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ABSTRACT

HYBRID STRUCTURAL AND BEHAVIORAL DIVERSITY TECHNIQUES
FOR EFFECTIVE GENETIC PROGRAMMING

By

Armand Rashad Burks

Sustaining the diversity of evolving populations is a fundamental issue in genetic

programming. We describe a novel measure of structural diversity for tree-based

genetic programming, and we demonstrate its utility compared to other diversity

techniques. We demonstrate our technique on the real-world application of tuber-

culosis screening from X-ray images. We then introduce a new paradigm of genetic

programming that involves simultaneously maintaining structural and behavioral di-

versity in order to further improve the efficiency of genetic programming.

Our results show that simultaneously promoting structural and behavioral di-

versity improves genetic programming by leveraging the benefits of both aspects of

diversity while overcoming the shortcomings of either technique in isolation. The

hybridization increases the behavioral diversity of our structural diversity technique,

and increases the structural diversity of the behavioral diversity techniques. This

increased diversity leads to performance gains compared to either technique in iso-

lation.

We found that in many cases, our structural diversity technique provides sig-

nificant performance improvement compared to other state-of-the-art techniques.

Our results from the experiments comparing the hybrid techniques indicate that the

largest performance gain was typically attributed to our structural diversity tech-

nique. The incorporation of the behavioral diversity techniques provide additional

improvement in many cases.
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Chapter 1

Introduction

1.1 Genetic Programming

Genetic programming (GP) [39] refers to a class of biologically-inspired techniques

for the automatic synthesis of computer programs. Mimicking the evolutionary pro-

cess, GP applies the concepts of natural selection, recombination, inheritance, and

variation to a population of computer programs with the goal of automatically as-

sembling a program with a certain desired behavior and characteristics. One of the

long-standing and primary goals of GP is as follows. Given a programming task,

typically defined by (1) a set of training examples (input cases and desired outputs),

and (2) a set of primitives that make up a computer program (i.e. operands that

correspond to the input cases and operators that perform some action on the given

operands), automatically assemble a computer program that correctly performs the

task (i.e. produces the desired outputs for all of the input cases).

Figure 1.1 provides an illustration of the conventional evolutionary cycle in GP.

First, a population of programs is randomly generated. Next, each program (referred

to as an individual) is evaluated using a problem-specific fitness function to determine
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Figure 1.1: The Conventional Evolutionary Process of GP.

its fitness, which is typically a measure of its proximity to the optimal solution. After

the population has been evaluated, selection pressure is applied by choosing fitter

individuals. The selected individuals undergo genetic operators such as crossover and

mutation to produce a new population. The process of fitness evaluation, selection

and breeding repeats until either a solution is found or a predefined number of cycles

(commonly measured in generations or total fitness evaluations) has been reached.

In tree-based GP, which is the form of GP we consider in this work, programs

are represented by syntax trees, where the internal (function) nodes are typically

operators and the terminal nodes are typically operands. This representation pro-

vides great flexibility in expressing and evolving functions. The traditional crossover

operator creates new offspring programs by swapping randomly selected subtrees be-

tween two parent programs. Similarly, the traditional mutation operators replace a

subtree (or node) in a parent program with a randomly generated subtree (or node)

using the primitive set.

1.2 Premature Convergence

Premature convergence is a serious problem that is known to hamper the perfor-

mance of GP, as well as other evolutionary algorithms (EAs). We consider premature
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convergence to have occurred during the evolutionary process when the population

becomes largely homogeneous before an optimal solution has been discovered. This

often occurs during the early stages of the evolutionary process when sub-optimal

solutions dominate the population and the typical genetic operators are unable to

explore different regions of the search space. As a result, the likelihood of discovering

an optimal solution dramatically decreases.

Premature convergence is an even more challenging problem for conventional GP

because of the variable-length tree representation of programs. In tree-based GP,

populations converge much differently than in EAs that use fixed-length representa-

tions such as the binary-encoded genetic algorithm (GA). In a binary-encoded GA,

when two genetically identical individuals undergo single-point crossover, the result-

ing offspring will also be identical to the parents. However, given that GP trees

typically encode functions, performing the conventional random subtree crossover

operator on two identical trees can still create functionally different offspring when

different subtrees are exchanged between the trees. Therefore, even if a GP popula-

tion is largely genetically homogeneous, it is still possible for the traditional genetic

operators to yield different phenotypes.

While GP populations converge differently than in other EAs, it is known that

traditional GP populations are still greatly affected by premature convergence. An

early analysis of population diversity revealed that GP populations often rapidly lose

diversity during the early stages of the evolutionary process [53]. In that study, the

authors tracked the propagation of genetic material through the population over time

and showed that the population at the final generation tended to inherit all of its

genetic material from a very small number of individuals from the initial generation.

Inspecting the top four levels of the trees in the population revealed that near the

onset of the evolutionary process, a large proportion of the population (over 70%)
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became genetically identical to a single individual from the initial generation [53].

Since the rooted portion of a tree defines its functional context, changes made near

the root have a much greater impact on its overall functionality. Therefore, prema-

turely converging to a single rooted structure can limit the variety of phenotypes

that can be evolved.

Other studies that examined the properties of the conventional random subtree

crossover operator revealed that it also contributes to the loss of diversity [24, 64].

Random subtree crossover operates on two trees and uniformly, randomly selects a

node in each tree. The resulting subtrees at the chosen nodes are swapped between

the two trees to create two offspring. It was shown that nodes deeper in the trees are

more frequently chosen for crossover, while the upper regions of the trees are largely

unaltered [24]. This is largely due to the fact that, given the branching factors of

trees, the number of nodes lower in the tree is disproportionately larger than the

number of nodes at higher levels in the tree. A common method for addressing this

is to force the crossover operator to probabilistically select internal nodes more often

than leaves. However, Langdon and Poli showed that random subtree crossover tends

to exchange little genetic material between trees, which further exacerbates genotypic

convergence [64].

In addition to premature convergence in the genotypic space, premature con-

vergence in the phenotypic (behavioral) space is a serious, yet complex, issue in

GP [35, 36, 46]. Because many genotypes (trees) can encode the same phenotype

(the behavior expressed by a tree when it is executed), the genetic diversity of a GP

population does not directly correlate to the phenotypic diversity of the population.

Therefore, a genetically diverse population is not guaranteed to also be behaviorally

diverse. Likewise, a genetically homogeneous GP population is not guaranteed to

be behaviorally homogeneous since it is still possible for new phenotypes to arise, as
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we discussed earlier. However, GP populations often experience a loss of behavioral

diversity [35, 36]. Due to strong selection pressure, GP populations tend to rapidly

converge to a few clusters of individuals that express the same behavior [36, 46].

1.3 Contributions of this Work

There are multiple contributions of this research. We begin with a survey of several

preexisting genotypic and phenotypic diversity techniques for GP. Next, we introduce

a simple yet powerful novel measure of structural diversity that is free of the notion

of genotypic distance. We then present a multi-objective technique that incorporates

our structural diversity measure to prevent premature convergence while accelerating

search. We validate our technique by demonstrating its utility and performance

benefit compared to state-of-the-art and conventional GP approaches, as well as by

applying our technique to the real-world problem of tuberculosis screening from X-

ray images. We also provide a detailed analysis of the search properties and behavior

of our technique.

Next, we introduce hybrid methods for simultaneously sustaining structural and

behavioral diversity to achieve more effective GP search than either method in iso-

lation. Empirical analyses reveal that simultaneously maintaining structural and

behavioral diversity can improve the search performance of GP by leveraging both

aspects of diversity and overcoming some of the challenges faced by either method in

isolation. These findings also motivate the design of new GP operators that utilize

structural and behavioral diversity to achieve more efficient search.
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Chapter 2

Existing Diversity Techniques in

Tree-Based GP

Premature convergence has received a lot of attention, and many techniques have

been developed in order to prevent it in GP as well as EAs in general. Many such

techniques focus on maintaining population diversity as a means of combating pre-

mature convergence. This chapter reviews several existing diversity techniques.

2.1 Genotypic Diversity Techniques

The traditional search operators such as crossover and mutation work at the geno-

typic level, making genetic modifications to the individuals in the evolving population

in order to evolve new phenotypes and explore different regions of the search space.

Therefore, the genotypes in the evolving population play a vital role in the effective-

ness of EAs. As a result, several existing diversity techniques focus on sustaining

genotypic diversity in the population in order to prevent premature convergence.

Several genotypic diversity techniques rely on a distance metric to determine

the similarity between genotypes in the population. Given a distance metric, a
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population with greater genotypic distance between individuals is said to be more

genetically diverse. Therefore, maximizing the pairwise distance between individuals

of the population has been used as a means of promoting diversity [18].

A type of tree edit distance has been used to promote diversity in GP [18]. To

determine the distance between two trees, the trees are first overlaid and then the

total nodes that differ in the overlapping region of the two trees is calculated. The

distance is normalized by dividing it by the size of the smaller tree. Genotypic

diversity is then measured as the average squared distance of each individual to the

rest of the population.

Although such genotypic diversity metrics can be used to increase population

diversity, there are limitations of such measures [11]. One of the main issues is that

depending on the way diversity is defined, high diversity may not necessarily imply

good fitness or efficient search [11]. Genotypic diversity is undoubtedly important to

the success of EAs because it increases the possible ways of assembling a solution.

However, it is less clear how a diversity metric should be defined, how much diversity

is needed, and how diversity should be enforced. Moreover, genotypic distance may

not accurately reflect phenotypic distance in GP, due to the complicated genotype-

to-phenotype mapping. Therefore, many approaches focus on maintaining diversity

without the use of an explicit distance metric.

Structure Fitness Sharing (SFS) [33] promotes genotypic diversity based on tree

structure. However, instead of explicitly calculating the distance between trees, SFS

labels each unique tree structure and tracks the number of individuals and fitness

for each structure. The main idea is to promote the search for unique structures and

prevent a single structure from dominating the population. This is done by adopting

a fitness sharing scheme [25, 26], which reduces the fitness of structures that are

over-represented in the population.
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Lineage selection [12] was proposed as a means of promoting the search for the

“fit and diverse” rather than solely selecting individuals based on fitness. Lineage

selection is based on the concept of genetic lineages, where the lineage of an individual

can be determined by tracing the path from its root parent (the parent from which

it inherited its root node) to the individuals from which it was created through

crossover [12, 53]. Lineage selection groups individuals based on genetic lineage, and

then modifies the traditional tournament selection operator to hold tournaments

among random individuals selected from different lineages.

In a similar fashion to lineage selection, Hereditary Repulsion (HR) [56] uses

genetic lineage information to promote diversity. When selecting parents to create

offspring, HR selects the first parent randomly and then selects a random subset of

candidate individuals for the second parent. Next, the hereditary overlap between the

first parent and each of the candidates is determined, where the hereditary overlap of

two individuals is the total common ancestors the individuals have in their lineages.

In this case, both parents of an individual are considered in the lineage instead of

only the root parent. The candidate with the smallest hereditary overlap with the

first parent is chosen to undergo crossover.

2.1.1 Structured Populations

Other methods have been introduced for enforcing genotypic diversity by imposing a

structure on the population instead of relying on an explicit diversity measure [30, 32].

The main motivation behind such techniques is that fitter genotypes tend to rapidly

dominate the population, which accelerates premature convergence. By restricting

competition through a structured population, and regularly introducing new genetic

material into the population, these methods attempt to prevent premature conver-

gence and promote better exploration of the search space.
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The Age-Layered Population Structure (ALPS) uses a hierarchical population to

counteract premature convergence [8, 30, 31]. ALPS uses genotypic age to segregate

the population into several “age layers” in order to prevent older genotypes from

dominating the population. Genotypic age is a measure of the amount of time that

has passed since an individual’s oldest ancestor was created. The age layers restrict

competition and breeding to individuals of similar genotypic age. Each layer has

an age limit, which can be determined by different numerical aging schemes [30].

As time progresses, the genotypic age of individuals reaches the age limit while the

individuals in the layers become fitter. Individuals above the age limit are forced to

move out of their layers and compete for membership in the next highest layer by

displacing a less-fit individual or an individual that is too old for that layer.

In addition to using age layers to localize competition, ALPS also periodically

introduces new randomly generated individuals into the population at the lowest

layer. Since individuals only compete against other individuals within a certain

range of their genotypic age, new randomly generated individuals don’t face the risk

of immediately being dominated by older, fitter individuals. Therefore, the lowest

layer serves as a source of new genetic material and the discovery of new building

blocks that propagate up the hierarchy and help the population escape local optima.

The Hierarchical Fair Competition Framework (HFC) and its variants work on

the idea of “fitness gradients,” into which the population is organized to make com-

petition between individuals more balanced [32]. HFC organizes the population into

several fitness levels, where each level contains one or more subpopulations. By

dividing the range of the possible fitness values among the different fitness levels,

HFC creates a fitness gradient through which evolutionary search progresses. This

effectively decreases local selection pressure at each fitness level because individuals

must only compete with other individuals in their own fitness level. This is a ma-
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jor advantage over the traditional EA because it protects “stepping stones,” which

are individuals of intermediate fitness that potentially contain valuable genetic ma-

terial [32]. This way, stepping stones have more of a chance to spread potentially

valuable genetic material through the population without the risk of being dominated

by fitter individuals.

To provide a constant source of new genetic material, HFC continuously adds new

randomly generated individuals at the lowest fitness level. The new individuals are

less likely to be immediately dominated in fitness since competition occurs between

individuals of similar fitness. However, HFC still maintains a strong global selection

pressure since fitness increases toward the upper levels of the hierarchy [32]. This

incorporation of new genetic material is not only a way of increasing genetic diversity,

but it can also increase the likelihood of reaching previously unexplored areas of the

search space and preventing the population from prematurely converging to local

optima.

2.1.2 Multi-objective Diversity Maintenance

As we discussed in Section 1.1, the conventional fitness function is a measure of

an individual’s proximity to an optimal solution. For many problems, fitness is de-

fined based on a single measure. However, other problems contain multiple criteria

that must be optimized, and there are several existing multi-objective techniques

(for example, the popular NSGA-II [19]) that have been developed for such prob-

lems. Leveraging the power of such multi-objective techniques, diversity mainte-

nance techniques have been designed by incorporating a diversity measure as an

additional, artificial objective of the problem alongside fitness [18, 69]. This multi-

objectivization [38] allows diversity to be maximized while fitness is simultaneously

optimized, and allows the use of the many techniques that were originally developed
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Figure 2.1: An Example Set of Pareto-optimal Solutions in a 2D Objective
Space. Both objectives are maximized. No single point dominates any other point
in both objective values.

for multi-objective problems.

Such multi-objective methods are based on the Pareto criterion, which consid-

ers the trade-off curve of the candidate solutions [68]. The key idea is that given

multiple objectives, there may exist many combinations of objective values that are

equally optimal (i.e. Pareto-optimal as in Figure 2.1). Therefore, the Pareto crite-

rion compares individuals on all objectives and considers an individual A to dominate

individual B if the following holds:

∀iAi ≥ Bi ∧ ∃i | Ai > Bi (2.1)

where Ai and Bi are the objective values, respectively, of A and B for each objec-

tive i. This assumes maximization of all objective values, and the same is true for

minimization of any objective, where ≥ and > are replaced by ≤ and <, respectively.

