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ABSTRACT

SPECTROSCOPY OF NEUTRON-UNBOUND FLUORINE

by

Gregory Arthur Christian

Neutron-unbound states in 27F and 28F have been measured using the technique of invariant mass

spectroscopy, with the unbound states populated from nucleon knock out reactions, 29Ne(9Be, X).

Neutrons resulting from the decay of unbound states were detected in the Modular Neutron Array

(MoNA), which recorded their positions and times of flight. Residual charged fragments were

deflected by the dipole Sweeper magnet and passed through a series of charged particle detectors

that provided position, energy loss, and total kinetic energy measurements. The charged particle

measurements were sufficient for isotope separation and identification as well as reconstruction

of momentum vectors at the target. In addition to the neutron and charged particle detectors, a

CsI(Na) array (CAESAR) surrounded the target, allowing a unique determination of the decay

path of the unbound states.

In 27F, a resonance was observed to decay to the ground state of 26F with 380±60 keV relative

energy, corresponding to an excited level in 27F at 2500± 220 keV. The 28F relative energy

spectrum indicates the presence of multiple, unresolved resonances; however, it was possible to

determine the location of the ground state resonance as 210+50
−60

keV above the ground state of 27F.

This translates to a 28F binding energy of 186.47±0.20 MeV.

Comparison of the 28F binding energy to USDA/USDB shell model predictions provides in-

sight into the role of intruder configurations in the ground state structure of 28F and the low-Z limit

of the “island of inversion” around N = 20. The USDA/USDB calculations are in good agreement

with the present measurement, in sharp contrast to other neutron rich, N = 19 nuclei (29Ne, 30Na,

and 31Mg). This proves that configurations lying outside of the sd model space are not necessary

to obtain a good description of the ground state binding energy of 28F and suggests that 28F does

not exhibit inverted single particle structure in its ground state.
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Chapter 1

INTRODUCTION

The fundamental question of nuclear structure is a simple one: what happens when protons and

neutrons are combined to form a compound system? Despite its seemingly simple nature, the

atomic nucleus is a varied and complex object. Construction of a complete and accurate model of

all nuclei would require a detailed understanding of the strong nuclear force as well as the ability

to exactly solve an n−body quantum mechanical problem. At present, neither of these is tractable,

but it is nevertheless possible to construct models which reproduce a variety of experimental ob-

servations relevant to nuclear structure. One of the most successful models used to describe the

structure of light to medium mass nuclei is the “shell model,” which treats nuclei as collections of

independent nucleons (protons and neutrons) moving in a mean field.

Beginning in 1933, W. Elsasser noted that certain “magic” numbers of protons and neutrons

result in enhanced nuclear stability [2]. This led to the development of the shell model, in which

nuclei are modeled as systems of non-interacting nucleons sitting in a potential well. Initially, this

idea was disregarded as it was not believed that strong inter-nucleon fores could average to form

such a well. Moreover, little experimental data was available to support such a hypothesis [3].

Over a decade later, M. Goeppert-Mayer revisited the nuclear shell model with the benefit of a

large number of experimental data, noting the particular stability of nuclei at proton or neutron

numbers 8, 20, 50, 82 and 126 [4]. However, using simple potential wells to construct the mean

field, it was only possible to reproduce gaps at numbers 8 and 20, so the independent particle model

of the nucleus continued to be disregarded [3].

The major breakthrough for the shell model came in 1949, when Mayer and the group of

Haxel, Suess, and Jensen independently demonstrated that large shell gaps at 8, 20, 28, 50, 82 and

126 are reproduced theoretically in a mean field model by adding a spin-orbit term to a harmonic

oscillator potential [5, 6]. The energy spacings resulting from such a potential are illustrated in
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Figure 1.1: Level spacings in the nuclear shell model (up to number 50), from a harmonic

oscillator potential that includes a spin-orbit term [1].

Fig. 1.11. Later refinements were made to the shell model, including the use of a more realistic

Woods-Saxon potential [7], but for stable nuclei the basic picture is similar to that of Fig. 1.1.

Early studies involving nuclei away from stability indicated a breakdown in the large shell gap

at N = 20 [8–11]. The loss of magicity at N = 20 and at other magic numbers has since been

demonstrated in a wide variety of experiments, and a great amount of experimental and theoretical

effort has been put forth to understand the evolution of nuclear shell structure when going from

stable nuclei to those with large neutron to proton ratio. In the present work, these efforts are

continued through the study of neutron-unbound states in 27F and 28F, circled on a nuclear chart in

Fig. 1.2. These nuclei lie close to the traditional magic number N = 20 and are some of the most

neutron rich N ∼ 20 systems presently available for experimental study.

1Throughout this document, the shell labeling scheme of Fig. 1.1, beginning with n = 0, is used. Other
sources may use a scheme that begins with n= 1, but the distinction is typically clear from context.
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Chapter 2

MOTIVATION AND THEORY

2.1 Evolution of Nuclear Shell Structure

Since the earliest studies indicating a change in shell structure for neutron rich nuclei [8–11], a

wide variety of data have been collected to support this hypothesis. The first indications came in

Ref. [8], in which mass measurements of sodium (Z = 11) isotopes, ranging from 26Na to 31Na,

were reported. The sodiums were produced in reactions of a 24 GeV proton beam on a thick

Uranium target, with the reaction products separated and their masses measured in a single-stage

magnetic spectrometer at CERN [13]. The authors found that the heavier isotopes 31,32Na were

significantly more bound than predicted by theoretical calculations using a closed N = 20 shell.

This deviation is shown in Fig. 2.1, adapted from the original article. The masses of these isotopes

could only be reproduced theoretically if neutrons were allowed to be promoted from the 0d3/2

to the 0 f7/2 level, a configuration which was not in line with previous assumptions of a closed

N = 20 shell.

Extending the mass measurements of [8] to include other isotopes in the N = 20 region, one

can see clear evidence for quenching of the N = 20 shell gap by plotting two-neutron separation

energies as a function of mass number, as is done for isotopes of neon (Z = 10) through calcium

(Z = 20) in Fig. 2.2. A significant decrease in two neutron separation energy is expected to follow

a large shell gap since nuclei below the gap will be much more tightly bound than those above it.

As shown in the figure, a large decrease in separation energy is present for stable and nearly stable

isotopes (aluminum through calcium, 13 ≤ Z ≤ 20). This decrease becomes diminished for the

neutron rich isotopes of magnesium, sodium and neon (Z = 12, 11, 10) .

Further confirmation of N = 20 shell gap quenching comes from consideration of the 2+ first

excited state energies of even-even nuclei in the N ∼ 20 region. For nuclei with a closed N = 20

neutron shell, reaching the 2+ configuration requires the promotion of neutrons across the large
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Ref. [8]. A high value ofMcalc−Mexp indicates stronger binding than predicted by theory, as is

the case for 31,32Na.

shell gap. This requirement leads to a high-lying 2+ first excited state, on the order of 2 MeV

or more. On the other hand, if the gap is quenched, the next available level is lower, resulting

in a decreased 2+ excitation energy. Fig. 2.3 shows the 2+ first excited state energies of even-

even N = 20 isotones from neon (Z = 10) through calcium (Z = 20) . As expected, the 2+ energy

is large for the nuclei with Z ≥ 14, but it drops dramatically to less than 1 MeV for neon and

magnesium, indicating a quenching of the N = 20 gap.

In addition to masses and excited state energies, a number of other data have been collected

to indicate the onset of deformation for neutron rich N ∼ 20 nuclei. Deformation in nuclei is the

result of collective modes, and its presence indicates the lack of a strong shell closure. Some of

the experimental signatures of deformation include B(E2) values for the transition from the 2+

first excited state to the 0+ ground state (for even-even nuclei); charge radii; and electromagnetic

moments. A detailed overview of previous measurements of these observables is not relevant in

the present work; however, a concise summary can be found in Ref. [20].

Prompted by the experimental discoveries outlined above, theoretical models were adjusted to
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Figure 2.2: Two neutron separation energies for isotopes of neon (Z = 10) through calcium (Z =
20). The most neutron rich isotopes of Mg, Na and Ne do not demonstrate a dramatic drop in

separation energy at N = 20, indicating a quenching of the shell gap. The top panel is a plot of the
difference in two neutron separation energy between N = 21 and N = 20 as a function of proton

number. S2n values are calculated from Ref. [12].
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N = 20 shell gap. The 2+ energy for neon is taken from Refs. [14, 15]; all others are taken from

the appropriate Nuclear Data Sheets [16–19].

better reproduce the anomalies observed for neutron rich nuclei around N = 20. One important

adjustment is the extension of the shell model space to include neutron p f shell components,

although in the interest of conserving computing power the models were—and often still are—

truncated to include only a subset of p f shell. Further truncations include the allowance of only

certain modes of excitation—for example, allowing a maximum of only two or four neutrons to be

promoted into p f levels.1

Another major adjustment made to shell models was the development of effective interactions

which more accurately reproduce single particle energies for cross-shell nuclei. A widely used

interaction is the SDPF-M interaction [22], which consists of three parts. The first part, for the

1Such excitations also leave neutron holes in the sd shell and are often referred to as “multi-particle,

multi-hole” (or np-nh) excitations.
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from Z = 18 to Z = 14. Below that, the gap size begins to diminish rapidly, reaching a value of

∼ 2 MeV for oxygen (Z = 8). Adapted from Ref. [21].

sd shell, is basically the Universal SD (USD) interaction [23], which consists of two-body ma-

trix elements (TBME) that have been fit to reproduce experimental data on stable sd shell nuclei.

The second component, relevant to the p f shell, is the Kuo-Brown (KB) interaction [24]. The

KB interaction is obtained from the renormalized G-matrix, which is based on realistic nucleon-

nucleon scattering. The final part, pertaining to the sd-p f cross-shell region, was originally de-

veloped in Ref. [25]. It begins with Millener-Kurath (MK) interaction [26] and adjusts the TBME

〈0 f7/20d3/2 | V | 0 f7/20d3/2〉JT , J = 2-5 and T = 0-1. These TBME have all been scaled by a

factor A−0.3, similar to what is done for the USD interaction. As demonstrated in Fig. 2.4, the

SDPF-M interaction reproduces the quenching of the N = 20 shell gap for neutron rich nuclei.

The figure is a plot of the N = 20 gap size for even-Z elements from oxygen (Z = 8) to calcium

8



j− j′+
j+ j′+

spin
wave function

of relative motion

attractive repulsive

π

p

n

n

p

Figure 2.5: Left panel: Feynman diagram of the tensor force, resulting from one-pion exchange

between a proton and a neutron [27]. Right panel: Diagram of the collision of a spin-flip nucleon

pair { j−, j′+} (left) and a non spin-flip pair { j+, j′+} (right). In the spin-flip case, the wave

function of relative motion is aligned parallel to the collision direction, resulting in an attractive

interaction, while in the non spin-flip case the wave function of relative motion is aligned

perpendicular to the collision direction, resulting in a repulsive interaction [27].

(Z = 20) . The predicted gap size is large for calcium, around 6 MeV, and stays fairly constant for

nuclei with Z = 18, 16, 14. Below Z = 14, the gap size steadily decreases, reaching a value of

around 2 MeV for oxygen (Z = 8).

2.2 Theoretical Explanation

Changes in nuclear shell structure are driven by the tensor component of the effective nucleon-

nucleon interaction [27–29]. This force is the result of one-pion exchange between nucleons, as

illustrated in the Feynman diagram in the left panel of Fig. 2.5. Between protons and neutrons,

the tensor force can be either attractive or repulsive, depending on the orbital and total angular

momenta of the particles. If the orbital angular momenta of the proton and neutron are denoted

by ℓ and ℓ′, respectively, the total angular momenta will be j± = ℓ± 1/2 and j′± = ℓ′± 1/2. In

the case of “spin-flip” partners { j±, j′∓}, the tensor force is attractive. This is illustrated for

nucleons with j− and j′+ in the right panel of Fig. 2.5. The two colliding nucleons have a high

relative momentum, causing the spatial wave function of relative motion to be narrowly distributed
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Figure 2.6: Schematic illustrating the role of the tensor force in driving changes in nuclear shell

structure. Thick arrows represent a strong interaction and thin arrows a weak one. In the case of

stable nuclei near N = 20 (left panel), there is a strong tensor force attraction between 0d3/2
neutrons and 0d5/2 protons, as well as a strong repulsion between 0 f7/2 neutrons and 0d5/2
protons. These interactions lower the 0νd3/2 and raise the ν0 f7/2, resulting in a large gap at

N = 20. In contrast, neutron rich nuclei near N = 20 (right panel) have a deficiency in 0d5/2
protons, weakening the attraction to 0νd3/2 and the repulsion to ν0 f7/2. This causes the 0νd3/2
to lie close to the 0ν f7/2, reducing the gap at N = 20 and creating a large gap at N = 16 [27].

in the direction of the collision. This results in an attractive tensor force, analogous to the case of a

deuteron. In the opposite case of { j±, j′±}, illustrated for { j+, j′+} in the right panel of Fig. 2.5,

the wave function of relative motion is stretched perpendicular to the direction of the collision,

resulting in repulsion. Thus the tensor force is attractive for proton-neutron pairs with { j±, j∓}

and repulsive for pairs with { j±, j±}.

The role of the tensor force in driving changes in nuclear shell structure is illustrated in Fig. 2.6.

In stable nuclei near N = 20, the proton 0d5/2 level ( j+) is full or nearly filled. The result is a

strong tensor force attraction to 0d3/2 neutrons ( j
′
−), as well as a strong tensor force repulsion to

0 f7/2 neutrons ( j
′
+). These interactions serve to raise the ν0 f7/2 and lower the ν0d3/2, producing

a large shell gap at N = 20. In contrast, neutron rich nuclei near N = 20 are deficient in 0d5/2 pro-

tons. This weakens both the π0d5/2-ν0d3/2 attraction and the π0d5/2-ν0 f7/2 repulsion, resulting

in a raising of the ν0d3/2 and a lowering of the ν0 f7/2 relative to stable nuclei. In this configura-

tion, ν0d3/2 and ν0 f7/2 are close in energy, quenching the large gap at N = 20. Furthermore, the

ν0d3/2 is raised in energy relative to the ν1s1/2, forming a large gap at N = 16.
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neutron shells, while the bottom panels [(c) and (d)] show nuclei without a closed shell. In both

cases, the intruder configurations [(b) and (d)] produce a stronger correlation energy, with the

greatest energy gain coming from the configuration in (b) [30].

2.3 Correlation Energy

Reduction of the shell gap at N = 20 greatly enhances the contribution of neutron multi-particle,

multi-hole (np-nh) excitations across the 0d3/2-0 f7/2 gap. Such arrangements are often referred

to as “intruder configurations,” the idea being that the p f shell component is intruding on the more

conventional sd shell arrangement. As pointed out in 1987 by Poves and Retamosa [31], intruder

configurations can result in enhanced binding due to correlation interactions between nucleons.

Correlation interactions include the proton-neutron quadrupole interaction and pairing between

like nucleons [32], with the binding gain of proton-neutron interactions being much greater than

that of n-n or p-p pairing [30]. If the binding energy to be gained from correlation interactions is
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Figure adapted from Ref. [34].

similar to that which is lost by exciting the nucleons into the p f shell, intruder configurations will

play a significant role in the low-lying structure of the nucleus in question.

Fig. 2.7, adapted from Ref. [30], schematically illustrates the role of correlations in nuclei with

normal [panels (a) and (c)] and intruder [panels (b) and (d)] configurations. In the case of a nor-

mal configuration in a semi-magic (closed N = 20 neutron shell, open proton shell) nucleus, the

energy to be gained from correlations is small, limited to pairing interactions between protons.

In contrast, for intruder configurations in semi-magic nuclei a large amount of energy is gained

from correlations between protons and p f shell neutrons as well as protons and sd shell neutron

holes. Similarly, there is an energy gain due to correlations when considering normal versus in-

truder configurations in open shell (no N = 20 magic closure) nuclei; however, the energy gain

is smaller as the normal configuration already receives a significant amount of correlation energy

from interactions between protons and sd shell neutron holes.
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2.4 The Neutron Dripline

Perhaps one of the simplest and yet most intriguing problems of nuclear structure is that of ex-

istence: to determine which nuclear systems are bound, energetically able to exist as compound

objects, and which ones are not. For neutron rich nuclei, this problems manifests itself as un-

derstanding the location of the neutron dripline, the line beyond which it is not possible to add

more neutrons and still maintain a bound system. One of the most striking features of the neutron

dripline is its abrupt shift towards neutron rich nuclei when transitioning from oxygen to fluorine.

As shown in Fig. 2.9, adding a single proton to oxygen allows for the binding of at least six more

neutrons (although 33F is likely unbound, this has not yet been experimentally verified [35]).

The reason for this abrupt shift in the fluorine dripline was explored theoretically by Utsuno,

Otsuka, Mizusaki, and Honma [34] with large-scale shell model calculations done using the Monte

Carlo Shell Model (MCSM) [36]. The authors argue that quenching of the N = 20 shell gap

allows for significant mixing between normal (0p-0h), intruder (2p-2h), and higher intruder (4p-

4h) configurations, with the intruder configurations serving to increase the binding energy of the

heaviest fluorines. In their calculations, 29F is only predicted to be bound when 4p-4h and higher

excitations are included, as shown in the left panel of Fig. 2.8. The calculations further reveal

that the contribution of 4p-4h excitations to the ground state of 29F is nearly 30% (right panel of

Fig. 2.8). However, even the inclusion of high intruder configurations is not enough to bind 31F.

Regarding this point, the authors note that it is possible to bind 31F by lowering the energy of the

neutron 0p3/2 by 350 keV. They argue that a lowered ν0p3/2 could result from a neutron halo or

halo-like structure.
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2.5 Previous Experiments

A simple yet important test of theoretical predictions is that of determining which nuclei are bound

and which nuclei are not. As outlined in the previous section, theoretical reproduction of the

fluorine neutron dripline is a difficult and enlightening problem—one which cannot be fully solved

without ad hoc additions to the calculations. Experimentally, the neutron dripline around fluorine

and oxygen has been explored a number of times [37–43], and it was determined in Ref. [37] that

the fluorine dripline extends at least to 31F. This experiment, performed at RIKEN, impinged a

94.1 AMeV beam of 40Ar on a 690 mg/cm2 tantalum target, separating reaction products in the

RIPS fragment separator [44]. As shown in Fig. 2.10, eight counts of 31F were observed in the

experiment, confirming its bound nature. No events were observed for oxygens with A ≥ 26, and

the authors argue that 26,27,28O are unbound based on their non-observation and interpolation of

observed yields for other isotopes.

Another useful test of theory is the determination of excited state energies. By tuning shell

model calculations to reproduce observed energies, one can better understand the makeup of the

nuclei in question. In 2004, Elekes et al. [45] measured bound excited states in 25,26,27F using the

reactions 1H(27F, 25,26,27Fγ) and measuring de-excitation gamma-rays in an array of 146 NaI(Tl)

detectors surrounding the target. The observed (confidence level ≥ 2σ ) gamma transitions are

shown in Fig. 2.11 along with sd shell model predictions; they are also summarized in Table 2.1.

The authors note that the 727 keV transition in 25F and the 681 keV transition in 26F are reasonably

well reproduced by sd shell model predictions which place the respective excited levels at 911 keV

(Jπ = 1/2+) and 681 keV (Jπ = 2+). However, the sd calculations fail to reproduce the energies

of the higher excited states in 25,26F. Furthermore, they fail to reproduce the energies of either of

the observed transitions in 27F, regardless of whether the transitions are placed in parallel or in

cascade. In all cases, the observations are significantly lower in energy than the sd shell model

predictions.

The authors of [45] continue by presenting the results of a 27F shell model calculation in the

full sdp f model space. This calculation predicts the first excited state to be a 1/2+ at 1.1 MeV.
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Figure 2.10: Particle identification plot from the reaction of 40Ar at 94.1 AMeV on a tantalum

target. Eight events of 31F were observed in the experiment, while no events were observed for
26O or 28O. Figure adapted from Ref. [37].

Although still ∼ 300 keV higher than experiment, the lowering of the 1/2+ energy to better agree

with experiment indicates that the inclusion of cross-shell excitations is necessary for a complete

description of neutron rich fluorines. The authors also speculate that the 504 keV transition ob-

served in 27F is from the decay of 1/2− intruder state arising from simultaneous and correlated

proton-neutron excitations across the Z = 8 and N = 20 shell closures. They do not present any

calculations to support this assertion.

Recently, a measurement of unbound excited states in 25,26F was performed using the MoNA-

Sweeper setup of the present work [46]. Unbound excited states in 25,26F were populated using

proton knockout (25F) and charge exchange (26F) reactions on a 26Ne beam. A resonance in 25F
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predictions on the right of the figure. For 27F, the 1/2+ excited state prediction from a calculation

done in the full sdp f model space is also included in red. Adapted from Ref. [45].
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Table 2.1: Bound state gamma transitions observed in [45].

Nucleus Peak Position (keV)

25F 727(22)

1753(53)

26F 468(17)

665(12)

27F 504(15)

777(19)

Theory Experiment

This work (28 keV)

Sn= 4226 keV30

3700 keV28

3300 keV28

1753 keV15

727 keV15

4800 keV

4296 keV

3753 keV

3230 keV

3074 keV

911 keV

5/2+ (g.s.)

1/2+

3/2+

9/2+

5/2+

1/2, 3/2+

1/2-

5/2+

Figure 2.12: Comparison of experimental and theoretical levels for 25F from Ref. [46]. The

superscripts next to the experimental level energies denote references numbers within [46], and

the measurement of [46] is labeled “this work” in the figure.

18



was observed with 28(4) keV decay energy, corresponding to an excited level at 4254(112) keV.

The authors also claim to observe a resonance in 26F with decay energy 206+36
−35

keV; such a reso-

nance would correspond to an excited level in 26F at 1007(119) keV. The 25F result is compared

to shell model calculations that allow for 2p-2h neutron excitations across the sd-p f shell gap, as

well as proton excitations between the p and sd shell. The calculations predict a 1/2− excited

state at 4296 keV in 25F. If this is indeed the resonant state observed in the experiment, then the

calculations would be in excellent agreement. Based on calculated spectroscopic overlap with the

ground state of 26Ne, the authors argue that their observed resonance is likely the 1/2−. If they are

correct, it would indicate that a shell model including neutron 2p-2h and proton p-sd excitations is

sufficient to describe the level structure of 25F, at least up to and around the one-neutron separation

energy. No comparison to theory is made for the 26F resonance as experimental resolution and

background contributions make the interpretation of this decay spectrum extremely difficult.

The role of p f shell configurations in the binding of 29,31F can also be investigated by mea-

suring properties of neighboring elements in the same mass region as the heavy fluorines. Along

these lines, measurements of two-proton knockout cross sections to excited states in 30Ne have

recently been performed with the goal of understanding the contribution of intruder configurations

to the structure of 30Ne and the implications for the binding of 29,31F [14]. In this work, a beam

of 32Mg was impinged on a beryllium target, with reaction products separated and identified in

the S800 spectrometer [47] and gammas collected in an array of 32 segmented germanium detec-

tors. Two transitions were observed in coincidence with 30Ne: a strong one at 792(4) keV and a

weaker one at 1443(11) keV, as shown in Fig. 2.13. The 792 keV transition was also measured in

Ref. [15] with far lower statistics. The authors of [14] place their observed transitions in cascade,

assigning the lower transition to the 2+ first excited state in 30Ne and the higher transition to the

4+ second excited state at 2235 keV. The authors then compare their measured excited state ener-

gies to three separate shell model calculations: one in the sd shell only; another including 2p-2h

cross-shell excitations; and the final one, done in the MCSM, including mixed 0p-0h, 2p-2h, and

4p-4h configurations. As with 27F, the sd shell calculation greatly overpredicts the first excited
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Figure 2.13: 30Ne gamma de-excitation spectrum from Ref. [14]. Experimental level assignments

and a variety of theoretical predictions are also included.

state energy, placing it ∼ 1 MeV too high at 1800 keV. The 2p-2h and MCSM calculations are

closer to experiment, lowering the energy to 957 keV and 1000 keV, respectively.

Following the discussion of excited state energies, the authors of [14] discuss their results for

two-proton knockout cross sections from 32Mg to the 0+, 2+, and 4+ states in 30Ne. In all cases,

their results are smaller than the 2p-2h and MCSM predictions by a factor of four or greater (the

sd shell model predicts even higher cross sections). The authors argue that the mismatch between

theory and experiment is the result of 30Ne having a large 4p-4h component (∼ 50% in the ground

state), resulting in a smaller than predicted overlap with 32Mg, whose ground state was measured to

have 2p-2h components at a level of 90% or greater [48]. This mismatch is not accounted for in the

shell models, resulting in the overprediction of 2p knockout cross sections. The authors speculate
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that extending the sdp f shell model space to include the 0 f5/2 and 1p1/2 levels—as opposed

including only the lower lying 0 f7/2 and 1p3/2 as presently done—could predict a greater 4p-4h

composition of 30Ne (and also of 29,31F). They also explore the possibility that dripline effects

such as weak binding can increase the 4p-4h occupation of 30Ne. Weak binding allows the wave

function for a low-ℓ orbital to significantly extend beyond the average nuclear radius. This causes

the level energy to be less sensitive to changes in radius (mass number), altering the density of

states near the Fermi surface and causing multi-particle, multi-hole configurations to be favored.

