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ABSTRACT 

EVALUATING THE ROLE OF GROUNDWATER IN CIRCULATION, THERMAL 

STRUCTURE AND NUTRIENTALGAL DYNAMICS WITHIN 

A DEEP INLAND LAKE  

By 

Ammar Safaie Nematollahi 

Inland lakes readily respond to changes in external forcing and therefore serve as sentinels of 

climate change. Many parts of the world continue to experience declining groundwater levels due 

to anthropogenic activities such as high-capacity pumping for agriculture or decreases in natural 

recharge rates of aquifers while lake surface temperatures continue to rise and show a clear 

warming trend. The responses of individual lakes to these stressors could vary depending upon the 

positions of the lakes within the landscape and the nature of lake-groundwater interactions. Since 

temperature is a key driver that affects the structure and function of ecosystems including 

biological productivity, nutrient cycling and hypoxia, groundwater-fed lakes could be altered 

drastically due to declining groundwater contribution. Thus, it is crucial to understand the role of 

groundwater in biophysical processes and to determine what regime shifts may occur in the 

absence of lake-groundwater interactions. To address this question, extensive field datasets were 

collected in the Gull Lake, a deep, dimictic, groundwater-fed, inland lake in Michigan, with bottom 

cooling and strong stratification during summer. The lake supports diverse warm and cold water 

fisheries. Detailed three-dimensional hydrodynamic and temperature models of Gull Lake coupled 

to nutrient and algal dynamics were developed to study the effect of groundwater on physical, 

chemical, and biological processes in the lake. Coupled biophysical processes in the water column 

are closely linked to meteorological forcing. Therefore, meteorological forcing fields were 

carefully reconstructed from a network of weather station data, and were assessed using outputs 



 

 

from a mesoscale numerical weather forecasting model (WRF). A novel manifold method of 

reconstructing dynamically evolving spatial fields is presented for assimilating data from sensor 

networks in lake and watershed models. The manifold method has been developed based on the 

assumption that geophysical and meteorological data can be mapped onto an underlying 

differential manifold. A comparative evaluation of turbulence models was also conducted to 

improve descriptions of vertical mixing and thermal structure of the lake. The performance of the 

biophysical model was first evaluated against high-resolution in situ observations, including 

currents, lake levels, temperature, nutrients, dissolved oxygen, and chlorophyll data. After 

successfully applying the model to describe current conditions, the developed models were used 

to understand the responses of the lake ecosystem when the groundwater contribution is absent. 

Results suggest that groundwater-fed lakes have the ability to buffer seasonal water temperature 

variations in the hypolimnion, which helps them to withstand disturbances from surface-induced 

changes. However, groundwater depletion was accompanied by changes in the structure and 

function of lake ecosystems including lake level changes, rising water temperatures, increased 

growth rates of algae, oxygen depletion, early anoxia, reduction of light availability, and 

eutrophication. These results highlight the significant role played by groundwater in inland lakes 

and indicate that groundwater-dependent ecosystems tend to show greater resilience. In addition 

to providing insights into key biophysical processes in inland lakes, this study is expected to help 

strengthen management efforts to improve or maintain the resilience of lake ecosystems. 
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CHAPTER 1 

 

 

 

 

1 Introduction 

1.1 Problem description 

Climate-induced changes in hydrodynamics of inland lakes are known to have physical, 

chemical, and biological effects on lake ecosystems. Wind speed, current shear, stratification and 

vertical mixing have significant effects on the cycling of nutrients, phytoplankton distribution, as 

well as on the growth rates of phytoplankton and benthic filter-feeders important for benthic-

pelagic trophic coupling [Denman and Gargett, 1983; Edwards et al., 2005; Rowe et al., 2015]. In 

addition, wind-mixing and thermal stratification have implications for regulating the supply of 

phytoplankton to zebra mussels [Boegman et al., 2008]. Changes in water temperature, thermal 

and mixing dynamics, strength and duration of stratification have impacts on primary production 

and associated food web, predation and growth rates of zooplankton and fish, nutrient supply, and 

deepwater anoxia [MacKay et al., 2009]. Hence, understanding coupled aquatic biophysical 

processes in lakes is critical to an improved understanding of lake ecosystems and their responses 

to climate change.  

Lake surface temperature is a key response indicator of climate change. Long-term air 

temperature and ice cover records suggest that freshwater ecosystems have experienced 
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temperature warming and shortening ice duration in response to the global warming over the past 

150 years [Magnuson, 2000]. Remote sensing observations of inland water bodies since 1985 also 

provide evidence of significant warming trends in their surface temperatures to the extent that in 

some regions, such as the Great Lakes and Northern Europe, water temperature is rising more 

rapidly than regional air temperature [Schneider and Hook, 2010]. The lake warming has been 

reported even in the largest freshwater lakes around the word such as Lake Baikal [Hampton et 

al., 2008], Lake Superior [Austin, 2013], Lake Michigan [Brooks and Zastrow, 2002], Lake Erie 

[Burns et al., 2005], and Lake Tanganyika [O’Reilly et al., 2003]. These warming trends have 

resulted in longer summer stratifications, combined with higher summer water temperatures and a 

shorter winter-spring mixing period. Such changes in thermal stratifications have consequential 

impact upon the ecology of lakes. For instance, the changes could reduce primary productivity by 

limiting upwelling of nutrients from deep water [Brooks and Zastrow, 2002; O’Reilly et al., 2003; 

Chang et al., 2015], and change planktonic processes and community dynamics of other aquatic 

organisms further up in the food chain [Lane et al., 2008; MacKay et al., 2009; Rühland et al., 

2015].  

Surface fluxes are usually assumed to be the only important driving forces responsible for 

the aforementioned climate-induced changes. From a system dynamics point of view, if a system 

is composed of only a reinforcing loop, the closed loop of cause and effect would lead to instability 

via accelerating growth [Sterman, 2000]. Balancing loops, on the other hand, serve to resist 

attempted changes in order to maintain a balance and keep the system at a desired state. Identifying 

these reinforcing and balancing processes in a complex dynamic system like a freshwater 

ecosystem is crucial to better understand thermal structure, circulation, nutrients, and algal 

dynamics in inland lakes. It is known that primarily groundwater-fed rivers are buffered against 

https://en.wikipedia.org/wiki/Exponential_growth
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increasing seasonal temperature variation [Combes, 2003]. A shallow temperate lake fed by 

groundwater might also have a significant bottom heating in winter and bottom cooling in summer 

[Kettle et al., 2012]. This groundwater effect may act as a balancing loop within a lake system. If 

this hypothesis is true, then groundwater can be introduced as a key contributor to offset warming 

and anoxia in the groundwater-fed lakes. However, long-term groundwater depletion has been 

reported in many different regions of the world [Rodell et al., 2009; Wada et al., 2010; Konikow, 

2013; Joodaki et al., 2014; Pokhrel et al., 2015; Dalin et al., 2017]. Therefore, groundwater 

dependent ecosystems are likely to be under dual pressure from surface temperature warming and 

groundwater depletion in response to natural climate variability and human activities. Thus, in 

order to protect ecosystems of groundwater-fed lakes, we need to understand the role of 

groundwater in their biophysical processes, and determine what regime shifts may occur in their 

ecosystems in the absence of lake-groundwater interactions. 

There are a variety of numerical ocean models, such as POM [Blumberg, and Mellor, 1987] 

ROMS [Haidvogel and Beckmann, 1999], and FVCOM [Chen et al., 2003b, 2006] that can be 

used to predict and obtain a better understanding of aquatic biophysical processes. Performance of 

these mechanistic models is highly dependent on accuracy of surface forcing fields (i.e. wind stress 

and heat flux). These forcing fields can be obtained from observational data, the output of a 

weather forecast model, or a combination thereof [Xue et al., 2015]. In the Great Lakes region, 

real-time and historic meteorological data are available from buoys and monitoring stations across 

the lakes. However, realistic meteorological forcing fields (reconstructed using point observations) 

are still needed and the hydrodynamic results could be enhanced by using an improved algorithm 

for reconstruction of meteorological fields based on data from a network of weather stations 

[Safaie et al., 2016] or utilizing a weather forecast model [Xue et al., 2015]. In contrast, for 
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relatively small inland lakes nestled within the landscape, meteorological forcing data are not 

always available and intraregional data have to be compiled from local weather stations (e.g., from 

airports) several kilometers away from the lake [Hondzo and Stefan, 1993; Markfort et al., 2010]. 

Moreover, meteorological data from a single station near the lake may not be representative of the 

spatial distribution of meteorological fields around the lake and may produce unreasonable results 

[Rueda et al., 2005]. 

1.2 The study area 

To evaluate the role of groundwater, we used field datasets and a coupled biophysical model 

of Gull Lake, a relatively small (8 km2 surface area) but deep (34 m maximum depth) clear water 

lake in the in Kalamazoo County in southwestern Michigan. Gull Lake is a hardwater, 

groundwater-fed lake, representative of many other inland lakes in the Great Lakes region. This 

lake is an attractive recreational site that supports diverse warm and cold water fisheries. Over 70 

species of fish with a seasonal pattern in their predator dynamics are reported in Gull Lake [Lane, 

1979]. The presence of a Michigan State University research field station (the W.K. Kellogg 

Biological station), located on shores of Gull Lake, has resulted in long term biological and 

limnological research. In 1941, a bathymetric map of the lake was created to aid fisheries research. 

The earliest limnological study of Gull Lake by Perry and Brown [1942] reported the thermal 

stratification in the lake. The lake is usually stratified from May to early November. Gull Lake 

was of great scientific interest following the zebra mussel invasion in 1994, and the subsequent 

rapid increase of Microcystis biomass after the invasion [Wilson and Sarnelle, 2002; Sarnelle et 

al., 2005; Bruesewitz et al., 2009; Horst et al., 2014; White et al., 2015]. Gull Lake nitrification 

and denitrification rates in littoral sediments are relatively high likely due to the presence of zebra 

mussels [Bruesewitz et al., 2009]. Observations from 1965 to 1975 showed a high growth rate of 
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algae in Gull Lake which was controlled by phosphorus loading into the lake. Long term 

phosphorus concentration of Gull Lake has been stable since 1994, and currently the water quality 

in the lake is reported to be in good condition. In summers, however, some concerns have been 

raised about blue-green algal blooms [White and Hamilton, 2014].  

Prairieville Creek provides the main surface inflow into Gull Lake from the north. This 

tributary had a small annual flow rate of 0.19 (m3/s) in 2014. The lake has a single outflow 

southward to the Gull Creek (Figure 1-1). The flow rate of the outflow and the lake level are 

controlled by a sluice-gate dam. Gull Lake also receives water from three small lakes: Little Long, 

Wintergreen, and Miller Lakes. All these lakes have glacial kettle type basins, and the soil in this 

area is classified as glacial outwash sand and gravel, and postglacial alluvium.  

 

Figure 1-1 Map of Gull Lake 
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Bedrock type divides Gull Lake into two bedrock aquifer systems. The northern half of the 

lake is underlain by a permeable Marshall formation, and the remaining part consists of Coldwater 

shale with a relatively low permeability. The topographic elevation around the lake ranges between 

237 to 305 meters with a downward slope toward the south/southeast (Figure 1-2). It has been 

reported that, other than small tributaries, inflow of Gull Lake is provided by groundwater 

discharge through springs from the bottom of the lake [Perry and Brown, 1942; Moss, 1972]. 

Tague [1977] estimated the water budget of Gull Lake in 1974, with 40% of its water from 

groundwater inflow, 25% from direct precipitation onto the lake surface, and 35% from stream 

inflows. 

 

Figure 1-2 Gull Lake's watershed boundaries and digital elevation model (DEM) map. 

During the summer stratification period, Gull Lake is alkaline with average pH values of 9 

and 8.2 in the epilimnion and hypolimnion, respectively. The level of alkalinity reflects the 
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interaction of the lake with groundwater. Kinsman-Costello et al. [2015] reported that the 

groundwater contribution to the water budget of the lake was as high as 90% in late summer of 

2010. This percentage of the groundwater influence was calculated from magnesium ion (Mg2+) 

concentrations in shallow (<2m deep) waters as a conservative tracer for groundwater, assuming 

that groundwater and precipitation are the only source of dissolved Mg2+ in the lake. In inland 

shallow lakes, heat flux exchange between water and lake sediment needs to be taken into 

consideration for vertical thermal diffusivity analyses [Hondzo et al., 1991]. It was suggested that 

heat exchange between water and lake sediments in inland shallow lakes needs to be taken into 

consideration for vertical thermal diffusivity analyses [Hondzo and Stefan, 1993]. In most 

hydrodynamic models, however, the role of groundwater exchange in the energy budget and 

seasonal stratification are assumed to be negligible. 

1.3 Summary of specific aims 

The major objective of this study was to evaluate the role of groundwater in physical, 

chemical, and biological processes in Gull Lake which is a typical representation of many other 

groundwater-fed inland lakes in Michigan. Despite decades of water quality monitoring and 

biological research in Gull Lake, a numerical model of the lake has not been developed to date. A 

major motivation of this work is to develop a hydrodynamic model of Gull Lake coupled to nutrient 

(N, P) and algal dynamics. The working hypothesis here is that groundwater flow through Gull 

Lake causes significant bottom cooling in summer, to an extent that it has an important role in 

offsetting hypolimnetic warming and anoxia in the lake. Groundwater also has an effect on 

temperature, and it is well-know that phytoplankton and algae growth rates are dependent on 

temperature. This work is an attempt to quantify contributions of groundwater in a lake ecosystem 

by addressing the following research questions: 
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1. What is the role of groundwater in circulation and thermal structure within Gull Lake? 

Aim 1: Evaluate the role of groundwater in circulation and thermal structure. 

Aim 2: Quantify the impact of ignoring groundwater contribution on temperature. 

Aim 3: Quantify the percentage contribution of groundwater to the water budget of the 

lake. 

2. What is the role of groundwater in water quality of Gull Lake? 

Aim 1: Understand the effect of groundwater on dissolved oxygen. 

Aim 2: Understand the effect of groundwater on nutrient-algal dynamics. 

Aim 3: Understand the impact of ignoring groundwater contribution on nutrients and algae. 

1.4 Expected benefits and significance 

The aim of this research is to combine a coupled biophysical model and field observations 

to provide improved understanding of physical and biological behaviors of lakes. This research 

highlights the importance of algal blooms in the context of climate change and how groundwater 

tends to slow down the effects of the climate change. Insights gained from the developed complex 

mechanistic model will advance the understanding of the response of dissolved oxygen in inland 

lakes to the warming trend of air temperature throughout the world. Another aspect of this study 

is to document a systematic approach to modeling hydrodynamics and water quality of inland lakes 

that can be used for other fresh water bodies. These outcomes could strengthen management efforts 

to decrease nutrient loads, control hypolimnetic oxygenation, and monitor human activities that 

affect groundwater – surface water interactions.  
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1.5 Dissertation structure 

A coupled three-dimensional hydrodynamic and water quality model of Gull Lake was 

developed to investigate the effect of groundwater on physical, chemical, and biological processes 

in the lake. The model was refined and assessed through the following steps: 

1. Collecting accurate bathymetry of the lake in order to improve the performance of the 

numerical model. 

2. Developing a novel manifold-based method to assimilate geophysical and meteorological 

data in integrated Earth system models for better representations of the meteorological 

fields and bathymetry. 

3. Evaluating the performance of the model for different forcings including a mesoscale 

weather forecast model. 

4. Refinement of the unstructured numerical mesh horizontally and vertically using a 

bathymetry-based refinement algorithm to improve the accuracy of simulated circulation 

and thermal structure. 

5. A comparative study of turbulence models to identify superior formulations and to further 

improve descriptions of vertical mixing and thermal structure of the lake. 

6. Utilizing high-resolution in situ observations to evaluate the performance of the models in 

describing coupled biophysical processes. 

The developed models were then used to predict the responses of the lake ecosystem caused 

by disconnection of the lake from groundwater. This doctoral dissertation is divided into the 

following five main chapters: 

Chapter 1. Introduction 
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Chapter 2. Reconstruction of geophysical and meteorological data in integrated Earth system 

models 

Chapter 3. Evaluating the role of groundwater in circulation and thermal structure 

Chapter 4. Evaluating the role of groundwater in nutrients, and algal dynamics 

Chapter 5. Conclusions 
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CHAPTER 2 

 

2 Reconstruction of Geophysical and Meteorological 

Data in Integrated Earth System Models 

 

2.1 Introduction 

Performance of integrated Earth system models relies upon accuracy of meteorological and 

geophysical data. In situ observations generally have sparse and inhomogeneous distribution in 

space and time, and it is often infeasible to accurately reconstruct the true field from the data. 

However, more information about the structure of the field and its evolution, allows for better 

approximations [Barth et al., 2008]. For instance, currents in large lakes such as the Laurentian 

Great Lakes are mostly controlled by wind. Therefore, by improving the representation of wind 

fields in models of lake circulation, we expect to describe coupled biophysical processes in lakes 

more accurately. For example, Safaie et al. [2016] demonstrated that improved representation of 

meteorological fields based on natural neighbor interpolation of weather station data produced 

superior results for currents and bacterial concentrations relative to similar results based on a 

nearest neighbor interpolation of the same data. Accurate representation of geophysical features 

such as topography and bathymetry is also important in Earth system models and their components, 
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and model performance depends on the interpolation method used to assign the topographic 

information over a numerical mesh in processed-based models.  

In order to assimilate observations into the models, and estimate variables at unsampled 

locations and/or times, it is crucial to use a suitable interpolation method. Various deterministic 

[e.g., nearest neighbor, natural neighbor, inverse distance weighting (IDW), spline, polynomial] 

and geostatistical (e.g. kriging) interpolation methods have been developed to generate spatial 

fields. There have been numerous efforts to compare different spatial interpolation methods in 

order to identify the best method for a given model application. Yan et al. [2014] compared 

different interpolation methods, including IDW, global polynomial interpolation, local polynomial 

interpolation, radial basis functions, ordinary kriging (OK), simple kriging (SK), universal kriging 

(UK), and co-kriging (CK) to determine the water/land boundary point elevation based on in situ 

water level data from 14 control stations in Dongting Lake. They used a cross-validation method 

to select the optimal method, which was found to be the OK method. Merwade [2009] studied the 

effect of spatial trend on interpolation of river bathymetry, and compared the performance of 

different interpolation methods. The number of measurements and their spatial arrangement, as 

well as channel morphology and geology were found to influence the accuracy of the interpolation 

results [Merwade, 2009]. Due to the effects of these and other factors on the performance of 

various methods, comparisons of different spatial interpolation methods could not point out the 

best universal interpolation method [Li and Heap, 2008; Šiljeg et al., 2015]. 

Many studies, such as aforementioned works, have used cross-validation for assessing the 

performance of the interpolation methods. In this method, a subset of the original dataset is 

withheld to be used later for validating the interpolated field constructed from the rest of the 

observational data. Mean error (ME), root mean square error (RMSE) and the coefficient of 
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determination (R2) are commonly used to evaluate the performance of each interpolation method 

[Suparta and Rahman, 2016]. However, every problem has a unique method of interpolation that 

works best for a given distribution of observations and the intended use of the interpolated data. 

Density of a sensor network, spatial variability of the variable of interest and its distribution, and 

observational errors, all influence the accuracy of the interpolated field [MacEachren and 

Davidson, 1987]. For example, Luo et al. [2008] compared seven spatial interpolation techniques 

to identify which method produced the best estimation of the wind speed data recorded across 

England and Wales. Their study showed that kriging is the best method, and that the thin plate 

spline method had higher ME and RMSE values. However, in Suparta and Rahman [2016] the 

performance of the thin plate spline interpolation based on the RMSE and R2 values was found to 

be better than kriging for less dense data points over the selected interpolation surface. Therefore, 

comparing interpolation methods using the cross-validation method without considering the data 

structure and the purpose of interpolation is not guaranteed to produce the best representation of 

the underlying data. 