The FOCUS (Find Only and Complete Undominated Sets) method [18] uses a

multi-objective scheme to promote genetic diversity while optimizing fitness. Based

on the overlapping tree distance metric that we discussed earlier, FOCUS calculates

for each individual the average squared distance of that individual to every other

individual in the population. This value becomes the diversity objective value for
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each individual, which is maximized in the multi-objective scheme. Each generation,

FOCUS uses the Pareto criterion to remove all individuals that are dominated, con-

sidering diversity, fitness, and tree size as objectives. The tree size objective, which

is minimized, is used to add parsimony pressure to reduce the problem of bloat,

wherein GP trees typically grow dramatically over time. However, it has been shown

that parsimony pressure can be detrimental to GP performance [72].

Age-Fitness Pareto Optimization [69] was introduced as a means of using geno-

typic age as in ALPS to localize competition and maintain a constant source of new

genetic material without the overhead of managing a structured population. Age-

Fitness Pareto Optimization adopts a multi-objective scheme in which genotypic age

is minimized as one objective while fitness is optimized as the second objective. The

main goal is to promote the search for newer, fitter genotypes while preventing older

genotypes from dominating newer genotypes. Age-Fitness Pareto Optimization adds

a new randomly-generated individual to the population each generation as a means

of maintaining a constant source of new genetic material. Since the new individual

will be non-dominated in the age objective, it has more of a chance to propagate

potentially valuable genetic material through the population.

2.2 Behavioral Diversity Techniques

As Section 1.2 discusses, genotypically different trees can express the same behavior

due to the complex genotype-to-phenotype mapping in tree-based GP. Therefore,

enforcing diversity in the genotypic space does not ensure diversity in the phenotypic

(behavioral) space. Fortunately, recent research has focused on maintaining a diverse

set of behaviors by operating explicitly in the phenotypic space, avoiding the problem

of genotype-to-phenotype mapping.
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Figure 2.2: Semantics of a GP Tree. The tree p is executed on the input k =
[1, 2, 3, 4, 5] and produces a corresponding output p(ki) for each input case ki. The
semantics s(p) is the vector of outputs [1, 4, 9, 16, 25] produced by executing p on k.

*
x x

1 4 9 16 25

1 2 3 4 51 2 3 4 5

s(p)

2.2.1 Semantics in GP

Before discussing the behavioral diversity techniques that have been introduced for

GP, it is important to first define behavior in GP. Since the goal of GP is to auto-

matically synthesize programs for a given programming task, problems in GP are

typically defined with a set of training examples that contain inputs and desired

outputs. More formally, a problem can be defined by several input cases ki, each of

which has a corresponding desired output, yi.

When a program, p is evaluated by the fitness function, the program is typically

executed on each input case ki, for which it produces an output p(ki). The semantics

or behavior, s(p), of p is commonly defined as the vector of outputs that p produces

when executed on all the input cases [54, 76]. Figure 2.2 demonstrates how the

semantics of a tree is obtained by executing the tree on the input cases.

2.2.2 Semantic-Aware Selection Methods

Several selection methods have been proposed for sustaining behavioral diversity

rather than focusing solely on genotypic diversity. The conventional selection meth-

ods such as tournament selection and fitness proportionate selection only consider

an individual’s fitness and are blind to its actual behavior. On the other hand,

semantic-aware selection methods consider some aspect of the individual’s behavior
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when selecting individuals to produce offspring.

Since GP is often applied to problems that consist of multiple training examples

(fitness cases), Lexicase Selection [28] considers the performance of an individual on

each fitness case. The main goal of Lexicase Selection is to breed individuals that

perform well on different sets of fitness cases in order to increase the likelihood that

their offspring will inherit complementary traits from the parents. Before selecting

each parent from the population, Lexicase Selection chooses a random ordering on

the fitness cases and then, in that order, it eliminates parent candidates by retaining

only those that have the exact error on each fitness case until it can select only a

single individual.

Although Lexicase Selection has been shown to increase behavioral diversity as

well as improve search performance in different problem domains, it is known to

perform poorly for problems wherein the error for each fitness case is a real-value.

Since we used real-valued problems in our test suite, which we describe in detail in

Chapter 4, we used Epsilon Lexicase Selection [45], which is a recent enhancement

that performs well for real-valued problems. Rather than using the exact current best

error value obtained on each fitness case, Epsilon Lexicase Selection eliminates the

individuals with error values outside some epsilon of the best error. This alleviates

the problem of only one fitness case being used to eliminate candidates due to the

nature of the real-valued errors. Epsilon Lexicase Selection can also eliminate the

need for a pre-defined epsilon threshold by adapting epsilon based on the current

population.

Similar to Lexicase Selection, Comparative Partner Selection [17] considers an

individual’s performance on the fitness cases. Comparative Partner Selection assigns

each individual a binary string fitness characterization (BSFC), which captures the

individual’s relative performance on each fitness case with respect to its performance
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on every other fitness case. Comparative Partner Selection attempts to breed in-

dividuals with different BSFCs from each other in order to take advantage of their

strengths and improve upon their weaknesses. However, rather than focusing di-

rectly on behavioral diversity, Comparative Partner Selection attempts to accelerate

convergence to the solution by reducing phenotype variance [17].

Complementary Phenotype Selection [21] is another selection technique that con-

siders the performance of an individual on the fitness cases. Similar to the goal of

Lexicase Selection, Complementary Phenotype Selection attempts to breed individ-

uals that perform well on complementary sets of fitness cases in attempt to create

offspring that inherit the strengths of the parents and improve upon their weak-

nesses. To accomplish this, the first parent is selected with a traditional selection

method (we used tournament selection in our experiments). Next, for every other

individual in the population, an imaginary output vector, BF,M , is created by taking

the best error between the individual and the first parent on each fitness case. BF,M

represents the output vector of an offspring that would perform as well as the better

performing parent on each fitness case. The individual that creates the fittest BF,M

is selected as the second parent.

Interleaved Sampling (IS) [50] also uses fitness case performance to select indi-

viduals for breeding. In contrast to Lexicase Selection, IS alternates between using

all of the fitness cases for calculating fitness in certain generations and a single,

randomly-selected fitness case in other generations. Similarly, Keep-Worst Inter-

leaved Sampling [50] selects some number of the current most difficult fitness cases

rather than selecting a single fitness case randomly in the generations in which the

entire set of fitness cases is not used.

Implicit fitness sharing (IFS) [52] incorporates fitness case performance into the

fitness calculation. Based on the original fitness sharing concept [25, 26], IFS reduces
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the fitness reward given by each fitness case based on how many individuals solve that

fitness case. Since individuals are selected based on fitness, IFS effectively reduces

the likelihood of selecting individuals that perform similarly.

Rather than directly considering the fitness case performance, Semantic Shar-

ing [58] compares the semantic similarity of individuals in order to reduce the fitness

of semantically similar individuals. In order to determine semantic similarity, Sam-

pling Semantics Distance [58] compares the output vectors of individuals and uses

a threshold of dissimilarity. Semantic Sharing was shown to improve the perfor-

mance of GP, while the compared syntactic sharing method did not improve GP

performance [58].

Semantics in Selection (SiS) [23] attempts to promote behavioral diversity while

still maintaining strong selection pressure for improved fitness. Based on the com-

monly used tournament selection operator, SiS is used to breed fit individuals that

are also behaviorally different from each other. SiS selects the first parent based

solely on fitness, i.e. using the original tournament selection method. To select the

second parent, SiS holds another tournament to find the fittest individual that is

also behaviorally different from the first parent. Unlike other approaches, such as

Semantic Sharing, that employ a measure of behavioral similarity [58], SiS considers

two individuals to be behaviorally unique if their output vectors differ by at least

one element.

2.2.3 Semantic-Aware Operators

In recent years, several operators that utilize the semantics of individuals during

crossover have been introduced [61, 76]. Although some of the methods we discuss

in this section do not primarily focus explicitly on diversity, they affect behavioral

diversity since they consider the behavior of trees instead of completely randomly
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modifying trees. A major limitation of the widely-used random subtree crossover is

that it makes no consideration of the context in which the selected subtrees occur

or the semantics of the selected subtrees. Therefore, random subtree crossover has

been considered to be destructive because swapping subtrees into random contexts,

irrespective of the semantic effects, can potentially destroy good solutions [49].

In an effort to overcome the destructive nature of random subtree crossover,

context-aware crossover (CAC) [49] exhaustively locates the best possible context

at which to insert the subtree from the donating tree into the receiving tree. This

is done by randomly selecting a subtree in one parent and swapping the subtree at

all possible crossover points in the other parent, excluding the root. Each resulting

offspring is evaluated, and the offspring with the highest fitness is chosen. Although

this does not directly utilize the semantics of the subtree to be swapped, it considers

the semantic effect of each possible crossover by determining the change in fitness.

Despite increasing the number of fitness evaluations required per generation, CAC

was shown to perform better than random subtree crossover [49].

Other approaches that generate several offspring (referred to as a brood) from

two parents have been proposed. Semantically Driven Crossover (SDC) [6] performs

random subtree crossover between two parents and only allows offspring to enter

the population if they are semantically different from the parents. This is similar

to offspring selection [1] in that the process continues until it creates an offspring

that satisfies the criteria for acceptance (being semantically different in the case of

SDC). The approximately geometric crossover) [40] generates n offspring and selects

the offspring whose semantics are as close as possible to the linear combination

of the two parents. Other crossover operators have been proposed that consider

the semantic similarity of the subtrees exchanged between parents, as well as the

semantic equivalence of the children [57, 74].
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Figure 2.3: Semantic Geometric Crossover for Real-valued Expressions.
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Semantic Geometric Crossover (SGX) [55] was designed to ensure that the se-

mantics of an offspring lie somewhere on the segment connecting the semantics of

its parents in the semantic space. SGX creates an offspring tree as a convex geo-

metric combination of the two parent trees (with respect to the semantic space), by

combining both trees with either a random constant or a random expression. Fig-

ure 2.3 and Figure 2.4 demonstrate how SGX combines two parent trees t1 and t2

to create the offspring for real-valued and Boolean domains using Equation 2.2 and

Equation 2.3, respectively, where tr is a randomly-generated expression (or possibly

a random constant in the case of the real-valued domain).

t1 ∗ tr + (1− tr) ∗ t2 (2.2)

(t1 ∧ tr) ∨ (¬tr ∧ t2) (2.3)

SGX has many appealing properties that improve upon random subtree crossover.

First, SGX transforms the fitness landscape traversed by GP into a conical, unimodal

landscape since the fitness of an individual is based on its semantic distance to the

solution [55, 61]. Furthermore, a geometric crossover guarantees that the fitness of

the offspring is no worse that of its worse parent [61].
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Figure 2.4: Semantic Geometric Crossover for Boolean Expressions.
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Although SGX has very attractive properties, the main drawback of its original

description [55] is that, as Figure 2.3 and Figure 2.4 show, the offspring will con-

tain the entirety of both parents’ trees in addition to a randomly-generated subtree

(or constant), which means that tree size grows exponentially over time. However,

extensions have been proposed for alleviating this issue [59, 75].

Subtree Semantic Geometric Crossover (SSGX) [59] was recently proposed as an

extension to SGX. SSGX attempts to alleviate the issue of exponential tree growth

of the original SGX operator. Instead of using the entire parent tree, SSGX selects

from the parent the subtree with semantics as close to the semantics of the root

of the tree. Furthermore, to prevent selecting a large subtree, SSGX only selects

subtrees within a pre-defined size range. This way, SSGX chooses a subtree that is

smaller than the parent and approximates the original semantics of the parent. In

a set of experiments in the symbolic regression problem domain, SSGX performed

similar or better compared to SGX, and significantly reduced tree growth [59].

One issue with current semantic geometric crossovers such as SGX is that al-

though the created offspring are geometric (i.e. the semantics of the offspring lie

on the segment connecting the semantics of the parents), crossover may not always

produce offspring that are semantically effective (different from the parents). This

is because, by definition, the child can be semantically equivalent to one of the
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parents and still be geometric [61]. However, this has been addressed to varying

extents [42, 43, 44, 62].

Locally Geometric Semantic Crossover (LGX) [42, 44] improves upon random

subtree crossover by attempting to find a semantically medial subtree to place into

both parents in order to increase the likelihood that the behavior of the resulting

offspring will be between that of the parents in the behavioral space. Semantic

mediality of offspring was shown to be very valuable in reaching the desired solution

behavior [42, 44]. Rather than attempting to directly ensure that the entire offspring

program is semantically medial with respect to its parents, LGX attempts to find a

subtree that is semantically medial to the subtrees at the selected crossover points in

each parent. The intuition behind this is that finding a semantically medial subtree

may be easier than creating an offspring that is perfectly semantically medial.

LGX first selects the subtrees to be exchanged between the parents. Next, LGX

calculates the midpoint, m, of the semantics of the parents’ subtrees, and sets m as

the desired semantics for the crossover. A library of subprograms is then searched

to find a subprogram with semantics closest to m. LGX also considers the context

of the subtrees by only allowing crossover to occur at a homologous locus in each

parent (i.e. a locus at which the surrounding structure of the trees is the same).

In addition to the inception of semantic geometric crossover operators, semantic

geometric mutation operators were also introduced [55]. In this case, the semantics

of the generated offspring are guaranteed to lie within the geometric ball (in the

semantic space) centered around the parent’s semantics with a radius within some

epsilon. Since SGX is incapable of creating offspring that lie outside the convex hull

of the population, a solution will not be found if the solution is not contained within

the convex hull of the population [61]. Using semantic geometric mutation alongside

SGX can help overcome this issue [61].
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Chapter 3

The Genetic Marker Diversity

Algorithm for GP

We recently introduced the Genetic Marker Diversity Algorithm for GP (GMD-GP)

as a structural diversity maintenance technique for tree-based GP [13]. First, we

discuss the motivation behind GMD-GP. Next, we present our novel structural di-

versity measure and discuss how GMD-GP uses this measure for sustaining structural

diversity.

3.1 Motivation behind GMD-GP

Two major motivations behind the design of GMD-GP are as follows. First, GP

populations have a tendency to rapidly converge to a single rooted structure [53].

Second, certain tree structures (size and shape) are much more difficult for GP to

evolve [16, 27]. The rooted structures of the trees are important because they define

the overall context of the programs, and thus modifications to a tree nearer the

root have more of an impact on the functionality of the tree. This is especially

important in early generations because large changes to program behavior can be
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seen as exploratory steps in the search space. Although it is generally accepted

that less exploration is needed in later generations as good programs are further

refined (referred to as exploitation), exploration is an invaluable tool for helping the

population escape local optima and avoiding premature convergence.

Furthermore, since certain structures are more difficult for GP populations to

reach, if an optimal solution has such a structure, the likelihood of finding the solution

is very low, if not impossible. Since upper portions of the trees tend to remain

untouched by standard crossover [24], if the population does not converge to the

correct rooted structure, it is very unlikely that the structure will be found in later

generations (albeit that for problem domains such as symbolic regression, there could

be many structures that encode an optimal solution). Maintaining a diverse set of

structures in the population may alleviate this issue.

GMD-GP attempts to prevent the population from converging to a single rooted

structure by imposing selection pressure to maintain a diverse set of rooted structures

in the population throughout the evolutionary process. In order to achieve this, we

use the rooted fragments of the trees as genetic markers and select against a single

genetic marker dominating the population. GMD-GP is fundamentally different from

some of the other genotypic diversity techniques that we discussed in Chapter 2 in

that GMD-GP only considers a fragment of the tree rather than the entire genotype

and GMD-GP does not require an explicit genotypic distance metric.

