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ABSTRACT

ULTRAFAST TRANSIENT STATES IN NONEQUILIBRIUM QUANTUM SYSTEMS

By

Bin Hwang

Photo-induced phase transitions (PIPT) in quantum systems are the epitome of challenging

non-equilibrium many-body phenomena, that also have a wide range of potential applica-

tions. Recently interest in light-matter coupled states with an energy gap have yielded

evidence for Floquet topological states. In this study we demonstrate nonequilibrium Flo-

quet band formation under ultrafast optical excitation using a one-dimensional topological

insulator. As an example, the effects are illustrated using a new Zig-Zag Su-Schrieffer-

Heeger model of polyacetylene, which is a paradigmatic Hamiltonian exhibiting nontrivial

edge states. Our results indicate short optical pulses feasible in experiments can induce

novel topological states, local spectral selection and novel pseudospin textures in polyacety-

lene. Pump-probe photoemission spectroscopy is able to study these states by measuring

Floquet band formation and sizeable energy gaps on femtosecond time scales. We find that

optically activated nontrivial variations of sublattice mixing could lead to novel topological

phenomenon.

The rich variety of states induced by lasers have a wide range of potential applications so

that control of these states has become a key objective. We present a computational approach

to finding optimal ultrafast laser pulse shapes to induce target states and population inver-

sion in pump-probe PIPT experiments. The Krotov approach for Quantum optimal control

theory (QOCT) is combined with a Keldysh Green’s function calculation to describe experi-

mental outcomes such as photoemission, transient single particle density of states and optical

responses. Results for a simple model charge density wave (CDW) system are presented, in-

cluding generation of almost complete population inversion and negative temperature states.
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CHAPTER 1

INTRODUCTION

In physics, using spectroscopy to investigate interactions between light and matter has been

a long standing and broad area of study. Since the development of the laser as a source for

coherent light, many new methods have been utilized in a variety of fields, such as laser pulse

shaping and nonlinear optics. With advanced techniques, ultrafast pulses of durations from

picoseconds to a few femtoseconds are available; and more recently pulses in the attosecond

range have been generated. Source with frequencies from the terahertz to the X-ray are

now available. More intensive optical laser pulses have been employed recently to generate

tabletop X-ray and extreme-ultraviolet sources enabling the shortest pulses with a duration

in the range of attoseconds [11, 12, 13, 14, 15].

These tremendous improvements have enabled spectroscopy of matter with time reso-

lution at the femtosecond scale. Some of the most interesting properties only happen at

such time-scales, particularly the dynamics of quantum states. In the last decade, many

researchers have used ultrafast spectroscopy to study correlated and nanoscale quantum ma-

terials; including superconductors, charge density wave materials and topological insulators,

and novel effects and new phases that only occur far from equilibrium are being discovered.

Angle-resolved photoemission spectroscopy (ARPES), is of special interest, as it is able

to resolve the occupied electronic structure in momentum space; yielding unique insight into

many-body correlations and the dispersion of quasiparticles in bulk and low-dimensional su-

perconductors, strongly correlated materials and topological insulators. In the time domain,

applying an ultrafast laser pulse to a material and studying the related time-resolved ARPES

spectra (trARPES), one can study the dynamics of the electronic structure and quasiparticle

occupations; and discover the hidden structure of quantum states in physics.
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Figure 1.1: The experimental design of time-resolved ARPES, and corresponding ultrafast
momentum-dependent dynamics of the melting of the charge density wave state in TbTe3
monitored by trARPES. The figure is taken from [1]

1.1 Time-resolved ARPES

Since the early 1980s, time-resolved experimental techniques have been under development

[16, 17, 18], and related technology keeps progressing in resolution of momentum, energy

and in the time domain. Some of the important developments include generating probe

photons that can access large values of electronic crystal momentum by using high-harmonic

sources [19, 20, 21, 22], use of 2D hemispherical analyzers to replace time-of-flight electron

spectrometers [23, 24], and aiding in selective nonequilibrium photoexcitation through the

incorporation of tunable pump frequencies [6].

Time and angular-resolved photoelectron spectroscopy (trARPES) combines ARPES

with the ultrahigh time resolution of femtosecond lasers. Related advanced researches in

capturing the fastest processes relevant to behaviors at surfaces in materials have been ex-

plored. For the experiments, two important processes are included in time-resolved ARPES,
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namely photoemission and ultrafast pump-probe spectroscopy. First, in a photoemission

process, a crystalline material is pumped by ultraviolet (UV) photons in vacuum. When the

photon energy is larger than the work function of the system, electrons will be excited and

ejected into free space where their exit angles and energies can be observed. Because of the

energy and momentum conservation laws, one can ensure that the energy and momentum

of the photoelectrons in vacuum are directly related to the crystal momentum and energy

of the same electrons when they were still inside the material. Therefore the result can be

used to study electronic structure, and has been successfully applied to characterize many

different materials [25, 26, 27, 28, 29].

On the other hand, even though ARPES has many advantages and gives a great contri-

bution in the field, there are a few drawbacks. First, some microscopic dynamic processes

cannot be decoupled from the basic analysis. Second, it can only be used to measure elec-

tronic bands that are occupied initially. Third, specific physical phases only occur after

driving the system far beyond the equilibrium state. One of the useful techniques scientists

already implemented is to incorporate pump-probe methods. By shining an ultraviolet pump

laser pulse on a material, the material will be irradiated into excited states at a nonequi-

librium condition and, after that, the second laser pulse, as a probe laser pulse, provides a

photon energy within the range (6 to 60 eV) to detect photoemission of electrons from the

nonequilibrium state. By studying variations in the photoemission spectrum as the time

delay between pump and probe pulses changes, one is able to investigate nonequilibrium

dynamics in quantum systems (see Fig. (1.1)).

1.1.1 Nonequilibrium Regime

Using near-infrared or terahertz pump pulses to generate nonequilibrium states is one of the

most important topics for time-resolved spectroscopy nowadays. In an early finding a pump-

probe scheme was used to acquire the time resolved ARPES data on the high temperature
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superconductor Bi2212 [30] yielding its quasiparticle dynamics. The results were related to

a quasi-thermal system of metallic quasiparticles [31], which was used to study the normal-

state electron-phonon coupling. From Fig. (1.1), the experimental design of time-resolved

ARPES is shown, and the ultrafast momentum-dependent dynamics of the melting of the

charge density wave state in TbTe3 monitored by trARPES is illustrated [1].

Moreover, time-resolved ARPES can help scientists to study the phase transition in-

duced by electron-phonon interactions that have no analogue in equilibrium ARPES. Gaps

in the electronic excitation spectrum usually open up simultaneously with the formation of

superconducting or charge density wave (CDW) order. With time-resolved ARPES in the

ultrafast regime, many novel experiments have revealed new nonequilibrium behaviors. For

instance, researchers have discovered a long-range CDW order persists in the nonequilib-

rium state but the local electronic spectrum becomes gapless for a transient period of time

[32, 33, 34, 3, 1, 35, 36, 37, 38, 39]. Similar results for other materials indicate a novel quasi-

universal behavior in the nonequilibrium state. Understanding of the momentum-dependent

structure of relaxation rates provides a unique probe of coupling effects in a variety systems;

including charge density waves, superconductors, magnetic states and Floquet-Bloch states.

Recently, extreme-UV (10-50 eV) pulses have been induced by high-harmonic generation

in gases driven by intense laser pulses. Time-resolved ARPES experiments making use of such

techniques have been applied to discover nonequilibrium behaviors in multiple materials [40,

41, 42, 43, 44]. For example, the chalcogenide based charge density wave (CDW) materials

such as 1T − TaS2, 1T − TiSe2 and RTe3 [45, 37, 46]. Scientists now can also access the

timescales of charge-order collapse, and control the CDW gap through changing frequency

and amplitude of the laser pulse. The delay time is of order 600 fs for collapse of the

superconducting gap in Bi2212 while the experimental results on 1T − TiSe2 show that the

quenching procedure can rapidly appear within 20 fs [47, 45]. Time scales occurring for

various other charge density wave systems help to understand the difference between Peierls

and Mott effects driving CDW formation [46].
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An intriguing result in experimental observations is that of oscillating spectral signatures

that indicate the coupling of electrons to collective modes. This pump-induced phenomena

lasts longer than what was originally expected and is a very interesting discovery; perhaps

due to the fact that the electron-phonon coupling and charge density wave and lattice re-

sponse is far from the near equilibrium expectation. Coherently driven oscillations appear in

CDW materials as well. Early studies of these oscillations in KMO by Demsar et al. applying

optical techniques [48] were replicated in a wide range of materials, such as 1T − TaS2 to

TbTe3 [37, 34, 1].

1.2 CDW Materials

A CDW is an ordered quantum fluid of electrons normally in a linear chain compound or

layered crystal. In 1955, the CDW state was first mentioned by Peierls, and more recently

time-resolved ARPES (trARPES) has been widely applied to study several CDW materials

[49]. Peierls discovered a one-dimensional metal coupled to lattice vibrations is not stable

at low temperature. This instability was later called the Peierls’ CDW state. The argument

first considers a one-dimensional metal with one conduction electron per lattice site and with

temperature ideally at T = 0 and lattice constant a. The ground state is a non-interacting

metal without the electron-electron and electron-phonon interaction. A periodic lattice dis-

tortion occurs when electron-phonon coupling is present, and will influence the Fermi wave

vector and the overall energy of the material. The reason is that lattice energy is increased

less than electronic energy is reduced. And, the size of the gap opening at the Fermi level is

related to the amplitude of the periodic lattice distortion. In Fig. (1.2), we show the uniform

electron density and lattice distortion of a one-dimensional charge density wave. Note that, in

a half filling situation, a dimerization transition occurs and the distortion will double the pe-

riodicity of the model as illustrated in Fig. (1.2). More discussion can be found in Ref. ([50]).
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Figure 1.2: Schematic picture for the comparison between uniform electron density and the
Peierl’s transition of a charge density wave in a 1D system.

1.2.1 CDW in 1T − TaS2

One of the original 2D CDW materials discovered is the material 1T − TaS2 [3, 51, 32],

which has a sandwich structure consisting of S-Ta-S sheets and the sheets are bound to-

gether by Van der Waals forces. Because of the weak coupling between layers, the system

has a quasi two-dimensional property, and has a variety of stacking structures. Fig. (1.3)(a)

shows the measurements of conductance of 1T − TaS2 with temperature. At several criti-

cal temperatures, one can easily find multiple phase transitions between phases such as the

commensurate CDW phase; the incommensurate CDW phase and the metallic phase. A

commensurate CDW indicates a CDW state that is periodic as an integer times the peri-

odicity of the underlying lattice system. Note that the material has a quasi commensurate

CDW phase at temperatures 180K-350K, and a commensurate CDW phase (CCDW) at tem-

perature below 180K. Also an incommensurate CDW phase in the range 350K-550K, and a

metallic phase at temperature larger than 550K. In Fig. (1.3), we also show the structure of
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the material 1T − TaS2 that is commonly studied with pump-probe experiments at room

temperature. The schematic shows the Ta atom layer in the CCDW phase; consisting of

13-atom David-star clusters with the unique three Ta sites a, b, and c. The black arrows

indicate the displacement of the Ta atoms from their original undistorted positions.

Coherently driven oscillations appear in this CDWmaterial as well. Perfetti et al. demon-

strated the total photoemission signal in these phases by time resolved photo-emission mea-

surement [52, 48]. They applied a 1.5 eV laser pulse with FWHM of 125 fs to pump the

material and a 6 eV near UV pulse to probe the effect. They discovered solid evidence that

the commensurate CDW 1T − TaS2 is a Mott insulator and the gap on the Fermi surface

has a completely electronic origin by comparing two spectra in the metallic phase and Mott

phase. In the Mott insulator phase, they found the quasi-instantaneous collapse of the Mott

gap and its recovery at 20 ps time scale. The result shown in Fig. (1.4) indicates coherent

oscillations in the photoemission signal with a fixed period. The corresponding frequency is

the phonon mode that forms the CDW when the outer lattice sites couple with the inner

lattice sites. The mode is normally called a CDW amplitude mode or a breathing mode.

Figure 1.3: (a) The resistivity versus temperature in different charge-density-wave (CDW)
phases of 1T − TaS2. (b) Schematic of the Ta atom layer in the CCDW phase. 13-atom
David-star clusters with the three Ta sites a, b, and c. The black arrows indicate the
displacement of the Ta atoms from their original positions. Figure is take from [2].
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Figure 1.4: Pump-induced gap magnitude oscillations in the CDW material 1T −TaS2 near
30K. Using a 1.5eV pump pulse and 6eV probe pulse to induce instantaneous collapse of the
Mott gap and to observe its recovery. The oscillation in the band is interpreted as the CDW
amplitude mode related to electron-phonon coupling. Figure is taken from [3].

1.2.2 Optimal Laser Pulse Shaping

As discovered in the previous sections, high fidelity characterization of transient excited

many-body electron distributions in the ultrafast time domain is now available through a

variety of pump-probe experiments. Amongst the rich variety of non-equilibrium responses

observed, photo-induced phase transitions (PIPT) are particularly interesting for fundamen-

tal and applied reasons [39, 38, 53, 54, 55, 56, 57, 58, 59, 35, 60, 32, 33, 51, 3, 35, 36, 61, 60].

Important advances in optimal control theory were proposed in the twentieth century, and

our objective is to extend this approach to treat trARPES as a target. Fig. (1.5) shows the

scheme of pulse design, which is through a learning loop that comprises a computer, a pulse

shaper, the system and feedback spectroscopy [4]. The computer offers a particular pulse

shape, we shine it on the system and afterwards send probe light that analyses the effect of

the shaped pulse. An evolutionary algorithm iteratively refines the shape until an optimal

shape produces the desired effect.

Therefore, by adjusting the laser pulse properties it is possible to tune the non-equilibrium

PIPT response from the adiabatic to the non-adiabatic limits. Optimal laser pulse shaping
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methods have not been applied to PIPT yet and have the potential to control non-equilibrium

response in order to isolate selected physical phenomena, and in order to tune response for

selected applications such as high speed electronics or optics. In Chapter 5 we introduce a

method, based on Krotov optimal control theory [62], to direct photo-induced phase tran-

sitions (PIPT) by combining non-equilibrium models with quantum optimal control theory

(QOCT).

QCOT is a powerful tool based on calculating the optimal pulse shape by minimizing a

physical cost function or maximizing a desired physical objective, and it has been developed

within a variety of variational frameworks to obtain control sequences [63, 64, 65, 66, 67, 68,

69, 70, 71, 62, 72, 73]. Quantum optimal control methods based on the classical gradient

optimization methods provide an alternative to iterative methods based on the Krotov ap-

proach. Krotov methods have been applied to the fields of Quantum computing and control

of charge transfer processes, [72, 74, 75, 62, 76, 73].

The Krotov approach has several appealing advantages over the gradient methods in the

following ways: First, a monotonic increase toward the objective with iteration number.

Second, no requirement for a line search and faster convergence to a given target. Third,

at each iteration it guarantees macrosteps of the time interval and it can reach the global

maximum.

To illustrate the approach, we consider PIPT in a simple model [56] for a transient

metal-insulator state in a charge density wave system. In experiments, a long-range charge-

density-wave (CDW) is formed in a variety of layered chalcogenide materials, in oxides, in

two dimensional materials, and in many other systems. The investigated layered CDW ma-

terials have disclosed a new nonequilibrium pattern where the long-range CDW is preserved

while the local electronic excitation spectrum becomes gapless (by having subgap states)

for a transient period of time, as has been elucidated using the simple model considered

here [56]. In the experimental systems the mechanism for gap-closing and population inver-

sion remains an open question, though in some cases there has been significant theoretical
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progress.

Figure 1.5: A closed-loop for an optimal control process in quantum systems. First, input
initial conditions to the quantum system, such as an initial random field. Second, a current
laser control field design is created with a pulse shaper and then applied to the sample.
Third, The system evolves and the results are fed to a learning algorithm to suggest an
improved laser field for repeated excursions around the loop until the objective is achieved.
Figure is taken from [4].

1.3 Floquet-Bloch States

The light-matter interaction between the coherent electric field of an intense laser pulse and

the electronic wave functions of a solid can induce intriguing phenomena such as modifica-

tions of the electronic structure and topology. In particular the finding of Floquet-Bloch

states in topological insulators has become an important area recently. A topological insula-

tor is a material that has non-trivial topological order. It behaves as an insulator in the bulk

but its surface contains conducting states, indicating that electrons can only move along

the surface of the material. Fig. (1.6) shows an idealized band structure for a topological

insulator. The bulk band gap is traversed by topologically-protected surface states. On

the other hand, Floquet-Bloch states can be considered as a time domain version of Bloch

waves, where Bloch waves are defined as a periodic wave with fixed crystal momentum and

10



the corresponding Hamiltonian has a discrete translation invariance in space. Similarly,

Floquet-Bloch states in a material are periodic in both energy and momentum, and the

Hamiltonian has discrete invariance in both space and time.

Figure 1.6: An idealized band structure for a topological insulator. The bulk band gap is
traversed by topologically-protected surface states [5].

Researchers recently provided interesting experimental characterization of the effect [6]

through pump-probe trARPES studies of the topological insulatorBi2Se3 as show in Fig. (1.7).

They found a ladder of replica bands appear in the time resolved photoemission spectrum

with equally spaced energies after a stable frequency of the pump laser pulse was input into

the system, and measured by a probe pulse within the duration of the pump pulse. Also,

the surface state bands are dispersive and lead to different overlaps for some bands. With a

strong enough polarized laser pulse, band gaps will open at the crossing points with induced

gap proportional to the amplitude of the applied electric field; and new topological proper-

ties may be induced [77, 78]. For pulse energies increasing to very high values, the gap will

shrink again and connect to the possibility of band gap opening depending on pump fluence.
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The Floquet-Bloch phenomena is related to photon-dressed electron states in vacuum and

has the potential to disclose new physics in a variety of fields. It is also possible to control

these properties to design the next generation of quantum devices for new applications.

