
EXAMPLE-BASED PARAMETERIZATION OF
LINEAR BLEND SKINNING FOR SKINNING DECOMPOSITION

(EP-LBS)

By

Kayra M. Hopkins

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science — Doctor of Philosophy

2017

ABSTRACT

EXAMPLE-BASED PARAMETERIZATION OF
LINEAR BLEND SKINNING FOR SKINNING DECOMPOSITION (EP-LBS)

By

Kayra M. Hopkins

This thesis presents Example-based Parameterization of Linear Blend Skinning for Skin-

ning Decomposition (EP-LBS), a unified and robust method for using example data to

simplify and improve the development and parameterization of high quality 3D models for

animation. Animation and three-dimensional (3D) computer graphics have quickly become

a popular medium for education, entertainment and scientific simulation. In addition to

film, gaming and research applications, recent advancements in augmented reality (AR) and

virtual reality (VR) are driving additional demand for 3D content. However, the success of

graphics in these arenas depends greatly on the efficiency of model creation and the realism

of the animation or 3D image.

A common method for figure animation is skeletal animation using linear blend skinning

(LBS). In this method, vertices are deformed based on a weighted sum of displacements due

to an embedded skeleton. This research addresses the problem that LBS animation parame-

ter computation, including determining the rig (the skeletal structure), identifying influence

bones (which bones influence which vertices), and assigning skinning weights (amounts of

influence a bone has on a vertex), is a tedious process that is difficult to get right. Even the

most skilled animators must work tirelessly to design an effective character model and often

find themselves repeatedly correcting flaws in the parameterization. Significant research, in-

cluding the use of example-data, has focused on simplifying and automating individual com-

ponents of the LBS deformation process and increasing the quality of resulting animations.

However, constraints on LBS animation parameters makes automated analytic computation

of the values equally as challenging as traditional 3D animation methods. Skinning decom-

position is one such method of computing LBS animation LBS parameters from example

data. Skinning decomposition challenges include constraint adherence and computationally

efficient determination of LBS parameters.

The EP-LBS method presented in this thesis utilizes example data as input to a least-

squares non-linear optimization process. Given a model as a set of example poses captured

from scan data or manually created, EP-LBS institutes a single optimization equation that

allows for simultaneous computation of all animation parameters for the model. An iter-

ative clustering methodology is used to construct an initial parameterization estimate for

this model, which is then subjected to non-linear optimization to improve the fitting to the

example data. Simultaneous optimization of weights and joint transformations is compli-

cated by a wide range of differing constraints and parameter interdependencies. To address

interdependent and conflicting constraints, parameter mapping solutions are presented that

map the constraints to an alternative domain more suitable for nonlinear minimization. The

presented research is a comprehensive, data-driven solution for automatically determining

skeletal structure, influence bones and skinning weights from a set of example data. Results

are presented for a range of models that demonstrate the effectiveness of the method.

Copyright by
KAYRA M. HOPKINS
2017

This dissertation is dedicated to my great-grandmother Viola McGee Ellis.
————————————————————–

“I am my ancestors’ wildest dreams.”

v

ACKNOWLEDGMENTS

I could not have achieved all of the many accomplishments associated with this dissertation

if it were not for the many vibrant and committed communities to which I belong.

I first thank Spelman College, the Spelman CIS program, Dr. Lawrence, Professor Hard-

nett, Professor Kearse, Dr. Williams, Professor Hale and Dr. Watkins and and all of my

Spelman sisters for allowing learn and grow without questions, artificial barriers, assump-

tions or judgment; and to the four other women in the Fab Five (Nicole, Kamika, Candis

and Lynn) - thank you for the phone calls, letting me move in when Michigan winters got

the best of me, putting up with my DIY projects, and supporting me always.

This research would not be possible without the financial support of the NASA WISE

program, the NASA Harriet Jenkins fellowship program, the GEM program, Intel Corpora-

tion and the Alfred P. Sloan Foundation. More than funding, these organizations supported

my well-being as a whole; to my Jenkins Fellows - you all inspire me!

My Michigan Family (Sloan, BGSA, GEU) - Thank you for putting up with this California

girl with wild ideas and even bigger goals; Dr. Dillon, you are the reason I chose State. Thank

you for being a strong and positive influence for me and all women in computer science; Dr.

Pierre - you helped my start down this path decades before I would even consider graduate

school. Your work supporting students in the sciences has had (and still has) great impact

and for that I am especially grateful; Dr. O’Kelly, Dr. Stockman - thank you for the wealth

of wisdom, resources and motivation provided throughout the years; Teresa Vandersloot -

your encouragement and kind words always came at the right moments. Thank you! Linda

Moore your smile always reminded me that there is a such thing as #blackgirlmagic. I

needed that! Thank you for your support and encouragement; to my advisor, Dr. Owen and

vi

my committee members, Dr. Chai, Dr, Sherry and Dr, Dysken - thank you for your wisdom

and insight;

I am eternally grateful and extremely blessed to have gained many lifelong friends while

at Michigan State! I would not have survived without three in particular: Annette - my

first year would have been miserable without you as my study partner. Thank you for your

encouragement and positivity; Dr. Michelle Mwalimu, my travel partner - I am grateful for

our friendship...and our many adventures! Melissa Gomes - you are truly the kind of friend

that everyone wishes for. Thanks for always having my back!

To my bravest friend, Norah - I am forever grateful to have you on my team! Thank you

for your undying support.

To my SPEC family - Thank you for instilling in me success, heritage, excellence, love,

togetherness and opportunities....now, I made it y’all!...and you were the first to tell the

world that there was no question if I could! To my sister, Dr. Ashley E. Coleman - Thank

you for holding my hand, then and now!

My family has been a source of encouragement and strength throughout this process -

To my brothers John, Dar and KJ - Your love and pride for me and my work are sustaining

forces. I love you always; to my Baba, Steve Swift - No words can express how lucky I am to

have your unwavering support and love...and humor (always at just the right moments); most

importantly, I acknowledge and must express my deepest gratitude to my mother, Deborah

Ann Moffett-Swift, and grandmother, Mary Etta Jones, for their unconditional love and

never-ending support. Because of you two phenomenal women, I truly believe I can succeed

at anything I put my mind and effort to.

There are numerous others that I have not called by name who have played an important

part in this dissertation. Your love and support is eternally appreciated. Thank you!

vii

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xxiv

Chapter 1 Introduction . 1
1.1 Overview of Current Method and Challenges 3
1.2 Presented Approach . 7

1.2.1 Objectives . 7
1.3 Outline of Approach . 8
1.4 Contributions of this Thesis . 9
1.5 Thesis Structure . 10

Chapter 2 Background: Character Models and Linear Blend Skinning . . 13
2.1 Character Model . 13

2.1.1 Character Mesh . 15
2.1.2 Character Skeleton . 17

2.2 Deformation Methods . 18
2.2.1 Deformation and Character Animation 20

2.3 Skeletal Animation Subprocesses . 20
2.3.1 Rigging . 21
2.3.2 Skinning . 21
2.3.3 Skinning and Rigging Challenges . 21

2.4 Linear Blend Skinning . 22
2.4.1 Nomenclature and Notation Conventions 23
2.4.2 Coordinate Systems . 24
2.4.3 Linear Blend Skinning Equation . 25
2.4.4 Rotation Representations . 25

Chapter 3 Related Works . 29
3.1 Variations on Linear Blend Skinning . 29

3.1.1 Motivations for LBS Variations . 30
3.2 Skinning: Computing Weights . 32
3.3 Rigging: Computing Skeletal Structure and Bone Rotations 38

3.3.1 Rotation Representations . 39
3.3.2 Skeleton Extraction . 40

3.3.2.1 Medial Axis Skeleton Extraction Methods 40
3.3.2.2 Clustering and Segmentation Methods for Skeleton Extraction 44
3.3.2.3 Summary of Skeleton Extraction Methods 46

viii

3.3.3 Skeleton Embedding and Rigging Transfer 46
3.3.4 Cages, Exoskeletons and Other Skeletal Abstractions 51

3.4 Example-based Linear Blend Skinning . 51
3.4.1 Example-based Shape Deformation 53

3.4.1.1 Interpolation . 53
3.4.1.2 Template and Data Fitting Techniques 57

3.4.2 Skinning Decomposition . 57
3.4.2.1 This Research and Popular Skinning Decomposition Methods 69

Chapter 4 Example-based Parameterization of Linear Blend Skinning . . 71
4.1 Process Overview . 72
4.2 Development of Methods . 72

4.2.1 Modified Linear Blend Skinning . 74
4.2.2 Parameter Mapping for Constraint Adherence 75

4.2.2.1 Implied Bounds from Competing Constraints 76
4.2.2.2 Weight Mapping . 77
4.2.2.3 Rotation Mapping . 82

4.2.3 Iterative Motion-based Clustering for Initialization 85
4.2.3.1 Representing High-dimensional Data Sets as Vectors 86
4.2.3.2 Cosine similarity for Vector Comparison 88
4.2.3.3 Converting Translation Vectors for Cosine Similarity Com-

parison . 89
4.2.3.4 Basic Initialization . 90
4.2.3.5 NNLS and Iterative Clustering for EP-LBS Initialization . . 91

4.3 Implementing Example-based Parameterization of Linear Blend Skinning . . 94
4.3.1 Pose Nomenclature . 94
4.3.2 Objective Function: Modified Linear Blend Skinning 95
4.3.3 Initialization: NNLS + Interative k-means Clustering 96
4.3.4 Optimization & Constraint Adherence: Gradient Descent with Param-

eter Mapping . 98

Chapter 5 Results . 102
5.1 Methods of Evaluation . 102

5.1.1 Quantitative Analysis . 103
5.1.1.1 Model Error . 103
5.1.1.2 Execution Time . 105

5.1.2 Qualitative Analysis . 105
5.1.3 Characteristics of Desired Results . 106

5.2 Models . 107
5.3 Example-based Parameterization of Linear Blend Skinning Results 108

5.3.1 Model: Cat . 112
5.3.2 Model: Lion . 119
5.3.3 Model: Snake . 126
5.3.4 Model: Horse . 131
5.3.5 Model: Woman . 139

ix

5.3.6 Model: Elephant . 154
5.3.7 Model: Flamingo . 162
5.3.8 Model: Camel . 170
5.3.9 Model: Dance . 178
5.3.10 Model: Jump . 186

5.4 Discussion . 192
5.4.1 Initialization . 194
5.4.2 Optimization and Constraint Adherence 197
5.4.3 Algorithm Complexity . 208
5.4.4 Execution Time . 209

Chapter 6 Conclusion . 211
6.1 Contributions of this Thesis . 212
6.2 Applications for this Research . 214

6.2.1 Opportunities for Additional Analysis in Related Fields 216
6.3 Future Work . 216

APPENDICES . 219
Appendix A Coordinate Systems . 220
Appendix B Weight Mapping . 223
Appendix C Rotation Mapping . 225

REFERENCES . 226

x

LIST OF TABLES

Table 2.1: Symbols and Terminology . 24

Table 3.1: Comparison of Skinning Decomposition approaches. (Abbreviations:
NNLS - Non-negative Linear Least Squares, SVD - Singular Value
Decomposition, TSVD - Truncated SVD) 68

Table 4.1: Single-pass Reclustering Sample- Demonstration of improvement in
error when a single reclustering pass is used. 93

Table 4.2: Updated Symbols and Terminology 95

Table 5.1: Models . 109

Table 5.2: Initialization Results . 193

Table 5.3: Optimization Results . 207

xi

LIST OF FIGURES

Figure 1.1: The process and outcome of binding a skeleton to a character mesh
as described by a tutorial on using the COLLADA 3D asset exchange
system [109] . 3

Figure 1.2: Motion capture: Liu et al present a method for realtime control of an
avatar using motion capture sensors [61].) 7

Figure 1.3: Example-based Parameterization of LBS for 3D Skinning Decomposi-
tion. Given a character mesh and a set of example poses, the examples
are divided into training and testing sets. Skinning decomposition is
then performed using constraint adherence techniques. This produces
the skinning weights and bone transformations needed to generate the
new poses. The solution produced is verified using the testing set.
Finally, new poses can be created using the skeleton and weighting
structure computed during the skinning decomposition process . . . 12

Figure 2.1: Examples of character representations used in this research: (2.1a) A
synthesized mesh of 3003 vertices. (2.1b) A skeletal structure of 22
bones. (2.1c) The skeleton embedded in the character mesh. (2.1d)
The final rigged, skinned, and texture-mapped character as seen on-
screen. 14

Figure 2.2: Mesh Topology: Synthesized model with uniform topology (2.2a).
Reconstructed model with irregular topology (2.2b). 16

Figure 2.3: Auto-generated character skeleton estimations [7] 17

Figure 2.4: Spatial Deformation, before (left image) and after deformation (right
image): 2.4a point deformation, 2.4b curve deformation, 2.4c surface
deformation, and 2.4d volumetric. (Images from Gain and Bechman
[30]). 19

Figure 2.5: Rigging, skinnning and animation. Cheng et al present an automated
method for determining the skeletal structure and bone influences
needed for animation of a humanoid character [18].) 21

Figure 2.6: Character mesh in relation to bones with weights indicated on ver-
tices. An elbow model in its base pose (left) and after deformation
(center and right). All weights for a vertex sum to one indicating
100% influence . 22

xii

Figure 3.1: Skinning is subject to a variety of artifact. Common forms of de-
formation artifact occur when an object loses volume when bent, an
effect known as “pinch” (a) or when an object is rotated, experiencing
the “candy-wrapper effect” (b). (Images courtesy of Merry et al [69].) 30

Figure 3.2: Blender Painting Weights: Monkey head model and Blender interface
for manually painting weights. [9].) 37

Figure 3.3: Dual-quaternion solution (left) to common linear blend skinning un-
natural deformation (right) [29].) 39

Figure 3.4: Skeleton Extraction Methods demonstrated on Armadillo model :
3.4a medial axis (from the works of Tagliasacchi et al [99]), 3.4b
cage control structure (from the works of Ju et al [50]), and 3.4c
segmentation (as described by Reniers and Telea [82]). 41

Figure 3.5: Skeleton extraction by mesh contraction by Au et al [5]. 43

Figure 3.6: Single depth Kinect images are used to segment human meshes (Im-
ages courtesy of Shotton et al [94].) 45

Figure 3.7: Seo et al demonstrate the transfer of an anotomically-based rig from
a horse to a camel [89]. 46

Figure 3.8: Rigging Pipeline introduced by Baran and Popovic [7]. 48

Figure 3.9: A kangaroo and various skeletal abstractions used by Capell et al [15]. 50

Figure 3.10: A walk sequence generated from interpolation. Highlighted cells con-
tain example motions. All other poses where generated using the
veb/adverb interpolation mechanism introduced by Rose et al[85]. . 54

Figure 3.11: Examble-based Model Generation System: Seo and Magnenat-Thalmann
fit a set of example scans to a template model and use interpolation
to generate a new model [88]. 56

Figure 3.12: Optimization pipeline for Learn Skeletons for Shape and Pose so-
lution to skinning decomposition [34]. Example poses are analyzed
for shape and pose bone hierarchies. The bone hierarchies are com-
bined to generate a single skeletal structure that defines that model.
Additionally, skinning weights are computed for the hierarchies and
combined to yield the final LBS weights. 61

xiii

Figure 3.13: Smooth Skinning Decomposition with Rigid Bones (SSDR) incorpo-
rates block coordinate descent which alternates between solving for
either bones (B) or weights (W), holding the other constant while
solving [57]. 64

Figure 4.1: Example-based Parameterization of Linear Blend Skinning for 3D
Skeletal Animation, a skinning decomposition pipeline process. . . . 73

Figure 4.2: Plane containing weights w1, w2, and w3 that sum to one with the
triangular region of plane bounded to the range [0, 1] that represents
valid weights. 80

Figure 4.3: The 2D projection of weights w1, w2, and w3 representing the region
of three valid weights as determined by only two weights w1 and w2. 81

Figure 4.4: 1-ring clusters for a single vertex across multiple poses for a lion model. 86

Figure 4.5: Sample Single-pass Reclustering for Initialization for Woman Model.
First pass clustering (left) and after reclustering (right). Note that
the legs of the first clustering pass group the lower leg and the foot
together. After splitting bones and another pass at clustering, the
left foot and lower left leg as well as the right leg and right foot are
identified by four separate bones instead of two. 92

Figure 5.1: Initialization Results for Cat Model - 5.1a Model. 5.1b Initial-
ization Results: Singleton bone groups. 112

Figure 5.2: Optimization Results for Cat Model - Progress of EP-LBS min-
imization of the objective function. 113

Figure 5.3: Optimization Results for Cat Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 114

Figure 5.4: Optimization Results for Cat Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 115

Figure 5.5: Optimization Results for Cat Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 116

xiv

Figure 5.6: Optimization Results for Cat Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 117

Figure 5.7: Optimization Results for Cat Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 118

Figure 5.8: Initialization Results for Lion Model - 5.8a Model. 5.8b Initial-
ization Results: Singleton bone groups. 119

Figure 5.9: Optimization Results for Lion Model - Progress of EP-LBS min-
imization of the objective function. 120

Figure 5.10: Optimization Results for Lion Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 121

Figure 5.11: Optimization Results for Lion Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 122

Figure 5.12: Optimization Results for Lion Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 123

Figure 5.13: Optimization Results for Lion Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 124

Figure 5.14: Optimization Results for Lion Model - Expected vertex posi-
tions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Er-
ror Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 125

Figure 5.15: Initialization Results for Snake Model - 5.15a Model. 5.15b
Initialization Results: Singleton bone groups. 126

xv

Figure 5.16: Optimization Results for Snake Model - Progress of EP-LBS
minimization of the objective function. 127

Figure 5.17: Optimization Results for Snake Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 128

Figure 5.18: Optimization Results for Snake Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 129

Figure 5.19: Optimization Results for Snake Model - Expected vertex po-
sitions [top:(a)], Computed vertex positions [middle:(b)] and Error
Heat Map [bottom:(c)] for Pose 05. 130

Figure 5.20: Initialization Results for Horse Model - 5.20a Model. 5.20b
Initialization Results: Singleton bone groups. 131

Figure 5.21: Optimization Results for Horse Model - Progress of EP-LBS
minimization of the objective function. 132

Figure 5.22: Optimization Results for Horse Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 133

Figure 5.23: Optimization Results for Horse Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 134

Figure 5.24: Optimization Results for Horse Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 135

Figure 5.25: Optimization Results for Horse Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 136

xvi

Figure 5.26: Optimization Results for Horse Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 137

Figure 5.27: Optimization Results for Horse Model - Expected vertex po-
sitions [top:(a)], Computed vertex positions [middle:(b)] and Error
Heat Map [bottom:(c)] for Pose 11. 138

Figure 5.28: Initialization Results for Woman Model - 5.28a Model. 5.28b
Initialization Results: Singleton bone groups. 139

Figure 5.29: Optimization Results for Woman Model - Progress of EP-LBS
minimization of the objective function. 140

Figure 5.30: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 141

Figure 5.31: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 142

Figure 5.32: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 143

Figure 5.33: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 144

Figure 5.34: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 145

Figure 5.35: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 11 [left column] and Pose 12
[right column]. 146

xvii

Figure 5.36: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 13 [left column] and Pose 14
[right column]. 147

Figure 5.37: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 15 [left column] and Pose 16
[right column]. 148

Figure 5.38: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 17 [left column] and Pose 18
[right column]. 149

Figure 5.39: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 19 [left column] and Pose 20
[right column]. 150

Figure 5.40: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 21 [left column] and Pose 22
[right column]. 151

Figure 5.41: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 23 [left column] and Pose 24
[right column]. 152

Figure 5.42: Optimization Results for Woman Model - Expected vertex po-
sitions [top:(a)], Computed vertex positions [middle:(b)] and Error
Heat Map [bottom:(c)] for Pose 15 [left column]. 153

Figure 5.43: Initialization Results for Elephant Model - 5.43a Model. 5.43b
Initialization Results: Singleton bone groups. 154

Figure 5.44: Optimization Results for Elephant Model - Progress of EP-LBS
minimization of the objective function. 155

Figure 5.45: Optimization Results for Elephant Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 156

xviii

Figure 5.46: Optimization Results for Elephant Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 157

Figure 5.47: Optimization Results for Elephant Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 158

Figure 5.48: Optimization Results for Elephant Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 159

Figure 5.49: Optimization Results for Elephant Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 160

Figure 5.50: Optimization Results for Elephant Model - Expected vertex
positions [top:(a)], Computed vertex positions [middle:(b)] and Error
Heat Map [bottom:(c)] for Pose 11. 161

Figure 5.51: Initialization Results for Flamingo Model - 5.51a Model. 5.51b
Initialization Results: Singleton bone groups. 162

Figure 5.52: Optimization Results for Flamingo Model - Progress of EP-LBS
minimization of the objective function. 163

Figure 5.53: Optimization Results for Flamingo Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 164

Figure 5.54: Optimization Results for Flamingo Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 165

Figure 5.55: Optimization Results for Flamingo Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 166

xix

Figure 5.56: Optimization Results for Flamingo Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 167

Figure 5.57: Optimization Results for Flamingo Model - Expected vertex
positions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 168

Figure 5.58: Optimization Results for Flamingo Model - Expected vertex
positions [top:(a)], Computed vertex positions [middle:(b)] and Error
Heat Map [bottom:(c)] for Pose 11. 169

Figure 5.59: Initialization Results for Camel Model - 5.59a Model. 5.59b
Initialization Results: Singleton bone groups. 170

Figure 5.60: Optimization Results for Camel Model - Progress of EP-LBS
minimization of the objective function. 171

Figure 5.61: Optimization Results for Camel Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 172

Figure 5.62: Optimization Results for Camel Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 173

Figure 5.63: Optimization Results for Camel Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 174

Figure 5.64: Optimization Results for Camel Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 175

Figure 5.65: Optimization Results for Camel Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 176

xx

Figure 5.66: Optimization Results for Camel Model - Expected vertex po-
sitions [top:(a)], Computed vertex positions [middle:(b)] and Error
Heat Map [bottom:(c)] for Pose 11. 177

Figure 5.67: Initialization Results for Dance Model - 5.67a Model. 5.67b
Initialization Results: Singleton bone groups. 178

Figure 5.68: Optimization Results for Dance Model - Progress of EP-LBS
minimization of the objective function. 179

Figure 5.69: Optimization Results for Dance Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 180

Figure 5.70: Optimization Results for Dance Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 181

Figure 5.71: Optimization Results for Dance Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 182

Figure 5.72: Optimization Results for Dance Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 183

Figure 5.73: Optimization Results for Dance Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 09 [left column] and Pose 10
[right column]. 184

Figure 5.74: Optimization Results for Dance Model - Expected vertex po-
sitions [top:(a)], Computed vertex positions [middle:(b)] and Error
Heat Map [bottom:(c)] for Pose 11. 185

Figure 5.75: Initialization Results for Jump Model - 5.75a Model. 5.75b
Initialization Results: Singleton bone groups. 186

Figure 5.76: Optimization Results for Jump Model - Progress of EP-LBS
minimization of the objective function. 187

xxi

Figure 5.77: Optimization Results for Jump Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 01 [left column] and Pose 02
[right column]. 188

Figure 5.78: Optimization Results for Jump Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 03 [left column] and Pose 04
[right column]. 189

Figure 5.79: Optimization Results for Jump Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 05 [left column] and Pose 06
[right column]. 190

Figure 5.80: Optimization Results for Jump Model - Expected vertex po-
sitions [top:(a)(b)], Computed vertex positions [middle:(c)(d)] and
Error Heat Map [bottom:(e)(f)] for Pose 07 [left column] and Pose 08
[right column]. 191

Figure 5.81: The computed singleton bone groups for the woman model after
initialization (5.81a) and the original bones and skeletal structure
(5.81b) used to generate the poses. The initial skeleton contained 20
bones, including three bones for the torso. The initialization process
computed 18 bones. Because the example poses did not include ar-
ticulation of each of the torso bones, the initialization step grouped
the three bones together as one bone for the entire torso. 194

Figure 5.82: Lack of variation of head and neck poses leads to clustering the head
and neck regions into a single bone group, causing large errors in that
region of the model as indicated by the heat map. 196

Figure 5.83: Incorrect clustering of bones that move in parallel to one another,
such as the clustering of the upper hind legs into one bone group
(bone 17), leads to higher model area in those areas, as indicated by
the corresponding areas of the error heat map being marked hot. . . 197

Figure 5.84: Expected Bones for Camel Model - The front right leg of the
camel is incorrectly clustered into one large bone group. The heat
map for pose 02 gives indication of where bones should be. 198

Figure 5.85: General Patterns in Optimization Results - Most models begin
with an initial objective function value near the solution. In a few
iterations the EP-LBS optimization process minimizes the objective
function value and converges on a near-zero solution. 200

xxii

Figure 5.86: Large undefined groups of vertices, such as the torso regions of biped
and quadruped models, may include island patches of vertices within
a larger bone group or may not identify additional bones in the re-
gion, causing errors in the initial clustering that can not be effectively
optimized. 206

xxiii

LIST OF ALGORITHMS

Algorithm 4.1 Basic LBS Initialization . 99

Algorithm 4.2 NNLS and Iterative Clustering EP-LBS Initialization 100

Algorithm 4.3 Gradient Descent with Parameter Mapping 101

xxiv

Chapter 1

Introduction

Three-dimensional (3D) graphics and animated characters have found their way into hearts

and homes by way of video games and popular films and have also forged a place in product

development and scientific research. The last 20 years has seen great strides in the develop-

ment and creation of 3D animated characters, which have become increasingly popular and

relevant to numerous fields. In 1996, films made from a combination of computer generated

imagery (CGI) and live action accounted for less than 5% of the motion picture market share.

By 2009, mixed CGI and live action films accounted for more than 20% of the market share

[74]. In 1995, Toy Story became the first feature-length computer animated film released

in theaters. As the lone movie of its kind it brought in 2.83% of the total market share for

ticket sales that year [73, 74]. In the the first half of 2016 alone eight, digital animation films

were released, capturing 20.75% of the market share [73].

In 2006, auto manufacturers and suppliers set competition aside and joined forces, pledg-

ing an initial $18 million to advance the development of 3D human body models for use

in crash-test simulations. In 2009, the feature film Avatar, starring CGI main characters,

grossed $73 million in the first week and has since settled comfortably into the number one

position for all time grosses of any film worldwide [1, 112]. With the 2015 and 2016 releases

of the Oculus Rift, Samsung Gear VR, Sony Playstation VR and HTC Vive VR hardware,

in addition to YouTube 360 Video and countless VR content, the virtual reality market will

likely see a significant increase in both use and production, demanding more high-quality

1

3D characters.

Indeed, in the two decades leading to 2016, three-dimensional graphics has had an in-

creased presence and economic impact in a variety of fields, including entertainment, scien-

tific research, manufacturing, development and simulation. In 2013, the computer graphics

industry grossed just over $25 billion annually. The market is projected to grow to $32.68

billion by 2019 [66]. From starring in the world’s highest grossing film to their role in simu-

lating difficult situations, the societal advances and positive economic impact resulting from

enhanced character animation encourage interest and investment in the study and technolog-

ical advancement of 3D animation. Additionally, advancements in motion capture, computer

vision and position tracking have the potential to significantly reduce research overhead and

lower film and video game production costs by cutting animation time, while also increasing

character realism. Such improvements ultimately allow larger profit margins for the film and

games industries which have been experiencing lower profits in the last decade due to the

ever-increasing cost of production. Similarly, 3D imaging and modeling can aid in rapid-

prototyping and simulate costly or dangerous environments, reducing overall cost of some

scientific research.

Although character animation techniques have been the subject of much research and

have been widely successful, they still remain a challenging component in developing com-

pelling animation and 3D content. Automated techniques designed to simplify the animation

process often increase the computational complexity of the animation algorithm or produce

undesired elements within the animation as a result. The use of recorded or observed motion

to drive the animation has the potential to create animation with greater realism in less time

and with lower cost. However in practice, the creation of 3D character animation, especially

animation derived from observed movement, often requires manual adjustments, significant

2

Figure 1.1: The process and outcome of binding a skeleton to a character mesh as described
by a tutorial on using the COLLADA 3D asset exchange system [109]

pre- or post-processing or nonintuitive heuristics.