3.2 Genetic Markers

In order to promote structural diversity, GMD-GP uses genetic markers, which are

tree fragments that capture the structure of the trees in the population. Genetic

markers are constructed by traversing a tree in depth-first order from a starting
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Figure 3.1: A Rooted Genetic Marker. A depth-first traversal from the root to
level 2 is performed to create the genetic marker, m = (+ (*) (SIN)).

Figure 3.2: A Non-rooted Genetic Marker. A depth-first traversal from level 2
to level 3 is performed to create the genetic marker, m = (* x (+)), (SIN (+)).

level, Li, down to an ending level, Lj. All the nodes in the tree from Li to Lj will be

contained in the genetic marker, which is a partial Lisp-style expression. We chose

to use Lisp-style expressions as this is a common way of representing GP trees as

character strings [39].

Figure 3.1 and Figure 3.2 illustrate how genetic markers are constructed. In

Figure 3.1, the genetic marker is constructed from the root of the tree (level 1)

down to level 2. Since the genetic marker does not contain the entire tree, the

resulting partial Lisp-style expression simply adds closing parentheses around the

function nodes whose children do not belong to the genetic marker. This way, only

the fragment of interest is preserved. Figure 3.2 illustrates that a genetic marker can

begin at an arbitrary level in the tree. Since the fragment of interest is non-rooted,

the resulting genetic marker is a list of partial expressions in left-to-right order. The

ordering allows the genetic marker to retain the structure of the tree even though

the root does not belong to the genetic marker.

Genetic markers can be used to provide an estimate of the structural diversity
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of a given population. To do so, GMD-GP groups members of the population by

their genetic markers and considers the density of each genetic marker. This mea-

sure allows GMD-GP to determine how widespread a particular structure is in the

population. The density, ρm, of a genetic marker m in population P is calculated

as in Equation 3.1, where m(p) is a function that determines the genetic marker of

individual p as we described above.

ρm =
|Pm|
|P | , Pm = {∀p ∈ P | m(p) = m} (3.1)

Using Equation 3.1, the densities of all the genetic markers in a population of size

n can be calculated in O(n) time, since each individual only needs to be considered

once. Furthermore, GMD-GP only uses the top portion of a tree for promoting

structural diversity, which means that only a small fragment of the tree needs to be

traversed in order to construct the genetic marker. Therefore, a negligible amount

of overhead is imposed upon the system in order to construct genetic markers as

well as to determine the density of each genetic marker. While it is well-known

that the fitness evaluation is usually the most computationally expensive phase of

EAs for complex problems, imposing a negligible amount of additional expense is

an attractive property of genetic markers. Also, it is possible to further improve

efficiency by constructing the genetic marker when the tree is newly generated, or

when the nodes are traversed during fitness evaluation.

We can see from the above definition of genetic markers and the correspond-

ing density measure that genetic markers share some properties with some of the

schema definitions for GP [63, 65]. Schemata, which are essentially fragments of the

genotype, are used to identify common genetic regions shared by individuals in the

population. The schema theorem [29] states that short, low-order schemata known

as building blocks are combined to form higher-order building blocks which even-
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Figure 3.3: Rooted Genetic Marker vs. Rooted Tree Schema. A rooted
genetic marker containing the top two levels of a tree compared to a rooted tree
schema matching a different portion of the same tree.

tually lead to solution discovery. The schema theorem allows us to reason about

the utility of such building blocks, as well as to predict the number of instances of

a particular schema in future generations. Although schemata are easier to define

in fixed-length representations such as binary GAs, there have been many schema

definitions proposed for GP as well.

The rooted tree schema [65] is perhaps the most closely related schema definition

to genetic markers. However, there are some key differences worth discussing. Fig-

ure 3.3 shows that, similar to rooted genetic markers, rooted-tree schemata [65] begin

at the root of the tree and span across a contiguous fragment of the tree. However,

unlike genetic markers, rooted tree schemata are not strictly required to span across

an entire level in the tree, as Figure 3.3 illustrates.

Similarly, a non-rooted genetic marker can also be considered as an instance of a

hyperschema [63]. However, because hyperschemata employ a “don’t-care” symbol

in order to provide flexibility and expressiveness, not all hyperschemata can be con-

sidered non-rooted genetic markers since genetic markers must span across an entire

level in the tree. Figure 3.4 shows the major difference between a hyperschema and

a non-rooted genetic marker.

While genetic markers undoubtedly share properties with GP schemata, they are

defined more strictly and serve a different purpose. The main purpose of genetic

markers is not to provide a new schema definition but to provide an inexpensive
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Figure 3.4: Non-rooted Genetic Marker vs. Hyperschema. A non-rooted
genetic marker spanning the second and third levels of a tree compared to a hyper-
schema of the same tree.

means of estimating structural diversity of the population, namely among the top

portions of the trees. In addition to providing an estimate of structural diversity,

genetic markers are used in GMD-GP to actively maintain structural diversity.

3.3 GMD-GP Structural Diversity Preservation

GMD-GP uses the density values of the genetic markers in a population in order to

prevent a single structure from becoming too widespread. To achieve this, GMD-GP

incorporates a multi-objective optimization scheme that simultaneously minimizes

genetic marker density while optimizing fitness. This promotes structural diversity

by rewarding less-represented structures (and thus preventing a single structure from

dominating the population) while still maintaining global selection pressure to im-

prove fitness.

The main evolutionary loop of GMD-GP, which is based on the multi-objective

implementation of the Age-Fitness Pareto Optimization scheme [69], is presented in

Figure 3.5. Every generation, parents are randomly selected to produce offspring

via the typical crossover, reproduction, and mutation operators. In a traditional GP

setup, offspring immediately replace their parents and elitism is used to retain the

best individuals. Instead, in GMD-GP both the parent population and the offspring

are temporarily kept, which increases the population size to 2n. Next, genetic marker
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Figure 3.5: The Main Evolutionary Loop of GMD-GP.

density and fitness are used with Pareto tournament selection [69, 71] to remove

dominated individuals from the population in order to reduce the population size to

n− 1. The target population size is n− 1 instead of n because the final step of the

evolutionary loop adds a new randomly-generated individual to the population as a

means of providing a constant source of new genetic material.

The Pareto tournament selection method with genetic marker density and fitness

provides selection pressure for less-represented structures that are also fitter. As its

name suggests, Pareto tournament selection holds a tournament among a randomly

chosen subset of individuals in the population, and keeps only the individuals that

satisfy the Pareto selection criteria. Since multiple objectives are used, only the

individuals that are not dominated on all objectives by another individual in the

tournament will survive. In GMD-GP, each individual is assigned the density value

corresponding to its genetic marker, and then density and fitness are used by Pareto

tournament selection to determine domination. In this case, individual A dominates

individual B if A is at least equal to B in density and fitness and A is strictly better

than B in either density or fitness. If individuals are strictly equal on both objectives,

GMD-GP chooses the smaller of the two, or randomly if they are also the same size.
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In order to reduce the population size from the temporary size of 2n to n − 1,

Pareto tournament selection is repeatedly applied to remove dominated individuals

from the population. Therefore, only the current set of non-dominated individuals

is guaranteed to survive to the next generation. It is theoretically possible that

the set of non-dominated individuals can grow to cover the entire population [69],

causing the population to grow beyond n since a new individual is added each gen-

eration. However, we have not observed this phenomenon in any of our experiments

using genetic marker density and fitness as the Pareto objectives, and it was also

not observed in the Age-Fitness Pareto Optimization algorithm [69]. Furthermore,

it is possible to restrict the growth of the non-dominated front by modifying the

domination criteria [18].

As Figure 3.5 shows, the final step of the evolutionary loop of GMD-GP intro-

duces a new randomly-generated individual into the population. This provides a

constant source of new genetic material, which may contain essential building blocks

that can later propagate throughout the population. Since one of the goals of GMD-

GP is to sustain high diversity, the genetic marker density values tend to be very

low. Therefore, the newly generated individual, which would likely contain a unique

genetic marker, would likely be less fit than many of the members of the population

while it could have the same density value of 1
n
. In order to prevent the new individ-

ual from being immediately dominated by a fitter individual with the same density

value, we simply add the new individual to the population after the Pareto tourna-

ment selection phase, which differs slightly from the Age-Fitness Pareto Optimization

algorithm.
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Chapter 4

Experimental Validation of

GMD-GP

In this chapter, we provide an empirical comparison and analysis of the search per-

formance and behavior of GMD-GP and several state-of-the-art techniques as well as

traditional GP. We provide a detailed comparison of the performance and behavior

of GMD-GP and the different techniques on a large suite of benchmark problems.

These results demonstrate the feasibility of GMD-GP and provide motivation for the

work that we will present in the following chapters.

4.1 Benchmark Problem Suite

Before we delve into the experimental results, we first describe the benchmark prob-

lem suite that we used to compare the different techniques. In order to provide a

thorough comparison and analysis of GMD-GP versus other state-of-the-art tech-

niques, we included a large set of problems of varying difficulty. The problems fall

into one of two domains: symbolic regression (a total of 15) and finite algebras (a
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total of 10).1

The symbolic regression problems, which were chosen from the set of recom-

mended GP benchmark problems in previous work [51], include 8 univariate and

7 bivariate problems of varying difficulty. Symbolic regression is a commonly used

problem domain for GP because the tree-based representation provides a flexible

means of expressing mathematical functions. Symbolic regression is also a challeng-

ing benchmark because GP often spends a lot of the computational budget by only

making incremental improvements to sub-optimal solutions, which can severely limit

its ability to discover an optimal solution [47].

In the symbolic regression task, GP must evolve a mathematical expression that

fits a target function given a set of input points. Fitness is calculated based on

how close an individual’s output is to that of the target function on all the input

points. We used the cumulative absolute error, normalized between 0 and 1 with the

following equation.

f =
1

1 + error
(4.1)

Table 4.1 lists all the symbolic regression problems, along with the training and

testing data that we used. We used the corrected versions2 of the domains for the

training and testing data that were originally given in [51]. The function set {+, -,

*, %, SIN, COS, LOG, EXP, −x } was used for all the symbolic regression problems.

The terminal set includes a single variable x for all the univariate problems and an

x0 and x1 for the bivariate problems. We did not include random constants in the

terminal set, similar to previous work [41].

The second class of problems in our benchmark suite were selected from [73], in

which GP produced human-competitive solutions to finite algebras problems. Each

1For the experiments comparing GMD-GP to SSGX, we did not include the finite algebras
problems since SSGX was not designed for finite values.

2https://cs.gmu.edu/ sean/papers/gecco12benchmarks3.pdf
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Table 4.1: Symbolic Regression Benchmark Problems. U[a, b, c] means that c
points are uniformly randomly selected between a and b, inclusive. E[a, b, c] means
that the points are deterministically chosen on an evenly-spaced grid from a to b,
inclusive, with an interval of c.

Name Target Function Training Testing
SEXT x6 − 2x4 + x2 U[-1, 1, 20] E[-1, 1, 0.001]
NGUY3 x5 + x4 + x3 + x2 + x U[-1, 1, 20] E[-1, 1, 0.001]
NGUY4 x6 + x5 + x4 + x3 + x2 + x U[-1, 1, 20] E[-1, 1, 0.001]
NGUY5 sin(x2)cos(x)− 1 U[-1, 1, 20] E[-1, 1, 0.001]
NGUY6 sin(x) + sin(x+ x2) U[-1, 1, 20] E[-1, 1, 0.001]
NGUY7 ln(x+ 1) + ln(x2 + 1) U[-1, 1, 20] E[-1, 1, 0.001]
KEIJ1 0.3xsin(2πx) E[-1, 1, 0.1] E[-1, 1, 0.001]

KEIJ4
x3e−xcos(x)∗
sin(x)(sin2(x)cos(x)− 1)

E[0, 10, 0.05] E[0.05, 10.05, 0.05]

KEIJ11 xy + sin((x− 1)(y − 1)) U[-3, 3, 20] E[-3, 3, 0.01]

KEIJ12 x4 − x3 + y2

2
− y U[-3, 3, 20] E[-3, 3, 0.01]

KEIJ13 6sin(x)cos(y) U[-3, 3, 20] E[-3, 3, 0.01]
KEIJ14 8

2+x2+y2
U[-3, 3, 20] E[-3, 3, 0.01]

NGUY9 sin(x) + sin(y2) U[-1,1, 100] E[-1, 1, 0.001]
NGUY10 2sin(x)cos(y) U[-1,1, 100] E[-1, 1, 0.001]

NGUY12 x4 − x3 + y2

2
− y U[0, 1, 20] E[0, 1, 0.001]
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Table 4.2: Input-output Mappings for the Operators A1 - A5 Used in the
Finite Algebras Problems.

A1 A2 A3 A4 A5
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 2 1 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 2
1 1 0 0 1 1 0 2 1 1 2 0 1 0 2 0 1 1 2 0
2 0 0 1 2 1 2 1 2 0 0 0 2 0 1 0 2 0 1 0

of these problems includes a single binary operator that has an underlying algebra

which is ternary. The algebras have defined outputs for the finite set of inputs

{0, 1, 2}. The algebras, A1 - A5, which are defined in Table 4.2 were included in the

benchmark suite. For each algebra, there are two tasks, which yields a total of 10

finite algebras problems.

The first task is to evolve a discriminator term, which must return x if x 6= y, and

z for all other cases. The fitness cases for this task are simply all combinations of the

three inputs {0, 1, 2}, which results in 33 = 27 total fitness cases. The second task is

to evolve a Mal’cev term which is defined by the following; m(x, x, y) = m(y, x, x) =

y. Given the definition, only the specified input combinations have a defined output

(the cases where all of the inputs are different from each other are not handled).

Therefore, this yields a total of 15 fitness cases.

For both tasks, the function set contained the single operator, Ai for the algebra

being used for the problem, and the terminal set, {x, y, z} contained a single termi-

nal node corresponding to the inputs. Fitness was calculated as a function of the

total error committed on the fitness cases. We also included penalty for single node

solutions as in [73].
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4.2 Experimental Settings

We conducted two sets of experiments in order to compare and analyze the search

behavior and performance of the different techniques we considered. In the first set

of experiments, we compared the performance of our approach to several different

methods in terms of the speed of convergence to a solution and the percentage of

trials in which a solution was found. The second set of experiments was designed to

analyze and compare different aspects of population diversity between the different

techniques.

Table 4.3 lists the general GP settings that we used for our experiments. For

the performance comparisons, we allocated a computational budget of 1 million fit-

ness evaluations for each technique, and terminated the trial when a fitness of 1.0

was reached. All of the results were gathered from 100 independent trials of each

algorithm for each problem. For the diversity experiments, we allowed each trial

to last for 250,000 fitness evaluations and we collected the different metrics that

we discuss below throughout the duration of the trial. For the metrics that are

population-based, we collected the data at the end of the generation closest to the

nearest thousandth fitness evaluation (since the trial is based on fitness evaluations

instead of generations).

The algorithm-specific settings for ALPS were chosen in attempt to balance

the number of individuals per age layer, and the frequency of migration and re-

initialization of the initial layer given the population size. For SSGX, we used the

settings that were used by its authors [59]. We used the top three tree levels for

the genetic marker density objective in GMD-GP, as the preliminary experiments

in previous work suggested that this performed best on a symbolic regression prob-

lem [13]. For the Lexicase Selection extensions that we discussed in Chapter 6, we

used the common tournament size of 7 individuals, although we plan to analyze their
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Table 4.3: General GP Settings.

