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ABSTRACT

ASSESSMENT OF FUNCTIONAL CONNECTIVITY IN THE HUMAN BRAIN:
MULTIVARIATE AND GRAPH SIGNAL PROCESSING METHODS

By

Marisel Villafañe-Delgado

Advances in neurophysiological recording have provided a noninvasive way of inferring cognitive

processes. Recent studies have shown that cognition relies on the functional integration or connec-

tivity of segregated specialized regions in the brain. Functional connectivity quantifies the statis-

tical relationships among different regions in the brain. However, current functional connectivity

measures have certain limitations in the quantification of global integration and characterization of

network structure. These limitations include the bivariate nature of most functional connectivity

measures, the computational complexity of multivariate measures, and graph theoretic measures

that are not robust to network size and degree distribution. Therefore, there is a need of com-

putationally efficient and novel measures that can quantify the functional integration across brain

regions and characterize the structure of these networks.

This thesis makes contributions in three different areas for the assessment of multivariate func-

tional connectivity. First, we present a novel multivariate phase synchrony measure for quantifying

the common functional connectivity within different brain regions. This measure overcomes the

drawbacks of bivariate functional connectivity measures and provides insights into the mechanisms

of cognitive control not accountable by bivariate measures. Following the assessment of functional

connectivity from a graph theoretic perspective, we propose a graph to signal transformation for

both binary and weighted networks. This provides the means for characterizing the network struc-

ture and quantifying information in the graph by overcoming some drawbacks of traditional graph

based measures. Finally, we introduce a new approach to studying dynamic functional connectivity



networks through signals defined over networks. In this area, we define a dynamic graph Fourier

transform in which a common subspace is found from the networks over time based on the tensor

decomposition of the graph Laplacian over time.
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Chapter 1

Introduction

Cognition and perception are founded on the coordinated activity of neural populations communi-

cating among different specialized brain regions [1]. Neurons that synchronously oscillate in the

low and high frequency provide the fundamental mechanism for information transfer [2], allow-

ing coordinated activity in the normally functioning brain [3], [4], [5]. This neural coordination

is spatiotemporally dynamic [6], and the oscillatory synchronization among different regions is

dynamically adjusted based on the cognitive task [3]. Furthermore, cognitive dysfunctions such as

schizophrenia, epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease have been related to

abnormalities in neuronal synchronization [1], [7].

Brain functionality has been argued to be based on functional segregation and integration [8],

[9]. Functional segregation establishes that specialized activity occurs due to segregated neuronal

populations within dedicated brain regions [10]. Functional integration, on the other hand, consists

of the combination of multiple distributed regions and serves as the basis for coherent cognition

and behavior [10].

The development of brain imaging techniques has provided the means to non-invasively infer

patterns of neural activity in the human brain. Among those techniques are electroencephalogra-

phy (EEG) and magnetoencephalography (MEG), which measure the scalp electric and magnetic

fields generated by electrical activity of neural assemblies composed of thousands of neurons in

1



the cortex, respectively [11]. Both techniques provide a high temporal resolution (in the order of

milliseconds), but lack good spatial resolution. In addition, these methodologies are sensitive to

current sources taking place in different locations of the cortex. Particularly, EEG is more sen-

sitive to secondary currents (volume), whereas MEG is more sensitive to primary current sources

[11]. Another popular neuroimaging technique is functional Magnetic Resonance Imaging (fMRI),

which measures the changes in blood flow and oxygenation in the brain [12]. It provides an ex-

cellent spatial resolution (in the order of few millimeters), at the expense of a slower temporal

resolution (in the order of seconds). The advancements in fMRI studies have had a great impact

on the study of task-based activation and resting state networks.

Brain connectivity encompasses three categories: anatomical, effective and functional connec-

tivity. Anatomical connectivity refers to the physical interconnections among neurons or neuronal

elements and can vary depending on the time-scale that it is observed, being quasi-stationary during

short-time scales, whereas it is more dynamic at long-temporal scales, due to plasticity. Functional

connectivity has been defined as the statistical dependencies among remote neurophysiological

events [13]. It does not make any assumptions regarding the underlying structural connections nor

the directionality relationships among the regions being assessed. Functional connectivity, as op-

posed to structural connectivity, can be dynamic at both short and long temporal scales. Effective

connectivity, on the other hand, describes the causal relationships between different regions in the

brain [13].

In this thesis, we focus on the assessment of functional connectivity, as it has been shown

to contribute to the understanding of neural functions in cognition [14]. Functional connectivity

was initially defined as the temporal coherence among different neurons, measured by the cross-

correlation of spike trains [15], [16]. Furthermore, anomalies in the functional connections be-

tween certain regions are indicative of cognitive dysfunctions, including Alzheimer’s Disease [17]
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and schizophrenia [18].

1.1 Functional Connectivity and Cognitive Control

Cognitive control is thought to be the foundation of intelligent behavior [18], and it is the mecha-

nism that allows for performance adjustments under activities such as perceptual selection, novel

information, and realization of errors [19], [20]. An important question in neuroscience is how

the brain adjusts behavior by monitoring the performance under certain activities [21]. It has been

hypothesized that cognitive control relies on the information carried by neural signals associated to

control, which allows the appropriate selections of actions [22] and has particular influence in psy-

chopathology and self-monitoring [23]. Brain areas involved in cognitive control are the anterior

cingulate cortex (ACC), dorsal medial prefrontal cortex (mPFC), and some regions in the parietal

lobes [19], [23], [24].

Evoked-related potentials (ERPs) related to cognitive control include the N2, feedback-related

negativity (FRN), conflict-related negativity (CRN), and error-related negativity (ERN) [19]. Among

these, the ERN is an indicator of cognitive control occurring when the individual performs a be-

havioral error [25], reaching its maximum (negative) amplitude within 25-75 ms after the error. It

has been shown that the ERN exhibits its maximum potential at central and frontal-central regions

[25]. Based on dipole modeling, it is suggested that the ERN has a medial frontal generator, poten-

tially the ACC [20], [21], [22]. Hall et al. [22] reported that the ERN response amplitude reflects

reduced self-monitoring associated with psychopathology and is linked to higher scores on a self-

report measure. Other studies have related a reduction in the amplitude of ERN to acute alcohol

intoxication [23] and increases in ERN amplitude are related to the degree of error responses [24].

In addition, the ERN amplitude is attenuated in patients that experience damage in the dorsal ACC
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[24].

Various functional connectivity resting state fMRI studies have related abnormalities in the

functional relationships among brain regions associated with cognitive control, which includes the

dorsal ACC, dorsal PFC and regions of the parietal lobe [25], to attention deficit hyperactivity dis-

order (ADHD) [26]. In an EEG study, Cavanagh et al. [27] have found increased synchronization

between electrodes in the medial prefrontal cortex (mPFC) and the lateral prefrontal cortex (lPFC).

Furthermore, their results suggest that neural oscillations between mPFC and lPFC might be the

underlying mechanism of functional communication involving networks related to action monitor-

ing and cognitive control. It is suggested that errors indicate the action monitoring network that

there is a need for increased cognitive control [27]. Recently, Cavanagh et al. [19] showed that

the theta band oscillations in the frontal regions are responsible determining the need of cognitive

control and adjustments for a given task [19].

1.2 Methods for Quantifying Functional Connectivity

Methods for quantifying functional connectivity include linear correlation, mutual information,

coherence, phase-locking value (PLV) and pairwise phase consistency [28]. The most commonly

implemented methods are linear correlation and coherence, which are only sensitive to the linear

interactions between time series, and thus cannot account for the nonlinear relationships reflected

between electrophysiological time series [28]. Mutual information measures suffer from the esti-

mation of the distribution and associated problems such as the size of histogram bins [28].

In order to quantify both linear and nonlinear relationships in the brain signals, phase synchro-

nization, as defined in the context of two chaotic oscillators, has emerged as an alternative method

for the assessment of functional connectivity and is quantified through PLV [29], [30], [31]. PLV
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as a measure for functional connectivity was introduced by [32], and it estimates the synchrony

between two signals by looking at the circular variance of their phase difference across trials. In

comparison to other linear and nonlinear methods, PLV has been shown to be more sensitive to

nonlinear effects [33]. In addition, this metric has contributed to the assessment of brain rhythms

and their related cognitive processes, for example, alpha, beta, delta and theta in the low-frequency

bands and gamma bands in the higher frequencies [28], [29], [32], [34].

Although PLV is a promising measure for quantifying functional connectivity, it is still limited

by its bivariate nature. Specifically, it does not provide information regarding the integration across

multiple regions in the brain. In addition, functional connectivity results from bivariate measures

are difficult to interpret and computationally expensive for systems with a large number of regions.

In order to overcome these drawbacks, researchers have proposed multivariate phase synchrony

measures [35], [36], [37], [38]. Multivariate phase synchrony aims to quantify the global con-

nectivity among a group of oscillators. Previously proposed multivariate measures include the

S-Estimator [35], [36] and hyperspherical phase synchrony (HPS) [37], [38], but those methods

present some drawbacks such as being computationally complex and having poor topographical

sensitivity, respectively.

On the other hand, graph theory has provided the means for characterizing the functional con-

nections in the brain, which is a complex dynamic system [39]. Functional connectivity networks

are constructed by considering the different brain regions or electrodes/sensors as nodes and the re-

lationships between different nodes, quantified by bivariate functional connectivity measures such

as PLV and correlation, as edges. In this manner, functional connectivity networks can take ad-

vantage of the widely available set of techniques for characterizing complex networks. In terms

of brain networks, these measures have been grouped as measures of functional segregation and

functional integration [10]. Measures of functional segregation include the clustering coefficient,
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transitivity, and modularity [10]. On the other hand, measures of functional integration include the

characteristic path length and the global efficiency. By computing measures that characterize net-

work structure, such as the small-world measure and the degree distribution, it has been shown that

functional connectivity networks exhibit features of complex networks, including the small-world

network [39], [40], and both small-world and scale-free networks [41].

Although graph-theoretic measures have contributed greatly to the advancements in the study

of functional connectivity networks, these measures present some drawbacks. Measures employed

in the characterization of network structure such as the mean clustering coefficient, the characteris-

tic path length, and the global efficiency may be affected by certain characteristics of the network.

Examples include how nodes with low degree affect the clustering coefficient and the dependence

of the characteristic path length and the global efficiency of the shortest path between nodes, when

networks may rely on other mechanisms than the shortest path for communication.

1.3 Organization and Contributions of this Thesis

In this thesis, we present novel techniques that aim to overcome some of the drawbacks previously

mentioned in the quantification of functional connectivity and the assessment of functional connec-

tivity networks. Extending bivariate functional connectivity measures, we introduce a multivariate

phase synchrony measure based on hyperdimensional geometry. Along the lines of graph theory,

we introduce a graph to signal transform and a dynamic graph Fourier transform as alternative

methods in the study of functional connectivity networks.
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1.3.1 Multivariate Phase Synchrony and Hyperdimensional Geometry

Since cognitive processes involve the coordinated activity of multiple regions, functional con-

nectivity measures that account for global integration are needed. Multivariate phase synchrony

accounts for the global synchronization of a group of oscillators. In addition, it allows for the

quantification of the connectivity structure with a single number instead of a matrix of pairwise

values, which means that we can assess the global functional connectivity within a neighborhood

of a particular region and represent it with a single number. Furthermore, it provides the means for

quantifying the integration of large-scale synchronization and functional connectivity.

In Chapter 3, we introduce a novel multivariate phase synchrony measure in order to overcome

the drawbacks of bivariate measures such as PLV in the quantification of functional connectivity

among multiple brain regions. The proposed measure overcomes drawbacks of current multivariate

phase synchrony measures, such as being computationally efficient, robust to noise, and providing

excellent topographical sensitivity. This method, referred to as HyperTorus Synchrony (HTS), is

based on defining phase differences within a group of oscillators on a flat hyperdimensional torus,

which can be considered as an extension of PLV since it is defined as the Cartesian product of

unit circles. This novel measure also accounts for the dependency of the multivariate synchrony in

the ordering of the phase differences observed in a recently proposed multivariate phase synchrony,

HPS [37], [42]. In this chapter, we show that the proposed HTS is equivalent to an extended version

of HPS which includes the coordinates of circles with varying radii and thus is independent of the

ordering of the phase differences.

This chapter provides an extensive mathematical characterization of the measure as well as the

statistical properties of the proposed estimator. It is shown that the proposed measure is more ro-

bust to noise, is not affected by the number of oscillators, and possesses an excellent topographical
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sensitivity. Simulation results motivate the use of HTS for the quantification of global functional

connectivity in brain networks. In addition, in this chapter we assess the global functional connec-

tivity in cognitive control. It is of particular interest to study the difference between the multivariate

synchrony of error responses and correct responses during the ERN interval and its topographical

distribution. In order to accomplish this, we study the topographical connectivity by computing the

multivariate synchrony in the neighborhood of each electrode and assigning this value to the loca-

tion of the electrode. In this way, it is possible to construct a multivariate synchrony topographical

map, which allows to quantify the integration of multiple regions across the brain.

A comparison of HTS to a conventional multivariate synchrony measure, the S-estimator, re-

veals high error minus correct differences within fronto-lateral and medial-central regions from

HTS. In addition, by computing the multivariate synchrony from HTS over different time inter-

vals we identify significant changes in the connectivity within central regions. Furthermore, by

summarizing the global synchronization within a region by a single number at each electrode we

can correlate functional connectivity and behavioral measures from the experiment, such as the

post-error slowing and post error accuracy. In particular, our results show that frontal-central syn-

chrony from HTS is associated with adaptive behavioral adjustments after errors, and suggest that

multivariate synchrony from HTS provides the means for quantifying the functional integration of

regions engaged in cognitive control.

1.3.2 Graph to Signal Transform for Weighted Graphs

In addition to bivariate and multivariate measures of functional connectivity, graph theoretic meth-

ods have been widely used in the study and characterization of functional connectivity networks.

However, these methods have some drawbacks such as their dependence on node degree and short-

est path distance. In Chapter 4, we introduce a method for graph to signal transform which is
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applicable to both binary and weighted networks. In recent years, the relationship between graphs

and signals has been exploited, providing great contributions to the analysis of complex networks.

In particular, graph to signal transformations provide the means for obtaining signals that contain

the structural information of the networks [43], [44], [45]. Such methods can overcome some of

the drawbacks that traditional graph measures face such as the dependence on node degree and

shortest path distance, and furthermore, facilitate the implementation of signal processing mea-

sures over networks by applying them directly to the signals from the networks. Applications of

the graph to signal transform include the assessment of temporal networks [46] and graph filtering

[47]. However, all of the previously proposed methods are only applicable to binary networks

and it is not possible to apply them directly to the assessment of functional connectivity networks,

which are generally weighted.

In order to apply the graph to signal transformation to functional connectivity networks, we

propose to employ the resistance distance matrix as an alternative distance in the classical multi-

dimensional algorithm (CMDS) [44]. We show how the proposed method serves to characterize

both binary and weighted networks and its characterization analytically. Based on the signals ob-

tained from the transformation we propose a series of approaches to study the networks. First,

we propose a method for characterizing small-world networks based on the spectral centroid of the

signals. As illustrated, the proposed method is more accurate in the estimation of the probability of

attachment and the average degree when compared to the traditional small-world measure. In ad-

dition, we introduce graph information theoretic measures that account for the information content

of the networks. Quantifying the network’s entropy and divergence between networks is important

as these provide insights into the network’s information content [48]. In this work, we propose a

graph entropy measure and a graph divergence based on the magnitude spectra of the signals from

the graphs. This method is novel in the sense that the network’s information is quantified from its

9



signals and does not depend on any graph theoretic measure nor rely on any arbitrary parameters

as current graph information measures do. Finally, we propose to use the spectra of the signals

from the networks in the detection of events in temporal networks. This method employs a tensor

constructed from the magnitude spectra over time and uses the temporal mode of the tensor for

detecting the events.

1.3.3 Dynamic Graph Fourier Transform

Following the study of the relationships between networks and signals for quantifying their struc-

tural properties, it is possible to learn from the networks by combining both the networks and the

signals recorded at each node. This provides an alternative way for studying how the human brain

functionally integrates the activity from various regions during cognitive processes. The recent

field of signal processing over graphs [49] or graph signal processing aims to analyze signals de-

fined over irregular domains, such as signals indexed by the nodes of a graph. This is opposed

to traditional signal processing, which aims to analyze signals defined over regular domains, like

time and frequency. In recent years, there has been a significant advancement in the definition of

concepts widely used in traditional signal processing specifically designed for signals over graphs,

such as the graph Fourier transform (GFT) and wavelet transforms, and other concepts such as

sampling.

In Chapter 5, we are interested in extending the study of functional connectivity networks by

considering techniques from graph signal processing. In particular, we are interested in computing

the GFT of the EEG signals defined over the electrodes. However, all of the current transforms in

graph signal processing consider static networks, which is not the case for functional connectivity

networks which change over time depending on the underlying cognitive processes. In order to

compute the graph Fourier transform on dynamic networks, a common subspace needs to be found
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across time. Recently, a dynamic graph Fourier transform [50] which finds a common subspace

based on Grassmann manifolds was proposed. However, the accuracy of the common subspace is

compromised as the time span increases. Alternatively, in [51] the authors consider the networks

averaged over time, which compromises the time-varying structure of the temporal networks.

In this chapter, we propose a dynamic Graph Fourier transform (dGFT) whose common sub-

space is found through the tensor decomposition of the graph Laplacian over time. By computing a

dynamic graph Fourier transform over functional connectivity networks from the cognitive control

experiment, it is possible to quantify the graph spectral activity from error and correct trials which

suggests a higher structural organization during errors within the ERN interval when compared to

correct trials.
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Chapter 2

Background

In this chapter we review the background on bivariate time-frequency phase synchrony, graph

theory, and describe the EEG cognitive control experiment.

2.1 Bivariate Time-Frequency Phase Synchrony

Functional connectivity networks are constructed from the bivariate time-frequency PLV, based

on the Reduced Interference Rihaczek time-frequency distribution (RID-Rihaczek) as proposed in

[30]. For a signal xi, define Ci(t,ω) to be its complex RID-Rihaczek time-frequency distribution,

given by

Ci(t,ω) =
∫ ∫

exp
(
−(θτ)2

σ

)
︸ ︷︷ ︸

Choi-Williams kernel

exp( j
θτ

2
)︸ ︷︷ ︸

Rihaczek kernel

Ai(θ ,τ)e− j(θ t+τω)dτdθ , (2.1)

where Ai(θ ,τ) is the ambiguity function of xi:

Ai(θ ,τ) =
∫

xi(u+
τ

2
)x∗i (u−

τ

2
)e jθudu. (2.2)
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The time-varying phase of the signal xi is computed as

Φi(t,ω) = arg
[

Ci(t,ω)

|Ci(t,ω)|

]
. (2.3)

The phase difference between two signals x1 and x2 can be computed as

Φ1,2(t,ω) = arg
[

C1(t,ω)

|C1(t,ω)|
C∗2(t,ω)

|C2(t,ω)|

]
. (2.4)

The PLV between two signals x1 and x2 as a function of time and frequency [52] is defined by

PLV1,2(t,ω) =
1
N

∣∣∣∣∣ N

∑
k=1

exp
(

jΦk
1,2(t,ω)

)∣∣∣∣∣
=

√
〈cosΦk

1,2(t,ω)〉2 + 〈sinΦk
1,2(t,ω)〉2, (2.5)

where N corresponds to the total number of trials or realizations of the signal, Φk
1,2(t,ω) is the

phase difference between x1 and x2 as defined by (2.4) for the kth trial and 〈·〉 denotes averaging

over trials. For each trial k, the phase difference Φk
1,2(t,ω) defines a vector on the unit circle. Thus,

PLV evaluates the circular variance of the unit vectors across trials. PLV approaches 1 if the phase

differences over trials exhibit small variation and approaches 0 if there is no synchrony over trials.

2.2 Graph Theory

An undirected graph G = (V,E) is defined by a set of N nodes, vi ∈ V , and a set of M edges,

ei j, i, j ∈ {1, . . . ,N}. The relationships between the nodes of the graph is represented by the adja-
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cency matrix A = [Ai j], for binary graphs, and W = [Wi j] for weighted graphs. In binary graphs,

Ai j = 1 when nodes i and j are connected and Ai j = 0 when the nodes are not connected. For

weighted graphs, Wi j represents the weight of the edge between nodes i and j and equals zero

when i = j. The degree matrix ∆ is defined as the diagonal matrix with entries ∆ii = ∑
N
j=1
j 6=i

Ai j,

where ∆ii is the degree of node vi. Similarly, the degree matrix ∆w for weighted networks has

diagonal entries ∆w
ii = ∑

N
j=1
j 6=i

Wi j.

