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ABSTRACT

LARGE-SIGNAL RF SIMULATION AND CHARACTERIZATION OF ELECTRONIC
DEVICES USING FERMI KINETICS TRANSPORT

By

Nicholas Charles Miller

Design of radio frequency (RF) power amplifiers (PAs) for wireless communications requires

small- and large-signal data collected from the underlying transistors, including scattering pa-

rameters (S-Parameters) and load-pull (LP), to determine optimal impedance targets. High speed

devices operating with fundamental frequencies above 35 GHz present extreme challenges for mea-

suring the harmonic signals resulting from nonlinear effects. Predictive physics based simulations

in conjunction with compact modeling capabilities are promising alternatives to expensive and

time-consuming measurements. To date, tools either exist in the electron transport domain or in

the behavioral modeling domain and a key goal is to treat these problems simultaneously because

they are strongly coupled at millimeter wave frequencies. Accurate physics based simulations of

high speed and high power transistors require proper treatment of hot-electron, self-heating, and

full-wave effects. The Boltzmann solver called Fermi kinetics transport (FKT) has been shown to

capture all of these important physical effects. FKT can approach the accuracy of Monte Carlo

methods while maintaining the computational efficiency of deterministic solvers. The latter trait

allows simulation of large electronic devices such as the output stages of PAs. Previous work

on FKT provided proof of concept results which demonstrated its versatility and accuracy as an

electronic device simulation framework.

The purpose and contribution of this thesis is the use of FKT as a predictive TCAD tool to gen-

erate RF data required for PA design. This work begins with a thorough investigation of the under-

lying physical equations and their numerical solution for electronic device simulations. Included in

this investigation is an analysis of the full-wave discretization technique called Delaunay-Voronoi

surface integration (DVSI), a derivation of the FKT device equations and their discretization in

energy- and real-space, and a detailed account on the numerical solution of the fully coupled non-



linear system of equations. The detail provided in this work is meant to provide future device en-

gineers and researchers a thorough understanding of the numerical framework for their application

and simulation needs. The FKT device simulator is then applied to real device geometries to gen-

erate useful data for RF circuit designers. Extensions of the FKT method required for large-signal

LP simulations are presented with representative applications. Additionally, compact behavioral

models are extracted directly from FKT device simulations, enabling a computationally efficient

means for simulated LP data generation. The resulting TCAD tool is a promising simulation capa-

bility for high power RF transistor design and characterization. It is anticipated that PA design for

5G applications will use techniques like these in the near future.
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CHAPTER 1

INTRODUCTION

Wireless communications is an ever-growing research area in the information age. Examples of

wireless communications include commercial applications such as cellular telephones, wireless lo-

cal area network (WLAN) and Wi-Fi, global positioning system (GPS), and military applications

like radar sensors, electronic warfare (EW) systems, and satellite communications. A critical com-

ponent common to all wireless systems is the radio frequency (RF) amplifier. As bandwidth and

efficiency criteria evolve with more sophisticated technology, so too must the underlying transis-

tor technologies which comprise the integrated RF amplifiers as well as the circuit topologies that

exploit these capabilities.

At a system level, RF integrated circuits (RFICs) used for wireless communications are grouped

into two modules: the transmitter (Tx) and the receiver (Rx). A basic illustration of both RFIC

modules is presented in Figure 1.1. The transmission module is responsible for up-converting

Data 
source

Modulator
Tx

front-end
Rx

front-end
Demodulator

Data 
sink

Transmitter Receiver

Power
amplifier RF filter RF filter

Low noise
amplifier

Figure 1.1: A system level diagram of an RFIC transmitter and receiver. The front-end components
are further decomposed into the specific types of amplifiers required for the different modules.

(modulating) the signal to a specific frequency band, amplifying the signal with a desired amount

of gain, and filtering the signal to the allocated frequency band of the system. Once the signal is

received from the channel, the Rx module must filter out unwanted frequency content, amplify the
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signal with the least amount of noise possible, then down-convert (demodulate) the signal to the

base-band frequency range.

Power amplifiers (PAs) are used to amplify the signal before transmission with the antenna and

are an important sub-component of the overall wireless communication process. Ever since the

first operational example in the 1940s, transistors have been an important part of practical PAs and

remain the only prospect for integrated amplification. The choice of semiconductors for the transis-

tor technology has changed over time due to the changing demand of the PAs and the emergence

of higher performance semiconductors that can be readily integrated. The biggest breakthrough

which has allowed a wide expansion of semiconductor technology is the monolithic microwave

integrated circuit (MMIC) process. The gallium arsenide (GaAs) MMIC amplifier was reported

in 1976 and since then there has been tremendous progress in both LNAs and PAs [1]. The GaAs

MMIC PA is still an integral part of every cell phone, which lends a calibration to the impact of

the technology. Although GaAs was a major part of early RF semiconductor devices, there ex-

ist a wide range in transistor types and semiconductors. Included in the transistor types are the

GaAs and silicon carbide (SiC) metal-semiconductor field effect transistors (MESFETs), silicon

(Si) based metal-oxide-semiconductor FETs (MOSFETs), silicon germanium (SiGe) heterojunc-

tion bipolar transistors (HBTs) [2], and GaAs and gallium nitride (GaN) high electron mobility

transistors (HEMTs) [3].

GaN HEMTs are a popular PA transistor technology choice due to their high electron satura-

tion velocity, large semiconductor band-gap, high two-dimensional electron gas (2DEG) density in

the channel, and high electron mobility [3]. A semiconductor with a large band-gap is superior to

that with a lower band-gap as the former will suffer from band-to-band impact ionization at much

higher electric fields, enabling higher operating voltages and greater output power in the same

form factor. Furthermore, with a high electron saturation velocity, GaN HEMTs can operate at

higher frequency compared to their GaAs counterparts which is critical for penetrating high power

applications at millimeter-wave frequencies and higher. Finally, in terms of device fabrication,

the ability of GaN technology to form heterojunctions allows for polarization induced high carrier
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concentration and high electron mobility without modulation doping [4]. These two features al-

low for a high current density and low channel resistance, which also allows for high frequency

operation [5]. These characteristics of GaN HEMTs have allowed implementation of high power

and high frequency PAs [6, 7] and are important components for next generation radar and satellite

communication RF front-ends.

Independent of the transistor technology and process, a wide variety of PA circuit topologies

exist that have been developed over decades to exploit various physical benefits of each given

technology. The most simple analog PAs are class A, class B, class AB, and class C amplifiers.

The difference between the class A-C amplifiers is the operating point, with the class C amplifier

boasting the highest theoretical efficiency at the expense of linearity and vice versa for class A. The

next class types of PAs are the switching classes D and E. Class D amplifiers treat the transistor

as an ideal switch, whereas the class E amplifier treats the transistor as a non-ideal switch and

optimizes the load impedance for maximum efficiency [8]. More advanced types of amplifiers

are the class F and inverse class F amplifiers. Class F amplifiers operate with class B biasing

and are presented with a harmonic tuning matching network for high efficiency [9]. A transistor

operating with a class B bias and with optimized harmonic termination impedance is designated as

a class J amplifier. Advanced PA design includes broadband amplifier techniques and linearization

techniques. Techniques for increasing bandwidth include reactive/resistive matching amplifiers

and feedback amplifiers [1], as well as distributed amplifiers [10]. The techniques for amplifier

linearization include feedback techniques [11, 12], feed-forward techniques [13], and efficiency

enhancement techniques such as Chireix outphasing [14] and the Doherty amplifier [15].

Design of PAs is significantly more involved than the design of other types of amplifiers such

as the low noise amplifier (LNA) and specific applications require drastically different designs.

Basic requirements of PAs include high gain, high power added efficiency (PAE), and higher lin-

earity [1]. Once the device technology, the type of PA, and the operating point are selected, the

design of the PA often requires measured and simulated load-pull (LP) data to create models that

will allow designed circuit performance to match the fabricated reality. LP refers to the evaluation
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of figures of merit (FOMs) of a device under test (DUT) when the input and/or output loading

conditions are changed [16]. The FOMs, whether measured or simulated, are provided for sin-

gle transistors or DUTs rather than an entire PA module. Once the response data are available

for multiple harmonics of the loading conditions, designers can then create the optimum loading

conditions to maximize the desired FOMs. Although the LP concept is relatively straightforward,

realizing the measurement system and producing the data can be incredibly time-consuming and

sophisticated. The use of mechanical tuners to systematically change the loading conditions pre-

sented to the DUT has been in use since the mid-1970s [17]. When LP data for multiple harmon-

ics are required for proper PA design, the use of mechanical tuners is a laborious measurement

technique. Today, state-of-the-art measurement systems utilize active LP techniques for fast and

efficient multi-harmonic data generation. The first instances of active LP used the open-loop active

load, where a signal generator is used to inject incident waves to the DUT to mimic the scattered

waves generated by impedance mismatches [18]. Closed-loop technology offers an improved ver-

sion of the original active LP technique, where the reflected waves are generated directly from the

incident waves through directional couplers [16]. The four-port differential time-domain (TD) LP

technique is the state-of-the-art and offers powerful measurement capabilities [19].

Measured LP is the standard high frequency characterization used throughout the industry, but

it does not come without drawbacks. The main difficulties of active LP are the high power and

linearity required by the load amplifiers [16]. Furthermore, the data generated are only valid for

a single DUT operating point and therefore bias and frequency sweeps are required for a broad

range of device performance data. An alternative approach for PA design is utilization of com-

puter aided design (CAD) tools with nonlinear device models. PA design with CAD tools offers a

flexible and efficient approach to performance optimization and can be used to generate synthetic

LP data or entire PA module characterization. In order to generate accurate and useful results, the

nonlinear device model must be accurate over a wide range of operating points, frequency, loading

conditions, and large-signal excitations. These nonlinear models can be grouped into two main

categories: circuit based modeling and behavioral modeling.
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Circuit based modeling of transistors has existed nearly as long as the devices have themselves.

Many small-signal two-port models exist for a wide variety of transistors [1]. These models can be

useful for circuit design, e.g., conjugate input matching. However, because PAs are driven by large-

signal RF signal levels, these models do not accurately describe the nonlinear nature of the devices.

Nonlinear circuit models are therefore critical for large-signal RF design of PAs. An example of

a well-known nonlinear device model for GaN HEMT technology is the Angelov model [20, 21].

Keysight Technologies (a spin-off from Agilent Technologies), provides a circuit-based nonlinear

GaN HEMT model called the DynaFET model [22, 23], which has garnered considerable atten-

tion for nonlinear compact modeling. Both examples of nonlinear GaN HEMT models require

extensive measurements of devices to calculate parameters and train the models.

Opposite to circuit based modeling are behavioral nonlinear device models. Rather than de-

velop equivalent circuits to represent the nonlinear transistor, behavioral modeling relies on ap-

proximations of the nonlinear analytic map between the input waves (voltages or currents) and

the scattered waves. An example of a nonlinear behavioral model applicable to GaN HEMTs is

the Polyharmonic Distortion Model (PHD) [24], which later was trademarked as the X-Parameter

(XP) model [25, 26] and was used for high-efficiency PA design [27].

Regardless of the choice of the nonlinear device model (circuit based or behavioral), the vast

majority of implementations utilize measurements to compute model parameters and/or train the

model. An alternative to measurement based model extraction is physics based or technology

computer aided design (TCAD) based model extraction. With TCAD based model extraction ca-

pabilities, the cost of sophisticated measurement systems and device fabrication can be overcome

to allow efficient PA characterization and design. It is critical that the numerical TCAD models

accurately describe the underlying physics of the semiconductor devices to produce quality and

useful results. To the author’s knowledge, there only exists one TCAD framework which can accu-

rately produce nonlinear device models. This framework couples an accurate Monte Carlo (MC)

method with harmonic balance (HB) [28] and has been used to extract XPs [29]. Although this

TCAD framework boasts the accuracy of MC, it suffers from an immense computational burden
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and cannot include full-wave electromagnetic (EM) effects in its present form, although it could

be added. A greater limitation is that MC physical domains are limited to sizes of a few microns

and PA output stages are often 10–100 times larger in reality.

The main contribution of this thesis is the utilization of a TCAD framework called Fermi Kinet-

ics Transport (FKT), which captures hot-electron and full-wave effects, to simulate, characterize,

and extract XP models of state-of-the-art GaN HEMT technology. FKT, which is a determinis-

tic Boltzmann solver, offers a promising numerical framework for accurate, robust, and efficient

electronic device simulation. The rest of this thesis is organized as follows. Background mate-

rial required for this work is presented in Chapter 2. In Chapter 3, a complete discussion of the

full-wave EM discretization method called Delaunay-Voronoi Surface Integration (DVSI), which

is part of the FKT TCAD numerical framework, is presented. A thorough derivation of the gov-

erning equations of the FKT device simulator and their discretization in energy- and real-space

is presented in Chapter 4. Numerical details required for solving the nonlinear device equations

are presented in Chapter 5, including device simulation work-flow and boundary conditions. This

chapter also includes an investigation into some numerical characteristics of the FKT equations

and reports some advanced simulation techniques. Chapter 6 presents small- and large-signal RF

simulations of GaN HEMT technology from DC to mm-wavelengths. In Chapter 7, a state-of-

the-art GaN HEMT is characterized with the FKT device simulator. This chapter presents several

small- and large-signal simulations of the HEMT technology. XP extraction of the GaN HEMT is

also reported in this chapter. The compact model is imported into Advanced Design System (ADS)

to generate data for RF circuit designers. A conclusion and discussion of future research enabled

by this thesis are provided in Chapter 8.
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CHAPTER 2

BACKGROUND

2.1 The Box Integration Method

Discretization of continuous systems of equations can be done in a multitude of ways. The

standard approach for discretizing continuous equations which govern charge transport in semi-

conductor devices is the box integration method [30]. The idea of the box integration method is

based upon Gauss’ divergence theorem and can be dated as far back as the 1960s [31, 32, 33].

Given an arbitrary vector field~F, its divergence integrated over a volume is equal to the flux of the

vector field through the surface of the volume

∫∫∫
V

∇ ·~FdV =
∫∫
S

n̂ ·~FdS. (2.1)

Figure 2.1 illustrates the cross-section of a cylindrical volume. The 2D version of the surface

integral for the cylindrical region is

∫∫
S

n̂ ·~FdS =

2π∫
φ=0

dφρρ̂ ·~F. (2.2)

Figure 2.1: (left) A cross-section of a cylindrical volume. (right) A polygonal approximation of
the cylindrical volume with eight finite surfaces.
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For the discrete version of the cylindrical region shown in the right of Figure 2.1, the surface

integral becomes ∫∫
S

n̂ ·~FdS≈∑
i

∫
Si

dSin̂i ·~F≈∑
i

FiAi, (2.3)

if the vector projections of the field~F are approximated as constant over each surface of the poly-

gon. This is the crux of the box integration method. Given a polyhedron which encloses a single

point in space, the divergence integrated over the polyhedron is represented by a summation of

fluxes across the polyhedron’s faces. A special type of mesh is required to produce these types of

polyhedra and is the topic of the following section.

2.2 The Delaunay-Voronoi Mesh

The basic principles of the box integration method were outlined in the previous section. To

properly discretize the divergence of a vector field with the box integration method, a special type

of mesh called a Delaunay mesh is required. A 2D Delaunay mesh is a set of polygons where

the circumcircle of any polygon contains no points of the mesh. The points of each polygon

lie on the perimeter of its respective circumcircle. The 3D analogue is a set of polyhedra with

Figure 2.2: (left) The Delaunay triangulation of a random set of ten points. The Bowyer-Watson
algorithm was used to create this triangulation. The Delaunay triangles are illustrated in black
and the Voronoi cells in red. Only the Voronoi cells corresponding to interior Delaunay points
are shown. Two circumcircles of the Delaunay triangles are also included. (right) One of the
divergence stencils corresponding to the shaded Voronoi cell is outlined with arrows.
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circumspheres. An example of a Delaunay triangulation of a random set of points is shown in

Figure 2.2. The Bowyer-Watson algorithm [34, 35] was used to generate this triangulation. In the

left of Figure 2.2, the Delaunay triangles are drawn in black and the Voronoi cells (most commonly

referred to as the Voronoi diagram [36]) corresponding to the interior Delaunay nodes are drawn in

red. Two circumcircles which inscribe triangles are also drawn in gray. This simple triangulation

demonstrates the powerful relationship between the Delaunay triangles and the Voronoi polygons.

Each Voronoi polygon corresponds to a single Delaunay node in the mesh. The faces of this

Voronoi polygon (edges) correspond to edges which are connected to the Voronoi polygon’s node.

The normals of the Voronoi polygon’s faces point in the exact same direction as their corresponding

Delaunay edges, by construction. The importance of this relationship now becomes clear in terms

of the box integration method. A divergence of a vector field integrated over each Voronoi polygon

can be represented as a discrete summation of fluxes, defined on the Delaunay edges, across each

face of the Voronoi polygon. One divergence stencil corresponding to the shaded Voronoi polygon

is illustrated in Figure 2.2 (right).

Figure 2.3: The Delaunay triangulation (black lines) and the corresponding Voronoi diagram (red
lines) of the basic outline of a MESFET. This mesh was generated with the open source program
Gmsh which uses the TetGen Delaunay triangulator.

There exists a wide range of algorithms to generate Delaunay triangulations. Included is

the Bowyer-Watson algorithm, as well as other standard methods used in computational geom-

etry [37, 38]. These methods are reliably used for the finite element method (FEM), among many

other computational methods. An out-of-the-box Delaunay meshing algorithm, however, does not

produce adequate meshes for simulating semiconductor devices with the box integration method.
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To elaborate on the difficulties of generating a quality Delaunay-Voronoi (DV) mesh for dis-

cretization with the box integration method, a simple MESFET geometry is considered. The device

consists of a thin semiconductor resting upon a larger substrate. These types of features are com-

mon in electronic devices. Figure 2.3 illustrates an attempt at meshing a basic MESFET with an

open-source Delaunay meshing tool. The code is Gmsh [39], which uses the software TetGen [40]

as its Delaunay mesher. It is evident that the Voronoi polygons span across the material interfaces

as well as overall geometry boundaries. This is due to obtuse angles in triangles near the bound-

aries whose circumcenters fall outside of the domain boundary. A characteristic like this will not

allow proper simulation of electronic devices as the charge densities must be uniquely defined in

each material. Furthermore, numerical boundary conditions (BCs) rely on proper truncation of the

Voronoi cells at mesh boundaries.

(a) (b)

Figure 2.4: A zoom of the Gmsh generated Delaunay mesh of the simple MESFET geometry. The
gray shaded area is the semiconductor and the non-shaded region is the insulating substrate. (a) A
coarse mesh which does not preserve material interfaces and geometry boundaries. (b) A refined
mesh which over-meshes the charge transport direction.

As an attempt to fix the Voronoi polygons, the mesh is refined in the semiconductor region.

Figure 2.4 illustrates (a) the original mesh and (b) the refined mesh in the top left corner of the

device. The refined mesh produces conforming Delaunay triangles in both regions as well as

Voronoi polygons which preserve geometry boundaries and can preserve material interfaces. This

mesh, however, is not optimal for simulating electronic devices. The transport direction in field
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effect transistors is parallel to semiconductor/substrate interfaces or heterojunctions. Therefore,

the refined mesh in Figure 2.4b contains too many Delaunay edges which are perpendicular to the

transport direction. Generating a Delaunay mesh with standard FEM software which preserves

material interfaces and geometry boundaries will generate superfluous edges which leads to a very

large number of degrees of freedom (DOF).

An alternative to simple mesh refinement could be sophisticated algorithms which ensure that

circumcenters do not fall outside of their respective Delaunay triangles. One example is the cen-

troidal Voronoi tessellation (CVT) algorithm [41]. The CVT algorithm attempts to move the points

of the Delaunay triangulation to the centroids of their respective Voronoi polygons. Figure 2.5

(a) (b)

Figure 2.5: The (a) initial DV mesh, which is an input to the CVT algorithm and (b) the resulting
DV mesh from the CVT algorithm.

presents an example of the CVT algorithm. Figure 2.5a is the initial Delaunay (and correspond-

ing Voronoi diagram) triangulation of a random set of points. These mesh points are then moved

according to the CVT algorithm to produce Figure 2.5b. Clearly, the CVT algorithm produces

quality DV elements in the interior of the mesh. It does not prevent circumcenters from falling

outside of the mesh boundary, however. Furthermore, because the algorithm is based upon moving

mesh nodes, the CVT algorithm will not preserve the original device geometry. Several papers

appear in the literature which address these problems. They report a stitching algorithm, which
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aims to use the CVT algorithm in the interior of the geometry and stitch the resulting mesh onto a

boundary conforming and preserving mesh [42, 43, 44].

A considerable amount of work exists in DV meshing algorithms specifically designed for

semiconductor device geometries. A prominent algorithm which generates 3D Delaunay grids

suitable for complex semiconductor device structures was pioneered by Conti, Hitschfeld, and

Fichtner [45, 46, 47]. These algorithms decompose the global device geometry into sub-regions

which can be refined in terms of the mesh. The sub-regions automatically preserve material inter-

faces and mesh boundaries and the interiors of the sub-regions are allowed to have circumcenters

which fall outside of their respective element but still reside inside the sub-region. The commer-

Figure 2.6: The Delaunay triangulation (black lines) and the corresponding polygons of the
Voronoi diagram (red lines) of the basic outline of a MESFET. This mesh was generated with
an in-house code based upon the work of Conti.

cial device simulator Sentaurus Device, a product of Synopsys, utilizes a separate meshing code

which incorporates these algorithms in its meshing tools [48]. An example of a mesh generated

by an in-house Air Force Research Laboratory, Sensors Directorate (AFRL) code is presented in

Figure 2.6. Further progress on this meshing topic extends the work of Conti to produce boundary

conforming meshes [49, 50].

Finally, a discussion on splitting the Voronoi mesh at material interfaces and truncating at mesh

boundaries is required. Given that the triangles (2D) or tetrahedra (3D) on material interfaces or

mesh boundaries do not have obtuse angles “pointing” towards the interface/boundary, the Voronoi

mesh can be properly split or truncated. Figure 2.7 illustrates material interface truncation on (a) a

mesh generated by the algorithm of [45] and (b) a mesh generated by Gmsh [39]. In both instances,

the Voronoi cells corresponding to Delaunay nodes on the material interface have edges which are
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(a)
(b)

Figure 2.7: Two examples of mesh splitting at material interfaces. In both cases, the primary edges
separating the red and blue shaded Voronoi polygons represent the material interface. (a) Material
interface Voronoi splitting on a mesh generated by the algorithm of Conti. (b) The same material
interface Voronoi splitting on a mesh generated by Gmsh.

exactly perpendicular to the material interface. The Voronoi edges intersect the Delaunay edges at

exactly the circumcenter of the Delaunay edges — the midpoint of the edge. In 3D, the edges of a

Voronoi polyhedron intersect at the circumcenters of the Delaunay triangles. The Voronoi diagram

at the mesh boundaries uses the exact same recipe for truncation. The portion of the Voronoi

cell which falls outside of the Delaunay mesh, however, is not included in the simulation domain.

Figure 2.8 demonstrates the truncation of the Voronoi diagram at a boundary shaded in gray. The

p1

A1

p2

d2

Figure 2.8: An example of Voronoi diagram splitting in 3D. The primary edges are drawn in black
and the Voronoi edges are drawn in red. The interface of the Delaunay mesh is shaded in gray. The
dashed red lines correspond to the Voronoi cells in the plane of the interface. Two Voronoi cells in
the interface are shaded in red.
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Voronoi edges in the plane of the boundary are drawn as dashed red lines. This boundary could be

either a material interface or the end of the Delaunay mesh. If the boundary is a material interface,

the Voronoi cells on the interface are used to calculate thermionic emission across the boundary.

In the case of mesh boundaries, the Voronoi edges and cells on the plane are used for BCs. Both

of these cases will be discussed in subsequent sections.

The following list summarizes the requirements of meshes suitable for semiconductor device

simulation with the box integration method.

• The mesh must be Delaunay compliant, i.e., no nodes of any primary element fall within any

of the circumcircles/circumspheres.

• Both the Delaunay triangulation and the Voronoi diagram must preserve mesh boundaries

and material interfaces. In other words, the circumcenters of interior elements cannot cross

mesh boundaries or material interfaces.

If these two criteria are met, the Voronoi cells corresponding to mesh nodes on boundaries/inter-

faces will have perpendicular edges to these boundaries/interfaces. These features are utilized to

truncate the Voronoi diagram into material specific regions and the edges are used for device sim-

ulation BCs. An example of separating the Voronoi diagram into unique materials is illustrated in

Figure 2.7.

2.3 Systems of Nonlinear Partial Differential Equations

Simulating charge transport by means of the FKT equations amounts to solving nonlinear par-

tial differential equations (PDEs). Before complicated systems of nonlinear equations are derived

and discretized, some important properties are discussed. Simple systems of nonlinear equations

are presented in this section to discuss central concepts. First, the important topic of solving

discrete nonlinear PDEs with iterative methods is presented. Then, characteristics of discrete non-

linear PDEs including convergence and stability are presented.
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2.3.1 Numerical Solution of Discrete Nonlinear Equations

Subsequent chapters are devoted to the derivation and discretization of the nonlinear transport

equations. Once a discrete set of equations is assembled, they must be solved for the independent

variables. This section focuses on two prominent iterative methods, namely, the fixed point itera-

tion method (FPM) and the Newton-Raphson or Newton’s method. Given a set of N independent

variables ~x = {x1,x2, · · · ,xN}T and N equations ~F = {F1(~x) , F2(~x), · · · , FN(~x)}T , the iterative

methods attempt to calculate the independent variables which satisfy

~F(~x) = 0. (2.4)

A very naive attempt at solving Eqn. (2.4) is a simple guess-and-check. The independent variables

could be randomly sampled until they satisfy the residuals. However, there is no guarantee that this

will ever produce the correct solution variables. Rather than randomly choosing the independent

variables, the FPM and Newton’s method provide “updates” to the solution variables in a system-

atic way. The following sections provide details on how the solutions are updated with the specific

iterative methods.

2.3.1.1 Fixed Point Iteration Method

A set of independent variables~xP is a fixed point of the nonlinear equations ~G(~x) if it satisfies~xP =

~G(~xP). The FPM attempts to use the fixed point to update the independent variables. To do so, the

original nonlinear equations ~F(~x) = 0 are algebraically converted to~x = ~G(~x). If this manipulation

is not possible, then the FPM cannot be used to iteratively solve the nonlinear equations. Given an

initial guess of the independent variables~x0, the FPM algorithm is

For m = 0 to M_max:

Compute FP = G(x_m)

Compute residual = x_m - FP

If |residual| < tolerance: break

Update solutions x_{m+1} = FP
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Here, M_max represents a user-defined maximum iteration count and tolerance defines the con-

vergence criterion of the nonlinear solver.

The benefit of using the FPM is that it only requires the algebraic manipulation of the nonlinear

equations (if that manipulation is possible). It does not require the expensive calculation of a

Jacobian matrix (see the following section on Newton’s method). One drawback of the FPM is its

slow convergence. The convergence of the FPM will be demonstrated in Section 2.3.1.3.

2.3.1.2 Newton’s Method

Newton’s method is a robust iterative solver for systems of nonlinear equations [51]. Given an

initial guess of the independent variables~x0 and the “change” in solution variables ∆~x=~xm+1−~xm,

the Newton algorithm is

For m = 0 to M_max:

Compute residual vector "F"

Compute Jacobian matrix "J"

If |F| < tolerance: break

Solve the linear system J*dx = -F

Update solutions x^{m+1} += dx

Again, M_max represents a user specified maximum iteration count of the Newton algorithm and

tolerance is the value that defines convergence of the nonlinear solver. The variable dx in the

algorithm symbolizes the change in the independent variables ∆~x.

This algorithm is a standard of solving nonlinear systems of equations because of its versatility

and its quadratic convergence. However, Newton’s method is known to fail if the initial guess is

far from the solution. Source stepping is a common approach to alleviating convergence issues

of Newton’s method. For example, an applied bias of a device simulation is added incrementally

and solutions to Newton’s method are fed into the next solve. This method can also be applied to

time stepping algorithms which require reduction of the time step. Newton’s method requires the
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calculation of the Jacobian matrix in the linear system

∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xN

∂F2
∂x1

∂F2
∂x2

· · · ∂F2
∂xN

... . . . ...
∂FN
x1

∂FN
x2

· · · ∂FN
xN





∆x1

∆x2
...

∆xN


=−



F1(~x)

F2(~x)
...

FN(~x)


. (2.5)

Calculation of the Jacobian matrix and the solution of the linear system becomes expensive for

large DOF.

2.3.1.3 Comparison of FPM and Newton’s Method

A simple set of nonlinear equations is presented and solved with the FPM and Newton’s method.

This system of equations, with independent variables x and y, is

F1(x,y) = 2x2 + ey−7x = 0, (2.6)

F2(x,y) = 9y− ex = 0. (2.7)

The 2×2 Jacobian matrix required for Newton’s method is

Ji j(x,y) =

 4x−7 ey

−ex 9

 , (2.8)

and the FPM functions are

G1(x,y) = (2x2 + ey)/7, (2.9)

G2(x,y) = ex/9. (2.10)

The residuals F1(x,y) and F2(x,y) and their solution F1 = F2 = 0 are illustrated in Figure 2.9.

Figure 2.10 presents the norm of the residual
√

F2
1 +F2

2 at each iteration of the FPM and New-

ton’s method. The red and blue lines illustrate the norm of the residuals calculated at each iteration

of Newton’s method and the FPM, respectively. Newton’s method exhibits a quadratic rate of con-

vergence and the FPM a linear rate of convergence. However, to achieve quadratic convergence,
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Figure 2.9: A set of nonlinear equations and its solution. The first and second residuals are plotted
with red and black surfaces, respectively and the solution is illustrated with a blue circle.
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Figure 2.10: Residual vector norm calculated at each iteration of the FPM and Newton’s method.
Newton’s method exhibits a quadratic rate of convergence. The FPM demonstrates a linear rate of
convergence.

Newton’s method must calculate a Jacobian matrix and solve the linear system of equations at

each iteration. The FPM only requires the evaluation of the simple algebraic manipulation of the

nonlinear equations. Newton’s method is the preferred nonlinear solver for the discrete transport

equations in subsequent chapters due to its robustness and strong convergence.
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2.3.1.4 Other Iterative Methods

Solving the linear system of equations at each Newton iteration becomes burdensome with many

DOF. Moreover, calculation of the Jacobian matrix can be difficult or even impossible in some

cases. To overcome these obstacles, a class of nonlinear solvers called “quasi-Newton methods”

was developed as an alternative to Newton’s method. Among these is Broyden’s method [52],

which only requires the calculation of the Jacobian at the first iteration. Broyden’s method still

requires a linear solve at each iteration, however. Another important class of nonlinear solvers is

the Newton-Krylov method [51]. Rather than directly solving the linear system of equations at each

iteration with an LU factorization, these methods utilize Krylov subspace-based linear solvers such

as GMRES. The calculation of the Jacobian can also be removed altogether with the Jacobian-free

Newton-Krylov (JFNK) methods [53].

2.3.2 Mesh Convergence of Discretization Techniques

Discretizing systems of PDEs requires approximations of continuous derivatives in space and time.

The box integration method is used for the FKT equations (see Section 2.1). An important charac-

teristic of discretization techniques is the order of convergence of the methods. This is also known

as mesh convergence. Quantifying mesh convergence requires evaluating the error in the numer-

ical solutions on a series of meshes. The numerical solutions are compared to analytic solutions.

If no analytic solutions are available, mesh convergence is quantified by using a highly discretized

solution as the “exact” or reference solution.

Consider the 1D nonlinear first-order differential equation

dy
dx

+3y2 = 0, (2.11)

with the BC y(x = 0) = 1. The exact solution of the differential equation is

yexact(x) =
1

1+3x
. (2.12)
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Because the solution function is singular at x = −1/3, the domain is bounded to x > 0. This

differential equation is approximated with a backward difference

yi− yi−1
∆x

+3y2
i = 0 (2.13)

and a central difference
yi+1− yi−1

2∆x
+3y2

i = 0. (2.14)

Here, yi is the ith solution on a uniform 1D mesh with N nodes.

Eqns. (2.13) and (2.14) are solved with Newton’s method. The Jacobian matrices of both dis-

crete equations are illustrated in Figure 2.11. Both Jacobian matrices are calculated at the first

Newton iteration with all initial solution variables set to zero. The (0,0) element corresponds to

the Dirichlet BC residual y0− 1.0 = 0.0. This BC is scaled by 5 in these plots. Figure 2.11a

(a) (b)

Figure 2.11: The Jacobian matrices of Eqns. (2.13) and (2.14) on a 10 and 11 node mesh, respec-
tively. The last solution variable in (b) is governed by a backward difference approximation of
Eqn. (2.11).

presents the backward difference Jacobian matrix on a 10 node mesh and Figure 2.11b presents

the same for the central difference approximation on an 11 node mesh. The additional node and

solution variable added to the central difference equations is solved with a backward difference ap-

proximation. The maximum and minimum values of the backward difference Jacobian correspond

to the solution variables with the factor 1/∆x. Figure 2.12 illustrates the discrete y(x) solutions
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calculated with the central difference approximation at each Newton iteration. The mesh size is

N = 11. The analytic solution is drawn with a black dashed line.
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Figure 2.12: Discrete solutions of Eqn. (2.14) on an N = 11 node mesh. The solutions are plotted
at each Newton iteration. The analytic solution is drawn as a dashed black line.

To quantify the mesh convergence of solving Eqns. (2.13) and (2.14), the L2 error,

εk =

√
∑
i

(
yi− yi,exact

)2
√

∑
i

(
yi,exact

)2 , (2.15)

is calculated on a series of meshes. The order of convergence p is determined by the relation

εk <CN−p
k , (2.16)

where Nk is the number of mesh points (DOF) on the kth mesh. Figure 2.13 presents the evaluation

of Eqn. (2.15) on a series of meshes. The number of nodes in the series of meshes ranges from

102 to 105. Solutions are calculated from x = 0 to x = 1. The Dirichlet BC is y0 = 0. Errors

corresponding to the backward and central difference approximations are drawn in red and blue,

respectively. It is clear that the backward difference and central difference approximations are first-

and second-order discretization techniques. Second-order convergence of the central difference

approximation is due to first-order error cancellation on the uniform mesh.
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Figure 2.13: The error of the numerical solution of Eqn. (2.11) using a backward difference approx-
imation (red line) and central difference approximation (blue line) of the spatial derivative. The
backward difference approximation exhibits first-order mesh convergence. The central difference
exhibits second-order mesh convergence.

2.3.3 Stability of Discrete Equations

Stability theory is a mathematical framework for analyzing the stability of nonlinear PDE solutions.

The theory is prominent in systems theory and control engineering and is applied to the numerical

solution of the nonlinear FKT equations. An autonomous system dx
dt = f (x) has an equilibrium

point xe where f (xe) = 0. The crux of stability theory [54] is as follows. The equilibrium point is

• stable if, for each perturbation of the equilibrium point, the time-integrated solutions |x(t)|

are bounded by a constant δ > 0.

• unstable if it is not stable.

• asymptotically stable if it is stable and the perturbation returns to the equilibrium point as

t→ ∞.

To elaborate on stability analysis of nonlinear equations, consider the autonomous system

dx
dt
−10x+5xy = 0, (2.17)

dy
dt
−3y− xy+3y2 = 0. (2.18)

22



This nonlinear system has equilibrium points at (x,y) = (0,0), (0,1), and (3,2). Figure 2.14

4
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2

1

0

-1
-1 0 1 2 3 4 5

x

y

Equilibria

Figure 2.14: The direction field of Eqns. (2.17) and (2.18) and four trajectories with different
initial conditions. The initial condition of each trajectory is illustrated with a solid circle.

presents the direction field of Eqns. (2.17) and (2.18). The equilibria are plotted at (x,y) = (0,0),

(0,1), and (3,2). The direction field is a vector field with components (dx/dt,dy/dt). The solid

lines in Figure 2.14 represent four trajectories of Eqns. (2.17) and (2.18) — the time evolution of

the integrated solutions (x(t),y(t)). Each solid line starts at a different initial condition. It is clear

from Figure 2.14 that the (0,0) and (0,1) equilibria are unstable. All trajectories diverge away

from these points. The (3,2) equilibrium point is asymptotically stable.