Parameter Value
Random initialization Ramped half & half
Maximum evaluations 1 million
Total independent trials 100
Population size 500
Tournament size 2
Crossover probability 0.90
Reproduction probability 0.10
Max. tree depth 17
Max. tree size 512
Elites (GP, Lex, SiS, SSGX) 50 (10%)
ALPS age layers 10
ALPS age gap 20
ALPS Elites 2 per layer
GMD-GP genetic marker start Level 1 (root)
GMD-GP genetic marker depth 2
SSGX min subtree size 1
SSGX max subtree size 90
SSGX max trials 20

performance using different tournament sizes in the future.

4.3 GMD-GP Performance Comparison

We begin with a comparison of the search performance of GMD-GP versus other

GP methods. We used a standard GP setup as a baseline, and compared GMD-

GP to the techniques listed in Table 4.4. We refer to a standard GP setup as

the traditional generation-based GP using tournament selection, random subtree

crossover, reproduction, and no mutation. For all of the metrics we consider, we used

a pairwise Mann-Whitney U test to determine statistical significance with α = 0.05,

except where specified otherwise.

Figure 4.1 shows the mean best fitness over time for each technique for each of

the symbolic regression benchmark problems. In order to provide a fair comparison,

34



Table 4.4: List of GP Techniques Used in the GMD-GP Performance and
Diversity Comparison.

Technique Abbreviation
Standard GP GP
Age-Layered Population Structure ALPS
Age-Fitness Pareto Optimization A/F
Lexicase Selection Lex
Semantics in Selection SiS
Subtree Semantic Geometric Crossover SSGX

we used fitness evaluations as a measure of time instead of generations since the algo-

rithms consume a different number of fitness evaluations per generation. Figure 4.1

shows that GMD-GP was consistently either the top performing or among the top

methods in terms of reaching the higher fitness values significantly faster than the

other approaches. This demonstrates that GMD-GP is able to reach high fitness

relatively fast while focusing on maintaining diversity. This is often not the case for

diversity-promoting techniques, since avoiding premature convergence can come at

the cost of requiring longer to converge to a solution.

The plot for the KEIJ13 problem in Figure 4.1 illustrates how GMD-GP tended to

not only reach higher fitness values significantly faster, but the best fitness at the end

of the trial was also higher than in the other approaches. This is further confirmed by

Table 4.5, which shows the mean best overall fitness in each of the symbolic regression

problems. In 10 out of 15 problems, GMD-GP reached the highest fitness value at

the end of the trial, on average. Furthermore, the largest number of problems in

which any other algorithm achieved the highest ending fitness and GMD-GP did not

was only 4 out of 15.

We further compared the convergence rate of each technique across all the sym-

bolic regression problems. The convergence rate measures the mean number of fitness

evaluations taken to find a perfect fitness solution, in all of the trials in which a solu-
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Figure 4.1: Symbolic Regression Benchmarks - Fitness over Time. The x-
axis shows the total elapsed fitness evaluations, and the y-axis shows the mean best
fitness. For clarity, error bars are not shown due to the number of methods plotted.
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Table 4.5: Symbolic Regression Benchmarks - Mean Best Ending Fitness.
The highest value is shown in bold font.

GP ALPS A/F Lex SiS SSGX GMD-GP
SEXT 1.0 0.985 0.969 0.989 0.999 1.0 0.996
KEIJ1 0.942 0.982 0.964 0.834 0.937 0.986 0.998
KEIJ4 0.820 0.985 0.961 0.512 0.796 0.937 0.996
KEIJ11 0.357 0.615 0.438 0.253 0.394 0.513 0.626
KEIJ12 0.184 0.237 0.157 0.040 0.148 0.255 0.382
KEIJ13 0.433 0.684 0.498 0.088 0.467 0.442 0.849
KEIJ14 0.414 0.487 0.467 0.211 0.438 0.806 0.717
NGUY3 0.967 0.983 0.971 0.864 0.973 0.992 0.992
NGUY4 0.953 0.978 0.957 0.846 0.954 0.973 0.998
NGUY5 1.0 0.977 0.949 0.981 0.999 0.999 0.996
NGUY6 0.997 0.984 0.951 0.944 0.996 0.997 0.994
NGUY7 0.868 0.980 0.968 0.767 0.853 0.977 0.995
NGUY9 0.980 1.0 0.981 0.990 0.926 0.943 1.0
NGUY10 0.918 1.0 0.947 0.980 0.844 0.943 1.0
NGUY12 0.849 0.934 0.888 0.790 0.852 0.982 0.951

tion was found. While this measure is influenced by the computational budget that

we set for each trial, it still provides an indication of the speed (in terms of fitness

evaluations) at which the different techniques discover a solution within the given

computational budget. Furthermore, since the fitness evaluation phase is known to

be the most time-consuming step of the evolutionary process for complex problems,

being able to find a solution in fewer fitness evaluations is highly desirable.

Figure 4.2 shows a pairwise comparison of the convergence rates of each technique.

Each plot shows the percentage of problems in which the technique listed above the

plot found a solution in significantly fewer fitness evaluations than the other tech-

niques shown in the plot. GMD-GP faired well against the other approaches, as the

highest percentage of problems in which any algorithm found a solution significantly

faster was 20% (for GP and SiS), while, most notably, GMD-GP was significantly

faster than ALPS and SSGX in 86% and 60% of the problems, respectively.

Next, we compared the success rates of each method, where the success rate is
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Figure 4.2: Pairwise Comparison of Convergence Rate. Each plot shows the
percentage of problems in which the method above the plot found a solution in
significantly fewer fitness evaluations, on average, in the successful trials.
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Figure 4.3: Pairwise Comparison of Success Rate. Each plot shows the per-
centage of problems in which the method above the plot had a significantly higher
success rate than each other method.
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the proportion of trials (out of 100) in which a fitness of 1.0 was reached within the

computational budget. We used Fisher’s exact test with α = 0.05 for determining

statistical significance between the differences in success rates. Figure 4.3 clearly

demonstrates that GMD-GP outperformed all of the other approaches in terms of

success rate. GMD-GP had a significantly higher success rate than every other

algorithm in at least 60% of the problems (except for SSGX against which GMD-GP

had a significantly higher success rate in 53% of the problems). Combining the fitness

and convergence results we discussed earlier, this shows that GMD-GP is capable of

often finding solutions relatively faster than the other techniques, as well as finding

solutions at a higher rate of success.
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4.4 GMD-GP Diversity Comparison

Next, we conducted a separate set of experiments to analyze the effects GMD-GP

has on different aspects of population diversity compared to the other approaches.

We conducted another set of 100 independent trials on each problem for each algo-

rithm using the same experimental settings as in Table 4.3 except where we specify

differently. We allowed each trial to last for 250,000 fitness evaluations, which is

roughly equivalent to 500 generations without elitism and replication, given the pop-

ulation size of 500 individuals. The general trend we observed for each measure we

discuss is that the value tended to remain fairly constant after several fitness evalu-

ations. Therefore, we compared the value of each metric at the end of the trial. We

used pairwise Mann-Whitney U tests to determine statistical significance between

the differences for each measure.

Since GMD-GP focuses on using genetic markers for promoting structural diver-

sity, we first compared the mean maximum genetic marker density of final popula-

tions of the different approaches. Similar to our previous study [13], we analyzed

the top six tree levels by creating genetic markers composed of two levels at a time.

Using multiple genetic markers made of two levels at a time is more informative than

a single genetic marker that spans the top six levels. For example, two trees that are

identical in the top six levels except for a single node difference would be treated as

having different genetic markers although they are otherwise the same.

Figure 4.4 shows the percentage of problems in which each method had signifi-

cantly lower mean maximum genetic marker density, for genetic markers composed

of the top two tree levels at the end of 250,000 fitness evaluations. We report the

comparison of the top two tree levels, as the results across the top six levels are

generally the same. In all of the problems, compared to all the other algorithms,

GMD-GP had significantly lower genetic marker density, which reflects significantly
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Figure 4.4: Pairwise Comparison of Genetic Marker Density. Each plot shows
the percentage of problems in which the method above the plot had significantly lower
genetic marker density (of genetic markers composed of the top 2 tree levels) than
each other method after 250,000 fitness evaluations.
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higher structural diversity. This can be expected since GMD-GP actively focuses on

minimizing genetic marker density. However, since this is a major difference between

GMD-GP and the other techniques, this suggests that the higher structural diversity

contributes to the performance gains that we discussed in Section 4.3.

Next, we compared the behavioral diversity of the populations of the different

approaches, where an individual’s behavior is defined as the vector of outputs pro-

duced on the fitness cases as we described in Section 2.2.1. The behavioral diversity

of a population is defined as the proportion of unique behaviors, where two behaviors

are considered different if they differ by at least one output [36]. Since the outputs

for the symbolic regression problems are real-valued, we used a threshold of 0.01 for

considering two outputs to be different.
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Figure 4.5: Pairwise Comparison of Behavioral Diversity. Each plot shows the
percentage of problems in which the method above the plot had significantly higher
behavioral diversity than each other method after 250,000 fitness evaluations.
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Figure 4.5 shows the pairwise comparison of the behavioral diversity of the pop-

ulations after 250,000 fitness evaluations. Interestingly, while GMD-GP populations

had significantly higher structural diversity than all the other approaches, it had

significantly lower behavioral diversity than all of the other approaches except A/F.

This clearly demonstrates that high structural (and therefore genotypic) diversity

indeed does not correlate directly to high behavioral diversity. However, our results

suggest that high structural diversity does still lead to better search performance in

GMD-GP.

Finally, we compared GMD-GP and the other approaches in terms of the fitness

standard deviation. As we discussed in Section 2.1, it is beneficial to maintain a

spread over the range of possible fitness values since intermediate fitness individuals

(i.e. “stepping stones” [32]) may contain valuable building blocks that could other-
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Figure 4.6: Pairwise Comparison of Fitness Standard Deviation. Each plot
shows the percentage of problems in which the method above the plot had signifi-
cantly higher fitness standard deviation than each other method after 250,000 fitness
evaluations.
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wise be lost. Therefore, high standard deviation of fitness is an indication of how

spread out individuals are in the fitness space.

Figure 4.6 shows the pairwise comparison of the fitness standard deviation of the

population at the end of the trial. GMD-GP populations had significantly higher

fitness standard deviation than all the other approaches in a large percentage of the

problems. This shows that while GMD-GP populations typically had significantly

less behavioral diversity (and therefore fewer unique fitness values), the difference in

the fitness of individuals in GMD-GP populations was significantly higher. This also

shows that the genetic marker density objective allows less-represented, and poten-

tially less-fit, structures to survive alongside the superior structures. Furthermore,

these results suggest that it is indeed the use of genetic markers that contributes to
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this capability, as the fitness standard deviation in GMD-GP was significantly higher

than that of A/F (which uses a similar multi-objective scheme with genotypic age

instead of genetic marker density).
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Chapter 5

GP for Tuberculosis Screening: A

Case Study

As we discussed in Chapter 1, GP has been widely used in a number of different

application areas to solve real-world problems. In this chapter, we present a new

application of GP: using GP to detect the presence of tuberculosis in raw X-ray

images. While GP has been applied to the problem of image classification, which we

discuss in Section 5.2.1, this is the first application of GP for tuberculosis screening

from raw X-ray images.

5.1 The Tuberculosis Epidemic

Tuberculosis (TB) is an infectious disease that typically affects the lungs. TB is

caused by the bacterium Mycobacterium tuberculosis, and it is spread through the air

when an infected person expels bacteria through the air by coughing, for example [60].

TB is a major worldwide epidemic that causes millions of deaths each year. According

to the World Health Organization (WHO) 2016 global tuberculosis report, there

were around 10.4 million new cases of TB and around 1.4 million TB deaths in 2015,
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making TB one of the top 10 causes of death worldwide [60]. The WHO 2016 global

report also states that there were 132,120 cases of multidrug-resistant TB in 2015 [60].

Furthermore, TB is a leading cause of death among HIV-positive people [60], and

opportunistic infections of HIV-positive people further worsen the TB epidemic [4].

Despite the fact that TB is such a serious worldwide issue, it can be treated and

cured if it is detected early enough. Detection methods for TB include:

• sputum smear microscopy, wherein sputum (e.g. saliva and mucus) samples are

checked to determine the presence of bacteria. Although this method is over

100 years old and it is a slow method, it is the current gold standard definitive

diagnostic [4]

• rapid molecular tests such as the Xpert MTB/RIFR© assay, which is the only

rapid test recommended by WHO as of the 2016 WHO global tuberculosis

report [60]. The cost of such methods is an issue for poverty-stricken countries

in which the TB epidemic is a huge problem

• culture methods, in which the bacteria can be observed in a laboratory setting.

However, the bacteria are slow-growing, meaning that this process can take

months [60]

• skin tests, which can determine whether or not a person has been exposed to

TB, but do not indicate active TB and can be affected by vaccinations [4].

In addition to the above detection methods, chest X-ray (CXR) images are also

used to aid diagnosis. Although, CXR is a mandatory part of each TB evaluation [4],

CXR is not used exclusively as the definitive diagnostic tool. Furthermore, many

advances in CXR for computer-aided diagnosis have focused on specific abnormalities

such as nodule detection or on sub-problems such as lung region segmentation [4, 37].
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5.2 Related Work

Before we discuss the experimental results of using our technique for TB screening,

we first discuss some relevant work in image classification. Particularly, we discuss

the general problem of image classification and discuss some related work using GP

for image classification. We then discuss the basic GP image classification approach

that we incorporated into our framework in order to perform TB screening from

X-ray images.

5.2.1 GP for Image Classification

The problem of detecting TB using raw X-ray images is an image classification

problem. The basic image classification problem is as follows: given an image, de-

termine the category to which it belongs based on information contained in the

pixels of the image. GP has previously been used for the purpose of image classi-

fication [2, 5, 34, 48, 66]. Particular examples include using GP for breast cancer

detection [66], detection of cephalometric landmarks [34], and developing domain-

independent raw pixel-based GP classifiers [5].

The image classification problem is typically tackled by first performing feature

extraction on the images in order to extract useful features from the images to aid

in the classification task. This often involves image processing techniques such as

performing segmentation [4] to focus on regions of interest and using image descrip-

tors [4] to serve as features for the image. Then, given a set of features for an image,

the typical classification techniques can be applied to determine the class to which

the image belongs.

A domain-independent genetic programming technique was previously introduced

for image classification using raw image data [5]. Since the approach we use for
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tuberculosis screening is based on this work, we discuss this methodology in detail.

As we discussed above, the typical approach to image classification is to first perform

a feature extraction phase on the images and then perform classification using the

features. However the three-tiered GP approach, 3TGP, was designed to evolve

programs that are capable of performing all the steps in one GP tree [5]. This is

accomplished by using a hierarchical tree structure in which each layer is responsible

for performing a different task in order to ultimately classify the image.

The 3TGP technique first stores each training input image as an integer array

containing the raw pixel values. Then, given an image to classify, the lowest layer

in the tree performs low-level image processing techniques such as filtering the raw

input image by performing simple mathematical operations to the pixel values of the

image (e.g. add a value to each pixel, etc.). The second layer receives as input the

resulting filtered image from the first layer, and then performs aggregation functions

such as min, max, median, mean, and standard deviation on the pixels of a given

window in the image. Finally, the topmost layer receives the single values produced

by the aggregation functions and then performs the typical mathematical functions

that are often used in symbolic regression, such as those we described in Chapter 4.

The root of the tree then returns a single real value, which is used to determine the

class of the image; if the value is less than zero, then image belongs to the negative

class, and otherwise it belongs to the positive class.