Desirable qualites in 3D animated characters typically must be achieved through the

selective trade-off of other coveted features. High-quality characters are created at the ex-

pense of time and resources. Larger quantities of characters and animation can be generated,

but often at the expense of quality. Significant research has been dedicated to find better

solutions to each of these challenges. EP-LBS and the research presented in this thesis

aim to reduce the compromises normally required in the 3D animation process and improve

the overall process of creating aesthetically-pleasing 3D animated characters generated from

observed deformation.

1.1 Overview of Current Method and Challenges

Skeletal animation is the most commonly used method for animating 3D figures. This

method assumes an underlying, invisible armature commonly referred to as a skeleton that

is embedded in a character mesh. The skeleton elicits a weighted deformation of the character

3

mesh, mimicking the deformation of physical models due to the self-manipulation of skeletal

joints. The skeletal structure is associated with the character model and is used to generate

the movements of a character.

Skeletal animation facilitates a more efficient animation process by using a simplified

skeletal model to determine the movement of the character. The skeletal abstraction greatly

simplifies the process of deforming thousands of vertices in a character mesh. Skeletal ani-

mation and generating the deformed mesh for a moving character, however, is not a trivial

task. Commonly used skeletal animation techniques employ two main processes to associate

the skeletal structure with the character model, rigging and skinning, each of which pose

unique challenges.

Rigging is the process of embedding a sufficiently compact skeletal representation of

the character into the character mesh. A simple human-like character can have tens of

thousands of vertices. Given that character vertices often move in groups, directly computing

the independent transformations that define the movement of thousands of vertices, either

offline or at 30-75 frames per second can be expensive and redundant. Rigging simplifies

the computation of the transformations needed to move a vertex by associating each bone

with a collection of vertices that move in a similar fashion. The embedded skeleton is

comprised of significantly fewer bones than vertices in the model. By moving one bone, a

single transformation can be used to represent the transformation of multiple vertices.

The goal of the rigging process is to determine the positions, orientations, and hierar-

chical relationships of the bones that make up the skeletal representation. This process is

complicated by the fact that these bones are subject to posing and manipulation, effectively

dragging associated vertices along with them. Relatively small errors in bone positions or

pose orientations can lead to large errors in vertex placement when the model is deformed.

4

Although rigging simplifies the computation of transformations, rigging is challenging

because it is difficult to minimize the number of bones needed to accurately create all of the

required movements. When creating the skeletal structure for an animated character, the

proper balance between the number of bones and the complexity of the skeletal structure

necessary to achieve the possible motions that the skeleton needs to support is essential. A

greater number of small bones can vastly increase the number and type of deformations that

can be achieved. However, this increased flexibility should be balanced with the increased

computational complexity of using more bones and the plausibility of poses that can be cre-

ated with additional bones. Perfecting this balance is one of the challenges of the animation

process.

Skinning associates the vertices of the character mesh with the bones of the skeleton and

determines the amount of influence each bone has on a vertex. Skinning takes advantage

of the simplified skeletal representation of the character, while still producing the desired

deformation. Rather than deforming each of potentially hundreds of thousands of vertices

individually, a relatively small number of bones (usually a few dozen) can be transformed,

which will in turn deform the associated vertices and produce the desired deformation of the

character.

Together the skinning and rigging process determine the bone rotations and bone influ-

ence values, referred to collectively as the animation parameters, that can deform a character

into new poses. Still, a number of constraints are employed during the skinning process to

encourage the production of the desired deformation. The task of finding influence values,

or skinning weights, that satisfy the constraints and generate the desired deformation is

a considerable challenge in the animation process. Conflicting constraints are perhaps the

most significant challenge during the skinning process. Additionally, determining skinning

5

weights can be counter-intuitive; seemingly valid influence values can result in undesired de-

formations. As a result, even experienced artists often require multiple iterations of skinning

configurations before achieving an acceptable model.

There have been many approaches to improve the quality and efficiency of each of these

processes: weight computation (skinning), skeletal structure (rigging), and plausible motion

creation (deformation). Many proposed solutions create additional problems and incremental

advances in animation and modeling techniques often only partially solve the problem as a

result of focusing on only one of the sub-process challenges.

Given a fully skinned and rigged model, motion and animation is created by transforming

the invisible bones into new positions, which, in turn, moves the vertices of the character

model that is seen on the screen. The process of choosing the new bone configurations is

often based on real movement captured using various recording methods including 3D scan-

ning and imaging techniques. Motion capture data has long been used directly to compute

bone transformations for new character poses. Imaging techniques such as motion capture,

videography, 3D scanning and, more recently, structured light have been used to capture

examples for animations and to compute relevant bone transformations. Additionally, such

imaging techniques have also been used to automate the computation of bone influence values

and aide in other aspects of the skinning and rigging processes.

Although scanning and imaging methods are rich with data that is used to aide in the

animation process, much of the data goes unused. Most existing example-based methods

using exemplar imagery focus on only one aspect of the animation process, either skinning

or rigging. In some cases the example data is used only as an informal guide and is never

directly used. However, it is possible to use the data collected using 3D scanning and imaging

techniques directly to improve the quality of the resulting deformation and the efficiency of

6

Figure 1.2: Motion capture: Liu et al present a method for realtime control of an avatar
using motion capture sensors [61].)

the animation process.

1.2 Presented Approach

This thesis presents Example-based Parameterization of Linear Blend Skinning (EP-LBS),

a concise and comprehensive method for direct use of example data to solve rigging and

skinning challenges. Using example models with known vertex positions as ground truth,

optimization methods are used to simultaneously compute the skeletal structure, weights,

and transformations that minimize the difference between the known vertex positions and

those determined with the computed animation parameters.

1.2.1 Objectives

The presented EP-LBS method is a simple yet robust solution for skeletal animation based

on example data. The desired attributes of a robust solution to the challenges of character

7

animation include the following:

• Automated : requires little manual adjustment, limited heuristic values, and minimal

pre- and post-processing.

• Comprehensive : simultaneously computes both the skinning and rigging parameters.

• Constrained : adheres to standard LBS constraints.

• Scalable : works with high-resolution input models, and large amounts of example data

and produces/reproduces high-quality, aesthetically pleasing character animation.

1.3 Outline of Approach

EP-LBS is a comprehensive, data-driven solution to the skinning and rigging processes. The

constrained parameterization of LBS animation is refactored and posed as an example-based

optimization of a single objective function. Composing the rigging and skinning processes

as a single objective function addresses the comprehensive quality of the desired solution

and formulating LBS parameterization as an optimization problem creates an automated

solution requiring minimal processing, manipulation and heuristics. Additionally, an iterative

initialization process is presented to limit pre-processing and further automate the EP-LBS

solution. To address the restrictions on animation parameter values, parameter mapping

is introduced. Parameter mapping is a method of transforming competing constraints into

simple bounding conditions and mapping complex and non-linear constraints to a set of

linearly constrained free-variables for increased constraint adherence during example-based

skeletal animation. EP-LBS statistical results on a range of example models demonstrate

that this method is scalable from modest models of a few hundred vertices, a dozen bones

8

and limited poses, to high-resolution models of thousands of vertices captured in dozens of

poses. The results of this research demonstrate that it is both possible and advantageous to

solve for the parameters of the entire animation process in a single unified equation, such

that both the skinning and rigging parameters are determined simultaneously. Figure 1.3

provides a visual representation of Example-based Parameterization of LBS for Skinning

Decomposition.

1.4 Contributions of this Thesis

The presented EP-LBS method allows an artist to be more efficient in creating animated

characters in a data-driven environment. This method has the advantage of being a compre-

hensive, automated and scalable solution to the challenges and constraints of 3D character

animation. This robust EP-LBS solution has implications in many 3D animation fields

including scientific modeling, motion pictures, and console gaming.

The primary contributions of this thesis are summarized as follows:

• Modified LBS Model : The standard LBS mathematical model is re-factored to

represent rotations using a mixture of quaternions and Euler angle vectors instead of

larger nine-element rotation matrices. Quaternions represent the large-scale orienting

rotations used to approximate the gross rotation needed to transform the base model

to a given example deformation. Euler angle rotations are used for the refined iterative

rotation alignment computed during the optimization process.

• Parameter Mapping for LBS Constraint Adherence : Interdependent LBS

parameter constraints are mapped to alternate domains better suited to nonlinear

9

minimization. The benefit of this method is LBS constraint adherence at minimal

computational cost.

• Unified Least-Squares Non-linear Optimization for LBS : Given a set of ex-

ample poses, the modified LBS model is formulated into a unified least-squares objec-

tive function that is minimized to solve for both skinning weights and joint transforms.

Parameter mapping and gradient descent are used to minimize the unified objective

function. The result is a comprehensive example-based non-linear optimization solu-

tion for automated computation of all LBS parameters, simultaneously.

• Iterative Motion-based Clustering for Automated LBS Initialization : Be-

ginning without knowledge of the skeletal structure of a model, motion-based clustering

is used to compute initial transforms which are used with non-negative least-squares

methods to compute initial weights. This process is executed iteratively, each time

adding bones to areas with large error, until the model converges on a basic skeletal

structure and vertex-bone associations that yield minimal reconstruction error. The

result is an automatic estimation of joints and bone influence for a model requiring no

a priori knowledge of the model’s skeletal structure.

1.5 Thesis Structure

This thesis provides the background information that serves as the foundation for EP-LBS,

the derivation of EP-LBS processes, a detailed explanation of evaluation methods used to

reach the conclusions and results to support the findings. The remainder of this document

proceeds as follows: Chapter 2 presents the deformation and skeletal animation background

that provides context for this problem, including defining the linear blend skinning algo-

10

rithm and the mathematical representation of vertex deformation used in this research.

Chapter 3 provides a literature review and summary of related research. Topics covered

in related works include data-driven LBS techniques, example-based animation methods

and constraint-handling procedures. Chapter 4 details the development of a modified LBS

model. Theories of related works and the modified LBS model are combined to present a

new, comprehensive example-based skeletal animation process, EP-LBS. Additionally, the

main contributions of the EP-LBS research, which include iterative motion-based LBS ini-

tialization, parameter mapping and the unified non-linear squares optimization solution for

skinning decomposition, are detailed. Chapter 5 presents evaluation methods and results

and Chapter 6 concludes with the details of the findings of this research and suggestions for

related study and future research.

11

12

Figure 1.3: Example-based Parameterization of LBS for 3D Skinning Decomposition. Given a character mesh and a set of
example poses, the examples are divided into training and testing sets. Skinning decomposition is then performed using
constraint adherence techniques. This produces the skinning weights and bone transformations needed to generate the new
poses. The solution produced is verified using the testing set. Finally, new poses can be created using the skeleton and weighting
structure computed during the skinning decomposition process

Chapter 2

Background: Character Models and

Linear Blend Skinning

Animation is the process of presenting a series of character deformations sequentially on-

screen to create the illusion of motion. Therefore accurate deformation is an integral compo-

nent of high-quality animation. Character deformation is often accomplished using skeletal

animation, which can be modeled mathematically with Linear Blend Skinning (LBS) [71].

This chapter defines the components of a character model and introduces the mathematical

implementation of the Linear Blend Skinning method for skeletal animation of a character

model.

2.1 Character Model

In the simplest terms, a 3D character is composed of a mesh of interconnected vertices and

an embedded skeleton (as shown in Figure 2.1). The skeleton and mesh are symbolic ab-

stractions of the on-screen character. These symbolic constructs also have a mathematical

representation that is used to implement the Linear Blend Skinning algorithm for deforma-

tion. Both the mathematical and metaphorical representations are analyzed here to provide

a broad introduction to skeletal animation.

13

(a) (b)

(c) (d)

Figure 2.1: Examples of character representations used in this research: (2.1a) A synthesized
mesh of 3003 vertices. (2.1b) A skeletal structure of 22 bones. (2.1c) The skeleton embedded
in the character mesh. (2.1d) The final rigged, skinned, and texture-mapped character as
seen on-screen.

14

2.1.1 Character Mesh

A character or model is represented on-screen as a collection of points in space referred to

as vertices and a defined geometry incident on these vertices, typically triangles or larger

polygons. The structure of vertices and polygons is referred to as the character mesh. Any

polygon may be used for the geometry, however triangles are typically preferred because

graphics hardware is typically optimized for fast and efficient rendering of triangles. The

spatial relationships between the vertices and polygons of the character mesh form the topol-

ogy of the model. Topology refers to a variety of geometric properties of the character mesh,

such as vertex connectivity, uniformity, resolution, edgeloops and polygonal subdivisions,

that remain unchanged by deformations and continuous transformation such as bending,

twisting and stretching.

There are two basic methods for creating the vertices and geometry of a character mesh:

synthesis, in which vertices and polygons are fully generated, or synthesized, by an artist

or with the help of some software package, and reconstruction, where vertices and polygons

are reconstructed from a tangible model via scanning or imaging techniques. The greatest

difference between synthesized and scanned meshes is the resulting topology of the model.

The creation of the character mesh often requires compromise between quality and simplicity.

Synthesized models often have uniform topology resulting in a simplified model compared

to the irregular topology and higher resolution often found in scans generated with model

reconstruction.

The resolution of a mesh, which refers to the number of vertices per unit area, strongly

influences the on-screen appearance of a character and the types of deformation that can be

modeled for that character. Models with a higher resolution are able to display greater detail,

15

(a) (b)

Figure 2.2: Mesh Topology: Synthesized model with uniform topology (2.2a). Recon-
structed model with irregular topology (2.2b).

and appear more vivid on screen. Reconstructed models often generate higher resolution

character meshes, although the increased number of vertices may be misplaced or otherwise

malformed during the reconstruction process.

Characters of 5,000-7,000 vertices are standard for desktop gaming applications. Char-

acter models on mobile devices typically have much fewer vertices (50-70% fewer vertices)

as a result of hardware limitations common in these devices. Character models used in film

demand much higher resolution, 20,000-50,000 vertices more more. Additionally, high resolu-

tion models may be created initially, with deformation performed on some reduced-resolution

version. Increased resolution, however, comes at increased computational expense. Although

skeletal animation techniques use a skeleton abstraction to decrease the complexity of com-

puting vertex displacements, the number of vertices in a model remains the determining

factor for animation algorithm complexity.

16

2.1.2 Character Skeleton

In skeletal animation, the movement of the vertices of a character mesh is inferred from the

explicitly defined motion of an underlying skeleton. The skeleton is defined by a set of joints

and their hierarchical relationships. Typically, a few dozen joints form a sufficient abstraction

of the character. Effectively, the embedded skeletal structure reduces the deformation task

from the individual determination of thousands of vertex movements to the computation of

a few dozen degrees of freedom that dictate the movement of many vertices at once.

Figure 2.3: Auto-generated character skeleton estimations [7]

Skeletal animation also provides an abstraction of the common biological system, wherein

muscles predominately modify the position of bones, which then deform the surface of the

system due to what is effectively a spring system consisting of flesh that attaches and fills

the space between the skin and the bones. The distribution of flesh under the skin implies

that points on the surface are often influenced by multiple physical bones. The LBS model

provides an approximation of that effect. However, skeletal systems and linear blended

17

skinning are by no means limited to the modeling of biological systems based on bones and

skinning.

Skeleton joints are mathematically represented by transformations, which are the combi-

nation of translation and rotation that define a bone’s pose. It is common that bones will be

defined in association with each joint as a tool for visualizing the articulation of the skele-

ton. The bones do not directly impact the deformation of the model. However, since bones

are always associated with joints, the terms bone and joint are often used interchangeably.

Animators and animation systems typically refer to “bones”, since this is more physically

relevant than the technically correct “joint”. This research uses both terms interchangeably.

2.2 Deformation Methods

Character deformation and skeletal animation techniques are derived from basic deformation

methods in 3D computer graphics. For the purpose of this thesis deformation techniques are

categorized as either spatial or physically-based methods. This classification system is based

on a combination of the classifications found in the works of Gibson et al [31], Gain et al

[30], and Chaudhry et al [16].

Physically-based deformation manipulates objects based on physical science principles,

such as mass, force, compressibility and inertia. This deformation technique is an extremely

powerful tool for generating realistic deformation. The ability to generate realistic defor-

mation frequently implies the use of physically-based techniques for highly-detailed and

precision-sensitive applications, such as fabric deformation and human body modeling for

medical applications. Physically-based deformations require a great deal of a priori knowl-

edge and are more complex than other deformation techniques, making them not well-suited

18

for real-time systems due to the intensive computational requirements. To take advantage

of the deformation benefits and compensate for computational complexity, physically-based

techniques are often used in combination with other modeling techniques.

Geometric deformation techniques focus on the change in the shape of the geometry

of an object without consideration of the physical nature of the object or its deformation.

Geometric methods may induce deformation of a mesh by direct manipulation of the mesh

or may use indirect association methods. Spatial deformation is a form of indirect geome-

try manipulation that changes the shape of an object indirectly by manipulating a control

structure associated with the object to be deformed. The control structure may define any

geometry including a volume, patch, curve, or simply a point in space. The association

between the control representation and the deformable object allows changes in the control

structure to drive the deformation of the object. Spatial deformation has the benefit of ab-

stracting away some of the complexity of the physics of movement. Spatial deformation can

be categorized as volumetric, point-based, curve-based or surface-based spatial deformation,

as demonstrated in Figure 2.4.

(a) (b) (c) (d)

Figure 2.4: Spatial Deformation, before (left image) and after deformation (right image): 2.4a
point deformation, 2.4b curve deformation, 2.4c surface deformation, and 2.4d volumetric.
(Images from Gain and Bechman [30]).

19

2.2.1 Deformation and Character Animation

Although animation often recreates physical movement of the character, spatial deformation

abstractions are more common than physically-based methods for skeletal animation due to

their simplicity and reduced computational expense. Standard skeletal methods for character

animation fall into a number of sub-categorizations within the set of spatial deformation

abstractions.

Linear Blend Skinning, the skeletal animation technique that is the subject of this re-

search, employs a combination of volumetric and curve-based deformation to simplify the

skeletal animation process. The skeletal structure embedded in a character is an example

of curve-based deformation. Distance-based methods for computing weights demonstrates

volumetric deformation. These skeletal abstractions reduce the computational expense of de-

termining thousands of individual transformations required to reposition vertices to a more

moderate computational task of calculating a few dozen bone transformations that are then

methodically applied to groups of vertices that move in similar manners.

Understanding the characteristics of each type of deformation on which skeletal animation

techniques are built affords opportunities to leverage the strength of each method to advance

the LBS process and counteract the negative trade-offs inherent to each.

2.3 Skeletal Animation Subprocesses

A skeletal structure must be embedded into the character mesh and its bones associated

with the vertices. These processes are referred to as rigging and skinning.

20

Figure 2.5: Rigging, skinnning and animation. Cheng et al present an automated method for
determining the skeletal structure and bone influences needed for animation of a humanoid
character [18].)

2.3.1 Rigging

Rigging is defined as the determination of the shape, topography, and relative placement of

the embedded skeletal structure, such that transformations can lead to natural-appearing

deformations.

2.3.2 Skinning

Once a character is rigged, the animation process continues with the attachment of the

skeleton to the mesh, or skinning. Skinning is the association of the vertices of the character

mesh with the joints of the skeletal structure. Each vertex is assumed to be influenced by

a subset of joints in the skeletal model. Skinning defines which joints will influence the

movement of each vertex and the degree of influence of each joint. The degree of influence

for joints are referred to as skinning weights.

2.3.3 Skinning and Rigging Challenges

Skinning and rigging can be tedious tasks requiring a great amount of skill and experience

to do well and are tasks typically performed by a skilled animator. The placement of the

skeleton is refined by hand with success determined mostly by the skill and experience of the

21

Figure 2.6: Character mesh in relation to bones with weights indicated on vertices. An
elbow model in its base pose (left) and after deformation (center and right). All weights for
a vertex sum to one indicating 100% influence

animator. Skilled animators learn through experience where to place and orient the joints

to enable the desired movement of the character. Once rigged, a character can undergo the

skinning process.

In most instances the skinning and rigging processes are highly iterative, requiring contin-

uous adjustment of both bone positions and skinning weights while manually manipulating

the model. The parameters are all highly interdependent; adjusting a bone often introduces

new flaws the require changes in skinning weights to fix. It is also difficulty for an anima-

tor to determine all potential poses and often a model will have to be reworked when an

unexpected pose exposes weaknesses in the design.

2.4 Linear Blend Skinning

The most common mathematical framework used to implement the skinning and rigging

processes is Linear Blend Skinning (LBS). LBS is a popular skeletal animation technique,

also referred to as single weight enveloping, smooth skinning and skeletal subspace defor-

mation. LBS forms the basis for many skinning algorithms, is often the point of focus for

22

improvements in skeletal animation, and serves as the foundation for this research. EP-LBS

constructs a scalable system for computing LBS-compatible skinning and rigging parameters

from example data.

2.4.1 Nomenclature and Notation Conventions

To inform the discussion of a mathematical representation of LBS, the following terms,

variables and notation conventions are defined. First, formatting conventions are used to

readily identify variable types. Scalar values are formatted in italics, as in w. Vector values

are lowercase and bold, as in x. Capital bold letters are reserved for matrix values, for

instance Y. Indexing variables are listed as subscripts, such as the z in Yz.

Each skeleton joint is mathematically represented by a bone transformation, which, with-

out explicit regard to its presentation, is indicated with a T. Transformations are a combi-

nation of rotation and translation. Rotations can be presented in either a matrix or vector

form. Rotations are identified by R in matrix form and by q̇ or e for quaternion and Euler

angle vector representations, respectively. In this thesis, translations are presented in vector-

form and are indicated by s. Skinning weights, identified by the variable w, represent scalar

values. Lower case variables i and j refer to the indices for vertices and joints respectively.

Bone transformations, including rotation and translation components, are indexed by joint,

as in Tj .

Given a model for which many poses have been observed, one pose is designated as the

base pose. All other poses are assumed to be deformations of the base pose. Vertices in

the base pose, or original position prior to deformation, are represented by the variable v.

A vertex after deformation is denoted as v′. Vertex positions computed using the methods

presented in this research are indicated by v′′. Lowercase subscript variable i indicates the

23

Object Variable Subscript

Base Vertex v i
Computed Vertex v′ i
Rotation Matrix R j
Quaternion Rotation q̇ j
Euler Angle Rotation e j
Translation s j
Transformation T j
Weight w i,j

Table 2.1: Symbols and Terminology

index for a vertex. This research refers to the ith vertex in its original position and prior

to deformation as vi. Similarly, v′i is the ith vertex in some observed transformed position

and v′′i is the ith vertex in its transformed position as determined by EP-LBS optimization

calculations. Weights are indexed by both vertex and joint. The term wij refers to the

influence weight of joint j on vertex i.

Terms and variables used throughout this document are summarized in Table 2.1.

2.4.2 Coordinate Systems

The geometry of a character is defined using a model coordinate system, or model space.

In addition to the model coordinate system, each bone in the skeletal structure has its own

coordinate system. For every bone there is typically a matrix that transforms the bone in

the bone coordinate system, or bone space, to model space. For hierarchical models, bones

are transformed from the bone space to the parent bone space. This research adopts the

global model space representation followed by local parent spaces. For further explanation

of the coordinate systems and their usage, please refer to Appendix A.

24

2.4.3 Linear Blend Skinning Equation

For a deformed skeletal structure, the LBS algorithm defines a vertex position after deforma-

tion to be a linear combination of the weighted joint transformations applied to the original

vertex position. A deformed vertex can be modeled by the following equation:

v′i =
∑
j

wi,jTjvi (2.1a)

Subject to constraints:

0 ≤ wij (2.1b)∑
j wij = 1 (2.1c)

The transformed vertex position, v′i, is the summation of the the weighted transforma-

tions of each bone wi,jTj applied to the original vertex position vi, as expressed in Equation

(2.1a), where i is the vertex index, j is the bone index, and T is a transformation in matrix

form. The weights are a decimal representation of the percentage of total influence a partic-

ular bone has on a vertex. This lead to the non-negative (Equation (2.1b)) and summation

(Equation (2.1c)) constraints that work together to confine weight values to positive decimal

percentages that sum to one, representing 100% total influence for all bones.

2.4.4 Rotation Representations

Transformations are composed of both rotations and translations. Rotations can be rep-

resented as a matrix, Euler angle rotations or quaternions. Most commonly a 4x4 affine

25

transformation matrix is used to express the transformation due to rotation, translation,

and scaling of the joint from a base pose position in world coordinates. A transformation

matrix can be decomposed into a rotation matrix Rj and a translation vector sj , yielding:

Tjvi = Rjvi + sj (2.2)

where

Rj =



r11j r12j r13j 0

r21j r22j r23j 0

r31j r32j r33j 0

0 0 0 1


(2.3)

Rotation matrices are most often presented as a 4x4 affine matrix. The nine values of

the rotation matrix are highly correlated, which makes computing the individual elements of

a rotation matrix challenging from an optimization perspective. However, current computer

hardware has been optimized to perform matrix computations quickly, resulting in the matrix

form of rotations being the de facto standard.

Quaternions provide a concise alternative to matrix rotations, requiring fewer numeric

values to represent a single rotation. Quaternion rotations are represented by four values,

where rotation matrices are comprised of nine elements. Additionally, the individual el-

ements of a unit quaternion are highly correlated. This correlation implies the need for

additional constraints when quaternions are used for LBS rotations. However, the correla-

tion can be exploited to simplify the process of the determining the individual elements of

a quaternion vector during EP-LBS optimization. The equivalent equation for quaternion

26

based transformations is:

Tjvi = q̇jviq̇
∗
j + sj (2.4)

where

q = [qx, qy, qz] (2.5)

q̇ = [qw,q] (2.6)

q̇∗ = [qw,−q] (2.7)

Quaternions, q̇, are represented by four values: a single scalar component, qw, and a three

element vector component, q. Unit quaternion rotation is defined by the pre-multiplication

of a point by the quaternion, q̇, and the post-multiplication by its conjugate, q̇∗. A unit

quaternion conjugate may also be represented by q̇−1j .

Using a quaternion representation of rotations, an alternate formulation of the linear

blend skin equation (presented previously as Equation (2.1a)) is introduced.

v′i =
∑
j

wi,j

(
q̇jviq̇

−1
j + sj

)
(2.8)

When quaternions are used to represent rotations, an additional constraint is needed to

guarantee unit quaternions for the skinning decomposition. The following requirement is

added for the scalar quaternion components to the LBS constraints.

q2w + q2x + q2y + q2z = 1 (2.9)

27

Of course, this constraint is considerably simpler than the constraints on a rotation

matrix. For a concise, yet thorough, explanation of quaternion vector and matrix conversions

readers are referred to Horn [42]. Readers are additionally referred to Henderson [38], Hogar

[40], Watt and Watt [108] and Horn [42] for a detailed derivation of the quaternion matrix

from the pre- and post-multiplied quaternion vectors.

The quaternion-based LBS representation in Equation (2.8) takes advantage of the ben-

efits of quaternion representations of rotations without increasing the complexity of the

overall deformation calculation. Additionally, the pre- and post-multiplication of a vertex

by a quaternion and its conjugate can be written in matrix form as shown in Equation (2.10).

The quaternion matrix, Q, takes advantage of the highly correlated, reduced numeric repre-

sentation of rotations as well as the computational efficiencies of matrix calculations.

v′i =
∑
j

wi,j
(
Qjvi + sj

)
(2.10)

Equation (2.10) is the fundamental LBS model used for the EP-LBS research presented

here and will be referenced as the Quaternion LBS Equation for the remainder of this thesis.

28

Chapter 3

Related Works

In addition to general research on improving the effectiveness and efficiency of the LBS algo-

rithms, the formative concepts on which this research is built include constraint adherence,

constrained optimization and example-based skinning decomposition. This chapter discusses

research relevant to this thesis spanning each of these topics and places EP-LBS research in

the context of the these fundamental works.

3.1 Variations on Linear Blend Skinning

As the prevailing method for 3D skeletal animation, LBS is known to have problematic char-

acteristics that limit its application. These characteristics often result in visible artifacts,

or undesired deformations, some of which are known by fanciful names such as “pinch” and

“candy-wrapper”. Challenges for LBS implementations also include efficiently constrain-

ing the transformations applied to joints as well as performance and implementation issues

that impact computation and memory requirements. To address these challenges, alternate

methods for representing rotations, computing skinning weights and determining skeletal

structure have been explored and are discussed here.