Shell models are not able to account for these changes due to their use of harmonic oscillator wave

functions. The authors simulate these effects by performing an ad hoc lowering of the 0 f7/2 and

1p3/2 energies by 800 keV and making shell model calculations. The calculations predict the 30Ne

ground state to be 49% 4p-4h, in agreement with the authors’ observation. The 4p-4h components

of the ground states of 29F and 31F are predicted to be 51% and 36%, respectively. This lowering

of the 0 f7/2 and 1p3/2 energies is similar to the 350 keV lowering of the 1p3/2 in Ref. [34], which

allows for a prediction of bound 31F.

The present work deals with neutron decay spectroscopy performed on unbound states in 27F

and 28F. In particular, measurements of the ground state binding energy of 28F and the excitation

energy of a neutron-unbound excited state in 27F are presented and interpreted via comparison

with shell model predictions. These measurements provide experimental data in a region where

very little is known, and they will help to improve upon the current understanding of the evolution

of nuclear structure in neutron rich nuclei.
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Chapter 3

EXPERIMENTAL TECHNIQUE

3.1 Invariant Mass Spectroscopy

The neutron-unbound states under investigation in this work decay primarily through neutron emis-

sion, a process which happens on a very short timescale (∼ 10−21 s). The decay products are the

emitted neutron, n, and the residual charged fragment, f , as illustrated in Fig. 3.1. The decay

energy of the de-excitation is calculated using the technique of invariant mass spectroscopy. This

technique is derived from the conservation of relativistic four-momentum,

P= (E, ~p) , (3.1)

where P is the relativistic four-momentum of the particle in question; E is its total energy; and

~p is its Euclidean momentum vector.1 Conservation of P can be expressed as

Pi = P f +Pn, (3.2)

where the subscripts i, f , and n refer to the initial nucleus, residual nucleus and emitted neutron,

respectively.

Squaring both sides of Eq. (3.2) yields

P2i =
(

P f +Pn
)2 ≡W2, (3.3)

whereW is defined to be the invariant mass of the system, a constant. In Euclidian terms, this is

expressed as

W 2 =
(

E f +En
)2−‖p f +pn‖2 (3.4)

= m2
f +m2

n+2
(

E fEn−p f ·pn
)

. (3.5)

1Here we use natural units, c≡ 1.
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Figure 3.1: Decay of an unbound state via neutron emission.

Taking the square root of Eq. (3.5) and expanding the momentum dot product gives an expres-

sion forW :

W =
√

m2
f
+m2

n+2
(

E fEn− p f pn cosθ
)

, (3.6)

where θ is the opening angle between the fragment and the neutron in the lab frame. Finally,

subtracting the masses of the decay products results in an expression for the decay energy:

Edecay =
√

m2
f
+m2

n+2
(

E fEn− p f pn cosθ
)

−m f −mn. (3.7)

In order to make a measurement of the decay energy, as expressed in Eq. (3.7), it is necessary

to measure the energy and angle of each decay product as it leaves the reaction target. The way in

which these quantities are calculated will be explained in Section 4.3.

One limitation of invariant mass spectroscopy is that it is only able to measure the difference

in energy between the initial unbound state and the state to which it decays. In some cases, this
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Figure 3.2: Illustration of the two possible decay processes of an unbound state which lies higher

in energy than a bound excited state of the daughter. The state can either decay through direct

neutron emission to the ground state of the daughter (grey arrow) or by neutron emission to an

excited state in the daughter and subsequent gamma emission (black arrows).

causes an ambiguity in the absolute placement of the level in question. In particular, if the daughter

nucleus has bound excited states, the unbound state has the option to neutron decay by one of two

processes, as illustrated in Fig. 3.2. The first is direct neutron emission to the ground state of the

daughter, and the second is a two step process: the unbound state first neutron decays to a bound

excited state of the daughter which then de-excites by gamma emission. It is possible to distinguish

between the two processes experimentally by measuring de-excitation γ−rays in coincidence with

the neutron and the charged fragment, and this is the approach taken in the present work.

3.2 Beam Production

The reaction used to populate unbound states in 28F is single proton knockout on a 29Ne beam,

while excited states in 27F are likely populated in a two step process, starting with proton knockout

to a highly excited state in 28F. This highly excited state then decays into the unbound state of

27F for which the breakup is observed. It is also plausible that unbound excited states in 27F are

populated by direct 1p-1n knockout. The desired beam nucleus, 29Ne, is β−unstable (t1/2≃ 15 ms
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Figure 3.3: Beam production.

[49]), so it cannot be accelerated directly; instead the method of fast fragmentation [50] is used for

beam production.

A diagram of the beam production mechanism is shown in Fig. 3.3. A beam of stable 48Ca is

first accelerated to an energy of 140MeV/u in the NSCL coupled K500 and K1200 cyclotrons [51],

exiting the K1200 fully ionized. It is then impinged on a beryllium target with a thickness of

1316 mg/cm2. The beam undergoes fragmentation and other reactions in the target, producing a

wide variety of nuclear species. These reaction products pass through the A1900 fragment sepa-

rator [52] which selects 29Ne fragments based on magnetic rigidity, Bρ = p/q. The selection is
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accomplished by tuning the four dipole magnets of the A1900 to the expected rigidities of the 29Ne

reaction products, with the final dipole being at 3.469 Tm. An achromatic aluminum wedge is also

included after the second dipole to selectively disperse reaction products and improve separation.

This wedge also has the undesired effect of creating tertiary reaction products which can have

the same magnetic rigidity as the desired 29Ne. Finally, slits are located at the intermediate focal

plane, allowing the user to tune the total momentum acceptance of the device. Since the expected

production rate of 29Ne fragments is low, the slits are opened to a full momentum acceptance of

3.93%. The final energy of the 29Ne beam delivered to the experimental vault is 61.9±4.7 MeV/u.

Since the A1900 is only able to make selections based on Bρ , it is not possible to obtain a pure

beam of 29Ne. Isotopes of other elements will end up with roughly the same rigidity after passing

through the device, and, as mentioned before, tertiary reaction products created in the wedge can

also compose a portion of the beam. The A/Z of these contaminants is different from that of the

beam, causing their velocity to also differ. As a result, the contaminants can be separated in off-line

analysis as explained in Section 4.2.1.

3.3 Experimental Setup

A diagram of the experimental setup is shown in Fig. 3.4. After exiting the A1900, the beam

is passed through a pair of plastic timing scintillators which provide a measurement of its time

of flight. It also passes through a pair of position sensitive Cathode Readout Drift Chambers

(CRDCs), which allow a calculation of its incoming position and angle. After the second CRDC,

the beam is focused by a quadrupole triplet magnet onto the reaction target, which is made of 9Be

and is 288 mg/cm2 in thickness.

After undergoing reactions in the Be target, there are up to three types of particles which

need to be measured: charged fragments, neutrons and gammas. Gammas are recorded in the

CAEsium-iodide ARray (CAESAR) [53], an array of 182 CsI(Na) crystals that surrounds the target

and measures the gamma energies. Neutrons continue to travel at close to beam velocity and

are recorded in the Modular Neutron Array (MoNA) [54, 55] which is located at zero degrees
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behind the target and measures the neutrons’ positions and times of flight. Charged fragments

also continue to travel at close to beam velocity but are deflected away from zero degrees by the

Sweeper magnet [56], a dipole. After deflection, the charged particles are passed through a series of

detectors whose measurements make it possible to identify their nuclear species and to reconstruct

their four-momenta at the target. Further details regarding the operation of these experimental

systems are presented in the following subsections.

27



Timing scintillators

Quadrupole triplet

CsI(Na) Array

(CAESAR)
Sweeper magnet

Charged fragment

tracking detectors

Modular Neutron

Array (MoNA)

Ionization

chamber

“Thick” (150 mm) scintillator (E)

“Thin” (5 mm) scintillator (t, ∆E)

Reaction Target

(288 mg/cm2 Be)

Beam tracking

detectors

DAQ Timestamp
z

x

y
z

x

yDAQ

Figure 3.4: Experimental setup.
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3.3.1 Beam Detectors

As mentioned, the time of flight of the beam is measured in a pair of plastic scintillators. The

first is located at the focal plane of the A1900, and the second is located 44.3 cm upstream of

the reaction target, resulting in a total flight path of 10.44 m. When a charged particle passes

through one of the plastic scintillators, it creates electron-hole pairs which recombine, emitting

photons. These photons are collected in a photo-multiplier tube (PMT) that is optically coupled to

the plastic. The PMT serves to amplify the luminous signal and convert it to an electrical signal that

can be recorded. The detection process happens on a fast timescale, allowing a time measurement

with good resolution (< 1 ns). The scintillator located at the A1900 focal plane is 1008 µm thick,

while the one close to the reaction target is 254 µm. Each scintillator is made of Bicron BC-404

material (H10C9) [57] and is coupled to a single PMT. In addition to the timing scintillators, a time

measurement is also taken from the cyclotron radio-frequency (RF) signal.

The emittance of the incoming beam particles is measured with a pair of position sensitive

CRDCs. A dramatization of the operation of a CRDC is shown in Fig. 3.5. Each detector is filled

with a gas mixture of 80%CF4 and 10% iso-butane at a pressure of 50 Torr. When charged particles

pass through the gas, they ionize some of its molecules, releasing electrons. These electrons are

subjected to a−250 V drift voltage, causing them to travel in the non-dispersive2 direction towards

an anode wire which collects the charge. The anode wire is held at a potential of+1100 V. Located

near the anode wire are 64 aluminum pads with a 2.54 mm pitch, and the charge collected on the

anode wire in turn induces a charge on these pads. Additionally, a Frisch Grid is used to remove

any dependence of the pulse amplitude on where the charged fragment hits the gas.

The position of the charged fragment in the dispersive direction is determined from the dis-

tribution of the charge on the aluminum pads. The charge collected on each pad is plotted as a

function of pad number, and the centroid is determined by fitting with a Gaussian. This centroid

can be converted from pad space to position space by a linear transformation, using the pad pitch

2Through this document, the dispersive plane will be referred to as x and the non-dispersive plane as y.
z refers to the beam axis.
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Figure 3.5: Dramatized view of the operation of a CRDC. Charged fragments interact in the gas,

releasing electrons. The electrons are subjected to a drift voltage in the non-dispersive direction

and are collected on the anode wire, in turn causing an induced charge to form on a series of

aluminum pads. Position in the dispersive direction is determined by the charge distribution on

the pads, while position in the non-dispersive direction is determined from the drift time of the

electrons.
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of 2.54 mm as the slope. The offset is determined from data taken when a tungsten mask, with

holes drilled at known locations, shadows the detector. In the non-dispersive direction, the frag-

ment position is determined from the time it takes the electrons to drift from the interaction point to

the anode wire. The drift time is converted to absolute position using data taken with the tungsten

mask in place.

Located after the beam tracking CRDCs is a quadrupole triplet magnet which serves to focus

the beam particles onto the target. The field of this magnet is mapped, allowing the position and

angle on the reaction target to be calculated from the position measurements of the beam tracking

CRDCs. The outer quadrupole magnets have an effective length of 22.8 cm, while the inner quad

has an effective length of 41.6 cm. Each quad is separated by a free drift of 22.8 cm. The optics of

the triplet are tuned to produce a beam-spot which is narrow in angle and wide in position. Such a

parallel beam is desired, as it improves the transmission of reaction products through the Sweeper.

3.3.2 Sweeper

The Sweeper magnet is a dipole with a bending angle of 43° and a radius of 1 meter. It has a large

vertical gap of 14 cm to allow neutrons to pass on to MoNA uninhibited. Its maximum rigidity is

4 Tm, and for the present experiment it was set to a rigidity of 3.3065 Tm. This setting was chosen

because it optimizes the transmission of 27F reaction products.

Following the Sweeper is a pair of position sensitive CRDC detectors. The operation of these

CRDCs is identical to that of the beam tracking CRDCs, as explained in Section 3.3.1. However,

the specifications of the detectors are different. Each detector measures 30×30 cm2 and has 128

pads (2.54 mm pitch) in the dispersive direction. The gas pressure for each detector is 50 torr,

while the anode and drift voltages are set at +950 V and −800 V, respectively.

Following the downstream CRDC is an ionization chamber. It serves to measure energy loss,

which is useful for element identification as explained in Section 4.2.3. Similar to the CRDCs, the

ionization chamber is gas-filled, here the gas being a mixture of 90% argon and 10% methane at

300 torr. Charged particles traveling through the gas release electrons which travel via a −800 V
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Table 3.1: List of charged particle detectors and their names. Detectors are listed in order from

furthest upstream to furthest downstream.

Detector Name Detector Type

RF Time Measurement

A1900 Scintillator Timing Scintillator

TCRDC1 Cathode Readout Drift Chamber

TCRDC2 Cathode Readout Drift Chamber

Target Scintillator Timing Scintillator

CRDC1 Cathode Readout Drift Chamber

CRDC2 Cathode Readout Drift Chamber

Ion Chamber Ionization Chamber

Thin Scintillator Timing/Energy Loss Scintillator

Thick Scintillator Total Kinetic Energy Scintillator

drift voltage to sixteen charge collection pads held at +1100 V. The total amount of charge col-

lected on the pads is summed to give a measurement of energy deposited in the gas.

Downstream of the ionization chamber are two plastic (BC-404) scintillators. These detectors

operate in the same way as the timing scintillators described in Section 3.3.1. Due to their larger

area of 40×40 cm2, the scintillators are coupled to four PMTs, with each PMT being located near

a corner of the detector. The upstream scintillator is 0.5 cm in thickness, and its primary purpose

is to measure the time of flight of the charged fragments. Additionally, the charge deposited in the

detector can be used as an energy loss measurement, complimenting that of the ionization chamber.

The downstream scintillator is 15 cm thick and stops the beam. Thus the charge collected in the

detector gives an indication of the total kinetic energy of the fragment.

For ease of reference, each charged particle detector in the setup is given a unique name. These

are listed in Table 3.1. Furthermore, each of the four PMTs in the thick and thin scintillators

is given a numeric designation, outlined in Table 3.2. The point at which reaction products are

narrowest in dispersive position is referred to as the “focal plane” or “focus,” despite not being a

true focus in the ion-optical sense. Similarly, the chamber housing all of the detectors which are

downstream of the Sweeper is called the “focal plane box.”
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Table 3.2: Numeric designations for the PMTs in the thin and thick scintillators.

Number PMT Location

0 Upper-Left

1 Lower-Left

2 Upper-Right

3 Lower-Right

1m0

93 cm 71 cm93 cm

//

658 cm

Target

z

x

y

Beam

MoNA

A B C D E F GH I

Figure 3.6: Location of MoNA detectors. Each wall is sixteen bars tall in the vertical (y)
direction, and the center of each wall in the vertical direction is equal to the beam height. The

black lines in the figure indicate the central position in z of the corresponding MoNA bar.

3.3.3 MoNA

MoNA is an array of 144 organic plastic scintillator bars, each bar being made of BC-408 material,

which has an H:C ratio of 1.104 [57]. The bars measure 200×10×10 cm3 and are coupled through

light guides to a PMT on either end. Due to the modular design of the detector, it can be arranged

in a number of different configurations. In the present experiment, the array was arranged in nine

walls, each 16 detectors high. Each wall is labeled with a letter from A–I, with wall A being

the most upstream. Within a wall, the bars are labeled numerically from 0—15, with bar 0 being

closest to the floor. The walls are arranged into four groups: the first three are two walls deep,
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while the final one is three walls deep. Within a group, the detectors are placed flush against one

another. The spacing between groups and overall distance from the reaction target are indicated in

Fig. 3.6.

Since neutrons lack electrical charge, they cannot directly excite atoms in the MoNA bars to

release scintillation light. Instead the neutrons interact via the strong interaction with protons in

the hydrocarbon. When a neutron strikes a proton directly, it knocks the proton out of the lattice.

This recoil proton can then generate scintillation light in a process similar to the one described in

Section 3.3.1. This light is then collected in the PMTs and converted into electrical signals. The

anode signal is sent to a constant fraction discriminator (CFD), where the exact time of the pulse

is determined from the signal shape. The output of the CFD is fed into a time to digital converter

(TDC), which, along with a common stop signal from the target scintillator, measures the time of

flight of the neutron. The dynode signal is fed into a charge to digital converter (QDC), which

measures the signal size, giving an indication of the amount of energy deposited in the plastic. The

light deposition signal is calibrated into units of MeV-electron equivalent (MeVee), as explained in

Section 4.1.2.3.

3.3.4 CAESAR

CAESAR is an array of 192 CsI(Na) crystals, situated in ten rings which surround the target. The

rings are labeled A–J, with A being the most upstream. An outline of the detector arrangement

is shown in Fig. 3.7. The crystals in the four outer rings have dimensions of 3×3×3 in3, while

those in the inner rings have dimensions of 2×2×4 in3. The outermost rings each hold ten crystals,

and their neighbors each hold fourteen. The remaining inner rings contain 24 crystals each. The

crystals are encased in an aluminum housing 1 mm in thickness to shield them from water, and the

1.5 mm gap between the crystal and the aluminum is filled with reflective material. Each crystal is

coupled to a PMT for collection of scintillation light. As PMTs rely on the flow of free electrons to

operate, their operation is highly sensitive to the presence of magnetic fields. The Sweeper magnet

produces large fringe fields, on the order of hundreds of Gauss, so a steel magnetic shield was
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Beam

Figure 3.7: Arrangement of CAESAR crystals. The left panel shows a cross-sectional view

perpendicular to the beam axis of an outer and an inner ring. The right panel shows a cross

sectional view parallel to the beam axis of the nine rings used in the experiment. Figure taken

from Ref. [53].

constructed and placed between the Sweeper and CAESAR.

Due to space limitations, only nine of the ten rings were used in the present experiment; the

ring selected for omission was the one most upstream of the target. This ring was chosen because

the Lorentz boost causes γ−ray emission to be forward focused. In its full configuration, the

efficiency of CAESAR for γ−rays with v/c= 0.3 is approximately 30%, and its in-beam resolution

is approximately 10% [53].

As CsI(Na) is an inorganic material, the process for producing scintillation light differs from

that of organic plastic scintillators discussed previously. When a γ−ray enters the crystal, it can

excite an electron from the valence band into a higher energy band where it is able to drift through

the material. When the drifting electron encounters an impurity in the crystal (here a sodium atom),

it ionizes it. The hole created in this ionized atom can then be filled by another electron, releasing a

photon [58]. CsI(Na) is well suited for gamma detection, as it has good stopping power for γ−rays,

as well as good intrinsic energy resolution.
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Table 3.3: Logic signals sent between the Sweeper and MoNA subsystems and the Level 3 XLM.

A valid time signal is one which surpasses the CFD threshold.

Logic Signal Description

Sweeper Trigger Valid time signal in the thin scintillator upper-left PMT.

MoNA Trigger Valid time signal in anyMoNA PMT.

MoNA Valid Valid time signal in at least two PMTs on the same bar.

System Trigger Coincidence condition satisfied in Level 3.

Busy The system in question is working to process event data.

3.3.5 Electronics and Data Acquisition

Data from MoNA and from Sweeper/CAESAR were recorded on separate data acquisition (DAQ)

machines. Each event was tagged with a unique 64-bit number, and data from the two systems

were merged off-line before being analyzed. This is referred to as running in “timestamp mode,”

although the event tags are not timestamps in the strict sense as the clock generating them does

not run continuously. The experiment was set up to require coincidences between the Sweeper and

MoNA, and CAESAR was essentially a passive add on to the Sweeper system, not factoring into

the trigger logic.

The trigger logic was handled by programmable Xilinx Logic Modules (XLMs), grouped into

three levels depending on their function. “Level 1” and “Level 2” deal with the determination of

whether or not an event in MoNA is valid, with a valid event defined to be one for which—at a

minimum—each PMT on a single bar produces a valid time signal in its respective CFD. “Level 3”

deals with the trigger conditions, involving both the Sweeper and MoNA, necessary for an event

to be deemed a coincidence. Level 3 also contains a clock which runs whenever it is not busy

processing an event; the signal from this clock serves as the unique event tag. In this section,

the trigger logic specific to the timestamp setup is detailed as this mode of operation is unique

to the present experiment. The logic and electronics of the individual subsystems are identical to

previous experiments, and their details can be found in Refs. [53, 59–61].

Fig. 3.8 outlines the coincidence trigger logic. The two subsystems, Sweeper and MoNA, run

independently but only record events when they are told to do so by the Level 3 XLM. A number
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of signals are sent back and forth between Level 3 and the subsystems, and a description of each

signal is given in Table 3.3. When an event triggers the Sweeper subsystem, it sends a trigger

signal and a busy signal to Level 3. Receiving the busy signal from the Sweeper causes Level 3 to

also go busy, stopping the clock. In parallel, if an event triggers MoNA, it sends a trigger and busy

signal to Level 3 as well as a “valid” signal if at least two PMTs in the same bar have fired.

Upon receiving a trigger signal from the Sweeper, Level 3 opens a coincidence gate of 35 ns,

waiting for a valid signal from MoNA. If it receives one, it sends a “system trigger” signal to each

subsystem, telling them to go ahead and process the event. It also sends a clock signal to scaler

modules that are part of each subsystem’s data acquisition. Once the subsystems have finished

processing, their busy signals to Level 3 cease, readying the system for the next event.

If Level 3 fails to receive a valid signal from MoNA before the coincidence gate closes, it will

never send a system trigger signal to the Sweeper. Failing to receive the system trigger from Level

3, the Sweeper fast clears itself and ceases its busy signal to Level 3.

In the case of an event in MoNA that is not coincident with one in the Sweeper, MoNA will

send, at a minimum, trigger and busy signals to Level 3. This causes Level 3 to go busy and reject

signals from the Sweeper. Without a signal from the Sweeper, the coincidence gate is never opened

and thus Level 3 cannot produce a system trigger. As it will not receive a system trigger signal

from Level 3, MoNA fast clears itself and stops sending a busy signal to Level 3.
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Figure 3.8: Diagram of the timestamp trigger logic.
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Chapter 4

DATA ANALYSIS

4.1 Calibration and Corrections

4.1.1 Sweeper

4.1.1.1 Timing Detectors

Each of the timing scintillators in the Sweeper setup records the time of the interaction as a channel

number in its corresponding TDC. The channel number is then multiplied by a slope of+0.1 ns/ch

to convert into physical units (nanoseconds). This slope is taken simply from the full range of

each TDC divided by the total number of channels. The time measurement also includes a 20 ns

jitter, introduced by the use of Field-Programmable Gate Array (FPGA) delays. To remove the

jitter, the nanosecond time value of the upper-left PMT in the thin scintillator is subtracted from

the nanosecond time value of each individual PMT. For example, the calibrated time signal of the

target scintillator is

t
(cal)
target =

(

t
(raw)
target ·0.1

)

−
(

t
(raw)
thin_lu

·0.1
)

. (4.1)

It should be noted that the signals are only subtracted after applying the 0.1 ns/ch slope, to

account for any situation where the slope of the thin left-up TDC might be different from that

of other TDCs in the system. Fig. 4.1 shows a sample timing spectrum before and after jitter

subtraction.

After jitter subtraction, each time signal is given an offset to place it at the correct point in

absolute time, with t = 0 defined to be the time at which the beam passes through the target. The

offsets are determined by considering a run in which the target is removed and the Sweeper is tuned

to match the rigidity of the incoming beam. In this case, the velocity of beam particles is known

and can be used to calculate the appropriate time offsets. Once the fully calibrated (including

offsets) time signal has been determined, time of flight between various detectors is calculated
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Figure 4.1: Example calibrated timing spectra before (left panel) and after (right panel) jitter

subtraction.

by subtracting the calibrated time signal of the upstream detector from that of the downstream

detector. In the case of the thin scintillator, the average signal of all four PMTs is used for time of

flight calculations. For example, the time of flight from the target scintillator to the thin scintillator

is calculated as

ToFtarget→thin =
t
(0)
thin

+ t
(1)
thin

+ t
(2)
thin

+ t
(3)
thin

4
− ttarget, (4.2)

where t refers to a calibrated time value, and the numeric superscripts refer to the corresponding

PMT in the thin scintillator, as introduced in Table 3.2.

At two points during the experiment, the voltages on the thin and thick scintillators tripped due

to fluctuations in the vacuum level of the Sweeper focal plane box. In order to protect the PMTs

from sparking, their high voltage controllers were equipped with a safeguard that caused them to

turn off if the vacuum level became too low. Although the PMT voltages were returned to their

previous settings after the trips, the changes caused a noticeable shift in the time measurement of

the thin scintillator PMTs. To account for this, the offset values of the thin scintillator PMTs were

modified after each trip. The offset values were changed such that the central time of unreacted

beam particles remains constant throughout the experiment.
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Figure 4.2: Pedestals for each of the CRDC detectors. Color represents the number of counts per

bin.

4.1.1.2 CRDCs

As explained in Section 3.3.1, CRDC position in the x direction is calculated from the distribution

of charge on the pads. Before doing this, the raw charge values are pedestal suppressed and gain

matched. Pedestal suppression is done using data taken while no signal was present in the CRDCs.