In this study, a novel manifold method is proposed to assimilate different types of 

spatiotemporal data in integrated Earth system models based on the hypothesis that an 

environmental dataset (including independent variables such as longitude, latitude, and time, and 

the measured variables of interest) can be mapped onto an underlying differential manifold. 

Working directly in the high dimensional space generally involves dealing with complex 

algorithms. Modeling the high dimensional data using manifolds with fewer degrees of freedom 

has captured a great deal of attention recently [Zhang et al., 2016a]. The use of low-dimensional 

manifolds not only reduces computational load for further processing, but also helps visualize the 
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entire dataset, which is an important initial step to make sense of the data before proceeding with 

more goal-directed modeling and analyses [Ma et al., 2011]. 

The problem of non-linear dimensionality reduction for a set of high dimensional data points 

is known as manifold learning. Examples of early works for non-linear dimensionality reduction 

include Isomap [Tenenbaum et al., 2000], local linear embedding (LLE) [Roweis and Saul, 2000], 

and Eigenmaps [Belkin and Niyogi, 2003], which have been used to learn the true underlying low-

dimensional manifold structure of the data. Since then, the manifold model has been exploited 

extensively in numerous applications such as face recognition, action classification, segmentation, 

image denoising, image/video super-resolution, and multi-scale image analysis [Carin et al., 2011; 

Dang et al., 2013; Dang and Radha, 2014]. Most of these manifold learning methods have been 

inspired by linear techniques, mainly based on the assumption that non-linear manifolds can be 

approximated by locally linear parts [Mordohai and Medioni, 2010]. Two pioneering works in this 

area are the Isomap approach [Tenenbaum et al., 2000] and the LLE algorithm [Roweis and Saul, 

2000]. The Isomap algorithm aims to preserve the geodesic distance among points from the input 

dataset. On the other hand, the LLE algorithm targets the local linear geometry of neighbors in a 

manifold. Numerous works on manifold learning have been further developed. A comprehensive 

review of prior works can be found in van der Maaten et al. [2009]. 

 In this chapter, the effectiveness of the presented manifold algorithm is evaluated through 

assimilation of geophysical and meteorological data in lake models (section 2.1), although the 

methods described are general and can be used in many other areas of computational geosciences. 

We first apply the proposed method to reconstruct wind fields (time-varying vector fields) over 

Lake Michigan. Since currents in Lake Michigan are primarily driven by wind, we expect to 

improve the simulation of hydrodynamic and biophysical variables of interest by improving the 
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wind fields. Instead of relying on the cross-validation of interpolated wind data, however, we use 

a well-tested hydrodynamic model of Lake Michigan and compare current measurements with 

simulated currents to test the interpolation methods. The manifold methods are used to reconstruct 

meteorological data, which are available from buoys and monitoring stations across the lakes, to 

improved simulation of circulation in Lake Michigan. Then the method is applied to assimilate 

bathymetry data as a scalar field for use in a hydrodynamic model of Gull Lake. 

For small inland lakes nestled within the landscape, a nearby network of meteorological 

stations are not always available. In addition, meteorological data from a single station near the 

lake or from local weather stations several kilometers away from the lake may not be representative 

of the spatial distribution of meteorological fields around the lake. Therefore, we used a mesoscale 

weather prediction model along with data from a network of land-based weather stations to assess 

the accuracy of reconstructed forcing over Gull Lake (section 2.2). The predicted and observed 

weather data will be used in Chapter 3 to run the hydrodynamic model of Gull Lake. 

2.2 Materials and methods 

2.2.1 Application of manifold methods for data assimilation in integrated 

Earth system models 

2.2.1.1 Manifold approach 

A manifold ( M ) is an n-dimensional topological space such that each point of M and its 

neighborhood can be approximated by a small flat piece in the Euclidean space, n . We can think 

of a manifold as a set of low-dimensional curves and surfaces within higher dimension Euclidean 

spaces [Guillemin and Pollack, 2010]. Some typical examples of manifolds are smooth surfaces, 

such as a torus (Figure 2-1a) or a sphere (Figure 2-1b), where each point and its neighborhood can 
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be approximated by a small flat linear-subspace within the three-dimensional Euclidean space. 

Another example of a manifold in a high dimensional space is a Calabi-Yau manifold which has 

found important applications in theoretical physics (e.g. superstring theory). Figure 2-1c shows a 

two-dimensional cross-section of a six-dimensional Calabi-Yau manifold. Surfaces of all these 

three manifolds are not a Euclidean space. The laws of the Euclidean geometry, however, are valid 

locally.  

 

Figure 2-1 Some examples of manifolds (a) torus, (b) sphere, and (c) a two-dimensional cross-section of 

a six-dimensional Calabi-Yau manifold. 

Based on Einstein’s theory of relativity, physical events are located on the continuum 

(manifold) of space-time. Therefore, station locations and times of observations form a space-time 

manifold viewed as a four-dimensional vector space. One way to handle spatiotemporal 

interpolation problems, inspired by this concept, is to integrate space and time simultaneously [Li 

and Revesz, 2004]. An underlying assumption behind this approach is that time and space 

dimensions can be treated as equally important [Li et al., 2014a]. In order to add time as another 

dimension of space, time values are needed to be scaled for a spatiotemporal dataset by a scaling 

speed [Schwab and Beletsky, 1998; Li et al., 2014a]. For a point measurement, we can then define 

a four-vector ( , )P ct x  where c  is a time scale, t is the time coordinate and x  is a three-
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dimensional vector space. We assume that the set of high-dimensional data points P  (and the 

estimated data points 0P  ) belongs to a differential manifold M , which may be curved and have a 

complicated topology, but the neighborhood of each point is approximately similar to a small piece 

of Euclidean space (resembles D ). Since a traditional distance measure is built upon the 

geometry of Euclidean space, we adapt the calculation to a neighborhood or a small region of the 

assumed manifold. 

 An example of a one-dimensional curve in Figure 2-2 illustrates the general idea of the 

manifold estimation approach. The set of points P  in Figure 2-2 includes sample data points 

where we have measured data as well as a point 
0P  where data are missing. For example, in the 

context of the wind field data, one full measurement (or data point) includes five components: 

time, longitude, latitude, wind speed, and wind direction. The partially missing data point may 

contain known components (time, longitude, latitude) and unknown or missing components (wind 

speed and wind direction).  

 

Figure 2-2 Illustration of the proposed manifold approach for estimation of missing data at point P0. 

Suppose that it is desired to estimate the wind field for a data point 
0

nP ( n dimension 

of vector space) from a set of training data points that belong to a manifold M . The space/time 

coordinates of the point (the independent variables) are known. However, the data (the dependent 
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variable) are missing. We denote 0

0

0

nP
P

P
as the data point using the superscript   to 

denote the independent variables and the superscript   to denote the dependent variable which is 

the missing component of interest here. 
0

n
P is the sub-vector of the known components, and 

0

n
P ( )n n n  is the corresponding sub-vector field (e.g., wind vector) for the missing 

component where 0 ( , )P V u v  and u  and v  are the orthogonal components of the wind (V ). 

The training data points, for example 1 2 7{ , ,..., }P P P P  in Figure 2-2, also include the two 

components ni

i

i

P
P

P
, but there is no missing component here since both dependent and 

independent variables are assumed to be known at the nearby stations. Given a point
0

n
P , the 

algorithm locates a set of nearest points to 
0P  based on the distances 

0( , )id P P  between pairs of 

points 
iP  and

0P . In order to determine local neighbors of
0P , we can calculate the distances 

between 
0P  and either all other points within a fixed radius ε, or all of its k nearest neighbors 

[Tenenbaum et al., 2000]. Then, a tangent space (linear subspace) of the manifold M  at the point 

0P  is created from the set of nearest points (Figure 2-3a), denoted by
0
( )P

T
T M

T
 where ,T T  

denote the tangent spaces for the independent and dependent variables in the data at 0P and 0P . 

Finally, the point 0

0

0

nP
P

P





 
  
 

 will be located as the closest point that belongs to that tangent 

space.  
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Figure 2-3 A tangent space created from the set of nearest points using (a) coordinates of selected 

neighborhoods or (b) Kernel regression. 

The tangent space approximation is describe as follow. Consider a smooth n-dimensional 

manifold M embedded in a D-dimensional Euclidean space. To understand the local geometry of 

the surface ( )f x  near a point
nx , we consider the first-order Taylor series expansion of the 

surface: 

 
 

   
2 2

( ) ( ) ( ) ( )f

f x
f x f x x x O x x f x J x x O x x

x


         


   (1) 

where   D n

fJ x   is the Jacobian matrix of f  at the point x . If the components of ( )f x  can 

be defined as:  1 2 3( ) ( ), ( ), ( ) ( )
T

Df x f x f x f x f x  and  1 2 3, ,
T

nx x x x x , then the Jacobian can 

be written as: 
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 

1 1

1

1

n

f

D D

n

f f

x x

J x

f f

x x

  
  
 

  
 
  
   

          (2) 

To understand the local shape of the surface in Eq. (1), we seek to determine the space

 x x , such that as we move away from x , the value of the function does not change to within 

first order. This is equivalent to finding the space T such that:  

     0fT x x J x x x                        (3) 

This space is the tangent space to the surface at point x  and is the right null space of the 

Jacobian matrix ( )fJ x . The space orthogonal to the tangent space is the row space of the Jacobian 

and orthogonal representations of these spaces can be obtained from SVD: 

0

0 0




   
     

   

T

f T

V
J U U

V
                    (4) 

where V  spans the tangent space (right null space) and V  spans the row space. Alternatively, in 

Eq. (4), the right null space of fJ  is the columns of V  corresponding to zero singular values. 

Therefore, the tangent space of the manifold M at ( )y f x  is: 

  ( ) span fT M J x                     (5) 

From a practical computation point of view, given a set of sample points

1 2 3{ , , , }my y y y y , the tangent space can be directly estimated using SVD. If 
mC  denotes the 

local covariance matrix: 
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1

1 m
m T T

i i

i

C y y U U
m 

                  (6) 

where  1 2 3, , , DU u u u u   and  1 2 3diag , , D      denote the eigenvector and eigenvalue 

matrices respectively, then the optimal (in a least-squares sense) n-dimensional linear subspace is 

the span of the n-largest eigenvectors in U: 

 1 2 3( ) span , , , nT M u u u u          (7) 

 Additional details and other methods of estimating the tangent space are described in Dang 

et al. [2014]. Now by having the tangent space, we can use the Euclidean distance of an orthogonal 

projection from a point to the tangent space to represent the closest distance between that point 

and the tangent space. Since a tangent space is a linear space (or affine space in a more general 

case), one point can orthogonally project into that space. The question is how to define neighbors 

for each data point? The underlying idea is how to define similarity distance among the training 

data points, and then the overall similarity matrix. Several methods have been considered in the 

past, such as k-nearest neighbors [Press, 2007], ϵ-ball method [Allard et al., 2012] or the use of 

sparse representation theory [Dang et al., 2014; Dang and Radha, 2015]. 

The estimation of 
0P is performed using the following steps:  

1. Given a set of neighboring points, estimate the tangent space T  at the point of interest, 0P  : 

Details of the method for creating a tangent space from a set of data points were described 

above. One simple method is to create a tangent space using singular value decomposition (SVD, 

Press [2007]). By way of an example in Figure 2-2, a tangent space (line b) is created for
0P from 

a set of its neighboring points (
5P  and 

6P ). This tangent space at 
0P M is denoted by T . 
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2. Find the orthogonal projection of 
0P  onto the tangent space: 

The closest point TP  to the given point 
0P  is located at the intersection of the line b 

and the line perpendicular to it which passes through the point
0P . P which is a projection of 

0P

onto the subspace T  can be represented as an approximation of point 
0P . The orthogonal 

projection of vector point 0P  in a high-dimensional space onto a low-dimensional vector subspace 

is given by: 

1

0 0 0T
( ) T TP A A A A P AA P        (8) 

where D nA T    is a full rank matrix containing the set of points on the tangent space of 

0P and 0( )
T

P  denotes the projection of 
0P  onto the subspace T . This projection is derived 

from the solution of the normal equation 
0     T TA Ax A P which is equivalent to the associated least 

squares solution of 
0   Ax P . Due to the difficulty associated with inverting a general matrix that 

may be singular or non-square depending on the number of neighboring points selected in the 

manifold method, the problem (1) can be posed as a minimization problem in which the Moore-

Penrose pseudoinverse A+  [Golub and Van Loan, 2013] of the original matrix A is used. The 

pseudoinverse A  generalizes the concept of matrix inverse and arises in the minimum norm (that 

is, approximate as opposed to exact) or best-fit (in a least squares sense) solution to a system of 

linear equations. The problem 
0

2
minimize Ax P

x

  has the solution: 0x A P . The 

pseudoinverse can be computed using SVD as follows: if TA U V   , where ,  U V  denote unitary 

matrices and   is a diagonal matrix containing the singular values of A , then TA V U   . The 

function pinv was used to compute the pseudoinverse in MATLAB. 
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3. Find a linear representation coefficient vector α of that projection onto the tangent space: 

  

This coefficient is calculated by solving the following equation: 

0T
( )P A           (9) 

4. Estimate the missing components of the point 
0P  (

0P ): 

The last step is finding a point on the subspace T  that is closest (in norm) to the point P0. 

In order to do that, T is projected using the projection coefficient α computed in step 3:  

0 .P T            (10) 

The result of this projection is the closest point to
0P  that belongs to its subspace. In this 

algorithm, high-dimensional coordinates of selected neighborhoods on the manifold are projected 

to a low-dimensional subspace. An alternative to this approach is to use kernel regression to assign 

a weight to each neighbor based on the distance from 
0P  (Figure 2-3b). A weight for each selected 

neighborhood can be computed using the following Gaussian kernel function: 

 

  
2

22 , var ,

i oP P

i i oW e d P P

 

  




          (11) 

Examples of manifolds representing geophysical (bathymetry) and meteorological (wind) 

data are shown in Figures 2-4(a) and (b). These figures support the assumption that the manifold 

can be considered as being linear locally, but with complicated topology overall. 



24 

 

 

 

Figure 2-4 Manifolds representing (a) bathymetry of Gull Lake and (b) wind components over Lake 

Michigan in three dimensional space. 
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2.2.1.2 Test case: Analytical function 

 Before applying the manifold method to reconstruct complex geophysical and 

meteorological data, we first evaluate the effectiveness of the method in reproducing an analytical 

function, since errors can be computed relative to the known function values; therefore, the F7 

function suggested by Lazzaro and Montefusco [2002] and Renka and Brown [1999] is used: 

7( , ) 2cos(10 ) sin(10 ) sin(10 )F x y x y x y       (12) 

 

where the domain of F7 is restricted to 0 1x  and 0 1y  (Figure 2-5a). Three sets of sparse 

random points from a normal distribution were generated in the domain with numbers of sampling 

points of 30, 60, and 90. The F7 function was sampled randomly as shown in Figure 2-5b. 

 

Figure 2-5 (a) Analytical function used to test the manifold method for interpolation of scattered data. 

Random sampling was used to generate scatter points as shown in figures (b, 30 points), (c, 60 points) and 

(d, 90 points) to reconstruct the function. 
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The manifold method was tested by withholding one point at a time and estimating its associated 

value from the remaining points using the manifold method, in addition to other methods such as 

the natural neighbor, nearest neighbor, and IDW interpolations. Since known components of the 

scatter points are located in the two-dimensional X-Y plane, at least two neighboring points are 

needed to form a tangent space for the manifold method. Therefore, for simplicity, only two nearest 

neighbors are used in both manifold and IDW interpolation methods. 

2.2.1.3 Assimilating meteorological data for improved lake circulation modeling: Lake 

Michigan 

The proposed method was first applied for the reconstruction of wind fields (time-varying 

vector fields) over Lake Michigan. Hourly wind speed and direction data during April-September 

2008 were obtained from the National Data Buoy Center (NDBC) weather stations surrounding 

the lake (Figure 2-6). The wind measurements were adjusted to a 10 m anemometer height using 

the profile methods described in Schwab (1987). Since the aerodynamic roughness over the lake 

is much lower compared to its counterpart over the land, an empirical overland-overlake 

adjustment was applied to the wind speeds recorded by overland stations [Schwab and Beletsky, 

1998]. The datasets of wind speed and direction were converted to two coordinates in the Cartesian 

coordinate system (𝑥 and 𝑦 directions). 

Instead of using the cross-validation method to evaluate the interpolated wind data, results 

from the hydrodynamic model of the lake were compared with current measurements to test the 

applied method. To this end, a well-tested three-dimensional hydrodynamic model of the lake 

[Safaie et al., 2016] was used. The model was based on the unstructured grid Finite Volume 

Community Ocean Model (FVCOM; Chen et al. [2006]) which was successfully used in the past 

in ocean [Li et al., 2014b], lake [Nguyen et al., 2014] and river [Anderson and Phanikumar, 2011] 
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modeling. Details of the unstructured mesh used in the hydrodynamic model are presented in Table 

2-1. 

 

Figure 2-6 Locations of the ADCPs deployed during summer 2008 and weather stations surrounding 

Lake Michigan. 

Wind fields from April to September 2008 were reconstructed at the locations of nodes in 

the numerical mesh. Other hourly meteorological observations related to heat flux fields, including 

air temperature, cloud cover, dew point, long-wave solar radiation, short-wave solar radiation, and 

relative humidity, obtained from the National Climatic Data Center (NCDC) and NDBC stations, 

were interpolated over the computational grid using a smoothed natural neighbor method with a 
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smoothing radius of 30 km. Air pressure was assumed to be constant (105 Pa) through the course 

of the study and a constant startup water temperature with a value of 2.5 oC was used in the model.  

Table 2-1 Properties of the numerical grids used for the hydrodynamic models. 

Site 
Grid 

Classification 

Element 

shape 

Grid 

Resolution 
# Nodes # Elements 

#Vertical 

layers 

Lake Michigan Unstructured Triangle 4m -5 km 12,684 23,602 20 

Gull Lake Unstructured Triangle 8-100m 5,132 9,361 20 

The overlake dew points were estimated from overland observations using an empirical 

formula described in [Schwab and Beletsky, 1998]. Air temperature and cloud cover were used to 

estimate long-wave solar radiation [Parkinson and Washington, 1979] and short-wave solar 

radiation was modeled using the clear-sky value and cloud cover [Nguyen et al., 2014]. Six arc-

second bathymetric data obtained from the NOAA National Geophysical Data Center (NGDC) 

combined with two-meter resolution LIDAR data along the Indiana coast from the National 

Oceanic and Atmospheric Administration (NOAA) were interpolated to the numerical mesh using 

the natural neighbor method [Safaie et al., 2016]. 

Three bottom-mounted, upward-looking Acoustic Doppler Current Profilers (ADCPs) were 

deployed at stations M, BB and S (Figure 2-6) in southern Lake Michigan from early June to late 

August 2008 to measure nearshore currents for model testing [Thupaki et al., 2013; Safaie et al., 

2016]. The hydrodynamic model was run from April to August 2008 to have a two-month spin-up 

period. Evaluation of the manifold method was carried out by comparing the simulated currents 

with data collected by the ADCPs. Comparisons between simulated and observed currents can be 

improved by identifying an optimal set of parameters in the manifold method. These parameters 
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include: an optimum number of the nearest neighbors to create a tangent space, the time scale c, 

and parameters of the Gaussian kernel function. In addition, the method used for creating a tangent 

space from a set of data points can be changed to improve the agreement between simulated and 

observed currents. The manifold method for the reconstruction of wind fields was directly applied 

to reconstruct the other six scalar observations, including air temperatures, cloud cover, dew point, 

relative humidity, shortwave and longwave solar radiation, to calculate the heat flux fields. This 

time, however, 𝑃𝑣 is a scalar, rather than a vector. 