29

Figure 3.1: Skinning is subject to a variety of artifact. Common forms of deformation artifact
occur when an object loses volume when bent, an effect known as “pinch” (a) or when an
object is rotated, experiencing the “candy-wrapper effect” (b). (Images courtesy of Merry
et al [69].)

3.1.1 Motivations for LBS Variations

For successful application of LBS, weights and transforms must satisfy certain properties

and the model must produce the desired deformations at reasonable computational expense.

As such, artifacts, or undesired deformations, constraint adherence and time and memory

performance are common motivating factors for research and modification of Linear Blend

Skinning.

Artifacts: Skinning methods for deforming 3D objects can result in the desired overall

deformation but can also lead to unexpected or undesired deformations on a smaller scale,

known as artifacts. Two common types of artifact are pinch and the candy-wrapper effect.

Pinch describes the artifact that occurs when an volume is bent significantly. This artifact

is a result of the collapse of the object volume due to the bend. Pinch is problematic because

many artists prefer to model figures in a base pose with the arms and legs straight, the so-

called “da Vinci pose” or the “T-pose”. Since the pose is at one limit of elbow deformation,

the other extreme of elbow deformation results in the greatest amount of pinch and the

average elbow deformation always exhibits some visible pinch.

The candy-wrapper effect describes the loss of object volume when a rotation is applied to

a portion of the object. The visual effect of this artifact resembles a twisted candy wrapper.

30

The candy-wrapper effect is particularly problematic on joints that rotate around an axis

through the joint, such as a wrist joint.

LBS defines deformations by compounding transformations. Mathematically this takes

the form of blending, or interpolating, matrices. However, significantly dissimilar transfor-

mations can result in degenerate blended transformations that cause the geometry to collapse

[72]. Enhancements to LBS often aim to minimize some or all of these deformation artifacts.

Constraint Adherence : Many LBS algorithms assume rigid affine transformations for

all deformations. Affine transformations include translation, rotation, scaling and shear.

Affinity ensures the linearity of points is preserved; points that are collinear prior to affine

transformation remain collinear after transformation.

Rigid transformations, while not required for all skeletal animation algorithms, ensure

the distance between vertices remains the same after deformation in addition to remaining

collinear. Rigid transformations are a subset of affine transformations. Transformations that

have the property of rigidity are translation and rotation.

Bounds and constraints on weight and transformation values can be used to encourage

rigid and affine transformations. However, computation of weight values that adhere to these

conditions is not a trivial task. Significant research has been dedicated to addressing the

constraints of the LBS model.

Performance : The use of animation in real-time environments for entertainment mo-

tivates the need for efficient skeletal animation. Methods to reduce running time or memory

consumption form major areas of research focus for 3D animation.

Similar to this work, learning algorithms have been used to predict deformation gradi-

ents for the computation of LBS bone rotations in real-time environments [104, 13, 102, 92].

Hardware-accelerated LBS GPU implementations have been explored for increased compu-

31

tational efficiency [83, 28, 17]. The number of bone influences is frequently limited to four

bones per vertex. This allows efficient use of hardware (one bone per byte and four bytes

per 32-bit word) and avoids linear dependencies or under-determined systems. Additionally,

compression methods have been employed to improve storage and processing efficiency of

high-resolution models [90].

The research presented in this thesis is an offline process intended to simplify the com-

putation of animation parameters needed for the creation of animated figures. While this

work is not a real-time system, its goal is to facilitate simplified generation of animation

parameters that may be used in real-time systems. The computed parameterization remains

compatible with both basic and enhanced variations of LBS algorithms.

3.2 Skinning: Computing Weights

Skinning weights form the majority of the parameters in the LBS model. As such, numerous

methods have been employed to generate weights and determine bone influence. Perhaps the

most intuitive technique for determining bone influence is to associate each vertex with the

nearest bone. This concept can be expanded to reflect the influence of multiple bones on the

movement of a single vertex by assigning each bone a percentage of the total influence, or

weight, based on the distance between the vertex and the bone. This forms a basic distance-

based weighting scheme. Other analogous models and the introduction of additional control

parameters are two other common approaches to computing skinning weights.

Constraint Adherence for LBS Skinning Weights : Standard LBS models con-

strain weight values to be greater than or equal to zero. In addition to the non-negative

condition, all weights for a vertex must sum to a value of one. The standard LBS model and

32

weight constraints from Chapter 2 are listed here for convenience.

v′i =
∑
j

wi,jTjvi (3.1a)

Subject to constraints:

0 ≤ wij (3.1b)∑
j wij = 1 (3.1c)

A common approach to ensuring the sum-to-one constraint (Equation 3.1c) for rigid affine

deformations is to solve for all weights save one such as in the work of and Mohr and Gleicher

[72], Mohr et al [71], and Merry et al [69]. The value of the final weight, wJ , is computed

as:

wJ = 1−
J−1∑
j=1

wj (3.2)

This save-one, deductive reasoning method for computing weights ensures that all weights

for a vertex sum to a value of one. However, care must be taken to ensure that the final

weight is also non-negative, adhering to Equation (3.1b). Negative weights can afford greater

freedom and variety in the types of deformation produced but may also introduce undesired

and unexpected artifacts [71].

A common approach to guarantee adherence to the summation constraint for a set of

non-negative weights is to normalize each weight for a vertex by dividing its value by the

sum of all weights for the vertex. Normalization does not address the bounding condition for

33

weights, but can be used in combination with other bounded techniques to ensure weights

that are both non-negative and sum to one.

Many solutions for computing skinning weights solve a system of linear equations given

by the standard LBS model and a set of example data. This is a useful method when the

transformations are known and there is sufficient example data available.

In addition to the non-negative and sum-to-one constraints, Mohr et al introduce ad-

ditional variables and constraints to handle underdetermined cases [71]. A new variable

yj is introduced for each influence bone computed. yj is computed as the minimization of∑J
j=1 yj , with the added constraints that −y ≤ w−wp ≤ y, where wp is the sum of the pre-

vious weights. The solution for this weighting scheme is achieved using a linear programming

solver.

Hasler et al also introduce an additional constraint to the weighting process [34]. They

introduced the concept of minimizing the L1-norm of the weight vector as the weight op-

timization is being simultaneously computed. The L1-norm in this case is the sum of the

absolute values of the weights, so this additional constraint effectively minimizes the values

of the weights. That minimization conflicts with the sum-to-one affine constraint, so the

authors choose to re-normalize the results after optimization to ensure affine transformation.

Since the minimization has been computed prior to normalizations, the normalized weight

vector no longer guarantees an optimum solution. The additional constraint is added to

improve the results of NNLS solutions, which often are not sparse, resulting in less arbitrary

influence of bones.

The use of additional constraints can limit the search space for various solvers, but the

cost of its implementation must be balanced with the overall program efficiency.

Distance-based Methods for Computing Weights: Simple distance based metrics

34

associating a bone or set of bones with each vertex have been used and improved upon for

weight computation such as in the work of Kry et al [56], Bloomenthalm [10], Lu et al [63],

Madras et al [64], and Cheng et al [18]. Additionally, many 3D modeling and animation

software packages, such as Blender, Maya and 3D Studio Max, use some distance-based

metrics as the basis of proprietary, built-in “weight painting” features [9, 68, 67].

Kry et al do not specifically address bounds or constraints on the weights but suggest

that weights at the ends of a bone’s influence should be forced to zero to ensure continuity

and various optimization techniques can be used to compute weights that result in better

quality deformations [56]. Bloomenthal suggests weight computation based on the medial

axis of a three-dimensional model, taking into account thickness of the model [10]. Bloo-

menthal’s method, however, does not consider the constraints required to maintain affine

transformations. Lu et al assume vertices are influenced by at most two bones and does

not consider the possibility of negative weights (as a consequence of the problem structure

weights are assumed nonnegative and will sum to one) [63].

Madaras uses geodesic distances to determine weights. The distances are computed using

an algorithm with O(n3) time complexity, so computation on most meshes used in practice

is impractical. Therefore, in most applications the mesh is downsampled prior to running

the distance algorithm. Cheng et al use Euclidean distance to automate the commonly used

“painting weights” metaphor, in which weights are assigned to the model via a graphical

interface that mimics painting the model with colors defined by weight values, blending

colors to indicate the influence of multiple bones.

Distance-based methods are easy to understand and, therefore, are a natural medium for

assigning weights. However, distance-based methods are limited in the types of deformation

they can produce and, as a result, often yield deformation artifacts. Additionally, separate

35

measures must be taken to ensure constraint adherence. The methods for computing skinning

weights presented in this thesis handle constraints while computing weight values.

Analagous Weight Models: In an effort to minimize folding artifacts during extreme

bends of the armature, Baran and Popovic use the analogy of heat transfer to compute bone

weights [7]. Bone influence is determined based on a heat transfer equation in a method called

bone heat. In this method the concept of heat equilibrium is applied to the character mesh in

order to ensure that the width of the transition between two bones is roughly proportional to

the distance from the joint to the surface, thereby minimizing the folding artifact, or pinch.

The bone heat technique specifies that the amount of influence a bone has over a vertex

(effectively the skinning weight) is equal to the amount of heat the vertex receives from

that bone. Baran and Popovic’s heat equilibrium analogy employs distance-based metrics

in combination with the save-one technique to compute affine weights.

While bone heat reduces the folding artifact of common vertex weighting techniques,

it still does not provide the most optimal vertex weighting scheme. The master’s thesis

research that precedes this dissertation shows that the use of example data can produce

improve results in comparison with bone heat [41]. Bone heat has been adopted by Blender

as the basis for its built-in weighting algorithm and is used in various automated animation

research, such as in the work of Pan et al [78].

Analogous methods provide useful abstractions to compute weights. The computational

expense of the method and its ability to accurately model the desired set of values are the

challenging trade-offs considered when using such models. This research uses abstractions

(not tied to any analogous model) for computing weights and rotations, considering the

trade-offs between computational expense and the ability to produce values adherent to all

constraints.

36

Figure 3.2: Blender Painting Weights: Monkey head model and Blender interface for man-
ually painting weights. [9].)

Using Additional Parameters with Skinning Weights: Skinning methods often

strive to achieve more refined control over character movement. A common solution is to

increase the number of weights or controls used. By using more control parameters, an artist

can create more refined movement. Instead of associating a single weight with each bone

transform, Wang and Phillips incorporate an additional set of weights, or coefficients, for each

element of the bone transformation matrix, a process referred to as multi-weight enveloping

[105]. This results in a total of 12 weights for every bone that is influencing a given vertex. In

addition to the added bone transformation matrix coefficients, the rows and columns of the

matrix are scaled (multiplied) by constant scalars to manipulate the influence of a particular

pose or a particular bone. This allows for more flexibility in armature movement. Wang

and Phillips utilize example poses and a least-squares approach to compute weights, much

like this research. Although this technique utilizes inverse matrix approaches to solve for the

weights, the process does not lead to intuitive weight values and still requires considerable

‘hand tweaking’ and comes at increased computational expense. Still, this work was pivotal

in exposing weights as the focus for increased control over deformation results.

37

Recently, Jacobson et al have proposed the use of additional weights computed from cubic

spline basis functions in addition to standard weights to address common artifacts [46]. This

technique employs the same theory as in the work of Wang and Phillips: more weights provide

greater control over deformation [105]. However, all of the augmented weights approaches

result in significantly increased computational requirements. The additional weights used

by Jacobson et al require random sampling of the mesh because the Delaunay triangulation

of high resolution meshes is computationally expensive. Jacobson et al acknowledge the

increased computation cost but note that it is faster than nonlinear systems [46].

The trade-off between performance and control of deformation is one that must be care-

fully considered. For standard LBS systems, computation and optimization of weights is

done once for a model prior to animation as an offline process. Any added parameters that

impact the computation of deformed vertices during the animation process will be costly

every time a model is rendered. This research also introduces extra parameters. However,

the new parameters are used in place of standard LBS parameters only during optimization,

thereby not incurring overhead during the runtime use of the model.

3.3 Rigging: Computing Skeletal Structure and Bone

Rotations

Determining the shape, topography, and relative placement of the embedded skeletal struc-

ture such that transformations can lead to natural-appearing deformations is an integral

component of the Linear Blend Skinning system.

This section focuses on the automatic determination of the skeletal structure based on a

single mesh. A significant limitation to automated rigging from a single rest pose mesh is

38

Figure 3.3: Dual-quaternion solution (left) to common linear blend skinning unnatural de-
formation (right) [29].)

that the articulation and range of motion for the model is unknown at the time of rigging.

Therefore, the rigging task is based solely on the static shape and topological characteristics

and what a priori knowledge of specific topological characteristics infers about the placement

of joints necessary to achieve a desired range of motion. When additional poses are available

it is possible to compute a more robust skeletal structure from the available data. The use of

example data to compute skeletal structures is discussed as a component of example-based

LBS in Section 3.4.

3.3.1 Rotation Representations

Standard LBS implementation uses matrices to represent rotations. However, quaternions

have been found to be computationally more efficent and offer deformations with fewer

rotation-related artifacts. Frey and Herzeg use quaternions to reduce the algorithm overhead

of effects such as motion blur by using a rotation representation that requires fewer values

than standard matrices [29]. Kavan et al use dual-quaternions to reduce skinning artifact

39

[52, 53]. Hejl introduces an additional vertex attribute for quaternion spherical skinning [36].

Unfortunately, it has been noted that this method does not work well for vertices assigned

more than two skinning weights.

Similar to the works discussed in this section, the research presented in this thesis takes

advantage of processing improvements achieved from vectors compared to matrices. However,

this research employs both quaternion and Euler angle vectors. Quaternions are used to

represent the large-scale orientation of the bones, while Euler angles model fine adjustments

to the bone placement that are iteratively refined during optimization.

3.3.2 Skeleton Extraction

Skeleton extraction leverages the topological characteristics of a model to automatically infer

its skeletal structure. Common approaches have been classified in a variety of manners such

as geometric and volumetric [78], surface flow and segmentation [47] or surface and curve

methods [21]. This thesis broadly classifies skeletal extraction methods as either medial axis

methods or segmentation methods. Single pose, automated methods for skeleton extraction

from one static mesh are discussed here. Multi-pose, example-based skeleton extraction

methods are described in Section 3.4.

3.3.2.1 Medial Axis Skeleton Extraction Methods

The concept of a medial axis for shapes was initially introduced by Blum as a mathematical

description of shape for biological applications [12]. Blum described the excitation of points

on a plane generating waves that flow uniformly in all directions but cannot flow through

one another. The points of intersection of the waves, or loci of wave discontinuities, form

a reduced representation of shape that is referred to as the medial axis. This medial axis

40

(a) (b) (c)

Figure 3.4: Skeleton Extraction Methods demonstrated on Armadillo model : 3.4a medial
axis (from the works of Tagliasacchi et al [99]), 3.4b cage control structure (from the works
of Ju et al [50]), and 3.4c segmentation (as described by Reniers and Telea [82]).

concept has since been more succinctly described as the set of points enclosed in a mesh

having multiple closest points on the surface of the mesh [11].

For the purpose of computing a character skeleton, popular means for computing the

medial axis include mesh contraction, or thinning, field-based methods, Reeb graph methods

and Voronoi diagrams. Each is treated briefly here. For further reading on skeletal extraction

methods, readers are referred to the works of Cornea and Min [21] and Siddiqi and Pizer

[95].

Voronoi diagrams partition a model into regions such that each region contains a

generator point or seed and all other points in the region are closer to that seed than any

other seed. These seeds can then be connected into a skeleton-like graph structure and used

to define a medial axis skeletal abstraction.

Ogniewicz et al use hierarchical clustering of the Voronoi diagram of a shape to generate

a hierarchical skeleton [75, 76].Yoshizawa et al approximate the medial axis for a shape using

a two-sided Voronoi-based approximation to extract a skeletal mesh [115]. Teichmann and

41

Teller compute and simplify a medial axis from a 3D Voronoi diagram to generate a skeletal

structure [100]. Dey and Sun define a medial geodesic function based on an approximate

medial axis computed from a subset of the Vornoi diagram for the model to extract a skeletal

structure for 3D models [22].

Medial axis models generated from Voronoi diagrams form an intuitive method for ex-

tracting a skeletal structure from a single static pose of a model. However, 3D model Voronoi

diagrams typically result in medial surfaces that must be further pruned or otherwise refined

to reduce the dimensionality of the diagram and generate an appropriate LBS skeleton rep-

resentation. As a result, Voronoi medial axis methods for skeletonization require additional

computational expense beyond Voronoi diagram generation.

Reeb graphs directly compute a 1D structure, diminishing the need for post-processing

to reduce the dimensionality of the resulting skeletal structure. Reeb graphs are computed

by a user-defined function that encodes the topology of the model. The critical point of

the function define nodes of the computed skeletal structure. Reeb graph implementations

can be computationally expensive, many with a running time of O(n2). Additionally, Reeb

graphs are not ideal because the user is required to define the boundary conditions for the

function.

Hilaga et al define multiresolutional Reeb graphs to define the skeletal structure of a

model which serves as a search key for collections of 3D shape data [39]. Tierny et al define

a unified method to construct and simplify a Reeb graph skeletal representat of a model [101].

Patanè et al compute Reeb graphs based on iso-contours at saddle points of a continuous

function which can be used to define skeletal structures with lower memory overhead [79].

Doraiswamy et al introduce a more optimal Reeb graph construction algorithm [23].

Aujay et al use a O(n log n) method to compute the Reeb graph. The authors compute the

42

Figure 3.5: Skeleton extraction by mesh contraction by Au et al [5].

skeleton on anatomically-based models by computing a Reeb graph of a harmonic function

operating over the surface of a model [6]. The approach presented by Aujay et al aims

to improve the skeletonization process by generating realistic skeletal structures that reside

fully inside a model, including the endpoints of bone, making this method best suited for

models for which an anatomical skeletal structure is available.

Various field-based approaches to the extraction of curve skeletons have been explored,

including electrostatic fields [32], repulsive force fields [62], potential fields [20, 19], tensor

fields [114] and, most commonly, Euclidean distance fields, as demonstrated in the works

of Malandain et al [65], Shilane et al [93], Hassouna et al [35] and Huang et al [43]. Basic

distance fields fields minimize the shortest distance from embedded skeletal points to some

surface boundary. More general potential fields, define a skeletal structure based on the sum

of potentials generated by a model’s surface or boundary, defining the potential of an interior

skeletal point. These generalized methods do not always create ideal curve skeletons from

which the final skeleton can be produced. General field methods take into account larger

surface areas to compute the skeletal structure, yielding more ideal curves at the expense of

increased computation.

Laplacian smoothing is often used as a method of mesh contraction for generating

medial axis curve skeletons for models, such as in the works of Au et al [5], Wang et al [106]

and Tagliasacchi et al [99]. Additional smoothing methods compute a skeleton from point

43

clouds as in the works of Cao et al [14] and Huang et al [43]. Forstmann et al [27], Yang

et al [113], Forstmann et al [28], Jacobson et al [48] and Ozetirelli et al [77] present various

methods for converting curve skeletons generated by mesh contraction into LBS skeletal

structures. Ultimately, like other medial axis methods, mesh contraction methods for curve

extraction must employ an additional process to compute a rigid skeleton for use with LBS.

The various medial axis representations of shape form a good initial approximation for a

skeleton because they generate a simplified embedded representation of a characters shape

that closely mimics the desired skeletal structure. However, the medial axis for a character is

not sufficient to create a LBS skeletal structure in 3D because 3D medial axes are typically 2D

surfaces rather than one-dimensional splines or curves [47]. The desired curve skeleton can

be extracted from a medial surface. Additionally, curve skeletons defined by post-processing

a medial axis may not be direct correlations to the rigid skeletal structures needed for LBS

deformations. Therefore, medial axis methods are used in conjunction with other post-

processing to generate the LBS skeletal structure for a model. Still, medial axis methods

are intuitive, foundational skeletal extraction methods that remain relevant to the study of

computing of skeletal structures for Linear Blend Skinning.

3.3.2.2 Clustering and Segmentation Methods for Skeleton Extraction

Clustering and segmentation methods for skeleton extraction divide a character or model into

segments based on properties of its mesh geometry. The method used to cluster geometry

and find ”cuts” or boundaries for the segments distinguishes one segmentation method from

another. Katz and Tal determine segment boundaries based on extreme concavities, or

creases, and fuzzy clustering of the mesh [51]. Lien et al use a combination of mesh openings

centroids and convex hull principal axis centroids to define mesh segments and extract the

44

Figure 3.6: Single depth Kinect images are used to segment human meshes (Images courtesy
of Shotton et al [94].)

skeleton [60]. Huang et al use modal analysis to analyze surface deformation energy to

segment the mesh [44]. Cheng et al use principal component analysis (PCA) and clustering

to segment the character mesh [18]. Similar to the work presented in this research Bharaj

et al analyze connected components to segment the mesh [8]. Bharaj et al establish the

base components as two triangles sharing an edge. Such small components tend to lead to

oversampling. Bharaj et al exploit the oversampling to segment the mesh and generate a

graph that forms the basis of the skeletal structure, but must also employ iterative edge-

collapse to reduce the dense graph produced into a reasonable skeletal structure. Shotton et

al use a Microsoft Kinect depth image to segment human character meshes [94].

Most single-pose segmentation methods rely on convex triangular meshes, but provide

little guarantee that the skeleton generated will exist entirely within the character mesh.

While, a skeleton that is fully encapsulated by the character mesh is a common characteristic,

it is not an explicit requirement by default.

Segmentation works well when shape mimics the skeletal structure of the character mesh.

However, clustering and segmentation methods are susceptible to the challenges of any skele-

45

Figure 3.7: Seo et al demonstrate the transfer of an anotomically-based rig from a horse to
a camel [89].

tonization methods based on a single pose. If the pose from which the skeleton is being ex-

tracted significantly obscures the range of possible deformations, skeleton extraction methods

will fail to generate an appropriate skeleton without additional information.

3.3.2.3 Summary of Skeleton Extraction Methods

Skeleton extraction methods attempt to automatically compute a skeletal structure from

single static character model. Automatic, single-pose skeleton extraction methods, however,

are severely restricted by the limited information that can be derived from a model in a

single pose. Utilizing additional information beyond a character mesh in a single pose,

making some assumptions about the skeletal structure, or employing additional heuristics

can improve extraction results. This thesis uses the additional data gained from a collection

of example poses to further inform the clustering and segmentation-based skeletal extraction

process.

3.3.3 Skeleton Embedding and Rigging Transfer

Skeleton embedding takes advantage of a priori assumptions made about the general shape of

a new model to embed and adjust an existing skeletal structure for a similarly shaped model

in the new model. Skeleton embedding based on a single pose of a character mesh alleviates

46

many of the challenges of insufficient information faced by skeleton extraction methods. The

challenges are addressed by relying on the additional information provided by an example

or template skeleton.

The template skeleton must often be modified to best fit the new model. Jacobson

summarizes the most common desired properties of an embedded rig [47]. Ideal embedding

approaches strive to:

• Avoid degenerate bone properties (ex: short, zero-length and overlapping bones)

• Maintain structure and topology (ex: symmetry, angles, orientations and proportions)

• Place bones logically (”feet” bones at below others, extremities near surface)

Because the template skeletal structure is not an exact match for the model in which

it will be embedded, fitting or parameterization of the template skeleton is necessary. Fre-

quently, the fitting, parameterization and embedding problem is structured as an optimiza-

tion problem and the embedding goals are expressed mathematically as cost functions or

constraints. The skeletal structure (such as hierarchy and topology) are predefined by the

template skeleton and the goal is then to compute the appropriate adjusted joint positions

and bone lengths for the model, ideally adhering to the aforementioned properties of an

embedded rig.

Moccozet et al define template meshes and skeletons and characteristic points on the

mesh to parameterize a human body mesh that can be used to reconstruct human body

shapes [70].

Miller et al take advantage of a database of partial source rigs and a target mesh to

semi-automatically determine the animation parameters needed to animate the mesh. The

47

Figure 3.8: Rigging Pipeline introduced by Baran and Popovic [7].

animation parameters are computed by fitting various known parts from the database to

parts on the mesh and transferring the known animation parameters to the new model. This

method relies on the user tagging parts of the new model so that they can be matched with

parts in the database. Joint positions and bone lengths of all the source parts are adjusted to

fit the new model and scored for comparisons. Parts with the best score are used to generate

the new skeleton. There is also an option for user-override of part choices.

Rigging transfer refers to a special cases of skeleton embedding in which the class of

skeleton does not match the class of character to which the skeleton is being applied or

the shape and class of character in which the skeleton is being embedded is not know in

advance. Poirier and Paquette use skeletons rigs, both in part and in their entirety, to

transfer animation and “remix” animations by combing parts of multiple skeletons [80].

Their rig retargeting technique generates a topology graph from the mesh and compares

it to the known skeletal graph. The skeleton is then adjusted to roughly match the mesh

graph, by comparing local arc shapes in the graphs.

Given a skeletal embedding problem, the inclination is often to structure the embedding

process as an optimization process with the goal of finding the ideal joint positions. However,

as Jacobson points out, the theoretical goal of an ideal joint embedding often entails a

complex translation into mathematical form (goals that can be expressed as a mathematical

equation) and must address competing and interdependent goals [47].

48

Baran and Popovic combine skeleton extraction and embedding to introduce a rigging

pipeline that successively applies a variety of skeletonization techniques to compute and

refine the placement of skeletal structure into a character [7]. First a skeleton is extracted

from a static mesh using successive extraction methods. The computed skeleton is then

embedded into the model and the embedding is refined by minimizing a penalty function

that models skeleton embedding.

The successive extraction methods include computing an approximate medial surface,

deriving a graph from the medial surface and simplifying the graph. The approximated

medial surface is computed from a sampling of points on the medial surface, computed using

distance-based methods. To reduce the dimensionality of the medial surface and produce

a graph structure that can be used to generate a skeleton, a sphere packing method is

introduced. Sphere packing is used to identify graph vertices that represent a set of potential

joint positions. The centroids of the spheres are strategically connected to create a graph.

A reduced skeleton is then produced by systematically merging edges of the graph. Baran

and Popovic introduce a penalty function that aids in refining how the computed skeleton

is embedded into the mesh.

In some cases, skeleton fitting or embedding can offer a more robust alternative to single-

pose skeleton extraction. For instance, common classes of skeletons such as humanoids,

bipeds, quadrupeds, human hands and insect-like models may have an abundance of tem-

plate models to be used as the basis for embedding. However, if the new model is significantly

different from the available template models, the skeleton embedding process may not sig-

nificantly benefit from the data provided by the example. Even given a well-chosen template

skeleton, the exactly placement of joints within the mesh is still critical to ensure quality

deformations.

49

Figure 3.9: A kangaroo and various skeletal abstractions used by Capell et al [15].

50

3.3.4 Cages, Exoskeletons and Other Skeletal Abstractions

In addition to embedded skeletons, the concepts of cages, exoskeletons and other skeletal

abstractions may be used to define bone groups for LBS models. Capell et al define a

volumetric control latice that can be used to control the embeeded skeleton of a character

which in turn deforms the rigged characer. This method is used for interactive deformation

and uses a finite element method [15].

Skeletal abstractions attempt to define the skeletal structure without explicitly defining a

graph like hierarchical structure of embedded nodes and edges to represent bones and joints.

The most common skeletal abstraction is the clustering of vertices that move together to

define a bone without explicitly identifying the bone or joint skeletal structure. Much like this

work, van Kaick et al use an abstraction to generate clusters that define the skeleton [103].

van Kaick analyzes the convexity of the mesh to generate clusters. In contrast, this research

analyzes transforms of connected components. This research relies on a form of clustering

segmentation to identify an initial a skeletal abstraction that is then used to initialize LBS

parameters.

Exoskeletons, cages and other skeletal abstractions may be used alone or may be used

as an intermediary to compute standard LBS skeletal structures. These abstractions allow

greater flexibility when defining and deforming a character skeleton. However, not all skeletal

abstractions can be used to compute standard LBS skeletons or animation parameters.