The signals on each CRDC pad are summarized in Fig. 4.2, and an example histogram of the signal

on a single pad is shown in Fig. 4.3. To determine pedestal values, a histogram of the signal on

each pad is fit with a Gaussian. Since the histogram shape is skewed slightly, each bin is given

equal weight in the fit1, which puts the Gaussian centroid at a value close to the true centroid of the

histogram. This centroid is then divided by the number of samples recorded during the runs (eight

in each case) to determine the pedestal offset for the pad in question. In the analysis, the pedestal

1Throughout the document, such a fit is referred to as “unweighted.”
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Figure 4.3: Example histogram of the signal on a single pad in a CRDC pedestal run. The blue

curve is the result of an unweighted Gaussian fit and is used to calculate the pedestal value.

offset is subtracted from each sample before proceeding with further calculations.

After pedestal suppression, the CRDCs are gain matched to account for differences in charge

collection or amplification between pads. Gain matching is done by considering a run where un-

reacted beam is swept across the focal plane2. This illuminates every pad in the active area of all

four CRDCs and ensures that the signal size on all pads should be the same. Instead of applying

a simple linear slope, a more active technique is used for gain matching since the necessary am-

plification factor varies with absolute signal size. The procedure used to gain match the CRDC

detectors is as follows:

1. For each pad, make a two dimensional plot of charge on the pad versus ∆, where ∆ is the

distance of the pad in question from the pad registeringmaximum charge for that event. Such

2Hence referred to as a “sweep run.”
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Figure 4.4: Example of the plots used in the gain matching procedure. The left panel is a two

dimensional histogram of charge on the pad versus ∆, while the right panel shows the Gaussian
centroids of the y axis projection of each x axis bin in the plot on the left. The curve in the right

panel is the result of an unweighted fit to the data points, with the fit function a Gaussian centered

at zero.

a plot is shown in the left panel of Fig. 4.4.

2. For each bin along the x axis, fit the y axis projection with a Gaussian. Similar to the

pedestals, the fit should be unweighted to account for skew.

3. Plot each of the centroids from Step 2 versus ∆. Fit (unweighted) this plot with a Gaussian

centered at zero. An example is shown in the right panel of Fig. 4.4.

4. Choose a reference pad near the center of the detector and match the signal sizes of all other

pads to it by applying the following transformation:

q′j = q j

(

fref (∆)

f j (∆)

)

, (4.3)

where q′ and q denote the gain matched and non-gain matched signals, respectively; j de-

notes the pad being gain matched; ref denotes the reference pad; and f is the Gaussian

function determined from the fits in Step 3.

The procedure outlined above is applied to each pad in the active area of all four CRDC de-

tectors. For the focal plane CRDCs, the reference pad is chosen to be pad 60, while for the beam

tracking CRDCs, the reference pad is number 50.
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Figure 4.5: Difference in signal shape between a bad pad (red histogram) and a normal one (blue

histogram). The bad pad in this figure is pad 24 of CRDC2, while the normal pad is number 60 in

CRDC2.

Certain pads in each of the CRDCs display pathological features and need to be rejected in the

analysis. Most often these pads are overly sensitive to electronic noise, causing them to display a

signal which does not reflect the real amount of charge deposited on the pad. To determine which

pads are bad, the charge signal of each pad in a sweep run is examined. Those pads displaying

unusual charge distributions are labeled as bad pads and ignored in further analysis. This procedure

is subjective, but as demonstrated in Fig. 4.5, the difference in signal shape between a bad pad and

a normal one is fairly obvious. Table 4.1 lists the bad pads for each detector.

Once the pads in each CRDC have been pedestal suppressed and gain matched and all bad pads

have been determined, it is possible to use the charge distribution on the pads to calculate the x

position at which the charged particle hit the detector. The method for calculating the interaction

position in pad space is to fit a plot of charge versus pad number with a Gaussian. The Gaussian
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Table 4.1: List of the bad pads for each CRDC detector. Pads are labeled sequentially, starting

with zero.

Detector Bad Pads

CRDC1 66

CRDC2 24, 89, 105, 126

TCRDC1 30, 31, 58, 59, 63

TCRDC2 14, 21, 62, 63

centroid is then taken as the pad space interaction position. The fitting is done event-by-event using

the GNU Scientific Library (GSL) [62] implementation of the Levenberg–Marquardt minimization

algorithm [63, 64]. Starting values for the minimization are taken from the results of a center of

gravity fit, and each data point in the fit is weighted equally. It should be noted that for events

in the center of a detector, the difference in centroid values between a Gaussian fit and a center

of gravity fit is negligible. However, for events near the edge where the full charge versus pad

distribution is clipped, the Gaussian fit does a significantly better job of finding the true centroid.

This effect is demonstrated in Fig. 4.6, which shows example charge versus pad distributions in

the center and near the edge of CRDC2, as well as in Fig. 4.7, which is a scatter-plot of gravity

centroids versus Gaussian centroids. The two values agree well until the edge of the detector is

approached, at which point they begin to diverge.

To convert the position in pad space to one in real space, a simple linear transformation is used.

The same is true for conversion of drift time to position in the y direction. In the x direction, the

slope is taken simply from the pad pitch: ±2.54 mm/pad, with the sign of the slope depending

on the orientation of the detector. To determine the x offset and the y slope and offset, a tungsten

mask with holes drilled at known locations inserted into the beam line, shadowing the detector. A

sample masked position distribution for CRDC1 is shown in Fig. 4.8. By determining the centroid

of the holes in time versus pad space and comparing with their known locations, the correct linear

factors can be determined. During the experiment, the mask drive for CRDC2 was malfunctioning,

causing the mask to only be inserted partially. As the drive operates in the y direction, the x offset

value was not affected by this malfunction. Likewise, the y slope could still be determined using
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Figure 4.6: Charge distributions for an event near the middle of CRDC2 (left panel) and one near

the edge (right panel). The blue curve is a Gaussian fit to the data points, and the blue vertical line

is the centroid of that fit. The red vertical line is the centroid of a gravity fit to the points. The

Gaussian and gravity centroids are nearly the same in the case of events near the middle, but on

the edge the gravity fit is skewed towards lower pad number.
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Figure 4.7: Gaussian versus gravity centroids for CRDC2. The two fits disagree near the edge of

the detector, with the gravity fit skewed lower.
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Figure 4.8: Example of calibrated position in both planes for CRDC1, with the tungsten mask in

place. The blue open circles denote the position of the mask holes, and the blue vertical lines

denote the position of slits cut into the mask.

the mask, as the spacing between holes remains identical. However, since the absolute position of

the mask holes in the y direction was not known, the mask could not be used to determine the y

offset. Instead, a beam of 25Ne was sent down the focal plane, centered, with the vertical position

of the beam defined to be y≡ 0. The y offset for CRDC2 is then set from the location of the beam

centroid.

Due to the possibility of detector drift, mask runs were taken approximately once per day

during the experiment. The changes in the calibration parameters are shown in Fig. 4.9. As any

drifts are fairly small, the calibration parameters are simply updated after each mask run to reflect

their new values.

A further issue related to CRDCs is the poor performance of TCRDC2. As shown in Fig. 4.10,

the x position tends to cluster around certain pads, creating the “spike” features seen in the plot.
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Figure 4.10: Gaussian centroids in pad space for TCRDC2.

This is the result of inhomogeneities in the drift field that cause electrons to be preferentially

attracted to specific points on the anode wire. The spikes are not physical and are a result of

detector malfunction; hence the x position measurement of TCRDC2 is not used event-by-event

in the analysis. Instead, a plot of TCRDC2 x position versus TCRDC1 x position, as shown in

Fig. 4.11, is used to determine a linear correlation between the two parameters,

x2 = 1.162 · x1. (4.4)

Such a correlation is expected based on the optics of the A1900. In the final analysis, the x

position of beam particles at TCRDC2 is calculated simply from this linear function. Due to the

small angular spread of the incoming beam, the influence of using this technique on the overall

resolution is fairly minor.
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Figure 4.11: Plot of TCRDC2 x position versus TCRDC1 x position. The plot is used to

determine a correlation of x2 = 1.162 · x1, shown by the black line in the figure. The position at

TCRDC2 determined by this correlation is what is used in the final analysis.

Table 4.2: Slope values for each pad on the ion chamber. Pad zero was malfunctioning and is

excluded from the analysis.

Pad Slope

0 n/a 8 1.034799

1 1.218959 9 0.979036

2 0.941313 10 0.809853

3 0.864580 11 0.817919

4 0.925724 12 0.853119

5 0.725158 13 0.928206

6 0.971480 14 0.850262

7 0.852719 15 0.836822
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4.1.1.3 Ion Chamber

Similar to the CRDCs, the pads on the ion chamber must be gain matched to account for differences

in signal collection and amplification. The gain matching is done by multiplying each pad’s signal

by a slope factor, with the factors determined from a run where a beam of 25Ne is centered in the

focal plane. Since each pad should measure the same amount of energy loss, the slopes are set

such that the signals match. Slope factors for each pad are listed in Table 4.2. The most upstream

pad (pad zero) was malfunctioning during the experiment, so it is excluded from the analysis.

After gain matching, the signals from the fifteen working pads are averaged to form an energy loss

parameter.

As shown in Fig. 4.12, there is a dependence of the average ion chamber signal on both x and y

position in CRDC2. The figure is generated from a sweep run with unreacted beam, so the energy

loss should be uniform. To correct for this dependence, the plot of ∆E versus x is first fit3 with a

second order polynomial; the result of the fit is

f (x) = 399.762−0.0583744 · x−0.0008205 · x2, (4.5)

and the ∆E signal is corrected as follows:

∆Excorr = 399.762 · ∆E

f (x)
. (4.6)

From here, ∆Excorr is plotted against CRDC2 y position and fit with a first order polynomial:

f (y) = 399.551−0.305093 · y. (4.7)

The same method is used to correct for the y−dependence:

∆Exycorr = 399.551 · ∆Excorr
f (y)

. (4.8)

3The procedure used for fitting the two dimensional histogram is as follows: 1) Fit (unweighted) the

y axis projection of each x axis bin with a Gaussian. 2) Plot the Gaussian centroids versus the x axis bin

centers and fit this plot with the desired function. Unless otherwise noted, this is always the method used to

fit two dimensional histograms.
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Figure 4.12: Upper left: Ion chamber ∆E signal versus CRDC2 x position; the black curve is a

3rd order polynomial fit used to correct for the dependence of ∆E on x. Upper right: Result of the
x−correction: the dependence of ∆E on x is removed. Lower Left: x−corrected ∆E versus

CRDC2 y position; the black curve is a linear fit used to correct for the dependence of ∆Excorr on
y. Lower right: Final position corrected ion chamber ∆E versus CRDC2 y position.

4.1.1.4 Scintillator Energies

The calibration procedures for the thin scintillator ∆E and thick scintillator E signals are identical.

First each of the four PMTs is gain matched using data from a sweep run, with the requirement

that | xscint |< 10 mm and | yscint |< 10 mm, where xscint and yscint are the vertical and horizontal

positions on the scintillator, calculated using ray tracing and the CRDC position measurements.

It is necessary to use only events that hit near the center of the scintillator as this ensures that

light attenuation is equal for all PMTs. Because the detector trip mentioned in Section 4.1.1.1

significantly impacts the energy signal of the scintillators, two sets of gain factors were determined:

one for before the trip and one for after, with the gain factors set such that signal size is equal
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Table 4.3: Slope values for thin and thick scintillator energy signals.

PMT Slope Pre-Trip Slope Post-Trip

Thin 0 1.136 2.167

Thin 1 1.158 2.174

Thin 2 1.360 2.437

Thin 3 1.073 2.169

Thick 0 2.860 4.771

Thick 1 1.438 4.888

Thick 2 2.483 3.272

Thick 3 2.155 3.174

throughout the experiment. Table 4.3 list the gain factors for each scintillator PMT.

After gain matching, a total energy signal for the detector is calculated as follows:

etop =
e0+ e2

2
, (4.9)

ebottom =
e1+ e3

2
, (4.10)

and

etotal =

√

e2top+ e2
bottom

2
. (4.11)

As the ∆E and Etotal signals are used only to determine relative differences between the various

reaction products present in the focal plane, an absolute energy calibration is not needed. Hence

the scintillator energy signals are left in arbitrary units.

The scintillator energy measurements, as calculated from Eqs. 4.9–4.11, have a dependence

on the position at which the particle hits the scintillator. The reason is light attenuation: particles

striking near an edge of the detector will produce a stronger signal in PMTs near that edge than

in those on the opposite side, as the scintillation light becomes diminished when it traverses the

plastic. This effect is corrected for empirically in the same way as the ion chamber, described in

Section 4.1.1.3. The correction functions for the thin scintillator are:

f
(thin)
corr (x) = 710.805+0.295609 · x−6.28603×10−3 · x2−2.22623×10−5 · x3 (4.12)
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Figure 4.13: Position correction of the thin and thick scintillator energy signals. Top left: thin

scintillator ∆E vs. x position, with a third order polynomial fit. Bottom left: thin scintillator ∆E
(corrected for x dependence) vs. y position, with a second order polynomial fit. Top right: thick

scintillator Etotal vs. x position, with a third order polynomial fit. Bottom right: thick scintillator

Etotal (corrected for x dependence) vs. y position, with a first order polynomial fit.

and

f
(thin)
corr (y) = 1001+1.362 · y+0.01158 · y2, (4.13)

while the correction functions for the thick scintillator are:

f
(thick)
corr (x) = 1346.74+1346.74 · x−1.61185×10−3 · x2+4.09761×10−6 · x3 (4.14)

and

f
(thick)
corr (y) = 999+1.166 · y. (4.15)
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Figure 4.14: Results of the position correction of the thin and thick scintillator energy signals.

The panels correspond to those of Fig. 4.13, displaying the final position corrected energy signals.

As seen in the upper-left panel, the correction for thin ∆E could be improved by the use of a

higher order polynomial; however this signal is not used in any of the final analysis cuts, so the

correction is adequate as is.

The results of the position correction are shown in Fig. 4.14. It should be noted that the x

position correction to thin ∆E signal produces a sharp kink at large positive x position. The reason

is that a third order polynomial cannot describe the shape of ∆E versus x across the entire face of

the scintillator. This can be seen in the upper-left panel of Fig. 4.13 where the fit curve fails to

reproduce the histogram shape at large positive x. The correction could be improved by using a

higher order polynomial; however, since the thin ∆E signal is only used for intermediate analysis

checks and not in any of the final cuts or calculations, the third order correction presented here is

sufficient.

As seen in Fig. 4.15, both the thin and thick scintillator energy signals drift throughout the
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Figure 4.15: Thin (top panel) and thick (bottom panel) scintillator energies for 29Ne unreacted

beam in production runs. Gaps along the x axis correspond to non-production runs taken at

various intervals during the experiment. The drift seen in the figure is corrected by setting

Gaussian centroid of each run’s 29Ne energy signal to be constant throughout the experiment.

experiment. The events in the figure are from production runs, gated on 29Ne unreacted beam

particles that make it into the focal plane (gaps along the x axis correspond to calibration and other

non-production runs). The ∆E and Etotal measurements should be constant, so the observed drift is

corrected run-by-run. The ∆E and Etotal measurements, gated on 29Ne, are fit (unweighted) with a

Gaussian, and the corrected energy is calculated such that the centroids are constant:

Eruncorr =
E0

Ec
, (4.16)

where E0 is an arbitrarily chosen value (1200 for thin ∆E and 500 for thick Etotal), and Ec is

the centroid of the Gaussian fit. Each run is approximately one hour in length, and the drift within

a run is negligible.

56



y
(c
m
)

-100

-50

0

50

100

x (cm)

-100 0 100

y
(c
m
)

-100

-50

0

50

100

z (cm)

600 700 800 900 1000

Figure 4.16: Example of the two types of muon tracks used in calculating independent time

offsets for MoNA. The left panel illustrates a nearly vertical track, used to determine the time

offsets within a single wall. The right panel shows an example of a diagonal track used to

calculate offsets between walls.

4.1.2 MoNA

4.1.2.1 Time Calibrations

MoNA TDCs signals are calibrated with a linear slope and offset, and from there, the signals on

each end of a bar are averaged to give a time of flight measurement. The slope of each TDC is

determined using a time calibrator which sends a signal to the modules at a regular frequency of

40 ns−1. For each TDC, the slope is determined as such:

m=
40 ns

∆ch
, (4.17)

where ∆ch is the average spacing between pulses in channel number. Slopes measured in a

previous MoNA-Sweeper experiment were used, as the MoNA TDCs remained identical between

the two runs.

Timing offsets are divided into two parts: a global offset for the entire array and individual

offsets of each TDC relative to the others. The individual time offsets are determined using muons

produced by the interaction of cosmic rays with the Earth’s upper atmosphere. The muons travel

to earth and pass through the detector, often interacting multiple times. They travel at a known
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velocity close to the speed of light, 29.8 cm/ns, so by selecting for specific tracks through the

detector, the time offset of each bar relative to the others can be determined. To calculate time

offsets within a given wall, muon tracks which are nearly vertical are selected, as illustrated in the

left panel of Fig. 4.16. The expected travel time between two bars in the same wall is then:

t = n · 10.27 cm

29.8 cm/ns
, (4.18)

where n is the number of bars between the two, and 10.27 cm is the nominal vertical dis-

tance between the center of two bars. Appropriate time offsets are determined by comparison of

measured times with the expected time of Eq. (4.18). Time offsets between walls are determined

similarly, except using diagonal tracks, as illustrated in the right panel of Fig. 4.16. All offsets are

set relative to bar A8, which is at beam height and in the front wall of MoNA. Offsets within the

front wall are calculated directly relative to bar A8, using vertical tracks. From here, offsets are

propagated from wall to wall using diagonal tracks.

The global offset is calculated from the time of flight of γ−rays made at the target during

production runs. The flight time of gammas to the front and center of MoNA is

ToFγ = xa8/c (4.19)

where xa8 = 658 cm is the distance to the center of the front wall of MoNA (the center of bar

A8), and c is the speed of light. Fig. 4.17 is a histogram of the time of flight to the center of the

front wall of MoNA, with the prompt γ peak clearly identified and separated from prompt neutrons.

To increase statistics, the entire front wall of MoNA is used for determining the global offset, with

the time of flight scaled to account for each bar’s distance from the target. Furthermore, when

setting the timing offset a number of cuts are used to enhance the presence of target gammas: hit

multiplicity must be equal to one; charge deposited must be less than 6 MeVee; and the absolute

value of the interaction position in MoNA must be less than 30 cm in both the x and y planes.

Despite the use of constant fraction discriminators, there is a walk present in the MoNA timing

at low signal size. This is demonstrated in Fig. 4.18, which shows a plot of time of flight for prompt
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Figure 4.17: Time of flight to the center of the front wall of MoNA. The events in the figure are

collected during production runs. The prompt γ peak used to set the global timing offset is clearly

identifiable and separated from prompt neutrons. The plot includes a number of cuts, which are

listed in the main text.

gammas versus energy deposited in MoNA. As seen in the figure, there is a clear dependence of

time of flight on deposited energy. The function indicated in the figure,

f (q) = 23.5531−2.56625e−0.62272/q, (4.20)

is a fit to the histogram, with the functional form taken from Ref. [65].

In order to appropriately use the prompt γ−ray measurements to set the global MoNA timing

offset, a correction must be made to account for the the CFD walk. Additionally, the walk cor-

rection must be included in the final neutron analysis in order to have an accurate measurement

of neutron energy. An attempt was made to do the correction using Eq. (4.20), but the range of

deposited energies probed by the γ peak is too small for this to be sufficient. Higher deposited

energies can be reached, however, by considering runs in which MoNA records cosmic rays in
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Figure 4.18: Time of flight to the front face of MoNA versus deposited energy, for prompt

gammas. The plot includes cuts similar to those used in generating Fig. 4.17. The dependence of

time of flight on deposited energy, as indicated in the figure, demonstrates the presence of walk

for low signal size. The function in the figure is partially used for walk corrections, as explained

in the text.

standalone mode, with the trigger being the first PMT in the array to fire. When run in this mode,

a plot of the average time signal for a given bar versus the absolute value of x position, as shown

in the inset of Fig. 4.19, represents the mean time it takes light to travel from the interaction point

to each PMT. By applying a linear correction to the average time, one obtains a time measure-

ment which should be constant. This time is plotted against deposited energy in the main panel of

Fig. 4.19, and this histogram can then be fit and used to correct the walk. The fit function used is

this case is:

f (q) = 229.4+
2.861

q
, (4.21)

with the functional form taken from Ref. [66]. As seen in Fig. 4.19, this function blows up

at low deposited charge, making it a poor choice for walk correction in that region. Instead, a
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Figure 4.19: Inset: mean time vs. absolute value of x position for cosmic-ray data collected in

standalone mode, where the trigger is the first PMT to fire. The time axis on the inset is

determined by the mean travel time of light from the interaction point to the PMTs. If this

parameter is corrected for the x position, using the line drawn on the inset, then a theoretically

constant ToF is obtained. Plotting this constant ToF versus deposited energy reveals walk, as

shown in the main panel of the figure. The function drawn in the main panel is used for walk

correction of production data at high deposited charge, as explained in the text.

piecewise function is used to do the walk correction, with Eq. (4.20) used when q ≤ 1.8 MeVee

and Eq. (4.21) used otherwise. The transition point of 1.8 MeVee is taken from the crossing point

of the two functions, as shown in Fig. 4.20. The final form of the walk corrected time of flight is

then

tcorr = t−















(

−2.56625e−0.62272/q+1.6531
)

: q< 1.8

(

2.861
q −1.761

)

: q≥ 1.8.

(4.22)
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Figure 4.20: Walk correction functions. The blue curve is from a fit of time of flight vs. deposited

energy, as shown in Fig. 4.18, while the red curve is from a fit of position-corrected time vs.

deposited energy for cosmic ray data, shown in Fig. 4.19. The black curve is the final walk

correction function, using the γ peak correction function (blue curve) below the crossing point

(q= 1.8 MeVee) and the cosmic correction function (red curve) above. Note that the y axis in this

figure represents the actual correction applied to the time of flight, which is the reason for the

offset difference between the curves in this figure and those of Figs. 4.18–4.19.
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Figure 4.21: Illustration of MoNA x position measurement: the time it takes scintillation light to

travel to each PMT is directly related to the distance from the PMT. By taking the time difference

between the signals on the left and right PMTs, the x position in MoNA can be calculated.

62



tleft− tright (ns)

-30 -20 -10 0 10 20 30

C
o
u
n
ts
/
n
s

0

2

4

6

8

10

12

14
×103

Figure 4.22: Example time difference spectrum for a single MoNA bar in a cosmic ray run. The
1
3 ·max crossing points, indicated by the red vertical lines in the figure, are defined to be the edges

of the bar in time space; these points are used to determine the slope and offset of Eq. (4.23). The

asymmetry in the distribution is the result of the right side of MoNA being closer to the vault

wall, thus receiving a larger flux of room γ-rays.

4.1.2.2 Position Calibrations

In order to accurately calculate neutron energy, as well as the angle of neutrons as they leave the

target, the interaction position of a neutron within MoNA needs to be known. In the y and z planes,

calculation of the interaction position is straightforward: it is simply taken to be at the center of the

bar in which the neutron interacts. In the x direction, the interaction position is determined from

the time difference between the left and right PMT signals. The time difference is directly related

to the x interaction point since it is the result of scintillation light traveling a larger distance to

one PMT versus the other, illustrated in Fig. 4.21. The time difference is related to the interaction

position via a linear calibration:
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Figure 4.23: Example raw QDC spectrum for a single MoNA PMT. The pedestal and muon peak

are indicated in the figure, along with the peak associated with room γ−rays interacting in

MoNA. After adjusting voltages to place the muon bump of every PMT close to channel 800, a

linear calibration is applied to move the pedestal to zero and the Gaussian centroid of the muon

bump to 20.5 MeVee.

x= m ·
(

tleft− tright
)

+b. (4.23)

The slopem and offset b are determined from cosmic ray data: muons interacting near the edge

of a bar are used to find its ends in time space, and these two points are sufficient to determine the

linear factors. The edge of a bar in time space is defined to be at 1/3 of the maximum height of a

histogram of time difference measurements, based on GEANT3 [67] simulations. Fig. 4.22 shows

an example time difference spectrum, with the edges of the bar indicated.
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Table 4.4: List of gamma sources used for CAESAR calibration. Energies are taken from

Refs. [68–72].

Source Gamma Energies (keV)

133Ba 356
137Cs 662
22Na 1275
88Y 898, 1836
56Co 517, 846, 1771, 2034, 2598, 3272

4.1.2.3 Energy Calibrations

To account for differences in light collection and amplification, the PMTs in MoNA must be gain

matched. This is done using cosmic ray muons, which deposit an average energy of 20.5 MeVee

into a MoNA bar. The gain matching is done in two steps. The first step is to adjust the bias

voltages on the the PMTs until their signals are approximately equal. Fig. 4.23 shows an example

histogram of the raw QDC signal for a single PMT; the bump at around channel 800 is from muons

interacting in MoNA. For each PMT, this bump is fit with a Gaussian, and the voltage on the PMT

is adjusted to move the peak value close to 800. This procedure is iterated until the muon peak

centroid of every PMT is within a few (∼ 5 or less) channels of 800.

After adjusting the voltages to approximately line up the muon peaks, a software correction is

applied to exactly match the peak locations. This is done in an automated routine which finds the

location of the pedestal indicated in Fig. 4.23, as well as the Gaussian centroid of the muon bump.