For binary graphs, the combinatorial Laplacian L is defined as L = ∆−A. The entries of L are

given by

Li j =



∆ii, i = j ,

−1, (i, j) ∈ E,

0, otherwise,

(2.6)

where ∆ii is the degree of node vi. Similarly, for weighted graphs the Laplacian is defined as

Lw = ∆w−W.

Another important matrix in graph theory is the incidence matrix C, which is a N×M matrix,

where N is the total number of nodes and M is the total number of edges in the graph. For undi-

rected graphs, the entries Ci j are equal to 1 in the case that vertex vi and edge e j are incident and

equal to zero otherwise.

The network small-worldness for binary networks is given by σ = C/Crand
L/Lrand

and for weighted

networks as σw =
Cw/Cw

rand
Lw/Lw

rand
[10], [53]. C and Crand are the clustering coefficients of the network

and a random network, respectively. Similarly, L and Lrand are the characteristic path lengths for

the analyzed network and a random network, respectively.
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2.3 Cognitive control experiment

In this section, we describe the EEG dataset from the cognitive control experiment assessed in this

thesis.

2.3.1 Participants

Data from nineteen subjects, all native English speakers and undergraduate students from Michigan

State University, were extracted from a study of the relationship between the ERN and individual

differences [54]. Subjects participated for course credit.

2.3.2 Experiment

The experiment consisted of a letter version of the Eriksen flanker task [55] which involved cor-

rectly identifying the target letter, located at the center of a five-letter string. The target was either

congruent (e.g., MMMMM) or incongruent (e.g., NNMNN) with the flanker letters. Subjects

pressed a determined mouse button to identify the center letter. The total time for each trial was

135 ms. Flanker letters were presented 35 ms before the target-letter onset and then the five letters

remained on the screen for 100 ms. During the inter-trial intervals, ranging from 1,200 1,700 ms,

a fixation cross was presented. The experiment consisted of six blocks of 80 trials and the letters

comprising the strings differed between blocks. Also, the mouse button assigned to each target

letter was reversed at the middle of each block.

2.3.3 EEG Data Acquisition and Pre-processing

Electroencephalographic activity was recorded by the ActiveTwo system (BioSemi, Amsterdam,

The Netherlands). 64 Ag-AgCl electrodes were embedded in a stretch Lycra cap according to the
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10/20 system. Also, two electrodes were located on the left and right mastoids. Electrooculogram

activity generated by eye movements and blinks was recorded at electrode FP1 and three electrodes

located underneath the left pupil and on the left and right outer canthi. All signals were sampled

at 512 Hz by the BioSemi s ActiView software. Offline analyses were completed on BrainVision

Analyzer 2 (BrainProducts, Gilching, Germany). Electrode recordings were re-referenced to the

mean of the mastoids and then band-pass filtered between 0.1 and 30 Hz, with 12 dB/octave roll

off. Eye movement artifacts were corrected by the regression method provided by [56]. Epochs of

response-locked signals were taken 200 ms preceding the response onset and the subsequent 800

ms. Trials with a voltage difference greater than 200V within it, a voltage step greater than 50V

between adjacent sampling points or voltage difference less than 0.5 mV within it were rejected.

EEG signals were processed using the Current Source Density Toolbox (CSD) for volume conduc-

tion correction. The number of error trials ranged from 20 to 61 (36.78 ± 13.72, meanst.dev.) and

the same number of correct responses, per subject, were chosen randomly for the current analyses.
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Chapter 3

Hypertorus Multivariate Phase Synchrony

3.1 Introduction

Coordinated time-varying interactions are fundamental in dynamical systems, ranging from a few

coupled elements to complex networks. Examples of systems of coupled oscillators occur widely

in nature and engineering such as circadian rhythms [57], neuroscience [58], flashing fireflies [59],

coupled Josephson junctions [60], the Millenium Bridge [61], and others [62], [63], [64], [65]. In

the stochastic sense, synchronization has been defined as an adjustment of rhythms of oscillating

objects due to their weak interaction [66] and this adjustment can be described in terms of phase

locking and frequency entrainment. Phase locking or phase synchrony between two oscillators oc-

curs when the generalized phase difference, Φi, j(t,ω) = |Φi(t,ω)−Φ j(t,ω)|mod2π < constant,

at time t and frequency ω [67], [68]. Two steps are needed for quantifying phase synchrony.

First, instantaneous phase of each signal is estimated at a particular frequency of interest through

methods such as the Hilbert transform, complex wavelet transform [69], empirical mode decompo-

sition [42], [70], [71], [72], [73] or the recently proposed RID-Rihaczek complex time-frequency

distribution [30], [74]. In the second step, the amount of synchrony is quantified through either

the entropy of the distribution of the phase differences or mean phase coherence, also known as

PLV2.1, which computes the circular variance of the relative phase [28], [75]. Although bivariate
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PLV has been widely used, it has various disadvantages for the study of large and complex net-

works. First, PLV does not provide information about the common integrating structure among

the ensemble of oscillators. Second, for large data sets multiple computations of pairwise PLV

increase computational costs.

Recently, phase synchronization of a group of oscillators, which is referred to as global or

multivariate phase synchronization, has been of interest for understanding the group dynamics and

characteristic behavior of complex networks [72], [76], [77], [78], [79]. Contrary to the bivariate

phase synchrony, multivariate synchrony captures the global synchronization patterns quantifying

the degree of interactions within a group of oscillators. In addition, multivariate synchrony meth-

ods provide a single number, rather than a matrix of pairwise synchrony values. One of the earliest

approaches to multivariate synchrony analysis was global field synchronization (GFS) proposed

by Koenig et al. [77]. GFS first transforms the time series data to the frequency domain and then

quantifies the scatter of the multivariate data through the eigenvalues of the covariance matrix of

the sine and cosine coefficients of the Fourier transform. This measure inherently assumes the sta-

tionarity of the data and cannot capture time-varying aspects of synchrony. Moreover, this method

quantifies synchrony as the instance when the phases of the two signals are exactly the same and

does not take into account the case of constant phase difference. Knyazeva et al. [80] proposed

another simple measure, the multivariate phase synchrony (MPS), defined as the mean phase syn-

chrony averaged across the observation samples. Rudrauf et al. [81], on the other hand, proposed

an alternative approach to quantifying phase synchrony through frequency locking by exploiting

the relationship between phase and frequency and identifying continuous periods of identical in-

stantaneous frequency. Similarly, in [72] the idea of cointegration is used to define multivariate

phase synchrony. However, this method can only identify phase synchrony in a nonstatistical

sense and is not reliable in the case of noisy signals.
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More recently, methods inspired by random matrix theory (RMT) and spectral graph theory

were proposed. These methods first compute the bivariate synchrony and then perform cluster

analysis through eigendecomposition of the bivariate synchrony matrix as proposed by Allefeld et

al. [82]. Initial work in this area focused on perceiving the oscillators as constituting a single cluster

to which they participate in different degrees [83]. The existence of a single synchronization cluster

is not a reasonable assumption since most complex networks usually consist of multiple clusters. In

order to address this limitation, approaches based on the eigenvalue decomposition of the pairwise

bivariate synchronization matrix have been proposed [84], [85]. However, it has recently been

shown in cases where there are clusters of similar strength that are slightly synchronized with each

other, the assumed one-to-one correspondence between eigenvectors and clusters is not realistic

[86].

In order to capture the connectivity structure with a single number, Saito et al. [87] quantified

global synchrony through the entropy of the eigenspectrum of the covariance or bivariate connec-

tivity matrix. This measure was then generalized by Stam et al. [35] and others as the S-measure

[36], [76], [88]. This measure uses the principle of time-delay embedding and indicates how

strongly channel k at a given time is synchronized to all other channels. Similar to other methods

in nonlinear dynamics, it requires the selection of different parameters, such as a threshold and the

time-lag, and is computationally expensive.

Recently, HPS was introduced as an alternative method to directly measure the multivariate

phase synchronization among a group of oscillators [37], [38]. HPS generalizes bivariate syn-

chrony, where the phase difference between two time series is mapped onto a unit circle, by map-

ping the N−1 phase differences between consecutive oscillators onto an N-dimensional space pa-

rameterized by hyperspherical coordinates [37]. HPS is advantageous over the S-estimator thanks

to its reduced computational complexity and robustness to noise [38]. However, as we show in Sec-
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tion 3.3, we found that this estimator was highly dependent on the ordering of the phase differences

parameterizing the hypersphere.

In this chapter, we propose a novel measure to estimate the multivariate phase synchrony in a

hyperdimensional coordinate system and address the shortcomings of HPS. Two complementary

approaches are developed to quantify the circular variance of phase differences among multiple

oscillators in a high dimensional space. In the first approach, we extend the hyperspherical coordi-

nate system used in HPS to include redundancies, i.e. x and y coordinates of circles with varying

radii, such that the ordering of the phases is not important. In the second approach, we propose

a new mapping of the phase differences to a high-dimensional flat torus and compute the magni-

tude of the mean phase vector in this new geometry resulting in the hypertorus phase synchrony

(HTS). We then show the equivalence of these two metrics, provide analytical bounds on the bias

and variance of HTS and show bias correction for HTS squared. We compared the performance of

HTS and the S-estimator on simulated networks of chaotic oscillators for sensitivity to coupling

strength and network structure.

3.2 Background

3.2.1 S-estimator

The S-estimator at time t and frequency ω is computed as

S(t,ω) = 1+

(
M
∑

m=1
λm log(λm)

)
log(M)

, (3.1)

where λm, m = 1, . . . ,M are the eigenvalues of the bivariate synchronization matrix {PLVi, j(t,ω)},

i, j = 1, . . . ,M, and M is the total number of oscillators in the network [35, 36]. S-estimator is
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equivalent to 1 minus the entropy of the normalized eigenvalues of the PLV matrix. This measure

equals to 1 when all the oscillators are pairwise highly synchronized. In that case, all the entries

in the PLV matrix will be equal to one and thus only one eigenvalue will be equal to one. On the

other hand, when all the oscillators in the network are not pairwise synchronized the PLV matrix

is full rank and its eigenvalues are uniformly distributed, maximizing the entropy and resulting in

zero multivariate synchrony.

3.3 Hyperspherical Phase Synchrony

In this section, we describe the problem of HPS, which was published on [89]. Bivariate phase

synchrony is based on the circular variance of the two-dimensional direction vectors on a unit

circle (1-sphere), obtained by mapping the phase differences {Φk
1,2(t,ω)}k=1,...,N , where N is the

total number of trials, between the two time-series onto a Cartesian coordinate system. If the

circular variance of these direction vectors is low, the time-series are said to be locked to each

other.

HPS proposed in [37] is an extension of this idea to the multivariate case. Define

θ
k
1 (t,ω),θ k

2 (t,ω), . . . ,θ k
M−1(t,ω) (3.2)

as the (M− 1) angular coordinates at time t and frequency ω for the kth trial, where θ k
i (t,ω) =

Φk
i (t,ω)−Φk

i+1(t,ω) is the phase difference between the ith and (i+ 1)th time series within a

group of M oscillators. These (M− 1) angular coordinates are mapped onto an M-dimensional

space by forming direction vectors in an M-dimensional hyperspherical coordinate system. For any

natural number M, an (M−1)-sphere of radius r is defined as the set of points in (M)-dimensional
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Euclidean space which are at distance r from a central point, where the radius r may be any

positive real number. The set of coordinates in an M-dimensional space, γ1,γ2, . . . ,γM, that define

an (M−1)-sphere is represented by

r2 =
M

∑
i=1

(γi− ci)
2, (3.3)

where c = [c1, . . . ,cM] is the center point and r is the radius. In [37], r = 1 and the center point is

the origin.

Using the (M− 1) angular coordinates, a direction vector Γk(t,ω) = [γk
1(t,ω), . . . ,γk

M(t,ω)]

can be formed by mapping the angular coordinates (θ1, ...,θM−1) on a unit (M−1)-sphere as:

γ
k
1(t,ω) = cos(θ k

1 (t,ω)),

γ
k
2(t,ω) = sin(θ k

1 (t,ω))× cos(θ k
2 (t,ω)),

γ
k
3(t,ω) = sin(θ k

1 (t,ω))× sin(θ k
2 (t,ω))× cos(θ k

3 (t,ω)),

...

γ
k
M−1(t,ω) = sin(θ k

1 (t,ω))× . . .× sin(θ k
M−2(t,ω))× cos(θ k

M−1(t,ω)),

and γ
k
M(t,ω) = sin(θ k

1 (t,ω))× . . .× sin(θ k
M−2(t,ω))× sin(θ k

M−1(t,ω)). (3.4)

Based on this mapping HPS is defined as

HPS(t,ω) =
1
N

∣∣∣∣∣
∣∣∣∣∣ N

∑
k=1

Γ
k(t,ω)

∣∣∣∣∣
∣∣∣∣∣
2

, (3.5)

where HPS(t,ω) is the multivariate synchronization value at time t and frequency ω , ‖.‖2 is the

Euclidean norm and N is the number of trials. In the case of perfect multivariate phase synchro-
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nization of the network, HPS is equal to 1 and it equals 0 when the oscillators are independent.

Note that HPS is equivalent to PLV for a network consisting of two signals. In this case, M = 2

and from (3.4) the direction vector Γk(t,ω) = [γk
1(t,ω),γk

2(t,ω)], where γk
1(t,ω) = cos(θ k

1 (t,ω))

and γk
2(t,ω) = sin(θ k

1 (t,ω)). Hence, (3.5) is equivalent to (2.5).

It can be shown that the HPS defined based on the coordinate system in (3.4) is dependent on

the ordering of the phase differences θi(t,ω). This dependency will result in unstable HPS values

and lead to incorrect interpretation of the multivariate synchrony. To illustrate this problem, we

show the derivation of the HPS value for the case of three oscillators (M = 3). The rotating vectors

in (3.4) can be written as,

γ
k
1(t,ω) = cos(θ k

1 (t,ω)),

γ
k
2(t,ω) = sin(θ k

1 (t,ω))× cos(θ k
2 (t,ω)),

γ
k
3(t,ω) = sin(θ k

1 (t,ω))× sin(θ k
2 (t,ω)). (3.6)

For simplicity, we further assume that we have only two trials with angular coordinates (or

phase differences) {θ 1
1 (t,ω),θ 1

2 (t,ω)} and {θ 2
1 (t,ω),θ 2

2 (t,ω)}, respectively. The corresponding

HPS given in (3.5) reduces to

HPS(t,ω) =
1
N

√√√√( N

∑
k=1

γk
1(t,ω)

)2

+

(
N

∑
k=1

γk
2(t,ω)

)2

+

(
N

∑
k=1

γk
3(t,ω)

)2

=
1
2

√
2+2cos(θ 1

1 (t,ω))cos(θ 2
1 (t,ω))+2sin(θ 1

1 (t,ω))sin(θ 2
1 (t,ω))cos(θ 1

2 (t,ω)−θ 2
2 (t,ω)).

(3.7)

In order to show that HPS is dependent on the ordering of the phase differences, we recalculate
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the HPS with reordered angular coordinates {θ 1
2 (t,ω),θ 1

1 (t,ω)} and {θ 2
2 (t,ω),θ 2

1 (t,ω)},

HPS(t,ω) =
1
2

√
2+2cos(θ 1

2 (t,ω))cos(θ 2
2 (t,ω))+2sin(θ 1

2 (t,ω))sin(θ 2
2 (t,ω))cos(θ 1

1 (t,ω)−θ 2
1 (t,ω)).

(3.8)

It is clear that (3.7) and (3.8) are not equivalent except in the case of perfect synchrony, i.e.,

θ 1
1 (t,ω) = θ 1

2 (t,ω), θ 2
1 (t,ω) = θ 2

2 (t,ω), θ 1
1 (t,ω) = θ 2

1 (t,ω) and θ 1
2 (t,ω) = θ 2

2 (t,ω). Therefore,

the ordering of the phase differences θ k
i (t,ω) plays a major role in calculating the corresponding

HPS values. Thus, a modification of this definition is required to address this problem. In addition,

in order to capture global phase information, we will replace the previously defined pairwise phase

differences for HPS by the phase difference between the phase of each oscillator and the phase of

the resultant vector of the remaining oscillators [90], given by

θ
k
i (t,ω) = Φ

k
i (t,ω)−arg


M

∑
m=1
m 6=i

exp( jΦk
m(t,ω))

 . (3.9)

3.4 Proposed Solution

3.4.1 Hyperspherical Approach

In this section, we propose a solution to the phase ordering problem encountered in HPS. This

approach is based on the analysis of the hyperspherical coordinate system given in (3.4). The

coordinates in (3.4) are equivalent to x coordinates of a rotating circle with varying radii. For

example, γk
1(t,ω) is the x coordinate of a vector on the unit circle at angular position θ k

1 (t,ω),

while γk
2(t,ω) is the x coordinate of a vector on a circle with radius sin(θ k

1 (t,ω)) at angular position
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θ k
2 (t,ω). Similar analysis applies to the remaining θ k

i (t,ω)s. Thus, every γk
i (t,ω) is just the x

coordinate of a vector on a circle with radius ri(t,ω) = ∏
i−1
j=1 sin(θ k

j (t,ω)), for i = 2,3, ...,M and

with a phase θ k
i (t,ω). The equation for ri(t,ω) shows that as i increases, γk

i (t,ω) will have less

impact on the overall synchrony. This means that the choice of the first phase difference, θ k
1 (t,ω),

will have a high impact on the measured synchrony.

Eq. (3.4) may also be interpreted as follows. Every γk
i (t,ω) is the x projection of the y coordi-

nate of the previous γk
i−1(t,ω) on the x-axis with a phase θ k

i (t,ω), i.e. define x and y coordinates

of the rotating vector for each trial k as

γ
k
x1
(t,ω) = cos(θ k

1 (t,ω)),

γ
k
y1
(t,ω) = sin(θ k

1 (t,ω)),

γ
k
x2
(t,ω) = sin(θ k

1 (t,ω))× cos(θ k
2 (t,ω)),

γ
k
y2
(t,ω) = sin(θ k

1 (t,ω))× sin(θ k
2 (t,ω)),

γ
k
x3
(t,ω) = sin(θ k

1 (t,ω))× sin(θ k
2 (t,ω))× cos(θ k

3 (t,ω)),

γ
k
y3
(t,ω) = sin(θ k

1 (t,ω))× sin(θ k
2 (t,ω))× sin(θ k

3 (t,ω)),

...

γ
k
xM
(t,ω) = sin(θ k

1 (t,ω))× . . .× sin(θ k
M−1(t,ω))× cos(θ k

M(t,ω)),

γ
k
yM
(t,ω) = sin(θ k

1 (t,ω))× . . .× sin(θ k
M−1(t,ω))× sin(θ k

M(t,ω)),

(3.10)

where the phases θ k
i (t,ω)s are defined as in (3.9) and the superscripts x and y refer to the projection

coordinates.

We can also rewrite (3.10) as,
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γ
k
x1
(t,ω) = cos(θ k

1 (t,ω)),

γ
k
x2
(t,ω) = γ

k
y1
(t,ω)× cos(θ k

2 (t,ω)),

γ
k
x3
(t,ω) = γ

k
y2
(t,ω)× cos(θ k

3 (t,ω)),

...

γ
k
xM
(t,ω) = γ

k
yM−1

(t,ω)× cos(θ k
M(t,ω)),

γ
k
yM
(t,ω) = γ

k
yM−1

(t,ω)× sin(θ k
M(t,ω)). (3.11)

Eq. (3.11) reveals that the radius rk
i (t,ω) = ∏

i−1
j=1 sin(θ k

j (t,ω)), for i = 2,3, ...,M is just the y

coordinate of the previous γk
yi−1

(t,ω). This recursive structure is the cause of the ordering problem.

To solve this problem, we propose to consider both the x and y coordinates for all oscillators.