3.4 Example-based Linear Blend Skinning

The long-standing tradition of indirect use of example data as the archetype for character de-

formation suggests that data-driven and example-based skinning and rigging techniques can

51

be a powerful resource for computing skeletal animation parameters. In practice, animators

may visually compare a deformation with scanned models or recorded motions. During the

production of the movie Jurrasic Park, animators working on the scene presenting a running

flock of Gallimimus filmed themselves running in the parking lot pretending to be dinosaurs

[97]. The film captured the accidental trip and fall of one of the animators, an element

that actually appears in the film. After observing an example pose or motion the animator

can modify the model’s animation parameters until it is capable of undergoing comparable

deformation and movement. While beneficial to the animation process, this type of indirect

example-based approach inefficiently utilizes the information contained in the examples and

does not take full advantage of the rich data set available in example scans.

Direct example-based techniques, also known as data-driven techniques, use observed

example data to make educated inferences on the smooth skinning equation, inform the

computation of unknown animation parameters and generate new data. Data-driven tech-

niques have the benefit of both simplifying the animation process through automation and

improving the quality of generated deformations by directly using the example data.

Automated LBS methods, such as those described in sections 3.2 and 3.3, use a single

pose as example input for determining the skinning and rigging parameters for a model.

This provides a starting point from which to build the animation. However, when additional

example poses are available, more powerful techniques can be used to compute animation

parameters. Example-based methods define the use of multiple poses for automated compu-

tation of skinning and rigging parameters.

Example-based LBS methods fall into two broad sub-categories: example-based shape

deformation and example-based skinning decomposition. Shape deformation includes data

fitting and interpolation methods for computing intermediate poses and fitting new data to

52

template models. Skinning decomposition is the general purpose pipeline for solving LBS

optimization functions to compute animation parameters that can be used to both recreate

the example data and also generate new poses, whether intermediate to example poses or

entirely different poses. Each method has unique benefits and challenges.

3.4.1 Example-based Shape Deformation

Example-based shape deformation emphasizes the creation of reasonable new poses from a

collection of example data. Less focus is placed on the computation of specific animation

parameters, in favor of an emphasis on reasonable shape and pose creation.

3.4.1.1 Interpolation

Interpolation of character motion is a fundamental and pervasive technique in animation and

has been extended to interpolation of various other animation components. Interpolation of

character movement is the computation and completion or insertion of intermediary poses or

frames between known poses or frames, known as key frames. Interpolation can be applied

directly to parameters such as rotations or to end effector positions. Inverse kinematics is

the common form of pose interpolation used to compute the bone positions of intermediary

poses. Other forms of interpolation may interpolate poses, shapes, transformations, or other

numeric parameter values. In fact, the entire smooth skinning process can be viewed as an

interpolation or blending of transformations.

Pose Space Deformation (PSD), introduced by Lewis el al, was developed as a solution

to common smooth skinning artifacts caused by the linear blending of transformations [59].

PSD is a form of displacement interpolation in which the space of possible poses is defined

by a set of example poses. Pose parameters for new poses that fall within the defined

53

Figure 3.10: A walk sequence generated from interpolation. Highlighted cells contain exam-
ple motions. All other poses where generated using the veb/adverb interpolation mechanism
introduced by Rose et al[85].

54

space can be interpolated from stored example poses. Radial basis functions are used to

compute interpolation weights. This method focuses primarily on the rigging process and

the generation of skeletal parameters for new poses. A problem with any PSD-based method

is that all example poses must be available during rendering, whereas for conventional LBS

only a base pose is necessary. Since graphical models can be very large, this can result in

a large memory cost. In contrast, the research presented in this thesis is a comprehensive

solution for both the skinning and rigging processes and retains the basic LBS approach of

deformations relative to a base pose.

While other research focuses on either blending between shapes or blending transforms,

Sloan et al use a combination of both to interpolate between poses [96]. Input scan data is

utilized to compute weights for each vertex in the model as a function of a weighted radial

basis function and a linear polynomial. Sloan et al use a linear system per example pose

which is more efficient than per degree of freedom linear systems such as those in Rose et al

[85] and Lewis et al [59].

Instead of per-vertex or pose interpolation, Allen et al interpolate the shape of each body

part individually and combine the results to form interpolated poses [2]. To determine the

weights for blending the composed body parts, Allen et al use k -nearest neighbors inter-

polation to compute the body part interpolation based on pose and cosine functions. The

research presented by Allen et al provides a robust solution, however some of the computed

values can be counterintuitive due to the weighted compositions of different body parts.

EigenSkin is a model developed by Kry et al that interpolates eigendisplacement coordi-

nates using radial basis interpolation [56]. Eigendisplacements are used to reduce redundancy

between deformations. Kry et al present a solution that is more expensive computationally,

but provides improved results and decreased artifacts in human hand deformations.

55

Figure 3.11: Examble-based Model Generation System: Seo and Magnenat-Thalmann fit a
set of example scans to a template model and use interpolation to generate a new model
[88].

A combination of various interpolation approaches is used in the work of Seo and

Magnenat-Thalmann [88]. To automate the modeling of diverse human bodies, they use

a layered interpolation approach, where each component of the body geometry is modeled

with an interpolator. Gaussian radial basis functions are used to create the linear and

residual components of the deformations. Joint transformations are interpolated in a manner

similar to EigenSkin and eigendisplacements are used to create displacement interpolators

to express vertex movement. Seo and Magnenat-Thalmann’s system is more complex than

other frameworks and works well in creating the realistic human body shape diversity that

the researchers desired. However, there are other, less complex methods for computing

comparable shape diversity.

Mohr and Gleicher also use interpolation and additional joints to solve problems with ar-

tifact [72]. Additional joint positions are computed as a halfway spherical linear interpolation

56

of the rotation of the joint and its rotation in the example pose.

3.4.1.2 Template and Data Fitting Techniques

Template fitting is an alternate example-based shape deformation technique that uses a

collection or database of known data that has been processed and categorized to match and

adjust known template data to new data. Template models work well when there is large

amount of relevant input data on which to train the processing algorithm and when the

structure of models is well-understood, such as human body shapes.

Allen et al parameterize range scan data to produce high resolution template meshes that

can be used to generate a wide-range of realistic human body shapes [3]. They demonstrate

an application that allows the generation of new ”keyframe” models and linear interpolation

of keyframe models to generate new models with widely-varied realistic human appearance.

Template models are typically an estimation of the actual data. The success of such

models for LBS is greatly dependent on the similarity of the new data to the previously

observed data in the database. The success of template and data fitting techniques also

depends significantly on the ability of the data processing methods used for training to

successfully parameterize the template models. Thus if the new pose or data is significantly

different from all of the template data or the template model parameterizes the wrong

features, the fitting process may have a difficult time or be unable to find the appropriate

parameters to match the new data.

3.4.2 Skinning Decomposition

Fitting and interpolation are intuitive means of computing deformations. However fitting

is inexact and interpolation is unable to compute LBS animation parameters, specifically

57

skinning weights. Although some fitting techniques attempt to account for differences in the

template models and the new models being parameterized, the new models are generally

forced to fit the shapes of an observed model.

Interpolation computes intermediate transformations to smoothly transition from one

pose to another. This, however, is not the same as blending transformations as is required

of Linear Blend Skinning. LBS computes a weighted combination of transformations to

generate a deformation. Although weighted transforms may be used to interpolate between

observed poses and generate new intermediate poses, there is no conversion from the new

interpolated transforms to the corresponding weighted transforms for LBS [52]. Therefore,

interpolation can be used to generate intermediate poses but cannot be used to compute the

LBS skinning weights for those intermediate poses.

Historically, automated example-based methods for computing animation paramters have

focused either on the computation of skinning weights or bone rotations. The complete

process of computing the set of animation parameters, both weights and transforms, that

recreate a set of example LBS deformations and can be used to generate new poses forms a

workflow that is know by a variety of names. This research uses the term skinning decompo-

sition as coined by Kavan et al to refer to the inverse problem of computing LBS animation

LBS parameters from example data [54].

A few cornerstone works have defined a full skinning decomposition pipeline. James and

Twigg coined their skinning decomposition approach Skinning Mesh Animation (SMA) [49].

Unique to their work at the time, James and Twigg incorporate flexible bones as an exten-

sion of the LBS model, in addition to the standard rigid bones, to achieve greater accuracy

of resulting reconstructed data. Kavan et al consider the summation constraint for skinning

weights to be a soft optimization constraint in their work titled Fast and Efficient Skinning

58

of Animated Meshes (FSD) [54]. In Learning Skeleton for Shape and Pose (LSSP), Hasler

et al combine skeletal abstractions for defining character shape with standard LBS hierar-

chical skeletons that define pose, to reduce the reconstruction error of computing animation

parameters from examples[34]. Le and Deng, in their work Smooth Skinning Decomposition

with Rigid Bones (SSDR), use a layered approach to optimization, first optimizing a set of

values that adhere to a subset of the constraints, before running the optimization additional

times to compute the optimized values with respect to the remaining constraints and then

compute the final optimized value, adherent to all constraints [57].

Regardless of name or title, all techniques for multi-pose example-based skinning decom-

position have a similar problem structure and workflow. This research adopts the example-

based skinning decomposition problem structure and workflow described by Le and Deng

[58]. Typically, the problem structure is determined by a least squares objective function,

subject to minimization. For skinning decomposition this objective function is defined by a

specific LBS formulation used to compute character poses from animation parameters, any

associated constraints on the animation parameters, such as summation and nonnegative

constraints for skinning weights and some error expression to evaluate the reconstruction of

the example poses. The problem structure serves as the foundation of any skinning decom-

position solution and is critical to the implementation of the three major subprocesses of

example-based skinning decomposition.

Given a problem structure, formulated as a set of parameter constraints and a parameter-

ized least-squares reconstruction error objective function, Le and Deng describe the workflow,

or solution pipeline, for example-based skinning decomposition as consisting of initialization

and optimization. This research identifies a third subprocess of constraint adherence. Con-

straint adherence is often a component of optimization. However, since there are a variety

59

of approaches to constraint adherence, some of which are stand-alone processes, this re-

search considers constraint adherence separately. In all, this research identifies three major

components of any skinning decomposition problem:

• Initialization - Initial computation of animation parameters that reduce the search

space and provide a reasonable starting point for the optimization process.

• Optimization - Optimization approach to the minimization of the reconstruction

error function that defines the skinning decomposition problem.

• Constraint Adherence - Measures taken to honor standard LBS constraints.

Additionally, it is relevant to define the characteristics of standard inputs and outputs

for skinning decomposition problems. Skinning decomposition input is typically a series of

character meshes captured in a variety of poses. The minimal required pose information

for skinning decomposition is vertex connectivity and the vertex positions for the deformed

example pose. It is not necessary to define a based pose, from which all other example poses

are computed. Any of the example poses could be used. The standard output is the set of

weights and transformations (often separated in their rotation and translation components)

that best recreate the example poses given as input.

For each component of the skinning decomposition problem there is room for flexibility

and creativity when making implementation decisions. The specific implementations are the

key components to varied skinning decomposition approaches. The remainder of this chap-

ter discusses popular implementation choices for each component, briefly discusses unique

implementations, and compares similarities and differences between this research, standard

approaches and the approaches of the four cornerstone skinning decomposition papers men-

tioned above.

60

Figure 3.12: Optimization pipeline for Learn Skeletons for Shape and Pose solution to skin-
ning decomposition [34]. Example poses are analyzed for shape and pose bone hierarchies.
The bone hierarchies are combined to generate a single skeletal structure that defines that
model. Additionally, skinning weights are computed for the hierarchies and combined to
yield the final LBS weights.

Problem Structure - The problem structure is the most consistent component of skin-

ning decomposition. In each case skinning decomposition is posed as a constrained opti-

mization problem of computing the underlying animation parameters that best reconstruct

the example poses using a basic LBS deformation model. The objective function is often

defined by a least squares representation of the vertex reconstruction error. The goal of the

objective function is to find the animation parameters that minimizes the difference between

each computed vertex position and the corresponding vertex positions given by the initial

example poses.

The objective function may be normalized by the number of vertices, poses or dimensions,

or some combination of the three to get a approximation or reconstruction error value for

the model. The method of normalization is a unique characteristic of problem structure that

varies between skinning decomposition implementations and must be accounted for when

comparing techniques. The SMA approach defines the approximation error as a percentage of

61

average distortion by normalizing by average reconstruction error [49]. Similar to this work,

FSD defines the model reconstruction error on a normalized per element basis. Computed

error values are normalized by the total number of individual elements of the animation

parameter matrix, in this case the number of spatial dimensions (three) times the number

of vertices times the number of poses [54]. SSDR uses the same normalization metrics [57].

Both implementations scale the normalized error metric by 1000 for convenience. LSSP uses

a straightforward residual RMSE that is normalized by the bounding volume diagonal [34].

Regardless of technique, normalization aids in comprehension and comparison of data.

Initialization - Initialization of the parameters used in the optimization function has

significant implications on optimization algorithm efficiency. The basic approach is to to

use some form of clustering of either vertex or triangle mesh geometry to compute a rough

set of bone groups, often referred to as proxy bones. These approximations may be used to

further refine the initialization using some iterative approach, such as in the works of Kavan

et al (FSD)[54] and Le and Deng (SSDR) [57]. Alternately, SMA computes first pass proxy

bones that are used directly in the skinning decomposition process [49].

It is important to note that initialization often includes any necessary preprocessing of

the data. Common preprocessing activities that occur prior to initialization are dimension

reduction, mesh triangulation and inter-pose vertex correspondence for non-uniform input

meshes. FSD performs dimension reduction by computing a set of representative vertices

that can be used to represent a larger collection of vertices whose positions can be computed

from linear combinations of the representative vertex trajectories [54]. Only the representa-

tive vertices are used for optimization thereby reducing the dimensionality of the skinning

decomposition problem.

Optimization - Typically, standard constrained optimization techniques are used for

62

minimization of the objective function. The constrained minimization sub-topic of optimiza-

tion is expansive. While discussing a variety of minimization approaches, Press et al suggest

that, although there is no reasonable means to find the perfect optimization algorithm, in-

formed decisions of which approach to choose can be made by considering the characteristics

of the problem, such as problem structure, constraints, dimensionality, and the ability to

compute the derivative of the objective function [81].

Considerations and trade-offs to evaluate include the scale of memory and storage re-

quirements, the ability to compute the derivative of the objective function and the ability to

compute solutions to subproblems of the overall optimization task, amongst other qualities.

This research chooses to distinguish between direct and indirect optimization algorithms for

skinning decomposition. Specifically, this research covers the gradient and block coordinate

descent indirect methods as well as three popular matrix decomposition approaches (non-

negative least squares, singular value decomposition and Cholesky decomposition) that are

commonly used to compute skinning decomposition solutions directly.

Gradient descent is a fundamental optimization algorithm that serves as the basis for

other more complex optimization algorithms. Basic gradient descent provides a means for

finding a local minimum of a function by repeatedly stepping in the direction of the negative

gradient until the gradient converges to zero (or near zero).

x′ = x− γOf(x) (3.3)

Gradient descent methods assert that, given a function, f(x), that is defined at a point,

x, a local minimum for the function can be computed by repeatedly taking a step, γ, in the

direction of the negative gradient, −Of(x), until the difference in the function value at the

63

Figure 3.13: Smooth Skinning Decomposition with Rigid Bones (SSDR) incorporates block
coordinate descent which alternates between solving for either bones (B) or weights (W),
holding the other constant while solving [57].

current point and the function value at the previous point is negligible.

For gradient descent, the derivative of the objective function may be determined either

directly in the form of partial derivates taken with respect to each parameter element or by

finite difference estimation [110].

Of(x) =
f(x + h)− f(x)

h
(3.4)

One variation on gradient descent involves adjusting the step size after each iteration to

take advantage of successful steps and allow the algorithm to converge more quickly. An-

other common gradient descent variation uses the conjugate gradient method. For conjugate

gradient descent instead of taking infinitely many small steps in the same general direction

to reach the minimum, you take a calculated few steps such that each step is orthogonal to

the last and the length of each step is maximized so that the total number of steps taken is

greatly reduced [91]. The choice of step size and direction forms the basis of many variations

of gradient descent algorithms.

One of the major challenges with example-based skinning decomposition is the interde-

pendent nature of the LBS animation parameters and their competing constraints. SSDR

uses block coordinate descent to address this problem [57]. Block coordinate descent is an

64

iterative, alternating minimization combination of least squares methods that does not in-

herently require gradient calculations. Block coordinate decent iteratively computes optimal

weights, holding transforms constant and then computes optimal transforms, blocking the

weights and holding them constant. This process is repeated until the result converges on

a solution. SSDR uses the Active Set Method (ASM) with bounded constraints to optimize

the skinning weights and Singular Value Decomposition (SVD) to compute optimal rotations

during each iteration. ASM and SVD are chosen based on the properties of each subproblem.

ASM is a common method for computing solutions to systems of equations and parametric

programming problems in which the solution to the problem is a parameterization of an-

other problem with a known (or easily computed) solution. Readers are referred to [26] for

a detailed explanation of Active Set Methods.

Matrix decomposition techniques are the most popular direct optimization approaches

to skinning decomposition problems. The matrix-based problem structure of standard LBS

models lends itself well to matrix decomposition solutions. In addition to the SSDR work

of Le and Deng [57], Hasler et al [34] also use SVD to compute the bone transformations in

their LSSP approach. FSD, by Kavan et al, uses Cholesky decomposition to optimize bone

matrices[54].

Matrix decomposition is the parameterization (or factoring) of matrices. Matrix decom-

position provides a means for solving systems of equations by parameterizing (or factoring)

matrices. The parameterization of matrices resulting from decomposition simplifies the prob-

lem and provides more efficient solutions. The choice of which matrix decomposition method

to use for optimization often depends on the structure of underlying problem for which a

solution is being attempted. Readers are referred to Fundamentals of Matrix Computations

for an in-depth explanation of matrix decomposition [107].

65

Constraint Adherence - Constraint Adherence is often handled as an element of the

optimization algorithm. Because many of the weighting subproblem implementations solve

a constrained system of equations using a least-squares approach at some point during the

smooth skinning process, bounded or constrained optimization methods are a natural com-

ponent of skinning decomposition, such as in the work of James and Twigg [49], Rhee et al

[83], and Schaefer and Yuksel [87]. Nonnegative least squares (NNLS) is commonly employed

to compute weights that adhere to the non-negative bounding conditions of the skinning de-

composition problem.

SMA uses NNLS to compute vertex weights in their SMA approach to skinning decom-

position [49]. Similarly, FSD uses NNLS as a component of their vertex weight optimization

process [54]. Although many optimization algorithms include some constraint adherence

functionality, such as ensuring bounded solutions, often basic constraint adherence is not

sufficient to address all of the constraints for a given problem.

To offer further assurance of constraint adherence, additional methods are needed, often

implemented in conjunction with optimization implementations that include an initial level

of constraints. Some implementations are elegant considerations of competing constraints,

while other implementations compute optimal solutions without regard to the constraints

and then adjust the computed solution to adhere to the constraints ex post facto.

LSSP introduces an additional constraint in the form of the L1-norm to enforce sparsity

[34]. While this addresses the limitation on the number of bones that influence a vertex,

it does not address the summation constraint. Therefore, the results adhering to the L1-

norm constraint are subsequently normalized to achieve a solution that also adheres to the

summation constraint.

Constraints may also be considered soft constraints that are not required to be strictly

66

followed, allowing for more flexibility in the solution. The James and Twigg SMA imple-

mentation [49] and the FSD work of Kavan et al [54] both implement soft constraints for

vertex weights, which allows loosely bound NNLS and orthonormalized factorization to com-

pute weights that adhere to the non-negative constraint, but may or may not adhere to the

summation constraint. Optimization solutions that adhere to all given constraints simulta-

neously typically require additional computational resources and more complex algorithms

to find a solution, but produce better results.

67

68

Skinning Mesh
Animations
(SMA)
James and Twigg
2005

Fast and Efficient
Skinning
of Animated Meshes
(FSD)
Kavan et al.
2010

Learning Skeleton
for Shape and Pose
(LSSP)
Hasler et al. 2010

Smooth Skinning
Decomposition
with Rigid Bones
(SSDR)
Le and Deng
2012

Example-based
Parameterization of
Linear Blend Skinning
for Skinning
Decomposition
(EP-LBS)

Problem
Structure

Standard LBS Model Standard LBS Model Standard LBS Model Standard LBS Model
Standard LBS Model
w/ Quaternion Rotations

Constraints

Non-negative Weights
Weight Summation (soft)
Sparse Weights

Non-negative Weights
Weight Summation
Sparse Weights

Non-negative Weights
Weight Summation
Sparse Weights
L-1 Norm of Weights

Non-negative Weights
Weight Summation
Sparse Weights

Non-negative Weights
Weight Summation
Quaternion Summation

Preprocessing
None None

Encode Bind Shapes
for All Example Models
Compute Mean Shape

None None

Initialization Mean Shift Clustering
of Rotation Sequences

Multiple-source,
Region-growing
Clustering

Template-based
Spectral Clustering

K-means Clustering

Iterative Patch-based
K-means clustering of
transformation sequences
NNLS

Optimization TSVD
NNLS

Modified Gram-Schmidt
Orthonormalization
Alternating Least Squares
Iterative Coordinate
Descent

SVD: Levenberg-
Marquardt algorithm
Alternating Optimization

Alternating Block
Coordinate Descent:
Active Set Method
SVD

Gradient Descent

Constraint
Adherence

Component of Optimization
Normalization
Soft Constraints

Component of Optimization
Discarding Data

Normalization and
Renormalization

Component of Optimization Parameter Mapping

Table 3.1: Comparison of Skinning Decomposition approaches.
(Abbreviations: NNLS - Non-negative Linear Least Squares, SVD - Singular Value Decomposition, TSVD - Truncated SVD)

3.4.2.1 This Research and Popular Skinning Decomposition Methods

Similar to SMA, FSD, LSSP and SSDR, this research formulates the skinning decomposition

problem as the minimization of the reconstruction error determine by animation parameters

and the LBS deformation model. However, the research presented in this thesis modifies

the standard LBS model in skinning decomposition to use quaternion rotations. Quaternion

rotations in vector form require the calculation of fewer animation parameters than ma-

trix rotations. This change in rotation representation allows the optimization algorithm to

execute more effectively by taking advantage of the reduced dimensions of rotation vectors.

The standard LBS model is restricted by constraints on the animation parameters. Valid

vertex weights are defined by non-negativity and summation constraints. Additionally, ver-

tices are often limited in the number of bones that may influence its movement by way

of a sparseness or influence constraint. This research adheres to the summation and non-

negativity constraints. This research does not implement a sparseness constraint. However,

the addition of quaternions requires an additional summation constraint to ensure valid

quaternions are used. The quaternion summation constraint is similar to the summation

constraint for vertex weights.

The basis of all example-based skinning decomposition initialization is a clustering algo-

rithm, clustering vertices, geometry or rotation sequences. Common methods for clustering

include mean shift, spectral and k-means. This research uses k-means clustering similar

to SSDR. However, this research chooses to cluster transformations rather than geometry.

LSSP also clusters transformations. The major difference between the transform clustering

performed on LSSP and that performed for this research is the element that is being trans-

formed. This research clusters vertex transforms while LSSP clusters triangle transforms.

69

Similar to the preprocessing done in FSD and SSDR, this research scales all models to a

unit cube prior to initialization.

Constraint adherence can be handled as an built-in element of the optimization algorithm

or the problem can be structured in a way that considers constraints as an added element

to the solution, either during optimization or afterwards. NNLS, used by SMA, inherently

adheres to the non-negative constraint and the Active Set Method (ASM) and SVD, allow for

the inclusion of constraints when defining the optimization problem. Conflicting constraints

are often handled by normalization as in the LSSP implementation. Although multiple

constraints often make optimization more challenging, this research reduces the impact of

the constraints by defining value mappings to convert animation parameters into a space

of valid constraint animation parameter values during each optimization iteration. The

mapping technique utilized in EP-LBS makes possible the use of basic gradient descent

methods to implement a skinning decomposition solution that adheres to standard LBS

constraints, yet does not requires complex optimization algorithms to solve.

This research uses basic gradient descent optimization. Many skinning decomposition

approaches choose to alternate between optimization of the two basic subproblems computing

optimal vertex weights and computing the ideal bone transformations, as is done with SSDR.

This research chooses to solve for optimal weights and transforms simultaneously.

This research is a unified solution to computing both transformation and weight anima-

tion parameters while adhering to all LBS deformation constraints. This research presents an

alternate initialization approach that determines the number of bones using only the exam-

ple data and introduces new parameter mapping algorithms that guarantee non-conflicting

constraint adherence throughout the iterative optimization process.

70

Chapter 4

Example-based Parameterization of

Linear Blend Skinning

Given the basic mathematical model for Linear Blend Skinning, the research presented in

this thesis refactors the basic LBS model, defines a new motion-based clustering technique

and introduces parameter mapping for constraint adherence. The refactored model and the

new clustering and constraint adherence methods address many of the usability and efficiency

challenges of the standard LBS model.

This chapter details the development and implementation of the major contributions of

this research. First, the development of the parameter mapping method and the alternate

LBS model are explained. Next with the introduction of a modified LBS model, a method for

motion-based clustering is introduced to identify bones in the model. Finally, the challenge of

computing animation parameters from a set of example data is structured as a constrained

optimization problem and the chapter closes with a detailed description of the objective

function, initialization methods and optimization approach used to solve the constrained

optimization problem.

71

4.1 Process Overview

To guide the discussion for the remainder of the chapter, the process developed and intro-

duced though the work of this thesis is succinctly described as follows:

The method presented in this thesis takes example poses as input to a least-squares

non-linear optimization process and institutes a single constrained optimization equation

that allows the simultaneous computation of all animation parameters for the model. An

iterative clustering methodology is used to construct an initial parameterization estimate for

the model, which is then subject to a non-linear optimization system that utilizes parameter

mapping to map the constraints to a domain suitable for nonlinear minimization. The

result is an iterative example-based LBS solution that improves the fitting of the initial

parameterization to a solution that closely models the example data and adheres to standard

LBS constraints.

4.2 Development of Methods

To inform the discussion of Example-based Parameterization of Linear Blend Skinning, this

section details the development of the modified mathematical model for LBS, the new bone

clustering method for skinning decomposition initialization and the newly introduced param-

eter mapping methods that serve as the underlying mechanisms for improved example-based

computation of animation parameters. Each of these methods serve as major contributions

of this thesis.

72

Inputs - A 3D model , specifically a set of 3D character meshes, each expressed
as a set of vertices and faces, as captured in a series of poses. One of the
poses is selected as the base pose, from which all other poses can be generated.

Outputs - Animation parameters needed to convert the base pose to each of the
remaining example poses for the input model. Specifically,

1. Bone Transformations for each bone in each pose

2. Skinning Weights for each vertex in the model

Process - A Skinning Decomposition Pipeline consisting of three major compo-
nents, initialization, optimization and constraint adherence, used to compute
animation parameters from a set of example data using optimization tech-
niques. The pipeline process introduced by this thesis is as follows:

1. Iterative Two-stage Clustering Initialization

2. Gradient Descent Optimization

3. Parameter Mapping for Constraint Adherence

To inform the optimization process, an initialization process is performed
to provide an estimation of weights and transforms as computed using patch-
based clustering and NNLS. Gradient descent optimization with pa-
rameter mapping is used to compute the weights and transforms needed
to recreate the input example poses.

Figure 4.1: Example-based Parameterization of Linear Blend Skinning for 3D Skeletal Ani-
mation, a skinning decomposition pipeline process.

73

4.2.1 Modified Linear Blend Skinning

This research presents a modified LBS model which uses a combination of Euler angles

and quaternions to represent rotations, allowing for the expression of both fine and gross

rotations of a bone during skinning decomposition. The LBS equation originally presented

as Equation (2.10) can be modified as shown in Equation (4.1) to reflect both the large

magnitude bone rotations that generally orient the bone for a particular pose and the small

bone movements that refine the overall bone position at each iteration of the optimization

algorithm during skinning decomposition.

v′i =
∑
j

wi,j
(
Qjejvi + sj

)
(4.1)

The Euler angle bone rotation for bone j is identified by ej . Quaternion rotations for

a bone continue to be identified by Qj . At each iteration, the modified LBS equation is

subject only to the following boundary conditions:

0 ≤ wij ≤ 1 (4.2)

−π ≤ eφ, eθ, eψ ≤ π (4.3)

Equation (4.3) is added to ensure valid Euler values, where the subscripts φ, θ and ψ

refer to the elements of euler angle vector.