A linear slope and offset are then applied to place the pedestal at zero and the centroid of the muon

bump at 20.5 MeVee.

4.1.3 CAESAR

The CAESAR crystals are calibrated using a variety of standard γ−ray check sources, listed in

Table 4.4. Prior to beginning the experiment, the gain on each CAESAR photo-tube was adjusted

to roughly align the peaks from the 88Y source. Post experiment, a series of runs were taken

with each source at the target location. For each of the gamma transitions listed in Table 4.4, the
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Figure 4.24: Example source calibrations for a single CAESAR crystal (J5). The solid black line

is a linear fit to the data points (R2 = 0.999933). All other crystals are similarly well described by

a linear fit, so in the final analysis the calibration is done using the two 88Y gamma lines at

898 keV and 1836 keV.

peak values in channel number were determined and plotted as a function of the known transition

energy. This was done separately for each crystal in the array. As demonstrated in Fig. 4.24, the

response is well described by a linear fit.

Since the response of CAESAR photo-tubes is influenced by the Sweeper’s fringe fields, the

calibration needs to be updated any time the Sweeper’s current setting is changed, as hysteresis

effects could potentially change the fringe field, in turn altering the calibration. During the experi-

ment, approximately ten minutes of data were collected from the 88Y source any time the Sweeper

current was changed. Since the response function of CAESAR crystals is linear, the two data

points from the 88Y source
(

Eγ = 898 keV and Eγ = 1836 keV
)

are used to set the calibration:

E = m · ch+b, (4.24)
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Figure 4.25: Beam components, including 29Ne gate.

where ch is channel number, and m and b are determined from a linear fit of channel number

versus energy for the two 88Y transitions. The fit parameters are re-calculated after every 88Y

source run, with the updated parameters applied to the next block of production data.

4.2 Event Selection

In the course of the experiment, far more events are recorded than those of interest. This section4

details the cuts used to select the events which are the result of the decay processes of interest:

28F→ 27F+n and 27F∗ → 26F+n.
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Figure 4.26: Flight time from the K1200 cyclotron (measured by the cyclotron RF) to the A1900

scintillator versus flight time from the A1900 scintillator to the target scintillator. The double

peaking in ToFRF→A1900 is due to wraparound of the RF. By selecting only events which are

linearly correlated in these two parameters, the contribution of wedge fragments to the beam is

reduced. These selections are indicated by the black contours in the figure, with the final cut

being an OR of the two gates.

4.2.1 Beam Identification

As mentioned in Section 3.2, the incoming beam is made up of a number of different nuclear

species. The 29Ne beam particles are selected from measurements of energy loss in the target

scintillator and time of flight from the A1900 scintillator to the target scintillator. Fig. 4.25 shows

a histogram of these two parameters, with the 29Ne events circled. The overall contribution of

29Ne to the beam is approximately one percent, with the remainder primarily composed of 32Mg,

as well as a variety isotopes created by reactions in the aluminum wedge.

4Cuts pertaining to inverse reconstruction of tracks through the Sweeper magnet will be presented in

Section 4.3.1.1, after that subject has been properly introduced.
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Figure 4.27: CRDC quality gates. Each plot is a histogram of the sigma value of a Gaussian fit to

the charge distribution on the pads versus the sum of the charge collected on the pads. The black

contours indicate quality gates made on these parameters.

In addition to the ∆ETarget versus ToFA1900→Target cut, a cut on time of flight from the K1200

cyclotron to the A1900 scintillator versus time of flight from the A1900 scintillator to the target

scintillator is used to improve the incoming beam selection. Here the time at the K1200 cyclotron

is measured from the cyclotron RF signal. This cut has the effect of removing wedge fragments

from the beam, as particles produced from reactions in the aluminum wedge will have a more

dramatic change in velocity than those which pass through the wedge unreacted. Thus by selecting

only events which are linearly correlated in ToFRF→A1900 versus ToFA1900→Target, the presence

of wedge fragments is reduced. This cut is indicated in Fig. 4.26.

4.2.2 CRDC Quality Gates

Often a CRDC detector will record an event for which the x position measurement is not reliable.

The contribution of such events can be reduced by applying quality gates to each of the focal

plane CRDCs. Application of CRDC quality gates will also remove any events that do not pass

through the active area of both detectors. Events that have an unreliable x position measurement

usually result from a pathological charge distribution on the CRDC pads. They can be identified
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event-by-event by considering a plot of the σ value of the Gaussian fitting procedure explained in

Section 4.1.1.2 versus the sum of the charge on all CRDC pads; the events for which the x position

measurement is not reliable will be anomalous in such a plot. The plots of σ versus total charge

are shown for CRDC1 and CRDC2 in Fig. 4.27, with the quality gates indicated in the figure.

4.2.3 Charged Fragment Identification

A major requirement in selecting the events of interest is charged particle separation and identifi-

cation. This is done in two steps: element selection and isotope selection.

4.2.3.1 Element Selection

Element separation is achieved by measurement of the fragment’s energy loss in the ion chamber,

as well as its velocity. Energy loss in the ion chamber gas is given by the Bethe-Bloch formula [58]:

−dE

dx
= 2πNar

2
emec

2ρ
Z

A

z2

β2

[

ln

(

2meγ
2v2Wmax

I2

)

−2β2

]

, (4.25)

with

2πNar
2
emec

2 = 0.1535 MeVcm2/g

re : classical electron radius = 2.187×10−13 cm

me : electron mass

Na : Avagadro’s number = 6.022×1023 mol−1

I : mean excitation potential

Z : atomic number of absorbing material

A : atomic weight of absorbing material

ρ : density of absorbing material

z : charge of incident particle in units of e

β : v/c of the incident particle

γ : 1/
√

1−β2

Wmax : maximum energy transfer in a single collision.
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From Eq. (4.25), it is clear that energy loss is related to the charge number of the incident

particle, as well as its velocity:

∆E ∝
z2

β2
· f (β ) . (4.26)

Thus elements can be separated by plotting energy loss in the ion chamber versus a parameter

which is indicative of fragment velocity. There are two velocity indicator parameters available in

the experiment: time of flight through the Sweeper
(

ToFTarget→Thin

)

and total kinetic energy mea-

sured in the thick scintillator. As demonstrated in Figs. 4.28 and 4.29, plotting ion chamber energy

loss versus either of these parameters reveals well-separated bands, with each band corresponding

to a different element. In both plots, the most intense element is unreacted 29Ne beam (Z = 10) .

Hence the band directly below this one is composed of the fluorine (Z = 9) events of interest. In

the final analysis, the element cuts indicated in Figs. 4.28 and 4.29 are both used.

4.2.3.2 Isotope Selection

The magnetic rigidity of a charged particle is equal to its momentum:charge ratio,5

Bρ =
p

q
=

mv

q
. (4.27)

If isotopes of the same element (constant q) and equivalentBρ are sent through a dipole magnet,

then their mass number, A, can be related to their time of flight, t, as follows:

v=
Bρq

m
(4.28)

t = A

(

Lmu

Bρq

)

, (4.29)

5Ignoring relativity.
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Figure 4.28: Energy loss in the ion chamber versus time of flight through the Sweeper. Each band

in the figure is a different isotope, with the most intense band composed primarily of Z = 10

unreacted beam. The fluorine (Z = 9) events of interest are circled and labeled in the figure.

where mu is the average mass of a nucleon in the nucleus and L is the track length. Thus in the

case of constant Bρ (constant momentum), isotopes of the same element can be mass-separated

simply by considering their time of flight.

In practice, charged particles produced in nuclear reactions have a large spread in momentum.

If the magnetic elements used for separation accept a reasonably large range of momenta, then the

assumption of Eq. (4.29) that Bρ is constant is no longer valid. Moreover, differing momenta result

in variable L, as the track of a charged particle passing through a dipole depends on its rigidity.

However, the Bρ and L values of the charged particles are reflected in their emittance (dispersive

position and angle) as they exit the device. Magnetic spectrometers, such as the NSCL’s S800 [47],

can be tuned such that the fragments exiting the device are highly focused in position. In this case,

it is possible to see isotopic separation simply by plotting angle at the focal plane versus time of
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Figure 4.29: Energy loss in the ion chamber versus total kinetic energy measured in the thick

scintillator. As in Fig. 4.28, the bands in the figure are composed of different elements, and the

most intense band is Z = 10. fluorine (Z = 9) events are circled and labeled.

flight. The left panel of Fig. 4.30 is an example of the use of this technique in the S800. The events

in the figure are magnesium (Z = 12) , and each band is composed of a different isotope [73].

In the case of the Sweeper magnet, the technique outlined above is not sufficient to separate

isotopes. This is demonstrated in the right panel of Fig. 4.30, in which a plot of focal plane angle

versus time of flight shows no hint of separation. The main reason is that the Sweeper lacks

focusing elements; hence angle and position at the focal plane are correlated to a large degree.

Furthermore, the magnetic field of the Sweeper is highly nonuniform, due to its large vertical gap

of 14 cm. This leads to a significant degree of nonlinearity in the emittance. In the case of the

Sweeper, the full correlation between angle, position, and time of flight needs to be considered for

isotope separation to be visible. This is demonstrated in Fig. 4.31, which is a three dimensional

plot of time of flight versus angle and position, from the present experiment. The events in the plot
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Figure 4.30: Left panel: focal plane dispersive angle vs. time of flight for magnesium isotopes in

the S800, taken from Ref. [73]. In this case, isotopes are clearly separated just by considering

these two parameters. Right panel: focal plane dispersive angle vs. time of flight for fluorine

isotopes in the present experiment. The plot shows no hint of isotope separation, as three

dimensional correlations between angle, position and time of flight need to be considered in order

to distinguish isotopes.

are fluorine isotopes produced from reactions on the 32Mg beam, and the bands which can be seen

in the figure are each composed of a different isotope.

From the picture of Fig. 4.31, a systematic method has been developed to correct the time of

flight for angle and position at the focal plane, resulting in a parameter which can be used for

isotope selection. The corrections are first determined for fluorine elements from the 32Mg beam,

to take advantage of higher statistics. The same corrections can then be used for the isotopes of

interest: fluorines produced from the 29Ne beam.

The first step in correcting the time of flight is to construct a single parameter which describes

the dispersive-plane emittance, both angle and position. To do this, the three dimensional plot in

Fig. 4.31 is profiled in the following way:6

1. Slice the x and θx axes into a square grid.

2. For the events in each each slice, make a one dimensional projection of the ToF axis.

6In practice, this is simply done using the TH3::Projet3DProfilemethod of the ROOT [74,75] data

analysis package.
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Figure 4.31: Three dimensional plot of time of flight through the Sweeper vs. focal plane angle

vs. focal plane position (color is also representative of time of flight). The figure is composed of

Z = 9 events coming from the 32Mg contaminant beam, and each band in the figure is composed

of a different isotope.

3. Find the gravity centroid of the projection of (2).

4. Plot the centroid from (3) versus the central x and θx positions of the slice.

The result is shown in Fig. 4.32, with the color axis representing the gravity centroids of the

ToF projections. Breaks in color indicate lines of iso-ToF. From here, one determines a function

which describes the location of the iso-ToF lines throughout the figure:

f (x) = 0.010397 · x2+0.84215 · x+ c, (4.30)

where c is a constant offset. This function, for a given c, is drawn as the solid black curve

in Fig. 4.32. The effect of varying c is to move the curve vertically along the θx axis, and an

appropriate function will fall on the iso-ToF lines independent of c.
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Figure 4.32: Profile of the three dimensional scatter-plot in Fig. 4.31. The solid black curve is a fit

to lines of iso-ToF; this fit is used to construct a reduced parameter describing angle and position

simultaneously.

From Eq. (4.30), a parameter describing both angle and position is constructed:

e(x,θx) = θx−
(

0.010397 · x2+0.84215 · x
)

. (4.31)

As shown in Fig. 4.33, a plot of the appropriately constructed e(x,θx) versus time of flight

demonstrates bands, with each band corresponding to a different isotope.

From the picture of Fig. 4.33, it is possible to improve isotope separation significantly. The

first step is to create a corrected time of flight parameter by determining the nominal slope, m, of

the bands, represented by the black line in the figure. The time of flight is corrected by simply

projecting onto the axis perpendicular to this line:

tcorr = t+m−1 · e(x,θx) . (4.32)
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Figure 4.33: Histogram of the emittance parameter, constructed from the fit function in Fig. 4.32,

vs. time of flight. The bands in the plot correspond to different isotopes of fluorine. A corrected

time of flight parameter can be constructed by projecting onto the axis perpendicular to the line

drawn on the figure.

Table 4.6: Final correction factors used for isotope separation. The numbers in the right column

are multiplied by the parameter indicated in the left and summed; this sum is then added to

ToFTarget→Thin to construct the final corrected time of flight.

Parameter Correction Factor

x −5.0595×10−2 x2θ2
x 1.4×10−7

x2 −8.97×10−4 y2 1.0×10−3

x3 −3.0×10−6 θy −3.0×10−3

θx 8.0×10−2 ytrgt. 4.0×10−3

θ2
x −1.0×10−5 Ethick 1.3×10−3

θ3
x 2.0×10−6 ∆Ei.c. 4.0×10−3

xθx −1.5×10−4 xtcrdc1 1.7×10−2

x2θx −2.0×10−6 ToFbeam 1.0×10−1

xθ2
x −6.0×10−6 —
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Figure 4.34: Main panel: Corrected time of flight for fluorine isotopes resulting from reactions on

the 29Ne beam. The isotopes if interest, 26,27F, are labeled. The black curve in the figure is a fit to
the data points with the sum of five Gaussians of equal width. Based on this fit, the

cross-contamination between 26F and 27F is approximately 4%. The inset is a scatter-plot of total
energy measured in the thick scintillator vs. corrected time of flight. These are the parameters on

which 26,27F isotopes are selected in the final analysis, and the cuts for each isotope are drawn in

the figure.

The separation is then improved by iteratively plotting corrected time of flight versus angle or

position and removing the correlations in a manner similar to that of Eq. (4.32). This is done up

to fourth order in x and θx, as well as for cross terms (xn ·θn
x ) . Additionally, correlations between

corrected time of flight and any other parameter available in the experiment are searched for and,

if present, removed. Table 4.6 lists all of the factors used in constructing the final corrected time of

flight. It should be noted that the corrections for non-dispersive angle
(

θy
)

and dispersive position

at TCRDC1 (xtcrdc1) significantly improve the quality of the separation.

The main panel of Fig. 4.34 shows the corrected time of flight, using the factors listed in

Table 4.6, for fluorine isotopes produced from 29Ne. As can be seen in the figure, the fluorine
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Figure 4.35: Neutron time of flight to MoNA for all reactions products produced from the 29Ne

beam. The first time-sorted hit coming to the right of the vertical line at 40 ns is the one used in

the analysis.

isotopes are well separated, with a cross contamination between 26F and 27F of approximately

4%. The cross-contamination is determined by fitting the histogram with the sum of five equal-

width Gaussians, shown as the solid black curve in the figure, and calculating the overlap between

the gate for a given isotope and the Gaussian fit function of its neighbor(s). Fluorine isotopes

are identified simply by noting that 27F is the heaviest fluorine species that can be produced from

29Ne. In the final analysis, a two dimensional cut on corrected time of flight and total energy from

the thick scintillator is used for isotope selection. A scatter-plot of these two parameters is shown

in the inset of Fig. 4.34, along with the gates used in the final analysis.
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4.2.4 MoNA Cuts

To avoid biasing the neutron energy measurement, cuts on MoNA parameters are avoided. How-

ever, since MoNA often records multiple hits for a given event, it is necessary to decide which hit

to use in the final analysis. Hits in MoNA can arise from a number of sources in addition to prompt

neutrons: prompt γ−rays; random background (muons and gammas); and multiple detection of

the same event due to scattering of neutrons within the array. Thus a scheme is devised to ensure

that the analysis is being performed on the hit which is most likely to be the result of a prompt

neutron interacting in MoNA for the first time: hits are time-sorted, and the first hit with time of

flight greater than 40 ns is selected. The reason for requiring that the hit come at ToF > 40 ns is

that it is not possible for neutrons produced in the target to make it to MoNA any earlier than this.

This can be seen in Fig. 4.35, in which the prompt neutron peak begins abruptly at around 50 ns.

To avoid cutting any early neutron events, the opening of the neutron window is conservatively

placed at 40 ns.

4.2.5 CAESAR Cuts

Fig. 4.36 demonstrates a cut used to reduce the presence of background events in CAESAR. Events

which are correlated with the γ decay of a beam nucleus will come at a specific time in CAESAR.

Thus by eliminating events which fall outside of a certain time window, the signal to noise ratio

is improved. Since CAESAR uses leading edge discriminators for its time measurements, there is

significant walk in the time signal. However, by plotting Doppler corrected7 gamma energy versus

time of flight, as in Fig. 4.36, a two dimensional gate can be drawn to select only beam-correlated

events. This gate is outlined by the solid black curves drawn in the figure.

7The Doppler correction procedure will be presented in Section 4.3.2
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Figure 4.36: Doppler corrected energy vs. time of flight for gammas recorded in CAESAR. To

reduce the contribution of background, only those events falling between the solid black curves

are analyzed.

4.3 Physics Analysis

The purpose of the present experiment is to measure the decay energy of neutron-unbound states

using the invariant mass equation, Eq. (3.7):

Edecay =
√

m2
f
+m2

n+2
(

E fEn− p f pn cosθ
)

−m f −mn.

This requires measurement of the kinetic energies and angles at the target of both the neutron,

n, and the fragment, f , involved in the breakup of the unbound state. In the case of the neutron,

calculation of these quantities is straightforward. The angle is taken from simple ray-tracing be-

tween the target location and the interaction point in MoNA, while the kinetic energy is calculated

from the time of flight and total distance traveled, using relativistic kinematics:
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vn =

√

x2+ y2+ z2

t
(4.33)

γn = 1/

√

1−
(vn

c

)2
(4.34)

En = γnmn. (4.35)

In the case of the fragment, calculation of kinetic energy and target angle is more involved. It

requires reconstruction of tracks through the Sweeper, as described below.

4.3.1 Inverse Tracking

From knowledge of the Sweeper’s magnetic field and ion-optical quantities of a charged particle

at the reaction target, it is possible to calculate the ion-optical quantities of the particle as it exits

the magnet:
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, (4.36)

where L is the track length of the fragment through the Sweeper and M is a third-order trans-

formation matrix calculated from magnetic field measurements. The transformation matrix is pro-

duced using the ion-optical code COSY INFINITY [76]. COSY takes as input the magnetic field

of the Sweeper in the central plane—the plane where the only existing vertical components of the

field are those perpendicular to the horizontal plane. To measure the central plane field, seven

Hall probes were mounted vertically, evenly spaced, on a movable cart and stepped through the

magnet. The field in the central plane was constructed from interpolation of the seven Hall probe

measurements. More details about the mapping procedure can be found in Ref. [60].
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The quantities in Eq. (4.36) which need to be known for invariant mass spectroscopy are θ
(trgt)
x ,

θ
(trgt)
y , and E(trgt). As each of these quantities is influenced by the nuclear reaction taking place in

the target, none is measured directly. The parameters which are measured, however, are x(crdc1),

θ (crdc1)
x , y(crdc1), θ (crdc1)

y , x(trgt), and y(trgt). Thus it is desirable to come up with a transformation

which takes as input some combination of the known quantities

{

x(crdc1), θ (crdc1)
x , y(crdc1), θ (crdc1)

y , x(trgt), y(trgt)
}

and gives as output the desired quantities

{

θ
(trgt)
x , θ

(trgt)
y , E(trgt)

}

.

Such a transformation cannot be calculated from direct inversion of M , as the track length L

is not known a priori. The approach taken by COSY to calculate an inverse matrix is to assume

that x(trgt) = 0. This allows elimination of the row concerning x(trgt) and the column concerning L,

leading to a form of M that is invertible. Such an approach is valid when the beam is narrowly

focused in x, which is not the case in the present experiment: the beam spot size is on the order of

2 cm.

To construct an appropriate inverse transformation matrix, a procedure has been developed to

perform a partial inversion of M [77]. The partially inverted matrix, Mpi, takes as input the posi-

tions and angles at CRDC1 (behind the Sweeper), as well as the x position on the target (measured

from the tracking CRDCs8). Its output includes all of the desired quantities: θ
(trgt)
x , θ

(trgt)
y , and

E(trgt) :

8It should be noted that a transformation similar to Eq. (4.36) is used to calculate x(trgt), as the tracking
CRDCs are located upstream of the quadrupole triplet. In this case, the E and L terms are ignored, as the

dependence of tracks through the triplet on beam energy is negligible.
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Figure 4.37: Comparison of forward tracked and inverse tracked parameters for unreacted 29Ne

beam. The upper right panel is a comparison of kinetic energies, with the x axis being energy

calculated from ToFA1900→Target and the y axis energy calculated from inverse tracking in the

sweeper, c.f. Eq. (4.37). The lower left and lower right panels show a similar comparison for θx
and θy, respectively. In these plots, the x axis is calculated from TCRDC measurements and

forward tracking through the quadrupole triplet.
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The procedure for calculating the partial inverse transformation matrix Mpi is to perform a se-

ries of matrix operations which exchange a coordinate on the right hand side of Eq. (4.36) with one

on the left. This is done until the form of Eq. (4.37) is reached. The coordinates to be exchanged
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must be entangled to a large degree, i.e. they must share a large first order matrix element in M .

The procedure for coordinate-swapping is detailed in Ref. [77].

To check that the inverse mapping procedure gives the correct results, a comparison is made be-

tween forward-tracked target parameters and their counterparts calculated with Eq. (4.37), for data

taken with the reaction target removed. The comparison was done for a variety of magnet settings,

and good agreement was found except when the beam is on the extreme edge of the Sweeper’s

acceptance. An example comparison, when the beam is near the center of the acceptance, is shown

in Fig. 4.37. The reason for disagreement between forward and inverse tracking when the beam

is near the edge of the Sweeper’s acceptance is that the magnetic field of the Sweeper is poorly

understood in this region. However, during production runs the Sweeper is tuned such that the

reaction products of interest lie near the center of the acceptance, in a region where there is good

agreement between forward and inverse tracking.

4.3.1.1 Mapping Cuts

As mentioned in Section 4.2, some cuts have to be made to ensure that the inverse tracked param-

eters of Eq. (4.37) are being calculated correctly. The first involves the dispersive plane emittance.

As shown in the left panel of Fig. 4.38, when unreacted beam particles are swept across the focal

plane, they maintain a positive correlation between angle and position. This is not always the case

for reaction products, which are far more dispersed in angle. The right panel of Fig. 4.38 reveals

that a significant number of reaction products exit the Sweeper with negative angle and positive

position. Such an emittance is the result of the fragments entering the Sweeper with large positive

angle, as demonstrated in Fig. 4.39. These large-angle reaction products are off the standard accep-

tances of the Sweeper, and they are only observed because they take a non-standard path through

the magnet. Such paths are not well described by the magnetic field maps of the Sweeper. As such,

the target parameters of reaction products falling in this region cannot be faithfully reconstructed.

Hence in the final analysis only those fragments which fall within the positively correlated region

of θx versus x, defined by the sweep run, are included. The cut is indicated by the rectangular
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Figure 4.38: Left panel: Focal plane dispersive angle vs. position for unreacted beam particles

swept across the focal plane. These events display positive correlation between angle and

position, and they define the region of the emittance for which the magnetic field maps of the

Sweeper are valid. Right panel: Focal plane dispersive angle vs. position for reaction products

produced from the 32Mg beam. A significant portion of these reaction products fall in the region

of positive position and negative angle, due to taking a non-standard track through the Sweeper.

The rectangular contour drawn on the plot is defined by the “sweep band” of the left panel, and

only events falling within this region are used in the final analysis.

contour in the right panel of Fig. 4.38.

The second mapping cut involves position in the non-dispersive plane. As revealed by the

left panel of Fig. 4.40, a number of events are reconstructed with a kinetic energy that deviates

significantly from the mean. Furthermore, these events do not possess the expected inverse corre-

lation between Efrag and ToFTarget→Thin, indicating that the accuracy of the inverse reconstruction

may be questionable. Plotting Efrag versus y position on CRDC1, as shown in the right panel

of Fig. 4.40, reveals that the events with extreme Efrag values also hit CRDC1 far from the cen-

ter. Additionally, the two parameters demonstrate a parabola-like correlation, enhanced at large y

position, which is not expected. Most likely, the correlations seen in the figure are not real and

are instead a result of deficiencies in the Sweeper field map. COSY only considers field values

in the central plane when constructing maps, so it is plausible that the full correlations between

energy and non-dispersive parameters are not reproduced. There seems to be no way to improve

the situation, at least not while using COSY’s central plane method of field map construction. As
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Figure 4.39: Inset: focal plane angle vs. position for unreacted beam particles swept across the

focal plane. Unlike the left panel of Fig. 4.38, here the A1900 optics were tuned to give a beam

that is highly dispersed in angle. causing the emittance region of negative angle and positive

position to be probed. The main panel is a plot of incoming beam angle for all events (unfilled

histogram) and events with +x(fp) and −θ
(fp)
x (orange filled histogram). The plot reveals that the

+x(fp),−θ
(fp)
x events have a large positive angle as they enter the Sweeper.

the total number of events impacted is fairly small, those events with absolute value of CRDC1 y

greater than 20 mm are excluded from the analysis. The range of ±20 mm is chosen because it

corresponds to the approximate points where Efrag begins to correlate significantly with CRDC1

y, as seen in the right panel of Fig. 4.40.