By computing the l2 norm, dk
i (t,ω), of the direction vectors for each oscillator i using the

coordinates γk
xi
(t,ω) and γk

yi
(t,ω), we end up with the following norms,

dk
1(t,ω) = 1,

dk
2(t,ω) = sin(θ k

1 (t,ω)),

dk
3(t,ω) = sin(θ k

1 (t,ω))× sin(θ k
2 (t,ω)),

...

dk
M(t,ω) = sin(θ k

1 (t,ω))× . . .× sin(θ k
M−1(t,ω)),

(3.12)
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or simply dk
i (t,ω) = rk

i (t,ω) =∏
i−1
j=1 sin(θ k

j (t,ω)) for i= 2,3, ...,M. Thus, in order to get rid of the

dependency on the phase ordering, we propose to normalize γk
xi
(t,ω) and γk

yi
(t,ω) by dk

i (t,ω). This

will result in unit radius for all i. Therefore, the modified multivariate phase synchrony measure is

given by

HPS(t,ω) =
1

N×
√

M

∣∣∣∣∣
∣∣∣∣∣ N

∑
k=1

Dk(t,ω)

∣∣∣∣∣
∣∣∣∣∣
2

, (3.13)

where Dk(t,ω) =

[
γk

x1
(t,ω)

dk
1(t,ω)

,
γk

y1
(t,ω)

dk
1(t,ω)

, . . . ,
γk

xM
(t,ω)

dk
M(t,ω)

,
γk

yM
(t,ω)

dk
M(t,ω)

]
. As the l2 norm of each vector Dk(t,ω) in the

above equation is equal to
√

M, to make the definition and range of HPS consistent with PLV (see

(2.5)) we normalize HPS by
√

M.

The modified measure given in (3.13) can be rewritten as

HPS(t,ω) =
1

N
√

M

√√√√( N

∑
k=1

γk
x1
(t,ω)

dk
1(t,ω)

)2

+

(
N

∑
k=1

γk
y1
(t,ω)

dk
1(t,ω)

)2

+ · · ·+

(
N

∑
k=1

γk
xM
(t,ω)

dk
M(t,ω)

)2

+

(
N

∑
k=1

γk
yM
(t,ω)

dk
M(t,ω)

)2

.(3.14)

By noting that cos(θ k
i (t,ω)) =

γk
xi
(t,ω)

dk
i (t,ω)

and sin(θ k
i (t,ω)) =

γk
yi
(t,ω)

dk
i (t,ω)

we can write the modified

HPS as

HPS(t,ω) =
1√
M

√
PLV 2

1 (t,ω)+ · · ·+PLV 2
M(t,ω)

=

√
1
M

M

∑
i=1

PLV 2
i (t,ω), (3.15)

where PLV 2
i quantifying the synchronization of each oscillator with respect to a common reference
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angle with θ k
i (t,ω) as defined in (3.9) and PLVi is given by

PLVi(t,ω) =
1
N

∣∣∣∣∣ N

∑
k=1

exp
(

jθ k
i (t,ω)

)∣∣∣∣∣
=

√
〈cosθ k

i (t,ω)〉2 + 〈sinθ k
i (t,ω)〉2. (3.16)

The maximum value of HPS(t,ω) is 1, when there is complete phase synchronization among

oscillators. On the other hand, HPS(t,ω) is theoretically 0 when the oscillators are independent.

3.4.2 Hypertorus Synchrony

Results found in the previous section can alternatively be derived from an alternative mapping: the

Cartesian product of unit circles parameterized by phase differences as given in (3.9). In a network

consisting of M oscillators, consider a phase θ k
i (t,ω) that parameterizes the unit circle S1 ⊂R2 by

the angular coordinates S1 =
{(

cos
(
θ k

i
)
,sin

(
θ k

i
))
| 0≤ θ k

i ≤ 2π
}

. Let another unit circle S1⊂R2

be parameterized by the angular coordinates S1 =
{(

cos
(

θ k
j

)
,sin

(
θ k

j

))
| 0≤ θ k

j ≤ 2π

}
. The

Cartesian product S1×S1 defines the manifold

T2 = S1×S1 =
{(

cos
(

θ
k
i

)
,cos

(
θ

k
j

)
,sin

(
θ

k
i

)
,sin

(
θ

k
j

))
| 0≤ θ

k
i ,θ

k
j ≤ 2π

}
, (3.17)

which is embedded in R4. The M-dimensional flat torus Tm ⊂ R2m is the manifold Tm = S1×

·· · × S1 defined by x2
1 + y2

1 = ... = x2
M + y2

M = 1. It is parameterized by xi = cos(θi (t,ω)) and

yi = sin(θi (t,ω)) [91].

A Riemannian metric g on a n-dimensional manifold M defines an inner product between

tangent vectors in each tangent space TpM for every point p ∈ M [91]. A Riemannian manifold
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(M,g) is a differentiable manifold equipped with a Riemannian metric [92]. Thus, for every point p

in (M,g) the length of any tangent vector X ∈ TpM is given by |X |= 〈X ,X〉1/2 [91]. The Cartesian

product between two Riemannian manifolds (M1,g1) and (M2,g2) is equipped with the product

metric g = g1⊕g2, which is defined as [91]

g(X1 +X2,Y1 +Y2) = g(X1 +Y1)+g(X2 +Y2) , (3.18)

where Xi,Yi ∈ TpiMi and T(p1,p2) (M1×M2) = Tp1M1⊕Tp2M2.

A torus Tm is locally isometric to Euclidean space, meaning that every point on Tm has a neigh-

borhood that is isometric to an open set in Rm [91], which results in a manifold whose curvature

is zero everywhere and its tangent spaces are identical to the manifold [93]. Hence, Tm is a flat

Riemannian manifold equipped with the Euclidean metric [94].

For a group of M oscillators, vector (3.19) lies in Tm

Γ
k(t,ω) = [xk

1,y
k
1, ...,x

k
M,yk

M], (3.19)

where xk
i = cos

(
θ k

i (t,ω)
)
, yk

i = sin
(
θ k

i (t,ω)
)
, and θ k

i (t,ω) is a phase difference as defined in (3.9)

for the kth trial.

HT S(t,ω) can then be defined as

HT S(t,ω) =
1

N
√

M
‖

N

∑
k=1

Γ
k (t,ω)‖2, (3.20)
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HT S(t,ω) =
1

N
√

M

√√√√( N

∑
k=1

cosθ k
1 (t,ω)

)2

+

(
N

∑
k=1

sinθ k
1 (t,ω)

)2

+ · · ·+

(
N

∑
k=1

cosθ k
M(t,ω)

)2

+

(
N

∑
k=1

sinθ k
M(t,ω)

)2

=
1√
M

√
〈cosθ k

1 (t,ω)〉2 + 〈sinθ k
1 (t,ω)〉2 + · · ·+ 〈cosθ k

M(t,ω)〉2 + 〈sinθ k
M(t,ω)〉2

=
1√
M

√
PLV 2

1 (t,ω)+ · · ·+PLV 2
M(t,ω)

=

√
1
M

M

∑
i=1

PLV 2
i (t,ω), (3.21)

where M is the number of oscillators and N is the total number of trials. HTS can be re-expressed

as shown in (3.21), which is equivalent to (3.15). Throughout the rest of this article we will use

HTS to refer to both approaches.

3.4.3 Computational Complexity

HTS involves the computation of M PLVs, with complexity O(M log n) per time-frequency point

[95], where n is the number of points used in the fast Fourier transforms (ffts) in the computation

of the time-frequency distribution (usually equal or greater than the length of the signal). The com-

putation of one square root has complexity O(m2) when computed through the Newton-Raphson

Method [96], where m corresponds to the minimum of the number of bits from the two numbers

being multiplied (32 or 64 bits for double precision). Thus, the total computational complexity of

HTS is O(M log n)+O(m2). On the other hand, the computational complexity of the S-estimator

relies on the computation of
(M

2

)
PLVs for the construction of the synchronization matrix and its

eigendecomposition. Computing
(M

2

)
PLVs has a complexity of O(

(M
2

)
log n), which can be ap-

proximated as O(M
2 log n) for large M. The eigendecomposition of the synchronization matrix has

complexity O(M3) [97]. Thus, the total computational complexity of the S-estimator is O(M
2 log n)

+ O(M3). Therefore, the proposed metric is computationally more efficient than the S-estimator.
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3.5 Statistical assessment of HTS

In this section, we assessed the asymptotic properties of the expected value and variance of ĤT S(t,ω)

in the absence of synchrony as well as for different levels of synchrony. Finally, as previously done

for PLV, we found an unbiased estimator for ĤT S
2

and evaluated its variance empirically.

3.5.1 Bias

Due to its dependence on PLV, the proposed measure also exhibits a bias which is dependent on the

number of trials. We will first illustrate this dependency by assuming a Von Mises distribution for

phase differences. The Von Mises distribution V M(θ ,κ) is the most common model for circular

data [90]. It is defined by the reference direction, θ , and its dispersion about that direction, κ . Its

probability density function is given by

f (θ) = [2πI0 (κ)]
−1 exp [κ cos(θ −µ)] ,

0 ≤ θ < 2π, 0 ≤ κ < ∞, (3.22)

where I0(κ) = (2π)−1 ∫ 2π

0 exp [κ cos(φ −µ)] is the modified Bessel function of order zero [90].

Figure 3.1 illustrates the theoretical and experimental multivariate synchrony, HTS and ĤT S,

respectively, for different levels of synchronization in a network consisting of M = 4 oscillators.

Here we are assuming that the phase differences in (3.15) and (3.21) are equally distributed ac-

cording to V M(0,κ) for simplicity and various levels of synchrony are obtained by varying the

concentration parameter κ . As observed, the bias of HTS depends on the underlying distribution
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of the angles θi, bias being the most prominent in the absence of synchrony, or when θi is uni-

formly distributed. In addition, the bias is dependent on the sample size and results based on small

sample sizes should be interpreted carefully.

In this thesis, we further assessed the bounds on the bias and variance of ĤT S. A lower bound

on bias can be found from the inequality for arithmetic and quadratic means [98] as

PLV1(t,ω)+ · · ·+PLVM(t,ω)

M
≤

√
PLV 2

1 (t,ω)+ · · ·+PLV 2
M(t,ω)

M
, (3.23)

where the absolute value in the original inequality is no longer required since P̂LV (t,ω) ∈ [0,1].

An upper bound can be found as

√
PLV 2

1 (t,ω)+ · · ·+PLV 2
M(t,ω)

M
≤ PLV1(t,ω)+ · · ·+PLVM(t,ω)√

M
. (3.24)

Thus, the lower and upper bounds on the expected value of ĤT S(t,ω) can be found as

E
[
ĤT S(t,ω)

]
= E

[√
1
M

M

∑
i=1

P̂LV
2
i (t,ω)

]

≥ E

[
1
M

M

∑
i=1

P̂LV i(t,ω)

]

=
1
M

M

∑
i=1

E
[
P̂LV i(t,ω)

]
,

(3.25)

and

E
[
ĤT S(t,ω)

]
≤ E

[
1√
M

M

∑
i=1

P̂LV i(t,ω)

]
, (3.26)
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respectively.
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Figure 3.1: ĤT S (solid lines) and true HTS (dashed lines) for synchrony values of 0, 0.20, 0.40,
0.60, 0.80 and 0.99. M = 4 oscillators were simulated with phases θi distributed as V M(0,κ).

An approximate value for E
[
P̂LV (t,ω)

]
in the absence of synchrony has been previously

found to be E
[
P̂LV (t,ω)

]
≈ 1√

N
[30]. Hence, E

[
ĤT S(t,ω)

]
can be bounded as

1√
N
≤ E

[
ĤT S(t,ω)

]
≤
√

M
N
. (3.27)

Eq. (3.27) shows that in a network in which all oscillators are independent, the minimum

possible value that ĤT S can attain is inversely proportional to the square root of the total number

of trials or observations, as previously found for P̂LV . On the other hand, its upper bound is directly

proportional to the number of oscillators.

Asymptotic results for E
[
P̂LV (t,ω)

]
, or the mean resultant length as known in the circular

statistics community, have been found for the Von Mises distribution with mean direction θ = 0
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and concentration parameter κ > 0 [99] as

E
[
P̂LV (t,ω)

]
= A(κ)+

1
2Nκ

, (3.28)

where A(κ) = I1(κ)
I0(κ)

and Ii (κ) is the modified Bessel function of the first kind of the ith order.

Considering all M oscillator’s θis to be identically distributed and substituting (3.28) into (3.25)

and (3.26) yields

(
A(κ)+

1
2Nκ

)
≤ E

[
ĤT S(t,ω)

]
≤
√

M
(

A(κ)+
1

2Nκ

)
. (3.29)

3.5.2 Variance

In order to find an upper bound on the variance of ĤT S(t,ω) we will define ĤT S
2
(t,ω) as

ĤT S
2
(t,ω) =

1
M

M

∑
i=1

P̂LV
2
i (t,ω). (3.30)

Taking expectation on both sides yields

E
[
ĤT S

2
(t,ω)

]
= E

[
1
M

M

∑
i=1

P̂LV
2
i (t,ω)

]

=
1
M

M

∑
i=1

E
[
P̂LV

2
i (t,ω)

]
,

(3.31)

where the linearity property of expectation has been employed. The expected value of P̂LV
2
(t,ω)

is a well known expression [34], [99], given by
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E
[
P̂LV

2
i (t,ω)

]
=

1
N
+

(
1− 1

N

)
PLV 2

i (t,ω). (3.32)

Thus, substituting (3.32) in (3.31) yields

E
[
ĤT S

2
(t,ω)

]
=

1
N
+

(
1− 1

N

)
HT S2(t,ω). (3.33)

An upper bound on the variance of ĤT S(t,ω) in the absence of synchrony can be found as

Var
(

̂HT S(t,ω)
)

= E
[
ĤT S

2
(t,ω)

]
−E

[
ĤT S(t,ω)

]2

≤ 1
N
+

(
1− 1

N

)
HT S2(t,ω)−

(
1√
N

)2

= 1− 1
N

HT S2(t,ω). (3.34)

Thus, in the absence of synchrony, the maximum possible value that the variance of ĤT S can

attain is 1.

In the case of V M(0,θ) the upper bound for the variance is

Var
(

ĤT S(t,ω)
)
≤
(

1
N
+

(
1− 1

N

)
HT S2 (t,ω)

)
−
(

A2 (κ)+2A(κ)
1

2Nκ
+

1
4N2κ2

)
. (3.35)

where phase differences θi are drawn from V M(0,κ).
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(a) Upper bounds for variance of ĤT S(t,ω).
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(b) Empirical variance of ĤT S(t,ω).

Figure 3.2: (a) Theoretical upper bounds for the variance of HTS; and (b) empirical variance of
HTS as a function of sample size in a network of M = 4 oscillators for different synchronization
levels in the Von Mises distribution in (3.35).

Figure 3.2 (a) and (b) show the upper bounds on the variance of ĤT S(t,ω) and its empirical

variance, respectively, for various levels of synchrony in a network consisting of M = 4 oscillators.
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From Figure 3.2 (a), the variance of ĤT S(t,ω) decreases as the number of trials or observations

increase as well as when the global synchronization increases. Figure 3.2 (b) shows the variance

of ĤT S(t,ω) obtained empirically for various levels of synchrony. It is observed that the empirical

variance follows similar trends as those obtained by the upper bound, without attaining it.

3.5.3 Correction of Bias in ĤT S
2

As in the case of PLV [34, 100], it is straightforward to find an unbiased estimator of ĤT S
2
(t,ω)

rather than for ĤT S(t,ω). Eq. (3.33) suggests that the bias in ĤT S arises from the bias in P̂LV .

An unbiased estimator for ĤT S
2
(t,ω) can be found as

ĤT S
2
UB(t,ω) =

1
N−1

(
ĤT S

2
(t,ω)×N−1

)
. (3.36)

This result is obtained similarly by substituting P̂LV
2
(t,ω) in (3.31) by its unbiased estimator

previously found in [34], [100]

P̂LV
2
i(UB)(t,ω) =

2
N(N−1)

N−1

∑
n=1

N

∑
m=n+1

cos(φ m
i (t,ω)−φ

n
i (t,ω))

=
1

N−1

(
P̂LV

2
i (t,ω)×N−1

)
.

(3.37)

37



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Sample Size

H
T

S
2

        Actual HTS2

− − −  True HTS2

Figure 3.3: ĤT S
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(solid lines) and true HT S2 (dashed lines) for true HT S values of 0, 0.20, 0.40,
0.60, 0.80 and 0.99.
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Figure 3.4: Variance of ĤT S
2

(solid lines) and true HT S2 (dashed lines) for true HT S values of 0,
0.20, 0.40, 0.60, 0.80 and 0.99.

Figs. 3.3 and 3.4 illustrate the expected value and variance of ĤT S
2
(t,ω) and ĤT S

2
UB(t,ω) for

various synchrony values. As previously reported for P̂LV
2
, the variance of the unbiased estimator
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is slightly higher than that of the biased estimator for small sample sizes.

3.6 Results

In this section, results of multivariate phase synchronization on simulated and EEG data are pre-

sented. First, the robustness to noise of proposed measure is evaluated on a network of highly

synchronized sinusoidal oscillators. Next, we asses the effect of the number of oscillators on the

synchrony measures. In addition, we evaluate the multivariate synchrony of a network of Kuramoto

oscillators with varying coupling strengths. Next, the sensitivity to global coupling is evaluated for

various Rössler oscillators, followed by the assessment of the topographical sensitivity of the pro-

posed measure. Finally, we present a detailed analysis of global connectivity in the cognitive

control experiment.

3.6.1 Assessment of robustness to noise of multivariate phase synchrony

measures

In the first simulation, the performance of HTS was evaluated for various signal-to-noise ratio

(SNR) levels in a network of synchronized cosine oscillators and compared to S-estimator. A

network of 8 sinusoidal oscillators with constant phase differences is defined as

xi(t) = cos
(

80πt +π
(i−1)

8

)
+ηi(t), i = 1, . . . ,8, t = 1,2, . . . ,512, (3.38)

where ηi(t) is independent white Gaussian noise, with SNR between -20 and 30 dB in steps of 2

dB, for a total of N=200 trials and the signal length equal to T = 512 samples. S-estimator and

HTS were computed by first estimating the instantaneous phase at the frequency of interest, 40 Hz,
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through Hilbert transform and then evaluating the synchrony through (3.1) and (3.20). S-estimator

and HTS were then averaged over time to obtain ¯HT S= 1
T ∑

T
t=1 HT S(t) and S̄= 1

T ∑
T
t=1 S(t), where

T = 512.

Figure 3.5 shows the average multivariate synchrony, for HTS and S-estimator as a function of

SNR in the network of sinusoidal oscillators given by (3.38). Both, HTS and S-estimator result

in multivariate synchrony equal to 1 for high SNR. However, HTS is more robust to noise as the

S-estimator shows a sharper decrease for SNR values less than 10 dB. At low SNR, S-estimator

approaches 0 whereas HTS remains constantly high due to bias in the PLV estimator [30], [34],

[100].
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Figure 3.5: Multivariate synchrony for a network of highly synchronized sinusoidal oscillators.

3.6.2 Effect of number of oscillators on the multivariate synchrony mea-

sures

In order to show how the number of oscillators in a network affects the accuracy of the esti-

mators, S-estimator was computed for four simulated bivariate synchronization matrices whose

off-diagonal entries were uniformly distributed between [0.05, 0.15], [0.25, 0.35], [0.45, 0.55] and
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[0.65, 0.75]. The HTS was computed by letting the PLVs in 3.16 to take values from the same four

intervals as for the S-estimator. These simulation were repeated 100 times. The number of oscil-

lators in the network was incremented in powers of 2, starting at 4 up to 256. In a network where

all of the oscillators have similar bivariate pairwise synchrony, we would expect the multivariate

synchrony to be around that value. As shown on Figure 3.6, the multivariate synchrony obtained

from the S-estimator varies depending on the number of oscillators in the network. In general, the

S-estimator results in a lower synchronization value than expected, where the largest differences

occur at higher synchrony. HTS, on the other hand, is not affected by the number of oscillators

since it is computed through the l2-norm and gives synchrony values close to the true value.