Although the standard LBS summation constraint is not explicitly indicated, the skinning

decomposition methods presented in this research maintain adherence to this fundamental

constraint. The re-factored LBS model presented in Equations (4.1) - (4.3) are used in

74

conjunction with the newly introduced weight and rotation parameter mapping to ensure

constraint adherence for all LBS parameters.

4.2.2 Parameter Mapping for Constraint Adherence

Computing solutions to an LBS objective function that adheres to a given set of constraints

is a major challenge for optimization algorithms. LBS constraints include simple boundary

conditions as well as more complex linear and non-linear constraints, such as summation

constraints for weights or normalization requirements for quaternions. The most basic con-

strained optimization algorithms rely heavily on simple boundary conditions to constrain

parameter values. More complex algorithms often build on simple bounded optimization ap-

proaches to achieve constraint-adherent solutions as well. This is due, in great part, to the

relatively cheap computational expense of complying with boundary conditions compared to

honoring other linear and nonlinear constraint equations.

Iterative optimization methods, such as gradient descent, present an additional challenge

to constraint adherence because iterations that minimize the objective function may result in

values that do not adhere to parameter constraints. Standard processes to ensure constraint

adherence at each iteration often increase the computationally complexity of the optimization

algorithm.

Still, constraint equations often infer certain implicit boundary conditions that can be ex-

ploited to improve optimization efficiency. Although not every objective function parameter

has both explicit upper and explicit lower bounds on the parameter values, the combination

of all constraints for a single parameter value often lead to implied upper or lower limits for

the missing bounds.

This research leverages implied boundary conditions to restrict the search space for the

75

optimization algorithm. Complex linear and non-linear constraint equations are removed as

explicit constraints and are instead addressed with a new parameter mapping process.

4.2.2.1 Implied Bounds from Competing Constraints

For weights, the sum-to-one constraint combined with a nonnegative boundary condition

implies that valid weight values not only have a lower bound of zero, but also an upper

bound of one. The weight constraints listed in Chapter 2 are repeated here for convenience.

0 ≤ wij (4.4)∑
j wij = 1 (4.5)

Because bounds offer optimization algorithms greater flexibility, this research explicitly

enforces the upper bound implied by the sum-to-one constraint. Given the non-negative

bounding condition and the sum-to-one constraint, both an upper and a lower bound are

enforced for the weights.

0 ≤ wij ≤ 1 (4.6)

This is a necessary condition for weights, but not sufficient to ensure the sum-to-one

constraint is satisfied. Although solutions that sum to one are possible within these bounds,

optimization algorithms with only upper and lower bound specifications may yield a numer-

ically optimal solution in which the weights for a vertex sum to a value other than one. In

fact, only a subset of the weights generated that satisfy Equation (4.6) also satisfy the sum-

to-one constraint presented in Equation (4.5). To address this conflict, parameter mapping

76

of weights is introduced as a new method that maps a simpler range-bounded space to the

more complex weight space. The combination of the implicit boundary condition, deductive

reasoning and weight mapping eliminate the need for the summation constraint for weights

in the mapped space.

4.2.2.2 Weight Mapping

The general approach for iterative optimization methods is to compute a set of potential

parameters that adhere to given bounds and constraints and evaluate the objective func-

tion for solution convergence given those parameter values. If the resulting solution is not

convergent the process is repeated.

The vector of weights computed by an iteration of the optimization algorithm form a set

of free variables that can be iteratively mapped to new constraint-adherent values determined

by the parameter mapping in (4.7) through (4.9).

0 ≤ wij ≤ 1 (4.7)

w′1 = w1 (4.8)

w′j = wj

1−
j−1∑
k=1

w′k

 (4.9)

Additionally, the final weight is computed via deductive reasoning from the mapped

values:

77

w′J = 1−
J−1∑
j=1

wj (4.10)

In these equations, w′i are the actual weights utilized in the LBS algorithm, while wi

represent the mapped weights subject to non-linear optimization. The presented parame-

ter mapping algorithm proceeds in a progressive, cascading manner. The first free variable

remains unchanged as the original computed weight value (Equation (4.8)). For each sub-

sequent free variable, the sum of all previously computed variables is subtracted from one

(Equation (4.9)). This ensures adherence to the summation constraint propagates through-

out the mapping process. The resulting difference is then multiplied by parameter value to

obtain a new constraint-adherent mapped weight value value (Equation (4.9)).

The multiplicative properties of the bounded values, guarantees that the multiplication of

any two values within the bounds of zero and one results in a new value that is also bounded

by zero and one. Finally, the last free variable is compute as the sum of all previous values

subtracted from one (Equation (4.10)). In this manner, free variables representing weights

are mapped to a set of values that adhere to all standard LBS constraints.

Index k is introduced to represent weights that have already been mapped and J rep-

resents the final weight subject to the save-one weight computation. Using these indices,

free variables map bounded weight values to a constrained search space for the optimization

algorithm. Still, the mapping alone will not guarantee the sum-to-one condition. It only

guarantees a set of weights whose sum is less than or equal to one. Therefore, the save-one

technique is used in combination with mapping to compute weights that satisfy both the

boundary conditions and the summation constraint.

The mapping process provides a means for transforming the weight values to new val-

78

ues within a search space of valid weight values during each iteration of the optimization

algorithm. Traditional optimization algorithm approaches require the computation of val-

ues that simultaneously adhere to all constraints. This can be costly and is difficult when

the terms are linearly dependent. Instead, this thesis introduces parameter mapping which

employs a modest number of simple linear equations in a cascading fashion to compute new

weight values at each iteration. Although it eliminates the need for computation of simulta-

neous constraint adherence, the presented mapping algorithm uses successive operations to

compute a set of values that adhere to all standard LBS constraints.

As the weights are mapped into a search space of valid LBS weights, there must also be

operations to convert mapped values back to their respective values in real number space.

The vector of mapped weights can be inverted with inverse weight mapping defined in Equa-

tions 4.11 and 4.12.

w1 = w′1 (4.11)

wj =
w′j(

1−
∑j−1
k=1w

′
k

) (4.12)

Implicit boundaries, deductive reasoning and a new value mapping technique that exploits

the mathematical properties of the bounded values are combined to transform computed

weights to a set of free variables that constrain the optimization search space to a set of

values that only map to valid weights, adhering to the summation constraint. Appendix B

offers mathematical proof of mapping constraint adherence properties.

As an example, consider the case of three weight values w1, w2, and w3. Weights are

constrained to sum to one:

79

Figure 4.2: Plane containing weights w1, w2, and w3 that sum to one with the triangular
region of plane bounded to the range [0, 1] that represents valid weights.

w1 + w2 + w3 = 1 (4.13)

Therefore, all valid weights line on the plane containing w1, w2, and w3 (see Figure 4.2).

In addition, weights are bounded to the range [0, 1], which limits the valid range to the

surface of a triangle with the three vertices: (1, 0, 0), (0, 1, 0), and (0, 0, 1).

It is difficult to manipulate these values during non-linear minimization due to the cor-

relation between the weights. Changing one weight necessarily entails changing at least one

other weight to ensure the constraints are satisfied. Some algorithms take the approach of

relaxing the constraints during the non-linear minimization, then re-applying them when

the minimization is complete, effectively allowing the weights to deviate from the plane,

80

Figure 4.3: The 2D projection of weights w1, w2, and w3 representing the region of three
valid weights as determined by only two weights w1 and w2.

then renormalizing by finding the nearest point on the plane after the minimization is com-

plete. This is necessarily suboptimal, since the required value is the point on the plane that

minimizes the equation.

Since weights sum to one, it is possible to omit one weight from the computation, since

w3 = 1−w1−w2. However, this simply modifies the constraint from finding a point on the

three-dimensional triangle in space to finding a point on the two dimensional projection of

the triangle:

The coupling between the free variables remains, only the constraint has changed to

w1 + w2 ≤ 1. This is evident from the shape of the triangle.

Weight mapping replaces w1 and w2 with two new variables u1 and u2 that has the

relaxed constraint:

81

0 ≤ u1, u2 ≤ 1 (4.14)

The actual weights to use are computed from these new terms using these equations,

which represent the J=3 cases of equations 4.8 and 4.9:

w1 = u1 (4.15)

w2 = u2(1− u1) (4.16)

Now, u2 in the range [0,1] is multiplied by (1− u1), which determines a resulting space

that is the triangle from figure 4.3. The space of (u1, u2) has a one-to-one mapping onto

(w2, w1) up to the limit as u1 tends to one, and is mapping from the square, where the

bounds are simply [0, 1] to the triangular space, effectively decoupling the two terms and

greatly simplifying the constraint.

4.2.2.3 Rotation Mapping

Quaternions also bear implied boundary conditions as a result of the summation constraint

(repeated here as Equation (4.17) for convenience).

q2w + q2x + q2y + q2z = 1 (4.17)

The mathematical properties for valid quaternion values defined by Equation (4.17), im-

plies that values must fall in the range of (−1, 1), which supports the cascading parameter

mapping approach introduced for weight mapping. The product of two values in the bounded

range for valid quaternions produces a new value that also adheres to the boundary condi-

82

tions. Unfortunately, applying deductive reasoning to quaternions values does not result in

unique solutions due to the non-linear summation constraint. The computation of the final

quaternion value would require the computation of a square root term, which results in two

potential values, yielding a non-unique solution.

As an alternative, Euler angles are used in composition with quaternions. Euler angle

rotations can also be represented by a vector of values. The vector values represent the

three coordinate rotations performed about pre-defined frames of reference in succession; an

initial rotation ψ about an initial k-axis, a second rotation angle θ about a j-axis, and a final

rotation φ about a i-axis. The determination of the i, j, k axes in relation to the x, y, z axes

are determined by convention. This research uses the z − x − z convention, known as the

”x-convention” or proper Euler angles [111].

e = [eφ, eθ, eψ] (4.18)

By definition, the elements of the Euler angle vector are bounded by both minimum and

maximum values. Each element of Equation (4.18) falls in the range [−π, π].

−π ≤ eφ, eθ, eψ ≤ π (4.19)

The free variables associated with Euler angles are not subject to any summation con-

straint and, therefore, can simply be mapped to generate new values for each optimization

iteration. First, each Euler angle is mapped to its corresponding value in the range [0, 1], e′

(Equation 4.20).

83

e′ =
e + π

2π
(4.20)

Much like the mapped weights, inverse operations are defined for rotation mapping as

well. The bounds are enforced (e
′′
b) prior to unmapping the Euler values. Equations 4.21

through 4.22 are used to convert mapped Euler values to their original range of [−π, π].

e
′′

=



0 if e′ ≤ 0

e′ if 0 > e′ > 1

1 if e′ ≥ 1

(4.21)

e =
(

2πe
′′
b

)
− π (4.22)

The number of values required to represent intermediate bone rotations for EP-LBS is

ideal in comparison to matrix or quaternion rotation representations. Although either Euler

angles or quaternions alone can be used to fully represent a rotation, there are conditions

under which each form of rotation fails to produce the desired results. Euler angles suffer from

gimbal lock, particularly when used to compute rotations of large magnitude [24]. However,

when used to describe small, incremental rotations, gimbal lock becomes a negligible concern.

This is why proper initialization of the bone transforms to a value close to optimum is

essential for making this method work. Quaternions, when used with the save-one summation

solutions, generate indeterminate solutions as result of the square root calculation required

when computing the final value of a save-one solution that satisfies the constraint equation.

84

Because both the nonnegative square root and the negative square root are both valid, this

results in an ambiguous solution. See Appendix C for detailed mathematical proof of rotation

mapping constraint adherence.

4.2.3 Iterative Motion-based Clustering for Initialization

Like all optimization algorithms, the ability to find a reasonable minimum for the objective

function is determined in great part by the choice of an initial starting point [81]. An ideal

initial search space that has been calculated near the solution is more likely to converge on

a solution faster and is less likely to terminate at a suboptimal local minimum. For skinning

decomposition, initialization amounts to determining animation parameters (vertex-bone

associations, bone rotations and skinning weights) that roughly approximate the general

shape of each pose.

Most skinning decomposition solutions employ bone clustering as the central component

to determining the initial animation parameters for the optimization algorithm. Clustering

vertices or polygons is the imperative first step in the initialization process that computes

the vertex-bone associations needed to identify initial bone groups which can then be used

to compute initial bone rotations and skinning weights. Although the LBS model allows for

multiple bones to influence a single vertex, singleton vertex-bone associations are computed

for the initial bone clustering.

Bone clustering is not a trivial task in the initialization process, however. A number of

features of the skinning decomposition problem, such as the high-dimensionality of multi-

pose data sets and interdependent animation parameters, complicate the determination of

bone groups using standard clustering methods. This makes clustering across all poses

challenging. Although some clustering approaches cluster based on a single pose to mitigate

85

Figure 4.4: 1-ring clusters for a single vertex across multiple poses for a lion model.

this challenge, many initialization approaches are further complicated by the need to know

the number of bones in a model prior to clustering the data. This research introduces a

bone clustering initialization method for example-based LBS problems that does not require

a priori knowledge of the number of bones in the model and offers improved initialization by

clustering across all poses.

4.2.3.1 Representing High-dimensional Data Sets as Vectors

The basic approach to the EP-LBS bone clustering method is to compare the movement of

vertices, clustering vertices that move in a similar manner across all poses, forming initial

vertex-bone associations. The key to clustering across poses is the ability to represent all

pose data for a single vertex in a single feature vector. To inform the discussion of feature

vectors, some basic set notation for this problem is explored first.

EP-LBS defines Vp as the set of I vertices in each example pose p of the sequence of P

character meshes. Vp, written as:

86

Vp = {v1p, v2p, · · · , vip, · · · , vIp, },∀p (4.23)

With this basic set notation, EP-LBS defines V̄i the set of first-order vertex neighbors of

vertex vi. First-order neighbors are the vertices immediately adjacent to vi forming a single

connected component, the connectivity is indicated by the specified geometry. The position

of the vertices of all example poses are given as input to the EP-LBS skinning decomposition

problem. As a result the first-order neighborhood for each vertex can computed via simple

traversal of a character mesh. The set of neighbors V̄i is written as:

V̄i = {(vi0), (vi1), (vi2), · · · , (vik), · · · , (viK), } (4.24)

where K is the number of vertices immediately adjacent to vi and vi0 is simply vertex vi

itself. It is important to note that this research assumes point correspondence and identical,

non-varying topology across all poses. Because the connectivity remains the same for each

example pose in the sequence, the number of vertices I is constant whatever pose p is selected.

Additionally, as a result of fixed connectivity, the set V̄i is identical for all example poses p.

The set of P first-order vertex neighbors for a vertex i could be chained together and

considered a feature vector for vi across all poses. However, this feature vector would be

a collection of vertex positions, whose dot product would represent the rotational motion

between normalized vertex positions but would not capture the individual rotational and

translational components of movement between poses. To capture both elements of vertex

neighborhood movement between poses it is necessary to compute and compare the trans-

formation from the base pose to each example pose for every vertex neighborhood, rather

then the vertex positions directly.

87

The difference in position of a vertex and its first-order neighbors from the base pose to

an example pose p can be represented as a standard 4x4 affine transformation matrix Mip,

that can be computed with Least Squares Fitting of Two 3D Point Sets [4]. By decomposing

the computed transformation matrix into its quaternion rotation vector q̇ip and normalized

homogeneous translation vector s̄ip components, the transformation of a vertex neighborhood

from the base pose to an pose can be represented in vector form uip as a the concatenation

of the rotation and translation vectors.

uip = [q̇ips̄ip] (4.25)

Thus, the sets V̄ip∀p of first-order neighbors of vertex i across all poses p can be combined

and transformed into a single high-dimensional transformation sequence feature vector for

vector comparison:

ūi = [ui1,ui2, · · · ,uip, · · · ,uiP],∀p (4.26)

The neighborhood transforms are chained together to create a transformation sequence

feature vectors that can be clustered and compared with cosine distance measurements.

4.2.3.2 Cosine similarity for Vector Comparison

The trigonometric and geometric properties of vectors can be used to derive meaningful

metrics for comparing the similarity of two vectors. One comparison metric, the cosine

distance, offers a measurement of similarity of vector orientation for normalized vectors.

Cosine distance dab of two vectors, a and b, is defined as one minus the cosine of the angle,

θ, between the two vectors. The angle between two vectors can be computed from the dot

88

product of two normalized vectors and their magnitudes prior to normalization.

dab = 1− cos θ (4.27)

= 1− a · b
|a| |b|

(4.28)

This cosine distance metric is neatly bounded in the range [0, 1] inclusive. Vectors with a

cosine distance of 0 are perpendicular and vectors with a cosine distance value of 1 represent

the same vector (albeit, perhaps, in exact opposite orientations).

EP-LBS leverages the ability of cosine distance metrics to measure vector similarity, even

in higher-dimensions, and to compare transformation sequences and identify vertices with

similar transformation sequences, indicating similar vertex movement across all poses.

4.2.3.3 Converting Translation Vectors for Cosine Similarity Comparison

Translation vectors in three dimensions must be converted to a form suitable for cosine

difference comparison. An additional homogeneous coordinate is used to yield a four element

vector that is normalized prior to cosine similarity comparison.

Given a three-dimensional translation vector s = [sx, sy, sz], the four-dimensional homo-

geneous coordinate representation of s′ is [1, sx, sy, sz]. The normalized translation vector

used for cosine similarity comparison is therefore

s̄ =
s′

|s|
(4.29)

The normalized homogeneous translation coordinates now form a normalized four-dimensional

vector, s̄ the can be used with cosine similarity comparison for initialization.

89

4.2.3.4 Basic Initialization

Given a means for representing all pose data for a single vertex in one feature vector and

a method for comparing the similarity of these feature vectors, it is now possible to use

basic clustering methods to group similar feature vectors. K-means is a common clustering

technique that works for a wide variety of data and similarity metrics. In this case, k-means

clusters vertex feature vectors into k groups based on cosine distance of the feature vectors.

The computed clusters indicate which vertices move in similar manners across all poses and

should therefore be associated with a single bone transformation.

K-means clustering yields the initial bone groups. However, the values needed for ini-

tialization of LBS are the bone rotations and skinning weights. Fortunately, the computed

bone groups are a critical component to computing bone rotations, which can in turn be use

to compute initial skinning weights.

Least Squares Fitting is used once more to compute the bone rotations and translations.

Each of the bone groups computed by k-means clustering defines a 3D point set, which

persists as identical groups of vertices across both base and example poses, much like the

neighborhood groups. The transform between the base pose vertices in each of computed

bone groups and the corresponding vertices in each of the poses can be computed with Least

Squares Fitting, thereby computing the initial bone rotations for EP-LBS.

Given the base pose vertices, each set of example pose vertices and the initial bone

rotations for each of the computed bone groups, the problem of computing the initial skinning

weights can be structured as as an inverse problem. Standard non-negative least squares

(NNLS) methods for solving inverse problems can be used to find loosely bounded solutions

for the skinning weights. The computed weights can then be normalized to yield a set of

90

initial skinning weights for EP-LBS that adhere to all standard LBS constraints.

4.2.3.5 NNLS and Iterative Clustering for EP-LBS Initialization

Together the computed bone groups, bone rotations and skinning weights offer a reasonable

initial starting point for the EP-LBS optimization algorithm. Still, experimental evaluation

of a variety of models indicated that a single pass of clustering tends to fail to independently

cluster smaller groups of vertices that move together. This is especially true for appendages

such as fingers and feet (see Table 4.5 and 4.1). The inability to distinguish appendages in a

single clustering pass can be exaggerated by the use of a relatively small number of poses or

poses with limited range of motion. If the example poses do not demonstrate the full range

of all possible deformations for each bone, then the algorithm must infer the bones from the

given poses.

Computing all the bones and extremities in one pass is possible if the full range of

deformation is included in the given example poses. Because this is often not the case, this

research implements re-clustering to divide bone groups with large error into two separate

bones, allowing the algorithm to refine the clustering and identify extremities such as hands

and feet. Furthermore, a desired feature of any example-based LBS problem is the ability

to automatically determine the number of bones in a model from only the base and example

pose vertex data. EP-LBS uses this basic initialization process and re-clustering iteratively

to achieve this desired feature.

91

92

Figure 4.5: Sample Single-pass Reclustering for Initialization for Woman Model. First pass clustering (left) and after reclustering
(right). Note that the legs of the first clustering pass group the lower leg and the foot together. After splitting bones and another
pass at clustering, the left foot and lower left leg as well as the right leg and right foot are identified by four separate bones
instead of two.

Two-Stage Init Two-Stage + Recluster
Model # Bones Init Err Time(s) # Bones Init Err Time(s)

snake 26 2.652× 10−7 21.32 37 1.096× 10−7 25.11

dance 21 7.607× 10−6 19.46 26 4.204× 10−6 30.16

horse 29 2.718× 10−5 31.57 35 1.223× 10−5 61.05

woman 20 5.863× 10−6 14.60 24 3.000× 10−7 24.15

elephant 24 2.289× 10−5 127.5 30 1.486× 10−5 360.2

flamingo 10 2.090× 10−4 38.68 12 9.502× 10−5 71.50

jump 21 1.698× 10−4 32.44 25 8.312× 10−5 139.9

Table 4.1: Single-pass Reclustering Sample- Demonstration of improvement in error when a
single reclustering pass is used.

The value of k used in the k-means clustering determines the number of bones in the

model and must be supplied by the user. In effort to generalize the process to work with

limited a priori knowledge of the number of bones in the model, EP-LBS establishes an

iterative process for computing a skeletal structure with a minimal number of bones, splitting

the bones with large vertex error and then re-clustering with additional bones. This patch-

based clustering, bone splitting and re-clustering process forms a major contribution of the

presented research. The process is detailed in Algorithm 4.2.

This iterative initialization process, combining patch-based clustering and NNLS, pro-

vides an approximation of the gross bone transformations and influences. Each iteration of

the parameter mapping gradient descent optimization algorithm then refines the deformation

parameters until a convergent solution is found. The iterative two-stage initialization serves

as one of the major contributions of this research.

93

4.3 Implementing Example-based Parameterization of

Linear Blend Skinning

Section 4.2 introduced a mathematical model for LBS requiring only bounding conditions

and relatively inexpensive parameter mappings to constrain the search space of valid an-

imation parameters that serves as a major contribution of this research. The modified

LBS equation is used as the objective function for the constrained optimization problem of

example-based skinning decomposition. This remainder of this chapter details the use of

constrained optimization to determine the animation parameters for a character model.

4.3.1 Pose Nomenclature

Given the vertex mesh of a 3D character in a base pose and in a set of example poses, the

modified LBS equation is used as the objective function for a constrained optimization solu-

tion to the skinning decomposition problem of computing animation parameters. To inform

the discussion of example-based LBS, pose nomenclature is introduced for the example data.

In addition to being referenced by index i, vertices from an example pose are also indexed

by pose. For example, the ith vertex in its transformed position as determined by the ob-

served example pose, p, is represented as v′′ip. In example-based approaches, transformation

variables are also indexed by pose. Generic transformation variables, without regard to their

representation, are indicated by Tpj . Rotations are identified by Rpj in matrix form, by qpj

in quaternion vectors and by epj in Euler angle vector representations. Translation vectors

are indicated by spj . The nomenclature listed in Table 2.1 is updated to include pose indexed

notation and listed here as Table 4.2.

94

Object Variable Subscript Range Element Indices

Base Vertex v i,p w, x, y, z
Computed Vertex v′ i,p w, x, y, z
Example Vertex v′′ i,p w, x, y, z
Quaternion Rotation Matrix Q p,j w, x, y, z
Quaternion Rotation Vector q̇ p,j (0,1) w, x, y, z
Euler Angle Rotation e p,j (−π, π) φ, θ, ψ
Translation s p,j w, x, y, z
Transformation T p,j w, x, y, z
Weight w i,j (0,1)

Table 4.2: Updated Symbols and Terminology

4.3.2 Objective Function: Modified Linear Blend Skinning

Given the Euclidean distance between two vertices as:

|v′′i,p − v′i,p| =
√

(v′′i,p,x − v′i,p,x)2 + (v′′i,p,y − v′i,p,y)2 + (v′′i,p,z − v′i,p,z)
2 (4.30)

the skinning decomposition problem is expressed as the minimization of the sum of squared

differences between the observed vertex positions in each example pose and the computed

vertex positions as determined by the optimization process:

min
I∑
i=1

P∑
p=1

|v′′i,p − v′i,p| (4.31)

Example poses are assumed to represent ground truth and the ideal deformations for

each pose. The goal of the skinning decomposition problem is, therefore, to compute the

deformation parameters that make the deformation of the base model into the example poses

possible. The viability of the computed parameters is determined by the normalized sum

squared error for the model. A successful solution will minimize this error for the model.

95

Combining the re-factored LBS equation and implicit boundaries, the skinning decom-

position is formulated as error function E (Equation (4.32)) which serves as the objective

function for optimization:

min
w,e,s

E = min
w,e,s

I∑
i=1

P∑
p=1

|vip −
J∑
j

wij
(
Qpjviepj + spj

)
| (4.32)

Subject to :

0 ≤ wij ≤ 1 (4.33)

−π ≤ eφpj , eθpj , eψpj ≤ π (4.34)

4.3.3 Initialization: NNLS + Interative k-means Clustering

Assuming example poses with identical mesh topology (such that vertex connectivity remains

unchanged from pose to pose), the presented technique is a loosely constrained two-step

initialization process.

Computing Initial Bone Transformations and Vertex-Bone Associations -

As described in detail in Section 4.2.3 1-ring patches are identified and their transforms

are computed and chained together for each vertex. K-means clustering and least-squares

fitting are used to compute the initial singleton bone groups. Least-squares fitting is used

once again to determine the initial joint transformations, including a rotation and translation

value for each bone in each pose.

Computing Initial Weights - Initial singleton vertex-bone associations and bone

rotations are only part of the LBS model. Initial values for the skinning weights must

96

also be determined. Initial weights are computed using standard nonnegative least squares

(NNLS) methods. Given the initial transforms computed from the patched-based clustering

process and the vertex positions in a base pose and a set of example of poses, NNLS is used

to compute the skinning weights for the model.

Mathematically, the process for computing initial weights can be modeled as follows.

For some parameterized model C and estimated parameters x, standard nonnegative least

squares optimization problem is expressed in the form:

min
x
|C · x− d|where x ≥ 0 (4.35)

where the goal is to find the values for x that minimize error when fitting model C · x to

some data d. For the purposes of this research, the nonnegative least squares problem of

computing weights for a single vertex is structured as follows.

min
wi
|(Qpvi + sp) ·wi − v′′i | where wi ≥ 0 (4.36)

The NNLS problem for initial weight computation computes the set of weights, w, that

minimizes the sum square error of fitting vertices from example poses, v′′, to the LBS

model, Qv + s. The initial weights are only loosely constrained by the nonnegative bounds

on NNLS. Therefore, as the final step to the initialization process, the weights are normalized

to ensure constraint adherence.

97

4.3.4 Optimization & Constraint Adherence: Gradient Descent

with Parameter Mapping

A basic gradient descent algorithm is used to drive the optimization of the objective function

(Equation 5.2). The gradient descent algorithm is augmented to perform value mapping as

described in Section 4.2.2. During each iteration the rotation and weight mapping algorithms

are used to map the deformation parameters to new values within the range of valid LBS

values prior to taking a step in the direction of the negative gradient for subsequent iterations.

Finite differences are used to compute an estimate of the gradient. At each iteration

of the optimization process, a step is taken in the direction of the gradient. A momentum

buffer is an adaptive step size for the gradient descent algorithm that allows the algorithm to

gather momentum and take larger steps when possible, modestly speeding up convergence at

the minimal cost of an additional function evaluation when the step size needs to be reduced.

For this research a momentum buffer of five was used.

The step size is increased after some number of successful iterations and decreased if the

the current step would result in an increase in the objective function value. The number of

iterations is referred to as the momentum buffer and takes the value of five for this research.

This basic adaptive step size approach allows the algorithm to gather momentum and take

larger steps when possible, modestly speeding up convergence at the minimal cost of an

additional function evaluation when the step size needs to be reduced.

The gradient descent and parameter mapping algorithm is outlined in Algorithm 4.3.