A two-tiered version (2TGP) was introduced as a more effective and more efficient

technique to raw image classification than 3TGP [2]. 2TGP uses a very similar

architecture to 3TGP. However, rather than relying on three processing layers in the

tree, 2TGP removes the need for the filtering functions of 3TGP by directly feeding

the raw image data into the aggregation functions. This removes the extra CPU-

intensive image filtering stage while also achieving higher classification accuracy than
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3TGP [2].

Along with 2TGP, two additional versions (2TGP-line and 2TGP-mix) were in-

troduced, which modify the aggregation functions to only include the pixels contained

in certain types of windows in the image. 2TGP-line only considers a single verti-

cal or horizontal line of pixels rather than a rectangular region as in the original

2TGP version. The 2TGP-mix version is the same as 2TGP-line, except it adds

the capability of using circles and rectangles in the aggregation functions. All four

versions, 3TGP, 2TGP, 2TGP-line, and 2TGP-mix were compared using different

two-class image databases, and 2TGP-line and 2TGP-mix were the best perform-

ing methods [2]. Furthermore, the two-tiered versions performed better or at least

comparably to a GP method that uses pre-defined image features [2].

5.2.2 Tuberculosis Screening from Chest X-rays

An automated technique for TB screening using chest X-rays was proposed in pre-

vious work [37]. This technique relies upon a lung segmentation algorithm to first

extract the lung region from the rest of the image. Next, feature extraction is per-

formed on the lung region in order to compute features that can be used to classify

the image. Finally, a support vector machine (SVM) classifier is trained on the

images using the precomputed features.

Two different sets of features used for classifying the X-rays were compared in

their research. The first feature set is inspired by object detection and includes six

different shape and texture descriptors, each of which is a histogram containing 32

bins [37]. Therefore, there are a total of 192 features in the first feature set. The

second feature set contains low-level features based on content-based image retrieval,

containing a total of 594 features [37]. The authors found that the second feature

set did not yield significantly better performance than the first (and much smaller)
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feature set.

In a later study, three feature sets were used in this approach, including the

previous two feature sets that we described above and a third feature set containing

six MATLAB shape features [4] . The authors exhaustively searched the three feature

sets to find the optimal combination of 18 features that yielded the best performance.

An artificial neural network classifier was used in this set of experiments and showed

a significant improvement over the SVM classifier.

In that same study, the authors used an artificial neural network classifier to

perform classification of the X-rays without the need for lung segmentation [4]. This

was done by measuring the changes in the rib profiles within the chest cavity [4]. This

technique only requires approximate bounding boxes around the lung region. The

feature set is composed of only one descriptor: the pyramid histogram of orientation

gradients (PHOG) [9], using 15 bins. This technique was shown to perform nominally

better than their previous system in terms of accuracy and the area under the ROC

curve, and the authors state that it performs classification 25 times faster [4].

5.3 Experimental Settings

We used the 2TGP-line architecture, which we described in Section 5.2.1, for our tree

structure and we use GMD-GP (see Chapter 3) as our GP implementation. Table 5.1

shows the GP settings that we used for our experiments. Since the X-rays can vary

in size, we introduced a simple modification to the original 2TGP implementation.

Instead of using a predefined width and height and restricting the x and y pixel

coordinate nodes to be within that range, we simply changed the X,Y node to a

real number in [0, 1] instead of an integer. This way, the X,Y node is treated as

a fractional value that refers to a point in the X or Y dimension. For example
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Table 5.1: GP Settings Used for the TB Experiments.

Parameter Value
Random initialization Ramped half & half
Maximum generations 50
Total independent trials 30
Population size 1024
Tournament size 7
Crossover probability 0.81
Mutation probability 0.19
Mutation method Subtree mutation
Max. tree depth 17
Max. tree size None
GMD-GP genetic marker start level 1 (root)
GMD-GP genetic marker depth 2

an X node with a value of 0.5 for an image of width 100 would refer to the pixel

at index 50. Since the real numbers will not always be an exact pixel, we simply

round the number up. While this may not be the optimal implementation, and more

sophisticated techniques may perform better, this is a very general way of handling

images of varying size without needing to predefine a range of allowable coordinate

values.

The primitive set containing the functions and terminals that we used is shown in

Table 5.2. The function set includes the 2TGP-line functions from previous work [2].

Each function takes as arguments the input image, the x and y pixel coordinates of

the line to consider, the shape (horizontal or vertical), and the size of the line in

pixels. The terminal set includes a node that is used to determine the x and y pixel

coordinate for the different aggregation functions, an integer that determines the size

of the line used in the aggregation functions, a shape node that determines whether

the line is horizontal or vertical, a single terminal node to represent the image, and

a random double.
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Table 5.2: Image Classification GP Primitive Set.

Primitive Description
AggMin Returns the minimum pixel value in the given line.
AggMax Returns the maximum pixel value in the given line.
AggMed Returns the median of the pixel values in the given line.
AggMean Returns the mean of the pixel values in the given line.
AggStdev Returns the standard deviation of the pixels in the given line.
RandDoub Random integer in [0, 1].
Image Java BufferedImage object representing the X-ray .
Size Integer representing the size of the line to be used.
X,Y Integer representing either the x or y pixel coordinate.
Shape Integer representing the shape of the line, horizontal or vertical.

5.3.1 Tuberculosis Dataset

We used the publicly available Shenzen dataset1 that was used in previous research [4,

15, 37]. This dataset includes a total of 662 chest X-ray images, consisting of 326

TB-negative examples and 336 TB-positive examples. The images vary in width

(from 1130 to 3001 pixels) and height (from 948 to 3001 pixels). We chose to use

the Shenzen dataset because of the relatively balanced class distribution compared

to other available datasets.

Due to the large size of the images, coupled with the number of images in the

training and testing sets, the amount of memory required for storing the images

in memory is a technical challenge. However, reading each image every time an

individual undergoes fitness evaluation is also very time consuming and inefficient.

To overcome this issue, we utilized the high performance computing (HPC) resources

at Michigan State University to store all the images in memory during evolution.

Although this approach is not practical in the general sense, it serves as a proof of

concept that GP can be used on more realistic datasets for raw image classification.

Furthermore, although the classifiers are evolved using HPC resources, the classifiers

1National Library of Medicine, National Institutes of Health, Bethesda, MD, USA and Shenzhen
No.3 People’s Hospital, Guangdong Medical College, Shenzhen, China.

52



themselves can then be used stand-alone on typical computer hardware such as a

personal laptop.

In order to determine the accuracy of the evolved classifiers on unseen data, we

used a 10-fold cross-validation approach using the entire Shenzen dataset. For each

fold, we performed 30 replicate trials. The reported accuracy values in Section 5.4

reflect the mean accuracy of the best-of-run individual from each trial across all 10

folds.

5.4 Results

We begin the discussion of our results with a comparison of the accuracy of our

evolved classifiers versus those reported in the previous work that we discussed in

Section 5.2.2. Table 5.3 shows the comparison of GP, GMD-GP, and the reported

values from [37] and [4] from the Shenzen dataset. We report our mean accuracy on

the testing data from the 10-fold cross-validation across all trials, compared to the

accuracy values of the other techniques (without exhaustive feature selection).

The best performing technique overall was the artificial neural network approach

(ANN) with an accuracy of 85.9%, while GMD-GP had a mean accuracy of 76.35%.

However, GMD-GP achieved a maximum testing accuracy of 89.39%. While this

is still lower than the 97.05% accuracy achieved by the artificial neural network

approach in which the features were selected by exhaustively searching for the optimal

combination of 18 features [4], this is important because it demonstrates that the raw

image classification approach using GP without feature extraction (2TGP-line, as we

described in Section 5.2.1) is capable of performing better than other techniques that

require lung segmentation and feature extraction. Also, while the results for GMD-

GP and standard GP were similar, this further demonstrates the effectiveness of the
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Table 5.3: Accuracy Comparison of GP and GMD-GP to Previous Work.
We compared against support vector machine, SVM, linear logistic regression, LLR,
and artificial neural network, ANN, without lung segmentation from [4, 37].

SVM LLR ANN GP GMD-GP
82.1 84.1 85.9 75.4 76.4

Table 5.4: Training Accuracy on the Shenzen Dataset.

Min Max Med Mean Std. Dev.
GP 0.6879 0.8420 0.7909 0.7901 0.0259
GMD-GP 0.6829 0.8403 0.7995 0.7954 0.0250

2TGP-line approach at evolving classifiers without prior feature extraction or feature

selection.

Table 5.4 and Table 5.5 show the accuracy of the best-of-run individuals from

each trial on the training and testing data, respectively, across all 10 folds. Table 5.4

shows that GMD-GP performed similar to GP in terms of training accuracy. How-

ever, Table 5.5 shows that, while marginal, GMD-GP achieved higher accuracy on

the unseen testing data than GP. Most notable is the higher minimum and maxi-

mum accuracy that GMD-GP achieved compared to GP. Furthermore, although we

used a straightforward classification technique that simply uses a threshold of 0 on

the individual’s output for determining the class to which an image belongs, more

sophisticated techniques such as evolving the class boundaries [22], for example, may

increase the accuracy of our approach. These are future directions for this technique.

Table 5.6 and Table 5.7 show the confusion matrix for the best classifier evolved

with GP and GMD-GP, respectively, across the entire Shenzen dataset. One of the

most important measurements for the TB classifiers is that of sensitivity, which is

Table 5.5: Testing Accuracy on the Shenzen Dataset.

Min Max Med Mean Std. Dev.
GP 0.5606 0.8636 0.7576 0.7538 0.0535
GMD-GP 0.6364 0.8939 0.7670 0.7635 0.0486
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Table 5.6: GP Best Classifier Confusion Matrix.

Predicted Positive Predicted Negative
Actual Positive 255 81
Actual Negative 28 298

Table 5.7: GMD-GP Best Classifier Confusion Matrix.

Predicted Positive Predicted Negative
Actual Positive 244 92
Actual Negative 25 301

the portion of TB-positive instances the classifier correctly identifies. The best GP

classifier achieved a sensitivity of 0.759 while the best GMD-GP classifier achieved a

sensitivity of 0.726. In previous work [4], the radiologists were instructed to error on

the side of “over-reading” in order to minimize the chance of misdiagnosing a TB-

positive patient. While the GP and GMD-GP classifiers were not highly sensitive,

incorporating the confusion matrix into the fitness function could further improve

the sensitivity of the evolved classifiers.

Next, we compared the time taken for our technique to classify a given X-ray with

the reported results of the ANN technique, which was reported as taking less than 20

seconds [4]. In order to time our evolved classifiers, we performed two experiments.

In the first experiment, we took the highest accuracy evolved classifier from all trials

and executed it on the entire Shenzen dataset and recorded the time taken to classify

each image. Similarly, the second experiment recorded the timing of all best-of-run

classifiers in order to identify the general behavior of our evolved classifiers.

Table 5.8 and Table 5.9 show the detailed timing information for the best evolved

classifier from all trials for GP and GMD-GP, respectively. This demonstrates that

our technique is effective at evolving classifiers that are extremely fast at providing

a classification from a raw input image. While the total time taken to load and

classify an image is very little (less than half a second, on average), we can see

55



Table 5.8: Time Taken (in seconds) for Best Evolved GP Classifier to Clas-
sify an X-ray Image.

Min Max Med Mean Std. Dev.
Load 0.0418 0.4958 0.3113 0.2954 0.0621
Classify 0.0003 0.0164 0.0005 0.0006 0.0008
Total 0.0422 0.5123 0.3119 0.2960 0.0623

Table 5.9: Time Taken (in seconds) for Best Evolved GMD-GP Classifier
to Classify an X-ray Image.

Min Max Med Mean Std. Dev.
Load 0.0418 0.5598 0.3113 0.2964 0.0624
Classify 0.0006 0.0302 0.0014 0.0015 0.0012
Total 0.0425 0.5655 0.3127 0.2979 0.0627

that the actual time the tree takes to classify an image once it has been loaded is

even smaller than the time taken to load the image into memory. This can lead

to an effective screening method in areas where large numbers of patients need to

be screened. This does come at the cost of enormous computing resources required

to train a classifier, as we discussed in Section 5.3. However, these solutions could

be evolved in an HPC setting and then readily used on inexpensive hardware such

as the laptop computer used in the system described in [4]. Further research into

reducing the burden of requiring large memory for training is necessary.

Next, we examined the sizes of the best-of-run classifiers from each trial for both

traditional GP and GMD-GP. Table 5.10 shows the different metrics we considered

for the two techniques. Given the complex nature of the classification task (using raw

X-ray images with no preprocessing or feature extraction/selection), we expected the

size of the trees to become rather large. While both techniques produced relatively

large trees, GMD-GP trees tended to be marginally smaller (with a mean size of

288.45 nodes), on average, than those of GP (with a mean size of 302.15 nodes).

The most accurate classifier produced by GMD-GP (89.39% accuracy, as shown in

Table 5.5) contained 253 nodes while the most accurate classifier produced by GP
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Table 5.10: Size of the Best-of-run Classifiers.

Min Max Med Mean Std. Dev.
GP 44 823 284.50 302.15 136.51
GMD-GP 49 1033 248.50 288.45 150.63

(86.36% accuracy, as shown in Table 5.5) contained 229 nodes.

Finally, we analyzed the behavior of the best evolved classifiers on sample X-ray

images from the Shenzen dataset. We first examined all the regions in the images

that the classifiers used. To do this, we simply create a new image wherein we set the

color to white for every pixel used by the classifier, and then color every unused pixel

black. We then pair this new image side-by-side with the original X-ray. We chose

this technique rather than attempting to highlight the used pixels on the original

X-ray since the classifiers only use single lines of pixels, which are very difficult

to visualize on the grayscale X-ray images. Furthermore, we were only interested

in providing a general view in order to gain some insight into the behavior of the

classifiers, with respect to the regions of the image they use for determining the class

of the image.

Figure 5.1 shows the regions of the X-ray used by the best classifier evolved by

GP. This shows that the classifier, which achieved an accuracy of 86.36%, only uses a

small fraction of the pixels in the image in order to predict tuberculosis. Furthermore,

while part of the lung is used in the classifier, not all of the regions that the classifier

uses are in the lung area. However, since the images vary in dimensions as well as

the actual anatomy of the patients, the exact position used by the classifier will also

vary from patient to patient to a certain extent.

We also analyzed the number of nodes in the tree that reference pixel locations, as

well as the number of times a single pixel was used by the classifier. Out of 229 nodes,

only 42 nodes (i.e. 18.34%) are pixel coordinate nodes. The maximum number of
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Figure 5.1: Regions of the X-ray Used by the Best Evolved GP Classifier.
The original X-ray image is shown on the left, and the image showing the pixels of
the X-ray that were used by the classifier is shown on the right. In the image on
the right, white pixels are those that were used by the classifier, while black pixels
indicate that they were not used by the classifier. Note that the lines have been
thickened to aid visualization.

times a particular pixel was referenced by this tree was 8, while the minimum was

1. This shows that some of the lines overlap, which means that the same pixels can

be used in different parts of the tree for different calculations.

Figure 5.2 shows the regions of the X-ray used by the best classifier evolved by

GMD-GP. This clearly shows that the best classifier evolved by GMD-GP is much

more complex than that of GP. This is evident in that there are many more lines

used by this classifier, compared to the GP classifier in Figure 5.1. Also, more pixels

of the lung region are used by the GMD-GP classifier, although not all of the lines

belong to the lung region in this particular X-ray. Further analysis into the nodes in

the GMD-GP classifier tree revealed that out of 253 nodes, 68 (i.e. 26.88%) of them

are pixel coordinate nodes. In this case, the maximum number of times a particular

pixel was referenced by this tree was 8, with a minimum of 1.

