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ABSTRACT 

THE CHARACTERIZATION OF A PLAIN CONCRETE EQUIVALENT ELASTIC 

FATIGUE CRACK RESISTANCE CURVE UNDER VARIOUS LOADING REGIMES 

 

By 

Nicholas Andres Brake 

Concrete is a quasi-brittle material that exhibits a large residual bridging stress zone in the wake 

of a dominant crack tip. These stresses often influence the ‘size effect’ observed in standard 

strength tests.  In fatigue, they often cause a ‘load history’ effect that alters the propagation rate 

by mitigating the stress intensities located at the crack tip. This mitigation often leads to the 

formation of two distinct crack rate regions known as the deceleration and acceleration region, 

respectively.  

The cyclically induced residual bridging stresses also influence the ‘size effect’ that is 

manifested through the logC in the Paris Law. In this study, it is shown that with the use of size 

dependent equivalent cyclic crack resistance curve, one may obtain a unique and size-

independent set of Paris parameters.  

 A total of 48 three point bending single-edge notch specimens were tested. Two different 

sizes were studied under both quasi-static and fatigue loading.  The fatigue tests were conducted 

using three different loading regimes: constant, variable, and random amplitude loading. 

 Under quasi-static loading, a new method to determine an equivalent cyclic crack 

resistance curve is proposed. It is a hybrid experimental technique driven by two governing beam 

equilibrium conditions and a ‘corrected’ crack length criterion.  The proposed technique back-

calculates 4 bridging parameters that govern an assumed exponential stress distribution. A 

weight function was then used to determine the equivalent resistance curve as a function of crack 



 

 

extension and applied load. The behavior of the cyclic equivalent resistance curve was then 

parameterized. It is then concluded that the back-calculated bridging stress distribution could be 

used to determine the capacity of the structure with a moment equilibrium condition and a 

resistance that could be used for fatigue loading scenarios. 

 Under constant amplitude fatigue loading, it is shown that the equivalent cyclic crack 

resistance curve is directly related to the crack propagation rate and can be obtained if the 

following two conditions are satisfied: i) the crack resistance starts at zero, and ii) the post-peak 

slope is defined. It is then shown that if these conditions are satisfied, a unique 3 parameter 

equivalent resistance curve is obtainable using only experimental crack rate and stress intensity 

data.  

Fatigue tests were then carried out under constant, variable, and random amplitude 

loading. The results suggest that the proposed functional form of the equivalent crack resistance 

curve under quasi-static loading is adequate in describing the equivalent fatigue resistance under 

the three fatigue loading regimes. In addition, it is also shown that if a size dependent fatigue 

resistance curve is inserted into the Paris law, logC and n become unique. 

 Finally, the fatigue damage under variable and random amplitude loading is simulated 

using the average values for the larger size specimens. The simulated fatigue fracture prediction 

is compared to the prediction using a linear damage rule (LDR). The error is shown in terms of 

number of cycles to failure, N, and depends on the loading sequence. The adequacy of the LDR 

is assessed under a random concrete pavement stress distribution and is shown to over-predict 

damage by nearly 30 % if the LDR is calibrated with constant amplitude loading tests. 
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CHAPTER I 

INTRODUCTION 

 

This dissertation focuses on the characterization of crack wake bridging stresses under different 

forms of loading in plain Portland Cement Concrete (PCC). The bridging stresses are interpreted 

through a cyclic crack resistance curve. A large emphasis is placed on defining the cyclic crack 

resistance curve under fatigue, developing new methods to obtain it, and comparing it to quasi-

static behavior. Since quasi-static fracture tests are significantly easier and less time consuming 

to conduct, a large emphasis of this research is placed on comparing fatigue and quasi-static 

results. The study is then concluded by highlighting the advantages and disadvantages of 

predicting transverse fatigue cracking in concrete pavements using a linear damage rule (LDR).   

Background 

Transverse fatigue cracking is a common concrete pavement distress and is triggered by a 

combination of truck traffic, thermal loads, pre-existing flaws, and built-in moisture and thermal 

gradients. Moreover, the fatigue damage process is complex because the material is 

heterogeneous and suffers from a variety of pre-loading flaws such as air voids and shrinkage 

cracks. The current design method for transverse cracking is a mechanistic-empirical approach 

that uses a calibrated, field-inspired, LDR to predict damage. The LDR is calibrated based on the 

percentage of slabs cracked over a given stretch of roadway. It is argued that a mechanistic-

empirical approach is necessary due to the myriad of unknown, stochastic processes that 

influence pavement performance. The argument is that many of the unknowns can be 
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circumvented by this ‘brute force’ approach and produce a reliable design. The disadvantage 

however, is that it relies on regional calibration factors that limits the broadness of the model.  

The LDR used in the design method is founded on Miner’s hypothesis and relates stress 

ratio to the number of cycles to failure. It is not sensitive to load sequence effects and will incur 

some prediction error under variable and random amplitude loading scenarios. Since pavement 

stresses depend on a collection of random processes, the stresses tend to follow a random 

distribution and thus, the current prediction model should incur some error. This error caused by 

load sequence effects has yet to be explained. 

The current design method can be strengthened if the damage mechanism is described in 

terms of fracture mechanics, which can account for load history effects, R-ratio, and stress ratio 

using a modified Paris law.  The load sequence effect can be assessed by inserting a pavement 

random stress sequence into a modified Paris law and comparing it to a LDR output over the 

same sequence. The difference of the results can be used as a design reliability measure and used 

to explain a portion of the total prediction error observed at the distress level (percent slabs 

cracked).   

Problem Identification 

The investigation of the load history effects shown in this dissertation was carried out with the 

use of a stress ratio based LDR and a modified Paris fatigue fracture model. There is a 

considerably large library of linear elastic fracture mechanics fatigue models for metallic 

materials. For concrete materials however, the library is quite small. Although there has been a 

considerable amount of research dedicated to concrete fatigue, most explain the phenomenon 

within the context Miner’s hypothesis (or an LDR).   
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Very little research in fatigue has been conducted using fracture mechanics and for the 

studies that do exist, they are limited to simple Paris laws. The major limitation of the Paris law 

is that it cannot account for the residual bridging stresses along the wake of a dominant crack. 

These stresses strongly influence the fatigue life and are one of the variables that create the peak 

stress ‘size effect’. The effect of these stresses in fatigue is manifested by two distinct crack rate 

stages: a deceleration stage and an acceleration stage. Many of the fatigue studies neglect the 

deceleration stage altogether because the Paris law alone cannot explain this stage.     

The residual stresses may be influenced by the type of concrete, nominal maximum 

aggregate size, water to cement ratio, boundary conditions, and curing conditions. It is also 

influenced by a crack closure effect that is governed by an inelastic zone ahead of the crack tip. 

In concrete, the behavior above the crack tip will dictate the R-ratio effect and control the 

permanent deformation along the crack wake, which in turn influences the crack shielding.  

 Before assessing the load history effect in a pavement system, a fatigue fracture model 

that can account for residual stresses in the crack wake and front (FPZ) needs to be developed.  

This means that it is necessary to determine the evolution of these residual stresses under 

different loading regimes and in different structural sizes.   It is also important to understand the 

similarities of these residual bridging stresses between quasi-static and fatigue loading. Quasi-

static tests can be executed more rapidly than high-cycle fatigue tests and thus it would be useful 

to identify common characteristics. If they are similar, a quasi-static test can be used in lieu of 

the high cycle fatigue test.  
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Research Objectives 

This research has two major objectives: 1) quantify the bridging residual stresses under quasi-

static loading and determine an equivalent crack resistance curve. Next, assess whether it is 

possible to use the functional form of  the found equivalent crack resistance curve (under quasi-

static loading) to predict fatigue loading for two different sized, three point bending, single edge 

notch specimens (TPBSEN); 2) Determine the load history prediction error associated with using 

a LDR under a random load distribution. 

More specifically, the objectives of this dissertation are the following: 

 Objective 1: For different size specimens, 

o Determine the equivalent crack resistance curve under quasi-static loading. 

o Develop a fatigue fracture model that can account for the bridging stresses. 

o Calibrate the fatigue equivalent crack resistance curve using the functional form 

obtained from quasi-static loading. 

o Compare the fatigue and quasi-static cracking parameters and assess the statistical 

significance between the two. 

o Compare the Paris coefficients for each fatigue loading scenario. 

o Compare the crack resistance curve for each loading scenario. 

 

 Objective 2: 

o Develop a pavement stress model that outputs a random distribution of stresses at 

the critical, mid-slab edge location. 

o Identify the variables that govern the load history effect in the fracture model. 

o Assess the load history effect under a two-load sequence. 
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o Compare the number of cycles to failure prediction between the LDR and the 

fracture model using the distribution from the pavement stress model. 

Chapter Overview 

This dissertation describes some new methods to characterize the effect of cyclically induced 

bridging stresses under quasi-static and fatigue loading. An overview of each chapter is shown 

below. 

 Chapter II is a review of the literature pertinent to the area of fatigue fracture in concrete 

with an application in pavements. The review covers the state of the art in fatigue fracture in 

concrete materials, focusing on linear elastic fracture mechanics techniques. There is also a brief 

synopsis of cohesive zone models that encompasses both monotonic and fatigue loading cases. 

Finally, there is a brief review on pavement stress analysis that covers the classical works by 

Westergaard and newer techniques using finite elements. In addition, the fatigue cracking 

distress as interpreted in the new pavement mechanistic design guide is outlined. 

 Chapter III covers the experimental setup, procedure, and mix characteristics for all 48 

test specimens conducted under quasi-static and fatigue loading. The details shown therein cover 

the experimental matrix, the equipment used for the test, and the mix time characteristics of the 

concrete used. 

 Chapter IV covers a new method to determine cyclically induced bridging stresses in 

concrete under quasi-static loading. It is shown that bridging stresses can be back-calculated by 

imposing a force, moment, and displacement equilibrium condition at the crack location.  The 

crack resistance curve is then obtained with the use of a weight function. The equivalent crack 

concept is discussed, and a new method to determine the equivalent crack resistance is proposed. 
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The equivalent crack resistance curve is then discussed within the context of fatigue and is 

shown to depend on the level of applied load. Finally, the quasi-static test results are presented 

and discussed.  

Chapter V covers a new procedure to determine an equivalent cyclic crack resistance 

curve under constant amplitude loading. The equivalent crack propagation rate is directly related 

to the equivalent cyclic crack resistance curve. The solution is considered unique under the 

conditions that the initial crack resistance is zero and the slope of the curve after post-critical 

crack extension is pre-defined. The constant amplitude fatigue results are then compared to the 

quasi-static results. 

Chapter VI presents and summarizes the modified Paris Law used to characterize fatigue 

crack propagation under constant, variable, and random amplitude loading.  The fatigue fracture 

law uses an equivalent crack resistance curve that has the same functional form obtained from 

quasi-static loading and satisfies the uniqueness condition specified in chapter V.  Next, a 

summary of all quasi-static and fatigue results are shown. A statistical analysis is then conducted 

to compare the results between different loading regimes and sizes.  It includes 14 quasi-static, 8 

constant, 20 variable, and 6 random amplitude loading tests. The chapter concludes by showing 

that the Paris law coefficients, log C and n, are not size dependent for the two sizes tested.  

Chapter VII presents the results of an analysis that compares the damage prediction 

between a linear damage rule and a fatigue fracture model under a random distribution of 

pavement edge stresses. The chapter begins by showing the procedure used to calibrate the 

modified Paris fatigue fracture model and then describes in detail the procedure for rapidly 

predicting the pavement edge stresses.  The results indicate that the LDR under-predicts fatigue 



7 

 

damage by nearly 30 % if the linear damage rule was calibrated under constant amplitude 

loading.  

Chapter VIII presents the summary of findings, some conclusions, and recommendations 

for future research. 
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CHAPTER II 

LITERATURE REVIEW 

 

The motivation of this research was due in large part the desire to improve performance 

prediction models for concrete pavement design.  Concrete pavements are subjected to a 

complex combination of environmental and traffic loads creating a unique distribution of peak 

stress and stress ranges at the critical mid-slab edge. Moreover, the fatigue damage accumulation 

process is complex because the material is heterogeneous and suffers from a variety of pre-

loading flaws such as air voids and shrinkage cracks leading to a substantial variability in fatigue 

performance.  

Classical pavement stress solutions 

The cornerstone of any reliable pavement cross-section design lies with the ability to first predict 

the stresses induced by truck traffic and environmental loads. In the 1920’s, Westergaard (1926) 

developed solutions for a plate supported by a Winkler (liquid) foundation at three different 

locations: Edge, Interior, and Corner as shown in Figure 1.  The governing equation is shown in 

equation (1).  

   

  (    )
      (   )    (   )   ( ) 

                      (1) 

Where 
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k = stiffness of the Winkler foundation  

u = displacement.  

E = elastic modulus 

h = thickness of concrete layer  

  = poisson’s ratio 

   = Laplace operator 

F(x) = applied force 

 

Figure 1: Critical stress locations (for interpretation of the references to color in this and 

all other figures, the reader is referred to the electronic version of this dissertation) 

 

The solutions are valid under the assumptions that the plate is infinitely long in the x-

direction, and no gap between the plate and the foundation exists.  Westergaard asserted that the 

critical stress location is located at the mid-slab edge where the tensile portion is located at the 

bottom of the plate. He also noted that at the corner, although the stresses are smaller in 

Edge 

Interior 

Corner 
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magnitude compared to the edge, the critical tensile stresses are located at the top of the plate. 

Note that concrete is much weaker in tension than in compression, so for unreinforced sections, 

the critical location will always be located where the tensile stresses are maximum.  

 Over the last few decades, specific concrete pavement finite element software has been 

developed to predict the stresses under more complicated structural and loading scenarios. The 

most common are ILSL2, WESLIQID, J-SLAB, KENSLAB, and EVERFE. The differences 

between them are mainly in the interpretation of subgrade and temperature gradients. It is 

asserted in a NCHRP report (2004) that ILSL2 (Khazanovich, L., Yu, T., 1998) is technically 

superior to the other models because of its ability to implement a variety of complex sub-grade 

models and account for varying linear temperature gradients for different layers.  

EVERFE (Davids, W.G., Wang, Z.M., Turkiyyah, G., Mahoney, J. and Bush, D., 2003) 

is a three dimensional finite element program (compared to the other FE programs that use 2-D 

plate elements) that can account for multiple sub-surface layers, multiple slabs, non-linear 

temperature gradients, non-linear joint transfer behavior, and a tensionless foundation. The 

limitation, as stated in the NCHRP report, is that the computational time is large relative to the 

other FEM software, especially when considering elastic layers (rather than a Winkler 

foundation). However, it is the program of choice for this study, because the computational time 

of the FEM runs was not of the essence. 

 Ioannides et al. (1985) revisited the Westergaard solutions using FEM and stated that the 

analytical stress and displacement solutions agreed with the numerical solutions when the ratio 

between the slab length, L, and the radius of relative stiffness,  , was large. The radius of relative 

stiffness is defined in equation (2): 
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  √
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                       (2)  

Iaonnides asserted that for interior stresses, L/  must be larger than 3.5; for edge stresses, 

L/  must be greater than 5; and for corner deflections, L/  must be greater than 8.Thus, it was 

concluded that the infinite slab length assumption will lead to erroneous predictions when the 

ratio between radius of relative stiffness and slab length is small. This work was a major impetus 

in shedding light on the importance of using numerical solutions to predict stresses, especially 

under complex subgrade conditions, and thermal gradients. 

 More recently, several studies have investigated the location of the critical stresses using 

FEM (Vongchusiri, 2005; Hiller, J.E and Roesler, J.R., 2005). The proposition was that the 

critical stress location originally found by Westergaard may change under certain complex 

combinations of thermal and wheel loads. Hiller and Roesler (2005) concluded that the location 

of the critical tensile stresses will change depending on the type of thermal gradient: positive or 

negative. A positive thermal gradient is defined when the temperature is greater at the top 

(relative to the bottom) of the pavement. A negative gradient is the opposite; where the 

temperature of the pavement is greater at the bottom.  
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Figure 2: (a) positive thermal gradient and (b) negative thermal gradient 

 

Figure 2a shows that there are two critical locations for the negative thermal gradient case. One 

of the critical locations is located along the longitudinal edge and the other is located along the 

transverse edge. The studies show that that the longitudinal stresses (x-direction) in general are 

still greater than the transverse stresses (y-direction). Note that the critical location along the 

longitudinal direction in Figure 2a is not located in the same position as in Figure 2b 

Mechanistic-Empirical Design  

The current design methodology (NCHRP, 2004) for transverse cracking uses a hybrid 

mechanistic-empirical analysis. The stresses of an un-cracked pavement are predicted via an 

artificial neural network (ANN) that is trained by a stress database. The database is made up of 

numerous finite element runs, each of which considers a different scenario, e.g. thickness, tire 

pressure, thermal gradient, etc.   

Generation of pavement stresses 

Stresses are generated in a pavement when it is subjected to both traffic and 

environmentally induced loads. In the design guide, traffic loads are established through user-

(a) (b) 

Critical 

Location 

Critical Locations  
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defined hourly truck traffic distributions and axle load spectra. Truck traffic is divided into ten 

classes, each of which is distributed according to the hourly distribution factor. Each truck class 

then has a specific collection of different axle types (single, tandem, tridem, quad, etc.). Table 1 

shows an example of several different trucks and the different axle types associated with them. 

Figure 3 shows the mid-slab edge stresses induced by several of the shown axle types under zero 

temperature gradient. The axle loads are then finally determined from an axle load spectrum 

(distribution of axle loads for a given axle type) and positioned a certain distance away from the 

slab edge depending on the user-defined wheel wander distribution.  

 

Table 1: Different truck and axle Configurations 

 

Axle/truck Example truck 

configurations 

Axle configurations 

Single 
  

Tandem 
  

Tridem 
  

Quad 
  

Five 
  

Six 

  
Eight 
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        Figure 3: Induced stresses at the mid-slab edge under various axle types 

 

The environmentally induced stresses are generated from both temperature and moisture 

gradients. The design guide uses an equivalent linear gradient concept (Ioannides, A.M and 

Khazanovich, L., 1998) which essentially constructs an equivalent linear temperature gradient 

from a thermally induced non-linear stress distribution. Equation (3) shows the mathematical 

representation of the equivalency concept. Next, moisture induced gradients are added to the 

thermal gradients and form the total equivalent gradient used in the pavement stress simulation.  

  ( )     
 

 ( )

∫  ( ) ( ) [ ( )    ]  
 

 

∫  ( )    
 

 

 

                                (3)   

Where 

z = location along the pavement cross-section 

S
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h = pavement thickness 

TL = linear thermal gradient 

T0 = reference temperature 

  = coefficient of thermal expansion 

E = elastic modulus 

The design guide also accounts for changes in PCC elastic modulus and foundation 

support. Both the stiffness of the elastic base, Ebase, and the stiffness of the subgrade, k, will 

vary depending on monthly sub-surface conditions. As stated previously, the stresses induced by 

truck traffic, thermal and moisture gradients, and changes in subsurface conditions are then 

calculated with the ANN. 

The NCHRP report (2004) states that there are many variables that can affect the 

magnitude of the pavement edge stresses, and creating an ANN database taking into account 

each variable individually is not feasible. The report states with the use of an equivalent 

thickness concept, the number of stress influencing variable can be reduced. In the report, it is 

argued that a reasonably sized stress database can be obtained using this concept.  

Equivalency Concept 

The equivalency concept is used to consolidate the total number of variables affecting the 

pavement edge stresses to a select few, non-dimensional, variables. It is founded on the non-

dimensional plate-elastic foundation solutions determined by Koronev (1962) as stated in the 

NCHRP report. The non-dimensional stress function is shown in equation (4). 
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              (4)  

Where 

  = unit weight of the elastic layer 

 = radius of relative stiffness 

h = thickness of elastic layer 

L = length of plate 

  =non-dimensional linear temperature gradient 

 =non-dimensional radial co-ordinate (r/L) 

P = applied load  

Q = self-weight of the elastic layer 

M* = non-dimensional moment distribution 

The equivalency concept states that if the non-dimensional variables are constant for two plate 

systems, the stress between the first and second system is related by the following expression 

shown in equation (5). 
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         (5)   

This means that the stress database can be constructed using less variables because, for instance, 

a ‘reference system’ which uses a constant elastic modulus, poisson’s ratio, modulus of subgrade 

reaction, and unit weight, (the radius of relative stiffness in this case will only vary as a function 

of layer thickness) can be related to the actual system (which may have a different elastic 

modulus, poisson’s ratio, etc.)  by knowing the ratio between the thickness, radius of relative 

stiffness, and unit weight of the two systems. 

Note that the procedure shown in the report is separated into two classes: bonded and un-

bonded. In this case, un-bonded signifies that the strain at the bottom of the concrete layer is not 

compatible with the elastic layer directly below it.  In this study, the un-bonded case is used, so 

the calculations pertaining to such cases are shown here.  

The first step delineated in the report is to convert the multi-layer pavement system that 

consists of two elastic layers and a subgrade layer to a system of one elastic and subgrade layer. 

This is accomplished by determining an effective concrete thickness and is shown in equation 

(6). 

     √    
  

     

    
     
 

 

 

                (6)  

Where 
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Ebase = elastic modulus of elastic soil layer 

Epcc = elastic modulus of concrete layer 

hbase = thickness of elastic soil layer 

hpcc = thickness of concrete layer 

The next step is to calculate the effective unit weight of the concrete, which can be obtained from 

equation (7). 

     
        

    
 

                             (7)   

Where  

     = concrete unit weight 

Next, one must calculate the radius of relative stiffness which is shown in equation (2) and 

substitute h for heff. Next, the effective, linear temperature gradient is calculated using equation 

(3) and substituting h for heff. It is then stated that a non-dimensional temperature gradient can be 

determined. The expression is shown in equation (8). The report asserts that the stresses 

generated in two different pavement systems have the same non-dimensional thermal gradient, 

the stresses will be the same between the two systems. 
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Where 

      = effective linear thermal gradient (difference between TL at top and TL at bottom of 

effective thickness) 

The next step is to determine the non-dimensional applied load/pavement weight ratio, and is 

shown in equation (9). 

   
 

          

 

            (9) 

Where 

L = length of the slab 

W = width of the slab 

P = applied load 

One of the last steps is to convert the effective concrete thickness to an equivalent 

thickness. This is shown in equation (10). It is stated that in developing the stress database, the 

PCC elastic modulus, poisson’s ratio, and subgrade stiffness can be held constant since the stress 

between one system and another is relatable by equation (5). Note that the value inside of the 

denominator in equation (10) is constant. This is because the reference system uses a constant 
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elastic modulus and poisson’s ratio of 4X10
6
 psi and 0.15, respectively, and is resting on a 

Winkler foundation with a stiffness, k, of 100 psi/in as shown in the NCHRP report (2004). Note 

that equation (10) simply determines the height of the pavement layer in the reference system 

needed to equal to the radius of relative stiffness in the effective system. 

    √
  

    

 

 

          (10) 

   The equivalent stresses from the reference system are then calculated using the non-

dimensional variables shown in equation (4). The stresses are related back to the effective system 

with equation (5) and then related to the actual system with equation (11). 