98

Algorithm 4.1: Basic LBS Initialization

Input: vertices in a base pose v, vertices in P example poses v′′, vertex topology M
Output: initial rotations qpj , initial translations spj , initial weights wij
1: {Loop through vertices and compute first-order neighbors}
2: for every vertex do
3: Set A to the first-order neighborhood for the vertex in the base pose
4: Create an empty feature vector for the vertex
5: for every pose do
6: Set B to the first-order neighborhood for the vertex in the current pose
7: Compute the transformation matrix to transform A to B using least squares

fitting of two 3D point sets
8: Compute the quaternion form of the transformation rotation component
9: Normalize the transformation translation component
10: Concatenate the quaternion rotation-translation vector sub-sequence

and the vertex feature vector
11: end for
12: end for
13: Use k-means clustering to group vertex feature vectors into bone clusters
14: {Loop through bone clusters and poses to compute transform from base bone

cluster to example bone cluster}
15: for every pose do
16: for every bone do
17: Set AA to all vertices in base pose assigned to the current bone
18: Set BB to all vertices in current example pose assigned to the current bone
19: Compute the initial bone transformation matrix to transform AA to BB

using least squares fitting of two 3D point sets
20: Compute the quaternion form of the transformation rotation component
21: end for
22: end for
22: {Compute Weights by solving system of linear equations in the form Ax=b }
23: for every vertex do
24: Create an empty vector for transformed vertices AAA
25: for every pose do
26: for every joint do
27: Compute the transformed vertex position determined by the current bone
28: end for
29: Add the transformed vertex positions to the vector AAA
30: end for
31: Set BBB to the current vertex in each example pose
32: Compute initial weights for current vertex using AAA, BBB and NNLS
33: end for
34: return w,q, s

99

Algorithm 4.2: NNLS and Iterative Clustering EP-LBS Initialization

Input: model error tolerance MTOL
objective function F (x)
vertices in a base pose v
vertices in P example poses v′′

vertex topology M
Output: animation parameters x(consisting of qpj , spj , sij)

updated bone count J
1: Compute initial LBS animation parameters x using Algorithm 4.1
2: while F (x) > MTOL do
3: Compute average error for each bone
4: Set N to number of bones with error greater than avg err
5: for n = 1 to N do
6: Use k-means, with k=2, to cluster vertices for each bone with high error
7: Increment bone count by one
8: end for
9: Compute the centroids of the all bone clusters
10: Set x = results of reclustering all vertices in manner of Algorithm 4.1,

using computed bone cluster centroids and new bone count to initialize
the clustering algorithm

11: Compute F (x))
12: end while
13: return x

100

Algorithm 4.3: Gradient Descent with Parameter Mapping

Input: objective function F (x), derivative of function OF (x),
new point x, initialized using methods described in Section 4.3.3
function value tolerance TOL, step size γ, step size tolerance STOL
maximum iterations MAXITER
momentum variable m, momentum buffer MBUFF

Output: Point at which function minimum occurs xcurr
1: Set momentum counter g = 0
2: for itr := 1 to MAXITER do
3: Set xprev = x
4: Set fprev = F (xprev)
5: Map weights according to Equation 4.9
6: Map Euler angle rotations according to Equation 4.20
7: Compose mapped point xmapped,

from computed mapped weights and rotations
8: Compute gradient,OF , based on mapped point, xmapped
9: Compute new point in direction of negative gradient

xcurr = xprev − γOF (xmapped)
10: Compute function value at new point, ftemp = F (xcurr)
11: while ftemp > fprev do
12: Cut step size in half γ = γ

2
13: Restart momentum counter g = 0
14: if γ < STOL then
15: break
16: end if
17: Compute new point in direction of negative gradient

xtemp = xprev − γOF (xmapped)
18: Compute function value at new point, ftemp = F (xtemp)
19: end while
20: if xtemp − xprev < TOL then
21: Decrement itr
22: break
23: end if
24: if γ < STOL then
25: Decrement itr
26: break
27: Update x = xtemp
28: Update f = ftemp
29: Increment momentum counter g
30: if g > MBUFF then
31: Increase momentum γ = 1.75γ
32: end if
33: end if
34: end for
35: return x

101

Chapter 5

Results

Computer animation and 3D graphics are often subject to both quantitative and qualitative

analysis as a result of the need for both subjective and objective evaluation of the final

animation sequence. For instance, the objective (and very practical) concern of whether or

not a character’s feet are placed correctly so as not to intersect the ground is equally as

important as the style of movement in the animation portraying a feeling of giddiness. As

such, this research employs both qualitative and quantitative metrics for evaluation of the

presented Example-based Parameterization of Linear Blend Skinning for Skinning Decom-

position (EP-LBS) process.

This chapter analyzes the results of testing the presented EP-LBS method for skinning

decomposition using parameter mapping. To inform analysis of EP-LBS results, this chap-

ter first begins by detailing the methods used to evaluate parameter mapping for skinning

decomposition and its ability to recreate observed character deformation. The results are

then presented both quantitatively and qualitatively. Finally, the results are discussed and

analyzed in the broader context of skinning decomposition processes and work-flows.

5.1 Methods of Evaluation

Both quantitative and qualitative analysis of results are used to evaluate EP-LBS. Visual

comparison of expected and computed vertex positions yields qualitative analysis that pro-

102

vide subjective evaluation of EP-LBS results. Numeric measurements of the difference be-

tween the expected and observed vertex positions provide objective quantitative evaluation.

Both means of evaluation have practical value for analyzing example-based animation and

skinning decomposition solutions.

5.1.1 Quantitative Analysis

Two means of quantitative analysis are use to evaluate the merits of this research objectively:

model error and execution time.

5.1.1.1 Model Error

Quantitative results for model error are presented as normalized root mean square error

(RMSE) values. Most example-based skinning decomposition solutions use some form of

normalized RMSE to evaluate models quantitatively [34]. This error metric works well for

example-based LBS and skinning decomposition problems because the goal of the underlying

optimization is generally to compute parameter values that minimize the RMSE of the

computed vertices.

min
w,e,s

E = min
w,e,s

I∑
i=1

P∑
p=1

|v′′ip −
J∑
j=1

wij
(
Qpjviepj + spj

)
| (5.1)

The objective function, E, of the EP-LBS skinning decomposition problem used for this

research is an RMSE function (Equation 5.1.1.1). Structured as a constrained optimization

problem with the objective of minimizing the difference between the observed vertex positions

and the corresponding computed vertices after deformation, the sum squared error of all

103

vertices is normalized by the number of vertices, I, and the number of poses, P , to yield

model error Err (Equation (5.2)) which serves as a common error metric for comparison of

skinning decomposition processes.

Err =
E

IP
(5.2)

A final model error value nearer zero is preferred and typically represents a solution that

more effectively recreates the observed vertex positions, than larger model error values.

Additionally, the standard deviation of vertex error (σ) is measured for each pose. Vertex

error is determined by the Euclidean distance between the example vertex and the computed

vertex. Defined as the square root of the average the square differences from the mean,

standard deviation provides a measurement of the range of vertex error, which is useful

when dealing with a large number of vertices across multiple poses.

For skinning decomposition the mean vertex distance is only meaningful on a per pose

basis. Therefore the mean vertex distance, v̄, for a pose, p, is defined as:

v̄p =
1

I

I∑
i=1

∣∣∣v′′ip − v′ip

∣∣∣ (5.3)

The standard deviation for a pose, σp, is then:

σp =

√√√√1

I

I∑
i=1

(∣∣∣v′′ip − v′ip

∣∣∣− v̄p

)2
(5.4)

The average overall standard deviation for a model, σavg, is computed as:

σavg =
1

P

P∑
p=1

σp (5.5)

104

A lower standard deviation value indicates the vertex error is relatively close to the

average vertex error for all vertices in the pose. Larger standard deviation values indicate

some vertices had very large error while others had small error. A low-valued σ is ideal.

5.1.1.2 Execution Time

In addition to vertex error, execution time is a useful performance metric. As such, execution

time is also presented in the results data. Attempts to optimize running time have only been

implemented at the highest-level. Aggregate efforts to improve individual components of

this process are beyond the scope of this research and are left as areas for future exploration.

EP-LBS is an offline pre-processing method for linear blend skinning systems. While,

real-time computation is not needed for one-time pre-processing or offline systems, it is still

reasonable to expect results to be available in a few minutes, or about the time it takes to

grab a cup of coffee, for pre-production stand-in models of a few thousand vertices and in

a few hours for high-resolution, production-quality models of tens of thousands of vertices.

Performed once at the onset of using an LBS model, EP-LBS is executed to compute skeletal

structure and bone rotations that recreate existing example poses, as well as compute the

skinning weights needed to generate new poses.

5.1.2 Qualitative Analysis

Visually, humans are rather adept at detecting visual imperfections and inconsistencies and

often have an idea of what they expect to see and the quality of that visual image, even

before laying eyes on it. Images that differ even slightly from the expected image are quickly

detected by the human eye. As a result, qualitative analysis has long been the dominant

method of analysis and quality determination for this field. The prominent use of animation

105

has been as a medium for visual entertainment, where aesthetics tend to prevail over numeric

accuracy. As the computer graphics industry moves toward higher-resolution and better

quality character models, it will be more important to have both qualitative and quantitative

accuracy. For now, the look of a model still is perhaps the most important tool.

Models used in this research are qualitatively evaluated by visual comparison. Both the

expected model and the computed model are displayed simultaneously and visually evaluated

for differences between expected and computed vertex positions. The error is qualitatively

visualized with adjacent models, the gray model representing the expected example pose and

the green model represented the computed pose. In addition to side-by side comparisons, the

expected and computed models are also superimposed on one another to offer another means

of comparison in the form of a heat map. Differences in vertex positions are presented as a

heat map, with blue areas indicating little or no error and red areas indicating the largest

error. The error scale indicating values for blue through red regions are evaluated per model.

Thus, red values represent the largest error across all poses for a model.

5.1.3 Characteristics of Desired Results

Successful implementation of EP-LBS yields modest error results, with objective function,

ERMS , and standard deviation, σp, values near zero, and recreated poses that are near

indistinguishable from the examples used to create them as indicated by cool (blue) heat

maps.

106

5.2 Models

To test the presented process for skinning decomposition, EP-LBS was used on a collection

of nine publicly available 3D models commonly used for skinning decomposition testing and

evaluation: camel, cat, dance, elephant, flamingo, horse, jump, lion and snake. The dance

and jump models represent human-like models and were obtained from the collection associ-

ated with Khodakovsky’s Wavelet Compression of Parametrically Coherent Mesh Sequences

[33]. The original jump model does not include datapoints for the model’s head. The camel,

cat, elephant, flamingo, horse and lion models are from the Deformation Transfer for Train-

gle Meshes dataset [98]. The snake model was obtained James and Twigg’s Skinning Mesh

Animations data [49]. In addition to the nine models from the de facto skinning decompo-

sition testing dataset, a new humanoid woman model was introduced. The woman model

was used with permission from the Media and Entertainment Technologies Lab (METLAB)

at Michigan State University.

An important criteria for the use of example data to drive computation is the need for

correspondence between examples, particularly vertex correspondence. Point correspondence

is an important aspect of any example-based methods and is beyond the scope of this disser-

tation. The data used for this research has non-varying topology between poses. Therefore,

the question of point correspondence between examples is presumed resolved and is not a

concern for the datasets used in this research.

The model datasets and associated pose data used in this research were published as a

series of triangulated meshes and have been used as presented in the referenced publications.

For the purpose of comparison, all models were scaled to fit within a unit cube. No additional

processing of the mesh data was performed. In particular, no noise reduction was applied.

107

The models used in this research are listed in Tables 5.1 and ?? along with basic dimensions

for each dataset.

5.3 Example-based Parameterization of Linear Blend

Skinning Results

Given the characteristics for the testing dataset and the methods of evaluation, as well as

an explanation of potential results and desired outcomes, the results are presented for eval-

uation and analysis in visual and numeric form. For each model, EP-LBS initialization and

optimization were performed on the model and results were evaluated both quantitatively

and qualitatively. Presented in this section are the EP-LBS results for each model. The re-

sults include initial singleton bone clusters identified by the EP-LBS initialization algorithm,

a plot of the evolution of model error, E, analyzed at each iteration of EP-LBS optimization

and a visual comparison of the expected versus the computer vertex positions in the form of

a heat map.

108

Model #Vertices # Bones # Poses

Cat [98] 7207 22 10

Lion[98] 5000 22 10

Horse[98] 8431 29 11

Woman 3003 20 25

Table 5.1: Models

109

Table 5.1 (cont’d)

Model #Vertices # Bones # Poses

Elephant[98] 42321 24 11

Flamingo[98] 26907 10 11

Camel[98] 21887 22 11

Snake[98] 9179 26 5

110

Table 5.1 (cont’d)

Model #Vertices # Bones # Poses

Dance [33] 7061 21 11

Jump [33] 15830 21 8

111

5.3.1 Model: Cat

(a)

(b)

Figure 5.1: Initialization Results for Cat Model - 5.1a Model. 5.1b Initialization Re-
sults: Singleton bone groups.

112

113

Figure 5.2: Optimization Results for Cat Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 4.5301× 10−6

Std Dev: 0.00184

(f) Pose 02 - Error Heat Map

Pose Error: 6.697× 10−5

Std Dev: 0.00453

Figure 5.3: Optimization Results for Cat Model - Expected vertex positions [top:(a)(b)],
Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)] for Pose 01
[left column] and Pose 02 [right column].

114

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 3.2281× 10−5

Std Dev: 0.00315

(f) Pose 04 - Error Heat Map

Pose Error: 5.9654× 10−5

Std Dev: 0.00448

Figure 5.4: Optimization Results for Cat Model - Expected vertex positions [top:(a)(b)],
Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)] for Pose 03
[left column] and Pose 04 [right column].

115

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 7.2916× 10−5

Std Dev: 0.00474

(f) Pose 06 - Error Heat Map

Pose Error: 5.997× 10−5

Std Dev: 0.00389

Figure 5.5: Optimization Results for Cat Model - Expected vertex positions [top:(a)(b)],
Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)] for Pose 05
[left column] and Pose 06 [right column].

116

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 6.1526× 10−5

Std Dev: 0.00402

(f) Pose 08 - Error Heat Map

Pose Error: 7.6439× 10−5

Std Dev: 0.00463

Figure 5.6: Optimization Results for Cat Model - Expected vertex positions [top:(a)(b)],
Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)] for Pose 07
[left column] and Pose 08 [right column].

117

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 3.828× 10−5

Std Dev: 0.00344

(f) Pose 10 - Error Heat Map

Pose Error: 6.2253× 10−5

Std Dev: 0.0045

Figure 5.7: Optimization Results for Cat Model - Expected vertex positions [top:(a)(b)],
Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)] for Pose 09
[left column] and Pose 10 [right column].

118

5.3.2 Model: Lion

(a)

(b)

Figure 5.8: Initialization Results for Lion Model - 5.8a Model. 5.8b Initialization
Results: Singleton bone groups.

119

120

Figure 5.9: Optimization Results for Lion Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 1.2272× 10−7

Std Dev: 1.74× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 2.1179× 10−4

Std Dev: 0.0121

Figure 5.10: Optimization Results for Lion Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

121

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 3.1695× 10−5

Std Dev: 0.00395

(f) Pose 04 - Error Heat Map

Pose Error: 5.8528× 10−5

Std Dev: 0.00571

Figure 5.11: Optimization Results for Lion Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

122

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 1.1267× 10−4

Std Dev: 0.00809

(f) Pose 06 - Error Heat Map

Pose Error: 1.0278× 10−4

Std Dev: 0.00744

Figure 5.12: Optimization Results for Lion Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

123

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 8.6674× 10−5

Std Dev: 0.00699

(f) Pose 08 - Error Heat Map

Pose Error: 8.691× 10−5

Std Dev: 0.00683

Figure 5.13: Optimization Results for Lion Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

124

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 5.5694× 10−5

Std Dev: 0.00502

(f) Pose 10 - Error Heat Map

Pose Error: 6.0052× 10−5

Std Dev: 0.00474

Figure 5.14: Optimization Results for Lion Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 09 [left column] and Pose 10 [right column].

125

5.3.3 Model: Snake

(a)

(b)

Figure 5.15: Initialization Results for Snake Model - 5.15a Model. 5.15b Initialization
Results: Singleton bone groups.

126

127

Figure 5.16: Optimization Results for Snake Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 3.7356× 10−9

Std Dev: 1.05× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 1.0597× 10−6

Std Dev: 0.000745

Figure 5.17: Optimization Results for Snake Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

128

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 1.0419× 10−6

Std Dev: 0.000733

(f) Pose 04 - Error Heat Map

Pose Error: 1.8518× 10−6

Std Dev: 0.000881

Figure 5.18: Optimization Results for Snake Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

129

(a) Pose 05 - Expected Vertices

(b) Pose 05 - Computed Vertices

(c) Pose 05 - Error Heat Map

Pose Error: 1.5855× 10−6

Std Dev: 0.000941

Figure 5.19: Optimization Results for Snake Model - Expected vertex positions
[top:(a)], Computed vertex positions [middle:(b)] and Error Heat Map [bottom:(c)] for Pose
05.

130

5.3.4 Model: Horse

(a)

(b)

Figure 5.20: Initialization Results for Horse Model - 5.20a Model. 5.20b Initialization
Results: Singleton bone groups.

131

132

Figure 5.21: Optimization Results for Horse Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 4.3962× 10−8

Std Dev: 1.798× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 1.8738× 10−5

Std Dev: 0.00297

Figure 5.22: Optimization Results for Horse Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

133

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 1.6002× 10−5

Std Dev: 0.00292

(f) Pose 04 - Error Heat Map

Pose Error: 1.6564× 10−5

Std Dev: 0.00294

Figure 5.23: Optimization Results for Horse Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

134

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 1.1176× 10−5

Std Dev: 0.00231

(f) Pose 06 - Error Heat Map

Pose Error: 1.4662× 10−5

Std Dev: 0.00267

Figure 5.24: Optimization Results for Horse Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

135

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 1.7544× 10−5

Std Dev: 0.00303

(f) Pose 08 - Error Heat Map

Pose Error: 1.5033× 10−5

Std Dev: 0.00276

Figure 5.25: Optimization Results for Horse Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

136

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 1.0281× 10−5

Std Dev: 0.00221

(f) Pose 10 - Error Heat Map

Pose Error: 1.3649× 10−5

Std Dev: 0.0026

Figure 5.26: Optimization Results for Horse Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 09 [left column] and Pose 10 [right column].

137

(a) Pose 11 - Expected Vertices

(b) Pose 11 - Computed Vertices

(c) Pose 11 - Error Heat Map

Pose Error: 9.5436× 10−6

Std Dev: 0.00218

Figure 5.27: Optimization Results for Horse Model - Expected vertex positions
[top:(a)], Computed vertex positions [middle:(b)] and Error Heat Map [bottom:(c)] for Pose
11.

138

5.3.5 Model: Woman

(a)

(b)

Figure 5.28: Initialization Results for Woman Model - 5.28a Model. 5.28b Initialization
Results: Singleton bone groups.

139

140

Figure 5.29: Optimization Results for Woman Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 6.263× 10−10

Std Dev: 1.42× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 1.602× 10−8

Std Dev: 0.000113

Figure 5.30: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

141

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 1.245× 10−7

Std Dev: 0.000268

(f) Pose 04 - Error Heat Map

Pose Error: 7.8832× 10−7

Std Dev: 0.000762

Figure 5.31: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

142

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 1.8677× 10−6

Std Dev: 0.00134

(f) Pose 06 - Error Heat Map

Pose Error: 7.9948× 10−8

Std Dev: 0.000273

Figure 5.32: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

143

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 2.6813× 10−8

Std Dev: 0.000142

(f) Pose 08 - Error Heat Map

Pose Error: 3.3986× 10−7

Std Dev: 0.000547

Figure 5.33: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

144

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 1.9921× 10−7

Std Dev: 0.000423

(f) Pose 10 - Error Heat Map

Pose Error: 3.802× 10−7

Std Dev: 0.000603

Figure 5.34: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 09 [left column] and Pose 10 [right column].

145

(a) Pose 11 - Expected Vertices (b) Pose 12 - Expected Vertices

(c) Pose 11 - Computed Vertices (d) Pose 12 - Computed Vertices

(e) Pose 11 - Error Heat Map

Pose Error: 2.1106× 10−6

Std Dev: 0.00143

(f) Pose 12 - Error Heat Map

Pose Error: 4.2109× 10−6

Std Dev: 0.00203

Figure 5.35: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 11 [left column] and Pose 12 [right column].

146

(a) Pose 13 - Expected Vertices (b) Pose 14 - Expected Vertices

(c) Pose 13 - Computed Vertices (d) Pose 14 - Computed Vertices

(e) PPose 13 - Error Heat Map

Pose Error: 1.1195× 10−8

Std Dev: 9.23× 10−5

(f) Pose 14 - Error Heat Map

Pose Error: 1.8168× 10−8

Std Dev: 0.000124

Figure 5.36: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 13 [left column] and Pose 14 [right column].

147

(a) Pose 15 - Expected Vertices (b) Pose 16 - Expected Vertices

(c) Pose 15 - Computed Vertices (d) Pose 16 - Computed Vertices

(e) Pose 15 - Error Heat Map

Pose Error: 1.1575× 10−7

Std Dev: 0.000312

(f) Pose 16 - Error Heat Map

Pose Error: 2.9547× 10−7

Std Dev: 0.000516

Figure 5.37: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 15 [left column] and Pose 16 [right column].

148

(a) Pose 17 - Expected Vertices (b) Pose 18 - Expected Vertices

(c) Pose 17 - Computed Vertices (d) Pose 18 - Computed Vertices

(e) Pose 17 - Error Heat Map

Pose Error: 3.95× 10−6

Std Dev: 0.00196

(f) PPose 18 - Error Heat Map

Pose Error: 1.5105× 10−6

Std Dev: 0.0012

Figure 5.38: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 17 [left column] and Pose 18 [right column].

149

(a) Pose 19 - Expected Vertices (b) Pose 20 - Expected Vertices

(c) Pose 19 - Computed Vertices (d) Pose 20 - Computed Vertices

(e) Pose 19 - Error Heat Map

Pose Error: 3.9259× 10−6

Std Dev: 0.00196

(f) PPose 20 - Error Heat Map

Pose Error: 5.3775× 10−6

Std Dev: 0.00222

Figure 5.39: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 19 [left column] and Pose 20 [right column].

150

(a) Pose 21 - Expected Vertices (b) Pose 22 - Expected Vertices

(c) Pose 21 - Computed Vertices (d) Pose 22 - Computed Vertices

(e) Pose 21 - Error Heat Map

Pose Error: 7.0971× 10−6

Std Dev: 0.00251

(f) Pose 22 - Error Heat Map

Pose Error: 4.5842× 10−6

Std Dev: 0.00195

Figure 5.40: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 21 [left column] and Pose 22 [right column].

151

(a) Pose 23 - Expected Vertices (b) Pose 24 - Expected Vertices

(c) Pose 23 - Computed Vertices (d) Pose 24 - Computed Vertices

(e) Pose 23 - Error Heat Map

Pose Error: 4.7154× 10−6

Std Dev: 0.00206

(f) Pose 24 - Error Heat Map

Pose Error: 2.7975× 10−6

Std Dev: 0.00156

Figure 5.41: Optimization Results for Woman Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 23 [left column] and Pose 24 [right column].

152

(a) Pose 25 - Expected Vertices

(b) Pose 25 - Computed Vertices

(c) Pose 25 - Error Heat Map

Pose Error: 1.8203× 10−6

Std Dev: 0.00122

Figure 5.42: Optimization Results for Woman Model - Expected vertex positions
[top:(a)], Computed vertex positions [middle:(b)] and Error Heat Map [bottom:(c)] for Pose
15 [left column].

153

5.3.6 Model: Elephant

(a)

(b)

Figure 5.43: Initialization Results for Elephant Model - 5.43a Model. 5.43b Initializa-
tion Results: Singleton bone groups.

154

155

Figure 5.44: Optimization Results for Elephant Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 8.4215× 10−8

Std Dev: 1.76× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 8.7393× 10−6

Std Dev: 0.00203

Figure 5.45: Optimization Results for Elephant Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

156

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 6.5827× 10−6

Std Dev: 0.00137

(f) Pose 04 - Error Heat Map

Pose Error: 6.9776× 10−6

Std Dev: 0.00148

Figure 5.46: Optimization Results for Elephant Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

157

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 5.7952× 10−6

Std Dev: 0.00123

(f) Pose 06 - Error Heat Map

Pose Error: 7.7641× 10−6

Std Dev: 0.00169

Figure 5.47: Optimization Results for Elephant Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

158

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 6.5512× 10−6

Std Dev: 0.00141

(f) Pose 08 - Error Heat Map

Pose Error: 1.0876× 10−5

Std Dev: 0.00223

Figure 5.48: Optimization Results for Elephant Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

159

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 4.7429× 10−6

Std Dev: 0.00145

(f) Pose 10 - Error Heat Map

Pose Error: 1.502× 10−5

Std Dev: 0.00249

Figure 5.49: Optimization Results for Elephant Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 09 [left column] and Pose 10 [right column].

160

(a) Pose 11 - Expected Vertices

(b) Pose 11 - Computed Vertices

(c) Pose 11 - Error Heat Map

Pose Error: 5.5141× 10−6

Std Dev: 0.00136

Figure 5.50: Optimization Results for Elephant Model - Expected vertex positions
[top:(a)], Computed vertex positions [middle:(b)] and Error Heat Map [bottom:(c)] for Pose
11.

161

5.3.7 Model: Flamingo

(a)

(b)

Figure 5.51: Initialization Results for Flamingo Model - 5.51a Model. 5.51b Initial-
ization Results: Singleton bone groups. 162

163

Figure 5.52: Optimization Results for Flamingo Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 2.6478× 10−7

Std Dev: 1.22× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 1.7839× 10−4

Std Dev: 0.00942

Figure 5.53: Optimization Results for Flamingo Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

164

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 1.6126× 10−4

Std Dev: 0.0087

(f) Pose 04 - Error Heat Map

Pose Error: 2.2696× 10−4

Std Dev: 0.0101

Figure 5.54: Optimization Results for Flamingo Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

165

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 7.6959× 10−5

Std Dev: 0.00586

(f) Pose 06 - Error Heat Map

Pose Error: 1.3685× 10−4

Std Dev: 0.00739

Figure 5.55: Optimization Results for Flamingo Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

166

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 1.1169× 10−4

Std Dev: 0.00647

(f) Pose 08 - Error Heat Map

Pose Error: 2.3156× 10−4

Std Dev: 0.00891

Figure 5.56: Optimization Results for Flamingo Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

167

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 2.0149× 10−4

Std Dev: 0.00999

(f) Pose 10 - Error Heat Map

Pose Error: 3.2464× 10−4

Std Dev: 0.0126

Figure 5.57: Optimization Results for Flamingo Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 09 [left column] and Pose 10 [right column].

168

(a) Pose 11 - Expected Vertices

(b) Pose 11 - Computed Vertices

(c) Pose 11 - Error Heat Map

Pose Error: 1.0066× 10−4

Std Dev: 0.00731

Figure 5.58: Optimization Results for Flamingo Model - Expected vertex positions
[top:(a)], Computed vertex positions [middle:(b)] and Error Heat Map [bottom:(c)] for Pose
11.

169

5.3.8 Model: Camel

(a)

(b)

Figure 5.59: Initialization Results for Camel Model - 5.59a Model. 5.59b Initialization
Results: Singleton bone groups.

170

171

Figure 5.60: Optimization Results for Camel Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 2.7474× 10−7

Std Dev: 1.95× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 4.4779× 10−5

Std Dev: 0.00502

Figure 5.61: Optimization Results for Camel Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

172

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 2.5622× 10−5

Std Dev: 0.00381

(f) Pose 04 - Error Heat Map

Pose Error: 3.4501× 10−5

Std Dev: 0.00448

Figure 5.62: Optimization Results for Camel Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

173

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 2.2168× 10−5

Std Dev: 0.00355

(f) Pose 06 - Error Heat Map

Pose Error: 2.6566× 10−5

Std Dev: 0.00384

Figure 5.63: Optimization Results for Camel Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

174

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 3.6836× 10−5

Std Dev: 0.00465

(f) Pose 08 - Error Heat Map

Pose Error: 3.05× 10−5

Std Dev: 0.00388

Figure 5.64: Optimization Results for Camel Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

175

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 1.7508× 10−5

Std Dev: 0.00314

(f) Pose 10 - Error Heat Map

Pose Error: 2.0463× 10−5

Std Dev: 0.0033

Figure 5.65: Optimization Results for Camel Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 09 [left column] and Pose 10 [right column].