Direction fields and trajectory plots provide intuitive results for 2×2 systems of nonlinear equa-

tions. These tools do not apply to large systems of equations, however. Rather, the time evolution

of a perturbation from an equilibrium point is analyzed by calculating

∆H(t) =
∣∣H(t)−Hequilib.

∣∣ . (2.19)

Here, Hequilib. represents the equilibrium point of the N-dimensional system of nonlinear equa-

tions. H(t) represents the time evolution of the integrated equations. Figure 2.15 presents the

calculation of Eqn. (2.19) for each trajectory shown in Figure 2.14. All trajectories are compared
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Figure 2.15: Calculation of Eqn. (2.19) for each perturbation presented in Figure 2.14. The five
colors correspond to the five trajectories with different initial conditions. The black, green, and
yellow lines indicate that the system of equations is not stable.

to the Hequilib. = (3,2) equilibrium point. The perturbations drawn in red and blue converge to the

(3,2) equilibrium. The black, green, and yellow perturbations, however, diverge from the equi-

librium points. This analysis provides quantitative stability results for large systems of nonlinear

equations. The system of equations is stable if ∆H(t)→ 0 as t→ ∞ for all perturbations.

2.4 RF Amplifiers

RF amplifier design relies heavily on accurate characterization and modeling of transistors. The

transistor model must be valid over many operating conditions. For example, a circuit designer may

require a valid model for a wide range of biases, a broad frequency range, several input powers, and

various loading conditions. In what follows, the pertinent figures of merit (FOMs) for PA design

are discussed. Linear two-port models and their uses in PA design are described in Section 2.4.2

and a discussion of large-signal PAs is provided in Section 2.4.3.
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2.4.1 Amplifier Figures of Merit

The important FOMs for RF PA design include power gain, output power, the 1 dB gain compres-

sion point, PAE, and many others [1, 55]. The amplifiers are typically biased for peak transcon-

ductance, given by the maximum of

gm =
∂ ID

∂VGS
. (2.20)

Here, VGS is the gate-source bias and ID is the steady-state drain current. The transconductance is

calculated with a constant drain-source bias VDS. Power gain of amplifiers is defined as the ratio

of the output power to the input power. Gain is typically categorized as power gain G, available

power gain GA, and transducer power gain GT . The definitions of the gain metrics are

G =
PL
Pin

. (2.21)

GA =
Pavn
Pavs

, (2.22)

GT =
PL

Pavs
, (2.23)

Here, Pin is the power delivered to the network, Pavs is the power available from the source, Pavn

is the power available from the network, and PL is the power delivered to the load. Each gain is

equal to the maximized gain, GT = GA = GP = Gmax, if the input and output are both conjugate

matched to the device.

The output power is defined as the power delivered to the load PL. For an ideal amplifier,

the output power will increase linearly with respect to the input power. The output power of real

transistors, however, will begin to saturate at high input power. This effect is quantified with the

1 dB gain compression point which is the point at which the gain decreases by 1 dB.

One of the most important FOMs in PA design is PAE. The PA stage consumes the most DC

power in many wireless and Tx/Rx module applications and therefore it is critical to maximize

the PAE for the optimal PA design. The PAE is defined as the ratio of the output to input power

reference to the DC power level, or

PAE =
PL−Pin

PDC
. (2.24)
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This work will focus on the output power, power gain, and PAE for PA design purposes. There

are many other important RF amplifier FOMs, however. Included is bandwidth, noise figure,

input and output voltage standing wave ratio (VSWR), adjacent channel power ratio (ACPR), and

stability [56, 1, 55].

2.4.2 Linear Two-Port Models

Linear two-port models are the standard representation of small-signal RF transistor responses.

Figure 2.16 presents a general two-port model. Subscript 1 corresponds to the first port with

voltage V1 and current I1. Here, the incident and scattered waves at both ports are
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Figure 2.16: A linear two-port model of a DUT with input and output matching networks. This
model is for a single fundamental frequency.

A1,2 =
V1,2 +Z0I1,2

2
, (2.25)

B1,2 =
V1,2−Z0I1,2

2
. (2.26)

The reflection coefficient looking into the generator is ΓS and Γin signifies the reflection coefficient

looking into port 1. The same notation is used at port 2. The reflection coefficients looking into

the generator and load are

ΓS =
ZS−Z0
ZS +Z0

, (2.27)

ΓL =
ZL−Z0
ZL +Z0

. (2.28)

The reference impedance is typically Z0 = 50 Ω.
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Scattering parameters (S-Parameters) describe the linear relation between the incoming waves

A and outgoing waves B in the two-port model. The definition of S-Parameters is S11 S12

S21 S22


 A1

A2

=

 B1

B2

 , (2.29)

where each coefficient is given by

S11 =
B1
A1

∣∣∣∣
A2=0

, (2.30)

S21 =
B2
A1

∣∣∣∣
A2=0

, (2.31)

S12 =
B1
A2

∣∣∣∣
A1=0

, (2.32)

S22 =
B2
A2

∣∣∣∣
A1=0

. (2.33)

The reflection coefficients looking into the input and output of the device are calculated from the

S-Parameters

Γin = S11 +
S12S21ΓL
1−S22ΓL

, (2.34)

Γout = S22 +
S12S21ΓS
1−S11ΓS

, (2.35)

The input and output powers can now be defined in terms of the reflection coefficients and the

S-Parameters. The power delivered to the network is

Pin =
|VS|2

8Z0

|1−ΓS|2

|1−ΓSΓin|2
(1−|Γin|)2 , (2.36)

the power available from the source is

Pavs =
|VS|2

8Z0

|1−ΓS|2(
1−|ΓS|2

) (2.37)

the power available from the network is

Pavn =
|VS|2

8Z0

|S21|2 |1−ΓS|2

|1−S11ΓS|2
(

1−|Γout |2
) (2.38)

27



and the power delivered to the load is

PL =
|VS|2

8Z0

|S21|2
(

1−|ΓL|2
)
|1−ΓS|2

|1−S22ΓL|2 |1−ΓSΓin|2
. (2.39)

The small-signal gain can be calculated directly as

G =
PL
Pin

=
|S21|2

(
1−|ΓL|2

)
(

1−|Γin|2
)
|1−S22ΓL|2

, (2.40)

as well as the available power gain

GA =
Pavn
Pavs

=
|S21|2

(
1−|ΓS|2

)
|1−S11ΓS|2

(
1−|Γout |2

) , (2.41)

and the transducer gain

GT =
PL

Pavs
=
|S21|2

(
1−|ΓS|2

)(
1−|ΓL|2

)
|1−ΓSΓin|2 |1−S22ΓL|2

(2.42)

S-Parameters can also be converted to other representations of the linear two-port model, in-

cluding the Z-, Y -, h-, and T - Parameters. For example, the small-signal current gain is one of the

h-parameters

h21 =
−2S21

(1−S11)(1+S22)+S12S21
. (2.43)

The impedance and admittance parameters are also useful for de-embedding and circuit model

extraction purposes.

S-Parameter simulation of a GaAs FET circuit model in ADS is presented to illustrate the use

of small-signal circuit models. The layout of the S-Parameter simulation in ADS is shown in

Figure 2.17. The gate to source bias is set by the parameter “Vlow” and the drain to source bias

is set by “Vhigh”. The simulation is over the 1–3 GHz frequency range and with input and output

port impedances of 25 Ω. Figure 2.18 presents the S11 and S22 S-Parameters, the input and output

reflection coefficients Γin and Γout , and the three power gains G, GA, and GT . The input and output

reflection coefficients differ from S11 and S22 because ΓS and ΓL are nonzero. Furthermore, the

three power gains produce different metrics over the frequency range.
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Figure 2.17: The ADS layout of S-Parameter simulation of a GaAs FET circuit model.
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Figure 2.18: S-Parameters, reflection coefficients, and power gains of the GaAs FET circuit model
simulated in ADS. The reflection coefficients on the Smith chart are the dotted lines. The ADS
variables GammaIn and GammaOut and the power gain variables G_dB, GA_dB, and GT_dB
correspond to Eqns. (2.34), (2.35), (2.40), (2.41), and (2.42), respectively.

2.4.3 Large Signal Analysis

The linear two-port models of the previous section do not accurately describe the nonlinear behav-

ior of transistors. Because the models are linear, they do not depend on the input power level or the
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loading conditions of the device. For power levels comparable to or above the 1 dB compression

point, however, the measured S-Parameters will depend on input power level and loading condi-

tions of the device. Small-signal S-Parameters can therefore not be used for large-signal simulation
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Figure 2.19: A nonlinear two-port model of a DUT with matching networks.

of devices.

Figure 2.19 illustrates a generalization of the two-port model to include the K harmonic re-

sponse of a nonlinear device. In this figure, the input voltages and currents are designated as V1k

and I1k, where the subscript 1 refers to port 1 and the subscript k is the index of the K harmonics.

The fundamental frequency is k = 1 and the “DC” term is k = 0. Port 2 uses the same notation.

Because transistors are inherently nonlinear, a large-signal applied to port 1 will generate multiple

harmonics at port 2. This is the inter-modulation effect.

The power definitions for the nonlinear two-port model in Figure 2.19 are different than those

for the linear analogue. Reflection coefficients ΓS, Γin, Γout , and ΓL are evaluated at the large-

signal fundamental frequency (k = 1). The input power, power available from the source, and

power delivered to the load are

Pin =
1
2

Re
{

V11I∗11
}
, (2.44)

Pavs =
|VS|2

8RS
, (2.45)

PL =
1
2

Re
{

V21I∗21
}
, (2.46)
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respectively. The factor RS in the large-signal Pavs definition is the real component RS = Re{ZS}

of the source impedance [56]. VS is a large-signal tone at the fundamental frequency. The power

gain and PAE are

G =
PL
Pin

, (2.47)

PAE =
PL−Pin

PDC
, (2.48)

respectively and the DC power dissipation is

PDC =V10I10. (2.49)

An HB simulation layout of the GaAs FET model in ADS is illustrated in Figure 2.20. The

fundamental frequency of the simulation is 1 GHz and the power available from the source Pavs

is swept from 0 dBm to 25 dBm. Each FOM is plotted over the Pavs sweep in Figure 2.21. The

x-axis of the plot is the input power Pin, in dBm, resulting from the applied Pavs. Here, the output

power Pout is the solid black line, the power gain G is the solid red line, the transducer gain GT is

a dashed pink line, and the PAE is the solid blue line. The output power linearly responds to the

input power at small-signal levels. However, the transistor begins to exhibit strong nonlinearity at

the 1 dB compression point. This is approximately Pin = 10 dBm input power.
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Figure 2.20: The layout of the HB simulation of a GaAs FET circuit model in ADS.

Characterizing large-signal responses of transistors is most commonly accomplished by plot-

ting constant FOM contours on a Smith chart as a function of the load reflection coefficient, i.e.,
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load-pull (LP). The FOM is plotted at the fundamental frequency. LP data is readily measured

using systems ranging from computer-controlled electro-mechanical stub tuners to modern active
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Figure 2.23: LP simulation of the GaAs FET circuit model in ADS at a center frequency of (left)
0.5 GHz and (right) 1 GHz. The red lines are the PAE contours and the blue lines are the output
power contours. The PAE and output power FOMs are maximized with different load impedances.

LP test benches [16]. PA designers create suitable matching networks for the impedance design

target synthesized from the LP data [57].

ADS offers a suite of simulation examples in its DesignGuide to help their users. Included

in the kit is an example of LP simulation of the GaAs FET nonlinear circuit model. Figure 2.22

illustrates the GaAs FET LP simulation in ADS. This layout is similar to Figure 2.20. In the LP

simulation, the “S1P_Eqn” component presents a series of reflection coefficients to the output port

of the transistor. The HB simulation is repeated for each load impedance to calculate the output

power and PAE. Finally, contours of each FOM are plotted on the Smith chart in Figure 2.23.

The LP contours in Figure 2.23 are calculated at a fundamental frequency of (left) 0.5 GHz

and (right) 1 GHz. Both LP simulations were driven by 22 dBm power available from the source.

Clearly, the load impedance which maximizes the power delivered to the load does not maximize

the PAE at 0.5 GHz. The simulations at 1 GHz also exhibit the same effect. Furthermore, the op-

timal impedances are different at each fundamental frequency. This simple example demonstrates

some of the difficulties of the PA design process.
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2.5 X-Parameters

The PHD behavioral model is reviewed and discussed. This model was later trademarked

under Agilent Technologies which is now Keysight Technologies [26]. XP modeling is a black-box

frequency-domain technique and is the mathematically correct super set of S-Parameters [25]. The

PHD model was first presented in [58] and later derived in [24]. The XP (PHD) model was later

used extensively for black-box modeling of nonlinear devices [59, 60, 27, 61]. Using the notation

in Figure 2.19, the XP model is now presented and discussed. A general nonlinear model describes

the scattered waves at all ports in relation to the incident waves at all ports. Because the model is

nonlinear, however, each scattered wave harmonic depends on all incident wave harmonics at each

port. To simplify the model while retaining important features, the nonlinear function is linearized

around the large-signal tone A11. The general form of the XP model is

Bpm = ∑
qn

Spq,mnPm−nAqn +∑
qn

Tpq,mnPm+nA∗qn (2.50)

with Tp1,m1 = 0 ∀(q,n). The incident and scattered waves are calculated from the port voltages

and currents by

Aqn =
Vqn +Z0Iqn

2
, (2.51)

Bpm =
Vpm−Z0Ipm

2
. (2.52)

Here, the subscript q refers to the port number and n the harmonic index. For two-port nonlinear

models, q = 1,2. The terms Spq,mn and Tpq,mn are the coefficients of the XP model and P =

phase{A11} is the phase of the large-signal tone.

Calculating the coefficients of the XP model is similar to calculating S-Parameters. For the S-

Parameters, two simulations are required to calculate Eqns. (2.30) – (2.33). Because the scattered

waves Bpm depend on both the incident waves Aqn and the complex conjugate of the incident waves

Aqn, the XP model requires (4K− 1) simulations/measurements to calculate the 2K× (4K−1)

coefficients, Spq,mn and Tpq,mn, of a two-port model. This is demonstrated through the following

examples.
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2.5.1 Two ports, one harmonic

The XP model with q = 1,2 ports and k = 1 harmonics is

B11 = S11,11A11 +S12,11A21 +T12,11P2A∗21, (2.53)

B21 = S21,11A11 +S22,11A21 +T22,11P2A∗21. (2.54)

There are two incident waves and scattered waves at each port in this model. The incident wave

A11 is the large-signal tone and A21 is a small-signal tone at the output port. This notation is used

throughout the rest of this work.

If the large-signal tone A11 is the only non-zero incident wave, i.e., A21 = 0, then the S11,11

and S21,11 coefficients are trivially calculated. However, the remaining four XP coefficients are

not calculated with a non-zero A21 and A11 = 0. The XP coefficients are only valid for one large-

signal input A11. Therefore, this term must remain constant when calculating the coefficients of

the model.

The four remaining coefficients are calculated with two more simulations/measurements. Each

simulation is driven by the large-signal tone A11 and a small-signal tone A21. The A21 incident

wave of the second simulation must be 90◦ out of phase with the first simulation in order to cal-

culate the remaining XP coefficients. The two simulations yield four equations. These are Eqns.

(2.53) and (2.54) with two orthogonal incident wave sets. The remaining XP coefficients are cal-

culated by solving the 4×4 linear system outlined in the following.

Calculating the six XP coefficients of a two-port, one-harmonic model is outlined with the

following. The notation ai represents a set of incident waves corresponding to a single simula-

tion/measurement of the nonlinear device. For the rest of this work, the large-signal tone is a

cosine. This simplifies the model with P = 1. The notation AC
qn and AS

qn is used to represent two

out of phase incident waves. The superscript C represents a cosine wave and the superscript S a

sine wave. Finally, the scattered waves calculated with the simulation/measurement ai are Bqn(ai).

With these definitions, the XPs are calculated by:

1. Apply a0 = {A11,A0
21 = 0}
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• Simulate/measure the {B11(a0), B21(a0)} scattered waves

• Compute S11,11 = B11(a0)/A11 and S21,11 = B21(a0)/A11.

2. Apply a1 = {A11,AC
21} and a2 = {A11,AS

21}

• Simulate/measure the {B11(a1), B21(a1)} and {B11(a2), B21(a2)} scattered waves

• Compute S12,11, S22,11, T12,11, T22,11 by solving the following linear system

AC
21 0

(
AC
)∗

21
0

0 AC
21 0

(
AC
)∗

21

AS
21 0

(
AS
)∗

21
0

0 AS
21 0

(
AS
)∗

21





S12,11

S22,11

T12,11

T22,11


=



B11(a1)−S11,11A11

B21(a1)−S21,11A11

B11(a2)−S11,11A11

B21(a2)−S21,11A11


(2.55)

2.5.2 Two ports, two harmonics

The general algorithm for calculating the coefficients of the XP model becomes more apparent

with a two-port, two-harmonic example. This system of equations is

B11 = S11,11A11 +S12,11A21 +S11,12A12 +S12,12A22 +T12,11A∗21 +T11,12A∗12 +T12,12A∗22

B12 = S11,21A11 +S12,21A21 +S11,22A12 +S12,22A22 +T12,21A∗21 +T11,22A∗12 +T12,22A∗22

B21 = S21,11A11 +S22,11A21 +S21,12A12 +S22,12A22 +T22,11A∗21 +T21,12A∗12 +T22,12A∗22

B22 = S21,21A11 +S22,21A21 +S21,22A12 +S22,22A22 +T22,21A∗21 +T21,22A∗12 +T22,22A∗22

Computing the 28 XP coefficients of the two-port, two-harmonic model is described in the follow-

ing. Again, the notation ai = {A11,A12,A21,A22} represents a single simulation/measurement of

the nonlinear device. The coefficients are calculated by:

1. Apply a0 = {A11, 0, 0, 0}

• Simulate/measure the {B11(a0), B12(a0), B21(a0), B22(a0)} scattered waves
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• Compute S11,11 = B11(a0)/A11, S11,21 = B12(a0)/A11, S21,11 = B21(a0)/A11, and

S21,21 = B22(a0)/A11

2. Apply a1 = {A11, AC
12, 0, 0} and a2 = {A11, AS

12, 0, 0}

• Simulate/measure the {B11(a1), B12(a1), B21(a1), B22(a1)} and {B11(a2), B12(a2),

B21(a2), B22(a2)} scattered waves

• Compute S11,12, S11,22, S21,12, S21,22, T11,12, T11,22, T21,12, T21,22 by solving the

following linear system



AC
12 0 0 0 (AC

12)
∗ 0 0 0

0 AC
12 0 0 0 (AC

12)
∗ 0 0

0 0 AC
12 0 0 0 (AC

12)
∗ 0

0 0 0 AC
12 0 0 0 (AC

12)
∗

AS
12 0 0 0 (AS

12)
∗ 0 0 0

0 AS
12 0 0 0 (AS

12)
∗ 0 0

0 0 AS
12 0 0 0 (AS

12)
∗ 0

0 0 0 AS
12 0 0 0 (AS

12)
∗





S11,12

S11,22

S21,12

S21,22

T11,12

T11,22

T21,12

T21,22



=



B11(a1)−B11(a0)

B12(a1)−B12(a0)

B21(a1)−B21(a0)

B22(a1)−B22(a0)

B11(a2)−B11(a0)

B12(a2)−B12(a0)

B21(a2)−B21(a0)

B22(a2)−B22(a0)



(2.56)

3. Apply a3 = {A11, 0, AC
21,0} and a4 = {A11,0,AS

21,0}
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• Simulate/measure the {B11(a3), B12(a3), B21(a3), B22(a3)} and {B11(a4), B12(a4),

B21(a4), B22(a4)} scattered waves

• Compute S12,11, S12,21, S22,11, S22,21, T12,11, T12,21, T22,11, T22,21 by solving the

following linear system



AC
21 0 0 0 (AC

21)
∗ 0 0 0

0 AC
21 0 0 0 (AC

21)
∗ 0 0

0 0 AC
21 0 0 0 (AC

21)
∗ 0

0 0 0 AC
21 0 0 0 (AC

21)
∗

AS
21 0 0 0 (AS

21)
∗ 0 0 0

0 AS
21 0 0 0 (AS

21)
∗ 0 0

0 0 AS
21 0 0 0 (AS

21)
∗ 0

0 0 0 AS
21 0 0 0 (AS

21)
∗





S12,11

S12,21

S22,11

S22,21

T12,11

T12,21

T22,11

T22,21



=



B11(a3)−B11(a0)

B12(a3)−B12(a0)

B21(a3)−B21(a0)

B22(a3)−B22(a0)

B11(a4)−B11(a0)

B12(a4)−B12(a0)

B21(a4)−B21(a0)

B22(a4)−B22(a0)



(2.57)

4. Apply a5 = {A11, 0, 0, AC
22} and a6 = {A11, 0, 0, AS

22}

• Simulate/measure the {B11(a5), B12(a5), B21(a5), B22(a5)} and {B11(a6), B12(a6),

B21(a6), B22(a6)} scattered waves

• Compute S12,12, S12,22, S22,12, S22,22, T12,12, T12,22, T22,12, T22,22 by solving the

following linear system
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AC
22 0 0 0 (AC

22)
∗ 0 0 0

0 AC
22 0 0 0 (AC

22)
∗ 0 0

0 0 AC
22 0 0 0 (AC

22)
∗ 0

0 0 0 AC
22 0 0 0 (AC

22)
∗

AS
22 0 0 0 (AS

22)
∗ 0 0 0

0 AS
22 0 0 0 (AS

22)
∗ 0 0

0 0 AS
22 0 0 0 (AS

22)
∗ 0

0 0 0 AS
22 0 0 0 (AS

22)
∗





S12,12

S12,22

S22,12

S22,22

T12,12

T12,22

T22,12

T22,22



=



B11(a5)−B11(a0)

B12(a5)−B12(a0)

B21(a5)−B21(a0)

B22(a5)−B22(a0)

B11(a6)−B11(a0)

B12(a6)−B12(a0)

B21(a6)−B21(a0)

B22(a6)−B22(a0)



(2.58)

2.5.3 Two ports, K harmonics

The system of equations of a two-port, K-harmonic XP model is

B11 = S11,11A11 + · · ·+S12,1KA2K +T12,11A∗21 + · · ·+T12,1KA∗2K

...

B1K = S11,K1A11 + · · ·+S12,KKA2K +T12,K1A∗21 + · · ·+T12,KKA∗2K

B21 = S21,11A11 + · · ·+S22,1KA2K +T22,11A∗21 + · · ·+T22,1KA∗2K

...

B2K = S21,K1A11 + · · ·+S22,KKA2K +T22,K1A∗21 + · · ·+T22,KKA∗2K
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The 2K× (4K−1) coefficients of the XP model are calculated by

1. Apply a0 = {A11, 0, · · · , 0}

• Simulate/measure the Bpm(a0) = {B11(a0), · · · , B1K(a0), B21(a0), · · · , B2K(a0)} scat-

tered waves

• Compute S11,11, · · · , S11,K1, S21,11, · · · , S21,K1:

S11,11 = B11(a0)/A11

...

S11,K1 = B1K(a0)/A11

S21,11 = B21(a0)/A11

...

S21,K1 = B2K(a0)/A11

2. Apply aC
i j = {A11, 0, · · · , AC

i j, · · · , 0} and aS
i j = {A11, 0, · · · , AS

i j, · · · , 0}

• Simulate/measure the Bpm(aC
i j) = {B11(aC

i j), · · · , B1K(aC
i j), B21(aC

i j), · · · , B2K(aC
i j)}

and Bpm(aS
i j) = {B11(aS

i j), · · · , B1K(aS
i j), B21(aS

i j), · · · , B2K(aS
i j)} scattered waves

• Compute the Spi,m j = {S1i1 j, · · · , S1i,K j, S2i,1 j, · · · , S2i,K j} and Tpi,m j = {1i,1 j, · · · ,

T1i,K j, T2i,1 j, · · · , T2i,K j} coefficients by solving the following linear system DC
i j (DC

i j)
∗

DS
i j (DS

i j)
∗


 Spi,m j

Tpi,m j

=

 Bpm(aC
i j)−Bpm(a0)

Bpm(aS
i j)−Bpm(a0)

 (2.59)

where DC
i j =

(
AC

i j

)
I, (DC

i j)
∗ =

(
AC

i j

)∗
I, and I is the 2×K identity matrix.

3. Repeat # 2 for 2K−1 simulations to calculate all 2K× (4K−1) XP coefficients.
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2.6 Load-Dependent X-Parameters

The XP model of the previous section can be used to calculate the response of a nonlinear

device to the inputs Apk. The XP coefficients are valid for a single large-signal tone A11 and

any small-signal perturbations Apk, pk 6= 11. The XP model can be made load-dependent by the

substitution

A2k = ΓL,kB2k (2.60)

Here, port 2 is the output port and ΓL,k is the reflection coefficient presented to the output port. The

load reflection coefficient is specified for each harmonic. The reflection coefficient substitution and

its consequences on calculating the output of the nonlinear model is discussed with the following

examples. Again, the large-signal tone A11 is a cosine and the phase term is P = 1.

2.6.1 Two ports, one harmonic

The system of equations of a two-port, one-harmonic XP model with a load reflection coefficient

is

B11 = S11,11A11 +S12,11A21 +T12,11A∗21

B21 = S21,11A11 +S22,11A21 +T22,11A∗21

A21 = ΓL,1B21

The XP coefficients are computed with the algorithm described in the previous section. The reflec-

tion coefficient substitution yields

B11−S12,11Γ1B21 = S11,11A11 +T12,11A∗21,

B21−S22,11Γ1B21 = S21,11A11 +T22,11A∗21.

The scattered waves can no longer be calculated with a simple summation in Eqn. (2.50). The XP

coefficients are calculated by solving the linear system 1 −S12,11Γ1

0 1−S12,11Γ1


 B11

B21

=

 S11,11A11 +T12,11A∗21

S21,11A11 +T22,11A∗21

 . (2.61)
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2.6.2 Two ports, K harmonics

The load-dependent XP model is generalized to two-ports and K harmonics. The system of equa-

tions for this XP model is

B11 = S11,11A11 + · · ·+S12,1KA2K +T12,11A∗21 + · · ·+T12,1KA∗2K

...

B1K = S11,K1A11 + · · ·+S12,KKA2K +T12,K1A∗21 + · · ·+T12,KKA∗2K

B21 = S21,11A11 + · · ·+S22,1KA2K +T22,11A∗21 + · · ·+T22,1KA∗2K

...

B2K = S21,K1A11 + · · ·+S22,KKA2K +T22,K1A∗21 + · · ·+T22,KKA∗2K

A21 = Γ1B21

...

A2K = ΓKB2K

The reflection coefficient substitution yields

B11−S12,11Γ1B21 · · ·−S12,1KΓKB2K = S11,11A11 + · · ·+S11,1KA1K + · · ·+T12,1KA∗2K

...

B1K−S12,K1Γ1B21 · · ·−S12,KKΓKB2K = S11,K1A11 + · · ·+S11,KKA1K + · · ·+T12,KKA∗2K

B21−S22,11Γ1B21 · · ·−S22,1KΓKB2K = S21,11A11 + · · ·+S21,1KA1K + · · ·+T22,1KA∗2K

...

B2K−S22,K1Γ1B21 · · ·−S22,KKΓKB2K = S21,K1A11 + · · ·+S21,KKA1K + · · ·+T22,KKA∗2K

The scattered wave outputs of the nonlinear device are calculated by solving the general linear

system  I −S1

0 I−S2


 B1i

B2i

=

 S11,i jA1 j +T11,i jA∗1 j +T12,i jA∗2 j

S21,i jA1 j +T21,i jA∗2 j +T22,i jA∗2 j

 (2.62)
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Here, the ith rows of the K×K matrices S1 and S2 are
[
S12,i1Γ1 , · · · , S12,iKΓK

]
and

[
S22,i1Γ1 ,

· · · , S22,iKΓK
]
, respectively. The matrix I is the K×K identity matrix.
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CHAPTER 3

DELAUNAY-VORONOI SURFACE INTEGRATION

3.1 Introduction

DVSI is a computational electromagnetics (CEM) method that operates on unstructured meshes

and is amenable to moving charges. The latter is paramount for any electronic device solver. This

method has been successfully utilized to simulate semiconductor devices with full-wave electro-

magnetics coupled simultaneously to a novel Boltzmann equation solver for the charge transport

including a full band-structure description for the electronic states [62]. Because the focus of that

paper was the simulation of electronic devices and comparisons with other charge transport meth-

ods, complete detail of the EM discretization method was not included. Therefore, the purpose of

this chapter is to present the numerical method of DVSI in sufficient detail to allow for independent

implementations and to ensure the reproducibility of key results in the emerging literature.

In order to introduce DVSI in a CEM context, consider the two dominant numerical ap-

proaches: integral equation (IE) solvers and differential equation (DE) solvers. Both have a com-

mon goal of computing EM scalar and/or vector fields over a domain of interest. CEM methods

can further be decomposed into two sub-categories: frequency-domain (FD) and TD methods.

Because the ultimate goal is to develop a CEM method which couples to nonlinear electronic

transport which is inherently in the time-domain, frequency domain methods are not considered in

this discussion.

IE methods seek to solve an EM problem in which the unknown quantity of interest lies within

an integral. These unknown quantities are typically surface currents on the boundaries of the com-

putational domain. Electric and magnetic fields are computed through scalar and vector potentials.

An IE is most often derived from Maxwell’s equations using the Green’s function approach [63].

The crux of the approach is deriving a Green’s function which satisfies the linear Helmholtz equa-

tion subject to point sources. IEs are then built upon the principle of linear superposition. Although
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this method is a staple of antenna design and other radiation (free-space) applications, the Green’s

function method cannot be applied when the point source is inherently nonlinear and is very limited

when the dielectric medium is inhomogeneous. Other methods for deriving IEs from Maxwell’s

equations may produce viable options for coupling to electronic transport, but they are unknown

to the author. For a more detailed discussion of IEs, please see [63] and references therein.

TD-DE methods are much better suited for representing and solving full-wave EM phenomena

in electronic devices. Unlike IE methods, DE methods seek EM solutions directly from Maxwell’s

equations in differential form. The two most common TD-DE categories can be classified as un-

structured and structured grid methods. Even though these two methods are both DE solvers,

they differ greatly in their computational approach and sophistication. Unstructured grid (mesh)

methods first decompose the computational domain into a collection of elements which are typ-

ically tetrahedra. The governing equations are then written in a form suitable for discretization.

This amounts to writing Maxwell’s equations in curl-curl form for the well known Finite Element

Method Time Domain (FEMTD) [63] or adding flux terms to Maxwell’s equations for the Discon-

tinuous Galerkin Time Domain (DGTD) method [64]. Both of these methods seek a variational

solution by approximating the quantities of interest with collections of basis functions which are

carefully tailored to satisfy the governing equations and BCs, e.g., vector finite elements. When

coupling these discretization methods to charge transport, it is not clear how to construct a basis

set which approximates an equation with exponentially nonlinear dependence on the quantity of

interest, such as the exponential relationship between carrier density in a semiconductor and the

potential.

A separate discretization scheme, called the Finite Volume Method (FVM) [65], is a DGTD

method with zeroth order basis functions. This method does not require a basis set to describe

the solution variables and therefore does not have equivalent limitations with regard to nonlinear

dependencies. However, special care must be taken when deriving the flux terms. An exhaustive

search has yielded no viable options for representing full-wave EM in an electronic device simula-

tor using DGTD, although attempts to construct the necessary flux terms are undoubtedly an active
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area of research in the DG numerical methods community.

The other class of the DE methods is a structured grid method and is most commonly referred

to as Finite Difference Time Domain (FDTD). It does not require a basis set since all partial

derivatives are approximated with Taylor Expansions [63]. This makes FDTD a viable method

to couple full-wave EM to nonlinear charge transport and implementations have been reported

in the literature [66]. One drawback to using FDTD, however, is that the method represents the

spatial computational domain with structured grids. Even if these structured grids are spaced non-

uniformly, it still becomes burdensome when representing the complicated features in modern

electronic devices, e.g., wrap-around gates or recessed Ohmic contacts.

The DVSI method in this work approximates Maxwell’s equations in integral form with piece-

wise constant vector projections and tessellates the computational domain with an unstructured,

staggered mesh. The fact that DVSI tessellates the computational domain with an unstructured

mesh is what makes DVSI well suited for these purposes. Parts of DVSI can be seen in the lit-

erature, including the well known Box Integration Method [30] in the computational electronics

community and the Finite Integration Method (FIT) [67] and the Co-Volume Method [42] which

are used for linear EM applications. It is worth mentioning that in certain limits of geometry, i.e.,

rectangular mesh elements, the DVSI method collapses exactly to a traditional Yee cell, which is

the classical FDTD co-volume solution technique for this class of problems [68, 69]. DVSI is a

fully general version for arbitrary geometries and completely unstructured discretization similar to

an unstructured form of FDTD [70]. In regards to an unstructured FDTD formulation, DVSI is

preferred for electronic device simulation due to its amenability to realistic device BCs. This will

be discussed in subsequent sections.

In what follows, a brief discussion of the governing equations and the staggered meshes is

presented in Section 3.2. Then, complete discussions of the discretization of Maxwell’s rotational

equations and Poisson’s equation are presented in Sections 3.3 and 3.4, respectively. Each section

contains benchmark tests that demonstrate and validate the numerical methods through physically

relevant and quantitative test cases. Section 3.5 combines these methods and introduces the nec-
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essary additional information that results in a numerical framework for representing full-wave EM

for the target engineering application of electronic device simulation. This section also includes a

benchmark test to validate the complete discretization of the relevant Maxwell’s equations.

3.2 Physical Equations and Their Geometric Representation

The relevant physical quantities needed to simulate full-wave EM for the purposes of electronic

device simulation are the electric field~E(~r, t), the magnetic field ~H(~r, t), and the electric potential

Φ(~r, t). Total electric fields are separated into rotational and irrotational components, i.e., their

Helmholtz decomposition ~E(~r, t) =~Erot (~r, t)+~Eirr (~r, t). The Coulomb Gauge, ∇ ·~A = 0, is used

throughout and is mathematically convenient. The technique is started by expressing Maxwell’s

equations in their standard integral forms

∫∫
S

n̂ ·
[

ε
∂

∂ t

(
~Erot (~r, t)−∇Φ(~r, t)

)
+~J(~r, t)

]
dS =

∮
Γ

~H(~r, t) ·d~̀, (3.1)

∫∫
S

n̂ ·µ ∂~H(~r, t)
∂ t

dS =−
∮
Γ

~Erot (~r, t) ·d~̀, (3.2)

−
∫∫
S

n̂ · ε∇Φ(~r, t)dS =
∫∫∫
V

ρ (~r, t)dV. (3.3)

As alluded to in the introduction, the computational domain is represented with staggered un-

structured meshes known as the Delaunay mesh and its dual Voronoi diagram. Figure 3.1 illustrates

a two-dimensional example of the staggered meshes. The left highlights the Delaunay triangles in

blue and the right highlights the Voronoi polygons in red. In three dimensions, the Delaunay mesh

is comprised of finite edges, triangles, and tetrahedra which are called primary elements. The

Voronoi diagram is made up of finite edges, polygons, and polyhedra which are then called dual

elements. The relationship between the primary mesh and the dual mesh is exploited to discretize

Maxwell’s equations and is the focus of subsequent sections. The open source software TetGen

was used to generate all Delaunay-compliant meshes for this work. For an in-depth discussion on

mesh generation, there is extensive computer science literature that is actively seeking Delaunay-

Voronoi mesh optimization. These are compliant not only with DVSI, but also with engineering
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numerical methods across disciplines, e.g., solutions to the Navier-Stokes equations within the

marker-and-cell algorithm.