2.2.1.4 Assimilating geophysical data for improved lake circulation modeling: Gull Lake 

In the second example, the bathymetry of Gull Lake was reconstructed using a manifold 

method. The lake bathymetry data were collected using a SonTek RiverSurveyor M9 system. The 

M9 system has an Acoustic Doppler Profiler (ADP) with two sets of four profiling beams and one 

vertical acoustic beam (0.5-MHz echo-sounder) for river discharge measurements and bathymetric 

surveys. The system was equipped with differential GPS with sub-meter precision and mounted 

on a SonTeck hydroboard to avoid high pitch and roll angles. The vertical acoustic beam has a 

range of 0.2 m to 80 m with an accuracy of 1% and a resolution of 0.001 m. The bathymetry survey 

was performed in four days (June 9 – June 12, 2015) by collecting data along longitudinal and 

transverse transects of the lake with an approximate interval of 200 m between each transect pair 

and sampling interval of 0.2 m- 2 m along the transects depending on the boat speed (Figure 2-7).  
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Figure 2-7 (a) Bathymetry of Gull Lake. (b) Boat tracks generated during the sampling survey in Gull 

Lake. 

In order to assimilate the bathymetry of the lake, a three-dimensional hydrodynamic model 

based on FVCOM has been developed for the lake during the period of thermal stratification (June-

August of 2014). The hydrodynamic equations were solved by the numerical model on an 

unstructured grid and details are given in Table 2-1. 
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 The surface water temperature was collected using an Onset HOBO Pro v2 sensor with an 

accuracy of 0.2 oC. A linearly varying startup water temperature was used with a value of 12 oC at 

the water surface and 4 oC at the depth of 10 m. The hydrodynamic model was tested using 

observed current data measured using a Teledyne - RDI Sentinel-V ADCP (1000 kHz frequency 

with a bin size of 0.3 m) deployed in the nearshore waters of the lake in approximately 10 m of 

water (Figure 2-7b). Finally, the bathymetry of the lake interpolated to grid nodes using the 

manifold method was assimilated into the model. 

2.2.2 Reconstruction of meteorological data in Gull Lake 

2.2.2.1  Land-based weather station network 

Hourly meteorological observations, including wind speed and direction, air temperature, air 

pressure, solar radiation, and relative humidity are needed for calculation of wind and heat flux 

fields. The meteorological observations were obtained from NCDC, Weather Underground 

(https://www.wunderground.com), and the Kellogg Biological Station Long-Term Ecological 

Research (KBS LTER, http://lter.kbs.msu.edu) stations, a total of 22 locations surrounding Gull 

Lake from May to August of 2014 and 2015 (Figure 2-8). Instead of a constant air pressure, hourly 

air pressure data recorded by the KBS LTER stations were used to improve the performance of the 

model. This also helped in the calculation of water density in FVCOM based on a polynomial 

expression [Jackett and Mcdougall, 1995] that takes pressure into account. Long wave solar 

radiation was estimated using air temperature and cloud cover [Parkinson and Washington, 1979]. 
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Figure 2-8 Selected weather stations surrounding Gull Lake. 

Since all weather stations are located within a 42 km radius of Gull Lake, a circular grid with 

a radius of 42 km was created for the reconstruction of meteorological fields (Figure 2-9). After 

applying overland-overlake adjustments, all observations were interpolated over the circular grid 

using a smoothed natural neighbor method. In order to have smooth and consistent wind and heat 

flux fields, a spatial moving averaged filter with a radius of 6 km was applied to the fields. This 

radius provided the best simulated results between the ranges of 0 to 30 km. Magnitudes of the 

smoothed fields were then adjusted based on the observations at the KBS LTER station to 

compensate for the reduction in magnitudes caused by the smoothing filter. Finally, the results 

were interpolated to the FVCOM’s computational grid using the natural neighbor interpolation 

method. 
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Figure 2-9 Circular grid with a radius of 42 km used for the reconstruction of meteorological fields from 

the land-based weather station network. 

2.2.2.2 Mesoscale weather prediction model 

The Weather Research and Forecasting model (WRF3.7.1, http://www.wrf-model.org) with 

a lake physics component was used in this study to simulate meteorological forcing over Gull 

Lake. Three nested simulation domains with resolutions of 30 km, 10 km, and 2 km were defined 

and centered at (42.402778 oN, 85.41295 oW) on Gull Lake (Figure 2-10).  
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Figure 2-10 Three nested simulation domains with resolutions of 30 km, 10 km, and 2 km used for the 

WRF model. 

The 20-category MODIS-based land use data with a 30 s resolution of static data were 

interpolated to the model grids. USGS 24-category data were used as well, as an alternative set of 

land use, if a category from the MODIS-based data was not available. There are a number of 

meteorological reanalysis datasets which can be used as input to the WRF model. 

National Centers for Environmental Prediction / National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis data provides four-times daily data with a spatial resolution of 206 km. 

The 32 km, three-hourly NCEP North American Regional Reanalysis (NARR) data can also be 
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used to generate initial and lateral boundary conditions. We selected Community Land Model 

Version 4 (CLM4, Oleson et al. [2010]) for the WRF’s land surface scheme in order to model the 

land - atmosphere interaction processes. The hourly wind field, air temperature, air pressure, 

shortwave and longwave solar radiations, and relative humidity were simulated from early April 

to September in years 2014 and 2015.  

2.3 Results and Discussion 

2.3.1 Manifold method 

True values of the analytical function at each of the randomly selected sampling locations 

were compared with the estimated values obtained by the manifold method as well as other 

standard interpolation methods. The performance statistics for this example are provided in Table 

2-2. Definitions of metrics used in this study are provided in the Appendix. For all methods, the 

approximation of the F7 function improved by increasing the number of sampling points. In this 

particular example, the results show that the manifold method produced better overall performance 

compared to the other three methods considered. However, the best method in this example might 

perform differently on another test function or for a different sampling point distribution. 

Therefore, we examine the performance of the method for other datasets in the Lake Michigan and 

Gull Lake. 

Due to the sparse distribution of weather stations around Lake Michigan, it was not clear a 

priori how many neighboring stations would provide an adequate representation of the data. Since 

choosing a relatively few (e.g., three) neighboring stations in this situation would involve using 

information from stations that are far apart as neighbors, we used kernel regression to assign 

weights to each station depending on the distance from the point of interest. For each node of the 
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numerical grid of Lake Michigan, k number of nearest neighbors were selected and their assigned 

weights were projected to a low-dimensional subspace. 

Table 2-2 Cross-validation results for the analytical function based on different sampling points selected 

randomly. 

Sample 

size 
Method R2 RMSE Fn PBIAS NASH APB (%) 

30 

Manifold 0.667 0.778 0.710 14.420 0.416 0.652 

Natural neighbor 0.582 0.876 0.799 -8.866 0.259 0.713 

Nearest neighbor 0.619 0.882 0.804 -14.689 0.250 0.669 

IDW 0.577 0.870 0.793 35.847 0.270 0.727 

        

60 

Manifold 0.846 0.579 0.531 -33.924 0.703 0.472 

Natural neighbor 0.816 0.615 0.564 16.912 0.664 0.466 

Nearest neighbor 0.779 0.720 0.660 -34.524 0.540 0.512 

IDW 0.832 0.603 0.553 -44.292 0.677 0.469 

        

90 

Manifold 0.891 0.502 0.432 -14.103 0.791 0.400 

Natural neighbor 0.874 0.539 0.464 -10.666 0.759 0.344 

Nearest neighbor 0.867 0.571 0.491 -28.777 0.730 0.446 

IDW 0.859 0.567 0.487 -5.974 0.735 0.416 

The free parameters in the method are c (time scale), σ (the parameter used in kernel 

regression), and k. The standard deviation of weather station distances from the point of interest 

was used for the parameter   in kernel regression. Performance of the manifold method as 

measured by a comparison of simulated and observed currents in Lake Michigan is summarized 

in Table 2-3 relative to the other standard methods considered. We note that the manifold method 

based on kernel weighting considering all stations produced the best overall performance as 

measured by the root mean squared error (RMSE) between the observed and simulated currents. 

The performance of the method without kernel regression and with only three neighboring stations 
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was comparable to the other methods, but slightly inferior to the natural and nearest neighbor 

methods.  

Table 2-3 RMSE values (m/s) of alongshore and cross-shore velocities in Lake Michigan for comparison 

of the manifold method with other standard methods used in limnology and oceanography. 

 Loaction: M  Location: BB  Location: S 

Method RMSEu RMSv  RMSEu RMSEv  RMSEu RMSEv 

O-kriging 0.0385 0.0290  0.0590 0.0349  0.0540 0.0152 

Nearest Neighbor 0.0363 0.0286  0.0580 0.0348  0.0545 0.0152 

Natural Neighbor 0.0366 0.0275  0.0553 0.0334  0.0515 0.0158 

Manifold (3 NBR) 0.0383 0.0276  0.0594 0.0346  0.0568 0.0158 

Manifold+Kernel (3 NBR) 0.0371 0.0268  0.0576 0.0341  0.0559 0.0158 

Manifold+Kernel (all NBR) 0.0304 0.0265  0.0531 0.0312  0.0568 0.0154 

IDW (all NBR) 0.0328 0.0267  0.0535 0.0316  0.0498 0.0155 

Figure 2-11 shows the RMSE and R2 values for different numbers of nearest neighbors at 

different ADCP locations. Having all stations to create the tangent space for the manifold method 

resulted in a better representation of wind fields, and improved the results of the hydrodynamic 

model (Figure 2-12). Cross-validation was also used to compare the performance of the manifold 

method with other standard methods for the same Lake Michigan datasets. The performance 

metrics are summarized in Table 2-4. In this cross-validation method, one weather station was 

withheld to be used later for validating the manifold method, and all other stations surrounding the 

lake were used for the manifold training set. This process was repeated so that each weather station 

was given a chance to be part of this validation process. Based on these results the proposed 

manifold method with three nearest neighbors gave better results compared to other standard 

methods. However, the performance of the hydrodynamic model based on these methods was 
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relatively inferior compared to the performance of the model when the manifold method used all 

neighboring points. 

 

Figure 2-11 Performance of the manifold method evaluated using observed and simulated currents at 

different stations in Lake Michigan. Different number of nearest neighbors were used to reconstruct the 

wind field using the manifold method with kernel regression. 

Table 2-4 Cross-validation results for wind field over Lake Michigan. 

Method R2u R2v RMSEu RMSEv Computational time (s) 

O-kriging 0.441 0.572 3.497 3.853 92463.8 

Nearest Neighbor 0.666 0.743 2.792 3.044 18.6 

Natural Neighbor 0.693 0.794 2.558 2.750 183.6 

Manifold (3 NBR) 0.690 0.801 2.433 2.595 28.1 

Manifold+Kernel (3 NBR) 0.710 0.806 2.392 2.566 55.1 

Manifold+Kernel (all NBR) 0.547 0.681 2.884 3.129 77.3 

IDW (3 NBR) 0.724 0.822 2.278 2.458 69.3 

All different versions of the manifold methods had reasonable computational efficiency. The 

computational time for the O-kriging was high due to the time needed for finding the best 
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variogram at each time step. Computations were performed using MATLAB, on an Intel Core i7-

4771 3.5 GHz platform. 

As the last case study, wind and heat flux fields of the Gull Lake were interpolated over the 

numerical mesh of the lake using the natural neighbor method. Then, the bathymetry of the lake 

was interpolated over the mesh using the same natural neighbor method to develop the initial 

version of the lake hydrodynamic model. The raw bathymetry data, which has some regions of 

steep bathymetry change, created artificial currents in the model due to an error in the pressure 

gradient force introduced by the sigma-coordinate system of FVCOM [Mellor et al., 1998]. 

Therefore, the interpolated bathymetry was smoothed with a radius of 100 m in order to reduce 

the errors.  

 

Figure 2-12 Comparison of simulated and observed vertically averaged currents at the location M in Lake 

Michigan. (a) Alongshore velocity (b) Cross-shore velocity 

The developed model was used to assimilate the bathymetry of the lake based on the manifold 

method. First, the bathymetry data were reconstructed from the tangent space of the manifold with 
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three nearest neighbors and smoothed with the same method described above. Then, the 

hydrodynamic model was run with the reconstructed bathymetry. The comparisons of the 

vertically-averaged velocity profiles at the ADCP location using natural neighbor method, IDW 

with three nearest neighbors, and manifold method are presented in Figure 2-13. The best value of 

σ used in kernel regression was equal to the standard deviation of distances of observational points 

where water depth values are available within a search radius of 50 m from the point of interest.  

 

Figure 2-13 Comparison of simulated (black lines) and observed (red lines) vertically averaged currents 

at the ADCP location in Gull Lake. (a) Eastward velocity and (b) Northward velocity 

When the number of samples within this radius was smaller than 100, σ value was calculated 

based on locations of 100 nearest samples. This method is more accurate when enough samples 

are available around an estimated point, unless selecting 100 samples itself does a reasonable job. 

RMSE values (m/s) of eastward and northward velocities in Gull Lake for comparison of the 

manifold method with other standard methods used in limnology and oceanography are presented 

in Table 2-5.  
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Table 2-5 RMSE values (m/s) of eastward and northward velocities in Gull Lake for comparison of the 

manifold method with other standard methods used in limnology and oceanography. 

Method RMSE u  RMSE v 

Natural Neighbor 0.0090  0.0205 

Manifold+Kernel (3 NBR) 0.0098  0.0200 

IDW (3 NBR) 0.0095  0.0204 

The statistics of cross-validation for all (=71) measured longitudinal and transverse transects 

are shown in Table 2-6. The cross-validation was performed by omitting one transect at each step 

and calculating the bathymetry for that transect from the rest of the observation data and repeating 

the process for all other transects. 

Table 2-6 Cross-validation results for Gull Lake bathymetry. 

Method R2 RMSE (m) Fn NASH PBIAS 

Manifold 0.890 2.011 0.222 0.678 -14.016 

Natural Neighbor 0.925 1.288 0.170 0.468 -13.301 

Nearest Neighbor 0.888 2.039 0.230 0.670 -17.132 

IDW (3 NBR) 0.839 3.282 0.6065 0.540 -15.918 

2.3.2 Observed and predicted meteorological data in Gull Lake 

Two types of reanalysis data (NCEP/NCAR and NARR) were tested for use as input data of 

the WRF model. The WRF simulated weather data were compared with the observed data at the 

KBS LTER station to evaluate the performance of the weather forecast model. Comparisons of 

observed meteorological data at KBS LTER station with simulated results based on NCEP/NCAR 

are presented in Figure 2-14. Figure 2-15 also shows scatter plots of WRF-simulated results based 

on NARR data versus observed meteorological forcing at KBS LTER. The simulated results, 

particularly wind speed and air temperature, indicated that NARR data would be a better choice 
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for the input of the hydrodynamic model. Thus, NARR data will be utilized in Chapter 3 to 

simulate the meteorological forcing for the coupled WRF-lake model. The results showed 

promising performance in simulation of the weather data at the KBS LTER station. Comparisons 

of averaged simulated forcing and meteorological forcing over Gull Lake during April to mid-

September of 2014 and 2015 are presented in Figure 2-16 and 2-17, respectively. 

 

Figure 2-14 Comparisons of observed meteorological data at KBS LTER station with simulated results 

based on NCEP/NCAR data during April to mid-September of 2014 (a) air pressure (kPa), (b) air 

temperature ( C ), (c) downward shortwave radiation (W/m2), (d) downward longwave radiation (W/m2), 

(e) relative humidity (%), (f) wind speed at 10-meter height (m/s), (g) eastward wind velocity (m/s), (h) 

northward wind velocity (m/s). 

Since the raw wind fields reconstructed using weather station data alone were in good 

agreement with the overlake WRF model results, no overlake-overland adjustment [Schwab and 

Morton 1984] was applied to the meteorological forcing. An empirical overland-overlake 

adjustment has usually been applied to wind speeds recorded by land-based weather stations to 

determine overlake wind speed in the Great Lakes [Schwab and Beletsky, 1998; Thupaki et al., 

2013; Nguyen et al., 2014; Safaie et al., 2016]. However, this study shows that the overland-

overlake adjustment can generate high values of overlake wind speeds for a small inland lake, 
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which has a short fetch length compared to large lakes. On the other hand, the primary results of 

the coupled WRF-lake model show that current speeds were overestimated due to the relatively 

high simulated wind speed.  

 

Figure 2-15 Scatter plots of WRF-simulated results versus observed meteorological forcing at KBS LTER 

during April to mid-September of 2014 (black dot) and 2015 (red dot): (a) air pressure (kPa), (b) air 

temperature ( C ), (c) downward shortwave radiation (W/m2), (d) downward longwave radiation (W/m2), 

(e) relative humidity(%), (f) wind speed at 10-meter height (m/s), (g) eastward wind velocity (m/s), (h) 

northward wind velocity (m/s). 

A comparison of the simulated and observed wind speeds for years 2014 and 2015 at the KBS 

LTER station is shown in Figure 2-18. These comparisons indicate that for both 2014 and 2015, 

the simulated wind speeds are about 30 percent higher than observations. WRF is known to over 

predict the wind speed depends on the topographic complexity, drag parameterization, and its 

vertical and horizontal resolutions [Jiménez and Dudhia, 2012; Brunner et al., 2015; Staffell and 

Pfenninger, 2016]. Therefore, an adjustment factor of 0.7 should be applied into the WRF-

simulated wind speeds to be used as inputs of the Gull lake model. It is also worth mentioning that 

initially the shortwave solar radiation was calculated using theoretical estimates of clear-sky solar 
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radiation [Annear and Wells, 2007], and adjusted by an empirical relation between the clear-sky 

value and the measured cloud cover [Bunker, 1976] to assess the WRF results. Since the nearest 

weather station (a NCDC station) with the cloud cover data was 23 km far from the lake, the 

calculated shortwave solar radiation becomes 30% smaller compared with WRF-simulated results. 

However, using the observed solar radiation data that were obtained from the KBS LTER station 

resulted in a better agreement with prediction of WRF.  

 

Figure 2-16 Comparisons of averaged simulated forcing (WRF) and observed meteorological forcing 

(Stations) over Gull Lake during April to mid-September of 2014. 
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Figure 2-17 Comparisons of averaged simulated forcing and meteorological forcing over Gull Lake during 

April to mid-September of 2015. 

 

Figure 2-18 Comparisons of the simulated and observed wind speed in 2014 and 2015 at the KBS LTER 

station. 
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2.4 Conclusions 

We presented a novel manifold method of reconstructing spatio-temporal data, which could 

be used for assimilating geophysical and meteorological data integrated land surface subsurface, 

and lake models. All case studies illustrate the superior performance of the presented manifold 

algorithm over standard methods in terms of accuracy and computational efficiency. The 

hydrodynamic model of Lake Michigan based on the manifold method of reconstructing wind 

fields produced better performance relative to the other methods. The best results were obtained 

using kernel regression applied to all weather stations (neighbors). However, the cross-validation 

results show that the results of the three nearest neighbors were better than the other methods. We 

can see that the manifold method performs better than the IDW method at two of the stations (M 

and BB) but not at the nearshore point S. We believe that the reason for this has to do with the fact 

that in the nearshore region there are a number of additional processes (waves, wave-current 

interactions etc) which are not simulated in our model. In other words, in that region the flow is 

not directly driven by the wind fields but rather indirectly through exchange between offshore and 

nearshore water and wave propagation. Therefore model performance in that region cannot be 

directly related to the wind field. At the other two offshore stations M and BB, the flow is 

predominantly wind-driven and an improvement in the simulated hydrodynamic fields can be seen. 

This also brings us to two relevant points: (1) Details of the manifold method such as the 

tangent space estimation, the distance metric that defines spatiotemporal proximity and other 

details can all be further improved to improve the performance of the manifold method, but these 

topics are beyond the scope of the present study. (2) We do not claim that the manifold method 

provides superior performance on all datasets and for all performance metrics, but from the 

examples considered here it appears that the manifold method may offer an attractive method that 
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is comparable or superior to other standard methods. Clearly more research is needed to understand 

the relative strengths and weaknesses of different manifold-based approaches compared to 

standard methods. The Gull Lake model results indicated that the proposed method has the ability 

to reconstruct geophysical data at unsampled locations. The results highlight that evaluating the 

performance of interpolation methods using the cross-validation method without considering the 

data structure and the purpose of interpolating data can lead to misleading conclusions about the 

relative performance of the methods considered.  