176

(a) Pose 11 - Expected Vertices

(b) Pose 11 - Computed Vertices

(c) Pose 11 - Error Heat Map

Pose Error: 1.5744× 10−5

Std Dev: 0.00285

Figure 5.66: Optimization Results for Camel Model - Expected vertex positions
[top:(a)], Computed vertex positions [middle:(b)] and Error Heat Map [bottom:(c)] for Pose
11.

177

5.3.9 Model: Dance

(a)

(b)

Figure 5.67: Initialization Results for Dance Model - 5.67a Model. 5.67b Initialization
Results: Singleton bone groups.

178

179

Figure 5.68: Optimization Results for Dance Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 1.5816× 10−11

Std Dev: 1.58× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 1.9627× 10−6

Std Dev: 0.000726

Figure 5.69: Optimization Results for Dance Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

180

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 5.3557× 10−6

Std Dev: 0.00148

(f) Pose 04 - Error Heat Map

Pose Error: 3.8826× 10−6

Std Dev: 0.00117

Figure 5.70: Optimization Results for Dance Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

181

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 2.9509× 10−6

Std Dev: 0.000943

(f) Pose 06 - Error Heat Map

Pose Error: 2.0488× 10−6

Std Dev: 0.000805

Figure 5.71: Optimization Results for Dance Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

182

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 6.097× 10−6

Std Dev: 0.00155

(f) Pose 08 - Error Heat Map

Pose Error: 1.4605× 10−5

Std Dev: 0.00246

Figure 5.72: Optimization Results for Dance Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

183

(a) Pose 09 - Expected Vertices (b) Pose 10 - Expected Vertices

(c) Pose 09 - Computed Vertices (d) Pose 10 - Computed Vertices

(e) Pose 09 - Error Heat Map

Pose Error: 6.5719× 10−6

Std Dev: 0.00157

(f) Pose 10 - Error Heat Map

Pose Error: 8.5102× 10−6

Std Dev: 0.00183

Figure 5.73: Optimization Results for Dance Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 09 [left column] and Pose 10 [right column].

184

(a) Pose 11 - Expected Vertices

(b) Pose 11 - Computed Vertices

(c) Pose 11 - Error Heat Map

Pose Error: 6.7409× 10−6

Std Dev: 0.00155

Figure 5.74: Optimization Results for Dance Model - Expected vertex positions
[top:(a)], Computed vertex positions [middle:(b)] and Error Heat Map [bottom:(c)] for Pose
11.

185

5.3.10 Model: Jump

(a)

(b)

Figure 5.75: Initialization Results for Jump Model - 5.75a Model. 5.75b Initialization
Results: Singleton bone groups.

186

187

Figure 5.76: Optimization Results for Jump Model - Progress of EP-LBS minimization of the objective function.

(a) Pose 01 - Expected Vertices (b) Pose 02 - Expected Vertices

(c) Pose 01 - Computed Vertices (d) Pose 02 - Computed Vertices

(e) Pose 01 - Error Heat Map

Pose Error: 3.4418× 10−11

Std Dev: 2.22× 10−6

(f) Pose 02 - Error Heat Map

Pose Error: 9.0657× 10−5

Std Dev: 0.00469

Figure 5.77: Optimization Results for Jump Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 01 [left column] and Pose 02 [right column].

188

(a) Pose 03 - Expected Vertices (b) Pose 04 - Expected Vertices

(c) Pose 03 - Computed Vertices (d) Pose 04 - Computed Vertices

(e) Pose 03 - Error Heat Map

Pose Error: 5.1322× 10−5

Std Dev: 0.00342

(f) Pose 04 - Error Heat Map

Pose Error: 6.6075× 10−5

Std Dev: 0.00398

Figure 5.78: Optimization Results for Jump Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 03 [left column] and Pose 04 [right column].

189

(a) Pose 05 - Expected Vertices (b) Pose 06 - Expected Vertices

(c) Pose 05 - Computed Vertices (d) Pose 06 - Computed Vertices

(e) Pose 05 - Error Heat Map

Pose Error: 6.3239× 10−5

Std Dev: 0.00403

(f) Pose 06 - Error Heat Map

Pose Error: 8.0184× 10−5

Std Dev: 0.00444

Figure 5.79: Optimization Results for Jump Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 05 [left column] and Pose 06 [right column].

190

(a) Pose 07 - Expected Vertices (b) Pose 08 - Expected Vertices

(c) Pose 07 - Computed Vertices (d) Pose 08 - Computed Vertices

(e) Pose 07 - Error Heat Map

Pose Error: 4.9889× 10−5

Std Dev: 0.00358

(f) Pose 08 - Error Heat Map

Pose Error: 5.7242× 10−5

Std Dev: 0.00399

Figure 5.80: Optimization Results for Jump Model - Expected vertex positions
[top:(a)(b)], Computed vertex positions [middle:(c)(d)] and Error Heat Map [bottom:(e)(f)]
for Pose 07 [left column] and Pose 08 [right column].

191

5.4 Discussion

Successful skinning decomposition solutions address the three major components of the de-

composition pipeline: initialization, optimization and constraint adhenerece. The results

exhibited in Figures 5.7 through 5.80 demonstrate the success of EP-LBS across all com-

ponents of the skinning decomposition workflow, indicating a viable solution for computing

animation parameters needed to recreate the given example poses. Initialization and opti-

mization are easily visualized with bone group plots and compared using adjacent images

of both expected and computed poses and error heat maps for each model. Additionally,

analysis of the expected and computed models and convergence of the objective function

confirm adherence to LBS constraints.

192

193

Initialization Results

Model Expected #
Bones

Computed #
Bones

#
Initialization

Iterations
Initialization
Time (min)

Initialization
Model Error

(E)

Cat [98] 22 31 7 4 6.3310× 10−5

Woman 20 18 5 2.8 1.8547× 10−6

Snake [49] 26 12 3 1 1.1119× 10−6

Lion [98] 22 26 5 1.7 8.0709× 10−5

Horse [98] 29 29 4 5.8 1.3050× 10−5

Flamingo [98] 10 10 4 8.1 1.5918× 10−4

Camel [98] 22 22 6 11.2 2.5129× 10−5

Elephant [98] 24 27 8 31.8 7.1753× 10−6

Dance [33] 21 19 3 2.7 5.3387× 10−6

Jump [33] 21 27 2 6.4 5.7326× 10−5

Table 5.2: Initialization Results

1
2

3

4

5

6

7

89

10

11

12

13

14

15
16

17

18

(a) Initial Singleton-bone Groups

a

bcdef g h i j

k
l

m n

o

p

q

r

s

t

label bones
a-b head/neck
c-f right arm
g-j left arm
k-n torso/hips
o-q right leg
r-t left leg

(b) Original Skeleton

Figure 5.81: The computed singleton bone groups for the woman model after initialization
(5.81a) and the original bones and skeletal structure (5.81b) used to generate the poses. The
initial skeleton contained 20 bones, including three bones for the torso. The initialization
process computed 18 bones. Because the example poses did not include articulation of each
of the torso bones, the initialization step grouped the three bones together as one bone for
the entire torso.

5.4.1 Initialization

The quaternion-based progressive clustering of vertex motion introduced by EP-LBS, paired

with loosely constrained NNLS weight computation provides a strong initialization approach

for example-based skinning decomposition solutions. For each of the models, the EP-LBS

initialization process was able to determine the number of bones for the model, such that

the initial pose deformations and initial model error provided optimal starting points for the

EP-LBS optimization process. Using this initialization method the optimization algorithm

was able to converge on a solution for each model, without a priori knowledge of the number

of bones or skeletal structure for the model. For three models, the horse, flamingo and

camel, the EP-LBS initialization process was able to compute the exact number of bones

that were expected for the model (see Table 5.2). The remaining models were a mixture of

over-counting and under-counting the number of bones for a model.

194

Results show that the initial clustering and determination of singleton bone groups is

highly dependent on the quality and variety of the input example models. For models with

fewer computed bones than expected, the missing or under-counted bones reflect areas of

the model where the example poses did not demonstrate variety (if any) in the deformation

of the bones in that area of the model. This is confirmed by the woman model, for which

both the example poses and the skeletal structure used to generate the example poses were

available. The original skeletal structure included 20 bones, including separate bones for

the head, neck and clavicles as well as multiple spine links. The computed singleton-bone

groups clustered these seven bones together as a single torso region because across the given

example poses, these seven bones all moved in a similar manner (see Figure 5.81).

So, what happened to the five other bones (neck, clavicle and additional spine links)

that should have been found in the torso region? Some were moved to other areas of the

body, especially those areas that experience a wide variety of deformation across poses, and

other bones were left out completely, hence fewer computed bones. In this case the left foot

received an extra bone in the ankle area, the pelvis received an extra bone and there is a

bone in the left armpit. That leaves two less bones than expected, which aligns with the 18

computed bones and 20 expected bones.

Although, the flamingo computed the correct number of bones for the model, the location

of the bones was not correct as indicated by the error heat maps. Specifically the vertices

in the head and neck of the flamingo were largely considered a single bone group, where the

heat map indicates a greater difference between the expected and computed vertex positions

(see Figure 5.82). Greater deformation of the head and neck in the example poses, would

likely lead to the initialization process computing two or more regions which would offer

better results. Additionally, more examples of deformation for the right upper leg of the

195

flamingo could yield a better distribution of vertices in the bone clusters for the right leg

(see Figure 5.82a).

(a) Initial Singleton-bone Groups (b) Pose 05 - Error Heat Map (c) Pose 10 - Error Heat Map

Figure 5.82: Lack of variation of head and neck poses leads to clustering the head and neck
regions into a single bone group, causing large errors in that region of the model as indicated
by the heat map.

The cat model demonstrates one of the outcomes of models with a lack of variety and

unintentionally correlated motion in the example pose deformations. For many of the ex-

amples poses the upper hind legs moved in a similar manner relative to one another. As

such the upper hind legs were clustered together despite the vertices in the cluster in fact

being in two distinct disparate groups. This clustering leads to large errors in those regions

(see Figure 5.83c). This can occur when there is symmetry in the skeletal structure and the

example poses include many mirrored or reflective movements of symmetric bones causing

implied correlation between the movement of the symmetric bones. To address this con-

cern, connected components or some other adjacency constraint can be imposed during the

initialization process to ensure that the computed bone groups.

As demonstrated by the initial singleton bone groupings and the error heat maps, the

EP-LBS initialization process is able to effectively compute bone groups without a priori

knowledge of the number bones or the structure of the skeleton. Where the bone groups

196

(a) Initial Singleton-bone Groups (b) Pose 04 - Error Heat Map (c) Pose 09 - Error Heat Map

Figure 5.83: Incorrect clustering of bones that move in parallel to one another, such as the
clustering of the upper hind legs into one bone group (bone 17), leads to higher model area
in those areas, as indicated by the corresponding areas of the error heat map being marked
hot.

compute more or less than the expected number of bones and where bones are missing in

expected areas and present in unexpected areas, the EP-LBS model is still able to effectively

model the character, as indicated by the near-zero model error value for all models after

initialization.

To resolve this clustering artifact, EP-LBS will perform better if input example poses

include uncorrelated deformation of each bone in the model. Given a wide range of example

poses spanning the range of motion for all bones, EP-LBS is able to precisely estimate the

animation parameters that recreate the example pose deformations. Additionally, even when

example poses are limited or do not demonstrate the distinct articulation of each bone, EP-

LBS is still able to generate the skeletal structure and skinning weights that will recreate

the given example data.

5.4.2 Optimization and Constraint Adherence

Results show that EP-LBS optimization is able to compute the constrained animation pa-

rameters needed to recreate the example poses and minimize the model error. The results are

197

(a) Camel Initial Bones

(b) Camel Pose 02 Error Heat Map

Figure 5.84: Expected Bones for Camel Model - The front right leg of the camel is
incorrectly clustered into one large bone group. The heat map for pose 02 gives indication
of where bones should be.

198

demonstrated by the heat maps and error values for each pose. Each model has been scaled

to fit in a unit cube and the maximum error indicated by red on the heat map represents

the maximum error across all poses. The average maximum error for all models is 0.0328 or

roughly three hundredths of a unit for the scaled models. The large areas of cool blue for

each pose across all models indicate the computed animation parameters applied to the base

pose result in very little or no error for the vast majority of models and poses. Additionally,

the maximum error, indicated by red areas on the heat map are near zero and do not create

significant visual differences.

There is often greater error at joints or regions where the influence of two or more bones

overlap. This is the result of error in the computation of weights. The EP-LBS results

presented in this research are more likely to indicate larger areas as joints because there is

no sparsity constraint implemented for the EP-LBS models. Similarly, for vertices incorrectly

clustered as a single bone, the heat map indicates where additional joints should have been,

such as with the front right leg of the camel in pose 02 (see Figure 5.4.1). At the expense

of computational time, beyond including more example poses demonstrating a broad range

of motion for each joint, implementing the sparsity constraint for bones could improve these

results.

199

200

(a) Cat Optimization (b) Lion Optimization

Figure 5.85: General Patterns in Optimization Results - Most models begin with an initial objective function value near
the solution. In a few iterations the EP-LBS optimization process minimizes the objective function value and converges on a
near-zero solution.

201

Figure 5.85 (cont’d)

(a) Camel Optimization (b) Elephant Optimization

202

Figure 5.85 (cont’d)

(a) Horse Optimization (b) Flamingo Optimization

203

Figure 5.85 (cont’d)

(a) Snake Optimization (b) Woman Optimization

204

Figure 5.85 (cont’d)

(a) Dance Optimization (b) Jump Optimization

Additionally, large undefined bodies of mass are difficult to cluster appropriately and

subsequently optimize. Often the heat map of the torso, back and belly of models indicate

some error, such as with the elephant, lion and horse (see Figure 5.86). Typically, skeletal

structures and skinning weights would define the torso as a banded series of bones following

the spinal structure of the model. However, EP-LBS models are typically clustered such the

the torso is one large bone group with a few isolated patches of vertices as islands within the

bone group, representing additional bones in areas with large vertex movement. Adjacency

constraints during initialization and sparsity constraints for weights during optimization

could address the differences in the expected and computed torso vertex positions.

Optimization and constraint adherence are effectively demonstrated by the decrease and

subsequent convergence on the objective function to near-zero values. Most models saw

modest decrease in objective function value over the course of roughly half a dozen itera-

tions. The limited number of iterations prior to convergence indicate an effective EP-LBS

initialization process. More iterations would imply an initial parameter set further from the

eventual local minimum, which would result in greater computation time.

Two models, jump and dance, saw no movement in the objective function after ten EP-

LBS iterations. This is a result of the characteristics of input poses and the effectiveness of

EP-LBS initialization, as well as the lack of sparsity constraint. More poses, spanning a wide

range of motion for each bone would yield a better initial clustering for the dance and jump

models. Additionally, because the EP-LBS initialization process computes a highly optimal

starting parameter set for the given clustering, very little movement is seen for the objective

function optimization, resulting in a flat optimization plot. Finally, the implementation of

the sparsity constraint would offer additional opportunities for optimization that may results

in more movement on the plot, showing minimization of the objective function.

205

206

(a) Lion Initial Bones (b) Horse Initial Bones (c) Elephant Initial Bones

(d) Lion Pose 06 (e) Horse Pose 10 (f) Elephant Pose 06

Figure 5.86: Large undefined groups of vertices, such as the torso regions of biped and quadruped models, may include island
patches of vertices within a larger bone group or may not identify additional bones in the region, causing errors in the initial
clustering that can not be effectively optimized.

207

Optimization Results Additional Stats

Model # Opt
Iters

Opt Time
(min)

Model Error
(E)

Max
Vertex

Distance

Std Dev
Vertex

Distance

Total
Execution

Time (min)

Cat [98] 4 18.1 6.629× 10−5 0.0406 0.0039 22.2

Woman 15 65.9 1.855× 10−6 0.0301 0.0010 67.3

Snake [49] 23 63.2 1.109× 10−6 0.0067 0.0007 66.9

Lion [98] 6 26.8 8.069× 10−5 0.0667 0.0061 28.1

Horse [98] 7 97 1.302× 10−5 0.0223 0.0024 100

Flamingo [98] 10 325.1 1.592× 10−4 0.0701 0.0079 330

Camel [98] 10 575 2.5× 10−5 0.0346 0.0035 580.2

Elephant [98] 3 1210.4 7.15× 10−6 0.0191 0.0015 1228.2

Dance [33] 10 70.3 5.339× 10−6 0.0140 0.0013 72.6

Jump [33] 10 27.2 5.733× 10−5 0.0358 0.0035 27.6

Table 5.3: Optimization Results

5.4.3 Algorithm Complexity

The runtime complexity of this algorithm is presented in terms of the number of vertices, I,

the number of bones or joints, J , and the number of poses, P , where the number of vertices

is significantly larger than the number of bones and poses.

The complexity of initialization is determined by the computation of immediate neighbors

for each vertex, IP , the computation of transforms for every bone in every pose and the

solving of a linear system of equations to compute the weights, IPJ . This process is repeated

for c iterations.

O(c(IP + PJ + IPJ)) (5.6)

Complexity of optimization is determined by the number of values (7PJ + IP) the opti-

mization algorithm must compute each iteration and the number of iterations, d, performed

in total.

O(d(7PJ + IP)) (5.7)

The overall complexity of the algorithm is ultimately a function of the number of vertices,

joints and poses.

O(2IP + 8PJ + IPJ) (5.8)

208

The overall complexity of the entire EP-LBS algorithm can simply be expressed as a

function of the number of vertices, joints and poses, where the number of vertices is sig-

nificantly greater than the number of bones or poses for the model, as shown in Equation

(5.9).

O(IPJ) (5.9)

where

I >> J (5.10)

I >> P (5.11)

The overall complexity of the entire EP-LBS algorithm can simply be expressed as a

function of the number of vertices, joints and poses, where the number of vertices is sig-

nificantly greater than the number of bones or poses for the model, as shown in Equation

(5.9).

5.4.4 Execution Time

As expected, the execution time of EP-LBS is most heavily influenced by the number of

vertices in the model. Total execution time for models of a few thousand vertices in this

research was 20-100 minutes, averaging less than an hour per model. In contrast the three

models with the highest resolution models of 20-40,000 vertices resulted in 5-20 hours of

execution time. Being a pre-process performed once at the onset of the animation process,

209

single-threaded serial execution times of up to a few hours are reasonable. EP-LBS running

times (comparable to published times of other skinning decomposition methods for skele-

tal animation) demonstrate the viability of EP-LBS as a method for LBS-based skinning

decomposition.

210

Chapter 6

Conclusion

This research presents Example-based Parameterization of Linear Blend Skinning for Skin-

ning Decomposition (EP-LBS) as a method for computing the LBS animation parameters,

in the form of skinning weights and bone transformations needed to recreate a set of example

character deformations. The EP-LBS solution to skinning decomposition introduces a new

mathematical model for LBS that uses quaternion rotations and defines an objective function

constrained only by upper and lower bounds on the animation parameters that generates an

optimal set of initial animation parameters for optimization.

As shown in results, EP-LBS is able to compute the number and placement of bones from

a collection of example poses with no a priori knowledge of the skeletal structure. Once initial

singleton-bone groups have been computed, initial weights are determined using NNLS to

give an initial parameterization for EP-LBS optimization. The optimization process proceeds

with a bounded gradient descent implementation with parameter mapping for additional

constraint adherence. Results are presented indicating that the EP-LBS initialization and

optimization workflows minimize the objective function error (often in less than a dozen

iterations) and is able to reproduce the example poses with minimal error.

EP-LBS Optimization extends basic gradient descent methods with parameter mapping

to achieve constraint adherence for skinning decomposition optimization. In this manner,

this research has demonstrated a new method for example-based skinning decomposition

that uses standard skinning decomposition problem structure and addresses each of the three

211

major sub-components to the skinning decomposition workflow: initialization, optimization

and constraint adherence.

EP-LBS is a unique approach to skinning decomposition because it is able to compute the

bone structure using only a set of example poses consisting of a series of character meshes.

Additionally, EP-LBS introduces parameter mapping, which offers a distinct approach to

constraint adherence that allows for use of fundamental optimization techniques that re-

quire little overhead. By using parameter mapping, EP-LBS can use basic gradient descent

optimization, which offers computationally efficient minimization of the LBS objective func-

tion.

The objectives of this research were to offer an comprehensive automated optimization

method for skinning decomposition that was scalable and adhered to standard LBS con-

straints. The presented EP-LBS research introduces a process that requires minimal pre-

and post-processing, limited heuristics and manual adjustment. The EP-LBS optimization

process simultaneously optimizes the solution both the skinning weights and bone transfor-

mations, while adhering to standard LBS constraints. Additionally, it is demonstrated that

this process is scalable, viable for models of a few hundred vertices and a half-dozen poses

to models with tens of thousands of vertices and dozens of bones and poses. As an offline

method for animation systems, EP-LBS is shown to be a viable solution for the computation

of standard LBS animation parameters from a set of example poses.

6.1 Contributions of this Thesis

This thesis presents Example-based Parameterization of Linear Blend Skinning for Skin-

ning Decomposition and offers these significant contributions to the skinning decomposition

212

process:

• Parameter Mapping for LBS Constraint Adherence : The standard LBS model

results in conflicting constraints on animation parameters. EP-LBS addresses interde-

pendent and conflicting constraints by mapping parameter values to alternate domains

ideal for nonlinear minimization. This modification results in constraint adherence at

minimal computational cost.

• Unified Least-Squares Non-linear Optimization for LBS : Most standard

skinning decomposition approaches repeatedly alternate the optimization of skinning

weights. Given a set of example poses, the skinning decomposition problems is for-

mulated into a unified least-squares objective function that is minimized to solve for

both skinning weights and joint transforms simultaneously. Parameter mapping and

gradient descent are used to define the optimization algorithm. The result is a compre-

hensive example-based non-linear optimization solution for automated, computation of

all LBS parameters, simultaneously.

• Iterative Motion-based Clustering for Automated LBS Initialization : Many

skinning decomposition implementations require the number of bones as input to the

optimization system. EP-LBS uses motion-based clustering of estimated bone trans-

forms is used to compute initial transforms. The initial transforms are combined with

non-negative least-squares to compute initial weights. This process is executed itera-

tively, each time splitting bones in areas with large error into two separate bone groups,

until the model converges on a basic skeletal structure and initial skinning weights that

generate a model with minimal error. The result is an automatic estimation of joints

and bone influence for a model the requires no a priori knowledge of the model’s skeletal

213

structure.

In all, EP-LBS defines a skinning decomposition process that takes only a series of ex-

ample poses as input and computes the number of bones and animation parameter values

needed to recreate the initial example poses. The process introduces a new example-based

LBS problem structure and initialization process, a new constraint adherence method and a

new bounded optimization approach to determine the skinning decomposition solution. The

results show that EP-LBS can, without a priori knowledge of any bone structure, achieve

all of the standard objectives of successful skinning decomposition solutions, as well as the

additional rigorous objectives defined by this research.

Analysis of EP-LBS experiment results presented in this thesis lead to exciting potential

applications of this research and interesting areas for future work.

6.2 Applications for this Research

EP-LBS defines a skinning decomposition process for computing animation parameters for

LBS animation systems. As such, the most straight-forward use for the workflow presented

in this research is as a pre-processing task, the results of which can be exported to any

LBS-supported 3D animation system or game engine for use in production.

One advantage of the newly introduced EP-LBS process is the ability to optimize the

computational efficiency of an offline process. Skinning weights can be pre-computed and

transformations can be derived from example data. As offline pre-processing for any 3D

engine, EP-LBS can leverage motion capture and other 3D scanning and imaging technology

more effectively to record data that can generate baseline LBS models with minimal artist

effort, allowing greater opportunities for more artistic styling and animation rather than

214

tedious LBS skinning and rigging tasks.

Although, not intended to be a real-time system, an interesting avenue of future study

could be exploring ways in which EP-LBS techniques could be integrated with or used

as a pre-processing task for interactive animation interfaces [25, 37, 86], real-time systems

[55, 45, 90, 102, 94, 47] and advanced non-linear deformation systems [104, 84], each of

which are open areas of research for example-based LBS that constitute relevant potential

applications and avenues of future work for this research. It may also be interesting to

explore how EP-LBS methods can be used to improve modeling and animation for mobile

systems, such as phones and gaming devices.

Perhaps the most exciting applications are a result of the recent widespread introduction

of virtual and augmented reality into mainstream entertainment. The predicted everyday,

common use of VR and AR technologies (as indicated by the development and wide release of

a variety of VR content for mobile phones and gaming systems in 2015 and 2016), anticipates

the need for large quantities of additional 3D content. This scenario presents an opportunity

to find ways to generate 3D content more efficiently and EP-LBS can be a tool for increased

efficiency in articulated model creation. Where a variety of human motion can be captured

and subsequently processed with EP-LBS, massive amounts of varied background characters

can be produced quickly with the level of assortment of shape and movement that makes VR

characters immersive rather than distracting. There is great potential for EP-LBS to be a

used as a means for rapid prototyping and content generation in a variety of 3D environments,

including VR, film and gaming.

215

6.2.1 Opportunities for Additional Analysis in Related Fields

The EP-LBS problem appears to take on a machine learning approach to training animation

parameter data, however,machine learning techniques are not applicable to EP-LBS. Al-

though machine learning approaches are easily applied to computation of skinning weights

or bone count (if considered independent of bone transformations), training data cannot be

used for the computation of bone transformations because the bone positions vary between

poses. The nature of varying poses means the training data will not yield data relevant to

the testing data. This is a direct result of the unified problem structure of EP-LBS.

Still, as an additional qualitative metric, it is possible to perform cognitive perception and

decision making experiments derived from communications and human computer interaction

fields, to measure the level at which errors in the EP-LBS methods are discernible. This

information could be used to both evaluate the success of EP-lBS and also to fine tune the

termination metrics for the optimization algorithm.

6.3 Future Work

While this thesis presents a full skinning decomposition pipeline that generates viable anima-

tion parameters for standard LBS systems, additional research and exploration could yield

further improvements to the process, as is indicated by results and analysis presented in this

thesis. Little work has been done to optimize EP-LBS computations. Parallel computing

implementations have the potential to provide additional time savings during initialization

and optimization. The structure of the EP-LBS objective function and the nature of gradient

descent optimization is ideal for exploiting parallel computing and multi-threaded implemen-

tations. The majority of execution time is spent on initialization, indicating performance

216

improvements to the initialization process have potential to significantly improve perfor-

mance. Further, the implementation of EP-LBS uses finite difference estimation for gradient

(derivative) calculations. Direct computation of the derivative would also likely improve that

computation time for EP-LBS optimization.

This research opens up avenues for related and tangential research, such as use of EP-

LBS initialization as a means for optimizing existing skeletal structures. Given a model in a

series of poses that span the entire range of motion desired for model, the EP-LBS process

could be used to compute potentially fewer bone groups than the initial complex skeletal

structure used to generate the example poses, eliminating unused bones. The initialization

process could be further extended to take skeletal structure as input and work backwards to

combine unused bones, creating a more efficient skeletal structure.

One promising research direction lies within the analysis of the tradeoffs between adding

more bones, using more weights and increasing the complexity of the optimization algorithm.

Skinning weights dominate the computational resources consumed during the EP-LBS pro-

cess as a result of being the most numerous of the animation parameters. Limitations on

the number of weights that may influence a vertex (sparsity constraints) can reduce the

amount of memory and quantity of animation parameters being computed. While limiting

the number of bone influences can reduce the amount of data the must be computed, there

is also the potential to increase the complexity of the optimization algorithm.

The EP-LBS implementation does not produce sparse weights, which indicates there

are opportunities to explore the addition of a cardinality or sparseness constraint to limit

the number of influence bones to a small number. Historically, vertices have sparseness

constraint of four, limiting the influence of the movement of a single vertex to at most four

bones. The four-bone constraint is chosen in great part due to the optimization of hardware

217

implementations of LBS calculations. As an alternative, a post-processing step could be

used to compress and reduce weights, potentially yielding a more efficient model.

For continuity of bone groups in bone clustering during initialization, implementing some

connectivity constraint, may yield better initialization results faster as a result of fewer ani-

mation parameters for which to solve. Initialization solutions with a connectivity constraint

should converge in fewer iterations, but the iteration count savings must by balanced with

the computational time expense of the more complex connectivity-constrained initialization

and optimization algorithms.

