in cis and trans were first 

worked out21. Regulatory mutations have also been the basis of classic genetic research in 

eukaryotes as well, including studies of homeotic transformations in Drosophila and maize 

kernel coloration81. Modern genome-wide approaches to identify regulatory alleles that impact 

expression in cis or trans have been widely deployed in model systems such as yeast and 

Drosophila, allowing estimation of the frequency of such regulatory alleles. At a finer scale, 

unique complementation has been taken advantage of in experiments designed to find the impact 

of cis-regulatory change on species divergence82.  

Molecular biological approaches were the first to identify enhancers as such. Reporter assays are 

generally considered the 'gold standard' of enhancer identification. In these, coding sequence for 

an easily identifiable transgenic protein (lacZ, firefly luciferase, or green fluorescent protein) 

along with a basal promoter is fused to a putative enhancer sequence. These are most commonly 

incorporated into plasmids for transfection into cultured cells or allowed to integrate into the host 

genome to generate transgenic organisms83. Sequences that enable the production of the 

transgenic gene or protein are likely enhancers, and the quantity or conditions under which they 

direct expression can provide insight into their in-vivo function. A disadvantage of this method is 

that it requires prior knowledge about where regulatory sequences are located, although recently 

high throughput methods have been employed to randomly test large fractions of the genome for 



 

13 

 

enhancer activity84,85. Additionally, many transgenic approaches involve the gene of interest 

being randomly integrated into the genome of the organism, which can produce variable 

outcomes depending on where it lands. The use of site-specific integrases to target specific 

docking sites in the target organism can avoid these position effects86. Another limitation is that 

molecular cloning is best suited to sequences under a specific size; it has been proposed that the 

general perception of enhancers as being between 500 and 2000 base pairs is an artifact of what 

sequences sizes can be amplified most efficiently using molecular cloning33.  

Genetics defines elements based on what is necessary and sufficient-- with reporters, this 

frequently focuses on 'sufficient'-- what minimal element can reconstitute an entire expression 

pattern for a gene. 'Necessary' can be tested with rescue experiments, where an organism that is 

null for an enhancer or for the gene itself has a copy of the enhancer or enhancer and gene re-

introduced, either through standard molecular cloning or BAC recombineering87. A rescue 

construct that is both necessary and sufficient can be further dissected to see how individual 

binding sites or the order of binding sites contribute to the overall function, and how changes in 

sequence are associated with changes in phenotype88. More recently, in-vivo gene editing 

techniques like CRISPR-Cas9 have been used to alter sequences without the use of transgenics89. 

As genomic engineering becomes more efficient, it may provide a great deal of information on 

how very high resolution changes to regulatory elements can influence gene function. 

While genetics methods target the regulatory elements for individual genes, much of enhancer 

identification has moved on to genomics methods, where regulatory elements are identified 

without knowledge of the genes they control, based on features associated with enhancer activity 

throughout the genome17. DNase hypersensitivity identifies regions of open chromatin, which is 

a prerequisite for active enhancers90. Chromatin-immunopreciptation has also been extensively 
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used for identifying regulatory elements, both by locating genomic regions bound by 

transcription factors or combinations of transcription factors91, and by identifying histone 

modifications that are associated with open chromatin that has either enhancer and/or promoter 

activity90. Programs like ChromHMM92 can synthesize data from multiple chromatin signatures 

to identify the genomic regions that are most likely to exhibit enhancer activity. These methods 

have been used by community efforts like the ENCODE and MODENCODE projects to broadly 

map all regulatory regions throughout the genome18,19,93.  

Although many features correlate with enhancer activity, none of them are universal or 

exclusive94. There are numerous active enhancers that are not characterized by the typical histone 

modifications, and chromatin immunoprecipitation shows that transcription factors bind widely 

throughout the genome, including in many regions that are not active enhancers95. Even among 

the 'true-positives' that can be identified through these methods, they neither provide certain 

insight into what their specific function may be (although the identities of bound activators and 

repressors can provide clues about gene regulatory networks, as in Zeitlinger et al. 200791), nor 

indicate which specific genes the enhancers are activating96. A common approach is to assign 

putative enhancers to the nearest transcription start site, or if RNA-sequencing data is available, 

to the nearest active transcription start site96. There is some biological basis for this; active 

enhancers do tend to influence the activity of the nearest gene85, although there are numerous 

cases where they have been found to regulate genes that are tens or hundreds of kilobases and 

many genes away97,98. Chromosome conformation capture methods (4C, 5C, HiC, Chia-Pet and 

others) can provide physical proof of interaction between a regulatory element and a specific 

promoter99,100, although obtaining high-resolution data is not easily or economically obtained 

from genome-wide applications of this method. 
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Exhaustive testing of all genomic sequences in mass reporter assays, such as that used in 

STARR-seq, provides a more direct indication of enhancer locations, by using enhancers to drive 

their own expression. This approach has the advantage of being very direct, because the readout 

can provide both location and strength of the enhancer. It has the disadvantage of only working if 

the enhancer is modular, distance and orientation independent, and is tied to the specific core 

promoter used in the cloning vector. In addition, readout is limited to function in specific 

cultured cells, rather than the whole organism84. 

Enhancers are also predicted from DNA sequence alone. Deeply conserved DNA can indicate 

enhancer activity. Very rapid change can indicate directional selection, and enhancers that are 

associated with a phenotypic shift. A broadly applicable approach to identification of regulatory 

regions is the combination of phenotypic information and DNA sequence information101,102. In 

eQTL, genomic regions associated with changes in levels of gene expression can be used to 

pinpoint enhancers. In the related approach of GWAS, comparisons of populations can be used to 

identify variable regions that may be associated with variable gene expression, and may be in 

linkage disequilibrium with relevant enhancers (reviewed in Albert and Kruglyak 2015103). 

Machine learning and enhancer identification  

Machine learning is frequently used as a supplement to experimental methods for predicting 

enhancers. In addition to being a tool for predicting enhancers, it can potentially provide insight 

into what features best define enhancers, and potential limiting factors. This has been 

accomplished using both supervised methods104, and unsupervised models (e.g. ChromHMM92). 

They have based these predictions on features ranging from motif presence to transcription factor 

occupancy and chromatin modifications, although approaches that incorporate multiple diverse 

datasets are generally the most successful105. In the model system Drosophila melanogaster, 
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computational enhancer identification has been studied extensively by the lab of Dr. Eileen 

Furlong, who have used both combinations of transcription factors, and chromatin marks as 

predictors for enhancers in embryonic mesoderm development91,106. Experimental validation of 

predicted enhancers demonstrated that predictions of enhancer activity were highly accurate, 

although determining the spatial expression of that activity was more challenging. From these 

methods they were able to make genome-wide predictions about the frequency and distribution 

of mesoderm enhancers, and the levels of enhancer redundancy107.  

In Kvon et al. 2014 the lab of Dr. Alexander Stark published a database of in-vivo reporters 

covering 15% of the Drosophila genome, and the individual spatial and temporal expression of 

those that showed enhancer activity. Since these were identified as reporters, with relatively 

consistent sizes, instead of based on histone marks or other features associated with enhancers, 

there are ad-hoc fewer assumptions about what defines an enhancer85. This data set is thus 

uniquely suited to serving as a training set for determining which characteristics are associated 

with enhancer activity. Moreover, since approximately half of the reporters they tested exhibited 

no expression, this study provides an unprecedented resource of 'negative results'. In Chapter 2, 

we use this database and combined it with a wide range of features associated with enhancer 

activity, to analyze how well different combinations of features could be used to train effective 

machine learning classifications.   

A comparison of morphometrics and computer vision for interpreting phenotype from 

images  

Enhancer prediction is arguably an effort to go from genotype to phenotype. Going from 

phenotype to genotype is an equally difficult problem. This is sometimes referred to as 

'phenomics', as a complement to 'genomics': the study how different genotypes interact with the 
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environment to produce a distribution of phenotype7. Phenotype can be described as anything 

from how genes are translated into proteins, to how genes are translated into behavior. However, 

images are frequently used for recording phenotype across the entire spectrum. These images can 

then be quantitatively analyzed, and interpreted. For complex traits, the interpretation can rely on 

machine learning. This has been applied to a variety of situations, ranging estimating the 

prognosis of cancer based on images of the tumor, to automatically identifying a plant species 

based photographs of its leaves. Some success has even been achieved using 2D and 3D cranial-

facial phenotypes to infer the genetic cause of disease108–110, and to track the progress of 

disease111.  

Wing shape as a model system for morphometrics and computer vision 

As with using machine learning for genome annotations, the features chosen for training a 

classifier have a substantial impact on the performance. Analysis of images is usually done using 

morphometrics methods, which identify corresponding landmarks across images, and use them 

for quantitative comparison. These landmarks, or analysis based on them, can then be used for 

classifications. Wing shape in Drosophila is a major model system for morophometric methods. 

It is typically measured using the intersections of veins as landmarks; more recent techniques 

generate splines between landmarks to automate quantification of both size and shape. These 

methods can extract information from wings to provide extremely in-depth insight into the 

underlying genotype and characteristics of the fly from which it came112. 

However, morphometric methods do have some inherent limitations. Even very sophisticated 

morphometrics reduce the phenotype to essentially one dimension (in wings) or two dimensions 

(if images include three dimensional shape information, as with skull shape). Moreover, 

morphometric landmarks are sometimes selected primarily because they are easily measured 
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rather than biologically relevant, especially in cases where the basis of a phenotype is not fully 

understood. It is very possible that there are other aspects of image data that are not visually 

obvious, but do provide relevant biological information. Computer vision, in which software 

extracts information about images without prior information about which features are relevant, 

has been proposed as an alternative or complement to morphometrics methods. It essentially 

takes feature selection from images out of the hands of the biologist. Features generated from 

computer vision technology have been extensively applied in facial recognition. Some 

preliminary studies have shown that it can also be used to classify Drosophila wing shape113,114, 

but it has not been a subject of extensive research. 

A wing shape database 

Facial recognition technology has greatly improved over the last decade115. This is partly due to 

tremendous interest in the subject due to its use in technology developed for social media and 

national security. However, it has also been encouraged by the existence of databases providing 

training data, allowing researchers to determine how best to identify individuals from images 

across a range of conditions116–118. In Chapter 3, we discuss the development of a database of 

Drosophila wing images, with variation incorporated for sex and genotype. We also analyze 

some initial comparisons of how well existing morphometric features compare with features 

extracted through alternative methods can be used to identify sex and genotype. 
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Abstract 

Predicting regulatory function of non-coding DNA using genomic information remains a major 

goal in genomics, and an important step in interpreting cis-regulatory code. Regulatory capacity 

can be partially inferred from transcription factor occupancy, histone modifications, motif 

enrichment, and evolutionary conservation. However, even combinations of these features in 

well-studied systems such as Drosophila have limited predictive accuracy. Here we examine the 

current limits of computational enhancer prediction by applying machine-learning methods to an 

extensive set of genomic features, validating predictions with the Fly Enhancer Resource, which 

characterized the transcriptional activity of approximately 15 percent of the genome. Supervised 

machine learning trained on a range of genomic features identify active elements with a high 

degree of accuracy, but are less successful at distinguishing tissue-specific expression patterns. 

Consistent with previous observations of their widespread genomic interactions, many 

transcription factors were associated with enhancers not known to be direct functional targets. 

Interestingly, no single factor was necessary for enhancer identification, although binding by the 

'pioneer' transcription factor Zelda was the most predictive feature for enhancer activity. Using 

an increasing number of predictive features improved classification with diminishing returns. 

Thus, additional single-timepoint ChIP data may have only marginal utility for discerning true 

regulatory regions. On the other hand, spatially- and temporally-differentiated genomic features 

may provide more power for this type of computational enhancer identification.  Inclusion of 

new types of information distinct from current chromatin-immunoprecipitation data may enable 

more precise identification of enhancers, and further insight into the features that distinguish 

their biological functions.  
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Introduction 

Enhancers, cis-regulatory elements that coordinate the input of transcriptional activators and 

repressors, are the primary determinants of eukaryotic gene expression. Enhancers can regulate 

genes from distances of hundreds to hundreds of thousands of base pairs, and genes are 

frequently regulated by multiple enhancers to provide complex spatial and temporal regulation1–

3. Changes in enhancers play pivotal roles in the evolution of multi-cellular life 4–6, and 

disruption in enhancer function has been linked in many cases to disease3,7–9.  

Identifying the complete repertoire of enhancer(s) for a specific gene is difficult, although there 

are a number of features that can provide insight. Enhancers are frequently characterized by 

enrichment of binding motifs for various transcription factors10–12. This may rely on prior 

knowledge of binding affinities for specific factors and curated position weight matrices 

(PWMs)13,14, or by searching for over-represented motif clusters in sequences adjacent to co-

expressed genes15,16. However the presence of motifs does not indicate when an enhancer would 

be active in development, and motifs are not a perfect indicator of transcription factor binding17. 

Genome-wide studies have used features such as chromatin immunoprecipitation data for 

transcription factor occupancy and histone modifications to infer function of non-coding DNA; 

however, features associated with enhancers are also found in regions of open chromatin that are 

not necessarily active18–20. Many enhancers will have features of regulatory DNA even while 

inactive21 and transcription factors and polymerases will frequently bind in preparation for future 

activity22.  

Going beyond simple predictions of overall activity, several studies have attempted to predict 

spatial and temporal aspects of enhancer function. These have had some success at classifying 

enhancers into broad categories23–25, and making inferences about the frequency and distribution 
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of specific types of enhancers (e.g. 'shadow enhancers')25. However, results from thermodynamic 

models used to predict specific expression patterns based on transcription factor binding have 

shown that achieving that level of predictive specificity is a challenging problem26,27.  

After identifying a prospective enhancer, an additional challenge is determining which gene or 

genes it regulates22. Enhancers can be very distal to the target gene, which may not be the 

adjacent transcription unit 28–30 and a single enhancer can influence multiple genes25,28,31. Most 

computational approaches do rely on proximity, as a substantial percentage of enhancers control 

the nearest gene32–34. However, since many enhancers direct distal genes, this heuristic is far 

from universally applicable35.  

Chromatin conformation data can provide more direct information about which genes are 

regulated by enhancers6,34,36. Many of these experiments have been conducted in cell culture, but 

increasingly datasets from specific organ systems are also becoming available37. However, 

identifying tissue specific enhancers from conformation data is complicated by the large number 

of non-transcription interactions between genomic regions38. Combinatorial protein binding can 

also provide insight into enhancer locations; clusters of transcription factor binding can indicate 

enhancer activity. Genes known to be involved in a developmental network are likely to be 

associated with enhancers bound by common transcription factors regulating that network39,40.  

In Drosophila melanogaster enhancer identification and characterization has traditionally relied 

on genetic analysis41 and in-vivo reporter assays1. However, even in organisms with relatively 

small genomes like Drosophila, this is a daunting task on a genome-wide scale42. High-

throughput methods that assay the entire genome, such as STARR-seq, offer a more 

comprehensive perspective, but have thus far been confined to analysis of potential enhancers in 

cultured cells, and only provide insight on transcriptional activity, not function in control of 
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specific genes. Most of these assays are also limited to showing enhancer readout on specific 

basal promoters (which can have a substantial impact on enhancer responsiveness), and neglect 

the influence of genomic neighborhood43–45. Evolutionary conservation has been successfully 

used to identify Drosophila enhancers where functional regions of non-coding DNA are more 

highly conserved than background46–48, although this method is complicated by the relatively 

uniform conservation across most upstream and intronic regions49. Furthermore, in many cases 

enhancers have conserved function despite sequences being highly diverged50, and non-coding 

regions with functions unrelated to enhancer activity can also be conserved above 

background47,51,52. 