The WRF model was found to be predictive of meteorological data. Given the uncertainty 

involved due to the sparse distribution of weather stations, lack of quality assurance of raw weather 

data, and the overland-overlake effect, the weather prediction model could be utilized to assess the 

reconstructed meteorological forcing. The fact that meteorological forcing based on the outputs of 

a mesoscale weather prediction model (WRF) could provide results comparable to the forcing 

based on a network of weather stations is encouraging. However, further examination is needed to 

assess the accuracy of the WRF in representing the spatio-temporal fields of interest. Indeed, we 

can use the same approach presented here for evaluating the performance of the manifold method. 

Therefore, in the next chapter, a coupled WRF-lake model will be used to further assess the 

accuracy of meteorological forcing reconstructed from land-based weather stations and vice versa 

based on their ability to describe circulation and thermal structure of Gull Lake. 
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CHAPTER 3 

 

3 Evaluating the Role of Groundwater in Circulation 

and Thermal Structure 

 

3.1 Introduction 

Lake ecosystems readily respond to the influences of climate through a number of coupled 

surface and subsurface processes within their watersheds and therefore serve as sentinels of climate 

change [Adrian et al., 2009; Schindler, 2009]. A recent global synthesis of in situ and remotely-

sensed lake data indicated that lake surface temperatures increased quickly between 1985 and 2009 

at a mean global rate of 0.34 C  per decade. Similar warming trends were noted in streams, rivers 

and shallow groundwater as well [Kaushal et al., 2010; Menberg et al., 2014], although the rates 

of warming can be expected to be different for surface and groundwater systems. Due to the higher 

heat capacity of soils and the buffering effects of vegetation, groundwater temperatures remain 

relatively constant throughout the year partly offsetting the effects of surface warming in 

groundwater-fed lake ecosystems. While the effects of climate change on the Laurentian Great 

Lakes are well-documented (e.g., growing annual average temperatures, shorter winters, 

decreasing lake ice covers and ice-albedo feedback) and continue to receive significant attention 

(e.g., Austin and Colman [2007]; Nguyen et al. [2014]), there is growing evidence to indicate that 
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smaller inland lakes may respond differently to climate change than the Great Lakes of the world 

[Winslow et al., 2015]. 

Temperature is a key driver that affects the structure and function of ecosystems including 

biological productivity. Therefore, important changes related to nutrient cycling, eutrophication 

and hypoxia can be linked to changes in lake circulation and thermal structure. Most lake models, 

however, do not explicitly consider the effects of groundwater and quantifying these processes for 

small lakes presents unique challenges. For example, choices associated with the representation of 

meteorological forcing, lake morphometry, and turbulent mixing within the water column can give 

rise to model uncertainties in temperatures comparable to the global mean warming rate noted 

above. Therefore, there is a need to understand and quantify the role of groundwater in circulation 

and thermal structure within lake ecosystems beyond simple water budgets. In particular, there is 

a need to systematically evaluate the impact of several modeling choices on model outcomes in 

order to identify the best choices relative to the spatial and temporal scales of interest. In inland 

shallow lakes, heat exchange between water and lake sediment was taken into consideration for 

vertical thermal diffusivity analyses [Hondzo et al., 1991; Hondzo and Stefan, 1993]. Although, 

the role of groundwater in circulation and thermal structure of lakes are often assumed to be 

negligible, a shallow groundwater-fed lake may have significant bottom heating during winter and 

bottom cooling in summer [Kettle et al., 2012] 

Relatively small lakes such as Gull Lake, the focus of this study, have shorter fetch lengths 

compared to large lakes and wind speed can be significantly decreased due to sheltering effects 

[Hondzo and Stefan, 1993; Markfort et al., 2010]. Therefore, wind- and wave-driven turbulent 

mixing are weaker in small lakes, and consequently, influences of water clarity on mixed-layer 

depth of small lakes are more pronounced than in large lakes [Heiskanen et al., 2015]. Physical, 
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chemical, and biological processes at the air-water interface, mixed layer, and thermocline are 

directly influenced by the distribution of solar radiation in the water column [Simpson and Dickey, 

1981b]. For example, phytoplankton competition for nutrients and light in a stratified water 

column is controlled by the ratio of light attenuation to their nutrient consumption [Yoshiyama et 

al., 2009]. A minor change in parameter values such as the mixed layer depth or light attenuation 

length may drastically change the vertical distribution of phytoplankton [Mellard et al., 2011]. 

Accurate mechanistic models capturing physical aspects of these processes hold the key to the 

understanding and predicting biophysical processes. Despite the availability of high-quality data 

based on decades of water quality monitoring and biological research in Gull Lake, a numerical 

hydrodynamic model of the lake has not been developed to date. One of the objectives of this 

chapter is to fill this gap as a first step towards building a coupled physical-chemical-biological 

modeling system.  

The aim of this study was to evaluate the role of groundwater in circulation and thermal 

structure within Gull Lake, which is typical of many other groundwater-fed inland lakes in 

Michigan. Groundwater effects on lakes can be studied at different spatial and temporal scales. 

The focus of the present work is on examining lake hydrodynamics and thermal structure during 

the summer stratified period using a “lake modeling perspective” in which the effects of 

groundwater are introduced via boundary conditions without explicitly coupling with groundwater 

models. We seek to address the following questions as part of this research: (a) How will summer 

stratification and circulation change if groundwater contribution is ignored? This question is 

important as groundwater levels are declining in many parts of the world reducing or eliminating 

groundwater contributions to lakes. (b) Can mesoscale weather prediction model outputs provide 

sufficiently accurate forcing fields to run hydrodynamic models for relatively small lakes? If so, 
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how do results compare with those obtained using observations from a network of weather 

stations? This question is important since many small lakes throughout the world do not have a 

network of meteorological stations around them. (c) To what extent do alternative turbulence 

models such as the two-equation k-ε model [Rodi, 1987] improve descriptions of vertical mixing 

and thermal structure in small lakes such as the Gull Lake? The Mellor-Yamada 2.5 level 

turbulence model (MY2.5, Mellor and Yamada [1982]) is often used to describe vertical mixing 

in lake and ocean circulation models. The performance of the k-ε turbulence model for small, 

groundwater-fed lakes will be evaluated to identify the best model. 

The chapter is structured as follows. Following a description of the study site, we describe 

data collected in the lake to evaluate the performance of the numerical models. After a description 

of the hydrodynamic model, we describe how the numerical mesh was refined using a bathymetric 

map of the lake for a more accurate simulation of thermal structure. Surface heat fluxes are usually 

the primary sources driving heat transfer in the system; therefore, we describe an approach to 

assess the accuracy of our station-based meteorological forcing by coupling a mesoscale weather 

prediction model with our lake model. Model descriptions of vertical turbulent mixing, a key 

process for transferring heat downward and for the onset of stratification, may not be accurate 

enough under conditions of strong stratification [Li et al., 2005]. Therefore, we compare the 

performance of two turbulence models. Changes in internal heating of the water column associated 

with fluctuations in water clarity and photic zone depth are known to influence stratification and 

vertical mixing [Chen, 2003a]. Therefore, we describe the use of in situ observations of 

photosynthetically available radiation (PAR) to enhance the performance of the shortwave 

penetration model in the hydrodynamic model. After these improvements, we describe how 
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groundwater effects are simulated in the lake model. Finally, an assessment of simulation results 

is presented along with a discussion and conclusions.  

3.2 Materials and methods 

3.2.1 Observational data 

Field observations were made during the summer months of 2014 and 2015 to test the 

hydrodynamic model. Bathymetry data were collected along longitudinal and transverse transects 

of the lake using a SonTek RiverSurveyor M9 system, as described in Chapter 2. Figure 3-1 is a 

map of Gull Lake with locations of these in situ measurements marked. In the summer of 2014, 

we deployed, for the first time in the lake, two upward-looking ADCPs manufactured by Teledyne 

RD Instruments (at locations marked M14 and S14 in Figure 3-1 and obtained high-resolution 

current and temperature data. A thermistor chain using Onset HOBO Pro v2 temperature sensors 

(Onset Computers Inc, Cape Cod, Massachusetts, USA) with an accuracy of 0.2 oC was deployed 

near the ADCPs (at location marked TC in Figure 3-1) in 15 m of water. This thermistor chain had 

sensors between 2-13 m depth of waters with a one-meter interval (Figure 3-2). We also had a 

surface buoy near TC location to record surface water temperature. A Hydrolab multi-parameter 

sonde (OTT Hydromet, Kempten, Germany) was used to measure the vertical temperature profile 

at another location (marked HL in Figure 3-1) in 32 m of water. In 2015, two other ADCPs were 

deployed at locations SS15 and SM15 for 91 days from early June to early September. A SCAMP 

(Self-Contained Autonomous Micro-Profiler, http://pme.com) was used to collect salinity and 

photosynthetic active radiation (PAR) data at the center of Gull Lake (HL location) during the 

summers of 2014 and 2015. Further details of instruments deployed in Gull Lake are provided in 

Table 3-1. 
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Figure 3-1 Map of Gull Lake showing locations of the in situ measurements. 

 

Table 3-1 Details of instruments deployed in Gull Lake. 

ID  Instrument Year  Depth   Deployment Location 

          Latitude Longitude 

M14 600 kHz Monitor ADCP  2014 11.6 
 

42.4047 -85.403 

S14 1000 kHz Sentinel V20 ADCP 2014 9.45 
 

42.3963 -85.416 

SD15 1000 kHz Sentinel V20 ADCP  2015 19 
 

42.402 -85.407 

SS15 1000 kHz Sentinel V20 ADCP 2015 10.4 
 

42.4051 -85.404 

TC Thermistor Chain 2014-2015 12.96 
 

42.4054 -85.404 

HL Hydrolab and SCAMP 2014-2015 32   42.3959 -85.407 
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Figure 3-2 Schematic of the thermistor chain. 

3.2.2 Numerical hydrodynamic model 

The mechanistic model of Gull Lake has been developed based on a three-dimensional, 

unstructured grid, Finite-Volume Community Ocean Model (FVCOM; Chen et al. [2003b, 2006]). 

FVCOM has been successfully applied to all Great Lakes of North America [Bai et al., 2013], 

including Lake Michigan [Luo et al., 2012; Rowe et al., 2015; Safaie et al., 2016, 2017a], Lake 

Huron [Nguyen et al., 2014], Lake Superior [Xue et al., 2015], Lake Erie [Jiang et al., 2015; Niu 

et al., 2015], Lake Ontario [Shore, 2009; Wilson et al., 2013] and large rivers such as the St. Clair 
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River [Anderson and Phanikumar, 2011]. The Reynolds-averaged Navier–Stokes equations of 

momentum (Eq. 1-3), continuity (Eq. 4), temperature (Eq. 5), and salinity (Eq. 6) are as follows: 

0

1 ( )
( )m u

u u u u P u
u v w fv K F

t x y z x z z
    (1) 

0

1 ( )
( )m v

v v v v P u
u v w fu K F

t x y z y z z
   (2) 

1
( )m w

w w w w P w
u v w g K F

t x y z z z z
    (3) 

0
u v w

x y z
         (4) 

( )h T

T T T T T
u v w K F

t x y z z z
     (5) 

( )h S

S S S S S
u v w K F

t x y z z z
     (6) 

where u , v , and w  are mean velocity components in x , y , and z  directions, respectively. T

and S  are time-averaged temperature and salinity.  denotes the mean density and
0

 is the 

reference density. P is the mean pressure. f  is the Coriolis parameter and g  is the gravitational 

acceleration. 
mK  and 

hK  are vertical eddy viscosity and thermal vertical eddy diffusion 

coefficients, respectively. 
uF  and 

vF  are the horizontal momentum; 
wF , 

TF  and 
SF  are vertical 

momentum, thermal, and salt diffusion terms. By a scaling argument for vertical velocity, the 

vertical momentum equation (Eq. 3) is reduced to the following hydrostatic equation: 
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1
0

P
g

z
          (7) 

uF ,
vF , 

TF  and 
SF  are modeled using the following forms: 

(2 ) ( ( ))u m m

u u v
F A A

x x y y x
        (8) 

(2 ) ( ( ))v m m

v v u
F A A

y y x x y
       (9) 

( ) ( )T h h

T T
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        (10) 

( ) ( )S h h

S S
F A A

x x y y
        (11) 

where 
mA  and 

hA are horizontal diffusion coefficients for momentum and scalars, respectively. The 

governing equations of FVCOM as the default are closed with the modified Mellor - Yamada 2.5 

level [Mellor and Yamada, 1982] and Smagorinsky turbulent closure schemes for vertical and 

horizontal mixing, respectively. A two-equation turbulence model [Rodi, 1987] was utilized as an 

alternative turbulence closure scheme for vertical mixing in this work. For this purpose, the 

General Ocean Turbulence Model (GOTM4.0, http://www.gotm.net), originally developed by 

Burchard et al. [1998] was coupled to FVCOM. Details of the turbulence closure models and 

parameter values are described in Section 2.3. 

 The three-dimensional hydrodynamic equations of the lake were solved using a mode 

splitting method [Simons, 1974; Madala and Piacseki, 1977]. In this method, the vertically 

integrated equations (external mode) and the vertical structure equations (internal mode) are solved 

separately with different time steps. Since the internal waves or the mean currents travel much 
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more slowly than the external mode, a larger time step can be used for the internal mode to reduce 

the computational time. Initial conditions for water temperature in the lake used the measured 

temperature profiles obtained using the Hydrolab sonde. For salinity we used the SCAMP data. 

The mean density, which is a function of water temperature, salinity, and pressure [Jackett and 

Mcdougall, 1995], was recalculated in pressure coordinates every 30 minutes. This recalculation 

of the mean density helps by producing more stable stratification.  

Average depth of the lake is approximately 12.5 m with a maximum water depth of 33 m. 

While typical lake-bed slopes in Gull Lake are less than 0.2, the bottom slopes at some points, 

especially near the deployment sites, are as steep as 0.55. To follow the bottom topography, 

FVCOM, which is a terrain-following model, uses a vertical σ-coordinate transformation. 

Although the advantages of the σ-coordinate system are well-known, this coordinate system 

introduces pressure gradient force errors over steep topography [Mellor et al., 1998]. Previous 

research showed that bathymetry smoothing, to some extent, would be required to achieve stability 

and accuracy in simulations with an adequate representation of topography [Barnier et al., 1998; 

Haidvogel et al., 2000; Martinho and Batteen, 2006; Sikirić et al., 2009]. In Chapter 2, we used a 

moving average filter with a radius of 100 m to smooth the bathymetry and to reduce artificial 

noise in simulated currents. However, detailed bathymetry data with fine horizontal and vertical 

grid resolutions are needed to simulate hydrodynamics and thermal structure accurately. Similar 

to bottom steepness, vertical and horizontal resolutions, and the stratification strength have impacts 

on the pressure gradient errors [Haidvogel et al., 2000], and because Gull Lake exhibits strong 

stratification during summer months, adequate mesh resolution is a key to the success of numerical 

modeling. One way to avoid pressure gradient errors in σ-coordinates is to generate a high-quality 

unstructured computational mesh [Gorman et al., 2006]. We used the Surface Water Model 
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System software (SMS 11.1, http://www.aquaveo.com) developed by Zundel and Jones [1996], to 

generate a triangular horizontal mesh. We used the following bathymetry-based algorithm to 

resolve topographic features and to reduce the pressure gradient errors. First, we created contour 

lines with one meter elevation interval from the collected bathymetry. Then, we selected contour 

lines that follow the key topographic features of the lake, and treated them as constraint lines, 

along which grid nodes must be placed. The unstructured mesh was generated to meet the quality 

criteria for maximum slope. Elements with slopes greater than 0.2 were refined. A maximum slope 

of 0.1 is recommended for FVCOM [Chen et al., 2006], although it is preferable to use larger 

values (such as 0.3) to retain the accuracy of the raw bathymetry data [Foreman et al., 2009]. The 

computational mesh was also refined where the slope parameter, recommended by Mellor et al. 

[1994], exceeded the limit of 0.2. The slope parameter for each element is defined as: 

 
2

h
r

h
            (12) 

where h  is the maximum depth difference between adjacent grid points, and h  is the average of 

the depths for the two adjacent grid cells. We limited the minimum grid resolution to 5 m to avoid 

high computational cost and numerical instability issues. Therefore, in regions where either 

maximum slope or slope parameter conditions needed a finer resolution, the bathymetry was 

smoothed using the method described in Mellor et al. [1998]. A numerical mesh with 20, 604 

nodes and 40, 260 triangular elements in the horizontal with a resolution range of 5-75 m was 

created following the bathymetry-based refinement algorithm (Figure 3-3). In the vertical, a sigma 

coordinate system with 30 sigma layers was used. 

http://www.aquaveo.com/software/sms-surface-water-modeling-system-introduction
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Figure 3-3. The unstructured computational mesh created based on the bathymetry-based refinement 

algorithm 

The hydrodynamic model of Gull Lake based on the meteorological forcing for summer 

2014 was run for three different cases. To systematically quantify the improvements in model 

performance due to the choices in reconstructing meteorological forcing fields, turbulence models 

and inclusion of groundwater, precipitation and evaporation processes, several cases (described in 

Table 3-2) were considered. First the model was run with the k-ε turbulence model and without 

the groundwater module (Model 1). Then for the second case, the groundwater module was taken 

into account in order to examine the effect of groundwater on the physical behavior of the lake 

(Model 2). This case also was run with the MY2.5 turbulence model (Model 3). Since our primary 

interest is in evaluating the role of groundwater in circulation and thermal structure of Gull Lake, 

the coupled WRF-lake model was run by including the contribution from  groundwater  and  with  
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Table 3-2. Description of different models evaluated 

Year 

 Model description 

Remark Model 

name 
Meteorological 

Forcing 

Turbulence 

Model 

Additional 

Processes* 

2
0
1
4
 

Model1 
Weather 

Stations 
k-ε --- Simulation shows the effect of ignoring groundwater. 

Model2 
Weather 

Stations 
k-ε GW 

Together with model 3, simulation provides a comparison of two 

popular turbulence models for their ability to describe vertical mixing 

Model3 
Weather 

Stations 
MY2.5 GW 

Together with model 2, simulation provides a comparison of two 

popular turbulence models for their ability to describe vertical mixing 

Model4 WRF Model k-ε GW 

Together with model 2 which is based on weather station data, 

simulation allows a comparison of results based on two different 

meteorological forcing fields (weather station data versus WRF model 

outputs) 

 
     

2
0
1
5
 

Model1 
Weather 

Stations 
k-ε --- Same as model 1 but for year 2015 

Model2 
Weather 

Stations 
k-ε GW Same as model 2 but for year 2015 

Model4 WRF Model k-ε GW Same as model 4 but for year 2015 

*GW = Groundwater
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the k-ε turbulence model (Model 4). At the end, the developed models were also tested using data 

obtained during the summer of 2015. Details of the reconstruction of meteorological forcing fields, 

model of shortwave radiation penetration and the groundwater-precipitation-evaporation module 

are explained in the following sections. 

3.2.3 Turbulent closure models 

3.2.3.1 Mellor-Yamada 2.5 level turbulence model 

The governing equations of FVCOM, including momentum, continuity, temperature, 

salinity, and density equations, as the default are closed with the modified Mellor and Yamada 

level 2.5 (MY-2.5; Mellor and Yamada [1982]) and Smagorinsky turbulent closure schemes for 

vertical and horizontal mixing, respectively. The Smagorinsky horizontal diffusion for momentum 

is given as: 

2 22

0.5 0.5m

u v u v
A C

x x y y
       (13) 

where C is a constant parameter and Ω is the area of the individual momentum control element. 