3.3 Maxwell’s Rotational Equations

To begin the discussion of solving Maxwell’s equations in a bounded region with DVSI, the

rotational equations (i.e., Ampere’s and Faraday’s laws) are discretized and the pertinent BCs for

electronic device simulation are applied to obtain results. Two benchmark examples are presented

which validate the numerical method quantitatively through comparisons with analytic results.

3.3.1 DVSI Discretization

Solving Maxwell’s rotational equations, with proper BCs, is convenient with the relationship be-

tween the Delaunay and Voronoi meshes. When solving the rotational equations, it is assumed

that the electric field ~E is the total field comprised of both a rotational and irrotational component.

Ultimately, in Section 3.5 the fields are decomposed into rotational and irrotational components,

but initially only with total field versions of Eqns. (3.1) – (3.2).

Figure 3.1: A two-dimensional example of the staggered DVSI mesh with the (left) Delaunay
triangles drawn in blue and (right) the Voronoi polygons drawn in red.
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Figure 3.2: (left) Dual edges (shown as red arrows) associated with a primary edge (blue arrow).
The dual polygon and dual edges are comprised of the circumcenters of each tetrahedron attached
to the primary edge. (right) Primary polygon and edges associated with one of the dual edges.

∫∫
S

n̂ ·

[
ε

∂~E(~r, t)
∂ t

+~J(~r, t)

]
dS =

∮
Γ

~H(~r, t) ·d~̀, (3.4)

∫∫
S

n̂ ·µ ∂~H(~r, t)
∂ t

dS =−
∮
Γ

~E(~r, t) ·d~̀. (3.5)

Electric fields are represented as spatially constant vector projections on primary edges. Like-

wise, magnetic fields are represented as spatially constant vector projection quantities on dual

edges. These relationships are depicted in Figure 3.2. The main points of DVSI discretization of

the rotational equations are:

1. A mesh edge is always perpendicular to its associated polygon.

2. The solution variables representing electric and magnetic fields are spatially constant vector

projections on mesh edges.

3. Materials reside within primary tetrahedra ensuring that primary edges do not cross dielectric

boundaries, which is critical for applying BCs.
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4. The entire volume retains the permeability of free space (we do not consider magnetic inho-

mogeneity as it is rare in semiconductor devices).

With this geometric description and these assumptions about electric and magnetic fields, the inte-

gral form of Maxwell’s equations can now be written as the semi-discrete equations

(
εi

∂Ei
∂ t

+ Ji

)
Ai = ∑

j
H jL j, (3.6)

µ0
∂H j

∂ t
A j =−∑

i
EiLi, (3.7)

where Ei is short-hand notation representing the temporally dependent scalar field projection

E (~ri, t). The ith primary edge has length Li and the jth dual edge has the length L j. Areas Ai

and A j represent the polygons associated with mesh edges. The semi-discrete form of Maxwell’s

equations can be integrated in time with any method such as Forward Euler, Backward Euler, or

the Crank-Nicolson method. The fully discrete Maxwell’s equations are now written as DA
il αAim

αF jl DF
jm


 En+1

l

Hn+1
m

+
 −DA

il (1−α)Aim

(1−α)F jl −DF
jm


 En

l

Hn
m

+
 JN(α)

i Ai

0

= 0.

(3.8)

The superscript n represents the “known” field quantity at a previous time step and n+1 represents

the next “unknown” field quantity in the time-marching method. The diagonal matrices are defined

as DA
il = εiAiδil/∆t and DF

jm = µ0A jδ jm/∆t, the Ampere matrix is defined as Aim =−cimLm, and

the Faraday matrix is defined as F jl = c jlLl . The tensors in the Ampere and Faraday matrices are

collections of ±1 to ensure a properly closed line integral around associated edges. For example,

the Ampere constants are assigned to make primary edge vector projections follow the right hand

rule and the Faraday constants are assigned to make dual edge vector projections follow the left

hand rule. The constant α reflects the choice of the time integration method. Values α = 0,1,1/2

will yield Forward Euler, Backward Euler, and Crank-Nicolson schemes, respectively. Current

density time index N(α) is set to n for Forward Euler and n+ 1 for Backward Euler and Crank-

Nicolson.
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One important note about DVSI is that for simulations in which the geometry of interest is

on the order of one or many wavelengths, this method would require a dense mesh to keep the

spatially constant approximations valid. Because this paper is meant to highlight the numerical

aspects of DVSI, dense discretizations are used to evaluate canonical CEM benchmarks which

have analytic solutions. Simulating electronic devices does not retain this meshing requirement,

since the majority of devices are inherently sub-wavelength in size. This is a tremendous meshing

advantage of DVSI for semiconductor devices that are sub-wavelength in terms of obtaining full-

wave solutions without over-meshing.

Also, since fluxes are defined as constant over polygons, an edge which does not physically

touch its associated face is still valid as long as the area is computed correctly and the electric flux

accounts for regions of different dielectric properties as described in the subsequent section. This is

because the edge is closer to its associated dual face than any other edge due to the Delaunay nature

of the mesh. This implies the need for strict adherence to Delaunay-compliant meshes. Validity

of these mesh relationships also extends to node / volume relationships as well as boundary edges.

Experience has shown that commercial tools claim to have < 1% non-Delaunay compliance in

three dimensions. Given the previous statements on mesh requirements, even a small fraction of

non-Delaunay compliant elements can lead to erroneous results with Box Integration or DVSI.

3.3.2 Dielectric Discontinuities

Dielectric discontinuities are easily addressed with DVSI. The area and dielectric constant of the

ith electric flux term is computed as a summation of the Ni local relative dielectric constants and

areas of the electric flux, namely

εiAi = ε0

Ni
∑

k=0
εr,kAk. (3.9)

Sub-polygons are created within the main dual polygon where each sub-polygon resides com-

pletely within a single primary tetrahedron. An example of sub-polygon decomposition of the

electric flux area is shown in Figure 3.3. The first three sub-polygons reside within one material,

i.e., εr,1 = εr,2 = εr,3 and the other two are in another material with εr,4 = εr,5. The total elec-
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Figure 3.3: An illustration of the decomposition of a dual polygon which spans multiple dielectric
regions. The dual polygon is split into multiple sub-polygons. Each is completely contained within
a single primary tetrahedron and assigned the relative dielectric constant of that tetrahedron. The
3-D mesh was rotated such that the primary edge points into the page.

tric flux area is then calculated using Eqn. (3.9). Even though this example only illustrates five

sub-polygons, the process is completely general to more complicated mesh elements.

3.3.3 Boundary Conditions

BCs are essential for any numerical simulation. In terms of DVSI, BCs are applied to primary

and dual edges (as well as primary nodes in subsequent sections) which reside on the boundaries

of the mesh. Each boundary dual edge connects the mid-point of its associated primary edge to

the circumcenters of the boundary primary triangles associated with the same primary edge — see

Figure 3.4 for an illustration. These relationships hold true for triangles which do not physically

contain their circumcenters.

To properly analyze devices, BCs must be introduced to emulate sources and to truncate the

computational domain. The former is accomplished by applying voltages across metal contacts

in an electronic device. Before advancing to voltage BCs, examples are presented where EM

fields will be excited by electric current densities to facilitate quantitative analysis of DVSI against
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canonical examples.

3.3.3.1 Perfect Electrical Conductor

One important BC for CEM and electronic device simulations is the perfect electrical conductor

(PEC). A DVSI implementation of PEC edges is quite straightforward. Rotational electric field

edges which lie on PEC boundaries are always tangential to the surface. Because the physics states

that n̂×~E= 0 and n̂ ·~H= 0, the electric field edges tangential to and magnetic field edges normal to

PEC boundaries are simply removed from the DVSI solution set. Figure 3.4 illustrates the removal

of DVSI edges at PEC interfaces.

Figure 3.4: Illustrations of a primary edge on two different boundaries.

3.3.3.2 Impedance Boundary Condition

An impedance BC, otherwise known as a plane wave or first-order absorbing BC (ABC), exploits

the relationship between TEM electric and magnetic fields or plane waves, given by

~H =
1
Z

k̂×~E. (3.10)

Here, Z =
√

µ/ε is the impedance of the matched exterior region. Utilizing this relationship

between electric and magnetic fields requires knowledge of the wave vector. A simple resolution

of this issue is assuming that the wave vector is in the direction of the boundary’s normal k̂ ≈ n̂.

This proves to be a convenient simplification as n̂× p̂i, where p̂i is the unit vector of the primary

edge, is exactly the unit direction of in-plane dual magnetic field edge. The fully discrete DVSI
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equations with the impedance BC are DAil +αI1 αAim

αF jl D
F jm


 En+1

l

Hn+1
m


+

 −DAil +βI1 βAim

βF jl −D
F jm


 En

l

Hn
m

+
 JN(α)

i Ai

0

= 0. (3.11)

The impedance BC tensor takes the form I1 =−d̂ f ·
(
n̂ f × p̂i

)
L f δilδlb/Z, where the in-plane dual

edge with length L f and unit vector d̂ f is associated with the boundary primary edge with the unit

vector p̂i. There are always two boundary primary triangles (with different normals n̂ f ) associated

with a boundary primary edge. This implies that there are two in-plane dual edges associated with

the ith primary edge and is why a separate index f is applied to these edges. The first Kronecker

delta ensures that the impedance boundary affects diagonal matrix elements and the second ensures

that only primary electric field edges associated with the impedance boundary (with index b) are

updated. The term β = (1−α) is defined for brevity.

This BC serves two important functions in a device simulator. The first is a truncation to any

open regions, i.e., the end of the physical device. The other is a model of an external load. This

is a critical feature when dealing with devices that interface with other circuit components. In

the device situation, impedance BCs are far more important than sophisticated methods of making

perfectly matched layers or radiation BCs.

3.3.4 PEC Cavities with Ideal Dielectrics

To demonstrate the validity of this numerical framework, two PEC cavity results are presented and

discussed. All numerical examples in this section solve the purely rotational fields of Maxwell’s

equations. To excite fields in the cavities, a current density is introduced on primary edges.

These examples test all the aforementioned numerical aspects of the rotational solver except the

impedance BC. This BC will be tested in Section 3.5.
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The mathematical form of the current density used for these numerical examples is a modulated

Gaussian, or

Ji(t) = cos [ω0 (t− t0)]exp

[
−(t− t0)

2

2σ2

]
. (3.12)

Here, ω0 = 2π f0 is the center angular frequency of the Gaussian, σ = 2.335/(2πBW ) is Gaussian

width associated with the bandwidth BW , and t0 = 6σ is the Gaussian delay. For each subsequent

result, the time step was calculated with ∆t = 1/(S fmax), where fmax is the highest frequency in

the simulation and S is a unit-less scale factor used to control the size of the time step. For each of

the following benchmarks, the time step scale was chosen as S = 400.

The first result is a cubic PEC cavity filled 40% with air and 60% with bulk semiconductor

(εr = 5.9, which represents bulk GaN). The dielectric discontinuity lies in the z = 0.4 m plane.

Figure 3.5 (left) displays the computed resonant frequencies of the half filled cavity compared

Figure 3.5: Results for two PEC cavities with ideal dielectrics.

with the analytic resonant frequencies [71] (dotted lines). Two different meshes were used to

compute the DVSI results A and B. Mesh A is comprised of 6000 tetrahedra resulting in 7830

DOF and mesh B contains 20,250 tetrahedra resulting in 27,720 DOF. Local maxima of both mesh

results were calculated to quantitatively assess the numerical method. Then, the error between the

55



computed resonant frequencies fn,i and the analytic frequencies fa,i was calculated with

ε = 100×

√
∑
i

(
fn,i− fa,i

)2
√

∑
i

f 2
a,i

. (3.13)

The global errors for the first eight resonant frequencies computed with meshes A and B were

ε = 1.36% and ε = 0.59%, respectively. This demonstrates the increasing accuracy of the higher

resonant frequencies with mesh density, as expected.

To test the framework’s ability to conform to curved features, the second result is a section of

a cylindrical cavity illustrated in the inset of Figure 3.5 (right). The inner diameter is d1 = 0.2 m

and the outer diameter is d2 = 0.6 m. The entire cavity is air filled. Figure 3.5 (right) shows the

numerically computed resonant frequencies in comparison with analytic solutions [71]. The error

between the analytic and the numerical resonant frequencies was again computed and global error

for the first five frequencies of the cylindrical sector cavity was ε = 0.68%. The fourth computed

resonant frequency displayed the worst individual error of ε = 1.25%. This is attributed to the

mesh density in the cylindrical directions of the geometry, which was not uniform in the ρ , φ , and

z directions.

3.4 Poisson’s Equation

The next step in developing a DVSI full-wave EM framework is to discretize Poisson’s equa-

tion. This section is solely devoted to solving irrotational problems where only the electric potential

is the solution variable.

3.4.1 DVSI Discretization

The Delaunay-Voronoi mesh provides a convenient physical representation of Poisson’s equation

−
∫∫
S

n̂ · ε∇Φ(~r, t)dS =
∫∫∫
V

ρ (~r, t)dV. (3.14)
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As discussed in Section 3.2, a bounded domain is tessellated with two interweaving meshes. Each

primary node, which is a point of the Delaunay mesh, is bounded by a dual polyhedron. An

example is shown in Figure 3.6.

Figure 3.6: A visualization of the DVSI representation of Poisson’s equation in three dimensions.

The key to discretizing Poisson’s equation within DVSI is the fact that all primary edges con-

nected to a primary node are always normal (or perpendicular) to the dual polygons of the bounding

dual polyhedron. This is analogous to the divergence of the electric field out of the enclosing dual

polyhedron. The gradient is discretized as a finite difference on the qth primary edge associated

with node k. Using these facts, Poisson’s equation is written as

PkpΦ
n
p ≡∑

q
εkq

Akq

Lkq

(
Φ

n
k−Φ

n
q

)
= ρ

n
k Vk. (3.15)

Here, the summation index q runs over all primary edges attached to primary node k. The same

time notation is used as the previous section, i.e., Φn
k = Φ(~rk, tn) is the previous time step solution.

Eqn. (3.15) states that electric scalar potentials are assigned to the nodes of a primary edge and the

spatially constant electric field projection is defined as a finite difference of these potentials over
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the primary edge with length Lkq. These potentials are driven by the charge density ρk defined

inside the kth dual polyhedron with volume Vk.

3.4.2 Boundary Conditions for Poisson’s Equation

As with Maxwell’s rotational equations, Poisson’s equation cannot be solved without imposing

BCs. Truncation of the computational domain is handled through Ampere’s law and therefore only

Dirichlet BCs will be discussed. This boundary will be used extensively to create a meaningful

voltage source to drive electronic devices.

A Dirichlet BC specifies the values that the solution must take. In the case of Poisson’s equa-

tion, these solutions are the electric scalar potentials. For all Dirichlet nodes listed with index b

associated with the kth primary node, Poisson’s equation will take the form

PkpΦ
n
p = ρ

n
k Vk +∑

b
εkb

Akb
Lkb

Φ
n
b. (3.16)

3.4.3 Spherical Region with Dirichlet Surfaces

To demonstrate the validity of the DVSI Poisson solver while also displaying the usefulness of

DVSI’s unstructured grid, a spherical region with two Dirichlet surfaces at r = 0.25 m and r = 2 m

is solved. A simple Gaussian charge model ρ (~r) = exp(−~r ·~r) is applied in the spherical region.

This allows the DVSI solver results to be compared to an analytic solution, derived by integrating

the Laplacian in spherical coordinates with the Gaussian source term and a Dirichlet voltage of

0.25 V applied on both the inner and outer surfaces.

Figure 3.7 displays a slice of the DVSI mesh (left) and a cross section of the DVSI scalar

potential solution (right). Mesh refinement near the center of the sphere was performed. The error

was computed between the DVSI numerical solution and the analytic solution using Eqn. (3.13).

Now, fn,i is replaced with Φn,i, the numerical potential at node~ri, and fa,i is replaced with Φa,i

which is the analytic solution at the same location. For the mesh shown in Figure 3.7 (left), the error
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Figure 3.7: (left) A mesh of the spherical region with Dirichlet surfaces at r = 0.25 m and r = 2 m.
(right) The numerical solution Φ(r) of Poisson’s equation with a simple Gaussian charge density
and a Dirichlet potential of 0.25 V applied at both surfaces.

was ε = 2.5%, showing that the numerical solution, which resides on a completely unstructured

mesh, agrees well with the analytic solution.

3.5 Complete Electromagnetics for Device Simulation

With the derivations and examples presented in Sections 3.3 and 3.4, a full-wave EM DVSI

framework can now be presented. Here, the electric field, magnetic field, and the electric potential

are solution variables that are solved simultaneously. Eqns. (3.1) – (3.3) completely describe EM

phenomena in an electronic device.

3.5.1 DVSI Discretization

Proper simulation of electronic devices with full-wave effects requires solving the system of equa-

tions discussed in Sections 3.3 and 3.4 and shown in Eqns. (3.1) – (3.3). For the rest of this section,

the rotational electric field will drop the “rot” subscripts and all electric field variables are assumed

to be purely rotational. The fully discrete system of equations is
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DA

il αAim PA
ip

αF jl D
F jm 0

0 0 αPkp




En+1
l

Hn+1
m

Φn+1
p



+


−DAil βAim −P

Aip

βF jl −DF
jm 0

0 0 βPkp




En
l

Hn
m

Φn
p

+


JN(α)
i Ai

0

−ρ
N(α)
k Vk

= 0. (3.17)

Eqn. (3.17) is a direct descendant of Eqns. (3.8) and (3.15). The additional tensor PA
ip couples

the rotational electric and magnetic fields to the static electric potential. This tensor takes the form

PA
ip Φn

p ≡
εiAi
∆tLi

(
Φn

i,1−Φn
i,2

)
, where the ith primary edge points from node 1 with potential Φi,1

to node 2 with potential Φi,2.

3.5.2 Device Boundary Conditions

BCs for the complete EM equations will now be presented utilizing the information described in

the previous two sections. Each BC previously described is now presented in the context of an

electronic device simulation. Additional requirements needed for relevance to device simulation

are also highlighted. A numerical example of a transmission line that requires these BCs for

excitation and propagation is compared with analytic solutions.

3.5.2.1 Metal Contacts

Metal contacts are critically important BCs for electron devices and are both the regions where

voltages (or currents) are applied to bias and drive the device as well as the regions that interact

with external circuitry (e.g., driving loads). These contacts, in terms of a physical device, are

certainly not perfect electrical conductors, but are sufficiently conducting to be treated as such in

the majority of technologically relevant cases. Extensions to non-ideal contacts are an interesting

research topic when the distributed effects of finite conductivity are important. For the purposes of
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developing the numerical methods of DVSI and to allow comparison with analytic solutions, only

the ideal cases when metals are PECs are considered.

The PEC BC was previously discussed in Section 3.3 and the only additional information

needed is the definition of electric potentials. Because a PEC defines an equipotential surface, a

Dirichlet BC is assigned to any potentials residing on this boundary. Two PEC surfaces can then

be used to define a voltage, where one conductor is the reference potential which could be ground

(or other reference potential offset).

3.5.2.2 Extrinsic Impedance Boundary Condition

The impedance BC is important for device simulation for several reasons. First, it can properly

emulate resistive sheets which can be used to represent external loads. Second, the impedance BC

can be used as a first-order domain truncation. An important point of the impedance BC is that it

affects the total electric field. The discretized linear system including the impedance BC is
DA

il +αI1 αAim Pip +αI2

αF jl DF
jm 0

0 0 αPkp




En+1
l

Hn+1
m

Φn+1
p



+


−DA

il +βI1 βAim −Pip +βI2

βF jl −DF
jm 0

0 0 βPkp




En
l

Hn
m

Φn
p



+


JN(α)

i Ai +I2

(
αΦ

n+1
b −βΦn

b

)
0

−ρ
N(α)
k Vk +Pkpδpb

(
αΦ

n+1
b −βΦn

b

)
= 0. (3.18)

Again, the impedance BC tensor takes the form I1 = −d̂ f ·
(
n̂ f × p̂i

)
L f δilδlb/Z and the second

impedance tensor is defined as I2 = −d̂ f ·
(
n̂ f × p̂i

)
L f δilδlb/(LiZ), where Li is the length of

the ith primary edge. The potentials in the source vector, with index b, account for any primary
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nodes which lie on corners of the computational domain which connect Dirichlet boundaries and

impedance boundaries directly.

3.5.2.3 Voltage Boundary Condition

One critical BC that may be difficult to implement without incorporating Poisson’s equation is the

voltage source, a staple of device engineering. This excitation boundary allows the application

of voltages across different device contacts, such as the gate and drain of a field effect transistor

(FET). It also allows a simulator to operate in conditions that replicate those in a physical device.

The voltage boundary can be any shape, but for simplicity it is assumed that the voltage bound-

ary is a rectangular region connecting two PECs. The two PEC contacts are assigned constant

potentials and the overlap between the contacts and the voltage excitation serves as Dirichlet line

segments for the solution of Poisson’s equation.

Coupling the voltage boundary into the rotational electric and magnetic fields is now consid-

ered. To do so, the voltage boundary is first declared as free of rotational electric fields. Dual

magnetic fields in the voltage plane are then declared as unknowns and they are solved for using

Ampere’s law, Eqn. (3.1). Because dual magnetic field edges in the voltage plane correspond to

exactly one rotational electric field edge, Ampere’s law for the null rotational electric field edge is

applied to solve for the in-plane dual magnetic field edge. This is mathematically written, with the

Backward Euler time integration scheme, as

AimHn+1
m +PA

ip

(
Φ

n+1
p −Φ

n
p

)
+ Jn+1

i Ai = 0. (3.19)

In this version of Ampere’s law for the voltage boundary, the line integrals of magnetic fields

include the dual magnetic field edges in the voltage boundary plane. This is a subtle, but highly

practical issue for device simulation.

With the use of the Poisson Dirichlet BC and the voltage boundary Ampere’s law for the in-
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plane magnetic fields, the discrete linear system with the voltage excitation is written as
DA

il αAim PA
ip

αF jl DF
jm 0

0 0 αPkp
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+


−DA

il βAim −PA
ip

βF jl −DF
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0 0 βPkp




En
l

Hn
m

Φn
p

+


JN(α)
i Ai +PA

ib

(
Φ

n+1
b −Φn

b

)
0

−ρ
N(α)
k Vk +Pkb

(
αΦ

n+1
b −βΦn

b

)
= 0.

(3.20)

The electric potentials added to the source vector reflect any Dirichlet voltages.

3.5.2.4 Two-Port Devices

In experiments and circuits, transistors are driven by time dependent voltages applied across con-

tacts. For example, given a FET with source, gate, and drain metal contacts, the device operates

with a voltage bias applied from the drain to the source and an oscillating voltage applied across

the gate and the source. In terms of the complete DVSI equations, these form the voltage BCs.

The applied voltage v1(t) and the simulated current i1(t) are related to the port voltages in Fig-

ure 3.8 by v1(t) = v+1 (t)+ v−1 (t) and i1(t) =
[
v+1 (t)− v−1 (t)

]
/Z1 [62]. It is assumed that the input

and output ports are 50 Ω transmission lines. Given the two-port device network in Figure 3.8,

Figure 3.8: The two-port model of an electronic device. Input voltages are labeled with a subscript
1 and output voltages are labeled with a subscript 2. The input and output ports are ideal 50 Ω

transmission lines.

inward and outward propagating waves are defined. These waves can then be used to characterize
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the device with S-parameters, calculated with

v±n (t) =
1
2
[vn(t)±Znin(t)] , (3.21)

S11(ω) =
V−1 (ω)

V+
1 (ω)

, (3.22)

S21(ω) =
V−2 (ω)

V+
1 (ω)

. (3.23)

Here, the spectral voltages V±n (ω) are the Fourier transforms of the transient voltages v±n (t). The

output current i2(t) is the transient current across the load ZL. Customarily, the load Z2 represents

the characteristic impedance of a high frequency probe impedance matched to a network analyzer

so that the voltage v+2 (t) = 0. For demonstrative purposes, the load and output impedances are

chosen to be purely resistive.

Before the transient voltages and currents are Fourier transformed, they must be computed in

the simulation. Voltage drops are computed with a contiguous set of primary edges between metal

contacts. An integral of the total electric field starting from the reference contact yields the proper

voltage drop. Similarly, current is computed by integrating a contiguous, straight line of dual edges

on which magnetic fields are defined. The line integral of the magnetic fields is parallel to the metal

contacts and in the direction which corresponds to outward propagating power.

3.5.3 Lossless Transmission Line

To demonstrate the validity of the complete set of EM equations, a simple lossless transmission line

is analyzed. This is a good candidate as it will require a transient voltage excitation, will test the

impedance BC, and will be quantitatively validated via analytic S-parameters. The computational

domain is bounded by two PEC plates located at the z = 0 and z = 0.1 mm planes, a voltage

boundary at the x = 0 plane, a ZL = 50 Ω impedance boundary at the x = 1 mm plane, and two

“open” boundaries at the y = 0 and y = 0.1 mm planes. These open boundaries declare in-plane

magnetic fields to be null. The DVSI transmission line is excited with a Gaussian voltage drop

between the PEC plates. The parameters of the Gaussian voltage v(t) = V0exp
[
−(t−t0)

2

2σ2

]
are
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V0 = 0.5 V, σ = 2.5× 10−14 s, and t0 = 10σ . The time step is chosen as ∆t = 0.1σ and the

number of time steps is 100,000.

�

Figure 3.9: (left) The transient input current (top) and output voltage (bottom) calculated in the
lossless transmission line. (right) The spectral reflection and transmission coefficients.

Figure 3.9 shows (left) the transient input current and output voltage and (right) the magnitude

of the reflection and transmission coefficients |S11(ω)| and |S21(ω)|, respectively. The solid lines

are the analytic values [63]. Because this transmission line is lossless, the relation |S11(ω)|2 +

|S21(ω)|2 = 1 is true for all frequencies. A good quantitative analysis of the full-wave transmission

line simulation is the computed deviation of this relation from unity. Using the data presented

in Figure 3.9 (right) and a modified version of Eqn. (3.13), the total deviation from unity was

ε = 3.7%. This result is a worst case scenario considering the fact that it was computed up to

600 GHz — twice the frequency corresponding to the electrical size of the transmission line.

Electronic devices, which are the target application of this numerical framework, rarely operate at

wavelengths below the electrical size of its gate width.

We now simulate the lossless transmission line on a series of meshes to estimate the DVSI

method’s order of convergence. Each mesh refinement decreases the edge length in the propagation

direction. The number of tetrahedra range from 480 to 9600 and the total number of DOF ranges

from 854 to 15,864. The DOF reflect the number of primary edges which define electric fields, the

number of dual edges which define magnetic fields, and the number of primary nodes which define
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electric potentials. The lossless transmission line operates with the same inputs as the previous

example except with a modified Gaussian bandwidth of σ = 10−12 s. The solution computed

on each mesh was compared to the finest mesh solution to produce an error given by a modified

version of Eqn. (3.13). These errors were then used to compute an error bound given by

|Sk−L|<CN−p
k , (3.24)

where Sk are the k solutions computed on each mesh, L is the solution computed on the finest

mesh, Nk is the number of edges in the propagation direction for each mesh, and p is the order

of convergence. The computed order of convergence was p ≈ 2.0. As expected, this result is

consistent with the order of convergence of the traditional Yee cell algorithm [70].

3.6 Conclusion

DVSI is an appropriate numerical framework for discretizing full-wave EM and coupling to

charge transport. With the approximations outlined in this chapter, this numerical method is

amenable to nonlinear charge transport on unstructured grids. The complete discretization of

Maxwell’s equations within DVSI was presented as well as the proper BCs for device simulation.

Several benchmarks were presented to demonstrate the rotational and irrotational field descrip-

tions independently and simultaneously. DVSI agreed well with analytic solutions for a number of

numerical tests, including propagation in a transmission line using a voltage excitation. The im-

portance of having a Delaunay-compliant mesh was emphasized as a requirement of the method in

general. Although the fields are approximated to be constant vector projections on mesh edges, this

is an appropriate level of discretization for electronic devices where the physical dimensions are

substantially sub-wavelength. Finally, the framework allows for the solution of charge transport

on the same mesh as the EM problem which is not typical of device solvers.
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CHAPTER 4

FERMI KINETICS TRANSPORT

4.1 Introduction

Charge transport in semiconductors can be determined by the solution of the semi-classical

Boltzmann transport equation (BTE) [72]

∂ f (~k,~r, t)
∂ t

+~v ·∇r f (~k,~r, t)+
~F
h̄
·∇k f (~k,~r, t) =

(
∂ f (~k,~r, t)

∂ t

)
coll

. (4.1)

The BTE is a seven-dimensional integro-differential equation and describes how a collection of

particles responds to electromagnetic fields and scattering potentials. The distribution function

f (~k,~r, t) gives the occupation probability at the real-space location~r and reciprocal-space location

~k at time t. It can be found by solving Eqn. (4.1). Clearly, approximations are required in order to

yield tractable solutions.

A powerful statistical method for solving the BTE is the MC technique [73]. MC was first

presented as a statistical approach to solving general integro-differential equations [74]. Since

then, it has seen a wide variety of applications and is one of the preferred methods for accurate

numerical simulation of semiconductor devices. Many varieties exist in the literature including the

ensemble MC (EMC) method [75]. However, the EMC’s stochastic algorithm is very computa-

tionally expensive. The cellular MC (CMC) implementation of the EMC method was developed

to reduce the burdensome computational demands [76]. Despite scattering rate pre-computation

and tabulation, CMC is still computationally intensive and can lead to long simulation times for

large, complex devices. Combining MC charge transport with full-wave EM using, for example,

the FDTD method [66], further increases the computational demands.

An alternative approach to solving the BTE is through deterministic methods. These rely on

taking moments of the BTE. One of the first deterministic Boltzmann solvers for semiconductor

device simulations was presented by Scharfetter and Gummel [77]. This work presented physi-
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cal approximations to the phenomenological drift-diffusion (DD) model of charge transport. The

physical size of the device technology was still relatively large and the numerical solution of the

DD model produced satisfactory results. However, reduced device features produce larger electric

fields and hot-electron effects, such as electron velocity saturation, rendering the DD approxima-

tion insufficiently accurate.

Two seminal works which extended the DD model to include carrier heating were presented by

Stratton [78] and Blotekjaer [79]. These methods utilized different approximations of the BTE.

Stratton proposed that the distribution function be split into even and odd components while

Blotekjaer derived moments of the BTE without any assumptions on the form of the distribu-

tion function. Both methods required closure relations to generate a linearly independent system

of equations [80]. A common closure relation is the prescription of electronic heat flow with

Fourier’s law [80]. Another common approximation used to specify momentum and energy in hy-

drodynamic models is parabolic band-structure [80]. However, this approximation will reduce the

accuracy of the device solver when the electric field is large. To the best of the author’s knowledge,

no hydrodynamic or energy-transport model can include complete electronic band-structure. Some

device solvers employ fitting parameters such as field- and temperature-dependent mobilities as an

attempt to overcome the limitations of the parabolic band-structure [81].

FKT is a deterministic Boltzmann solver which has shown promising results in the literature.

Historically, FKT was conceived by seeking an alternative method for calculating the electronic

heat flow. Rather than use the combination of Fourier’s law and an approximate thermal con-

ductivity [80], it was proposed that a thermodynamic identity could be used as a closure relation

for energy-transport models [82]. This closure relation provided a robust Boltzmann solver and

it was later shown that FKT was completely amenable to electronic band-structure [83] and full-

wave EM [62]. In particular, a version of FKT with GaAs band-structure, quantum scattering

formalisms, and hot-electron effects was shown to reproduce the electron velocity saturation cal-

culated by sophisticated MC methods [83] in a fraction of the computational time. FKT was also

shown to accurately simulate a GaAs MESFET and GaN HEMT from DC up through mm-wave
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frequencies without adjustable calibration parameters [83, 84].

In the rest of this chapter, a detailed discussion of the FKT device simulation framework is

presented. In Section 4.1.1, a detailed derivation of the governing equations of charge transport is

presented. Energy- and real-space discretization techniques are presented in Sections 4.2 and 4.3,

respectively. Finally, Section 4.4 concludes this chapter.

4.1.1 Moments of the BTE

Following the method of Stratton [78], the collision term of the BTE is replaced with a momentum

relaxation time approximation. The distribution function is split into even (equilibrium) f0(~k,~r, t)

and odd f1(~k,~r, t) functions in~k-space. This yields

∂ f (~k,~r, t)
∂ t

+~v ·∇r f (~k,~r, t)−q
~E
h̄
·∇k f (~k,~r, t) =

∂ f0(~k,~r, t)
∂ t

∣∣∣∣∣
coll

− f1(~k,~r, t)
τk

. (4.2)

Here, the real-space external force ~F is only due to an electric field, i.e., ~F = −q~E. Eqn. (4.2)

is solved with the method of moments. Electron density and electron kinetic energy density are

defined as

n =
1

4π3

∫
d~k f0(~k), (4.3)

En =
1

4π3

∫
d~kE(~k) f0(~k), (4.4)

and the electron flux density and electron kinetic energy flux density are defined as

~Jn =
1

4π3

∫
d~k~v f1(~k), (4.5)

~Kn =
1

4π3

∫
d~kE(~k)~v f1(~k). (4.6)

The symmetric (equilibrium) distribution function is the well-known Fermi-Dirac distribution

f0(~k) =
1

exp
(

E(~k)−F
kBT

)
+1

, (4.7)

which represents an electron gas with Fermi level F and temperature T . The term kB is Boltz-

mann’s constant. The non-equilibrium distribution function will be approximated with piece-wise
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equilibrium distribution functions. Moments of the BTE will provide the non-equilibrium nature

of the electron gases.

Solving the BTE with the method of moments amounts to integrating Eqn. (4.2) over all

reciprocal-space. Using a general ~k-space dependent operator O(~k), the BTE can be separated

into symmetric (even) and antisymmetric (odd) equations, or

1
4π3

∞∫
−∞

d~kO(~k)

[
∂ f0
∂ t

+~v ·∇r f1−q
~E
h̄
·∇k f1−

∂ f0
∂ t

∣∣∣∣
coll

]
= 0, (4.8)

1
4π3

∞∫
−∞

d~kO(~k)

[
f1
τk

+
∂ f1
∂ t

+~v ·∇r f0−q
~E
h̄
·∇k f0

]
= 0. (4.9)

The multiplication of an even function with an odd function results in an odd function. Further-

more, the derivatives of even and odd functions (with respect to the dimension in which it is even

or odd) result in odd and even functions, respectively. When an odd operator is used for a mo-

ment of the BTE, the LHS of Eqn. (4.8) is exactly zero. The LHS of Eqn. (4.9) is exactly zero

when an even operator is used for a moment of the BTE. Taking moments of the BTE with the

operators {1,~v,E(~k),E(~k)~v} yields the electron continuity equation, particle flux density, energy

conservation equation, and the kinetic energy flux density

∂n
∂ t

+∇ ·~Jn +Cn = 0 (4.10)

~Jn =
1

4π3

∫
d~k~vτk

(q
h̄
~E ·∇k f0−~v ·∇r f0

)
, (4.11)

∂En
∂ t

+∇ ·~Sn +q~E ·~Jn +CE = 0, (4.12)

~Kn =
1

4π3

∫
d~kE(~k)~vτk

(q
h̄
~E ·∇k f0−~v ·∇r f0

)
. (4.13)

Appendix A.1 gives an in-depth derivation of Eqns. (4.10) – (4.13). The terms τk
∂~Jn
∂ t and τk

∂~Kn
∂ t

can be ignored for devices operating up to the mm-wavelength regime as τk � ∂ t. For sub-mm-

wavelength devices, i.e., terahertz devices, these terms must be considered.
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4.1.2 An Alternative Treatment of Heat Flow

Eqns. (4.10) – (4.13), along with the definitions (4.3) – (4.7), are not a closed system of equations.

The third moment of the BTE yields the kinetic energy flux density ~Kn. But, the total energy flux

density~Sn = ~Kn +~Hn is a combination of the kinetic energy flux density and the heat flux density

or heat flow. Therefore, a prescription of the heat flow is required.