Figure 5.1 and Figure 5.2 show an interesting result. We hypothesized that the
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Figure 5.2: Regions of the X-ray Used by the Best Evolved GMD-GP
Classifier. The original X-ray image is shown on the left, and the image showing
the pixels of the X-ray that were used by the classifier is shown on the right. In
the image on the right, white pixels are those that were used by the classifier, while
black pixels indicate that they were not used by the classifier. Note that the lines
have been thickened to aid visualization.

best classifiers would typically contain lines mostly within the lung region, since it is

the certain abnormalities in the lung that allow the radiologists to diagnose a patient

as having tuberculosis. However, this is not the case in these classifiers, since the

pixels being used by the classifiers do not always belong to the lung region. Further

analysis into the complex behavior of these classifiers is needed to provide better

insight into how the classifications are derived.
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Chapter 6

Hybridizing GMD-GP with

Behavioral Diversity

As we discussed in Chapter 2, several techniques have been introduced to sustain the

diversity of GP populations in order to prevent premature convergence and improve

the search performance of GP. However, many such techniques focus explicitly on

maintaining either structural or behavioral diversity. While structural and behavioral

diversity are indeed related and affect each other, we argue that simultaneously

focusing directly on both aspects of diversity can be more beneficial than focusing

on either in isolation.

There are many potential benefits of simultaneously enforcing structural and be-

havioral diversity. As we discussed in Chapter 1, the relationship between structural

and behavioral diversity is nontrivial because of the complex genotype-to-phenotype

mapping in tree-based GP. Thus, techniques that focus solely on genotypic (struc-

tural) diversity may be ineffective at promoting and preserving behavioral diversity

since many genotypes express the same or similar behavior. Likewise, methods that

focus solely on behavioral diversity may still benefit from structural diversity since
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it is ultimately the genetic makeup that encodes the behavior expressed by the tree.

This is especially true for behavioral diversity methods that use the traditional ge-

netic operators that have been shown to lead to genotypic convergence [24, 53, 64].

We therefore argue, and demonstrate in Section 6.2, that hybrid structural and be-

havioral diversity techniques may overcome some of these shortcomings that are

experienced by either technique in isolation.

We found that while GMD-GP often outperformed other state-of-the art methods

in many problems, GMD-GP populations tended to have significantly less behavioral

diversity (unique behaviors) while having significantly higher structural diversity [14].

Therefore, incorporating behavioral diversity into GMD-GP may further improve its

search performance by more effectively exploring the behavioral space.

6.1 Hybridizing GMD-GP with Behavioral Diver-

sity Selection

In the canonical GP setup, selection pressure is imposed on the population by using

fitness to select individuals to produce offspring. However, since GMD-GP adopts a

multi-objective scheme that places equal weight on fitness and genetic marker den-

sity, no selection pressure is used to create offspring. Instead, GMD-GP randomly

selects parents and then uses Pareto tournament selection after the breeding phase to

impose selection pressure on the population, as we described in Section 3.3. There-

fore, incorporating behavioral diversity instead of random mating during the parent

selection phase in GMD-GP is a logical starting point for hybridizing GMD-GP with

behavioral diversity techniques.
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6.1.1 Lexicase Selection in GMD-GP

We investigated the feasibility of using Lexicase Selection instead of random mating

in GMD-GP. Since Lexicase Selection is known to perform poorly in the symbolic

regression problem domain [45] (several of the problems in our benchmark suite

are symbolic regression problems), we introduced two simple extensions to Lexicase

Selection that address this issue. These extensions place bias on the current most

difficult fitness cases rather than randomly ordering the fitness cases each time a

parent is to be selected. This is motivated by the fact that certain fitness cases

tend to be solved by fewer individuals while other fitness cases are solved by a large

proportion of the population, and this is dynamic over time. Placing more preference

on the current most difficult fitness cases may lead to problem decomposition and

thus faster solution discovery.

Before discussing our extensions, we first describe the original Lexicase Selection

method in more detail than in Chapter 2. When a parent is to be selected, Lexicase

Selection first sets the pool of candidate individuals as the entire population. Next,

a random ordering is chosen for the set of fitness cases of the given problem. The

first fitness case in the given ordering is then removed from the set, and only the

individuals that currently have the exact best error on that fitness case are retained

as candidates. This step is repeated until either a single candidate exists or all the

fitness cases have been used. If all the fitness cases have been used and more than

one candidate exists, one of the remaining candidates is chosen randomly.

Our first extension to Lexicase Selection, which we refer to as Lexicase Selection

with Count Bias (Lex-C), is shown in Algorithm 1. Lex-C sorts the fitness cases

in ascending order based on how many individuals solve each fitness case. This

guarantees that the least-solved fitness case is always used first to filter out parent

candidates. While it is possible that the least-solved fitness case is not solved by any
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Algorithm 1 Lex-C: Count Bias Sorting of Fitness Cases.

Require: cases {Set of fitness cases for the given problem.}
1: counts⇐ ∅ {Map of total individuals that solve each fitness case.}
2: for case ∈ cases do
3: counts[case]⇐ total individuals that solve case
4: end for
5: return sortAscending(counts) {Return the sorted fitness case indices in as-

cending order.}

individual in the population, the best-performing individuals with respect to that

fitness case will still be selected. Also, since this ordering does not change for a given

generation, we use a random subset of the population as parent candidates (instead

of the entire population) to avoid selecting the same individual.

Our second extension, which we refer to as Lexicase Selection with error bias (Lex-

E), is shown in Algorithm 2. Lex-E is similar to Lex-C. However, Lex-E sorts the

fitness cases in descending order based on the average error the population commits

on each fitness case. This also places bias towards performing well on the current

most difficult fitness cases, as they will have the highest average error. Since this

ordering does not change in a given generation, the initial parent candidates are also

a random subset of population.

Lex-E slightly differs from Lex-C in that for problems for which error is real-

valued, such as symbolic regression, the fitness case with the highest average error

may not always be the least solved since whether or not an individual solves a fitness

case is often based on some threshold. However Lex-E will perform similar to Lex-C

on discrete problems for which there is no error information, such as in the Boolean

domain. In this case, if error is 0 for pass and 1 for fail, the average error is equal to

the proportion of individuals in the population that fail the fitness case, which yields

the same ordering as Lex-C.
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Algorithm 2 Lex-E: Error Bias Sorting of Fitness Cases.

Require: cases {Set of fitness cases for the given problem.}
1: errors⇐ ∅ {Map of average error for each fitness case.}
2: for case ∈ cases do
3: errors[case]⇐ average population error on case
4: end for
5: return sortDescending(errors) {Return the sorted fitness case indices in de-

scending order.}

6.1.2 Other Selection Techniques in GMD-GP

In addition to the original Lexicase Selection algorithm and the different extensions

that we introduced in Section 6.1.1, we also experimented with several other behav-

ioral diversity selection techniques that we described in Chapter 2. Particularly, we

hybridized GMD-GP with Epsilon Lexicase Selection, Complementary Phenotype

Selection, and Semantics in Selection.

6.2 Experimental Validation of Hybrid Selection

Techniques

In this section, we compare the performance of each of the hybrid selection techniques

that we discussed earlier in the chapter with that of their stand-alone counterparts.

We demonstrate the performance advantage gained by the hybridization, and we also

analyze the effect that the hybridization has on structural and behavioral diversity.

We used the same experimental settings as in Chapter 4 for all the experiments in

this section.
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6.2.1 Performance of Hybrid Selection Techniques

First, we conducted an initial set of experiments to determine the feasibility of hy-

bridizing GMD-GP with the different versions of Lexicase Selection that we dis-

cussed in Section 6.1.1. We first compared the performance of the hybrid techniques

to GMD-GP and the different variants of Lexicase Selection in isolation. For conve-

nience, Table 6.1 lists the abbreviations for the techniques that we compared in these

experiments. In all the following figures and tables, we abbreviate GMD-GP as GMD

for space considerations. All experimental settings were the same as in Table 4.3.

Since the original Lexicase Selection algorithm is known to often perform poorly for

symbolic regression but well in the finite algebras problems [28], we included both

the symbolic regression problems as well as the finite algebras problems that we dis-

cussed in Section 4.1, which yielded a total of 25 problems for the experiments using

original Lexicase Selection.

Given the number of algorithms under comparison, and the number of benchmark

problems we used, we discuss the results as follows. We divide our experiments into

two sets. First, we present the results of the experiments comparing GMD-GP, the

original Lexicase Selection, and the two extensions that we described above, along

with their hybrid counterparts. Next, we compare the hybrid versions of GMD-GP

using Epsilon Lexicase Selection, Complementary Phenotype Selection, and Seman-

tics in Selection. We chose to include Epsilon Lexicase Selection in the second set of

experiments since it was designed specifically for symbolic regression, which is what

we consider in the second set of experiments.

Figure 6.1 shows the pairwise comparison of the convergence rates for both the

symbolic regression and finite algebras problem domains. In the case of symbolic re-

gression, Lex tended to perform poorly in comparison to the other approaches, which

can be expected [45]. However, the plots for the hybrids (especially GMD+Lex-C as
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Table 6.1: List of GP Techniques Used in the Comparison of the Hybrid
Selection Techniques.

Technique Abbreviation
Lexicase Selection Lex
Epsilon Lexicase Selection eLex
Lexicase Selection with Error Bias Lex-E
Lexicase Selection with Count Bias Lex-C
Complementary Phenotype Selection CPS
Semantics in Selection SiS
GMD-GP and Lexicase Selection GMD+Lex
GMD-GP and Lexicase Selection with Error Bias GMD+Lex-E
GMD-GP and Lexicase Selection with Count Bias GMD+Lex-C
GMD-GP and Epsilon Lexicase Selection GMD+eLex
GMD-GP and Complementary Phenotype Selection GMD+CPS
GMD-GP and Semantics in Seletion GMD+SiS

well as GMD+Lex-E) show that hybridization with GMD-GP significantly improved

the convergence rate over Lex in isolation. In many cases for the symbolic regres-

sion problems, the hybrids did not improve the convergence rate of GMD-GP. This

can also be expected since Lex did not perform well in isolation for these problems.

However, the hybrid GMD+Lex-C was significantly faster than GMD-GP in a few

of the symbolic regression problems while it was not significantly slower in any of

the symbolic regression problems.

The results of the convergence rate comparison for the finite algebras problems

are nearly the opposite of that of the symbolic regression problems. The plot for Lex

reveals that it was significantly faster than all of the other approaches (including

GMD-GP) in all of the finite algebras problems, with the exception of the hybrid

GMD+Lex against which Lex was still faster in over 60% of the problems. However,

the plot for GMD+Lex reveals that hybridizing GMD-GP with Lex significantly

improved the convergence rate of GMD-GP in all of the finite algebras problems.

Figure 6.2 further demonstrates the performance benefits of the hybrid techniques

in terms of the success rate. The plots for each of the hybrids show that each
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Figure 6.1: Pairwise Comparison of the Convergence Rate of the Hybrids.
Each plot shows the percentage of problems in which the method above the plot
found a solution in significantly fewer fitness evaluations, on average, than each
other method.
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Figure 6.2: Pairwise Comparison the Success Rate of the Hybrids. Each
plot shows the percentage of problems in which the method above the plot had a
significantly higher success rate than each other method.
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hybridization significantly improved upon the success rate of Lex in most of the

symbolic regression problems. Since the plot for GMD-GP reveals that it already

performed very competitively in the symbolic regression problems, the GMD+Lex

and GMD+Lex-E hybrids had significantly lower success rates than GMD-GP in

68% and 62% of the symbolic regression problems, respectively. However, the GMD-

GP plot also reveals that the hybrid GMD+Lex-C did not negatively impact the

success rate of GMD-GP, while, as Figure 6.1 shows, GMD+Lex-C did improve the

convergence rate of GMD-GP in some cases.

The success rate comparison for the finite algebras problems reveals a similar

result. Figure 6.2 shows that Lex outperformed GMD-GP in terms of success rate in
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Figure 6.3: Pairwise Comparison of the Ending Fitness of the Hybrids.
Percentage of problems in which the method shown above each plot had significantly
higher mean ending fitness than each method listed.
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the finite algebras problems. However, the hybrid GMD+Lex significantly improved

the success rate of GMD-GP in around 80% of the problems, and it did not negatively

impact the success rate of Lex in any problem. These results demonstrate that using

behavioral diversity selection (which is gained through Lex) in GMD-GP can leverage

the strengths of both techniques and counteract their weaknesses.

Figure 6.3 shows the pairwise comparison of the other hybrid selection techniques.

Overall, GMD-GP outperformed the other stand-alone techniques in the largest per-

centage of the problems, having significantly higher ending fitness than eLex, CPS,

and SiS in 33.33%, 73.33%, 73.33% of the problems, respectively. The plots for the

other stand-alone techniques indicate that CPS and SiS performed similar to each
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Table 6.2: Ending Fitness of the Behavioral Diversity Selection Techniques
Compared to the Hybrids. Percentage of problems in which the stand-alone
technique had significantly higher ending fitness than its hybrid counterpart and
vice versa.

Stand-alone vs Hybrid Hybrid vs Stand-alone
eLex 0.0 20.0
CPS 0.0 73.33
SiS 6.67 66.67

other in a majority of the problems, while eLex often outperformed CPS and SiS.

Comparing each technique to its hybrid counterpart, Table 6.2 demonstrates the

effectiveness of the hybridization compared to the stand-alone behavioral diversity

techniques. For every other behavioral diversity selection technique, the hybrid sig-

nificantly outperformed the stand-alone technique in a majority of the problems. In

fact, with the exception of SiS (in only 6.67% of the problems), none of the behav-

ioral diversity selection techniques significantly outperformed its hybrid counterpart

in any of the problems.

Table 6.3 shows the comparison of GMD-GP to each of the hybrids. Since GMD-

GP was typically the best-performing stand-alone algorithm, the hybridization with

the other techniques did not yield superior performance to GMD-GP in most of the

cases. However, it is important to note that GMD-GP did not have significantly

higher ending fitness than any of its hybrid counterparts in a majority of the prob-

lems. The hybrid using SiS was the best performing compared to GMD-GP, with

significantly higher ending fitness than GMD-GP in 26.67% of the problems while

only worse than GMD-GP in 6.67% of the problems. The worst performing hybrid,

GMD-GP with Complementary Phenotype Selection was worse than GMD-GP in

only 13.33% of the problems. This shows that the hybridization not only tended

to improve the performance of the behavioral diversity techniques, as we discussed
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Table 6.3: Ending Fitness of GMD-GP Compared to the Hybrids. Per-
centage of problems in which the hybrid had significantly higher ending fitness than
GMD-GP vs. significantly lower fitness than GMD-GP.

Better than GMD-GP Worse than GMD-GP
GMD+eLex 26.67 40.00
GMD+CPS 0.00 13.33
GMD+SiS 26.67 6.67

above for Table 6.2, but it also improved the performance of the structural diversity

technique in some cases.

6.2.2 Effect of Hybridization on Diversity

In addition to comparing the performance of the hybrids, we also analyzed the effect

that hybridization had on different aspects of diversity. Using the same experimental

settings that we described in Section 4.4, we compared the different measures of

diversity in the final populations.