Ultimately, no one genomic feature is an exclusive or universal indicator of enhancer location or 

activity42. The increasing availability of genomics datasets for enhancer correlates, such as 

nucleosome occupancy and transcription factor binding53, as well as spatial information from 

techniques like HiC54 and ChIA-Pet55, has opened up the door for compound approaches wherein 

multiple features are used to infer the activity of enhancers56,57. Machine learning approaches 

combining multiple genomics datasets have employed a broad range of supervised and 

unsupervised methods, as well as different combinations of enhancer features58. Some studies 

have also successfully assigned enhancers to genes using a probabilistic approach, where both 

proximity and biological information are considered59,60. Taken together, these studies suggest 

that compound approaches, using multiple features and diverse types of features as predictors are 

the most successful60–62. However, distinguishing between functional binding from background 

represents a major challenge to using genome-wide datasets to predict enhancer activity, and the 

accuracy of enhancer predictions is not entirely known. Many efforts at estimating the accuracy 

of enhancer predictions have been limited to testing a handful of representative cases63, or 



 

34 

 

correlations in place of broad-scale verification. Enhancers are identified based on correlating 

features (e.g. motifs, transcription factor occupancy), and the accuracy of these calls are 

estimated from different correlates (e.g. DNase hypersensitivity61,64, and  eRNAs65). Until 

recently, more direct methods for estimating accuracy have not been available62,66.  

The recently published Fly Enhancer Resource is a database of information for nearly 8000 

Drosophila genomic regions, showing the activity of in-vivo reporters with these regions at 

various developmental stages. It is also an ideal resource for determining both the predictive 

power of different features associated with enhancers. Importantly, the database provides detailed 

information about active enhancers through development, as well as many genomic regions that 

are not transcriptionally active. This data can be used as a training set for distinguishing active 

enhancers from inactive regions, and determining which features are most effective for 

distinguishing these groups. Here, we exploit the possibilities for validation provided by the 

extensive functional survey by Kvon et al. 201467, and use extant data on transcription factor 

occupancy, chromatin marks, and DNA sequence to push the limits in enhancer identification 

and classification, and explore what conditions could best be used to distinguish this state.  

Materials and Methods 

Datasets used as predictive features 

Predictive features were obtained from a variety of publicly available datasets (see Table 2-1). 

For each dataset, information that overlapped with the coordinates of DNA elements were 

categorized as features of those DNA elements. These include conservation information between 

D. melanogaster and other species in the Drosophila genus, motif scores based on position 

weight matrices (PWMs) associated with transcription factors involved in dorsal-ventral 

embryonic patterning, and chromatin immunopreciptation (ChIP) data for a number of 
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transcription factors and histone modifications. ChIP data all came from stage 4-6 embryos; we 

chose to focus on early embryonic development, as the regulatory networks governing this stage 

of development are extremely well understood, and many genes are expressed in simple, easily 

categorized expression patterns. This stage also has the fewest active genes and the smallest 

number of active DNA elements (as indicated in Kvon et al. 201467), which simplifies the task of 

assigning enhancers to genes. 

Pairwise alignments were downloaded in axt file format from the University of California Santa-

Cruz Genome Browser68 (http://hgdownload.soe.ucsc.edu/downloads.html). Alignments used 

were D. melanogaster version dm3 to D. grimshawi droGri2, D. willistoni droWil1, D. 

ananassae droAna3, D. pseudoobscura dp4, D. erecta droEre2, D. yakuba droYak2, D. sechellia 

droSec1, and D. simulans droSim1. These were chosen to reflect a range of phylogenetic 

distances from D. melanogaster. Summary lines from each chromosome axt file were used to 

create a single summary file for each genome. A custom python script was used to determine the 

average BLASTZ score per 100 base pairs for a region, which was plotted by species on a log10 

scale. Perfect conservation over 100 base pairs would yield a score near 10,000. Scripts and 

intermediate files are available on github at https://github.com/asonnens/crm_analysis. BLASTZ 

scores were used for pairwise comparisons69. 

Position probability matrices for the transcription factors Dorsal, Snail, Twist and Zelda were 

obtained from the database Fly Factor Survey70. These values were formatted using a custom 

python script to enable them to be input into the MEME Suite program MAST71. Motif matches 

throughout the genome with a p-value of less than 0.0001 were obtained using MAST, and the 

release 5.37 version of the Drosophila melanogaster genome. Output files, containing 

coordinates of qualifying matches and their scores, were converted to bedgraph forma 
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Table 2-1  Features for enhancer classification 
 

ID Short ID Features Reference 

Dorsal 2015 ChIP-seq Dl 15 s 1748 Sun et al. 2015 

Dorsal 2009 ChIP-chip Dl 09 c 9357 Macarthur et al. 2009 

Snail 2014 ChIP-chip Sna 14 c 7735 Rembold et al. 2014  

Snail 2009 ChIP-chip Sna 09 c 596, 2800 Macarthur et al. 2009 

Twist 2014 ChIP-chip  Twi 14 c 8629 Rembold et al. 2014 

Twist 2011 ChIP-seq Twi 11 s 8797 He et al. 2011 

Twist 2009 ChIP-chip Twi 09 c 6684, 7414 Macarthur et al. 2009 

Bicoid 2013 ChIP-seq Bcd 13 s  2061 Paris et al. 2013 

Bicoid 2009 ChIP-chip  Bcd 09 c 619, 702  Macarthur et al. 2009 

Caudal 2010 ChIP-seq Cad 10 s  4045 Bradley et al. 2010 

Caudal 2009 ChIP-chip Cad 09 c 1590 Macarthur et al. 2009 

Hunchback 2013 ChIP-seq Hb 13 s 4986 Paris et al. 2013  

Hunchback 2009 ChIP-chip Hb 09 c 1831, 1717 Macarthur et al. 2009 

Giant 2013 ChIP-seq Gt 13 s 4194 Paris et al. 2013 

Giant 2009 ChIP-chip Gt 09 c 1069 Macarthur et al. 2009 

Hairy 2009 ChIP-chip Hry 09 c 1704, 2729  Macarthur et al. 2009 

Knirps 2010 ChIP-seq Kni 10 s 505 Bradley et al. 2010 

Kruppel 2013 ChIP-seq Kr 13 s 5309 Paris et al. 2013 

Zelda 2011 ChIP-seq Zld 11 s  9432 Harrison et al. 2011 

H3K27ac 2015 ChIP-seq H3K27ac 15 3055 Kok et al. 2015  

H3K27ac 2010 ChIP-seq H3K27ac 10 3658 Roy 2010 

H3K4me1 2015 ChIP-seq H3K4me1 15 1934 Kok et al. 2015 

p300 2010 ChIP-seq  p300 10 3296 Roy et al. 2010 

Zelda motif sanger Zld m1 17179 Fly Factor Survey 

Zelda motif solexa Zld m2 19271 Fly Factor Survey 

Dorsal motif FlyReg Dl m1 71087 Fly Factor Survey 

Dorsal motif NBT Dl m2 26159 Fly Factor Survey 

Snail motif FlyReg Sna m1 38221 Fly Factor Survey 

Snail motif sanger Sna m2 31059 Fly Factor Survey 

Snail motif solexa  Sna m3 42341 Fly Factor Survey 

Twist motif da Twi m1 29656 Fly Factor Survey 

Twist motif FlyReg Twi m2 61676 Fly Factor Survey 

UCSC BlastZ scores NA NA Rosenbloom et al. 2015 

 

To obtain insight into factors driving enhancer activity, we used ChIP-chip and ChIP-seq data. 

Peak scores were obtained from public databases including ModEncode, the Berkeley 

Drosophila Genome Project, and other publications with relevant ChIP data (see Table 2-1 in 

Methods). In each case terminal data files were converted to bedgraphs. When necessary, 
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coordinates were converted to the release 5 genome using the Flybase coordinate conversion 

tool. As these datasets were analyzed using different pipelines, they are somewhat variable 

regarding distributions of scores, and thresholds for what was considered a significant peak. 

Intermediate files are available on github at https://github.com/asonnens/crm_analysis. The 

overlap (of at least one nucleotide) between peaks called by different datasets, and correlation 

between scores in overlapping peaks, was analyzed using a custom python script, and visualized 

using gplots (version 3.0.1) in R (version 3.3.2).  

Organization and curation of data from Fly Enhancer Resource 

DNA elements from the Stark Lab Fly Enhancer Resource were downloaded from the Kvon et al. 

2014 supplementary tables. For comparisons made in stage 4-6 embryos, we used regions that 

were active in stage 4-6 embryos, filtered to include only those with activity scores of 3 or higher 

(as annotated by Kvon et al. 2014), and confirmed (by Kvon et al. 2014) inactive regions in stage 

4-6. For examination of expression patterns, the highly active stage 4-6 DNA elements were re-

annotated based on photographs of the slides, to identify those that exclusively fit characteristic 

Anterior/Posterior and Dorsal/Ventral expression patterns. 114 DNA elements were found to 

have strong expression distinctly in the Anterior region of the embryo, while 78 were only 

expressed in the Central or Posterior regions. 22 DNA elements were identified that had 

stereotypical mesodermal or neurogenic ectoderm expression patterns (as in enhancers for snail 

or short gastrulation respectively), and 192 had strong expression patterns that did not overlap 

with these two regions. All active and inactive DNA elements that Kvon et al. 2014 identified as 

'verified' were used for classifications based on temporal specificity (e.g. ubiquitously active, or 

stage specific). DNA elements were grouped by whether they were active in all embryonic 

stages, only in stages 4-8, stages 9-12, stages 13-16 (Figure 2-13). 
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Intersection of features with Fly Enhancer Resource 

To determine if these features could be used to distinguish between spurious binding and 

functional binding, we compared the distribution of peak scores for features that overlapped (by 

at least one base pair) with genomic regions that drive strong expression in stage 4-6 embryos (as 

reported by the Fly Enhancer Resource) and regions that do not drive expression in stage 4-6 

embryos. Every DNA element tested by the Fly Enhancer Resource was assigned a score for 

each feature included. Scores from bedgraph items (peak scores in the case of ChIP datasets, 

MAST motif scores in the case of motif datasets, and BLASTZ scores for conservation 

information) that overlapped with a DNA element were assigned to form that DNA element's 

scores (multiple peaks within an element were combined; scores were only combined within a 

single dataset, thus normalization was not necessary between datasets). If a DNA element did not 

overlap with any features for a given dataset, its score for that feature was set to a numerical 

value one standard-deviation lower than the lowest score that indicated a hit for that dataset, 

based on the distribution of values for that feature. We calculated fractional overlap of these 

genomic features, both to determine whether individual features were reproducibly identified in 

different studies, and to see if there was overlap of features known to be functionally related. 

Each dataset was compared pair-wise with every other dataset; the degree of feature overlap was 

calculated as a percentage (the percentage of the features in the smaller dataset that overlap with 

one or more features in the larger dataset). In Fig. 2-11, the Fly Enhancer Resource DNA 

elements were filtered to only include those that fit a minimal threshold for a potential active 

enhancer, based on binding of transcription factors from at least one of the datasets described in 

Table 2-1. Subsets of this set of potential enhancers were created to allow comparisons between 

active DNA elements and inactive regions that resemble active DNA elements with regards to 
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transcription factor occupancy. This was done by restricting the data to include only elements 

bound by two or more transcription factors, or only DNA elements occupied by three or more 

transcription factors (see Results.) All sets of DNA elements were under-sampled from the larger 

category to balance the number of active and inactive DNA elements included in these 

prospective training sets.  

The DNA elements with features assigned were scaled and visualized using a Principal 

Components Analysis using the stats package (version 3.2.3) in R (version 3.3.2).The percentage 

of variation captured is displayed in a scree plot (Figure 2-b). 

Discrimination between classes of enhancers with Random Forest 

To determine if it was possible to distinguish between regions that are transcriptionally active 

and regions that are soon-to-be active, we also classified the Fly Enhancer Resource DNA 

elements into several categories of activity. This included ubiquitous activity (active in every 

developmental stage measured Kvon et al.), total inactivity (never active in any measured stage), 

and stage specific regions that are active only in early, middle, or later embryonic stages. To 

facilitate comparisons of different sorts of data, values for ChIP, conservation, and motif scores 

were normalized using the 'scale' function in R. In Fig. 2-9, highly active (defined by a score of 3 

or higher in stage 4-6) and inactive DNA elements were classified using a random forest 

algorithm (randomForest package, version 4.6-12)  with 500 trees in R (version 3.2.3), using two 

thirds of DNA elements for training and one third for testing. Receiver operating characteristic 

(ROC), Precision Recall and the area under these curves was analyzed using ROCR package in R 

( version 1.0-7, Sing et al. 2005). In this and later figures, the DNA elements used for training 

were randomly re-sampled ten times. In Figure 2-11, 2-12 and Figure 2-16 where balanced 

datasets were used equal numbers of active and inactive elements were randomly selected using 
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the package dplyr (version 0.5.0). For subsets filtered for DNA elements containing the indicated 

ChIP binding protein or chromatin mark, the number of "active" elements ranged from ~100-

300, and for balanced datasets, the same number of inactive elements was used. The same 

classification was attempted with datasets that were reduced to only include inactive regions that 

at least superficially resembled active  enhancers (regions occupied by two or more transcription 

factors, or regions occupied by a combination of factors associated with development). 

Feature importance analysis 

Feature importance was measured using the mean decrease in Gini index within the 

randomForest function, which estimates variable importance during the training of the random 

forest. To determine if redundancy or correlation between features influenced importance scores, 

features were iteratively left out of analyses, so after each set of predictions, the most important 

or least important feature was dropped. In Fig. 12 where successive features are omitted from the 

analysis, the most and least important features were re-calculated after each run with subsets of 

the features. After exclusion of each feature, the order of feature importance frequently changed, 

as the removal of partially correlated data increased the relative importance of remaining 

features. 

Identifying potential enhancers 

In Fig. 10, to comprehensively assess regions that contain bound transcription factors and 

chromatin signatures associated with enhancers, we generated a list of potential enhancers de-

novo based on clustering of transcription factors adjacent to specific genes of interest, which 

were selected based on annotated anterior/posterior, mesodermal, or neurogenic ectodermal 

expression patterns. Prospective enhancers were defined by clusters of overlapping features 

occurring within 50kb windows centered on the +1 position of genes of interest, using a custom 
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python script available on github at https://github.com/asonnens/crm_analysis. Genes of interest 

brinker (brk), ventral nervous system defective (vnd), short gastrulation (sog), snail (sna), even-

skipped (eve), Kruppel (Kr), hunchback (hb), and knirps (kni), were selected based on their well 

studied regulation in early stage embryos. To locate clusters, we defined regions containing at 

minimum Zelda and one other ChIP signal (p300, H3K4me, H3K27ac, or any TF), or H3K4me1 

and one other ChIP signal (as indicated in Fig. 10).  The final enhancer was defined as a region 

around the center of the cluster or clusters of features, and set to a fixed size of 500-2000 bp. 

These regions were then classified as 'putative enhancers' or 'background binding' by random 

forest algorithms trained on regions from the Fly Enhancer Resource. 

Validation of predictions 

Annotated enhancers were defined based on verified regulatory regions in the RedFly database72. 

Each random forest trained on the Fly Enhancer Resource was used to classify predicted 

enhancers around genes of interest ten times, using different samples of the training set. A 

custom python script was used to determine the frequency that each model classified a cluster 

that overlapped with an annotated enhancer as active (defined as percentage overlap), and the 

frequency that each model classified non-overlapping segments as active (likely off target). The 

results of this were graphed with ggplot2. 