In order to understand the sensitivity of the S-estimator to the number of oscillators, Figure 3.7

shows the normalized eigenvalues of a synchronization matrix whose off-diagonal entries are close

to 0.4, for 4, 8, 12 and 16 oscillators. As Figure 3.7 suggests, increasing the number of oscillators

results in a reduction of the entropy. Also, as the number of oscillators increases the largest normal-

ized eigenvalue decreases. These findings show how the S-estimator is affected by the number of

oscillators and results in lower multivariate synchrony than the true global synchronization in the

network, potentially due to approximating the entropy through a finite number of samples. These

results suggest that multivariate synchrony using the S-estimator could be underestimated unless

the total number of oscillators in the network is high.
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Figure 3.7: Effect of number of oscillators (M) on the eigenvalues for a true multivariate synchrony
value of 0.4, a) M = 4; b) M = 8; c) M = 12; and d) M = 16.

3.6.3 Kuramoto Model

In order to evaluate the performance of the proposed measure as a function of coupling strength,

we computed the multivariate synchrony in a large network of coupled oscillators as presented by

Kuramoto [101]. Kuramoto model describes a system consisting of multiple oscillators with differ-

ent natural frequencies which synchronize to a common frequency after their coupling exceeds a

certain threshold [102]. This model has been used to describe many physical phenomena, ranging

from unicellular organisms [103] to the neurosciences [74], [104]. Phase dynamics governing the

cooperative synchronization among M oscillators are given by

dφi

dt
= ωi +

K
M

M

∑
j=1

sin(φ j−φi), (3.39)
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where φi corresponds to the phase of the ith oscillator, ωi is its natural frequency and K corresponds

to the coupling strength, which is equal among all oscillators. The natural frequency of each

oscillator is chosen randomly from a Lorentzian distribution given by

g(ω) =
γ

π

[
γ2 +(ω−ωo)

2
] , (3.40)

with mean ωo and width γ .

Kuramoto found that oscillators are desynchronized until K exceeds a critical value Kc = 2γ .

Exceeding Kc separates the oscillators into two groups: one that contributes to the synchronization

of the system and another whose natural frequencies come from the tails of the distribution and

contribute to desynchronization of the system [105]. As K increases, the group of synchronized

oscillators increases until all oscillators are synchronized. A network consisting of M = 64 oscil-

lators was simulated and the time-varying phases φi (t) were solved numerically via Runge-Kutta

with a time step of ∆t = 0.0078 s, which results in a sampling frequency of 128 Hz. The natural

frequencies of each oscillator are drawn from a Lorentzian distribution as given by (3.40) where

ωo = 40 rad/s and γ = 1. This results in a Kc = 2γ = 2. The signal length was 2048 samples, and

the first 500 samples were discarded to avoid transients.

Figure 3.8 shows multivariate synchrony estimated from HTS and the S-estimator as K in-

creased from 0 to 9 in increments of 0.5. We expect to observe low synchrony for K < Kc with a

sudden increase in synchrony after Kc. When K = 0 multivariate synchrony from both S-estimator

and HTS is greater than 0, which indicates bias on the estimators when phases come from an

uniform distribution. On the other hand, HTS is more sensitive to the increase of global synchro-

nization for K = Kc = 2 compared to the S-estimator. The standard deviation of both estimators is

maximal around Kc [104], with S-estimator showing less variance than HTS since it is a weighted
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average of all bivariate PLVs, obtained from the eigendecomposition. Finally, when the system is

fully synchronized HTS approaches 1 as expected.
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Figure 3.8: Comparison of mean and standard deviation of multivariate synchrony (HTS and S-
estimator) within a Kuramoto network with Kc = 2.

3.6.4 Rössler oscillator

In order to test multivariate synchrony under different network configurations we used a Rössler

oscillator model. Rössler oscillators describe a system of weakly coupled self-sustained stochas-

tic oscillators [106]. We modeled a network consisting of 6 oscillators coupled through their

x-dimension [107]. Eight different configurations are considered, illustrated in Fig 3.9. It is ex-

pected that networks 1 and 2 will exhibit low synchrony, and network 8 will result in multivariate

synchrony close to 1. Dynamics governing the networks under study are given by
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ξ̇ j =


Ẋ j

Ẏj

Ż j



=


Ẋ j = −ω jYj−Z j +

[
∑

i 6= j
εi j
(
Xi−X j

)]
+ση j

Ẏj = −ω jX j−aYj

Ż j = b+
(
X j− c

)
Z j

 ,

(3.41)

where i, j = 1,2, ...,6, a = 0.35, b = 0.2, c = 10, ω1 = 1.05, ω2 = 1.03, ω3 = 1.01, ω4 = 0.99,

ω5 = 0.97, ω6 = 0.95, εi j = ε ji = 0.5, σ = 1.5 and η j is white Gaussian noise. The differential

equations were solved by the Runge-Kutta method at a time step of 0.067 seconds. Simulations

were repeated 200 times, for a signal length of 2000 samples and sampling frequency of 15 Hz.

Table 1 compares multivariate synchrony evaluated using HTS and S-estimator for each of the

eight Rössler networks presented in Figure 3.9. The second and third columns show results for HTS

and S-estimator (mean±st.dev.) computed according to (3.20) and (3.1), respectively. Multivariate

synchrony values obtained from both measures are comparable and align with our expectations for

all networks. For both methods, the multivariate synchrony results for each network is significantly

different from that obtained from a null network in which none of the oscillators is connected, i.e.

εi j = 0, (Wilcoxon rank sum test, p<0.01).

The two networks differ in their behavior only for networks 5 and 6. In the case of network

5, multivariate synchrony obtained from HTS is higher than that from network 6, whereas it is the

opposite for S-estimator. In network 5, four out of six oscillators are all interconnected with only
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two isolated oscillators contributing to low synchrony. Since HTS relies on the root mean square of

PLVs with one PLV computed between each oscillator and the mean phase, there will be only two

PLVs with low synchrony. On the other hand, in network 6 although there are two sub-networks

that are fully synchronized these are not interconnected and hence the global synchrony of the

network should not be as high as in network 5 as indicated by HTS. This result is also observed

from the unbiased squared HTS and S-estimator, as shown in the fourth and fifth columns of Table

1, respectively. Here, HT S2
UB is computed as in (3.36) and S2

UB is obtained by using unbiased

PLV 2 as in (3.37). Note that network 4 also contains 6 connections and results in higher synchrony

than networks 5 and 6. This is due to the indirect connections that emerge when oscillators are

interconnected through a third oscillator.
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Figure 3.9: Eight Rössler networks.

In order to assess the effect of the number of oscillators in the computed synchrony values, we
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constructed two subnetworks consisting of 3 oscillators each (as in Figure 3.9 (f)) and increased

the number of oscillators in the network to 9 and 12. Table 2 shows the results for both HTS and

S-estimator as the number of oscillators increases. Note that the first case, 6 oscillators, is the

same as network 6 in Figure 3.9. For both methods, as the number of oscillators increases the

multivariate synchrony decreases as there are more non-synchronized oscillators in the network.

This trend is also observed from the unbiased estimators of HT S2 and S2.

Finally, we assessed the effect of the number of subnetworks on the multivariate synchrony

measures. Table 3 shows the results for HTS, S, their squared unbiased estimators for different

number of subnetworks of three oscillators in a network of 12 oscillators. As expected, increasing

the number of subnetworks increases the multivariate synchrony for both estimators.

Table 3.1: Multivariate synchrony (mean±st.dev.) in networks of Rössler oscillators.

Network HTS S HT S2
UB S2

UB

1 0.226±0.023 0.267±0.004 0.051±0.010 0.254±0.002

2 0.612±0.028 0.474±0.016 0.375±0.034 0.384±0.009

3 0.944±0.029 0.851±0.059 0.892±0.055 0.765±0.086

4 0.985±0.000 0.945±0.001 0.971±0.000 0.907±0.001

5 0.800±0.009 0.580±0.012 0.640±0.015 0.523±0.007

6 0.765±0.027 0.673±0.011 0.586±0.042 0.610±0.005

7 0.980±0.001 0.929±0.002 0.960±0.002 0.881±0.004

8 0.999±0.000 0.996±0.000 0.998±0.000 0.993±0.000
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Table 3.2: Multivariate synchrony (mean±st.dev.) for different number of oscillators containing
two subnetworks of three oscillators.

Number of

Oscillators
HTS S HT S2

UB S2
UB

6 0.765±0.027 0.673±0.011 0.585±0.042 0.610±0.005

9 0.682±0.017 0.457±0.011 0.463±0.024 0.372±0.009

12 0.613±0.015 0.348±0.008 0.373±0.018 0.263±0.006

Table 3.3: Multivariate synchrony (mean±st.dev.) for a network consisting of 12 oscillators for
different number of subnetworks composed of three oscillators.

Number of

Subnetworks
HTS S HT S2

UB S2
UB

1 0.531±0.009 0.252±0.009 0.278±0.010 0.156±0.006

2 0.613±0.015 0.348±0.008 0.373±0.018 0.263±0.006

3 0.735±0.031 0.506±0.010 0.538±0.018 0.398±0.010

4 0.757±0.012 0.594±0.013 0.571±0.025 0.492±0.012

3.6.5 Assessment of topographical sensitivity

The topographical sensitivity of multivariate phase synchrony measures is evaluated on a net-

work consisting of 58 chaotic non-identical Colpitts oscillators [36]. Colpitts oscillators have been

employed in the assessment of topographical sensitivity since they are chaotic non-symmetrical

oscillators that generate irregular sinusoidal signals similar to EEG [108]. Eq. (3.42) describes the

dynamics of oscillator i. In this network, oscillators are coupled through x(i)2 , and Ci j indicates the

coupling from oscillator j to oscillator i; k = 0.5, and g, Q and α are chosen randomly between
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the intervals [4.006, 4.428], [1.342, 1.483], and [0.949, 0.999], respectively.

dx(i)1
dt

=
g

Q(1− k)
[α(e−x(i)2 −1)+ x(i)3 ]

dx(i)2
dt

=
g

Qk
[(1−α)(e−x(i)2 −1)+ x(i)3 ]+

58

∑
j=1

Ci j(x( j)
2 − x(i)2 )

dx(i)3
dt

= −Qk(1− k)
g

[(x(i)1 − x(i)2 )− 1
Q

x(i)3 ]. (3.42)

A network consisting of bidirectional connections among electrodes 9, 10, 11, 18, 19, 20, 27,

28, and 29 with the nonlinear dynamics described (3.42) was simulated for 100 repetitions. Here,

coefficients Ci j are set to zero for all i and j except for i, j = {9, 10, 11, 18, 19, 20, 27, 28, 29},

corresponding to electrodes F1, FZ, F2, FC1, FCZ, FC2, C1, CZ, and C2 in Figure 3.10. For this

network, it is expected that electrode FCz will show the highest degree of multivariate synchrony.

This network is simulated via the Heun method with δ t = 0.04 s. The signals are 100 seconds-long,

the first 40 seconds are discarded to remove transients and signals are down-sampled to a sampling

frequency of 12.5 Hz. In addition, white Gaussian noise was added and multivariate synchrony

was assessed for SNR levels of 0 dB, 10 dB and 20 dB. S-estimator and HTS were computed at

each electrode, for each time and frequency point among each electrodes first nearest neighbors,

resulting in groups of five electrodes. For example, for this simulated network the S-estimator and

HTS at electrode FCZ consider electrodes FZ, FC1, FCZ, FC2, and CZ.

Figure 3.11 shows the topographical plots for HTS and S-Estimator for the three SNR levels

considered. Overall, HTS and S-estimator result in similar topographical maps, demonstrating

good topographical sensitivity. Under additive noise, HTS results in higher multivariate synchrony

among the electrodes comprising the simulated network, being more robust to noise when com-
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pared to S-estimator.

 
 Figure 3.10: SynAmps2-64 EEG system and network under test.
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Figure 3.11: Topographical plots showing the sensitivity of HTS and S-estimator at various SNR
levels. a), c) and e) HTS, 20 dB, 10 dB and 0 dB, respectively; b), d) and f) S-estimator, 20 dB, 10
dB and 0 dB, respectively.
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First, we were interested in comparing the proposed multivariate measure with respect to con-

ventional bivariate PLV. For this purpose, we compared the multivariate synchrony among elec-

trodes FCz, F5 and F6 with the pairwise synchrony between FCz and F5 and FCz and F6 obtained

from both error and correct responses for the 25-75 ms time interval, as this time interval contains

the peak of the ERN and has been used in prior phase synchrony studies [29], [27]. These elec-

trode pairs were selected as they are commonly used in assessing error-correct synchronization

differences during cognitive control [27], [109]. The statistical significance of the difference be-

tween error and correct synchrony was investigated by performing a t-test for HTS and a two-way

ANOVA for the two PLVs. Results are shown in Table 1 and indicate that HTS is more sensitive

to the difference between error and correct responses across the central and lateral frontal regions

when compared to PLV. This example shows the benefit of computing multivariate synchronization

over bivariate pairs.

Table 3.4: Statistical significance of error-correct responses obtained from PLV and HTS.

Synchrony p-value

PLV: FCz-F5
0.0209

PLV: FCz-F6

HTS 1.019e-10

Topographical connectivity for EEG data is investigated following the same definition of elec-

trode neighborhoods as in Section 3.6.5. HTS and S-estimator were computed for both error and

correct responses separately, at each electrode as described in Section 3.6.5, obtaining a multi-

variate synchrony value for each time and frequency point and electrode for each subject. Next,

for each subject, the multivariate synchrony was averaged over different time intervals of interest,

and frequency bins corresponding to the theta band (4-8 Hz) at each electrode. Here, we inves-
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tigated the dynamic nature of functional connectivity by looking at multivariate synchronization

over different post-response time intervals. Figure 3.12 shows the topographical distribution of

multivariate synchrony for error minus correct responses averaged over subjects estimated from

HTS and S-estimator for four time intervals: 0-25 ms, 25-50 ms, 50-75 ms and 75-100 ms, and in

the theta frequency band. From these figures, it is observed that HTS results in higher synchrony

for error-correct difference for the frontal and central electrodes when compared to the central-

parietal electrodes for all intervals. The S-estimator, on the other hand, does not indicate much

variation across time and the error-correct synchrony differences are close to zero for most brain

regions. For HTS, time intervals of 25-50 ms and 50-75 ms show moderate increase in synchrony

in the central-frontal regions compared to the other time windows.
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Figure 3.12: Error-Correct topographical sensitivity of multivariate synchrony in intervals of 25
ms and theta band [4-8 Hz]. (a), (c), (e) and (g) Error-Correct HTS difference. (b), (d), (f) and (h)
Error-Correct S-estimator difference.
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In order to investigate the significance of changes across time, t-tests were performed between

consecutive time intervals. Figure 3.13 shows the topographical distribution of p-values obtained

for each electrode for different comparisons. Clearly, there is a significant change in multivariate

synchrony in the central electrodes between the first and second time intervals, i.e. 0-25 ms, and

25-50 ms (Figure 3.13 (a)), no significant change between 25-50 ms and 50-75 ms (Figure 3.13

(b)), and finally a small change in central electrodes between 50-75 ms and 75-100 ms (Figure 3.13

(c)).

 
 

(a) [0, 25]-[25, 50]     (b) [25, 50]-[50, 75]     (c) [50, 75]-[75, 100] 

Figure 3.13: Topographical plots of p-values from t-test investigating the difference of multivariate
synchrony from HTS between intervals. Note: Black regions correspond to lower p-values.

Since the intervals 25-50 ms and 50-75 ms show the largest error-correct differences based on

Figure 3.12, we next focus on the time interval 25-75 ms and look at the topographical distribution

of HTS for error and correct responses, separately. As Figure 3.14 shows, HTS yields increased

synchronization for the central and lateral frontal regions for the error response (Figure 3.14 (a))

whereas there is no topographical differentiation of synchrony for the correct response (Figure

3.14 (b)). The proposed HTS measure replicates these findings and further identifies regionally

increased synchronization on error trials, compared to correct, in the medial-lateral and frontal-

central areas. Unlike conventional bivariate measures which require the computation of synchro-
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nization between multiple pairwise regions, the proposed measure can summarize the global syn-

chronization within a region by a single number providing an ease of interpretation.

 
 

    (a) Error                       (b) Correct                               (c) Error-Correct 

Figure 3.14: Topographical plots of multivariate synchrony from HTS in the 25-75 ms interval. (a)
Error responses; (b) Correct responses; (c) Error-Correct responses.

In addition, a Receiver Operating Characteristic (ROC) curve was constructed in order to com-

pare the performance of HTS and the S-estimator in the detection of multivariate synchrony during

the ERN interval in the theta band. The probability of detection and false alarm were defined

as the ratio at which the average multivariate synchrony over the ERN interval and theta band in

electrodes FCz and CPz, respectively, exceeded a threshold. Figure 3.15 shows the ROC curves

for both estimators. The area under the curve (AUC) for each estimator was computed, resulting

in AUCHT S = 0.8601 and AUCS−estimator = 0.7936. Thus, as observed, HTS exceeds S-estimator

in the detection of multivariate synchronization in the frontal-central regions during the ERN in

the theta band indicating that HTS is more sensitive to detecting the difference in synchronization

between the frontal-central region and the central-parietal region.
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Figure 3.15: ROC curves for HTS and S-Estimator. Probability of detection is based on the multi-
variate synchrony among FCz and its neighbors whereas the probability of false alarm is based on
the multivariate synchrony around CPz.

To further examine the functional, behavioral significance of the increased HTS synchrony

identified following errors, compared to corrects, we computed correlations between the error-

correct HTS synchrony and behavioral adjustments observed after mistakes post-error slowing

(PES) calculated as correct response time (RT) following error responses correct RT following

correct responses, and post-error accuracy (PEA) calculated as accuracy following error responses

accuracy following correct responses. Although the functional significance of PES remains con-

troversial i.e., some believe it represents the cautious slowing to ensure effective responding fol-

lowing mistakes, whereas others argue it represents off-task orienting to rare mistakes PEA is

more clearly an adaptive response following errors (see [110] for a review). Figure 3.16 shows

the topographical distribution of these correlations. Across frontal and central regions of interest,

synchrony was inversely related to PES and positively related to PEA. The negative correlations

between multivariate synchrony and PES were more broadly distributed whereas those between
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multivariate synchrony and PEA were more localized to the central and left frontal electrodes.

Figure 3.17 illustrates the topographical distribution of p-values (two-tailed) from the correlations

obtained from PES (Figure 3.17 (a)) and PEA (Figure 3.17 (b)). For each behavioral condition,

a distribution of correlations pΓ(γ) is constructed and a p-value for each electrode is obtained as

p− valuei = 2min{P(Γ ≤ γi),P(Γ ≥ γi)} where γi denotes the correlation coefficient at electrode

i. As shown in Figure 3.17 (a), the inverse relationship between HTS and PES is most significant

in the right frontal (F6) and parietal regions (P6), whereas as shown in Figure 3.17 (b) correlation

between HTS and PEA is most significant around the left -central (FC3, FC5, C3) and frontal

regions (AF3).

 
 

           (a) PES                                  (b) PEA 

Figure 3.16: Correlation coefficient between (a) PES, (b) PEA and error-correct multivariate syn-
chrony difference computed using HTS in the ERN interval 25-75 ms, for each electrode.
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Figure 3.17: Topographical distribution of p-values obtained from the correlation coefficient be-
tween (a) PES, (b) PEA and error-correct multivariate synchrony difference computed using HTS
in the ERN interval 25-75 ms, for each electrode. Black refers to more significant.

3.7 Conclusions

In this chapter, we presented a novel time-frequency measure of multivariate phase synchrony

based on a hyperdimensional coordinate system. This measure has been derived from both a hyper-

spherical coordinate system and from the Cartesian product of unit circles. The proposed measure

has been shown to be advantageous over a widely used multivariate measure, the S-estimator, in

estimating the global synchrony in simulated systems of coupled oscillators and in neurophysio-

logical signals. In particular, it was shown that the proposed method is a direct measure of global

synchrony which overcomes the drawbacks of multivariate synchrony methods based on the bivari-

ate PLV. First, it was shown, from a simulation in Rössler oscillators, that the proposed measure

provides information about the underlying structure of the network, otherwise misinterpreted from

the S-estimator. Second, the proposed measure is computationally efficient since it does not re-

quire the computation of all pairwise synchrony values in a network nor the eigendecomposition
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of a connectivity matrix.