Figure 1.7: Researchers recently showed experimental results of the Floquet-Bloch states [6]
through pump-probe trARPES measurements on the topological insulator Bi2Se3. Figure
is taken from [6].

Moreover, nowadays ultrafast ARPES not only can study novel nonequilibrium states

but also can be used to map out the unoccupied band structure in solids by applying two

photon photoemission techniques. With these important techniques, one can study disper-

sion of correlated quasiparticles in energy-momentum space for quantum materials and the

conduction bands of nanoscale quantum systems. In topological insulators, the two photon

photoemission ARPES yields a mapping of the unoccupied state band structure on the sur-

face, as discussed in Ref. [79].
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1.3.1 Laser Driven Topological Phases

Optically induced phase transitions of topological states of matter by ultrafast lasers is be-

coming an important topic in condensed matter physics. By combining both of these lively

areas, recent work showed the coupling of short laser pulses to Dirac fermions in the topo-

logical insulator Bi2Se3 as shown in Fig. (1.7) [80]; and in other recent studies [81, 82, 83].

A simple model of conducting polymers, the Su, Schrieffer, and Heeger (SSH) model,

describes the dimerization occurring in polyacetylene, and is a classic example of a one-

dimensional topological insulator [5]. While the topologically trivial or nontrivial character

of the dimerized chain is controlled by the relative strength of the nearest neighbor couplings,

it was only recently proposed that high-frequency laser light can turn trivial equilibrium

bands into topological nonequilibrium Floquet bands [6]. In Chapter 3, we introduce a new

Zig-Zag SSH model where a laser pulse can induce novel topological behavior.

1.4 Chapters

An outline of the thesis is as follows:

In chapter 2, the goal is to introduce key methods and ideas used, particularly nonequi-

librium Green’s functions for tight-binding models. The two main models used later in

the thesis; for charge density waves and topological insulators, will be introduced. Many

techniques for studying physical properties from nonequilibrium Green’s function will be

mentioned, such as density of states, number density and order parameter.

In chapter 3, we simulate the real-time processing of single-particle energy gaps in poly-

acetylene coupled to short laser pulses through a Zig-Zag SSH model, applying trivial and

nontrivial topological parameters of the chain for time-resolved photoemission spectroscopy

(TRPES) analysis. We find that the TRPES band structure presents well-defined Floquet

13



bands and predict a novel band formation of the non-trivial topological chain. This chapter

is new work, and will lead to one first author paper and one or two co-auther papers.

In chapter 4, we first explain the complete foundation and schemes to solve the control

equation of motions and exhibit how to include additional constraints into the goal/cost

functions. Second, we introduce the tricks of Krotov optimal control method and the cor-

responding backpropagator. Third, we present the monotonic convergence property and

related proof. Fourth, we discuss the first order and second order cases for the backpropa-

gator format, and the algorithm for implementation on a computing resource. Last, we will

show three examples to demonstrate the power of the optimal control method.

In chapter 5, we consider the hot-electron model following the simulation study of Ref. [56,

55]. They found ultrafast laser pulses can quickly heat electrons forming a hot quasithermal

gas that equilibrates with phonons on much longer time scales compared to the electron

relaxation time. We introduce a new QOCT method to find the possible shaped-laser pulses

to study the short-time transient phenomenon and to discover new photo-induced phase

transitions without melting the system. This method is applicable to general tight binding

models, and we illustrate it by controlling negative temperature states in the model of

Ref. [56].

In chapter 6, we summarize our progress in the field and give an outlook on promising

future directions.
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CHAPTER 2

MODELS AND METHODS

As outlined in chapter 1, the use of lasers to direct photo-induced phase transitions in solids

has become a very important research subject in the field of condensed matter physics.

Techniques for the ultrafast studies of ferroelectricity, electrical conductivity, magnetism

and superconductivity have been widely utilized for different materials. Ultrafast study of

strongly correlated electron systems is one of the most interesting topic nowadays; especially

for the dynamics of an order parameter’s amplitude and phase, which determines the collec-

tive behaviour of novel states emerging in complex materials. Time-resolved photoemisssion

spectroscopy can decouple entangled degrees of freedom by visualizing their different re-

sponses in the time domain. Topological insulator (TI), a new quantum state of matter, is

another new field that can be studied with pump-probe spectroscopy. Their surfaces and

interfaces can act as a topological boundary to generate massless Dirac fermions with spin-

helical textures and topological order. Investigation of the dynamics of the topology of these

materials is crucial and further development of theories and computational approaches is a

high priority.

In last decade, nonequilibrium physics has become an important area which is widely

studied; due to the observation of novel behaviours and phenomena that are not well ex-

plained by equilibrium models. Nonequlibrium problems often indicate time reverse symme-

try breaking by a rapid disturbance in time, such as an interaction quench or a pulsed field.

Tight binding models of electronic structure are expected to capture many of the essential

features of the effects even in the nonequilibrium and ultrafast domains. Moreover, high fi-

delity characterization of transient excited many-body electron distributions in the ultrafast

time domain is now available through a variety of pump-probe experiments. Using nonequi-

librium Green’s functions, it is possible to fully calculate and understand the nonequilibrium

behaviours of interest.
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In this chapter, the goal is to introduce key methods used, and in particular nonequilib-

rium Green’s function for tight-binding models. The two main models studied in the thesis

for charge density waves and topological insulators are also included. Many techniques for

studying physical properties using nonequilibrium Green’s function will be outlined, such as

density of states, number density and order parameters. The purpose for this chapter is to

cover the key tools and theories we use in the later chapters.

2.1 Introduction to Nonequlibrium Green’s Functions

In general, interacting quantum and classical many-body systems in nonequilibrium states

can be completely represented by a set of N -particle wave functions entering the time-

dependent Schrödinger equation (TDSE) as

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 (2.1)

where H(t) is a time-dependent Hamiltonian and |ψ(t)〉 is the corresponded time-dependent

wave function.

Next, it is important to know how expectation values can be calculated at finite tem-

peratures, and how they change in time when the many-body system is affected by a time-

dependent disturbance leading to deviations of the system properties from equilibrium. To

this end, assume the system to be initially, at time t < t0, in thermodynamic equilibrium

corresponding to the time-independent Hamiltonian H0. The expectation value of an ob-

servable O at a given time point t > t0 is then accessible through the trace with the grand

canonical density operator as

〈O(t)〉 = Tr{ρOH(t)}, (2.2)
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with

ρ =
e−βH0

Tr{e−βH0}
. (2.3)

Note that the operator OH(t) is in the Heisenberg picture, OH(t) = U(t0, t)OU(t, t0), and

the time-evolution operator U is define by

U(t, t0) = Te
− i~
´ t
t0
dt̄H(t̄)

. (2.4)

From the above, one can also define the imaginary time operator for temperature as

U(t0 − iβ, t0) = e−βH0 , (2.5)

and, by using the Trotter formula, the time evolution in numerical calculations becomes

U(t, t′) = U(t, t−∆t)U(t, t− 2∆t)...U(t′ + ∆t, t′),

(2.6)

where ∆t is a small time step. For each moment time t, we have

U(t, t−∆t) = exp

[
−i∆t

~
H(t−∆t/2)

]
. (2.7)

This operator propagates the system from the initial time t0 parallel to the imaginary

axis to t0 − iβ, Further, this allows us to refine expression Eq. (2.3) for the time-dependent

expectation values. Inserting the definition Eq. (2.5) leads to the formula

〈O(t)〉 =
Tr{U(t0 − iβ, t0)U(t0, t)OU(t, t0)}

Tr{U(t0 − iβ, t0)}
. (2.8)

While the denominator is just the grand canonical partition function, the numerator of

Eq. (2.8) gives rise to the following interpretation: Reading the time-arguments from right

to left, one may say that the system first evolves along the real chronological time axis from
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t0 to time t at which the operator O acts. Then the system anti-chronologically evolves back

along this axis from time t to t0 and finally gets propagated parallel to the imaginary axis

from t0 to t0 − iβ. Graphically, this leads to a time contour in the imaginary time plane

which originally has been introduced by Keldysh [84] and is referred to as the Kadanoff-

Baym-Keldysh contour as Fig (2.1) shows. The imaginary branch of this contour accounts

for the ensemble averaging at the given temperature β.

Figure 2.1: Kadanoff-Baym-Keldysh contour in the complex time plane.

A more general expression for all time-dependent expectation values is consequently

〈O(t)〉 =
Tr{TC

[
exp(−i

´
C dt̄H(t̄))O(t)

]
}

Tr{U(t0 − iβ, t0)}
, (2.9)

where the exponential function is to be understood similarly to Eq. (2.4) as a Dyson series,

and TC is now the contour time-ordering operator satisfying

TC{a(t)b(t′)} = θ(t− t′)a(t)b(t′)− θ(t′ − t)b(t′)a(t) (2.10)

with θ(τ) the step function that equals to one when τ > 0 and is equal to zero when τ < 0.

Note that, operator O(t) is of the form

O(t) = U(t0, t)OU(t, t0). (2.11)

With the definitions and considerations above one is now ready to move on to the defini-

tion of the nonequilibrium Green’s functions that we use. In the Heisenberg representation,
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the one-particle time-ordered Green’s function is defined by

G(x, x′, t, t′) = −i〈TC
[
c(x, t)c†(x′, t′)

]
〉

= −i
Tr{U(t0 − iβ, t0)

[
c(x, t)c†(x′, t′)

]
}

Tr{U(t0 − iβ, t0)}
(2.12)

where c(x, t) and c†(x′, t′) are fermion creation and annihilation operators.

Through choosing t and t′ at different times on the Kadanoff-Baym-Keldysh contour, one

can obtain different kinds of Green’s functions. In fact, ten different kinds of single particle

Green’s function are mentioned in the literature [85, 56, 55] but, in the thesis, we will only

use two main independent Green’s functions from which we are able to derive most other

Green’s functions. One is the retarded Green’s function defined as

GR(x, x′, t, t′) = −iθ(t− t′)〈{c(x, t), c†(x′, t′)}+〉, (2.13)

and the other is the lesser Green’s function defined as

G<(x, x′, t, t′) = −i〈c†(x′, t′)c(x, t)〉. (2.14)

Note that here {, }+ represents the anti-commutation relation.

2.2 Introduction to Topology in Band Structure

In condensed matter physics, a central topic is to identify phases of matter. Symmetry

breaking is one of the main reasons for certain phase transitions, for example, in magnets and

superconductors. These kind of phenomenon can be understood using ideas related to order

parameter symmetry breaking. Topological insulators have a different symmetry breaking

where the idea of topology or topological order is essential. In condensed matter physics,

many of these ideas developed through the quantum Hall effect which has fundamental

topological properties such as the quantized Hall conductivity, and the number of conducting
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edge modes. These properties are insensitive to adiabatic changes of states and only change

when the system passes through a quantum phase transition point.

Even though the topological order of the quantum Hall effect has been studied for a long

time, the properties of topological insulators have been discovered recently. A topological

insulator has a bulk energy gap separating the highest occupied electronic band from the

lowest empty band. The system may have the same energy bands but have totally distinct

topological phases. One of the main objectives of topological band theory is to classify these

different electronic phases. New phenomena occur when there is a spatial interface between

two topologically different phases. Somewhere along the way between the two phases, the

energy gap has to go to zero. To characterize these gapless interfaces is a key goal. The

study of this goal brings us to the relation between boundary topological invariants and the

bulk topological invariants, which we will refer to as the bulk-boundary correspondence.

In this section, we give a short introduction to the relevant topics in topology, Berry

phase and Chern number.

2.2.1 Topology

In mathematics, topology is used to describe geometrical properties of objects that can

change shape smoothly. A famous example is that a coffee mug can smoothly deform to a

donut (as Fig. (2.2) shows) since they both have one hole or genus g = 1. For the condition

that one can only change the shape smoothly and cannot add a hole, a donut (g = 1) cannot

be the same topology as a soccer ball (g = 0) so they are topologically distinct. Manifolds

that can be deformed into one another are topologically equivalent.

For manifolds, a mathematical theory that defines an integer topological invariant is the

Gauss-Bonnet Theorem:

g =
1

2π

ˆ
S
CdA, (2.15)
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Figure 2.2: A coffee mug can smoothly deform to a donut since they both have one hole or
genus g = 1.

with Gaussian curvature C and S is a surface. Similar concepts are applied to band theory

wehre related quantities are the Berry phase and the Chern number, as discussed in the

following subsection.

2.2.2 Berry Phase and Chern Number

Berry phase is an important property in topological band theory [86, 87, 5] since it can be

used to understand the intrinsic phase of a quantum wavefunction. We know the Bloch

states are invariant under the shift

|ψ(k)〉 → eiφ(k)|ψ(k)〉. (2.16)

This shift is an electromagnetic gauge transformation. We introduce the idea of the Berry

connection

~A = −i〈ψ(k)|∇k|ψ(k)〉. (2.17)

Here A can be considered as analogous the electromagnetic vector gauge transformation.

Even though A is not gauge invariant, the corresponding flux in a closed loop is. One can

define Berry phase for a given closed loop C in momentum space as

αC =

˛
C

~A · dk =

ˆ
S
Fd2k, (2.18)
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where

F = ∇× ~A (2.19)

defines the Berry curvature. Note the surface and contour here can be in any dimension.

To be more specific, let us consider the simplest two level Hamiltonian that can be

represented in terms of Pauli matrices ~σ as

H(k) = ~d(k) · ~σ =

 dz dx − idy

dx + idy −dz

 . (2.20)

This Hamiltonian would give us eigenvalues ±|d|. One could have an additional additive term

but that would not affect the eigenvectors that depend only on the unit vector d̂ = ~d/|~d| so

we can skip it. d̂ here can be considered as a vector point on a sphere S2. If one considers

a loop C, let d̂ go over a 2π rotation in a plane, then the Berry phase is found to be π [88].

We therefore can say αC is half the solid angle swept out by d̂(k). Now we can define the

Berry curvature as half the solid angle element for the mapping d̂(k) as

F =
1

2
εij d̂ · (∂id̂× ∂j d̂). (2.21)

From above, we have a relation that the Berry curvature integrated over a closed 2D space

is a multiple of 2π that is equal to the number of times d̂(k) circles around the equator as k

goes over a path in the Brillouin zone as Fig. (2.3) shows.

We can then define a topological invariant named the Chern number [86, 87, 5]

N =
1

2π

ˆ
S
Fd2k. (2.22)

The result of quantization of the Chern number is not restricted to two band systems

but also generally applies to most cases. Note that the surface integral should be equal with

each other for the inside loop and outside loop up to a multiple of 2π, and quantization of
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Figure 2.3: The Berry phase is equal to half the sold angle swept out by d̂(k) for a two band
theory.

the Dirac monopole are clearly related to the quantization, such that we can consider F as

a curvature number analogous to the Gaussian curvature K mentioned earlier.

2.2.3 Bulk Edge Correspondence

A topological insulator has gapped band structures in the bulk and gapless conducting states

at interfaces where the topological invariant changes. The states are classified into different

topological orders based on their fundamental properties. To understand the edge states, it

is easy to consider the interface between the integer quantum Hall state and vacuum [14].

In a semiclassical framework, these edge states can be understood in term of the skipping

orbits where electrons have cyclotron orbits that bounce off the edge (Fig. (2.4)).

Note that, the electronic states responsible for this behavior can propagate in two different

directions along the edge so they are chiral. There are no states available for backscattering

which underlies the perfectly quantized electronic transport in the quantum Hall effect, the
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Figure 2.4: Edge states as skipping cyclotron orbits.

states are insensitive to disorder effects. The topology of the bulk quantum Hall state then

leads to the chiral surface states and quantized conductance.

A simple explanation of the chiral edge states can be shown by applying the two band

Dirac model, where at a Dirac point,

HD = mσz, (2.23)

with σz is a Pauli matrix.

Now consider a mass m is a function of y as m(y) at one of the Dirac points of an

interface and will change sign with y. For y > 0, m(y) > 0 gives the insulator, and, for

y < 0, m(y) < 0 gives the quantum Hall state. Assume m′ > 0 is fixed. Since the states

satisfy translation symmetry in the x direction, one can write ψqx = eiqxxψ(y). The zero

energy mode ψ0(y) is of the form

ψ0(y) = e−
´ y
0 m(y′)/vF | ↑〉 (2.24)
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where | ↑〉 is the upper eigenvector of σz. The corresponding eigenenergy is

E(qx) = ~vF qx. (2.25)

The band of states has a positive group velocity dE/dqx = ~vF defining a right moving

chiral edge mode that intersects with the Fermi energy EF .

Figure 2.5: The chiral edge states connect the valence band near K and K ′ with linear or
nonlinear dispersion for linear and nonlinear Hamiltonians respectively.

In Fig. (2.5), the energy bands versus momentum kx along the edge is shown. The blue

areas indicate the bulk conduction and valence bands, which have continuum states and have

the energy gap near K and K ′. Interestingly, a line connecting the valence band at K ′ to

the conduction band at K with a positive group velocity describes edge states.

The edge states may be different if the Hamiltonian near the surface is described by

a non-linear function. For example, the red line in Fig. (2.5) shows the edge states can

pass the Fermi level three times if the group velocity is non-linear. However the difference

NR − NL between the number of right and left chiral modes is the same, and is an integer

topological invariant characterizing the interface. The edge related value of NR − NL is

therefore decided by the topological structure of the bulk states. This is summarized by the
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bulk edge correspondence:

∆n = NR −NL. (2.26)

Note that ∆n is the difference in the Chern number across the interface.