Then, the horizontal diffusion coefficients for scalars can be calculated as / Prm hA A , where Pr 

is the turbulent Prandtl number. 

MY-2.5 is a two equation model that solves transport equations for variables 2q  (twice of 

turbulent kinetic energy) and 2q l , where l  is the turbulence length scale. The set of q ql  equations 

in FVCOM is defined as [Chen et al., 2003b]: 

2 2 2 2 2

2( ) ( )s b q q

q q q q q
u v w P P K F

t x y z z z
    (14) 
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2 2 2 2 2

1

1

( ) ( )s b q l

q l q l q l q l W q l
u v w lE P P K F

t x y z E z z
  

 (15) 

where u , v , and w  are components of the mean velocity in x , y , and z  directions. qF  and 
lF  

denote the horizontal diffusion of turbulent kinetic energy and turbulence macroscale, respectively.

qK  is the vertical eddy diffusion coefficient and 
3

1/q Bl  is the dissipation rate of turbulent 

kinetic energy, where 
1B  is a model constant. 

2 2

21 / ( )W E l L  is the wall proximity function 

where 1 1 1( ) ( )L z H z ,  is free surface elevation, H  is mean water depth, and  is 

the von Kármán constant, equal to 0.4. The constant parameters of the q ql  model are

1 2
( ,  ) (1.8,  1.33)E E .

sP  and 
bP  are shear and buoyancy production terms, respectively:  

2 2 2[( ) ( ) ]s m m

u v u v
P u w v w K K M

z z z z
      (16) 

2

0 0

( )b h h

g g
P w K K N

z
        (17) 

where u , v , and w  are turbulent velocity components and N denotes the Brunt-Väisälä 

frequency, M  is the shear frequency,  is the mean water density, 
0
 is the reference density, 

and g  is the acceleration due to gravity. To close the system Eqs. (14) and (15), the vertical eddy 

viscosity coefficient (
mK ), the thermal vertical eddy diffusion (

hK ) and qK  are modeled as: 

,  ,  m m h h q qK lqS K lqS K lqS          (18) 
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where 
mS , 

hS , and qS  are the stability functions originally proposed by Mellor and Yamada [ 

1982] and simplified by Galperin et al. [1988] as the following [Allen et al., 1995]:  

1

1

1

2

2 1 2

1 6

1 3 (6 )
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        (19) 

1
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H H
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C AB A A S G
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       (20) 

q mS S            (21) 

where 
2 2 2/HG l N q  restricted to the maximum value of 0.023 for unstable stratification 

conditions, and the minimum value of -0.28 for conditions of stable stratification [Galperin et al., 

1988]. The values of the constant parameters 
1A , 

1B , 
2A , 

2B , and
1C  are 0.92, 16.6, 0.74, 10.1, 

and 0.08 [Mellor and Yamada, 1982], respectively. The surface and bottom boundary conditions 

for the turbulent kinetic flux are given as: 

2

2 2 23
10,  at ( , , )sq l q B u z x y t          (22) 

2

2 2 23
10,  at ( , , )bq l q B u z H x y t        (23) 

where 
su and 

bu  are surface and bottom friction velocities, respectively. 

3.2.3.2 The k  turbulence model 

The simplified form of the transport equations for the turbulent kinetic energy (k ) and the 

rate of dissipation ( ) are given as following: 
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( )t

k

k k k k k
u v P B

t x y z z z
      (24) 

1 3 2( )  ( )tu v c P c B c
t x x x z z k

     (25) 

where 
k
 and are constant turbulent Schmidt numbers of k  and , respectively. 

t
denotes the 

eddy viscosity; P  and B  are the shear and buoyancy production terms, respectively, with the 

aforementioned definitions in the MY2.5 model. The turbulent diffusivities of momentum and heat 

can be expressed as: 

1/2 1/2,  t tc k l c k l           (26) 

where c  and c are stability functions computed according to the model of Schumann and Gerz 

[ 1995]: 

0

0 ,   
Prt

c
c c c            (27) 

where 
0c  is a model constant, and Prt  is the turbulent Prandtl number with the following empirical 

relation: 

0

0
Pr Pr exp( )

Pr
t t

t

Ri Ri

Ri Ri
         (28) 

where Ri  denotes the gradient Richardson number, 
0Prt is the turbulent Prandtl number for neutral 

flows ( 0Ri ), and Ri  is the desired steady-state Richardson number. The values of 
0Prt  and 

Ri were set as 4 and 0.25, respectively. The constant parameters of the k  model are 
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0 0.5577c , 1.0k
, 1.3 , 

1 1.44c , and 
2 1.92c  [Rodi, 1987]. The parameter 

3c  can 

be obtained as a function of a prescribed steady-state Richardson number, 
stRi [Umlauf and 

Burchard, 2003]: 

3 2 1 2

1
( )

st

c
c c c c

c Ri
          (29) 

3.2.4 Light attenuation lengths 

To accurately represent the thermal structure, surface temperatures and the depth of 

thermocline, it is important to correctly model how sunlight penetrates into water. In particular, 

absorption of downward irradiance in the stratified region has a strong influence on water 

temperature to the extent that different shortwave penetration models produce different 

stratification regimes and residual currents [Chen, 2003a]. In FVCOM, the depth distribution of 

the downward shortwave solar radiation flux, ( , , , )SW x y z t , is calculated as: 

( , , , ) ( , , , ) (1 )z a z bSW x y z t SW x y t R e R e      (30) 

where SW(x, y, z, t) is the downward shortwave radiation that penetrates into water as a function 

of x, y, water depth (z), and time (t). SW(x, y, ζ, t) represents the downward shortwave radiation at 

the water surface (z = ζ). R is an empirical constant, a is a short wavelength due to the near-surface 

absorption of red spectral components of solar radiation in the upper few meters, and b is a long 

wavelength related to the blue-green spectral components in a deeper water depth (a<b) [Kraus 

and Businger, 1995]. Using two distinct sets of attenuation lengths produces a better model 

performance than a single attenuation wavelength model [Paulson and Simpson, 1977; Simpson 

and Dickey, 1981b, 1981a; Chen, 2003a]. Paulson and Simpson [1977] determined the values of 

a, b, and R corresponding to different water types by fitting Eq. (30) to downward irradiance data. 
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Chen [2003a] used in situ profiles of PAR to re-estimate b. In this work, we used PAR data 

collected using the SCAMP at the center of the lake where the depth was 32 m (at HL location). 

Ensembles of the vertical profiles (in groups of six) were collected weekly during the summers of 

2014 and 2015. A nonlinear least squares fitting method was used for determining parameters of 

the shortwave penetration model. The bi-exponential model (Eq. (30)) was fitted to the observed 

vertical profiles of PAR to find the parameters a, b, and R. 

3.2.5 Precipitation/Evaporation 

Hourly precipitation data at the Kelogg Biological Station Longterm Ecological Research 

Station (KBS-LTER) close to Gull Lake were obtained from Enviro-weather Automated Weather 

Station Network (https://mawn.geo.msu.edu) and used as input of the model. Evaporation of water 

from the lake was calculated based on the mass-transfer approach using the following equation 

[Dingman, 2002]: 

2 ( )E m s aE K W e e           (31) 

where E  denotes the evaporation rate (m s-1), 
se  and 

ae  are the vapor pressures of the open-

water surface and the overlying air, respectively (kPa), and 
2mW  is the wind speed in m s-1 at 2 m 

height. Since the anemometer at the KBS LTER station has a 10-meter height, the power-law 

correction with an exponent of 1 7  [Schwab and Morton, 1984] was applied into the wind speed in 

order to reduce the wind speed by a factor of
1

7(2 10) . 
EK  is a mass-transfer coefficient (kPa) 

which has the following empirical relation with the lake surface area: 

8 0.051.69 10E LK A           (32) 
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where 
LA  is the lake surface area in km2. The vapor pressure 

se of an evaporating water surface is 

equal to the saturation vapor pressure of water, 
*

se . The vapor pressure in the air was calculate as: 

*

a ae RH e             (33) 

where RH is the relative humidity, and 
*

ae is the saturation air vapor pressure at the air temperature. 

The saturation vapor pressures at both air and water surface temperatures can be estimated as: 

* 17.3
0.611 exp

237.3

T
e

T
          (34) 

where *e  is in kPa and T, temperature, is in C . When the air temperature is lower than the water 

temperature, Rasmussen et al. [1995] suggested to use the following equation to account for the 

effect of density instabilities in the air above the water surface:  

1 3

22.33 2.68
,

s a m s a

s a

T T W e e
E T T                    

s aT T     (35) 

In this equation, E is evaporation rate in mm day-1, W2m is wind speed at two meters above 

ground level (m s-1), Ts and Ta are the surface and air temperatures in C , respectively, es and ea 

are the surface and air vapor pressures in kPa, and  is the latent heat of evaporation (MJ kg-1) 

which is given by: 

32.50 2.36 10 sT          (36) 

3.2.6 Groundwater 

Quaternary geology of the Lower Peninsula of Michigan and the Gull Lake area is shown in 

Figure 3-4. Statewide topographic features are attributed to the glacial processes. The glacial drift  
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in the lake area is primarily glacial outwash. Predominant outwash materials are medium- to very-

coarse sand and gravel [Monaghan et al., 1983]. Some scattered lenses of lacustrine clay are also 

located in the shallow aquifer [Brewer, 1991]. 

 

Figure 3-4. Quaternary geology of Lower Peninsula and Gull Lake. Figure adapted by author from 

Farrand [1982] 
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Underlying the shallow aquifer, there are two bedrock formations, including Coldwater shale and 

Marshall Formation (Figure 3-5). The estimated transmissivity for glacial wells in this region has 

a range of 116 to 5314 m2/day [Apple and Reeves, 2007]. As a result of high transmissivity, 

groundwater can move relatively quickly through the outwash aquifer, following the hydraulic 

gradient.  

Information about groundwater flow directions and the relative extent of gaining and losing 

portions of the lake are important inputs to the lake model. The State of Michigan maintains an 

extensive record of groundwater wells (the Wellogic database) and the data were successfully used 

to calibrate watershed and groundwater flow models in the past [Niu et al., 2014]. Static water 

table elevations from the Wellogic database associated with wells from the glacial unconfined 

aquifer were used to create a groundwater flow map which was used to visualize the groundwater 

flow patterns through Gull Lake. As expected the water table and the groundwater flow follows 

the topography in the north-southeast direction (Figure 3-6a). The surface elevation of 

Gull Lake is about 268 m above sea level. Figure 3-6a shows that where groundwater levels are 

higher than the lake surface elevation, groundwater discharges into the lake. The groundwater 

levels and the flow patterns in Figure 3-6a also suggest that the upper half of the lake is 

groundwater-fed, but the lower part loses water through the lake bed.  

A cross-section of the aquifer along the longitudinal transect of the lake is presented in 

Figure 3-6b (cross section A-B) and overlapped with the lake’s bathymetry. Figure 3-5 and 3-6a 

indicate that the Marshall aquifer pinches out beneath the northern part of the lake. While the 

Marshall aquifer is composed of permeable sandstones, the Coldwater shale is a confining unit 

[Apple and Reeves, 2007]. Therefore, Coldwater shale creates an impermeable barrier to horizontal 

flow, and forces regional groundwater to move upward toward the lake. Furthermore, decreasing 
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thickness of the shallow aquifer along the groundwater flow directions (Figure 3-6b), combined 

with high transmissivity and the present of the Coldwater shale, enhances the convergence of 

groundwater flow into the lake. 

 

 

Figure 3-5. Bedrock Geology of the Lower Peninsula and the Gull Lake area. Figure adapted by 

author from Wilson [1987] 



71 

 

 

  

 

Figure 3-6. (a) Groundwater flow map in the study area. (b) A cross-section of the aquifer along 

the longitudinal transect of the lake. 
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Gaining and losing portions of the lake can be defined based on Figure 3-6a and 3-6b. Thus, the 

net groundwater flow is given by: 

( )net in out in in out outG G G q A q A        (37) 

where 
netG , 

inG , and 
outG  denote the net groundwater flow, groundwater inflow and outflow (m3/s), 

respectively. 
inq is the groundwater inflow rate (m/s) received by the upper part of the lake with a 

bottom area of Ain (m2), 
outq is groundwater outflow rate (m/s) associated with the loss of water 

from the remaining portion of the lake with a bottom area of Aout (m2). These constant rates were 

taken into account in the governing equations of FVCOM to simulate groundwater outflow/inflow 

through the bottom of the lake. 

Groundwater fluxes to lakes and wetlands can be measured using seepage meters (e.g., 

Mendoza-Sanchez et al. [2013]). An alternative approach, especially if the interest is in quantifying 

the contribution of groundwater and other components of the water budget to the entire lake, is to 

use a water balance approach. However, the water balance approach can only provide an estimation 

of the net groundwater flow. To quantify contributions of inflow and outflow of groundwater, one 

approach is to use an additional budget of a chemical tracer [von Rohden et al., 2009; Langston et 

al., 2013], a stable isotope [Turner and Townley, 2006; Wollschläger et al., 2007] or a heat-budget 

analysis [Chikita et al., 2000; Kettle et al., 2012; Langston et al., 2013]. In this study, we used heat 

as a groundwater tracer [Anderson, 2005; Constantz, 2008] to determine the groundwater flow 

components of Gull Lake. Heat and water budgets of Gull Lake were calculated simultaneously to 

quantify the lake-groundwater interactions. In this study we followed the second approach to 

estimate the net contribution of groundwater to the lake. Assuming negligible direct overland 

runoff during the summer [Tague, 1977], the water budget of Gull Lake is given by: 
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s s net PC LL WL out

dV
P A E A G Q Q Q Q

dt
      (38)      

where dV dt  is the rate of change in storage (m3/s), and
sA  is the lake surface area (m2). P is the 

precipitation (m/s), and E denotes the evaporation (m/s). 
PCQ , 

LLQ , and 
WLQ  are stream flows 

(m3/s) from Prairieville Creek, Little Long Lake, and Wintergreen Lake into Gull Lake, 

respectively. 
outQ  is the discharge (m3/s) from the outlet of Gull Lake.  

The energy balance of Gull Lake can be written as: 

( ) ( )

( )

p s s s S s L s br s rain
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     (39) 

where T water temperature ( o C ),    water density (kg/m3), pC   specific heat of water (J/kg 

oC),V  lake water volume (m3), sA  lake’s surface area (m2), SW downward shortwave 

radiation (W/m2), LW downward longwave radiation (W/m2), sH sensible heat flux (W/m2),

LH  
latent heat flux (W/m2), brH  long wave back radiation from the water (W/m2), 

rainH 

heat input by rainfall (W/m2). 
PCT , 

LWT , and 
LLT  are stream water temperatures ( o C ). outQ  

is 

outflow of Gull Lake (m3/s). inG  
and

 outG are inflow and outflow of groundwater (m3/s). 
GT  

denotes the groundwater temperature ( o C ). 
GJ  is the heat flux exchange between lake and 

groundwater, which was calculated using the Fick's first law: 

G

z H

T
J D

z 


 


          (40) 
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where D is the vertical thermal diffusion coefficient (m2s-1). To quantify groundwater inflow and 

outflow to the lake, Eqs. (37), (38), and (39) were solved simultaneously. Observed lake stages 

were used to calculate dV dt  in Eq. (38) during the simulation period. Inflows and outflow were 

measured in 2014, and mean values based on the measurements were used to estimate stream flows 

in 2015. Observed stream temperatures were used to calculate heat input/output by stream flows. 

Precipitation was obtained from KBS LTER station.  

Evaporation rate in Eq. (38) and the remaining terms in Eq. (39) depend on the spatial and 

temporal distribution of water temperature in the lake. One approach to determining evaporation 

and surface heat fluxes is to assume that the lake has homogeneous water surface temperature 

equal to the observed surface temperature at one location at each time step. Although this method 

works well for estimation of surface heat fluxes in a one-dimensional model [Stepanenko et al., 

2014], it may introduce errors in simulating a three-dimensional temperature field [Abbasi et al., 

2016]. Therefore, to simulate lake hydrodynamic and temperature fields by including the 

groundwater contribution, the groundwater flow and temperature components ( ,  ,  in out Gq q T ) are 

needed, which in turn, are coupled to lake temperatures via Eqs. (38) and (39). To resolve this and 

to start the computations we used an iterative approach as described below. As a first step, we 

calculated time series of evaporation based on observed values of water surface temperature using 

a mass-transfer method for the entire simulation period replaced. Therefore, 
netG  was the only 

unknown in Eq. (38). By substituting the value of 
netG into Eq. (37), and assuming that 

in outq q  

(a reasonable assumption based on the observed water table elevations and flow directions 

computed using groundwater heads, see Fig. 3-5a), the groundwater flow components were 

obtained as an initial guess to run the hydrodynamic model. Observed water surface temperatures 

and measured vertical temperature profiles were used for assessing simulated water temperature 
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dynamics and heat transfer of the lake. Then, the lake evaporation, sensible heat, latent heat, 

longwave back radiation, and rain heat fluxes were calculated based on the simulated surface water 

temperatures using the COARE algorithm [Fairall et al., 1996; Edson et al., 2013] implemented 

in FVCOM. The rate of change in heat storage (
T

V Cp
t

) in Eq. (39) was also determined based 

on the simulated thermal structure of the lake. Finally, Eqs. (37), (38), and (39) were solved to find 

the values of netG , inG and outG . Values of inq , outq , inA  and outA  were assumed to be constant 

over the simulation period. In order to quantify groundwater contribution to the entire lake, water 

level fluctuations recorded by Acoustic Doppler Current Profilers (ADCPs) were used as a basis 

for evaluating the water budget of the lake. 

Approximate average temperature of shallow groundwater obtained from shallow wells at 

depths of 9.14 to 18.28 m ranges from 8 oC to 11 oC in Western Michigan [Collins, 1925]. Near 

the surface, however, the groundwater temperature follows the changes in air temperature. Bottom 

water temperature at 32 m depth measured using a Hydrolab from 2011 to 2015 and is presented 

in Figure 3-7. On the basis of this figure when the air temperature goes above the freezing point in 

early spring, the lake bottom temperature at 32 m was relatively constant compared with the 

average surface water temperature. In the summer, water temperatures at 32 m depth fall within 

the range of measured groundwater temperatures.  

This observation indicates that there may be bottom cooling in the summer due to the 

groundwater inflow into the lake. To test this hypothesis in our FVCOM model, a benthic layer 

with a temperature equal to the temperature of groundwater was added to the lake bed. The 

resulting temperature profile involves a balance between bottom advection and diffusion of water 

temperature near the lake bed. Benthic groundwater fluxes were prescribed at the bottom by adding 
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a benthic layer on the bed of the lake. The following equation temperature boundary condition was 

solved in the benthic layer (at z H   ) that received groundwater inflow (
GT T ): 

2

2in z

T T T
q D

t z z
          (41) 

where T is the water temperature in oC as a function of depth (z) and time (t), qin is the rate of 

groundwater inflow (ms-1), 
zD  is the vertical thermal diffusion coefficient (m2s-1), and H(x,y) is 

the bottom depth (m). Values of 
zD  the parameters in Eq. (40) was estimated to provide the best 

description of thermal structure. For the losing portion of the lake, thermal discharge from the lake 

bed was defined as: 

0out

T T
q

t z
            (42) 

 

Figure 3-7. Time series of relatively constant bottom water temperatures (blue symbols) measured at a 

depth of 32 m between 2011 and 2015 compared to the surface water temperature and air temperature for 

the period 2011-2015 (black line). 
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3.3 Results and discussion 

Water budget components of Gull Lake are shown in Figure 3-8. Water budget analyses 

indicated that groundwater contribution to the water budget of the lake was higher than the other 

components (about 50% percent of total water sources). Sum of inflows into the lake was 1.17e5 

m3/day in 2014. The residence time of a lake is defined as the ratio of the reservoir volume and 

total inflows. Total water volume of Gull Lake is 1.08e8 m3. Therefore, the residence time of the 

lake, which is defined as the ratio of the reservoir volume to the total inflows, is approximately 

2.25 yr. However, if there would be no groundwater flow into the lake, then the resident time 

would be 5.12 yr. To quantify the groundwater contribution to the entire lake, simulated and 

observed water level fluctuations recorded by the ADCPs are presented in Figure 3-9. As expected, 

the water budget was simulated much more accurately by considering the contributions of 

precipitation/evaporation, inflows/outflow and groundwater. The simulated water fluctuations in 

both 2014 and 2015 followed the trend of the observations. However, the simulated lake levels 

dropped by 0.3 m in the absence of groundwater. 