The application of this method to EEG data showed that it is more sensitive to the increase of

multivariate synchrony among electrodes in the central-frontal region during error responses in an

ERN experiment compared to the S-estimator. Furthermore, HTS was shown to be more sensitive

to spatial changes in multivariate synchrony compared to S-estimator and to be a better predictor

of error-correct differences in the error monitoring experiment compared to traditional bivariate

PLV synchrony metrics. The proposed measure can be implemented using instantaneous phase

estimates obtained from the Hilbert transform, the Wavelet transform and, with some limitations,

the Hilbert-Huang transform in addition to the RID-Rihaczek distribution. Thus, the proposed

measure of multivariate synchrony is a promising tool for the assessment of the global integration

in dynamic complex networks.

62



Chapter 4

Graph to Signal Transform Based on the

Resistance Distance and its applications to

Functional Connectivity Networks

4.1 Introduction

Complex networks arise in a wide variety of systems such as biological, computational and so-

cial. In biology, for example, protein-protein interactions constitute protein interaction networks in

which proteins represent nodes and their interactions are represented by edges [111]. Another ex-

ample of complex networks is the Internet, for which nodes may represent computers, or webpages

[112]. In the context of social networks, users are represented by nodes and their connections to

other users are represented by edges [113]. Over the last decade, complex network theory has con-

tributed significantly to the study of functional connectivity networks (FCNs), in particular in the

assessment of functional integration and segregation [10]. Specifically, graph theoretic measures

such as the shortest path length and clustering coefficient have helped to characterize small-world

networks [114], and the degree distribution has been utilized to characterize scale-free networks
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[115]. In particular, it has been shown that FCNs of the healthy population exhibit small-world

properties [40], [116].

Despite the contributions of graph theoretic and information theoretic methods to the charac-

terization of FCNs, these methods possess certain drawbacks. The first problem is the sensitivity of

graph theoretic measures to network size. An example is the clustering coefficient, which quantifies

the ratio of the number of triangles around a node and the maximum number of edges that can be

connected to it [117]. Therefore the mean clustering coefficient can be unfairly affected by nodes

with a low degree [117]. This would have an effect on other measures such as the small-world

measure which depends on the clustering coefficient, particularly in brain networks constructed

from electrophysiological modalities where the number of nodes tends to be small [118]. Another

problem with graph theoretic measures is their non-uniqueness. An example is the small-world

measure, which relies on the clustering coefficient normalized by the clustering coefficient of a

random network. Such a normalization may affect the small-world measure as two very different

network structures may have similar clustering coefficients [119]. Finally, another problem with

graph theoretic measures is the mismatch between the measure and the flow of information in the

underlying network, especially for weighted networks such as FCNs. For example, FCNs may not

necessarily rely on shortest paths for communication between the nodes, and measures like the

characteristic path length and the global efficiency are unable to capture this type of connectivity

patterns [10], [120].

Alternatively, a complementary set of methods for network analysis has been proposed through

transforming graphs into signals in order to take advantage of signal processing methods in the

analysis [44], [43], [46]. By transforming graphs into signals it is possible to apply traditional

signal processing techniques on those signals in order to extract information from the networks

and overcome some of the shortcomings of graph measures. Both probabilistic and determinis-
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tic methods have been proposed to transform networks into signals. In [121], a transformation

of networks based on random walk theory has been proposed to show that the transformed sig-

nals reveal mixing patterns of the network. In another recent work, Girault et al. [122] proposed

a semi-supervised learning method for graph to signal mapping which results in smooth signals

from graphs. However, stochastic methods do not provide the means for recovering the network

once they are transformed into signals. Shimada [44] and Haraguchi [43] formulated a determin-

istic method based on classical multidimensional scaling (CMDS), allowing the transformation of

complex binary networks into time series. Under this transformation, the vertices of the network

correspond to time indices for the time series [123]. It was shown that lattice networks transform

to sinusoids and Watt-Strogatz networks transform to random signals [44]. Recently, Hamon et

al. [124], [125] have extended this method to the analysis of temporal networks, with an applica-

tion to a network of face-to-face contacts revealing significant subnetworks. However, all of these

approaches have focused on binary graphs, and therefore have limited applicability to weighted

networks that arise in neuroscience.

In order to transform both binary and weighted graphs into signals, we propose to use the

resistance distance of a connected graph as the distance matrix for CMDS. The resistance distance

of a graph was proposed in [126] in the context of chemistry. The resistance distance between

two nodes corresponds to the equivalent resistance between them, considering the graph as an

electric circuit [126] whose edges represent resistors inversely proportional to the edge weight. An

advantage of the resistance distance over other graph distances, such as the shortest path distance,

is that the resistance distance takes into account the global structure of the graph and hence reflects

information about multiple paths. Moreover, the resistance distance can be obtained from the

pseudoinverse of the Laplacian matrix of the graph and is a valid distance matrix [127]. Therefore,

it is an alternative distance matrix for CMDS.
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Transforming graphs into signals from CMDS results in a total of N signals or components,

corresponding to each one of the N nodes in the network. We are interested in quantifying struc-

tural information of the networks based on their signals. In this work, we propose a graph entropy

measure based on the spectrum of the signals obtained from the transformation. Graph informa-

tion theoretic measures, such as graph entropy, are important as they allow for the quantification of

the structural information of the networks. Quantifying the information content of FCNs through

graph information measures has been limited. In one such study, Sato et al. [128] characterized

FCNs from Attention Deficit Hyperactivity Disorder (ADHD) based on the graph spectral entropy

of FCNs. In addition, Takahashi et al. [129] introduced the Jensen-Shannon divergence between

graph spectra to compare networks from ADHD. Current graph entropy measures rely on the spec-

tral distribution of the graph adjacency matrix or other graph-related matrices [130], and methods

that consider the probability distribution on the graph vertices [131]. However, these methods

present some drawbacks. In particular, spectral graph entropy may fail to discriminate the net-

work structure among networks sharing similar spectra [132]. Moreover, graph entropy measures

based on the probability distribution on the graph vertices rely heavily on the method for estimat-

ing the graph-vertex probability distributions. One method is based on partitioning the vertex set

of binary graphs [133], [134]. Under this approach, vertices are clustered into sets of identical

vertices based on their local and non-local degree-dependencies and a probability is assigned to

each partition based on the total number of vertices in that partition divided by the total number

of vertices [135]. However, this method relies on arbitrary parameters, which can be found in an

optimal sense if there is a ground truth. Another method is based on an information functional for

undirected and connected graphs [131]. In this method, the information functionals are function

of the sets denoted j-sphere for each vertex, which is the set of vertices that are j edges apart from

the current vertex where the distance is quantified by the shortest path. In this chapter, we propose
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a graph entropy and divergence measure by implementing traditional information-theoretic mea-

sures on the spectrum of the signals obtained from the graph to signal transformation, and both

methods are parameter free. It is shown that this method allows for the quantification of network

structural information and discrimination between distinct cognitive network structures.

As the signals obtained from this graph transformation convey structural information of the net-

works, we consider them for event detection in temporal networks. Previously, Hamon et al. [124]

used nonnegative matrix factorization of the spectra of the signals for characterizing the structure

of temporal networks. By doing this, it is possible to characterize the network structure over time,

which may remain ambiguous if assessed from graph theoretic measures solely. Another important

problem in the study of temporal networks is the detection of events, which occur as a deviation of

the network structure from its usual structure at a particular instance. Due to the evolving nature

of temporal networks in many applications, detecting abrupt changes in the structure of temporal

networks is of great importance. In particular, the connections among the nodes of the network

may change with time or some network components may be removed over time [136]. Previously

proposed methods for event detection in temporal networks include [136] distance based methods,

probabilistic model based methods, and subspace estimation-based methods. In distance based

methods, the distance between two graphs is computed at each time point and thus anomalous

instances are extracted from this time series. Probabilistic model based methods account for the

deviations from models of the graph spectrum, which indicate the presence of an event. Subspace

estimation based methods, such as singular value decomposition and tensor decompositions, track

the singular values over time as well as the reconstruction error for identifying events in the tem-

poral networks. On the other hand, several methods have been proposed in computer science and

sensor networks literature, with applications to video and wireless sensors. In addition, work on

the analysis of temporal networks has focused on the computation of graph theoretic measures
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based on the graph adjacency matrix at each time point and then constructing time series for each

feature [137]. However, it has been argued that this approach may fail when activity patterns are

discontinuous and when there are abrupt changes in the network [138].

In this work, we focus on tensor decompositions since they exploit the underlying relationships

of multiway data [139], as opposed to matrix decomposition methods, such as PCA and Indepen-

dent Component Analysis (ICA). In this chapter, we propose to form a tensor based on the spectra

of the signals obtained from the graph to signal transformation at each time point and detect abrupt

structural changes in the temporal network at a particular time. Our proposed method is com-

pared to the tensor decomposition based on the graph adjacency matrices over time. Both methods

correctly detect the change points in time when significant changes occur, however, the proposed

method is more sensitive to those changes.

Finally, we employ the proposed graph to signal transformation for characterizing functional

connectivity network structure. The proposed measure is applied to the electroencephalogram

(EEG) data described in Chapter 2. Previous works have suggested that functional connectivity

networks are small-world networks [140]. Furthermore, a recent work on weighted small-world

measures have shown increased small-world characteristics in functional connectivity networks

during error-related negativity [116]. In this chapter, we assess the small-worldness of functional

connectivity networks during ERN by computing the correlation between the spectrum of the sig-

nals transformed and the spectrum of a small-world network for different parameters of small-

worldness. We show that the signals obtained from graphs contain structural information that

allows us to demonstrate the structural differences between different experimental conditions. In

particular, we show how the structure of functional connectivity networks from different conditions

in a cognitive control experiment can be characterized with the proposed method.

This chapter is organized as follows. Section 4.2 presents a background on graph entropy
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measures and CMDS for graph to signal transform of binary networks. Next, the proposed graph

to signal transform based on the resistance distance matrix is presented in Section 4.3 as well

as characterizations of this transform. Simulation results comparing the proposed method to the

previously defined distance measures are shown in Section 4.3.5.1. In 4.4 Next, we present the

proposed graph entropy measures based on the signals obtained from the transform in Section

4.5, followed by event detection in Section 4.6 and the characterization of functional connectivity

networks in Section 4.7. Finally, conclusions are discussed in Section 4.8.

4.2 Background

4.2.1 Graph Entropy Measures

Previously proposed graph entropy measures to quantify the structural information of the graph

include information functionals evaluated at the local node level [131], and the spectrum of the

adjacency matrix A or the Laplacian [130]. Let d(u,v) be the shortest path between nodes u and

v and σ(v) = maxu∈V d(u,v) be the eccentricity of the graph. Define ρ(G) = maxv∈V σ(v) as the

diameter of the graph and S j(vi) = {v ∈ V |d(vi,v) = j}, j ≥ 1, as the j-sphere of node vi. In this

work, we compare our proposed method to two information functionals.

The first information functional is defined as fV1(vi)=α
c1|S1(vi)|+c2|S2(vi)|+···+cρ(G)|Sρ(G)(vi)|, where

ck > 0, 1≤ k≤ ρ(G), α > 0, and V1 identifies it as the first information functional. This functional

is a function of the j-sphere for each node. Node probabilities are defined based on this functional

as pV1(vi) =
fV1(vi)

∑
N
j=1 fV1(v j)

. Based on pV1 , the graph entropy of G is given as

I fV1 (G) =−
|V |

∑
i=1

pV1(vi) log(pV1(vi)). (4.1)
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The second graph entropy measure that is commonly used is obtained from the spectrum of the

adjacency matrix A [130]. In this case, the information functional is defined as fV2
i = |λi|, where

λi is the ith eigenvalue of the adjacency matrix. The node probability is defined as pV2
i = |λi|

∑
C
j=1|λ j|

,

where λ1, ...,λC correspond to the non-zero eigenvalues of the adjacency matrix. Then, the graph

entropy is defined as

I fV2 (G) =−
C

∑
i=1

pV2(vi) log(pV2(vi)). (4.2)

This functional is equivalent to the Von Neumann entropy of a graph if we consider the eigenvalues

of the normalized Laplacian [141], [142].

Finally, the one-dimensional structural information of a connected, undirected graph has been

defined based on the degree distribution as [143]

H 1(G) =−
N

∑
i=1

∆ii

2M
log

∆ii

2M
, (4.3)

where ∆ii corresponds to the degree of the ith node, N is the total number of nodes in the network,

and M is the total number of edges in the network.

4.2.2 Graph to Signal Transform based on Classical Multidimensional Scal-

ing

The transformation of graphs into signals is based on CMDS. CMDS is a data reduction algorithm

whose objective is to find a low-dimensional representation of the data while preserving the Eu-

clidean distances between points [144]. In particular, for our application of transforming graphs

into signals, the aim is to obtain coordinate vectors that preserve a given distance [43]. The first
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step in the algorithm is to entry-wise square the distance matrix D and double center it as

B =−1
2

JN D(2) JN , (4.4)

where D(2) = D ◦D is the entry-wise squared Euclidean distance matrix, JN = IN − 1
N 1N1

′
N is

a centering matrix, IN is an N × N identity matrix, 1N is a N × 1 vector of ones, and
′

de-

notes the transpose. B is a positive semidefinite matrix with rank(B) = C, C ≤ N. Therefore,

B has C positive eigenvalues, and N −C eigenvalues equal to zero. The next step is to per-

form the spectral factorization of B, resulting in B = PΛP
′
=
(

PΛ
1
2

)
×
(

PΛ
1
2

)′
= XX

′
, where

Λ = diag(λ1,λ2, . . .λC), and Λ
1
2 = diag(

√
λ1,
√

λ2, . . .
√

λC), correspond to the nonzero eigenval-

ues of B, with λ1 ≥ λ2 ≥ ·· · ≥ λC, P ∈ RN×C, and X ∈ RN×C. Based on X, a total of C signals of

length N corresponding to the columns of X are obtained. The ith signal xi ∈ RN×1 is defined as

the ith column of X with i = 1,2, . . . ,C. In this chapter, we will refer to xi(n) as components and

signals interchangeably.

In order to preserve the positive definiteness of B, the matrix D needs to be a valid distance

matrix and conditionally negative definite. In previous works [44], [124], CMDS has been im-

plemented in the transformation of binary networks and the distance D is based on the binary

adjacency matrix A as

Di j =



0, i = j,

1, ai j = 1 and i 6= j,

γ, ai j = 0 and i 6= j,

(4.5)

where γ is a parameter that guarantees the conditional negative definiteness of D. In this manner,

the coordinate vectors preserve the adjacency relationship of the nodes [43]. In [46], Hamon et. al
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found the upper bound of γ to be
√

N
N−2 . It is important to note that D only provides information

about whether the vertices are connected or not, but not about the distance between vertices.

4.3 Graph to Signal Transformation Based on the Resistance

Distance Matrix

4.3.1 Resistance distance

In order to extend the graph to signal transform based on CMDS to weighted graphs, we consider

the resistance distance matrix of a graph, denoted as R. The resistance distance was introduced by

Klein and Randic [126] as an alternative to the shortest path distance for applications in chemistry.

It is inspired by basic circuit theory, where each edge on the graph represents a resistor with value

1
wi j

[145]. The following definitions of the resistance distance apply to both binary and weighted

networks. For simplicity, the notation will follow that of binary networks.

The resistance distance matrix R ∈ RN×N of a complete graph with N nodes is given by

R = Z̃1N1
′
N +1N1

′
NZ̃−2Z, (4.6)

where Z = (L + 1
N 1N1′N)−1 and Z̃ = diag(Z11,Z22, ...,ZNN). In addition, R is a conditionally

negative matrix and therefore has only one positive eigenvalue.

Each entry Ri j in R corresponds to the squared Euclidean distance between vertices i and j

[127]. In a connected graph, Ri j ≤ d(i, j), where d(i, j) is the shortest path distance, and equality

holds when there is only one path between i and j [146]. The resistance distance is a valid distance

measure, and satisfies the following properties [147]:
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Ri j ≥ 0 f or all i, j with equality i f and only i f i = j,

Ri j = R ji,

Ri j +R jk ≥ Rik. (4.7)

The resistance distance between vertices i and j, Ri j, is defined through the Moore-Penrose

pseudo inverse of L, L† [44], as

Ri j = L†
ii +L†

j j−2L†
i j. (4.8)

Equivalently, Ri j can be computed as

Ri j = (ei− e j)
T L†(ei− e j), (4.9)

where ei and e j are N×1 vectors of zeros with 1 in the ith and jth index, respectively. In addition,

the resistance distance is related to random walks on the graph, where the Ri j is proportional to the

expected commute time of a random walk on the graph [146] and is given by

Ri j =
1

2|E|
[E(T i j)+E(T ji)], (4.10)

where T i j is the number of transitions from vertex i to vertex j and |E| is the cardinality of the

edge set.

The resistance distance also provides a measure of network robustness. In particular, the effec-

tive resistance, also known as the Kirchoff index, provides information regarding to how robust the
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network is [146], [148], with a small effective resistance value indicating a robust network. The

effective resistance distance is defined as

Re f f = ∑
1≤i≤ j≤N

Ri j = N
N

∑
k=2

1
λk

= N tr(L†), (4.11)

where λi , i = 2, ..., N correspond to the eigenvalues of L. Finally, Re f f is related to the network

criticality γ , γ = 2Re f f [146], [149].

4.3.2 Classical Multidimensional Scaling based on the Resistance Distance

Using R, (4.4) can be reexpressed as

B =−1
2

JN RJN , (4.12)

to obtain the signals X for both binary and weighted networks. Note that since the entries of R

correspond to squared Euclidean distances, it is not necessary to square the entries of R for the

computation of B.

As described in [43], if we denote the ith point in an m-dimensional Euclidean space as x̃i =

(x̃i1, x̃i2, . . . , x̃im)
′
, i = 1, . . . ,N and define the coordinate matrix as X̃ = (x̃1, x̃2, . . . , x̃N)

′
, then the

Euclidean distance matrix in (4.12) is given as R = diag(X̃X̃′1N1′N)+ 1N1′Ndiag(X̃X̃′)− 2X̃X̃′ .

Then, (4.12) can be reexpressed as
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B = −1
2

JN RJN (4.13)

= −1
2

JN [diag(X̃X̃
′
1N1

′
N)+1N1

′
Ndiag(X̃X̃

′
)−2XX

′
]JN

= JNX̃X̃
′
JN

= XX
′
, (4.14)

where X = JX̃ is the matrix whose columns correspond to the signals from the network, as de-

scribed in Section 4.2.2.

4.3.3 Reconstruction of the original graph

If the signals X are not distorted, then in principle the resistance distance matrix R can be recovered

from the signals through the computation of the squared Euclidean distance between the points

R̂i j =
C

∑
c=1

(xc(i)− xc( j))2 , (4.15)

where R̂ is the estimated R, C corresponds to the total number of components and xc(i) and xc( j)

correspond to the ith and jth entries of the cth component. It is possible to recover the original

adjacency matrix from R̂, for both weighted and binary graphs as follows. First, we introduce τ as

[147]

τi = 2− ∑
j∈V (i)

R̂i, j

Wi j
, (4.16)

where V (i) denotes the set of vertices adjacent to i where adjacency is defined as Wi j 6= 0.

For the next step, since R is nonsingular [127], we consider the following expression of R̂−1
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which follows from the inverse of Euclidean distance matrices [150]:

R̂−1 =−1
2

L̂+
1

τ
′R̂τ

ττ
′
. (4.17)

From (4.17), the Laplacian matrix L̂ is estimated as

L̂ =−2(R̂−1− 1
τ
′R̂τ

ττ
′
). (4.18)

Given an estimate of the Laplacian matrix, the degree matrix ∆̂ is estimated as the diagonal matrix

whose elements are the diagonal entries of L̂

∆̂ = diag(L̂11, L̂22, ..., L̂NN). (4.19)

Finally, the weighted adjacency matrix Ŵ is computed as

Ŵ = ∆̂− L̂. (4.20)

An alternative procedure for network reconstruction is as follows. It has been previously shown

that R is an Euclidean Distance matrix if and only if B=−1
2JRJ is a positive definite matrix [150].

If R is an invertible Euclidean Distance matrix, then R−1 = −Y+ uuT , where Y is a positive

definite matrix, rank(Y) = N− 1, and 1T Y = 0, that is, the sum of its rows is zero. As shown in

[150], Y corresponds to the Moore-Penrose pseudoinverse of B. Therefore, L̂† can be computed

from R̂ as

L̂† =−1
2

JR̂J. (4.21)
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Finally, ∆̂ and Ŵ are estimated as before.