Data Availability 
Scripts and final files are available on github at https://github.com/asonnens/crm_analysis. 

Results 

Enhancers are not highly conserved 

Sequence similarity in related species has been extensively used to identify functional non-

coding DNA. Highly conserved regions may indicate purifying selection on regulatory 

elements69, and conversely highly diverged sequences can be a signature of enhancers associated 

https://github.com/asonnens/crm_analysis
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with phenotype differences between species73. We looked at sequence conservation between 

Drosophila melanogaster and a range of other species in the Drosophila genus for DNA elements 

that were either active in every stage of embryonic development or inactive across all stages, to 

see if there were any visible trends. DNA elements do not show increased sequence conservation 

over inactive genomic regions as measured by BlastZ scores (Figure 2-1). This was true for all 

species comparisons. 

Correlations of distinct chromatin immunoprecipitation data 

We collected a range of ChIP datasets to use for studying marks of enhancers. These datasets 

were produced using different methods (ChIP-chip vs. ChIP-seq) and a range of experimental 

conditions. Accordingly, the number of features contained within different datasets was highly 

variable (Table 2-1). We assessed the consistency and overlap of each dataset to determine how 

to most effectively combine them. Different datasets measuring binding of the same transcription 

factor typically do not completely overlap, but do to a greater degree than is seen in comparisons 

between different transcription factors (Figure 2-2, Figure 2-3).  
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Figure 2-1 Sequence conservation in active and inactive elements 

 

 

We compared the sequence conservation for reporters that drove expression in every stage of 

embryonic development relative to reporters that showed no activity at any stage. Levels of 

sequence conservation for these ~3,800 tested reporter elements from D. melanogaster versus 

D.simulans (red), D.yakuba (yellow), D.pseudoobscura (green), or D.grimshawi (blue), are 

averaged per 100bp, across the 2kb reporter elements.The average conservation scores closely 

match evolutionary distances-- sequences are consistently more similar to Drosophila 

melanogaster in more closely related species regardless of activity; but reporters with strong 

activity (shown in hatched areas) are not distinguishable from reporters that are inactive 

throughout embryonic development (rest of points, aligned by chromosomal location). BlastZ 

score of ~10,000 would indicate perfect sequence identity over 100 base pairs. 
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Figure 2-2 Correlations between genomic regulatory features 

 

Similarities between ChIP datasets were assessed by determining percentage overlap of ChIP 

peaks between different datasets, ranging from full overlap (blue) to no overlap (red). Boxes on 

the diagonal highlight independent measurements of specific transcription factors; Twist 

occupancy shows a high degree of correlation, whereas Hunchback is lower. Three Twist datasets 

and one Snail dataset showed greater degrees of cross-correlation to other factors; lower levels of 

correlation were noted for complete ChIP peak datasets. In the reported bound regions with peak 

scores one standard deviation above average, overlap averages at 57 percent in datasets 

measuring the same transcription factor as reported by different labs, and 38 percent between 

different transcription factors. 
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Figure 2-3 Overlap of features between different datasets 

 

In many cases less than half of the peaks reported for a given transcription factor are 

reproducible between labs. This is more evident when examining all reported peaks, instead of 

the highest-scoring peaks (Figure 2-2). When all reported peaks are included, measurements of 

the same transcription factor between labs overlap on average 52 percent, compared with 49 

percent overlap between different transcription factors. 
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Separate datasets produced by the same lab (either at different times, or using different 

antibodies for the same protein- e.g. Twist, Bicoid, and Hunchback) overlapped more than 

datasets produced by different research groups, although excluding lower scoring peaks 

increased this trend (Fig. 2-2 vs. Fig. 2-3). MacArthur et al. (2009)74 reported a 91% overlap in 

ChIP results using different antibodies for the same transcription factor. In comparison, the 

average peak overlap for ChIP results of specific transcription factors from different laboratories 

ranges from 52% for all peaks to 57% for highest scoring peaks (Fig. 2-2 and Fig. 2-3). By 

contrast, overlap between different transcription factors ranged from 49 percent (high scoring 

peaks) to 38 percent (all peaks). Variability between ChIP datasets, even for duplicate 

measurements of the same factor, has been noted in previous studies, but overall trends indicate 

measurable differences in measured genomic occupancy of these factors.  

Although ChIP datasets provide partially inconsistent information about occupancy, in 

combination they are an important guide to the regulatory potential of specific DNA elements. In 

some cases, loci that are inactive can be readily distinguished from loci around active genes 

based on ChIP occupancy alone. Sparse occupancy around weakly transcribed or inactive genes 

(Figures 2-4 A, 2-4 B) contrasts with abundant binding of factors near loci adjacent to robustly 

expressed genes (Figure 2-4 C, 2-4 D). However, around active genes, some bound regions may 

not be associated with known enhancers. We found many instances of transcription factor 

occupancy of tested, inactive regions in the Fly Enhancer Resource (e.g. circled region in 2-4 D). 

These regions are difficult to visually distinguish from active enhancers. 
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Figure 2-4 ChIP peaks correlate with active elements 

Low levels of binding by Dorsal, Twist and Zelda at A weakly expressed sgl locus and B inactive 

kar locus. C  Numerous bound regions associated with actively transcribed vnd and D brk loci. 

However, some regions found to be inactive in Kvon et al. 2014 are bound by multiple 

transcription factors (circled region near brk). Gray bars indicate portions of genome assessed by 

Kvon et al. 2014. Blue bars indicate transcription units for genes. 
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Reproducibility between measurements of features was limited, but higher for stronger signals. 

To determine if these reproducible strong signals were more likely to be associated with active 

elements, we used the pairwise comparisons of features from Figure 2-2 to measure the 

correlation in scores for overlapping features in both DNA elements that were strongly active and 

inactive in stage 4-6 embryos. In the case of Zelda and Dorsal (transcription factors associated 

with a large number of ChIP-peaks, Table 2-1) and histone marks associated with enhancer 

status, occupancy scores for different datasets measuring the same transcription factors within a 

given DNA element generally correlate with each other, as do datasets measuring different but 

functionally related features, although the difference in this correlation between active and 

inactive regions is minimal (Figure 2-5). The same trend is largely true for other transcription 

factors (Fig. 2-6). This suggests that the intensity of peak scores are fairly reproducible between 

datasets, but that functional binding is not more reproducible or consistent than background 

binding. Motif scores generally do not correlate at all with occupancy scores for transcription 

factors that overlap with the motifs, except in the case of Zelda (Figure 2-5, Figure 2-6). This 

correlation seems to be much stronger in active DNA elements than in inactive elements (Figure 

2-4 C and 2-4 D). 

The trends shown in Figure 2-4 suggested that there may be qualitative differences between 

binding or chromatin modification that could be used to distinguish them. Therefore, we plotted 

the distribution of peak or motif scores for the same set of active or inactive DNA elements for 

individual ChIP datasets and motifs that were used in Fig. 2-5 (Figure 2-7). For some ChIP 

datasets, the higher-scoring peaks were associated with active DNA elements (e.g. Snail 2014 

chip). This trend was not consistent for a given transcription factor, suggesting that different 

thresholds or levels of background binding in these datasets may obscure relevant signals. 
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Figure 2-5 Correlation between features for active and inactive elements 

 

A,B: Levels of Dorsal and Zelda were assessed on active and inactive regions. Zelda and Dorsal 

peaks were correlated on both classes of elements, but little correlation is noted between protein 

occupancy and the respective binding motifs. C,D: For chromatin marks and pioneer factor Zelda 

protein and motifs, higher correlations were noted on active vs. inactive elements. Results from 

392 highly active elements (left) and 6,858 stage 4-6 inactive elements (right). Comparisons for 

additional factors shown in Figure 2-6. 
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Figure 2-6 Correlations of feature scores for overlapping or replicate features 

 

Most functionally related features have scores that partially correlate. The correlation is not 

noticeably weaker in inactive regions, which might indicate that the correlation is not due to the 

functional relationship. 
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Figure 2-7 Differential ChIP peak or binding motif enrichment values 

 

Histograms showing distributions of ChIP peak or binding motifs were plotted for DNA elements 

active (blue) and inactive (red) in stage 4-6 embryos. DNA elements from both categories that 

did not overlap with the signal were excluded from the comparison, and the histograms from 

both categories were scaled to integrate to 1. In most cases, there were a larger number of 

inactive regions bound by transcription factors than active regions, as there are 6,858 inactive 

regions vs. 392 active regions (Table 2-2). Some datasets showed substantial differences in the 

distributions between active and inactive elements e.g. Snail 2014 chip and H3K27ac 2015 seq. 

No large differences in enrichment of specific regulatory motifs were observed between active or 

inactive elements.  
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Table 2-2 Overlap of active and inactive reporters with features 
 

Feature Overlap Active Overlap Inactive 

All reporters 392 6858 

Dorsal 2015 ChIP-seq 118 222 

Dorsal 2009 ChIP-chip 326 2081 

Snail 2014 ChIP-chip 279 1083 

Snail 2009 ChIP-chip 168 413 

Twist 2014 ChIP-chip  257 1115 

Twist 2011 ChIP-seq  240 885 

Twist 2009 ChIP-chip 320 1528 

Bicoid 2013 ChIP-seq  118 253 

Bicoid 2009 ChIP-chip 138 130 

Caudal 2010 ChIP-seq 250 780 

Caudal 2009 ChIP-chip 175 275 

Hunchback 2013 ChIP-seq  192 777 

Hunchback 2009 ChIP-chip  201 424 

Giant 2013 ChIP-seq 190 661 

Giant 2009 ChIP-chip 169 193 

Hairy 2009 ChIP-chip 210 525 

Knirps 2010 ChIP-seq 111 96 

Kruppel 2013 ChIP-seq  204 842 

Zelda 2011 ChIP-seq 292 940 

H3K27ac 2015 ChIP-seq 98 335 

H3K27ac 2010 ChIP-seq 123 537 

H3K4me1 2015 ChIP 167 421 

p300 2010 ChIP-seq 168 291 

Zelda motif sanger 165 1073 

Zelda motif solexa  148 1208 

Dorsal motif FlyReg 249 3983 

Dorsal motif NBT 149 1959 

Snail motif FlyReg 138 2632 

Snail motif sanger 119 2013 

Snail motif solexa 156 2720 

Twist motif da  134 1952 

Twist motif FlyReg 178 3154 
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Figure 2-8 Similarity of distribution of feature scores for active vs. inactive elements 

 

ChIP datasets show greater differences, while conservation scores are indistinguishable on active 

and inactive elements. Datasets from within the same lab, using different antibodies for the same 

transcription factor, were merged. 
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Transcriptional activity and stage specificity can be classified based on genomic features 

Our analysis indicated that no single feature conclusively correlates with regulatory activity, 

therefore, we asked if combinations of these features might distinguish active from inactive DNA 

elements. To judge the feasibility of this approach, we implemented a Principal Components 

Analysis (PCA) of the forty-one datasets. PCA of all features for all DNA elements (392 active 

and 6858 inactive) showed some differences in their distribution. (Figure 2-9 A). The largest 

contributors to PC1 (the greatest sources of variation in the dataset) are mostly occupancy 

information for transcription factors associated with Anterior-Posterior patterning, like Caudal 

and Hunchback (Data not shown). Interestingly, the largest contributors to PC2 are primarily the 

degree of evolutionary conservation in each DNA element, based on various species 

comparisons. Almost all variation in the dataset was captured in the first ten principal 

components (Figure 2-9 B). 

Although active and inactive regions overlap, the visible partial separation based on the first 

principal component suggested it may be possible to classify activity using machine learning. 

Linear discriminant analysis of all DNA elements showed a degree of separation, although there 

was overlap in the distribution of where they fell on LD axis 1 (Figure 2-9 C, cross validation in 

Figure 2-10). Next, we used a random forest (chosen for its amenability to biological 

interpretation) to classify all active and inactive DNA elements based on the same 41 features 

used for PCA and LDA. A random forest trained on two thirds of the active and inactive DNA 

elements was able to classify the remaining one third with 96 percent accuracy (measured by 

total percentage of true positives and true negatives) over 10 trials. Receiver Operator 

Characteristic Curve (ROC) and Precision recall curves are shown in Figure 2-9 D,E. 

Classifications are much more successful as measured by ROC than by Precision-recall, as 
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indicated by their respective measurements of 'area under curve' (AUC). Zelda and Bicoid 

datasets were found to be the most important features (Data not shown).  

Many of the inactive regions used in the PCA and classifications in Figure 2-9 C-E are relatively 

sparse in terms of transcription factor occupancy, like the regions shown in Figures 2-4 A, B. 

These unoccupied regions can be trivially distinguished from potential enhancers. A more 

challenging question is how to separate active regions from inactive regions that superficially 

resemble them, containing many of the same marks, as shown in Figures 2-4 D. Chromatin 

signatures are frequently used as a proxy for active elements, therefore we selected loci that are 

associated with H3K4 mono-methylation for training and testing, reducing the datasets to 167 

highly active regions and 421 inactive regions. These are much less clearly separated by 

Principal Components (Figure 2-9 F) and LDA (Fig. 2-9 G).  Turning to random forests,  the 

AUC for ROC is nearly as high as before (compare Fig. 2-9 D, H), and Precision Recall is 

dramatically improved (compare Fig. 2-9 E,I). However, the reduced dataset is much closer to 

having a balanced number of samples for active and inactive elements, so the probability of 

correct classification due to random chance was greatly increased. Neither ROC nor Precision 

recall showed substantial improvements in AUC relative to random chance. Restricting the 

analysis to loci that were bound by one or more transcription factors similarly improved overall 

Precision Recall, but not relative to background (discussed in Fig. 2-11).  
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Figure 2-9 Active DNA elements can be separated from inactive regions 

 

A:  DNA elements with and without regulatory activity can be partially visually distinguished 

based on Principal Component 1; additional principal components showed little separation. 

There is a sharp boundary on the PC1 axis; this is probably due to PC1 variation primarily 

coming from ChIP occupancy scores, and the majority of DNA elements having no occupancy, 

and thus share an identical 'low score' numerical stand-in. The separation is far more visible 

using supervised machine learning. B: Scree plot for PCA in (A: black) and (F: blue). C: 

Separation between active and inactive regions with linear discriminant analysis, using all DNA 

elements (cross validation in Figure 2-10). D: Random forest trained on 2/3 of both unrestricted 

and restricted datasets (using all 41 features) was able to achieve 96% accuracy of total calls, and 

a high ratio of true positives relative to false positives, as shown in ROC plots (yellow), and a  
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difference of 0.37 in the area under the curve relative to classifications made on random data 

with the same sample size (whose ROC are shown in gray). However, precision recall (E, green 

plots) was much lower, although even higher relative to background (gray plots), with a relative 

AUC difference of 0.46. F: Using only active and inactive DNA elements that are distinguished 

by H3K4 mono-methylation reduces the sample size from 392 highly active regions and 6858 

inactive regions, to 167 highly active and 421 inactive regions. Separation was substantially less 

visible when DNA elements were restricted to only include those marked by H3K4me1. This 

also lowered the degree of visible separation based on LDA (G) and decreased overall accuracy 

to 83% and area under the ROC curve (H) It led to substantially higher precision recall (I). 