     
        

    
 

          (11) 

Finally, a non-linear stress term (that is induced by the non-linear thermal gradient) is 

added to the stress from equation (11). The contribution of the non-linear stress gradient can be 

determined by subtracting the equivalent linear temperature gradient from the actual temperature 

gradient and converting the temperature to stress by multiplying by the elastic modulus and 

coefficient of thermal expansion. Recently, Hiller and Roesler (2010) developed a simple method 

to determine the non-linear stresses contribution by characterizing the temperature gradient with 

a quadratic distribution. The researchers developed a new term called the non-linear area 

(NOLA), defined as the area between the quadratic temperature distribution and equivalent linear 
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distribution. The non-linear stress and the mathematical description of NOLA are shown in 

equations (12) and (13). The authors assert that the addition of the non-linear stress term will 

tend to increase the tension at the top of the pavement and lower it at the bottom. 
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Note that the influence of load transfer efficiency at the transverse and longitudinal joints 

is not mentioned here. The NCHRP report (2004) should be consulted for a more detailed 

description of the equivalency concept, the neural network architecture, the effect of a bonded 

sub-base, and load transfer efficiency.   

Rapid Stress Calculations 

As mentioned previously, the method of choice to rapidly predict the stresses from the FEM 

constructed database are the ANN. However, other methods have been developed to rapidly 

predict pavement stresses. Vongchusiri (2005) developed a scheme that uses a network of one-

dimensional piecewise interpolations to predict the mid slab edge stresses and stress influence 

surface under various temperature gradients and axle configurations.  
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Linear Damage Accumulation 

In the MEPDG design methodology, the stresses are inserted into a field inspired calibrated 

mechanistic-empirical performance model that uses a linear damage rule (LDR) in the spirit of a 

classical Miner’s rule, to predict damage. However, the strength reference is established from 

laboratory strength tests (Modulus of Rupture, MR). A graphic of the methodology is shown in 

Error! Reference source not found..  

Damage is defined as the inverse of number of cycles to failure, 1/Nf (Miner, 1945). 

Equation (14) shows the damage algorithm used to predict fatigue cracking in concrete 

pavements.  The indices i-m, represent each of the possible loading combinations (i = age, j = 

month, k = axle type, l = load level, m = equivalent temperature gradient, n = traffic path) that 

the pavement can be subjected to; where  is the applied stress. 
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Figure 4: Concrete pavement design architecture  
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Figure 4 (cont’d)  

 

 

 
 

 

 

 

 
 

 

One of the advantages of using this type of damage model is its computational efficiency, 

since it can rapidly account for, process and convert millions of load repetitions to damage. This 

allows for multiple designs to be considered within minutes.  Some of the disadvantages 

however, are that it is insufficient in determining the in-situ state of damage because no 

information is given on the state of the material itself (no information on the stress-strain 

behavior and the reduction of the elastic modulus).  In addition, it cannot account for size effect, 

load history effect, and variable amplitude loading without using some empirical calibration 

factors.  Thus, there is a need for the development of a concrete fatigue model that can account 

for all three of the aforementioned effects and be able to maintain a comparable level of 

computational efficiency to the S-N approach. 
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Classic Linear Damage Rule 

There are several ways of predicting fatigue damage in concrete. The classical method is 

to use a linear damage rule (LDR) accompanied with an experimentally generated log-log S-N 

curve relating applied stress ratio (SR) to number of cycles to failure, Nf. (Miner, 1945). Note 

that SR is the ratio between the applied peak stress and the maximum allowable stress (/max). 

Figure 5 displays a series of S-N curves that show Nf increases as the stress ratio decreases 

(Chatti et al.). The solid lines represent a least squares linear regression which is described 

mathematically using equation (15) 

A LDR can be used to determine the cumulative damage by using equation (16), where, 

as stated previously, damage (D) is defined as 1/Nf , and failure occurs when D = 1.  

 

Figure 5: S-N Curve 
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Fatigue Damage 

Over the last few decades, a number of concrete fatigue studies have been conducted for various 

mix types and loading scenarios (Murdock, J.W., and Kesler, C.E., 1959; Tepfers, R., Kutti,T., 

1979; Raithby, 1979; Hsu, Fatigue of Plain Concrete, 1981; Zhang, B., Phillips, D.V., Wu, K., 

1996). In summary, the studies show that fatigue life is dependent on strength, age, drying 

shrinkage, loading frequency, SR, and R ratio (ratio of applied valley and peak load). In the 

metal industry, Goodman diagrams (or constant life diagrams) have been used extensively as a 

means to establish the relationship between the endurance limit (stress level at which fatigue 

damage becomes negligible), peak stress and stress range (Sendeckyj, 2001). Other researchers, 

as a means to acknowledge the large variability in fatigue, used a reliability approach to predict 

the probability of fatigue damage failure (Oh, 1991; Park, 1990; Singh, S.P., Kaushik, S.K., 

2001). In general, this was accomplished by inserting an experimentally observed Nf  probability 

density function (pdf) into the LDR to express Nf in terms of a probability. 
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Variable Amplitude and Load History Effects 

In metallic structures, variable amplitude and load history effects have been investigated 

thoroughly over the last few decades. There is a collection of works that focus on the variable 

amplitude (or load interaction) and load history effect. The purpose of these studies was to 

address the inadequacies of a LDR to predict fatigue under varying loading conditions. Sufficient 

experimental evidence suggests that fatigue life predictions using a LDR can both over-predict 

and under-predict damage depending on the sequence of loading (Fatemi, 1998). In a low to high 

(L-H) loading sequence, the LDR’s will typically over-predict damage and in a high to low 

loading sequence (H-L), the LDR’s will typical under-predict damage.  

Several researchers proposed modifications to the original LDR approach.  The double 

linear damage rule (DLDR) was introduced by Manson (1966) and it separated the S-N curve 

into two regions to represent the differences in damage accumulation rates within the crack 

initiation and propagation stages.  This method was then refined to include a damage curve 

function (Manson, S.S., Halford, G.R., 1981) that allowed damage to be expressed as a non-

linear power function dependent on load-level. Oh (1991) developed a non-linear damage rule 

for concrete that expresses the damage (D) as a load-level dependent cubic polynomial, and was 

able to predict the LDR error for both L-H and H-L loading sequences. More recently, a one 

dimensional continuum damage mechanics model was used to predict the load sequence effect 

(Lemaitre, 1992; Xiao, Y.C., Li, S., Gao, Z., 1998). These models associate damage directly to 

elastic modulus degradation and are founded on thermodynamic principles in which the damage 

induced strain energy release rate,  ̇, is the driving force for damage.  

Under random amplitude loading, frequency-based techniques are often used to count the 

level of load repetitions.  The rainflow counting method is one example where a random load 
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time history is transformed into an equivalent constant amplitude load histogram allowing 

classical LDR’s to be applicable (Anthes, R.J., 1997). A more recent technique uses power 

spectral density (PSD) functions to transform random stress time histories to the frequency 

domain for the purpose of correlating Gaussian or non-Gaussian distribution parameters to 

damage using LDR’s (Benasciutti, D., Tovo, R., 2005). 

Linear Elastic Fracture Mechanics  

Linear Elastic Fracture Mechanics (LEFM) is a field that focuses on the study of cracks in elastic 

media. The field was introduced in the late 1940’s and was first used to describe the near 

instantaneous crack extension observed after a critical applied force was reached. Initially, 

engineers measured the fracture energy,    
  

  
 (strain energy release per crack extension) to 

assess a structures ability to resist unstable crack propagation, but they did not have any 

information on the stress fields promoting the unstable behavior. A decade later, the stress field 

solutions around a crack tip were developed and it was discovered that crack growth was 

governed by the intensity of the stress field around the crack. It was shown that the stress 

intensity was solvable for three different modes. Mode I fracture (as shown in Figure 6 it is 

associated with the crack opening response caused by normal forces along the crack face. Modes 

II and III facture correspond to crack opening response caused by in plane and out of plane shear 

stress, respectively. Equation (17) shows the function of the stress field around a crack tip in 

mode I. Equation (17) shows that the stress is singular when the ordinate is zero (at the crack 

tip). It also shows that it is governed by the stress intensity, KI. (Tada, H., Paris, P.C. and G.R. 

Irwin, 2000). 
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Figure 6: Mode I Fracture 
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(17) 

Where 

r = radial distance away from the crack tip 

𝜃 = angle between the crack plane and the point of interest  

The stress intensity in mode I fracture is defined in equation (18). It is a function of the far-field 

stress and the crack geometry.  
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Griffith (Tada, H., Paris, P.C. and G.R. Irwin, 2000) later proved that the fracture energy was 

related to stress intensity through equation (19). 
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Fracture Mechanics in Concrete 

Concrete is a quasi-brittle material that exhibits a large residual zone along the wake of a 

dominant crack and exhibits a size dependent R-curve behavior, which limits the applicability of 

classical LEFM techniques/concepts to predict material response (Bazant, Z.P., Planas, J., 1998). 

Figure 7 shows a typical plot of strength versus size in concrete. The figure highlights the issue 

that strength and LEFM theories are only applicable for very small and large sizes, respectively. 

The transition between the two is defined as the non-linear fracture mechanics regime. Within 

this regime, failure is strongly influenced by the residual bridging stresses. This means that the 

typical failure criterion in LEFM: KI > KIC, i.e. unstable fracture occurs when stress intensity is 

greater than fracture toughness, is somewhat more complicated because the fracture toughness 

becomes a function of specimen size, D, and crack extension, a. 
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Figure 7: Relationship between strength and size 

 

Crack Resistance Curves 

The R-curve or crack resistance curve, describes the fracture toughening mechanism that is 

commonly observed in concrete as the crack length increases.  The curves are typically described 

in terms of fracture energy, or stress intensity and can be used to decipher stable versus unstable 

crack growth. The crack growth becomes unstable when the applied stress intensity is tangent to 

the crack resistance. These conditions are shown mathematically in equations (20-21). 

Strength Non-Linear  LEFM 
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Figure 8 shows the typical shape of an R-curve in concrete and highlights two important aspects 

of this phenomenon. The first aspect is that unstable fracture occurs at a distinct point along the 

crack resistance curve. Failure occurs at the tangent point between the applied stress intensity 

and the crack resistance curve. The second aspect is that the bridging stresses that are holding the 

crack faces together are actually directly related to the crack resistance. As the crack grows, 

more bridging stresses will develop, which will lead to a greater resistance to future fracture. 
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Figure 8: Crack resistance curve for two different size concrete specimens 

 

Over the years, there have been several methods proposed to determine the crack 

resistance curve in concrete. Bazant showed that the general, size independent R-curve could be 

determined by the size effect law (1990) shown in equation (22). 

    
𝐾  

√   (   
  
 
)

 

               

      (  ) 

Where 

   = nominal stress at failure 

 ( )=geometric function 
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 = non-dimensional crack length (a/D) 

cf = limiting crack extension at failure as       

The study showed that by using the size effect law, one can arrive at an expression that 

describes the R-curve in terms of cf, and the non-dimensional crack length at failure. In order to 

obtain the limiting specific fracture energy, Gf, and the limiting crack extension, the nominal 

strength at failure for three different size specimens needs to be obtained. 

 Other researchers have used the R-curve approach to describe the failure mechanism in 

concrete and other quasi-brittle materials (Bazant Z.P., Cedolin L., 1984; Bazant, Z.P., Jirasek, 

M., 1993; Mai, 2002; Wecharatana, M., Shah, S.P., 1983). More recently, Xu and Reinhardt 

(1999a) developed a double fracture resistance criterion that de-couples the initial crack 

resistance and the unstable crack resistance. This work was then extended by Kumar and Barai 

(2009) who developed closed form solutions for the bridging/cohesive/residual stresses using a 

weight function. 

Weight Function 

Several researchers have quantified the R-curve with the use of a weight function (Foote, 

R.M.L., Mai, Y.W., Cotterell, B., 1986; Mai, 2002; Fett, T., Munz, D., Geraghty, R.D, White, 

K.W., 2000; S. Funfschilling, T. Fett, S.E. Gallops, J.J. Kruzic, R. Oberacker, M.J. Hoffman, 

2010; Kumar, S., Barai, S.V., 2009; Li, V.C., Matsumoto, T., 1998). The concept of the weight 

function was first proposed by Bueckner (1970; 1971). In this case, the weight function (Tada, 

H., Paris, P.C. and G.R. Irwin, 2000) is a device used to correlate both stress and displacement to 
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stress intensity, as shown in equation (23) and is deemed to be a geometric property, independent 

of loading. 

 (   )  
 

 

 

    

  (      )

  

 

𝐾 ( )
 

            
     (23) 

 

Where  

x = arbitrary point along the crack path 

a = crack length 

u = crack opening displacement (COD) 

With the use of a weight function, the stress intensity, KI, can be described for any 

arbitrary stress, as shown in equation (24). 

𝐾 ( )   ∫  (   ) ( )  
 

  

 

        (24) 

Where 

 ( )=arbitrary stress function 

The weight function approach has also been used to determine the crack opening 

displacement, and the relationship between the two is shown in equation (25). 
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Primarily, the weight function can be used to determine the influence of the bridging stresses on 

fracture resistance (or net stress intensity) and the crack opening displacement.  
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                      (27) 

The crack opening displacement can be solved for by using an iterative algorithm that satisfies 

the double integral shown in equation (27). 

Bridging Stresses 

For concrete, there are three common functions that are used to describe the bridging stress 

distribution: linear, bi-linear, and exponential (Bazant, Z.P., Planas, J., 1998). Bazant and Li 

(1995) used a linear distribution to model the size effect of the modulus of rupture for un-

notched specimens. Guinea et al. (1994) and Petersson (1981) developed a bi-linear softening 

curve for concrete. More recently, Roesler et al. (2007) used a bi-linear curve and determined the 

kink-point by using the specific and the total fracture energy. Figure 9 shows the three different 

distributions. The variable f ’t is the material tensile strength and wc is the critical crack opening 
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displacement, at which point no bridging stresses are transferred from one crack face to the other. 

Note that the area under the softening curves represents the total fracture energy, GF. This value 

has been shown to be greater than the specific fracture energy, Gf, which is defined as the energy 

released at the onset of unstable fracture. It is for this reason that some researchers believe that a 

bi-linear or exponential bridging stress distribution is superior to that of a linear distribution (for 

failure prediction) because these distributions can be separated into two separate portions, one of 

which describes the specific fracture energy. 

 

    Figure 9: Common bridging stress distributions used to predict concrete fracture 
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Equation (28) shows a common exponential function used to describe the bridging stresses that 

was originally proposed by Reinhardt (Kumar, S., Barai, S.V., 2010; Reinhardt, H.W., 

Cornilesson, H.A.W., Hordijk, D.A., 1986). 

  (𝛿( ))  𝑓 {[  (
  𝛿( ) 

𝑤 
)

 

] exp ( 
  𝛿( ) 

𝑤 
)    (

𝛿( ) 

𝑤 
) ( 

   
 )exp(   )}   

            (28) 

Where 

 

f ’t = tensile strength 

𝑤 = critical crack opening displacement at which no stresses are transmitted from one crack face 

to the other 

  = curve shape factor 

  = curve shape factor 

Concrete Fatigue Fracture  

In plain portland cement concrete (PCC), the fatigue cracking process is similar to other quasi-

brittle materials in that two distinct stages are observed: a transient stage where the crack growth 

rate is decreasing and a steady state stage where the rate is increasing (Kruzic, 2005).  

Subramaniam et al. (2000), Perdikaris and Calomino (1987), Bazant and Xu (1991) have all 

shown that concrete fatigue fracture in the steady state range follows the well-known Paris Law 
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shown in equation (29). The fatigue crack propagation rate (da/dN, where a is the crack length 

and N is the number of cycles) follows a power law in which stress intensity, KI, is the argument.  

The coefficients, C and n, are considered to be material properties. However, equation (29) can 

only be used to describe the steady stage region.   

 

  

  
  ( 𝐾 )

  

              
  (29) 

 

Subramaniam et al. (2000) modeled the transient stage separately as a function of crack 

extension (a). The two regions were separated at a unique point called abend, which they 

found to be equal to the critical crack extension at failure, ac, in the quasi-static crack 

resistance curve at peak load under quasi-static loading (see Figure 10).   
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(a) 

 
   (b) 

Figure 10: (a) Transient Stage Crack Propagation, (b) Steady-state Crack Propagation  

 

The crack propagation law in the transient stage is shown in equation (30) from 

Subramaniam et al. (2000). 
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This means that four fatigue parameters would need to be defined: C and n in equation 

(29) and C1, and n1 in equation (30).  The major limitation of this approach, however, is that it 

cannot predict crack growth under variable amplitude loading since it cannot account for the 

change in stress in the transient stage. This is because the argument in equation (30) is crack 

extension as opposed to stress intensity. Another limitation is that because the bridging stresses 

(which are considered to be a material property) are not explicitly determined, the information 

gathered from experimental tests (that use a simple geometry) would not be applicable for other 

geometries commonly used in the field (Gallops, S., Fett, T., Ager III, J.W., Kruzic, J.J., 2011). 

The reason is because the influence that bridging stresses have on fatigue may be different from 

one geometry to another. Bazant and Xu (1991) showed that there is a distinct size effect in 

concrete fatigue. The results of the study show that the C parameter in the Paris law tends to be 

smaller for larger sized structures. This is a clear indication that the bridging stresses (although 

they are a constant material property) affect the fatigue behavior depending on the relative sizes 

and/or geometry. However, if the bridging stresses are known, their influence on a specific 

geometry can be accounted for, so the size effect will not be observed on the Paris parameters.  

 One way of accounting for the variable stresses and the bridging stresses in both 

cracking regions, is to include a crack resistance term in the argument of equation (29). This can 

be done using the concept of effective stress intensity as defined in equation (31) from Ritchie et 

al. (1987). 
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𝐾    𝐾  𝐾   

                    

    (31) 

 

The term KI is the stress intensity and Kbr is the crack shielding contribution from the 

residual stress near the crack tip. Li and Matsumoto (1998) proposed a fatigue model in which 

the fatigue crack propagation followed a unique relationship dependent on the combination of 

both the applied stress intensity, KI and the contribution of the bridging stresses behind the crack 

tip, Kbr. The modified Paris Law is shown in equation (32). 

   

  
  [𝐾  𝐾  (𝛿 )]

  

               
  (32) 

 

They argued that the bridging stresses were governed by the crack opening displacement 

along the length of the crack, x. However, their model used a bridging stress degradation 

function that is dependent on the number of cycles N, which makes it difficult to use under 

variable amplitude loading.  

Several researchers recently have published experimental data for other quasi-brittle 

materials such as Alumina, and have reported cyclic threshold stress intensity (Kth) curves that 

have a similar shape to that of a quasi-static resistance curve (KR); i.e., crack resistance rate 

decreasing with increasing crack extension. 
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Under variable amplitude loading, the number of overall fatigue fracture models for 

concrete is limited. Slowik et al. (1996) developed a concrete fatigue fracture model similar to 

the Forman equation in metals (Beden, 2009) that accounts for the effect of stress intensity range 

(KI), peak stress intensity, load history, and overloads (F) as shown in equation (33). This 

version of the Paris Law works well in predicting concrete fatigue cracking under variable 

amplitude loading in the steady state cracking stage; however, no information on the crack 

propagation rates is given for the transient stage, which makes it difficult to predict.  
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CHAPTER III 

METHODS AND MATERIALS 

 

This chapter covers the experimental procedures used to quantify the equivalent cyclic crack 

resistance under four different loading regimes: quasi-static, constant, variable, and random 

amplitude loading. The specimen dimensions, mix characteristics, and testing are also discussed 

in this chapter.  

Testing Equipment 

The notched beam specimens were tested on a 25 kN/100 Hz capacity, servo-hydraulic MTS 

Landshark. A MTS crack opening displacement (COD) gage, was used to measure the crack 

mouth opening displacement. 

 

COD Gage Attachment 

The COD gage was mounted to the specimens by a pair of 3 mm thick steel knife edges. The 

knife edges were glued directly to the bottom of the specimen with a fast drying epoxy resin 

which was allowed to harden for 24 hours. The distance between the tip of the knife edges 

(where the COD gage was attached) was determined with the use of a MTS manufactured, 

aluminum separator. Figure 11 shows a photograph of the mounted COD gage.  
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Figure 11: COD Gage  

 

Equipment Accessories  

The specimens were tested under three point bending. The loads were transferred from the MTS 

to the specimens with an aluminum I-beam which was attached to the uniaxial hydraulic loading 

ram. The I-beam was designed such that the vertical deflection ratio between the concrete beam 

and aluminum beam was approximately 1 %.  Roller supports were attached to the aluminum 

beam and were the designated load transfer point to the concrete beams. Figure 12 shows a 

photograph of the test setup, which includes the MTS machine, the COD gage, a notched 

concrete beam, the aluminum beam, and the roller supports.  
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Figure 12: MTS machine 

 

Concrete Mix Properties 

The concrete mix used in this research consisted of ASTMC-150 Type I cement, a natural sand, 

and a limestone coarse aggregate (nominal maximum size of 25 mm). The water to cement ratio 

was 0.45 and the air content was 6.5%.  The unit weight was 2274.62 kg/m
3
.   

The average 28 day Modulus of Rupture (MOR) and the split tensile strength, f’t, were 

5.23 and 2.89 MPa, respectively. The 28 day compressive strength was 25 MPa. The specimens 

were cured for one year inside of a humidity room and then placed in ambient temperature for 
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one more month to ensure minimal strength gain during fatigue testing. The average split tensile 

strength and compressive strength at the time of testing was 3.79 and 40.62 MPa, respectively. 

Specimen Geometry 

A total of 48 plain PCC three-point single edge notched beam specimens (TPB-SEN) were tested 

under both cyclic quasi-static and random amplitude fatigue loading. Two different beam sizes 

were tested. The larger specimens had a span of 400 mm, a depth of 100 mm (S/D=4), and a 

width of 100 mm and the smaller specimens had a span of 200 mm, a depth of 50 mm, and a 

width of 50 mm. Three different notch to depth ratios () were used in the larger size specimens. 

For the smaller size specimens, only a notch to depth ratio of 0.15 was used due to the limited 

space between the tip of the notch and the top of the beam. Note that the smaller beams were 

sawn cut into 4 equal parts from the larger beams with the dimensions mentioned above. This 

was done in lieu of casting small beams altogether to ensure that the large 1” aggregates would 

not dominate a local region and influence. Casting larger beams should allow for a larger random 

distribution of aggregates; if a large aggregate did dominate the critical location where the notch 

was located, it would be simply saw cut and its effect would be minimized.   