4.3.4 Perturbation Analysis

In this section, we describe analytically the effect of small perturbations such as addition and

removal of edges to the network on the transformed signals. Specifically, we are interested in

describing how (4.12) is affected in both cases and its effect on the graph to signal transformation.

We begin with the case edges are added to the network, where the perturbed adjacency matrix is

given as

W̃ = Wo +Wδ , (4.22)

where Wo is the original adjacency matrix, Wδ is an adjacency matrix with the new edges and W̃

is the perturbed adjacency matrix. The following results apply to both weighted and binary graphs.

We will follow the notation of weighted graphs for simplicity. The Laplacian of the perturbed

network can be expressed in terms of the original network and the new links. As described by

[149], the graph Laplacian can be reexpressed in terms of the graph incidence matrix as

L = CWECT = ∑
i, j

W E
i j ei jeT

i j, (4.23)

where C ∈ RN×M is the graph incidence matrix, ei j is a column vector whose ith entry equals 1

and the jth entry equals -1, WE ∈ RM×M is a diagonal matrix whose entries are the M graph edges,

and M is the total number of edges in the network. When edges are added to the network, (4.23)

results in
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L̃ = C̃W̃EC̃T

= C̃oWE
o C̃T

o + C̃δ WE
δ

C̃T
δ

= Lo +Lδ (4.24)

where Lo is the Laplacian matrix of the original network and Lδ is the Laplacian matrix of the

subnetwork corresponding to the perturbation. The Moore-Penrose pseudoinverse of (4.24) was

found [149] to be

L̃† = L†
o−L†

oLδ (I+L†
oLδ )

−1L†
o. (4.25)

This expression is valid as long as the addition of edges does not increase the rank of L̃ more

than the rank of Lo. A similar expression is obtained for the case when edges are removed from

the network. In this case, the perturbed adjacency matrix is expressed as

W̃ = Wo−Wδ , (4.26)

where now Wδ is a matrix whose entries Wδ i j are identical to the edges ei j to be removed from

Wo and zero otherwise. Thus, the Moore-Penrose pseudoinverse of the Laplacian can now be

expressed as

L̃† = L†
o +L†

oLδ (I+L†
oLδ )

−1L†
o, (4.27)

where the only difference between (4.25) and (4.27) is the sign and the same conditions on the
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rank of L hold.

Based on (4.25) and (4.27) we can express (4.12) for the case when edges are added or removed,

respectively. We show only the derivation for the former scenario, since the only variant in the

case of missing edges is a sign. We begin by recalling that Ri j = L†
ii + L†

j j − 2L†
i j. Denote R̃i j

the resistance distance between edges i and j for the perturbed network. Based on (4.25), we can

express R̃i j when edges are added as

R̃i j = [L†
o+L†

oLδ (I+L†
oLδ )

−1L†
o]ii+[L†

o+L†
oLδ (I+L†

oLδ )
−1L†

o] j j−2[L†
o+L†

oLδ (I+L†
oLδ )

−1L†
o]i j,

(4.28)

where [ · ]i j denotes the i, j entry of the matrix L̃. Let M = L†
oLδ (I+L†

oLδ )
−1L†

o. Rearranging

(4.28) we obtain

R̃i j = L†
1ii +L†

1 j j−2L†
1i j− (Mii +M j j−2Mi j),

= Ro
i j−RM

i j ,

where Ro
i j refers to the resistance distance of the original network and RM

i j is the resistance distance

defined from the perturbation matrix M. Now, we can define an alternative matrix B̃ as
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B̃ = −1
2

JNR̃JN

= −1
2

JN [Ro−RM]JN

= −1
2

JNRoJN +
1
2

JNRMJN

= Bo−Bδ . (4.29)

Therefore, we can express the matrix B for CMDS based on the resistance distance matrix when

edges are added/removed to the network in terms of the original network and the new set of links.

The previous procedure can be similarly carried out to obtain an expression for the case when

edges are removed as B̃ = Bo +Bδ .

4.3.5 Illustration of Graph to Signal Transform

In this section, we first compare the graph to signal transformation based on the distance D and R

for binary networks. Next, the reconstruction of weighted networks is assessed. Following this,

the robustness of the proposed method is assessed for various types of network anomalies.

4.3.5.1 Binary graphs

Signals from binary graphs based on the resistance distance matrix are first compared to those

obtained from CMDS based on the distance matrix D. First, we simulate two ring networks with

N = 128 nodes and average degree K = 2 and K = 10. Figure 4.1 shows the results obtained

from both methods. As expected, the signals based on the resistance distance matrix are sinusoidal

signals (Figure 4.1 (a) and Figure 4.1 (b)) similar to the signals obtained from D (Figure 4.1 (c)

and Figure 4.1 (d)). Figure 4.1 (a) and Figure 4.1 (c) show the first three components obtained
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from R and D, respectively, for an average degree K equal to 2, and similarly Figure 4.1 (b) and

Figure 4.1 (d) for K = 10. From these figures, it is observed that the amplitude of signals obtained

from R is inversely proportional to the average degree, K, with the maximum amplitude when

K = 2 and reduced amplitude when K = 10. This can be explained in terms of the resistance

distance. It has been shown previously that the pairwise resistance Ri j decreases when edges are

added or weights are increased in the network [146]. In addition, it has been shown that the signals

obtained from ring lattice networks are sinusoids [44], since the eigenvectors of circulant matrices

come from the Fourier matrix. Since the resistance distance matrix of a binary ring network is

circulant, the signals obtained from R follow the same rule. Increasing K results in a reduction on

the signal’s amplitude. Suppose that K1 ≤ K2, then by properties of the resistance distance adding

edges between vertices i and j causes R(2)
i j ≤ R(1)

i j . Since B is a Gramian matrix, it follows that

B(2)
i j ≤ B(1)

i j [151]. By Weyl’s Theorem, λ 1
m ≤ λ 2

m [146]. Since the signals Xm(t) =
√

λm cos(−2πmt
N )

[44], and the eigenvectors cos(−2πmt
N ) follow from the Fourier matrix for a ring lattice network,

which are independent of the entries of the circulant matrix [152], increasing the node degree K

results in a reduction of the signal’s amplitude.
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Figure 4.1: Signal representation of a ring lattice network composed of N = 128 nodes. Top:
Resistance distance; (a) K = 2; (b) K = 10. Bottom: Distance D; (c) K = 2; (d) K = 10.

Next, we compared both methods in an Erdős-Rènyi binary graph for probabilities of attach-

ment p equal to 0.2 and 0.5. For the original distance matrix D, the signals are random signals, as

previously found [46], with amplitudes bounded within the same range for all values of p (Figure

4.2 (c) and Figure 4.2 (d)). On the other hand, signals estimated from R still exhibit a random

structure, with peaks that are inversely proportional to p (Figure 4.2 (a) and Figure 4.2 (b)). The

location of these peaks correspond to the nodes with smallest degree, i.e. the largest peak occurs in

the first component and corresponds to the node with the smallest degree. In terms of the resistance

distance, a node with small degree will have a high resistance distance between it and the remain-

ing nodes in the network. The reduction of the peak’s amplitude as the probability of attachment

increases follows the previous discussion based on Weyl’s Theorem.
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Figure 4.2: Erdős-Rènyi network signal representation; (a) and (b), Resistance distance, p = 0.2
and p = 0.5, respectively; (c) and (d), Distance D, p = 0.2 and p = 0.5, respectively.

4.3.5.2 Weighted graphs

The proposed method was also assessed on a weighted stochastic block model consisting of 200

vertices and with fixed probability of attachment, p = 0.3. The weights are assigned randomly,

uniformly distributed in the interval [0,1]. Figure 4.3 (a) and Figure 4.3 (b) show the signal rep-

resentations of stochastic block networks with 3 and 4 clusters, respectively. It can be observed

from these figures that the first K−1 components reveal the total number of clusters, and the Kth

component is an impulse. In addition, the size of each cluster can be inferred from the support of

the constant regions in the first K−1 components.
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Figure 4.3: Signals constructed from a weighted stochastic block network with probability of at-
tachment p = 0.3 using the resistance distance matrix R. (a) First three components corresponding
to a network with 3 blocks; (b) First four components corresponding to a network with 4 blocks.

In addition to the stochastic block network, we investigated the graph to signal transformation

of a weighted small-world network. Figure 4.4 shows the signals resulting from a small-world

network with average degree K = 6, and composed of N = 128 vertices. As seen in Figure 4.4 (a),

for a network with a low rewiring probability, p = 0.1, the resulting signals are sinusoidal signals

plus some noise, which increases as p increases (Figure 4.4 (b)). This is consistent with previous

works on binary networks [44], where it has been shown that the small-world network is equivalent

to a ring network plus noise.
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Figure 4.4: Signals constructed from a weighted Small-World network consisting of N = 128 nodes
and average degree K = 6. (a) Rewiring probability p = 0.1; (b) Rewiring probability p = 0.7.

4.3.5.3 Reconstruction of Weighted Networks

In this section, the reconstruction of networks based on the procedure introduced in Section 4.3.3

is evaluated. The first network considered is a stochastic block model consisting of N = 150 nodes,

with probability of attachment p = 0.3 and 4 clusters. This network is constructed and recovered

from its signals X. The second network is a Erdős-Rènyi network consisting of N = 200 nodes with

probability of attachment p = 0.5. Networks were reconstructed for a total of 100 simulations and

the reconstruction error is based on the normalized Frobenius norm of the difference between the

reconstructed and original adjacency matrices, 1
N(N−1)‖W−Ŵ‖F . Table 4.1 shows the reconstruc-

tion errors for both networks. This indicates that the proposed reconstruction approach proposed

in Section 4.3.3 allows to reconstruct the networks reliably, up to minimal numerical error.

Table 4.1: Reconstruction errors

Network Error (mean ± st.dev.)

Stochastic Block 2.04×10−6±1.43×10−6

Erdos-Renyi 2.00×10−6±2.46×10−6
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4.3.5.4 Robustness to network anomalies

In this section, the robustness of the signals obtained from the resistance distance matrix to network

anomalies such as missing edges and anomalous edges is assessed. For all the anomalies, the error

is computed as the normalized Frobenius norm of the difference between the magnitude spectrum

of the original graph and the anomalous graph, 1
N(N−1)‖M− M̂‖F . By computing the error based

on the magnitude spectra of all components instead of the actual signals we avoid misleading error

computations that might arise in cases such as ring networks. For ring networks, the corresponding

signals are sinusoids and for certain types of anomalies the resulting degraded signal is close to

zero, which may result in a small error.

First, we assess the robustness of the method to missing edges. For a weighted ring lattice

and a stochastic block network, the weights were uniformly distributed between 0 and 1. Edges

are removed at random, while ensuring that the network remains connected. Figure 4.5 (a) and

(b) show the error in the signal’s spectra for a ring lattice network with N = 128 and N = 256

nodes, respectively, and the percentage of missing edges ranging from 5% to 20% in increments

of 5%. A total of 100 simulations were performed. Figure 4.5 (c) shows the errors for a stochastic

block network with 3 clusters as the probability of attachment is varied, which is equivalent to

adding more edges to the network, and the percentage of missing edges ranged from 5% to 50%

in increments of 5%. As shown in this figure, networks with higher probability of attachment,

resulting in more connections, are more robust to the removal of edges.
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Figure 4.5: Error of the magnitude spectrum. (a) and (b) Ring lattice network with average degree
K equal to 4, 16, and 64 consisting of N = 128 and N = 256 nodes, respectively; (c) Stochastic
block network, 3 clusters and probability of attachment p = 0.1, p = 0.3, p = 0.5.

Next, we investigate the robustness of the method when certain edges are anomalous by vary-

ing their weight within a certain range. We simulated a weighted ring lattice and a stochastic

block network with N = 128 nodes, whose edge weights are uniformly distributed within the range

[0.75,1.25]. The ring network has an average degree K = 16, and the stochastic block network has

3 blocks with a probability of attachment p = 0.4. The weight of an anomalous subset of edges

is then taken from different amplitude ranges: Range 1: [0.8,1.2], Range 2: [0.6,1.4], Range 3:

[0.4,1.6], Range 4: [0.2,1.8], and Range 5: [0,2]. Figure 4.6 (a) and Figure 4.6 (b) show the error

of the magnitude spectrum for the ring lattice network and the stochastic block network, respec-

tively. For both networks, the error increases proportionally to the range of possible values for the

anomalous edges and the percentage of anomalous edges.
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Figure 4.6: Error of the magnitude spectrum from a ring lattice network (a) and a stochastic block
network (b) with one anomalous edge whose weight ranged in the intervals [0.8,1.2], [0.6,1.4],
[0.4,1.6], [0.2,1.8], and [0,2].

4.4 Small-world network characterization

In this section, we propose to characterize the network structure based on the spectrum of the

signals X. We focus on small-world networks and compare our proposed method to the con-

ventional small-world measure for estimating the small-world parameters. Humpires et al. [53]

proposed to use the small-world measure for estimating the probability of rewiring, pr, of real

networks with small-world characteristics. They propose to find the pr that minimizes the error

e(K, pr,N) = |σ(K, pr,N)−σtest |, where σ(K, pr,N) is the small-world measure of a simulated

small-world network with known degree K, probability of rewiring pr, and N nodes, and σtest is the

small-world measure computed from the network under test. However, this estimation method may

be affected by various factors related to the small-world measure, as discussed in the introduction.

In this section, we propose to estimate the small-world parameters by correlating the spectral

centroid of the signals X with the spectral centroid of a baseline network. The spectral centroid is

the first moment of the normalized power spectral distribution of the signal. Specifically, we denote
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the vector of spectral centroids from a baseline simulated network as cB = (cB
1 ,c

B
2 , ...,c

B
N), where cB

i

refers to the spectral centroid of the ith signal. Similarly, we denote the vector of spectral centroids

of the test network as ctest = (ctest
1 ,ctest

2 , ...,ctest
N ). Thus, the parameters K and pr of the small-world

network under test are found empirically to maximize the correlation coefficient between the two

vectors of centroids, ρ(K, pr,N) = corr(cB,ctest).

Weighted small-world networks with K = 8 and varying pr values were generated 100 times,

and then converted into fully connected networks by adding uniformly distributed noise. The

weights of the small-world structure were uniformly distributed between [0,1], while the noise

values were uniformly distributed in [0,1] for Fig. 4.7 (a), and in [0,0.25] for Fig. 4.7 (b).

The results in Fig. 4.7 show that the proposed method is more accurate than the small-world

measure in estimating the probability of rewiring, especially for low pr within the small-world

region. The small-world measure is dependent on the path length and clustering coefficient, which

change as more links are added to the network, whereas the spectra of the signals obtained from

the graph to signal transformation reflect the underlying small-world structure and is more robust

to small changes in the network structure.
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Figure 4.7: Estimated probability of rewiring pr in weighted small-world networks. Weights of the
small world structure are uniformly distributed in the interval [0,1] and noise values are uniformly
distributed in (a) [0,1], (b) [0,0.25].

89



4.5 Graph Entropy based on the graph to signal transform

In this section, we propose a measure for quantifying the structural information of graphs based

on the signals obtained from the networks. Since the signals X convey structural information of

the networks, these signals provide alternative distributions to base the graph information theoretic

measures on. Specifically, we consider the spectrum and the energy of the signals for computing

the Shannon entropy of the networks. The proposed method does not depend on the selection of

any parameter nor any graph theoretic measure unlike the previously introduced measures.

The magnitude spectrum of the ith signal is defined as Mi [ f ] = |F{xi}|2, where F denotes the

discrete Fourier transform, F{xi} = ∑
N
n=1 xi[n]e−

j2πnk
N . We denote M ∈ RN×C as the matrix whose

columns contain the magnitude spectrum of all signals. The normalized power spectrum of the ith

signal is computed as Pi [ f ] =
Mi[ f ]

∑
b(N−1)/2c
f=0 Mi[ f ]

, where f = 0,1, ...,b(N−1)/2c corresponds to discrete

frequency bins [153].

We propose to compute the graph entropy based on the normalized power spectrum of xi[n], i=

1,2, ...,C̃, where we consider the C̃ signals with highest energy. This parameter is selected empir-

ically similar to the selection of the total number of factors in Principal Components Analysis

(PCA). We propose to use the normalized power spectrum rather than the original signals for en-

tropy computation since computing the Shannon entropy directly on the signals does not necessar-

ily provide information about the network’s structural content. For example, for the ring network,

the corresponding signals are pure sinusoids 4.3.5 [44], [45], with almost uniform histograms and

thus resulting in high entropy. On the other hand, the power spectrum of a sine wave is well lo-

calized at a particular frequency (Fig. 4.8 (a)) thus its Shannon entropy is theoretically zero. This

is consistent with the intuition that a ring network is deterministic and thus should exhibit low

entropy.
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Figure 4.8: Power spectrum of the first graph signal for: (a) Ring network with K = 4; (b) Small
world network with pr = 0.01, pr = 0.05, and pr = 0.1; (c) Erdős-Rènyi network with p = 0.1,
p = 0.3, and p = 0.6; (d) Stochastic Block network with Ck = 2, Ck = 6, and Ck = 10 clusters,
N = 300 nodes for all networks. The frequency axis limits are adjusted in order to better illustrate
the spectrum.

The normalized graph entropy for the ith signal is then defined as

Hi =−
1

log(b(N−1)/2c)

b(N−1)/2c

∑
f=0

Pi [ f ] log(Pi [ f ]), (4.30)

where i = 1,2, ...,C̃ [153]. Since (4.30) refers to the Shannon entropy, it is bounded as 0 ≤ Hi ≤

log(N2/2). Similar to Shannon entropy, the lower bound is reached when the distribution is an

impulse, and the upper bound occurs when the distribution is uniform. In terms of graph structures,

the lower bound corresponds to the ring lattice and the upper bound to a random network.

As noted in Fig. 4.8, random networks transform into random signals with a high peak inversely

proportional to the probability of attachment p, and hence its spectra are random for all p. In order
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to account for the variation in the network entropy as the probability of attachment in random

networks varies, we introduce the energy of the signals. We propose to weight each entropy term

defined in (4.30) by weights wi =
‖xi‖1√
N‖xi‖2

, wi ∈ [ 1√
N
,1], using the fact that ‖x‖2≤ ‖x‖1≤

√
N‖x‖2.

These weights are normalized across signals as w̃i =
wi√

C̃‖w‖2
, where w = (w1,w2, ...,wC̃). We

define the weighted graph spectral entropy (GSE) as

GSE =
C̃

∑
i=1

w̃iHi. (4.31)

This definition of network entropy is independent of graph theoretic measures and the eigenspec-

trum of the adjacency matrix.

Another information theoretic measure of interest in graph theory is graph divergence. In order

to assess network dissimilarities, we define the graph Kullback-Leibler divergence based on the

graph signal spectrum. First, we define the power spectral density based on the first signal of the

graph Gi as PGi( f ). Next, we define the graph Kullback-Leibler divergence between graph G2 and

G1 as

DKL(PG1||PG2) =
b(N−1)/2c

∑
f=0

PG1( f ) log2
PG1( f )

PG2( f )
. (4.32)

where similar to Kullback-Leibler divergence, DKL(PG1||PG2) ≥ 0. Since the Kullback-Leibler

divergence is non-symmetric, we employ the Jensen-Shannon divergence, J-divergence, defined

as

J(PG1,PG2) =
DKL(PG1||PG2)+DKL(PG2 ||PG1)

2
. (4.33)

We compare the structural entropy obtained from the graph entropies previously defined (I fV1 ,
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I fV2 , and H 1) and the proposed graph-signal based spectral entropy for various networks. Four

networks were considered: ring lattice networks with degree K = 2,4,8,16, and 32, a small-world

network with K = 8 and probability of attachment p varying from 0.0001 to 1, a random network

with probability of attachment p from 0.1 to 1 in increments of 0.05, and a stochastic block network

with p = 0.1 and number of blocks Ck = 3,5,7,9. All networks have N = 300 nodes and the

entropies were computed for 200 simulations.