Figure 3-8. Water budget components in Gull Lake in (a) 2014 and (b) 2015 
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Figure 3-9. Comparisons of water level fluctuations recorded by ADCPs (red line), simulated without 

groundwater (blue line), and simulated with groundwater (black and yellow lines) in (a) 2014 and (b) 

2015. 

 Evaporation rates computed using the mass transfer approach based on the observed water 

surface temperature were compared with the results of COARE algorithm (Figure 3-10). To 

compare the mass transfer approach, which was used to as a starting point for water budget 

analysis, with the COARE algorithm, we ran the model with the same set of parameter values 

based on the evaporation rates calculated by the two algorithms. The total amount of evaporation 

computed by the mass transfer approach (373 mm) over the entire simulation period was 8.4 % 

larger than that calculated using the COARE algorithm (344 mm). Therefore, there was a 

difference of about 30 mm in the simulated water levels at the end of the simulation (Figure 3-11). 

Heat budget components of Gull Lake in the summers of 2015 and 2015 simulated by Model 

2 and Model 4 are presented in Table 3-3. Both models produced comparable results. Average 

longwave solar radiation rates simulated by Model 2 were about 53 (W/m2) higher than those 

simulated by Model 4. On the other hand, shortwave solar radiation rates were lower by 45 (W/m2).  
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Figure 3-10. Comparison of Gull Lake evaporation in 2014 computed by the mass transfer 

approach (method1) and the COARE algorithm (method2) 

 

Figure 3-11. Comparisons of simulated water level fluctuations in Gull Lake using evaporation computed 

by the mass transfer approach (method1) and the COARE algorithm (method2). 

Values of PBIAS for WRF-simulated shortwave (Figure 2-15c) and longwave (Figure 2-

15d) radiations also indicate that the simulated shortwave and longwave radiations have 

overestimation bias (PBIAS=-20%), and underestimation bias (PBIAS=2%), respectively. 

However, differences between net surface heat rates computed by Model 2 and 4 are as low as 3.5 

(W/m2). The groundwater heat flux components were found to be the most important heat loss 

terms after the longwave back radiation from the lake [Kettle et al., 2012]. Due to the summer 

cooling effect induced by lake - groundwater interaction, the total heat storage of Gull Lake over 
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the entire simulation period was only one-third of the total surface heat fluxes. This result 

highlights the ability of the lake to buffer seasonal water temperature variations in the 

hypolimnion. 

Table 3-3. Averaged heat budget components of Gull Lake in the summers of 2014 and 2015. 

Heat rate (W/m2) 
 2014  2015 

 Model 2 Model 4  Model 2 Model 4 

Net surface heat  117.52 120.82  115.68 119.16 

LW  391.18 347.28  393.84 340.74 

SW  234.37 277.68  225.20 275.15 

HS  -16.72 -9.55  -14.23 -9.98 

HL  -71.79 -79.40  -74.75 -82.55 

Hbr  -419.52 -415.20  -414.38 -404.21 

HPC  2.00 2.00  2.82 2.82 

HWL  0.15 0.15  0.18 0.18 

HLL  1.01 1.01  1.01 1.01 

Hout  -7.05 -7.05  -9.30 -9.30 

HGin  2.13 1.97  3.07 2.99 

HGout  -3.51 -3.47  -3.33 -3.29 

Heat storage  -33.57 -34.96  -39.34 -38.04 

JG  -79.17 -80.97  -71.36 -76.11 

Hrain  0.50 0.50  0.58 0.58 

Changes in density due to changes in salinity and temperature were simulated by the model 

(Figure 3-12). However, the small changes in density did not produce any appreciable changes in 

simulated circulation and thermal structure due to small salinity values. 

 

Figure 3-12. Comparison of simulated and observed vertically averaged salinity at HL location for year 

2014. 
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Comparisons of observed and simulated vertically-averaged velocity profiles at M14 and 

S14 locations for Models 1-4 are presented in Figures 3-13. RMSE values (m/s) of eastward (u) 

and northward (v) velocities at these locations are presented in Table 3-4. The results show that 

simulated current velocities at S14 and M14 locations are in good agreement with observations. 

Overall, all four models produced almost similar performance based on the vertically-averaged 

velocities. However, the results of the hydrodynamic models based on the k-ε turbulence model 

are slightly better than those based on the MY2.5 turbulence model.  

Table 3-4. RMSE values (m/s) of eastward and northward velocities at ADCP locations. 

Year 
  M14  S14 

Model  RMSEu RMSEv   RMSEu RMSEv 

2
0
1
4
 

Model 1   0.0052 0.0137 
 

0.0063 0.0164 

Model 2  0.0052 0.0138 
 

0.0055 0.0148 

Model 3  0.0052 0.0146 
 

0.0052 0.0147 

Model 4  0.0052 0.0139 
 

0.0069 0.0146 

   SD15  SS15 

2
0
1
5
 Model1  0.0052 0.0070  0.0060 0.0116 

Model 2  0.0052 0.0068  0.0059 0.0115 

Model 4  0.0053 0.0076 

 

0.0063 0.0118 

Comparisons of the simulated vertically-averaged velocities with observations (Figures 3-13) 

show that the reconstructed forcing fields obtained from the WRF model did just as in reproducing 

the hydrodynamics as the forcing fields based on weather stations data alone. Scatter plots of the 

simulated vertically-averaged velocities versus observed data at M14 and S14 are shown in Figure 

3-14. RMSE values of these comparisons, presented in Table 3-4, show that Models 2 and 4 

produced similar performance at the M14 location. 
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Figure 3-13. Comparisons of observed and simulated vertically-averaged velocity profiles at ADCP 

locations in the summer of 2014. 

Since comparisons of vertically-integrated horizontal currents mask important processes 

within the water column, we assessed the effectiveness of the models for their ability to accurately 

simulate the vertical velocity profiles at the ADCP locations using RMSE values of observed and 

simulated vertical velocity profiles for all time steps during the simulation. The probability 

distributions of RMSE values at the M14 location (Figure 3-15a-d) indicated that Model 2 

(mode=0.0118 m s-1, n=151) produced the best performance (n=number of time steps with the 

most frequent RMSE), followed by Model 3 (mode=0.0137 m s-1, n=273), Model 4 (mode=0.0139 

m s-1, n=259), and, lastly, Model 1 (mode=0.0146 m s-1, n=237). At the S14 location also Model 

2 (mode=0.0139 m s-1, n=119) followed by the Model 3 (mode=0.0148 m s-1, n=118) performed 

better than Model 1 (mode=0.0152 m s-1, n=117). However, the relative performance of Model 4 
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(mode=0.0189 m s-1, n=118) in simulating the vertical profiles was somewhat inferior at this 

location compared to the other models (Figure 3-15e-h).  

 

 

Figure 3-14. Scatter plots of velocities (observed versus simulated for different models) for 

year 2014. 
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Figure 3-15. Probability distributions of RMSE values based on observed and simulated vertical 

velocity profiles 
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In figure 3-16, comparisons of simulated and observed vertical velocity profiles at the ADCP 

locations are shown for a few selected time steps. RMSE values of these comparisons are presented 

in Table 3-5.  

Figure 3-16. Examples of comparisons of the observed and simulated vertical velocity profiles at 

ADCP locations in the summer of 2014. 
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The simulated vertical velocity profiles for Model 2 at these time steps provided the best 

agreement with observations. Figures 3-16b, 3-16c, and 3-16d indicate that the model without the 

groundwater contribution (Model1) sometimes completely failed to reproduce the observed 

vertical velocity profiles. 

Table 3-5. RMSE values (m/s) of the observed and simulated vertical velocity profiles at ADCP locations 

for some selected time steps. 

 
S14 

 
M14 

 
(a) Day 250  (b) Day 259 

 
(c) Day 200  (d) Day 227 

 RMSEu RMSEv  RMSEu RMSEv  RMSEu RMSEv  RMSEu RMSEv 

Model1 0.0099 0.0169  0.0083 0.0202 
 

0.0067 0.0063  0.0060 0.0173 

Model2 0.0054 0.0051  0.0069 0.0066 
 

0.0066 0.0058  0.0055 0.0086 

Model3 0.0095 0.0135  0.0084 0.0199 
 

0.0060 0.0070  0.0058 0.0072 

Model4 0.0058 0.0124  0.0079 0.0126 
 

0.0060 0.0077  0.0050 0.0103 

   
 
     

 
   

SD15 
 

SS15 

 
(a) Day 242  (b) Day 244 

 
(c) Day 156  (d) Day 234 

Model2 0.0080 0.0067  0.0048 0.0082 
 

0.0094 0.0083  0.0054 0.0067 

Model4 0.0086 0.0085  0.0096 0.0080 
 

0.0133 0.0183  0.0052  0.0068 

For the shortwave radiation model (Eq. 30), the parameters R=0.81, a=1.2 m, and b= 4.05 m 

provided the best fit to the measured PAR data in 2014 with an averaged regression factor of 

R2=0.87 (Figure 3-17a). For 2015 simulations, we used the parameters of R=0.77, a=0.78 m, and 

b=4.11 m based on PAR data (R2=0.96) obtained in the summer of 2015 (Figure 3-17b). Use this 

shortwave radiation model improved the simulation of surface temperatures and depth of 

thermocline. However, further improvement would be expected by utilizing time-dependent 



87 

 

parameters. An optimal set of parameters for the groundwater module was identified by comparing 

the simulated temperature with data collected by ADCPs, thermistor chains, and Hydrolab (Table 

3-6). The groundwater flow components of Gull Lake estimated using the method described in an 

earlier section (3.2.6) are shown in this table. The magnitude of groundwater flow rates computed 

in this study are within the same range of values (0.14–90 mm/day) determined by other works 

(Table 4 in Kettle et al. [2012]). For instance, groundwater exchange rates of 8.7-14.7 mm/day 

were reported for Williams Lake in Wisconsin, USA, which is also located in the glacial outwash 

region in northern USA [Schuster et al., 2003]. 

 

Figure 3-17. Observed PAR data used to determine the parameters of the shortwave penetration model. 
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Table 3-6. Set of parameters used for the groundwater module. 

Year Model 
TG 

(oC) 

Dz 

(m2/day) 

Ain 

(km2) 

Aout 

(km2) 

Gin 

(m3/s) 

Gout 

(m3/s) 

qin 

(mm/day) 

qout 

(mm/day) 

2014 
Model2 

9 1 5.09 3.45 
0.687 0.418 11.66 10.47 

Model4 0.693 0.412 11.76 10.32 

          
2015 

Model2 
8 1 5.09 3.45 

0.769 0.408 13.06 10.23 

Model4 0.776 0.402 13.17 10.07 

Contour plots of observed and simulated water temperatures in year 2014 at location TC 

are presented in Figure 3-18 for different models. 

 

Figure 3-18. Contour plots of the observed and simulated water temperature at the TC location in the 

summer of 2014. 
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Without the groundwater contribution, both the location and thickness of thermocline were 

not captured accurately by the model. After about 15 days of simulation, the bottom temperature 

of the lake became too high relative to observations. This can be clearly seen by comparing 

simulated and observed time series of the water temperature at TC, M14, and S14 locations (Figure 

3-19). 

 

Figure 3-19. Comparisons of simulated and observed time series of (a) surface water temperature (T0), 

and bottom temperature at (b) TC, (c) M14, and (d) S14 locations in 2014. 

Statistical comparisons of observed water temperature with simulated results of models 1 to 

4 were presented in a Taylor diagram in Figure 3-20. The statistics are normalized by the standard 

deviation of the observations. Definitions of metrics used in the Taylor diagram are provided in 

the Appendix. The cold layer below the thermocline, however, was captured by all other models 
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after including the contribution of groundwater. The coupled WRF-lake model and the FVCOM 

model with a forcing based on the weather stations alone produced almost comparable 

performance in simulating the thermal structure.  

 

Figure 3-20. Taylor diagram which shows statistical comparisons of observed water temperature with 

simulated results of model 1 to 4. The statistics are normalized by the standard deviation of the 

observations 

Comparisons of simulated vertical profiles of temperature with weekly Hydrolab data are 

presented in Figure 3-21. These comparisons illustrate the significant improvement that results 

from including the bottom cooling in the summer due to groundwater inflow into the lake. The 

vertical temperature structure was well captured by the models with the groundwater module. 

However, the model without the groundwater contribution failed to simulate the temperature 

profiles adequately as the thermal stratification was getting stronger. It should be noted that when 

the water temperature gradient was sharp, the simulated temperature profiles appeared diffuse as 

a result of the vertical resolution.  
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Figure 3-21. Comparisons of simulated vertical profiles of temperature with weekly Hydrolab data in 

2014. 

Finally, the developed models were also tested using data obtained during the summer of 

2015. Only the groundwater temperature and flow rates were changed according to the observed 

2015 data (Table 3-6). Evaluation of meteorological forcing based on weather stations alone and 
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the WRF model outputs was conducted by comparing the performance of the lake model in 

simulating currents at the ADCP locations (Figures 3-22 to 3-25) as well as thermal structure in 

the lake (Figure 3-26 to 3-28). The circulation results based on both types of meteorological forcing 

are comparable with observations at the ADCP locations. The mismatch between observed and 

simulated currents is found on days with significant wave activity (see DOY 195 in Figure 3-22).  

 

Figure 3-22. Comparisons of the simulated vertically averaged velocities and observations at ADCP 

locations in the summer of 2015. 
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Figure 3-23. Time series of wind, current and significant wave height at SS15 location. (a) 

Eastward wind speed (m/s), (b) comparison of observed and simulated eastward current speeds (m/s), (c) 

northward wind speed (m/s), (d) comparison of observed and simulated northward current speeds (m/s), 

(e) observed significant wave height (m). Gray areas represent examples of periods with significant wave 

activity during which the model could not adequately capture the observed currents. 
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Figure 3-24. Comparisons between observed (red lines) and simulated (black lines) power spectral 

densities at ADCP locations in 2014 and 2015. 
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Since wave - current interactions are not simulated, the hydrodynamic model was not able 

to capture the wave-induced currents on these days (see Figure 3-23). Observed and simulated 

power spectral densities of vertically averaged velocities were also compared at the ADCP 

locations for further model evaluation (Figure 3-24). Although wave - current interactions were 

not taken into account, simulated water currents in time and spectral domains were in good 

agreement with observed data. 

In Figure 3-25, comparisons of the simulated and observed vertical velocity profiles for 

Model 2 and Model 4 in 2015 at the ADCP locations are plotted for few selected time steps. RMSE 

values of these comparisons presented in Table 3-5 show that although both Model 2 and Model4 

did a reasonable job of simulating vertical velocity profiles in 2015, Model 2 performed slightly 

better. The probability distributions of RMSE values at the SD15 location indicated that Model 2 

(mode=0.0163 m s-1, n=245) had slightly better performance than Model 4 (mode=0.0183 m s-1, 

n=238). At the SS15 location, Model 2 (mode=0.0143 m s-1, n=95) produced better results than 

model 4 (mode=0.0151 m s-1, n=121). 

Contour plots of the observed and simulated water temperatures (Figure 3-26) indicate the 

ability of the models to capture thermal stratification by considering the groundwater contribution. 

The meteorological forcing used with the FVCOM model resulted in a better simulation of water 

temperature based on the Taylor diagram presented previously in Figure 3-20. Comparisons of 

simulated vertical profiles of temperature with weekly Hydrolab data (Figure 3-28) show that both 

models can accurately simulate vertical temperature profiles, especially in the hypolimnion. 
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Figure 3-25. Examples of comparisons of the observed and simulated vertical velocity profiles at ADCP 

locations in the summer of 2015. 
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Figure 3-26. Contour plots of the observed and simulated water temperature at the thermistor chain 

location (TC) in the summer of 2015. 
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Figure 3-27. Comparisons of simulated and observed time series of (a) surface water temperature at TC, 

and bottom temperature at (b) TC, (c) SS15, and (d) SD15 locations in 2015. 
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Figure 3-28. Comparisons of simulated vertical profiles of temperature with weekly Hydrolab data in 

2015. 

3.4 Conclusions 

Due to the dual pressures of climate change and anthropogenic activities such as high-

capacity pumping rates exceeding the natural recharge rates due to increasing demand for water, 

it is important to understand how lake ecosystems respond to warming surface temperatures and 

declining groundwater levels. Our results clearly bring out the important buffering role played by 

groundwater in modulating hypolimnetic temperatures and vertical mixing within a deep inland 

lake in Michigan. Results based on a model simulation without the groundwater contribution 
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indicated that hypolimnetic temperatures close to the lake bottom can increase by as much as 8 oC 

or more if lake levels were to drop to a level where the connection with the underlying aquifer is 

cutoff. This degree of water column heating (in the absence of groundwater) is known to produce 

important lake-wide changes including decreased dissolved inorganic nitrogen due to higher 

productivity [Sommaruga-Wögrath et al., 1997] and changes in underwater light climate 

[Sommaruga et al., 1999]. 

One feature that was not captured by any of the models considered here is the observed 

deepening of the thermocline as season progresses (Figure 3-18a and 3-26a). The main reason is 

due to the assumption that groundwater exchange rate is constant during the simulation and this 

aspect can be easily improved using either observed groundwater inflow rates or using a fully 

coupled modeling approach or both. Future modeling using fully coupled atmosphere-lake-

groundwater/watershed models is expected to remedy this situation. The fact that meteorological 

forcing based on the outputs of a mesoscale weather prediction model (WRF) could provide results 

comparable to the forcing based on a network of weather stations is encouraging, because small 

lakes in some parts of the world may not have access to any weather networks. As expected, the 

comparisons between observed and simulated vertically-averaged currents in the lake do not show 

significant differences between the simulations with and without groundwater as differences 

within the water column tend to get averaged. However, the vertical velocity and temperature 

profiles clearly indicate significant differences between the simulations. In some cases, the 

simulations without the groundwater contribution were in complete disagreement with 

observations.  

In a summary, The hydrodynamic model of Gull lake was developed and further improved 

using several techniques including (a) the use of a bathymetry-based refinement for the horizontal 
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mesh (b) the use of in situ observations for estimation of light attenuation lengths (c) the use of a 

coupled WRF-lake model to assess the accuracy of meteorological forcing reconstructed from 

land-based weather stations and vice versa, and d) the use of the k turbulence closure model 

to improve vertical mixing. All of these model improvements, however, did not resolve the issue 

of the overheated water column suggesting that hypolimetic temperatures were primarily 

controlled by groundwater inflow into the lake and this contribution must be acknowledged to 

accurately simulate lake thermal structure. The results illustrate the significant improvement in 

describing thermal structure of Gull Lake corresponding to the bottom cooling in the summer that 

is controlled by the groundwater exchange. 
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CHAPTER 4 

 

4 Evaluating the Role of Groundwater in Nutrient - 

Algal Dynamics 

 

4.1 Introduction 

Lake surface temperatures are on the rise in response to a warming climate [Magnuson, 

2000; Brooks and Zastrow, 2002; Hampton et al., 2008; Schneider and Hook, 2010; Austin, 2013]. 