4.3.2 CAESAR

Gamma energies are taken simply from the energy deposited in a crystal, using the calibration

procedure of Section 4.1.3. Often a single gamma will interact in multiple crystals due to Compton

scattering [78], depositing only a portion of its energy in each. In this case, the gamma energies
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Figure 4.40: Left panel: fragment kinetic energy, calculated from the partial inverse map, vs. time

of flight through the Sweeper. The events in the figure are 26F+n coincidences produced from

the 29Ne beam. Events with extreme values of Efrag also fall outside of the expected region of

inverse correlation between Efrag and ToF. Right panel: Efrag vs. CRDC1 y position. This plot

reveals an unexpected correlation between Efrag and CRDC1 y, with the extreme Efrag events also

having a large absolute value of CRDC1 y. This is likely due to limitations of the Sweeper field

map, so the events with | y |> 20 mm are excluded from the analysis.

of up to three crystals are summed to calculate the total energy deposition for the event. The

summing procedure is only performed when the multiple hits are in neighboring crystals, as hits in

non-neighboring detectors are likely to be the result of random coincidences, not multi-scattering.

Gammas resulting from the de-excitation of a beam nucleus are emitted from a source mov-

ing at roughly one third the speed of light. As such, their energy measured in the lab frame is

significantly Doppler shifted [79]. Thus the gamma energies recorded in CAESAR are Doppler

corrected:

Edop = Elab
1−β cosθ
√

1−β2
, (4.38)

where Edop and Elab are the Doppler corrected and lab frame energies, respectively; β is the

relativistic beta-factor, vbeam/c; and θ is the angle between the point where the γ−ray is emitted

and the point where it is detected. To calculate θ , the detection point is assumed to be the center

of the crystal in which the γ−ray interacts. In the case of multi-scattering, the center of the first

interaction crystal is used. The emission point is assumed to be the center of the reaction target,
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and the z position of the target is 7 cm upstream of the center of the array. The z position is verified

through comparison with known transitions, as explained in Section 4.4.2.

4.4 Consistency Checks

The present experiment is complicated, both in terms of the physical setup and data analysis.

Comparison of present results with those previously published can help to ensure that the present

measurement and analysis is performed accurately. In particular, comparison of present results

with previous ones is performed for two cases: decay energy reconstruction of 23O∗ → 22O+n

and gamma transitions in 32Mg and 31Na.

4.4.1 23O Decay Energy

The unbound first excited state in 23O has been measured to have a decay energy of 45 keV [80–

83], feeding the ground state of 22O. In addition to being confirmed multiple times, the transition

from 23O∗ → 22O+n is narrow, making it a good candidate for a consistency check. The same

transition is observed in the present experiment, with relatively high statistics, from fragmentation

reactions on the 32Mg beam. These events are analyzed in the same way as the data of interest,

with the results presented in Fig. 4.41. The results are consistent with the previous measurements,

lending credibility to the analysis.

4.4.2 Singles Gamma-Ray Measurements

To test the Sweeper-MoNA-CAESAR setup, data were taken using a MoNA singles trigger, where

a hit in MoNA is not necessary for the event to be recorded. This greatly enhances the collection of

de-excitation γ−rays since a triple coincidence event is no longer required. To reduce experimental

dead time, a tungsten beam blocker was inserted in front of CRDC1 to reject the majority of

unreacted beam particles.
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Figure 4.41: Decay energy for 23O∗ → 22O+n events produced from the 32Mg beam. The

spectrum displays a narrow resonance at low decay energy, consistent with previous

measurements that place the transition at 45 keV. The inset is a relative velocity
(

vn− v f
)

histogram for the same events. The narrow peak around vrel = 0 is also consistent with the

45 keV decay.

In the singles runs, two previously measured gamma transitions were collected with good statis-

tics. The first is the result of inelastic excitation of the 32Mg beam, populating the first 2+ excited

state at 885 keV [16]. As shown in the left panel of Fig. 4.42, this transition is prominent on top of

random background. This well known transition was used to verify the z position of the reaction

target, as misplacement of the target in the Doppler correction algorithm will cause the peak to

shift and broaden. The peak is narrowest and located at 885 keV when the target location is set at

7 cm upstream of the center of CAESAR.

The other transition prominently observed in the singles data is in 31Na. An excited level

at around 370 keV has been observed in three previous measurements [84–86], with the most

recent placing the transition at 376(4) keV [84]. The same transition is observed in the present
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Figure 4.42: Left panel: Doppler corrected gamma energies from inelastic excitation of 32Mg.
The blue vertical line indicates the evaluated peak location of 885 keV [16]. Right panel: Doppler

corrected gamma energies for 31Na, produced from 1p knockout on 32Mg. The most recent

published measurement of 376(4) keV [84] is indicated by the blue vertical line.

experiment, as shown in the right panel of Fig. 4.42.

4.5 Modeling and Simulation

4.5.1 Resonant Decay Modeling

The breakup of an unbound resonant state is a two body process involving a neutron and the

residual nucleus. As such, it can be described as a neutron scattering off a nucleus, the neutron

impinging with variable energy and angle. The cross section as a function of energy, σ (E) , of

such a scattering process is well described by R-matrix theory [87], with the cross section for

resonances given by a Breit-Wigner distribution [88]. The particular form of the Breit-Wigner

used in this work has an energy-dependent width:

σ(E;E0,Γ0, ℓ) = A
Γℓ (E;Γ0)

[E0+∆ℓ (E;Γ0)−E]2+ 1
4 [Γℓ (E;Γ0)]

2
, (4.39)

where A is an amplitude; E0 is the central resonance energy; Γ0 parameterizes the resonance

width; ℓ is the orbital angular momentum of the resonance; and Γℓ and ∆ℓ are functions to be
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explained. E0, Γ0 and ℓ are parameters to be determined from the data (or from theoretical consid-

erations). As mentioned, Eq. (4.39) is derived from R-matrix theory. A summary of the derivation

is given here, with the full details available in Ref. [87].

The radial Schrödinger equation for a neutron scattering off a nucleus is:

[

d

dr2
− ℓ(ℓ−1)

r2
− 2M

ℏ2
(V −E)

]

uℓ (r) = 0. (4.40)

R-matrix theory is developed from the solution of Eq. (4.40) at the minimum approach distance

before the nuclear interaction becomes important:

a= r0

(

A
1/3
n +A

1/3
f

)

, (4.41)

where r0 parameterizes the nuclear radius (here we use 1.4 fm); and An and A f are the mass

number of the neutron and fragment, respectively. Since the nuclear force is effectively absent and

the neutron is unaffected by the Coulomb interaction, the potential term, V, in Eq. (4.40) is zero.

The solution is then a superposition of incoming and outgoing waves:

u
(in)
ℓ = (Gℓ− iFℓ)

u
(out)
ℓ = (Gℓ+ iFℓ) ,

(4.42)

where Fℓ and Gℓ are related to J−type Bessel functions:

Fℓ = (πρ/2)1/2 Jℓ+1/2 (ρ)

Gℓ = (−1)ℓ (πρ/2)1/2 J−(ℓ+1/2) (ρ) .
(4.43)

In Eq. (4.43), ρ = a
√
2ME/ℏ, withM the reduced mass of the neutron-fragment system; E the

relative energy; and a the boundary distance of Eq. (4.41).

The R-matrix relates the incoming wave function, u
(in)
ℓ , to its derivative at the boundary. For a

single resonance, it is given by

R=
ℏ
2

2Ma

|uℓ (a)|2
E0−E

=
γ20

E0−E
, (4.44)

where E0 is the resonance energy, and γ0 is a reduced width representing the wave function at

the boundary a :
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γ0 =
ℏ√
2Ma

uℓ (a) . (4.45)

An outgoing collision matrix, Uℓ, is related to the R-matrix and the logarithmic derivative of

the external wave function, Lℓ (and its complex conjugate, L∗ℓ ), by a phase factor:

Uℓ =
u
(in)
ℓ

u
(out)
ℓ

1−L∗ℓR
1−LℓR

= e2iδℓ , (4.46)

with the logarithmic derivative given by

Lℓ =
ρu′(out)ℓ

u
(out)
ℓ

∣

∣

∣

∣

∣

r=a

= Sℓ+ iPℓ. (4.47)

In Eq. (4.47), Sℓ and Pℓ are called the shift and penetrability functions, respectively, and are

related to the Fℓ and Gℓ of Eq. (4.43) via

S=
[

ρ
(

FℓF
′
ℓ +GℓG

′
ℓ

)

/
(

F2
ℓ +G2

ℓ

)]

r=a

P=
[

ρ/
(

F2
ℓ +G2

ℓ

)]

r=a
.

(4.48)

The phase shift, δℓ, is given by:

δℓ (E) = tan−1

(

1
2Γℓ (E)

E0+∆ℓ (E)−E

)

−φℓ, (4.49)

where φℓ is the hard sphere scatter phase shift. Γℓ and ∆ℓ are the functions presented in

Eq. (4.39) and are given by

Γℓ (E) = 2Pℓ (E)γ20

∆ℓ (E) =− [Sℓ (E)−Sℓ (E0)]γ
2
0 .

(4.50)

The outgoing collision matrix can then be expressed as:

Uℓ =
iΓ

1/2
ℓ (E)

E0+∆ℓ (E)−E− i
2Γℓ (E)

. (4.51)

This is related to the scattering cross section by

σℓ =

∫

σ (θ) dx=
π

k2
∑
ℓ

(2ℓ+1) |1−Uℓ|2. (4.52)
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Combining Eq. (4.51) and Eq. (4.52) results in an expression for the cross section, up to a

normalization constant:

σ = A
Γℓ (E)

[E0+∆ℓ (E)−E]2+ 1
4 [Γℓ (E)]

2
, (4.53)

which is the same as Eq. (4.39).

Finally, it should be noted that the reduced width γ0 is related to the width parameter Γ0 of

Eq. (4.39) by

Γ0 = 2γ20Pℓ (E0) . (4.54)

4.5.2 Non-Resonant Decay Modeling

In addition to resonances, there may be non-resonant contributions to the data. The non-resonant

contribution comes from the decay of highly excited states in 28F, which lie in a region where the

level density is large. These states de-excite by neutron emission, and in some cases the emitted

neutron is observed in coincidence with the final fragment.

In the case of 28F→ 27F+n, the non-resonant contribution is expected to be negligible. The

reason is that states in 28F are populated by direct proton knockout from 29Ne. As such, only

neutrons which result from the decay of a state in 28F to a bound state in 27F are present in the

data. A non-resonant contribution could arise from the decay of continuum states in 28F directly

to bound 27F, but the probability of observing such decays is extremely low. The reason is that the

decay energy of such a transition would be large (on the order of 5 MeV or greater). As will be

explained in Section 4.5.3, the probability to observe a transition with such large decay energy is

low, due to geometric acceptances.

It is also plausible that a background contribution to 28F→ 27F+n could arise from neutrons

that are removed from the beryllium target nuclei in the knockout reaction. However, observation

of such a neutron requires that it exit the target with close to beam velocity and with a transverse

momentum direction close to zero degrees. This requires that the proton knocked out of the beam

transfer nearly all of its momentum to a single neutron in beryllium in a head-on collision. Such a
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28F
27F

26F

29Ne

Figure 4.43: Schematic of the process by which non-resonant background is observed in

coincidence with 26F. First a highly excited state in 28F is populated from 29Ne. This state then

decays to a high excited state in 27F, evaporating a neutron (thick arrow). The excited state in 27F

then decays to the ground state of 26F by emitting a high-energy neutron (thin arrow), which is

not likely to be observed. The evaporated neutron (thick arrow) has fairly low decay energy and is

observed in coincidence with 26F, giving rise to the background.

process is expected to have a small enough cross section that the contribution of target neutrons to

the 28F decay spectrum can be neglected in the present work.

In the case of 27F∗ → 26F+n, however, a non-resonant contribution is expected. The process

through which this background arises is illustrated in Fig. 4.43. A high excited state in 28F is first

populated from 29Ne. This state then decays to another highly excited state in 27F, evaporating

a neutron. From here, the excited state in 27F can decay to the ground state in 26F by neutron

emission, with the 26F observed in the Sweeper. The neutron from the final step is not likely to be

observed as the decay energy going from a high excited state in 27F to the ground state of 26F is

large; however, the evaporated neutron from the decay of highly excited 28F to highly excited 27F

will have relatively low decay energy, allowing it to be observed in coincidence with the 26F.

The decay energy of non-resonant evaporated neutrons can be modeled as a Maxwellian distri-

bution [89, 90]. The arguments for using such a model, as presented in Ref. [89], are summarized
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here.

The kinetic energy of the evaporated neutron, relative to the beam, is given by:9

εn = E∗
f −E∗

f ′, (4.55)

where E∗
f is the excitation energy of the original nucleus (in our case 28F), and E∗

f ′ is the

excitation energy of the daughter (27F). For ℓ 6= 0, the probability of emitting a neutron with εn

increases as εn becomes larger, due to better penetration of the angular momentum barrier. The

distribution of the number of neutrons having energy between ε and ε +dε is given by

Gn (ε)dε = ∑
ε<εβ<ε+dε

GC (β ) , (4.56)

with GC (β ) the probability of decay through a specific channel β :

GC (β ) =
k2

β
σC (β )

∑
α
k2α σC (α)

. (4.57)

In Eq. (4.57), the σC are the cross sections for decay through a specific channel, and k = λ−1

is a wave number. The sum in the denominator is over all of the possible decay channels, α.

To determine the relative intensity distribution of emitted neutron energies, the denominator of

Eq. (4.57) is ignored:

In (ε)dε = cεσC (ε)w f

(

ε f − ε
)

dε. (4.58)

Here the wave number k2 has been replaced by the factor ε. The function w f

(

ε f − ε
)

is related

to the level density w(E) , and its logarithm,

S (E) = ln [w(E)], (4.59)

is analogous to the entropy of a thermodynamic system. Expanding S around the maximum

decay energy, ε f , gives

S
(

ε f − ε
)

= S
(

ε f
)

− ε

(

dS

dE

)

E=ε f

+ . . . . (4.60)

9Neglecting the small recoil energy of the fragment.
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Using Eq. (4.60) to approximate w f

(

ε f − ε
)

and absorbing the factor coming from S
(

ε f
)

into

the constant, one obtains:

In (ε) = cεσC (ε)exp

[

− ε

Θ
(

ε f
)

]

dε. (4.61)

The function σC (ε) varies extremely slowly and can be absorbed into the leading constant, c.

The function Θ is given by

1

Θ
=

dS

dE
, (4.62)

the expression for the temperature of a thermodynamic system. Thus Θ can be interpreted as

the temperature of a thermal neutron source whose relative distribution is dominated by e−ε/Θ.

The functional form used to model background events differs slightly from that of Eq. (4.61):

f (ε;Θ) = A

√

ε/Θ3e−ε/Θ, (4.63)

with the temperature Θ to be determined from the data. However, the important features,

namely the dominant e−ε/Θ term, are the same. Minor differences in shape as a result of the

leading terms become irrelevant when the effects of experimental resolution are taken into account.

4.5.3 Monte Carlo Simulation

If the decay energy distribution of an unbound state is given by the function f (E;~µ) , where ~µ

are parameters to be determined from the data (E0, Γ0, and ℓ), the observed distribution will be

smeared by experimental resolution and acceptance:

F
(

Ẽ;~µ
)

=

∫

R
(

E, Ẽ
)

f (E;~µ)dE. (4.64)

Here R
(

E, Ẽ
)

is the smearing function, and F
(

Ẽ;~µ
)

is what is observed by the experiment.

Thus to compare a model to data, the influence of resolution and acceptance must be taken into

account.

In the present work, the integral on the right hand side of Eq. (4.64) is not known analytically;

hence the influence of resolution and acceptance is introduced using Monte Carlo simulation. First
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the breakup of an unbound state is modeled using some function f (E;~µ) . The neutron and frag-

ment are then propagated through their respective experimental systems, and the measurements

made in various particle detectors are given appropriate resolutions, as described below. Any event

for which a particle falls outside of geometric acceptance limits is tagged appropriately. The result

is a simulated data set which is then analyzed in the exact same way as the real experimental data,

ignoring events which fail acceptance cuts. The decay energy of the simulated and analyzed data

set represents F
(

Ẽ;~µ
)

in Eq. (4.64) and is compared directly to experiment.

The simulation begins with the 29Ne beam impinging on TCRDC1. The properties of the

incoming beam (emittance and energy) are free parameters, and they are constrained from com-

parison with data in which unreacted beam is sent down the focal plane (c.f. Section 4.5.3.1). The

x position on TCRDC1 is recorded with a Gaussian spread, σ = 1.3 mm, to simulate experimental

resolution. The σ value is taken from mask runs, comparing the width of recorded events to the

actual size of the mask holes.

From TCRDC1, the beam is forward tracked to the reaction target. The proton knockout reac-

tion is treated in the Goldhaber model [91] with the inclusion of a friction term [92] to degrade the

beam energy by 0.6%. Inclusion of the friction term is necessary for simulated fragment energies

to match those of the data. Following the knockout reaction, the breakup of the unbound state is

modeled using one of the functions presented in Sections 4.5.1 and 4.5.2.

After the breakup reaction, the neutron and fragment are treated separately. The neutron is

propagated to the front face of MoNA where its measurement is simulated. Time of flight resolu-

tion is introduced as a Gaussian spread with σ = 0.3 ns. Position in the y direction is discretized in

the same way as the real measurement: the position is set to be at the center of the bar in which the

neutron interacts. In the z direction, only the front wall of MoNA is included in the simulation. The

z position discretization is introduced by giving the z position in the simulation a uniform 10 cm

spread and analyzing as if the neutron hit at the center of the bar. The x position resolution is given

by the convolution of two Laplacians:
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p1 ·
e−|x/σ1|

2σ1
+(1− p1) ·

e−|x/σ2|

2σ2
, (4.65)

with σ1 = 16.2 cm, σ2 = 2.33 cm, and p1 = 53.4%. Timing and x position resolutions are

based on GEANT3 simulations and shadow bar measurements [59].

In addition to resolutions, acceptance cuts concerning the neutron are imposed. There are two

points in the beam line where neutron events are lost. The first is the point where the beam pipe

intersects the Sweeper magnet gap, 1.06 m downstream of the reaction target. Neutrons passing

this point with a radius greater than the internal radius of the pipe, 7.3 cm, are flagged as failing

the acceptance cut. The second cut is only in the y direction, coming at the point where neutrons

exit the Sweeper vacuum chamber, 1.133 m downstream of the target. Here any neutrons with

y position greater than ±7.3 cm, the gap size, are flagged as being outside the acceptances. The

active area of MoNA is included as an acceptance cut in the simulation, but it has no effect as

MoNA is entirely shadowed by the beam pipe and vacuum chamber aperture.

Following the breakup, the charged fragment is propagated to CRDC1 using a COSY forward

transformation matrix as in Eq. (4.36). From here, the fragment is ray-traced to CRDC2 and the

thin scintillator; at each location an acceptance cut is imposed, requiring that the events fall within

the active region of the detector (±150 mm for CRDC2 and ±200 mm for the thin scintillator).

The positions and angles recorded at CRDC1 are given a Gaussian spread to simulate experimental

resolution, with σposition = 1.3 mm and σangle = 0.8 mrad in both planes. As with TCRDC1,

position and angle σ values are taken from CRDC mask runs.

As the x position on the target is used in calculation of decay energy, c.f. Eq. (4.37), an

appropriately resolved x(target) must also be simulated. This is accomplished by taking the resolved

x position measurement on TCRDC1 and determining a nominal angle, ϑ (tcrdc1)
x , using the method

of Section 4.1.1.2. The resolved x position at the target is then calculated by propagating the

resolved x(tcrdc1) and ϑ (tcrdc1)
x through the triplet using a COSY transformation matrix.
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Table 4.7: Incoming beam parameters. Each is modeled with a Gaussian, with the widths and

centroids listed in the table. Additionally, x and θx are given a linear correlation of
0.0741 mrad/mm, and the beam energy is clipped at 1870 MeV.

Parameter Centroid Width

x 0.18 mm 11 mm

θx 0 mrad 4 mrad

y 0 mm 9 mm

θy 0 mrad 1.1 mrad

E 1800 MeV 50 MeV

4.5.3.1 Verification

As mentioned above, free parameters in the simulation are constrained by comparison with data.

The free parameters related to the incoming beam are its emittance in both planes and its kinetic

energy. Each of these is modeled as a Gaussian distribution, with the free parameters listed in

Table 4.7. The incoming position and angle in the dispersive plane are also given a linear correla-

tion, with a slope of 0.0741 mrad/mm. In the case of incoming energy, the Gaussian distribution is

clipped on the high side, with a maximum of 1870 MeV.

The non-dispersive angle and position, as well as the dispersive position, are constrained by

TCRDC measurements. Because of the TCRDC2 malfunction (explained in Section 4.1.1.2), the

incoming dispersive angle cannot be constrained by the TCRDCs. Instead it is set from comparison

with data where unreacted beam is centered in the focal plane. The incoming beam energy is

also constrained in the same way. Furthermore, the beam energy was cross-checked against the

ion-optics program LISE++ [93] and found to be in reasonable agreement. To verify that the

incoming beam parameters are correct, simulated CRDC1 parameters—in the case of unreacted

beam centered in the focal plane—are compared to data. These comparisons are shown in Fig. 4.44

and indicate reasonable agreement.

In addition to unreacted beam data, intermediate parameters in the simulation are also verified

for the reactions of interest (26,27F in the focal plane). This provides a check of the knockout

reaction model used in the simulation and probes a wider region of phase space. In addition to

parameters at CRDC1, target parameters, calculated using the inverse mapping procedure of Sec-
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Figure 4.44: Comparison of simulation to data, with unreacted beam sent into the center of the

focal plane. The black squares are data points and the solid blue lines are simulation results. It

should be noted that the dispersive angle in the focal plane, shown in the upper-right panel, does

not match unless the beam energy is clipped at 1870 MeV.

tion 4.3.1, are compared. As shown in Figs. 4.45 and 4.46, the agreement between simulation and

data is reasonable. The deviations in non-dispersive angle and position are due to the deficiencies

of the field map explained in Section 4.3.1.1.

4.5.4 Maximum Likelihood Fitting

Simulation results are compared to data using an unbinned maximum likelihood technique. Given

a resolved decay energy model F
(

Ẽ;~µ
)

, the likelihood is constructed by taking the product of F

evaluated at each data point:

∏
i

F (εi;~µ) , (4.66)
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Figure 4.45: Comparison of simulation to data for for 26F reaction products in the focal plane. In

each panel, the parameter being compared is indicated by the x axis label. In the lower-right

panel, δE refers the the deviation from the central energy of the Sweeper magnet.
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Figure 4.46: Same as Fig. 4.45 but for 27F in the focal plane.
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where each εi is the decay energy of a recorded event in the experimental data, and the product

is over all recorded events. This is translated into a log-likelihood:

ln(L) = ∑
i

ln(F (εi;~µ)) . (4.67)

The log-likelihood is then used as a test statistic [94]: the best estimate of the parameters ~µ is

at the point where ln(L) is maximized, and nσ confidence intervals are determined by finding the

region of ~µ where

ln(L)max− ln(L)≤ n2

2
. (4.68)

In general, Eq. (4.67) requires a continuous form of F
(

Ẽ;~µ
)

, which is not the case when

F
(

Ẽ;~µ
)

is obtained from Monte Carlo simulation. An appropriate log-likelihood can be con-

structed, however, by following the prescription of Ref. [95]. The procedure is outlined as follows:

1. Create a simulated data set, for a given set of parameters ~µ , and save the generated decay

energy values, E j (from the unsmeared f (E;~µ)), along with the resolution-smeared ones,

Ẽ j.

2. Form a small volume Vi centered around each experimental data point εi.

3. For each εi, calculate the total number of events whose smeared decay energy, Ẽ j, falls

within the volume Vi.

4. Divide the sum in (3) by the size of Vi and, for normalization, the total number of generated

events.

5. Take the natural log of the quotient in (4) and sum over all of the experimental data points

εi.

In addition, the sums in Steps 3 and 4 can be over weighted events, with the weights being a

function of the generated decay energies. By appropriately weighting the points, one can calculate

the likelihood using a different decay model, f
(

E;~µ ′) , without having to generate a new set of
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simulated data. To do this, the appropriate weights are

W
(

E j,~µ ,~µ
′)=

f
(

E,~µ ′)

f (E,~µ)
. (4.69)

Care must be taken to ensure that the weight values are not too large, as statistical errors are

determined by the sum of the square of the weights. In particular, generating functions, f (E,~µ) ,

which are too narrow are not a good choice for re-weighting.