Fig. 4.9 shows the graph entropy for the four networks. As expected, GSE is close to zero for

the ring lattice network (Fig.4.9 (a)), whereas the other three entropy measures remain high for all

K. In the case of the small-world network (Fig. 4.9 (b)), increasing pr increases the network struc-

tural complexity, and GSE reflects this change in the network structure. Information functionals

increase as a function of the probability of rewiring as well, but remain high for low pr. For small

pr, the network is close to a ring and hence it has low structural complexity. On the other hand, as

pr increases, the network becomes more random and thus its entropy increases. Random networks

have high entropy for different probability of attachment p (Fig. 4.9 (c)). Finally, Fig. 4.9 (d)

shows the results for a stochastic block network. As reflected by GSE, as the number of clusters

increases, the entropy increases.

As observed from the different network structures, the information functionals are not con-

sistent at quantifying the structural complexity in the network. In addition, these require prior

knowledge of the network structure in order to select the parameter α . On the other hand, the

proposed graph spectral entropy quantifies the network structural information and is sensitive to

structural changes in the networks.
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Figure 4.9: Comparison of graph entropy measures for (a) Ring network, K = 2,4,8,16,32
(I fV1 ,α = 0.98 and α = 1.03); (b) Small world network, K = 4 and probability of rewiring pr
ranging from 0.0001 to 1 (I fV1 ,α = 0.95, and α = 1.05); (c) Erdős-Rènyi network, p from 0.05 to
1 in increments of 0.05 (I fV1 ,α = 0.95, and α = 1.1); (d) Stochastic Block network, Ck = 3,5,7,9
(I fV1 ,α = 0.95, and α = 1.1), and N = 300 nodes for all networks.

Next, graph divergence between two different binary networks is computed. In the first case,

the divergence between two small-world networks, one with mean degree K = 4 and p = 0.0001

and the other with the same mean degree but different p is assessed. The second case considers the

divergence between two stochastic block networks with 3 blocks, the first one with p = 0.9 and

the second one with varying levels of p. Figure 4.10 (a) and Figure 4.10 (b) show the results for

divergence for the small-world and the stochastic block network, respectively. In the small-world

network, as p increases, the network becomes less similar to the default network and hence an

increase in the divergence is expected. Similarly, in the stochastic block network, as p decreases,

the network becomes more random and thus deviates from the default network.
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Figure 4.10: Computation of graph divergence between (a) small-world network with K = 4 and
p = 0.0001 and another small-world network with increasing p; (b) Stochastic Block network
with 3 blocks and p = 0.9 and another Stochastic Block with 3 blocks and different probability of
attachment p.

4.6 Event detection in temporal networks

In this section, we present a method for event detection in temporal networks based on the proposed

graph to signal transform. We first introduce background on the tensor decomposition based on the

network’s adjacency matrix. Next, we describe the proposed method and compare its performance

to traditional tensor decompositions based on the adjacency matrix.

4.6.1 Tensor Decompositions for Temporal Networks

Tensor analysis provides a useful tool for revealing the underlying relationships of multilinear data

and can be thought of as an extension of PCA and Singular Value Decomposition (SVD) from vec-

tor to higher order data. Two major methods for factor analysis of multilinear data are Canonical

Polyadic Decomposition or Parallel Factor (CANDECOMP/PARAFAC) and Tucker decomposi-

tion [154]. CANDECOMP/PARAFAC is useful in applications where it is desired to factor the

data into components that are easily interpretable, such as rank-1 terms, whereas Tucker decompo-
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sition is used more often for compression and low-rank projections [139]. In this work, we focus

on the PARAFAC decomposition for extracting the temporal profile of dynamic networks since it

facilitates its interpretation.

Let X ∈ R I1×I2×···×IN be a Nth-order tensor. The PARAFAC decomposition approximates the

tensor X as the linear combination of R rank-1 tensors, expressed as [139]

X ≈
R

∑
r=1

λru
(1)
r ◦u(2)

r ◦ · · · ◦u(N)
r , (4.34)

where ◦ denotes the outer product. Alternatively, the decomposition in (4.34) can be expressed as

X ≈ D×1 U(1)×2 U(2)×3 · · ·×N U(N), (4.35)

where D = diag(λ1,λ2, ...,λR), and U(i) ∈ RIi×R, i = 1, . . . ,N, are the loading matrices.

In the analysis of temporal networks based on the adjacency matrix, a tensor Xa ∈ RN×N×T

is constructed, where Xa(:, :, t) = A(t) and Xa(:, :, t) = W(t), for binary and weighted networks,

respectively, and A(t) ∈ RN×N and W(t) ∈ RN×N are binary and weighted adjacency matrices at

time t, t = 1, . . . ,T , respectively. The tensor Xa can be decomposed as

Xa ≈
R

∑
r=1

λru
(1)
r ◦u(2)

r ◦u(3)
r , (4.36)

where u(1)
r ∈ RN×1 and u(2)

r ∈ RN×1 are the same in the case of undirected networks and contain

information regarding the node’s connectivity, and u(3)
r ∈ RT×1 is the temporal factor.
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4.6.2 Graph to signal transform based event detection

In this section, we propose a tensor decomposition method based on the network’s signals for

event detection in temporal networks. Let X(t) ∈ RN×C be the set of signals obtained through

CMDS (4.4) at time t. In order to obtain a better insight into the structure of the graph at each time

point, we consider the spectra of the graph signals at each time point. We denote the magnitude

spectrum of X(t) as M(t), and M(t)
i ∈ RN×1, i = 1, . . . ,C, to be the magnitude spectrum of the signal

xi(n) from the network at time t. We then form a tensor XS ∈ RF×C×T , where XS(:, :, t) = M(t),

and F corresponds to the total number of frequency bins, equal to dN
2 e considering only the positive

frequencies, C is the total of components obtained from CMDS, and T is the total number of time

points.

In order to understand the interactions between the different components across time and fre-

quency, we propose to decompose the tensor XS as

Xs ≈
R

∑
r=1

λru
(1)
r ◦u(2)

r ◦u(3)
r , (4.37)

where u(1)
r ∈ RF×1 is the spectral factor, u(2)

r ∈ RC×1 is the components factor, and u(3)
r ∈ RT×1

is the temporal factor. The tensor decomposition in (4.37) is performed via the MATLAB Tensor

Toolbox Version 2.6 [155], [156]. The algorithm enforces nonnegative constraints on the factors

and is based on the multiplicative updates of the Nonnegative Matrix Factorization in [157]. The

rank of the decomposition, R, is selected according to the core consistency [158].

We compared the proposed method and the tensor decomposition discussed in Section 4.6.1 in

the detection of sudden changes in the structure of temporal networks. We generated a temporal

weighted small-world network whose edge weights were uniformly distributed between 0.5 and

0.7. The networks consisted of 40 nodes and with p= 0.01 for the whole duration of 51 time points,
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and created an event by increasing p only at t = 31. Four different values of p were considered:

p = 0.05, p = 0.1, p = 0.15 and p = 0.2. A null network with the same properties but without

an abrupt event is also constructed for detection analysis, meaning that its size, probability of

attachment p and edge weights distribution is the same for all t. For each simulation and network,

a total of 200 repetitions were performed, and an Receiver Operating Curve (ROC) for different

p values is constructed. In order to construct the ROC, we compared the amplitude of the first

component of the temporal mode, u(3)
1null

(t) and u(3)
1alt

(t), at t = 31, corresponding to the null and

anomalous network, respectively, to a given threshold. A true detection is defined if the amplitude

of u(3)
1alt

(31) is greater than the threshold, whereas a false alarm is identified if the amplitude of

u(3)
1null

(31) is greater than the threshold.

The resulting ROCs for each p are shown in Figure 4.11. It can be observed that for all p,

the proposed method (blue) yields a larger area under the curve (AUC) compared to that obtained

from the adjacency matrices solely (red) indicating the method’s ability to detect sudden changes

in the network. Since the magnitude spectrum of the signals does not change considerably as long

as the network structure is the same, the temporal mode of the tensor XS will reflect only true

structural deviations. On the other hand, the entries of the adjacency matrix are distributed within

an interval of edge weights and the temporal mode of the tensor Xa is sensitive to deviations that

do not necessarily correspond to structural changes.
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Figure 4.11: Detection of an event consisting of a Small-World network whose probability of
attachment p changes from that of the default network (p = 0.01) at t = 31. ROCs are constructed
from the proposed method (blue) and adjacency matrix based method (red) for (a) p = 0.05; (b)
p = 0.1; (c) p = 0.15; (d) p = 0.2.

4.7 Characterization of Functional Connectivity Networks

In this section, we propose to characterize the network structure based on the spectrum of the

signals of functional connectivity networks from the cognitive control experiment described in

Chapter 2. Functional connectivity networks are constructed based on the bivariate phase-locking

value (PLV) described in Chapter 2 between pairs of electrodes, for both error and correct re-

sponses. A network for each subject was constructed by averaging the PLV over the frequency

bins corresponding to the theta band, 4-8 Hz, and the ERN interval, 25− 75 ms. These networks

were transformed into signals by using (4.12). The magnitude of the Fourier transform of each

component for error, Me, and correct, Mc, responses are shown in Figure 4.12 (a) and Figure 4.12
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(b), respectively. As observed in Figure 4.12 (a), the first components of error responses exhibit

high energy concentrated in the low frequencies and this energy shifts towards higher frequencies

as the component number increases. On the other hand, there is no clear trend in the spectrum

corresponding to correct responses. This suggests that functional connectivity networks from error

responses have a more organized structure than that of correct responses, which suggests to follow

a random, less organized structure.

Next, we assess the similarity of the signal spectra obtained from the error and correct func-

tional connectivity networks to that of a small-world network following the approach proposed in

Section 4.4. For both error and correct responses, we computed the spectral centroid for each sig-

nal and computed its correlation with that of a small world network for different average degrees K

and probabilities of rewiring pr. Table 4.2 shows the estimated parameters (mean± st.dev.) for dif-

ferent time intervals. As observed, FCNs from error responses are characterized with small pr and

K, characteristic of small-world networks, while CRN networks have higher pr and K, indicative

of increased randomness. On the other hand, as observed in Table 4.3, the small-world measure

does not reflect such difference. Previous works have reported increased small-worldness for ERN

compared to CRN [116]. Therefore, the proposed approach can serve as an alternative method

for the characterization of FCN structure in distinct cognitive states, and furthermore, estimate

network parameters.
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Table 4.2: Estimated small-world parameters.

Interval
Estimated small-world parameters

pr k
ERN CRN ERN CRN

-25 - 0 0.0113 ± 0.0152 0.2897 ± 0.3602 2.1111 ± 0.4714 9.2222 ± 6.9668
0 - 25 0.0060 ± 0.0044 0.3707 ± 0.3910 2 ± 0 13 ± 6.5530
25-50 0.0119 ± 0.0213 0.3474 ± 0.3636 2 ± 0 9.7778 ± 6.8561
50-75 0.0085 ± 0.0137 0.3533 ± 0.3801 2 ± 0 10.2222 ± 7.9377
75-100 0.0065 ± 0.0065 0.3622 ± 0.3897 2 ± 0 11.7778 ± 6.9583

100-125 0.007 ± 0.0111 0.2734 ± 0.3740 2 ± 0 12.5556 ± 6.2046
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Figure 4.12: Magnitude Spectrum for each signal obtained through network to signal transforma-
tion for (a) Error responses; (b) Correct responses.
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Table 4.3: Small-world measure.

Interval σ

ERN CRN
-25 - 0 1.165 ± 0.2827 1.1677 ± 0.2833
0 - 25 1.1635 ± 0.2823 1.1662 ± 0.2829

25 - 50 1.1689 ± 0.2823 1.1717 ± 0.2844
50-75 1.1653 ± 0.2826 1.1681 ± 0.2833

75-100 1.166 ± 0.2828 1.1687 ± 0.2835
100-125 1.1671 ± 0.2829 1.1698 ± 0.2836

4.7.1 Assessment of Graph Information Theoretic Measures in Functional

Connectivity Networks

Table 4.4 shows the entropy results (mean ± st.dev.) for the ERN and CRN FCNs over six dif-

ferent time intervals. For all intervals, FCNs from correct responses show higher entropy than

FCNs from error responses and this difference is significant for all intervals (p < 0.05, Wilcoxon

rank-sum test). This is consistent with the fact that the error-related negativity is associated with

increased synchronization which results in less random networks and hence lower network entropy.

In addition, the slight increase in the network entropy within the ERN interval (25-75 ms) can be

related to results from a previous study [159], where it has been shown that ERN is associated with

increased segregation within the FCN resulting in more clusters, i.e. higher entropy in the network

organization.

In addition, we correlate the entropy results of each subject with behavioral measures relevant

to the cognitive control experiment. In particular, we considered the post-error slowing (PES) and

post-error accuracy (PEA). PES is computed as correct response time after error responses minus

correct response time after correct responses, and PEA is computed as the accuracy after error

responses minus the accuracy after correct responses. Table 4.5 shows the correlation between
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Table 4.4: Graph entropy from cognitive control FCNs.

Entropy (mean ± st.dev.)
Interval (ms) ERN CRN p-value

-25-0 0.8511 ± 0.0197 0.8738 ± 0.0072 0.0001
0-25 0.8575 ± 0.0138 0.8726 ± 0.0073 0.0042

25-50 0.8594 ± 0.0130 0.8724 ± 0.0078 0.0048
50-75 0.8542 ± 0.0157 0.8713 ± 0.0095 0.0090
75-100 0.8510 ± 0.0168 0.8738 ± 0.0090 0.0003

100-125 0.8513 ± 0.0169 0.8723 ± 0.0066 0.0002

Table 4.5: Correlations between graph entropy and behavioral measures from cognitive control.

PES PEA
Interval (ms) ERN CRN ERN CRN
-25-0 0.1867 0.0325 -0.1086 0.0041
0-25 -0.0879 -0.0626 -0.269 0.054
25-50 0.3358 -0.2744 -0.0406 0.1959
50-75 0.2772 -0.0518 -0.1373 0.0299
75-100 0.3807 0.4019 -0.1183 0.1128
100-125 0.2976 -0.2697 0.2504 -0.128

the FCN entropy and behavioral measures over six different time intervals. As observed, PES is

positively correlated with the graph entropy of error FCNs over the ERN interval, while the FCN

entropy of correct responses is negatively correlated. This result follows previous studies showing

an inverse relationship between PES and increased synchrony in the error-related activity [160],

[161], and hence, PES is directly proportional to the network entropy during the ERN.

4.8 Conclusions

In this chapter, a new network to signal transformation based on the resistance distance has been

proposed for both binary and weighted networks. This is the first deterministic graph to signal

transform proposed for both binary and weighted networks. This transform is also shown to guar-

antee the reconstruction of the networks from their signals. Transforming graphs into signals
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provides the benefit of applying traditional signal processing measures to these signals in order to

assess certain properties of the networks. Along those lines, the proposed graph to signal trans-

form served as the basis for the introduction of graph information theoretic measures, an approach

for small-world network characterization, and an event detection approach in temporal networks

proposed in this chapter.

First, we showed theoretical properties of the proposed method and the resistance distance ma-

trix. The graph to signal transformation of various well-known network structures was illustrated

for both binary and weighted networks. For binary networks, the proposed method reveals struc-

tural attributes of the graphs not perceivable by a previously proposed distance matrix. Further-

more, analysis of perturbations in the network and how these are reflected in the proposed graph

to signal transform were presented as well. In addition, through simulations, we demonstrated the

behavior of our proposed technique to network anomalies.

Second, an approach for the computation of the structural information content of graphs using

the network to signal transform was introduced. The proposed method considers the normalized

power spectrum of the graph signal with the highest energy as a probability distribution to be

employed in the computation of Shannon entropy and Kullback-Leibler divergence. This method

is advantageous over current graph information theoretic measures due to its independence from

arbitrary parameters. The results from simulated networks illustrate that the proposed method

yields a reliable characterization of the structural information of the graph. Furthermore, it allows

for the quantification of the structural information of functional connectivity networks and reflects

differences between two cognitive states during the particular time interval of interest.

In addition, we introduced a graph-signal transformation based approach for detecting events

in temporal networks. The method is based on factor analysis of a tensor formed from the spectra

of the different signal components across time, where the factors along the time mode reveal the
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change to the network structure. We compared the temporal factors from the tensor decomposition

of the proposed approach to the factors from the tensor decomposition of the adjacency matrices

over time. By comparing the first component of the temporal mode at the time where the event

occurred, we showed from ROC analysis that the proposed method results in a higher detection rate

of abrupt structural changes in temporal networks when compared to the tensor decomposition of

adjacency matrices over time.

Lastly, it was shown how the proposed method can characterize the structural properties of

functional connectivity networks under different cognitive states. Following a priori knowledge

suggesting that functional connectivity networks behave as small-world networks, it was shown

how the spectral centroid of the functional connectivity networks signals from the proposed graph

to signal transform correlate to the spectral centroid of the signals from small-world networks,

for different network parameters. From these results, it was shown that functional connectivity

networks from error responses are highly correlated to a small-wold network, whereas the networks

for the correct responses are less correlated.
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Chapter 5

Dynamic Graph Fourier Transform

Recent research in signal processing over graphs has provided the tools for processing signals

defined on irregular domains such as graphs [49]. In many applications, such as social networks,

sensor networks, energy networks, and brain networks, among others, signals lie on the set of

vertices of the network. Other fields where data is defined on irregular domains include data

defined on manifolds and irregularly shaped domains [162], such as cells in histological images

[163], and data based on point clouds. Recently, it has been shown [164] how signal processing

methods adapted to signals on graphs such as filtering and Fourier transform defined in the context

of signal processing over graphs provide insights about learning processes in the brain.

Various transforms from signal processing have been adapted to the graph domain to analyze

the spectral content of signals over graphs. The first is the graph Fourier transform (GFT), which

aims to compute the Fourier transform of a signal defined on the vertices of a graph by employing

a basis obtained from the network's adjacency matrix [165] or Laplacian matrix [49]. Another

transform defined on graph signals is the windowed graph Fourier transform [166], which considers

the nonstationarity of the graph signals and transforms them to the vertex-frequency domain. In

order to define a windowed graph Fourier transform over graph signals, in [166] the authors define

generalized convolution, translation, and modulation operators for signals on graphs. In addition, a

wavelet transform for graph signals has been developed in [162], known as spectral graph wavelets
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since it is based on spectral graph theory. By doing this, scaling is defined from the eigenfunctions

of the graph Laplacian and avoid its computation over irregular domains. Recently, the joint time-

vertex Fourier transform [167] was proposed for graph signals evolving over time. The joint time-

vertex Fourier transform is found by first computing the GFT along the graph dimension and

the discrete Fourier transform along the time-domain. In addition, the dynamic graph wavelet

transform [168] has been proposed for the case when the time-vertex domain is dynamic. However,

in all of these approaches the underlying graphs are stationary.

In some applications, such as functional connectivity networks in the brain, the underlying

network structure varies over time [29], [169]. This requires the adaptation of the previously

mentioned graph signal transforms in order to consider the nonstationary network structure. For

example, in the case of the graph Fourier transform, the adjacency matrix or the Laplacian matrix

of the network changes for each time instance, and a unique spectral representation is not possible.

Therefore, there is no unique definition of frequency across time as the graph evolves. One alter-

native would be averaging of the adjacency matrix or the Laplacian [51]. However, averaging does

not necessarily find the optimal subspace across time. This problem has been previously addressed

by defining a common Laplacian across time, where a common subspace was found by means of

Grassmann manifolds [50]. There, the authors used this common subspace in the definition of a

dynamic graph Fourier transform. However, the accuracy of a common subspace is compromised

as the number of time points increases. In addition, when the network structure is nonstation-

ary, the size of the window in which the common subspace is found should be determined by the

characteristics of the network.

In this chapter, we propose a dynamic graph Fourier transform (dGFT) for which a common

subspace estimate is found by means of tensor decomposition. The temporal network adjacency

matrices or Laplacian matrices over time constitute a 3-way tensor. The Tucker decomposition of
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this tensor results in orthonormal component matrices which define the basis of the time-varying

Laplacian operator. The obtained basis and the corresponding subspace are optimal in the sense of

finding the best low-rank approximation to the Laplacians across time.

This chapter is organized as follows. Section 5.1 introduces background on graph signal pro-

cessing and tensor decompositions. Section 5.2 presents the proposed tensor based dGFT. Sec-

tion 5.3 presents results on simulated graph signals and dynamic functional connectivity networks

(dFCNs) constructed from cognitive control EEG experiment. Section 5.4 presents the conclusions

and future work.