The research results presented in this thesis indicate that the EP-LBS cluster initialization

is suitable for both determining the number of bones needed to animate a character mesh and

initializing the bone groups and bone transformations for example-based LBS methods. This

research introduces the combination of basic gradient decent algorithms with the parameter

mapping to create an effective constrained optimization algorithm that can handle conflicting

constraints. This thesis presents a full skinning decomposition pipeline that generates viable

LBS animation parameters that adhere to standard LBS constraints and opens the doors to

various avenues of extended and related research.

218

APPENDICES

219

Appendix A

Coordinate Systems

Chapter 2 introduced the Linear Blend Skinning model for vertex deformation as:

v′i =
∑
j

wi,jTjvi (A.1a)

Subject to constraints:

0 ≤ wij (A.1b)∑
j wij = 1 (A.1c)

In the LBS model, a skeletal structure embedded in a character and the movement of

the skeleton drives the movement of the character geometry. The geometry of a character is

defined using a model coordinate system, or model space. In addition to the model coordinate

system, each bone in the skeletal structure has its own coordinate system. For every bone

there is typically a matrix that transforms the bone in the bone coordinate system, or bone

space, to model space. For hierarchical models, bones are transformed from the bone space

to the parent bone space.

In many graphics systems the transformation from local bone coordinate system to the

model coordinate system is computed and stored as a bind matrix, Bj . The inverse of the

220

bind matrix, B−1j , converts from model coordinates to bone coordinates. Vertex positions

are expressed in a model coordinate system. The transformation Tj implies a global transfor-

mation expressed in the model coordinates for each bone. In practice, bone transformations

are expressed in local bone coordinates. A more detailed representation of vertex deforma-

tion requires transforming vertices into the appropriate bone coordinate system, applying

the bone transformation and transforming the vertex back into model space.

Incorporating conversions between coordinate spaces, the deformation of a vertex from

Equation A.1a can be represented with the following equations:

Tjvi = BjMjB
−1
j vi (A.2)

v′i =
∑
j

wij

(
BjMjB

−1
j

)
vi (A.3)

In Equation A.2 the vertex transformation by one bone is defined. Mj represents the

transformation of bone j that is responsible for the vertex deformation in the current pose.

The bind matrix and its inverse convert between model coordinate system used by the

vertices and the bone coordinate system used by the joints.

The use of multiple coordinate systems allow the clear definition of all points in space

with respect to the origin for that coordinate system. In this manner, complex models can

be created with intuitive transformation representations. However, for this research we use

the global model space representation and than local parent spaces. As previously noted,

in addition to operating in different coordinate frames, bone transformations are defined

by the parent bone transformations as well as the local bone transformation. A child bone

is said to rotate around a parent joint’s coordinate system. In practice, the model space

221

bone transformation abstraction we used is ultimately the product of the local parent bone

representations.

222

Appendix B

Weight Mapping

The chapter mathematically demonstrates that mapping operations performed on the bounded

LBS weight parameters yield new values also within the bounded range. Additionally, it is

demonstrated that the mapped values also adhere to the summation constraint.

Proof of Weight Mapping Constraint Adherence

Lemma B.0.1 Let w be a real value on the closed unit interval [0, 1] such that 0 ≤ w ≤ 1.

Then 0 ≤ 1− w ≤ 1.

Proof Assume 0 ≤ w ≤ 1. Then by multiplying by -1, 0 ≥ −w ≥ −1. Adding 1 yields

1 ≥ 1− w ≥ 0. It follows that 0 ≤ 1− w ≤ 1.

Lemma B.0.2 Let a and b be real values on the closed unit interval [0, 1] such that 0 ≤ a ≤ 1

and 0 ≤ b ≤ 1. Then the product of a and b is also a value on the closed unit interval [0, 1]

such that 0 ≤ ab ≤ 1.

Proof Suppose 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Then b∗0 = 0 and b∗1 = b. By b∗0 ≤ b∗a ≤ b∗1,

it follows that 0 ≤ ba ≤ b. Since 0 ≤ b ≤ 1, 0 ≤ ab ≤ 1.

Theorem B.0.3 Let w′1 = w1 and w′j = wj

(
1−

∑j−1
k=1w

′
k

)
= wj

∏j−1
k=1(1 − wk) and

w′J = 1−
∑J−1
j=1 wj. If 0 ≤ wj ≤ 1, then 0 ≤ w′j ≤ 1 and

∑J
j=1wj = 1 for all j.

223

Proof (i) Suppose 0 ≤ w1 ≤ 1 and w′1 = w1. Then 0 ≤ w′1 ≤ 1.

(ii) Let j = 2. Suppose w′j = wj

(
1−

∑j−1
k=1w

′
k

)
. Thus w′2 = w2

(
1−

∑1
k=1w

′
1

)
. From

(i), 0 ≤ w′1 ≤ 1. Therefore, 0 ≤ 1− w′1 ≤ 1. Let a = w2 and b =
(

1−
∑1
k=1w

′
1

)
. By

Lemma B.0.2 it follows 0 ≤ w2

(
1−

∑1
k=1w

′
k

)
≤ 1. Therefore 0 ≤ w′2 ≤ 1.

(iii) Let j = 3. Then from w′3 = w3

(
1−

∑2
k=1w

′
k

)
it follows w′3 = w3

(
1− w′1 − w

′
2

)
which can be rewritten as w′3 = w3 (1− w1) (1− w2). Let a = (1− w1) and b =

(1− w2). Then by Lemma B.0.2 0 ≤ ab ≤ 1. Let c = ab and d = w3, therefore

0 ≤ cd ≤ 1. Thus, 0 ≤ w3

(
1−

∑2
k=1w

′
k

)
≤ 1. Therefore 0 ≤ w′3 ≤ 1.

Suppose 0 ≤ w′1 ≤ 1 and w′j = wj

(
1−

∑j−1
k=1w

′
k

)
. Thus w′2 = w2

(
1−

∑1
k=1w

′
1

)
.

From (i), 0 ≤ w′1 ≤ 1. Therefore, 0 ≤ 1−w′1 ≤ 1. Let a = w2 and b =
(

1−
∑1
k=1w

′
1

)
.

By Lemma B.0.2 it follows 0 ≤ w2

(
1−

∑1
k=1w

′
k

)
≤ 1. Therefore 0 ≤ w′2 ≤ 1.

(iv) Let w′j = wj

(
1−

∑j−1
k=1w

′
k

)
= wj

∏j−1
k=1(1− wk).

Then, by Lemma B.0.2 0 ≤ w′j ≤ 1 for all j.

(v) Let j = J and wJ = 1−
∑j−1
k=1w

′
k.

By (i)-(iv), 0 ≤
∑j−1
k=1w

′
k ≤ 1. Thus, 0 ≤ wJ ≤ 1.

(vi) Therefore, by (i),(ii), (iii), (iv) and (v), 0 ≤ w′j ≤ 1 for all j.

224

Appendix C

Rotation Mapping

The chapter mathematically demonstrates that mapping operations performed on the bounded

LBS Euler angles yield new values also within the bounded range.

Proof of Bounded Euler Values

Proposition C.0.1 Suppose e is the unmapped Euler value such that −π ≤ e ≤ π and e
′′

is the bounded Euler value computed from the mapped Euler value e′ = e+π
2π .

Let e
′′

=



0 if e′ ≤ 0

1 if e′ ≥ 1

e
′

if 0 < e′ < 1

Then −π ≤ e
′′ ≤ π

Proof Suppose −π ≤ e ≤ π and e′ = e+π
2π .

(i) Let e
′ ≤ 0. Then e

′′
= 0. Thus −π ≤ e

′′ ≤ π.

(ii) Let e
′ ≥ 1. Then e

′′
= 1. Thus −π ≤ e

′′ ≤ π.

(iii) Let 0 < e
′
< 1. Then e

′′
= e
′

= e+π
2π . Then 0 ≤ e

′′ ≤ 1. Therefore, −π ≤ e
′′ ≤ π.

225

REFERENCES

226

REFERENCES

[1] Avatar(2009) - Box Office Mojo. http://www.boxofficemojo.com/movies/?id=avatar.
htm. Accessed: 2014-04-26.

[2] Brett Allen, Brian Curless, and Zoran Popovic. Articulated body deformation from
range scan data. ACM Trans. Graph., 21(3):612–619, July 2002.

[3] Brett Allen, Brian Curless, and Zoran Popović. The space of human body shapes:
reconstruction and parameterization from range scans. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 587–594, New York, NY, USA, 2003. ACM.

[4] K.S. Arun, T.S. Huang, and S.D. Blostein. Least-squares fitting of two 3-d point sets.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, (5):698–700, 1987.

[5] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-
Yee Lee. Skeleton extraction by mesh contraction. ACM Trans. Graph., 27(3):1–10,
2008.

[6] G. Aujay, F. Hétroy, F. Lazarus, and C. Depraz. Harmonic skeleton for realistic charac-
ter animation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 151–160. Eurographics Association, 2007.

[7] Ilya Baran and Jovan Popovic. Automatic rigging and animation of 3d characters. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 72, New York, NY, USA, 2007.
ACM.

[8] G. Bharaj, T. Thormählen, H.P. Seidel, and C. Theobalt. Automatically rigging multi-
component characters. In Computer Graphics Forum, volume 31, pages 755–764. Wiley
Online Library, 2012.

[9] blender.org. Blenderwiki - doc:2.4/manual/modeling/meshes/weight paint, 2013.

[10] J. Bloomenthal. Medial-based vertex deformation. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 147–151. ACM,
2002.

227

[11] Jules Bloomenthal and Chek T Lim. Skeletal methods of shape manipulation. In Shape
Modeling International, volume 99, pages 44–47, 1999.

[12] Harry Blum. A transformation for extracting new descriptors of shape. 19:362–380,
1967.

[13] Jonathan Cameron and Joan Lasenby. Estimating human skeleton parameters and
configuration in real-time from markered optical motion capture. In AMDO ’08: Pro-
ceedings of the 5th international conference on Articulated Motion and Deformable
Objects, pages 92–101, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang, and Zhinxun Su. Point cloud
skeletons via laplacian based contraction. In Shape Modeling International Conference
(SMI), 2010, pages 187–197. IEEE, 2010.

[15] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. In-
teractive skeleton-driven dynamic deformations. In SIGGRAPH ’02: Proceedings of
the 29th annual conference on Computer graphics and interactive techniques, pages
586–593, New York, NY, USA, 2002. ACM.

[16] E. Chaudhry, LH You, and J.J. Zhang. Character skin deformation: A survey. In
Computer Graphics, Imaging and Visualization (CGIV), 2010 Seventh International
Conference on, pages 41–48. IEEE, 2010.

[17] Cheng-Hao Chen, I-Chen Lin, Ming-Han Tsai, and Pin-Hua Lu. Lattice-based skinning
and deformation for real-time skeleton-driven animation. In Proceedings of the 2011
12th International Conference on Computer-Aided Design and Computer Graphics,
CADGRAPHICS ’11, pages 306–312, Washington, DC, USA, 2011. IEEE Computer
Society.

[18] Wang Cheng, Ren Cheng, Lei Xiaoyong, and Dai Shuling. Automatic skeleton gen-
eration and character skinning. In VR Innovation (ISVRI), 2011 IEEE International
Symposium on, pages 299 –304, march 2011.

[19] Jen-Hui Chuang, Narendra Ahuja, Chien-Chou Lin, Chi-Hao Tsai, and Cheng-Hui
Chen. A potential-based generalized cylinder representation. Computers & Graphics,
28(6):907–918, 2004.

[20] J.H. Chuang, C.H. Tsai, and M.C. Ko. Skeletonisation of three-dimensional object
using generalized potential field. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(11):1241–1251, 2000.

228

[21] N.D. Cornea, D. Silver, and P. Min. Curve-skeleton properties, applications, and
algorithms. Visualization and Computer Graphics, IEEE Transactions on, 13(3):530–
548, 2007.

[22] Tamal K Dey and Jian Sun. Defining and computing curve-skeletons with medial
geodesic function. In Symposium on geometry processing, volume 6, pages 143–152,
2006.

[23] H. Doraiswamy, A. Sood, and V. Natarajan. Constructing reeb graphs using cylinder
maps. In Proceedings of the 2010 annual symposium on Computational geometry, pages
111–112. ACM, 2010.

[24] Fletcher Dunn and Ian Parberry. 3D math primer for graphics and game development.
CRC Press, 2015.

[25] Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. Real-time data driven deformation
using kernel canonical correlation analysis. In ACM Transactions on Graphics (TOG),
volume 27, page 91. ACM, 2008.

[26] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[27] Sven Forstmann and Jun Ohya. Fast skeletal animation by skinned arc-spline based
deformation. EG 2006 Short Papers, pages 1–4, 2006.

[28] Sven Forstmann, Jun Ohya, Artus Krohn-Grimberghe, and Ryan McDougall. Defor-
mation styles for spline-based skeletal animation. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation, SCA ’07, pages 141–
150, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[29] Ivo Zoltan Frey and Ivo Herzeg. Spherical skinning with dual quaternions and qtan-
gents. ACM SIGGRAPH Talks, 11:1–11, 2011.

[30] J. Gain and D. Bechmann. A survey of spatial deformation from a user-centered
perspective. ACM Transactions on Graphics (TOG), 27(4):107, 2008.

[31] Sarah F. F. Gibson and Brian Mirtich. A survey of deformable modeling in computer
graphics. Technical report, Mitsubishi Electric Research Laboratories, 1997.

[32] Tanya Grigorishin, Gamal Abdel-Hamid, and Y-H Yang. Skeletonisation: An electro-
static field-based approach. Pattern Analysis and Applications, 1(3):163–177, 1998.

229

[33] Igor Guskov and Andrei Khodakovsky. Wavelet compression of parametrically coherent
mesh sequences. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, SCA ’04, pages 183–192, Aire-la-Ville, Switzerland,
Switzerland, 2004. Eurographics Association.

[34] N. Hasler, T. Thorm
”ahlen, B. Rosenhahn, and H.P. Seidel. Learning skeletons for shape and pose. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
pages 23–30. ACM, 2010.

[35] M Sabry Hassouna and Aly A Farag. Robust centerline extraction framework us-
ing level sets. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 458–465. IEEE, 2005.

[36] Jim Hejl. Hardware skinning with quaternions. Game Programming Gems, 4:487–495,
2004.

[37] Robert Held, Ankit Gupta, Brian Curless, and Maneesh Agrawala. 3d puppetry: a
kinect-based interface for 3d animation. In UIST, pages 423–434. Citeseer, 2012.

[38] DM Henderson. Euler angles, quaternions, and transformation matricies–working re-
lationships. NASA TM-74839, JSC-12960, 1977.

[39] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L Kunii. Topology
matching for fully automatic similarity estimation of 3d shapes. In Proceedings of
the 28th annual conference on Computer graphics and interactive techniques, pages
203–212. ACM, 2001.

[40] S. G. Hoggar. Mathematics for computer graphics. Cambridge tracts in theoretical
computer science: 14. Cambridge [England] ; New York : Cambridge University Press,
1992., 1992.

[41] Kayra M. Hopkins. Data driven smooth skin weight computation. Master’s thesis
research, Michigan State University, 2011.

[42] Berthold KP Horn. Some notes on unit quaternions and rotation. Lecture handouts,
2001. http://people.csail.mit.edu/bkph/articles/Quaternions.pdf, Accessed: 2014-04-
26.

[43] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and
Baoquan Chen. L1-medial skeleton of point cloud. ACM Trans. Graph., 32(4):65–1,
2013.

230

[44] Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas Guibas. Shape decomposi-
tion using modal analysis. Computer Graphics Forum, 28(2):407–416, April 2009.

[45] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, et al. Kinectfusion: real-time 3d reconstruction
and interaction using a moving depth camera. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, pages 559–568. ACM, 2011.

[46] A. Jacobson, I. Baran, L. Kavan, J. Popović, and O. Sorkine. Fast automatic skinning
transformations. ACM Transactions on Graphics (TOG), 31(4):77, 2012.

[47] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. Skinning: Real-time
shape deformation. In ACM SIGGRAPH 2014 Courses, 2014.

[48] Alec Jacobson and Olga Sorkine. Stretchable and twistable bones for skeletal shape
deformation. In ACM Transactions on Graphics (TOG), volume 30, page 165. ACM,
2011.

[49] Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Trans.
Graph, 24:399–407, 2005.

[50] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed triangular
meshes. In ACM Transactions on Graphics (TOG), volume 24, pages 561–566. ACM,
2005.

[51] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts.
In ACM Transactions on Graphics (TOG), volume 22, pages 954–961. ACM, 2003.

[52] Ladislav Kavan, Steven Collins, Jǐŕı Žára, and Carol O’Sullivan. Skinning with dual
quaternions. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics
and games, pages 39–46, New York, NY, USA, 2007. ACM.

[53] Ladislav Kavan, Steven Collins, Jiri Zara, and Carol O’Sullivan. Geometric skinning
with approximate dual quaternion blending. volume 27, page 105, New York, NY,
USA, 2008. ACM Press.

[54] Ladislav Kavan, P-P Sloan, and Carol O’Sullivan. Fast and efficient skinning of ani-
mated meshes. In Computer Graphics Forum, volume 29, pages 327–336. Wiley Online
Library, 2010.

[55] Byung-Uck Kim, Wei-Wei Feng, and Yizhou Yu. Real-time data driven deformation
with affine bones. The Visual Computer, 26(6-8):487–495, 2010.

231

[56] Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskin: real time large de-
formation character skinning in hardware. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA ’02, pages 153–159,
New York, NY, USA, 2002. ACM.

[57] Binh Huy Le and Zhigang Deng. Smooth skinning decomposition with rigid bones.
ACM Trans. Graph., 31(6):199:1–199:10, November 2012.

[58] Binh Huy Le and Zhigang Deng. Robust and accurate skeletal rigging from mesh
sequences. ACM Transactions on Graphics (TOG), 33(4):84, 2014.

[59] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified ap-
proach to shape interpolation and skeleton-driven deformation. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer graphics and interactive tech-
niques, pages 165–172, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-
lishing Co.

[60] Jyh-Ming Lien, John Keyser, and Nancy M. Amato. Simultaneous shape decomposition
and skeletonization. In SPM ’06: Proceedings of the 2006 ACM symposium on Solid
and physical modeling, pages 219–228, New York, NY, USA, 2006. ACM.

[61] H. Liu, X. Wei, J. Chai, I. Ha, and T. Rhee. Realtime human motion control with
a small number of inertial sensors. In Symposium on Interactive 3D Graphics and
Games, pages 133–140. ACM, 2011.

[62] P. Liu, F. Wu, W. Ma, R. Liang, and M. Ouhyoung. Automatic animation skeleton us-
ing repulsive force field. In Proc. IEEE 11th Pacific conference on Computer Graphics
and Applications PG ’03, pages 409–413, 2003.

[63] L. Lu, F. Hétroy, C. Gérot, B. Thibert, et al. Atlas-based character skinning with
automatic mesh decomposition. 2008.

[64] M. Madaras, R. Ďurikovič, T. Ágošton, and T. Nishita. Skeleton extraction from a
mesh for easy skinning animation. In Proceedings of the 13th International Conference
on Humans and Computers, pages 37–41. University of Aizu Press, 2010.

[65] Grégoire Malandain and Sara Fernández-Vidal. Euclidean skeletons. Image and vision
computing, 16(5):317–327, 1998.

[66] Markets & Markets. Computer graphics market by software (cad/cam, visualiza-
tion/simulation, digital video, imaging, modeling/animation), service (consulting,

232

training & support, integration), end-user (enterprise and smb) - worldwide forecasts
& analysis (2014-2019). Online, June 2014.

[67] Autodesk 3DS Max. 3ds max documentation set, 2013.

[68] Autodesk Maya. Autodesk Maya 2013 User Guide, 2013.

[69] Bruce Merry, Patrick Marais, and James Gain. Animation space: A truly linear frame-
work for character animation. volume 25, pages 1400–1423, New York, NY, USA, 2006.
ACM.

[70] Laurent Moccozet, Fabien Dellas, Nadia Magnenat-thalmann, Silvia Biasotti, Michela
Mortara, Bianca Falcidieno, Patrick Min, and Remco Veltkamp. Animatable human
body model reconstruction from 3d scan data using templates. In In Proceedings of
Workshop on Modelling and Motion Capture Techniques for Virtual Environments,
CAPTECH 2004, pages 73–79, 2004.

[71] A. Mohr, L. Tokheim, and M. Gleicher. Direct manipulation of interactive character
skins. In Proceedings of the 2003 symposium on Interactive 3D graphics, pages 27–30.
ACM, 2003.

[72] Alex Mohr and Michael Gleicher. Building efficient, accurate character skins from
examples. ACM Trans. Graph., 22:562–568, July 2003.

[73] L. Nash Information Services. Box office history for digital animation, 2016.

[74] LLC Nash Information Services. Box office history for production method - anima-
tion/live action, 2016.

[75] R. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and applications. In Computer
Vision and Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE Computer
Society Conference on, pages 63–69. IEEE, 1992.

[76] R.L. Ogniewicz and O. Kübler. Hierarchic voronoi skeletons. Pattern recognition,
28(3):343–359, 1995.

[77] A Cengiz Öztireli, Ilya Baran, Tiberiu Popa, Boris Dalstein, Robert W Sumner, and
Markus Gross. Differential blending for expressive sketch-based posing. In Proceed-
ings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 155–164. ACM, 2013.

233

[78] J.J. Pan, X. Yang, X. Xie, P. Willis, and J.J. Zhang. Automatic rigging for animation
characters with 3d silhouette. Computer Animation and Virtual Worlds, 20(2-3):121–
131, 2009.

[79] Giuseppe Patane, Michela Spagnuolo, and Bianca Falcidieno. Reeb graph computation
based on a minimal contouring. In Shape Modeling and Applications, 2008. SMI 2008.
IEEE International Conference on, pages 73–82. IEEE, 2008.

[80] Martin Poirier and Eric Paquette. Rig retargeting for 3d animation. In Proceedings
of Graphics Interface 2009, pages 103–110. Canadian Information Processing Society,
2009.

[81] W.H. Press. Numerical recipes: the art of scientific computing. Cambridge Univ Pr,
2007.

[82] Dennie Reniers and Alexandru Telea. Skeleton-based hierarchical shape segmentation.
In Shape Modeling and Applications, 2007. SMI’07. IEEE International Conference
on, pages 179–188. IEEE, 2007.

[83] T. Rhee, JP Lewis, and U. Neumann. Real-time weighted pose-space deformation
on the gpu. In Computer Graphics Forum, volume 25, pages 439–448. Wiley Online
Library, 2006.

[84] Taehyun Rhee, Youngkyoo Hwang, James Dokyoon Kim, and Changyeong Kim. Real-
time facial animation from live video tracking. In Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’11, pages 215–224,
New York, NY, USA, 2011. ACM.

[85] C. Rose, M.F. Cohen, and B. Bodenheimer. Verbs and adverbs: multidimensional mo-
tion interpolation. Computer Graphics and Applications, IEEE, 18(5):32 –40, sep/oct
1998.

[86] Andrea Sanna, Fabrizio Lamberti, Gianluca Paravati, and Felipe Domingues Rocha.
A kinect-based interface to animate virtual characters. Journal on Multimodal User
Interfaces, 7(4):269–279, 2013.

[87] S. Schaefer and C. Yuksel. Example-based skeleton extraction. In Proceedings of the
fifth Eurographics symposium on Geometry processing, pages 153–162. Eurographics
Association, 2007.

[88] Hyewon Seo, Frederic Cordier, and Nadia Magnenat-Thalmann. Synthesizing animat-
able body models with parameterized shape modifications. In SCA ’03: Proceedings of

234

the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
120–125, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[89] J. Seo, Y. Seol, D. Wi, Y. Kim, and J. Noh. Rigging transfer. Computer Animation
and Virtual Worlds, 21(3-4):375–386, 2010.

[90] Jaewoo Seo, Geoffrey Irving, J. P. Lewis, and Junyong Noh. Compression and direct
manipulation of complex blendshape models. ACM Trans. Graph., 30(6):164:1–164:10,
December 2011.

[91] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method with-
out the agonizing pain, 1994.

[92] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo.
Example-based dynamic skinning in real time. ACM Trans. Graph., 27(3):29:1–29:8,
August 2008.

[93] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. The princeton
shape benchmark. In Shape modeling applications, 2004. Proceedings, pages 167–178.
IEEE, 2004.

[94] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, An-
drew Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in
parts from single depth images. Communications of the ACM, 56(1):116–124, 2013.

[95] K Siddiqi and SM Pizer. Medial representations: Mathematics, algorithms & applica-
tions, vol. 37 of comp. Imaging & Vision series, 2008.

[96] Peter-Pike J. Sloan, Charles F. Rose, III, and Michael F. Cohen. Shape by example. In
Proceedings of the 2001 symposium on Interactive 3D graphics, I3D ’01, pages 135–143,
New York, NY, USA, 2001. ACM.

[97] Steven Spielberg. Jurassic park. DVFD, 1993.

[98] Robert W. Sumner and Jovan Popović. Deformation transfer for triangle meshes. ACM
Trans. Graph., 23(3):399–405, August 2004.

[99] Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang. Mean cur-
vature skeletons. In Computer Graphics Forum, volume 31, pages 1735–1744. Wiley
Online Library, 2012.

235

[100] Marek Teichmann and Seth Teller. Assisted articulation of closed polygonal models.
In Computer Animation and Simulation ’98, pages 87–101. Springer, 1999.

[101] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi. 3d mesh skeleton
extraction using topological and geometrical analyses. In 14th Pacific Conference on
Computer Graphics and Applications (Pacific Graphics 2006), page s1poster, 2006.

[102] Rodolphe Vaillant, Löıc Barthe, Gaël Guennebaud, Marie-Paule Cani, Damien
Rohmer, Brian Wyvill, Olivier Gourmel, Mathias Paulin, LJK-Grenoble Universités-
Inria, and CPE Lyon-Inria. Implicit skinning: Real-time skin deformation with contact
modeling. ACM Transactions on Graphics, 32(4), 2013.

[103] Oliver van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi, and Daniel Cohen-Or.
Shape segmentation by approximate convexity analysis. ACM Transactions on Graph-
ics (TOG), 34(1):4, 2014.

[104] Robert Y. Wang, Kari Pulli, and Jovan Popović. Real-time enveloping with rotational
regression. ACM Trans. Graph., 26, July 2007.

[105] Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: least-squares
approximation techniques for skin animation. In SCA ’02: Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 129–138,
New York, NY, USA, 2002. ACM.

[106] Y.S. Wang and T.Y. Lee. Curve-skeleton extraction using iterative least squares op-
timization. Visualization and Computer Graphics, IEEE Transactions on, 14(4):926–
936, 2008.

[107] David S Watkins. Fundamentals of matrix computations, volume 64. John Wiley &
Sons, 2004.

[108] Alan H. Watt and Mark Watt. Advanced animation and rendering techniques : theory
and practice. New York, N.Y. : ACM Press ; Wokingham, England ; Reading, Mass.
: Addison-Wesley Pub., 1992., 1992.

[109] Wazim. Step by step skeletal animation in c++ and opengl, using collada part 2, 2010.

[110] Eric W Weisstein. Finite difference. 2005.

[111] Eric W Weisstein. Euler angles. 2009.

236

[112] Michael White. Cameron’s ‘Avatar’ opens with $73 million, 3-D record (update2). http:
//www.bloomberg.com/apps/news?pid=newsarchive&sid=aBwgFxRW xkA, Decem-
ber 2009. Acceessed: 2014-04-26.

[113] Xiaosong Yang, Arun Somasekharan, and Jian J. Zhang. Curve skeleton skinning for
human and creature characters: Research articles. Comput. Animat. Virtual Worlds,
17(3-4):281–292, 2006.

[114] Sang Min Yoon and H. Graf. Automatic skeleton extraction and splitting of target
objects. In Image Processing (ICIP), 2009 16th IEEE International Conference on,
pages 2421 –2424, November 2009.

[115] Shin Yoshizawa, Alexander Belyaev, and Hans-Peter Seidel. Skeleton-based variational
mesh deformations. Computer Graphics Forum, 26(3):255–264, September 2007.

237