Loading Regimes 

A total of fourteen beams were tested under cyclic, quasi-static loading. For the larger 

specimens, the COD controlled loading rate was 0.0005 mm/s was. For the smaller size 

specimens, a COD controlled loading rate of 0.00025 mm/s was used.  The loading rates were 

determined in a manner that the peak load was reached no sooner than one minute after the 

beginning of loading (on average). The remaining 34 specimens were tested in fatigue.  Each 

specimen was subjected to a 2 Hz cyclical load. For the constant amplitude tests, an SR (stress 

ratio, max load/peak load) of 0.95 and 0.85 and an R-ratio of 0.05 was used.  
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For the variable amplitude tests, the SR’s were changed abruptly after a noticeable 

amount of damage had been detected with the COD gage (change in compliance). The SR’s were 

varied between 0.95 and 0.75. In some tests, the R-ratios were also changed abruptly after 

significant damage was observed.  The R-ratios used in the tests ranged between 0.05 and 0.5.  

Under random loading, both a uniform and random distribution were used. The SR’s 

ranged from 0.5 to 0.9 and R ratio ranged from 0.5 to 0.05.  Table 2 shows the entire 

experimental program used in this study.  

Table 2: Experimental Program 

Loading Size  Geometry Replicates 

Quasi-
static 

100 
0.15 3 

0.35 3 

50 0.15 8 

Constant  
100 

0.15 1 

0.35 2 

0.5 2 

50 0.15 4 

Variable 
100 

0.15 2 

0.35 2 

0.5 5 

50 0.15 10 

Random 
100 

0.15 2 

0.35 1 

50 0.15 1 

Total     48 

 

Crack length measurements 

Direct determination of effective crack lengths in both quasi-static and fatigue loading was done 

using the Jenq-Shah compliance technique (1985). The compliance is defined as the inverse of 

the tangent modulus (slope of the applied load and the crack mouth opening displacement), 
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cmod/P. Figure 13 shows a P-CMOD curve under quasi-static loading which highlights the 

idealized compliance at cycles i and i+1.  

 

Figure 13: Load v. Crack Mouth Opening Displacement 

 

Equivalent Elastic Crack  

The equivalent crack concept is commonly used in fracture mechanics and it is an idealization of 

the cracking mechanism, which assumes that the crack is traction-less. Using this assumption, it 

allows one to determine the crack length with the information gathered only from compliance 

measurements. The Jenq-Shah method is described below. 

Jenq-Shah Method 

The Jenq-Shah method is a compliance technique that uses the analytical displacement solution 

at the crack mouth to back calculate the crack length. The method has been used to determine the 
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equivalent crack under quasi-static loading and was extended to fatigue loading, as shown by 

Subramaniam (2000) . 

The method uses the compliance information gathered in the initial loading cycle to 

determine the elastic modulus. In subsequent cycles, if compliance increases, the method equates 

this change to an increase in crack length, assuming the elastic modulus remains constant. The 

equivalent crack length is calculated using equations (34) and (35), and a simple Newton-

Raphson technique. In this study, a three-point bending single edge notch specimen was used. 

For such specimens that also have a span to depth ratio (S/D) of 4, the relationship between the 

compliance and the crack length is shown in equation (35). 
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Where  

Ci = current compliance;  

ai = current effective crack length,  

i =current non-dimensional effective crack  

b = beam width, 

D = beam depth 
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P = applied load at mid-span.  

Specific crack resistance (KR
s
) curve 

The stress intensity for a three point bending, single edge notch specimen can be determined with 

equation (36) after the effective crack length has been determined (Tada, H., Paris, P.C. and G.R. 

Irwin, 2000). Under quasi-static cyclic loading, the KR
s
 curve is quantified by determining the 

peak stress intensity at every loading cycle, which can be calculated by knowing the equivalent 

crack length and peak load over the cycle. The superscript s denotes that this type of resistance 

curve is specific to the size and geometry of the structure. It is expected that if the geometry 

and/or size of the specimen were to change, so would the shape of the KR
s
 curve, so thus it is 

said to be a specific crack resistance curve. 
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 The critical parameters governing the crack resistance curve are KRc
s
, aeq,c and m. One 

way of describing the resistance curves, as shown by Morel (2007), is through equation (39).  

The parameters KRc
s
 and aeq,c are the specific quasi-static crack resistance and the equivalent 

critical crack extension, respectively. These parameters can be determined either graphically or 

mathematically. The two points are tangent to the KI curve at peak load.  Figure 14 shows the 

two curves, KR
s

, and KI, under quasi-static loading. The figure highlights the point of tangency 

between the curves and shows where the two parameters are located. 

𝐾  𝐾  
 (

  

      
)

 

 

         

   (39) 

Where 

𝐾  
 = critical crack resistance 

      = equivalent critical crack extension 

m = shape parameter 
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Figure 14: KR and KI curves 

 

Load-Crack Data Smoothening  

This method of determining the crack resistance curve can also be used as a means to smoothen 

the experimental load-crack data. Once the KR
s
 curve has been determined from the 

experimental data, the load can be determined by rearranging equation (36) to solve for stress, 

N, and using the relationship between load and stress shown in equation (37).  The end result 

leads to equation (40). Figure 14 shows the smooth KR
s
 function fitted onto discrete data points 

obtained from experimental tests. The smooth KR
s
 function can then be used to determine a 

smooth load-crack curve as shown in Figure 15. 

KRC
s
, aeq,c 
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Figure 15: (a) P-CMOD curve and (b) P-crack curve 
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CHAPTER IV 

A METHOD TO DETERMINE AN EQUIVALENT CYCLIC CRACK RESISTANCE 

CURVE UNDER QUASI-STATIC LOADING 

 

The current global economic downturn has forced many governments to change their strategy on 

infrastructure rehabilitation. An onus has been placed on engineers to design and build longer 

lasting, eco-friendly, and more sustainable infrastructure. A design that incorporates 

sophisticated damage modeling is becoming a necessity to meet the design targets specified by 

the transportation agencies. These mechanistic damage models are quite different from the 

classical SN and LDR approaches proposed by Miner (1945) because damage is physically 

quantifiable and is usually related to some measure of strain energy release (Lemaitre, 1992). 

The benefit of these mechanistic models is that they can also be used in conjunction with non-

destructive tests needed to assess the current state of the infrastructure.  

Prior to the launching of any damage design protocol, the fracture mechanism, especially 

in concrete materials, needs to be better understood by scientists and practicing engineers alike. 

Concrete is a unique material that exhibits ‘small crack’ behavior, where the residual stresses 

strongly influence fracture characteristics like fatigue crack propagation rate, fracture toughness, 

and critical crack length. One of the many interesting aspects of concrete is that the material 

constituency is made up of relatively large aggregates (compared to the grain size of alumina for 

example) which engenders a proportionally large region of residual stress. This softening region 

is often denoted as the bridging stress zone (Cox, B.N., Marshall, D.B., 1991) and is responsible, 

in large part, for the size effect, R-curve behavior (Fett, T., Munz, D., Geraghty, R.D, White, 
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K.W., 2000), crack deceleration region in fatigue (Li, V.C., Matsumoto, T., 1998), and also 

influences the endurance limit, as espoused by Kruzic et al. (2005).  

Fracture characterization in concrete under quasi-static and monotonic loading has been 

of particular interest to researchers. Many studies have been dedicated to understanding the 

relationship between stress softening behavior and size effect (Bazant, Z.P., Kazemi, M.T., 1990; 

Morel, 2007; Roesler J., Paulino, G.H., Park, K., Gaedicke, C., 2007), and the impact it has on 

the R-curve (Foote, R.M.L., Mai, Y.W., Cotterell, B., 1986; Mai, 2002; Gallops, S. et al., 2011; 

Bazant Z.P., Cedolin L., 1984). Recently, Xu and Reinhardt (1999a; 1999b; 1998) proposed a 

double K criterion that uses a linear asymptotic (or secant modulus) compliance technique to 

determine the equivalent crack length and the contribution of the bridging stresses. The 

researchers assert that the total stress intensity at failure is defined as the sum of the initial 

fracture toughness, KIC
ini

,
 
and the resistance generated by the contribution of the bridging 

stresses, KI
coh

 , as shown in equation (41).  More recently, Kumar and Barai (2010) used a 

simplified weight function to describe the bridging stress zone and their results showed good 

agreement between predicted and modeled P-CMOD behavior.  

𝐾 (  )  𝐾  
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The linear asymptotic assumption used in the formulation of the double K criterion developed by 

the researchers is a simple but powerful way of interpreting the non-linear behavior in the 

concrete. The assumptions are 1) a change in compliance is proportional to a change in crack 

length and 2) the non-linearity observed in the response of the material is caused only by 
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cracking. This simplification is made in order to develop a simple closed form solution between 

the P-CMOD behavior and crack length. However, it is known that some of the non-linearity can 

be attributed to plastic deformation and not cracking. As a result, the linear asymptotic 

assumption will predict larger crack lengths than peak to peak compliance techniques, e.g. the 

Jenq-Shah compliance technique. Peak to peak compliance (or tangent modulus) methods 

eliminate the plastic deformation when calculating equivalent crack lengths. The peak to peak 

compliance methods,  however, seem to under-predict CMOD.  Figure 16 shows the difference 

between the two compliance techniques.  

 

Figure 16: Comparison of compliance techniques: Linear asymptotic assumption (secant) 

and load-unload (tangent) 

 

Note that, in both methods, the crack is assumed to be traction-less and is denoted as an 

equivalent crack. It is a convenient assumption that allows one to directly relate crack length to a 

change in compliance or CMOD. However, because there are bridging stresses along the crack 

P 

CMOD 

 

P 

CMOD 

Linear Asymptotic Peak to Peak 

C
i+1

 

C
i+2

 

C
i+3

 

C
i+1

 

C
i+2

 
C

i+3
 

C
i
 C

i
 



58 

 

face, the equivalent cracks will be smaller than the actual crack length. Figure 17 shows an 

illustration of the two disparate lengths, but shows how both share the same CMOD, which is 

measured experimentally. 

 

Figure 17: Crack opening displacement fields for a crack that is traction-less and one with 

tractions 

 

In general, compliance techniques are computationally efficient but are limited by their 

inability to determine the actual crack lengths and/or bridging stresses. The methods have been 

used, however, in conjunction with optical devices, to determine the bridging stresses. Mai 

(2002) showed that one can determine the bridging stresses if both the actual crack length and 

equivalent crack length are known. Kruzic et al. (2005) and Gallops et al. (2011) showed that 

one can determine the fatigue bridging stresses generated using a successive approximation 

iterative algorithm that used a CMOD boundary condition and an initial fracture toughness  
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condition. They also developed a simple first and second order approximation scheme to 

determine the bridging stresses with only the use of weight functions and the KR curve. 

Funcshcilling et. al (2010) showed that one can obtain the actual crack length by satisfying a 

series of integral equations simultaneously and using an energetic equilibrium condition. They 

also showed that at crack initiation, compliance techniques are more sensitive in identifying 

changes in crack length than optical techniques because the surface cracks are not visible until 

the center portion of the crack has elongated substantially.  

In this chapter, a new method to determine the bridging parameters, f’t, wc, c1, and c2, 

from equation (28), and an equivalent fracture resistance curve under a quasi-static loading test 

for a three point bending specimen is proposed. The method uses a weight function and a 

successive approximation scheme to calculate the crack opening displacement field and bridging 

stresses. The properties governing the bridging stresses are back-calculated with an optimization 

scheme, programmed in MATLAB that satisfies displacement equilibrium at the crack mouth 

and global force and moment equilibrium along the depth of the beam where the notch is located.  

Load and Equivalent Crack Data 

The equivalent crack lengths were obtained using the Jenq-Shah compliance technique (using 

tangent compliance). The crack lengths were measured after the completion of each loading 

cycle. Using the peak load and crack length at each cycle, a specific quasi-static crack resistance 

curve, KR
s
, was generated; it describes the variation of the peak stress intensity after each cycle 

and identifies the critical stress intensity and crack extension at failure (or unstable cracking). 

The word specific is attached to resistance curve to signify its dependence on size.   
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A smooth KR
s
 function in the spirit of the one proposed by Morel (2007) was fit over the 

data. The function, shown in equation (39), has three governing parameters: KRc
s
, aeq,c and m. 

The parameters KRc
s
 and aeq,c correspond to the stress intensity (or specific fracture toughness) 

and critical crack extension at peak load, respectively. The parameter m was then obtained using 

a least squares, non-linear regression technique that fit the function over the experimental data.  

The smooth P-aeq function shown in Figure 18c was obtained using the smooth KR
s
  

curve with the two critical fracture parameters and the power m from least squares regression. 

The load was determined by inserting the nominal stress term, N, from equation (36) into (37) 

and by substituting KI for KR
s
 shown in equation (39). The smooth P-aeq function is described 

mathematically in equation (42) and its behavior is shown in Figure 18.   
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Figure 18: Construction of P-aeq curve 

(a) 

(b) 

(c) 
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The next two subsections in this chapter describe the successive approximation scheme 

used to determine the crack opening displacement field and the double loop optimization scheme 

that solves for the ‘corrected’ crack length and the four bridging stress parameters. The 

parameters were solved for by satisfying two conditions under a given load from the smooth P-

aeq curve: 1) CMOD for the corrected and equivalent cracks must be equal, and 2) the applied 

moment and internal moment at mid-span must be equal. A total of 8 points were chosen along 

the P-aeq curve. Note, four or more points along the curve must be chosen to ensure enough 

equations exist to solve for the unknown parameters. Initial seed values were assigned to the four 

bridging parameters before starting the optimization scheme (f’t = 3.5 MPa, wc = 0.25 mm, c1 = 

3 and c2 = 8). Finally, a double loop optimization scheme using a least squares objective function 

was executed. 

CMOD condition 

The crack opening displacement field was determined using a weight function g(x,a), which is 

shown in equation (27). 

Where   
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𝛿  
      (  )

    
 

                            
     (44) 

 

The variable  shown in equation (43) is the crack opening displacement and shown in 

equationis the crack opening at the mouth of the crack, or CMOD. The variable x is the 

ordinate along the length of the crack and  is the non-dimensional crack length.  

 The crack opening displacement field 𝛿( )  was calculated using equation (27) and was 

solved iteratively using successive approximation. In the first iteration, the bridging stresses had 

a value of zero and only the contribution of app was evaluated. The ensuing displacement field 

was then inserted into the bridging stress function,   (𝛿( ))  shown in equation (28) and the 

integral was re-evaluated. 

This procedure was repeated until adequate convergence was observed. Gauss-

Chebyshev quadrature was used to evaluate the integral because a singularity exists in the weight 

function at x=a. This type of quadrature is useful in evaluating functions with singularities and as 

such, yielded more accurate results than with a normal Gauss integration scheme.  

The corrected crack length was determined by satisfying the condition that the peak to 

peak CMOD for the traction-less crack, 0,TL must be equal to the peak to peak CMOD for a 

crack with tractions, 0,T under the same applied load. Note that the peak to peak and not the 

total crack opening displacements were used since the author is determining an equivalent cyclic 

crack resistance curve. The reason for this is that the author wanted to compare the equivalent 
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cyclic crack resistance curve under quasi-static and fatigue loading cases. Moreover, since plastic 

deformations are larger in fatigue, as shown in Subramaniam et. al (2000), the author decided to 

neglect the plastic deformations and use the peak to peak (or tangent) approach to evaluate crack 

lengths in order to provide a more reasonable comparison.  

First, the P-aeq curve was evaluated at a given point (Papp*, aeq*) as shown in Figure 

19. Next, the crack mouth opening displacement 0,TL, for the given applied load, Papp* and 

the equivalent crack length, a0 +aeq*, was evaluated with equation (31). The crack mouth 

opening displacement with the presence of bridging stresses, 0,T, was then evaluated. In the 

first loop, 0,T < 0,TL, because the bridging stresses were resisting crack opening. In the next 

iteration, the length of the crack with the tractions was increased and CMOD was re-evaluated. 

An optimization scheme in MATLAB was used to determine the corrected crack length, acorr, 

that satisfied the condition 0,T = 0,TL, under Papp*.   Refer to Figure 17 to see an 

illustration of this condition. 
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Figure 19: Point on the P-aeq curve 

 

Force and Moment Equilibrium 

The second loop in the optimization scheme dealt with the task of satisfying internal force and 

moment equilibrium at the mid-span point along the beam. This type of equilibrium condition 

was also used in the works of Iyengar et. al (2002), Zhang et. al (2001), and Wu et. al (2006). 

Iyengar et. al proposed a solution that used a moment-rotation formulation to determine the  

relationship between the  power softening curve and ‘size effect’. Zhang et. al used a hybrid 

LEFM solution, similar to the one proposed here (although without a successive approximation 

scheme)  that determined the crack opening displacements with fracture mechanics equations and 

evaluated the  capacity of the beams in fatigue with a moment equilibrium condition. Wu et. al 

proposed an analytical solution using LEFM to determine the capacity of a three point bending 

beam with a moment equilibrium condition, under the assumption that the crack opening 

displacement profile was linear.  

Papp*, aeq* 
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Under quasi-static loading, the stress distribution was assumed to follow a linear stress 

distribution above the corrected crack length, denoted as 2, and follow a stress softening 

relationship shown in equation (28) between the tip of corrected crack length and the top of the 

notch or CTOD, denoted as 1. The mathematical description of the stress over the entire mid-

span beam depth is shown in equation (45), and Figure 20 shows an illustration of the 

distribution. 
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The centroid, C, (or zero-stress location above the notch) was found using an 

optimization function in MATLAB. The initial value for C was ½ (acorr+ D), where D is the 

depth of the beam. It was solved by integrating the stress distribution caused by the applied load, 

Papp*. Equation (46) shows the force equilibrium condition from which the Centroid, C, was 

determined. 
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Figure 20: Bending and bridging stresses at mid-span  

  

The stresses were then partitioned at the centroid, C, into two separate parts: the 

compressive stresses above C and the tensile stresses below C. The resultant force for each part 

was determined with equation (47). Note that both the resultant forces, FR,C and FR,T, should be 

equal since equation (46) states that the total net force acting along the cross-section of the beam 

is zero. The centroid for the tension and compression sides were determined with equations (48) 

and (49). The moment arm, d, was then determined by subtracting the distance CC from CT as 

shown in equation (50).  
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Finally, the internal moment, M, was calculated by multiplying either FR,T or FR,C by the 

moment arm, d, as shown in equation (51). The internal moment was then converted to a point 

load, denoted as Pint through equation (52). The conversion was made in order to compare the 

internal forces to the external forces. Note that the moment at mid-span of a simply supported 

beam is PL/4. A comparison could have easily been made between external and internal 

moments; however, it seemed more reasonable to present the results in these terms so as to be 

consistent with common practice in fracture mechanics and express the results in terms of load. 

Global equilibrium was established when Papp* = Pint. Note that the global equilibrium 

condition was evaluated at each of the eight points obtained from the smooth P-aeq curve.  The 

error between the points was established with a least squares expression and is shown in equation 

(53). The double loop optimization scheme stopped after the correct combination of f’t, wc, c1, 
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and c2 were selected and the minimum error between the two was achieved. Figure 21 shows an 

example of a converged global equilibrium solution. Figure 22 shows how the equivalent crack 

length deviates from the corrected crack length as the crack moves forward. It should be noted 

that the shape of the deviation between crack lengths is similar to the one obtained by 

Funfschilling et. al. (2010), for a quasi-brittle material containing a portion of Al203 and Y203. 

Figure 22 shows that at the onset of cracking, the two crack lengths do not substantially differ 

from each other. However, as the crack moves forward, the deviation grows and eventually 

becomes steady.   
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                      Figure 21: External and internal moment equilibrium 

 

                         Figure 22: Equivalent and corrected crack lengths 
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One should note that under the premise that the bridging stresses can be back-calculated, the fact 

that the method depends on P-aeq is a limitation because the curve may be affected by the rate 

of loading. Therefore, only slowly loaded quasi-static tests would be applicable for this particular 

method. 

KR
s
 and bridging stress parameters 

A total 14 specimens were tested under quasi-static loading using CMOD control, with the 

loading rates specified in chapter II. The larger beams (100 mm depth) were tested with two 

initial notch to depth ratios, 0: 0.15 and 0.35. The smaller beam sizes (50 mm) had only one 

notch to depth ratio of 0.15 to ensure that there was enough clearance between the tip of the 

notch and the top surface of the beam. Tables 3 and 4 show the results for all the specimens. The 

first column shows the specimen number.  The larger specimens are labeled with an ‘L’ and the 

smaller specimens with an ‘S’. The second and third column shows the beam depth dimension 

and the initial notch size, respectively. Columns 4-6 show the three parameters that govern the 

specific quasi-static crack resistance curve, KR
s
 curve obtained from the cyclic P-CMOD data. 

The parameters KRC
S

 and aeq,c represent the specific fracture toughness and equivalent critical 

crack extension at peak load, respectively. Both parameters were found to be size dependent. The 

bridging stress parameters, f’t, wc , c1, and c2 are shown in columns 7-10. The tensile strength, 

f’t was not found to be size dependent. The critical crack opening displacement, wc, was found to 

be size dependent. The two shape parameters, c1 and c2 were not found to be size dependent. 
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Note that the average shape parameters back-calculated here, c1= 4.45 and c2= 25.58, are greater 

than the values reported by Xu and Reinhardt (1999a) and Kumar and Barai (2009), c1= 3, c2= 7.  

The reason for this is that plastic deformations were neglected from cycle to cycle during the 

back-calculation procedure, forcing the shape parameters to be greater than the previously 

published results since the COD field would be smaller in magnitude. Therefore, to satisfy 

moment equilibrium under a smaller COD field, the shape parameters must be greater, as shown 

here. 

In Table 4, column 3 shows the elastic modulus, E; it was obtained with the Jenq-Shah 

compliance technique over the first cycle and also knowing the initial crack length, a0. Refer to 

equation (34) in chapter III for the mathematical formulation. Surprisingly, this property was 

found to be size dependent. However, the elastic modulus of the larger beams agreed well with 

measurements made separately with cube specimens. The smaller elastic modulus may be 

attributed to the small un-notched ligament length which can be influenced by the relatively large 

isolated aggregates. For the larger beams, the aggregates are more dispersed because of the larger 

un-notched area.  

Total and cyclic fracture energy 

The last seven columns in Table 4 show the fracture properties for each specimen. It 

includes the total fracture energy, GF
T
, and fracture toughness, KIC

T
, the cyclic fracture energy, 

GF
c
, and fracture toughness, KIC

c
, the ratio between the two toughness’s, and the non-

dimensional specimen size. The total fracture toughness was determined simply by dividing the 
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total area under the P-CMOD curve by the specimen width, b, and the un-notched ligament 

length (D-a0). The cyclic fracture energy was determined by integrating the bridging stress 

function (with the back-calculated f,t, wc, c1, and c2 values obtained with the technique proposed 

in this chapter), as shown in equation (55). The total and cyclic fracture toughness’s were 

determined with equation (54). Note that equation (54) shows the equation for the cyclic fracture 

toughness, however, if one replaces the cyclic fracture toughness with the total, the total fracture 

toughness can be obtained.  The total non-dimensional size is shown in the second to last column 

and the cyclic non-dimensional size is shown in the last column. The difference between the two 

is the characteristic length lch. The total non-dimensional size uses a characteristic length with 

the total fracture toughness.  The cyclic non-dimensional size uses a characteristic length 

determined by using the cyclic fracture toughness, as shown in equation (56).  The variable D is 

the specimen depth and lch
c
 is the cyclic characteristic length of the material with units of length, 

and is defined as the square of the quotient between cyclic fracture toughness and the back-

calculated tensile strength (for each individual specimen; therefore subject to change), as shown 

in equation (56).  