2.3 Tight-binding Models at Equilibrium

In solid-state physics, tight-binding models (or TB models) are used to compute electronic

band structure, using an approximate approach based upon superposition of localized wave

functions at each atomic site. The model is closely connected to the LCAO (Linear Combi-

nation of Atomic Orbitals) method used in chemistry. Since the electrons in the model are

quite tightly bound to the atoms and have limited overlap with surrounding atoms of the

solid, the model is particularly well-suited for calculations of solids for which the electronic

states remain relatively close to the unperturbed atomic orbitals. The energy of the electrons

will also be quite close to the ionization energy of the electron in the free atom or ion because

the interaction with potentials and states on neighboring atom is limited. Though complete

physical principles are involved, tight-binding models yield a relatively simple mathematical

formulation.

2.3.1 SSH, Rice Mele, Platero Models

In this subsection, we introduce an important one dimensional model that illustrates some

of the fundamental topological properties in solid state physics. The simple but elegant

Su Schrieffer Heegar (SSH) model was used as a basic model of the conducting polymer

polyacetylene [5]. At half filling it has a Peierls instability to a dimerized state. The most

intriguing part is that in a finite chain there are two different dimerized states, as shown in

Fig. (2.6). These two distinct topological states lead to different topological properties and

responses in the nonequilibrium situation. The SSH model here presents the simplest two
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band model for introducing these special topological phenomena.

Figure 2.6: Two distinct topological states of the SSH model. (a) is the case δτ > 0 and (b)
is the case δτ < 0.

SSH used a 1D tight-binding Hamiltonian to model polyacetylene as

H =
∑
i

(τ + δτ)c
†
AicBi + (τ − δτ)c

†
Ai+1cBi + h.c. (2.27)

with labels A and B referencing to the two different atoms/sites in a unit cell. The term δτ

represents the dimerization and induces a gap opening in the energy band. The operators

satisfy the anti-commutation relations

{ci, c
†
j}+ = δij ,

{ci, cj}+ = 0,

{c†i , c
†
j}+ = 0, (2.28)

Note that, δτ can be positive or negative and we would have two distinct patterns or topolo-

gies determined by the sign of δτ . Even though the real SSH model should consider spin, we

treat spinless electrons here for simplicity. To analyze the Hamiltonian in momentum space

through Fourier transform we impose periodic boundary conditions for a chain with an even

number of sites. In that case we get a two-by-two matrix for each momentum k, and we

27



define N as the number of sites:

H =
∑
k

Hab(k)c
†
akcbk, (2.29)

with

H(k) = ~d(k) · ~σ (2.30)

and

dx(k) = (τ + δτ) + (τ − δτ) cos(ka),

dy(k) = (τ − δτ) sin(ka),

dz(k) = 0. (2.31)

Note that ~σ = {σx, σy, σz} and

σx =

0 1

1 0

 (2.32)

σy =

0 −i

i 0

 (2.33)

σz =

1 0

0 −1

 (2.34)

so the inner product with ~d(k) is H(k) =
∑
i={x,y,z} di(k)σi. From Eq. (2.31), one writes

the two band H(k) in terms of ~d(k) enabling use of topological ideas introduced in section

2.2.1. An important point is that if dz = 0; the two bands have a chiral symmetry defined

by the operator Π = σz, which anticommutes with the Hamiltonian: {H(k),Π} = 0. Then

each eigenstate with energy E has a corresponding state |ψE〉 = Π|ψ−E〉 with energy −E, so

that this chiral symmetry actually indicates a particle-hole symmetric spectrum. While this

symmetry is not preserved in real polyacetylene because there are second order effects such

as second neighbor hopping; it is still very useful to investigate the effects and topologies for

understanding some outstanding physical phenomena.
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Consider the different signs of δτ , which can lead to different topological phases or geo-

metric results. For δτ > 0, then dx > 0 for all k so ~d(k) has zero phase if ~d0 = ~0 is the center

(degeneracy point). One can see this path from Fig. (2.7). On the other hand, for δτ < 0,

dx(k ≈ π/a) < 0, so that ~d(k) circles around the center and has phase 2π. The phase results

can be understood as polarization in the strong coupling region, |δτ | ≈ τ . In that limit, one

can think that the electrons stay in localized states so, when we shift δτ from positive to

negative, the states will move electrons over by half a unit cell, inducing polarization and

topological phase.

Figure 2.7: Two distinct topological paths of the SSH model. (a) is the case δτ > 0 and (b)
is the case δτ < 0.
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The polarization gains phase of integer n times phase 2π when the chiral symmetry is

kept. One can break the symmetry by considering a dz(k) > 0 so the polarization now can

vary continuously and topology is lost in this 1d model. Otherwise, keeping chiral symmetry

leads to topologically distinct states that are characteristic by their quantized polarization.

Note that, in order to get from the positive δτ > 0 state to the negative δτ < 0 state we

need to pass a point with ~d = ~0 to obey the chiral symmetry, which is a quantum phase

transition point.

For the SSH model the eigenenergies are derived from the Hamiltonian

H(k) = ~d(k) · ~σ =

 0 R + re−ika

R + reika 0

 , (2.35)

where R = τ + δτ and r = τ − δτ ; so that,

Ek = ±
√
R2 + r2 + 2Rr cos(ka). (2.36)

Note that, Ek is invariant under r ↔ R, but the topology changes. Here we use R and r to

show a relation between the topological phase and the dispersion relation in Eq. (2.36). We

also know that the length of R and r are decided by the dimerization term δτ . The geometric

paths for the dispersion relation and the topological phase can be found in Fig. (2.8) and

Fig. (2.9). Note that when R = 0 or r = 0, we will have a flat band for dispersion relation,

and when |δτ | is the same, the dispersion relation will be the same no matter for R > r or

R < r.

Another simple but significant model is the Rice-Mele model [89], which is the SSH model

with an extra staggered onsite potential. The Hamiltonian of the Rice-Mele model on a 1D

chain is written as

H =
N∑
i

u(c
†
AicAi − c

†
BicBi) + vc

†
AicBi + wc

†
Ai+1cBi + h.c. (2.37)
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Figure 2.8: Dispersion relation of the SSH model based for R = τ + δτ and r = τ − δτ .

Figure 2.9: Topological path of the SSH model depends on R, r and ka.

with labels A and B referencing to the two different atoms/sites in a unit cell, and the onsite

potential u, intercell hopping amplitude w, and the intracell hopping amplitude v. Note

that, for the SSH model, u = 0, v = τ + δτ and w = τ − δτ . For the Rice-Mele model, the

matrix of the Hamiltonian on a 1D chain with N = 4 sites is of the form
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H =



u v 0 0 0 0 0 0

v −u w 0 0 0 0 0

0 w u v 0 0 0 0

0 0 v −u w 0 0 0

0 0 0 w u v 0 0

0 0 0 0 v −u v 0

0 0 0 0 0 w u v

0 0 0 0 0 0 v −u



. (2.38)

To analyze the Hamiltonian in momentum space through Fourier transform we impose

periodic boundary conditions for a chain with an even number of sites. In that case we get

a two-by-two matrix for each momentum k, and we define N as the number of sites:

H =
∑
k

Hab(k)c
†
akcbk, (2.39)

with

H(k) = ~d(k) · ~σ (2.40)

and

dx(k) = v + w cos(ka),

dy(k) = w sin(ka),

dz(k) = u. (2.41)

Note that ~σ = {σx, σy, σz} are Pauli matrices. The eigenvalues are,

Ek = u±
√
v2 + w2 + 2vw cos(ka). (2.42)

The bulk energy eigenstates of a band insulator are delocalized over the whole system.

We use as an example the bulk Hamiltonian of the Rice-Mele model. The energy eigenstates

are the plane wave Bloch states

|Ψ(k)〉 = |k〉 ⊗ |u(k)〉, (2.43)
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with

|k〉 =
1√
N

N∑
m=1

eimk|m〉, (2.44)

for k = {δk, 2δk, ..., Nδk} with δk = 2π/N . The |u(k)〉 are eigenstates of the bulk momentum-

space Hamiltonian from Eq. (2.40). Note that, the Bloch states |Ψ(k)〉 are spread over the

whole chain. They span the occupied subspace, defined by the projector

P =
∑
k∈BZ

|Ψ(k)〉〈Ψ(k)|. (2.45)

The phase of each Bloch eigenstate |Ψ(k)〉 can be set at will. A change of these phases, a

gauge transformation, |u(k)〉 → eiα(k)|u(k)〉 gives an equally good set of Bloch states, with

an arbitrary set of phases α(k) ∈ R for k = δk, 2δk, .... Because of this freedom, we are able

to ensure that in the thermodynamic limit of N →∞, the components of |Ψ(k)〉 are smooth

and continuous functions of k. While this gauge may not be easy to derive; it is topologically

trivial when u 6= 0 since a circle loop does not enclose degeneracy point.

Another interesting extension of the SSH model is a dimers chain coupled to an ac

electric field discussed by Platero [81] and illustrated in Fig. (2.10). τ and τ ′ are hopping

terms between two sublattices A and B, and with a periodic boundary conditions. a0 is the

cell size and b0 is the distance between A-B atoms.

Figure 2.10: A dimers chain with two sublattices A and B, and τ and τ ′ are hopping terms
between two sublattices A and B. a0 is the cell size and b0 is the distance between A-B
atoms.
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The corresponding bulk Hamiltonian in momentum space is therefore of the form

τ̃n,m = τ

 0 ρF (k)

ρ̃F (k) 0

 , (2.46)

with

ρF (k) = λe−ikb0 + eik(a0−b0), (2.47)

and

ρ̃F (k) = ρ̃∗F (k) (2.48)

where λ = τ ′/τ .

2.3.2 Freerick’s Model

A simple model of an electronic CDW in a 2-D system is shown in Fig. (2.11) [56, 55]. Note

that, this is a special case of the Rice-Mele model described in the previous subsection on a

square lattice.

In the model, the charge density wave system is constituted by two different sublattices

A and B of equal size. The nearest neighbors for lattice sites in the A sublattice is from

the B sublattice and the nearest neighbors for lattice sites in the B sublattice is from the

A sublattice. To describe different sublattices, one can use the fixed site potential energy,

which is described by an onsite potential U on the sublattice A and onsite potential zero on

the sublattice B. Hopping term τ is allowed between nearest sublattice A and sublattice B

and is the same for all directions. Note that here we use spinless electrons for simplicity.

To start with, let consider the Hamiltonian without an external field so the model now is

time-independent and in a second quantization form is

H = −
∑
ij

τijc
†
icj + (U − µ)

∑
i∈A

c
†
ici − µ

∑
i∈B

c
†
ici, (2.49)
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Figure 2.11: CDW model with two different sublattices A and B.

Note that here c†i and ci are the creation, annihilation operators at site i for spinless electrons,

and µ is the chemical potential. To study the electrons in a periodic lattice, we work in

Fourier space and analyze it within the first Brillouin zone. We define the lattice vector

R =
∑
i niaiêi where ni is an integer, ai is the lattice constant, and êi is the basis vector

direction in the lattice. We know any periodic function on the lattice R has nonzero Fourier

elements only for certain vectors {K}. In momentum space, we know these vectors {K}

form a reciprocal lattice. The sites of a reciprocal lattice represent wave vectors that satisfy

the condition eiK·r = eiK·(R+r) for any real space vector r. Similar to the way one chooses

the primitive unit cell in real space. The first Brillouin zone is decided by the Wigner-

Seitz primitive unit cell centered at the origin in reciprocal space. Note that we apply the

reduced zone scheme by reducing all wave vectors into first Brillouin zone so energy levels

originating from k + nK are now regarded as belonging to the nth band. We therefore have

the transformation from real space to momentum space in the reduce Brillouin zone scheme
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satisfying

c
†
i =

∑
k

e−ik·Ric†k, (2.50)

with k going over the first Brillouin zone, and Ri is a lattice vector for site i. Since the

translational symmetry is partially broken in the model so the momentum points k and

k + Q are coupled, with Q = (π, π, π, ...). Note that this holds true for hypercubic lattices

in general dimension, In the reduced Brillouin zone, the transformation equation becomes

c
†
i =

∑
k

(e−ik·Ric†k + e−i(k+Q)·Ric†k+Q). (2.51)

Because e−iQ·R is one for lattice sites on the A sublattices and minus one on the B sublattices,

we can find;

c
†
i∈A =

∑
k

eik·Ri(c†k + c
†
k+Q), (2.52)

c
†
i∈B =

∑
k

e
ik·Rj (c†k − c

†
k+Q). (2.53)

By taking the Hermitian conjugate, the annihilation operator identities are derived. One

can show the electronic band structure at U = 0 is then;

εk = −
∑
〈ij〉

τij exp
[
−ik · (Ri −Rj)

]
= −2τij

d∑
l=1

cos(kla) = −
d∑
l=1

t∗√
d

cos(kla), (2.54)

then restricting k to the reduced Brillouin zone, is equivalent to having εk ≤ 0, and l is

the index for spatial component, d is the number of spatial dimensions, a is the lattice

constant, t∗ is the re-defined hopping energy between nearest neighbors in each dimension

and τij → t∗/2
√
d. The rescaled hopping term t∗ is the rescaled hopping energy between

nearest neighbors in each dimension to preventing divergence in large dimensions. To be

more specific, tij = t∗/2
√
d in the last equation allows us to approach the d→∞ limit.

Note that the reduced Brillouin zone is half the size of the original one (without the

sublattice modulation) since, due to the onsite chemical potential, the periodic size in real
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space is doubled. Now one can write down the Hamiltonian in a two by two [ck, ck+Q] basis,

H =
∑
k

[
c
†
k c

†
k+Q

]εk + U/2− µ U/2

U/2 −εk + U/2− µ


 ck

ck+Q

 . (2.55)

If the system is in equilibrium, one is able to diagonalize the Hamiltonian matrix with the

eigenfunction basis,

ck+ = αkck + βkck+Q, (2.56)

ck− = βkck − αkck+Q. (2.57)

For the upper band and lower band eigenstates at the momentum point k in the reduced

Brillouin zone, we know that ck+ and ck− are annihilation operators with αk and βk given

by

αk = (U/2)/
√

2(ε2k + U2/4− ε2k + U2/4) (2.58)

βk = (
√
ε2k + U2/4− εk)/

√
2(ε2k + U2/4− ε2k + U2/4) (2.59)

Note that the Hamiltonian matrix is diagonalized so we are able to rewrite the Hamiltonian

in the two by two [ck+, ck−] basis as

Hk =

[
c
†
k+ c

†
k−

]εk+ 0

0 εk−


ck+

ck−

 . (2.60)

Where εk+ and εk− are the eigenstates;

εk± = U/2− µ±
√
ε2
k + U2/4. (2.61)

Fig. (2.12) shows the corresponding dispersion relation εk± for the CDW model. Note that,

in the Pauli matrix representations ~d · ~σ, it is clear that the Chern number is always zero

and hence without light the model is not topological.

The corresponding dispersion relation for the CDW model is given in Fig. (2.11).
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Figure 2.12: Dispersion relation εk± of the CDW model when µ = 1/2 and U = 1.

2.3.3 Green’s Function Method

We calculate the two-time retarded Green’s function and two-time lesser Green’s function

defined in subsection 2.1. Because the time-translation symmetry is not broken in the equi-

librium system, one only need to consider the relative time t − t′ in the Green’s functions.

The local density of states is found from the local retarded Green’s function and defined

through

Ai(ω) = − 1

π
Im[GRi (ω)] = − 1

π
Im(

ˆ
eiω(t−t′))GRi (t, t′)d(t− t′)). (2.62)

The two-time retarded Green’s function is represented using the creation and annihilation

operators for sublattices A and B as a sum over all k points;

GRi (t, t′) = −iθ(t− t′)
∑
k

〈{ck(t)± ck+Q(t), c
†
k(t′)± c†k+Q(t′)}+〉, (2.63)

when in equilibrium, Ô(t) = eiHtOe−iHt for any operator. Note that the + sign represents

a local retarded Green’s function on the A sublattice and the − sign represents that on the

B sublattice. One can re-write the Green’s function in the diagonalized basis so the local
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retarded Green’s function on the A sublattice becomes

GRA(t, t′) = −iθ(t− t′)
∑
k

〈{(αk + βk)ck+(t) + (βk − αk)ck−(t),

(αk + βk)ck+(t′) + (βk − αk)ck−(t′)}〉

(2.64)

By solving equation of motion for the time evolution of the ck+(t) and ck−(t) operators, one

finds;

c
†
k+(t) = exp[−iεk+t]c

†
k+ (2.65)

c
†
k−(t) = exp[−iεk−t]c

†
k− (2.66)

The local density of states (LDOS) is then of the following form

AA,B(ω) = Re

[√
ω ± U/2
ω ∓ U/2

]
ρ(
√
ω2 − U2/4). (2.67)

Through summing over the local DOS for each sublattice with weight 1/2, the total DOS

is calculated. Note that the two sublattice model at equilibrium gives a two band structure

with a band gap equal to the onsite interaction U . We also know the LDOS on the A

sublattice has a divergence at ω = U/2 and the LDOS on the B sublattice has a divergence

at ω = −U/2. Just like the retarded Green’s function, the imaginary part of the Fourier

transform of the lesser Green’s function gives

1

2π
ImG<i (ω) = Ai(ω)f(ω) =

1

2π
Im
[ˆ

eiω(t−t′)G<i (t, t′)d(t− t′)
]
. (2.68)

In our calculation, we set chemical potential µ = 0 which is the half-filling case. That is

the reason why the imaginary part of the lesser Green’s function indicates that the electrons

fill the lower band. By definition, one can find that imaginary part of local lesser Green’s

function corresponds to the number of local electrons at time t′ so the local electron number

density on each sublattice can be written as

nA,B(t) = Im(G<A,B)(t, t)). (2.69)

39



One can also define the order parameter at equilibrium, which is the difference between the

electron number density on the A and B sublattices as

Ω(t) =
nB(t)− nA(t)

nB(t) + nA(t)
. (2.70)

In equilibrium there are always more electrons on the B sublattice than on the A sublattice

as there is a repulsive potential on the A sublattice. In the half filling case, the upper band

is completely empty and the lower band is filled at T = 0. So we can conclude that the

larger the interaction U , the stronger the electronic CDW order is.