The procedure for calculating the log-likelihood from Monte Carlo data can be summarized in

a single equation [95]:

ln(L) = ∑
i

ln





∑Ẽ j∈ViW
(

E j,~µ ,~µ
′)

Vi∑ jW
(

E j,~µ ,~µ ′)



. (4.70)

The log-likelihood calculation procedure outlined above can introduce systematic error from

two sources: nonlinearity in the smeared function, F
(

E;~µ ′) , over the volume size, Vi, and limited

Monte Carlo statistics within each Vi. In the present work, the volume size was chosen to be

0.05 MeV. It was demonstrated that this choice of Vi introduces negligible systematic error by

performing a likelihood fit to a known (simulated) data set and comparing the fit results to the actual

parameter values. To avoid systematic errors of the second type, the total number of generated

events is set to be large: approximately three million. This was shown to be sufficient by repeating

the fitting procedure using a variety of generator seeds, with the results nearly identical.
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Chapter 5

RESULTS

5.1 Resolution and Acceptance

Before presenting the decay energy curves for 27F∗ → 26F+ n and 28F → 27F+ n, a brief dis-

cussion of the resolution and acceptance functions of the experimental setup is warranted. Fig. 5.1

is a plot of the simulated acceptance curve for 26F+n coincidences as a function of decay energy

(the same plot for 27F+ n coincidences is virtually identical). As seen in the figure, the accep-

tance begins to drop off rather quickly after ∼ 400 keV, which is primarily a result of neutrons

being shadowed by the beam pipe and Sweeper vacuum chamber box. This shadowing is clearly

observed in a plot of the neutron θx versus θy, shown in the inset of the figure.

As with the acceptance, the resolution of the experimental setup also varies significantly as a

function of decay energy. This response function cannot be described analytically (hence the need

to perform Monte Carlo simulations), but a general idea of its shape can be obtained by plotting

the Gaussian σ of simulated decay energy curves as a function of input decay energy. Such a

plot for 26F+ n coincidences is shown in the top panel of Fig. 5.2, with the input for each point

being a delta function at the indicated relative energy. To give an idea of the actual shape of

the resolution function, the main panel of Fig. 5.2 shows the simulated decay energy curves for

a variety (0.1 MeV, 0.2 MeV, 0.4 MeV, 0.8 MeV, and 1.5 MeV) of delta function inputs. As

with the acceptance curves, the resolution for 27F+n coincidences is virtually identical to that of

26F+n.

5.2 27F Decay Energy

The measured decay energy curve for 26F+n coincidences, resulting from the decay of unbound

excited states in 27F, is presented in Fig. 5.3. Comparison with the acceptance curve of Fig. 5.1
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Figure 5.1: Simulated acceptance curve for 26F+n coincidences. The inset is a histogram of

measured neutron angles for fragment-neutron coincidences produced from the 32Mg beam,

demonstrating the limited neutron acceptance that is a result of neutrons being shadowed by the

beam pipe and the vacuum chamber aperture.

reveals a clear enhancement around 400 keV in decay energy. As discussed in Section 4.5, an

appropriate model for the decay is that of a Breit-Wigner resonance on top of a non-resonant

Maxwellian background. The data are fit by constructing an unbinned log-likelihood test statistic,

c.f. Section 4.5.4. The parameters in the fit are the central energy of the Breit-Wigner resonance,

E0; the width of the resonance, Γ0; the orbital angular momentum, ℓ; the temperature of the non-

resonant Maxwellian distribution, Θ; and the relative contribution of the two lineshapes. The

width of the measured curve is dominated by experimental resolution and acceptance cuts, and the

parameters pertaining to the non-resonant background are not of interest in the present experiment.

Hence the only parameter of interest is the central resonance energy, E0, and all others are treated

as nuisance parameters using the profile likelihood method [94]. In this method,− ln(L) is plotted
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Figure 5.3: Decay energy histogram for 26F+n coincidences. The filled squares are the data

points, and the curves display the best fit simulation results. The red curve is a simulated 380 keV

Breit-Wigner resonance, while the filled grey curve is a simulated non-resonant Maxwellian

distribution with Θ = 1.48 MeV. The black curve is the sum of the two contributions

(resonant:total= 0.33). The inset is a plot of the negative log of the profile likelihood versus the
central resonance energy of the fit. Each point in the plot has been minimized with respect to all

other free parameters. The minimum of − ln(L) vs. E0 occurs at 380 keV, and the 1σ (68.3%
confidence level) and 2σ (95.5% confidence level) limits are indicated on the plot.
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as a function of the parameter of interest, with each point on the plot minimized with respect to

the nuisance parameters. The orbital angular momentum of the resonance is fixed at ℓ = 2 from

theoretical expectations, assuming the emission of a 0d3/2 neutron. Although this assumption may

be invalid if the state in question has significant p- f shell components, use of the other plausible ℓ

values (ℓ= 1 or ℓ= 3) to model the decay does not significantly alter the best fit E0 value.

The inset of Fig. 5.3 displays a plot of the negative log-likelihood of the data versus E0, with

each point on the curve minimized with respect to Γ0, Θ, and the relative contributions of the

resonant and non-resonant models. This constitutes the profile likelihood as mentioned in the

previous paragraph. The minimum is located at E0 = 380 keV, and the 1σ (68.3% confidence

level) and 2σ (95.5% confidence level) intervals1 are ±60 keV and +130
−120 keV, respectively. At

E0 = 380 keV, the nuisance parameters are minimized to Γ0 = 10 keV; Θ = 1.48 MeV; and a

resonant:total ratio of 33%. The best fit results are plotted as the curves in the main panel of

the figure, with the red curve representing the 380 keV resonance; the filled grey curve the non-

resonant Maxwellian background; and the black curve their sum.

As mentioned in Section 3.1, the decay energy measurement provides no information to dis-

tinguish whether the decays are feeding the ground state or excited states of the daughter nucleus,

26F. To make this determination, one must look at γ-rays recorded in coincidence with 26F and

a neutron. A histogram of the Doppler corrected energy of γ-rays recorded in coincidence with

26F+ n is shown in Fig. 5.4. Only two triple coincidence events were recorded, which strongly

indicates that the presently observed decays feed the ground state of 26F. In the extreme opposite

case of a decay which had a 100% branching to a bound excited state in 26F, around 50 counts

would be expected in CAESAR assuming 30% efficiency for gamma detection. It is plausible

that a small branching fraction to bound excited states in 26F could produce a gamma spectrum

that is similar to the one presently observed; however, the presence of multiple decay branches

would either manifest itself as multiple resonances in Fig. 5.3 or occur at such a low rate that the

1As mentioned in Section 4.5.4, the nσ confidence interval is the region in which ln(L)− ln(L)min ≤
n2/2.
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Figure 5.4: Histogram of the Doppler corrected energy of γ-rays recorded in coincidence with 26F

and a neutron. Only two CAESAR counts were recorded, giving strong indication that the present

decays are populating the ground state of 26F.

contribution of the excited state branch is negligible.

To check that the fit to the data presented in Fig. 5.3 is accurate, it is instructive to compare

simulation and data for intermediate parameters used in calculating the decay energy. Fig. 5.5

shows four such comparisons. The parameters being compared in the figure are the opening angle

between the neutron and the fragment; the relative velocity (neutron minus fragment) between

the two particles; the neutron time of flight to the front layer of MoNA; and the fragment kinetic

energy calculated from the inverse mapping procedure of Section 4.3.1. As with Fig. 5.3, red

curves represent the 380 keV resonant simulation, filled grey curves the non-resonant background,

and black curves their sum. As can be seen in the figure, there is reasonable agreement between

simulation and data for each of the four parameters.

111



0 2 4 6 8 10

C
o
u
n
ts
/
0
.5
°

0

10

20

30

vn− v f (cm/ns)
-4 -2 0 2 4

C
o
u
n
ts
/
0
.5
cm

/n
s

0

10

20

30

40

ToF to Front of MoNA (ns)
40 60 80 100

C
o
u
n
ts
/
2
n
s

0

10

20

30

Fragment KE (MeV/u)
50 60 70

C
o
u
n
ts
/
M
eV

/u

0

10

20

30

40

Opening Angle (degrees)

380 keV resonance

Non–resonant

Sum27F∗ → 26F+n

Figure 5.5: Comparison between simulation and data for intermediate parameters (opening angle,

relative velocity, neutron ToF, and fragment kinetic energy) used in calculating the decay energy

of 26F+n coincidences. The red curves are the result of a 380 keV resonant simulation, and the

filled grey curves are the result of the simulation of a non-resonant Maxwellian distribution

(Θ = 1.48 MeV). Black curves are the sum of the two contributions (resonant:total= 0.33).
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Figure 5.6: Summary of experimentally known levels in 26,27F. The presently measured decay of

a resonant excited state in 27F to the ground state of 26F is indicated by the arrow. The grey boxes

represent experimental uncertainties in the absolute placement of level energies relative to the 27F

ground state. The dashed lines surrounding the present measurement correspond to the ±60 keV

uncertainty on the 380 keV decay energy, and the grey error box includes both this 60 keV

uncertainty and the 210 keV uncertainty of the 26,27F mass measurements. The bound excited

states measured in [45] are placed assuming that all transitions feed the ground state as the authors

of [45] do not state conclusively whether their observed γ-rays come in parallel or in cascade.

In order to place the present measurement into a level scheme of 27F, the central resonance

energy of 380 keV must be added to the one neutron separation threshold of 27F. The one neutron

separation threshold, Sn, of a nucleus with mass number A is the difference in mass2 between the

nucleus and the constituents of its neutron breakup (a lone neutron and the neighboring isotope

with mass number A−1):

Sn = (mA−1+mn)−mA. (5.1)

Experimental masses are often published in terms of the atomic mass excess, ∆, given by

∆A = mA−Au, (5.2)

2Atomic mass, including electrons.
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where u is the atomic mass unit expressed in the same dimensions as mA. Thus it is convenient

to express Sn in terms of the ∆ values of the A and A− 1 isotopes; combining Eqs. 5.1 and 5.2

results in this expression:

Sn = [(A−1)u+∆A−1+mn]− (Au+∆A) . (5.3)

= ��Au−u+∆A−1+mn−��Au−∆A (5.4)

= −∆A+∆A−1−u+mn. (5.5)

The most recent mass measurements of 26,27F were performed using the time of flight tech-

nique at GANIL and are reported in Ref. [96]. These measurements place the atomic mass excesses

of 27F and 26F at ∆27 = 24630± 190 keV and ∆26 = 18680± 80 keV, giving a 27F one neutron

separation energy of Sn = 2120±210 keV. Combining this Sn measurement with the present mea-

surement of a 380± 60 keV resonant decay from 27F∗ to the ground state of 26F corresponds to

the measurement of a previously unobserved excited state in 27F at 2500±220 keV. It should be

noted that despite the relatively large uncertainty of the present measurement, the total uncertainty

on the absolute level placement is dominated by that of the 27F one-neutron separation energy.

Fig. 5.6 shows the placement of this newly observed excited level in a level scheme summarizing

experimentally known levels in 27F and 26F.

5.3 28F Decay Energy

The decay energy spectrum of 28F is shown in Figs. 5.7 and 5.8. The simulated acceptance curve

is identical to that of Fig. 5.1, indicating a resonance in the data with a maximum around 500 keV.

As outlined in Section 4.5.2, no background contribution is expected in the decay energy spectrum

of 28F; hence an attempt is made to fit the spectrum with a single ℓ= 2 Breit-Wigner resonance. As

with 27F decays, the fit is done by minimizing the unbinned negative log-likelihood. The parameter

of interest is the central energy of the resonance, E0, and the only nuisance parameter, Γ0, is treated
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Figure 5.7: Decay energy spectrum of 28F (filled squares with error bars), along with the best

single resonance fit (red curve). The inset is a plot of the negative log-likelihood vs. central

resonance energy, demonstrating a minimum at 590 keV.

with the profile likelihoodmethod mentioned in Section 5.2. Additionally, Γ0 is restricted to values

≤ 1 MeV as the simulated lineshape is virtually identical for Γ0 ≥ 1 MeV.

The result of the single resonance fit is shown in Fig. 5.7. The best fit parameters are E0 =

590 keV and Γ0 = 1 MeV. As seen in the figure, the quality of the single resonance fit is rather

poor: the fit fails to reproduce the broad shape of the spectrum despite a width value that is over

an order of magnitude greater than the single-particle prediction of ∼ 60 keV.3 This suggests that

multiple resonances are present in the data and that they should be fit with a superposition of

independent resonances.

3The single particle prediction for the width is obtained from the solution of the problem of a 0d5/2
neutron moving in a Woods-Saxon potential, with the potential well depth adjusted until a resonance is

found at 590 keV.
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Figure 5.8: Decay energy spectrum for 28F, with the best two resonance fit results superimposed.

The filled squares with error bars are the data, and the red and blue curves are the lower resonance

(E
(gs)
0 = 210 keV) and upper resonance (E

(ex)
0 = 770 keV) fits, respectively. The black curve is

the superposition of the two individual resonances. The inset shows a plot of the negative

log-likelihood vs. E
(gs)
0 , demonstrating a minimum at 210 keV and 1,2σ confidence regions of

+50,+90
−60,−110

keV. Each point on the inset likelihood plot has been minimized with respect to the

nuisance parameters E
(ex)
0 , Γ

(ex)
0 , and the relative contribution of the two resonances.
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Because of coarse resolution and low statistics, it is not possible to precisely resolve the con-

tribution of multiple individual resonances, and the main interest is in determining the location

of the ground state. To avoid a solution in which the ground state resonance is made artificially

wide, the width of the lower resonance is fixed at Γ
(gs)
0

= 10 keV, which is approximately equal

to the single-particle prediction for resonances in the expected region of E
(gs)
0 . The width of the

upper resonance, Γ
(ex)
0 is allowed to take any value ≤ 1 MeV. The parameter of interest is the

central energy of the lower resonance, E
(gs)
0 , and the nuisance parameters—treated with the profile

likelihood method—are E
(ex)
0 , Γ

(ex)
0 , and the relative contribution of the two resonances. Both

resonances in the fit have a fixed orbital angular momentum value of ℓ= 2.

The result of the two resonance fit is shown in Fig. 5.8. The best fit is found with a lower

resonance at E
(gs)
0 = 210 keV and 1σ and 2σ confidence regions of +50

−60
keV and +90

−110 keV,

respectively. The central energy and width of the upper resonance are E
(ex)
0 = 770 keV and Γ

(ex)
0 =

1 MeV, and the ratio of the ground state resonance to the total area is 24.2%. As seen in the

figure, the two resonance model gives a reasonable agreement with the data, providing a much

better fit than the one resonance hypothesis. The likelihood ratio of the one and two resonance

hypotheses, D=−2ln(L1/L2) , is equal to 26.7. The two resonance hypothesis has two additional

free parameters relative to the one resonance one, so probability distribution of D should be χ2

with two degrees of freedom [94]. Comparison of D with χ2
ndf=2 critical values indicates that the

one resonance hypothesis can be rejected at a confidence level of greater than 4σ .

The large Γ
(ex)
0 of the upper resonance in the fit suggests that more than two resonances might

be present in the data, and this interpretation is certainly plausible based on the theoretical level

density of 28F below 1MeV. However, with the present resolution and statistics it is not possible to

accurately distinguish the contribution of multiple excited state resonances to the measured decay

spectrum. Attempts to fit the data with three independent resonances indicate that the location of

the ground state resonance is insensitive to the number of resonances used in the fit: there is no

way to match the data points below ∼ 300 keV unless the lowest resonance in the sum is placed

around 200 keV.
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Figure 5.9: Comparison of simulation and data for intermediate parameters used in constructing

the decay energy of 28F. The parameters being compared are noted as the x axis labels on the

individual panels. The filled circles with error bars are the data, and the red, blue and black curves

represent the 210 keV resonance simulation, 770 keV resonance simulation and their sum,

respectively.
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Figure 5.10: Experimental level scheme of 28F and 27F. The black lines represent the nominal

placement of states relative to the ground state of 27 F, and the grey boxes represent 1σ errors on

the measurements. As described in the text, the placement of the 560 keV (770 keV decay energy)

excited state in 28F is extremely uncertain, and it is only included in the figure for consistency.

As with 27F decays, it is instructive to compare simulation and data for intermediate parameters

that contribute to the calculation of decay energy. This comparison is shown in Fig. 5.9 for decays

from 28F. The parameters compared are opening angle between the neutron and the fragment;

relative velocity (neutron minus fragment); time of flight to the front and center of MoNA; and

the reconstructed fragment energy. As seen in the figure, reasonable agreement is achieved for all

parameters when comparing the data to the two resonance fit.

No gamma-rays were recorded in CAESAR in coincidence with 28F+ n, indicating that the

presently observed decays are feeding the ground state of 27F. This places the ground state binding

energy of 28F at Erel = 210+50
−60

keV above the ground state of 27F, as shown in the level scheme

of Fig. 5.10. The level scheme also displays an excited state in 28F at 560 keV, corresponding

to the upper 770 keV resonance of the fit; however, it should be emphasized that the placement

of this excited level in 28F is extremely uncertain. As mentioned previously, it is possible to fit
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the 28F decay spectrum with more than two resonances, and although the location of the ground

state resonance is robust, the placement of excited levels will vary as additional resonances are

introduced. Hence the only reliable measurement for 28F is that of its ground state energy relative

to 27F.

Using the present measurement and that of the 27F mass, the absolute binding energy of 28F is

calculated as

B28 = B27+Erel, (5.6)

with the binding energy of 27F calculated from its atomic mass measurement via:

B27 = Zmp+Nmn− (∆27−Zme)−Au, (5.7)

where Z, N, and A are the proton, neutron and mass numbers of 27F; mp, mn and me are the

proton, neutron, and electron masses; and, as in Eq. (5.2), u is the atomic mass unit expressed in

the same dimensions as the various masses. Using the measurement of ∆27 = 24630± 190 keV

from Ref. [96], Eq. (5.7) evaluates to B27 = 186.26±0.19 MeV. The binding energy of 28F is then

calculated from Eq. (5.6) as B28 = 186.47±0.20 MeV.

5.4 Cross Sections

In addition to measuring decay energies, it is possible to calculate cross sections for the population

of observed states in the reaction 9Be(29Ne, X). The cross section, in millibarns, is given by

σ =
nr

ntnb
×1027, (5.8)

where nr, nt , and nb are the numbers of reactions, target nuclei, and incoming beam particles,

respectively. The number of target nuclei is calculated from the target thickness, δ , and the atomic

mass of natural beryllium,MBe:

nt = NAδ/MBe, (5.9)

where NA is Avagodro’s number, 6.02× 1023 mol−1. Plugging δ = 0.288 g/cm2 and MBe =

9.012 g ·mol−1 into Eq. (5.9), the number of target nuclei evaluates to nt = 1.92×1022. The num-

ber of incoming beam particles was recorded by a scaler module connected to the target scintillator
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CFD, and to obtain the number of incoming 29Ne beam particles, the total number of scaler counts

is divided by the live time of the experimental system and multiplied by the ratio of 29Ne to to-

tal beam particles. The 29Ne:total ratio is calculated by comparing the number of events falling

within the 29Ne time of flight gate (c.f. Section 4.2.1) to the total number of events recorded in

the beam ToF spectrum; this ratio is calculated separately for each production run taken during the

experiment.

The number of reactions is given by

nr = f nc/ε, (5.10)

where nc is the number of recorded neutron-fragment coincidences; f is the fraction of the total

fit area taken up by the decay channel in question; and ε is the total efficiency of the experimental

system. The efficiency can be divided up into its constituent parts:

ε = εgeomεmε̄s. (5.11)

In the above equation, εgeom refers to the geometric efficiency of the Sweeper-MoNA system

(at the appropriate decay energy) and is obtained from Monte Carlo simulations. εm is the detec-

tion efficiency of MoNA and is calculated from GEANT4 simulations done with the appropriate

incoming neutron energy. ε̄s is the intrinsic efficiency of the charged particle detectors. To obtain

ε̄s, a run-by-run intrinsic efficiency is first calculated by comparing the number of fluorine elements

that register signals in all charged particle detectors to the total number that trigger the experimen-

tal system. This calculation excludes the ion chamber efficiency since the ion chamber is needed

to make a fluorine gate. To account for this, the efficiency of the ion chamber for Z ∼ 9 particles

is fist calculated from a target-out run, and this number is multiplied by the run-by-run fluorine

efficiency. Drift in the ion chamber efficiency between runs, as well as the difference in efficiency

between Z = 10 (unreacted beam) and Z = 9 is negligible, so the procedure described above is

sufficient to obtain a run-by-run charged particle detection efficiency for Z = 9 particles. From

here, ε̄s is calculated by taking a weighted average of the run-by-run charged particle efficiency
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values:

ε̄s = ∑
i

wiεi, (5.12)

where the weights wi are equal to the number of incoming 29Ne beam particles in run i divided

by the total number of incoming beam particles, and εi is the Z = 9 efficiency for run i.

Using the calculation procedure described above, the cross section for the population of the

ground state of 28F is calculated to be 0.23±0.06 mb, and the cross section for the population of

the 2500 keV excited in 27F is calculated as 1.54±0.68 mb. A detailed summary of the numbers

which go into the cross section calculations can be found in Appendix A. It should be noted that

there is a significant systematic error on the 28F ground state cross section measurement resulting

from uncertainty in the number of excited state resonances to include in the fit to data. The total

number of resonances significantly alters the relative contribution of the ground state resonance

( f in Eq. (5.10)) which in turn alters the cross section value. Quantifying this systematic error in

terms of 1σ confidence intervals is not practical, but to give a sense of its magnitude, the cross

section would be calculated as 0.40±0.18 mb ( f = 42.9±18.3%) in the case of three resonances.
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Chapter 6

DISCUSSION

res

6.1 Shell Model Calculations

In this chapter, the present experimental results are compared to theoretical predictions in order to

place them into a broader physical context. The theoretical predictions are made with large scale

shell model calculations, and in this section a brief description of these calculation methods is

presented.

As mentioned in Chapter 1, the nuclear shell model is built upon the idea of treating nuclei as a

collection of independent particles subjected to a mean field. The most realistic form for the mean

field is the Woods-Saxon potential:

V (r) =− V0

e(r−R)/a+1
, (6.1)

where V0 is the potential well depth and a represents the surface thickness of the nucleus. R

is the nuclear radius, which typically scales as R = r0A
1/3, with the parameter r0 in the range of

1.2 to 1.4 fm. In addition to the potential well, a strong spin-orbit term is necessary for an accurate

description of nuclear properties:

Vso (r) =−1

r
V ′ (r)~ℓ ·~s. (6.2)

This spin-orbit term gives rise to the splitting of ℓ orbitals displayed in Fig. 1.1, with the

j = ℓ−1/2 coupling raised in energy relative to the j = ℓ+1/2 coupling.

The simple nuclear potential outlined above, consisting of a mean field and spin orbit term,

is only adequate for the description of very basic nuclear properties such as the reproduction of

large energy gaps at the “magic numbers” 2, 8, 20, 28, 50, 82, and 126. For a more complete
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description of nuclei, the nuclear Hamiltonian, H = T +V, must also, at a minimum, take two-

body interactions into account. These are typically introduced by splitting the Hamiltonian into

two parts:

H = H0+Vres, (6.3)

whereH0= T+V0 includes the kinetic energy T and central potentialV0 andVres is the residual

potential given by

Vres =
A

∑
i, j

Vi j−
A

∑
i

Vc (ri) . (6.4)

In Eq. (6.4), Vi j represent the two-body interactions between nucleons and Vc represents the

central potential of Eqs. (6.1) and (6.2).

In principle, one can solve the Schrödinger equation using the potentials described above, with

Eq. (6.4) applied to all nucleons in the nucleus. In practice, however, this requires large amounts

of computation time for all but the lightest nuclei and is not practical for typical calculations.1

Instead, the nucleus is divided into an inert core and an active valence space for which the two-

body contributions are calculated. Within this model space, the total wavefunction, |ψk〉 , for a

state with quantum numbers k = {n, ℓ, j} is given by a sum of basis states:

|ψk〉= ∑
α
akα |ψα〉 , (6.5)

where the sum is over the orbitals α in the active valence space. The basis states, |ψα 〉 ,

are typically defined to have either a definite magnetic quantum number M (referred to as the

m-scheme) or a definite total spin quantum number J (the j-scheme).

From the potential of Eqs. (6.3) and (6.4) and the wave function of Eq. (6.5), the time indepen-

dent Schrödinger equation,

H |ψk〉= Ek |ψk〉 , (6.6)

is expressed as

1It should be noted that there is presently a great deal of effort being put into the “no core” shell model

[98] and other ab initio methods that attempt to describe nuclei by starting from first principles and treating

all nucleons on an equal footing. However, these calculations are currently only tractable up to A∼ 20.
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(H0+Vres)∑
α
akα |ψα〉= Ek∑

α
akα |ψα〉 . (6.7)

Taking the inner product of both sides of Eq. (6.7) with 〈ψk|= ∑β
akβ 〈ψβ | yields

∑
α,β

akαakβ 〈ψβ |H |ψα 〉= Ek ∑
α,β

akαakβ δαβ . (6.8)

The solution of Eq. (6.8) is then equivalent to solving the eigenvalue problem

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11−Ek H12 · · · H1n
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... · · · . . .
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (6.9)

which determines the energy eigenvalues, Ek, of the system as well as the matrix elements,

Hβ α = 〈ψβ |H |ψα〉 (6.10)

= 〈ψβ |H0 |ψα〉+ 〈ψβ |Vres |ψα 〉 . (6.11)

The right hand side of Eq. (6.11) is divided into two parts: the single particle energies

〈ψβ |H0 |ψα〉= E
(0)
αβ

δαβ ≡ E
(0)
α (6.12)

and the two-body matrix elements (TBME)

〈ψβ |Vres |ψα 〉 ≡ 〈ψβ |V12 |ψα〉 . (6.13)

From here, one can solve for the akα coefficients in Eq. (6.7), thus determining the nuclear

wavefunctions and allowing calculation of additional spectroscopic properties of the various states

as well as their overlap, 〈ψi|ψ f 〉 .