Temperature is a critical factor in aquatic systems, and holds the key to controlling vertical 

stratification, mixing of nutrients, and regulating rate of aquatic ecosystem metabolism 

[Williamson et al., 1996]. Increased water temperature and the presence of subsequent intensified 

stratification have substantial effects on water quality of inland lakes [Chang et al., 2015]. The 

effect of temperature changes in rates of chemical reactions, biological growth rates, 

photosynthesis and respiration can disturb the equilibrium of the ecosystem [Woolway et al., 

2016]. In addition, the solubility of oxygen in water decreases as water temperature increases, thus 

a lack of dissolved oxygen required for respiration by aquatic organisms can have serious 

consequences [Carpenter et al., 2011; Zhang et al., 2015]. The deficiency of dissolved oxygen not 

only has a strong influence on the solubility of phosphorus and other inorganic nutrient, but also 

results a higher risk of algal blooms and eutrophication [Zhang et al., 2015]. Recent studies 

indicate that many lakes are facing oxygen depletion and more frequent periods of hypoxia to 
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anoxia in the hypolimnion have been observed due to lake eutrophication and climate change 

[Goto et al., 2012; Umaña, 2014; Zhang et al., 2015, 2016b]. Long-term planning to protect 

freshwater ecosystems depends upon our ability to identify key processes driving the changes 

[Combes, 2003]. 

Resilience of an ecosystem depends on interactions across rapidly-changing and slowly-

changing variables [Carpenter and Turner, 2000]. Research, monitoring and management efforts 

have tended to focus more on fast variables, which exhibit tangible variability at a short timescale, 

rather than the slow variables. Slow variables, however, have an important role in determining the 

resilience of a system and its regime shifts [Ludwig et al., 2003]. For example, surface fluxes are 

usually assumed to be the only important driving forces responsible for climate-induced changes 

in fresh water systems. From a system dynamics point of view, if a system is composed of only a 

reinforcing loop, the closed loop of cause and effect would lead to instability via accelerating 

growth [Sterman, 2000]. However, lake responses to climate induce changes, such as drought, vary 

from lake to lake, which is likely due to the nature and strength of their interaction with 

groundwater [Baines et al., 2000; Ala-aho et al., 2013]. In fact, groundwater serves as a balancing 

loop to resist attempted changes in order to maintain a balance and keep the system at a desired 

state. It is known that rivers that are primarily groundwater-fed are buffered against increasing 

seasonal temperature variation as the incoming groundwater flow at relatively lower temperatures 

holds more oxygen to support aquatic organisms [Combes, 2003]. A shallow groundwater-fed 

lakes can have a significant bottom cooling in summer [Kettle et al., 2012], which may act as a 

balancing loop within a lake ecosystem, and enhance the ability of the system to resist disturbances 

from surface-induced changes.  

https://en.wikipedia.org/wiki/Exponential_growth
https://en.wikipedia.org/wiki/Exponential_growth
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To maintain the resilience of groundwater-dependent ecosystems, it is crucial to monitor and 

control slow variable associated with groundwater. However, numerous studies indicate long-term 

groundwater depletion in different regions of the world [Rodell et al., 2009; Wada et al., 2010; 

Konikow, 2013; Joodaki et al., 2014; Pokhrel et al., 2015; Dalin et al., 2017]. In addition to socio-

economic consequences, groundwater depletion can also cause severe environmental impacts on 

groundwater-dependent aquatic ecosystems by altering surface water-groundwater interactions. 

Climatic and human-induced groundwater table drawdown could cause a shift in the physical, 

chemical, and biological structure of groundwater-fed lakes [Webster et al., 1996; Williamson et 

al., 1996; Gurrieri and Furniss, 2004; Turner and Townley, 2006]. Lack of monitoring slow 

variables and feedbacks often results in the loss of ecosystem resilience [Biggs et al., 2012]. The 

history of Lake Urumia, in north-western Iran, is one example of a dramatic regime shift in 

response to drought and heat stress, combined with increased human-induced stress. The lake 

water level has experienced significant depletion, and its surface area shrank by 88% in the past 

decades [AghaKouchak et al., 2015]. Additionally, rising water temperatures and salinity levels 

accelerate algae growth, and threaten the fragile food web and biodiversity of the ecosystem 

[AghaKouchak et al., 2015]. Moreover, a color shift from blue to red has often been observed in 

Urmia Lake in response to environmental stress, which is attributed to high growths of 

Archaebacteria and microalgae of Dunaliella [Asem et al., 2014]. 

The present study was motivated by the need to understand the role of groundwater in the 

resilience of a groundwater-fed inland lake, and determine what regime shifts may occur in the 

ecosystem in the absence of groundwater. To identify the role of groundwater, we combined 

extensive field datasets with a coupled biophysical model of Gull Lake, a relatively small but deep 

inland lake in Michigan, USA. Gull Lake is a groundwater-fed lake with bottom cooling and strong 
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stratification during summer, and supports diverse warm and cold water fisheries. The 

performance of the biophysical model was first evaluated against in situ observations, including 

high-resolution current, lake levels, and temperature, nutrient, dissolved oxygen, and chlorophyll 

data. Then, the developed model was used to predict the ability of the lake ecosystem to resist the 

disturbance caused by disconnection of the lake from groundwater due to groundwater depletion. 

4.2 Materials and methods 

4.2.1 Field sampling and laboratory analyses 

In situ measurements of water quality parameters were carried out weekly by Dr. Elena 

Litchman’s lab at the Kellogg Biological Station during the summer of 2015. A semidiurnal 

intensive sampling also was conducted around 10:00 AM and 2:00 PM for two weeks in August, 

whenever the weather cooperated. Water samples were regularly collected weekly for nutrient 

analysis, including total phosphorus, dissolved inorganic phosphorus, total nitrogen, dissolved 

nitrate, and chlorophyll concentrations. A four-meter integrated sampler was used for collecting 

depth-integrated samples of the upper water column. In addition, lake water samples were 

collected at the surface, deep chlorophyll maxima (DCM), and 32 m depth close to the bottom of 

the lake. In situ fluorescence profiles were measured using a SCAMP (Self-Contained 

Autonomous Micro-Profiler, http://pme.com) to find a depth of DCM within the water column 

where the fluorescence reaches the maximum value. Moreover, a Hydrolab multi-parameter sonde 

was used to measure vertical profiles of temperature, Dissolved Oxygen (DO), and chlorophyll 

concentration in 32 m. Data were recorded at 1 m and 0.5 m depth intervals for weekly sampling 

and intensive sampling, respectively. DO concentrations were measured using a luminescent-

based optical sensor [ASTM D888, 2012] 
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Nitrogen analyses were conducted with second-derivative spectroscopy [Crumpton et al., 

1992]. Dissolved nitrate was determined based on second-derivative UV spectroscopy for filtered 

samples. Total N was determined using second derivative analyses of nitrate, following persulfate 

digestion for unfiltered samples. Filtered samples were analyzed using a Lachat Quickchem 

Autoanalyzer to measure dissolved inorganic phosphorus (orthophosphate or soluble reactive 

phosphorus, SRP). For total P, unfiltered samples were digested by the persulfate digestion 

method. Initial conditions for water quality parameters were defined based on 

observed nutrient compounds in a nearby stream (Prairieville Creek) and a monitoring well near 

Gull Lake. Nutrient concentration ranges in Prairieville Creek and in the water supply well at the 

Pond Laboratory at Kellogg Biological Station are presented in Table 4-1. The data were obtained 

from KBS-LTER database (https://lter.kbs.msu.edu/datatables). Dissolved nitrate (NO3), 

ammonium (NH4), total dissolved phosphorus (TDP), and soluble reactive phosphorus (PO4) were 

measured on filtered water (0.45 micron). 

Table 4-1. Nutrient concentration ranges in Prairieville Creek and a pond lab reservoir well near Gull 

Lake from 2009-2014. 

Nutrient forms 
Prairieville Creek 

 
Pond Lab Reservoir well 

average min max 
 

average min max 

NO3 (mg/L) 5.70 4.90 6.40 
 

0.026 0.001 0.5 

NH4 (ug/L) 28.0 8.30 68.0 
 

14.0 0.73 33.0 

TDP (ug/L) 5.97 2.30 9.14 
 

5.13 0.66 14.0 

PO4 (ug/L) 1.80 0.72 3.87 
 

4.12 0.36 14.0 

4.2.2 Biophysical model 

A fully coupled biophysical model of Gull Lake was developed based on the three-

dimensional, unstructured grid, Finite-Volume Community Ocean Model (FVCOM; Chen et al. 
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[2003b; 2006]) to simulate biological and chemical processes in the lake. Thermal structure and 

circulation in Gull Lake were well-simulated by FVCOM [Safaie et al., 2017b]. A water quality 

model implemented into FVCOM is based on the EPA Water quality Analysis Simulation Program 

(WASP5; Ambrose et al., 1993). The water quality model is coupled with FVCOM (FVCOM-

WQM), and includes dissolved oxygen budget, nutrient cycling, and phytoplankton biomass. 

Average values of observed nutrient compounds (Table 4-1) were used to set initial conditions for 

water quality parameters, and to estimate the nutrient concentrations in stream flows. The 

performance of the biophysical model was first evaluated against in situ observations using the 

water quality model coupled with Model 2 (Table 3-2 in Chapter 3). Concentrations of the water 

quality parameters in inflowing groundwater were assumed to be equal to measured bottom value 

of their concentrations in the lake. The model performance was assessed by comparisons of 

simulated results and in situ observations collected in the summer of 2015. Then, Model 1 (Table 

3-2 in Chapter 3) was used to predict the ability of the lake ecosystem in the absence of 

groundwater effects. Parameter values used in the water quality model of Gull Lake are 

summarized in Table 4-2.  

The model simulates the temporal and spatial dynamics of Dissolved Oxygen (DO), 

Carbonaceous Biochemical Oxygen Demand (CBOD), Ammonia Nitrogen (NH3), Nitrate 

Nitrogen (NO3), Organic Nitrogen (ON), Orthophosphorus (OPO4), Organic Phosphorus (OP), and 

phytoplankton. The mass balance equation for the water quality components can be written as: 

( ) ( ) ( )
( ) ( ) ( )i i i i i i i
h h h i

C uC vC wC C C C
A A K S

t x y z x x y y z z
 (1) 

where ( 1,...,8)iC i  are the concentrations of water quality state variables, which are (1) DO (mg 

O2/L), (2) CBOD (mg C/L), (3) phytoplankton (mg C/L), (4) NH3 (mg N/L), (5) NO3 (mg N/L), 
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(6) ON (mg N/L), (7) OPO4 (mg P/L), and (8) OP (mg P/L), respectively;u ,v , and w  are velocity 

components in x , y , and z  directions; hA  and hK  denote the horizontal mixing coefficient and 

vertical eddy diffusion coefficient, respectively; ( 1,...,8)iS i is the internal source/sink terms. 

Since advection and dispersion terms are the same for all transport equations, we describe the 

source/sink terms in more detail below.  

1. Dissolved oxygen (C1) 

The dynamics of dissolved oxygen are controlled by the following chemical and biological 

processes [Ambrose et al., 1993]: (1) reaeration, (2) oxidation, (3) nitrification, (4) phytoplankton 

loss, (5) phytoplankton growth, (6) sediment oxygen demand, and (7) bacterial respiration. The 

term that includes all these processes can be written as follows: 

3

( 20) ( 20) ( 20)1 2 1 4
1 1

1 1

3 3

64
( )

14

32 32 48
(1 )

12 12 14

T T T
reae reae s deox deox nitr nitr

BOD nitr

P P nc NH bresp

CC CC
S k C C k k

K C K C

D C G a P C k

  (2)  

The first term in Eq. (2) is the reaeration term, where 
reaek is the reaeration rate coefficient at 20 

oC  (day-1) and 
reae

 is the temperature coefficient of reaeration. 
sC  and 

1C  denote the dissolved 

oxygen saturation and dissolved oxygen concertation (mg O2/L), respectively. 
sC is calculated as 

a function of temperature and salinity [APHA, 1998]: 

5 7 10 11

2 3 4

2

1.575701 10 6.642308 10 1.243800 10 8.621949 10
ln 139.34411

19.428 3867.3
0.5535 (0.031929 )                                                                             (3)

S
K K K K

K K

C
T T T T

S
T T
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where 
kT  is the water temperature in Kelvin (K). 

reaek  in the first term of Eq. (2) is calculated as 

the maximum of wind-induced and flow-induced reaeration. Oxygen reaeration induced by wind 

is determined using O'Conner's method (O’Connor, 1983). Flow-induced reaeration is calculated 

as a power function of average hydraulic depth and velocity using the Covar formulation [Covar, 

1976]. 

The second term of Eq. (2) is the CBOD oxidation, where 
deoxk is the CBOD deoxygenation 

rate at 20 oC (day-1) and 
reae

 is the temperature coefficient of deoxygenation. 
2C  and 

BODK  denote 

CBOD concentration and the half-saturation constant for oxygen limitation of CBOD oxidation 

(mg O2/L), respectively. The third term of Eq. (2) represents the nitrification, where 
nitrk is the 

nitrification rate at 20 C (day-1) and 
nitr

 is the temperature coefficient of nitrification. 
4C  and 

nitrK  are concentration of NH3 and the half-saturation constant for oxygen limitation of nitrification 

(mg O2/L), respectively. In this term, 64/14 mg of oxygen per mg of NH3 is consumed in the 

nitrification process. The fourth term in Eq. (2) shows phytoplankton oxygen consumption due to 

its respiration and death, where 
PD  is the phytoplankton loss (day-1), and 

3C  is the concentration 

of phytoplankton (mg C/L). The respiration process in this term would consume 32/12 mg of 

oxygen per mg of phytoplankton carbon.  

The fifth term in Eq. (2) represents oxygen production by phytoplankton photosynthesis and 

nitrogen reduction, where 
PG is the growth rate of phytoplankton (day-1), 

nca  is the stoichiometric 

ratio of nitrogen to carbon in phytoplankton. In this term, the stoichiometric oxygen to carbon ratio 

of 32/12 mg of O2 are generated for 1 mg of phytoplankton carbon produced in the growth process. 

In addition, phytoplankton nitrogen reduction process, which reduces nitrate nitrogen to ammonia 

nitrogen, produce 48/14
nca  mg of oxygen. 

3NHP  is the constant of ammonia preference. Dissolved 
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inorganic nitrogen is taken up by for phytoplankton growth. Both ammonia and nitrate can be 

consumed by phytoplankton. However, ammonia nitrogen is the preferred form, so the ammonia 

preference term was used to model their ammonia preference [Ambrose et al., 1993]: 

3

4 5 4 mN
NH

4 mN 5 mN 4 5 5 mN

C C 0.0001C K
P = + 

(C + 0.0001K )(C +0.0001K ) (C +C )(C +0.0001K )
    (4) 

The last term of Eq. (2) is the oxygen consumption by bacterial respiration, where brespk is the 

bacterial respiration rate (mg O2/day).  

At the bottom of the lake, the following equation was solved to include the DO flux exchange 

from the benthic layer to the water column:        

2

1 1

2z

C C
D

z Ht z
         (5) 

where 
zD  denotes diffusive exchange coefficient (m2/day).  

2. Carbonaceous biochemical oxygen demand (C2) 

The amount of Carbonaceous Biochemical Oxygen Demand (CBOD) in a water body 

depends on (1) phytoplankton loss, (2) oxidation, (3) denitrification, and (4) settling. These 

processes can be described by the following equation: 

3

3

5( 20) ( 20)1 2 2
2 3 2 2

1 1

32 5 32
(1 )

12 4 14

NOT T
P deox deox deni deni D S

BOD NO

K CCC C
S D C k k f v

K C K C z
   (6) 

where 
3NOK = half-saturation concentration for oxygen limitation of denitrification (mg O2/L), 

2Df

= fraction of dissolved CBOD, 
sC  is the dissolved oxygen saturation (mg O2/L) (Eq. (3)), and 

2sv  

=organic matter settling velocity (m.day-1). 
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3. Phytoplankton (C3) 

Sources and sinks of phytoplankton are mainly described by the following processes: (1) 

phytoplankton growth, (2) phytoplankton loss, and (3) phytoplankton settling: 

3
3 3 3 3P P S

C
S G C D C v

z
         (7) 

where 
2sv  = phytoplankton settling velocity (m.day-1), and the remaining variables have the same 

definition as those in Eq. (2). The growth rate of phytoplankton (
PG ) is modeled as: 

( 20)T
P grow N I growG k R R           (8) 

where growk  is the optimum phytoplankton growth rate at 20 oC  (day-1), 
NR  is the growth rate 

reduction due to nutrient limitation, 
IR  denotes growth rate reduction due to light limitation, and 

grow  is the temperature coefficient of optimum growth.
NR is determined using the Michaelis-

Menten model for inorganic nutrients: 

4 5 7

4 5 7

min ,N
MN MP

C C C
R

K C C K C
       (9) 

where 
MNK  and 

MPK  are half-saturation constants for uptake of inorganic nitrogen (mg N/L) and 

phosphorus (mg P/L), respectively. 
IR  is determined using the model proposed by (Steele, 1962), 

which has the following form: 

exp 1z z
I

s s

I I
R

I I
           (10) 
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where 
sI  is the optimum light intensity (W/m2), and 

zI is the light intensity in a water column. 

zI is an exponential function of water depth that can be calculated using the Beer’s law equation: 

0 exp( )z eI I k z            (11) 

where 
0I  is the light intensity at the surface (W/m2), z  is the water depth (m), and 

ek  is the light 

extinction coefficient (m-1). 
ek  is calculated as the sum of the vertical light attenuation coefficient 

for pure water (
wk ) and the phytoplankton self-shading attenuation (

shdk ). Light intensity 

attenuates by the presence of phytoplankton biomass in a column of water [Shigesada and Okubo, 

1981]. Self-shading of light by algae growing in a column of water can be expressed as [Ambrose 

et al., 1993]: 

0.6670.0088 0.054shdk Chl Chl          (12) 

where Chl  is the chlorophyll concentration (µg/L) at water depth of z . Chlorophyll concentrations 

can be estimated by 
2 / cchlChl C a , where 

cchla  is the ratio of carbon to chlorophyll. Substitution 

of Eq. (11) into Eq. (10) in a layer integrated form is used to calculate 
IR  in FVCOM: 

0 0
1

2.718
  exp ex pp exex pI e i e i
e s s

I I
R k z k z

k z I I
     (13) 

where 
iz  and 

1iz  are depths from the free surface to the bottom and top of each sigma layer (m), 

respectively, and z  is the layer thickness (m). 

The phytoplankton loss rate (
PD ) used in Eq. (2) and Eq. (7) is determined by considering 

phytoplankton respiration and death: 
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( 20) ( 20)T T
P resp resp mort mortD k k          (14) 

where respk phytoplankton respiration rate at 20 oC  (day-1); resp  temperature coefficient of 

phytoplankton respiration; 
mortk  rate of phytoplankton mortality at 20 oC  (day-1); and 

mort

temperature coefficient of phytoplankton mortality. 