However, it led to equal increases in the AUC of predictions made on random data of the same 

sample size, shown in gray.  
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Figure 2-10 LDA Cross validation 

Classifications based on Linear Discriminant Analysis cross-validation, corresponding to 

analysis in Figure 2-9. Dark blue indicates active elements, light blue indicate active elements, 

columns indicate how these elements were classified. LDA was performed on training sets that 

included all active and inactive DNA elements from stage 4-6 in the Fly Enhancer resource, and 

also only those that were marked by H3K4me1. The numbers are provided that correspond to the 

True Positive Rate (TPR), False Positive Rate (FPR), and False Discovery Rate (FDR) for both 

classifications. 
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Impact of number of features on predictive accuracy 

To determine if a specific combination of features would be the most effective for predictions 

(e.g. only using the most predictive features, or excluding the least predictive features), we re-

performed random forest classification using the same training data, with different combinations 

of the 41 predictors. We iteratively left out individual features (Figure 2-12). After each run of 

ten random forests, the features were ranked using Gini Impurity Index. The next run then 

excluded either the most or least important feature based on the previous run, and performance 

was compared between each. We found that dropping the most important feature, or even top 

three features had little impact on precision recall; loss of additional features had some negative 

impact on classifications. After dropping the eighteen most important features (largely ChIP 

data), precision recall and ROC curves are depressed. However, dropping the least important 

features had no noticeable impact, until over thirty features are dropped. Analyses using only the 

top twelve most useful features were equivalent to employing all features. These results suggest 

that the features must contain a significant amount of redundancy, but the redundancy is not 

interfering with accurate predictions. 
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Figure 2-11 LDA Exclusion of unbound genomic regions and use of a balanced training set  

Accuracy/Precision scores for random forest models trained on different subsets of the Fly 

Enhancer Resource DNA elements. Top: Area under precision recall curves. Middle: Area under 

ROC curves. Bottom: Accuracy, calculated as total percentage of correct calls. Unbalanced 

datasets are indicated in black, blue indicates models trained on datasets balanced through 

undersampling the majority category (inactive reporters). "Random" represents classifications 

with elements for which all feature scores were randomly generated, with values 0-1000; for 

other marks indicated, DNA elements were selected that contained that mark, or those two 

marks, and at least one other.  
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Figure 2-12 Random forest performance with least and most informative features 

Predictive success of models with differing numbers of features, using unbalanced (black) 

datasets using all active and inactive elements, and balanced datasets (blue), in which 200 active 

and inactive elements are used for training, and 100 for testing. Predictions were made by 

iteratively dropping the most informative feature to least informative feature (+), or least 

informative to most informative (-). The scores running from left to right represent predictions 

made using 41 features, ranging to predictions made using only two features. The furthermost 

right scores are predictions made based on 41 randomly generated features. Note that balanced 

datasets have substantially higher 'background', or scores based on random datasets of the same 

size (Fig. 2-9) 
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Classifications by stage specificity and expression pattern 

Some studies have shown that genes that are active throughout development have features that 

make them distinct from genes and regulatory regions that are tissue or stage specific75, or that 

separate poised enhancers from those that are actively expressed76. However, a comparison of 

DNA elements that are active in all stages with those that are specific to early embryonic 

development do not suggest that they can be as easily distinguished as active and inactive 

elements (Figure 2-14 A,B). A possible mitigating factor is that regulatory regions often gain 

binding of transcription factors and chromatin marks in a successive fashion during 

development, prior to becoming active. Thus, some of the elements considered above as 

"inactive" may actually be false negatives. Here, some DNA elements are exclusively active in 

embryonic stages 4-8, whereas are not active in this earlier period, but become active in stages 9-

12 or 13-16 (Figure 2-13). We tested if the 41 features would distinguish such elements that 

become active only in later stages based on their features measured at an earlier time point. 

Compared to the results with active vs. constitutively inactive, PCA and LDA analysis did not 

show much separation (Figures 2-14 B,D). Consistent with these results, random forest 

classification was only slightly more successful than would be expected by chance (data not 

shown). The low accuracy may stem in part from the relatively smaller training set, however, it is 

also possible that the considered genomic features are simply not informative about early vs. late 

active DNA elements. Moreover, most of the features used for this classification were from 

datasets collected at the early embryonic stage of development; additional information about 

chromatin conformation or later transcription factor occupancy would likely improve predictions 

for later enhancers. 
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Figure 2-13 Distinct classes of elements tested for function in embryos 

To assess predictions of different classes of active elements, DNA elements (Kvon et al. 2014) 

were assigned to one of six classifications. "Mixed" refers to elements that exhibit activity in two 

of the three indicated stages. 
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Figure 2-14 Principal component analysis, Random Forest classification, of subsets 

Principal components analysis shows very little separation based on the first two principal 

components of DNA elements that are active or inactive at specific developmental times. (A) 

This is true when they are separated based on continuous activation (identified as 'always' in Fig 

2-13) vs. stage-specific activation (identified as 'Early' in Fig 2-13), or (B) early stage specific 

activity from activity specific to later stages (later stages combining groups 'Middle' and 'Late' 

from Fig 2-13). Linear discriminant analysis also shows very little separation along LD axis 1 for 

either comparison (C-D) 
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Predicting expression patterns is a more difficult problem than predicting activity. Although 

Kvon et al. 2014 annotated expression patterns for all DNA elements at each stage of embryonic 

development, their annotations were in many cases non-exclusive, permitting a DNA element 

with distinct A/P stripe activity to be annotated "mesoderm" because of its partial expression in 

that region. We re-annotated expression patterns based on the images available at the Fly 

Enhancer Resource, grouping patterns into exclusive and non-overlapping categories. We 

categorized 114 elements as "anterior", and 78 as "central or posterior", and 22 with 

"mesodermal or neurogenic ectoderm" expression patterns. Interestingly, a substantial fraction of 

Anterior/Posterior and Dorsal/Ventral enhancers were ubiquitously active throughout embryonic 

development. Occupancy of certain transcription factors associated with Anterior vs. Central or 

Posterior expression patterns correlated well with the corresponding categories of DNA 

elements: Bicoid peak scores were higher on Anterior elements, and Caudal peak scores were 

higher on Central/Posterior elements (Figure 2-15 A and 2-15 B). Considering all 41 features, 

however, PCA and LDA did not show much separation between these two expression patterns 

(Figure 2-15 C, D). A random forest trained on all features performed better than predictions 

using randomized data, but not as well as previously observed for differentiation of active vs. 

inactive DNA elements (Fig. 2-15). Excluding Bicoid and Caudal related data had a dramatic 

effect on predictions. Small training sets such as those used here are generally not compatible 

with large numbers of predictors, therefore, we tested dimensionally reduced datasets, to see if 

this would improve precision. Reducing the number of predictors using principal components did 

not improve performance (Figure 2-15). Because Bicoid and Caudal play such key roles in these 

predictions, Anterior vs. Central/Posterior expression may be predicted well if a larger data set of 

specifically Anterior/Central-Posterior elements were available for training. 
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Figure 2-15 Features correlate with tissue specific expression patterns 

 Although some features clearly correlate with Anterior vs. Central/Posterior expression patterns 

(A,B), and these categories are largely indistinguishable when viewed by PCA (C) and show 

only slight separation based on linear discriminant analysis D: Random forests can classify these 

active elements by expression pattern with greater success than when using random data, but not 

with sufficiently high precision or accuracy to make useful predictions. Reducing the numbers of 

features does little to improve accuracy of classifications (E). 
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Figure 2-16 Recall relative to false discovery rate when identifying enhancers. 

Clusters of transcription factors around Zelda binding OR around H3K4me1 marks, that 

involved two or more overlapping peaks, were used to define putative enhancers. These were 

defined as 500, 1000, 1500, or 2000 base pairs centered around the clustered binding. Random 

Forests were trained on subsets of the Fly Enhancer Resource, using all strongly active and 

inactive DNA elements, or only active and inactive elements that overlap with Bicoid ChIP-seq 

peaks, or only active and inactive elements that overlap with Twist ChIP-chip peaks (two 

conditions that performed very well on the Fly Enhancer Resource in Fig 2-11). Random forests 

were also trained on randomized DNA elements, where no features distinguish active and 

inactive elements. 



 

68 

 

Testing against validated enhancers 

Enhancer classification described above depends on the extensive data from the Fly Enhancer 

Resource, which randomly samples ~15% of the entire genome, and has limited information 

about which genes the putative enhancers regulate. Several intensively studied developmental 

genes in stage 4-6 embryos have more detailed information about which regions are important 

for expression, as found in the RedFly database72. To use these loci as independent guides for 

enhancer classification efforts, we tested eight different models derived from random forest 

analysis of balanced or unbalanced data. These models were used to predict active DNA 

elements within a 50kb window encompassing the eight target genes (expressed in 

Anterior/Posterior, Mesoderm, and Neuroectoderm patterns). Our assumption is that previously 

annotated regulatory regions around these genes are effective measures of true-positives, and that 

other regions lack enhancer activity. Thus, any additional enhancers identified within this 

window that do not overlap with curated enhancers are likely to be false positives.  

To ensure that our random forest models evaluate all relevant regions around these genes, we 

needed to include additional DNA elements, as the Fly Enhancer Resource does not cover the 

entire genome. Therefore, we identified all putative enhancers by presence of bound transcription 

factors. In Figure 2-16, putative enhancers are defined as any locus that is binding of Zelda, as 

well as one or more additional transcription factors, or alternatively any locus binding H3K4me1 

as well as one or more transcription factors. The 'borders' of each putative enhancer were set to 

2000 base pairs (approximately the same as the window size used in the Fly Enhancer 

Resources). There are 23 curated enhancers for these genes total. However, there are an 

additional 31 clusters of enhancer-like binding around the protein Zelda. Almost every model 

trained on the Fly Enhancer Resource had high recall, and was able to identify the majority of the 
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23 'true positives' (2-16 A). However, many conditions led to an almost equal number of 'false 

positives', or a high false discovery rate (FDR) (2-16 B). Random forests trained on balanced 

datasets had high false discovery rates, identifying many presumably non-functional clusters as 

active enhancers. Models trained on unbalanced data were far more successful at rejecting the 

non-functional binding, although the balanced datasets did performed better at training and 

testing within the Fly Enhancer Resource.  Unbalanced datasets may more accurately reflect 

natural conditions; the frequency of enhancer-like binding in stage 4-6 embryos appears to be far 

more common than actual enhancers. We performed the same test again, setting the putative 

enhancers to window sizes of 500, 1000 and 1500 base pairs, and the same trends were observed. 

There are exactly 23 clusters of binding in 2kb regions around H3K4me1 marks, which do not 

encompass every known enhancer. As a result, both Recall (percentage of true positives 

identified) and FDR were much lower.  

Discussion 

Many genomic databases include information about regulatory regions. However, many 

primarily collate 'true positives' that show activity, or simply display chromatin features that are 

positively correlated with activity. From these resources, it is difficult to know how many real 

regulatory are missed, or the frequency of false positives. The Fly Enhancer Resource is the first 

publicly available database that includes a large set of reporters that are inactive at various 

developmental stages. We used features associated with enhancer activity and cross-listed them 

with the coordinates defining active and inactive regions in the Fly Enhancer Resource. From 

this we were able to draw conclusions about which features are the most indicative of enhancer 

activity, and how combinations influence classification. 
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Features correlating with enhancer activity are not guarantees of enhancer function 

Many features have been associated with enhancer activity, including sequence conservation, 

transcription factor occupancy, chromatin marks, and motif enrichment. Sequence conservation 

has been observed in some Drosophila regulatory elements, but using it as a predictor is 

complicated by the generally rapid rate of divergence in regulatory sequences50, and the compact 

and largely conserved nature of the Drosophila genome49. Although ChIP-seq data correlates 

with specific enhancer functions, it is challenging to use it as a predictor without a priori 

knowledge of the genes being controlled. For example, previous studies have observed that the 

transcription factors responsible for Dorsal-Ventral patterning (Dorsal, Snail and Twist) are also 

observed at DNA elements for genes controlling Anterior-Posterior patterning40, although not 

generally considered canonical players in A-P development77.Some features (e.g. Zelda ChIP-

seq) have many low scores that overlap with inactive regions, probably indicating a 

bioinformatics threshold (where scores below a certain minimum were excluded as probable 

background binding, and the reported peaks only represent a fraction of the original distribution). 

It is possible that using an even higher threshold for ChIP peak scores in these cases could 

remove a large amount of potentially spurious features. However, this would almost certainly 

leave out many true positives. Motif enrichment is largely indistinguishable between active and 

inactive DNA elements. Consistently across all classes of features, there are strong signals that 

overlap with regions that do not drive gene expression, possibly due to regions like those 

observed in Figure 4-C and 4-D, which share many of the characteristics of active DNA 

elements. However, most genomic regions that did not drive expression overlapped with far 

fewer features associated with enhancers (data not shown). This likely reflects regions like those 

shown in Figures 4-A and 4-B, where inactive or weakly active genes are in loci with little 
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protein occupancy. 

We also found that datasets measuring the same feature in some cases were highly variable. This 

is not surprising; differences in resolution between ChIP-chip and ChIP-seq are well 

documented78, as are the many factors that can lead to higher reproducibility within labs than 

between labs79. However, not all results were inconsistent. In three out of four datasets 

measuring Twist binding, the transcriptional activator visibly correlates with all transcription 

factors, suggesting that Twist can play a role in diverse transcriptional networks, or that it binds 

easily to all regions of open chromatin (Figure 2-2). It is plausible that further increasing the 

number of features used would improve results; overlapping features would be more likely to be 

non-spurious, and consequently to have high peak scores (in the case of ChIP data) or motif 

scores (in the case of transcription factor PWMs), and greater reproducibility. However, the 

degree to which classification accuracy plateaued suggests inclusion of more data may have 

marginal returns.  

 Zelda a strong but not definitive indicator of early enhancer activity 

Zelda occupancy is by far the most informative feature (Data not shown), which may indicate 

that Zelda, more than other factors, plays a determinate role in establishing active biological 

enhancers during early embryonic development. Interestingly, conservation scores, especially in 

the more distantly related species, are among of the more important features for this 

classification indicated by measures of feature importance from random forests using all 

available data (data not shown). This is surprising given the lack of visible correlation in Figure 

2-2. It is possible that the importance of conservation information measured by Gini Impurity 

Index is inflated by the high level of variation contributed by this data, as shown in PCA. It is 

also possible that other features are providing redundant or correlated information, elevating the 
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importance scores for conservation. Leave-one-out analysis (Figure 2-12) suggest although some 

features are substantially more informative than others, no one feature is essential for predicting 

active DNA elements, and many combinations of features can produce equally accurate 

predictions of activity. Even classifications made using the least informative features still 

outperform classifications based on random data. The largest drops in classification accuracy 

were after dropping most features based on ChIP-seq and ChIP-chip of transcription factor 

proteins. ChIP-seq of histone modifications was less informative than transcription factor 

occupancy, but still more valuable for classifications than motif information or evolutionary 

conservation.  

Potential limitations and stage specificity 

A possible complication for predictive accuracy is that many regulatory regions assemble much 

of the transcriptional machinery well before the developmental time in which they are active21. 

We used a random forest to classify DNA elements as stage-specific or ubiquitous, using the 

same 41 features from previous classifications. Separating stage-specific vs. ubiquitously active 

DNA elements has substantially lower precision relative to recall, which is unsurprising given 

the smaller size of the dataset (only 82 of the DNA elements from the Fly Enhancer Resource are 

exclusively specific to early development), that both stage specific and ubiquitous DNA elements 

are active in stage 4-6, and many of the predictive features are specific to that time point. 

Interestingly, most tissue specific specific expression patterns (e.g. DV stripes at the Mesoderm, 

or AP pair-rule type stripes) were not associated with either category-- approximately half of 

these DNA elements were stage specific, and the other half were active driving other expression 

patterns later in development (data not shown). Inclusion of predictive features that are taken 

from later developmental time-points may allow more effective pinpointing of which (if any) 
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features can be used to identify enhancers that are active throughout development. 