A common approximation of the electronic heat flow used in many other deterministic Boltz-

mann solvers is Fourier’s law [80]

~Hn =−κ(T )∇T, (4.14)

where T is the temperature of the distribution of electrons and κ(T ) is a fictitious electronic ther-

mal conductivity. The thermal conductivity is typically approximated by the Wiedemann-Franz

law [80]

κ(T ) =
(

5
2
− p
)(

kB
q

)2
qµnT. (4.15)

Here, p is a tune-able correction factor.

In [80], it is reported that numerical issues in the device solver could be attributed to Fourier’s

law. It also reports that incorporating higher moments of the BTE may help alleviate some numer-

ical issues. This thesis will focus on a different closure relation. In the seminal paper by Grupen

[82], an alternative treatment of heat flow is presented. An analogy of the thermodynamic identity

kBT ∆σ = ∆En−F∆n, (4.16)

is used to calculate heat flow between Fermi distributions. This treatment of heat flow produces

an extremely stable numerical framework. In subsequent sections which describe the spatial dis-

cretization of FKT, the second law of thermodynamics will be used to calculate the discrete heat

flux density. It will be shown that the thermodynamic heat flow is easily obtained from the discrete

particle and kinetic energy flux densities.
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4.1.3 Self Heating Effects

Transistors used in PA circuits are heavily biased. Self heating effects are therefore critical for

accurately simulating the devices. The final governing equation in the global FKT system is the

lattice energy conservation equation [84]

ρCp
∂TL
∂ t

+∇ ·κ∇TL−CE = 0, (4.17)

where TL is the temperature of the lattice and ρ , Cp, κ are the mass density, specific heat, and lattice

thermal conductivity of the semiconductor crystal, respectively. The energy collision operator CE

is the source term of the lattice heating equation.

4.2 FKT Energy-Space Discretization

The first step in solving Eqns. (4.10) – (4.13) is the discretization of reciprocal-space. To

avoid discretizing three-dimensions, reciprocal-space is converted to energy-space. Section 4.2.1

provides these details. The calculation of isosurface integrals is then presented in Section 4.2.2.

Finally, the approximation and calculation of the piece-wise energy windows are presented in

Sections 4.2.3 and 4.2.4. These steps are pre-computations in terms of the FKT device simulator.

The resulting data corresponding to specific bulk materials are imported into the device simulator.

4.2.1 Converting Reciprocal-Space Integration to Energy-Space Integration

The densities, fluxes, and collision operators were presented in Section 4.1.1. Re-writing these

equations with band-structure dependencies yields

n =
1

4π3

∫
d~k f0(E(~k)), (4.18)

En =
1

4π3

∫
d~kE(~k) f0(E(~k)), (4.19)

~Jn =
1

4π3

∫
d~k~vτk

(q
h̄
~E ·∇k f0(E(~k))−~v ·∇r f0(E(~k))

)
, (4.20)

~Kn =
1

4π3

∫
d~kE(~k)~vτk

(q
h̄
~E ·∇k f0(E(~k))−~v ·∇r f0(E(~k))

)
. (4.21)
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Cn =
1(

4π3
)2 ∫

~ki

∫
~k f

d~k′d~kW~k,~k′
{(

nq +1
)

f0,i(E(~k))
(

1− f f ,0(E(~k
′
))
)

−nq f f ,0(E(~k
′
))
(

1− fi,0(E(~k))
)}

, (4.22)

CE =
1(

4π3
)2 ∫

~ki

∫
~k f

d~k′d~kW~k,~k′
E(~k)

{(
nq +1

)
f0,i(E(~k))

(
1− f f ,0(E(~k

′
))
)

−nq f f ,0(E(~k
′
))
(

1− fi,0(E(~k))
)}

. (4.23)

Here, W~k,~k′
is a scattering probability between two~k-space states computed from Fermi’s golden

rule and nq = 1/(exp(h̄ω/kBTL)−1) is the phonon occupation number with energy h̄ω [84]. The

variable TL is the lattice temperature. The initial electron state has an occupation probability fi,0

and the final state has an occupation probability f f ,0. Using the sifting property of the delta func-

tion, applying the relation ∇k f0(E) =
d f0
dE ∇kE =

d f0
dE h̄~v, and using the delta function composition

property, the densities, fluxes, and collision operators are

n =
∫

D(E) f0(E)dE, (4.24)

En =
∫
E

D(E) f0(E)EdE, (4.25)

~Jn =
∫
E

µµµ(E) ·
(

q~E
d f0(E)

dE
−∇r f0(E)

)
dE, (4.26)

~Kn =
∫
E

µµµ(E) ·
(

q~E
d f0(E)

dE
−∇r f0(E)

)
EdE, (4.27)

Cn =
∫
E

G(E)
{(

nq +1
)

f0,i(E)
(
1− f f ,0(E− h̄ω)

)
−nq f f ,0(E− h̄ω)

(
1− fi,0(E)

)}
dE, (4.28)

CE =
∫
E

G(E)
{(

nq +1
)

f0,i(E)
(
1− f f ,0(E− h̄ω)

)
−nq f f ,0(E− h̄ω)

(
1− fi,0(E)

)}
EdE,

(4.29)
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where

D(E) =
1

4π3 ∑
i

∫
d~Si

1

|∇kE(~k)|

∣∣∣∣∣
~k=~ki

, (4.30)

µµµ(E) =
1

4π3 ∑
i

∫
d~Si

~v(~k)~vT (~k)τk(~k)
|∇kE(~k)|

∣∣∣∣∣
~k=~ki

. (4.31)

G(E) =
∫
~ki

∫
~k f

d~S′d~SW~k,~k′
1

|∇kE(~k)|

∣∣∣∣∣
~k=~ki

1

|∇kE(~k)|

∣∣∣∣∣
~k=~k f

, (4.32)

Here, µµµ(E) is a tensor. Appendix A.2 provides an in-depth derivation of the reciprocal-space to

energy-space conversion.

4.2.2 Isosurface Integrals

Eqns. (4.30) – (4.32) require integration over surfaces of constant electron eigen-energy, i.e., cal-

culation of isosurface integrals. The calculation of bulk GaAs isosurface integrals for the FKT

device simulator was first presented in [83]. It was later applied to bulk GaN in [84]. This work

will present the process of determining surfaces of constant energy and the resulting isosurface

integrations following the seminal work of Grupen.

Reciprocal space must be discretized to determine the surfaces of constant electron energy and

calculate the isosurface integrals. To this end, a mesh of the irreducible edge of the Brillouin zone

(IBZ) is generated and the band-structure is calculated on the nodes of the mesh. A k-space mesh

of the wurtzite IBZ is presented in Figure 4.1a. Also illustrated is the electron energy calculated

with the empirical pseudopotential method (EPM) [85]. Surfaces of constant energy are illustrated

in Figure 4.1b [84]. An outline of the wurtzite IBZ is included with the energy isosurfaces. Details

for calculating the isosurfaces of electronic band-structure are provided in [83].

The isosurfaces are divided into zones according to valleys of the GaN band-structure. An

example of the first Γ-valley zone is presented in the panel diagram in Figure 4.2 (left). This

zone is shaded in red. The DOS isosurface integral calculation, Eqn. (4.30), is also presented in

Figure 4.2 (right) for the same zone. DOS data was obtained from Matt Grupen AFRL [84]. This
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(a)

(b)

Figure 4.1: (a) A mesh of the GaN IBZ and corresponding electron energy calculated with EPM
and (b) the resulting surfaces of constant energy.
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Figure 4.2: The (left) panel diagram of wurtzite GaN and (right) DOS calculated in the first Γ-
valley. The EPM is used to calculate the electron energy. DOS data was obtained from Matt
Grupen AFRL.

process is repeated for the other band-structure valleys. Figure 4.3 presents the DOS integrations

for the first four valleys of wurtzite GaN. The data was obtained from Matt Grupen AFRL [84].

As described in [62] and [84], the isosurface integrals depend on FKT device simulator solution

variables. Isosurface integration data must therefore be sampled over a range of FKT solution
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Figure 4.3: The DOS isosurface integrations calculated in the first four wurtzite GaN valleys. The
DOS data was obtained from Matt Grupen AFRL.

variables. This data is interpolated in the device simulator to calculate the quantities required for

residual and Jacobian construction. An example of the FKT solution variable dependence of the

µ(E) isosurface integral is presented in Figure 4.4. Three integrations are presented with lattice

temperatures of 300 K, 400 K, and 500 K. This data was obtained from Matt Grupen AFRL [84].

All isosurface integrals which depend on FKT solution variables are sampled in a similar manner.

4.2.3 Piece-Wise Energy Power Laws

The isosurface integration data of the previous section can be incorporated into the FKT device

simulator in various ways. This work will focus on the method of Grupen [83]. Isosurface integra-

tion data is approximated with piece-wise energy power laws. Energy power laws allow the use of

fast numerical Fermi-Dirac integral routines in the device simulator.

With the piece-wise energy power law approximation of the isosurface integrals, the densities,
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Figure 4.4: The µ(E) isosurface integrations calculated with different lattice temperature. The
µ(E) data was obtained from Matt Grupen AFRL.

fluxes, and collision operators are

n≈∑
k

Eb,k∫
Ea,k

Ak

(
E−Eρ,k

)αk f0(E)dE ≡∑
k

nk, (4.33)

En ≈∑
k

Eρ,knk +

Eb,k∫
Ea,k

Ak

(
E−Eρ,k

)αk+1
f0(E)dE

 , (4.34)

~Jn ≈∑
k

Ed,k∫
Ec,k

Dk
(
E−EJ,k

)βk
(

q~E
d f0(E)

dE
−∇r f0(E)

)
dE ≡∑

k

~Jn,k, (4.35)

~Kn ≈∑
k

EJ,k~Jn,k +

Ed,k∫
Ec,k

Dk
(
E−EJ,k

)βk+1
(

q~E
d f0(E)

dE
−∇r f0(E)

)
dE

 , (4.36)
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Cn ≈∑
k

Eh,k∫
Eg,k

Gk(E−Es,k)
γk
{(

nq +1
)

f0,i(E)
(
1− f f ,0(E− h̄ω)

)
− nq f f ,0(E− h̄ω)

(
1− fi,0(E)

)}
dE ≡∑

k
Cn

k , (4.37)

CE ≈∑
k

Es,kCn
k +

Eh,k∫
Eg,k

Gk(E−Es,k)
γk+1{(nq +1

)
f0,i(E)

(
1− f f ,0(E− h̄ω)

)

− nq f f ,0(E− h̄ω)
(
1− fi,0(E)

)}
dE

 . (4.38)

Here, the flux isosurface integral matrix is µµµ(E)≈ µ(E)I with~v(~k)~vT (~k)≈ v(~k)2I. The matrix I

is the identity matrix. Figure 4.5 illustrates an approximation of the first Γ-valley DOS data. The
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Figure 4.5: Approximation of the first Γ-valley DOS data with piece-wise energy power laws. The
solid black line is the isosurface integration data and the dashed red line is the energy power law
fit. Both data sets were obtained from Matt Grupen AFRL.

DOS integration data is plotted with a solid black line and the energy power law fits are plotted

with dashed red lines. Figure 4.6 illustrates the approximation of the first Γ-valley µ(E) data.
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Figure 4.6: Approximation of the first Γ-valley µ(E) data with piece-wise energy power laws. The
solid black line is the isosurface integration data and the dashed red lines are the energy power law
fits. Both data sets were obtained from Matt Grupen AFRL.

Here, the integration data is plotted with a solid black line and the energy power law fits are plotted

with dashed red lines. Because the µ(E) isosurface integral depends on solution variables of the

FKT device simulator, energy power laws are required for each data set corresponding to samples

of the solution variables.

4.2.4 Incomplete Fermi Integrals

The final component of the energy-space discretization is the evaluation of the energy integral over

each piece-wise segment. The electron density and particle flux density in a single energy segment

are

nk =

Eb,k∫
Ea,k

Ak

(
E−Eρ,k

)αk f0(E)dE, (4.39)

~Jn,k =

Ed,k∫
Ec,k

Dk
(
E−EJ,k

)βk
(

q~E
d f0(E)

dE
−∇r f0(E)

)
dE, (4.40)
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Eqns. (4.39) and (4.40) are incomplete Fermi integrals of order αk and βk. With the substitutions

d f0(E)
dE

=−d f0(E)
dF

, (4.41)

ε =
E−Ec

kBT
, (4.42)

ηρ,k =
F−Ec− (Eρ,k−Ec)

kBT
, (4.43)

ηJ,k =
F−Ec− (EJ,k−Ec)

kBT
, (4.44)

ak =
Ea,k−Eρ,k

kBT
, (4.45)

bk =
Eb,k−Eρ,k

kBT
, (4.46)

ck =
Ec,k−EJ,k

kBT
, (4.47)

dk =
Ed,k−EJ,k

kBT
, (4.48)

the piece-wise densities and fluxes become

nk = Ak (kBT )αk+1 Fαk

(
ηρ,k,ak,bk

)
, (4.49)

En,k = Eρ,knk +Ak (kBT )αk+2 Fαk+1

(
ηρ,k,ak,bk

)
, (4.50)

~Jn,k =−qDk

(
~E(kBT )βk F ′

βk

(
ηJ,k,ck,dk

)
+∇r

[
(kBT )βk+1

q
Fβk

(
ηJ,k,ck,dk

)])
, (4.51)

~Kn,k = EJ,k~Jn,k−qDk

(
~E(kBT )βk+1 F ′

βk+1
(
ηJ,k,ck,dk

)
+ ∇r

[
(kBT )βk+2

q
Fβk+1

(
ηJ,k,ck,dk

)])
. (4.52)

Here, the incomplete Fermi integral of order α and its derivative are

Fα(η ,a,b) =
b∫

a

εα

exp(ε−η)+1
dε, (4.53)
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and

F
′
α(η ,a,b) =

dFα

dη
= αFα−1(η ,a,b)+

aα

exp(ε−η)+1
− bα

exp(ε−η)+1
. (4.54)

The series expansion method [86] is preferred for the fast numerical evaluation of the incomplete

Fermi integral of arbitrary order and parameter.

Because of the multiplication of the initial and final occupation probabilities, fi,0 and f f ,0, the

collision operators, Eqns. (4.37) and (4.38), cannot be represented as Fermi integrals. Therefore,

the numerical routines for fast Fermi integral evaluation are not applicable for calculating the

collision operators. Numerical quadrature of the piece-wise energy windows is a suitable method

for evaluating the collision operator. The calculations of the collision operators are

Cn ≈∑
k

∑
i

Gk(Ei−Es,k)
γk
{(

nq +1
)

f0,i(Ei)
(
1− f f ,0(Ei− h̄ω)

)
− nq f f ,0(Ei− h̄ω)

(
1− fi,0(Ei)

)}
wi∆Ei, (4.55)

CE ≈∑
k

{
Es,kCn

k +∑
i

Gk(Ei−Es,k)
γk+1{(nq +1

)
f0,i(Ei)

(
1− f f ,0(Ei− h̄ω)

)

− nq f f ,0(Ei− h̄ω)
(
1− fi,0(Ei)

)}
wi∆Ei

 , (4.56)

where wi is the weight of the quadrature rule. Specific quadrature implementations include fast

trapezoidal rules and Gaussian quadrature rules.

4.3 FKT Real-Space Discretization

After the discretization of energy-space, the next step in solving Eqns. (4.10) – (4.13) is dis-

cretizing real-space. The following provides the discretization details following the common prac-

tices of other deterministic Boltzmann solvers [87]. In particular, the box integration method [30]

is used for the continuity equations and the Scharfetter-Gummel (SG) discretization technique [77]

is used for the particle fluxes.

81



4.3.1 Continuity Equations

Discretizing the continuity equations requires integration over the semiconductor device domain.

The integral form of the continuity equations on the DV mesh are

∫∫∫
V

[
∂n
∂ t

+Cn
]

dV +
∫∫
S

n̂ ·~JndS = 0, (4.57)

∫∫∫
V

[
∂En
∂ t

+q~E ·~Jn +CE
]

dV +
∫∫
S

n̂ ·~SndS = 0, (4.58)

and ∫∫∫
V

[
ρCp

∂TL
∂ t
−CE

]
dV +

∫∫
S

n̂ ·κ∇TLdS = 0. (4.59)

Here, ~E = ~Erot−∇Φ is the total electric field defined on a primary edge of the DV mesh. Using

the box integration method [30] and backward Euler time discretization, the continuity equations

become [
nt+1

i −nt
i

∆t
+Cn,t+1

i

]
Vi +∑

j
Jt+1

n,i j Ai j = 0, (4.60)

[
Et+1

n,i −Et
n,i

∆t
+CE,t+1

i

]
Vi +q∑

j

(
Et+1

j L j

)
Jt+1

n,i j Ai j +∑
j

St+1
n,i j Ai j = 0. (4.61)

[
ρiCp,i

T t+1
L,i −T t

L,i

∆t
−∑

i
CE,t+1

i

]
Vi +∑

j

(
T t+1

L,i −T t+1
L, j

) κi jAi j

Li j
= 0. (4.62)

These transport equations are coupled in space and time with the discrete full-wave EM equations

derived in Chapter 3.

4.3.2 Particle and Energy Fluxes

In Section 4.2.4, the particle flux density and kinetic energy flux density equations were discretized

in terms of energy-space. Eqns. (4.51) and (4.52) are written without the arguments of the incom-

plete Fermi integrals for brevity. The fluxes in the kth piece-wise energy window are

~Jn,k =−qDk

(
~E(kBT )βk F ′

βk
+∇r

[
(kBT )βk+1

q
Fβk

])
, (4.63)
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and

~Kn,k = EJ,k~Jn,k−qDk

(
~E(kBT )βk+1 F ′

βk+1 +∇r

[
(kBT )βk+2

q
Fβk+1

])
. (4.64)

The kinetic energy flux density differs from the particle flux density by an order of energy. There-

fore, the derivation of the real-space particle flux density discretization is directly amenable to the

kinetic energy flux density.

4.3.2.1 The Original SG Discretization

The method of Scharfetter and Gummel [77] is utilized to discretize the fluxes. The original SG

discretization technique was applied to the phenomenological DD equation. Given the projection

of the DD equation onto a primary edge of the DV mesh

Jn(r) =−µn

(
n(r)E(r)+

kT
q

dn(r)
dr

)
, (4.65)

where r is the spatial dimension along the edge, the particle flux Jn(r) and the electric field E(r) are

approximated as spatially constant on the edge [77]. The mobility µn and electron temperature T

are assumed to be spatially constant within a specific material region. With these approximations,

Eqn. (4.65) is a linear first-order differential equation in terms of n(r). Its solution on the ith

primary edge, with the BCs n(r = r0) = n0 and n(r = r1) = n1, is

Jn,i =
µnkBT

qL
[B(ξ )n0−B(−ξ )n1] , (4.66)

where

ξ =
qE

kBT
L. (4.67)

Appendix A.3 provides the complete derivation of the original SG discretization of the phenomeno-

logical DD model.

4.3.2.2 SG Discretization of the FKT Particle Flux

The SG discretization of the phenomenological DD model approximated the flux and electric field

as spatially constant on a primary edge and solved a linear first-order differential equation with
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density BCs at the nodes of the primary edge. The FKT particle flux requires approximations to

its spatially dependent coefficients in order to use the same process. The projection of the kth

piece-wise FKT particle flux on the jth primary edge is

Jn, jk(r) =−qD jk

(
E j(r)(kBT (r))β jk F ′

β jk
(r)+

d
dr

[
(kBT (r))β jk+1

q
Fβ jk

(r)

])
, (4.68)

where r represents the spatial coordinates along the edge from r0 to r1. The index k is associated

to the primary edge with index j for all subsequent particle fluxes. With the assumption that the

particle flux and electric field projections are spatially constant on the primary edge, i.e., Jn, jk(r)≈

Jn, jk and E j(r)≈ E j, there are two possible discrete particle fluxes (out of many ways to discretize

the equation) resulting from SG discretization. They are the generalized Einstein relation form

JE
n, jk =

qD jk

L j

(
Einn, jk

)
ave

[
B(ξn,E, jk)NE,0, jk−B(−ξn,E, jk)NE,1, jk

]
, (4.69)

with the density

NE,m, jk = (kBTm)
β jk F ′

β jk
, (4.70)

and Bernoulli function argument

ξn,E, jk =
1(

Einn, jk
)

ave

[
E j +∆Einn, jk

]
L j, (4.71)

and the inverse generalized Einstein relation form

JI
n, jk =

qD jk

L j

(
kBT

q

)
ave

[
B(ξn,I, jk)NI,0, jk−B(−ξn,I, jk)NI,1, jk

]
, (4.72)

with the density

NI,m, jk = (kBTm)
β jk Fβ jk

, (4.73)

and the Bernoulli function argument

ξn,I, jk =
1(

kBT
q

)
ave

[(
Ein−1

n, jk

)
ave

E j +∆

(
kBT

q

)]
L j. (4.74)

Appendix A.3.2 gives a complete derivation of both SG discretizations of the particle flux density

and the definitions of the generalized Einstein relation form, Eqns. (34) – (36), and the inverse

generalized Einstein relation form, Eqns. (43) – (46).
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The SG discretization of the particle flux density is directly applicable to the kinetic energy

flux density. The generalized Einstein relation form of the discrete kinetic energy flux density is

KE
n, jk =

qD jk

L j

(
EinE, jk

)
ave

[
B(ξE,E, jk)EE,0, jk−B(−ξE,E, jk)EE,1, jk

]
+EJ, jkJE

n, jk, (4.75)

with the density

EE,m, jk = (kBTm)
β jk+1 F ′

β jk+1, (4.76)

and Bernoulli function argument

ξE,E, jk =
1(

EinE, jk
)

ave

[
E j +∆EinE, jk

]
L j, (4.77)

and the inverse generalized Einstein relation form is

KI
n, jk =

qD jk

L j

(
kBT

q

)
ave

[
B(ξE,I, jk)EI,0, jk−B(−ξE,I, jk)EI,1, jk

]
+EJ, jkJI

n, jk, (4.78)

with the density

EI,m, jk = (kBTm)
β jk+1 Fβ jk+1(r), (4.79)

and the Bernoulli function argument

ξE,I, jk =
1(

kBT
q

)
ave

[(
Ein−1

E, jk

)
ave

E j +∆

(
kBT

q

)]
L j. (4.80)

The generalized Einstein relation EinE, jk and the inverse generalized Einstein relation Ein−1
E, jk of

the kinetic energy flux density differ from their particle flux counterparts by an order β jk. For

example, the kinetic energy inverse is Ein−1
E, jk(r) =

F ′
β jk+1(r)

F
β jk+1(r)

.

4.3.3 Heat Flow

The heat of a thermodynamic process is determined by the second law of thermodynamics. The

second law states that the entropy of a thermodynamic system always increases, or

kBT ∆σ = ∆En−F∆n = En(T2)−En(T1)−F [n(T2)−n(T1)] . (4.81)
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Here, ∆En is the internal energy of the system and F∆n is the free energy [88]. The quantity

kBT ∆σ is the heat of the thermodynamic process. With T2 > T1, the heat of this thermodynamic

process is positive.

Heat flow is required for closing the moments of the BTE. Therefore, an analogue of Eqn.

(4.81) is needed. The internal and free energy rates are exactly the kinetic energy flux and the

particle flux multiplied by the Fermi level, respectively. Physically, the discretized particle and

kinetic energy flux densities represent the rates of particle and energy exchange between two non-

equilibrium Fermi distributions connected by a DV primary edge. The fluxes are

Jn, jk = J0, jk(Tj,0,Tj,1)− J1, jk(Tj,0,Tj,1), (4.82)

and

Kn, jk = K0, jk(Tj,0,Tj,1)−K1, jk(Tj,0,Tj,1), (4.83)

where J0, jk(Tj,0,Tj,1) represents particles flowing from distribution 0 with relative Fermi level

(F −Ec)0 and temperature kBT0 to distribution 1 with relative Fermi level (F −Ec)1 and tem-

perature kBT1. J1, jk(Tj,0,Tj,1) represents the opposite flow of particles from distribution 1 to

distribution 0. Figure 4.7 presents an illustration of the particle and kinetic energy exchange. Both

terms of the fluxes depend on the Fermi distribution temperature at each node. This is due to the

approximations made to the coefficients of the particle fluxes.

With the definitions (4.82) and (4.83), the heat flow is a direct analogue of Eqn. (4.81). The

heat flowing from distribution 0 to 1 across the DV primary edge is

Hn, jk = K0, jk(Tj,0,Tj,1)−K0, jk(Tj,1,Tj,1)

− (F−Ec)0
[
J0, jk(Tj,0,Tj,1)− J0, jk(Tj,1,Tj,1)

]
−K1, jk(Tj,0,Tj,1)+K1, jk(Tj,0,Tj,0)

+(F−Ec)1
[
J1, jk(Tj,0,Tj,1)− J1, jk(Tj,0,Tj,0)

]
. (4.84)

The first four terms of the heat flow represent the internal and free energy rates of distribution 0

and the last four represent the internal and free energy of distribution 1. The signs of each term are
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Figure 4.7: The particle and kinetic energy flux from node 0 with Fermi distribution 0 to node 1
with Fermi distribution 1 connected by a DV primary edge.

determined by the definition that heat flows from distribution 0 to distribution 1 (or from primary

node 0 to primary node 1). If T0 > T1, then Eqn. (4.84) is a positive scalar quantity on the primary

edge. If T1 > T0, then Eqn. (4.84) is a negative scalar quantity on the primary edge. Each case

results in heat flow from higher temperature to lower temperature which is a consequence of the

second law of thermodynamics.

4.4 Conclusion

FKT is a deterministic Boltzmann solver which enforces a thermodynamic heat flow as its

closure relation. A thorough derivation of the FKT equations and their discretization in energy-

and real-space was presented in this chapter. Section 4.2 provided the energy-space discretization

techniques including the calculation of isosurface integrals, approximating the resulting integra-

tions with piece-wise energy power laws, and converting the energy integrals into incomplete

Fermi-Dirac integrals. Real space discretization techniques were presented in Section 4.3. The

box integration method was used to approximate divergence operators on the DV mesh and the SG

method was applied to discretize the FKT particle and energy flux densities. Finally, a detailed

description of the heat flow algorithm was reported in Section 4.3.3.
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CHAPTER 5

NUMERICAL SOLUTION OF THE FKT EQUATIONS

5.1 Introduction

A detailed derivation of the FKT device simulation equations and their discretization in energy-

and real-space was presented in Chapter 4. This chapter focuses on solving the system of nonlinear

FKT equations. In what follows, a detailed description of the nonlinear solver, the BCs used for de-

vice simulations, and important characteristics of the system of nonlinear equations are presented.

The mesh convergence and stability of the FKT equations are investigated. Finally, advanced sim-

ulation techniques including higher-order discretization methods are presented.

5.2 The System of Nonlinear Equations

The governing equations of the FKT device simulator are Poisson’s equation, Ampere’s and

Faraday’s equations, electron continuity, energy conservation, and lattice heating. After real- and

energy-space discretization, the residuals for n-type unipolar devices are

Poisi ≡∑
j

(
Φ

t+1
i −Φ

t+1
j

) εi jAi j

Li j
−q∑

m

(
N+

D,i,m−nt+1
i,m

)
Vi,m = 0, (5.1)

Ampi ≡

[
Et+1

rot,i +
Φ

t+1
i,0 −Φ

t+1
i,1

Li
− Et

rot,i−
Φt

i,0−Φt
i,1

Li

]
εiAi
∆t
−q∑

m
Jt+1

n,i,mAi,m−∑
j

Ht+1
j L j = 0,

(5.2)

Fari ≡
Ht+1

i −Ht
i

∆t
µ0Ai +∑

j
Erot, jL j = 0, (5.3)

ElConti ≡

[
nt+1

i −nt
i

∆t
+Cn,t+1

i

]
Vi +∑

j
Jt+1

n,i j Ai j = 0, (5.4)

EnConsi ≡

[
Et+1

n,i −Et
n,i

∆t
+CE,t+1

i

]
Vi +q∑

j

(
Et+1

j L j

)
Jt+1

n,i j Ai j +∑
j

St+1
n,i j Ai j = 0, (5.5)

LattConsi ≡ ρiCp,i
T t+1

L,i −T t
L,i

∆t
Vi−∑

m
CE,t+1

i,m Vi,m +∑
j

(
T t+1

L,i −T t+1
L, j

) κi jAi j

Li j
= 0. (5.6)
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Densities, fluxes, and collision operators with the subscript m are associated to unique Fermi dis-

tributions at the ith semiconductor node of the DV mesh. The electron number and energy densities

(with the time step superscript t removed for brevity) are

ni = ∑
k

Aik (kBTi)
αik+1 Fαik

(
ηρ,ik,aik,bik

)
≡∑

k
nik, (5.7)

En,i = ∑
k

{
Eρ,iknik +Aik (kBTi)

αik+2 Fαik+1

(
ηρ,ik,aik,bik

)}
, (5.8)

and the particle and kinetic energy flux densities are

Jn,i j = ∑
k

qD jk

L j

(
Einn, jk

)
ave

[
B(ξn, jk)N0, jk−B(−ξn, jk)N1, jk

]
≡∑

k
Jn,i jk, (5.9)

Nm, jk = (kBTm)
β jk F ′

β jk

(
ηJ,m, jk,c jk,d jk

)
, (5.10)

ξn, jk =
1(

Einn, jk
)

ave

[
E j +∆Einn, jk

]
L j, (5.11)

Kn,i j = ∑
k

{
EJ, jkJn,i jk +

qD jk

L j

(
EinE, jk

)
ave

[
B(ξE, jk)E0, jk−B(−ξE, jk)E1, jk

]}
, (5.12)

Em, jk = (kBTm)
β jk+1 F ′

β jk+1
(
ηJ,m, jk,c jk,d jk

)
, (5.13)

ξE, jk =
1(

EinE, jk
)

ave

[
E j +∆EinE, jk

]
L j. (5.14)

These are the “generalized Einstein” particle fluxes derived in Appendix A.3.2. The script E is

implied. The index k is associated to the primary edge with index j. This primary edge corresponds

to the stencil associated to the ith primary node. The functions
(
Ein∗, jk

)
ave and ∆Ein∗, jk, which

are discussed in Appendix A.3.2, are

∆Einn, jk =
1
L j

 kBT
q

Fβ jk

F ′
β jk

∣∣∣∣∣∣
j,1

− kBT
q

Fβ jk

F ′
β jk

∣∣∣∣∣∣
j,0

 , (5.15)

and (
Einn, jk

)
ave =

1
2

 kBT
q

Fβ jk

F ′
β jk

∣∣∣∣∣∣
j,1

+
kBT

q

Fβ jk

F ′
β jk

∣∣∣∣∣∣
j,0

 . (5.16)
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Here, the notation “ j,0” represents node zero of the jth primary edge. The Einstein functions for

the kinetic energy flux density are

∆EinE, jk =
1
L j

 kBT
q

Fβ jk+1

F ′
β jk+1

∣∣∣∣∣∣
j,1

− kBT
q

Fβ jk+1

F ′
β jk+1

∣∣∣∣∣∣
j,0

 , (5.17)

and (
EinE, jk

)
ave =

1
2

 kBT
q

Fβ jk+1

F ′
β jk+1

∣∣∣∣∣∣
j,1

+
kBT

q

Fβ jk+1

F ′
β jk+1

∣∣∣∣∣∣
j,0

 . (5.18)

See Section 4.2 for a detailed discussion on the energy-space discretization and Section 4.3 for

details on the real-space discretization. With the definitions

J0, jk
(
Tp, j,Tq, j

)
=

qD jk

L j

(
Einn, jk

)
ave

(
Tp, j,Tq, j

)
B(ξn, jk

(
Tp, j

)
)N0, jk

(
Tp, j

)
, (5.19)

J1, jk
(
Tp, j,Tq, j

)
=

qD jk

L j

(
Einn, jk

)
ave

(
Tp, j,Tq, j

)
B(−ξn,k

(
Tp, j

)
)N1, jk

(
Tp, j

)
, (5.20)

K0, jk
(
Tp, j,Tq, j

)
=

qD jk

L j

(
EinE, jk

)
ave

(
Tp, j,Tq, j

)
B(ξE, jk

(
Tp, j

)
)E0, jk

(
Tp, j

)
, (5.21)

K1, jk
(
Tp, j,Tq, j

)
=

qD jk

L j

(
EinE, jk

)
ave

(
Tp, j,Tq, j

)
B(−ξE, jk

(
Tp, j

)
)E1, jk

(
Tp, j

)
, (5.22)

the heat flow and total energy flux densities are

Hn,i j = ∑
k

{
K0, jk(Tj,0,Tj,1)−K0, jk(Tj,1,Tj,1)

− (F−Ec)0
[
J0, jk(Tj,0,Tj,1)− J0, jk(Tj,1,Tj,1)

]
−K1, jk(Tj,0,Tj,1)+K1, jk(Tj,0,Tj,0)

+(F−Ec)1
[
J1, jk(Tj,0,Tj,1)− J1, jk(Tj,0,Tj,0)

]}
, (5.23)

Sn,i j = Kn,i j +Hn,i j. (5.24)

5.2.1 Solution Variables

The solution variables of Eqns. (5.1) – (5.24) are the electric potential Φ
t+1
i , rotational electric

field Et+1
rot,i, magnetic field Ht+1

i , the Fermi level relative to the conduction band minimum in each
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material (F−Ec)
t+1
i , the electron temperature (kBT )t+1

i of a discrete electron gas, and the lattice

temperature (kBTL)
t+1
i . Assignment of the electron gas solution variables in real- and energy-space

and electromagnetics solution variables are next presented.

5.2.1.1 Electron Gases in Real-Space

One or more electron gases are assigned to each Voronoi polygon (2D) or polyhedron (3D) in the

DV mesh located in a semiconducting material. If a semiconductor mesh node lies on a material

interface, then the Voronoi cell is split into sub-regions. Each sub-region corresponding to a unique

material is assigned a separate electron gas. Primary nodes on the boundary of the mesh are

truncated in a similar manner. Section 2.2 provides a discussion on material interface and mesh

boundary splitting of the Voronoi diagram.

Material 2

Material 1

Material 3

(a)

Material 2

Material 3

B

A

C

(b)

Figure 5.1: (a) An example of a device mesh generated by the Sentaurus meshing tool. (b) An
illustration of the electron gases assigned to unique Voronoi polygons in the DV mesh.

Figure 5.1a presents an example of a DV mesh on which electron gases are assigned. Three

Voronoi polygons are drawn in Figure 5.1b. The Voronoi polygon associated to gas A is completely

enclosed in material 2 and therefore the entire polygon shaded in red represents the volume of the

gas. Because gas B is associated to a node on the boundary of the mesh, the Voronoi polygon is
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Figure 5.2: The (left) panel diagram of wurtzite GaN and (right) corresponding DOS isosurface
integral of the first Γ-valley. The energy-space of the first Γ-valley is split into two distinct Fermi
distributions doubling the number of electron gases in the semiconductor mesh.

truncated at the boundary. Node C is an important case in semiconductor device meshes. Because

this mesh node resides on a material interface, it receives separate gases associated to the two

unique materials. The Voronoi volume of gas C3 (the gas associated to material 3) is shaded in

pink and the Voronoi volume of gas C2 (the gas associated to material 2) is shaded in red. This

procedure generalizes to interfaces of an arbitrary number of materials.

5.2.1.2 Electron Gases in Energy-Space

Energy-space discretization was presented in Section 4.2. The band-structure of a bulk semicon-

ductor is incorporated into the FKT device simulator through piece-wise energy power law fits of

the isosurface integrals. For example, the power law fits are used to calculate the electron density

and energy density, Eqns. (4.49) and (4.50). These densities are associated to a sub-region of the

Voronoi cell corresponding to a unique material as described in the previous section.