5.1 Background

5.1.1 Graph Signal Processing

A graph signal f : V → R is defined on the vertices of the graph G. It is represented by a vector

f ∈ RN×1, and the ith element of this vector corresponds to the signal at vertex vi [165]. Thus,

signal amplitudes at each node define a graph signal, and it is indexed by the graph nodes. Since

the signals are defined over the graph nodes, the underlying network structure plays an important

role in the definition of transformations of the signals f. In particular, the adjacency matrix or the

graph Laplacian are employed in the analysis of graph signals.

In this work, we focus on the graph Laplacian. The Laplacian L is a positive semidefinite and

real matrix and thus has a complete set of orthonormal eigenvectors {ul}l=0,1,...,N−1, and eigenval-

ues {λl}l=0,1,...,N−1, 0 = λ0 ≤ λ1 ≤ ·· · ≤ λN−1. Therefore, it admits the eigendecomposition

L = UΛUT , (5.1)
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where U = [u0,u1, . . . ,uN−1], and Λ = diag{λ0,λ1, . . . ,λN−1}.

The spectrum of the graph Laplacian has been widely used in applications such as clustering

and spectral matching. Recently, the Laplacian eigenvectors {ul}l=0,1,...,N−1 have been proposed

as the Fourier basis for the graph Fourier transform [49]. As in the classical Fourier analysis,

the eigenvectors of L provide a notion of frequency since, for connected graphs, the eigenvector

corresponding to the smallest eigenvalue is constant, equal to 1√
N

. As the frequency λi increases,

the eigenvectors oscillate more rapidly.

The graph Fourier transform (GFT) of f defined on the graph vertices V is given by [49]

f̂ (λl) = 〈f,ul〉=
N

∑
i=1

f (i)u∗l (i), (5.2)

where ul, l = 0,1, . . . ,N−1 correspond to the eigenvectors of the graph Laplacian, and the frequen-

cies are indexed by its corresponding eigenvalues. The inverse graph Fourier transform (iGFT) is

obtained by

f (i) =
N−1

∑
l=0

f̂ (λl)ul(i). (5.3)

In matrix form, the graph Fourier transform and its inverse are given as

f̂ = UT f, (5.4)

and

f = Uf̂, (5.5)

respectively.
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The graph Laplacian is the discrete difference operator, and for every vector y ∈RN it satisfies

yT Ly =
1
2

N

∑
i, j=1

Wi j(yi− y j)
2, (5.6)

where Wi j is the (i, j) entry of the graph adjacency matrix. In the context of graph signal processing,

the graph Laplacian quadratic form, S2(f) = fT Lf is referred to as the smoothness of the signal f

with respect to the Laplacian L. The GFT can be interpreted in terms of the smoothness of the

graph signals the GFT of a smooth signal will occupy the low frequencies λ in the spectrum, and

will have a small S2(f). This occurs when two neighbor vertices are connected by a edge with large

weight and the signal f at those vertices has similar values.

In order to filter the graph signals, low-pass ĥLk, band-pass ĥBk and high-pass ĥHk graph filters

are defined as

ĥLk = I{k<KL}, (5.7)

ĥBk = I{KL≤k<KL+KB}, (5.8)

ĥHk = I{KL+KB≤k}, (5.9)

where KL and KB correspond to the cut-off frequencies and I is the indicator function. The

graph signals f are filtered as f̂L = ĤL f̂ , f̂B = ĤB f̂ , and f̂H = ĤH f̂ , where ĤL = diag(ĥLk),

ĤB = diag(ĥBk), and ĤH = diag(ĥHk) are the filters. Taking the iGFT we obtain the filtered

graph signals fL, fB, and fH .
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5.1.2 Tucker Decomposition

Let X ∈ R I×J×K be a 3rd-order tensor. The tensor A can be decomposed by means of Tucker

decomposition as

X ≈ C ×1 B(1)×2 B(2)×3 B(3), (5.10)

where C ∈RI×J×K is the core tensor and the factor matrices B(1) ∈RI×I , B(2) ∈RJ×J , and B(3) ∈

RK×K are orthogonal. The matrices B(1), B(2), and B(3) can be obtained as the left singular vectors

of X(1) ∈ RI×JK , X(2) ∈ RJ×KI , and X(3) ∈ RK×IJ , respectively [170], illustrated in Figure 5.1.

For large matrices, the factor matrices B(i) can be obtained as the eigenvectors of X(i)XT
(i). It is

important to emphasize that the Tucker decomposition is not unique. The Tucker decomposition

based on matrix unfolding discussed before is referred to as Tucker 1 [171]. Other decompositions

are referred to as Tucker 2 and Tucker 3, and these allow rank reduction in more than one mode,

which should be specified from the user. Some observations about Tucker 3 [171] include its

flexibility since the core allows interactions between factors in different modes, and that it cannot

determine the component matrices uniquely.
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Figure 5.1: Tensor unfolding.

5.2 Dynamic Graph Fourier Transform on Temporal Networks

Consider the dynamic network G(t) = (V,E(t),A(t)), t = 1,2, . . . ,T , to be a time-varying network

whose edges vary with time and the vertex set remains constant. The adjacency matrices A(t)

over time constitute the 3-way tensor A ∈ RN×N×T , where N is the total number of vertices, T is

the total number of time points, and A (:, :, t) = A(t). Similarly, we can define the 3-way tensor

D ∈ RN×N×T from the degree matrices D(t) over time, where D(:, :, t) = D(t). Since in traditional

GFT the eigenvectors of the Laplacian define the basis for the transform, we use the same idea

to find the common subspace of the Laplacians, L(t), across time. Some possible approaches

to combining multiple Laplacians include averaging, weighted averaging [172, 173] and a more

recent optimization framework based on a maximum likelihood criterion [174]. In order to find the

common subspace, we define the 3-way tensor from the Laplacians of the time varying graph as

L ∈ RN×N×T , where L (:, :, t) = D(:, :, t)−A (:, :, t), and find the subspace information through

Tucker decomposition as
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L ≈ C ×1 U×2 U×3 V, (5.11)

where C ∈ RN×N×T is the core tensor and U ∈ RN×N , and V ∈ RT×T are the orthogonal factor

matrices along the connectivity and time modes. Due to the symmetry of L along the first and

second modes, the corresponding factor matrices are identical.

We propose to consider the left singular vectors of the matrix L(1) ∈RN×NT , ul, l = 0,1, . . . ,N−

1, as the common basis to be employed in the graph Fourier transform of the time-varying network

G(t). This procedure avoids the need for finding a common Laplacian matrix as an intermediate

step and uses the orthogonal basis that spans the connectivity mode across all time. A common

Laplacian LT = UΣUT is computed, where Σ = diag(σ1,σ2, . . . ,σN) are the singular values of

L(1).

Let f(t) ∈RN×1 be the signal defined on the vertices V at time t. The dGFT of f(t) is then given

by

f̂ (t)(λl) = 〈f(t),ul〉=
N

∑
i=1

f (t)(i)u∗l (i), (5.12)

where ul is the lth column of U in (5.11). Note that this transform is a function of time and vertex

frequency. We also define the dGFT based on the eigenvectors of the average Laplacian matrix LA

over time, L̂A = 1
T ∑

T
t=1 L(t) and denote it as dGFTL.

5.3 Results

In this section, we first compare the dGFT obtained from the proposed method and the average

Laplacian. Second, we assess the dynamic graph Fourier transform on dynamic functional connec-
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tivity networks for the cognitive control study.

5.3.1 Simulations

We simulated a weighted ring lattice network with N = 100 nodes, with average degree K = 4 for

T = 80. At each time instance, the edge weights were selected randomly from the interval [0.75, 1]

in order to simulate slight variations present in real networks. The signal f(t) ∈ RN×1 is defined as

f(t) =



v(5)10 , t = 0, . . . ,20,

v(5)10 +v(12)
40 +v(50)

60 , t = 21, . . . ,50,

v(75)
5 +v(12)

40 +v(35)
80 , t = 51, . . . ,T,

(5.13)

where v(t)i is the ith eigenvector of the network Laplacian at time t.

Figure 5.2 shows the results from the proposed dGFT (5.12). The results from dGFTA in this

simulation are similar and not shown. In order to facilitate the interpretation of the results, the

frequency axis is normalized by the largest eigenvalue. As expected, in the interval 0≤ t ≤ 20 the

frequency content of the network corresponds to v(5)10 , which extends until t = 50. In the second

interval, 21≤ t ≤ 50, there are in addition the frequency components corresponding to eigenvectors

40 and 60. Finally, during the last interval there are components corresponding to eigenvectors 5,

40, and 80.
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Figure 5.2: DGFT of a ring network with N = 100 nodes and K = 4 over T = 80 seconds. The
graph signal is composed of different components over time, which are extracted by the proposed
method.

Next, we assess how the proposed common subspace is affected by changes in the network

structure. A dynamic Erdős-Rènyi graph is generated for T = 8 time points, with N = 60 nodes

and probability of attachment p = 0.75. The weights are varied randomly in the interval [0.75, 1]

(Interval 1) for the first T1 time points and in [0.25, 0.5] (Interval 1) for the remaining T - T1 time

points. We consider three different T1: T1 = 2, T1 = 4, T1 = 6. This simulation is performed for

two different graph signals f(t)1 and f(t)2 , t = 1, . . . ,T , with their amplitudes uniformly distributed in

[0.9, 1] and [-1, 1], respectively. In order to assess the performance of the proposed method, we

computed the average error within a time interval as 1
T ′ ∑

T
′

t=t1‖L̃−L(t)‖F , where T
′
is the duration

of the interval and L̃ is the estimated common Laplacian over all time, either LT or LA. We also

computed the coding gain, CG(U,L) which quantifies how the common subspace diagonalize the

Laplacian pseudoinverse at time t, L†(t), and is computed as
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Table 5.1: Performance of the proposed LT and LA.

Error CG
Interval 1 Interval 2 Interval 1 Interval 2

T1 LT LA LT LA LT LA LT LA
2 116.367 132.798 79.985 74.662 0.924 0.924 0.935 0.935
4 74.220 91.021 89.761 89.306 0.923 0.923 0.935 0.935
6 43.004 52.428 92.873 91.602 0.923 0.923 0.935 0.935

Table 5.2: MSE of the smoothness of f(t)1 from LT and LA.

MSE
Interval 1 Interval 2

T1 LT LA LT LA
2 1.039 ± 0.132 1.190 ± 0.152 0.949 ± 0.123 0.688 ± 0.088
4 0.853 ± 0.093 1.071 ± 0.117 1.288 ± 0.142 1.069 ± 0.117
6 0.502 ± 0.058 0.687 ± 0.079 1.288 ± 0.150 1.180 ± 0.137

CG(U,L†(t)) = (
∏

N
i=1 L†(t)

ii

∏
N
i=2(UtL†(t)

ii U)ii

)1/N . (5.14)

In addition, we computed the mean squared error (MSE) of the smoothness from each of the

common Laplacians, MSE(S2LT (f(t))) =
1

T ′ ∑
T
′

t=t1(S2LT (f(t))− S2(f(t)))2 and MSE(S2LA(f
(t))) =

1
T ′ ∑

T
′

t=t1(S2LA(f
(t))−S2(f(t)))2.

Table 5.1 shows the average error and coding gain computed over each interval for T1 = 2,

T2 = 4, and T3 = 6. As observed, the proposed LT results in reduced error than LA with the

network weights are high, whereas it is the opposite for smaller weights. Moreover, when the

network connectivity is stronger (Interval 1), the error from both methods is inversely proportional

to the duration of the interval. On the other hand, the average coding gain from both methods is

close. Next, we assess the MSE of S2(f(t)) for f(t)1 and f(t)2 computed over each interval, shown in

Table 5.2 and Table 5.3, respectively. For both signals, this error is directly proportional to the error

of the common Laplacians shown in Table 5.1. Together, these results suggest that the common

subspace from LT preserves better the strong connectivity in the networks.
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Table 5.3: MSE of the smoothness of f(t)2 from LT and LA.

MSE
Interval 1 Interval 2

T1 LT LA LT LA
2 104.016 ± 13.990 118.973 ± 15.990 94.671 ± 12.720 68.783 ± 9.250
4 87.660 ± 12.700 110.198 ± 15.980 132.627 ± 19.280 110.044 ± 16.000
6 50.121 ± 6.490 68.645 ± 8.830 128.681 ± 16.430 117.856 ± 15.030

5.3.2 Dynamic Functional Connectivity Networks

The proposed method is applied to EEG data obtained from the cognitive control experiment. The

adjacency matrices for each subject S at time t, A(t)
S , are averaged over subjects to construct the

dFCN Â(t) = 1
T ∑

S
s=1 A(t)

s . The Laplacian matrix L(t)
Â

is then computed for this average adjacency.

A 3-way tensor L k ∈ RN×N×T is constructed for each time interval k,= 1, . . . ,6: [-25 ms, 0 ms],

[0 ms, 25 ms], [25 ms, 50 ms], [50 ms, 75 ms], [75 ms, 100 ms], and [100 ms, 125 ms], where

N corresponds to the number of electrodes, N = 58, and T to the total number of time points,

T = 14 corresponding to the total number of time samples within each interval. The tensor L k is

decomposed following (5.11) and the dGFT is computed for each interval k.

Figures 5.3 and 5.4 show the dGFT for each time interval from error and correct responses,

respectively. As observed in Figure 5.3, the spectral energy from error responses is high around

the ERN time interval [25 ms, 75 ms], specifically in the low frequencies. As shown in Figure 5.4,

the spectral energy from correct responses remain mostly uniform except in intervals during the

ERN where high energy is concentrated in the mid frequencies. The presence of high energy at

low frequencies within the ERN interval in error responses reflects that during this time the graph

signal is smooth with respect to the underlying network structure. On the other hand, high energy

in higher frequencies suggests that the underlying network structure is less organized with respect

to the graph signals.
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Figure 5.3: dGFT of the ERN dFCN over the interval [-25 ms, 125 ms].
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Figure 5.4: dGFT of the CRN dFCN over the interval [-25 ms, 125 ms].
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For each interval we filter the graph signals f(t)ERN and f(t)CRN in the low, medium, and high fre-

quency bands, where the low and middle bands are of equal length (K = 20) and the high frequency

band length is K = 18 points. The signals are filtered in the frequency domain and then the iGFT

is computed from the common basis for the corresponding window. Figures 5.5-5.10 show the

topoplots corresponding to the graph signal in the middle of each interval, filtered in the three

different frequency bands. For all time intervals, and for both response types, the highest energy

is found in the low frequency band. It can be shown from these figures a high positive energy in

the lateral and parietal regions during the ERN interval, with a strong negative component in the

frontal-central regions. This is consistent with findings from previous works which relate lateral

and central regions to be relevant during the ERN. On the other hand, CRN appears less organized,

except in the [25 ms, 50 ms] interval.
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Figure 5.5: Topoplots from filtered signals in the low, medium and high graph frequency bands.
Interval: [-25 ms, 0 ms].
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Figure 5.6: Topoplots from filtered signals in the low, medium and high graph frequency bands.
Interval: [0 ms, 25 ms].
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Figure 5.7: Topoplots from filtered signals in the low, medium and high graph frequency bands.
Interval: [25 ms, 50 ms].
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Figure 5.8: Topoplots from filtered signals in the low, medium and high graph frequency bands.
Interval: [50 ms, 75 ms].
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Figure 5.9: Topoplots from filtered signals in the low, medium and high graph frequency bands.
Interval: [75 ms, 100 ms].
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Figure 5.10: Topoplots from filtered signals in the low, medium and high graph frequency bands.
Interval: [100 ms, 125 ms].
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5.4 Conclusions

In this chapter, a dynamic graph Fourier transform based on the common basis obtained from the

Tucker decomposition of the temporal network Laplacian tensor has been introduced to assess

nonstationary networks. Simulations results show the effectiveness of this method under different

scenarios. Furthermore, the proposed method was applied to EEG data from a cognitive control

study to determine the brain regions that are highly involved in the ERN and to better understand

the smoothness of the network during ERN. Future work will concentrate on extending the pro-

posed method to account for both the common and the individual subspaces within each window,

following the ideas from linked multiway tensor analysis. In addition, only stationary graph sig-

nals were considered. Future work will focus on extending non-stationary graph signals processing

methods to account for nonstationarities in both the graph and the network domain.

126



Chapter 6

Conclusions and Future Work

In this thesis, we proposed a series of diverse techniques that aim to improve the quantification of

multivariate functional connectivity in the brain. In Chapter 3, we addressed the problem of quan-

tifying global synchrony, which cannot be addressed by traditional bivariate measures such as PLV.

We introduced a novel measure of multivariate synchrony based on a hypertorus synchrony (HTS),

which is equivalent to the Cartesian product of unit circles parameterized by phase differences. As

PLV quantifies the variability of vectors in the unit circle parameterized by the phase difference

between two oscillators, HTS quantifies the variability of unit vectors in the flat hypertorus param-

eterized by the phase difference between the current oscillator and the average phase of the other

oscillators. Furthermore, by relying on the Cartesian product of circles, this definition ensures that

the measure has good topographical sensitivity since it does not depend on the ordering of the

phase differences.

This measure has a major impact on the study of functional connectivity since it allows for

the quantification of global connectivity across different regions, not possible from bivariate PLV.

Our results show that fronto-lateral and medial central regions exhibit greater functional integra-

tion during the ERN interval. Furthermore, the representation of functional integration as provided

by HTS allows for correlating multivariate synchrony and behavioral measures of post-error ad-

justments, such as post-error accuracy (PEA) and post-error slowing (PES). Correlations between
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HTS and PES compared to HTS and PEA show hemispherical topographical differences, suggest-

ing that PES and PEA rely on different neural mechanisms. Specifically, it was shown that reduced

PES is associated with increases in multivariate synchrony in frontal and parietal regions. This

suggests that these regions are involved in the adaptivity between reduced PES and error-related

neural activity. On the other hand, it was observed that PEA is associated with increased frontal

synchronization, implying the integration of mPFC and lPFC in signaling and updating adaptive

control mechanisms.

In Chapter 4, we introduce a method for transforming both weighted and binary networks into

signals and applied this framework for the first time to the assessment of functional connectivity

networks. In this work, we proposed to employ the resistance distance matrix as the distance ma-

trix for classical multidimensional scaling (CMDS). The resistance distance is a valid Euclidean

distance, and therefore guarantees the positive definiteness of the matrix for CMDS. Through this

transformation, its is possible to overcome some of the drawbacks of graph theoretic measures.

We showed that the signals obtained from the resistance matrix for binary networks follow results

based on another previously proposed distance, and the signals from the resistance distance matrix

contain additional information regarding the network structure. In addition, we showed that this

transformation is robust to anomalies in the network and it is possible to reconstruct the original

networks from the signals obtained from this transformation. Furthermore, transforming the net-

works into signals facilitates the computation of signal processing measures on graphs, such as

information theoretic concepts. In this chapter, we presented a new graph entropy and divergence

measure based on the signals from networks. The proposed methods apply the Shannon entropy

and Kullback-Leibler divergence to the spectrum of the signals and are independent of any pa-

rameters opposed to current graph information theoretic measures. Finally, we proposed an event

detection method for temporal networks based on the tensor decomposition of the magnitude spec-

128



tra of the signals over time, which is more sensitive to changes in the network structure. When

applied to functional connectivity networks from a cognitive control experiment we observed the

networks are well correlated with small-world networks, with networks from error responses be-

ing more correlated, following previous results. In addition, the proposed graph entropy measure

suggests that functional connectivity networks from error responses during the ERN interval are

more structurally organized than those from correct responses and divergence between error and

correct networks increases during that interval.

Finally, in Chapter 5 we presented a dynamic graph Fourier transform (DGFT) which relies on

tensor decomposition of the graph Laplacian over time for finding a common basis. This transform

allows for the computation of the GFT for signals defined on time-varying networks, as it occurs

in functional connectivity networks. Defining such a transform presents an alternative way of

looking at functional connectivity networks, allowing for the study of the relationships between

the responses recorded at the electrodes and its underlying network. Specifically, this brings a

sense of smoothness and structural organization in the network. Our results demonstrate that error

responses during the ERN interval result in a more structured and smooth network when compared

to correct responses. Future work will focus on the computation of both common and individual

subspace, which can be achieved from a linked multiway tensor decomposition. In addition, pre-

processing for determining change points and defining the window length will be beneficial.
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