Characteristics and Classification of DNA elements with Varying Expression Patterns 

Predicting expression patterns is a more difficult problem than predicting activity. We used the 

Fly Enhancer Resource for this as well. Although Kvon et al. 2014 annotated expression patterns 

for all elements at each stage of embryonic development, their annotations were in many cases 

overlapping-- any expression in developing germ layers, or in the anterior or posterior halves of 

the embryo, were associated with dorsal-ventral and anterior-posterior patterns. We manually re-

annotated expression patterns based on the photos of embryos available at the Fly Enhancer 

Resource, to group patterns into exclusive and non-overlapping categories. A majority of the 

expression patterns are not easily categorized; they either have multiple expression patterns 

evident, high variability between different embryos imaged, or very amorphous or faint 

distribution of protein. We categorized 114 elements as driving expression only in the Anterior 

part of the embryo, and 78 that were exclusive to the Central or Posterior ends of the embryo. We 

identified 22 regions that displayed distinct Mesodermal or Neuroectoderm expression patterns, 

as characterized by those for the Dorsal-Ventral patterning genes snail, brinker, and similar. This 

expression pattern is strongly associated with a well understood biological function, and may 

correspond to a unique combination of features. However, the very small sample size did not 

make it ideal for machine learning. for comparison. Interestingly, neither Anterior/Posterior nor 

Dorsal/Ventral DNA elements displayed a tendency toward ubiquitous activity throughout 

development or toward stage specificity. Approximately half of each category was ubiquitous-- 

elements that drive expression at every stage of embryonic development, while an equal number 

showed some level of stage specificity. 

Transcription factors known to be associated with Anterior vs. Central or Posterior expression 
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patterns did show expected correlations (e.g. Figure 2-15 A,B-- Bicoid peak scores were higher 

DNA elements driving Anterior activity, and Caudal peak scores were higher on 

Central/Posterior elements), although PCA based on all 41 features did not show separation 

between these two expression patterns (Figure 2-15 C). A random forest trained on all features 

was able to perform better than predictions based on randomized data, but not as well as 

classifications of general activity. Although random forest algorithms are generally robust to co-

linearity between features these predictions were trained on a much smaller sample size, and 

small training sets are not as compatible with large numbers of predictors. We created secondary 

datasets wherein the first ten or first twenty-five Principal Components were used instead of 

scores for individual features. Reducing the number of predictors using principal components did 

not hurt the accuracy of classification, but also did not engender substantial improvement (Figure 

2-15 E). However, dropping individual features known to be important for defining Anterior 

expression patterns (Bicoid and Caudal binding) brought ROC and Precision Recall closer to 

what would be expected based on random chance (10e).  Given the elevated importance of 

Bicoid and Caudal for these classifications, it seems likely that anterior expression could be 

predicted with reasonably high accuracy given a larger data set of specifically Anterior/Central-

Posterior DNA elements for training. 

Identification of enhancers based on genomic features 

For testing on experimentally identified enhancers from other sources than the Fly Enhancer 

Resource, we assembled a list of putative enhancers by clustering of transcription factors, and 

classified them with random forests trained on the Fly Enhancer Resource. Random forests were 

trained on all active DNA elements from the Fly Enhancer Resource (as shown in Figure 2-9), 

and also on all regions that had been balanced to equal numbers of active and inactive elements 
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through under-sampling. We used several different criteria for identifying clusters to use as 

putative enhancers: Zelda binding that overlapped with at least one other transcription factor or 

chromatin mark, or H3K4 mono-methlyation that overlapped with at least one transcription 

factor or chromatin mark. There are far more Zelda ChIP-seq peaks than H3K4me1 peaks (Table 

2-1), so the former criterion identified far more putative enhancers. Surprisingly, using either 

criteria, random forests trained on a balanced dataset identified 100 percent of clusters as active, 

which in some cases led to a very high false discovery rate (Figure 2-16). As the primary goal is 

to identify active enhancers, low precision and high false-discovery was a significant concern. A 

potential factor contributing to low precision of classification is the large fraction of inactive 

regions in stage 4-6 embryos with very little transcription factor occupancy. If enhancers are 

predicted based on the presence of clustered transcription factors, these unbound regions are less 

useful for distinguishing between cases where background binding is also clustered, and 

resembles truly active regions. Balancing by random under-sampling runs the risk of excluding 

most if not all of the ambiguous, occupied-but-inactive DNA elements. We used several other 

forms of under-sampling, only training on DNA elements that were bound by Bicoid, or bound 

by Twist (two of the more successful approaches in Fig. 2-11). When H3K4me1 marks were used 

as the standard for identifying putative enhancers, recall was capped at the number of H3K4me1 

marks that overlapped with curated enhancers (about 60%), whereas when the more 

promiscuously binding Zelda was used, recall could reach over 90% (Figure 2-16 A). 

Correspondingly, false discovery rate was much lower across the board when H3K4me1 

modification was used as the minimum standard for putative enhancers (2-16 B). The most 

overall successful combinations (high recall, low FDR) seemed to be those that combined a 

permissive setting with a restrictive setting, with regards to defining putative enhancers and what 
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data was used for training. 

A potential source of inaccuracy with regards to classifying clustered binding as active or 

inactive is that the Fly Enhancer Resource is used as the sole source of training data. Although it 

covers a substantial portion of the genome, the included reporters may bisect biological 

enhancers, and not represent in-vivo expression patterns due to loss of essential activators or 

repressors. The reporters also cannot account for position specific effects, or the potential 

influence of promoter specificity. This necessarily means that some of the reporters will be 

incorrectly classified as active or inactive for specific expression patterns, and introduces some 

minimal levels of error. When predicting enhancers around well-studied genes, it is possible that 

some clusters of transcription factor binding that strongly resemble enhancers might be 

regulating other genes. The assumption that all putative enhancers within a window around an 

active gene are acting on that gene introduces another source of potential mis-classification. 

It is also possible that elements currently classified as false positives are actually regulatory 

elements that are active at an earlier or a later time in development. However, based on these 

features there is no combination that appears to separate DNA elements active later in 

development from ubiquitously inactive regions. Although some regions that are classified as 

false positives may be active at later stages, many of the regions active later in development do 

not share these characteristics. Presumably there are additional features that are not currently 

known that allow biological systems to make this distinction.  

Conclusions 

Genomic features can be used to predict overall enhancer activity with a high degree of accuracy. 

The goals of enhancer prediction usually entail identifying as many true positives as possible, 

while also minimizing false-positives. Using a conservative approach when establishing the 
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training set is key to high-precision results. A wide range of features can also lead to the best 

accuracy, but ChIP-seq and ChIP-chip data for a range of transcription factors and chromatin 

modifications seem to be far and away the most essential information. However, no single 

feature is a guarantee of enhancer function, and datasets measuring the same feature frequently 

have limited reproducibility. This has been previously observed with genome-wide studies, but it 

is not clear how this influences inference of function. Moreover, many features associated with a 

specific function (e.g. Bicoid occupancy with Anterior-Posterior patterning) can be found 

binding at genes associated with other regulatory networks. This may indicate functional cross-

binding and integration of regulatory networks, or it could suggest promiscuous binding at 

regions of open chromatin. Zelda, the pioneer transcription factor, is consistently the single most 

important predictor of enhancer activity. However, Zelda binding is not necessary for accurate 

predictions. Excluding Zelda has minimal effect on overall prediction accuracy; overall accuracy 

appears to asymptotically level off after either a small number of highly informative features are 

used, or a large number of less informative features. It seems unlikely that inclusion of further 

ChIP-chip and ChIP-seq data would lead to meaningful improvements over the current level of 

performance. It also is not clear to what extent all ChIP data is serving as a proxy for DNA 

accessibility in these predictions, as opposed to each protein providing unique information. 

Although in this study motif enrichment and evolutionary conservation were not the most 

informative features, it is possible that more in-depth analysis in these directions, or other 

features that are equally orthogonal to Chromatin Immunoprecipitation data, would be necessary 

to reach higher levels of precision. High accuracy at predicting activity also did not translate to 

equally accurate identification of expression patterns. The majority of the expression patterns 

driven by DNA elements from the Fly Enhancer Resource were not easily categorized into clear-
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cut categories; the paradigm of enhancers being specific to a single gene regulatory network, and 

therefore to a distinct spatial expression pattern, may be biologically inaccurate.  
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CHAPTER III: AN IMAGE DATABASE OF DROSOPHILA MELANOGASTER 

WINGS FOR PHENOMIC AND BIOMETRIC ANALYSIS 
 

The work described in this chapter was published in the following manuscript: Sonnenschein, A., 

VanderZee, D., Pitchers, W.R., Chari, S., and Dworkin, I. (2015). An image database of 

Drosophila melanogaster wings for phenomic and biometric analysis. GigaScience, 4(25). 
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Abstract 

Extracting important descriptors and features from images of biological specimens is an ongoing 

challenge. Features are often defined using landmarks and semi-landmarks that are determined a 

priori based on criteria such as homology or some other measure of biological significance. An 

alternative, widely used strategy uses computational pattern recognition, in which features are 

acquired from the image de novo. Subsets of these features are then selected based on objective 

criteria. Computational pattern recognition has been extensively developed primarily for the 

classification of samples into groups, whereas landmark methods have been broadly applied to 

biological inference. To compare these approaches and to provide a general community resource, 

we have constructed an image database of Drosophila melanogaster wings - individually 

identifiable and organized by sex, genotype and replicate imaging system - for the development 

and testing of measurement and classification tools for biological images. We have used this 

database to evaluate the relative performance of current classification strategies. Several 

supervised parametric and nonparametric machine learning algorithms were used on principal 

components extracted from geometric morphometric shape data (landmarks and semi-

landmarks). For comparison, we also classified phenotypes based on de novo features extracted 

from wing images using several computer vision and pattern recognition methods as 

implemented in the Bioimage Classification and Annotation Tool (BioCAT). Because we were 

able to thoroughly evaluate these strategies using the publicly available Drosophila wing 

database, we believe that this resource will facilitate the development and testing of new tools for 

the measurement and classification of complex biological phenotypes. 

Introduction 

Understanding the causes and consequences of phenotypic variation is a unifying goal across 



 

88 

 

many biological disciplines. One aim of phenomics is to comprehensively measure this variation. 

However, biological traits are complex and multidimensional and this presents challenges for 

both measurement and analysis1. The complete ‘phenome’ of an individual includes more 

phenotypes than can realistically be measured and the most informative subset of measurable 

features is not necessarily known, even for specific traits2. Manually selected features benefit 

from prior knowledge of the biological system, whereas computationally selected image 

properties are generally optimized for discrimination between groups. However, it is not clear 

how these strategies compare in their classification of images into groups (sex, genotype, 

species) or in their potential to derive broader biological inferences. 

Geometric morphometrics and computational pattern recognition represent very different 

strategies for extracting and quantifying phenotypes from image data. Geometric morphometrics 

measures shape by using homologous landmarks (or curves) across specimens as features3,4. 

Methodologically, these landmarks are determined a prioribased on biological considerations of 

both homology and potential informativeness. Information about the shape of the specimen is 

extracted from the configuration by removing variation in size, location and orientation of the 

specimen, resulting in an explicit geometric representation of shape (Fig. 3-1)5- 7. 
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Figure 3-1 Wing landmarks and semi-landmarks 

 

Example wing image from D. melanogaster that has been splined using WINGMACHINE. After 

landmark and semi-landmark data is extracted, data is translated (centered to origin), scaled by 

centroid size and superimposed (Procrustes superimposition for landmarks) data all lies in a 

common subspace. Image represents 50 individual configurations from specimens to 

demonstrate some of the variation among individuals. 
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Computational pattern recognition represents a school of alternative approaches, in which 

features are extracted from image data with computer vision tools8,9. Pattern recognition uses 

features such as the statistical distribution of pixels, or descriptions of texture or edges. A subset 

of informative features is generally selected based on an objective function, such as the 

classification of samples into groups, often using machine learning techniques9. The degree of 

informativeness of these features is usually assessed by cross-validation. Whereas geometric 

morphometrics requires a comprehensive understanding of the biological relevance and 

evolutionary history of the feature, computational pattern recognition can be applied without 

prior knowledge and can also detect informative patterns that are not visually perceptible9. 

Both geometric morphometrics and computational pattern recognition have practical applications 

in biological research. There have been varying levels of success using two-dimensional and 

three-dimensional cranial-facial morphometric phenotypes to infer the genetic causes of 

disease10-,12 and to track disease progression13. Morphometrics and computational pattern 

recognition have also been successfully used with machine learning algorithms to classify 

complex morphological phenotypes by species14-,16. Similarly, computer vision and pattern 

recognition have been crucial in the development of tools for the related field of biometrics17, 

which uses phenotypes to distinguish individuals. Biometrics tools may be useful for interpreting 

phenomics data, thereby extending the amount of informative variation that can be extracted 

from biological images. 

A potential biological application for biometrics is the interpretation of Drosophila wing shape. 

Wing shape is an established model system for phenomics1,18, the genetic basis of shape19- 21 and 

for phenotypic evolution22,23. Although Drosophila wings can be evaluated qualitatively24 or by 

metrics such as length and surface area25, they are often measured within a geometric 
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morphometric framework14,19,26,27. Landmarks are based on vein intersections26,27 with semi-

landmarks defining curves (Fig. 1)14,23. Biometric facial recognition tools have had some success 

at classifying images of Drosophila wings into biological categories28,29. The ‘eigenface’ method, 

which is a classic technique for facial recognition, has been modified into ‘eigenwings’ using 

features extracted from Drosophila wings to classify individuals by their sex29. Another facial 

recognition method that uses a genetic algorithm to select texture features30 has also been used 

with similar goals28- 30, with up to a 94 % successful classification rate29. 

The success of facial recognition programs that rely on texture features instead of vein 

positioning raises the questions of what other features might also be useful for 

classifying Drosophila wings and how tools that are already used in biometrics may be applied to 

phenomics datasets. However, our ability to evaluate different approaches − whether for 

classification or biometric identification, as well as for long-term goals of further biological 

inference − remains limited by the lack of open databases of images for comparison. 

In this article, we describe the creation and implementation of a database of wing images 

from Drosophila melanogaster for the development and testing of such methods. The database 

was designed to include multiple levels of replication encompassing both biological and 

technical variation. It allows the assessment of variation and classification by genotype, sex and 

individual identity (right and left wings from the same fly). To introduce sources of technical 

noise common to biological images, it includes several images of each wing, captured on various 

microscopes and at multiple magnifications. 

Using landmark and semi-landmark measurements extracted from images in this database, we 

have analyzed the relative success of a number of machine learning algorithms at 

classifying Drosophila genotype and sex. We compare the success of these methods with the 
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performance of the same classifier algorithms using features extracted by the Bioimage 

Classification and Annotation Tool (BioCAT), a pattern-recognition program designed for image 

analysis31. The database of images, landmark data and all source code have been made publicly 

available to serve as a resource for the testing and development of biometrics tools. 

Methods 

Fly genetics and sample preparation 

Fly stocks were obtained from the Bloomington Stock Center. These lines include wing 

mutations in the genes Epidermal growth factor receptor  (Egfr),  mastermind (mam), 

 thickveins (tkv) and Star (S; see Table 3-1 for allele and stock information). All four mutations 

are caused by insertions of P-element transposable elements, each marked with a mini-

w +resulting in partial rescue of wild-type red eyes. The wild-type strain used as a background 

was an isogenic Samarkand (SAM), marked with a w − mutation to enable identification of the 

mutant alleles38. 