2.3.4 Graphene and Dirac Cone

The term graphene first appeared in 1987 to describe single sheets of graphite as a constituent

of graphite intercalation compounds. Graphene also is the most typical 2D material with

Dirac cones [12]. It has two C atoms per unit cell arranged in a hexagonal lattice (Fig. (2.13)).

Figure 2.13: Graphene is an atomic-scale hexagonal lattice made of carbon atoms.
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Because the C atoms bind together with both σ and π bonds, graphene is rather stable

and can be studied through a relatively simple model. A tight-binding model describes the

electronic structure of graphene quite well. The Hamiltonian is simplified into a 2×2 matrix

for each wave vector k using a nearest-neighbor hopping approximation as

H(k) =

ε0 0

0 ε0

+
∑

i=1,2,3

 0 tie
i(k·di)

tie
−i(k·di) 0

 , (2.71)

where di with (i = 1, 2, 3) are vectors that connect a C atom to its three nearest neighbors,

ε0 is the on-site energy, and ti are the corresponding hopping energies. The energy bands

are thus found to be

E±(k) = ε0 ± |
∑

i=1,2,3

tie
i(k·di)|. (2.72)

For convenience, one can set the Fermi level to be ε0 = 0. For the equilibrium structure,

di = r0, ti = t0, and the valence and conduction bands contact at K and K ′ points of the

hexagonal Brillouin zone. One can expand the energy bands around K or K ′ as

E±(q) = ±~vF |q| (2.73)

where K = k − q, and vF = 3t0r0/2~ is the Fermi velocity. Near K and K ′ points,

Eq. (2.73) shows that graphene has a cone-like band structure with linear dispersion, similar

to a relativistic particle. The density of states (DOS) per unit cell with a degeneracy of 4

(2× 2 spin and valley) near Fermi level is

ρ(E) = 4|E|/
√

3πt20 (2.74)

Therefore graphene is a gapless semiconductor with zero DOS per site at Fermi level. The

Hamiltonian near the K and K ′ points can be transformed into

H(q) = vF p · σ (2.75)

where σ are the Pauli matrices, and p = −i~∇ is the momentum operator. Note that,

Eq. (2.75) is identical to, by replacing c (speed of light) with vF , the massless Dirac equa-

tion or Dirac-Weyl equation with spin S = 1/2. For this reason, the K and K ′ points are
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also called Dirac points, and the linear band structure is called a Dirac cone as Fig. (2.14)

shows. These graphene possesses massless Dirac fermions with pseudospins of ±1/2. Here

pseudospins indicate which sublattice has a great occupancy.

Figure 2.14: Dirac cone–the electrons in graphene behave like massless Dirac particles that
appear in the electronic band structure as gapless excitations with a linear dispersion.

Due to the Dirac-cone structure, many new electronic properties and physical phenomena

have been found in graphene. For instance, when a uniform perpendicular magnetic field B

is applied, a particular Landau level form in graphene is

E(n) = sgn(n)
√

2e~v2
F |n|B (2.76)

where n ∈ Z (the Landau level index) and E(n) ∝ n in normal semiconductors. The

Landau levels in 2D systems can be verified by quantum Hall effect (QHE) if the magnetic

field is strong enough. Different from the conventional 2D systems, graphene shows a novel
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half-integer QHE with

σxy = (4e2/h)(N + 1/2) (2.77)

which can be described by the pseuospins and the degeneracy of Dirac fermions.

2.4 Tight Binding Models in a Time Varying Field

In the past decade, since precise nonequilibrium study is now possible in experiments, ex-

tensions of theory to treat pump-probe experiments has become very important. Normally,

for the case of pump-probe experiments, the Hamiltonian will be time-dependent due to the

effect of a time-varying electric field. We thus need to include electromagnetic fields into the

lattice models described earlier, and the way that we do this is described in the next section.

2.4.1 Peierl’s Substitution

To include the time-dependent electric field, we use the Peierls’ substitution [90, 56, 55],

which is a widely employed approximation for describing tight-binding models in the presence

of a slowly changing magnetic vector potential. It is a simplified semi-classical treatment of

the electromagnetic field that is nonperturbative. The hopping matrix gains a phase factor

with the Peierls’ substitution as

τij → τij exp

[
− ie
~c

ˆ Rj

Ri

A(r, t)dr

]
. (2.78)

The Peierls phase originates from the propagator of an electron in a magnetic field due to

the dynamical term qv · A appearing in the Lagrangian. In the path integral formalism,

which generalizes the action principle of classical mechanics from the Hamiltonian

H0 =
1

2m

(
p− eA

)2
+ ε̃0, (2.79)
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and one can derive the Peierls’ phase from the path integral. A scalar potential term

−e
∑
i φ(ri, t)c

†
ici is also added into the Hamiltonian. φ(ri, t) is the scalar potential for

the external field and A(r, t) is the vector potential. In the following, we only work with the

gauge that has zero scalar potential and we also assume a spatially uniform time-dependent

vector potential so one can neglect the magnetic field effects. The is called the Hamiltonian

gauge. In Maxwell’s equations, one can find the corresponding electric field E(t) from the

derivative of the vector potential A(r, t) as

E(t) = −1

c

∂A(r, t)

∂t
. (2.80)

Note that for a spatially uniform field, we have A(t) = A(t)(1, 1, ..., 1) for a vector potential

directed along the (1, 1, ..., 1) axis of a hypercubic lattice. In momentum space, the time-

dependent band structure for the U = 0 case is then

εk(t) = −
∑
〈ij〉

τABij exp
[
−i(k − e

~c
A(t)) · (RiA −RjB)

]
. (2.81)

Therefore, the influence of the Peierls’ substitution is to induce a time-dependent shift to

the momentum in the non-interacting electron band structure. At U = 0 we have,

εk(t) = −
d∑
l=1

t∗√
d

cos

[
a

(
kl − eA(t)

~c

)]
. (2.82)

The time-dependent Hamiltonian for the CDW case becomes (U 6= 0),

H(t) = −
∑
〈ij〉

τij exp

[
ie

~c
A(t) · (Ri −Rj)

]
c
†
i (t)cj(t)

+(U − µ)
∑
i∈A

c
†
i (t)ci(t)− µ

∑
i∈B

c
†
i (t)ci(t). (2.83)

The Fourier transformation to momentum space can be applied to the above,

c
†
i (t) =

∑
k

[e−ik·Ric†k(t) + e−i(k+Q)·Ric†k+Q(t)], (2.84)

and the corresponding hermitian conjugate. In momentum space and in the Schrödinger

representation, the time-dependent Hamiltonian can be represented as

Hs(t) =
∑
k

[
c
†
k c

†
k+Q

]εk(t) + U/2− µ U/2

u/2 −εk(t) + U/2− µ


 ck

ck+Q

 (2.85)
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The band structure εk(t) at U = 0 in time-dependent form can be written with the difference

formula of the cosine,

εk(t) = cos(eaA(t)/~c)ε(k) + sin(eaA(t)/~c)ε̄(k) (2.86)

which depends on the band structure at U = 0

ε(k) = −
d∑
l

t∗√
d

cos(akl) (2.87)

and

ε̄(k) = −
d∑
l

t∗√
d

sin(akl). (2.88)

One can consider the equation of motion for the operators ck(t) and ck+Q(t) in the Heisenberg

picture, as

i
∂ck(t)

∂t
= [HH(t), ck(t)], (2.89)

and

i
∂ck+Q(t)

∂t
= [HH(t), ck+Q(t)], (2.90)

Note that HH(t) indicates the Heisenberg representation for the Hamiltonian. If one brings

in the time-dependent Hamiltonian and evaluates the commutators, we find

−i∂ck(t)

∂t
= (εk(t) + U/2− µ)ck(t) + U/2ck+Q(t), (2.91)

and

−i
∂ck+Q(t)

∂t
= U/2ck(t) + (−εk(t) + U/2− µ)ck+Q(t), (2.92)

Then the time evolution for the creation and annihilation operators satisfy ck(t)

ck+Q(t)

 = Uk(t, t0)

 ck(t0)

ck+Q(t0)

 (2.93)
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Note that for each momentum the time-evolution operator Uk(t, t′) is a time ordered product

Uk(t, t′) = T exp

i
ˆ t

t′
dt′

εk(t) + U/2− µ U/2

U/2 −εk(t) + U/2− µ


 . (2.94)

Numerically, one needs to slice the continuous time-dependent terms into small pieces for

very short time steps ∆t to calculate the time evolution for Uk(t, t′) with the time-dependent

terms inside the exponential by changing

t̄ −→ t−∆/2. (2.95)

The corresponding result is more concise by employing an identity of the exponential of the

Pauli matrices {σx, σy, σz}. Since any two by two matrix has four degrees of freedom, we

know any two by two matrix can be represented as a linear combination of the Pauli matrices

σx, σy, σz and the unit matrix 1. So we expand

A = a01 + ~a · ~σ =

 a0 + az ax − iay

ax + iay a0 − az

 . (2.96)

If we consider the case that the matrix A has a0 = 0, and define A = λ~a · ~σ, we can prove

the generalized Euler identity relation

eiλ~a·~σ = cos(λ)1 + i(~a · ~σ) sin(λ). (2.97)

Here ~a is chosen to be a unit vector and λ is the magnitude. A matrix exponential has its

Taylor expansion in general as

eA =
∞∑
n=0

An

n!
. (2.98)

By separating the odd and even orders, we have

eiλ~a·~σ =

( ∑
n∈even

(i)n
λn

n!
(a · σ)n

)
+ i

 ∑
n∈odd

(i)n−1λ
n

n!
(a · σ)n−1

 (~a · ~σ). (2.99)

One also has the useful identity

(~a · ~σ)(~b · ~σ) = ~a ·~b1 + i~σ · (~a×~b), (2.100)
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which includes the special case

(~a · ~σ)2 = 1 (2.101)

with a unit vector ~a = ~b. We see that the expansion of the cosine is equal to the even terms

in the expansion, and the expansion of sine is equal to the odd terms in the expansion, hence

eiλ~a·~σ = cos(λ)1 + i sin(λ)(~a · ~σ). (2.102)

In this thesis, we only work at half filling where µ = U/2 in momentum space k so the above

equations become

Uk(t, t−∆t) = eiλk ~ak·~σ = cos(λk)1 + i sin(λk)(~ak · ~σ) (2.103)

with

~ak · ~σ =
∆t

λk

εk(t−∆t/2) U/2

U/2 −εk(t−∆t/2)

 , (2.104)

and

~ak = (0, U∆t/2λ,∆tεk(t−∆t/2)/λ) (2.105)

λk = ∆t
√
ε2k(t−∆/2) + U2/4. (2.106)

In the real calculations, instead of the time at −∞, one must start from a minimum time t0

so one can calculate the time-evolution operator in the form

Uk(t, t′) = Uk(t, t−∆t)Uk(t−∆t, t− 2∆t)...Uk(t+ ∆t, t′) (2.107)

For each k, one can derive the two-time evolution operator from the relation

Uk(t, t′) = Uk(t, t0)Uk(t0, t
′). (2.108)

Once the time evolution at each time step is derived, we are able to calculate the nonequi-

librium Green’s functions and obtain the physical properties of the model.
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2.5 Introduction to Floquet Theory

Floquet states can be considered as a time domain version of Bloch waves, where Bloch waves

are defined crystal momentum and the corresponding Hamiltonian has discretized transla-

tion invariance in space. Similarly, Floquet states in a material are periodic in energy, and

the Hamiltonian has discretized invariance in time [91].

2.5.1 Periodic Hamiltonian

Assume that time-dependent Hamiltonian Ĥ(t) can be written as

Ĥ(t) = f(t) +H(t), (2.109)

where the scalar function f(t) depends only on time t so that it commutes with H(t). We

use |ψ, t〉 as the time dependent state vectors. One thus can reduce the time dependence

from the problem

i~
∂

∂t
|Ψ, t〉 = Ĥ(t)|Ψ, t〉 (2.110)

to

i~
∂

∂t
|ψ, t〉 = H(t)|ψ, t〉. (2.111)

Where the remaining non-trivial Hamiltonian H is a periodic function of time, i.e.

H(t+ T0) = H(t) (2.112)

where T0 is the period time. The related angular frequency Ω is then

Ω = 2π/T0. (2.113)

This periodicity allows us to rewrite H in the Fourier series as

H(t) =
inf∑

n=− inf

HneinΩt, (2.114)
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where the Fourier components Hn are of the form

Hn =
1

T0

ˆ T0

0
dte−inΩtH(t). (2.115)

2.5.2 Floquet Formalism

Floquet theory claims that the solutions of the time dependent Schrödinger equation

i~
∂

∂t
|ψ, t〉 = H(t)|ψ, t〉 (2.116)

can be written as

|ψ, t〉 = e
− i~εt

∑
n

∑
α

Fnαe
inΩt|α〉. (2.117)

Note that the set {|α〉} is a complete orthonormal basis for the Hilbert space of the periodic

Hamiltonian H. To verify the claim, we substitute the expansion into the Schrödinger

equation and derive

i~
∂

∂t
|ψ, t〉 = i~

∂

∂t

[
e
− i~εt

∑
nα

Fnαe
inΩt|α〉

]

= εe
− i~εt

∑
nα

Fnαe
inΩt|α〉+ i~e−

i
~εt
∑
nα

FnαinΩeinΩt|α〉

= e
− i~εt

∑
nα

Fnαe
inΩt(ε− n~Ω)|α〉

=
∑
m

HmeimΩt

[
e
− i~εt

∑
nα

Fnαe
inΩt

]

= e
− i~εt

∑
nmα

Fnαe
i(n+m)ΩtHm|α〉. (2.118)

One can make a summation index substitution as

e
− i~εt

∑
nmα

Fnαe
i(n+m)ΩtHm|α〉 −→ e

− i~εt
∑
nmα

Fmαe
inΩtH(n−m)|α〉 (2.119)

49



which leads to,

e
− i~εt

∑
nα

Fnαe
inΩt(ε− n~Ω)|α〉 = e

− i~εt
∑
nmα

Fmαe
inΩtH(n−m)|α〉. (2.120)

Note that the exponentials {einΩt} are an orthogonal set on the time interval [0, T0], and

that the basis {|α〉} was considered to be an orthonormal one so one can have the equality∑
β

Fnβ(ε− n~Ω)|β〉 =
∑
mβ

FmβH
(n−m)|β〉. (2.121)

By taking the scalar product from the left with 〈α| one will have

(ε− n~Ω)Fnα =
∑
mβ

〈α|H(n−m)|β〉Fmβ . (2.122)

We can define the matrix elements Hn
αβ as

Hn
αβ = 〈α|Hn|β〉, (2.123)

and the matrix elements Γnα,mβ become

Γnα,mβ = Hn−m
αβ + n~Ωδnmδαβ . (2.124)

One can then rewrite this equation as the eigenvalue problem∑
mβ

ΓFmβ = εFnα, (2.125)

and the matrix form is

ΓF = εF. (2.126)

By using the property

H−nβα = 〈β|H−n|α〉

=
1

T0

ˆ T0

0
einΩt〈β|H(t)|α〉dt

=
1

T0

ˆ T0

0
einΩt〈α|H†(t)|β〉∗dt

=

[
1

T0

ˆ T0

0
e−inΩt〈α|H(t)|β〉dt

]∗
= Hn

αβ
∗ (2.127)
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it is easy to derive that

Γnα,mβ = Γ∗mβ,nα (2.128)

and therefore the matrix Γ is Hermitian. Because of the Hermiticity of Γ, the eigen-

value problem ΓF = εF has a solution. One also knows the eigenvalues ε are real and

the eigenvectors F form a complete orthonormal basis. Therefore the assumption |ψ, t〉 =

e
− i~εt

∑
nα Fnαe

inΩt|α〉 solves the periodic time dependent problem with Floquet theory. In

Chapter 3, Floquet theory is applied to the SSH model.

An example we show here is the effect of adding a time-dependent field into the Platero

Model mentioned in section 2.3.1. The time-dependent electric field is taken to be E(t) =

−∂tA(t) with A(t) = A0 sin(ωt). At steady state the AC field can be interpreted as adding

an extra dimension to the model. The corresponding bulk Hamiltonian in momentum space

is therefore of the form

τ̃n,m = τ

 0 ρF (k)

ρ̃F (k) 0

 , (2.129)

with

ρF (k) = λe−ikb0Jn−m(A0b0) + eik(a0−b0)Jm−n(A0(a0 − b0)), (2.130)

and

ρ̃F (k) = λeikb0Jm−n(A0b0) + e−ik(a0−b0)Jn−m(A0(a0 − b0)), (2.131)

where λ = τ ′/τ and (n,m) are integers. Note that, the spectrum depends on the intra-dimer

distance b0, and the hopping terms are normalized by the field amplitude.

In the high frequency limit ω > τ, τ ′ with the chosen band n = m = 0, the Hamiltonian

is block diagonal and can be described by a time independent 2× 2 matrix

H0
k = τ~g(k) · ~σ (2.132)
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with ~g(k) = (Re[ρ̃F ], Im[ρ̃F ], 0) for n = m = 0, and ~σ = (σx, σy, σz) are the Pauli matrices.