In Eq. (6.13), the V12 represent the effective two-body interactions. In principle these can

be derived from the bare nucleon-nucleon interaction, but in practice they are often determined

by fitting to experimental data. The fitting procedure begins by choosing a core and valence
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space for which the interaction is intended and then by collecting a wide variety of reliable ex-

perimental information (typically ground and low-lying excited state energies) on nuclei in the

intended region. The TBME are then adjusted until the deviation between experimental data

and theoretical predictions is at a minimum, with an approximate theoretical error determined

from the Root Mean Square (RMS) deviation between the two. In the present work, shell model

calculations are performed using three interactions: USDA and USDB [99], which operate in

the sd valence space (π0d5/2π1s1/2π0d3/2ν0d5/2ν1s1/2ν0d3/2), and the recently developed

IOI interaction [100], which operates in a truncated sd-p f valence space (π0d5/2π1s1/2π0d3/2

ν1s1/2ν0d3/2ν0 f7/2ν1p3/2ν1p1/2). The calculations are performed using the j-scheme code

NuShellX@MSU [101, 102].

6.2 27F Excited State

Fig. 6.1 shows the experimental and theoretical (USDA, USDB, IOI) level schemes of 27F, up

to 3.5 MeV. As seen in the figure, all three models predict a fairly high level density in the

region of the presently observed resonance at 2500± 220 keV. The observation of only a single

resonance could indicate selectivity of the reaction mechanism used to populate 27F∗, but as the

precise reaction mechanism is not known, any attempt to argue for the assignment to a specific

state based on reaction cross sections would be highly speculative. Moreover, the ground state

structure of the 29Ne beam is somewhat uncertain. Its spin and parity have not been measured

experimentally, and there is also discrepancy in shell model predictions. MCSM calculations using

the SDPF-M interaction predict the 29Ne ground state to be 3/2+ with a 100% 2p-2h configuration

[103], while calculations using the IOI interaction and model space predict a 3/2− ground state

with a configuration that is primarily 1p-1h. The lack of certainty about the 29Ne ground state

structure further distorts any clarification that might be gained from consideration of population

cross sections.

Further distorting the interpretation of the present observation is the fact that shell model calcu-

lations fail to reproduce the bound state measurements of Ref. [45]. Of the calculations presented,
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Figure 6.1: Summary of experimental and theoretical (USDA, USDB, IOI) excited levels in 27F.
The grey boxes surrounding the experimental values represent the 1σ uncertainties on the

measurements. Experimental values are taken from Refs. [97] (ground state Jπ ), [45] (bound

excited states), and the present work. Both possible placements of the 504 keV transition observed

in Ref. [45] are included, with the cascade placement shown as the dashed line at 1282 keV.

all overpredict the 1/2+ first excited state energy by ∼ 700 keV or more, and the IOI calcula-

tion overpredicts the 1/2− excited state energy by either ∼ 1300 keV or ∼ 500 keV depending

on whether the experimental observation is placed in parallel or cascade with the 1/2+. Addition-

ally, the MCSM/SDPF-M calculations presented in [45] overpredict the 1/2+ energy by around

320 keV.

As mentioned in Ref. [45], proton excitations from the p shell to the sd shell likely play a role

in the excited state structure of 27F. This has been explored theoretically in Ref. [104], which

deals with excited states in even-N fluorine isotopes that involve p to sd shell proton excitations

(or “proton hole” states). The predicted energies of bandhead proton hole states are summarized in

Fig. 6.2, taken from the reference. The proton holes are expected to couple to three types of neutron

configurations: pure sd (resulting in a 1/2− bandhead state), 1p-1h (3/2+ bandhead state), and
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Figure 6.2: Excitation energies of theoretical p shell proton hole states in even-N fluorine

isotopes. Adapted from Ref. [104], with the 25,27F 1/2− candidate states of Ref. [45] added,

assuming parallel gamma emission.

2p-2h (1/2− bandhead). In the neutron rich fluorine isotopes, the proton hole states coupling to

1p-1h and 2p-2h neutron configurations are predicted to be relatively low in excitation energy as a

result of the diminished N = 20 shell gap, and it is interesting to note that the predicted energies of

the 1p-1h and 2p-2h states in 27F are both close to the present observation. Regarding p-sd proton

excitations, it should also be noted that a new PSDPF interaction has recently been developed [105]

to treat configurations in the full p-sd-p f model space, and it would be interesting to compare the

predictions of this interaction to the present measurement.

6.3 28F Binding Energy

As outlined in Chapter 2, it has been well established, both experimentally and theoretically, that

there is a region of nuclei in the vicinity of Z = 11 and N = 20 whose low-lying structures have
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significant p f shell “intruder” components, in the form of ℏω excitations of neutrons from the sd

shell to the p f shell2. This region is often referred to as the “island of inversion,” in reference to

the inverted filling of single particle levels (p f before sd). The region of inversion was originally

thought to encompass only those nuclei directly surrounding 32Na, but in more recent years its

boundaries have become an open question. Approaching stability, where nuclei become more

experimentally accessible, it is generally agreed that the intruder components fade away for N .

18 and Z & 13. What is less certain is the importance of intruder configurations as one moves

away from stability and towards more neutron rich nuclei, either by adding neutrons or removing

protons. It was originally proposed that intruder configurations are significant only for N ≤ 22

[106], but recent experiments have contradicted this claim, collecting evidence that significant

intruder components are present in the ground states of nuclei with higher neutron number. For

example, the 9Be(38Si,36Mg)X reaction has been used to establish that there is a significant 2ℏω

contribution to the ground state of 36Mg, which has 24 neutrons [107].

Going away from stability in the other direction, i.e. removing protons, the contribution of

intruder configurations to the ground state structure of nuclei has been largely unexplored, lim-

ited to theoretical calculations such as those of Ref. [34], which were introduced in Section 2.4.

Experimentally, the fluorine isotopic chain is the only area in which the intruder structure of

Z < 10, N ≥ 19 nuclei can be examined in any detail. All lighter elements are unbound past

N = 16, making experimental investigation of isotopes with N ≥ 19 extremely difficult since all

of these nuclei will decay by the emission of three or more neutrons. The present measurement of

the ground state binding energy of 28F is the first experimental investigation into the structure of

fluorine nuclei with N ≥ 19, and in this section its relevance to the intruder structure of 28F will be

discussed.

A simple way to check for p f shell intruder components in the ground state of a nucleus is

2Here a nℏω excitation means that n neutrons have been promoted from the sd shell to the p f shell,

in contrast to the “normal” filling of orbitals seen near stability. In general, however, it means that a har-

monic oscillator gap has been crossed n times: for example 2ℏω could mean that either two nucleons were

promoted across a single oscillator gap or that a single nucleon was promoted across two oscillator gaps.
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Figure 6.3: Difference between experimental [12, 96] and theoretical (USDB) binding energies

for sd shell nuclei, with positive values meaning experiment is more bound than theory. Adapted

from Ref. [99]

to compare its measured binding energy to the predictions of a shell model which includes only

sd orbitals in the active valence space. A significant deviation between experiment and theory

would likely indicate that configurations which extend outside of the sd shell are important to the

description of the nucleus in question. Such a comparison is shown in Fig. 6.3, which is a plot of

BEexp−BEth for sd shell nuclei, adapted from Ref. [99]. The theoretical calculations are done in

the sd valence space using the USDB interaction (the authors of [99] claim similar results using the

USDA interaction). The region circled on the plot is composed of traditional island of inversion

nuclei, and it is clear that the theoretical predictions deviate significantly from experiment, with

experiment more bound than theory by up to 2 MeV. The authors of [99] speculate that 28,29F lie

outside of the island of inversion, but at the time of publication the only available experimental

binding energies for these nuclei were mass extrapolations, making this claim extremely tenuous.

Another way to examine p f shell intruder components theoretically is to use a shell model that
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15≤ N ≤ 24, as calculated in the IOI interaction and truncated sdp f model space. Taken from

Ref. [100].

includes the sd and p f shells in its active valence space to calculate the occupation probabilities of

p f shell orbitals. Such calculations were recently done for a wide variety of nuclei centered around

N = 20 [100]. These calculations utilize the IOI interaction and an active valence space composed

of the 1s1/20d3/20 f7/21p3/21p1/2 neutron orbitals. Fig. 6.4 is a plot of the average ℏω excitations

in the ground states of nuclei with 8 ≤ Z ≤ 17 and 15 ≤ N ≤ 24. Nuclei in the traditional island

of inversion region are clearly reproduced as having large ℏω contributions to their ground state

structure, as are nuclei with Z ≤ 12, N ≥ 22. This calculation also predicts all fluorine isotopes

with N ≥ 19 to have an average ℏω excitation of one or greater, placing them within the island of

inversion.

The theoretical analyses presented above give differing suggestions as to whether or not 28F

is an island of inversion nucleus. To distinguish between the two assertions, it is instructive to

compare the predicted ground state binding energies given by the two models. Such a comparison

is shown in Fig. 6.5, which is a plot of the predicted binding energies of N = 19 isotones in the
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IOI, USDA, and USDB shell models (to put the binding energies on roughly the same scale, the

calculation results have been shifted by subtracting 16 ·Z from their original values). For heavier

nuclei, which the IOI calculation predicts to have minimal ℏω components, the binding energy

predictions are generally in good agreement. As expected, the calculations diverge significantly

for Z = 10, 11, 12, with the IOI calculations indicating significantly greater binding. For Z = 8

and Z = 9, the IOI calculations continue to predict greater binding than UDSA/USDB, albeit to a

lesser extent than for Z = 10, 11, 12.

To examine the binding energy systematics of N = 19 isotones further, theoretical predictions

must be compared to experiment. Fig. 6.6 displays this comparison, plotting the difference in bind-
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ing energy between experiment and theory for N = 19 isotones from Z = 9 to Z = 17. The experi-

mental value for 28F is from the present work, and all others are from Refs. [12,96]3. As in Fig. 6.5,

the theoretical calculations are done using the IOI, USDA, and USDB interactions and their asso-

ciated model spaces. In this plot the experimental binding energies of isotones with Z = 10, 11, 12

clearly deviate from the USDA/USDB predictions. These nuclei are reasonably well reproduced

by the IOI calculations, with the differences between experiment and theory falling within the

3Unless otherwise noted, the citation [12,96] means the following: if the mass in question was measured

in Ref. [96], the measurement of [96] is used. Otherwise the mass is taken from the 2003 Atomic Mass

Evaluation of Ref. [12].
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370 keV RMS deviation of the IOI interaction. For 28F, the difference between experiment and

USDA/USDB theory drops dramatically, with the USDA calculation giving exact agreement within

experimental error bars. Taken alone, this feature strongly suggests that p f shell components are

not necessary for a complete description of the 28F ground state. However, this conclusion must

be weighed against the IOI calculation results which predict an average ℏω excitation of 1.22 in

the 28F ground state. The difference in binding energy between theory (IOI) and experiment is less

than the theory’s 370 keV RMS deviation; hence the IOI calculation’s assertion of a 28F ground

with significant (≥ 1ℏω) p f shell components cannot be ruled out conclusively. Despite this, the

consistency of the present measurement with the USDA/USDB calculations demonstrates that p f

shell components are not necessary for reproduction of the presently observable properties of the

28F ground state. This is in sharp contrast to the N = 19 isotones whose inversion structure is

better established—29Ne, 30Na, and 31Mg: the ground state binding energies (and in the case of

31Mg, spin-parity [108]) of these nuclei cannot be reproduced in an sd-only calculation.

In addition to the N = 19 isotones, it is also instructive to examine the binding energy system-

atics of the fluorine isotopic chain. Fig. 6.7 plots the experimental (when available) and theoretical

(IOI, USDA, USDB) binding energies for fluorine isotopes from A = 24 (N = 15) to A = 31

(N = 22), with the top panel showing the difference between experiment and theory for the vari-

ous models. The lightest two nuclei, 24,25F, are well-reproduced in the USDA/USDB shell models

but significantly under-bound by the IOI calculation, likely due to the IOI calculation’s exclusion

of the ν0d5/2 orbital from its active valence space [100]. The calculations are in fairly good agree-

ment with data and with each other for 26,27F, but as discussed previously they begin to diverge

at 28F, with the IOI model predicting greater binding, and the level of divergence continues to

increase for 29F. There is little to compare for the heaviest fluorine nuclei, but the only available

experimental information—namely the (non)existence of (30)31F—is reproduced by the IOI shell

model within its 370 keV RMS deviation.
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Chapter 7

SUMMARY AND CONCLUSIONS

In this work, the binding energy of 28F and the excitation energy of a neutron-unbound state in 27F

have been measured using the technique of invariant mass spectroscopy. The neutron-unbound

states were populated by reactions of a 62 MeV/u 29Ne beam impinging on a 288 mg/cm2 beryl-

lium target, with the radioactive 29Ne beam produced at the NSCL Coupled Cyclotron facility at

Michigan State University. Neutrons resulting from the decay of the unbound states were detected

in a large area plastic scintillator array (MoNA), and the residual charged fragments were deflected

by a dipole magnet and analyzed in a variety of charged particle detectors. Gammas produced in

the reaction were also recorded in a CsI(Na) array surrounding the target, allowing for a unique

determination of the decay path of the neutron-unbound states. The observed resonances were fit

using a Breit-Wigner lineshape with energy dependent width, and the smearing of experimental

resolution and acceptance was accounted for in a Monte Carlo simulation of the experiment.

In 27F, a resonant state was observed with 380±60 keV decay energy, feeding the ground state

of 26F. In addition to this resonant state, a non-resonant background was observed in the data; this

background is expected to arise from the neutron evaporation of high-lying states in 28F, and it

is well described by a Maxwellian distribution of thermalized beam velocity neutrons. Combined

with the one neutron separation energy of 27F, measured in Ref. [96] to be 2120± 210 keV, the

presently observed resonance corresponds to an excited level in 27F at 2500±220 keV.

In 28F, the ground state was observed to decay to the ground state of 27F with a relative energy

of 210+50
−60

keV, corresponding to a 28F binding energy of 186.47± 0.20 MeV. In addition to

the ground state, the inclusion of at least one additional higher-lying resonance was necessary to

describe the data, with the location of the ground state peak insensitive to the number of additional

resonances included in the fit.

To interpret the present measurements, they are compared to shell model predictions. For 27F,
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shell model calculations in both the sd and truncated sd-p f model spaces predict a fairly high level

density in the neighborhood of 2500 keV in excitation energy, making it impossible to assign the

present observation to a specific state based on energies alone. Assignments based on calculated

cross sections are also not possible as the specific mechanism by which the observed excited state

was populated is not certain. Excited states with p shell proton hole structure are also predicted

in this energy region, making them plausible candidates as well. Either an improvement in the

predictive power of theoretical calculations or the collection of additional experimental data will

be needed before it is possible to assign the presently observed 2500 keV state in 27F to a specific

level.

The measurement of the 28F ground state energy is particularly interesting when interpreted

in terms of ground state mass systematics and the boundaries of the island of inversion. Until

now, there was no experimental data available to indicate whether the island of inversion extends

to lower element number than its traditional boundary of Z = 10. The present measurement of

the 28F binding energy lies between the predictions of the IOI (truncated sd-p f model space) and

USDA/USDB (sd model space) shell models and is consistent with both calculations within their

RMS values. The merging of the USDA/USDB and IOI calculations—in contrast to 29Ne, 30Na,

and 31Mg—suggests the presence of a “southern shore” of the island of inversion at 28F, and this

is confirmed by the binding energy measurement of the present work.

The present results also suggest a number of additional studies which could be useful in clar-

ifying the structure of fluorine nuclei in the vicinity of N = 20. Perhaps the most pertinent for

determining the bottom edge of the island of inversion is a mass measurement of 29F. As shown

in Fig. 6.7, the deviation between USDA/USDB and IOI calculations for the ground state binding

of 29Ne is large, so an experimental test of these predictions would provide significant insight into

the situation. Furthermore, a measurement of the first excited state energy in 29F would provide

much needed information about the size of the N = 20 shell gap for fluorine isotopes. It is un-

likely that 29F has bound excited states (though a measurement would also be necessary to confirm

this assumption); hence measuring its first excited state would require neutron decay spectroscopy
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involving two neutron emission.

There are also a few possibilities to expand upon the present measurement of unbound states

in 27F and 28F. Since the presently observed resonances have been shown to decay to the ground

state of their respective daughter nuclei, one possibility would be to repeat the present measure-

ment without the CAESAR array. The main advantage would be an increase in statistics: removing

CAESARwould allow the reaction target to be moved forward, significantly decreasing the neutron

shadowing demonstrated in Fig. 5.1 and increasing the detection efficiency for high decay energies.

Additionally, inclusion of the recently commissioned Large multi-Institutional Scintillator Array

(LISA) [109] in the setup would allow for neutron detection at larger angles, further increasing

efficiency at high decay energy. Removal of CAESAR would also allow the Sweeper magnet to

be run at higher rigidity as the Sweeper’s field was limited in the present experiment to allow the

CAESAR PMTs to operate properly. In turn, this allows the incoming beam energy to be optimized

for maximum 29Ne production, increasing overall statistics. Finally, it may be possible to popu-

late unbound states in either 27F or 28F by other reaction mechanisms, such as 27F(d, p)28F(∗),

27F(p, p′)27F∗, 2p knockout, 1n knockout to 28F, or fragmentation of an intense secondary beam.

Depending on specific cross sections and beam rates, each of these reaction mechanisms has the

potential to increase overall population rates for the states of interest. Additionally, using (d, p),

(p, p′), or 2p knockout to populate unbound states could increase the selectivity of the reaction,

making it possible to assign observed resonances to specific levels in 27F or 28F.
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Appendix A

CROSS SECTION CALCULATIONS

A.1 27F Excited State

Table A.1: Average values used in calculating the cross section to 27F∗.

Number of Recorded Reactions: 157±12.5
Ion Chamber Efficiency: 98.93%

Number of Target Nuclei: 1.92×1022

Geometric Acceptence: 11.66±0.77%
MoNA Efficiency: 77%

Fit Fraction: 32.93±14.00%
Average Sweeper Efficiency: 58.32±0.37%
Actual Number of Reactions: 987.37±432.10
Cross Section (mb): 1.54±0.68

Table A.2: Run-by-run values used in calculating the cross section to 27F∗.

Run Target Scint. Live Sweeper 29Ne 29Ne

Scaler Time Efficiency Counted Actual

1089 3001020±1732 91.7% 39.9±9.9% 200±14.1 31317.9±2225.2
1090 4040444±2010 91.6% 44.3±8.1% 271±16.5 42209.7±2576.4
1091 189262±435 96.9% 49.5±60.6% 6±2.4 1975.8±810.7
1093 25275536±5027 91.1% 41.7±3.3% 1575±39.7 242605.4±6139.9
1094 24541327±4953 91.6% 46.9±3.6% 1582±39.8 244373.5±6172.1
1095 22791135±4774 92.0% 51.1±4.2% 1392±37.3 212834.0±5729.2
1096 21890982±4678 91.9% 47.7±3.9% 1304±36.1 200507.3±5576.0
1097 20407576±4517 92.4% 48.4±3.9% 1297±36.0 195929.6±5464.6
1105 19950460±4466 92.7% 54.8±4.4% 1225±35.0 184233.9±5286.5
1106 12628284±3553 93.8% 56.0±5.4% 834±28.9 124168.9±4319.5
1108 17691674±4206 93.2% 57.3±4.9% 1407±37.5 199581.8±5348.9
1109 17867137±4226 93.8% 55.2±4.5% 1369±37.0 193730.4±5262.7
1110 17716754±4209 93.7% 62.7±5.0% 1286±35.9 186514.1±5226.8
1111 16059746±4007 94.3% 60.1±4.8% 1260±35.5 180875.0±5122.8
1113 4750703±2179 95.0% 59.1±8.3% 354±18.8 49556.5±2647.0
1114 25168982±5016 90.7% 52.0±3.9% 1836±42.8 277433.6±6507.3
1115 25160236±5015 90.9% 60.4±4.3% 1689±41.1 257524.3±6295.5
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Table A.2 (cont’d)