Each P-element-bearing strain was initially introgressed into SAM by repeatedly backcrossing 

into the SAM background genotype (as described in27). These have since been maintained 

heterozygous balanced over a CyO (also in the SAM background) with the exception of 

the tkv mutant, which was maintained as a homozygote. Before initiating the experiment, these 

flies were maintained for one generation in an incubator (Percival Model : I41VLC8 set to 24 °C, 

65 % relative humidity and a 12-hour light/dark cycle) to acclimatize them to the environment. 

Under these same growth conditions, the lines carrying mutant alleles were then backcrossed for 

two additional generations into the SAM wild-type background prior to rearing flies for data 

collection for the database. Because of the extensive back-crossing, each mutant-bearing strain is 

close to co-isogenic to the SAM wild type, with the exception of the focal allele and a small 
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genomic fragment in linkage disequilibrium to that allele. 

For each mutant strain, populations were expanded in five replicate bottles. Each bottle 

contained 10 mutant males (red-eyed) crossed to 20 SAM virgin females (white-eyed). This 

experimental design was also applied to the SAM control, with 10 SAM males and 20 SAM 

virgin females. The flies were allowed to lay eggs for 4 days, after which the adults were 

discarded. After 7 days, paper towel was added to the bottles to soak up excess moisture and 

provide additional substrate for pupation. From days 14-18, emerging flies were phenotyped 

(based on the w + marker) and sexed. They were stored separately by sex and genotype in 

microtubes containing 70 % ethanol at room temperature for wing dissections. Fly wings were 

dissected in phosphate buffered saline (PBS) and mounted on slides in a solution of 70 % 

glycerol and 30 % PBS. All wings dissections were performed by the same person (AS). If one 

wing was torn or damaged, both wings from that fly were discarded. 

Imaging 

Each wing was imaged at 20× and 40× magnification on both an Olympus BX51 and Leica 

M125 microscope, using the DP controller (V.3,1,1208) and Leica App Suite (V.3) imaging 

software respectively. Two individuals imaged wings, one using the Olympus microscope (AS) 

and the other the Leica (DV) microscope. All images have unique names, using the format 

‘genotype_sex_side_microscope_magnification_fly-number’. If images contained tears or folds 

in the wing or indicated errors in dissection or mounting, all images from that fly were discarded. 

Geometric morphometric data acquisition and preparation 

Images were first converted to grayscale and cropped with the Gnu Image Manipulation Program 

(GIMP, version 2.839) in batches using the David’s Batch Processor plugin (version 1.1.840). Two 

starting landmarks were manually labeled at the humeral break and alula notch, using tpsDig 
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(version 2.1741). For more details on re-sizing and cropping, see Additional file 1: Supplementary 

Methods. WINGMACHINE (Wings version 3.7.214) was used to generate wing splines, which 

were manually reviewed and adjusted as necessary. CPR (version 1.01r42) was used to scale 

wings by centroid size, perform a Procrustes superimposition and extract landmark and semi-

landmark coordinates. Further details on processing of this data are available in Appendix: 

Supplementary Methods. All further statistical analysis was done in R (version 3.1.035) on 

images of wings taken at 40× magnification on the Olympus BX51 microscope. Scripts can be 

found at the Dworkin Lab github page43 and together with the data at GigaDB44. 

Procrustes coordinate values and centroid for left and right wings from the same fly were 

averaged using the R plyr package (V.1.8.1). In total, this included 12 two-dimensional 

landmarks and 36 semi-landmarks. However, because of image registration, scaling and 

Procrustes superimposition, four dimensions do not contain any information. Furthermore, the 

semi-landmarks are constrained to slide along a curve and therefore have approximately one 

degree of freedom. This results in approximately 58 dimensions of potential data. Thus, the first 

58 principal components contributing to shape (excluding centroid) were extracted and used for 

all further analyses. 

Morphometric analysis 

Two-thirds of the samples from each genotype were defined as the training set and one-third as a 

testing set. These were used to train and test ‘lda’ and ‘qda’ functions from the MASS package 

(V. 7.3-33), ‘mda’ and ‘fda’ functions from the mda package (V. 0.4-4), the ‘bagging’ function 

from the adabag package (V.3.2), random forest from the randomForestpackage (using 500 

trees, version 4.6-7), the ‘svm’ function from the e1071 package (version 1.6-3) and a neural 

network from the nnet package (V. 7.3-8). K-nearest neighbors (KNN) from the class package 
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(V. 7.3-10) was also tested, using k values from 1 to 100. Confidence intervals were 

approximated by re-sampling the training and testing sets over 1,000 repetitions. All functions 

were used with default arguments, with the exception of ‘svm’, ‘knn’ and random forest. ‘svm’ 

was optimized for kernel function shape and ‘knn’ for the value of k. Random forests were tested 

over a range of 10-1,000 trees. 

SVM and random forest (using 10 trees and 1,000 trees) were repeated on several subsets of the 

original dataset, using only left wings (prior to averaging) and left-female wings, to facilitate 

comparisons with the BioCAT results. The same analysis was also used to classify wings by sex, 

using only wings from the SAM (wild-type) genotype. 

BioCAT analysis 

For the BioCAT analysis14, we used a Fisher feature selector to identify 50 eigenvalues of the 

Hessian matrix37 from 144 left male and female wings (77 each) from the SAM genotype. 

BioCAT applied these features to train an SVM classifier and two random forest classifiers: one 

with 10 trees and one with 1,000 trees. These models were used to annotate 30 male and 30 

female left SAM wings that were not included in the training set. Annotation accuracy was 

determined by counting the number of correct and incorrect classifications. Although BioCAT 

allows for cross-validation during combined training/testing, the quantity and size of our data 

made re-sampling for confidence intervals infeasible. This process was repeated for classification 

by genotype using 70 left-female wings from each of the five genotypes as a training set for 

classification by genotype. The genotype classification models were tested on 30 left-female 

wings from each genotype. Images used as training and testing sets have been organized with 

their respective models at the database44. 



 

96 

 

Results 

The Drosophila wing database comprises a large number of high-quality wing images and 

contains both biological and technical variation. Sources of biological variation include genotype 

(there are four mutant genotypes (listed in Table 3-1) in the wild-type background of Samarkand 

(SAM), as well as the SAM wild-type background itself). In addition, sex and within-individual 

(left and right wings) variation is included. There are 100-130 individual samples for each 

combination of biological variables (Table 3-2). The mutant genotypes included in the database 

are heterozygous loss-of-function mutations for the genes that encode the Epidermal growth 

factor receptor (Egfr), mastermind (mam), Star (S) and thickveins (tkv) (see Table 3-1 for allele 

information, Fig. 3-2 for the relative impact of each mutation on phenotype and Methods for 

additional details). As heterozygotes, these mutations all have quantitative effects on shape, 

although they are qualitatively indistinguishable from the wild-type background (Fig. 3-3). The 

mutations represent perturbations of multiple signaling pathways: for example, tkv is a receptor 

kinase in the Transforming growth factor-β (TGF-β) pathway32 and mam is a transcription factor 

in the Notch signaling pathway33. Egfr and Star genetically interact as Star modulates signaling 

through the Egfr pathway32, 34. These specific mutations were selected because previous studies 

have shown that when heterozygous, they have a range of quantitative effects on wing shape27. 
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Table 3-1 Drosophila allele information 

Bloomington # Gene name Gene symbol Allele name 

10385 Epidermal growth factor receptor Egfr P{lacW}Egfr k05115 

14189 mastermind mam 
P{SUPor-

P}mamkG02641 

10418 Star S P{lacW}S k09530 

14403 thickveins tkv P{SUPor-P}tkv KG01923 

 

 

 

Table 3-2 Drosophila wings dissected by sex and genotype 

 Genotype Female Male 

Egfr 116 118 

mam 106 130 

Samarkand (SAM) 107 100 

Star 115 111 

tkv 116 116 
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Figure 3-2 Mutation effects 

 

Magnitude and direction of the effect of each mutation (red) relative to Samarkand wild type 

(black). Magnitudes are in units of Procrustes distance (PD), which for this (tangent 

approximation) is equivalent to the Euclidean distance between the mean vector of each mutant 

and the Samarkand (SAM) wild type. The vectors of shape differences are magnified three-fold. 
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Figure 3-3 Heterozygote mutant wings 

 

Representative images from the database. From right top corner counter-

clockwise: mastermind, Epidermal growth factor receptor, Star and thickveins. 

mastermind, Egfr and Starmutations are all homozygous lethal and thickveins has a qualitative 

defect as a homozygote. As heterozygotes, they are qualitatively indistinguishable from the 

Samarkand (SAM) wild type (center) 
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To allow researchers to compare various classification algorithms across a range of technical 

conditions, the measurements were subject to technical variation including the microscope and 

software used to capture images and the magnification setting of the microscope. Each wing in 

the database was imaged on two different microscope models, at both 40× and 20× 

magnification, so each wing in the database was imaged a total of four times (see Fig.3-4: left 

and right wings from the same fly imaged under all four technical variation conditions). Also 

included in the database is landmark and semi-landmark coordinate information extracted from 

all images in the database using WINGMACHINE software14, so information extracted from 

these images can be compared with existing standards for wing analysis. We also repeated the 

morphometrics analysis (landmarking, fitting curves (splining), editing splines and 

superimposition) for a small subset of the wing images (50 left and right female wings from two 

genotypes), to provide information on the technical variation in this process. 
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Figure 3-4 Technical replicates conditions 

 

 

Left and right wings from the same female (SAM) fly, imaged four times. Top left are images 

taken on Olympus BX51 microscope at 40× magnification, top right are taken on Leica M125 at 

40× magnification. Bottom left and right are images taken at 20× magnification 
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Classification based on geometric morphometric data shows a high degree of accuracy  

Although the primary goal of this project was to develop the image database, we also wished to 

provide future users with some baseline data to evaluate classifiers. We used a wide range of 

supervised machine learning algorithms in R (version 3.1.035) for classification based on the 

landmark and semi-landmark data extracted from the images. All data for this analysis was from 

images taken on an Olympus BX51 microscope at 40× magnification. The data analyzed 

included the 58 principal components of shape generated from the landmark and semi-landmark 

coordinates (representing all non-zero eigenvalues). We chose algorithms to represent a wide 

range of models; standard errors were estimated by re-sampling training and testing sets. When 

classifying wings within a common genotype (SAM) by sex, all algorithms except for quadratic 

discriminant analysis (QDA) were able to predict the sex of a test set with more than 95 % 

accuracy (Table 3). When classifying wings by both genotype and sex, linear discriminant 

analysis (LDA), flexible discriminant analysis (FDA) and mixture discriminant analysis (MDA) 

were all able to correctly categorize test data with 85 % accuracy or higher. Support vector 

machines (SVM) and neural networks were also accurate with over 80 % of wings (Table 3-3). 

The high accuracy of most methods, especially of LDA (Fig. 3-5), suggests that classifications 

using this data, based on both sex and genotype, are robust to assumptions of linearity and 

common covariance matrices between factors (genotype and sex)36. 
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Table 3-3 Classification accuracy of machine learning algorithms using landmarks 

Algorithm Sex (± Standard error) Genotype (± Standard error) 

LDA 98.2 % (±1.6) 86.1 % (±1.5) 

QDA 81.5 % (±6.4) 68.7 % (±2.2) 

FDA 98.2 % (±1.6) 86.0 % (±1.5) 

MDA 98.1 % (±1.6) 84.8 % (±1.6) 

Bagging 93.3 % (±2.9) 57.6 % (±2.9) 

Random forest 94.6 % (±2.7) 100 trees 74.9 % (±2.1) 1,000 trees 

SVM 96.8 % (±2.1) sigmoid 83.8 % (±1.6) radial 

Neural network (size 10) 98.3 % (±1.6) 81.2 % (±2.2) 

KNN 98.3 % (±1.5) k = 4 59.3 % (±2.1) k = 32 
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Figure 3-5 Separation of specimens using landmark data using LDA 

 

Separation of specimens for each of the five genotype by linear discriminant analysis (LDA) in 

training set (left panel) and testing set (right panel), plotting the first discriminant function by the 

second discriminant function. This includes data for both males and females, but averaged (left 

and right wings) per specimen 
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Computational feature detection and sub-setting for classification using BioCAT 

We tested several methods of classification using the image analysis software BioCAT31, which 

allows combinations of feature selectors, extractors and classifiers. Using the Fisher feature 

selection criterion, we tested several combinations of features and classification algorithms 

(Appendix: Supplementary Methods). After training a random forest classifier with 50 FeatureJ 

Hessians37 extracted from a training set of wing images, we were able to classify individuals by 

sex (in a common genotype) in a test set of wing images with 85 % accuracy (Table 3-4). 

Classification of wing images by genotype (within sex) had an accuracy of only up to 52 %, 

although this is higher than the 20 % success rate that would be expected for random 

classification. 

Comparisons between BioCAT and geometric morphometric descriptors for classification 

BioCAT feature selectors act on raw images and therefore had access to both shape and size 

information for wings, whereas morphometric analyses were performed after scaling by centroid. 

When the parameter for centroid size was included with landmark and semi-landmark 

coordinates in morphometric analysis, the relative effectiveness of different algorithms was 

largely the same (Table 3-4), although classification accuracy generally increased for both sex 

and genotype. 

Classification based on features extracted by BioCAT and those using landmarks and semi-

landmark coordinates differed in the distribution of classification errors between genotypes. 

BioCAT classified some genotypes far more consistently than others and errors frequently 

skewed towards a particular genotype (Fig. 3-6). Notably, mastermind was misclassified 

as Star 90 % of the time (27/30 mis-identifications in the test set). There is no similar trend 

of Star and mam phenotype mis-identification in classifications based on landmarks (Fig. 3-6). 
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Table 3-4 Classification accuracy of machine learning algorithms compared with BioCAT 

Classification Algorithm Hessian Shape Shape + Size 

Sex Random forest (10) 85.0 % 92.3 % (±3.7) 94.7 % (±2.6) 

  Random forest (1,000) 85.0 % 96.1 % (±2.2) 95.9 % (±2.1) 

  SVM 81.7 % 99.0 % (±1.2) 99.0 % (±1.2) 

Genotype Random forest (10) 52.0 % 43.3 % (±3.5) 44.7 % (±3.7) 

  Random forest (1,000) 46.7 % 69.1 % (±3.4) 70.2 % (±2.8) 

  SVM 43.3 % 75.1 % (±2.8) 75.8 % (±2.7) 

Hessian column represents accuracy of classifications based on Hessian features extracted with 

BioCAT. Shape column represents classification accuracy based on landmarks and semi-

landmarks, not including centroid. Shape + size represents classification accuracy based on 

landmarks and semi-landmarks, including centroid 
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Figure 3-6 Confusion matrices 

Heatmap of confusion matrices from classification (random forest) using features extracted using 

BioCAT (a) compared with landmark and semi-landmark data (b). The data in (a) and (b) is 

shown together in (c) to facilitate comparison. Numbers represent percentage of correct 

classifications. lm_* represent the landmark/semi-landmark data. BioCAT features were mis-

classified more consistently as some genotypes, e.g. mis-classification of mam mutants 

as Star (a). This pattern is not evident in the classification using the landmark data (b). Scale 

represents frequency of classification 
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Comparisons between BioCAT and geometric morphometric descriptors for classification 

Both geometric morphometric methods and BioCAT were able to classify images by sex across 

sources of technical variation (i.e. images taken on different microscopes). Geometric 

morphometric methods showed very little loss in accuracy when classifying wings at the same 

magnification across microscopes (where an LDA was trained on images taken on the Olympus 

at 40× magnification and tested on images from the Leica microscope at the same 

magnification). However, accuracy dropped substantially from 98.2 % to 81.2 % when the LDA 

was trained on images taken on the Olympus at 40× magnification and tested on images taken on 

the same microscope at 20× magnification (Table 3-5). Images from each microscope and 

magnification were superimposed separately and simultaneous superimposition might 

substantially increase the accuracy of classification across datasets. 