Since H0
k here is similar to the SSH model and has chiral symmetry, one can calculate

the corresponding Chern number (winding number) directly

ν1 =

˛
〈uα,k|i∂k|uα,k〉dk

=
π

2
(1 + sign(J2

0 (y)− λ2J2
0 (x))), (2.133)

where y = A0(a0 − b0) and x = A0b0, and |uα,k〉 are the eigenfuctions of H0
k . This result

indicates, in contrast with the undriven model, that one can induce non-trivial topological

phases even for λ > 1 (the trivial phase). This is a great example to demonstrate topological

phases created by the a laser drive.

2.6 Calculation of Time Resolved Photoemission

Photoemission spectroscopy (PES) refers to energy measurement of electrons emitted from

materials, such as solids, by the photoelectric effect, in order to find the binding energies of

electrons in a substance. It is an important time-resolved method, now in ultrafast region

to study the effects of a pump laser in materials properties at the femtosecond time-scale.

It is straightforward to understand the pump-prob process in time resolved pump-probe

photoemission spectroscopy (TRPES). First the laser pulse pumps the surface of a material

to induce an initial nonequilibrium response of the system and, second, the probe pulse

would be used to study the excited system to generate the emitted photoelectrons. Here we

follow the derivation of the time-resolved photoemission signal from Freericks et al [92, 56].

Time resolved angle resolved photoemission spectroscopy (trARPES) experiments measure

the photoelectrons with a momentum ke collected at a solid angle dΩ
k̂e

within an energy

interval dE. The system evolves from an initial condition {|φn〉} in equilibrium, then the

pump pulse will excite the system to an ensemble {|Ψn〉}. After that, the probe pulse is

turned on around time t = t0. One can say {|Ψn〉} = {U(t,−∞)|φn〉} with U(t,−∞) is the

time evolution of the system including the pump. The Hamiltonian has to be modified when
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the probe pulse is coming as the following

H = Hsolid(t) +Hfree +Hc(t). (2.134)

Note that the first term Hsolid(t) only contains the creation c†(t) and annihilation c(t)

operators of electrons in the model without the effect of the probe pulse. Hfree is for the

free electron Hamiltonian, and can be written as

Hfree =
∑
k

[E(ke) +W ]a
†
ke
ake . (2.135)

Note that W is the work function, E(ke) is the free electron kinetic energy and a†ke is the

creation operator and ake is the annihilation operator for a free electron with momentum

ke. The third term Hc shows the coupling between the electrons in the solid and the free

electrons out of the solid via an input photon with a wave number q. This term is of the

form

Hc = s(t− tp)
∑
k

Mq(k, kq, q, t)e
i~ωqta†ke(t)ck(t)Aq. (2.136)

We use a matrix element Mq(k, ke, q, t) to describe the absorption of a photon with en-

ergy ~ωq and ejection of an electron with momentum k on the surface of the material and

momentum ke outside, and Aq is the annihilation operator of the photon. Since we have

the time-varying pump laser pulse, the matrix elementMq(k, ke, q, t) is also time-dependent.

The interaction between the free electron that leaves the solid and the electrons in the solid is

assumed to be weak and can be ignored. The time evolution of the system is derived in terms

of the time-evolution operator Ũ(t, t0) and {|Ψp
n〉} = {Ũ(t, t0)Ψn(t0)}. In the interaction

picture, we can write the time-evolution operator with a probe pulse as the form

Ũ(t, t0) = U(t, t0)Tte
−i/~

´ t
t0
dt′U(t,t′)(̂H)cU(t′,t0)

. (2.137)

Note that Hfree commutes with the propagator U(t, t0) so we do not need to include it.

Therefore, one can calculate the probability P (t) that an electron transfers from the ensemble
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{|Ψp
n〉} to a free electron state for each time step t when the probe pulse is turned on. From

Fermi’s golden rule, the probability is

P (ke, t) =
∑
n

|〈ke|Ĥc|Ψp
n(t)〉|2. (2.138)

|ke〉 represents the free electron state with momentum ke. The system absorbs a photon of

wave vector q and ejects an electron with a wave vector k = (kxy, kz) inside the system and

ke = (kexy, kez) outside. In the process, since the momentum is conserved parallel to the

surface, one can define kexy = kxy. With this conservation rule, one can derive the matrix

element of the perturbation from Ĥc between the final state with momentum ke and the

initial state |Ψn(t0)〉

|〈ke|Ĥc|Ψn(t)〉| = 1

h
|
ˆ
dkzMq(k, ke, q, t)×

ˆ t

t0

dt′s(t′)e−iωt
′
×

〈ke|a†|Φm〉〈Φm|Ũ†(t′, t0)ckŨ(t′, t0)|Ψn(t0)〉|. (2.139)

Here we made the assumption that once the electron is pumped to the excited state; inside

the material, we have 〈ke|a†|Ψm〉 = 1 |Ψm〉 with momentum k and a free electron with

momentum ke will be generated through the matrix Mq. Here we define ω to be the energy

of the excitation left in the system and it satisfies ~ω = ~ωq − (~ke)2/(2me) −W . We can

expand the time-evolution matrix Ũ as

Ũ(t, t0) = U(t, t0)− i

~

ˆ t

t0

dt′U(t, t′)ĤcU(t′, t0) (2.140)

Since in the experiments, the amplitude of the probe pulse is small and the pump pulse

is stronger than the probe pulse, one can apply the zeroth order perturbation in the time

evolution operator Ũ(t, t0) = U(t, t0). Then one gets the probability

P (t, ke) ≈
1

~2

ˆ
dk′z

ˆ
dkzI(t, w, êk; kz, k

′
z) (2.141)

with

I(t, w, êk; kz, k
′
z) = −i

ˆ t

t0

dt′′
ˆ t

t0

dt′Mq(kz, kez, kxy, t
′)Mq(k

′
z, kez, kxy, t

′′)×

s(t′′)s(t′)eiω(t′′−t′)G<
k,k′(t

′, t′′). (2.142)
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Note that G<
k,k′(t

′, t′′) represents the two time lesser Green’s function in momentum space

with time-dependent creation and annihilation operators at k′ and k. To be able to compare

the theoretical results with experimental data, one needs further assumptions. One of the

important assumptions is that the matrix element Mq will not change rapidly so we can

take it as time-independent and it conserves the momentum parallel to the surface of the

system. For these reasons, we take Mq to be constant in the calculations. With this as-

sumption, we can directly calculate the time-resolved photoemission at site i and sum over

all k. The above function of G<
k,k′(t

′, t′′) works both for the momentum-diagonal Green’s

function G<k (t′, t′′) = G<k,k(t′, t′′) and for the local lesser Green’s function since the local

Green’s function is calculated by summing over different momentum points as

Pii(ω, t) = −i
ˆ t

0
dt′
ˆ t

0
dt′′s(t′)s(t′′)eiω(t′−t′′)G<ii (t

′, t′′). (2.143)

Note that, in the following chapters, we take s(t) as a Gaussian shape

s(t) =
1

σ
√
π

exp[−(t− tc)/σ2] (2.144)

Where tc is the central time of the probe pulse.
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CHAPTER 3

THE ZIG-ZAG SSH MODEL: FROM FLOQUET TO TRPES

3.1 Introduction

In this chapter a detailed study of light driven PIPT in the Su, Schrieffer, and Heeger (SSH)

model is presented [93]. This model was introduced in subsection 2.3.1. It was originally

developed to describe transport in conducting polymers and more recently it has become a

fundamental model for topological insulators and Majorana bound states [5, 81]. While the

topologically trivial or nontrivial character of the SSH dimerized chain is controlled by the

relative strength of the nearest neighbor couplings, it was only recently proposed that high-

frequency laser light could turn trivial (non-topological) equilibrium bands into topological

nonequilibrium Floquet bands [7].

We investigate these problems by simulating the real-time evolution of single-particle

spectra in polyacetylene coupled to short laser pulses. We introduce a modified SSH model

which allows us to tune topological states with polarized light. We compare the responses

of initially trivial and nontrivial topological states, and we also calculate the steady state

Floquet bands that are also used for comparisons.

3.2 Model and Methods

To understand the nonequilibrium Floquet bands of the SSH model mentioned in Chapter

2, we consider a one dimensional tight-binding model that can be divided into two sites A

and B with time-dependent hoping term τij only between the two closest sites as described

in section 2.3.1. The time independent Hamiltonian is

H =
∑
i

(τ + δτ)c
†
AicBi + (τ − δτ)c

†
Ai+1cBi + h.c. (3.1)

In the following, a time-dependent effect will be included into the model.
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Figure 3.1: The Zig-Zag SSH model: (a) the trivial topological state δτ > 0 and (b) the
nontrivial topological state δτ < 0. Note that the polarization is linear so the electric field
is along one bond but perpendicular to the other.

3.2.1 Time-dependent Zig-Zag SSH Model

We consider equal numbers of A and B sites with one electron per site, so that the electrons

are at half filling. In addition we include a polarized time-dependent pump pulse incorporated

into our model through the Peierls substitution, resulting in a time-dependent modulation

of the hopping term. Note that, since a space uniform laser field is not able to change

the original topological states [81], we consider a laser field parallel to (τ − δτ) bond and

perpendicular to (τ+δτ) bond or vise versa and we show that this leads to topological phase

transitions. This can be calculated using a Zig-Zag chain with light polarized along one of

the band directions as Fig. (3.1) shows. We call this model the Zig-Zag SSH model.

The Hamiltonian, using standard notation for creation and annihilation operators, is

H(t) =
∑
i

(τ + δτ)c
†
AicBi + (τ − δτ)(t)c

†
Ai+1cBi + h.c. (3.2)

where the pump laser pulse is treated using the Peierls substitution as (see Section 2.4.1)

(τ − δτ)(t) = (τ − δτ) exp

[
ie

~c

ˆ Rj

Ri

A(r, t) · dr

]
. (3.3)
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Here A(r, t) is the time dependent vector potential in the Hamiltonian gauge, Ri is the

position vector of the ith lattice site, and r is a real space vector. The δτ is the dimerization

term and τ is taken as the unit of energy in this chapter (τ = 1).

In the presence of a pump field, through the vector potential A(r, t), the Floquet bands

form, and then disappear when the pump pulse amplitude goes to zero. In equilibrium, the

energy bands have a gap of width equal to 4δτ that is symmetric about zero energy as shown

in Fig. (2.6). For the time dependent case, the eigenfunctions change as a function of time

and the quasi energy bands are modified by the presence of the external field. As described in

Subsection 2.3.1, the Hamiltonian in momentum space can be written as Hk(t) = ~d(k, t) · ~σ

with Hk(t) is 2 × 2 matrix written in the basis of A and B sites, ~σ is the vector of Pauli

matrices (σx, σy, σz), and ~dk(t) is a vector as

dx(k, t) = (τ + δτ) + (τ − δτ) cos(ka− A(t)),

dy(k, t) = (τ − δτ) sin(ka− A(t)),

dz(k, t) = 0, (3.4)

Where a is unit cell length and, for simplicity, e = ~ = c = 1. Eigenenergies +ε and −ε

exist as a pair, and this symmetry ensures the existence of two distinct topological phases

(δτ > 0 and δτ < 0). We are able to calculate the time evolution of different momentum

k states, from which we derive the nonequilibrium Green’s functions to obtain the physical

properties of the system at time t (see Chapter 2). In the following calculation, we use

ck(t) = (cAk(t), cBk(t)) and the equation of motion can be generally written as

i~∂tck(t) = Hk(t)ck(t). (3.5)

Since we have evolution equations, we can write down the time-evolution operator

Uk(t, t′) = exp

[
− i
~

ˆ t

t′
dt̄Hk(t̄)

]
, (3.6)
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and, by using the Trotter formula, the time evolution in numerical calculations becomes

Uk(t, t′) = Uk(t, t−∆t)Uk(t, t− 2∆t)...Uk(t′ + ∆t, t′),

(3.7)

where ∆t is a small time step. For each moment time t, we have

Uk(t, t−∆t) = exp

[
−i∆t

~
Hk(t−∆t/2)

]
. (3.8)

3.2.2 Floquet Hamiltonian for Zig-Zag SSH Model

An effective Floquet Hamiltonian (see Section 2.5) can be used to derive Floquet spectra

where for the Zig-Zag SSH model we find,

HF = −
∑
mα

mΩ|m,α〉〈m,α|

+
∑
mn

[gm−n(k)|m,A〉〈n,B|+ h.c.], (3.9)

where gm−n(k) are the Fourier series expansion coefficients of the time-dependent hopping

term g(k, t) = dx(k, t)− idy(k, t) from Eq. (3.4) that can be written as (see Section 2.5)

gm−n(k) =
1

T

ˆ T

0
dtei(m−n)Ωtg(k, t)

= (τ + δτ)δmn + (τ − δτ)ei[ka−
π
2 (m−n)]Jm−n(A0)

(3.10)

with a periodic vector potential A(t) = A0 cos(Ωt) and T = 2π/Ω. Note that Jm−n(A0)

is the Bessel function of the first kind and we achieve convergence of the corresponding

spectrum numerically when |m| ≥ 10 for all the cases discussed here. As an example, the
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6× 6 Floquet Hamiltonian matrix is

M − λ =



Ω− λ g0 0 g1 0 g2

g∗0 Ω− λ g∗1 0 g∗2 0

0 g1 0− λ g0 0 g1

g∗1 0 g∗0 0− λ g∗1 0

0 g2 0 g1 −Ω− λ g0

g∗2 0 g∗1 0 g∗0 −Ω− λ


, (3.11)

where g0 = R + reikaJ0(A0), g1 = −ireikaJ1(A0) and g2 = −reikaJ2(A0). Note that

R = τ + δτ , r = τ − δτ and J0, J1 are Bessel functions. The Bessel functions have the

integral form,

Jn(x) =
1

2π

ˆ π

−π
ei(nτ−x sin(τ))dτ. (3.12)

3.2.3 Calculations from Non-equilibrium Green’s Functions

By following the theory presented in Chapter 2 and Ref. [56, 55], the lesser Green’s function

is defined as

G<ij(t, t
′) = i〈c†j(t

′)ci(t)〉, (3.13)

where we take a quantum statistical average of the time dependent creation and annihilation

operators. In the Heisenberg representation, ci(t) and c
†
i (t) are creation and annihilation

operators for a spinless fermion at site i. The angle brackets represent a trace over all

quantum states in real or momentum space weighted by the equilibrium density matrix

initialized in the far past; and the density of states is 2(∂E(k)/∂k)−1 = 2|~d(k, t)|/[γ(τ2−δτ2)]

where γ is the normalization term to make sure that the integral of density of states is one.

We can employ the Green’s function method to calculate the time-resolved photoemission

spectroscopy signal (see Section 2.6), as a probe pulse weighted time Fourier transform of
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the lesser Green’s function centered at time tp,

PI(k, ω, tp) = Im
ˆ
dt

ˆ
dt′s(t)s(t′)e−iω(t−t′)G<I (k, t+ tp, t

′ + tp).

(3.14)

with lesser Green function

G<I (k, t1, t2) ≡ 1

2
[G<AA(k, t1, t2) +G<BB(k, t1, t2)]. (3.15)

The response should be calculated for each sublattice and is averaged over both sites A and

B to compare with the experimental response. No extrapolation to large times is needed for

this calculation since the probe pulse provides a natural cutoff. The probe pulse is assumed

to be,

s(t) =
1

α
√
π
e−t

2/α2
(3.16)

with width α. The narrower the probe width, the better the time resolution and the worse

the energy resolution.

3.3 Analysis of the SSH Floquet Hamiltonian

3.3.1 Limit of High Frequency

In high frequency regime E0/Ω→ 0 with E0 = A0Ω, we only need to consider the g0 (m = n)

term and all other terms can be set to zero. For any Floquet sideband centered at mΩ if

we assume all gi6=0(k) have a smaller effect than g0(k), the energy band is approximately

ε±(m, k) ' mΩ± g2
0(k) where

g2
0(k) = R2 + r2J2

0 (A0) + 2RrJ0(A0) cos(ka) (3.17)

with R = (τ + δτ) and r = (τ − δτ). We find the gap ∆0(k = π) = 2g2
0(k = π) is

dependent on the electric field amplitude of the drive laser. An interesting feature is that A0

can be chosen so that flat sidebands occur, when J0(A0) = 0, and reverse sidebands when
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J0(A0) < 0. We also note that gap opening depends on the amplitude of the light and also

on whether the system is in the trivial or non-trivial phase; i.e. δτ > 0 or δτ < 0. When

δτ > 0 we have R > rJ0(A0) so the behavior of the gap is dominated by R. On the other

hand, when rJ0(A0) > R the effect of the light through rJ0(A0) would strongly influence

the behavior of the gap opening. We show below that the different topological phases can

lead to completely different spectral responses when higher order terms gi 6=0(k) are included.

Since we know HF from above, we can calculate the Berry phase or winding number from

the corresponding eigenvectors uα,k with α the band index,

ν =

˛
〈uα,k|i∂k|uα,k〉. (3.18)

Ignoring terms gi6=0, it is possible to calculate the exact winding number as [81]

ν0 =
π

2
{1 + sgn[J2

0 (A0)− (R/r)2]} (3.19)

3.3.2 Simple Model for the Case of One Overlap

To understand physics of the light driven SSH model for one overlap, deriving an exact

solution is a long standing challenge. Some high frequency limit results have been calculated

[81] recently but not an exact solution. While to solve a large Hamiltonian from Floquet

theory is not a reasonable approach, we found a small size Floquet Hamiltonian which only

considers two interbands is quite enough to describe the dispersion relation of light driven

SSH model for one overlap between bands. We would start with a 4×4 Hamiltonian for two

interband interactions as

H =



Ω− λ g0 0 g1

g∗0 Ω− λ g∗1 0

0 g1 −λ g0

g∗1 0 g∗0 −λ


, (3.20)
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For simplicity, one can first make the diagonals symmetric,

H =



Ω
2 − λ g0 0 g1

g∗0
Ω
2 − λ g∗1 0

0 g1 −Ω
2 − λ g0

g∗1 0 g∗0 −Ω
2 − λ


. (3.21)

The corresponding eigenvalues can then be derived directly as

λ = ±(β ± α1/2)1/2 (3.22)

with

β = |g0|2 + |g1|2 + |Ω
2
|2 (3.23)

and

α = (Ω|g0|)2 + (g0g
∗
1 + g∗0g1)2. (3.24)

Note that,

|g0|2 = R2 + (rJ0(E))2 + 2RrJ0(E) cos(ka), (3.25)

|g1|2 = (rJ1(E))2, (3.26)

(g0g
∗
1 + g∗0g1)2 = −4(rRJ1(E))2(cos(ka))2. (3.27)

|g0|2 is a term that varies with cos(ka) and |g1|2 is a constant with respect to ka. Interest-

ingly, (g0g
∗
1 + g∗0g1)2 changes with (cos(ka))2 and induces a second order modulation of the

band (a local minimum/maximum that will curve the band).