As expected, the total fracture energy is larger for the larger size specimens because the 

critical crack opening displacement, wc, is size dependent. The cyclic fracture energy is smaller 

than the total fracture toughness, which was also expected since the bridging stress distribution 

obtained in the proposed technique neglected plastic deformation. The ratio between the cyclic 

and total fracture energy, on average, was between 0.72-0.81. In addition, the total non-
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dimensional size is smaller than the cyclic non-dimensional size, which was expected because 

the total fracture energy is larger than the cyclic.  
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Table 3: KR
s
 curve and bridging stress parameters 

 

Specimen 
Size 

(mm) 
Notch 
Ratio   

KRC
s 

(N/mm
1.5

) 

aeq,c 

(mm) 
mc 

f't 

(MPa) 

wc  

(mm) 
c1 c2 

L1 100 0.15 31.31 7.36 0.30 4.31 0.56* 4.49 25.40 

L2 100 0.15 30.63 6.65 0.21 4.57 0.33 4.46 25.41 

L3 100 0.15 29.08 6.71 0.23 4.28 0.31 4.50 25.42 

Average  100 0.15 30.34 6.91 0.25 4.39 0.32 4.48 25.41 

L4 100 0.35 34.44 7.23 0.19 5.13 0.29 4.54 25.44 

L5 100 0.35 25.10* 7.06 0.21 3.69 0.28 6.69* 26.26 

L6 100 0.35 32.97 13.95* 0.29 3.70 0.42 4.26 25.54 

Average  100 0.35 33.70 7.14 0.23 4.17 0.33 4.40 25.7 

S1 50 0.15 24.14 4.47 0.32 4.39 0.23 4.91 25.08 

S2 50 0.15 22.78 2.80 0.18 5.09 0.18 4.98 25.02 

S3 50 0.15 22.99 10.39* 0.31 3.23 0.30 5.01 25.09 

S4 50 0.15 24.02 9.39* 0.22 4.00 0.21 4.96 25.09 

S5 50 0.15 20.68 3.81 0.13 4.60 0.16 5.02 25.06 

S6 50 0.15 15.24 4.56 0.27 2.84 0.28 2.50* 24.70 

S7 50 0.15 23.75 3.69 0.16 5.12 0.19 5.00 25.05 

S8 50 0.15 16.95 2.23 0.20 3.87 0.20 4.99 25.11 

Average  50 0.15 21.32 3.59 0.22 4.14 0.22 4.98 25.02 

Average  100 0.15,0.35 31.69 7.00 0.24 4.28 0.32 4.45 25.58 

p-value     0.001 0.086 0.65 0.714 0.019 0.76 0.009 

*outlier 
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Table 4: Fracture characteristics under quasi-static loading 

 

Specimen Size (mm) E (MPa) GF
T 

(N/mm) KIC
T 

(N/mm
1.5

) GF
c 

(N/mm) KIC
c 

(N/mm
1.5

) KIC
c
/KIC

T
 D/lch

T
 D/lch

c
 

L1 100 30646 n/a n/a 0.098 54.75 n/a n/a 0.619 

L2 100 33039 0.096 56.37 0.061 44.73 0.79 0.66 1.05 

L3 100 36781 0.079 53.75 0.053 44.35 0.83 0.63 0.93 

Average  100 33489 0.087 55.06 0.071 47.94 0.81 0.65 0.87 

L4 100 33122 n/a n/a 0.060 44.66 n/a n/a 1.32 

L5 100 28967 0.075 46.46 0.043 35.10 0.76 0.63 1.10 

L6 100 30831 0.086 51.62 0.062 43.77 0.85 0.51 0.71 

Average  100 30973 0.080 49.0 0.055 41.18 0.80 0.57 1.05 

S1 50 36774 0.091 58.00 0.043 39.73 0.69 0.29 0.61 

S2 50 26217 0.060 39.65 0.038 31.74 0.80 0.83 1.29 

S3 50 21013 0.072 38.94 0.041 29.34 0.75 0.34 0.61 

S4 50 22966 0.068 39.53 0.035 28.39 0.72 0.51 0.99 

S5 50 19608 0.063 35.07 0.030 24.20 0.69 0.86 1.81* 

S6 50 16935 0.061 32.14 0.032 23.24 0.72 0.39 0.75 

S7 50 22380 0.080 42.41 0.041 30.11 0.71 0.73 1.45 

S8 50 21171 0.063 36.41 0.032 25.88 0.71 0.56 1.12 

Average  50 23383 0.070 40.27 0.036 29.08 0.72 0.56 0.97 

Average  100 32231 0.084 52.05 0.063 44.56 0.81 0.61 0.96 

p-value   0.006 0.049 0.007 0.001 0.002 0.004 0.608 0.552 
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Comparison of KI and KR curves with inclusion of KIC
ini

 

Following the double K criterion proposed by Xu and Reinhardt (1999a), the KI and KR curves 

were compared. KI and KR were determined with equations (57) and (58) 

𝐾 ( )   ∫  (   )    ( )  
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The KIC
ini

 term, which describes the initial fracture toughness of the concrete, was 

determined by simply subtracting the difference between KI and KR at the critical corrected 

crack extension, ac,corr, which corresponds to the peak load. When this subtraction is made, the 

KI and KR curves overlap, suggesting equilibrium is maintained as the crack grows under 

displacement control. These results are in slight contrast to the ones published by Xu and 

Reinhardt in that KI and KR shown here are tangent at multiple locations and do not just intersect 

at the peak load. However, the results shown here imply that stable fracture is maintained for 

most of the crack growth and that KIC
ini

 does not seem to vary significantly (until well beyond 

the critical crack extension, as shown in Figure 23), a condition that has been maintained by 
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researchers investigating other types of quasi-brittle materials (Gallops, S., Fett, T., Ager III, 

J.W., Kruzic, J.J., 2011; Kruzic, J.J., Cannon, R.M., Ager III, J. W. ,Ritchie, R. O., 2005; S. 

Funfschilling, T. Fett, S.E. Gallops, J.J. Kruzic, R. Oberacker, M.J. Hoffman, 2010).  

 

Figure 23: KI v. KR curve 

 

Table 5 shows the initial fracture toughness for all six 100 mm depth quasi-static 

specimens. The average was 0.40 MPa-m
0.5 

for the large beams and 0.271 MPa-m
0.5

. These 

values are lower than the published values shown in Kumar and Barai (2010), which can be 

explained with the following rationale: 1) the concrete mix used here exhibits lower fracture 

toughness, 2) the calculated critical crack lengths at failure using the linear asymptotic 

assumption are longer (since a secant compliance is used) which translates to larger fracture 

toughness and 3) since the crack opening displacement field is determined using an iterative 
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successive approximation, the contribution of the bridging stresses (and thus KR) will tend to be 

larger than when the bridging stresses are simply superposed  onto a traction-less crack opening 

displacement field and thus, necessitate the condition that KIC
ini

 be larger to satisfy the 

requirement that the applied stress intensity and crack resistance be equal at peak load. In 

addition, KIC
ini

 is shown to be size dependent, which is consistent with the results found for the 

specific fracture toughness, KIC
s

.  

Table 5: Initial fracture toughness using acorr for 100 mm specimens under quasi-static 

loading 

Specimen KIC
ini

 Specimen KIC
ini

 units 

L1 11.46 S1 8.73 N/mm
1.5

 

L2 12.81 S2 10.42 N/mm
1.5

 

L3 11.52 S3 6.36 N/mm
1.5

 

L4 16.99 S4 7.94 N/mm
1.5

 

L5 11.81 S5 10.80 N/mm
1.5

 

L6 11.99 S6 5.39 N/mm
1.5

 

n/a n/a  S7 10.79 N/mm
1.6

 

n/a             n/a S8 8.21 N/mm
1.7

 

Average 12.76   8.58 N/mm
1.5

 

Average 0.404   0.271 Mpa-m
.5
 

 

Moreover, Kumar and Barai (2012) recently showed that the double K-criterion can yield 

size and geometry dependent results. The researchers showed that for a varying, non-dimensional 

size, D/lch, the ratio KIC
T
/KIC

ini
 can vary significantly. The results shown here indicate that the 
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ratio KIC
T
/KIC

ini
 for both sizes is approximately 3.33, a similar result to what is shown by 

Kumar and Barai (they showed a ratio of approximately 4) for a non-dimensional size of around 

1 (similar to the size shown here).  

One should note however, that the method of determining  KIC
ini 

 shown here is less 

sophisticated (Zhang, X., Xu, S., 2011), but it was done to give the reader some context as to the 

appropriateness of the entire methodology described herein and to identify similarities. 

Determination of the equivalent crack resistance curve 

The use of LEFM equivalent crack lengths has been shown to be an efficient way of 

characterizing the state of damage in a structure. In fatigue for example, Subramaniam et. al 

(2000) used the Jenq-Shah compliance method to determine the equivalent crack lengths until 

unstable failure and showed that the critical equivalent crack extension under quasi-static loading 

can be identified in the log(daeq/dN) curve. In addition, the researchers showed that the fatigue 

specimens failed at the same fracture toughness as the quasi-static specimens. The implications 

of these results suggest that the cyclic bridging stresses in fatigue must be similar and/or 

relatable to that under quasi-static loading. Morel et. al (2010) recently showed that the bridging 

stress parameters: f’t, wc, and Gf/GF (ratio of specific and total fracture energy) govern the early 

shape of the equivalent R-curve, critical crack extension, and peak load, respectively. Therefore, 

if wc governs the equivalent critical crack extension, aeq,c, which happens to be the crack 

extension corresponding to the bending point in the log(daeq /dN) in fatigue (refer to Figure 10), 

it leads to a conclusion that the fatigue bridging stresses have similar characteristics to that 
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observed under quasi-static loading. Moreover, under constant amplitude loading, in order for 

the log(daeq/dN) v. aeq curve to have zero slope, it implies that at this equivalent crack length, 

the rate of change between the applied stress intensity and the crack resistance must be equal. 

This is a similar trait observed at failure under quasi-static loading. Therefore, it seems plausible 

that the shape of fatigue and quasi-static R-curve is similar, and hence, so are the bridging 

stresses. Kruzic et al. (2005) measured the cyclic resistance curve for Alumina and showed that it 

also shared similar characteristics to quasi-static resistance curves in that there is a pre-peak 

decreasing slope region, and a post-peak steady state region. 

The purpose of this sub-section is to show the steps necessary to obtain the equivalent 

cyclic crack resistance curve. Using the found bridging law parameters, the equivalent cyclic 

crack resistance curve was obtained with equation (59). This equation states that the equivalent 

crack resistance can be obtained by evaluating the contribution of the bridging stresses with a 

weight function, at a given equilibrium position (Papp
*
=Pint at aeq), between the bounds of the 

initial crack, a0, and the equivalent crack aeq (obtained from the P-aeq curve). Also note that 

the equivalent resistant curve was evaluated at every equilibrium point along the P-aeq curve. 

The term f’teq represents the tensile stress at the location x = aeq. This value will change 

depending on the difference between the corrected crack and the equivalent crack length. For 

simplification, an average value of f’teq over the crack range 0.15*D (or 0.35*D, depending on 

the initial crack geometry) to 0.65*D was used and this average value will be denoted henceforth 

simply as f’teq. The upper bound of 0.65*D was chosen because this was the upper bound of the   
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weight function. Table 6 shows f’teq for all specimens and the ratio between f’t and f’teq. On 

average, the ratio was approximately 0.75. Successive approximation was not used to determine 

the equivalent crack resistance here, meaning the solution was assumed to converge on the first 

iteration. The reason this was done was to satisfy the condition that over the equivalent crack 

domain, the CMOD need be equal to the CMOD from the corrected crack domain over the same 

applied load. In summary, the equivalent bridging stresses (with parameters f’teq, wc, c1,and c2) 

were evaluated over the traction-less crack opening displacement field that exists over the crack 

domain of a0 and aeq.  

𝐾    (   )   ∫  (     )  (𝛿( ≤  ≤    ))  
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Figure 24: Bridging stresses acting over the equivalent crack domain 
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Figure 24 shows the integration bounds between the initial crack length and the 

equivalent crack length. Figure 25 shows how the corrected and equivalent crack resistances 

differ as the crack propagates forward. This result is expected since there was a substantial 

deviation between the two crack lengths as shown in Figure 22. Note that here, the initial fracture 

toughness was assumed to be zero in both curves. 

 

Figure 25: Equivalent and corrected crack resistance curve 

 

Application to fatigue loading 

Since compliance techniques are easily used (and preferred by many researchers) to determine 

crack lengths in fatigue, it has created a need to quantify crack resistance in the equivalent 

domain. In this last section, a new method to determine the equivalent crack resistance with 

moment equilibrium and combined use of the corrected and equivalent crack length was shown.  
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In this section, a method to determine the equivalent crack resistance curve under a fatigue 

loading scenario is described. The main difference here is that instead of evaluating the 

resistance curve at the equilibrium loads from the P-aeq curve, it is evaluated under a set of 

loads ranging from 0 to Pmax (the peak load sustained by a given specimen). 

The procedure for obtaining the fatigue equivalent crack resistance curve is the following: 1) 

determine the bridging stress parameters using moment equilibrium and the corrected crack 

length, 2) fit a smooth function (spline interpolation was chosen here) over the aeq (acorr) 

curve and 3) evaluate the integral shown in equation (59) under a set of loads ranging from 0 to 

Pmax.. A total of 10 equally spaced loads were evaluated at 25 equally spaced aeq (acorr) 

points; combining for a total of 250 cases. Note the variable aeq (acorr) denotes the equivalent 

crack extension is a function of the corrected crack extension. Note that as the crack extension 

approaches values near 0.3*D, the equivalent resistance starts to become non-linear. Therefore, 

only values between a0 and 0.3*D were used in the parameterization process.  
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Figure 26: Equivalent crack resistance under varying loads 

 

The result for specimen L1 is shown in Figure 26. The Figure shows during the early 

stages of cracking, a change in the load does not change the trajectory of the resistance curve 

significantly. The reason is because the bridging stresses overwhelm the applied stress and do 

not allow the crack extension to open. As the crack elongates, the applied stress begins to 

overcome the bridging stresses, and force the crack open, which spawns a change in slope. This 

behavior was described mathematically with the function shown in equation (60). It is similar to 
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the power function shown in Bazant and Planas (1998) used to describe the R-curve. The original 

function however, had a slope of zero beyond the critical crack extension, ac, and was governed 

by three parameters: the shape parameter, m, fracture toughness at peak load, KRc, and ac. The 

function here, denoted as KR
f
 (fatigue resistance curve), is governed by 5 parameters: KRc

f
, 

aeq,c, m, 1,  and 2. A modification was made to the original function to accommodate the 

change in slope beyond the pivot point, as shown in Figure 26. 
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The variable        is the crack length where the first and second segments of KR
f
 meet 

and is obtained by satisfying the condition that the slopes at this point must be equal. Note that 

that m must be greater than 1, the ratio 
       

    
  must be less than 1 to yield a positive-real 

number, and        is a function of applied load. The variable Kc
f
 is the fracture toughness at 

the equivalent crack,       . The subscript  denotes that the variable varies as a function of 

the post peak slope.    

The slope in the post-peak region was governed by equation (63). The equation states that 

the slope will change as a function of applied load. The relationship between the applied load 

and the post-peak slope, , is shown in Figure 27 along with the smooth fit obtained with 

equation (63). The variable 1 is the initial slope corresponding to the scenario where applied 

load is zero. The variable 2 characterizes the relationship between the load and post-peak slope.  
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Figure 27: Change in the slope of the post-peak crack resistance curve as a function of load 

 

The five parameters were obtained with a non-linear regression scheme in MATLAB. 

Fitting the behavior with equations (60-63) yielded adequate results, as shown in Figure 26. The 

solid lines represent the smooth fit provided by the KR
f
 function. 

Results 

Table 6 shows the results from the 14 specimens. Four of the five parameters are size dependent: 

KRc
f
, aeq,c, 1, and 2. The equivalent critical crack extensions obtained through non-linear 

regression agreed well with the ones obtained from experiments: 100 mm: (7.00, 6.69) and 50 

mm: (3.59, 3.47). This means that the functional form governing the equivalent crack resistance 

curve shown in equation (60) seems to be adequate in describing the behavior under varying 

loads and in identifying the critical crack extension.   
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Table 6: Equivalent crack resistance curve parameters 

Specimen 
Size 

(mm) 
Notch 
Ratio   

KRC
f
 

(N/mm1.5) 

aeq,c 

(mm) 
m 1 2 f'teq f’teq/f’t 

L1 100 0.15 12.18 6.82 2.39 1.53 -0.86 3.28 0.76 

L2 100 0.15 10.98 4.96 1.82 1.52 -1.39 3.22 0.70 

L3 100 0.15 10.69 5.46 2.01 1.45 -1.25 3.07 0.72 

Average  100 0.15 11.28 5.75 2.08 1.50 -1.17 3.19 0.73 

L4 100 0.35 10.94 3.55 2.05 1.91 -1.35 3.92 0.76 

L5 100 0.35 8.20 4.10 2.35 1.39 -1.21 2.85 0.77 

L6 100 0.35 9.89 5.56 2.47 1.49 -0.83 3.05 0.83 

Average  100 0.35 9.68 4.41 2.29 1.60 -1.13 3.28 0.79 

S1 50 0.15 8.10 2.86 2.45 2.31 -0.72 3.43 0.78 

S2 50 0.15 7.42 1.91 1.87 2.39 -1.40 3.54 0.69 

S3 50 0.15 6.29 3.22 2.40 1.64 -0.81 2.49 0.77 

S4 50 0.15 6.69 2.53 2.08 1.91 -1.23 2.86 0.71 

S5 50 0.15 3.18 0.97 1.26 1.29 -3.11* 1.94*   

S6 50 0.15 5.43 3.37 2.52 1.42 -0.96 2.13 0.75 

S7 50 0.15 7.49 1.87 1.41 2.28 -1.86 3.42 0.67 

S8 50 0.15 6.12 2.17 1.74 1.77 -1.38 2.70 0.70 

Average  50 0.15 6.34 2.36 1.97 1.88 -1.19 2.94 0.73 

Average  100 0.15,0.35 10.48 5.08 2.18 1.55 -1.15 3.23 0.76 

p-value     0.000 0.001 0.341 0.077 0.811 0.287 0.205 

 

Figures 28-31 show the relationship between the bridging parameters, specimen size, and 

equivalent fatigue crack resistance curve parameters. In summary, the total fracture toughness, 

KIC
T
, is related to the equivalent fatigue fracture toughness, KRc

f
, and the ratio, (wcE/KIC

T
)
2
 

(units of length), is linearly related to the equivalent critical crack extension, aeq,c. Morel et al. 

(2010) showed the non-dimensional equivalent critical crack extension is related to the square of 

the non-dimensional crack opening displacement and non-dimensional size. In addition, using 

the Jenq-Shah model, one may prove that the critical equivalent crack is proportional the ratio 
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(wcE/KIC
T
)
2

, as shown in Bazant and Planas (1998). In general, the results shown here agree well 

with those findings.  

 

Figure 28: Relationship between total fracture toughness and equivalent fracture toughness  

in fatigue 
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Figure 29: Relationship between the equivalent critical crack extension and the critical 

crack opening 

 

The two parameters governing the shape of the post-peak slope, 1 and 2, are linearly 

related to the ratio f’t/D, and the non-dimensional size, D/lch
c

, respectively. The relationship 

between 1 and f’t/D seems reasonable since the initial slope is governed by the bridging stresses 

and for small sizes (or smaller crack lengths) they overwhelm the applied stresses, keeping the 

crack opening displacement at a minimum, which in turn leads to a steeper post-peak slope. The 

relationship between 2 and D/ lch
c
 can be explained using the same rationale: The larger size 

specimens (or larger crack lengths) will begin to overcome the bridging stresses because the 

stress intensity will increase, and thus will create a situation where the post-peak slope change is 

more sensitive to changes in applied load.  
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The regression error shown in Figures 28-31 (R
2
= 0.94, 0.89, 0.82, 0.88) can be 

explained by the following rationale: 1) error was incurred in the non-linear fitting process and 

2) as shown in Morel (2010), there may be more than one variable related to a given bridging 

stress parameter.  

 

 

Figure 30: Relationship between the initial post peak slope and the ratio between the tensile 

strength and specimen size  
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Figure 31: Relationship between the applied load-crack resistance slope sensitivity and 

non-dimensional size 
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CHAPTER V 

THE DETERMINATION OF AN EQUIVALENT CYCLIC CRACK RESISTANCE 

CURVE UNDER CONSTANT AMPLITUDE LOADING 

 

Fatigue damage is a time, moisture, temperature, and loading dependent process and is a 

major factor in the loss of material structural integrity. For concrete structures, fatigue damage is 

typically observed in bridges, off-shore structures, and pavements.  These particular structures 

are continuously subjected to cyclical forces and changes in environmental conditions which 

cause incremental damage over time and can eventually lead to failure. To prevent this, damage 

must be evaluated periodically and repaired prior to unstable crack growth.  This means that 

damage must be defined physically in order to be assessed and contained in the field.  

Traditionally, fatigue damage has been quantified using Miner’s Law that defines damage 

through the Number of cycles to failure, D = 1/Nf, which is a function of the applied stress ratio 

(/MR) under constant amplitude loading (Miner, 1945; Okamoto, 1999; Oh, 1991)  One of the 

main advantages of using this type of damage model is its computational efficiency.  Some 

performance based design codes (e.g. concrete pavement design) use the S-N approach because 

currently, it is the only feasible way of rapidly accounting for, processing, and converting 

millions of load repetitions to damage (Guide for Mechanistic-Empirical Design of New and 

Rehabilitated Pavement Structures, 2004).  This allows for multiple designs to be considered 

within minutes.  Some of the disadvantages however, are that it is insufficient in determining the 

in-situ state of damage because no information is given on the state of the material itself (no 
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information on the stress-strain behavior and the reduction of the Elastic Modulus).  In addition, 

it cannot account for size effect, load history effect, and variable amplitude loading without using 

some empirical calibration factors.  Thus, there is a need for the development of a concrete 

fatigue model that can account for all three of the aforementioned effects and in addition, be able 

to maintain a comparable level of computational efficiency to the S-N approach.   

The objectives of this chapter are to present a new method of determining a fatigue crack 

resistance curve under cyclic loading. The results at the end of the chapter show that if the post-

peak slope, , and the initial fracture toughness, KIC
ini

,  are pre-defined, one arrives at a unique 

expression for the fatigue crack resistance curve. The purpose of using the crack resistance curve 

in the formulation is that it allows for a continuous prediction of fatigue, which is necessary if 

variable amplitude loading scenarios are considered and it could also be used to explain the size 

effect.     