Machine learning algorithms using landmark and semi-landmark features, compared with 

Hessian features extracted by BioCAT, trained and tested across microscopes and magnifications 

was not able to make accurate classifications across datasets using unedited images. When 

trained on images taken on the Olympus at 40×, it uniformly classified wings in images taken on 

the Olympus at 20× magnification as males (using Hessian features and a random forest 

classifier).  

 

 

 

 

 



 

109 

 

Table 3-5 Classification accuracy of machine learning algorithms compared with BioCAT 

Method Training images Testing images Sex (± SE) 

BioCAT Olympus 40× Olympus 40× 85.0 % 

  Olympus 40× Olympus 20× 50.0 % 

  Olympus 40× cropped Olympus 20× cropped 50.0 % 

  Leica 40× cropped Leica 40× cropped 93.0 % 

  Olympus 40× cropped Leica 40× cropped 73.7 % 

  Olympus & Leica 40× cropped Olympus 40× cropped 73.3 % 

  Olympus & Leica 40× cropped Leica 40× cropped 86.0 % 

Landmarks Olympus 40× landmarks Olympus 40× landmarks 98.2 % (±1.6) 

  Olympus 40× landmarks Olympus 20× landmarks 81.2 % (±1.4) 

  Leica 40× landmarks Leica 40× landmarks 97.8 % (±0.69) 

  Olympus 40× landmarks Leica 40× landmarks 79.1 % (±1.3) 

 

Using images cropped to the same dimensions as used for measuring splines (cropping images 

was also necessary for geometric morphometric analysis), BioCAT still had difficulty classifying 

across magnifications, but was able to correctly identify sex from wing images taken at the same 

magnification on the Leica microscope with 73.7 % accuracy (Table 5). Interestingly, BioCAT 

performed better on images taken on the Leica - when both trained and tested on images taken on 

the Leica at a common magnification, it classified images by sex with 93 % accuracy, relative to 

85 % accuracy when classifying images from the Olympus microscope (Table 3-5). 

Discussion 

Although this database is primarily intended to serve as a resource for the development and 

testing of measurement tools, we also investigated whether the image collection could provide 

insights into the comparative effectiveness of existing pattern recognition and morphometrics 

methods. In particular, we compared a priori biologically informed landmark data as features 

analyzed within a geometric morphometrics framework with de novo feature extraction, 
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identification and optimization. Using both types of features, we evaluated the classification of 

wings by genotype and by sex and the accuracy of various statistical learning methods. The 

performance of the classifiers based on landmark data was generally superior with respect to 

classifying test data. For a number of reasons, this success must be considered within the context 

of the methods examined in this study. The availability of the database now provides a test bed 

for further refinement. 

Computational pattern recognition and morphometrics software are likely to extract different 

features. In addition to considering how well geometric morphometric approaches compare to 

‘computer vision’ de novo feature extraction (see below), it is also worth comparing the 

efficiency with which the feature data can be obtained. The WINGMACHINE pipeline was 

designed with a single goal and has been optimized for extracting landmark and semi-landmark 

data from Drosophila wings. By contrast, BioCAT was designed (and therefore chosen for this 

study) for its accessibility and flexibility, which allow it to be immediately applied to raw wing 

images. The FeatureJ features extracted with BioCAT describe image texture31, whereas a 

geometric morphometric approach uses biologically defined, homologous landmarks and curves 

as features, defined by vein intersections and outlines14. Extracting the large number of 

landmarks and semi-landmarks used in this study is laborious for most biological systems. Even 

using the WINGMACHINE pipeline requires multiple stages of image processing, some manual 

landmark acquisition and manual correction of splines after automated fitting. By contrast, both 

feature extraction and classification using BioCAT were performed without a priori annotation 

or editing. Thus, despite the overall success in classification using the landmark and semi-

landmark data, the efficiency of acquiring the data must also be considered for other studies. 

Perhaps unsurprising given the different nature of the features extracted, the machine learning 
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algorithms that were most able to classify wings (for sex and genotype) using BioCAT’s Hessian 

features differed from those that were most able to classify wings using landmark and semi-

landmark data. Whereas SVMs consistently performed better than random forests for 

classification using morphometric data, the reverse was true using features extracted with 

BioCAT (Table 3-4). Classifications based on landmarks and semi-landmarks were also 

substantially improved by increasing the number of trees in the random forest from 10 (the 

BioCAT default) to 1,000 trees. BioCAT classification success was unaffected or slightly lowered 

by an increase in the number of trees. 

The Drosophila wing database contains large numbers of wing images representing multiple 

genotypes. It also includes several built-in controls for technical variation that should make it 

amenable to the development of biometric classification tools. Using the landmark and semi-

landmark data extracted with WINGMACHINE, wings can be classified by sex and genotype 

with high levels of accuracy. We were also able to classify wings by sex and genotype with 

relatively good accuracy using texture features extracted by the computer vision software 

BioCAT. We hope that this database will serve as a resource for research into the sources of 

variation contributing to wing shape and for the development and testing of measurement tools 

for image-based phenomics. 
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IMAGE PROCESSING AND CLASSIFICATION USING BIOCAT 

 

Supplementary Methods  
 

1. Image processing for WINGMACHINE and CPR 

1.1 Cropping wing images 

Wing images taken at 2x on the Olympus BX51 microscope and at both 2x and 4x on the Leica 

M125 microscope were cropped (using the David's Batch Processor plugin in GIMP1) for 

analysis with WINGMACHINE. All images taken on the Olympus were initially 1360 x 1024 

pixels (px). 2x images were cropped to 750 x 555px. All images on the Leica were initially 1392 

x 1040px. Leica 4x images were cropped to 960 x 718px, except for a small subset in which the 

orientation of the wing required larger dimensions and these were cropped to 1200 x 898px. 

Leica 2x images were primarily cropped to 500 x 374px, except for a small subset that were 

cropped to 600 x 449px. The dimensions that were used for each image are indicated in the files 

'Leica_2X_coords.tsv' and 'Leica_2X_coords.tsv' in the GigaScience GigaDB repository2.  

1.2 Landmarking wing images with tpsUtil and tpsDig 

Wing images were resized for landmarking to the dimensions 632 x 480 pixels. A.tps file was 

created using tpsUtil (version 1.583), and landmarked in tpsDig23. The.tps file was converted to 

an.asc file using a custom python script. 

1.3 Splining wing images 

Images for splining were resized to the dimensions 316 x 240px. All WINGMACHINE splines 

were manually checked and edited. 

1.4 Superimposition in CPR 

WINGMACHINE output was superimposed in CPR. After superimposition and sliding of semi-

landmarks, the most proximal semi-landmark on vein 4 was removed as described in4. Data for 
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the first five principal components were visually checked as a scatterplot and outliers caused by 

incorrect spline alignment were manually corrected.  

1.5 Identifying scale in cropped images 

Scale mm/px values were manually calibrated in ImageJ version 1.485. 

2. Supplementary methods for BioCAT 

This section includes a subset of informative results from testing various BioCAT settings with 

different subsets of wings. These subsets of the wing images, and the classification models, are 

available at the GigasScience GigaDB repository2. For these trials, training was done using 

BioCAT's 'Training only' option, followed by annotation using the 'test set'. In all cases, only left 

wings were used from the Olympus 40x dataset. Unless otherwise indicated, default settings 

were used. Data that was entered into the confusion matrices for Figure 6 are indicated (see code 

in2). 

2.1 Classifying by sex within Samarkand genotype, using approximately equal numbers of 

each class for training and testing. Overall, the best results were with Hessian features 

combined with Random forest classifiers. F, female; M, male; RF, random forest; SAM, 

Samarkand; SVM, support vector machine. 
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Table 3-6 Results with BioCAT for sex 

Features Classifie

r 

Training set Testing set Success rate 

Structure 

30 

RF  

10 trees 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1) 

14/15 F correct 

11/15 M correct 

Structure 

50 

RF 

10 trees 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1) 

14/15 F correct 

11/15 M correct 

Laplacian 

30 

RF 

10 trees 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1) 

12/15 F correct 

8/15 M correct 

Laplacian 

30 

SVM 

linear 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1) 

Very low 

Stats 

30 

RF 

10 trees 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1) 

13/15 F correct 

12/15 M correct 

Derivatives 

30 

SVM  

linear 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1) 

11/15 F correct 

14/15 M correct 

Hessian 30 SVM 

linear 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1  

and Sex test set 2) 

Test 1: 

13/15 F correct 

14/15 M correct 

Test 2: 

8/15 F correct 

15/15 M correct 

Structure 50 RF  

10 trees 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1  

and Sex test set 2) 

Test 1: 

12/15 F correct 

11/15 M correct 

Test 2: 

10/15 F correct 

15/15 M correct 

Structure 50 SVM 

linear 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1  

and Sex test set 2) 

Test 1: 

11/15 F correct 

13/15 M correct 

Test 2: 

8/15 F correct 

15/15 M correct 
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Table 3-6 (cont’d) 

 

Hessian 50 RF  

10 trees 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1  

and Sex test set 2) 

Test 1: 

13/15 F correct 

13/15 M correct 

Test 2: 

10/15 F correct 

15/15 M correct 

Hessian 50 SVM 

linear 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1  

and Sex test set 2) 

Test 1: 

11/15 F correct 

14/15 M correct 

Test 2: 

9/15 F correct 

15/15 M correct 

Hessian 50 RF 

1,000 

trees 

68 M SAM wings 

71 F SAM wings 

(Sex training set 1) 

15 M SAM wings 

15 F SAM wings 

(Sex test set 1  

and Sex test set 2) 

Test 1: 

13/15 F correct 

13/15 M correct 

Test 2: 

10/15 F correct 

15/15 M correct 

 

 

2.2 Classifying by genotype - Samarkand vs. mutant phenotypes (Egfr, mam, S, tkv) with 

varying numbers of trees. The best results were again achieved with Hessian combined with 

Random forest. SVM linear performed much better than SVM with alternate kernel shapes. RF, 

random forest; SAM, Samarkand; SVM, support vector machine. 
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Table 3-7 Results with BioCAT for genotype 

Features Classifier Training set Testing set Success rate Notes 

Hessian 

30 

RF 10 trees Genotype training 1 

327 mutant females 

77 SAM females 

Genotype test 1 

15 of each 

mutant  

15 SAM 

Identifies all 

wings as 

Mutant 

 

Hessian 

30 

SVM linear Genotype training 1 

327 mutant females 

77 SAM females 

Genotype test 1 

15 of each 

mutant  

15 SAM 

9/15 SAM 

wrong 

6/60 mutants 

wrong 

 

Hessian 

30 

SVM radial Genotype training 1 

327 mutant females 

77 SAM females 

Genotype test 1 

15 of each 

mutant  

15 SAM 

Identifies all 

wings as 

Mutant 

 

Hessian 

30 

SVM 

sigmoid 

Genotype training 1 

327 mutant females 

77 SAM females 

Genotype test 1 

15 of each 

mutant  

15 SAM 

Very low 

accuracy 

 

Structure 

30 

RF 10 trees Genotype training 1 

327 mutant females 

77 SAM females 

Genotype test 1 

15 of each 

mutant  

15 SAM 

Very low 

accuracy 

 

Structure 

30 

SVM linear Genotype training 1 

327 mutant females 

77 SAM females 

Genotype test 1 

15 of each 

mutant  

15 SAM 

2 mutants 

wrong 

9/15 SAM 

wrong 

 

Structure 

30 

SVM radial Genotype training 1 

327 mutant females 

77 SAM females 

Genotype test 1 

15 of each 

mutant  

15 SAM 

Very low 

accuracy 

 

Hessian 

50 

SVM linear Genotype training 2 

77 mutant females 

77 SAM females 

Genotype test 2 

15 mutants total 

(3-4 of each) 

15 SAM  

Test 1:  

6/15 SAM 

correct 

13/15 mutants 

correct 

Test 2: 

2/15 SAM 

correct 

15/15 mutants 

correct 

Equal  

representati

on in 

train/test 

sets 

greatly  

improved 

accuracy  
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Table 3-7 (cont’d) 

 

 

Structure 

50 

SVM linear Genotype training 2 

77 mutant females 

77 SAM females 

Genotype test 2 

15 mutants total 

15 SAM  

Test 1: 

12/15 SAM 

correct 

7/15 mutant 

correct 

Test 2: 

13/15 SAM 

correct 

10/15 mutant 

correct 

 

Structure 

50 

RF 10 trees Genotype training 2 

77 mutant females 

77 SAM females 

Genotype test 2 

15 mutants total 

15 SAM  

Test 1: 

10/15 SAM 

correct 

11/15 mutants 

correct 

Test 2: 

9/15 SAM 

correct 

12/15 mutants 

correct 

 

Hessian 

50 

RF 10 trees Genotype training 2 

77 mutant females 

77 SAM females 

Genotype test 2 

15 mutants total 

15 SAM  

Test1: 

11/15 SAM 

correct 

13/15 mutants 

correct 

Test 2:  

11/15 SAM 

correct 

12/15 mutants 

correct 

 

 

 

2.3 Classifying by genotype - all genotypes (females). Egfr, epidermal growth factor receptor; 

mam, mastermind; RF, random forest; SAM, Samarkand; SVM, support vector machine; tkv, 

thickveins. 
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Table 3-8 Results with BioCAT across genotype 

Features Classifier Training set Testing set Success rate Note

s 

Hessian 50 RF 10 trees Genotype training 3 

70 wings of each  

genotype, females 

Genotype test 3 

15 wings of each  

genotype, 

females 

x2 test sets 

EgfrT1: 20%; 3 

correct; 2 SAM; 10 

tkv 

 

EgfrT2: 33.3%; 5 

correct; 3 SAM; 7 

tkv 

 

MamT1: 20%; 3 

correct; 12 star 

 

MamT2: 33.3%; 5 

correct; 10 star 

 

SAMT1: 86.7%; 1 

mam; 1 Egfr; 13 

correct 

 

SAMT2: 66.7%; 3 

mam; 10 correct; 2 

tkv 

 

StarT1: 100%; 15 

correct 

 

Star T2: 73.3%; 11 

correct; 4 mam 

 

TkvT1: 26.7%; 4 

correct; 4 mam; 5 

Egfr; 2 SAM 

 

TkvT2: 60%; 9 

correct; 2 Egfr; 1 

mam; 3 SAM 

 

52%  

comb

ined 

 

Table 

4 

Figur

e 6 
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Table 3-8 (cont’d) 

 

 

 

Hessian 50 SVM linear Genotype training 3 

70 wings of each  

genotype, females 

Genotype test 3 

15 wings of each  

genotype, 

females 

EgfrT1: 1 correct; 1 

SAM; 13 tkv 

 

EgfrT2: 1 correct; 2 

mam; 1 SAM; 11 

tkv 

 

MamT1: 1 correct; 

14 Star 

 

MamT2: 2 correct; 

13 Star 

 

SAMT1: 11 correct; 

1 Egfr; 3 mam 

SAMT2: 4 correct; 

6 Egfr; 4 mam; 1 

tkv 

 

StarT1: 14 correct; 

1 mam 

 

StarT2: 13 correct; 