Figure 6.4 shows the pairwise comparison of the mean maximum genetic marker

density of the final populations, for genetic markers composed of the top two tree

levels, in both problem domains. Each of the hybrids had significantly lower end-

ing genetic marker density than Lex in all of the problems in both domains. This

shows that the hybridization with GMD-GP significantly and consistently increases

the structural diversity over Lex in isolation. Since GMD-GP had significantly lower

genetic marker density than Lex, the hybridization with Lex generally increased

the genetic marker density of GMD-GP. However, interestingly, GMD+Lex-E and

GMD+Lex-C significantly decreased the genetic marker density (and therefore in-

creased structural diversity) of GMD-GP in many of the finite algebras problems.

Figure 6.5 shows the pairwise comparison of the mean structural diversity in the
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Figure 6.4: Pairwise Comparison of the Genetic Marker Density of the
Hybrids. Each plot shows the percentage of problems in which the method above
the plot had significantly lower genetic marker density (of genetic markers composed
of the top 2 tree levels) than each other method after 250,000 fitness evaluations.
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top two tree levels for the other hybrid selection techniques. The plot for GMD-

GP shows that GMD-GP again had significantly higher structural diversity than

the other approaches in nearly all of the problems, which can be expected since

structural diversity is the main focus of GMD-GP. Figure 6.5 also shows that each

hybrid technique had significantly higher structural diversity than its stand-alone

behavioral diversity counterpart in all of the problems. While Figure 6.5 shows the

comparison of the structural diversity across only the top two levels, the results

were nearly identical across the top six levels. This suggests that the hybridization

with GMD-GP indeed significantly increases the structural diversity of the other

techniques.
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Figure 6.5: Pairwise Comparison of the Structural Diversity of the Other
Hybrids. Percentage of problems in which the method shown above each plot had
significantly higher structural diversity than each method listed.
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The pairwise comparison of behavioral diversity in Figure 6.6 shows the reverse of

that of structural diversity. We consider two individuals to have different behavior if

their output vectors differ by at least one element. Behavioral diversity is then defined

as the proportion of unique behaviors in the population. We discussed in Section 4.4

that GMD-GP populations often had significantly less behavioral diversity than the

other approaches while having significantly higher structural diversity. The plots for

each of the hybrids in Figure 6.6 show that in many cases, the hybrids significantly

increased the behavioral diversity of GMD-GP populations. Since Lex maintains a

high level of behavioral diversity, the hybridization typically decreased the behavioral

diversity of Lex.1

1In the finite algebras problems, Lex tended to have lower behavioral diversity than GMD-GP
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Figure 6.6: Pairwise Comparison of the Behavioral Diversity of the Hybrids.
Each plot shows the percentage of problems in which the method above the plot had
significantly higher behavioral diversity than each other method after 250,000 fitness
evaluations.
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Next, we compared the behavioral diversity of the other behavioral diversity se-

lection approaches to that of their hybrid counterparts. Figure 6.7 shows the pairwise

comparison of ending behavioral diversity across all the problems. In a majority of

the problems, GMD-GP had significantly lower behavioral diversity than the behav-

ioral diversity techniques (with the exception of eLex, which still had significantly

higher behavioral diversity than GMD-GP in 40% of the problems). This can be

expected, since the other techniques focus more directly on behavioral diversity.

Interestingly, the plots for the other hybrids show that integrating the behavioral

and the hybrids since it typically converged to the solution quickly although the trial lasted for a
fixed 250,000 fitness evaluations.
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Figure 6.7: Pairwise Comparison of the Behavioral Diversity of the Other
Hybrids. Percentage of problems in which the method shown above each plot had
significantly higher behavioral diversity than each method listed.
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diversity techniques into GMD-GP does not always significantly increase the behav-

ioral diversity of GMD-GP.

We further analyzed the behavioral diversity on a lower level by examining the

standard deviation of fitness at the end of the trials. This provides more informa-

tion than the proportion of unique behaviors alone because fitness standard devia-

tion gives an indication of the difference in individuals’ behaviors rather than solely

whether or not they are different. Also, since many different behaviors can receive

the same fitness value, the standard deviation in fitness provides a more in-depth

analysis of the behavioral dynamics of the population.

Figure 6.8 shows the pairwise comparison of the fitness standard deviation of
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Figure 6.8: Pairwise Comparison of the Fitness Standard Deviation of the
Hybrids. Each plot shows the percentage of problems in which the method above
the plot had significantly higher fitness standard deviation than each other method
after 250,000 fitness evaluations.
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the hybrid approaches compared to GMD-GP and Lex in isolation. Since GMD-

GP populations tended to have significantly higher fitness standard deviation than

other approaches, as we discussed in Section 4.4, the hybrids had significantly higher

fitness standard deviation than Lex in all of the symbolic regression problems and

most of the finite algebras problems. Furthermore, GMD+Lex had significantly

higher fitness standard deviation than GMD-GP in all of the finite algebras problems,

and GMD+Lex-C had significantly higher fitness standard deviation than GMD-

GP in around 40% of the symbolic regression problems. This suggests that the

hybridization can improve the behavioral diversity of GMD-GP, while also yielding

more widespread exploration of the fitness landscape. This is important because
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Figure 6.9: Pairwise Comparison of the Fitness Standard Deviation of the
Other Hybrids. Percentage of problems in which the method shown above each
plot had significantly higher standard deviation in fitness than each method listed.
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many behaviors can still map to the same fitness value, and therefore high behavioral

diversity does not necessarily guarantee effective search in the fitness space.

Figure 6.9 shows the pairwise comparison of the fitness standard deviation of the

populations of the other behavioral diversity selection techniques across the bench-

mark problems. This shows that while GMD-GP typically had a significantly lower

number of unique behaviors than the behavioral diversity techniques (which is shown

in the GMD plot of Figure 6.7), GMD-GP populations still tended to have signifi-

cantly higher standard deviation in fitness in a majority of the problems. While the

behavioral diversity techniques did not always provide GMD-GP with significantly

higher behavioral diversity, Figure 6.9 shows that the hybridization with eLex, SiS,
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and CPS increased the fitness standard deviation of GMD-GP in around 60%, 53%,

and 33% of the problems, respectively. Furthermore, Figure 6.9 also shows that the

hybrids had significantly higher fitness standard deviation than each of the stand-

alone behavioral diversity techniques in a majority of the problems. This suggests

that the hybrid techniques improve upon the stand-alone techniques by causing the

individuals to be more spread out in the fitness landscape, yielding broader search

and perhaps more efficient exploration of the landscape.

6.3 Hybridizing GMD-GP with Behavior-Aware

Crossover

Since the original implementation of GMD-GP uses the traditional genetic operators

such as subtree crossover, another natural place to incorporate behavioral diversity

into GMD-GP is during crossover. It is known that subtree crossover is highly dis-

ruptive [49]. This is because subtree crossover is irrespective of individuals’ behavior,

using no behavioral information to aid in its selection of crossover points. By incor-

porating behavior-aware crossover into GMD-GP, we aim to improve its performance

by increasing behavioral diversity. To do this, we use the LGX operator that we de-

scribed in Section 2.2.3 because it was shown to perform well across different problem

domains [61].

6.3.1 Performance of GMD-GP and LGX Hybrid

We now discuss the performance effect of hybridizing GMD-GP with the LGX

crossover operator. Again, we used the same experimental settings and the symbolic

regression benchmark problem suite that we discussed in Section 4.2. Figure 6.10

shows the pairwise comparison of GMD-GP and LGX to their hybrid counterparts in
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Figure 6.10: Pairwise Comparison of the Ending Fitness of the GMD-GP,
LGX Hybrid. Percentage of problems in which the method shown above each plot
had significantly higher mean ending fitness than each method listed.
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terms of the mean fitness at the end of the trial. This shows a similar result to what

we observed for the other hybrid selection techniques. GMD-GP outperformed LGX

in 53.33% of the problems, while LGX only outperformed GMD-GP in 6.67% of the

problems. Since GMD-GP tended to be the best performing stand-alone technique,

the hybridization with LGX did not tend to improve upon GMD-GP in most cases,

while it significantly improved upon LGX in 53.33% of the problems.

6.3.2 Effect of LGX Hybridization on Diversity

Next, we analyzed the effect that the hybridization with LGX has on the same

measures of diversity that we considered in Section 6.2.2. Figure 6.11 shows the
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Figure 6.11: Pairwise Comparison of the Structural Diversity of the GMD-
GP, LGX Hybrid. Percentage of problems in which the method shown above each
plot had significantly higher structural diversity than each method listed.
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pairwise comparison of mean structural diversity in the top two tree levels at the end

of the trial. Again, since GMD-GP focuses directly on maintaining a high level of

structural diversity, it is no surprise that GMD-GP has significantly higher structural

diversity than LGX (which we can see in the plot for GMD in Figure 6.11). In fact,

GMD-GP has significantly higher structural diversity than LGX in all (100%) of the

problems. This is also because LGX only performs crossover in homologous regions

of the tree, from the root, downwards, which further encourages the population to

become more structurally homologous. Therefore, as we can see in the plot for

the hybrid GMD+LGX in Figure 6.11, the hybridization with GMD-GP caused the

structural diversity of LGX to significantly increase in all of the problems.
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Figure 6.12: Pairwise Comparison of the Behavioral Diversity of the GMD-
GP, LGX Hybrid. Percentage of problems in which the method shown above each
plot had significantly higher behavioral diversity than each method listed.
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Figure 6.12 shows the pairwise comparison of the mean behavioral diversity at

the end of the trial. This shows the opposite result to that of structural diversity.

LGX has significantly higher behavioral diversity than GMD-GP in all (100%) of

the problems, which can be expected since LGX, by definition, promotes behavioral

diversity. Figure 6.12 also shows that the hybrid incorporating LGX into GMD-GP

significantly increased the behavioral diversity of GMD-GP populations in all of the

problems.

Figure 6.13 shows the pairwise comparison of the standard deviation of fitness

at the end of the trial. Analyzing the standard deviation in fitness shows that

even though GMD-GP had fewer unique behaviors, GMD-GP populations were more
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Figure 6.13: Pairwise Comparison of the Fitness Standard Deviation of the
GMD-GP, LGX Hybrid. Percentage of problems in which the method shown
above each plot had significantly higher standard deviation in fitness than each
method listed.
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spread out in the fitness landscape than those of LGX in all of the problems. Fur-

thermore the hybridization with GMD-GP significantly increased the fitness standard

deviation compared to LGX in 80% of the problems. These results are consistent

with the results for the hybrid selection techniques that we discussed in Section 6.2.2.
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Chapter 7

Conclusions

This dissertation has presented several contributions to the field of evolutionary com-

putation. We have presented a novel measure of structural diversity for tree-based

GP that is simple, efficient, and effective. We have demonstrated the utility of our

structural diversity measure by incorporating it into a simple yet powerful GP tech-

nique for structural diversity preservation. We have demonstrated the effectiveness of

our technique by comparing it to other state-of-the-art diversity techniques on a suite

of benchmark problems, and by applying our technique to the real-world problem of

tuberculosis screening from raw X-ray images. We then introduced several hybrid

techniques that focus simultaneously on structural and behavioral diversity for more

effective GP. We demonstrated the effectiveness of these techniques by comparing

them to their standalone counterparts on a suite of benchmark problems.

7.1 Conclusions on Structural Diversity

In Chapter 3, we presented GMD-GP, a novel structural diversity technique for

tree-based GP, which uses tree fragments as genetic markers to preserve structural

diversity. We showed that by only considering a portion of the tree, we can prevent
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premature convergence while accelerating search, thereby improving the efficiency of

GP. This is important because one major cause of premature convergence in GP is

structural convergence, wherein the trees in the population rapidly converge to the

same rooted structure in a top-down fashion [53]. By working directly to prevent this

phenomenon, GMD-GP is capable of dramatically improving the search performance

of GP. Furthermore, our measure of structural diversity is trivial to compute and

therefore much more efficient than other genotypic distance measures that use the

entire genotype and perform more complex comparisons in the calculation of distance.

We discussed in Section 4.3 that GMD-GP tended to find a solution significantly

faster than other techniques in many of the benchmark problems. In particular,

GMD-GP was able to improve upon the performance of the Age-Fitness Pareto

Optimization algorithm (A/F), upon which it was based. Since GMD-GP uses the

same underlying multi-objective evolutionary scheme as A/F, the only difference

being the use of genetic marker density as the second objective instead of genotypic

age, this further strengthens our argument for the utility of genetic markers. Since

the rooted portions of the trees define the overall context of the trees, and changes

to the root are more dramatic than changes to the leaves, maintaining a diverse set

of rooted structures, which GMD-GP does by preserving genetic marker diversity in

the population, can contribute to more efficient search.

In Section 4.4, we conducted several experimental analyses to determine the dif-

ferences between GMD-GP and several other diversity techniques. These analyses

uncovered several differences in the behavior of GMD-GP compared to the other

techniques. First, GMD-GP is capable of maintaining a significantly higher level of

structural diversity by only focusing on a fragment of the tree, and that structural

diversity also affects the level of behavioral diversity. This is evidenced by the fact

that GMD-GP populations tended to have significantly higher standard deviations
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in fitness compared to the other techniques across all the problems in our benchmark

suite. As the standard deviation in fitness is a measure of how spread out individuals

are in the fitness landscape, this shows that even though GMD-GP focuses directly

on preventing premature structural convergence, GMD-GP is capable of promoting

widespread search of the fitness landscape. This is a beneficial property for ex-

ploration of complex fitness landscapes, since less-fit individuals that may contain

important low-level building blocks are allowed to exist alongside fitter individuals,

thus providing low-level building blocks the opportunity to propagate throughout

the population.

Although GMD-GP populations typically had significantly higher standard devi-

ation in fitness, which can be considered a measure of behavioral diversity, GMD-GP

populations did tend to have significantly fewer unique behaviors compared to the

behavioral diversity techniques, which is an interesting phenomenon. As we dis-

cussed in Section 4.4, GMD-GP populations had fewer unique behaviors, using the

definition of behavior that we employed in our experiments. Further analysis showed

that GMD-GP populations tended to have several groups of individuals (consisting

of at least two individuals) that expressed the same behavior even though they were

genetically unique. This number of groups tended to be significantly greater than

those of the other techniques. This can be a beneficial property for problem domains

such as dynamic environments in which the population needs to readily adapt to

changes. This is a potential application area for future research with GMD-GP.
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7.2 Conclusions on Hybrid Structural and Behav-

ioral Diversity Techniques

In Chapter 6, we investigated hybridizing several existing behavioral diversity tech-

niques with our structural diversity technique. We demonstrated how GMD-GP

can easily be extended to incorporate behavioral diversity selection into the parent

selection phase, while still imposing structural diversity during its multi-objective

optimization phase. We also showed that behavioral diversity can easily be incor-

porated into GMD-GP by utilizing behavior-aware crossover operators. Our results

demonstrate the feasibility and effectiveness of such hybrid techniques and serve as a

motivation for further research into new techniques that focus directly on sustaining

both structural and behavioral diversity in GP.

Our results demonstrate that, in many cases, simultaneously focusing directly on

both structural and behavioral diversity can improve upon the shortcomings of both

approaches and leverage their strengths in order to achieve more effective search com-

pared to either approach in isolation. Since GMD-GP populations tended to have

fewer unique behaviors than the behavioral diversity techniques, the hybridization

typically significantly increased the number of unique behaviors of GMD-GP popu-

lations while still maintaining a high standard deviation in fitness. Likewise, since

the behavioral diversity techniques tended to still be susceptible to low structural

diversity, the hybridization tended to significantly increase the structural diversity

compared to the standalone behavioral diversity techniques.
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7.3 Conclusions on GP for Tuberculosis Screening

Chapter 5 presented a new application of GP: using GP to evolve classifiers for tu-

berculosis (TB) screening from raw X-ray images. Our results demonstrated that,

with the help of the two-tiered GP framework (2TGP), GMD-GP can evolve clas-

sifiers that are competitive in terms of accuracy compared to current methods that

require image processing and feature extraction. Furthermore, our evolved classifiers

are capable of classifying an X-ray image in only a fraction of a second, which is

dramatically faster than the reported times for other techniques.