 
Experimental test setup and mix characteristics 

 
A total of 10 large beam specimens were tested under constant amplitude fatigue loading. The 

notch to depth ratio () for each specimen was 0.35.    Each specimen was subjected to a 2 Hz 

cyclical load with an R-ratio (min load/max load) of 0.05.  Half of the fatigue specimens (5) 

were subjected to a stress ratio (max load/peak load) of 0.85 and the other half to a stress ratio of 

0.95. 
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Crack length measurements 

Peak to peak load and CMOD measurements were recorded after each cycle. After a test was 

completed, compliance calculations (using a tangent modulus, or peak to peak response; plastic 

deformation was neglected) were made. Next, the Jenq-Shah compliance technique was used to 

determine the crack length after each cycle.  Please refer to chapter II for a detailed description 

of the technique. The crack data was then filtered by trimming the size so there was only one 

data point per each 0.01 mm increase in crack length. From here, the data was converted to crack 

rate by dividing each crack increment, aeq, by the number of cycles, N, needed to produce the 

new crack increment. The crack rate data was then smoothened by a cubic piecewise regression 

function. The smooth crack rate data was then used to derive the fatigue crack resistance curve. 

Figure 32 shows an example of the difference between the trimmed down crack rate data and the 

cubic piecewise regression fit. 
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Figure 32: Smoothened crack rate data versus crack length 

 

Fatigue crack resistance curves 

 

In this section, a new method to determine the fatigue crack resistance curve (KR
f
) is proposed. 

The KR
f
 curve can be obtained if the crack propagation rate (daeq/dN), the equivalent crack 

extension (aeq), and the stress intensity (KI) are known. There is a direct relationship between 

the decreasing crack propagation rate (transient stage) and the crack resistance curve.  A unique 

description of the KR
f
 curve can be obtained by satisfying the following three conditions: 1) An 

intrinsic linear relationship between log(KI -KR
f
) and log(daeq/dN) exists (Li, V.C., Matsumoto, 

T., 1998),  2) The initial fatigue cracking resistance is zero, and 3) The fracture resistance in the 
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post peak region (after aeq,c has been reached) should be a constant (zero slope), as observed 

by Kruzic (2005) for Alumina under fatigue loading.  

The derivation of the KR
f
 curve is shown in equations (64-66) Equation (64) shows the 

fatigue cracking equation, which is simply a Paris Law equation that was modified by 

subtracting the stress intensity term, KI with the KR
f
 term which satisfies the first condition. 

Rearranging equation (64) and solving for KR
f
 yields equation (65) where f(aeq) is shown in 

equation (66). 
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Note that the critical crack extension, aeq,c corresponds to the aeq value at which 
 𝑓

    

 = 0 

(see Figure 33). To elaborate, recall that for quasi-static loading, the definition of the R-curve 

states that at the critical crack extension, the KI and KR curves must be tangent (recall equations 



99 

 

20 and 21). For fatigue loading, by definition, the KR
f
 curve must be below the KI curve. 

Therefore only equation (21) applies. Taking the derivative of equation (65) leads to equation 

(67).   

 𝐾 
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For equation (21) to be satisfied, 
 𝑓

    
, must be equal to zero. Next, using condition 2, shown in 

equation (68), an expression for C can be derived, as shown in equation (69). 
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Condition 3 states that the derivative of equation (65) is zero at some arbitrary crack extension 

beyond aeq,c: 
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This leads to the condition shown in equation (71). 

 𝐾 

    
 

 𝑓

    
                   

                        (71) 

The fatigue parameters C and n can then be solved for simultaneously by trial and error until 

equation (71) is satisfied. This is shown graphically in Figure 33. The resulting KR
f 

values as a 

function of aeq are shown in Figure 34 as individual data points. Note that KR
f
 =0 at a =0, per 

condition 2. 
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Figure 33: Satisfying condition 3: dKR
f
/daeq is zero beyond aeq,c 
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Figure 34: KR
f 

shown as a function of aeq,c 

 

Figure 34 also shows the corresponding fit using equation (72) which has the same form as 

equation (39) except that it is only valid for     ≤       , where        is the crack 

extension at which the KR
f
 function becomes constant (matching the KR

f
 plateau). A non-linear 

least squares regression technique in MATLAB was used to determine the values of each of the 

parameters aeq,c and m. The parameter aeq,u can be determined by adding a shift factor 

obtained from fatigue tests, toaeq,c ;i.e.,  aeq,u = aeq,u+ 
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Experimental Results 

Ten specimens were tested under fatigue loading, the results of which are shown in Table 7. The 

average Paris fatigue coefficients log C and n are -23.46 and 16.85, respectively. The average 

maximum fatigue resistance, KRc
f
, and the critical crack length are 13.25 N/mm

3/2 
and 5.80 mm, 

respectively. Table 7 shows the p-values from an independent t-test between the fatigue 

parameters at 0.95 and 0.85 stress ratios. The smaller the p-value, the greater the probability the 

two populations have different means (A p-value of 0.05 would mean that there is 95% chance 

the two means are different). 

The two stress ratio population means (0.95 and 0.85 stress ratios) are statistically 

different (using a 95 % confidence interval). However, the smallest p-values occur for the aeq,f 

m and KRc
f
 populations.  This could be explained as follows: 1) aeq,f is larger for the lower 

stress ratio because the crack must elongate further before failure in order to reach the fracture 

toughness in fatigue; 2) The m parameter is 0.95 at the higher stress ratio as compared to 0.69 for 

the lower stress ratio because of the bridging stresses deteriorating more rapidly; 3) KRc
f
 is lower 

at the higher stress ratio because of a smaller maximum bridging stress, which is consistent with 

the cyclic cohesive zone model proposed by Roe and Siegmund (2003). 
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Table 7: Summary of constant amplitude fatigue results 

 

Comparison between quasi-static specific KR
s
 curve and cyclic resistance curve 

In this section, we compare the important crack resistance parameters under quasi-static and 

fatigue loading.  Referring to Table 3 (quasi-static) and Table 7 (constant amplitude fatigue), we 

can make the following observations: 

The average critical crack extension, aeq,c for the fatigue crack resistance curve (5.80 

mm) was not statistically different from the observed in quasi-static resistance curve (7 mm). An 

independent t-test was used to compare the mean difference between the populations and it 

yielded a p-value of 0.532. This corroborates one of the conclusions made by Subramaniam et al. 

Stress 

Ratio 

KRc
f 

(N/mm
3/2

) 

aeq,u 
(mm) 

m 
aeq,c 
(mm) 

aeq,f 
(mm) 

KIC
f 

(N/mm
3/2

) 
log C n 

0.95 7.19 4.04 0.80 3.82 8.58 32.04 -19.16 13.50 

0.95 9.35 7.01 0.91 6.25 8.42 31.90 -31.58 23.00 

0.95 13.14 5.07 0.81 4.75 15.13 39.22 -23.24 16.00 

0.95 17.94 8.59 1.66 9.25 17.20 44.36 -22.84 16.00 

0.95 13.10 11.75 0.54 4.07 11.89 38.60 -26.18 18.00 

Average 12.14 7.29 0.94 5.63 12.24 37.22 -24.60 17.30 

0.85 17.59 11.36 0.50 8.12 15.20 38.90 -20.07 15.00 

0.85 12.59 4.55 0.91 4.32 10.85 33.97 -28.74 22.00 

0.85 14.55 10.12 0.83 7.15 19.14 38.22 -27.25 20.00 

0.85 9.98 7.14 0.66 5.62 18.74 37.65 -14.66 10.00 

0.85 17.04 9.20 0.58 4.61 34.03 43.50 -20.88 15.00 

Average 14.35 8.47 0.70 5.96 19.59 38.45 -22.32 16.40 

p-value 0.370 0.534 0.26 0.79 0.20 0.68 0.51 0.74 

Combined 

Average 
13.25 7.88 0.82 5.80 15.92 37.84 -23.46 16.85 
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(2000) which stated that the crack extension at aeq,bend in fatigue is equivalent to aeq,c in 

quasi-static loading.  

The average value for the fracture toughness in fatigue, KIC
f
, at failure, is 37.8 N/mm

3/2
.  

This value is greater than the value recorded under quasi-static loading, KIC
s
, which was 30.59 

N/mm
3/2

. Statistically, the means are different (p=0.001).  The reason for this is that there is an 

increasing quasi-static crack resistance beyond the critical crack extension. Furthermore, the 

average crack extension at failure in fatigue, (aeq,f=15.92 mm) is greater than the crack 

extension at peak load under quasi-static loading (aeq,c=7.00 mm).  This is expected since the 

fracture toughness in fatigue is higher than that under quasi-static loading and the applied stress 

in fatigue is lower than the peak stress under quasi-static testing.  

The average values for m  and KRc
f
 , were 0.82 and 13.25 N/mm

3/2
, respectively, which 

are 3.56 and 0.44 (respectively) times the average value for m and KIC
s 

observed in the quasi-

static fracture resistance curves (0.24 and 30.59 N/mm
3/2

, respectively). The reason is because 

there is a build-up of damage within the bridging stress zone which will reduce the magnitude of 

the peak bridging stresses and therefore reduce the initial slope of the cyclic resistance curve.  

This is consistent with the cyclic cohesive damage model proposed by Roe and Siegmund (2003) 

and later extended to multiple-dimensions by Jiang et al. (2009) which states that the peak 

bridging stress will erode depending on the level of damage found within the zone and will be 

governed by the magnitude of the displacement (of the cohesive bridging zone) occurring within 

each cycle.  Equation (73) shows how the magnitude of the bridging stresses will change as a 
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function of a damage variable D, which varies from 0 to 1 depending on the level of sustained 

damage within the bridging zone.  

      (   )        

              (73) 

Figure 35 shows the average KR
s
 and KR

f
 curves (using the average parameters from and Table 7 

as well as constant load KI curve and relevant crack extension and fracture parameters. The KR
s
 

and KR
f
 curves can be thought of as the upper and lower bounds for fatigue damage. The KI 

curve is the forcing function; when it is above the KR
f
 curve, fatigue damage occurs, and when it 

reaches the KR
s 

curve, failure occurs.  

One interesting conclusion that can be drawn, besides the critical crack extensions being 

statistically equal, is that the maximum value of the KR
f
 curve (denoted as KRc,

f
 in Figure 35) is 

on average (using all fatigue specimens), approximately 44% of the average KRc
s
 value from the 

quasi-static tests. In addition, the power m  for the KR
f
 curve is approximately 3.56 times the 

magnitude of the power m under quasi-static loading.  So in theory, one may relate the KR
f
 curve 

to the KR
s
 curve using the expression shown in equation (74). For this concrete mix, 1 = 0.44 

and 2=3.56. Recall that aeq,u = aeq,c +
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Figure 35: KR
s
 and KR

f 
resistance curves and KI 
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Comparison to previously published results 

 
Using data from for quasi-static fracture tests reported by Subramaniam (1999) five fracture 

resistance curves were developed. This was done by using the peak load and the critical crack 

length along with the maximum loads and corresponding crack extensions for the various 

loading/unloading post peak cycles. The plain concrete beams had similar dimensions to the ones 

tested in this study. The notch to depth ratio () was 0.35, the depth was 100 mm, the width was 

50 mm and the span was 400 mm. The average critical crack extension aeq,c was 9.97 mm. 

The critical stress intensity at failure (KIC
s
=KRc

s
), and the power m, was 40.48 N/mm

3/2
, and 

0.26, respectively.  

In fatigue, two stress ratios were analyzed: SR = 0.94 and 0.74. The results are 

summarized in. The average KRc,
f
, aeq,u and m were 15.85 N/mm

1.5
, 11.67 mm and 0.92, 

respectively. The average log C and n values were -18.67 and 11.87, respectively. Similar to 

what was observed in the current tests, the KRc,
f
, values for the lower stress ratio were larger 

than those for the higher stress ratio, while the reverse was observed for the power m (which is 

consistent with our results). The 1 and 2 parameters of equation (74) were determined to be 
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0.39, and 3.54, respectively. These numbers are very similar to what was observed in the current 

tests (0.44 and 3.56).  This seems to confirm that at least for this geometry (=0.35), the cyclic 

resistance curve seems to follow a similar trend in which the following conclusions can be made: 

1) The cyclic resistance curve seems to vary  as a function of applied stress level, although the 

difference is not statistically significant given the current limited data;  (2) averaging the results 

from different stress ratios produces consistent results with scaling factors 1 of the KRc,
f
 to 

KRc
s
 of about 0.4, and 2 of the power m under fatigue loading to the one under quasi-static 

loading of about 3.5. 

 

Table 8: Summary of constant amplitude fatigue results using data from Subramaniam et 

al. (2000) 

Stress 

Ratio 

KRc
f
  

(N/mm
3/2

) m 

aeq,u 

(mm) log C n 

0.94 16.62 1.03 10.00 -21.71 14.00 

0.94 15.13 1.00 6.50 -9.15 5.50 

0.94 10.03 1.39 6.50 -33.37 22.00 

Mean 13.93 1.14 7.67 -21.41 13.83 

0.74 17.82 0.56 16.00 -15.71 10.00 

0.74 16.20 0.99 12.00 -15.10 8.70 

0.74 19.32 0.54 19.00 -16.97 11.00 

Mean 17.78 0.69 15.67 -15.93 9.90 

Mean 

Total 15.85 0.92 11.67 -18.67 11.87 
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Fatigue prediction using the cyclic resistance curves  

For fatigue prediction, a better mathematical form to describe the KR,
f
 curve is: 

𝐾 
  𝐾  

 [  (  
    

      
)

 

]   

           (75) 

In equation (75), aeq,u= aeq,c+ The formulation for KR,
f
 in equation  (72) was useful 

for the purpose of comparing the fracture toughness under quasi-static loading (KRc
s
=KIC) to the 

KRc
f 
(the maximum value of the fatigue crack resistance curve) and the power m for both loading 

condition. In this section, two separate fatigue simulations were carried out using the results from 

two specimens at 0.95 and 0.85 stress ratios. The R-ratio for both specimens was 0.05. Figure 36 

shows the predicted crack propagation rate using the fitted KR
f
 curve (equation 75).  



111 

 

There is a good fit between the experimental and simulated results.  Equation (76) was then used 

to predict the number of cycles to failure. The predicted average number of cycles to failure (Nf) 

for 0.85 and 0.95 stress ratios were 818 and 63 respectively. The actual Nf for 0.85 and 0.95 

were 944 and 60, respectively.   

   ∫    (𝐾  𝐾 
 )

     

 

   

                     (76) 

 

Figure 36: Simulation of crack rate under stress ratios 0.85 and 0.95  
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Discussion  

In order to accurately predict the entire fatigue life of plain concrete, it is important to account 

for both the transient and steady state stages. The transient stage makes up for approximately 40-

50% of the concrete’s fatigue lifespan (under constant amplitude loading). In the past, the 

transient stage was accounted for by a separate Paris-type fatigue law that only used the crack 

extension as its argument.  In doing so, one will encounter a situation where the Paris parameters 

log C1 and n1 will not be unique. As can be seen from Figure 36, as the applied stress decreases, 

the rate of propagation will also decrease as a function of crack extension. This means that in 

order to accommodate the reduction in crack rate, the log C1 and n1 values must be altered to 

provide lower values over the same crack domain.  A second series of simulations was conducted 

to show this effect. The average cyclic threshold curve and fatigue parameters log C and n were 

used to predict the fatigue crack propagation in the concrete specimens tested by Subramaniam et 

al. (2000). Using the crack rates from the simulation, one may see from Figure 37 how log C1 

and n1 can vary as a function of applied stress. This matches the researchers’ observations.  The 

individual points represent the actual data obtained in their experiments and the lines represent 

the results from the fatigue simulations.  
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Figure 37: Variation of log C1 and n1 as a function of stress ratio
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CHAPTER VI 

SIZE DEPENDENT FATIGUE CRACK RESISTANCE CURVES UNDER VARIOUS 

LOADING REGIMES  

 

In the last chapter, it was shown that an equivalent fatigue crack resistance curve can be obtained 

if the post-peak slope and the initial fracture toughness are defined. In this chapter, the influence 

of size effect and variable amplitude loading are discussed. A new method that uses the 

cumulative crack, rather than crack rate data to determine the Paris parameters, log C and n 

under variable and random amplitude loading is proposed. It is consistent with the findings 

discussed in the last chapter, that both the initial fracture toughness and post-peak are pre-

defined. It is then shown that with the use of a non-linear regression scheme, if those two 

conditions are upheld, 2 of the 5 parameters governing the KR
f
 curve, aeq,u and 2 may be 

obtained. The other 3 parameters: KRc
f
, m, and 1, were held constant, using the average values 

obtained for each beam size in chapter IV. Finally, the 4 equivalent fatigue crack resistance 

parameters and the Paris parameters are compared for different beam sizes and loading regimes. 

It is shown that for random loading scenarios, the bending point in the fatigue curve, aeq,bend is 

longer than that observed under constant amplitude loading. The reason for this is then discussed.  

Variable load effects 

Up to this point, it was shown that one may determine an equivalent crack resistance curve from 

stress intensity and crack rate data. In addition, it was also shown that one may obtain an 

equivalent crack resistance curve under varying loads from an inverse analysis of quasi-static 
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flexural specimens. Note that the differences in shape between two crack resistance curves 

mainly comes from the behavior in the post-peak region (beyond aeq,c). One curve was shown 

to have a constant post-peak and the other a varying post-peak that was load dependent. In 

chapters II and V it was shown that under fatigue loading, concrete exhibits a crack deceleration 

and acceleration which creates a ‘v’ shaped crack rate, da/dN, curve. To model this behavior it 

was shown that a fatigue crack resistance term must be inserted into the Paris law to describe the 

competition between the evolving stress intensities and crack resistance. If the equivalent crack 

resistance curve was pre-defined to have zero initial fracture toughness and zero post peak slope, 

then a unique expression for log C and n could be obtained under constant amplitude loading. 

The question is however: will this post-peak assumption be appropriate to explain a variable or 

random amplitude loading case? 

 As mentioned in chapter III, an extensive series of fatigue experiments was conducted: a 

total of 44 fatigue tests, 34 of which are shown in this chapter. The other ten were shown in 

chapter V.  Of the 34 specimens discussed in this chapter, 6 specimens were subjected to random 

amplitude loading, 19 to variable amplitude loading and the remaining 9 to constant amplitude 

loading. After reviewing the data, an interesting result was observed under random amplitude 

loading. The transition between the deceleration and acceleration region in the ‘v’ shaped curve 

for the random amplitude loading scenarios was substantially longer than that under constant 

amplitude loading. This means, aside from the fact that there are varying peak loads and R-ratio, 

which immediately calls into question the applicability of the original Paris law, if the constant 

post-peak slope assumption is used under this type of loading, the ultimate equivalent crack 

extension, aeq,u, would also need to be larger. Figure 38  shows the differences in the 
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transitional region between constant amplitude and random amplitude loading tests. As can be 

seen, the length of the transition zone for the random amplitude case is approximately 8 mm in 

length while it is 3 mm for the constant amplitude loading case..  

 In chapter V, it was stated that the transition point, or aeq,bend in the ‘v’ shape curve 

occurs when the change in stress intensity is equal to the change in crack resistance (with respect 

to crack length). Under constant amplitude loading, this occurs at a unique point and could easily 

be found graphically as shown in Figure 33. This point on the figure was denoted as aeq,c, 

which corresponded to the critical crack extension under quasi-static loading.  

 Under random amplitude loading, a unique transition point does not exist. The reasons 

could be explained by the load-dependent equivalent crack resistance obtained in chapter IV. If 

the post-peak slope changes as function of applied load, then presumably so will the transitional 

point, or aeq,bend. If the assertion that this point will occur when the rate of the stress intensity 

is equal to that of the crack resistance is held, and if this resistance is changing due to changes in 

load, the obvious result should then lead to a change in aeq,bend.. Of course, the transition will 

cease after the crack has elongated substantially and the steepest post-peak crack resistance slope 

is smaller in magnitude than the average rate of the stress intensity under random amplitude 

loading. Therefore, in general, using an equivalent crack resistance curve that is dependent on 

load is more powerful than using a constant post-peak region when attempting to predict the 

cracking mechanism under random and/or variable amplitude loading. 
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Figure 38: Differences between transition zone for (a) random loading and (b) constant 

amplitude loading 

 

 

 

(a) 

(b) 
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Size effect in fatigue 

Size effect in fatigue has been studied by several researchers. Bazant and Xu (1991) showed that 

the logC Paris parameter will decrease as the specimen size is decreased. The researchers also 

determined a fatigue characteristic length using the size effect law and showed that if the applied 

stress intensity is normalized, the size dependent crack rate curves will consolidate and form one 

unique curve. Sain and Kishen (2007) showed that the C term in the Paris law follows a linear 

relationship with non-dimensional specimen size, D/lch and also, they determined the  moment 

capacity, and fracture resistance with a Greens function. Zhang et al. (2001) used a moment 

equilibrium condition and LEFM solutions to show the flexural capacity of beams of various size 

depths under fatigue loading. 

 The works mentioned above tried to predict the influence of size by considering the 

presence of bridging stresses. In this chapter, this is done by using an equivalent fatigue crack 

resistance curve.  

Calibration using the cumulative crack propagation 

It was mentioned previously that crack length measurements were made with the Jenq-Shah 

compliance technique at every cycle spanning an entire fatigue test. It was mentioned that the 

crack data was filtered by a trimming process and then smoothened with a cubic piecewise 

regression function. The crack length data was originally filtered because on a per-cycle basis the 

changes in compliance were not large enough to overcome the noise level of the measuring 

device. Therefore, the original crack data vector was trimmed and smoothened so that the crack 

rate was decipherable. For constant amplitude loading tests, this data filtration process works 
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reasonably well since the applied load is constant and the relationship between stress intensity 

and crack rate is easily identified.  

 Under random amplitude loading, the filtration process described above is insufficient 

because the load changes after each cycle. This means that if the data is trimmed, vital load 

history information will be lost and the calibrated model will not be explaining the true behavior 

of the cracking mechanism under random/variable amplitude loading. Therefore, a different 

method based on cumulative crack data was used and the corresponding steps are described 

below: 

 Equivalent crack lengths were recorded at each cycle in a given fatigue test. 

 Stress intensities were then determined with equations (36-38) for each crack length 

and corresponding applied load. 

 The R-ratio (Pmin/Pmax) was recorded for each cycle. 

 A second equivalent crack data vector was recorded; it uses only selected points 

along the original crack data vector: the specific data point was chosen at every 0.25 

mm increase in crack length. This data vector consisted of j elements. 

 The second equivalent crack data vector was then converted to an equivalent crack 

extension, aeq,j
exp

 by subtracting the initial crack length, aeq0 and it consisted of j 

elements.  

 A cycle increment data vector, Nj, with the same number of elements as aeq, j
 exp

 

was then constructed. Each element within the data vector showed the number of 
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cycles necessary to produce a crack increment of 0.25 mm, e.g., one element in Nj 

would correspond to the number of cycles needed to go from aj-1 to aj-1  + aj.  