1 mam; 1 tkv 

 

TkvT1: 6 correct; 3 

Egfr; 6 SAM 

 

TkvT2: 13 correct; 

2 mam 

44%  

overa

ll 

 

Table 

4 
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Table 3-8 (cont’d) 

 

 

Structure 

50 

SVM linear Genotype training 3 

70 wings of each  

genotype, females 

Genotype test 3 

15 wings of each  

genotype, 

females 

EgfrT1: 3 correct; 2 

SAM; 10 tkv 

 

EgfrT2: 1 correct; 1 

mam; 5 SAM; 8 tkv 

 

MamT1: 15 correct 

 

MamT2: 1 correct; 

14 Star 

 

SAMT1: 11 correct; 

1 Egfr; 3 mam 

 

SAMT2: 9 correct; 

5 Egfr; 1 mam 

 

StarT1: 14 correct; 

1 mam 

 

StarT2: 14 correct; 

1 mam 

 

TkvT1: 6 correct; 2 

Egfr; 7 SAM 

 

TkvT2: 9 correct; 1 

Egfr; 5 SAM 

45.3

%  

overa

ll 
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Table 3-8 (cont’d) 

 

 

 

Structure 

50 

RF 10 trees Genotype training 3 

70 wings of each  

genotype, females 

Genotype test 3 

15 wings of each  

genotype, 

females  

EgfrT1: 5 correct; 3 

SAM; 7 tkv 

 

EgfrT2: 3 correct; 1 

mam; 3 SAM; 8 tkv 

 

MamT1: 3 correct; 

12 Star 

 

MamT2: 3 correct; 

12 Star 

 

SAMT1: 13 

correct; 1 Egfr; 1 

mam 

 

SAMT2: 10 

correct; 3 Egfr; 2 

tkv 

 

StarT1: 14 correct; 

1 mam 

 

StarT2: 13 correct; 

2 mam 

 

TkvT1: 1 correct; 6 

Egfr; 4 mam; 1 

SAM 

 

TkvT2: 6 correct; 5 

Egfr; 4 SAM 

47.3 

%  

overa

ll 
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Table 3-8 (cont’d) 

 

Hessian 50 RF 1,000 

trees 

Genotype training 3 

70 wings of each  

genotype, females 

Genotype test 3 

15 wings of each  

genotype, 

females 

EgfrT1: 0 correct; 2 

SAM; 13 tkv 

 

EgfrT2: 2 correct; 4 

SAM; 9 tkv 

 

MamT1: 1 correct; 

14 Star 

 

MamT2: 2 correct; 

13 Star 

 

SAMT1: 12 

correct; 1 Egfr; 1 

mam 

 

SAMT2: 10 

correct; 1 Egfr; 2 

mam; 2 tkv 

 

StarT1: 15 correct 

 

StarT2: 13 correct; 

2 mam 

 

TkvT1: 6 correct; 2 

Egfr; 5 mam; 2 

SAM 

 

TkvT2: 9 correct; 1 

Egfr; 1 mam; 4 

SAM 

47% 

overa

ll 

 

Table 

4 

 

2.4 Classifying by sex across microscopes/magnifications. Egfr, epidermal growth factor 

receptor; F, female; M, male; mam, mastermind; RF, random forest; SAM, Samarkand; SVM, 

support vector machine; tkv, thickveins. 
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Table 3-9 Results with BioCAT for sex across technical conditions 

Features Classifier Training set Testing set Success rate Notes 

Hessian 

50 

RF 10 trees 68 M SAM 

wings 

71 F SAM 

wings  

Olympus, 40x 

mag 

uncropped 

Test 1 

15 M SAM wings 

15 F SAM wings 

Test 2 

15 M SAM wings 

15 F SAM wings 

Olympus 20x  

uncropped 

Identifies 100% 

as male 

50% overall 

Table 5 

Hessian 

50 

RF 10 trees 68 M SAM 

wings 

71 F SAM 

wings  

Olympus, 20x 

mag 

uncropped 

Test 1 

15 M SAM wings 

15 F SAM wings 

Test 2 

15 M SAM wings 

15 F SAM wings 

Olympus 20X  

uncropped 

Test 1: 

13/15 F correct 

10/15 M correct 

Test 2: 

12/15 F correct 

15/15 M correct 

83.3% overall 

 

Hessian 

50 

RF 10 trees 68 M SAM 

wings 

71 F SAM 

wings  

Olympus, 40x 

mag cropped for 

splining 

Test 1 

15M SAM wings 

15 F SAM wings 

Test 2 

15M SAM wings 

15 F SAM wings 

Olympus 40x cropped 

for splining 

Test 1 

12/15 F correct 

13/15 M correct 

Test 2 

10/15 F correct 

15/15 M correct 

83.3% overall 

 

Hessian 

50 

RF 10 trees 68 M SAM 

wings 

71 F SAM 

wings  

Olympus, 40x 

mag cropped for 

splining 

Test 1 

15M SAM wings 

15 F SAM wings 

Test 2 

15M SAM wings 

15 F SAM wings 

Olympus 20x cropped 

for splining 

Test 1 

0/15 F correct 

14/15 M correct 

Test 2 

1/15 F correct 

15/15 M correct 

50% overall 

Table 5 
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Table 3-9 (cont’d) 

 

Hessian 

50 

RF 10 trees 68 M SAM 

wings 

71 F SAM 

wings  

Olympus, 40x 

mag cropped for 

splining 

Test 1 

15 M SAM wings 

15 F SAM wings 

Test 2 

15M SAM wings 

12 F SAM wings 

Leica 40x  

cropped for splining 

Test 1 

7/15 F correct 

14/15 M correct 

Test 2 

7/12 F correct 

14/15 M correct 

73.7% overall 

Table 5 

Hessian 

50 

RF 10 trees 68 M SAM 

wings 

71 F SAM 

wings  

Leica, 40x mag 

cropped for 

splining 

Test 1 

15 M SAM wings 

15 F SAM wings 

Test 2 

15 M SAM wings 

12 F SAM wings 

Leica 40x  

cropped for splining 

Test 1 

15/15 F correct 

15/15 M correct 

Test 2 

12/12 F correct 

11/15 M correct 

93.0% overall 

Table 5 

Hessian 

50 

RF 10 trees 68 M SAM 

wings 

71 F SAM 

wings  

Leica, 40x mag 

cropped for 

splining 

Test 1 

15M SAM wings 

15 F SAM wings 

Test 2 

15M SAM wings 

15 F SAM wings 

Olympus 40x cropped 

for splining 

Test 1 

14/15 F correct 

0/15 M correct 

Test 2 

14/15 F correct 

0/15 M correct 

 

Hessian 

50 

RF 10 trees Mixed 

microscopes 

15 males Oly 4x 

15 males Lei 4x 

15 females Oly 

4x  

15 females Lei 

4x 

Test 1 

15M SAM wings 

15 F SAM wings 

Test 2 

15M SAM wings 

15 F SAM wings 

Olympus 40x 

Test 1 

13/15 F correct 

8/15 M correct 

Test 2 

15/15 F correct 

8/15 M correct 

 

Table 5 

73.3% 

Hessian 

50 

RF 10 trees Mixed 

microscopes 

15 males Oly 4x 

15 males Lei 4x 

15 females Oly 

4x  

15 females Lei 

4x 

Test 1 

15M SAM wings 

15 F SAM wings 

Test 2 

15M SAM wings 

15 F SAM wings 

Leica 40x 

Test 1 

13/15 F correct 

14/15 M correct 

Test 2 

9/12 F correct 

13/15 M correct 

Table 5 

86.0% 

 

2.5 Classifying by genotype using Leica 4x images. Egfr, epidermal growth factor; mam, 
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mastermind; RF, Random forest; SAM, Samarkand; tkv thickveins. 

Table 3-10 Results with BioCAT for genotype across technical conditions 

Features Classifier Training set Testing set Success rate Notes 

Hessian 50 RF 10 trees Genotype train 

Leica 

64 wings from each 

genotype 

Leica 4x 

Cropped prior to 

landmark, splining 

960 x 718 pixels 

Genotype test 

Leica 

All from Leica 

4x 

Test set 1 

15 wings from 

each genotype 

Test set 2 

15 wings from 

each genotype 

EgfrT1: 

9/15 correct 

6/15 SAM 

EgfrT2: 

12/15 correct 

3/15 SAM 

MamT1: 

1/15 correct 

10/15 Star 

4/15 tkv 

MamT2: 

2/15 correct 

2/15 Egfr 

3/15 SAM 

4/15 Star 

4/15 tkv 

SAMwT1: 

14/15 correct 

1/15 mam 

SAMwT2: 

8/15 correct 

7/15 mam 

StarT1: 

14/15 correct 

1/15 mam 

StarT2: 

15/15 correct 

TkvT1: 

2/15 correct 

4/15 mam 

2/15 SAMw 

7/15 Star 

TkvT2: 

3/15 correct 

3/15 mam 

9/15 Star 

 

53.3

%  

accur

ate 

overa

ll. 

This 

isn't 

subst

antial

ly 

highe

r than 

the 

accur

acy 

using 

the 

Olym

pus 

image

s 

(52% 

overa

ll), 

unlik

e sex 

predi

ctions

. 
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Introduction 

A major goal of modem biology is to use newly available diverse sets of quantitative ‘omic data 

to make useful predictions relevant to health, agriculture, the environment, and basic biological 

research1. This objective applies in particular to 'precision medicine'. The same genetic or 

clinical properties in different people can mean very different things depending on individual 

factors and environmental context-- being able to take the relevant features and interpret their 

meaning without direct experimental testing would be invaluable in a medical or scientific 

setting2. However, predictions tend to be most accurate when they have been produced from an 

individually tailored dataset, which is not feasible for all the circumstances where predictions 

might be applied3. Experimentally, testing all treatments on all possible combination of inputs is 

not feasible, so despite the above limitations of prediction, computational methods using these 

new and growing data sets must be developed. Technological breakthroughs have provided 

modern biologists with an ever-increasing treasure trove of publicly available biologically 

relevant data necessary for this task; the appropriate matched computational resources are still 

being developed.  

Experimental approaches are changing more quickly than the analytical methods for interpreting 

them. DNA sequencing technology, for example, has been increasing in speed and decreasing in 

cost at an exponential rate4. In just the last ten years, new techniques like STARR-Seq, RNA-seq, 

ChIP-seq and chromatin conformation capture (3C) analysis have replaced older methods like 

RT-PCR and microarrays5–9. In the last five years, CRISPR has gone from a niche subject to the 

“Swiss army knife” of molecular biology10. Despite this data explosion, exhaustively measuring 

how cells, organisms or ecosystems with complex genetic architectures would generate 

differential responses to diverse environmental circumstances, is still impossible. Thus, 
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computational methods are the only way forward. However, the machine learning methods that 

are used to make predictions and classifications from this data are largely unchanged in the last 

twenty years11,12.  

From genotype to gene expression 

In an effort to address this deficiency in one important area of genomic research, in Chapter 2, I 

describe my efforts to use random forests to distinguish active cis-regulatory DNA from 

background, using the Fly Enhancer Resource developed by Alexander Stark's lab as a training 

set13. The existence of such a large database of in-vivo reporters allowed an in-depth analysis of 

how effective these predictions were, and how well they generalize. I found random forests made 

good predictions when tested on reporters set aside for testing from the Fly Enhancer Resource, 

but produced substantially higher false-discovery rate when applied to putative enhancers 

identified around well-characterized genes.  I also found that attempting to classify by more 

specific categories (expression pattern, or temporal activity) was much less accurate. However, 

these are both dynamic categories that depend on the developmental window being considered, 

thus trying to classify elements into discrete groups may be a fundamentally flawed approach. 

Probabilistic models, like what is used in some software like Manolis Kellis ChromHMM, may 

be more computationally effective and biologically accurate, as they characterize distributions 

rather than classify based on discrete groups14,15. 

It seems likely that the currently existing datasets should be able to yield features that show 

differences between poised and currently active enhancers (as experimentally shown for H3K27 

acetylation in Koenecke et al. 201616) , even if we are not currently able to concretely classify 

them. Based on the degree to which classification accuracy of my random forest classification 

levels off asymptotically as more datasets are incorporated, it seems likely that including more 
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information from chromatin immunoprecipitation of transcription factors would have marginal 

returns. Future efforts along these lines may have more success using data along different lines, 

such as RNA-seq information for the relevant locus, chromatin conformation data, histone marks 

that are not explicitly associated with enhancer function (which may help parse out non-

enhancers that share some similar features, like promoters) and information about proximity to 

prospective transcription start sites.  More information about the binding of cofactors may also 

be relevant for regulatory elements that fit into the category of 'transcription factor collectives' 

and are less reliant on the underlying DNA sequence, or longer enhancer regions that do not 

necessarily fall into a neat 2kb window17,18. 

A more nuanced use of sequence conservation data than applied in my study would be helpful; 

information about variation between species and within populations is a rich resource that is 

abundantly available for Drosophila, but measuring average sequence change over large 

windows is not likely to yield a result19,20. Using cross-species ChIP data to look for regions that 

appear to be under purifying or directional selection may be more fruitful, as would using 

programs like EMMA from Saurabh Sinha's laboratory that are explicitly intended for making 

comparisons of enhancers between species by modeling turnover of transcription factor binding 

sites21,22. 

From wing shape to genotype 

In Chapter 3, I describe a database we developed for the testing of alternative methods for 

extracting and analyzing phenotype features from images of Drosophila wings. I also discuss 

some preliminary analysis of how existing methods for classifying Drosophila into sex and 

genotype using standard morphometric features compares with classification based on features 

extracted by Biocat, an open source computer vision tool23. We found that morphometric 
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methods (which have been in development for decades) were substantially more successful, but 

features extracted from images using Biocat were quite successful at classifying wings by the sex 

of their origin fly, and by genotype24.  

In the future, it would be interesting to see how well computer vision methods could be applied 

to more complex classifications, like looking for the interactions between genes, recognizing a 

given genotype that has been influenced by different environmental conditions, or identifying a 

common mutation in different species. It would also be useful to see whether combination 

approaches that take advantage of both morphometric features and features extracted using 

computer vision methods can outperform either or both methods alone. 

New methods of measuring phenotype and correlating it with underlying genetic state may lead 

to a more nuanced view of how subtle genetic perturbations influence phenotype. For example, 

the phenotypic effects seen in the removal of 'shadow' enhancers may be evident under a range of 

conditions, given sufficiently sophisticated measurement25,26. 

Conclusions 

Although there are still limitations on using computational predictions in place of experimental 

work, it is a promising future direction. Experimental technology is constantly advancing, but the 

relevant features of the phenome that biologists are interested in exploring appears to be too large 

to ever exhaustively explore it through experiments-- it will always be necessary to draw 

conclusions from unique combinations of inputs. We used a large number of publicly available 

features to determine how accurately enhancers could be distinguished from background. Our 

results suggest that based on the currently existing data, there are limits to the success of these 

predictions-- surpassing these limits will either require a new method for analysis, a better 

understanding of the enhancer state, or a new way of interpreting the existing features. In image 
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analysis, computer vision with machine learning has been used as an alternative to traditional 

human noticeable features. Automatic extraction of features allows identifying important 

elements that may not appear to have relevance at first glance. Based on our initial analysis, 

however, automatic analysis alone is not comparable to the well-developed traditional methods. 

We have created a database of wing images in the hopes that it will be used for the creation of 

novel tools, which may find new features to use as the basis of predictions. When our ability to 

analyze data catches up with our current rate of accumulation, we may end up with a much 

stronger understanding of how genotype actually relates to phenotype. 
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