3.3.3 Computational Results and Comparison to Analytic Results

One can directly compute eigenenergies and eigenvectors by solving the Floquet Hamiltonian.

The Floquet Hamiltonian used in the calculations has size 2(2m+ 1). m indicates a Floquet

frequency nΩ in the range of [−mΩ,mΩ] and m,n ∈ Z. We choose m = 10 to ensure that
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Figure 3.2: Dispersion relation for the laser driven SSH model with laser amplitude A0 = 1
and frequency Ω = 5. Dashed lines: the exact solution for the 4 × 4 Floquet Hamiltonian.
Solid lines: Numerical results for the 42× 42 Floquet Hamiltonian with m = 10. Left is for
the trivial condition δτ = 0.5 (R > r) and Right is for the nontrivial condition δτ = −0.5
(R < r).

the bands near m = 0 converge with respect to variations in m. In the following, comparison

between computational results for m = 10 and exact result from the 4× 4 Hamiltonian will

be presented.

In Fig. (3.2), the dispersion relation for a no overlap case is presented; for laser amplitude

A0 = 1 and frequency Ω = 5. The exact solution of the 4× 4 Floquet Hamiltonian (dashed

lines) and results for the 42×42 Floquet Hamiltonian withm = 10 (solid lines) are compared.

One finds that the exact 4× 4 solution is quite accurate in the high frequency regime. Only

for the nontrivial case the outer bands of the 4 × 4 solution are inaccurate indicating that

interband affects are important in this case.

Fig. (3.3) shows the scheme of band interactions for g0, g1 and g2, where n is the Floquet

band index. g0 is the intraband process; while g1 and g2 are interband process. g1 is related

to the one photon interaction and g2 is related to the two photons interaction.

In Fig. (3.4), a one overlap case is presented with laser amplitude A0 = 1 and frequency

Ω = 3. The exact solution for the 4 × 4 Floquet Hamiltonian (dashed lines) and results

for the 42 × 42 Floquet Hamiltonian with m = 10 (solid lines) are compared for the trivial

condition δτ = 0.5 (R > r) and the nontrivial condition δτ = −0.5 (R < r). The inner

two bands for the exact 4 × 4 solution are very close to the computational results for the
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Figure 3.3: Scheme of band interactions for g0, g1 and g2. n is the Floquet band index. g0
is the intraband process; while g1 and g2 are interband process.

one overlap situation. For the trivial case, however in the left figure in Fig. (3.4) the gap

at crossing points is not captured by the 4 × 4 model. By making gn≥2 = 0 in the m = 10

calculation we found that the gap closing effect is caused by higher order mixing through

the terms g0 and g1 terms which cannot be derived from the 4× 4 Hamiltonian as Fig. (3.3)

shows. For the nontrivial case the outer bands of the 4 × 4 solution have some shifting

indicating effects due to bands above and below.

In Fig. (3.5), a two overlap case is presented with laser amplitude A0 = 1 and frequency

Ω = 1.5. Neither the trivial nor nontrivial cases are fully described by the 4×4 Hamiltonian

in this case though the nontrivial case deviates the most, the need for higher order terms to

describe the gap of the nontrivial case is again evident.
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Figure 3.4: Dispersion relation for the laser driven SSH model with laser amplitude A0 = 1
and frequency Ω = 3. Dashed lines: the exact solution for the 4 × 4 Floquet Hamiltonian.
Solid lines: Numerical results for the 42× 42 Floquet Hamiltonian with m = 10. Left is for
the trivial condition δτ = 0.5 (R > r) and Right is for the nontrivial condition δτ = −0.5
(R < r).
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Figure 3.5: Dispersion relation for the laser driven SSH model with laser amplitude A0 = 1
and frequency Ω = 1.5. Dashed lines: the exact solution for the 4× 4 Floquet Hamiltonian.
Solid lines: Numerical results for the 42× 42 Floquet Hamiltonian with m = 10. Left is for
the trivial condition δτ = 0.5 (R > r) and Right is for the nontrivial condition δτ = −0.5
(R < r).

3.3.4 Effects of Varying Amplitude and Frequency

In Fig. (3.6), we show the dispersion relations of the quasi-static Floquet Hamiltonian with

m = 10 and drive frequency Ω = 2.8. Left: trivial condition δτ = 0.5 and Right: the

nontrivial condition δτ = −0.5. (a)(b) is for amplitude A0 = 2, (c)(d) is for amplitude

A0 = 4 and (e)(f) is for amplitude A0 = 6. Clearly a variety of different dispersion relations

can be achieved through use of polarized light and a well designed lattice, Gap opening and

closing can also be changed by different frequencies, amplitudes, and polarization of light,
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as well as lattice structure.
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Figure 3.6: Dispersion relations of quasi-static Floquet Hamiltonian with drive frequency
Ω = 2.8. Left: trivial condition δτ = 0.5 and Right: the nontrivial condition δτ = −0.5.
(a)(b) is for amplitude A0 = 2, (c)(d) is for amplitude A0 = 4 and (e)(f) is for amplitude
A0 = 6.

Fig. (3.7) shows the quasienergy properties calculated from the quasi-static Floquet ma-

trix of the original bands at k = π vs laser amplitude A0 for δτ = ±0.5. The left figure is for

the trivial condition δτ = 0.5 and the right figure is the nontrivial condition δτ = −0.5 for

different drive frequency Ω. At high frequency, they oscillate as the Bessel function of the

first kind J0(A0) but the bands have different trends in the trivial and nontrivial cases. For

the trivial case, the energy bands remain open and fluctuate with the laser amplitude while

the gap increases with increasing frequency. For large frequency the bands become similar to
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Figure 3.7: Quasienergy spectrum properties calculated from the Floquet matrix with m =
10 for the original bands at k = π vs laser amplitude A0 for δτ = ±0.5. Left: are for the
trivial condition δτ = 0.5 and Right: are for the nontrivial condition δτ = −0.5 for different
driving frequencies Ω.

each other. For the nontrivial case, the gap closes at laser amplitude A0 ≈ 1.8, and is always

smaller than the trivial case when frequency Ω > 2.8. When amplitude increases all bands

become similar (A0 > 6.2). Note that the chosen frequencies are in the range 2.0 ≤ Ω < 4.0

where only one band overlap occurs.
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Figure 3.8: Bandwidth calculated from quasi-static Floquet band structures vs laser ampli-
tude A0 for δτ = ±0.5. Left: are for the trivial condition δτ = 0.5 and Right: are for the
nontrivial condition δτ = −0.5 for different driving frequency Ω.

In Fig. (3.8), we show the bandwidth calculated from quasi-static Floquet band structures

vs laser amplitude A0 for δτ = ±0.5. The left are for the trivial condition δτ = 0.5 and

the right are for the nontrivial condition δτ = −0.5 for different driving frequency Ω. Note

that, the N overlap regime can be decided by ( 4τ
N+1 ,

4τ
N ), e.g. one overlap regime is in

the frequency range (2τ, 4τ). In the high frequency domain Ω > 4 (no overlap) the laser
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amplitude dominates; so the bandwidths oscillate with the Bessel function of the first kind

|J0(A0)|. However the nontrivial bandwidths are larger than the trivial bandwidths since

the variation is decided by [τ − (−δτ)]J0(A0) > [τ − (δτ)]J0(A0) with δτ = 0.5. In the

low frequency domain, the influencies from other second order coupling through Ji(A0) with

i = 1, 2, 3, ... also plays a role in bandwidth variations so the behaviors change. Especially

for the case Ω = 3 we have monotonic decreases in bandwidth as amplitude increases. It is

then clear that both the amplitude and frequency of the drive laser can be used to control

the electronic structure.

3.3.5 Topological Phase Diagram

We found the topological phase diagram by evaluating Eq. (3.18) using the Floquet matrix

eigenvectors uα,k. Here we discuss the topological phases for the trivial case δτ > 0 and the

nontrivial case δτ < 0. In Fig. (3.9), the topological phase diagrams for different frequencies

and amplitudes are presented. Note that different topological regions can have different

winding numbers ν (0, π, 2π, ...) but the same Berry phase (0 or π). It is clear that the

topological phase diagrams are totally different between the trivial and the nontrivial cases

(See also [81]).

The original phase for the case δτ = 0.25 is trivial and changes to a nontrivial phase at

low frequency when Ω < 2.0. On the other hand, The original phase for the case δτ = −0.25

is nontrivial and changes to a trivial phase in the high frequency domain when Ω > 2.0. This

is also true for large values of δτ as shown in Fig. (3.9) (c)-(f). (c)(d) shows the cases for

δτ = 0.5 on the left and δτ = −0.5 on the right. The high frequency results from Eq. (3.19)

describes this regime well. The four red points indicate the frequncies and amplitudes we

choose to discuss in Fig. (3.16) of the next subsection.
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Figure 3.9: Topological phase diagram for different frequencies and amplitudes of the drive
pulses from effective Floquet Hamiltonian. (a)(b) shows the cases for δτ = 0.25 on the left
and δτ = −0.25 on the right. (c)(d) shows the cases for δτ = 0.5 on the left and δτ = −0.5
on the right. (e)(f) shows the cases for δτ = 0.75 on the left and δτ = −0.75 on the right.
The four red points indicate the frequencies and amplitudes we discuss in Fig. (3.16) of the
next subsection.

3.4 Pump-probe Results

In this section we describe fully time dependent pump-probe calculations using nonequi-

librium Green’s functions (NEGF). The vector potential of the pump pulse is of the form

A(t) = A0 cos(Ωt) exp(−t2/2σ2) where A0 is amplitude, Ω is frequency and σ is pulse width.
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When σ →∞, this should lead to behavior like that observed in Floquet Theory. However,

there is a key difference. The NEGF calculation gives the occupancy of the nonequilibrium

states; which is not the same as the states themselves.

3.4.1 Pseudospin Content

We would like to use NEGE to make contact with the pseudospin representation of 2 × 2

Hamiltonians that reflect their orbital content and fully determine the Berry phase in and

out of equilibrium and in particular for low driving frequencies. When a description in terms

of a simple effective Floquet Hamiltonian is not available, one has to find an analogue of

a pseudospin analysis in terms of nonequilibrium Green functions. The pseudospin content

of Green functions from our numerical simulations is extracted by expanding the Green

function matrices in orbital representation using Pauli matrices [83],

G<x (k, t1, t2) ≡ 1

2
[G<AB(k, t1, t2) +G<BA(k, t1, t2)],

G<y (k, t1, t2) ≡ − i
2

[G<AB(k, t1, t2)−G<BA(k, t1, t2)],

G<z (k, t1, t2) ≡ 1

2
[G<AA(k, t1, t2)−G<BB(k, t1, t2)]. (3.28)

The respective pseudospin content Px,y,z(k, ω, tp) is obtained by computing the analogue

of the PES response for G<x,y,z(k, t1, t2) instead of G<I (k, t1, t2) using Eq. (3.14). In or-

der to obtain the Berry phase with pseudospin vector S(k, tp) = (Sx, Sy, Sz) shown in

Fig.(3.13), we integrate Gx,y,z in a frequency window to cover a single band as Sx,y,z(k, tp) =
´ ωu
ωl

dωPx,y,z(k, ω, tp). We note that the pseudospin behavior is dependent on the choice of

Floquet sideband for which it is analyzed. Floquet bands may have different pseudospin

content, and the pseudospins in the upper and lower bands within a manifold always point

in opposite directions. The proof of pseudospin content can be found in the following.
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First, consider a time-independent steady-state 2× 2 Hamiltonian as

H(~d) = ~d · ~σ =

 0 dx − idy

dx + idy 0

 (3.29)

with |~d| = d = (d2
x + d2

y)1/2 and corresponding eigenenergies,

H(~d)|±〉 = ±d|±〉. (3.30)

and time-dependent eigenvectors,

|±, t〉 = e∓idt|±〉 =
e∓idt√

2

 1

±eiφ

 , (3.31)

with de±iφ = dx ± idy.

Now we show how to derive di from the lesser Green’s functions. First put σj with

j = {x, y} and e∓idt on both sides of Eq. (3.30), we will have

σjH(~d)|±, t〉 = σj(±d)|±, t〉. (3.32)

Using Eq. (3.29) this equation can be written as

(dj1 + idlσz)|±, t〉 = σj(±d)|±, t〉, (3.33)

where l = {x, y} is not equal to j. We take the inner product of the above equation with

another eigenvectors at a different time t′ to find,

〈±, t′|(dj + idlσz)|±, t〉 = ±d〈±, t′|σj |±, t〉. (3.34)

Since we know

〈±, t′|σz|±, t〉 = 0, (3.35)

the above equation can be rewritten as

dj〈±, t′|±, t〉 = ±d〈±, t′|σj |±, t〉. (3.36)
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In this formula the eigenvectors | ↑〉 and | ↓〉 of σz can be considered as electron occu-

pancy components in sublattice A and B as shown, in the main text Eq. (3.5) so we can

represent the right-hand side in Eq. (3.36) as the pseudospin content of the lesser Green’s

functions G<k,j(t, t
′;φ(0)) and the left-hand side is an identity for the lesser Green’s function

G<k,I(t, t
′;φ(0)) with a given initial state φ(0) for momentum k. Without loss of generality

Eq. (3.36) can then be written as

G<k,j(t, t
′;±) = ±

dj(k)

d(k)
G<k,I(t, t

′;±) (3.37)

where j = x, y, z. Note that any state can be a linear combination of eigenvectors so we can

apply Eq. (3.37) to any given state. One can also show that for the direction of pseudospin

content of the lesser Green’s function is opposite for the two different eigenvectors |±〉.

To have an exact calculation of pseudospin content from PES response we can put

Eq. (3.37) into Eq. (3.28) and assume that the laser probe pulse is of rectangular form

in the range of [−σ2 ,
σ
2 ] so we have

Pj(k, ω, tp) ' ±Im
ˆ σ

2

−σ2
dt

ˆ σ
2

−σ2
dt′e−iω(t−t′)

×
dj(k)

d(k)
G<k,I(t+ tp, t

′ + tp). (3.38)

For the initial state |+〉 we then derive the pesudospin content from PES response as

Pj(k, ω, tp) '
dj(k)

d(k)

sin2[(d(k)− ω)σ/2]

(d(k)− ω)2
. (3.39)

Since the integral term is positive, the only term that would affect the sign of the pseudospin

content from PES is the sign of dj ; and the initial state |±〉. The intensity of pseudospin

content is then proportional to the ratio dj(k)/d(k) and the density of states. Hence, when

the Hamiltonian is time-dependent, we can still calculate psedudospin content from PES

and the results can be directly connected with an effective time-independent Hamiltonian.

Below it is shown that the average outcome shows consistency with steady state calculations

from the effective Floquet Hamiltonian.
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3.4.2 Evolution of States and Their Occupancy

In this subsection we present trPES results for the dynamic generation of Floquet states.

The initial state in these calculation is a filled lower band and an empty upper band.
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Figure 3.10: Time evolution of time-resolved PES of the electronic SSH model is presented
for time t = −200,−100, 0, 100, 200 with δτ = 0 under the pulse frequency Ω = 1, width
σ = 50 and amplitude A0 = 1. Dashed lines show the corresponding quasi-static Floquet
band structures at the same frequency.

In Fig. (3.10), we study time evolution of time-resolved PES of the electronic SSH model

for times t = −200,−100, 0, 100, 200 with δτ = 0 for a pulse frequency Ω = 3, width σ = 50

and amplitude A0 = 1. Dashed lines show the corresponding quasi-static Floquet band

structures. At time t = −200 the pulse starts with a small amplitude so the Floquet states

are not generated with significant occupancy. At time t = −100 the occupation of the nearest

Floquet bands begins to be observed. At time t = 0 occupation of many Floquet bands can

be seen and, interestingly, their is strong intensity of occupation at the intersection points

of different bands. At times t = 100 and t = 200, we discover that the occupation at the

intersection points between the Floquet bands and the original upper band remains while

the Floquet states disappear. The anomalous occupation of the upper band is momentum

selected and can be considered as a resonant excitation enhanced by Floquet effects.

In Fig. (3.11), we study time evolution of time-resolved PES of the electronic SSH model

for time t = −200,−100, 0, 100, 200 with δτ = 0.5 for pulse frequency Ω = 3, width σ = 50
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Figure 3.11: Time evolution of time-resolved PES of the electronic SSH model is presented
for time t = −200,−100, 0, 100, 200 with δτ = 0.5 under the pulse frequency Ω = 3, width
σ = 50 and amplitude A0 = 2. Dashed lines show the corresponding quasi-static Floquet
band structures.

and amplitude A0 = 2. Dashed lines show the corresponding quasi-static Floquet band

structures. As for the case δτ = 0, the generation of states is consistent with Floqeut theory

with the additional feature of resonant excitation at band crossing points.