The energy-space corresponding to an electron gas in a unique material can further be dis-

cretized into multiple Fermi distributions. Typically, valleys in the semiconductor band-structure

are assigned separate distribution functions. Scattering between the distributions is calculated with

92



the collision operators Cn and CE [83]. Figure 5.2 presents an illustration of a panel diagram and

the DOS isosurface integral, Eqn. (4.30), of wurtzite GaN [84]. The band-structure was calculated

with EPM [89]. The DOS data was obtained from Matt Grupen AFRL [84]. Only the first Γ-valley

is included in the DOS calculation and the energy-space of the valley is split into two separate

Fermi distributions labeled Γ1 and Γ2. The separation of the first Γ-valley into two distinct Fermi

distributions yields two sets of solution variables (F−Ec)
t+1 and (kBT )t+1 at each semiconduc-

tor mesh node. Real-space transport only occurs between the same distributions in energy-space.

Therefore, there is no particle flux between the Γ1 and Γ2 distributions. Rather, particles can drift

and diffuse between Γ1 at mesh node 1 and Γ1 at mesh node 2 and then scatter from Γ1 to Γ2 at

mesh node 2. The same is true for energy transport.

5.2.1.3 Electromagnetics

The solution variables corresponding to full-wave EM are the rotational electric field Erot,i and the

magnetic field Hi. The rotational electric field vector projections are defined on the primary edges

of the Delaunay mesh and magnetic field vector projections are defined on the edges of the Voronoi

diagram. A derived solution variable is the total electric field. On the jth primary edge, the total

electric field is

E j = Erot, j +
Φ j,0−Φ j,1

L j
, (5.25)

where the subscript j,0 corresponds to node zero of the primary edge. The primary edge points

from node 0 to 1. A complete discussion of the full-wave EM discretization, DVSI, is presented in

Chapter 3.

5.3 The Nonlinear Solver: Newton’s Method

The coupled nonlinear system, Eqns. (5.1) – (5.24), is solved with Newton’s method. See

Section 2.3.1.2 for a detailed description on the general Newton’s method solution of systems of

nonlinear equations. The pseudo-code outlining the Newton algorithm in Section 2.3.1.2 illustrates

the need to compute the residual vector and Jacobian matrix at each iteration. The residual vector
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is simply the concatenation of the discrete nonlinear Eqns. (5.1) – (5.5). These equations are

represented as Poisi, Ampi, Fari, ElConti, EnConsi, and LattConsi, respectively. The Jacobian

matrix Ji j is the partial derivative of the ith residual with respect to the jth solution variable.

The Newton linear system of an FKT device simulation is now discussed. The global non-

linear system consists of Nphi electric potential solution variables
{

Φ1,Φ2, ...,ΦNphi

}
, NF elec-

tron relative Fermi level solution variables
{
(F−Ec)1,(F−Ec)2, ...,(F−Ec)NF

}
, NT electron

temperature solution variables
{

kBT1,kBT2, ...,kBTNT

}
, and NT L lattice temperature solution vari-

ables
{

kBTL,1,kBTL,2, ...,kBTL,NT L

}
. If full-wave EM is included in the device simulation, there

are an additional NE rotational electric field solution variables
{

Erot,1,Erot,2, ...,Erot,NE

}
and NH

magnetic field solution variables
{

H1,H2, ...,HNH

}
.

A linear system is solved at each Newton iteration. The linear system is comprised of the Pois-

son residuals Poisi, then the Ampere residuals Ampi, then Fari, ElConti, EnConsi, and LattConsi.

With this arrangement, the full-wave FKT Newton linear system is

∂Pois1
∂Φ1

∂Pois1
∂Φ2

· · · ∂Pois1
∂kBTL,NT L

∂Pois2
∂Φ1

∂Pois2
∂Φ2

· · · ∂Pois2
∂kBTL,NT L

... . . . ...
∂LattConsNT L

kBTL,1

∂LattConsNT L
kBTL,2

· · ·
∂LattConsNT L

kBTL,NT L





∆Φ1

∆Φ2
...

∆kBTL,NT L


=−



Pois1

Pois2
...

LattConsNT L


.

(5.26)

The solution of Eqn. (5.26) determines the change in solution variables {∆Φ1 , · · · , ∆Erot,1, · · · ,

∆H1, · · · , ∆(F −Ec)1, · · · , ∆kBT1, · · · , ∆kBTL,NT L

}
. The global solution variable set is updated

according to

Φ
m+1
1 = Φ

m
1 +∆Φ1

...

Em+1
rot,1 = Em

rot,1 +∆Erot,1

...

kBT m+1
L,NT L

= kBT m
L,NT L

+∆kBTL,NT L . (5.27)
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5.4 Boundary Conditions

A list of the BCs required for electronic device simulations is presented in Table 5.1. Typical

BCs include metal contacts and port BCs used to provide or absorb EM energy.

B.C. Φ Erot H F−Ec kBT kBTL

Ohmic ΦCN +Va 0 0 (F−Ec)CN kBTL Soln.
Schottky ΦSB +Va 0 0 Soln. Soln. Soln.

Lattice Heat Absorbing Soln. Soln. Soln. Soln. Soln. Soln.
AC Impedance (Ohmic) Φ

t+1
ACI 0 0 (F−Ec)CN kBTL Soln.

AC Impedance (Schottky) Φ
t+1
ACI 0 0 Soln. Soln. Soln.

Full-wave Voltage Soln. 0 Soln. Soln. Soln. Soln.
Full-wave Impedance Soln. Soln. Himp Soln. Soln. Soln.

Table 5.1: A list of semiconductor device simulation BCs.

5.4.1 Ohmic Metal Contact

An essential metal BC found in almost every semiconductor device simulation is the Ohmic con-

tact. Charge neutrality is enforced at a distribution on an interface between a semiconductor and

an Ohmic contact. The solution variable F−Ec of a charge distribution on an Ohmic contact inter-

face is fixed to the charge neutral value (F−Ec)CN and maintains the electric potential ΦCN+Va.

Here, Va is a voltage applied to the Ohmic contact. The charge neutral quantities are determined

by the numerical solution of

Poisi|ohm. ≡∑
m

(
N+

D,i,m−nt+1
i,m

)
Vi,m = 0, (5.28)

and the assignment

ΦCN =−χe +ΦM +(F−Ec)CN. (5.29)

Here, the electron affinity χe and the work-function ΦM are properties of the semiconductor and

metal, respectively.
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5.4.2 Lattice Heat Absorbing Boundary Condition

The heat absorbing (HA) BC is meant to emulate lattice heat flow out of the device domain. With-

out this BC, the simulated devices will heat up to nonphysical levels. Outgoing lattice heat flow is

represented by the outward lattice temperature gradient (∇TL)HA on a boundary mesh node. The

gradient flux is through the in-plane Voronoi polygons associated to primary nodes on the mesh

boundary (see Figure 2.8). The total HA BC is

LattConsi|HA ≡

[
ρiCp,i

T t+1
L,i −T t

L,i

∆t
−∑

i
CE,t+1

i

]
Vi

+∑
j

(
T t+1

L,i −T t+1
L, j

) κi jAi j

Li j
+[n̂ · (∇TL)κA]HA = 0. (5.30)

Here, n̂ represents the normal of the mesh boundary. The lattice temperature gradient at the mesh

nodes of the HA boundary are reconstructed from the vector projections of the lattice temperature

gradients onto the primary edges associated to the mesh nodes.

5.4.3 Quasi-Static AC Impedance Boundary Condition

The quasi-static solver is excellent for lower frequency simulations where full-wave effects are

negligible. In order to calculate useful quantities including S-Parameters with the quasi-static

solver, the AC impedance must be used as a termination opposite the excitation contact. The

AC impedance BC is defined on metal contacts in the quasi-static solver. The integrated current

flowing into the AC impedance contact is

it+1 = ∑
k

Jt+1
k Ak. (5.31)

Here, Jk represents the particle flux density on the kth primary edge pointing into the AC impedance

metal contact. The area Ak is that of the in-plane Voronoi polygon associated to the primary edge

(see Figure 2.8). This integrated current specifies a Dirichlet BC on the metal contact’s potential

via Ohm’s law, i.e.,

Φ
t+1
i

∣∣∣
ACI

= ZACIi
t+1
ACI, (5.32)

where it+1
ACI ≡ it+1− it=0 represents only the AC component of the integrated current.
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5.4.4 Full-Wave Voltage Port

The voltage BC is a specific case of the port BC in which EM energy enters the full-wave solver.

The voltage port connects two metal contacts in the DUT. The electric field in the voltage port is

strictly irrotational, i.e., Erot,i = 0. Ampere’s law is solved on voltage port primary edges. The BC

is

Ampi|volt. ≡
[
Et+1

i,irr −Et
i,irr

]
εiAi
∆t
−q∑

m
Jt+1

n,imAim−∑
j

Ht+1
j L j = 0. (5.33)

Here, the irrotational electric field is Et+1
i,irr =

Φi,0−Φi,1
Li

where the subscript i,0 corresponds to node

zero of the ith primary edge. The primary edge points from node 0 to 1. This BC serves as the

governing equation for the magnetic field defined on the ith in-plane dual edge associated to a

primary edge on the boundary (see Figure 2.8). This magnetic field is included in the line integral

of Eqn. (5.33).

5.4.5 Full-Wave AC Impedance Port

The full-wave AC impedance (FWACI) BC is an energy sink port BC connecting two metal con-

tacts. The magnetic field HFWACI is defined on an in-plane dual edge associated to a primary edge

on the boundary. The magnetic field is equal to the total electric field on the primary edge divided

by the boundary’s impedance ZFWACI. The BC is

FWACIi ≡ Et+1
i −Et=0

i −ZFWACI

(
Ht+1

i,FWACI−Ht=0
i,FWACI

)
= 0, (5.34)

In a manner similar to the quasi-static AC impedance BC, the subtraction of the solutions calculated

at the first time step ensures that the BC only affects the AC components of the solution variables.

This emulates a bias tee circuit.

5.4.6 Heterojunctions and Thermionic Emission Boundaries

As outlined in Section 5.2.1.1, one or more electron gases are assigned to semiconductor mesh

nodes residing on heterojunctions. Figure 5.3 illustrates an example of a heterojunction between
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two semiconductors. In this example, each electron gas is approximated with a single Fermi dis-

tribution in energy-space. Because the two materials have different electron affinities, there is a

discontinuity in the conduction band across the heterojunction and thermionic emission is used to

calculate real-space transport across the discontinuity. With both distributions’ Fermi levels refer-

enced to the higher conduction band, the particle flux and kinetic energy flux density thermionic

emissions from semiconductor 1 to 2 are

J1→2
n,T E(T1) =

1
2π2

m∗

h̄3 (kBT1)
2

∞∫
0

dεz ln [1+ exp(η̃1− εz)] , (5.35)

and

K1→2
n,T E(T1) =

1
π2

m∗

h̄3 (kBT1)
3

∞∫
0

dεzεz ln [1+ exp(η̃1− εz)] , (5.36)

with the parameter

η̃1 =
(Fn−Ec)1 +Ec,1−Ec,high

kBT1
. (5.37)

A numerical quadrature routine is required to evaluate Eqns. (5.35) and (5.36). The high side

conduction band edge Ec,high is associated to the charge distribution in the material with the smaller

electron affinity at the heterojunction. The total thermionic emission particle, kinetic energy, heat,

and total energy flux densities are

Jn,T E = J1→2
n,T E(T1)− J2→1

n,T E(T2), (5.38)

Kn,T E = K1→2
n,T E(T1)−K2→1

n,T E(T2), (5.39)

Hn,T E = K1→2
n,T E(T1)−K1→2

n,T E(T2)

− (F−Ec,high)1

[
J1→2

n,T E(T1)− J1→2
n,T E(T2)

]
−K2→1

n,T E(T2)+K2→1
n,T E(T1)

+(F−Ec,high)2

[
J2→1

n,T E(T2)− J2→1
n,T E(T1)

]
, (5.40)

and

Sn,T E = Kn,T E +Hn,T E . (5.41)
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Figure 5.3: The band diagram across a two material heterojunction. The electron affinity of mate-
rial A is greater than material B’s electron affinity. The relative Fermi level solution variables are
illustrated for each charge gas.

The thermionic particle flux and total energy flux densities are added to the electron continuity

and energy conservation divergences, Eqns. (5.4) and (5.5). Figure 5.4 illustrates the particle diver-

gence for the two unique charge distributions defined on a heterojunction mesh node. There is only

a BTE particle flux (Jn,i j and Kn,i j) between charges associated to the same material. Thermionic

emission connects the two charge distributions at the heterojunction. With charge distributions A1

and B1 at the heterojunction mesh node, the electron continuity and energy conservation equations

for both distributions are

ElContA1|HJ ≡

(
nt+1

A1 −nt
A1

∆t
+Cn,t+1

A1

)
VA1 +∑

j
Jt+1

n,A1 jAA1 j + Jt+1
n,T EAT E = 0, (5.42)

ElContB1|HJ ≡

(
nt+1

B1 −nt
B1

∆t
+Cn,t+1

B1

)
VB1 +∑

j
Jt+1

n,B1 jAB1 j− Jt+1
n,T EAT E = 0, (5.43)
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Material A Material B

∇⋅Jn,B1∇⋅Jn,A1

Thermionic Emission

Across Heterojunction

Figure 5.4: An example of the particle divergences associated to two distributions at a heterojunc-
tion. Particle fluxes are calculated between two electron gases in the same semiconductor.

EnConsA1|HJ ≡

(
Et+1

n,A1−Et
n,A1

∆t
+CE,t+1

A1

)
VA1

+q∑
j

(
Et+1

j L j

)
Jt+1

n,i j AA1 j +∑
j

St+1
n,A1 jAi j

+St+1
n,T EAT E +EpotJt+1

n,T EAT E = 0. (5.44)

EnConsB1|HJ ≡

(
Et+1

n,B1−Et
n,B1

∆t
+CE,t+1

B1

)
VB1

+q∑
j

(
Et+1

j L j

)
Jt+1

n,B1 jAB1 j +∑
j

St+1
n,B1 jAi j−St+1

n,T EAT E = 0. (5.45)

The last term in Eqn. (5.45) represents the potential energy required to overcome the barrier Epot =

χA− χB with χA > χB. The area AT E corresponds to the Voronoi polygon in the heterojunction

plane associated to the primary node on the interface (see Figure 2.8).
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5.4.7 Schottky Metal Contact

Another important BC is the rectifying Schottky metal contact. This metal-semiconductor interface

is a special type of heterojunction. The important characteristic of the BC is the Schottky barrier

ΦSB. With no applied bias, the solution variable F −Ec of a charge distribution at this interface

equals −qΦSB. In the typical way, an applied bias which raises the Fermi level in the Schottky

metal will increase the potential barrier of the metal-semiconductor interface. An applied bias

which lowers the Fermi level will decrease the potential barrier. Transport across the discontinuity

caused by the Schottky barrier is calculated with thermionic emission. The energy −qΦSB and

the lattice temperature kBTL are used to compute the thermionic emission from the metal into the

semiconductor.

5.5 Semiconductor Device Simulation Work-Flow

In this section, the device simulation work-flow is discussed. Device solves include equi-

librium, static, quasi-static, and full-wave simulations. Each device solve will be reviewed and

discussed.

5.5.1 Work-Flow Overview

An overview of the semiconductor device simulation work-flow is provided in Figure 5.5. The

input to any device simulation is the mesh of the DUT. Included in the DUT mesh are material

specifications, dopant profiles and quantities, and BCs including Ohmic/Schottky contacts. The

solve types are grouped into three distinct classes: Equilibrium, static, and transient solves.

The Newton linear system corresponding to a specific device solve will be presented in block

matrix form. For example, the matrix corresponding to the partial derivative of the ith Poisson

residual with respect to the jth electric potential solution variable is ∂Poisi
∂Φ j

. The ith diagonal of this

matrix is
∂Poisi
∂Φi

= ∑
j

εi jAi j

Li j
. (5.46)
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The derivative of the ith Poisson residual with respect to the jth Fermi level solution variable is

∂Poisi
∂ (F−Ec) j

= q∑
m

∂nt+1
i,m

∂ (F−Ec) j
Vi,m. (5.47)

This Jacobian element requires partial derivatives of the densities with respect to the relative Fermi

levels which amounts to derivatives of incomplete Fermi integrals in terms of the derived solution

variables η . The numerical routine which calculations the incomplete Fermi integrals also returns

the derivative of the Fermi integrals.

DUT mesh Dopant profiles

Boundary conditions

Materials

Equilibrium

solve

Static

solve

Transient

solve

Thermal equilibrium profile

Metal contacts
Port B.C.s

E
n

er
g

y
 (

eV
)

Quiescent bias, static I-V family, etc.

S-Parameters, power sweep, load-pull, etc.

I D
S

VDS

Figure 5.5: A general work-flow diagram of a semiconductor device simulation.

The following sections describe the solve types in more detail. To do so, a practical example

is utilized — a GaN MESFET. Figure 5.6 presents an illustration of the 3D MESFET including

the material definitions and the metal contacts. The Ohmic source and drain and the Schottky

gate are the yellow regions at the top of the mesh. The Ohmic ground at the bottom of the mesh

is not shown. The dark green region is the GaN channel and the gray region is the insulating
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substrate. The transport direction (from source to drain) is along the x-axis in this example. The

substrate/semiconductor interface is perpendicular to the z-axis.

A complete device simulation is conducted with the 3D GaN MESFET example. First, the

thermal equilibrium profile is calculated with the equilibrium solver. Then, the quiescent bias is

calculated and finally the S-Parameters are calculated with the quasi-static and full-wave solvers.

Schottky Gate

n-GaN

Substrate

Launch

Ohmic Ground

Ohmic Source

Ohmic Drain

Input Port

Figure 5.6: The 3D GaN MESFET example used to demonstrate the device simulation work-
flow. The yellow regions at the top of the mesh are the Ohmic source and drain and the Schottky
gate contacts. The bottom surface of the mesh is the Ohmic ground contact (not shown). The GaN
channel is the dark green region and the insulating substrate is the gray region. The volume labeled
“launch” represents the insulating region connected to the voltage port (the red surface). This is
how EM energy is injected into the domain (see Section 5.4 for more information on the port BCs).

5.5.2 Equilibrium Solve

The equilibrium solve is the first component of the device simulation work-flow. This produces the

electric potential and electron relative Fermi level profiles in thermal equilibrium. Only Poisson’s

equation, Eqn. (5.1), is solved to produce the thermal equilibrium solution profiles. The Newton

linear system of this solve is [
∂Poisi
∂Φ j

][
∆Φ j

]
=−

[
Poisi

]
. (5.48)

Because the conduction band Ec will vary across the device in thermal equilibrium, the relative

Fermi level solution variable F−Ec must also be updated after each Newton iteration. This can be
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accomplished by amending the diagonals of the Jacobian to be

∂Poisi
∂Φi

= ∑
j

εi jAi j

Li j
+q∑

m

∂nt+1
i,m

∂Φi
Vi,m

= ∑
j

εi jAi j

Li j
−q∑

m

∂nt+1
i,m

∂ (Ec)i
Vi,m

= ∑
j

εi jAi j

Li j
+q∑

m

∂nt+1
i,m

∂ (F−Ec)i
Vi,m. (5.49)

The relation Ec = −χ −Φ dictates that a positive change in the electric potential corresponds to

a negative change in the conduction band. Furthermore, the electron Fermi level F is spatially

constant at thermal equilibrium which allows for the final substitution in Eqn. (5.49). The thermal

equilibrium solution variables are updated as

Φ
m+1
i = Φ

m
i +∆Φi (5.50)

(F−Ec)
m+1
i = (F−Ec)

m
i +∆Φi. (5.51)

Here, the superscript m represents the Newton iterations.

After the Poisson stage of the thermal equation solve, the rest of the steady-state equations are

added one at a time to allow all solution variables to relax to their numerical thermal equilibrium.

The Newton linear system of the final equilibrium stage, comprised of the residuals Poisi, ElConti,

EnConsi, and LattConsi, is shown in Eqn. (5.52). The additional stages of the thermal equilibrium

solves do not drastically change the electric potential or relative Fermi level solution variables.

The semiconductor band diagram and the electric potential profile of the 3D GaN MESFET

example in thermal equilibrium are shown in Figures 5.7a and 5.7b, respectively. As shown in

Figure 5.6, the metal contact located at the top middle of the device is a Schottky contact. In this

example, the Schottky barrier is ΦSB = 1.0V .

5.5.3 Static Solve

The next solve in the semiconductor device simulation work-flow is the static or steady-state solve.

Typically, an external voltage or current bias is applied to metal contacts to produce steady-state

104



-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

0 0.02 0.04 0.06 0.08 0.1

Ec

Ev

F

E
n

er
g

y
 (

eV
)

MESFET z-direction (μm)

(a)

Electric Potential

(b)

Figure 5.7: The thermal equilibrium solution variable profile of the 3D GaN MESFET example.
(a) The semiconductor band diagram illustrating the relative Fermi level solution variable in the
z-direction of the MESFET. (b) The spatial profile of the electric potential solution variable.

current flow. The static solver computes steady-state data including the current-voltage (I-V) fam-

ily and transconductance. The quiescent bias of a transistor is also calculated with the static solver.

As described in previous sections, a linear system is solved at each Newton iteration in order

to update the FKT device simulation solution variables. The linear system of the mth static solve

Newton iteration is

∂Poisi
∂Φ j

∂Poisi
∂ (F−Ec) j

∂Poisi
∂kBTj

0

∂ElConti
∂Φ j

∂ElConti
∂ (F−Ec) j

∂ElConti
∂kBTj

∂ElConti
∂kBTL, j

∂EnConsi
∂Φ j

∂EnConsi
∂ (F−Ec) j

∂EnConsi
∂kBTj

∂EnConsi
∂kBTL, j

0 ∂LattConsi
∂ (F−Ec) j

∂LattConsi
∂kBTj

∂LattConsi
∂kBTL, j





∆Φ j

∆(F−Ec) j

∆kBTj

∆kBTL, j


=−



Poisi

ElConti

EnConsi

LattConsi


.

(5.52)

The static FKT device simulation equations include Eqns. (5.1), (5.4), (5.5), and (5.6) with all time

derivatives set to zero, i.e., ∂

∂ t → 0. The Jacobian matrix, Eqn. (5.52), is more complex than the

equilibrium Jacobian matrix. For example, the middle diagonal matrix element requires the partial

derivative of the collision operator and the particle flux with respect to the relative Fermi level

solution variable. This Jacobian matrix element is

∂ElConti
∂ (F−Ec) j

=
∂Cn,t+1

i
∂ (F−Ec) j

Vi +∑
j

∂Jt+1
n,i j

∂ (F−Ec) j
Ai j. (5.53)

Derivatives of incomplete Fermi integrals are required for evaluating this Jacobian matrix element.
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The particle flux is exponentially dependent on ratios of Fermi integrals making this matrix element

highly nonlinear in terms of the solution variables.

Two static simulations of the GaN MESFET are now presented. Figure 5.8 illustrates the static
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Figure 5.8: The I-V family calculated with the static solve. The gate-source biases start at 0.5V
(top curve) and decrease by steps of 0.25V .

Electric Potential

Figure 5.9: The spatial profile of the electric potential solution variable at a specific quiescent bias.
The gate-source bias is −0.5V and the drain-source bias is 4V .

I-V family of the MESFET. The gate-source bias ranges from VGS = 0.5 V to -1.5 V with a 0.25 V

step. The drain-source bias is swept from VDS = 0 to 4V for each gate bias. The electric potential

solution variable profile of the MESFET with a quiescent bias of VGS =−0.5 V and VDS = 4 V is

presented in Figure 5.9.
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5.5.4 Quasi-Static Solve

After the quiescent bias of the device is calculated by the static solve, the quasi-static solve can

be used to simulate the RF response without the inclusion of full-wave EM. The RF response

metrics of transistors include small-signal S-Parameters. The simulated S-Parameters across a

broad frequency range can be very useful to circuit designers for impedance matching at input and

output ports in standard commercial software including ADS.

The linear system of the mth Newton iteration of the quasi-static simulation retains the same

form as Eqn. (5.52). However, because the time derivatives are now included in Eqns. (5.1), (5.4),

(5.5), and (5.6), the Jacobian matrix is different. As an example, the middle diagonal element of

the quasi-static Jacobian matrix is

∂ElConti
∂ (F−Ec) j

=

(
∂nt+1

i
∂ (F−Ec) j

1
∆t

+
∂Cn,t+1

i
∂ (F−Ec) j

)
Vi

+∑
j

∂Jt+1
n,i j

∂ (F−Ec) j
Ai j. (5.54)

The time step ∆t is typically chosen according to the driving frequency of the electronic device

simulation. A standard choice is ∆t = 1/(100× f0), where f0 is the fundamental frequency of the

device simulation.

5.5.5 Full-Wave Solve

Full-wave and hot-electron effects are captured in an electronic device simulation by solving Eqns.

(5.1) – (5.24). This solver can produce simulated S-Parameters which reflect the high frequency

parasitics in an electronic device. These parasitics become important at high frequency. The
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Newton linear system corresponding to a full-wave FKT device simulation is

∂Poisi
∂Φ j

0 0 ∂Poisi
∂ (F−Ec) j

∂Poisi
∂kBTj

0

∂Ampi
∂Φ j

∂Ampi
∂Erot, j

∂Ampi
∂Hj

∂Ampi
∂ (F−Ec) j

∂Ampi
∂kBTj

0

0 ∂Fari
∂Erot, j

∂Fari
∂Hj

0 0 0

∂ElConti
∂Φ j

∂ElConti
∂Erot, j

0 ∂ElConti
∂ (F−Ec) j

∂ElConti
∂kBTj

∂ElConti
∂kBTL, j

∂EnConsi
∂Φ j

∂EnConsi
∂Erot, j

0 ∂EnConsi
∂ (F−Ec) j

∂EnConsi
∂kBTj

∂EnConsi
∂kBTL, j

0 0 0 ∂LattConsi
∂ (F−Ec) j

∂LattConsi
∂kBTj

∂LattConsi
∂kBTL, j



×



∆Φ j

∆Erot, j

∆H j

∆(F−Ec) j

∆kBTj

∆kBTL, j


=−



Poisi

Ampi

Fari

ElConti

EnConsi

LattConsi


(5.55)

Full-wave simulations use the same choice of time step as quasi-static simulations. An example

of the Jacobian matrix calculated in a full-wave simulation of the GaN MESFET is illustrated in

Figure 5.14. The lattice heating equation is not included in this simulation.

Figure 5.10 presents the RF S-Parameters calculated with the quasi-static (dashed lines) and

full-wave (solid lines) solvers. The frequency sweep is 1 to 200 GHz. The full-wave solver captures

different small-signal parasitics in the MESFET. Proper treatment of the high frequency parasitics

is paramount for accurate circuit model extraction.

5.6 Mesh Convergence of the Discrete FKT Equations

The mesh convergence of the discrete FKT device simulation equations is investigated. This

numerical characteristic provides insight into how the errors of the device simulation solution vari-

ables converge with mesh refinement. Simulation of large electronic devices requires meshing

strategies in order to yield accurate results without insurmountable computational demands. Fol-
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Figure 5.10: Simulated S-Parameters of the GaN MESFET. The operating point of the device is
a gate-source bias of −0.5V and a drain-source bias of 4V . The top portion of the figure is a
polar plot and the bottom half is a Smith chart plot. The dashed lines represent the S-Parameters
calculated with the quasi-static solver and the solid lines are the S-Parameters calculated with the
full-wave solver. The full-wave simulation produces significantly different S-Parameters than the
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lowing Section 2.3.2, convergence of the discrete FKT equations is quantified by evaluating the ith

relative L2 error

εik =

√√√√√√∑
j

w j
[
ũi j,k−ui j,k

]2
∑
j

w ju2
i j,k

, (5.56)

on a series of meshes. Here, ũi j,k and ui j,k are the ith numerical and analytic solutions in the jth

element of the kth mesh, respectively. The weights w j are specified by the specific error calculation.

The global error of all solution variables in the device simulation is calculated as

εk =
√

∑
i

ε2
ik. (5.57)

The order of convergence of the FKT equations is determined by the relation

|εk|<CN
−pk
k , (5.58)
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Nk εk pk

1041 0.12896775 3.00
1646 0.03903999 2.22
3034 0.01340268 1.38
6283 0.00572172 1.28

Table 5.2: Convergence of the static FKT solution variables in the GaN MESFET example with a
gate-source bias of −0.5V and drain-source bias of 4V .

Nk εk ∆εk

2277 0.05570511
2893 0.02115591 -0.03454920
4513 0.00024652 -0.02090938
5535 0.00002885 -0.00021767

Table 5.3: Convergence of the I-V family of the GaN HEMT example calculated with the static
FKT solver.

where Nk is the number of DOF in the mesh, pk is the approximate order of convergence, and C is

a constant.

Two numerical examples are presented to provide insight into the convergence of the discrete

FKT equations. The first is a static simulation of the GaN MESFET. After a quiescent bias of

VGS = −0.5V and VDS = 4V is calculated with the static solver, the global solution variables

are saved on a series of five meshes. The first and last meshes are the most coarse and dense,

respectively. Solutions on the dense mesh are used as the “analytic solutions” ui j,k in Eqn. (5.56).

Calculating the global solution variable error εk requires interpolation of the nodal solution

variables on the dense mesh to the nodes of the series of meshes. To this end, linear interpolation

is used for its simplicity and efficiency in the post-processing. After the dense mesh solution

variables are interpolated to the series of meshes, the global solution variable error is calculated

with numerical quadrature. Therefore, the weights w j in Eqn. (5.56) represent the volumes of the

quadrature simplices.

Table 5.2 reports the integrated errors for each mesh in the series. The first column lists the

DOF corresponding to each mesh. The second and third columns list the solution variable errors

110



εk and the approximate order of convergence pk for each mesh in the series. According to these

results, the FKT device simulator exhibits approximately first-order convergence, i.e., pk = 1.

This is due to the SG discretization of the particle fluxes. The crux of the flux discretization is the

approximation of the particle fluxes as spatially constant across the primary edges of the DV mesh.

This approximation implies first-order mesh convergence.

A pragmatic example of FKT device simulation convergence is an investigation of the I-V

family calculated by static simulation of a GaN HEMT on a series of meshes. The GaN HEMT

is discussed in detail in Chapter 6. The device’s currents are an important output of the device

simulator. Therefore, it is a useful study to determine how the simulated currents are affected by

mesh refinement. The error calculation of this example requires evaluation of Eqn. (5.56) at each

drain-source bias. The I-V curves on the dense mesh are used as the “analytic” solutions. Table 5.3

lists the DOF, global errors in the I-V curves εk, and the corresponding change in the errors ∆εk

compared to the previous mesh in the series. Figure 5.11 presents the calculated I-V curves on the

series of four meshes. The change in the device’s response becomes negligible after the third mesh
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Figure 5.11: The I-V families of the GaN HEMT calculated with the static solver on a series of
four meshes.
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refinement. Furthermore, only the linear region of the device’s I-V family is moderately affected

by the mesh refinement. This type of mesh refinement may not be necessary when simulating the

RF response at the peak transconductance of the saturated region of the I-V family.

5.7 Stability of the Discrete FKT Equations

Stability of nonlinear differential equations is a deep and rich subject in systems theory and

engineering [54]. One part of stability theory is the analysis of equilibrium points. The analysis

starts with a given equilibrium point of the autonomous system dxi(t)
dt = Fi(xi(t)), i.e., Fi = 0. The

system of nonlinear differential equations are said to be stable if for a given perturbation of the

equilibrium, the solutions return to the equilibrium point. A detailed discussion on stability of

nonlinear equations was presented in Section 2.3.3.

The following examples analyze the stability of the discrete FKT equations. The equilibrium
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Figure 5.12: Deviation of the numerical enthalpy, Eqn. (5.60), for the GaN MESFET (red line) and
HEMT (black line) examples. Both equilibria are perturbed by displacing two randomly chosen
electron gases from their thermal equilibrium states.
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Figure 5.13: Five independent enthalpy analyses of the GaN MESFET example. Each perturbation
moves three randomly chosen electron gases from their thermal equilibrium states. No perturbation
was found to be unstable. The deviation from the thermal equilibrium enthalpy decayed exponen-
tially near the convergence tolerance.

points are the solutions of the static solver at thermal equilibrium, i.e., no external biases. After

the thermal equilibrium of the specific device example is computed, the total numerical enthalpy

of the system is calculated as

H ≡∑
i

[
En,i + kBTini

]
Vi. (5.59)

The enthalpy is calculated from the electron kinetic energy density En,i, electron temperature kBTi

and electron density ni defined in the DUT. The summation represents integration over the ele-

ments of the DV mesh. Perturbation amounts to displacing the FKT solutions from their thermal

equilibrium states. For these purposes, two electron gases are randomly chosen and their relative

Fermi levels and temperatures are perturbed. The perturbed solutions are used as initial conditions

to the quasi-static solver. A transient simulation with no external biases is solved until the dis-

crete residuals reach the global numerical tolerance of 10−9. The deviation of the total numerical
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enthalpy is quantified as

∆Ht+1 =
∣∣∣Ht+1−Hequilib.

∣∣∣ , (5.60)

where Ht+1 is calculated at each time step of the quasi-static solver and Hequilib. is the numerical

enthalpy of the thermal equilibrium solutions.

Two GaN device examples, a MESFET and a HEMT, are chosen to numerically demonstrate

the stability of the discrete FKT equations. The GaN HEMT is discussed in detail in Chapter 6.

Both device examples are simulated as closed systems, i.e., lattice heating is not included. Two

electron gases are randomly chosen and perturbed from their thermal equilibrium states. Fig-

ure 5.12 presents the deviation of the enthalpy ∆Ht+1 for both device examples. The red line

represents the enthalpy deviation versus time for the GaN MESFET example and the black line

presents the same for the GaN HEMT example. An approximate convergence line is illustrated in

the figure. Figure 5.13 presents five more enthalpy deviation simulations of the MESFET exam-

ple. Each perturbation moved an additional random electron gas from its equilibrium state. No

perturbation simulation is found to be unstable. Furthermore, each enthalpy deviation approaches

an exponential rate of decay near the convergence tolerance. This provides insight into the stability

and robustness of the FKT device simulation equations.

5.8 Advanced Simulation Techniques

Simulating large electronic devices requires high computational efforts. For example, the DOF

corresponding to a four-finger transistor could quadruple compared to a single gate transistor. Fur-

thermore, devices with exotic materials like gallium oxide (β -Ga2O3) could require many Fermi

distributions associated to band-structure valleys which would further increase the DOF. To ac-

commodate the simulation of large and/or complex electronic devices, the TCAD tool must include

advanced techniques to help alleviate some of the computational burden.
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5.8.1 The Linear Solve

The most time consuming portion of a simulation of a large electronic device is the Newton linear

solve. The Jacobian of an FKT device simulation with an arbitrary unstructured DV mesh is a

sparse matrix. The sparsity comes from the fact that the discretization stencils only depend on

nearest neighbors in the DV mesh. Figure 5.14 illustrates an example of an FKT device simula-

Poisi

Ampi

Fari

ElConti
EnConsi

Φj Erot,j (F - Ec)jHj kBTj

Figure 5.14: An example of the Jacobian matrix calculated in the FKT device simulator. The
Jacobian matrix corresponds to a full-wave FKT solve. Dotted lines mark the boundaries of the
residual rows and solution variable columns in the Jacobian matrix. The rows of the Jacobian
correspond to Poisson’s equation, Ampere’s equation, Faraday’s equation, electron continuity, and
energy conservation residuals, respectively.

tion Jacobian. This Jacobian matrix corresponds to a full-wave simulation of the GaN MESFET

first presented in Section 5.5.1 and illustrated in Figure 5.6. Lattice heating was not included in

this FKT device simulation. The DV mesh of the MESFET is a standard example of a general

device simulation mesh. Therefore, this Jacobian can be considered a standard example of an FKT

device simulation Jacobian matrix. The sub-matrix blocks in the Jacobian matrix in Figure 5.14
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Figure 5.15: An example of the Jacobian matrix after RCM re-ordering.

correspond to the five equations of the FKT device simulation. The sub-matrix blocks are outlined

with dashed lines. The governing equations of the full-wave simulation are Poisson’s equation,

Ampere’s equation, Faraday’s equation, electron continuity, and energy conservation. Located in

the top left corner is the Poisson sub-matrix block corresponding to the elements ∂Poisi
∂Φ j

.