 The Paris and equivalent crack resistance parameters were then determined using 

equation (77-78) and a non-linear least squares approach. 
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Where 

The total number of cycles to failure was the following: 
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Determining the fatigue parameters 

The fatigue parameters: log C, n, KRc
f
, aeq,u, m, and 2, were obtained for each of the 34 

beams tested under constant, variable and random amplitude loading using a non-linear 

regression scheme. Recall from chapter V that  to arrive at a unique solution for log C and n, the 
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post-peak slope and the initial fatigue fracture toughness must be defined. Here, the initial 

toughness was also defined to be zero, but the initial post peak slope was not. The slope was 

defined to have the average value 1 obtained from chapter IV to account for both size effect and 

variable amplitude loading effects. Using equations (77-78) a non-linear regression scheme was 

used to determine the four parameters, and the procedure was the following: 

 Define the initial post-peak slope, 1  for the given specimen: 

o Large specimens:  1 = 1.55 

o Small specimens:  1 = 1.88 

 Define the initial seed values for the fatigue crack resistance parameters: KRu
f
, m, and 

aeq,u  

o Large specimens:  KRc
f
=10.48 N/mm

1.5 
,aeq,u = 5.08, m = 2  

o Small specimens:  KRc
f
=6.34 N/mm

1.5 
, aeq,u = 2.36, m = 2 

o Define the bounds for log C and n; they were [-100,0] and [0,75], respectively 

o Define the bounds for 2; they were [-6  ] 

 Define the objective function; here it was defined as 1-R
2
.  

o The solution was deemed to be found if the error was below 0.01; 

 Run the optimization scheme. 

o By trial and error, modify the values for the three fatigue parameters: KRu
f
, 

aeq,u, and m if the error exceeded 0.01. 
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 The parameter m was modified first (while holding the other variables 

constant) until the error was minimized. If the error still exceeded the 

threshold, then: 

 aeq,u was modified (while holding the other variables constant) until 

the error was minimized. If the error still exceeded the threshold, then: 

 KRc
f 

was modified (while holding the other variables constant) until the 

error was minimized.  

 For most of the specimens, the model error was below the 0.01 threshold (29 out of 34) 

Results  

The following section presents the results for all 34 fatigue specimens. Tables 9-10 show the 

Paris parameters and equivalent fatigue crack resistance parameters for all 34 specimens, 

including the p-values for the two independent size populations. Tables 11-12 show the results 

for all 34 specimens without the use of the resistance curve. This means that the deceleration 

region (or transient stage) was truncated. One column in Tables 11 and 12 is entitled ‘% 

transient’. This is the percentage of time (or cycles) spent within the deceleration/transient stage 

relative to the total time (or cycles) to reach failure. Note that for the variable amplitude tests, 

‘n/a’ is written in the cells. This is because under variable amplitude loading, the % transient 

may be skewed depending on the level of applied loading.  

 

 

 



123 

 

Table 9: Summary of random, variable, and constant amplitude fatigue results using data for the large specimens, 100 mm 

Specimen D 
Notch 

to 
Depth 

ID Loading Type logC n KRC
f
 aeq,u m 1 2 1-R

2
 aeq,fail KIC

f
 

1 100 0.15 P07 Uniform Random -23.98 17.98 10.48 5.08 2 1.55 -1.38 7.0E-03 20.74 42.20 

2 100 0.15 P09 Uniform Random -15.24 11.48 10.48 5.00 2 1.55 -1.16 8.8E-03 19.31 40.42 

3 100 0.15 P11 Uniform Random -39.97 29.94 10.48 5.04 2 1.55 -1.17 4.1E-03 23.86 46.07 

4 100 0.50 B02 Variable -23.29 17.58 9.48 6.08 2 1.55 -3.00 6.3E-03 15.16 31.74 

5 100 0.50 B04 Variable -14.77 10.85 10.48 5.08 2 1.55 -5.03 2.0E-02 3.92 22.97 

6 100 0.50 B05 Variable -15.44 11.86 12.48 4.58 2 1.55 -0.99 9.7E-03 15.43 36.52 

7 100 0.50 B06 Variable -28.26 21.72 10.48 4.14 1 1.55 -2.53 4.2E-03 11.31 32.43 

8 100 0.50 B10 Variable -17.45 13.89 8.48 3.36 2 1.55 -5.99* 9.9E-03 4.87 22.96 

9 100 0.15 P02 Variable -15.48 11.46 10.48 4.47 2 1.55 -1.64 6.7E-03 19.27 36.70 

10 100 0.15 P08 Variable -29.19 21.27 12.48 6.51 2 1.55 -5.71 2.8E-02 34.40 41.48 

11 100 0.35 P15 Variable -26.37 18.33 11.48 6.30 1.5 1.55 -3.25 1.1E-03 15.72 38.20 

12 100 0.35 P17 Variable -46.67 33.41 10.48 8.02 1 1.55 -0.58 9.5E-03 17.54 43.13 

13 100 0.50 B01 Const-0.95 -28.15 20.51 6.48 5.07 2 1.55 -1.15 7.1E-03 8.93 31.19 

14 100 0.50 B08 Const-0.95 -14.85 10.83 10.48 7.08 1.3 1.55 -1.15 9.5E-03 8.75 31.03 

15 100 0.15 P10 Const-0.95 -34.41 24.60 6.48 1.49* 1.35 1.76 -2.21 4.3E-02 18.34 37.47 

16 100 0.35 P19 Const-0.95 -26.90 18.89 7.48 6.08 2 1.55 -1.15 7.1E-03 12.62 37.94 

17 100 0.35 P22 Const-0.90 -32.89 24.07 10.48 6.08 2 1.55 -1.15 6.7E-03 15.66 36.52 
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Table 10: Summary of random, variable, and constant amplitude fatigue results using data for the small specimens, 50 mm 

Specimen D 
Notch 

to 
Depth 

ID Loading Type logC n KRC
f
 aeq,u m 1 2 1-R

2
 aeq,fail KIC

f
 

1 50 0.15 S21 Uniform Random -25.57 20.61 7.34 1.95 2 1.88 -0.78 9.7E-03 10.63 31.77 

2 50 0.15 S24 Uniform Random -31.43 25.65 6.34 1.91 2 1.88 -0.66 9.2E-03 13.90 37.11 

3 50 0.15 S25 Uniform Random -20.34 16.10 7.78 3.03 2.35 1.88 -1.78 7.9E-03 9.14 27.75 

4 50 0.15 S04 Variable -29.27 23.24 9.34 1.08 3 1.88 -0.44 7.9E-03 9.70 36.97 

5 50 0.15 S10 Variable -26.59 20.81 8.34 2.02 2 1.88 -0.000033* 8.7E-03 3.77 25.27 

6 50 0.15 S11 Variable -26.97 21.81 9.34 3.05 1 1.88 -1.03 2.9E-03 11.04 32.87 

7 50 0.15 S12 Variable -27.68 22.01 7.34 0.89 2 1.88 -1.31 3.6E-02 13.79 35.40 

8 50 0.15 S13 Variable -6.72 4.70 7.34 1.90 2 1.88 -2.37 2.0E-03 7.70 27.86 

9 50 0.15 S14 Variable -34.93 30.38 3.34 2.89 2 1.88 -1.07 4.2E-03 9.29 22.69 

10 50 0.15 S15 Variable -42.68 32.81 3.34 2.27 2 1.88 -1.18 3.0E-02 9.78 29.34 

11 50 0.15 S16 Variable -34.34 29.75 6.34 0.63 2 1.88 -0.27 3.5E-03 11.41 35.51 

12 50 0.15 S17 Variable -24.67 19.27 8.34 2.88 1 1.88 -0.82 1.2E-02 8.82 28.00 

13 50 0.15 S18 Variable -37.29 31.91 8.34 4.13 1.5 1.88 -0.90 8.9E-03 11.50 29.51 

14 50 0.15 S01 Const-0.90 -21.32 16.92 6.34 3.15 2 1.88 -1.43 3.9E-03 8.97 27.42 

15 50 0.15 S03 Const-0.80 -20.79 15.48 6.34 4.35 1.5 1.88 -1.43 6.2E-03 7.79 27.95 

16 50 0.15 S05 Const-0.95 -9.62 7.32 6.34 1.28 2 1.88 -1.43 5.5E-03 8.65 28.86 

17 50 0.15 S08 Const-0.85 -13.27 9.83 14.34* 7.35* 1.5 1.88 -1.43 4.6E-03 14.41 36.52 
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Table 11: Summary of random, variable, and constant amplitude fatigue results using data for the large specimens, 100 mm-

only transient/acceleration stage 

Specimen D 
Notch to 

Depth 
ID Loading Type logC n % Transient 1-R

2
 

1.00 100.00 15.00 P07 Uniform Random -32.88 20.62 73.28% 4.90E-03 

2.00 100.00 15.00 P09 Uniform Random -20.18 12.47 58.69% 1.79E-03 

3.00 100.00 15.00 P11 Uniform Random -41.23 25.14 64.78% 9.91E-03 

4.00 100.00 50.00 B02 Variable -64.79 42.49 n/a 4.69E-03 

5.00 100.00 50.00 B04 Variable -6.69 3.36 n/a 2.63E-02 

6.00 100.00 50.00 B05 Variable -29.87 18.83 n/a 2.37E-03 

7.00 100.00 50.00 B06 Variable -49.98 33.45 n/a 1.68E-02 

8.00 100.00 50.00 B10 Variable -39.50 28.31 n/a 1.57E-03 

9.00 100.00 15.00 P02 Variable -20.96 13.32 n/a 2.63E-03 

10.00 100.00 15.00 P08 Variable -4.37 2.07 n/a 8.79E-03 

11.00 100.00 35.00 P15 Variable -41.42 25.89 n/a 2.35E-03 

12.00 100.00 35.00 P17 Variable -41.73 25.27 n/a 3.31E-03 

13.00 100.00 50.00 B01 Const-0.95 -33.07 22.11 51.88% 1.71E-03 

14.00 100.00 50.00 B08 Const-0.95 -25.66 16.80 63.79% 3.00E-03 

15.00 100.00 15.00 P10 Const-0.95 -27.56 17.77 98.27% 5.17E-03 

16.00 100.00 35.00 P19 Const-0.95 -22.37 14.32 40.24% 4.89E-03 

17.00 100.00 35.00 P22 Const-0.9 -40.58 25.40 81.55% 7.87E-03 
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Table 12: Summary of random, variable, and constant amplitude fatigue results using data for the small specimens, 50 mm-

only transient/acceleration stage 

Specimen D 
Notch to 

Depth 
ID Loading Type logC n % Transient 1-R

2
 

1.00 50.00 15.00 S21 Uniform Random -26.10 16.94 78.36% 5.50E-03 

2.00 50.00 15.00 S24 Uniform Random -22.40 14.09 42.29% 7.65E-03 

3.00 50.00 15.00 S25 Uniform Random -18.97 12.58 72.58% 8.85E-03 

4.00 50.00 15.00 S04 Variable -21.69 12.92 n/a 2.64E-03 

5.00 50.00 15.00 S10 Variable -14.24 7.67 n/a 4.92E-02 

6.00 50.00 15.00 S11 Variable -25.39 16.67 n/a 6.00E-03 

7.00 50.00 15.00 S12 Variable -20.38 13.33 n/a 7.24E-03 

8.00 50.00 15.00 S13 Variable -9.48 6.10 n/a 2.11E-03 

9.00 50.00 15.00 S14 Variable -22.45 16.10 n/a 5.48E-03 

10.00 50.00 15.00 S15 Variable -28.76 19.79 n/a 3.15E-03 

11.00 50.00 15.00 S16 Variable -61.54* 39.33* n/a 4.65E-03 

12.00 50.00 15.00 S17 Variable -34.82 27.51 n/a 1.50E+00 

13.00 50.00 15.00 S18 Variable -37.31 25.43 n/a 5.87E-03 

14.00 50.00 15.00 S01 Const-0.9 -22.65 15.69 44.86% 6.55E-03 

15.00 50.00 15.00 S03 Const-0.8 -28.24 19.18 73.09% 1.90E-03 

16.00 50.00 15.00 S05 Const-0.95 -17.21 11.84 64.82% 6.98E-03 

17.00 50.00 15.00 S08 Const-0.85 -27.54 17.23 68.84% 1.80E-03 
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Constant Amplitude Loading  

In the constant amplitude loading tests, the slope variant parameter was held constant (-2.21 and 

-2.59 for the 100 and 50 mm specimens, respectively). Therefore, only the ultimate crack 

extension and the Paris parameters were obtained via the regression scheme. Figure 39 shows the 

relationship between log(daeq/dN) and equivalent crack extension, aeq.  

 For the smaller specimens, the results show that the Paris parameters are quite different 

than for random and variable loading. The reason is because some of the variable amplitude tests 

were originally tested under constant amplitude loading. However, those specimens did not show 

any signs of degradation over several hours so the load level was increased. Therefore, the beams 

that failed without having to increase the load were inherently less tough and more prone to 

fatigue failure. This is the reason that the Paris parameters are lower than the rest of the 

population. This problem was not encountered in the larger size specimens. Even for specimens 

that took several hours to reach failure under a stress ratio of 0.9 for example, it was obvious 

from the oscilloscope (output from the voltage signal from the COD gage) that some degradation 

was taking place. Therefore, for the larger size specimens, the constant amplitude results were 

more aligned with the rest of the population. 

 

 



128 

 

 

 
Figure 39: Results for specimen P22: Larger beam, 100 mm depth, (a) equivalent crack 

rate v. crack extension, and (b) equivalent crack extension v. Number of Cycles 

 

Variable Amplitude Loading 

The variable amplitude loading cases consisted of varying segments of constant 

amplitude loads, e.g., for a given number of cycles, the peak load amplitude and the R-ratio 

would remain constant and then at a pre-defined time, was changed and held constant over 

(a) 

(b) 
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another period. Figure 40 shows the results for specimen B05. Figure 40a shows how the load 

and R-ratio change abruptly at approximately 3,000 and 4,500 cycles, respectively. 
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Figure 40: Results for specimen B05: Larger beam, 100 mm depth, (a) applied load histogram, (b) equivalent crack rate v. 

crack extension (c) equivalent crack extension v. Number of Cycles 

(a) 

(b) (c) 
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Random Amplitude Loading 

Two different types of random loading distributions were used in this study: uniform and normal. 

Figure 41 shows the histogram for the two types of loading used in this study. Specimens P07, 

P09, and P11 were subjected to uniform random loading distribution and specimens S21, S24, 

and S25 were subjected to a normal random loading distribution. The mean stress ratio and R-

ratio in the normal distributions were 0.8 and 0.1, respectively, with a standard deviation of 0.07 

for both. The range of stress ratios and R-ratios in the uniform distribution was 0.9-0.75 and 0.5-

0.05, respectively. Refer to the appendix for more detail on each specimen. 
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Figure 41: Random load distribution: (a) uniform distribution, specimen P07 (b) normal 

distribution, specimen S24 

 

(b) 

(a) 
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Fatigue crack resistance parameters 

Recall, the fatigue crack resistance parameters were found with a non-linear regression scheme 

that minimized the 1-R
2
 error between the fit and the cumulative crack data. From Table 9 and 

Table 10, it can be seen that the average ultimate equivalent crack extension, aeq,u, is 

approximately the same as the average critical equivalent crack extension under quasi-static 

loading shown  in chapter IV (D=100: 5.08, 5.50, and D=50: 2.36, 2.34 mm). The same could be 

said for the critical fatigue fracture toughness, KRc
f
, (D=100: 10.48, 9.95, and D=50: 6.34, 6.99 

N/mm
1.5

). The m parameter was also similar (D=100: 2.18, 1.77 and D=50: 1.97, 1.87). On 

average, the 2 parameter seems to be also similar to the quasi-static results (D=100: -1.15, -2.08 

and D=50: -1.19, -2.15). 

Size Effect 

Size effect in concrete fatigue has been shown to manifest through the log C term. Recall, several 

researchers have shown that log C will decrease as the non-dimensional structural size increases 

(Sain, T., Kishen, J.M., 2007). However, most of these observations have come from data that 

has only included the transient cracking region. Moreover, the Paris model used in these studies 

considers only the stress intensity, KI, and does not include any contribution from the crack 

resistance. Table 13 shows the results for when the transient cracking stage is not accounted for, 

and a simple form of the Paris law (no crack resistance) is used. Note that similar results are 

obtained to previously published results; log C is significantly larger for the larger size 

specimens. The log C term for the larger size specimens was found to be -31.93 and for the 

smaller size specimens was found to be -23.60, with a p-value of 0.052. The n term, however, 



134 

 

was not found to be size dependent (20.44 and 15.81) for the two different sizes although the p-

value was still quite low (0.112).  

Table 13: p-values generated for the Paris parameters log C and n and the slope variant 

coefficient, only transient/acceleration stage 

  log C n 

, All Fatigue,100 -31.93 20.44 

, All Fatigue,50 -23.60 15.81 

p-value 0.052 0.112 

 

When the bridging stress contributions are included into the fatigue formulation, and the 

model is calibrated with steps shown in the beginning of this chapter, very promising results are 

obtained. Table 14 shows that on average, the logC and n terms are not size dependent. The 

average logC for the large specimens was -25.49 and for the small specimens it was -25.50; with 

a p-value of 0.990. The average n for the large specimens was 18.75 and for the small specimens 

it was 20.5; with a p-value of 0.502. These results suggest that logC size effect is essentially a 

product of the influence that the bridging stresses have on a given sized structure. However, if 

the relative contribution is considered, then the Paris parameters become unique and are no 

longer a function of size.  

 

Table 14: p-values generated for the Paris parameters log C and n, aeq,u, m, and 2  

  logC n KRC
f
 aeq,u m 2 

, All Fatigue, 100 -25.49 18.75 9.95 5.59 1.77 -2.08 

, All Fatigue, 50 -25.50 20.5 6.99 2.34 1.87 -1.14 

p-value 0.990 0.502 0.000 0.000 0.502 0.030 

 

 The size dependency in this case comes from the fatigue crack resistance curve. The 

average critical fatigue fracture toughness, KRc
f
, for the large size specimens was 9.95 N/mm

1.5 
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and for the smaller sizes it was 6.99 N/mm
1.5

; with a p-value of 0.000. The crack extension 

dividing the pre- and post-peak cracking regions, aeq,u, was also size dependent (p-value of 

0.000), where the average for the large specimens was 5.59 mm and for the smaller specimens 

was 2.34 mm.    

Loading Regime 

As shown in Tables 15-16, the type of loading regime does not significantly influence the fatigue 

cracking characteristics in the larger size specimens. The reason for this is because the stress 

range effect is accounted for by the two post-peak slope parameters and . If these two 

parameters were not included in the formulation, it would be expected that the parameter aeq,u 

would be different under these three loading regimes since it was shown that under random 

loading, the transition zone between the acceleration and deceleration stage is much larger than 

under constant amplitude loading. For the smaller size specimens, the results show that the Paris 

parameters were significantly different under constant amplitude loading. The reason for this was 

previously explained.  
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Table 15: Average values for the equivalent fatigue crack resistance curve and Paris 

parameters-only transient/acceleration stage  

Loading Type logC n % Transient fval 

Average,100 R -31.43 19.41 65.58% 5.53E-03 

Average,100 V -33.26 21.44   7.64E-03 

Average,100 C -29.85 19.28 67.15% 4.53E-03 

Average,100  -31.93 20.45   6.36E-03 

Average,50 R -22.49 14.54 64.41% 7.33E-03 

Average,50 V -23.84 16.17   1.59E-01 

Average,50 C -23.91 15.98 62.90% 4.31E-03 

Average,50  -23.60 15.82   9.56E-02 

Average -27.89 18.20   5.10E-02 

 

Table 16: Average values for the equivalent fatigue crack resistance curve and Paris 

parameters 

Loading Type logC n KRC
f
 aeq,u m 1 2 1-R

2
 aeq,fail KIC

f
 

Average,100 R -26.40 19.80 10.48 5.04 2.00 1.55 -1.24 0.01 21.30 42.89 

Average,100 V -24.10 17.82 10.70 5.39 1.72 1.55 -2.84 0.01 15.29 34.01 

Average,100 C -27.44 19.78 8.28 6.08 1.73 1.59 -1.36 0.01 12.86 34.83 

Average,100  -25.49 18.75 9.95 5.50 1.77 1.56 -2.08 0.01 15.64 35.82 

Average,50 R -25.78 20.79 7.15 2.30 2.12 1.88 -1.07 0.01 11.23 32.21 

Average,50 V -29.11 23.67 7.14 2.17 1.85 1.88 -1.04 0.01 9.68 30.34 

Average,50 C -16.25 12.39 6.34 2.93 1.75 1.88 -1.43 0.01 9.96 30.19 

Average,50  -25.50 20.50 6.99 2.34 1.87 1.88 -1.15 0.01 10.02 30.63 

Average -25.49 19.63     1.82 1.72 -1.61 0.01 12.83 33.23 

 

 

Fracture toughness at failure 

The fracture toughness at fatigue failure, KIC
f
, was defined as the maximum equivalent stress 

intensity applied to the beam right before unstable fracture, i.e., the last recorded stress intensity. 

The last two columns in Tables 9-10 show the crack extension at failure, aeq,f  and the fracture 

toughness for each of the 34 beams tested in fatigue. The average crack extension at failure for 
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the large and small sizes was 15.64 and 10.02 mm, respectively. The corresponding stress 

intensities at failure were 35.73 and 30.63 N/mm
1.5

, respectively. These fracture toughness 

values were then compared to the average quasi-static fracture toughness at those respective 

crack extensions and they were 36.41 and 29.20 N/mm
1.5

, respectively; with p-values of 0.667 

and 0.2, respectively, and thus considered to be statistically equivalent.  

These results are similar to the ones obtained in chapter V. The ramifications of this are 

twofold: 1) the equivalent stress intensity may be used as a measure to characterize the failure 

point in both quasi-static and fatigue loading, which means 2) the moment equilibrium and 

corrected crack formulation proposed in chapter IV can also be used to predict the capacity 

and/or failure point in fatigue if the cyclic bridging stress parameters are known. 

Description of proposed model 

The results from this chapter indicate that the functional form of the equivalent crack resistance 

curve obtained from the cyclic quasi-static tests can be used in the fatigue formulation to predict 

crack resistance under constant, variable, and random amplitude loading. Moreover, the same 

bridging stresses that govern the fatigue crack resistance curve can also be used to predict the 

moment capacity of the beam in fatigue. The benefit of using such a formulation is that one 

escapes the need for the excessive computational step of introducing degrading bridging law into 

the fatigue formulation. The relationship between the cyclic bridging stresses and the cyclic 

resistance curve has been explained in detail in chapter IV and here, its usefulness in fatigue 

prediction has been confirmed. The entire formulation from start to finish is the following: 

 Determine the cyclic bridging stress parameters from a cyclic quasi-static test containing 

P-CMOD data 
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 Once the bridging stresses are known, the Pint-acorr curve is determined by satisfying 

the condition Pint(acorr)=Papp(acorr)  

 Determine the equivalent crack length, aeq, by satisfying the condition TL(aeq) =  

T(acorr) 

 Determine the equivalent KR
s
 curve by using equations (36-38) to establish the fatigue 

failure envelope in terms of stress intensity. 