-1.0-0.5 0.0 0.5 1.0
 k(a/π)

-3

-2

-1

0

1

2

3

E
n
e
rg

y
 /

 τ

 (a)

t= − 200. 0

-1.0-0.5 0.0 0.5 1.0
 k(a/π)

 (b)

t= − 100. 0

-1.0-0.5 0.0 0.5 1.0
 k(a/π)

 (c)

t=0. 0

-1.0-0.5 0.0 0.5 1.0
 k(a/π)

 (d)

t=100. 0

0.000

0.001

0.010

0.100

1.000

-1.0-0.5 0.0 0.5 1.0
 k(a/π)

 (e)

t=200. 0

Figure 3.12: Time evolution of time-resolved PES of the electronic SSH model is presented
for time t = −200,−100, 0, 100, 200 with δτ = −0.5 under the pulse frequency Ω = 3
and amplitude A0 = 2. Dashed lines show the corresponding quasi-static Floquet band
structures.

In Fig. (3.12), we study time evolution of time-resolved PES of the electronic SSH model
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for δτ = −0.5 with the pulse frequency Ω = 3, width σ = 50 and amplitude A0 = 2. Dashed

lines show the corresponding quasi-static Floquet band structures. The time variation for this

nontrivial phase is totally different to the two previous cases. One can also see second order

mixing between bands near k = 1 and k = −1 when t = 0 since the electron occupancy near

k = 1 and k = −1 moves up with the second order mixing. Interestingly, at time t = 200,

the occupancy for the second order mixing stays in the upper band.

There are two reasons for these differences: (i) The Floquet bands change with amplitude

A0 and the occupation should be with the pulse amplitude at that time. (ii) Excitation only

occurs between states of the same phase. As in the cases δτ = 0; and δτ = 0.5; resonant

excitation at intersection points occurs.

3.4.3 Dynamics of Phase Evolution

Fig. (3.13) shows a Berry phase mapping using the renormalized radius r′ = 1 + (1 + k)/2

for δτ = 0.5 on the left and δτ = −0.5 on the right with pulse frequency Ω = 3, amplitude

A0 = 2 and pulse width σ = 50. Note that the renormalized radius r′ is for illustration

purposes in order to separate the paths that go around the origin more than once. (a)(b)

shows the trivial and nontrivial Berry phases before the laser pulse comes in at time t = −200

with integral frequency window ωl = 0.0 and ωu = 3.0. (c)(d) is at time t = 0 with integral

frequency window ωl = −1.5 and ωu = 0.0. For the trivial case, since the bands still mix,

the Berry connection moves up and down twice about the original line Sy = 0; leading to a

Berry phase of zero. (e) shows the trivial band with integral frequency window ωl = 1.5 and

ωu = 3.0 at time t = 0; in this case there is no phase flip. Note that it has reverse direction

from (c) since the band has the opposite phase ψ(k′) + π. Some bands can have the same

Berry phase but different winding numbers ν, as we seen by comparing (b) and (f). In the

latter case the Berry connection goes around the origin twice so the winding number ν = 4π.

To further illustrate the novel topological behaviours due to a laser pulse, in Fig. (3.14)
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Figure 3.13: Berry phase mapping using the radius r′ = 1 + (1 + k)/2 with δτ = 0.5 on the
left and δτ = −0.5 on the right under the pulse frequency Ω = 3, amplitude A0 = 2 and
pulse width σ = 50. (a)(b) is at time t = −200 with integral frequency window ωl = 0.0 and
ωu = 3.0, (c)(d) is at time t = 0 with integral frequency window ωl = −1.5 and ωu = 0.0
and (e)(f) is at time t = 0 with integral frequency window ωl = 1.5 and ωu = 3.0.

we show the time evolution of pseudospin phase ψ deriving from the pseudospin context

Peiψ = Px + iPy that are presented for times t = −200,−100, 0, 100, 200 with δτ = 0.5 on

the top (a)-(e) and δτ = −0.5 on the bottom (f)-(j) with pulse frequency Ω = 3, amplitude

A0 = 1 and pulse width σ = 50. We can see in figures (a)(f) the upper band points in reverse

direction of P, which means the phase of the upper band is ψ(k′) + π if lower band is at

phase ψ(k′) with momentum k′. In (b), however, the occupied Floquet states cross with the

original band leading to a change of phase. In contrast, Floquet bands in (g) have the same
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Figure 3.14: Time evolution of pseudospin phase ψ deriving from pseudospin context Peiψ =
Px+ iPy are presented for time t = −200,−100,−50,−25, 0 with δτ = 0.5 on the top (a)-(e)
and δτ = −0.5 on the bottom (f)-(j) under the pulse frequency Ω = 3, amplitude A0 = 2
and pulse width σ = 50. Dashed lines show the corresponding quasi-static Floquet band
structures.

phase ψ(k′)+π as the phase of the upper band. We find the phase of these Floquet sidebands

are decided by the topological phase of the original band where δτ > 0 (trivial case) and

δτ < 0 (non-trivial case). From (b) we can find the phases are different at the crosspoints

so there is no gap opening at time t = 0, while we will have degeneracy at intersection and

would induce a state mixing or pauli exclusion between two chiral fermions so to open a gap

at time t = 0 as shows in (h). As time t increases the gap in the nontrivial case δτ < 0

becomes larger and causes the bands to move apart. When the bands touch other bands

they mix again with a reverse phase band and form a new band with different Berry phase

as one can find in (i)(j). On the other hand, the trivial case will not open a gap so we can

only see the flattening effects from the pulse amplitude.

3.4.4 Effects of Varying Pump and Probe Pulsewidth and Amplitude

Fig. (3.15) shows several time-resolved PES results with δτ = 0 for a pulse with frequency

Ω = 3, amplitude A0 = 1, and for a range of different pump pulse widths; for full occupancy

of the lower band as the initial state. When the pulse width is small (a) σ = 1 and (b)
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Figure 3.15: Time-resolved PES of the electronic SSH model with δτ = 0 at time t = 0 with
a pulse of frequency Ω = 3, amplitude E = 1 and width (a) σ = 1, (b) σ = 2, (c) σ = 5, (d)
σ = 10, (e) σ = 20, (f) σ = 40. Dashed lines show the corresponding quasi-static Floquet
band structures.
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σ = 2, we find that most of the electrons are only excited to the upper band and spread out

to the nearby energy states. As the pulse width becomes larger (c) σ = 5 and (d) σ = 10,

we can see a much clear generation of the Floquet bands with a weaker dispersion to the

nearby energy states. Note that for the case (c) the pulse width is about 10 times the period

of the probe. When the pulse width is larger (e) σ = 20 and (f) σ = 40, we find a clear

occupancy at the quasi-static Floquet band structures. Floquet physics is then accessible

for pulse widths of order 10 times the period of the probe.

Fig. (3.16) shows several TRPES results for full occupancy of the lower band with δτ =

±0.5. (a)(b) gives the energy spectrum with laser pulse of frequency Ω = 1.6, amplitude

A0 = 0.5 and width is σ = 50. One can find similar responses both for δτ = ±0.5 but with

weaker excitation for δτ = 0.5 of low frequency and small amplitude. (c)(d) shows Floquet

band formulation for low frequency but high amplitude region with laser frequency Ω = 1.6,

amplitude A0 = 2.0 and width σ = 50. We can see that the occupancy of the Floquet bands

increases with the intensity of the laser pulse, and the effect of a high amplitude pulse on

the Floquet spectra is clearly observed. (e)(f) shows a high frequency region, where the

different topological behaviours for δτ = 0.5 and δτ = −0.5 are evident. A gap opening only

occurs for the case δτ = −0.5 at the intersection of the Floquet band with origin band. The

occupancy of the electrons in nontrivial case is also split at the crossing points. Note that

these different responses to the laser can also be found in (c)(d) but it is not as obvious.

3.5 Conclusion

We find that short optical pulses can lead to local spectral and novel pseudospin textures

in a one-dimensional topological insulator given by the Zig-Zag SSH model. Pump-probe

photoemission spectroscopy can probe these states by measuring sizeable energy gaps and

Floquet band formation on femtosecond time scales. Analysing band structures and pseu-

dospin textures, we identify new states with optically induced nontrivial changes of sublattice

mixing that leads to novel topological phenomenon. This study reveals the possibility to dis-
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cover new topological phases driven by optical pulses by turning the lattice structure and

polarization of the light.
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Figure 3.16: Time-resolved PES with δτ = 0.5 on the left and δτ = −0.5 on the right at
time t = 0. (a)(b) with pulse of frequency Ω = 1.6, amplitude A0 = 0.5 and width is σ = 50,
(c)(d) with pulse of frequency Ω = 1.6, amplitude A0 = 2.0 and width is σ = 50, (e)(f)
with pulse of frequency Ω = 3, amplitude A0 = 0.5 and width σ = 50, (g)(h) with pulse of
frequency Ω = 3, amplitude A0 = 2 and width σ = 50. Dashed lines show the corresponding
quasi-static Floquet band structures.
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CHAPTER 4

KROTOV OPTIMAL CONTROL THEORY

4.1 Introduction to Optimal Control

In many physical areas, quantum control via specially tailored laser pulses is a long-standing

goal. In the most recent decade, this goal has been achieved, as sophisticated pulse shap-

ing experiments can now coherently control some quantum states in quantum comput-

ing, quantum dots and phase transitions in materials. For example, laser pulses may be

applied to create and break a particular bond in a molecule, to control charge transfer

within molecules, or to optimize high harmonic generation and phase transitions in topology

[39, 38, 53, 54, 55, 56, 57, 58, 59, 35, 60, 32, 33, 51, 3, 35, 36, 61, 60].

Optimal control theory (OCT) can help to theoretically design the laser pulse to transfer

an initial state to a given final state. Especially Krotov’s optimal control theory or other

similar optimal control theories are widely used in recent years. This chapter provides an

introduction to Krotov’s optimal control theory. It indicates how the control parameters and

equation of motion define such an optimal control pulse [62].

Krotov’s method has several significant advantages over the traditional gradient methods.

First of all, monotonic increase in fidelity or decrease of cost/goal function with iteration

number. Secondly, no requirement for an exhaustive line search, and thirdly update in

macrosteps in time and at each iteration. Multiple versions of Krotov’s optimization method

have been used recently in many areas to deal with the Markovian and the non-Markovian

optimal control problem of a quantum Brownian motion model with an exact stochastic

equation of motion (master equation) in quantum computing. It has also been applied

to condensed matter physics in recent years enabled by progress in spectroscopy and laser

control [63, 64, 65, 66, 67, 68, 69, 70, 71, 62, 72, 73].

In this Chapter, We first explain the foundation and schemes to solve the control equa-

tion of motion and exhibit how to include additional constraints into the goal/cost functions.
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Second, We introduce the tricks of the Krotov optimal control method and the corresponding

backpropagator. Third, We present the monotonic convergence property and related proof.

Fourth, We discuss the first order and second order cases for the backpropagator format,

and algorithms for implementation. Last, We will show a few examples to demonstrate the

power of the optimal control method. This is a review Chapter providing background for

the developments described in Chapter 5.

4.2 Preliminary Preparation of the Krotov Method

In this section the fundamentals of Krotov optimal control theory are sketched. For Krotov

optimal control theory, one needs to know the equation of motion of a given system, and

decide the cost/goal function to indicate the goal to be achieved. The formula of a goal

function depends on a target function of the system and a set of control parameters c.

Normally one can use square error as the target: (f(T, x, c)− y)2 or correlation metrics such

as: yT f(T, x, c) with y is a goal function, x are other parameters and T is terminal time. To

be more precise, one can consider an equation of motion of the form

∂x

∂t
= f [t, x(t), c(t)], (4.1)

and assume we want to minimize the goal/cost function

I[v] =

ˆ T

0
f0(t, x(t), c(t))dt+ F [x(T )] −→ min. (4.2)

Here x(t) is the time-evolution function or the trajectory of the system, c(t) is a time-

dependent control parameter. Note that v = (x(t), c(t)) ∈ D with D is the set of permissible

process v = (x(t), c(t)) satisfying Eq. (4.2). The functionals f0(t, x(t), c(t)) and F [x(T )] are

defined for all t, x(t), c(t). Both need to be twice differentiable with respect to c and x. The

initial value x(0) = x0 is a given value and x(T ) is the value of x(t) at final time T. Note that

c(t) can be chosen within a closed domain U . The general functional F [x(T )] depends only
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on the final time step of x(t) and f0(t, x(t), c(t)) depends on the intermediate time steps of

x(t) and c(t) so one can say the goal function I is a general functional based on the terminal

and intermediate time steps of x(t).

For a quantum system with a multi-dimensional vector space or multi-argument processes

and control parameters, we will have more than one equation of motion,

∂xi

∂t
= f i[t, ~x(t),~c(t)], i = 1, 2, ..., n. (4.3)

And the minimization problem becomes

I[v] =

ˆ T

0
f0[t, ~x(t),~c(t)] + F [~x(T )] (4.4)

Note that, ~c(t) and ~x(t) now are vectors, e.g. ~x = (x1, x2, ..., xn).

4.3 The Tricks of Krotov’s Method

4.3.1 Decomposition of Goal Function

To implement the Krotov method, a real and twice differentiable function ϕ[t, x(t)] is consid-

ered. The idea is to use the function ϕ[t, x(t)] to help update the control parameters. Note

that this function would derive from a reverse time evolution start with the final time t = T

to the initial time t = 0. The control parameters are updated by comparing the difference

between the original forward evolution function and backpropagator ϕ[t, x(t)]. We define the

constructions:

R[t, x, c] =
∂ϕ

∂x
f [t, x, c]− f0[t, x, c] +

∂ϕ

∂t
, (4.5)

G[T, x] = F [T, x] + ϕ[T, x], (4.6)

L[v, ϕ] = G[T, x(T )]−
ˆ T

0
R[t, x(t), c(t)]dt− ϕ[0, x(0)]. (4.7)
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To be more specific, L[v, ϕ] = I[v] for any function ϕ[t, x(t)]. The following is the proof:

L[v, ϕ] = G[T, x(T )]−
ˆ T

0
R[t, x(t), c(t)]− ϕ[0, x(0)]

= G[T, x(T )]−
ˆ T

0
[
∂ϕ

∂x
f [t, x(t), c(t)]− f0[t, x(t), c(t)] +

∂ϕ

∂t
]dt

−ϕ[0, x(0)]

= G[T, x(T )]−
ˆ T

0
[
∂ϕ

∂x

dx

dt
+
∂ϕ

∂t
− f0[t, x(t), c(t)]]dt

−ϕ[0, x(0)]

= F [T, x(T )] + ϕ[T, x(T )]−
ˆ T

0

dϕ

dt
dt− ϕ[0, x(0)]

+

ˆ T

0
f0[t, x(t), c(t)]dt

= F [T, x(T )] +

ˆ T

0
f0[t, x(t), c(t)]dt

= I[v]. (4.8)

Therefore minimizing I[v] can be achieved by minimizing L[v, ϕ], and this also minimizes

G[x(T )] and maximizes R[t, x(t), c(t)].

For a multi-dimensional quantum system or for multi-argument processes, the equations

for R and G will be written as

R[t, ~x(t),~c(t)] =
∂ϕ

∂~x
~f [t, ~x(t),~c(t)]− f0[t, ~x(t),~c(t)] +

∂ϕ

∂t
(4.9)

and

G[T, ~x(T )] = F [T, ~x(T )] + ϕ[T, ~x(T )]. (4.10)

For later use, it is convenient to define the function Φ = ∂ϕ
∂x , and the functional

R[t, x(t), c(t)] = H[t, x(t), c(t),Φ(t)] +
∂ϕ

∂t
, (4.11)

where

H[t, x(t), c(t),Φ(t)] = Φ(t)f [t, x(t), c(t)]− f0[t, x(t), c(t)]. (4.12)
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Note that the parameters in H denoted by Φ(t) emphasize that x and Φ should be treated

as independent variables with respect to H.

4.3.2 Iterative Algorithm

The main purpose of the Krotov method is to find optimal control sequence ck+1(t) to

improve the goal/cost function. In other words, the Krotov method hopes that I[v] is

monotonically decreasing with respect to ck(t) as k increases. That is

I[vk] ≥ I[vk+1] (4.13)

at every iteration. Since ϕ[t, x(t)] is not restricted, we can freely choose the form of ϕ[t, x(t)].

However, if we can construct the function ϕ[t, x(t)] to maximize L[vk, ϕ] at each k then we can

randomly choose the next control sequence ck+1(t) and it will increase the value of L[v, ϕ].

We therefore derive a smaller value of the goal function by the chosen ϕ. Specifically, we

suppose that we already found the function ϕ for a problem, then the complete processes

will be as follows:

(i.) Take an initial control sequence c0(t), and calculate the trajectory x0(t) from Eq. (4.1).

(ii.) Choose the functional ϕ[t, x(t)] to make L[v0, ϕ] a maximum with the control c0(t) and

trajectory x0(t). This requirement is equivalent to the following two conditions:

R[t, x0(t), c0(t)] = min
x

R[t, x, c0(t)], (4.14)

G[T, x0(T )] = max
x

G[T, x]. (4.15)

The conditions imply that the functionals R and G are calculated using the new ϕ[t, x].

As a result the current control sequences c0(t) will be the worst of all possible c(t) in

minimizing the goal functional L[v,Φ] = I[v]. Any new c(t) changing from c0(t) with

a new trajectory x will now improve the minimization of the goal function I[v].
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(iii.) Finding a new control sequences c1 that maximizes the functional R. The correspond-

ing conditions are

c1[t, x] = max
c

R[t, x, c]

= max
c

H[t, x, c,Φ], (4.16)

where H is mentioned in Eq. (4.12). Note that the control sequence c1[t, x(t)] depends

on the trajectory function x(t).