One note about the Jacobian matrix in Figure 5.14 is about the Faraday sub-matrix block ∂Fari
∂Φ j

.

According to Eqn. (5.55), this sub-matrix should be zero. However, there are non-zero elements in

this matrix block in Figure 5.14. These non-zero elements correspond to the full-wave voltage port

BC described in Section 5.4.4. The voltage port BC requires magnetic field solution variables in

the plane of the boundary. These in-plane magnetic field variables are governed by Ampere’s law

and their residuals are located at the magnetic field solution variable rows. This dependence on

Ampere’s law gives rise to the non-zero Jacobian elements corresponding to the electric potential.

The linear solve computation time can be reduced by re-ordering the solution variables to re-
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duce the bandwidth of the Jacobian matrix. The bandwidth of a matrix is defined as the largest

distance between the diagonal element and an off-diagonal element in a row. The overall band-

width is the maximum distance of all rows. A banded matrix is one with a “reasonably small”

bandwidth. A standard method to reduce the matrix bandwidth is the reverse Cuthill-McKee algo-

rithm (RCM) [90]. RCM aims to permute the sparse matrix into a banded matrix form with as small

of a bandwidth as possible. An implementation of the RCM algorithm is applied to the Jacobian

matrix of the GaN MESFET example. The resulting banded matrix is illustrated in Figure 5.15.

The bandwidth of the RCM re-ordered Jacobian matrix is 296.

5.8.2 Second-Order SG Discretization

Reduction of the Newton linear system size is another approach to alleviating some of the compu-

tational burden of simulating large devices. This could be accomplished by reducing the number

of mesh elements in the simulation. Coarsening the mesh, however, could have adverse affects

including inaccuracies in the simulated results and possible convergence issues.

A higher-order numerical framework would allow mesh coarsening without infringing on the

integrity of the simulated results. In Section 5.6, the mesh convergence of the FKT device simu-

lator was presented and discussed. The FKT equations exhibit first-order mesh convergence due

to the SG discretization of the particle fluxes. Fluxes and electric field solution variables are ap-

proximated as spatially constant along the primary edges of the DV mesh which yields a first-order

method. This section expands upon the SG discretization to develop a second-order method. In

the following, the first-order particle flux device simulations are termed SG1 and the simulations

with the second-order fluxes are termed SG2.

5.8.2.1 Derivation of the SG2 Particle Flux

The new discretization of the FKT particle flux is derived and discussed. This discretization is an

extension of the original SG technique [77] which was presented in Section 4.3.2 and is derived in
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Appendix A.3. The derivation starts with the phenomenological DD equation

Jn(r) = a1n(r)+a2
dn(r)

dr
, (5.61)

where a1 and a2 are constant on a primary edge of the DV mesh. The flux Jn(r) is approximated

with a second-order polynomial which yields

J2(r− r0)
2 + J1(r− r0)+ J0 = a1n(r)+

dn(r)
dr

. (5.62)

Here, J0, J1, and J2 are coefficients of the polynomial. The original SG discretization technique

solved an inhomogeneous linear differential equation for the electron density. Then, BCs were

applied to yield the discrete form of the particle flux. This discretization follows the same approach.

Eqn. (5.62) is a linear first-order differential equation with a spatially dependent inhomogeneity.

The solution of Eqn. (5.62) with the BCs n(r = r0) = n0, n(r = r1) = n1, dn
dr

∣∣∣
r0

=
dn0
dx , and

dn
dr

∣∣∣
r1

=
dn1
dx for Jn ≡ J2(r− r0)

2 + J1(r− r0)+ J0 is

Jn =
a2
L

[
B1(ξ )n0 +LB3(ξ )

dn0
dx
−B2(ξ )n1−LB4(ξ )

dn1
dx

]
. (5.63)

Here, L is the length of the primary edge, the argument of the B functions is ξ =
a1
a2

L, and the B

functions are

B1(x) =
x(4+ ex(x−4)+3x)
4(2+ ex(x−2)+ x)

, (5.64)

B2(x) =
x(4+ x+ ex(3x−4))
4(2+ ex(x−2)+ x)

, (5.65)

B3(x) =−
4+ ex(x−4)+ x(x+3)

4(2+ ex(x−2)+ x)
, (5.66)

B4(x) =−
4+ x− ex (4+ x(x−3))

4(2+ ex(x−2)+ x)
. (5.67)

Eqn. (5.63) is the second-order discretization of the DD flux. In this derivation, the flux is approxi-

mated with a second-order spatial polynomial. Because a second-order spatial polynomial exhibits

third-order mesh convergence, the overall discretization should be third-order. However, the FKT

particle will be second-order due to approximations made to the coefficients a1 and a2. The density

gradient terms dnm
dx are approximated with central differences across the primary edges.
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The discrete flux, Eqn. (5.63), is similar to the original discrete particle flux, Eqn. (28), derived

in the appendix. There are two sets of terms which represent particles flowing from node r0 and

node r1 of the primary edge. This fact allows the heat flow algorithm to be applied to the second-

order discrete flux. Finally, the discretization of the general DD flux is applied to the generalized

Einstein FKT particle flux with the substitutions

a1→−qD jk
[
E j +∆Einn, jk

]
, (5.68)

and

a2→−qD jk
(
Einn, jk

)
ave . (5.69)

Because the second-order discretization is arranged in a similar manner to the first-order discretiza-

tion, the argument of the B functions is the same as the argument of the Bernoulli functions in the

generalized Einstein flux. This argument is

ξn, jk =
1(

Einn, jk
)

ave

[
E j +∆Einn, jk

]
L j. (5.70)

In the following, validation and simulation results are presented with the SG2 particle fluxes.

5.8.2.2 Validation of the Equations: Particle Flux Reconstruction

Validation of the second-order particle flux discretization in the FKT device simulator is performed

by prescribing an analytic spatial profile to solution variables and calculating the discrete fluxes on

primary edges of the DV mesh. The discrete particle flux is compared to the analytic particle flux

to quantify a reconstruction error. The L2 error described in Section 5.6 is used.

An example of a flux reconstruction with an analytic solution variable profile is illustrated in

Figure 5.16. The left of the picture presents the structured cube mesh on which a flux reconstruction

error is calculated. Also shown in the figure is the analytic electric potential solution variable

profile. The reconstructed FKT particle fluxes are presented on the right of Figure 5.16. The

vector plot is an interpolation of the nodal vector data loaded into a visualization software. Scalar

vector projections onto primary edges of the DV mesh are compared to analytic vector projections
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Figure 5.16: Flux reconstruction on a 10×10×10 structured cube mesh. An analytic profile is
prescribed for the electric potential, relative electron Fermi level, and electron temperature solu-
tion variables. The FKT particle fluxes are computed on all primary edges of the DV mesh and
compared to analytic fluxes to quantify a reconstruction error.

to calculate the global L2 error. This process is repeated on a series of meshes to quantify the mesh

convergence of the FKT particle flux reconstruction.

Order analysis results are presented in Figure 5.17 for the SG1 and SG2 FKT particle flux

reconstructions. Here, the L2 errors of the reconstructed particle fluxes are presented versus the

maximum primary edge length of the DV meshes. The errors corresponding to the SG1 particle

fluxes are plotted in red and the errors corresponding to the SG2 particle fluxes are plotted in blue.

As expected, the SG1 particle flux reconstructions exhibit first-order convergence. This result also

demonstrates that the SG2 particle fluxes derived in this section exhibit second-order mesh con-

vergence. As described in Section 5.8.2.1, the particle flux is approximated with a second-order

polynomial and discretized by integrating the inhomogeneous first-order linear differential equa-

tion. Even though the particle flux is approximated with a third-order mesh convergent polynomial,

the overall particle flux is second-order due to approximations of the flux coefficients. The flux

coefficient approximations are described in Chapter 4 and Appendix A.3.
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Figure 5.17: Order analysis of the FKT particle flux reconstruction. The errors corresponding to
the SG1 particle fluxes are illustrated in red and the SG2 errors are illustrated in blue. As expected,
the SG1 particle flux reconstructions exhibit first-order convergence and the SG2 particle flux
reconstructions exhibit second-order convergence.

5.8.2.3 Four Particle System

Simulation of electronic devices with the SG2 FKT particle flux discretization begins with a simple

1D mesh with four nodes. The two boundary nodes are designated as Ohmic contacts. This

simulation has two interior DOF. A dopant discontinuity exists at the middle of the device. The first

two nodes are doped with 1012 cm−3 donors and the second two are doped with 1014 cm−3 donors.

Figure 5.18 presents the I-V curves computed with the SG1 and SG2 FKT device simulators. The

device currents calculated with the SG1 simulator are plotted in black and the device currents

calculated with the SG2 simulator are plotted in red. The SG2 device simulator failed to converge

at approximately Va = 0.2 V. Furthermore, the slope of the anode current changes sign before the

simulator crashes.

The previous results hint at a stability issue of the SG2 particle flux. To investigate this issue,

the phase portrait of the two DOF system is calculated for stability analysis. Figure 5.19 presents

the direction field drawn with black vectors and four trajectories drawn with blue lines. The x-axis
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Figure 5.18: The simulated static I-V of the four particle system with two interior DOF. SG1
device simulation currents are plotted in black and SG2 currents are plotted in red.
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Figure 5.19: The phase portrait of the four particle, two DOF system. The direction field is plotted
with black vectors and four trajectories are plotted with blue lines. Initial conditions of the trajec-
tories are plotted with blue circles. There are three equilibria of the system of nonlinear equations,
two of which are unstable.
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represents the density N0 of the first particle and the y-axis represents the second particle’s density

N1. The trajectories represent the integrated SG2 nonlinear equations with four different initial

conditions drawn with blue circles. There are several equilibria of the SG2 system of equations.

The direction field indicates that two of the equilibria are unstable. These multiple and unstable

equilibria are a known issue of higher-order methods in the computational fluid dynamics (CFD)

community.

5.8.2.4 Flux Limiters

A well known mathematical result from the CFD community is Godunov’s theorem. It states that

linear numerical schemes for solving PDEs, having the property of not generating new extrema,

can be at most first-order accurate [91]. The converse of this states that higher-order accurate

numerical methods will generate new extrema. This fact is numerically demonstrated with the

SG2 phase portrait in Figure 5.19. New extrema are generated by increasing the particle flux order

from first to second. These equations are no longer monotone and therefore not unique and are

unstable.

A substantial effort in the CFD community was devoted to the development of high-resolution

schemes for fluid-flow simulations. Specifically, Harten developed a measure of discrete varia-

tion in the solution fields which is called total variational diminishing (TVD) [92]. A numerical

technique called a “flux limiter” was developed in order to overcome the restrictions imposed by

Godunov’s theorem and enforce the monotonicity criterion set forth by Harten. Several versions

of flux limiters exist in the literature with a concise summary provided in [93].

A flux limiter attempts to diminish spurious oscillations in solutions near discontinuities and/or

sharp changes in the solution domain. The oscillations are a consequence of the new extrema

generated by the higher-order method. In terms of the FKT device simulator, this includes sharp

changes in electron density at dopant fronts and inflection points in the electric potential near metal

contacts. The particle fluxes near these device features are restricted to enforce monotonicity.

A smooth variation between low and high order is enforced based on numerical criteria. The
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functional form of this variation is

J = Jlow−φ(r)
(
Jlow− Jhigh

)
. (5.71)

Here, Jlow represents the lower-order, monotonic flux and Jhigh represents the higher-order flux.

The function φ(r) is the flux limiter. If φ(r) = 0, then the overall flux is first-order. A second-order

flux results from φ(r) = 1. Standard practice enforces a specific functional form for the flux limiter

φ(r) which smoothly varies from 0 to 1 [93]. An example of a flux limiter is the van Albada form

φ(r) =
r2 + r
r2 +1

. (5.72)

Here, the term r represents successive gradients of electron density on a 1D mesh, or

ri =
Ni−Ni−1
Ni+1−Ni

. (5.73)

5.8.2.5 Higher-Order Simulation of a 1D Diode

The flux limiter described in the previous section is applied to the SG2 particle fluxes in the FKT

device simulator. The Jlow term of Eqn. (5.71) represents the SG1 particle flux and Jhigh represents

the SG2 particle flux. The SG2 particle flux is given in Eqn. (5.63).

A 1D n+-n diode is simulated with the SG2 FKT device simulator. The dopant density of the

n+ region is 3× 1017 cm−3 donors. The second region is lightly doped with 1012 cm−3 donors.

Figure 5.20 presents an illustration of the thermal equilibrium band diagram calculated with the

SG1 and SG2 device simulators. The conduction and valence bands are drawn in black and the

electron Fermi level F is drawn in red. In this figure, the SG1 results are illustrated with solid lines

and the SG2 results are illustrated with squares. This result demonstrates that the SG2 equations

properly reproduce the thermal equilibrium band diagram.

The simulated I-V curves of the 1D diode are presented in Figure 5.21. Here, the SG1 results

are plotted in black and the SG2 results are plotted in red. The SG2 current is similar to the current

calculated with the SG1 device simulator. The difference resides in the fact that the SG2 device

simulation is more accurate and therefore provides different results.
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Figure 5.20: The simulated thermal equilibrium band diagram of the 1D diode. The SG1 results
are plotted with solid lines and the results computed with the SG2 solver are plotted with squares.
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Figure 5.21: The simulated static I-V of the 1D diode. SG1 device simulation currents are plotted
in black and SG2 currents are plotted in red.

Table 5.4 presents the error in the FKT solution variables versus the number of DOF. In a

manner similar to the mesh convergence analysis in Section 5.6, the solutions on each mesh are
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compared to the solutions on the most dense mesh. The first column of Table 5.4 lists the DOF

for each mesh. The second through fifth columns present the relative error of the SG1 solutions,

the approximate order of convergence of the SG1 errors, the relative error of the SG2 solutions,

and the approximate order of convergence of the SG2 errors, respectively. As indicated by the

DOF εk (SG1) pk (SG1) εk (SG2) pk (SG2)

30 2.1e-1 1.2 3.7e-1 1.8
60 1.4e-1 1.2 2.7e-1 1.8
120 7.7e-2 1.2 1.1e-1 1.8
180 3.5e-2 1.2 2.4e-2 1.8

Table 5.4: Solution variable errors and approximate order of convergence of the SG1 and SG2
FKT device simulations of the 1D diode.

results in Table 5.4, the FKT device simulator with the SG2 particle fluxes exhibits higher-order

convergence than the FKT device simulator with the SG1 particle fluxes. The order of convergence

is not p = 2.0, however, because the flux limiter varies between 0 and 1 across the DV mesh. This

yields particle fluxes between first- and second-order and the overall order of convergence for the

1D diode example is pk = 1.8.

5.9 Conclusion

A detailed description of the numerical solution of the discrete FKT device simulation equa-

tions was presented in this chapter. The discrete system of nonlinear equations was summarized

in Section 5.2, a detailed description of the FKT solution variables was presented in Section 5.2.1,

and the Newton’s method approach to solving the nonlinear equations was presented in Section 5.3.

BCs used for simulating electronic devices were presented and discussed in Section 5.4. An

overview of the semiconductor device simulation work-flow was presented in the next section.

This included examples of the Jacobian matrices for static, quasi-static, and full-wave FKT device

simulations. The mesh convergence and the stability of the FKT device simulation equations were

then analyzed in Sections 5.6 and 5.7, respectively. The results presented in these sections provided

quantitative evidence that the FKT device solver is first-order convergent and numerically robust
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and stable for all device examples that were investigated. Finally, advanced simulation techniques

were reported in the final section. Some aspects of the Newton linear solve were presented in Sec-

tion 5.8.1. An extension of the SG discretization scheme was then presented which increased the

mesh convergence to nearly second-order. Section 5.8.2 provided derivation and implementation

details of the second-order SG scheme.
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CHAPTER 6

RF SIMULATIONS OF GAN HEMT TECHNOLOGY

6.1 Introduction

Physics based modeling of GaN HEMT PAs offers a promising alternative to high frequency

and large-signal measurements. However, the physics based TCAD tool must accurately capture

the physical processes in the device to provide useful data to RF circuit designers. The salient

features required for accurate large-signal RF simulations include electronic band-structure, hot-

electron effects, self-heating, scattering, trapping, and full-wave EM.

PA devices with GaN technology are scaled to deep sub-micron gate lengths. This allows high

frequency operation of the TR module. However, because the devices are scaled in physical size

but the applied voltages cannot be scaled in a similar way, the GaN transistors are subject to large

electric fields. This causes the electrons in the channel of the device to heat up substantially and

begin to emit phonons. This is the hot-electron effect. Figure 6.1 illustrates the electron drift ve-

locity as a function of the applied electric field calculated with MC [94, 95]. The electron velocity
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Figure 6.1: Electron drift velocity vs. electric field of bulk GaN calculated with MC.
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peaks at approximately 200 kV/cm then begins to decrease in value. This is velocity overshoot and

saturation — a result of the hot-electron effect. It is critical that the TCAD simulation tool captures

hot-electron effects in order to produce accurate data.

The hot-electron effect can be mathematically explained with the second moment of the BTE.

The Joule’s heat source term in the energy conservation equation drives the electron temperature

and is eventually balanced by the collision operator sink term. Because the large electric fields

create hot electrons in the device which in turn interact with the lattice, it is necessary to include

lattice heating in the device simulator. The lattice energy conservation equation provides a modest

account for phonon temperature in the device.

Both physical effects, as well as full-wave EM, can be incorporated into deterministic and

stochastic device simulators. As outlined in the introduction, two important categories of charge

transport solvers are the hydrodynamic and MC methods. Both solvers have been applied to GaN

HEMT simulations.

Hydrodynamic solvers are widely used in the device simulation community for analysis and

characterization of power transistors. An AlGaN/GaN HEMT with surface traps was investigated

with the commercially available DESSIS hydrodynamic software in [96]. This contribution did

not include RF simulations, however. Self-heating and hot-electron effects were studied in Al-

GaN/GaN double-channel HEMTs in [97], but also did not include RF simulations. Finally, the

two-dimensional device simulator Minimos-NT [98] was used to accurately simulate both the static

and small-signal response of several GaN HEMTs. Hydrodynamic solvers attempt to incorporate

electronic band-structure and hot-electron effects through fitting parameters. For example, a field-

dependent mobility is tuned in [98] to model velocity saturation in GaN. Furthermore, hydrody-

namic solvers rarely incorporate full-wave EM, with the exception of a 2D solver used to simulate

THz plasma waves [99].

Many EMC and CMC methods have successfully simulated the responses of GaN HEMTs.

Chronologically, this list (which is not claimed to be complete) begins with quantum corrected

full-band CMC simulations [100]. Self-heating effects in sub-micron GaN HEMTs were calculated
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with an electro-thermal MC method [101] and another MC method investigated the influence of

source-gate distance on AlGaN/GaN HEMT performance [102]. Two separate electro-thermal MC

analyses of GaN HEMTs were also presented in [103] and [104]. Finally, a full-band CMC solver

was applied to large-signal RF simulations of GaN HEMTs in [28]. Although the MC simulations

are accurate, the inclusion of full-wave EM is rare with the exceptions of [66] and [105]. A full-

wave MC method, however, will suffer from long computational times.

FKT is a promising deterministic Boltzmann solver for large-signal RF GaN HEMT simula-

tions. Features included and physical effects captured in the FKT device simulator are:

• Electronic band-structure calculated with EPM

• Hot-electron effects determined by higher moments of the BTE

• Self-heating effects by inclusion of the lattice heating equation

• Quantum mechanical scattering computed by Fermi’s golden rule

• Full-wave electromagnetics calculated with Ampere’s and Faraday’s laws

The derivation, discretization, and analysis of the FKT equations was presented in Sections 3 – 5.

In the following sections, a high speed GaN HEMT is simulated with the FKT device TCAD tool.

6.2 AlGaN/GaN HEMT Topology

Thermal equilibrium, static, and RF small- and large-signal FKT simulations of a single gate

AlGaN/GaN HEMT are presented. The AlGaN/GaN HEMT is a high frequency device which

demonstrated a record fmax of 230 GHz at a specific quiescent bias [106]. This device received

considerable attention from the device simulation community. It was first used to study the effects

of threading dislocations using the CMC method [107]. The GaN HEMT was also featured in an

Institute of Electrical and Electronic Engineers (IEEE) magazine article describing modeling and

simulation of terahertz devices with the CMC technique [108]. FKT device simulations of this

device were also presented in [84] and [109].
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The layout of the AlGaN/GaN HEMT is illustrated in Figure 6.2. This is the 3D mesh used

for the FKT simulations. The stack of the device is 11 nm of GaN and 13 nm of Al0.32Ga0.68N.

The interfaces of the stack are oriented in the z-direction of the device. Detailed illustrations of

the HEMT stack are reported in [106, 107, 108]. The stack sits on a GaN buffer which is grown

on a SiC substrate. The Ohmic source and drain contacts of the transistor are the yellow regions

Schottky Gate
 Ohmic
Source  Ohmic

Drain

LaunchInput Port SiC 

n+-GaN GaN AlGaN 

Figure 6.2: The 3D mesh used for FKT simulations of an AlGaN/GaN HEMT.

at the top left and right of the device. The middle contact is the Schottky gate. Not included in

the illustration is the Ohmic ground contact at the bottom of the mesh. The SiC launch is located

at the front of the device. The input port BC of the launch is shaded in red. Not illustrated is the

output port BC connecting the Ohmic drain and the Ohmic ground metal contacts.

6.3 Thermal Equilibrium and Static Simulations

The thermal equilibrium of the HEMT is computed first with the FKT device simulator. As

outlined in previous sections, the thermal equilibrium solution variables are the initial guess of the

first static solve Newton iteration. Figure 6.3 presents the thermal equilibrium electric potential

profile in the transistor. The Schottky T-gate of the device has an electric potential of approx-

imately 0.65 V and is shaded in green. The barrier of the Schottky gate is ΦSB = 1.2 eV. The

blue region surrounding the T-gate is air. The Ohmic contacts both have an electric potential of
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Electric Potential

Figure 6.3: The thermal equilibrium electric potential profile of the AlGaN/GaN HEMT computed
with the FKT device simulator.
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Figure 6.4: The thermal equilibrium band diagram (calculated across the stack under the Schottky
gate) of the AlGaN/GaN HEMT computed with the FKT device simulator.

approximately 1.1 V — the red shaded regions.

A band diagram of the GaN HEMT computed with the FKT device simulator is presented in

Figure 6.4. This result is calculated across the HEMT stack under the Schottky gate. The beginning

of the GaN channel is located just before the 5 nm position in the band diagram. The AlGaN/GaN

heterojunction is located at 15 nm in the plot. The polarization charge density resulting from this

heterojunction yields the 2DEG of the HEMT. Highly degenerate electron gases reside near this

junction in the GaN channel.

Static simulations of the AlGaN/GaN HEMT are presented based on the work in [84]. An

132



example of the quiescent bias of the HEMT calculated with FKT is illustrated in Figure 6.5. The

static solver consists of Eqns. (5.1), (5.4), (5.5), and (5.6). Trapping effects are also included to

properly determine the mobile electron densities in the GaN channel [62, 84]. Figure 6.6 presents

the static I-V family of the AlGaN/GaN HEMT computed with the FKT device solver. The

Electric Potential

Figure 6.5: The electric potential profile of the AlGaN/GaN HEMT in quiescent bias. The gate-
source bias is -1 V and the drain-source bias is 10 V.
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Figure 6.6: The static I-V family of the AlGaN/GaN HEMT. The solid black lines represent FKT
simulations with different gate biases and the red dots are the measured equivalents. The gate
biases range from 1 V to -3 V with steps of 1 V. This result was first presented by Matt Grupen
AFRL.
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Figure 6.7: A comparison of the static I-V families of the AlGaN/GaN HEMT computed with the
different FKT device solvers. The DD, FKT, FKT with lattice heating, and the FKT solver with
lattice heating and trapping effects are illustrated with dashed blue, dashed red, dashed green, and
solid black lines, respectively. The measurements are illustrated with red dots.

gate biases range from VGS = 1 V to -3 V with steps of 1 V. The drain-source bias, VDS, is swept

from 0 to 15 V at each gate bias. FKT simulations are illustrated with solid black lines and the

measurements [107] are illustrated with red dots.

Proper treatment of the electronic band-structure, the hot-electron and self-heating effects, the

scattering, and the deep traps in the simulation framework is critical for accurately reproducing

the measured data of the device. Figure 6.7 presents a comparison of several different device

simulations. The DD (no energy transport, scattering, lattice heating or traps), FKT (no lattice

heating or traps), FKT with lattice heating (no traps), and the complete device simulator are drawn

with dashed blue lines, dashed red lines, dashed green lines, and solid black lines, respectively.

Again, the measurements [107] are illustrated with red dots. The DD and FKT simulations severely

overestimate the drain currents. The FKT simulation with lattice heating provides better results.

Finally, the complete device simulation exhibits excellent agreement with the measurements. The

deep traps are required to properly model the channel resistance.

Finally, the transconductance of the AlGaN/GaN HEMT is calculated. The gate-source bias,
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VGS, is swept from 1 V to device pinch-off at a specific drain-source bias, VDS. The transconduc-

tance is calculated with Eqn. (2.20). Figure 6.8 presents the transconductance of the HEMT at a

drain-source bias of VDS = 10 V. Here, the solid black line illustrates the drain current, ID, and

red line represents the transconductance, gm. This simulation is particularly useful to RF circuit
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Figure 6.8: The transconductance of the AlGaN/GaN HEMT. The solid black line represents the
drain current and the red line is the transconductance of the device. The drain-source bias is 10 V.

designers. First, it can be imported as the transconductance component of a small- or large-signal

equivalent circuit. It is also used to determine the quiescent bias for RF simulations/measurements.

The device is typically operated at peak transconductance to provide the largest power gain.

6.4 Small-Signal RF Simulations

Simulations of the AlGaN/GaN HEMT with low input power are next presented. The linear

two-port simulation of the device follows the discussion in Section 2.4.2. To this end, the S-

Parameters of the device are calculated with the quasi-static and full-wave solvers and used to

quantify the small-signal power gain and small-signal current gain.

Calculating the S-Parameters, Eqns. (2.30) – (2.33), requires two FKT device simulations. For

the first FKT simulation, a voltage port is assigned to the input of the device and an AC impedance

port is assigned to the output of the device. The impedance presented to the output is chosen
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such that ΓL = 0. This ensures that A2 = 0 and allows the calculation of S11 and S21. The input

port of the quasi-static simulation is the Schottky gate contact and the output port is the Ohmic

drain contact. For full-wave simulations, the input port is the boundary connecting the Schottky

gate and Ohmic ground contacts and the output port is the boundary connecting the Ohmic drain

and the Ohmic ground contacts. The second simulation reverses the port BCs and presents the

AC impedance to the input device such that ΓS = 0. The final two S-Parameters S12 and S22 are

calculated from this simulation. Because the reference impedance is Z0 = 50 Ω, both input and

output AC impedances are 50 Ω.

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50

V
o

lt
ag

e 
(V

)

Time (ps)

V1(t)

V2(t)

(a)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

C
u

rr
en

t 
(m

A
)

Time (ps)

I1(t)

I2(t)

(b)

Figure 6.9: The (a) AC input and output voltages and (b) AC input and output currents of the
AlGaN/GaN HEMT calculated with the quasi-static solver. The voltage BC is assigned to the
input port and the AC impedance port BC is assigned to the output. For the quasi-static solver, the
input port is the Schottky gate metal contact and the output port is the Ohmic drain metal contact.

Figures 6.9a and 6.9b present the transient input and output signals of the AlGaN/GaN HEMT

computed with the quasi-static solver. Figures 6.10a and 6.10b present the same results computed

with the full-wave solver. The input port is a voltage BC and the output port is terminated with a

50 Ω AC impedance BC. The Fourier transforms of these signals are used to calculate the incident

waves, Eqn. (2.25), and scattered waves, Eqn. (2.26). The S11 and S21 S-Parameters are calculated

with Eqns. (2.30) and (2.31), respectively. The relation between the output voltage V2(t) and output

current I2(t) deserves special attention. The AC impedance BC requires a specific relationship

between its integrated voltage and current. As discussed in Sections 5.4.3 and 5.4.5, the current
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Figure 6.10: The (a) AC input and output voltages and (b) AC input and output currents of the
AlGaN/GaN HEMT calculated with the full-wave solver. The voltage port BC is assigned to the
input port and the AC impedance port BC is assigned to the output. For the full-wave solver,
the input port connects the Schottky gate and the Ohmic ground and the output port connects the
Ohmic drain and the Ohmic ground.

is prescribed to be exactly −V2(t)/50. This relationship is qualitatively observed in Figures 6.9

and 6.10.
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Figure 6.11: Two S-Parameters of the AlGaN/GaN HEMT computed with the FKT device simu-
lator. The solid lines represent the full-wave results and the dashed lines represent the quasi-static
results. The quiescent bias of the device is a drain-source bias of 6 V and no gate-source bias.

Two S-Parameters, S11 and S22, are presented in Figure 6.11. Because the source and load
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impedances are chosen to be ZS = ZL = 50 Ω, these S-Parameters represent the input and out-

put reflection coefficients, i.e., Γin = S11 and Γout = S22. The S-Parameters are plotted versus

frequency. Dashed lines represent the quasi-static results and solid lines represent the full-wave

results. Substantial differences exist between the quasi-static and full-wave S-Parameters at high

frequency. These differences are due to inductive coupling of the metal contacts.
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Figure 6.12: The simulated (black lines) and the measured (red squares) small-signal current gain
of the AlGaN/GaN HEMT.

A comparison of the simulated and measured small-signal current gain is reported in Fig-

ure 6.12. The small-signal current gain is calculated with Eqn. (2.43). The dashed black line

represents the quasi-static result and the solid black line is the full-wave result. The red squares

represent the measurements [107]. It is evident that treatment of full-wave EM is required in the

FKT simulator in order to properly capture the device parasitics at high frequency. This allows the

device solver to compute accurate S-Parameters and provide useful data for RF circuit designers

to synthesize high frequency matching networks for the GaN HEMT.

Finally, the small-signal power gain of the AlGaN/GaN HEMT is presented. Figure 6.13 re-

ports the available power gain (black lines) calculated with Eqn. (2.41) and the transducer power

gain (red lines) calculated with Eqn. (2.42). The dashed lines represent the quasi-static power gains

and the solid lines are the power gains calculated with the full-wave solver. This result provides
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Figure 6.13: The simulated available power gain (black) and transducer power gain (red) of the Al-
GaN/GaN HEMT. Dashed lines represent the quasi-static power gains and the solid lines represent
the full-wave power gains.

further evidence that the full-wave solver is crucial for simulating the small-signal response of

GaN HEMT technology at high frequency.

6.5 Large-Signal RF Simulations

As outlined in Section 2.4.3, S-Parameters do not accurately model the nonlinear response

of high power transistors. Large-signal simulations of the transistors, including LP and power

sweeps, are therefore used for PA design. LP data determine the optimal loading conditions for

maximizing specific FOMs and power sweep results provide further information for optimal op-

erating conditions. This section focuses on utilizing the FKT device solver framework for large-

signal RF simulations of GaN HEMT technology. The quasi-static AC impedance is tailored to

simulate transistors with arbitrary reflection coefficients in the following subsection. Then, a dis-

cussion on calculating the large-signal FOMs with the FKT device solver is presented. Finally, this

section concludes with LP and power sweep simulations of the GaN HEMT and comparisons of

quasi-static and full-wave large-signal results.
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6.5.1 Quasi-Static AC Load Impedance for LP Simulations

A critical component of large-signal RF simulations is the load impedance presented to the output

port of the transistor. Because the load reflection coefficient is sampled over the Smith chart, the

FKT device solver must incorporate impedances with reactive components. Section 5.4.3 discussed

the quasi-static AC impedance BC. This BC uses the total integrated current flowing into the

boundary, designated it+1, to specify a Dirichlet condition on the electric potential. The Dirichlet

condition is

Φ
t+1
i

∣∣∣
ACI

= ZACIi
t+1
ACI, (6.1)

where Φ
t+1
i

∣∣∣
ACI

represents the electric potential on the quasi-static AC impedance BC. To sample

the upper half of the Smith chart, the load is specified as a series RL impedance. In the TD, the BC

is

Φ
t+1
i = Rit+1 +L

it+1− it

∆t
, (6.2)

where R and L are the real and imaginary components of the load impedance ZL at the fundamental

frequency. The subscript ACI is dropped for brevity. The inverse of Eqn. (2.28) gives the load

impedance in terms of the reflection coefficient, or

ZL =
1+ΓL
1−ΓL

Z0. (6.3)

Sampling the lower half of the Smith chart requires RC load impedances which are implemented

in a similar manner.

6.5.2 Computing Large-Signal FOMs

The large-signal FOMs of the devices are computed at a single operating condition. Specifically,

the GaN HEMT at a given quiescent bias is driven by a single sinusoid with a large-signal am-

plitude. Furthermore, a load-impedance is presented to the output port of the device with the AC

quasi-static BC.

Figures 6.14 and 6.15 present the transient voltages and currents at both the input and output

ports calculated with the quasi-static FKT device solver. The quiescent bias of the GaN HEMT is
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Figure 6.14: The (a) input and (b) output TD voltages of the AlGaN/GaN HEMT calculated with
the quasi-static solver. The operating point of the HEMT is -2 V gate-source bias and 10 V drain-
source bias. The large-signal tone (gate-source voltage) is 1 V in amplitude at 35 GHz.
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Figure 6.15: The (a) input and (b) output TD currents of the AlGaN/GaN HEMT calculated with
the quasi-static solver. The operating point of the HEMT is -2 V gate-source bias and 10 V drain-
source bias. The large-signal tone (gate-source voltage) is 1 V in amplitude at 35 GHz.

VGS =−2 V and VDS = 10 V. The HEMT is driven by a large-signal sinusoid with a 1 V amplitude

at 35 GHz fundamental frequency. The load reflection coefficient presented to the output port is

ΓL = 0.44−0.17 j at 35 GHz. The device is simulated for 10 cycles of the driving tone to ensure

that all transient signals are continuous wave (CW).

The CW portion of the transient signals are Fourier transformed to calculate their spectral con-

tent. These signals are interpolated such that the first discrete frequency component corresponds

to the zeroth or DC frequency and the second discrete frequency component corresponds to the
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Figure 6.16: The magnitudes of the (a) input and (b) output voltage phasors of the AlGaN/GaN
HEMT driven by a large-signal tone. These voltages are plotted in dBm. The five harmonics are
computed by Fourier transforms of the transient voltages.
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Figure 6.17: The magnitudes of the (a) input and (b) output current phasors plotted in dBm. These
five harmonics are computed by Fourier transforms of the transient currents.

fundamental frequency of the large-signal tone. Figures 6.16 and 6.17 present the first five har-

monics of the voltages and currents at the input and output ports of the GaN HEMT driven by the

large-signal RF tone. The magnitudes of the spectral voltages and currents are plotted in dBm.

The first harmonic of each plot is used to calculate the FOMs of the PA. The power available

from the source and the input power of this particular operating condition are Pavs = −2.04 dBm

and Pin =−2.83 dBm, respectively. The transistor generates an output power of Pout = 4.33 dBm

which corresponds to a power gain of G = 7.17 dB and a transducer power gain of GT = 6.39 dB.
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6.5.3 LP Simulations

Optimal load impedances corresponding to specific operating conditions (bias, frequency, input

power) are determined through LP simulations. To this end, the load reflection coefficient pre-

sented to the output port of the device is swept over a wide range of the Smith chart. Figure 6.18
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Figure 6.18: An example of reflection coefficient samples of the Smith chart that can be used for
LP simulations.

presents a collection of reflection coefficients that can be used for LP simulations. The marker

“m3” points to a reflection coefficient corresponding to an impedance of ZL = 50.4+ j33.1 Ω.