 Determine the load and crack dependent fatigue resistance curve by evaluating the 

contribution of the bridging stresses over a series of applied loads, Papp, ranging from 0 

to Pmax over a series of crack extensions, ranging from 0 to 0.3*D 

 Use the unique Paris parameters, fatigue resistance curve, and the failure envelope to 

predict the fatigue crack growth and number of cycles to failure, Nf. 

Summary 

In this chapter, it was shown that the equivalent fatigue crack resistance parameters can be 

obtained with a non-linear regression scheme that used the average results from chapter IV to 

define the initial seed values. On average, the fatigue crack parameters found in this chapter 

agree well with the ones obtained in chapter IV.   It was also shown that by including a size 

dependent fatigue crack resistance curve, the Paris parameters will no longer depend on the size 

of the structure.  

The fatigue parameters did not vary substantially as a function of the loading regime. The 

reason for this is that the fatigue crack resistance curve included two terms and   that 
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account for the load range effect. If this effect is not considered in the formulation, then under 

variable and/or random amplitude loading, the crack extension parameter would have to be much 

larger than under constant amplitude loading to accommodate the longer transition zone between 

the deceleration and acceleration stages.  

The equivalent fracture toughness at failure in fatigue, on average, agreed well with that 

under quasi-static loading. This means that the capacity of the beam can be predicted in fatigue 

with the moment equilibrium and corrected crack length formulation proposed in chapter IV.
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CHAPTER VII 

THE EVALUATION OF THE LINEAR DAMAGE RULE UNDER RANDOM 

PAVEMENT EDGE STRESSES 

 

Concrete pavements are subjected to a complex combination of environmental and traffic loads 

which produce a unique distribution of peak stress and stress ranges at the critical mid-slab edge. 

Moreover, the fatigue damage accumulation process is complex because the material is 

heterogeneous and suffers from a variety of pre-loading flaws such as air voids and shrinkage 

cracks leading to a substantial variability in fatigue performance.  

There are several different ways of predicting fatigue damage in concrete. The classical 

method is to use a linear damage rule (LDR) accompanied with an experimentally generated log-

log S-N curve that relates applied stress ratio (SR) to the number of cycles to failure in fatigue,  

Nf  (Miner, 1945).  

The current design methodology (NCHRP, 2004) for transverse cracking uses a hybrid 

mechanical and empirical analysis. The stresses of an un-cracked pavement are predicted via an 

artificial neural network that is trained by an extensive Finite Element response database.  

Damage is accounted for by inserting the stresses into the field calibrated S-N performance 

model and is defined as the inverse of the number of cycles to failure, 1/Nf (Miner, 1945). 

Equation (14) shows the damage algorithm that is used to predict fatigue cracking in concrete 

pavements.   
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One of the advantages of using this type of damage model is its computational efficiency, 

since it can rapidly account for, process and convert millions of load repetitions to damage. This 

allows for multiple designs to be considered within minutes.  Some of the disadvantages 

however, are that it is insufficient in determining the in-situ state of damage because no 

information is given on the state of the material itself (no information on the stress-strain 

behavior and the reduction of the elastic modulus).  In addition, it cannot account for size effect, 

load history effect, and variable amplitude loading without using some empirical calibration 

factors.  Thus, there is a need for the development of a concrete fatigue model that can account 

for all three of the aforementioned effects and at the same time, be able to maintain a comparable 

level of computational efficiency to the S-N approach. 

The objective of this chapter is to compare the fatigue prediction using a LDR and a 

fracture mechanics model under a randomly distributed mid-slab edge pavement stress history. 

Studies have shown that LDR’s under-predict damage for H-L loading sequences, but this effect 

may be lessened when the stress amplitudes have large R ratios. Therefore, it is important to 

know the dominant R ratio frequency and determine whether it counteracts the load history 

effect. It is also important to determine the prediction error generated by the LDR under a 

random stress distribution. A modified Slowik fatigue fracture model (refer to equation 33) was 

used for the comparison. The reason for this is that the model directly accounts for the R-ratio 

effect and an overload effect. The original model, however, was slightly modified by replacing 

the original KI term with KIeff, which is defined as the difference between KI and KR
f
. The 

parameter KImax is defined as the maximum stress intensity ever applied to the crack. Under 
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random loading, it would be expected that this value would increase at a faster rate than KI, 

which means that this model would predict more damage accumulation under such loadings than 

one without KImax.  Note that the model used in this chapter differs from the ones in the previous 

chapters in that there is a term specifically accounting for the R-ratio effect and load history 

effect. In the future, the two model predictions will be compared.  

In total, there were 4 fatigue and 3 crack resistance parameters governing the fatigue 

process. Equation (80) shows the modified Slowik Model and equation (81) shows the function 

describing fatigue crack resistance curve.  
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The modified Paris law was calibrated using the 6 random amplitude loaded specimens. 

This method is exactly the same as the one proposed in chapter VI; except that the Paris law is 

different. Equation (82) shows the modeled cumulative crack extension that was used to 

determine the (1-R
2
) error in the same way as shown in equation (78).  
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The average coefficients in equation (82) were: log C = -7.05; n = 5.14; p = 6.25 and q = -

0.22. These parameters were not found to be size dependent or geometry dependent.  

 

Figure 42 shows the experimental results and fit from two different specimen sizes. The 

fatigue crack parameters were found to be size dependent; the results are shown in Table 17. 

 As discussed previously, if a zero slope post peak crack resistance curve is used, the 

ultimate crack extensions are larger to accommodate the larger transition zone, under such 

loadings. 

Table 17: Summary of random fatigue crack parameters using a zero slope post peak 

D KRc
f (N/mm

1.5
) aeq,u (mm) m KIC (N/mm

1.5
) 

100 15 13 3 41.99 

100 18 17 2.8 39.43 

100 18 12 2.5 45.7 

Average 17.00 14.00 2.77 42.37 

50 16 5 2.8 31.77 

50 16 8 2.6 37.11 

50 13 3 2.6 27.74 

Average 15.00 5.33 2.67 32.21 
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Figure 42: (a) Large, Crack extension and number of cycles, (b) Large, Crack rate and crack extension, (c) Small, Crack 

extension and number of cycles, (b) Small, Crack rate and crack extension 

 

 

 

0 5 10 15
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Da (mm)

lo
g
(d

a
/d

N
)

 

 

Experimental

Model


a 

(m
m

) 

a (mm) 

(a) (b) 



145 

 

Figure 42 (cont’d) 
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S-N Calibration 

In this study, the fatigue fracture model was used to construct the S-N curve by simulating 

fatigue crack growth under various constant stress ratios. The R ratio was constant (0.1) for all 

stress ratios. The peak stress under monotonic loading was 5.23 MPa. The width and depth of the 

beam was 100 mm and the span was 400 mm. The initial notch was 6 mm. This notch length was 

chosen so that the nominal stress at failure (far field beam stress) would match the modulus of 

rupture found experimentally. Next, the simply supported fracture model was calibrated to match 

the S-N curve used in MEPDG to predict pavement slab fracture. This rationale was used 

because (1) in MEPDG the transverse cracking model also uses beam modulus of rupture as the 

strength reference, and (2) damage is limited to the edge of the pavement (meaning that only one 

dimensional crack propagation can exist, similar to a beam). The author does acknowledge 

however, that the MEPDG S-N curve is a field calibrated model and would expect a handful of 

unknowns to influence both the crack propagation rate and direction.  

The beam model was calibrated to explain the fracture phenomenon of a fully supported 

slab that is larger in cross-section (size effect), exhibits out of plane fracture (vertical and 

transverse direction), is subjected to frictional forces at the concrete/foundation interface, and 

exhibits mixed mode fracture. The calibration constants were strategically placed onto three 

terms: log C, KR
f
, and n. The rationale is the following: log C should be calibrated to account for 

out of plane fracture, KR
f
 should be calibrated to account for size effect (increasing R-curve 

resistance as a function of size), and n should also be calibrated to account for the effect of the 

foundation induced frictional resistance (should decrease because friction will reduce the crack 

propagation rate). Figure 43 shows the S-N curve before and after calibration. The calibration 
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factors 1, 2, and 3 were 0.713, 0.977, and 0.879, respectively. Equation (83) shows the 

calibrated relationship between Nf  and stress intensities and was used to construct the calibrated 

S-N curve. 
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Figure 43: Calibration of S-N curve against MEPDG 
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MEPDG and Monte Carlo Simulation 

Two simulations were conducted to assess the effect of load history. Two different climatic 

regions were chosen: Lansing, MI and Miami, FL. These regions were selected because of their 

annual mean temperature difference. The structural geometry and the traffic were identical for 

both simulations. The pavement cross-section consisted of a 200 mm PCC slab overlying a 150 

mm A-1-A granular base and a A-2-7 subgrade. The length of the slab was 4.5 m. The 28 day 

modulus of rupture was 5.23 MPa. The 28 day elastic modulus was 29.6 GPa. For the purpose of 

analysis, the strength and elastic modulus were assumed to remain constant because no data for 

KRc
f
  and KIC

f
 as a function of age was available to the author. An annual average daily truck 

traffic (AADTT) of 185 with no growth was used to reduce simulation time. MEPDG default 

truck distributions and axle spectra’s were used. The mean wander was 450 mm with a standard 

deviation of 250 mm.  Medium spacing between axle configurations was used (4.5 m). Default 

axle spacing for tandem and tridem axles was also used (1.3 m). A zero built in temperature curl 

was used in the simulation to accelerate damage growth. Figure 44 shows the pavement cross-

section used in the simulation. 

 
 

Figure 44: Pavement cross-section used in the simulation 
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Monte Carlo Simulation 

The randomized truck traffic simulation was created in MATLAB. The random environmental 

conditions were generated using output from the Enhanced Integrated Climatic Model (EICM) in 

MEPDG: cross-sectional pavement temperature, monthly modulus of subgrade reaction k, and 

the elastic modulus of the granular base Ebase. The foundation properties varied monthly, and the 

truck traffic varied hourly. The linear temperature gradients were calculated as shown in 

Appendix QQ in the MEPDG Guide using the output cross-sectional temperatures from EICM. 

In addition, the non-linear temperature gradients were calculated based on the method proposed 

by Hiller and Roesler (2010) using the non-linear area (NOLA) concept. The temperature also 

varied hourly. The critical stresses were interpolated from a stress database (70,690 runs) that 

was compiled with EVERFE (Davids, W.G., Wang, Z.M., Turkiyyah, G., Mahoney, J. and Bush, 

D., 2003). The equivalent layer concept was used to calculate the stresses, as shown in Appendix 

QQ. The adequacy of the interpolation scheme is shown in Figure 49. The interpolation scheme 

output and EVERFE output are compared using 150 random runs using different pavement 

thickness, elastic modulus, traffic wander, and load for a tandem axle. Reasonable results were 

obtained.  

 

Truck Traffic Randomization  

Every hour, the total truck volume was established by the AADTT and the hourly truck traffic 

distribution. The hourly volume was multiplied by the truck class distribution and rounded. The 

result yielded a finite number of ‘possible’ truck repetitions for a given hour and truck class. A 

finite truck population was then created corresponding the number of ‘possible’ truck repetitions 

for each class, e.g., if three class 9 trucks and two class 13 trucks were ‘possible’, the truck 
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population vector would be [9 9 9 13 13].  Using the randperm function in MATLAB, the vector 

can be re-arranged randomly to look like [13 9 9 13 9].   

The axle population corresponding to each of the truck classes was created in a similar 

fashion. Each axle load spectra was multiplied by 1000 and rounded to yield a finite number of 

possible axle repetitions corresponding to each truck class, axle load, and month. The population 

was then indexed according to the axle load. Thus, for a class 9 truck in January for example, if 

there are total of three 178 kN and two 169 kN ‘possible’ single axle loads, the load vector 

would look like [178 178 178 169 169] and after randomization, the re-arranged vector would 

look like [169 178 178 169 178]. Please note that there would be a similar vector of possible 

loads for every truck class and month, and the vector should have a length of 1000 (not 5; the 

vector shown here is for the purpose of example only).  

Next, the total number of ‘possible’ axle load repetitions per truck was determined from 

the default probability matrix given in MEPDG. The population was arbitrarily chosen to be 

large (1000). The population was then conditioned by requiring the population average to equal 

the value shown in the MEPD probability matrix. For example, if a population of five was 

chosen and class 4 number of single axles per truck was 1.6, the population vector would look 

like [1 1 2 2 2] and after randomization would look like [2 1 2 2 1] (The average of the vector is 

1.6).  

In summary, trucks were selected at random and the number of corresponding ‘possible’ 

single, tandem, and tridem axles was established and used to select the number of random load 

repetitions. The axle load was then placed a random distance away from edge. The distance was 

dependent on the normal wander distribution. The stresses at the mid-slab edge were then 

calculated for every random axle load repetition. In summary, the stresses were calculated using 
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hourly linear and non-linear temperature gradients, hourly random truck traffic data, and monthly 

foundation properties. A step by step procedure is shown below: 

 Obtain an hourly truck traffic random truck population by multiplying the AADTT by 

the truck class distribution and the hour distribution. 

 AADTT*TruckClassDist*HourlyDist = round(Number of trucks per 

class) 

 Create 10 truck vectors, each having a length of the number of trucks 

per class and each element within the vector has the same number (4-

13) that corresponds to the specific truck distribution. 

 Concatenate all 10 vectors and randomize their positions  

o Select one truck 

o Determine the number of single, tandem, and tridem axles pertaining to the 

truck 

 Create a vector that represents the average axle repetition per truck  

 If the number of axle repetitions per truck falls between 1 and 

2, then create a vector of ones and twos that has a length of 

1000 and has an average equal the average axle repetition per 

truck. This step should be repeated for each axle type and for 

each truck class. 

 For the truck, select an element from each of the 3 vectors. 

These elements represents the number of axle loads per 

configuration will be subjected to the pavement. 
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o Determine a population of axle loads that corresponds to a particular truck 

class and month 

 This can be done by multiplying 1000 by the axle load spectra. This 

results in a matrix that shows the number of ‘possible’ repetitions that 

correspond to each truck class and month. 

 Round the matrix. 

 Sum the elements in each row: this number should equal 1000. 

 Create a vector of zeros with a length of 1000 elements 

 Fill the vector with the total axle load population for the given month 

and axle load, e.g. in January for a class 4 truck, if 10 axles equaling 

100 kN exist (after multiplying and rounding the matrix), then the first 

10 slots in the zero vector will be filled with a value of 100 kN. This 

step is repeated for all the ‘possible’ axle loads. The total length of the 

vector should be 1000. 

 Randomize this vector 

 Repeat for every truck class and month 

o For the given truck, month, and known number of single, tandem, and tridem 

axle load repetitions, fetch the load from the axle load population. 

 Record the axle loads in this order: single, tandem, and tridem. This means that for a 

given truck, the single axles will always come first, the tandem axles second, and the 

tridem axles third. 
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Stress-time history   

In this section, the procedure for determining the critical mid-slab edge stresses for a given truck 

is presented. The example shown here is for a class 11 truck that has 5 single axles, as shown in 

Figure 46. The axles were partitioned into two categories: inter-axle and intra-axle contributions. 

As first axle enters the slab, and the backside of the wheel is positioned along the edge of the 

joint, the first stress is recorded. The next recorded stress corresponds to the scenario where axle 

1 (A1) is positioned at mid-slab. The third stress is then recorded and corresponds to the scenario 

where A1 is placed along the edge of the left joint and A2 is place along the edge of the right 

joint. The procedure is repeated until all five axles have passed over the pavement. Note that this 

event considers both the contribution of the individual single axle, the interaction between the 

axles, and thermal stresses. This was done to so that both peak and valley stresses could be 

determined.  

The intra-axle contributions for the tandem and tridem axles were also considered.    An 

intra-axle stress cycle for a tandem axle would look like the following: thermal stress + axle load 

(first axle at the edge of the right joint; second axle has not affect; total axle load is ½*Tandem 

axle)  thermal stress + axle load (first axle at mid-slab, second axle placed 1.3 m to the right) 

 thermal stress + axle load (first and second axle placed equidistant from mid-slab),  thermal 

stress + axle load induced stress (second axle over mid-slab)  initial thermal stress + axle load 

(second axle at the edge of the left joint; total axle load is ½*Tandem axle). Figure 46 shows a 

stress time history caused by a thermally and truck traffic induced loads and Figure 47 shows an 

example of how the stresses are counted for a tandem axle. The intra-axle stress cycle for a 

tridem axle would look like the following: thermal stress + axle load (first axle near the joint)  
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thermal stress + axle load (first axle at mid-slab, second axle placed away at a distance equal to 

the default axle spacing, third axle has no affect because it is still off the slab; this means that the 

tandem loading database was used with a load of 2/3*Tridem axle)  thermal stress + axle load 

(first and second axle placed equidistant from mid-slab, third axle now appears and is spaced at a 

distance of 1.3 m),  thermal stress + axle load induced stress (first axle left of the mid-slab by 

1.3 m, second axle over mid-slab, third axle right of the of the second axle)  initial thermal 

stress + axle load (first and second axle placed equidistant from mid-slab, third axle now appears 

and is spaced at a distance of 1.3 m, the second loading case was simply repeated)  initial 

thermal stress + axle load (third axle at mid-slab, second axle 1.3 m left of third axle, first axle 

has no affect because it is still off the slab; this means that the tandem loading database was used 

with a load of 2/3*Tridem axle)  initial thermal stress + axle load (third axle at the edge of the 

left joint; the axle interaction database is used with a load of 1/3*Tridem axle). Note that the 

stress repetitions were only counted when there was an axle load present, meaning that isolated 

thermal cycles were not accounted for. The stresses were counted using the following procedure: 

The stress at the ith axle load repetition,i, was counted as ‘peak stress’ when  the condition i-1 

<i >i+1 was identified. Similarly, a ‘valley stress’ was counted when the condition i-1 >i 

<i+1 was identified.  

The inter-axle contributions between single-tandem, single-tridem, and tandem-tridem 

were also considered when necessary. Under these circumstances only one axle (out two for the 

tandem and three for the tridem) was considered to effect the pavement edge stress. This means 

that under the circumstance that a tandem axle is leaving the slab and a tridem axle is 

approaching it, the inter-axle scenario would be simulated by placing the rear axle of the tandem 
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along the edge of the left joint and the front axle of the tridem along the edge of the right joint. 

The magnitude of the axle loads would be 1/2 of the total tandem load and 1/3 of the total tridem 

load. 
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   Figure 45: Axle load placement for a class 11 truck that has 5 single axles 
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Figure 46: Truck traffic and thermal loading induced stresses 
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Figure 47: Inter- and Intra-axle loads for a tandem axle 
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Figure 48: Procedure for calculating the pavement edge stress 
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Rapid Stress Interpolation scheme 

 In order to rapidly predict the mid-slab edge stresses induced by the axle and thermal 

loads, a multi-level quartic interpolation scheme was devised. Please refer to Vongchusiri (2005) 

for details on the interpolation scheme. Please note however, the interpolation functions used 

here are different than the ones proposed in Vongchusiri (2005).  

 The interpolation scheme used herein was a function of 7 variables: 1) axle type, 2) axle 

placement (along longitudinal direction of the slab), 3) axle load 4) wander (distance from the 

edge of the pavement), 5) concrete density, 6) equivalent linear thermal gradient, and 7) concrete 

thickness. The scheme interpolated between 70,690 anchor points. Each point corresponded to 

one pavement simulation in EVERFE.  For the single axle simulations for example, there were a 

total of 3,125 runs (5 variables each having 5 data points for total combination of 5
5
) under 

positive thermal gradient and another 3,125 under a negative gradient. The database was 

partitioned into two separate parts: 1) positive temperature curl and 2) negative temperature curl. 

 The inputs used in EVERFE are provided below: 

 Single Axle 

o Positive Gradient: [0, 6.94, 13.89, 20.83, 27.78] 
0
C 

 Load: [0, 48.95, 97.9, 14.7, 18.7] kN 

 Wander: [0, 229, 457, 686, 914] mm 

 Concrete density: [1931, 2207, 2483, 2759, 3035] kg/m
3
 

 Concrete thickness: [152.4, 190.5, 241.3, 292.1, 330.2] mm 

o Negative Gradient: [0, -6.94, -13.89, -20.83, -27.78] 
0
C 

 Wander, Load, density, and thickness were all the same as the positive. 
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 Tandem Axle 

o Positive Gradient: [0, 6.94, 13.89, 20.83, 27.78] 
0
C 

 Load: [26.7, 93.5, 186.9, 280.4, 364.9] kN 

 Wander, thickness, density are the same as single axle, positive gradient 

o Negative Gradient: [0, -6.94, -13.89, -20.83, -27.78] 
0
C 

 Wander, Load, density, and thickness were all the same as the positive. 

 Tridem Axle 

o Positive Gradient: [0, 6.94, 13.89, 20.83, 27.78] 
0
C 

 Load: [53.4, 153.5, 253.7, 353.8, 453.9] kN 

 Wander, thickness, density are the same as single axle, positive gradient 

o Negative Gradient: [0, -6.94, -13.89, -20.83, -27.78] 
0
C 

 Wander, Load, density, and thickness were all the same as the positive. 

 Axle Interaction (single axle placed on the edge of both left and right joints) 

o Positive Gradient: [0, 9.44, 18.89, 27.78] 
0
C 

o Negative Gradient: [0, -9.44, -18.89, -27.78] 
0
C 

o Load @ left joint: [0, 62.3, 124.6, 186.9] kN 

o Load @ right joint: [0, 62.3, 124.6, 186.9] kN 

o Wander: [0, 204.8, 635 914.4] mm 

o Concrete Density: [1931, 2345, 2759, 3034] kg/m
3
 

o Concrete thickness: [152.4, 203.2, 254, 330.2] mm 

Please note that the individual axle interpolation functions were quartic polynomials and 

the inter-axle interaction interpolation functions were cubic polynomials; the scheme works in 
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the following way: suppose there are two input variables, x and y that affect the behavior of z. 

The objective is to develop a cubic polynomial network interpolation function that can describe 

the behavior of z(x,y). First, a database must be constructed so the interpolation scheme may 

operate on the ‘anchor’ points. This is done by running a computer simulation of the behavior of 

z as a function of the two inputs. Since a cubic polynomial will be used for both input variables x 

and y, there should be a total of 16 output data points (equal to the total number of possible 

combinations between the x and y inputs, 4
2
). Therefore, the database should be 27 X 2 matrix. 

 Let’s say the objective is to interpolate a value for z at inputs x* and y*. The network 

interpolation would then operate on the database anchor points in the following way: 

 First, determine the one-dimensional cubic interpolation functions for the x and y inputs 

with equation (84). The interpolation function for the variable is shown below 

[   ]  [    ]      

                   (84) 

Where 

  

[
 
 
 
 
   

         
   

 

   
         

   
 

   
         

   
 

   
         

   
 ]
 
 
 
 

 

         (85) 

xi= x input put into the computer simulation 
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 Second, multiply the matrix Nij with the field variable, zi over the region i = 1 to 4 

(Note that  ≤  ≤   ) to determine the coefficients governing the cubic function over 

this region. 