1116 15548067±3943 91.6% 54.0±5.1% 926±30.4 145404.8±4798.9
1117 24027531±4901 91.4% 59.3±4.2% 1575±39.7 237691.9±6016.5
1118 21661193±4654 92.8% 58.7±4.3% 1479±38.5 216643.1±5659.6
1119 17135263±4139 94.1% 54.5±4.6% 1214±34.8 173626.0±5007.1
1120 17113386±4136 93.7% 55.7±4.8% 1182±34.4 171097.1±5000.0
1121 14095999±3754 93.9% 54.0±5.0% 1013±31.8 144142.2±4550.7
1122 17641234±4200 92.9% 54.8±4.7% 1292±35.9 187542.4±5243.5
1123 19223693±4384 92.9% 55.8±4.6% 1366±37.0 195480.7±5314.2
1124 22330606±4725 91.8% 59.1±4.1% 1522±39.0 226377.7±5829.8
1125 18688958±4323 92.9% 54.8±4.3% 1417±37.6 203755.2±5440.4
1126 15837226±3979 92.3% 50.4±4.5% 1176±34.3 171328.9±5021.1
1127 19985301±4470 93.0% 51.9±4.1% 1416±37.6 204460.7±5459.5
1128 18085021±4252 93.2% 55.1±4.4% 1420±37.7 197721.8±5273.9
1129 15951827±3993 94.3% 57.9±4.7% 1273±35.7 172301.6±4853.9
1130 2492166±1578 95.0% 38.6±9.5% 171±13.1 24404.5±1875.0
1140 16757226±4093 87.6% 53.1±4.6% 1205±34.7 193735.1±5609.4
1141 13926658±3731 88.3% 56.2±5.2% 1040±32.2 161555.7±5035.4
1143 21910209±4680 84.2% 54.5±4.4% 1485±38.5 237811.5±6199.5
1144 23719230±4870 84.3% 54.8±4.1% 1533±39.2 266120.7±6829.1
1145 21989507±4689 85.1% 51.5±4.0% 1445±38.0 245730.8±6495.2
1146 20372770±4513 85.9% 54.7±4.4% 1400±37.4 235622.1±6328.7
1147 21596655±4647 85.5% 55.8±4.3% 1526±39.1 261159.3±6720.1
1148 15650741±3956 83.4% 53.1±5.0% 1091±33.0 192036.5±5843.8
1149 5868992±2422 84.2% 57.8±8.8% 440±21.0 77004.9±3691.4
1150 24269714±4926 83.8% 60.5±4.3% 1775±42.1 302168.8±7209.8
1151 19513034±4417 85.0% 57.1±4.7% 1552±39.4 254968.9±6508.1
1152 22430111±4736 84.6% 60.0±4.4% 1694±41.2 283908.0±6935.1
1153 19863414±4456 85.2% 63.7±5.0% 1524±39.0 253086.4±6518.3
1154 19033532±4362 86.2% 60.9±4.8% 1431±37.8 235644.5±6262.6
1155 20794627±4560 85.1% 63.5±5.0% 1500±38.7 250472.7±6500.5
1156 22451595±4738 84.3% 63.1±4.7% 1586±39.8 269563.8±6803.2
1157 20948687±4576 84.8% 57.7±4.4% 1477±38.4 251494.4±6577.4
1158 21333904±4618 84.5% 64.5±4.8% 1563±39.5 266312.9±6771.8
1159 20446442±4521 85.7% 66.1±5.3% 1444±38.0 242834.8±6423.0
1160 11803820±3435 87.3% 56.8±5.7% 835±28.9 135507.9±4713.0
1161 20873358±4568 85.9% 63.7±4.9% 1535±39.2 254828.4±6538.4
1162 16189705±4023 87.1% 63.3±5.2% 1213±34.8 194190.1±5604.9
1163 20564885±4534 85.5% 60.1±4.6% 1497±38.7 246009.6±6391.0
1164 7878480±2806 85.9% 60.8±7.0% 602±24.5 97552.5±3997.2
1178 19672213±4435 92.2% 57.5±4.4% 1733±41.6 214828.0±5186.6
1179 17834673±4223 92.6% 59.0±4.6% 1556±39.4 193200.4±4922.5
1180 19197414±4381 92.6% 64.8±4.8% 1807±42.5 216209.7±5112.9
1181 19140691±4375 92.4% 57.5±4.1% 1818±42.6 217485.0±5127.7
1182 20354920±4511 92.1% 60.9±4.4% 1923±43.9 232113.8±5321.1
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1183 22614066±4755 90.9% 59.1±4.2% 2018±44.9 253296.9±5667.5
1184 20477828±4525 91.3% 62.5±4.6% 1824±42.7 228056.2±5367.2
1185 20578329±4536 91.5% 55.0±4.1% 1772±42.1 222769.6±5318.4
1186 19386935±4403 92.0% 55.5±4.3% 1608±40.1 199332.9±4994.6
1187 19010744±4360 92.6% 58.4±4.4% 1569±39.6 194731.2±4939.6
1188 15234289±3903 93.7% 62.4±4.8% 1247±35.3 152597.1±4341.7
1189 2945693±1716 94.5% 68.1±11.1% 232±15.2 29491.2±1945.4
1190 20949406±4577 89.9% 57.5±4.2% 1657±40.7 221344.2±5463.6
1191 25329980±5032 89.7% 57.2±3.9% 2029±45.0 269480.7±6011.3
1192 25537387±5053 89.8% 56.0±3.8% 2016±44.9 265923.2±5950.4
1193 18188870±4264 90.1% 55.0±4.5% 1505±38.8 196188.1±5081.8
1200 23858454±4884 90.7% 59.8±4.3% 2088±45.7 269477.9±5927.8
1201 21881779±4677 90.7% 61.1±4.3% 1998±44.7 258741.0±5819.7
1202 21276721±4612 91.1% 59.6±4.3% 1833±42.8 235270.5±5523.1
1203 20828044±4563 91.6% 60.6±4.2% 1636±40.4 213453.6±5302.2
1204 20387850±4515 91.9% 60.6±4.3% 1655±40.7 213027.4±5261.7
1205 19828325±4452 91.9% 62.6±4.7% 1665±40.8 212022.4±5221.8
1206 21125139±4596 91.8% 59.4±4.4% 1762±42.0 224502.0±5374.6
1207 22280195±4720 91.9% 62.7±4.5% 1768±42.0 226144.2±5403.5
1208 26351043±5133 90.5% 57.2±3.7% 2000±44.7 265713.6±5968.8
1209 23918837±4890 90.7% 58.0±4.1% 1797±42.4 239095.2±5665.9
1210 6372790±2524 91.1% 61.7±8.5% 507±22.5 67020.7±2990.8
1211 17853055±4225 90.4% 57.3±4.8% 1387±37.2 186370.3±5028.0
1212 20277572±4503 91.4% 60.0±4.6% 1531±39.1 206020.4±5289.9
1213 21140403±4597 91.5% 57.3±4.3% 1597±40.0 208358.9±5237.5
1214 22781767±4773 91.3% 58.6±4.2% 1882±43.4 243934.9±5650.6
1215 20588488±4537 91.8% 62.0±4.3% 1730±41.6 220717.1±5332.8
1216 20042146±4476 92.8% 61.0±4.6% 1556±39.4 196403.2±5001.8
1220 22596837±4753 90.5% 58.8±4.2% 2415±49.1 289448.9±5924.3
1221 16165191±4020 92.9% 59.8±4.8% 1761±42.0 198652.3±4761.0
1222 19070486±4366 92.3% 60.5±4.5% 2207±47.0 249994.3±5353.8
1223 19325690±4396 91.4% 60.1±4.3% 1848±43.0 220047.3±5145.6
1225 20909552±4572 91.3% 63.0±4.5% 1502±38.8 261405.1±6783.6
1233 18187898±4264 92.9% 61.6±4.7% 1706±41.3 199869.8±4863.9
1234 21761008±4664 91.8% 61.8±4.4% 1961±44.3 239931.8±5445.7
1235 23146474±4811 90.8% 58.6±4.1% 1957±44.2 249185.6±5660.5
1236 13516906±3676 90.8% 61.1±5.7% 1157±34.0 149798.1±4426.2
1237 21490463±4635 91.2% 54.9±4.0% 1844±42.9 231587.1±5419.7
1238 19105536±4370 91.1% 57.3±4.4% 1652±40.6 207406.0±5128.3
1239 23556654±4853 90.3% 56.6±4.0% 1891±43.5 244735.4±5654.5
1240 22511285±4744 90.7% 59.4±4.1% 1859±43.1 238712.5±5563.3
1241 21297564±4614 91.5% 59.0±4.3% 1756±41.9 222533.5±5336.0
1242 19179082±4379 92.2% 57.6±4.4% 1559±39.5 194173.4±4940.9
1243 24268564±4926 90.9% 57.7±3.9% 1862±43.2 244984.7±5703.6
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1244 24539032±4953 90.5% 55.1±3.8% 1906±43.7 251699.7±5792.2
1245 20324635±4508 92.0% 59.8±4.4% 1580±39.7 203183.3±5135.3
1246 19032078±4362 92.4% 58.0±4.3% 1525±39.1 193178.2±4970.1
1247 8933724±2988 94.0% 55.9±5.9% 719±26.8 88158.2±3303.1
1248 19970394±4468 92.1% 56.7±4.2% 1515±38.9 195149.8±5036.4
1249 19232613±4385 92.4% 53.5±4.1% 1480±38.5 187825.3±4904.5
1250 18142414±4259 92.7% 57.2±4.4% 1400±37.4 176389.5±4735.6
1251 10099094±3177 93.4% 54.2±5.6% 717±26.8 89891.9±3371.1
1258 28323971±5322 90.4% 58.9±3.8% 2346±48.4 299106.6±6205.0
1259 28388250±5328 90.2% 57.9±3.7% 2250±47.4 288505.4±6110.3
1260 22416359±4734 90.6% 59.3±4.2% 1851±43.0 236018.4±5512.2
1261 8040483±2835 90.7% 57.9±6.9% 650±25.5 82188.5±3238.7
1262 24326748±4932 91.5% 58.2±4.0% 1968±44.4 255008.2±5776.1
1263 19628230±4430 92.0% 59.5±4.4% 1694±41.2 209904.9±5125.2
1264 22249854±4716 92.4% 62.6±4.3% 1893±43.5 229400.7±5297.8
1265 18994505±4358 92.9% 55.8±4.2% 1655±40.7 199158.9±4919.5
1266 21764049±4665 91.7% 57.7±4.4% 1919±43.8 237714.7±5453.8
1267 22692282±4763 91.7% 58.2±4.0% 1882±43.4 236056.2±5467.5
1268 19894163±4460 92.7% 56.5±4.3% 1624±40.3 200924.2±5009.3
1269 17044353±4128 93.0% 58.7±4.5% 1368±37.0 167024.0±4536.5
1270 1332497±1154 92.7% 55.4±18.5% 102±10.1 13346.9±1327.7
1271 19664923±4434 91.8% 57.5±4.3% 1622±40.3 203356.0±5073.4
1272 19760737±4445 92.4% 60.6±4.5% 1607±40.1 198574.9±4976.7
1273 10796136±3285 93.5% 65.7±6.4% 924±30.4 111120.8±3673.3
1301 22137675±4705 91.1% 58.2±4.3% 1651±40.6 213825.3±5285.7
1302 20878220±4569 92.0% 59.5±4.3% 1639±40.5 208679.3±5178.4
1303 24360464±4935 91.9% 61.4±4.1% 1997±44.7 255136.1±5736.9
1304 24321781±4931 91.1% 60.7±4.1% 1759±41.9 231993.1±5555.7
1305 7182742±2680 91.7% 67.5±7.7% 568±23.8 75912.5±3200.7
1306 26656131±5162 92.2% 60.6±3.8% 1993±44.6 255867.0±5756.9
1307 25245755±5024 91.8% 58.5±3.9% 1974±44.4 253918.1±5741.6
1308 24413198±4940 91.9% 56.0±3.8% 1870±43.2 240004.4±5575.3
1309 16203154±4025 92.5% 60.1±5.2% 6217±78.8 795445.3±10316.8
1310 28670090±5354 91.8% 62.5±3.9% 2021±45.0 275219.7±6149.2
1311 22870406±4782 91.8% 60.5±4.2% 1570±39.6 211037.6±5348.8
1322 19534132±4419 92.0% 61.8±4.3% 1651±40.6 205993.0±5094.4
1323 20906242±4572 91.5% 61.7±4.2% 1828±42.8 230675.9±5422.7
1324 19428946±4407 92.0% 63.0±4.3% 1619±40.2 202705.8±5062.1
1325 28672792±5354 89.6% 60.2±3.5% 2362±48.6 312490.6±6461.4
1326 25794283±5078 90.0% 57.8±3.8% 2150±46.4 289287.6±6270.6
1327 26064005±5105 90.5% 58.7±3.9% 2111±45.9 279468.3±6112.3
1328 23805045±4879 90.6% 59.9±4.1% 1914±43.7 253670.2±5826.4
1329 11224701±3350 90.6% 59.4±5.8% 869±29.5 116825.2±3981.8
1331 23538523±4851 92.2% 61.0±4.1% 1846±43.0 237044.3±5542.9
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1332 25622670±5061 91.5% 62.0±3.7% 1979±44.5 256977.1±5803.3
1333 25451103±5044 91.3% 58.5±3.9% 2022±45.0 259075.6±5788.5
1334 22669137±4761 91.4% 55.4±3.8% 1809±42.5 231646.2±5471.9
1335 24981509±4998 91.5% 58.9±3.8% 1910±43.7 245197.8±5635.8
1336 23463093±4843 92.0% 58.7±4.0% 1827±42.7 228916.5±5379.8
1337 22452005±4738 91.7% 58.6±4.2% 1836±42.8 231477.4±5427.9
1338 22038360±4694 91.9% 57.0±4.3% 1816±42.6 228725.5±5393.1
1339 21424663±4628 92.1% 58.0±4.4% 1717±41.4 214529.1±5201.3
1340 18608744±4313 92.3% 59.9±4.4% 1501±38.7 187062.9±4850.9

A.2 28F Ground State

Table A.3: Average values used in calculating the cross section to 28F.

Number of Recorded Reactions: 90±9.5
Ion Chamber Efficiency: 98.93%

Number of Target Nuclei: 1.92×1022

Geometric Acceptence: 33.39±2.41%
MoNA Efficiency: 77%

Fit Fraction: 24.17±6.10%
Average Sweeper Efficiency: 58.32±0.37%
Actual Number of Reactions: 145.08±41.05
Cross Section (mb): 0.23±0.06

Table A.4: Run-by-run values used in calculating the cross section to 28F.

Run Target Scint. Live Sweeper 29Ne 29Ne

Scaler Time Efficiency Counted Actual

1089 3001020±1732 91.7% 39.9±9.9% 200±14.1 31317.9±2225.2
1090 4040444±2010 91.6% 44.3±8.1% 271±16.5 42209.7±2576.4
1091 189262±435 96.9% 49.5±60.6% 6±2.4 1975.8±810.7
1093 25275536±5027 91.1% 41.7±3.3% 1575±39.7 242605.4±6139.9
1094 24541327±4953 91.6% 46.9±3.6% 1582±39.8 244373.5±6172.1
1095 22791135±4774 92.0% 51.1±4.2% 1392±37.3 212834.0±5729.2
1096 21890982±4678 91.9% 47.7±3.9% 1304±36.1 200507.3±5576.0
1097 20407576±4517 92.4% 48.4±3.9% 1297±36.0 195929.6±5464.6
1105 19950460±4466 92.7% 54.8±4.4% 1225±35.0 184233.9±5286.5
1106 12628284±3553 93.8% 56.0±5.4% 834±28.9 124168.9±4319.5
1108 17691674±4206 93.2% 57.3±4.9% 1407±37.5 199581.8±5348.9
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1109 17867137±4226 93.8% 55.2±4.5% 1369±37.0 193730.4±5262.7
1110 17716754±4209 93.7% 62.7±5.0% 1286±35.9 186514.1±5226.8
1111 16059746±4007 94.3% 60.1±4.8% 1260±35.5 180875.0±5122.8
1113 4750703±2179 95.0% 59.1±8.3% 354±18.8 49556.5±2647.0
1114 25168982±5016 90.7% 52.0±3.9% 1836±42.8 277433.6±6507.3
1115 25160236±5015 90.9% 60.4±4.3% 1689±41.1 257524.3±6295.5
1116 15548067±3943 91.6% 54.0±5.1% 926±30.4 145404.8±4798.9
1117 24027531±4901 91.4% 59.3±4.2% 1575±39.7 237691.9±6016.5
1118 21661193±4654 92.8% 58.7±4.3% 1479±38.5 216643.1±5659.6
1119 17135263±4139 94.1% 54.5±4.6% 1214±34.8 173626.0±5007.1
1120 17113386±4136 93.7% 55.7±4.8% 1182±34.4 171097.1±5000.0
1121 14095999±3754 93.9% 54.0±5.0% 1013±31.8 144142.2±4550.7
1122 17641234±4200 92.9% 54.8±4.7% 1292±35.9 187542.4±5243.5
1123 19223693±4384 92.9% 55.8±4.6% 1366±37.0 195480.7±5314.2
1124 22330606±4725 91.8% 59.1±4.1% 1522±39.0 226377.7±5829.8
1125 18688958±4323 92.9% 54.8±4.3% 1417±37.6 203755.2±5440.4
1126 15837226±3979 92.3% 50.4±4.5% 1176±34.3 171328.9±5021.1
1127 19985301±4470 93.0% 51.9±4.1% 1416±37.6 204460.7±5459.5
1128 18085021±4252 93.2% 55.1±4.4% 1420±37.7 197721.8±5273.9
1129 15951827±3993 94.3% 57.9±4.7% 1273±35.7 172301.6±4853.9
1130 2492166±1578 95.0% 38.6±9.5% 171±13.1 24404.5±1875.0
1140 16757226±4093 87.6% 53.1±4.6% 1205±34.7 193735.1±5609.4
1141 13926658±3731 88.3% 56.2±5.2% 1040±32.2 161555.7±5035.4
1143 21910209±4680 84.2% 54.5±4.4% 1485±38.5 237811.5±6199.5
1144 23719230±4870 84.3% 54.8±4.1% 1533±39.2 266120.7±6829.1
1145 21989507±4689 85.1% 51.5±4.0% 1445±38.0 245730.8±6495.2
1146 20372770±4513 85.9% 54.7±4.4% 1400±37.4 235622.1±6328.7
1147 21596655±4647 85.5% 55.8±4.3% 1526±39.1 261159.3±6720.1
1148 15650741±3956 83.4% 53.1±5.0% 1091±33.0 192036.5±5843.8
1149 5868992±2422 84.2% 57.8±8.8% 440±21.0 77004.9±3691.4
1150 24269714±4926 83.8% 60.5±4.3% 1775±42.1 302168.8±7209.8
1151 19513034±4417 85.0% 57.1±4.7% 1552±39.4 254968.9±6508.1
1152 22430111±4736 84.6% 60.0±4.4% 1694±41.2 283908.0±6935.1
1153 19863414±4456 85.2% 63.7±5.0% 1524±39.0 253086.4±6518.3
1154 19033532±4362 86.2% 60.9±4.8% 1431±37.8 235644.5±6262.6
1155 20794627±4560 85.1% 63.5±5.0% 1500±38.7 250472.7±6500.5
1156 22451595±4738 84.3% 63.1±4.7% 1586±39.8 269563.8±6803.2
1157 20948687±4576 84.8% 57.7±4.4% 1477±38.4 251494.4±6577.4
1158 21333904±4618 84.5% 64.5±4.8% 1563±39.5 266312.9±6771.8
1159 20446442±4521 85.7% 66.1±5.3% 1444±38.0 242834.8±6423.0
1160 11803820±3435 87.3% 56.8±5.7% 835±28.9 135507.9±4713.0
1161 20873358±4568 85.9% 63.7±4.9% 1535±39.2 254828.4±6538.4
1162 16189705±4023 87.1% 63.3±5.2% 1213±34.8 194190.1±5604.9
1163 20564885±4534 85.5% 60.1±4.6% 1497±38.7 246009.6±6391.0
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1164 7878480±2806 85.9% 60.8±7.0% 602±24.5 97552.5±3997.2
1178 19672213±4435 92.2% 57.5±4.4% 1733±41.6 214828.0±5186.6
1179 17834673±4223 92.6% 59.0±4.6% 1556±39.4 193200.4±4922.5
1180 19197414±4381 92.6% 64.8±4.8% 1807±42.5 216209.7±5112.9
1181 19140691±4375 92.4% 57.5±4.1% 1818±42.6 217485.0±5127.7
1182 20354920±4511 92.1% 60.9±4.4% 1923±43.9 232113.8±5321.1
1183 22614066±4755 90.9% 59.1±4.2% 2018±44.9 253296.9±5667.5
1184 20477828±4525 91.3% 62.5±4.6% 1824±42.7 228056.2±5367.2
1185 20578329±4536 91.5% 55.0±4.1% 1772±42.1 222769.6±5318.4
1186 19386935±4403 92.0% 55.5±4.3% 1608±40.1 199332.9±4994.6
1187 19010744±4360 92.6% 58.4±4.4% 1569±39.6 194731.2±4939.6
1188 15234289±3903 93.7% 62.4±4.8% 1247±35.3 152597.1±4341.7
1189 2945693±1716 94.5% 68.1±11.1% 232±15.2 29491.2±1945.4
1190 20949406±4577 89.9% 57.5±4.2% 1657±40.7 221344.2±5463.6
1191 25329980±5032 89.7% 57.2±3.9% 2029±45.0 269480.7±6011.3
1192 25537387±5053 89.8% 56.0±3.8% 2016±44.9 265923.2±5950.4
1193 18188870±4264 90.1% 55.0±4.5% 1505±38.8 196188.1±5081.8
1200 23858454±4884 90.7% 59.8±4.3% 2088±45.7 269477.9±5927.8
1201 21881779±4677 90.7% 61.1±4.3% 1998±44.7 258741.0±5819.7
1202 21276721±4612 91.1% 59.6±4.3% 1833±42.8 235270.5±5523.1
1203 20828044±4563 91.6% 60.6±4.2% 1636±40.4 213453.6±5302.2
1204 20387850±4515 91.9% 60.6±4.3% 1655±40.7 213027.4±5261.7
1205 19828325±4452 91.9% 62.6±4.7% 1665±40.8 212022.4±5221.8
1206 21125139±4596 91.8% 59.4±4.4% 1762±42.0 224502.0±5374.6
1207 22280195±4720 91.9% 62.7±4.5% 1768±42.0 226144.2±5403.5
1208 26351043±5133 90.5% 57.2±3.7% 2000±44.7 265713.6±5968.8
1209 23918837±4890 90.7% 58.0±4.1% 1797±42.4 239095.2±5665.9
1210 6372790±2524 91.1% 61.7±8.5% 507±22.5 67020.7±2990.8
1211 17853055±4225 90.4% 57.3±4.8% 1387±37.2 186370.3±5028.0
1212 20277572±4503 91.4% 60.0±4.6% 1531±39.1 206020.4±5289.9
1213 21140403±4597 91.5% 57.3±4.3% 1597±40.0 208358.9±5237.5
1214 22781767±4773 91.3% 58.6±4.2% 1882±43.4 243934.9±5650.6
1215 20588488±4537 91.8% 62.0±4.3% 1730±41.6 220717.1±5332.8
1216 20042146±4476 92.8% 61.0±4.6% 1556±39.4 196403.2±5001.8
1220 22596837±4753 90.5% 58.8±4.2% 2415±49.1 289448.9±5924.3
1221 16165191±4020 92.9% 59.8±4.8% 1761±42.0 198652.3±4761.0
1222 19070486±4366 92.3% 60.5±4.5% 2207±47.0 249994.3±5353.8
1223 19325690±4396 91.4% 60.1±4.3% 1848±43.0 220047.3±5145.6
1225 20909552±4572 91.3% 63.0±4.5% 1502±38.8 261405.1±6783.6
1233 18187898±4264 92.9% 61.6±4.7% 1706±41.3 199869.8±4863.9
1234 21761008±4664 91.8% 61.8±4.4% 1961±44.3 239931.8±5445.7
1235 23146474±4811 90.8% 58.6±4.1% 1957±44.2 249185.6±5660.5
1236 13516906±3676 90.8% 61.1±5.7% 1157±34.0 149798.1±4426.2
1237 21490463±4635 91.2% 54.9±4.0% 1844±42.9 231587.1±5419.7
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Table A.4 (cont’d)

1238 19105536±4370 91.1% 57.3±4.4% 1652±40.6 207406.0±5128.3
1239 23556654±4853 90.3% 56.6±4.0% 1891±43.5 244735.4±5654.5
1240 22511285±4744 90.7% 59.4±4.1% 1859±43.1 238712.5±5563.3
1241 21297564±4614 91.5% 59.0±4.3% 1756±41.9 222533.5±5336.0
1242 19179082±4379 92.2% 57.6±4.4% 1559±39.5 194173.4±4940.9
1243 24268564±4926 90.9% 57.7±3.9% 1862±43.2 244984.7±5703.6
1244 24539032±4953 90.5% 55.1±3.8% 1906±43.7 251699.7±5792.2
1245 20324635±4508 92.0% 59.8±4.4% 1580±39.7 203183.3±5135.3
1246 19032078±4362 92.4% 58.0±4.3% 1525±39.1 193178.2±4970.1
1247 8933724±2988 94.0% 55.9±5.9% 719±26.8 88158.2±3303.1
1248 19970394±4468 92.1% 56.7±4.2% 1515±38.9 195149.8±5036.4
1249 19232613±4385 92.4% 53.5±4.1% 1480±38.5 187825.3±4904.5
1250 18142414±4259 92.7% 57.2±4.4% 1400±37.4 176389.5±4735.6
1251 10099094±3177 93.4% 54.2±5.6% 717±26.8 89891.9±3371.1
1258 28323971±5322 90.4% 58.9±3.8% 2346±48.4 299106.6±6205.0
1259 28388250±5328 90.2% 57.9±3.7% 2250±47.4 288505.4±6110.3
1260 22416359±4734 90.6% 59.3±4.2% 1851±43.0 236018.4±5512.2
1261 8040483±2835 90.7% 57.9±6.9% 650±25.5 82188.5±3238.7
1262 24326748±4932 91.5% 58.2±4.0% 1968±44.4 255008.2±5776.1
1263 19628230±4430 92.0% 59.5±4.4% 1694±41.2 209904.9±5125.2
1264 22249854±4716 92.4% 62.6±4.3% 1893±43.5 229400.7±5297.8
1265 18994505±4358 92.9% 55.8±4.2% 1655±40.7 199158.9±4919.5
1266 21764049±4665 91.7% 57.7±4.4% 1919±43.8 237714.7±5453.8
1267 22692282±4763 91.7% 58.2±4.0% 1882±43.4 236056.2±5467.5
1268 19894163±4460 92.7% 56.5±4.3% 1624±40.3 200924.2±5009.3
1269 17044353±4128 93.0% 58.7±4.5% 1368±37.0 167024.0±4536.5
1270 1332497±1154 92.7% 55.4±18.5% 102±10.1 13346.9±1327.7
1271 19664923±4434 91.8% 57.5±4.3% 1622±40.3 203356.0±5073.4
1272 19760737±4445 92.4% 60.6±4.5% 1607±40.1 198574.9±4976.7
1273 10796136±3285 93.5% 65.7±6.4% 924±30.4 111120.8±3673.3
1301 22137675±4705 91.1% 58.2±4.3% 1651±40.6 213825.3±5285.7
1302 20878220±4569 92.0% 59.5±4.3% 1639±40.5 208679.3±5178.4
1303 24360464±4935 91.9% 61.4±4.1% 1997±44.7 255136.1±5736.9
1304 24321781±4931 91.1% 60.7±4.1% 1759±41.9 231993.1±5555.7
1305 7182742±2680 91.7% 67.5±7.7% 568±23.8 75912.5±3200.7
1306 26656131±5162 92.2% 60.6±3.8% 1993±44.6 255867.0±5756.9
1307 25245755±5024 91.8% 58.5±3.9% 1974±44.4 253918.1±5741.6
1308 24413198±4940 91.9% 56.0±3.8% 1870±43.2 240004.4±5575.3
1309 16203154±4025 92.5% 60.1±5.2% 6217±78.8 795445.3±10316.8
1310 28670090±5354 91.8% 62.5±3.9% 2021±45.0 275219.7±6149.2
1311 22870406±4782 91.8% 60.5±4.2% 1570±39.6 211037.6±5348.8
1322 19534132±4419 92.0% 61.8±4.3% 1651±40.6 205993.0±5094.4
1323 20906242±4572 91.5% 61.7±4.2% 1828±42.8 230675.9±5422.7
1324 19428946±4407 92.0% 63.0±4.3% 1619±40.2 202705.8±5062.1
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Table A.4 (cont’d)

1325 28672792±5354 89.6% 60.2±3.5% 2362±48.6 312490.6±6461.4
1326 25794283±5078 90.0% 57.8±3.8% 2150±46.4 289287.6±6270.6
1327 26064005±5105 90.5% 58.7±3.9% 2111±45.9 279468.3±6112.3
1328 23805045±4879 90.6% 59.9±4.1% 1914±43.7 253670.2±5826.4
1329 11224701±3350 90.6% 59.4±5.8% 869±29.5 116825.2±3981.8
1331 23538523±4851 92.2% 61.0±4.1% 1846±43.0 237044.3±5542.9
1332 25622670±5061 91.5% 62.0±3.7% 1979±44.5 256977.1±5803.3
1333 25451103±5044 91.3% 58.5±3.9% 2022±45.0 259075.6±5788.5
1334 22669137±4761 91.4% 55.4±3.8% 1809±42.5 231646.2±5471.9
1335 24981509±4998 91.5% 58.9±3.8% 1910±43.7 245197.8±5635.8
1336 23463093±4843 92.0% 58.7±4.0% 1827±42.7 228916.5±5379.8
1337 22452005±4738 91.7% 58.6±4.2% 1836±42.8 231477.4±5427.9
1338 22038360±4694 91.9% 57.0±4.3% 1816±42.6 228725.5±5393.1
1339 21424663±4628 92.1% 58.0±4.4% 1717±41.4 214529.1±5201.3
1340 18608744±4313 92.3% 59.9±4.4% 1501±38.7 187062.9±4850.9
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