The GaN HEMT is simulated with the FKT device solver for each reflection coefficient in the

LP sample set. All desired FOMs are calculated from the CW voltages and currents. Finally,

these FOMs are loaded into ADS and contours of each FOM are plotted on the Smith chart. The

following sections will utilize this work flow for PA design.
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Figure 6.19: LP contours calculated from FKT device simulations of the GaN HEMT biased as
a class A amplifier (gate-source bias of 1 V and drain-source bias of 10 V) with -2 dBm power
available from the source at a fundamental frequency of (a) 15 GHz and (b) 25 GHz. The optimal
loads for maximum transducer gain are 104+ j130 Ω at 15 GHz and 54+ j105 Ω at 25 GHz. The
peak gain is 9.3 dB at 15 GHz and 9.1 dB at 25 GHz. The step size of the contours is 0.2 dB.

6.5.4 Class A Amplifier

Large-signal simulation results of the GaN HEMT biased as a class A amplifier are presented in

this section. The first step in the PA design process is LP simulation with moderate input power.

Multiple LP data sets are collected from the GaN HEMT simulations at various fundamental fre-

quencies. The quiescent bias of the amplifier is VGS = 1 V and VDS = 10 V. The amplifier is driven

by a power available from the source of Pavs =−2 dBm.

Figure 6.19a presents the LP data calculated from FKT device simulations of the class A am-

plifier operating at 15 GHz. The FOM is the transducer gain of the device. Peak gain resides at

a load impedance of ZL = 104+ j130 Ω at the fundamental frequency. The LP data set of the

device operating at 25 GHz is next reported in Figure 6.19b. The load impedance corresponding

to maximum transducer gain shifts to ZL = 54+ j105 Ω at 25 GHz. The last two sets of LP data

are presented in Figures 6.20a and 6.20b. The former is calculated with a fundamental frequency

of 35 GHz and the latter with 45 GHz.
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Figure 6.20: LP contours calculated from FKT device simulations of the GaN HEMT biased as
a class A amplifier (gate-source bias of 1 V and drain-source bias of 10 V) with -2 dBm power
available from the source at a fundamental frequency of (a) 35 GHz and (b) 45 GHz. The optimal
loads for maximum transducer gain are 25+ j82 Ω at 35 GHz and 16+ j67 Ω at 45 GHz. The peak
gain is 9.0 dB at 35 GHz and 8.8 dB at 45 GHz. The step size of the contours is 0.2 dB.

The next step in the PA design process is sweeping the input power with the optimal load

impedance determined from the LP data. Because the input power depends on the loading con-

dition as well as the intrinsic device parasitics, it is not trivial to sweep this quantity in the FKT

device simulator. Therefore, the power available form the source, Pavs, is swept across a broad

range and the resulting FOMs are plotted versus the calculated input power, Pin.

Figure 6.21a presents the input power sweep of the class A amplifier operating at a fundamen-

tal frequency of 15 GHz. In this figure, the output power, Pout , is plotted in black, the transducer

gain, GT , is plotted in red, and the PAE is plotted in blue. The power gain of the device is rela-

tively constant at low input power. The 1 dB compression point is approximately -10 dBm. Fig-

ures 6.21b, 6.22a, and 6.22b report the input power sweeps of the HEMT at 25 GHz, 35 GHz, and

45 GHz, respectively. These simulations provide quantitative trends in the gain and efficiency of

the GaN HEMT versus fundamental frequency. The HEMT is more efficient at lower frequency.

Maximum PAE is achieved at an input power of approximately 10 dBm at 15 GHz. The gain of the
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device is vastly reduced to approximately 2–3 dBm at 45 GHz. These high power results could be

useful to circuit designers for determining trade-offs to meet specific criteria.

0

5

10

15

20

-30 -20 -10 0 10 20

0

2

4

6

8

10

12

14

P
o
w

er
 (

d
B

m
),

 G
ai

n
 (

d
B

)

P
A

E
 (

%
)

Input Power (dBm)

Pout

GT PAE

f0 = 15 GHz

ZL = 104 + j130 Ω

(a)

0

5

10

15

20

-30 -20 -10 0 10 20

0

2

4

6

8

10

12

14

P
o
w

er
 (

d
B

m
),

 G
ai

n
 (

d
B

)

P
A

E
 (

%
)

Input Power (dBm)

Pout

GT PAE

f0 = 25 GHz

ZL = 54 + j105 Ω

(b)

Figure 6.21: Simulated input power sweeps of the GaN HEMT biased as a class A amplifier
(gate-source bias of 1 V and drain-source bias of 10 V) at a fundamental frequency of (a) 15 GHz
and (b) 25 GHz. The optimal loads determined from the LP data are 104+ j130 Ω at 15 GHz
and 54+ j105 Ω at 25 GHz. The peak PAE resides at an input power of approximately 10 dBm
for both frequencies. The device operating at 15 GHz achieves the highest overall peak PAE of
approximately 12%.

0

5

10

15

20

-30 -20 -10 0 10 20

0

2

4

6

8

10

12

14

P
o
w

er
 (

d
B

m
),

 G
ai

n
 (

d
B

)

P
A

E
 (

%
)

Input Power (dBm)

Pout

GT

PAE

f0 = 35 GHz

ZL = 25 + j82 Ω

(a)

0

5

10

15

20

-30 -20 -10 0 10 20

0

2

4

6

8

10

12

14

P
o
w

er
 (

d
B

m
),

 G
ai

n
 (

d
B

)

P
A

E
 (

%
)

Input Power (dBm)

Pout

GT

PAE

f0 = 45 GHz

ZL = 16 + j67Ω

(b)

Figure 6.22: Simulated input power sweeps of the GaN HEMT biased as a class A amplifier (gate-
source bias of 1 V and drain-source bias of 10 V) at a fundamental frequency of (a) 35 GHz and (b)
45 GHz. The optimal loads determined from the LP data are 25+ j82 Ω at 35 GHz and 16+ j67 Ω

at 45 GHz. The PAE diminishes with increasing frequency. At 45 GHz, the peak PAE is between
2–3%.
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Figure 6.23: Simulated (a) output voltage transients and (b) output voltage spectral content of
the GaN HEMT biased as a class A amplifier at 15 GHz. The input powers of the blue, green,
and red lines are −9.8 dBm, −1.8 dBm, and 3.8 dBm, respectively. The transistor exhibits strong
inter-modulation at each simulated input power.

The transient output voltages of the class A amplifier corresponding to various input powers

are presented in Figure 6.23a. The fundamental frequency of these HEMT simulations is 15 GHz.

Figure 6.23b illustrates the spectral content of the output voltages. The blue, green, and red lines

represent the input powers Pin = −9.8 dBm, −1.8 dBm, and 3.8 dBm, respectively. Significant

inter-modulation is observed in the response of the device at each input power.

6.5.5 Class AB Amplifier

The GaN HEMT is next biased as a class AB amplifier to improve efficiency. The gate-source bias

is VGS = −2 V. This operating point is between the linear class A bias and the nonlinear class B

bias. The DC drain current is smaller at this bias resulting in a higher PAE.

The optimal load impedance for peak transducer gain of the class AB amplifier is deter-

mined with LP data calculated from FKT device simulations. Four LP data sets are presented

in Figures 6.24a – 6.25b. The operating frequencies of the FKT device simulations are 15 GHz

– 45 GHz with increments of 5 GHz. The optimal loading conditions for maximum transducer

gain are highlighted in each figure. This impedance shifts across the Smith chart in a counter-

clockwise fashion as the fundamental frequency increases. At 15 GHz, the optimal loading condi-
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Figure 6.24: LP data calculated from FKT device simulations of the GaN HEMT biased as a class
AB amplifier (gate-source bias of -2 V and drain-source bias of 10 V) with -2 dBm power available
from the source at a fundamental frequency of (a) 15 GHz and (b) 25 GHz. The optimal loads for
maximum transducer gain are 77+ j155 Ω at 15 GHz and 30+ j124 Ω at 25 GHz. The peak gain is
11.1 dB at 15 GHz and 10.9 dB at 25 GHz. The step size of the transducer gain contours is 0.2 dB.

tion is ZL = 77+ j155 Ω. As the frequency increases from 25 GHz and 35 GHz, the optimal load

impedance decreases from ZL = 30+ j124 Ω to ZL = 24+ j88 Ω. Finally, at 45 GHz, the optimal

load impedance for peak transducer gain is ZL = 16+ j69 Ω.

Power sweeps of the GaN HEMT biased as a class AB amplifier with the optimal loading

conditions are next presented. The power available from the source, Pavs, is swept across a broad

range and the resulting FOMs are plotted versus the calculated input power, Pin. Figure 6.26a

reports the input power sweep of the HEMT at 15 GHz. The load impedance determined from the

LP data is ZL = 77+ j155 Ω. The output power, Pout , is plotted in black, the transducer gain, GT ,

is plotted in red, and the PAE is plotted in blue. Figures 6.26b – 6.27b report the power sweep

results for the amplifier at 25, 35, and 45 GHz, respectively. The load impedances used in these

simulations are ZL = 30+ j124 Ω, 24+ j88 Ω, and 16+ j69 Ω, respectively.

The power sweep results demonstrate that the class AB amplifier exhibits better efficiency

than the class A amplifier, particularly at high frequency. At 45 GHz, the class AB amplifier
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Figure 6.25: LP data calculated from FKT device simulations of the GaN HEMT biased as a class
AB amplifier (gate-source bias of -2 V and drain-source bias of 10 V) with -2 dBm power available
from the source at a fundamental frequency of (a) 35 GHz and (b) 45 GHz. The optimal loads for
maximum transducer gain are 24+ j88 Ω at 35 GHz and 16+ j69 Ω at 45 GHz. The peak gain is
10.7 dB at 35 GHz and 10.5 dB at 45 GHz. The step size of the transducer gain contours is 0.2 dB.
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Figure 6.26: Simulated input power sweeps of the GaN HEMT biased as a class AB amplifier
(gate-source bias of -2 V and drain-source bias of 10 V) at a fundamental frequency of (a) 15 GHz
and (b) 25 GHz. The optimal loads determined from the LP data are 77+ j155 Ω at 15 GHz and
30+ j124 Ω at 25 GHz. The peak PAE resides at an input power of approximately 0 dBm at 15 GHz
and 5 dBm at 25 GHz. The device operating at 15 GHz achieves the highest overall peak PAE of
approximately 15%.
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Figure 6.27: Simulated input power sweeps of the GaN HEMT biased as a class AB amplifier
(gate-source bias of -2 V and drain-source bias of 10 V) at a fundamental frequency of (a) 35 GHz
and (b) 45 GHz. The optimal loads determined from the LP data are 24+ j88 Ω at 35 GHz and
16+ j69 Ω at 45 GHz. The peak PAE resides at an input power of approximately 8 dBm at both
35 GHz and 45 GHz. The PAE of the class AB amplifier does not diminish like the class A amplifier
at high frequency. At 45 GHz, the peak PAE of the device is approximately 8 – 9%.
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Figure 6.28: Simulated (a) output voltage transients and (b) output voltage spectral content of the
GaN HEMT biased as a class AB amplifier at 15 GHz. The input powers of the blue, green, and red
lines are −16.7 dBm, −4.9 dBm, and 2.8 dBm, respectively. Strong inter-modulation is observed
at each input power.

demonstrates 10% PAE while the class A amplifier only demonstrates between 2 and 3%. It is

concluded that the class AB amplifier is preferred for RF PA design due to its higher efficiency.

Several transient output voltages of the input power sweep at 15 GHz are presented in Fig-

ure 6.28a. Figure 6.28b illustrates the spectral content of the output voltages. The blue, green, and
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red lines correspond to the input powers Pin =−16.7 dBm, −4.9 dBm, and 2.8 dBm, respectively.

Significant inter-modulation is observed in the response of the class AB amplifier at each input

power.

6.5.6 Quasi-Static vs. Full-Wave

Small-signal GaN HEMT results computed with the quasi-static and full-wave FKT device simu-

lators were presented in Section 6.4. The full-wave simulations of the HEMT at high frequency ex-

hibited vastly different parasitic effects than the quasi-static simulations. Proper treatment of high

frequency parasitics is critical for accurate large-signal RF simulations. Comparisons of large-

signal RF GaN HEMT simulations with the quasi-static and full-wave solvers are next presented.
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Figure 6.29: Input power sweeps of the GaN HEMT biased as a class AB amplifier calculated
with the quasi-static (dashed lines) and the full-wave (solid lines) FKT device simulators. The
gate-source bias is -2 V, the drain-source bias is 10 V, the fundamental frequency is 10 GHz, and
the load impedance is 50 Ω.

An input power sweep of the AlGaN/GaN HEMT biased as a class AB amplifier at 10 GHz is

reported in Figure 6.29. The gate-source bias is VGS = −2 V and the drain-source bias is VDS =

10 V. The load impedance presented to the output of the device is ZL = 50 Ω. Quasi-static results

151



0

2

4

6

8

10

12

14

0 20 40 60 80 100

T
ra

n
sd

u
ce

r 
G

ai
n

 (
d

B
)

Fundamental Frequency (GHz)

Quasi-static

Full-wave

Pavs = -13 dBm

Pavs = -2 dBm

Figure 6.30: Quasi-static (dashed lines) and full-wave (solid lines) frequency sweeps of the GaN
HEMT biased as a class AB amplifier. The gate-source bias is -2 V, the drain-source bias is 10 V,
and the load impedance is 50 Ω. Black lines correspond to a power available from the source of
-13 dBm and red lines correspond to a power available from the source of -2 dBm.

are illustrated with dashed lines and full-wave results are illustrated with solid lines. The full-

wave result has a significantly different 1 dB compression point at Pin =−4 dBm compared to the

quasi-static 1 dB compression point at Pin = −10 dBm. Furthermore, the PAE computed with the

full-wave solver is vastly different than the PAE computed with the quasi-static solver. Clearly,

proper treatment of full-wave EM is essential for accurately capturing the high frequency response

of devices.

Figure 6.30 presents a set of simulated frequency sweeps of the same class AB amplifier.

The fundamental frequency of the large-signal sinusoidal input tone is swept from 1–100 GHz.

Quasi-static simulation results are illustrated with dashed lines and full-wave simulation results

are illustrated with solid lines. Black lines correspond to a power available from the source of

Pavs = −13 dBm and red lines correspond to Pavs = −2 dBm. As expected, the full-wave simula-

tions exhibit a vastly different frequency response compared to the quasi-static simulations. The

peak transducer gain of the HEMT is located at a fundamental frequency of approximately 55 GHz
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according to the full-wave results. Quasi-static simulations do not provide the same qualitative

features in the gain.

6.6 Discussion and Conclusions

This chapter applied the FKT TCAD framework to small- and large-signal RF simulations of

an AlGaN/GaN HEMT. First, a detailed description of the HEMT was presented along with sim-

ulated thermal equilibrium results (i.e., no external bias). Next, static FKT simulations of the GaN

HEMT were presented and compared to measurements [107]. Specifically, Figure 6.6 presented

the static I-V family computed with the FKT device simulator. These results demonstrated ex-

cellent agreement with measurements. Figure 6.7 presented an interesting comparison of the I-V

families calculated with different versions of the FKT device simulator. This comparison demon-

strated that electronic band-structure, hot-electron effects, self-heating effects, and trapping effects

all require proper treatment in the simulator in order to re-produce measured data.

The third section of this chapter focused on small-signal RF device simulations with the FKT

TCAD tool. A detailed description was provided for simulating S-Parameters of electronic devices.

Both quasi-static and full-wave simulation results were provided. The full-wave results differ from

quasi-static at high frequency. It is concluded that the full-wave solver is essential for capturing

the high frequency parasitics of devices. The main result of the small-signal RF section, which

was first calculated and presented in [84], is the small-signal current gain in Figure 6.12. The

simulations show excellent agreement with the measurements. The upward bending of the current

gain is due to the inductive coupling of the metal contacts. This high frequency parasitic effect is

captured with the full-wave device solver.

Large-signal RF simulations of the GaN HEMT were next presented in this chapter. Because

large-signal RF simulations require reactive load impedances, the beginning of the section focused

on the quasi-static AC impedance BC and its application as a series RL load. Next, a detailed

description of the post-processing required to calculate PA FOMs was presented. Finally, several

large-signal simulations of the GaN HEMT were reported for different amplifier classes and op-
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erating frequencies. The LP data calculated from the device simulations were used to determine
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Figure 6.31: Summary of the optimal loads determined through FKT device simulations of the
AlGaN/GaN HEMT biased as class A and class AB amplifiers. The fundamental frequency of
both amplifiers was swept from 15–45 GHz with 5 GHz increments. The optimal load shifts in a
counter-clockwise motion across the Smith chart with increasing frequency.

the optimal loading conditions. Figure 6.31 summarizes the optimal load reflection coefficients

determined by the FKT device simulations. The fundamental frequencies were 15, 25, 35, and

45 GHz for both the class A and class AB amplifiers. The optimal reflection coefficients shift in a

counter-clockwise motion across the Smith chart with increasing fundamental frequency. Reflec-

tion coefficients corresponding to the class A amplifier are illustrated with red stars and blue stars

represent the class AB amplifier’s optimal reflection coefficients. Input power sweep simulations

were then presented using the load impedances corresponding to peak transducer gain.

Finally, the large-signal RF response of the GaN HEMT was simulated with the quasi-static and

full-wave FKT device solvers in Section 6.5.6. The full-wave results exhibited different character-

istics compared to the quasi-static results. This is due to the high frequency parasitics of the device

which are not captured with the quasi-static solver. Full-wave simulations will be paramount for

analysis of next generation devices operating at high frequency.
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The FKT device simulator could be a valuable asset for high frequency design of GaN HEMT

PAs. This chapter was devoted to demonstrating its use through a wide range of simulations that

could be useful for RF circuit design. LP measurements at high frequency are expensive. The FKT

device simulator is therefore an excellent candidate for calculating supplemental high frequency

and high power LP data.
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CHAPTER 7

CHARACTERIZATION AND COMPACT MODEL EXTRACTION OF GAN HEMTS

7.1 Introduction

The culmination of this thesis is the characterization and compact model extraction of a state-

of-the-art AlGaN/GaN HEMT fabricated and measured at AFRL. This chapter is arranged as

follows. In the first section, a description of the GaN HEMT is presented. Characterizations of

the HEMT, including small- and large-signal simulations, are reported in the next several sections.

Finally, an XP model is extracted from FKT device simulations and used for PA design in ADS.

7.2 AFRL AlGaN/GaN HEMT

The AlGaN/GaN HEMT is fabricated and measured at AFRL. All measurements of this device

were provided by Bob Fitch AFRL and Gregg Jessen AFRL [6]. Figure 7.1 presents an illustration

of the HEMT stack. The gate length of the device is 0.14 µm and the width is 75 µm. Total

Figure 7.1: A cross-section of AFRL’s standard GaN HEMT device.
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periphery of the device is 300 µm — four gate fingers × 75 µm unit gate length. The stack of the

HEMT consists of several layers. A 1.9 µm GaN buffer is first grown on the SiC substrate. The

remaining stack consists of a 10 nm GaN channel, 1 nm of aluminum nitride (AlN), 15.4 nm of

Al0.278Ga0.722N, and a 3 nm GaN cap.

GaN Buffer

Source
Gate

Drain

Channeln
+
-GaN n

+
-GaN

Figure 7.2: The DV mesh used to simulate the AFRL GaN HEMT in the FKT device simulator.

GaN Buffer

GaN Channel

AlGaN

Gate

GaN Cap

AlN

Figure 7.3: A zoom of the GaN HEMT stack under the Schottky gate. The stack consists of (from
substrate to metal) a 1.9 µm GaN buffer, a 10 nm GaN channel, 1 nm of AlN, 15.4 nm of AlGaN,
and a 3 nm GaN cap. The mole fraction of the AlGaN layer is x = 0.278.

The DV mesh on which the FKT device equations are solved is presented in Figures 7.2

and 7.3. This was generated with in-house meshing codes developed by Matt Grupen AFRL to

simulate high speed electronic devices [62, 84]. These codes were developed following the work

of Conti [46] described in Section 2.2. The silicon nitride (SiN) passivation on top of the GaN
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cap and the air above the passivation layer are not illustrated in Figure 7.2. The n+-GaN regions

in Figure 7.2 mimic the contact resistances of the source and drain Ohmic metal-semiconductor

interfaces.

As discussed previously, GaN HEMT technology is an excellent transistor choice for PAs due

to its high power and high frequency capabilities. The HEMT does not require modulation doping

because of spontaneous and piezoelectric polarization [3, 5]. The polarization charge densities,

however, are not necessarily known after fabrication and must be determined for the FKT device

simulations. The following sections on characterization of the HEMT discuss the determination of

the unknown physical parameters. The physical parameters of the AFRL GaN HEMT are presented

in Figure 7.4.
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Hsource Source

Al0.278GaN0.722

GaN Channel
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Lgate

LSG

Lsource
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Figure 7.4: The physical parameters of the AFRL GaN HEMT. Most notable are the polarization
charge densities P at the heterojunctions.
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7.3 TLM Characterization

The unknown physical parameters of the AFRL GaN HEMT can be determined through what

are known as transmission line measurements (TLM) [110]. For TLM analysis, the Schottky gate

of the HEMT is removed to yield a resistor. A series of GaN resistors with variable spacing

L1

RT

L

Measured/simulated

Fit

L2 L3 L4 L5-2LT

2RC

Figure 7.5: An example of determining the approximate access resistance with TLM. A series of
resistors are measured/simulated and the total resistance of each resistor is calculated. The slope
of the data determines the sheet resistance (access resistance) divided by the width of the resistors
and the y-intercept determines twice the contact resistance.

between the Ohmic source and drain contacts are measured/simulated. The total resistance of each

device is calculated with Ohm’s law. An illustration of the set of total resistances is provided in

Figure 7.5. The total resistance is given by

RT =
RS
W

(L+2LT ) , (7.1)

where RS is the sheet resistance of the 2DEG, L is the length between the Ohmic contacts, LT is

the transfer length, and W is the width of the resistors [110]. A linear fit of the data determines the

slope and y-intercept. The sheet resistance (also called the access resistance) is calculated from the

slope of the data by

RS =
∆RT (L)

∆L
×W, (7.2)
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and the contact resistance (the resistance due to the Ohmic metal-semiconductor interface) is cal-

culated from the y-intercept by

RC =
1
2

RT (L = 0). (7.3)
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Figure 7.6: Simulated I-V curves of the TLM resistors computed with the FKT device solver. The
lengths of the resistors vary from 5 µm to 30 µm with 5 µm increments. The I-V curve with the
largest drain current at the drain-source bias of 1 V corresponds to the L = 30 µm resistor.

The polarization sheet charge densities at the heterojunction interfaces are tuned to produce the

best agreement between the simulated and measured total resistances of the GaN TLM resistors.

To this end, several GaN resistors are simulated with the FKT device solver. The lengths of the

resistors vary between 5 µm and 30 µm with 5 µm increments. The width of each resistor is 81 µm.

Figure 7.6 presents the simulated I-V curves of the resistors. The drain-source bias, VDS, is swept

from 0 to 1 V, however, the resistance is calculated at low bias.

The total resistances of the devices are presented in Figure 7.7. The approximate access re-

sistance and contact resistance calculated from the data are RS ≈ 304 Ω and RC ≈ 5.5 Ω. These

simulated results agree well with measurements and provide a good physical parameter set for RF

simulations with the FKT TCAD tool.
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Figure 7.7: The simulated (black dots) and measured (solid line) total resistances of the GaN TLM
resistors.

7.4 DC and Small-Signal Characterization

The initial physical parameter set determined by the TLM simulations is tuned for agreement

with DC and small-signal measurements. DC I-V measurements provided by AFRL [6] are first

used to tune the polarization charge densities at the heterojunctions. To improve the accuracy

of the simulations, the polarization charge densities are allowed to vary along the channel. This

provides additional DOF to fit the simulated I-V data onto the measurements. The variation of

the 2DEG density across the GaN HEMT channel is presented in Figure 7.8. The source contact

ends at 0.5 µm and the drain contact begins at 3.5 µm in the plot. The Schottky T-gate resides at

the middle of the plot and the gate arms extend outward. The channel is approximated with five

piece-wise polarization charge densities. The first polarization charge density covers the region

between the source contact and the beginning of the T-gate arm. The second, third, and fourth

regions follow the dimensions of the Schottky T-gate, i.e., the second starts at the beginning of the

Schottky arm and ends at the beginning of the gate stem (the portion of the gate that is attached

to the GaN cap). Finally, the fifth region extends from the end of the Schottky gate arm to the
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Figure 7.8: Electron density across the GaN HEMT channel. The channel begins at 0.5 µm and
ends at 3.5 µm. Five different polarization charge densities are prescribed to the GaN/AlN hetero-
junction. The five regions are outlined with vertical dashed lines. The contacts of the device are
illustrated at the top of the figure.

beginning of the drain contact. These regions are illustrated in Figure 7.8 with dotted lines.

The thermal equilibrium band diagram of the HEMT computed with the FKT device simulator

is presented in Figure 7.9. The conduction band minimum is plotted with a black line and the

electron Fermi level is plotted with a red line. This band diagram is calculated across the stack

(from the GaN buffer to the Schottky gate). The 2DEG resides at 5 µm — the GaN/AlN interface.

The simulated I-V family of the AFRL GaN HEMT is presented in Figure 7.10. Here, the

black lines represent the data computed with the FKT device simulator and the red dots represent

the AFRL measurements. The drain-source bias, VDS, is swept from 0 to 10 V and the gate-source

bias, VGS, is swept from +1 V to -3 V with 1 V steps. FKT simulations exhibit good agreement with

the measurements. One physical effect that is not captured by the FKT device simulator is called

the “kink effect”. It is suggested that the kink effect could be induced by hot-electron trapping and

field-assisted de-trapping via donor-like traps in the GaN buffer layer [111]. This trapping process
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Figure 7.9: The thermal equilibrium band diagram of the AFRL GaN HEMT computed with the
FKT device simulator.
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Figure 7.10: Simulated DC I-V curves (black lines) compared with AFRL measurements (red
dots). The gate-source bias ranges from +1 V to -3 V with 1 V steps.

is much slower than the fundamental period of RF signals. Therefore, proper treatment of the kink

effect is not required large-signal RF simulations of the GaN HEMT.
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Figure 7.11: Simulated DC drain current (solid black line) and transconductance (solid red line) of
the AFRL GaN HEMT. The measurements obtained from AFRL are plotted with dashed lines.

Figure 7.11 illustrates the drain current (black lines) and the transconductance (red lines) versus

the gate-source bias, VGS, of the AFRL GaN HEMT. FKT device simulations are drawn with solid

lines and the AFRL measurements are drawn with dashed lines. FKT device simulations exhibit

good agreement with the measurements.

The S-Parameters S11 and S22 are presented in Figure 7.12. The solid lines represent the results

computed with the quasi-static FKT device simulator. Measured S-Parameters are drawn with

dashed lines. Simulations agree well with measurements at lower frequency. At higher frequency,

however, the simulations lose accuracy. Full-wave simulations are required for accuracy at high

frequency.

The AFRL GaN HEMT is further characterized by simulating the small-signal current gain.

Figure 7.13 presents the simulated h21 (black line) and the measured small-signal current gain

(red boxes). FKT simulations exhibit more gain than the measured device at lower frequency.

Furthermore, the slope of the measured current gain changes around 20–30 GHz. This is due to

inductive coupling of the metal contacts. High frequency parasitic effects, including the inductive
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Figure 7.13: The small-signal current gain of the AFRL GaN HEMT. The FKT device simulation
data (black line) compares reasonably well with the measurements (red boxes).

coupling of the metal contacts, can be captured with the full-wave FKT device simulator. This is

the topic of future research.

165



7.5 Large-Signal Characterization

Large-signal simulations of the AFRL GaN HEMT with the FKT device simulator are pre-

sented in this section. The device was measured at AFRL. The HEMT operates as a class AB

amplifier at 10 GHz.

An input power sweep of the AFRL GaN HEMT is illustrated in Figure 7.14. The simulated

output power, Pout , is plotted with a black line, the simulated transducer gain, GT , is plotted with

a red line, and the simulated PAE is plotted with a blue line. Measurements of Pout , GT , and

PAE are presented with black, red, and blue squares, respectively. The gate-source bias is VGS =

−2.8 V and the drain-source bias is VDS = 21 V. The load reflection coefficient is ΓL = 0.37+

j0.60 Ω at 10 GHz. The reflection coefficient looking into the source is ΓS = −0.27+ j0.61 Ω

at 10 GHz. The FKT device simulations presented in Figure 7.14 agree well with measurements
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Figure 7.14: Input power sweep data of the AFRL GaN HEMT biased as a class AB amplifier at
10 GHz. The output power is plotted in black, the transducer gain is plotted in red, and the PAE
is plotted in blue. FKT device simulation data are plotted with solid lines and measurements are
plotted with squares.

at low input power. However, the simulations deviate from the measurements at higher input

power. Most noticeably, the simulations reach compression at a significantly lower input power
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than the measurements. This could be due to the load impedance presented to the output of the

device. The simulations use a series RL load impedance, but this may not be the precise impedance

that is experimentally presented to the HEMT. Full-wave FKT device simulations may also be

required for better agreement with power sweep measurements. Simulated and measured PAE also

deviate at higher input power. The FKT device simulator overestimates the static drain current at

VDS = 21 V leading to a lower simulated efficiency.
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Figure 7.15: Simulated input power sweeps of the AFRL GaN HEMT at 10 GHz. The gate-source
bias is changed from -2.8 V to -2 V (dashed lines) and -1 V (dot-dashed lines). The drain-source
bias is held constant at 21 V. The gain and PAE of the device is reduced at -1 V gate-source voltage,
as expected.

Large-signal characterization of the AFRL GaN HEMT continues by analyzing the power

sweep results of the device with different operating points. Figure 7.15 illustrates simulated input

power sweeps of the HEMT with different gate-source biases, VGS. The output power, Pout , trans-

ducer gain, GT , and the PAE are plotted with black, red, and blue lines, respectively. The funda-

mental frequency is 10 GHz and the load and source reflection coefficients are ΓL = 0.37+ j0.60 Ω

at 10 GHz and ΓS =−0.27+ j0.61 Ω at 10 GHz, respectively. In Figure 7.15, the gate-source bias

VGS is changed from -2.8 V to -2 V (dashed lines) and -1 V (dot-dashed lines). As expected, the
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Figure 7.16: Simulated input power sweeps of the AFRL GaN HEMT at 10 GHz. The drain-source
bias is changed from 21 V to 10 V (dashed lines) and 30 V (dot-dashed lines). The gate-source bias
is held constant at -2.8 V. The small-signal gain of the device increases at 10 V drain-source bias.
However, the device operating at this bias compresses at a lower input power.

PAE decreases as the gate-source bias increases. A larger drain current, ID, results from a larger

gate-source bias. An increase in the DC power consumed at the drain results in a decrease in the

PAE. The quantitative decrease in the device efficiency determined by the FKT device simulations

may be useful for RF circuit designers.

Figure 7.16 presents several input power sweep simulations with varying drain-source bias,

VDS. The output power, Pout , transducer gain, GT , and the PAE are plotted with black, red, and blue

lines, respectively. The fundamental frequency and loading conditions are the same as the previous

results. Here, the drain-source bias, VDS, is changed from 21 V to 10 V (dashed lines) and 30 V

(dot-dashed lines). Decreasing VDS has substantial effect on each device FOM. The low power

transducer gain increases and the device compresses at a lower input power compared to VDS =

21 V. The PAE also increases because the DC drain current is reduced. FKT device simulations

of the HEMT with a drain-source bias VDS = 30 V exhibit similar effects. The transducer gain and

PAE are lower than the VDS = 21 V simulations.
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Figure 7.17: Simulated input power sweeps of the AFRL GaN HEMT at 10 GHz. The source-
drain spacing is changed from 3 µm to 4 µm (dashed lines) and 2 µm (dot-dashed lines). These
variations of the source-drain spacing have small impacts on the device power metrics.

The effect of the source-drain length, LSD = LSG +Lgate +LGD (see Figure 7.4), on the large-

signal power metrics is investigated with the results in Figure 7.17. The output power, transducer

gain, and PAE are calculated from three FKT device simulations with different spacing between

the Ohmic contacts. The first simulation (solid lines) is the nominal source-drain length of LSD =

3.0 µm and the other two add/subtract 1.0 µm. The LSD = 4.0 µm input power sweep results are

plotted with dashed lines and the LSD = 2.0 µm input power sweep results are plotted with dot-

dashed lines. The transducer gain of the device is reduced by increasing the source-drain distance.

In a similar manner, reducing the source-drain distance increases the transducer gain. However, a

substantial decrease in the source-drain spacing (-33.3%) only moderately increases the low input

power gain from 14.48 dB to 14.93 dB — a 3.1% increase. The +33.3% increase in the source-

drain spacing yields a 2.9% decrease in gain from 14.48 dB to 14.06 dB. These simulation results

could be valuable for RF circuit designers. Furthermore, measuring these results would require

fabricating several more devices.

Finally, LP data are generated from FKT device simulations of the AFRL HEMT. Figure 7.18
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Figure 7.18: LP data generated from FKT device simulations of the AFRL GaN HEMT biased as
a class AB amplifier at 10 GHz. The gate-source bias is -2.8 V, the drain-source bias is 10 V, and
the power available from the source is 1.5 dBm. Output power contours are illustrated with blue
lines and PAE contours are illustrated with red lines. The optimal load impedance for peak output
power is 57+ j81 Ω at 10 GHz and the load impedance 53+ j108 Ω at 10 GHz corresponds to peak
PAE. The peak output power is 19 dBm and the peak PAE is 18.2%.

reports the LP data of the HEMT biased as a class AB amplifier at 10 GHz. The gate-source bias

is VGS = −2.8 V and the drain-source bias is VDS = 10 V. A power available from the source of

Pavs = 1.5 dBm drives the FKT device simulations. The output power contours are illustrated with

blue lines and the PAE contours are illustrated with red lines. Based on the LP data, the optimal

load impedance for the peak output power of Pout = 19 dBm is ZL = 57+ j81 Ω at 10 GHz. A

maximum PAE of 18.2% is achieved with a load impedance of ZL = 53+ j108 Ω at 10 GHz.

7.6 XP Extraction

Compact transistor models allow efficient PA design. Models can be imported into commercial

CAD tools and used for simulated impedance matching, LP, power sweeps, etc. An example of

a powerful CAD tool is ADS. In this section, the procedure for extracting an XP model with the

FKT device simulator is presented and discussed.
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The procedure for extracting a general XP model was presented in Section 2.5. A two-port

model with K harmonics requires 4K− 1 simulations to calculate the 2K× (4K−1) XP coeffi-

cients. This work extracts an XP model of the AFRL GaN HEMT biased as a class AB amplifier

at 10 GHz. The gate-source bias is VGS = −2.8 V and the drain-source bias is VDS = 10 V. The

large-signal input tone at the fundamental frequency has a power available from the source of

Pavs = 11.6 dBm. Large-signal reflection coefficients looking into the source and into the load are

ΓS = 50 Ω at 10 GHz and ΓL = 50 Ω at 10 GHz, respectively. These operating conditions result in

an input power of Pin = 4.4 dBm.
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Figure 7.19: The (a) input and (b) output voltages of the AFRL GaN HEMT calculated with the
quasi-static solver. The operating condition of the HEMT is a quiescent bias of a -2.8 V gate-source
bias and 10 V drain-source bias. The large-signal incident wave at the fundamental frequency of
the input port is 1 V in magnitude at 10 GHz.

The first XP extraction simulation applies only the large-signal tone A11 at the input of the

device. The large-signal tone remains the same for all subsequent XP extraction simulations. The

XP coefficients
{

S11,11 , S11,21, · · · , S11,K1
}

and
{

S21,11 , S21,21, · · · , S21,K1
}

are calculated

with the transient voltages and currents resulting from the first FKT simulation. Figures 7.19

and 7.20 present the input and output voltages and currents of the AFRL GaN HEMT biased as

a class AB amplifier with a power available from the source of Pavs = 11.6 dBm at 10 GHz. The

incident harmonics, Apk, and scattered harmonics, Bpk, calculated with Eqns. (2.51) and (2.52) are

presented in Table 7.1. The transient gate voltage is chosen such that A11 is a pure cosine with a
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Figure 7.20: The (a) input and (b) output currents of the AFRL GaN HEMT calculated with the
quasi-static solver. The operating condition of the HEMT is a quiescent bias of a -2.8 V gate-source
bias and 10 V drain-source bias. The large-signal incident wave at the fundamental frequency of
the input port is 1 V in magnitude at 10 GHz.