{  
 }  [   

 ]     

         (86) 

 Third, multiply the coefficient vector j, by the xj* input to arrive at the interpolated 

result. 

{  }  {  
 }    

  

          (87) 

 Repeat this process three more times over the region  ≤  ≤   ,   ≤  ≤   ,  and 

  ≤  ≤   . 

 Now, there should be 4 interpolated field variables: {zi*, z2*, z3*, z4*} = zi* 

 Next, using the y cubic interpolation function, determine the final interpolated field 

variable using equation (88), which is just combining equations (86-87) but using the y 

inputs instead. 

   [   
 ]    

    
 

 

                    (88) 
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Interpolation Databases 

Two databases were constructed for the single axle: one for the positive gradient and one for the 

negative gradient. For the tandem case, four databases were constructed: one with the front axle 

at the mid-slab and one where the front and rear axle is placed at an equal distance from the mid-

slab; these two cases are run for both a positive and negative thermal gradient. For the tridem 

case, there are a total of four databases: one with the front axle over the mid-slab and one with 

the front and middle axle  

 

Equivalent slab system 

In chapter II the equivalent slab concept was discussed. The concept states, since the stresses in a 

fully supported plate can be described non-dimensionally with equation (4), it is possible to 

relate the stresses from one system to another using equation (5). The benefit of using this 

concept is that it reduces the amount of inputs needed to model a pavement system. For example, 

in the stress database generated with EVERFE, it was not necessary to include the elastic 

modulus of the soil, Esoil or the concrete, Epcc, the modulus of subgrade reaction k, the 

coefficient of thermal expansion, CTE, or poisson’s ratio. The reason is because according to 

equation (5) if the non-dimensional inputs in one fully supported plate system are the same as in 

another fully supported plate system, then the stress in the two systems are relatable. The 

pavement system analyzed in this chapter consisted of an elastic concrete layer, and elastic soil 

layer and a subgrade. The enhanced integrative climatic module in the MEPDG was used to 

convert the soil properties to a composite elastic soil layer, Ebase, and a liquid foundation with a 

modulus of subgrade reaction of k. In the simulation, these two properties change monthly. 
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Using equation (6), this composite layered system was transformed to an effective layer system 

having only an elastic concrete layer and a subgrade modulus. The effective thickness was then 

converted to an equivalent thickness using equation (89) that can now be used to generate a 

stress output with the interpolation scheme. The equation satisfies the condition where the radius 

of relative stiffness between the two systems must be equal so the stress output between the two 

systems is relatable. 

    √
    (      

 )        
 

    (      
 ) 

 

 

              

      (  ) 

 

 The linear thermal gradient was calculated with equation (90), which is the numerical 

form of equation (3) as shown in the MEPDG (2004). 
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The linear thermal gradient was then converted to an equivalent linear thermal gradient with 

equation (91). 
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     (91) 

 

Next, the axle load was converted to an equivalent load with equation (92) 

    
      

        
  

                     

    (92) 

 

Finally, the equivalent thickness, temperature gradient, and load were input into the interpolation 

scheme. The output was an equivalent stress. This stress was then converted back to an effective 

stress with equation (5) and then converted back to the actual system with equation (11). The 

accuracy of the interpolation scheme was then assessed by comparing it to 150 EVERFE runs 

with random inputs of axle load, wander, modulus of subgrade reaction, and positive thermal 

gradients. Figure 49 shows that the accuracy of the interpolation scheme is quite good. 
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Figure 49: Comparison of stress output from EVERFE and the interpolation scheme 

 

Pavement edge stress simulation 

Random mid-slab edge stresses were generated for the Lansing, MI and the Miami, FL cases 

using the randomized truck traffic and the interpolation scheme described in the previous 

sections. Figure 50a is a bi-variate histogram that shows the distribution of peak stresses and 

stress ranges. Figure 50b and Figure 50c  show that the dominant R and stress ratio frequency 

falls between 0 and 0.1 and the dominant stress ratio is also between 0 and 0.1. Note that the 

negative R-ratios were changed to zero because equation (80) was not calibrated to account for 

stress reversals, which explains why there is a dominant occurrence of zero. 
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Figure 50:  (a) Bi-variate histogram of peak stress and stress range, (b) histogram of stress 

ratios, (c) histogram of R – ratios 

 

 

(a) 

(b) 
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Figure  50 (cont’d) 

 

 

 

Damage Prediction 

The stresses and R ratios calculated in the previous section were used to predict fatigue damage 

with the fracture mechanics model and the calibrated S-N curve. The Lansing simulation 

produced more damage because there was a higher stress ratio frequency between 0.7 and 0.9 

(1,948 for Lansing compared to 334 for Miami), meaning the pavement should fail faster. The 

reason for the higher stresses can be caused by either a more severe thermal gradient or a more 

flexible subgrade. Figure 51a shows the comparison between the k histograms for Miami and 

Lansing. The left tail of the Lansing histogram has smaller k values compared to Miami. This 

means that during the spring period, the Lansing foundations are significantly more flexible 

(c) 
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which leads to higher pavement edge stresses.  Moreover, the positive mean equivalent thermal 

gradient is higher in Lansing which will produce higher bottom up stresses. 

Figure 52 shows the damage accumulation from MEPDG and from the Monte Carlo 

simulation. There seems to be fairly good agreement between LDR predictions in the Monte 

Carlo and the MEPDG simulations (Lansing: at 29 years, DMEPDG = 0.78 and DMonte Carlo = 

0.73, and Miami: at 40 years, DMEPDG = 0.61 and DMonte Carlo = 0.62). Note that the reason why 

damage is less than one in both cases is because the simulations were stopped when KI = KIC in 

the fracture fatigue equation. 

    Damage was assessed in the fracture model by the crack extension, a. These values 

were normalized by the crack extension at failure (Lansing, aeq,f = 19.2 mm and Miami, aeq,f 

= 24.1 mm) so the damage could be compared to the LDR. As shown in Figures 52a and 52c, the 

fatigue fracture model yields greater damage than its counterpart linear model. The LDR’s seem 

to under-predict damage by approximately 30%, (1-DMEPDG), on average. This is happening 

because the linear model does not predict damage well after a significant overload (SR  0.7-

0.9). This is consistent with the findings of Oh (1991) and the Lemaitre (1992). In addition, it 

seems that the R ratio does not counteract the load history effect under these specific random 

stress histories.  
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Figure 51: (a) Histogram of modulus of subgrade reaction, k for Miami and Lansing, (b) 

Histogram of Equivalent Linear Temperature Gradients for Miami and Lansing 

Simulations 

 

Calibration of Percent Slabs Cracked 

One way to account for the under-prediction of damage when using the linear damage equation 

is to re-calibrate the % slabs crack algorithm, shown in equation (93) by inserting a calibration 

factor, C1. The variable FD represents the fatigue damage, which is defined from 0 to 1. The 

MEPDG defines FD = 1 when the % slabs cracked is equal to 50%.   

(a) 

(b) 
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   𝑟    
 

  (    )    
 

              (93) 

In MEPDG, C1 is equal to one. For the % slabs cracked to be 50% when FD from the 

non-linear fatigue model is 1, C1 must be equal to 1.25 for the Lansing case and 1.6 for the 

Miami simulation. Note that, for different types of loading history, the discrepancy between non-

linear damage and linear damage changes and C1 will change accordingly. Therefore, a 

sensitivity analysis would need to be conducted to explain the effect of the fatigue parameters n, 

p, q, log C, and stress distribution on the prediction error between non-linear and linear damage. 

In addition, the effect of size and boundary conditions should also be introduced within the 

fatigue cracking equation.  
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                                                                   (a) 

 
     (b) 

 

Figure 52: (a) Lansing: linear and non-linear damage, (b) Lansing: % slabs cracked, linear 

and non-linear damage (c) Miami: linear and non-linear damage, (d) Miami: % slabs 

cracked, linear and non-linear damage 
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Figure 52 (cont’d) 

 
                                                                 (c) 

 
                                                                (d) 
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CHAPTER VIII 

CONCLUSION 

 

Summary of findings 

Concrete is a quasi-brittle material that exhibits a large residual stress zone along the wake of a 

dominant crack tip. This residual zone is governed by an assumed exponential bridging stress 

distribution that acts to resist further crack opening. The bridging stresses influence both the 

capacity and crack growth in concrete structures. 

 A new method to determine the cyclic bridging parameters: f’t, wc, c1, and c2,   under 

quasi-static loading for a TPBSEN specimen was proposed in chapter IV. The cyclic bridging 

stresses were determined through inverse analysis using an internal moment and CMOD 

equilibrium condition to match smoothened Papp-aeq data. The inelastic deformations were 

neglected after each cycle; therefore, the bridging parameters are said to represent a cyclic event 

and not a monotonic one. This was confirmed by the fact that the bridging parameters c1, and c2 

are greater than published results for monotonic loading (approximately 5 and 25 compared to 3 

and 7); the larger values show that the bridging distribution decays more rapidly, which is 

consistent with the degrading nature of a cyclic bridging stress distribution.   

 The bridging stresses were then used to determine a corrected (equivalent) crack 

resistance curve. The corrected resistance was obtained by integrating the weight function from 

zero to the corrected crack length, acorr, using successive approximation. Next, the equivalent 
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resistance was obtained by integrating the weight function from zero to the equivalent crack 

length, aeq, using an equivalent tensile strength f’teq without using successive approximation. 

Converting the corrected resistance to an equivalent one is useful so it can be used in a fatigue 

loading scenario; where it is easiest to record equivalent crack lengths with compliance 

measurements.  

 From chapter IV, the following conclusions could be made: 

 A unique set of bridging parameters can be determined for cyclic, quasi-static TPBSEN 

specimens using a moment and CMOD equilibrium condition.  

 The bridging parameters, f’t, c1, and c2 were shown to be size-independent. However, the 

parameter wc was not.  

 The total fracture toughness, KIC
T

, was size dependent because of the size dependency of 

wc.  

 The specific fracture toughness, KIC
s
, and the equivalent critical crack extensions, aeq,c, 

were size dependent. 

 The bridging stresses were used to determine a corrected and equivalent crack resistance 

curve. 

o The equivalent crack resistance was determined by integrating the weight function 

from zero to the equivalent crack length, aeq, without using successive 

approximation. This was done to ensure the COD field was consistent with that of 

an equivalent elastic crack.  
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o The equivalent crack resistance curve has a smaller plateau region than the 

corrected crack resistance 

o The equivalent crack resistance varies as a function crack extension and applied 

loading. 

 Five parameters govern the shape of the load dependent equivalent crack 

resistance curve: KRC
f
, aeq,u, m, 1,and 2. The last two parameters 

govern the shape of the post peak slope and describe the relationship 

between load and crack resistance. 

 The parameters KRC
f
, aeq,u are related to the total fracture toughness, 

KIC
T
, and the non-dimensional length (wcE/KIC

T
)
2
 respectively. 

 

In chapter V, a new method was developed to determine the cyclic crack resistance curve 

using load and crack rate data obtained from a typical fatigue fracture test.  This method provides 

a way of quantifying the bridging stresses developed during fatigue loading. To verify the 

method, a series of tests, both under quasi-static and fatigue loading, were conducted. The 

following conclusions could be made: 

 The equivalent critical crack extension, aeq,c, can be calculated directly by determining 

the crack length at which the rate of stress intensity is equal to the rate of resistance. 

 The quasi-static resistance curve can be related to the fatigue crack resistance curve as 

follows: 
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o Determine the critical crack extension under quasi-static loading, which is 

statistically equivalent to the critical crack extension, aeq,c, under fatigue 

loading.  

o Determine the optimal shift factor  and power m to describe the shape of the 

measured KRc
f
 curve using a least squares technique.  

o Determine the ultimate crack extension in fatigue by adding the shift factor  to 

aeq,c. 

 The ultimate fatigue crack resistance is approximately 44% of the quasi-static fracture 

resistance at peak load.  

 The power m under quasi-static loading is approximately 3.5 times smaller than that 

under fatigue loading. 

 For finite size PCC specimens, the fracture toughness under fatigue loading is greater 

than that under quasi-static loading because of the rising nature of the quasi-static 

resistance curve beyond peak load. 

 Fatigue can be predicted continuously with the use of a fatigue crack resistance curve. 

 

In chapter VI, a new method to determine an equivalent fatigue crack resistance curve 

was proposed. It consisted of a  two-tier non-linear optimization scheme that used cumulative 

crack data to calibrate the Paris coefficients and the fatigue resistance parameters. The initial 

seed values given to the crack resistance parameters were the average values obtained from 

quasi-static loading.  The parameter was assumed to be constant for all specimens of the same 
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size so as to satisfy the condition described in chapter V where the post-peak slope must be pre-

defined. Under variable and random amplitude loading, the post-peak slope was allowed to vary 

(which was governed by however, the initial slope corresponding to a load of zero, remained 

constant.  

A unique set of fatigue parameters was considered to be found when the model error, 1-

R
2
, was equal to 0.009 0.001. Using this method, the following conclusions could be made: 

 Using a crack resistance curve that accounts for a varying post peak slope allows one to 

characterize the longer transition zone (between the deceleration and acceleration stage) 

under random loading. 

o The Paris parameters and crack resistance curves are insensitive to the type of 

loading regime if the crack resistance curve is allowed to vary as a function of 

applied load. If the post-peak slope is held constant under random loading, the 

equivalent crack extension must be larger to accommodate the larger transition 

zone. 

 If a size dependent resistance curve is inserted into the Paris fatigue equation, logC and n 

become unique. 

o The equivalent fatigue crack resistance curve parameters, KRC
f
, aeq,u, m, 1, 

and 2,  found with the optimization technique, are statistically equivalent to those 

obtained in chapter IV, under quasi-static loading. 
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 When the crack resistance curve was not inserted into the fatigue equation and only the 

steady-state (or acceleration) region was considered, similar results were obtained to 

previously published results; logC is larger for the larger size specimens. 

  The specific fracture toughness at failure in fatigue, KIC 
f
, was statistically equal to the 

specific crack resistance, KR
s
, under quasi-static loading at the same equivalent crack 

extension. 

o This result implies that the cyclic bridging distribution, on average, does not 

change as a function of load history. 

 The cyclic bridging law can be used to predict the capacity of a beam in fatigue and the 

equivalent fatigue crack resistance. 

 

In chapter VII, a Monte Carlo truck traffic simulation was conducted for two identical 

pavement cross-sections in two different climatic regions, Lansing, MI and Miami, FL. Fatigue 

damage was assessed using a modified Paris law in the spirit of the Slowik model; however   

here, fatigue resistance curve was incorporated into the model. The parameters were determined 

by a two-tiered calibration procedure based on eight laboratory specimens subjected to both 

uniform and normal distribution random loading sequences. The fatigue model was used to 

construct an S-N curve and was calibrated to match a field distress calibrated S-N curve. Three 

parameters (logC, KRc
f
, and n) were strategically chosen to be calibrated so that out of plane 

fracture, size effect, and frictional effects, can be accounted for. A Monte Carlo simulation was 

then conducted to assess the significance of R ratio and load history. 
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The damage predicted in the Monte Carlo simulation using the calibrated S-N curve 

compared well with the bottom up damage prediction in MEPDG. However, the results showed 

that damage will accumulate more rapidly with the fatigue fracture model. On average, the LDR 

seems to under-predict damage by approximately 30%, although the error varies depending on 

stress distribution.  The results also show that the dominant R ratio frequency is between 0 and 

0.1 and does not counteract the load history effect.  

 

Recommendations for future research 

The results shown in this work are very promising. Namely, the ability to determine the cyclic 

bridging parameters using an inverse analysis under quasi-static loading, and using this 

information to predict the capacity and the fatigue resistance in a TPBSEN can be useful for 

design. 

 The limitations of this research, however, are that the fatigue bridging stresses were not 

physically measured; rather, they were found with an optimization scheme. In addition, using the 

cyclic bridging parameters as a means to predict fatigue crack resistance is a conservative 

idealization because there may be some initial fracture toughness that was not accounted.  

 Furthermore, the methods developed here need to be verified with different geometries, 

e.g. CT specimens. This method should be extended to three dimensions, so that it could directly 

applicable to a slab fatigue fracture scenario. In order to achieve this, weight functions specific 

for fully supported notched beams and slabs need to be developed.  Once the weight functions 

are determined, the capacity of the systems can be determined by either using principal stress 

equilibrium, moment equilibrium, or an energy based equilibrium condition. 
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 From a material standpoint, it would be useful to use this methodology to determine the 

fatigue resistance for various concrete mixes; especially with the current demand for re-claimed 

material. Moreover, it would be useful to understand how the fatigue resistance changes in these 

materials as a function of moisture condition, and as a function of freeze thaw cycles. 

 Finally, it would be useful to determine the crack bridging stresses at loads near the 

endurance limit. At this load level, the crack does not grow rapidly, which would allow one to 

investigate the bridging stress erosion process more closely. Furthermore, the ‘low bound’ 

fatigue threshold resistance curve can be used as a means to establish a fatigue reliability index 

in the pavement design process.  
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APPENDIX A: Quasi-static Loading Test Results 
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Figure 53: Specimen L1: (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 54: Specimen L2: (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 55: Specimen L3 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) 

(b) 

(c) (d) 
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Figure 56: Specimen L4 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 57: Specimen L5 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 58: Specimen L6 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 59: Specimen S1 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) 
(b) 

(c) (d) 
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Figure 60: Specimen S2 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 61: Specimen S3 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 62: Specimen S4 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 63: Specimen S5 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 64: Specimen S6 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) 
(b) 

(c) (d) 
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Figure 65: Specimen S7 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Figure 66: Specimen S8 (a) P-CMOD, (b) KR
S
 curve, (c) global equilibrium, (d) equivalent and corrected crack lengths 

(a) (b) 

(c) (d) 
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Table 18: Quasi-static specimen geometry (mm) 

Specimen a0  b D S 

L1 15 104 100 400 

L2 15 104 100 400 

L3 15 104 100 400 

L4 35 104 100 400 

L5 35 104 100 400 

L6 35 104 100 400 

S1 9.7 49.4 48.08 200 

S2 9.41 49.4 48.7 200 

S3 8.85 49.34 50.1 200 

S4 8.66 47 49.84 200 

S5 8.08 49.9 49.94 200 

S6 7.96 51.48 49.5 200 

S7 8.04 50.38 50.75 200 

S8 9.26 49.67 51.68 200 
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APPENDIX B: Fatigue Loading Test Results 
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Figure 67: Specimen P07 (a) Load Histogram, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) 

Experimental and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 68: Specimen P09 (a) Load Histogram, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) 

Experimental and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 69: Specimen P11 (a) Load Histogram, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) 

Experimental and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 70: Specimen B02 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 71: Specimen B04 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 72: Specimen B05 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 73: Specimen B06 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 74: Specimen B10 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 75: Specimen P02 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 76: Specimen P08 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 77: Specimen P15 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 78: Specimen P17 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 79: Specimen B01 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 80: Specimen B08 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 81: Specimen P10 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 82: Specimen P19 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 83: Specimen P22 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 84: Specimen S21 (a) Load Histogram, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) 

Experimental and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 85: Specimen S24 (a) Load Histogram, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) 

Experimental and model eq. crack extension v. N 

 

(a) 

(b) (c) 
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Figure 86: Specimen S25 (a) Load Histogram, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) 

Experimental and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 87: Specimen S04 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 88: Specimen S10 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 89: Specimen S11 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 90: Specimen S12 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 



225 

 

 

  
  

Figure 91: Specimen S13 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 92: Specimen S14 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 93: Specimen S15 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 94: Specimen S16 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 95: Specimen S17 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 96: Specimen S18 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 97: Specimen S01 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 98: Specimen S03 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 99: Specimen S05 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) Experimental 

and model eq. crack extension v. N 

(a) 

(b) (c) 
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Figure 100: Specimen S08 (a) Load History, (b) Experimental and model eq. crack rate v. eq. crack extension, (c) 

Experimental and model eq. crack extension v. N

(a) 

(b) (c) 
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Table 19: Beam geometry/properties  and number of cycles to failure 

Specimen a0 b D S E Nf 

P07 15 104 100 400 29711 1482 

P09 15 104 100 400 29711 397 

P11 15 104 100 400 29688 40520 

B02 50.94 107.1 102 400 25046 3561 

B04 51.77 107.9 104 400 27540 1290 

B05 51.47 109.4 101.8 400 28112 6681 

B06 50.77 107.24 100.63 400 25648 5109 

B10 50 104 100 400 24367 4827 

P02 15 104 100 400 26989 943 

P08 15.97 108.2 102.01 400 29068 27594 

P15 35 104 100 400 26497 144668 

P17 35 104 100 400 29359 11244 

B01 50 104 100 400 25513 133 

B08 50 104 100 400 24367 58 

P10 15 104 100 400 28767 14504 

P19 35 104 100 400 33969 82 

P22 35 104 100 400 30823 18974 

S21 9.42 49.945 48.55 200 25816 10135 

S24 8 51.08 49.2 200 25630 10038 

S25 8.075 52.35 49.22 200 19450 2535 

S04 9.3 50.1 49.95 200 25373 45024 

S10 6.41 51.3 50.22 200 19476 34855 

S11 7.3 53.05 51.1 200 20975 117276 

S12 6.04 49.4 51.15 200 22209 166620 

S13 5.4 48.4 49.95 200 17620 125 

S14 7.7 50.45 47.85 200 15337 3019 

S15 10.04 50.48 51.24 200 21842 1124 

S16 7.53 51.25 48.8 200 22658 22464 

S17 7.22 49.84 48.56 200 22991 16823 

S18 8.17 52.55 50.85 200 21305 75685 

S01 9.3 52.4 48.95 200 25585 534 

S03 11.29 51.35 52.15 200 21646 249 

S05 6.45 53.25 47.2 200 20011 108 

S08 7.25 50.7 51.25 200 23878 6225 
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APPENDIX C: Pavement Edge Stress Results
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Figure 101: Stress Interpolation for (a) single axle, positive temperature gradient, (b) single axle, negative thermal gradient, 

(c) tandem axle (front axle at mid-slab), positive thermal gradient (d) tandem axle, (front and back axle equidistant from mid-

slab), positive thermal gradient

(a) 
(b) 

(c) (d) 
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Figure 102: Stress Interpolation for (a) tandem axle (front axle at mid-slab), negative thermal gradient, (b) tandem axle, (front 

and back axle equidistant from mid-slab), negative thermal gradient (c) tridem axle, (middle axle at mid-slab), positive 

thermal gradient, (d) tridem axle, (front and second axle equidistant from mid-slab), positive thermal gradient

(a) (b) 

(c) (d) 
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Figure 103: Pavement Edge Stress Results for Lansing, MI (a) peak stress and stress range 

histogram

(a) 
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Figure 103 (cont’d): (b) R-ratio histogram 

(b) 
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Figure 103 (cont’d): (c) Stress ratio histogram 

(c) 
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Figure 104: Pavement Edge Stress Results for Miami, FL (a) peak stress and stress range 

histogram
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Figure 104 (cont’d): (b) R-ratio histogram 

 

 

(b) 
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Figure 104 (cont’d): (c) Stress ratio histogram 

  

(c) 
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