While our technique performed competitively in terms of accuracy and the time

taken to classify an image, the large memory requirement during the training phase

is still an issue. Since all the training images are currently loaded into memory at

the beginning of evolution, this imposes a large memory overhead on the system due

to the size of the images. While the evolved classifiers can operate on single images

at a time and therefore can be run on smaller hardware such as a laptop computer,

improving the system so that the training phase is less memory intensive will make

this approach more feasible.

Another issue, which is very common to GP in general, is that of the inter-

pretability of the evolved classifiers. One very desirable and important quality of a

computer program that is to be used in the medical domain is that the program is

understandable by the professionals that are using it. We discussed in Chapter 5

that the best evolved solutions are rather large trees, which means that interpreting

the behavior of the trees is very difficult. However, in the case of TB screening, we

can observe the features of the X-ray images that are being used by the classifier (as

we showed in Figure 5.1 and Figure 5.2) in order to gain a better understanding of

which regions in the X-ray are important to the classifier. However, more research is

needed into visualizing and analyzing the behavior of the classifiers on such regions
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to better understand how a classification is derived.

7.4 Future Directions

This research scratches the surface of developing techniques that focus simultane-

ously on structural and behavioral diversity. We demonstrated the feasibility of such

techniques by hybridizing our structural diversity technique with existing behavioral

diversity techniques. However, we aim to motivate GP researchers to further explore

this promising area and develop novel techniques that accomplish the goal of sus-

taining both types of diversity. Specific research questions in this area are as follows.

Can we design novel operators that directly promote both types of diversity rather

than using two separate operators? Does one type of operator (e.g. crossover ver-

sus selection) provide a different advantage than the other in terms of these hybrid

techniques?

Another area in which GMD-GP can readily be extended to incorporate behav-

ioral diversity is during its exploratory phase that occurs after Pareto tournament

selection. As we discussed in Chapter 3, after GMD-GP performs Pareto tournament

selection, it adds a new, randomly generated individual to the population in order to

maintain a constant source of new genetic material in the population. A possible ex-

tension is to use semantic geometric mutation to explore the semantic neighborhood

of certain individuals. This could be done using either the fittest individuals, the

most unique individuals (structurally or behaviorally), or randomly. One potential

benefit of this would be that this would allow us to explore targeted areas in the

behavioral space while still maintaining a constant source of new genetic material in

the population.

Another area for future work is to demonstrate the effectiveness of GMD-GP and
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the hybrid techniques on other real-world applications. One area to which GP has

been applied is the prediction of time series data such as stock market prediction [70].

A related area of great potential is that of physiological signals. For example, GP

has previously been used to classify electroencephalogram (EEG) signals to detect

epileptic seizures [7], as well as for brain computer interfaces [3]. Taking this a step

further, one question for future research is whether or not GP can be used to evolve

EEG classifiers that can be used in a brain computer interface for controlling pros-

thetic limbs to restore mobility to paralyzed patients. A machine learning technique

was successfully applied to a similar task using a cortical implant to restore limb

movement to a quadriplegic patent [10]. However, it would be invaluable if the same

or better result could be achieved with non-invasive methods, for which GP could

potentially be used.

Another area where GP could be used on physiological signals is that of contin-

uous blood pressure monitoring. For example, some techniques have been proposed

using signals such as pulse transit time for continuous, cuff-less blood pressure mon-

itoring [20]. Furthermore, one study presented a wearable approach using GP for

blood pressure monitoring [67]. Further research into designing affordable and more

comfortable systems that can be used by everyday people would be beneficial.

Finally, our results in Chapter 5 only scratch the surface of using GP for tubercu-

losis screening from raw X-ray images. While our initial results show great promise

for the accuracy of the evolved solutions, further research into whether GP can be

used for detecting general abnormalities in the lung from X-ray images would be

valuable. Evolving classifiers without the large memory overhead required for the

training images is another important goal for future research. Also, improving the

true positive rate of the evolved classifiers is an essential goal for future work.
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[3] Eva Alfaro-Cid, Anna Esparcia-Alcázar, and Ken Sharman. Using distributed
genetic programming to evolve classifiers for a brain computer interface. In
ESANN, pages 59–66, 2006.

[4] SK Antani. Automated detection of lung diseases in chest x-rays. Technical
Report to the LHNCBC Board of Scientific, 2015.

[5] Daniel Atkins, Kourosh Neshatian, and Mengjie Zhang. A domain independent
genetic programming approach to automatic feature extraction for image clas-
sification. In Alice E. Smith, editor, Proceedings of the 2011 IEEE Congress on
Evolutionary Computation, pages 238–245, New Orleans, USA, 5-8 June 2011.
IEEE Computational Intelligence Society, IEEE Press.

[6] Lawrence Beadle and Colin Johnson. Semantically driven crossover in genetic
programming. In Proceedings of the IEEE World Congress on Computational
Intelligence, pages 111–116, Hong Kong, 1-6 June 2008. IEEE Computational
Intelligence Society, IEEE Press.

[7] Arpit Bhardwaj, Aruna Tiwari, Ramesh Krishna, and Vishaal Varma. A novel
genetic programming approach for epileptic seizure detection. Computer meth-
ods and programs in biomedicine, 124:2–18, 2016.

[8] Josh C. Bongard and Gregory S. Hornby. Guarding against premature conver-
gence while accelerating evolutionary search. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’10, pages 111–
118, New York, NY, USA, 2010. ACM.

[9] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Representing shape with a
spatial pyramid kernel. In Proceedings of the 6th ACM international conference
on Image and video retrieval, pages 401–408. ACM, 2007.

[10] Chad E Bouton, Ammar Shaikhouni, Nicholas V Annetta, Marcia A Bock-
brader, David A Friedenberg, Dylan M Nielson, Gaurav Sharma, Per B Seder-
berg, Bradley C Glenn, W Jerry Mysiw, et al. Restoring cortical control of

91



functional movement in a human with quadriplegia. Nature, 533(7602):247–
250, 2016.

[11] Edmund K. Burke, Steven Gustafson, and Graham Kendall. Diversity in ge-
netic programming: An analysis of measures and correlation with fitness. IEEE
Transactions on Evolutionary Computation, 8(1):47–62, February 2004.

[12] Edmund K. Burke, Steven Gustafson, Graham Kendall, and Natalio Krasno-
gor. Is increased diversity in genetic programming beneficial? an analysis of
the effects on performance. In Ruhul Sarker, Robert Reynolds, Hussein Abbass,
Kay Chen Tan, Bob McKay, Daryl Essam, and Tom Gedeon, editors, Pro-
ceedings of the 2003 Congress on Evolutionary Computation CEC2003, pages
1398–1405, Canberra, 8-12 December 2003. IEEE Press.

[13] Armand R. Burks and William F. Punch. An efficient structural diversity tech-
nique for genetic programming. In GECCO ’15: Proceedings of the 2015 on Ge-
netic and Evolutionary Computation Conference, pages 991–998, Madrid, Spain,
11-15 July 2015. ACM.

[14] Armand R. Burks and William F. Punch. An analysis of the genetic marker di-
versity algorithm for genetic programming. Genetic Programming and Evolvable
Machines, 18(2):213–245, June 2017.

[15] Sema Candemir, Stefan Jaeger, Kannappan Palaniappan, Jonathan P Musco,
Rahul K Singh, Zhiyun Xue, Alexandros Karargyris, Sameer Antani, George
Thoma, and Clement J McDonald. Lung segmentation in chest radiographs us-
ing anatomical atlases with nonrigid registration. IEEE transactions on medical
imaging, 33(2):577–590, 2014.

[16] Jason M Daida, Hsiaolei Li, Ricky Tang, and Adam M Hilss. What makes a
problem gp-hard? validating a hypothesis of structural causes. In Genetic and
Evolutionary Computation—GECCO 2003, pages 1665–1677. Springer, 2003.

[17] Peter Day and Asoke K. Nandi. Binary string fitness characterization and com-
parative partner selection in genetic programming. IEEE Transactions on Evo-
lutionary Computation, 12(6):724–735, December 2008.

[18] Edwin de Jong, Richard Watson, and Jordan Pollack. Reducing bloat and pro-
moting diversity using multi-objective methods. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2001, pages 11–18. Morgan
Kaufmann, 2001.

[19] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002.

92



[20] Xiao-Rong Ding, Yuan-Ting Zhang, Jing Liu, Wen-Xuan Dai, and Hon Ki
Tsang. Continuous cuffless blood pressure estimation using pulse transit time
and photoplethysmogram intensity ratio. IEEE Transactions on Biomedical
Engineering, 63(5):964–972, 2016.

[21] Brad Dolin, Maribel Garcia Arenas, and Juan J. Merelo Guervos. Opposites
attract: Complementary phenotype selection for crossover in genetic program-
ming. In Juan J. Merelo-Guervos, Panagiotis Adamidis, Hans-Georg Beyer,
Jose-Luis Fernandez-Villacanas, and Hans-Paul Schwefel, editors, Parallel Prob-
lem Solving from Nature - PPSN VII, number 2439 in Lecture Notes in Com-
puter Science, LNCS, pages 142–152, Granada, Spain, 7-11 September 2002.
Springer-Verlag.

[22] Jeannie Fitzgerald and Conor Ryan. Exploring boundaries: optimising individ-
ual class boundaries for binary classification problem. In GECCO ’12: Pro-
ceedings of the fourteenth international conference on Genetic and evolutionary
computation conference, pages 743–750, Philadelphia, Pennsylvania, USA, 7-11
July 2012. ACM.

[23] Edgar Galvan-Lopez, Brendan Cody-Kenny, Leonardo Trujillo, and Ali Kattan.
Using semantics in the selection mechanism in genetic programming: A simple
method for promoting semantic diversity. In Evolutionary Computation (CEC),
2013 IEEE Congress on, pages 2972–2979. IEEE, 2013.

[24] Chris Gathercole and Peter Ross. An adverse interaction between crossover and
restricted tree depth in genetic programming. In Proceedings of the 1st Annual
Conference on Genetic Programming, pages 291–296, Cambridge, MA, USA,
1996. MIT Press.

[25] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1989.

[26] David E Goldberg and Jon Richardson. Genetic algorithms with sharing for
multimodal function optimization. In Genetic algorithms and their applica-
tions: Proceedings of the Second International Conference on Genetic Algo-
rithms, pages 41–49. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[27] Steven Gustafson, Edmund K Burke, and Graham Kendall. Sampling of unique
structures and behaviours in genetic programming. In Genetic Programming,
pages 279–288. Springer, 2004.

[28] Thomas Helmuth, Lee Spector, and James Matheson. Solving uncompromising
problems with lexicase selection. IEEE Transactions on Evolutionary Compu-
tation, 19(5):630–643, October 2015.

93



[29] John H Holland. Building blocks, cohort genetic algorithms, and hyperplane-
defined functions. Evolutionary computation, 8(4):373–391, 2000.

[30] Gregory S. Hornby. Alps: The age-layered population structure for reducing the
problem of premature convergence. In Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’06, pages 815–822, New
York, NY, USA, 2006. ACM.

[31] Gregory S. Hornby. Steady-state alps for real-valued problems. In Proceed-
ings of the 11th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’09, pages 795–802, New York, NY, USA, 2009. ACM.

[32] Jianjun Hu, Erik Goodman, Kisung Seo, Zhun Fan, and Rondal Rosenberg. The
hierarchical fair competition framework for sustainable evolutionary algorithms.
Evolutionary Computation, 13(2):241–277, Summer 2005.

[33] Jianjun Hu, Kisung Seo, Shaobo Li, Zhun Fan, Ronald C. Rosenberg, and
Erik D. Goodman. Structure fitness sharing (sfs) for evolutionary design by
genetic programming. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 780–787. Morgan Kaufmann Publishers, 2002.

[34] Andrew Innes. Genetic Programing for Cephalometric Landmark Detection.
PhD thesis, School of Aerospace, Mechanical and Manufacturing Engineering,
RMIT University, Victoria, Australia, 29 August 2007.

[35] David Jackson. Phenotypic diversity in initial genetic programming popula-
tions. In Proceedings of the 13th European Conference on Genetic Programming,
EuroGP 2010, volume 6021 of LNCS, pages 98–109, Istanbul, 7-9 April 2010.
Springer.

[36] David Jackson. Promoting phenotypic diversity in genetic programming. In
PPSN 2010 11th International Conference on Parallel Problem Solving From
Nature, volume 6239 of Lecture Notes in Computer Science, pages 472–481,
Krakow, Poland, 11-15 September 2010. Springer.

[37] Stefan Jaeger, Alexandros Karargyris, Sema Candemir, Les Folio, Jenifer Siegel-
man, Fiona Callaghan, Zhiyun Xue, Kannappan Palaniappan, Rahul K Singh,
Sameer Antani, et al. Automatic tuberculosis screening using chest radiographs.
IEEE transactions on medical imaging, 33(2):233–245, 2014.

[38] Joshua D Knowles, Richard A Watson, and David W Corne. Reducing local op-
tima in single-objective problems by multi-objectivization. In International Con-
ference on Evolutionary Multi-Criterion Optimization, pages 269–283. Springer,
2001.

[39] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

94



[40] Krzysztof Krawiec and Pawel Lichocki. Approximating geometric crossover in
semantic space. In Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’09, pages 987–994, New York, NY, USA,
2009. ACM.

[41] Krzysztof Krawiec and Una-May O’Reilly. Behavioral programming: a broader
and more detailed take on semantic GP. In GECCO ’14: Proceedings of the 2014
conference on Genetic and evolutionary computation, pages 935–942, Vancouver,
BC, Canada, 12-16 July 2014. ACM. Best paper.

[42] Krzysztof Krawiec and Tomasz Pawlak. Locally geometric semantic crossover.
In Proceedings of the 14th Annual Conference Companion on Genetic and Evo-
lutionary Computation, GECCO ’12, pages 1487–1488, New York, NY, USA,
2012. ACM.

[43] Krzysztof Krawiec and Tomasz Pawlak. Approximating geometric crossover
by semantic backpropagation. In Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’13, pages 941–948, New
York, NY, USA, 2013. ACM.

[44] Krzysztof Krawiec and Tomasz Pawlak. Locally geometric semantic crossover:
a study on the roles of semantics and homology in recombination operators.
Genetic Programming and Evolvable Machines, 14(1):31–63, 2013.

[45] William La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase selection for
regression. In Tobias Friedrich, editor, GECCO ’16: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, page fp376, Denver, USA,
20-24 July 2016. ACM.

[46] W. B. Langdon and Riccardo Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[47] Sean Luke. When short runs beat long runs. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pages 74–80, 2001.

[48] M. Maghoumi and B. J. Ross. A comparison of genetic programming feature
extraction languages for image classification. In IEEE Symposium on Compu-
tational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP
2014), December 2014.

[49] Hammad Majeed and Conor Ryan. A less destructive, context-aware crossover
operator for GP. In Pierre Collet, Marco Tomassini, Marc Ebner, Steven
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