2 V amplitude. Inspection of Table 7.1 confirms that the transient gate voltage and current yield a

k fk (GHz) A1k (V) A2k (V) B1k (V) B2k (V)

1 10.0 1.000 0◦ - 0.850 −93◦ 2.834 117◦

2 20.0 - - 0.164 116◦ 0.285 77◦

3 30.0 - - 0.069 −124◦ 0.416 −173◦

4 40.0 - - 0.009 153◦ 0.078 129◦

5 50.0 - - 0.020 −37◦ 0.069 −77◦

Table 7.1: The incident and scattered harmonics of the AFRL GaN HEMT biased as a class AB
amplifier with a power available from the source of 11.6 dBm at 10 GHz. The large-signal tone at
the fundamental frequency of the input port is the only non-zero incident wave.

pure cosine large-signal incident wave A11. Simulations with this form of the large-signal incident

wave allow easy extraction of the XP coefficients because the phase of A11 is P = 1.

The remaining XP coefficients are calculated following the procedure described in Section 2.5.

The incident harmonics are perturbed to calculate the higher-order XP coefficients. The large-

signal tone A11 is not perturbed. Any change to A11 requires re-calculation of the XP model

coefficients. The small-signal incident wave A21 is perturbed first. The GaN HEMT is simulated

twice with two sets of non-zero incident waves {A11 , A21} and {A11 , A∗21
}

. The tone A∗21 of

the second perturbation simulation is 90◦ out of phase with the A21 tone of the first perturbation
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Figure 7.21: The (a) input and (b) output voltages of the AFRL GaN HEMT calculated with the
quasi-static solver. The operating condition of the HEMT is a quiescent bias of a -2.8 V gate-
source bias and 10 V drain-source bias. The solid black lines represent the large-signal simulation
and the dashed red lines represent the first perturbation simulation of the first incident harmonic at
the output port.
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Figure 7.22: The (a) input and (b) output currents of the AFRL GaN HEMT calculated with the
quasi-static solver. The operating condition of the HEMT is a quiescent bias of a -2.8 V gate-
source bias and 10 V drain-source bias. The solid black lines represent the large-signal simulation
and the dashed red lines represent the first perturbation simulation of the first incident harmonic at
the output port.

simulation. Figure 7.21 presents the (a) input and (b) output voltages and Figure 7.22 illustrates

the (a) input and (b) output currents of the two A21 perturbation simulations. The first perturbation

applies a pure cosine as the small-signal A21 incident wave and the second applies a pure sine as

the small-signal A∗21 incident wave. The spectral incident and scattered waves, Apk and Bpk, of the
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k fk (GHz) A1k (V) A2k (V) B1k (V) B2k (V)

1 10.0 1.000 0◦ 0.050 0◦ 0.846 −93◦ 2.815 117◦

2 20.0 - - 0.165 116◦ 0.299 78◦

3 30.0 - - 0.069 −123◦ 0.412 −172◦

4 40.0 - - 0.008 155◦ 0.077 129◦

5 50.0 - - 0.020 −36◦ 0.070 −74◦

Table 7.2: The incident and scattered harmonic phasors of the AFRL GaN HEMT biased as a
class AB amplifier with a power available from the source of 11.6 dBm at 10 GHz. The large-
signal simulation is perturbed with a small-signal tone at the second port and at the fundamental
frequency.

k fk (GHz) A1k (V) A2k (V) B1k (V) B2k (V)

1 10.0 1.000 0◦ 0.050 −90◦ 0.856 −93◦ 2.833 118◦

2 20.0 - - 0.165 115◦ 0.290 74◦

3 30.0 - - 0.070 −124◦ 0.417 −172◦

4 40.0 - - 0.009 153◦ 0.078 130◦

5 50.0 - - 0.020 −38◦ 0.070 −78◦

Table 7.3: The incident and scattered harmonic phasors of the AFRL GaN HEMT biased as a
class AB amplifier with a power available from the source of 11.6 dBm at 10 GHz. The large-
signal simulation is perturbed with a small-signal tone at the second port and at the fundamental
frequency. This perturbation signal is out of phase with the first perturbation signal.

first and second A21 perturbation simulations are presented in Tables 7.2 and 7.3, respectively. For

both simulations, the magnitude of the A21 phasor is 0.05 V. As confirmed by the data presented

in Tables 7.2 and 7.3, the second perturbation is 90◦ out of phase with the first perturbation. The

linear system solved to calculate the XP coefficients corresponding to the A21 terms is singular if

the two perturbations are not orthogonal. Section 2.5.3 provides details for calculating the Sp2,m1 =

{S12,11, · · · , S12,51, S22,11, · · · , S22,51} and Tp2,m1 = {T12,11, · · · , T12,51, T22,11, · · · , T22,51} XP

coefficients given the two A21 perturbation simulations.

The perturbation procedure is repeated for all remaining higher-order incident harmonics, Apk,

to calculate their respective XP coefficients. The fifth incident harmonic at the input port, A15, is

included in the remaining perturbation simulations. Tables 7.4 and 7.5 present the incident and

scattered wave phasors for the two orthogonal perturbation simulations. A pure cosine is applied

for the first A15 perturbation and a pure sine is applied for the second simulation. Tables 7.4
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k fk (GHz) A1k (V) A2k (V) B1k (V) B2k (V)

1 10.0 1.000 0◦ - 0.873 −93◦ 2.854 117◦

2 20.0 - - 0.170 115◦ 0.283 73◦

3 30.0 - - 0.071 −125◦ 0.424 −175◦

4 40.0 - - 0.014 147◦ 0.084 120◦

5 50.0 0.050 0◦ - 0.041 −123◦ 0.065 −69◦

Table 7.4: The incident and scattered harmonic phasors of the AFRL GaN HEMT biased as a class
AB amplifier with a power available from the source of 11.6 dBm at 10 GHz. The large-signal
simulation is perturbed with a small-signal tone at the first port and at the fifth harmonic.

k fk (GHz) A1k (V) A2k (V) B1k (V) B2k (V)

1 10.0 1.000 0◦ - 0.873 −93◦ 2.860 117◦

2 20.0 - - 0.170 114◦ 0.279 73◦

3 30.0 - - 0.075 −125◦ 0.441 −174◦

4 40.0 - - 0.012 118◦ 0.079 117◦

5 50.0 0.050 −90◦ - 0.023 101◦ 0.095 −78◦

Table 7.5: The incident and scattered harmonic phasors of the AFRL GaN HEMT biased as a class
AB amplifier with a power available from the source of 11.6 dBm at 10 GHz. The large-signal
simulation is perturbed with a small-signal tone at the first port and at the fifth harmonic. This
perturbation is out of phase with the first perturbation at the input port and the fifth harmonic.

and 7.5 confirm that the two signals are orthogonal. The XP coefficients Sp1,m5 = {S11,15, · · · ,

S11,55, S21,15, · · · , S21,55} and Tp1,m5 = {T11,15, · · · , T11,55, T21,15, · · · , T21,55} are calculated

with the two A15 perturbation simulations.

The two-port, five-harmonic XP model of the GaN HEMT biased as a class AB amplifier

with a power available from the source of Pavs = 11.6 dBm at 10 GHz has 190 coefficients. The

first 20 XP coefficients (sorted by the magnitude of the coefficients,
√∣∣Spq,mn

∣∣2 + ∣∣Tpq,mn
∣∣2) are

presented in Table 7.6. As expected, the largest coefficient, S21,11, corresponds to the gain of the

device. Because Tp1,m1 = 0 ∀(q,n), the fundamental scattered wave phasor at the output port is

related to the incident wave phasors by

B21 = S21,11A11 +S21,12A12 + · · ·+S22,1KA25

+T21,12A∗12 + · · ·+T22,1KA∗25. (7.4)

The coefficients in Table 7.6 with indices (p,m) = (2,1) contribute to the fundamental scattered

175



p q m n Spq,mn Tpq,mn

2 1 1 1 2.834 117◦ -
2 1 2 2 1.143 82◦ 0.328 1◦

2 1 1 3 0.773 57◦ 0.777 25◦

2 1 1 4 0.697 94◦ 0.627 13◦

2 2 1 5 0.605 102◦ 0.657 16◦

2 1 1 2 0.757 119◦ 0.472 −30◦

2 2 1 4 0.638 100◦ 0.616 14◦

1 1 3 3 0.872 −137◦ 0.077 160◦

1 1 1 1 0.850 −93◦ -
1 1 5 5 0.845 −150◦ 0.037 −150◦

1 1 4 4 0.834 −148◦ 0.020 25◦

2 2 1 3 0.557 97◦ 0.621 12◦

2 2 3 3 0.711 −136◦ 0.401 88◦

2 1 3 3 0.695 94◦ 0.425 96◦

1 1 2 2 0.806 −127◦ 0.106 60◦

2 2 5 5 0.793 −118◦ 0.180 171◦

2 2 3 4 0.677 177◦ 0.401 92◦

2 1 1 5 0.496 109◦ 0.593 17◦

2 2 1 2 0.530 148◦ 0.391 8◦

2 1 4 4 0.650 56◦ 0.105 −10◦

2 1 3 4 0.489 162◦ 0.379 90◦

Table 7.6: The 20 largest XP coefficients extracted from the AFRL GaN HEMT biased as a class
AB amplifier with a power available from the source of 11.6 dBm at 10 GHz. The coefficients are
sorted by their magnitude.

wave phasor at the output port, B21. There is clearly inter-modulation between the input and output

harmonics of this device. Eight of the top 20 largest XP coefficients correspond to the output term

B21. For a linear device, the only non-zero XP coefficient corresponding to B21 would be S21,11.

7.7 PA Design with the XP Model in ADS

An XP model was extracted from FKT device simulations of the AFRL GaN HEMT in the

previous section. In this section, the HEMT XP model is loaded into ADS for simple PA design.

Figure 7.23 presents the XP simulation layout in ADS. An input file containing the XP informa-

tion and coefficients is loaded into the component labeled “X2P”. Because there are some small

notational differences between the XP model in ADS and the XP model presented in this work, the
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Figure 7.23: Layout of the XP model simulation in ADS. The components “P_1Tone” and “Term”
represent the input and output ports of the circuit. Component “X2P” is the XP model which
specifies and input file containing the model information and coefficients. Current and power
probes are placed in the circuit to calculate the large-signal FOMs.

next section will focus on several practical considerations for the following ADS simulations.

7.7.1 Practical Considerations

Several practical considerations are presented in order to seamlessly apply the extracted XP model

of this chapter to PA design in ADS. The XP model in Keysight’s ADS is defined as

bik = XB
ik (|a11|)Pk + ∑

( j,l)6=(1,1)

(
XS

ik, jl (|a11|)Pk−la jl +XT
ik, jl (|a11|)Pk+la∗jl

)
, (7.5)

where i, j are port indices, k, l are harmonic indices, a jl are incident wave phasors, bik are scattered

wave phasors, P is the phase of the large-signal phasor a11, XB
ik is the B-type XP coefficient, XS

ik, jl

is the S-type XP coefficient, and XT
ik, jl is the T-type XP coefficient [26].

The first difference between the ADS XP model and the XP model in this work is the definition

of the incident and scattered wave phasors. In this work, the phasors are defined in Eqns. (2.51)

and (2.52). The ADS definitions of the incident and scattered waves are

a jl =
V jl +Z jI jl√

8Re
{

Z j
} , (7.6)

bik =
Vik−Z∗i Iik√

8Re{Zi}
. (7.7)
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Here, Zi is the complex impedance of port i. The normalization of the ADS phasors follows the

“power definition” [26].

Notationally, the ADS XP model, Eqn. (7.5), differs from the XP model presented in this

work, Eqn. (2.50). First, the port and harmonic indices of the ADS XP coefficients are arranged

differently than the ones presented in this work. However, this poses no issue when loading the

coefficients into ADS. A more important distinction is the B-type XP coefficient, XB
ik (|a11|). Using

the ADS port and harmonic indices i, j, k, l, these coefficients are related to the Sp1,q1 terms by

XB
ik (|a11|)Pk = Si1,k1A11Pk. (7.8)

The XB coefficients define the product of the large-signal phasor, A11, and the Spm,qn coefficients.

This simple yet important distinction could yield significant differences in the gain computed from

the XP model simulations.

7.7.2 Class AB Amplifier

An XP model is extracted from AFRL GaN HEMT simulations over a range of input power. ADS

offers a wide range of independent variables of the XP model including fundamental frequency and

quiescent bias. However, the operating point, VGS =−2.8 V and VDS = 10 V, and the fundamental

frequency of 10 GHz are constant in this XP model. The load impedance of the XP extraction

simulations is ZL = 50 Ω.

Validation of the XP model imported into ADS is first presented. The simulated FOMs of the

ADS XP model are compared with the FOMs calculated directly from the FKT device simulations.

This is a simple validation test as the XP model is extracted from the same FKT device simulations.

Figure 7.24 presents the input power sweep results calculated in ADS and calculated directly from

the FKT device simulations. The reported FOMs are output power, Pout , (black), power gain, GP,

(red), and PAE (blue). The FKT device simulation FOMs are plotted with solid lines and the ADS

FOMs are plotted with squares. This result validates that the XP model is properly imported into

ADS and that there is no mismatch in power definitions described in Section 7.7.1.
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Figure 7.24: Validation of the input power dependent ADS XP model. This model is extracted from
FKT simulations of the AFRL GaN HEMT and imported into ADS. Device parameters of the XP
model include a gate-source bias of -2.8 V, a drain-source bias of 10 V, a fundamental frequency of
10 GHz, and a load impedance of 50 Ω.

To demonstrate the versatility of the XP model, several LP data sets are calculated in ADS

with different input powers. These are proof-of-concept results generated from the XP model

extracted at ΓL = 0. Figures 7.25a – 7.26b present LP data generated from ADS simulations

of the AFRL GaN HEMT XP model with Pavs = 3, 6, 9, and 12 dBm, respectively. These LP

simulations determine the optimal load for maximum output power. At Pavs = 3 dBm, the optimal

load is ZL = 39+ j76 Ω at 10 GHz. The optimal load for Pavs = 6 dBm is ZL = 42+ j71 Ω at

10 GHz. Finally, the optimal loads for Pavs = 9 dBm and Pavs = 12 dBm are ZL = 45+ j56 Ω and

ZL = 42+ j46 Ω, respectively, both at 10 GHz. The optimal load impedances corresponding to the

powers available from the source of 3, 6, 9, and 12 dBm yield output powers of Pout = 17.8, 19.4,

20.0, and 20.4 dBm, respectively. A summary of the LP data versus input power is illustrated in

Figure 7.27. Each reflection coefficient plotted on the Smith chart corresponds to the optimal load

impedance determined from the ADS LP simulations. The optimal reflection coefficient shifts in a

clockwise motion across the Smith chart as the input power increases.
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Figure 7.25: Simulated LP data generated from ADS simulations of the AFRL HEMT XP model
with a power available from the source of (a) 3 dBm and (b) 6 dBm. The power dependent XP
model was extracted with a gate-source bias of -2.8 V, a drain-source bias of 10 V, a fundamental
frequency of 10 GHz, and a load impedance of 50 Ω. The optimal loads are 39+ j76 Ω at 3 dBm
and 42+ j71 Ω at 6 dBm, both at the fundamental frequency.

The transient input and output CW signals resulting from an ADS simulation of the XP model

with the optimal load impedance at an input power of Pin = 5.4 dBm are presented in Figures 7.28

and 7.29. The input and output CW voltages are presented in Figures 7.28a and 7.28b and the input

and output CW currents are illustrated in Figures 7.29a and 7.29b, respectively. The DC offset is

not included in the CW signals. Clearly, the XP model reaches compression at the input power of

Pin = 5.4 dBm as the output waveforms exhibit characteristics of a class B amplifier.

Finally, a comparison of the simulated LP data calculated directly from the FKT device sim-

ulations and the LP data computed with the XP model in ADS is reported in Figure 7.30. The

magnitude of the large-signal incident phasor is held constant at |A11| = 0.75 V for the LP sim-

ulations. Note that this definition of the incident wave follows Eqn. (2.51) and is different than

Eqns. (7.6) and (7.7). Contours of the output power FOM computed from the FKT device simula-

tions are plotted with red lines and output power contours computed from the ADS XP simulations

are plotted with blue lines. Simulated LP data generated from the ADS XP simulations do not
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Figure 7.26: Simulated LP data generated from ADS simulations of the AFRL HEMT XP model
with a power available from the source of (a) 9 dBm and (b) 12 dBm. The power dependent XP
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impedance presented to the XP model is 42 + j46 Ω at 10 GHz. This is the optimal load for
maximum output power determined from the LP simulations with a power available from the
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Figure 7.29: The (a) input and (b) output CW current signals calculated with the AFRL GaN
HEMT XP model in ADS. Only the AC components of the waveforms are illustrated. The load
impedance presented to the XP model is 42 + j46 Ω at 10 GHz — the optimal load for maxi-
mum output power determined from the LP simulations with a power available from the source of
12 dBm.

exactly replicate the LP data generated from the FKT device simulations. Clearly, the presence

of a non-zero reflection coefficient alters the large-signal operating point of the HEMT. The XP

model needs to be sampled over a range of load impedances to generate accurate LP data. A load-

dependent XP model is available in ADS and the software interpolates the XP coefficients across
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the load impedance independent variable [112].

7.8 Discussion and Conclusions

This chapter presented a range of results that demonstrated the ability of the FKT device simu-

lator to generate LP data for RF circuit design. The GaN HEMT used in the FKT simulations was

presented in Section 7.2. A detailed description of the device layout was illustrated in Figures 7.1

– 7.4. Section 7.3 described the TLM characterization process and applied it to estimate unknown

physical parameters in the GaN HEMT. The HEMT was further characterized in Section 7.4 by

analyzing its DC and small-signal response. Comparison of the simulated and the measured I-V

family was reported in Figure 7.10. The drain current, ID, and the transconductance, gm, of the

HEMT versus the gate-source bias, VGS, was presented in Figure 7.11. Simulations agreed well

with the measurements. S-Parameters and the small-signal current gain were presented in Fig-

ures 7.12 and 7.13, respectively. The simulated DC and small-signal results provide confidence
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that the FKT device simulator is adequately capturing the overall response of the AFRL GaN

HEMT.

Large-signal simulations of the AFRL GaN HEMT with the FKT device simulator were pre-

sented in Section 7.5. A simulated input power sweep of the HEMT was compared to measure-

ments in Figure 7.14. The impact of the operating point and other device features on the power

response of the device were also investigated in Section 7.5. The simulated low power response

of the device agreed well with measurements. However, the simulated high power response of the

device did not agree with measurements. First, the simulated PAE was significantly lower than

what was measured. This was expected as the simulated quiescent drain current was larger than

measurements. Second, the simulated device compresses at a lower input power level compared

to the measured device. These issues are the topic of future research which will aim to accurately

reproduce the high power response of the AFRL GaN HEMT.

The remaining sections of this chapter focused on extraction and application of XP models.

Section 7.6 provided a detailed description of the XP extraction process of the AFRL GaN HEMT

simulations. Included in this section were data tables containing the incident and scattered wave

phasors of the FKT device simulations. The XP extraction process injects incident wave signals at

different harmonics of the device ports to calculate the coefficients of the model. The data tables

provided quantitative examples of the signal injection process. Table 7.6 reported the 20 largest

coefficients of the high power AFRL GaN HEMT XP model extracted at 10 GHz.

Section 7.7 presented proof-of-concept results demonstrating the use of the extracted XP model

in ADS. The XP model was extracted over a range of input power levels at 10 GHz. The ADS

XP model was used to generate the LP data reported in Figures 7.25a – 7.26b. ADS simulations

of the XP model provided computationally efficient means to generate useful data for RF circuit

design. Frequency and operating point dependencies could be incorporated into the XP model.

This would be accomplished by extracting XP coefficients from FKT device simulations over a

range of fundamental frequencies and DC biases. ADS interpolates the XP coefficients as functions

of the input power, fundamental frequency, and DC bias independent variables. Loading conditions
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must also be included in the XP model. Extraction of an XP model with operating condition

dependencies from FKT device simulations is now possible with the work presented in this chapter.

The FKT device simulator is an excellent candidate for high frequency and high power simula-

tions of GaN HEMT technology. Simulations of the HEMT technology can provide supplemental

data for RF circuit design. Furthermore, the device simulator can generate measurement intensive

data including LP at high frequency and frequency and/or power dependent LP. The simulation

framework is amenable to XP model extraction which enables efficient power sweep and LP sim-

ulations in commercial CAD software like ADS.
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CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

This thesis presented high frequency and high power GaN HEMT simulations using the FKT

device simulation TCAD tool. A thorough derivation and discretization of governing equations

were presented along with a detailed discussion on solving the nonlinear device equations with

the corresponding BCs. The FKT device simulator was used to generate useful data for RF circuit

designers including S-Parameters, high frequency LP, and high frequency input power sweeps.

Many of these simulated results would be difficult to measure at a fundamental frequency above

35 GHz. Finally, an XP model was extracted from FKT device simulations of a state-of-the-art

GaN HEMT fabricated at AFRL. The XP model was imported into ADS for computationally

efficient LP simulations.

8.1 Future Research

The main contribution of this work is utilizing the FKT device simulation TCAD tool developed

by Grupen [84] to generate useful data for RF circuit designers. A list of research topics that are

now possible based on the contributions of this thesis are

• Accurate simulation of the AFRL GaN HEMT at high input power

• Full-wave LP simulations

• Frequency, DC bias, and load dependent XP extraction

• Full-wave XP extraction

• Harmonic mixing simulations of state-of-the-art devices
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FKT DERIVATIONS

A.1 Moments of the BTE

In Section 4.1.1, moments of the BTE were separated into even and odd components. These

components are

1
4π

∞∫
−∞

d~kO(~k)

[
∂ f0
∂ t

+~v ·∇r f1−q
~E
h̄
·∇k f1−

∂ f0
∂ t

∣∣∣∣
coll

]
= 0, (1)

1
4π

∞∫
−∞

d~kO(~k)

[
f1
τk

+
∂ f1
∂ t

+~v ·∇r f0−q
~E
h̄
·∇k f0

]
= 0. (2)

Eqns. (1) and (2), in conjunction with the moment operators {1,~v,E(~k),E(~k)~v}, are now used to

derive the governing equations of FKT. It is worth stating that the left hand side of Eqns. (1) and

(2) are exactly zero for integration over reciprocal-space with odd and even moment operators,

respectively. For all of the following derivations, the~k-space integrals are over the entire domain

and therefore the limits of integration will be dropped.

Two vector calculus identities will be used in the following derivations. They are the scalar-

scalar product gradient chain rule

∇(ψφ) = φ∇ψ +ψ∇φ , (3)

and the vector-scalar product chain rule

∇ ·
(

ψ~A
)
= ~A ·∇ψ +ψ∇ ·~A. (4)

A.1.1 Zeroth moment — Electron Continuity

The electron continuity equation is derived from Eqn. (1) with the unity moment operator. Using

Eqn. (4.3), integration of the first term yields

1
4π3

∫
d~k

∂ f0
∂ t

=
∂

∂ t

(
1

4π3

∫
d~k f0

)
≡ ∂n

∂ t
. (5)
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Integration of the second term, using Eqns. (4) and (4.5), yields the divergence term of the electron

continuity equation

1
4π3

∫
d~k~v ·∇r f1 = ∇r ·

(
1

4π3

∫
d~k~v f1

)
≡ ∇ ·~Jn. (6)

The term with the reciprocal-space gradient is more involved. Using, Eqn. (4), as well as the

divergence theorem, this term integrates to

− q
4π3h̄

∫
d~k~E ·∇k f1 =− q

4π3h̄

∫
d~Akn̂ ·~E f1 = 0. (7)

This term vanishes as the non-equilibrium distribution function goes to zero much faster than the

surface area goes to infinity. Physically, this term must vanish as there are never an infinite number

of particles in any system. Finally, the collision term is written as a collision operator

1
4π3

∫
d~k

∂ f0
∂ t

∣∣∣∣
coll
≡Cn, (8)

and is treated using Fermi’s golden rule. The zeroth moment of the BTE is

∂n
∂ t

+∇ ·~Jn +Cn = 0. (9)

A.1.2 Second Moment — Energy Conservation Equation

The electron energy conservation equation is derived from Eqn. (1) with the energy moment oper-

ator E(~k). First, Eqn. (4.4) is used for integration of the first term. This yields

1
4π3

∫
d~kE(~k)

∂ f0
∂ t

=
∂

∂ t

(
1

4π3

∫
d~kE(~k) f0

)
≡ ∂En

∂ t
. (10)

Next, using Eqns. (4) and (4.6), the divergence term of the energy conservation equation results

from the integration

1
4π3

∫
d~kE(~k)~v ·∇r f1 = ∇r ·

(
1

4π3

∫
d~kE(~k)~v f1

)
≡ ∇ ·~Sn. (11)

Unlike the zeroth moment of the BTE, the second will yield a non-zero reciprocal-space gradient

term. Using Eqns. (3) and (4) and the divergence theorem, the third term integrates to

− q
4π3h̄

∫
d~k~E ·E(~k)∇k f1 =− q

4π3h̄

(∫
d~Akn̂ ·~EE(~k) f1−

∫
d~k~E ·

(
∇kE(~k)

)
f1

)
. (12)
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The first term of Eqn. (12) goes to zero for the same reasons as Eqn. (7). Then, with the relation

h̄~v = ∇kE(~k) and Eqn. (4.5), the fourth term integrates to

− q
4π3h̄

∫
d~k~E ·E(~k)∇k f1 = q~E ·~Jn. (13)

This is the Joule’s heat component of the energy conservation equation. Finally, the collision term

is written as a collision operator

1
4π3

∫
d~kE(~k)

∂ f0
∂ t

∣∣∣∣
coll
≡CE . (14)

The energy conservation equation is

∂En
∂ t

+∇ ·~Sn +q~E ·~Jn +CE = 0. (15)

A.1.3 First and Third Moments — Particle and Kinetic Energy Flux Densities

The first and third moments do not require much attention before discretization. Using Eqns. (4.5)

and (4.6) and the approximation that density of states, d~k, is time-independent, the particle and

kinetic energy flux densities are

~Jn + τk
∂~Jn
∂ t

=
1

4π3

∫
d~k~vτk

(q
h̄
~E ·∇k f0−~v ·∇r f0

)
, (16)

~Kn + τk
∂~Kn
∂ t

=
1

4π3

∫
d~kE(~k)~vτk

(q
h̄
~E ·∇k f0−~v ·∇r f0

)
. (17)

The terms τk
∂~Jn
∂ t and τk

∂~Kn
∂ t are approximately zero when τk� ∂ t. This proves to be an excellent

approximation for up to sub-mm-wavelength devices.

A.2 Reciprocal-Space to Energy-Space Conversion

After taking moments of the BTE, the densities and fluxes require integration over the first

Brillouin zone of reciprocal-space. Rather than engage in such a tedious calculation, FKT aims to

make use of a couple well known delta function properties. Chapter 8 of [113] provides a detailed

discussion of a similar derivation.
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A.2.1 Two Delta Function Properties

There are two properties of the delta function which are needed to convert the reciprocal-space

integration to energy-space integration. The first is the well-known sifting property of the delta

function. This is
∞∫
−∞

n(t)δ (t−T )dt = n(T ) (18)

The second identity is the composition of the delta function with another function

∞∫
−∞

δ ( f (~r))g(~r)d~r = ∑
i

∞∫
−∞

g(~r)
|∇ f (~r)|

∣∣∣∣
~r=~ri

d~Si, (19)

where~ri and d~Si represent the surface and surface differential element corresponding to a root

of the scalar function f (~r). This identity can be derived with the identity δ (ax) = 1
|a|δ (x) and a

Taylor expansion at the function’s roots.

A.2.2 Electron Density Conversion

To illustrate the conversion from reciprocal-space integration to energy-space integration, the elec-

tron density is derived. The flux equations follow the same derivation. Using the sifting property,

Eqn. (18), the electron density becomes

n =

∞∫
−∞

[
1

4π3

∫
d~k f0(E)

]
δ (E−E(~k))dE, (20)

and Eqn. (19) is used to convert the delta function to

n =

∞∫
−∞

 1
4π3 ∑

i

∫
d~Si

1

|∇kE(~k)|

∣∣∣∣∣
~k=~ki

 f0(E)dE. (21)

The surfaces with differential elements d~Si are defined by the roots Ei of E − E(~k) = 0, i.e.,

surfaces of constant electron eigen-energy or “isosurfaces.”
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A.3 SG Discretization

In Section 4.3.2, the discrete FKT particle flux was presented. This appendix includes the

complete derivation of the SG discretization of both the phenomenological DD model and the

FKT particle flux.

A.3.1 Discretization of the Classic DD Model

The vector projection of the phenomenological DD model for semiconductor device simulation

defined on a primary edge of a DV mesh is

Jn(r− r0) = a1n(r− r0)+a2
dn(r− r0)

dr
, (22)

where r0 and r1 are the nodes of the primary edge and a1 and a2 are constant over the primary

edge. Given the approximation that the particle flux and electric field are spatially constant on the

primary edge, i.e., Jn(r− r0) ≈ Jn and E(r− r0) ≈ E, the DD model becomes a first-order linear

differential equation

J0 = a1n(r− r0)+
dn(r− r0)

dr
. (23)

Its solution, with the integrating factor p(r− r0) = exp
[

a1
a2
(r− r0)

]
, is

n(r− r0) =
J0
a1

+Cexp
[
−a1

a2
(r− r0)

]
. (24)

Here, C is an integration constant. Determining the constants J0 and C require the two BCs

n(r− r0)|r0
= n0 and n(r− r0)|r1

= n1. Applying these BCs yields the two equations

n0 =
J0
a1

+C, (25)

and

n1 =
J0
a1

+Cexp
[
−a1

a2
(r1− r0)

]
. (26)

Solving Eqn. (25) for C, substituting into Eqn. (26), and re-arranging for J0 yields

J0 = a1
n1−n0exp

[
−a1

a2
(r1− r0)

]
1− exp

[
−a1

a2
(r1− r0)

] . (27)
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With the definition of the Bernoulli function B(x) = x
exp(x)−1 , the discrete particle flux is

Jn = J0 =−a2
L

[
B
(

a1
a2

L
)

n0−B
(
−a1

a2
L
)

n1

]
. (28)

Here, the length of the primary edge is L = r1− r0. The Bernoulli function has the asymptotic

forms

lim
x→∞

B(x)→ 0, (29)

lim
x→0

B(x)→ 1. (30)

Also, as the Bernoulli function argument approaches infinity, the Bernoulli function goes to nega-

tive infinity as −x.

A.3.2 Discretization of the FKT Particle Flux

With a spatially constant particle flux and electric field, the projection of the kth piece-wise FKT

particle flux on the jth primary edge is

Jn, jk =−qD jk

(
E j (kBT (r))β jk F ′

β jk
(r)+

d
dr

[
(kBT (r))β jk+1

q
Fβ jk

(r)

])
. (31)

The spatial coordinate r is defined on a primary edge from r0 to r1. Solving Eqn. (31) requires

choosing the dependent variable of the linear first-order differential equation. The following sub-

sections explore two possibilities.

A.3.2.1 Generalized Einstein Relation Form

If the dependent variable of Eqn. (31) is

NE, jk(r) = (kBT (r))β jk F ′
β jk

(r), (32)
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then the FKT particle flux becomes

Jn, jk =−qD jk

E jNE, jk(r)+
d
dr

kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)
NE, jk(r)


=−qD jk

E j +
d
dr

kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)

NE, jk(r)+

kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)

 dNE, jk(r)
dr

 .

(33)

To make Eqn. (33) a linear first-order differential equation, the following approximations are made.

With the definition of the generalized Einstein Relation

Einn, jk(r) =
kBT (r)

q

Fβ jk
(r)

F ′
β jk

(r)
, (34)

these approximations are

d
dr

kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)

≈ 1
L

 kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)

∣∣∣∣∣∣
r1

− kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)

∣∣∣∣∣∣
r0

= ∆Einn, jk, (35)

and

kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)
≈ 1

2

 kBT (r)
q

Fβ jk
(r)

F ′
β jk

(r)

∣∣∣∣∣∣
r1

+
kBT (r)

q

Fβ jk
(r)

F ′
β jk

(r)

∣∣∣∣∣∣
r0

=
(
Einn, jk

)
ave . (36)

Eqn. (33) is solved in the same manner as Eqn. (23) with the substitutions

a1→−qD jk
[
E j +∆Einn, jk

]
, (37)

and

a2→−qD jk
(
Einn, jk

)
ave . (38)

The discrete particle flux, with the BCs NE, jk(r)
∣∣
r0

= NE,0, jk and NE, jk(r)
∣∣
r1

= NE,1, jk, is

JE
n, jk =

qD jk

L j

(
Einn, jk

)
ave

[
B(ξn,E, jk)NE,0, jk−B(−ξn,E, jk)NE,1, jk

]
, (39)

with

ξn,E, jk =
1(

Einn, jk
)

ave

[
E j +∆Einn, jk

]
L j. (40)
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A.3.2.2 Inverse Generalized Einstein Relation Form

In the previous subsection, the discrete particle flux with the generalized Einstein relation was

derived. If, however, the dependent variable of Eqn. (31) is

NI, jk(r) = (kBT (r))β jk Fβ jk
(r), (41)

then the FKT particle flux becomes

Jn, jk =−qD jk

E j

F ′
β jk

(r)

Fβ jk
(r)

NI, jk(r)+
d
dr

[
kBT (r)

q
NI, jk(r)

]
=−qD jk

F ′
β jk

(r)

Fβ jk
(r)

E j +
d
dr

(
kBT (r)

q

)NI, jk(r)+
[

kBT (r)
q

]
dNI, jk(r)

dr

 . (42)

Again, to make Eqn. (42) a linear first-order differential equation, the following approximations

are made. With the definition of the inverse generalized Einstein Relation

Ein−1
n, jk(r) =

F ′
β jk

(r)

Fβ jk
(r)

, (43)

these approximations are

d
dr

(
kBT (r)

q

)
≈ 1

L

(
kBT (r)

q

∣∣∣∣
r1

− kBT (r)
q

∣∣∣∣
r0

)
= ∆

(
kBT

q

)
, (44)

kBT (r)
q

≈ 1
2

(
kBT (r)

q

∣∣∣∣
r1

+
kBT (r)

q

∣∣∣∣
r0

)
=

(
kBT

q

)
ave

, (45)

and
Fβ jk

(r)

F ′
β jk

(r)
≈ 1

2

 Fβ jk
(r)

F ′
β jk

(r)

∣∣∣∣∣∣
r1

+
Fβ jk

(r)

F ′
β jk

(r)

∣∣∣∣∣∣
r0

=
(

Ein−1
n, jk

)
ave

. (46)

Again, Eqn. (33) is solved in the same manner as Eqn. (23), but with the substitutions

a1→−qD jk

[(
Ein−1

n, jk

)
ave

E j +∆

(
kBT

q

)]
, (47)

and

a2→−qD jk

(
kBT

q

)
ave

. (48)

195



The discrete particle flux, with the BCs NI, jk(r)
∣∣
r0

= NI,0, jk and NI, jk(r)
∣∣
r1

= NI,1, jk, is

JI
n, jk =

qD jk

L j

(
kBT

q

)
ave

[
B(ξn,I, jk)NI,0, jk−B(−ξn,I, jk)NI,1, jk

]
, (49)

with

ξn,I, jk =
1(

kBT
q

)
ave

[(
Ein−1

n, jk

)
ave

E j +∆

(
kBT

q

)]
L j. (50)
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