4. Ammonia (C4): 

Ammonia, NH3, is determined by the balance between the following processes: (1) 

phytoplankton loss, (2) mineralization from organic nitrogen, (3) phytoplankton uptake, and (4) 

nitrification:

3

( 20) ( 20)3 6 1 4
4 3 3

3 1

(1 ) T T
nc P ON mine1 mine1 nc P NH nitr nitr

mPC nitr

C C CC
S a D f C k a G P C k

K C K C
   (15) 

where 
nca  = the stoichiometric ratio of nitrogen to carbon in phytoplankton; 

PD  phytoplankton 

loss rate (day-1); 
ONf  fraction of dead and respired phytoplankton recycled to the organic 

nitrogen pool; 
mine1k  organic nitrogen mineralization at 20 oC  (day-1); 

1mine
temperature 

coefficient of organic nitrogen mineralization; 
mPCK half-saturation constant of phytoplankton 

limitation of phosphorus recycle (mg C/L); 
PG  phytoplankton growth rate (day-1); 

3NHP  

constant of ammonia preference; 
nitrk  nitrification rate at 20 oC  (day-1); 

nitr
temperature 

coefficient of nitrification; and 
nitrK  half-saturation constant for oxygen limitation of 

nitrification (mg O2/L). 
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5. Nitrate and nitrite nitrogen (C5): 

Nitrogen oxides, including NO2 and NO3, are inorganic compounds of nitrogen, which can 

be described via the following processes: (1) nitrification, (2) phytoplankton uptake, (3) 

denitrification: 

3

3

3

5( 20) ( 20)1 4
5 3

1 1

(1 )
NOT T

nitr nitr nc P NH deni deni
nitr NO

K CCC
S k a G P C k

K C K C
  

 (16) 

where 
denitk  denitrification rate at 20 oC  (day-1); 

denit
temperature coefficient of 

denitrification; 
3NOK  half-saturation constant for oxygen limitation of denitrification (mg 

O2/L); and the remaining variables have the same definition as those in Eq.(15). The first term of 

Eq. (16) represents the nitrification that ammonia (NH3) is oxidized to nitrite ( 2NO ) and then to 

nitrate ( 3NO ). The second term shows the preferred amount of NO3 that is consumed by 

phytoplankton via the photosynthetic process. The last term in Eq. (16) is the denitrification that 

corresponds to the reduction of nitrate to nitrogen gas (N2). 

6. Organic nitrogen (C6) 

Sources and sinks for organic nitrogen (ON) are determined by (1) phytoplankton loss, (2) 

organic nitrogen mineralization, and (3) ON settling. These processes can be describe as: 

( 20) 3 6 6
6 3 6 6

3

(1 )T
nc P ON mine1 mine1 D S

mPC

C C C
S a D f C k f v

K C z
 (17) 

where 
6Df  fraction of dissolved organic nitrogen, and 

6Sv  settling velocity of organic nitrogen 

(m.day-1). 
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7. Inorganic phosphorus (C7) 

The amount of inorganic phosphorus (Orthophosphorus), OPO4, in a water body depends on 

(1) phytoplankton loss, (2) mineralization from organic phosphorus, and (3) phytoplankton uptake. 

These processes are determined in the following form: 

( 20) 3 8
7 3 2 2 3

3

(1 ) T
pc P OP mine mine pc P

mPC

C C
S a D f C k a G C

K C
    (18) 

where pca  = the stoichiometric ratio of phosphorus to carbon in phytoplankton; 
ONf  fraction of 

dead and respired phytoplankton recycled to the organic phosphorus pool; 
2minek  organic 

phosphorus mineralization at 20 oC  (day-1); 
2mine

temperature coefficient of organic 

phosphorus mineralization; 
mPCK half-saturation constant of phytoplankton limitation of 

phosphorus recycle (mg C/L). 

8. Organic phosphorus (C8) 

Sources and sinks for organic phosphorus (OP), in a water body include (1) phytoplankton 

loss, (2) OP mineralization, and (3) OP settling velocity. These processes are described by the 

following equation: 

( 20) 3 8 8
8 3 2 2 8 8

3

(1 )T
pc P OP mine mine D S

mPC

C C C
S a D f C k f v

K C z
    (19) 

where 
8Df  denotes fraction of organic phosphorus, and 

8Sv  is the settling velocity of organic 

phosphorus (m day-1). 
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Table 4-2 Parameter values used in the water quality model 

Symbol Value Definition 

deoxk   0.05 a Deoxygenation rate at 20 degree (day-1) 

nitrk  0.09 a Nitrification rate at 20 degree (day-1) 

respk  0.071b Phytoplankton respiration rate at 20 degree (day-1)  

brespk  0.20c Bacterial respiration rate (uM/h) 

denik  0.09a Denitrification rate at 20 degree (day-1) 

growk  1.21b Optimum phytoplankton growth rate at 20 degree, (day-1) 

mortk  0.04b The Mortality rate of phytoplankton at 20 degree, (day-1) 

mine1k  0.075b Organic nitrogen mineralization at 20 degree (day-1) 

2minek  0.22b Organic phosphorus mineralization at 20 degree (day-1) 

reae  1.028a Temperature coefficient of reaeration 

deox  1.047a Temperature coefficient of deoxygenation 

nitr  1.08a Temperature coefficient of nitrification 

resp  1.08a Temperature coefficient of phytoplankton respiration 

deni
 1.08a Temperature coefficient of denitrification 

grow  1.07a Temperature coefficient of optimum growth 

mort  1.00a Temperature coefficient of phytoplankton mortality 

mine1  1.08a Temperature coefficient of nitrogen mineralization 

2mine  1.08a Temperature coefficient of phosphorus mineralization 

BODK
 0.5a Half-saturation constant for oxygen limitation of CBOD oxidation (mg O2/l) 

nitrK
 0.5 a Half-saturation constant for oxygen limitation of nitrification (mg O2/l) 

mNK  25 a Half-saturation constant for uptake of inorganic nitrogen (μg N/l) 

mPK  1a Half-saturation constant for uptake of inorganic phosphorus (μg P/l) 

3NOK  0.1 a Half-saturation constant for oxygen limitation of denitrification (mg O2/l) 

mPCK
 1a Half-saturation constant of phytoplankton limitation of phosphorus recycle (mg C/l) 

zD   0.76 Diffusive exchange coefficient (m2/day) 

2Sv   0.5a Organic matter sinking velocity (m/day) 

3Sv  0.14d Phytoplankton settling velocity (m/day) 

6Sv  0.5 a Settling velocity of organic nitrogen (m.day-1) 

8Sv  0.5 a Settling velocity of organic phosphorus (m.day-1) 

2Df  0.5 a Fraction of dissolved CBOD 

6Df  1a Fraction of dissolved organic nitrogen 

8Df  1a Fraction of dissolved organic phosphorus 

ONf  0.65e Fraction of dead and respired phytoplankton recycled to the organic nitrogen pool 

OPf  0.65e Fraction of dead and respired phytoplankton recycled to the organic phosphorus pool 

cchla  60f Ratio of carbon to chlorophyll  

nca  1/12.5g Ratio of nitrogen to carbon in phytoplankton (mg N/mg C) 

pca  1/412g Ratio of phosphorus to carbon in phytoplankton (mg P/mg C) 

a[Ambrose et al., 1993]    e
 [Yassuda et al., 2000] 

b[Schladow and Hamilton, 1997]    f[Yacobi and Zohary, 2010] 
c
 [Zheng et al., 2004]     g[Hecky et al., 1993] 

d This study 
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4.3 Results and discussion 

The lake model with groundwater contribution (Model 2 in Chapter 3) closely approximated 

the observed temporal and spatial dynamics of water quality components. Simulated results show 

that the developed water quality model has the ability to accurately predict vertical distribution of 

dissolved oxygen (Figure 4-1 and 4-2b) and phytoplankton biomass (Figure 4-3 and 4-4b). In 

Figure 4-1, comparisons of observed vertical velocity profiles of DO were compared with the 

results of Model 2. This figure shows that the vertical DO structure is well captured by the models 

with the groundwater module (Model 2). Comparisons of simulated vertical profiles of chlorophyll 

with the Hydrolab data are presented in Figure 4-3. Results indicate that algal dynamics in Gull 

Lake was mainly controlled by temperature and light limitation (Eq. (10)). During the simulation 

period, deep chlorophyll maxima (DCM) occurred usually at the center of thermocline located at 

13 m depth of water (Model 2 in Figure 4-3 and Figure 4-4b). The intensity of the DCM fluctuation 

with diel cycle depends on light availability and stability of the water column, and reached its 

maximum value in the late afternoon [Lucas et al., 2016]. DO stratification was linked to vertical 

structure of phytoplankton and thermal stratification pattern of the lake [Zhang et al., 2015]. 

Phytoplankton photosynthesis had a strong effect on oxygen production, which often increased 

DO saturations up to 135% (Figure 4-5b). In Figures 4-6 and 4-7, nutrient data from water samples 

collected at DCM, close to the bottom of the lake, and from depth-integrated samples of the upper 

water column were compared with simulated vertical profiles. In these comparisons, vertical error 

bars were used to show the standard deviation of observed data. Overall, the comparisons show 

that Model 2 was able to predict the nutrient-algal dynamics. 
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Figure 4-1 Comparisons of simulated vertical profiles of dissolved oxygen (mg O2/L) with Hydrolab data 

in 2015. Simulated results of Model 1 (blue line) are in the absence of groundwater effects, and results of 

Model 2 (black line) are with groundwater effects. 
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Figure 4-2. Contour plots of (a) observed DO (mg O2/L), (b) simulated DO with groundwater effects 

(Model 2) and (c) simulated DO in the absence of groundwater effects (Model 1) in Gull Lake in 2015. 
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Figure 4-3. Comparisons of simulated vertical profiles of Chl-a (μg C/L) with Hydrolab data in 2015. 

Simulated results of Model 1 (blue line) are in the absence of groundwater effects, and results of Model 2 

(black line) are with groundwater effects. 
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Figure 4-4. Contour plots of (a) observed Chl-a (μg C/L), (b) simulated Chl-a with groundwater effects 

(Model 2) and (c) simulated Chl-a in the absence of groundwater effects (Model 1) in Gull Lake in 2015. 
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Figure 4-5. Contour plots of (a) observed DO saturation (%), (b) simulated DO saturation with 

groundwater effects and (c) simulated DO saturations in the absence of groundwater effects in Gull Lake 

in 2015. 
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Figure 4-6. Comparisons of observed and simulated vertical profiles of dissolved nitrate (mg N/L) in 

2015. Simulated results of Model 1 (blue line) are in the absence of groundwater effects, and results of 

Model 2 (black line) are with groundwater effects. 
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Figure 4-7. Comparisons of observed and simulated vertical profiles of SRP (μg P/L) in 2015. Simulated 

results of Model 1 (blue line) are in the absence of groundwater effects, and results of Model 2 (black 

line) are with groundwater effects. 

In order to explore the role of groundwater in potential regime shifts in Gull Lake, the 

developed model was utilized to predict a scenario in which there is no feedback from the 

groundwater to the lake due to groundwater depletion. Water budget analyses (Chapter 3) showed 

that groundwater had a high contribution to the water budget of the lake (40-56 percent of total 
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water sources). In the sense that if no groundwater flow occurs into the lake, the simulated lake 

stage will be dropped down by 30 cm within the four-month stratification period (from early May 

to mid-September). Since a fully disconnected system will start to lose more water due to higher 

infiltration rates [Brunner et al., 2009], the actual decline in the lake stage is expected to be more 

than 30 cm in transition from fully connected to fully disconnected flow regime. The change can 

also be reflected in lake water residence times, to such an extent that the 2.16 year residence time 

of Gull lake at the current condition would be extended by 120% (see Chapter 3). Moreover, results 

suggest that cold temperatures observed in the hypolimnion within a narrow range of 8 to 10 oC, 

will be increased by 8 oC by the absence of groundwater. Therefore, the thickness of epilimnion 

will be expanded from 8 m to 11 m, which could increase warm-water fish distributions and their 

suitable thermal habitat [Comte et al., 2013]. However, it will also increase growth of algal blooms 

(Figure 4-4c) and invasive species, such as zebra mussels. Furthermore, heat stress would 

influence the ability of aquatic organisms, especially those in early life stages, to be immune from 

toxic substances and diseases. 

Excessive algal photosynthesis (Figure 4-4c), influenced by high temperature, produced 

strengthened DO stratification, but decreased flow of DO to the benthic waters due to the DO 

stratification (Figure 4-2c). Predicated dissolved oxygen above the thermocline reached 

supersaturation with DO saturations ranging between 120 and 200% (Figure 4-5c). This 

supersaturation condition would increase risk of gas bubble disease, bacterial infection, and 

mortality in fish and invertebrates [Weitkamp and Katz, 1980; Elston and Wood, 1983; Harris et 

al., 2005]. Additionally, it resulted in quick depletion of nutrients (e.g. DOY 242 in Figure 4-7). 

The development of algal biomass also attenuated light intensity through the self-shading 

effect [Shigesada and Okubo, 1981]. Thus, the DCM locations moved upward to the surface 
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(Model 1 in Figure 4-3), and the light limitation changed the vertical distributions of DO (Figures 

4-1 and 4-2), nutrients and phytoplankton, accordingly. For instance, the decrease in light 

penetration reduced depths of DCM and oxycline by 3 m in day of the year (DOY) 235 (Figure 4-

4c). Warmer bottom temperatures lead to hyoxia and anoxia in the deep waters of the lake (Figure 

4-2c and Figure 4-5c). Early and strong hypolimnion anoxic conditions were projected due to the 

increased sediment oxygen demand, and bacterial respiration. The observed DO concentrations at 

the 32 m depth of water had a depletion rate of 0.22 mg O2 L-1 day-1 during the simulation period, 

so the initial bottom DO level of 6.18 mg O2 L-1 reached anoxia within four weeks. However, in 

the absence of groundwater effects, anoxia occurred 12 days sooner with a depletion rate of 0.36 

mg O2 L-1 day-1
.The high bottom temperature along with the low DO levels could negatively 

impact cold-water habitat in the lake. Results suggest that cold-water species with thermal 

preferences of 8-12 oC and a benchmark oxygen concentration of 3 mg L–1 will experience high 

oxythermal stress [Jiang and Fang, 2016]. It was predicted that a habitant volume for DO >3 mg 

O2 L-1 and 8 oC <T<12 oC, which was 27% of the lake volume in DOY 247, would completely 

disappear in the absence of groundwater inputs. 

4.4 Conclusions 

Groundwater contribution to Gull Lake was found to have a significant effect on coupled 

processes within the lake. The results presented in this chapter (with and without groundwater 

contribution) indicate that feedback from the groundwater-lake interactions, acts as a balancing 

loop that can help resist environmental disturbances. Cold groundwater flow through the lake 

causes significant bottom cooling in summer, and this has an important role in water quality, 

biodiversity, and habitat structure of the lake. For instance, the ability to buffer seasonal water 

temperature variations in the hypolimnion allows cold-water fish to thrive. This finding 
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emphasizes the important role of groundwater in controlling the lake temperature whose changes 

can affect the behavior of the lake ecosystem. This research highlights that changes on 

groundwater level and its temperature due to natural climate variability and human activities have 

the potential to lead to an ecological regime shift in groundwater-fed lakes. Groundwater depletion 

was shown to have potential negative impacts on sustainability of lake ecosystems, e.g. lake level 

changes, water temperature rising, accelerating algal growth and dissolved oxygen depletion, early 

anoxia, reduction of light availability, and eutrophication. These changes could cause ecological 

consequences on food-web functioning and biodiversity of the ecosystem. These results are 

expected to provide improved understanding of the role of groundwater in physical, chemical and 

biological processes within groundwater-fed lakes. 
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CHAPTER 5 

 

 

 

5 Conclusions 

The specific aim of the present study was to evaluate the role of groundwater in biophysical 

processes of groundwater-fed lakes. To gain insights into physical, chemical, and biological 

processes in inland lakes, detailed three-dimensional hydrodynamic and temperature models of 

Gull Lake coupled to nutrient and algal dynamics were developed using field observations and 

numerical modeling during the summer stratification period. As a first step towards building a 

coupled physical-chemical-biological modeling system, we evaluated the role played by 

groundwater in thermal structure and circulation of the lake. A three-dimensional hydrodynamic 

model (FVCOM, Finite-Volume Community Ocean Model) and a mesoscale weather prediction 

model (WRF, Weather Research and Forecasting model) were utilized to simulate hydrodynamic 

and thermal behaviors of the lake. Wind fields and heat fluxes, which are major driving forces of 

lake hydrodynamics, were reconstructed from both weather station data and WRF-simulated 

results. This study shows that WRF-simulated meteorological forcing fields could provide 

comparable results to those reconstructed from the land-based weather station network. This is 

encouraging since many lakes in remote parts of the world may not have a network of weather 

stations around them. 
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In addition, a novel manifold method of reconstructing spatiotemporal data was proposed 

for assimilating geophysical and meteorological data into numerical lake circulation and transport 

models. The effectiveness of the presented manifold algorithm was evaluated through assimilation 

of geophysical and meteorological data in lake models. Results indicate the superior performance 

of the manifold method over standard methods in terms of accuracy and computational efficiency 

for reconstructing meteorological data. Combining manifold methods with assimilation methods 

such as the ensemble Kalman filter [Moradkhani et al., 2005; Evensen, 2007; Pathiraja et al., 

2016] could be an important direction of future work to further improve process-based modeling 

of land surface, subsurface and lake/ocean models. 

In this study, high-resolution currents, lake levels, and temperature data were collected to 

evaluate the performance of the hydrodynamic model. Two well-known turbulence models, the 

modified Mellor and Yamada level 2.5 level and the two-equation k  turbulence models, were 

compared in order to better describe the observed vertical mixing and thermal structure in the lake. 

Although both turbulence models produced similar trends in thermal structure, the k  

turbulence model produced better model performance in describing surface temperatures and 

circulations in the surface mixed layer. To quantify groundwater contribution to the entire lake, 

water level fluctuations recorded by Acoustic Doppler Current Profilers (ADCPs) were used as a 

basis for evaluating the water budget of the lake. The developed model achieved promising results 

when the groundwater contribution was taken into account. However, the simulated lake stage 

dropped down by 30 cm during the summer in the absence of groundwater contribution.  

The water quality model was fully coupled with FVCOM for integrated analysis of dissolved 

oxygen budget, nutrient cycling, and phytoplankton biomass. The model performance was 

assessed by comparisons of simulated results and in situ water quality observations, including 
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vertical profiles of nutrients, dissolved oxygen, and chlorophyll concentration in 32 m of water. 

The developed model was used to evaluate the role of groundwater in dissolved oxygen, nutrients 

and algal dynamics of Gull Lake. Simulated results show that the developed water quality model 

has the ability to accurately predict vertical distribution of dissolved oxygen and phytoplankton 

biomass. Then, the developed model was used to predict the ability of the lake ecosystem to resist 

disturbance caused by disconnection of the lake from groundwater due to groundwater depletion. 

Results suggest that groundwater-fed lakes have the ability to buffer seasonal water 

temperature variations in hypolimnion. However, the low temperatures observed in the 

hypolimnion will be increased by 8 oC by neglecting the groundwater effects. This finding 

emphasizes the important role of groundwater in controlling the lake temperatures. Rising water 

temperature in the absence of groundwater contribution to the lake could alter water quality, 

biodiversity, and habitat structure of the lake. Our predicted results indicated that lake level 

changes, rising water temperatures, increased growth rates of algae, oxygen depletion, early 

anoxia, reduction of light availability, and eutrophication are some possible consequential effects 

of groundwater depletion on lake ecosystems. This finding is expected to aid in understanding the 

role of groundwater in several key biophysical processes in groundwater-fed lakes, and could 

strengthen management efforts to maintain the resilience of ecosystem functions in the face of 

external stressors. 
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The following metrics were used in this study to evaluate model performance: 
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where iO  and iP  are observed and predicted values of a variable, respectively. O  and P  are the 

mean values of iO  and iP . The R2 and RMSE are well-known metrics while PBIAS is a measure 

of the tendency of the simulated data to be higher or lower relative to the observations. NSE in Eq. 

(A.4) represents the Nash – Sutcliffe model efficiency, and nF  in Eq. (A.5) is the Fourier norm 

provides an indication of the variance in the observed data that is not captured by the model. 
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The Taylor diagram (Figure 2-30) is based on the normalized standard deviation ( ), centered 

root mean square difference (E ) between observed and simulated data, correlation coefficient (R) 

and bias with the following definitions [Taylor, 2001]: 
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where  
O  and 

P  are standard deviation of  O  and P . Note that Taylor [2001] used the R2, as 

we defined here in (Eq. A2), for the correlation coefficient (R). Eq. A2 is identical to the definition 

of R in (Eq. A6) used by Taylor (2001). To be consistent with Taylor's definition, we used the 

definition in Eq. (A6) for the Taylor diagram. The statistics used in the Taylor diagram have the 

following relationship: 

2 2 2 2O P O PE R           (A9) 
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