(iv.) With the new control sequence c1[t, x] the new trajectory x1(t) can be derived using

the equation of motion Eq. (4.1).

(v.) It is now guaranteed that the goal function in Eq. (4.2) has been minimized mono-

tonically, which can be written as I[v1] ≤ I[v0]. The new control sequences and the

trajectory become a starting point of the next iteration and (i.)-(iv.) can be repeated

to further decrease the goal function.

4.3.3 Monotonic Convergence of Krotov Method

First we outline the proof that the new function I[v1] is indeed smaller than the previous

I[v0]. It is straightforward to show that

∆I = I[t, x0(t), c0(t)]− I[t, x1(t), c1(t)]

= L[t, x0(t), c0(t),Φ]− L[t, x1(t), c1(t),Φ]

=

ˆ T

0
R[t, x1(t), c1(t)]−R[t, x0(t), c0(t)]dt+G[T, x0(T )]−G[T, x1(T )]

= ∆1 + ∆2 + ∆3 (4.17)

where

∆1 = G[T, x0(T )]−G[T, x1(T )] (4.18)

∆2 =

ˆ T

0
R[t, x1(t), c1(t)]−R[t, x1(t), c0(t)]dt (4.19)

∆3 =

ˆ T

0
R[t, x1(t), c0(t)]−R[t, x0(t), c0(t)]dt. (4.20)
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Using the conditions in Eq. (4.14) and Eq. (4.15) one can prove that ∆1 ≥ 0 and ∆3 ≥ 0,

and Eq. (4.16) also guarantees ∆2 ≥ 0. Therefore the new goal/cost functional I will be

smaller than the previous one and the monotonically convergence is proved.

4.4 Construction of ϕ

To carry out the above iteration method, the most important and hardest task is finding a ϕ

that satisfies the conditions in Eq. (4.14) and Eq. (4.15) which require the absolute minimum

of the functional R and maximum of the functional G with the old control sequences c0 and

the old trajectory x0. In this section, we will show how to construct ϕ to first order in x

and to second order in x to treat linear and non-linear problems respectively.

4.4.1 First Order in x

Consider that the equations of motion of the system are linear and can be written as

∂x

∂t
= f [t, x, c] = a[t, c]x+ b (4.21)

and the functions f0[t, x, c] and F [T, x] are concave with respect to x, which means

∂2f0[t, x, c]

∂x∂x
≤ 0,

∂2F [T, x]

∂x∂x
≤ 0. (4.22)

In this case, we just need to consider ϕ to first order in x since the second derivative is

guaranteed. To be more specific, The first order that implies the functional ϕ needs to

satisfy Eq. (4.14) and Eq. (4.15). The function ϕ needs to ensure that the first derivative

of the functions R and G with respect to x are equal to zero. Therefore, we can choose the
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function ϕ[t, x] = Φ(t)x which satisfies the following conditions:

∂R[t, x0, c0]

∂x
=

∂H[t, x0, c0,Φ]

∂x
+
∂Φ[t, x0]

∂t

= 0, (4.23)

∂G[T, x0]

∂x(T )
=

∂F [T, x0]

∂x
+
∂ϕ[T, x0]

∂x

=
∂F [T, x0]

∂x
+ Φ[T, x0]

= 0. (4.24)

Therefore, Eq. (4.23) is the equation of motion for the function Φ :

∂Φ[t, x0]

∂t
= −∂H[t, x0, c0,Φ]

∂x
(4.25)

with boundary conditions Eq. (4.24)

Φ[T, x0] = −∂F [T, x0]

∂x
(4.26)

From Eq. (4.1) and Eq. (4.12)

∂x

∂t
=
∂H[t, x0, c0,Φ]

∂Φ
(4.27)

To satisfy the above requirements, the possible choice of ϕ is ϕ = Φ(t)x. In the multi-

argument process, the similar choice of the functional ϕ would be ϕ[t, ~x(t)] = Φi(t)x
i(t).

Using the formula of Eq. (4.12), the conditions can be rewritten into the form

∂Φ

∂t
= −JT (t)Φ(t) +

∂f0[t, x0, c0]

∂x
, (4.28)

where

J =
∂f [t, x0, c0]

∂x
. (4.29)

Note that, in the multi-argument process, JT (t) is a transpose matrix.
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4.4.2 Second Order in x

If the equations of motion of the system are not linear, one needs to consider a different form

of ϕ. Since functional ϕ needs to satisfy Eq. (4.14) and Eq. (4.15), the simplest choice of

functional ϕ is of the form

ϕ[t, x] = Φ(t)x+
1

2
∆xΣ(t)∆x, (4.30)

where the ∆(x) ≡ x − x0 and both the function ϕ[t, x] and the matrix Σ(t) should be

found. Here Σ(t) is the Hessian or matrix of the second derivatives of the function ϕ(t, x).

The first necessary conditions for inequalities of Eq. (4.14) and Eq. (4.15) are equivalent to

Eq. (4.25) and Eq. (4.26), and the second necessary conditions for inequalities of Eq. (4.14)

and Eq. (4.15) yield the following differential inequalities:

d2R ≥ 0, d2R = ∆x
∂2R[t, x0, c0]

∂x∂x
∆x, (4.31)

d2G ≤ 0, d2G = ∆x
∂2G[T, x0]

∂x∂x
∆x. (4.32)

Because the functional ϕ can be chosen arbitrarily, in the multi-argument process, one can

require that the matrix Σ(t) is a diagonal matrix and satisfies the conditions

∂2R[t, x0(t), c0(t)]

∂xi∂xj
= 0, i 6= j, i, j = 1, 2, ..., n,

∂2R[t, x0(t), c0(t)]

∂xi∂xi
= σii(t), σii(t) ≥ 0, i = 1, 2, ..., n, (4.33)

and

∂2G[T, x0(T )]

∂xi∂xj
= 0, i 6= j, i, j = 1, 2, ..., n,

∂2G[T, x0(T )]

∂xi∂xi
= σii(T ), σii(T ) ≤ 0, i = 1, 2, ..., n. (4.34)

One therefore determines the equation of motion of Σ(t) with chosen boundary conditions

σii(t) and σii(T ) using one of the above linear differential equations.
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4.4.3 Algorithm

In the previous section, Krotov’s optimal control method was introduced. Here I will sum-

marize the algorithm:

(1) Choose an initial form of the control function c0(t).

(2) Use Eq. (4.1) and initial condition x(0) = x0 to find the trajectory x0(t).

(3) Find the functional Φ(t) using Eq. (4.23) and Eq. (4.24) or Eq. (4.25) and Eq. (4.26).

(4) In the non-linear case, use Eq. (4.33) and Eq. (4.34) to find the matrix Σ(t).

(5) With the functional ϕ, the control c1(t) is found according to Eq. (4.16).

(6) Derive the new trajectory x1(t) using the control sequence c1(t) by Eq. (4.1).

(7) Repeat processes (2) to (6) until the desired optimal value is achieved.

4.5 Examples

4.5.1 Example 1: First Order in x

Consider a linear problem with φ chosen in the form given in subsection (4.4.1) for the

following optimal control problem:

ẋ(t) = i(1 + c(t))x(t), x(0) = 1; (4.35)

c(t) is real and one wants to minimize the cost function

I = Re[(1 + x(T ))] +
1

2
b

ˆ T

0
(c(t′)− c0)2dt′ −→ min. (4.36)

where b > 0.

We choose the parameters b = 5, T = 2 and substitute the linear form of ϕ = Φ[t, x(t)]x

to derive R and G :

R = Re[Φ(t)[i(1 + c(t))x(t)] +
∂

∂t
(Φ(t)x(t))]− 1

2
b(c− c0)2(t), (4.37)

G = Re[(1− x(T )(−1)) + Φ(T )x(T )]. (4.38)
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Using

∂R

∂x
= Re[Φ(t)[i(1 + c(t))] +

∂

∂t
Φ(t)] = 0, (4.39)

∂G

∂x
= Re[1 + Φ(T )] = 0, (4.40)

one can derive the equation of motion of Φ in reverse time t→ −t:

Φ̇(t) = i(1 + c(t))Φ(t), Φ(T ) = −1. (4.41)

Performing the algorithm described in subsection (4.4.3), we require

∂R

∂c
= 0,

∂2R

(∂c)2
≤ 0. (4.42)

We therefore obtain the result

c1(t) = c0(t) + Re[Φ(t)ix(t)]/b. (4.43)

Results are shown in Fig. 4.1, where we have used the Runge Kutta method with the segment

of integration partitioned into 200 intervals, and the fidelity is defined as F = Re[x(T )(−1)]

and error = 1− F as shown in cost function.

4.5.2 Example 2: Second Order in x

Let us consider the approach from subsection (4.4.2) for the following optimal control prob-

lem. The functions x(t) and c(t) are constructed by

ẋ = c, |c| ≤ 1, x(0) = 0; (4.44)

and one wants to minimize the cost function

I =

ˆ T

0
(c2 − x2)dt+

1

2
bx2(T ) −→ min, (4.45)

where b > 0.
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Figure 4.1: Left: fidelity versus iteration times. Right: optimal control sequence with
respect to time t.

Now we choose the parameters b = 20, T = 4 substitute Eq. (4.30) into Eq. (4.5) and

Eq. (4.6) to derive R and G of the form

R = Φ̇(t)x(t) +
1

2
Σ̇(t)(∆x)2 + 2Φ(t)c(t)

+2Σ∆x(t)c(t)− c2(t) + x2(t), (4.46)

G = Φ(T )x(T ) +
1

2
Σ(T )(∆x(T ))2 +

1

2
bx2(T ). (4.47)

Since

∂2R

(∂x)2
= Σ̇(t) + 1 ≥ 0,

∂2G

(∂x)2
= Σ(T ) + b ≤ 0, (4.48)

we first choose that

Σ̇(t) = 0,

Σ(T ) = −b− 4. (4.49)
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We therefore bring it into

∂R

∂x
= Φ̇(t) + Σ̇(t)∆x+ 2Σc(t) + 2x(t) = 0, (4.50)

∂G

∂x
= Φ(T ) + Σ(T )∆x(T ) + bx(T ) = 0. (4.51)

Performing the algorithm described in subsection (4.4.3), we require

∂R

∂c
= 0,

∂2R

(∂c)2
≤ 0. (4.52)

We obtain the result shown in Fig. 4.2, where we have used the Runge Kutta method with

the integration partitioned into 200 intervals. For comparison, the known solution of the

problem is shown below

x(t) =


±t, t ≤ τ1,

±kcos(t− T/2), τ1 ≤ t ≤ τ2,

±T ∓ t, τ2 ≤ t,

(4.53)

where T is the final time and τ1, τ2 and k are chosen according to smoothness conditions:

ẋ = ±1 for t = τ1, ẋ = ∓1 for t = τ2, ±t = ±kcos(t− T/2) at t = τ1 and ±kcos(t− T/2) =

±T ∓ t at t = τ2. Note that the result of the Krotov optimal method in Fig. 4.2 is equal

to the known solution. We will extend the Krotov method to investigate a quantum gate in

the next example.

4.5.3 Example 3: A Two Level Quantum System

The time dependent Schrödinger equation for the evolution equation (forward-propagator)

|ψ(t)〉 of a quantum system including a time-dependent control term µε(t) where ε(t) is the

control function

i~
∂

∂t
|ψ(t)〉 = (H + µε(t))|ψ(t)〉. (4.54)

Suppose that one want to minimize the cost function

I = 1− Re[〈ψG|ψ(T )〉] + λ

ˆ T

0
(ε(t′)− ε0)2dt′ −→ min. (4.55)
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Figure 4.2: Left: Cost function versus iteration times. Right: Optimal evolution of x with
respect to time t.

where λ > 0 and ε0 is an initial energy that can be considered as the restriction for the

optimal control sequences; furthermore, ε0 can also be time-dependent. |ψG〉 is a target goal

for the forward-propagator |ψ(T )〉.

Now we choose the parameters λ = 1, T = 1 and substitute ϕ = 〈β(t)|ψ(t)〉 into Eq. (4.5)

and Eq. (4.6) to derive R and G :

R = Re
[
〈β(t)|(H + µε(t))|ψ(t)〉+

∂〈β(t)

∂t
|ψ(t)〉

]
− λ(ε(t)− ε0)2, (4.56)

G = Re
[
〈ψG|ψ(T )〉 − 〈β(t)|ψ(T )〉

∣∣∣T0 ] . (4.57)

Using Eq. (4.25) and Eq. (4.26), one can derive the equation of motion of β(t) (similar

process to Example 1):

i~
∂

∂t
〈β(t)| = 〈β(t)|(H + µε(t)), 〈β(T )| = 〈ψG|. (4.58)

To optimize the control sequence, we require

∂R

∂ε
= 0,

∂2R

(∂ε)2
≤ 0. (4.59)
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Therefore the optimal control sequence is of the form

ε(t) = ε0 +
1

2λ
Re[〈β(t)|µ|ψ(t)〉]. (4.60)

Using the algorithm in subsection (4.4.3) with the above conditions where 〈β(t)| depends

on the old ε(t), and |ψ(t)〉 is built from the new ε(t). Note that for a better performance, one

can substitute ε0 with the old ε(t) to derive new ε(t). The system under consideration is a

quantum qubit or a two-level quantum dot. Under appropriate conditions, the Hamiltonian

of the qubit reads

H(t) = −ε(t)σz/2− Ωσx/2 (4.61)

where H = Ωσx/2 and µ = σz/2 and Ω is a bias voltage. If we consider a target

|ψG〉 = | ↑〉 =

 1

0

 , (4.62)

we obtain the result shown in Fig. 4.3 and Fig. 4.4, where we use the Euler method with

the segment of integration partitioned into 320 intervals (dt = 0.01), Ω = 1, and fidelity is

defined as Re[〈ψG|ψ(T )〉] with initial state

|ψ(t = 0)〉 = | ↓〉 =

 0

1

 . (4.63)

We can achieve fidelity 10−4 or lower with learning rate λ = 10. Note that this is a quantum

optimal control problem and is the fundamental in quantum computation. Chapter 5 will

use similar optimal techniques to a charge density wave (CDW) tight-binding model.
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Figure 4.3: Left: Cost function versus iteration times. Right: Optimal control pulse of ε
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CHAPTER 5

QUANTUM OPTIMAL CONTROL OF A TRANSIENT CDW STATE

5.1 Introduction

As outlined in Chapter 1, 2, 3, High fidelity characterization of transient excited many-body

electron distributions in the ultrafast time domain is now available through a variety of

pump-probe experiments. Amongst the rich variety of non-equilibrium responses observed,

photo-induced phase transitions (PIPT) are particularly interesting for fundamental and

applied reasons [39, 38, 53, 54, 55, 56, 57, 58, 59, 35, 60, 32, 33, 51, 3, 35, 36, 61, 60]. For

example, by adjusting the laser pulse properties it is possible to tune the non-equilibrium

PIPT response from the adiabatic to the non-adiabatic limits. Optimal laser pulse shaping

methods have not been applied to PIPT yet and have the potential to control non-equilibrium

response in order to isolate selected physical phenomena, and in order to tune response for

selected applications such as high speed electronics or optics. We introduce a method,

based on Krotov optimal control theory, to direct photo-induced phase transitions (PIPT)

by combining non-equilibrium models with Quantum optimal control theory (QOCT).

To illustrate the approach, we consider PIPT in a simple model [56] for a transient

metal-insulator state in a charge density wave system. In experiments, a long-range charge-

density-wave (CDW) is formed in a variety of layered chalcogenide materials, in oxides, in two

dimensional materials, and in many other systems. The investigated layered CDW materials

have disclosed a new nonequilibrium pattern where the long-range CDW is preserved while

the local electronic excitation spectrum becomes gapless for a transient period of time, as

has been eluciated using the simple model considered here [56]. In the experimental systems

the mechanism for gap-closing and population inversion remains an open question, though

in some cases there has been significant theoretical progress.

QCOT is a powerful tool based on calculating the optimal pulse shape by minimizing a

physical cost function or maximizing a desired physical objective, and it has been developed
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within a variety of variational frameworks to obtain control sequences [63, 64, 65, 66, 67, 68,

69, 70, 71, 62, 72, 73]. Quantum optimal control methods based on the classical gradient

optimization methods provide an alternative to iterative methods based on the Krotov ap-

proach. Krotov methods have been applied to the fields of Quantum computing and control

of charge transfer processes [72, 74, 75, 62, 76, 73]. The Krotov approach has several ap-

pealing advantages over the gradient methods in following ways: First, a monotonic increase

toward the objective with iteration number. Second, no requirement for a line search and

faster convergence to a given target. Third, at each iteration it guarantees macrosteps of the

time interval and it can reach the global maximum. As shown here, the Krotov approach

can easily be combined with CDW models for high efficiency calculations.

To illustrate the methods, we consider the hot-electron model following the simulation

study of Ref. [56, 55]. They found ultrafast laser pulses can quickly heat electrons forming a

hot quasithermal gas that equilibrates with phonons on much longer time scales compared to

the electron relaxation time. We introduce QOCT in this scenario to optimize shaped-laser

pulses to study the short-time transient phenomenon and to discover new photo-induced

phase transitions, and to control the outcome of pump-probe PIPT experiments to achieve

strong population inversion.

5.2 Charge Density Wave Model

To model the CDW system, we follow the work by Freericks et al. [56, 55]. We consider a

lattice that can be divided into two sublattices A and B with a hoping term τij only between

the two sublattices. For on site energy, sublattice A is chosen equal to U and sublattice B

is choose equal to zero. We consider equal numbers of A and B sites with one electron per

site, so that the electrons are at half filling and form an insulator. As outlined in Chapter

2, we include a spatially uniform time-dependent pump pulse incorporated into our model

through the Peierls substitution, resulting in a time-dependent modulation of the hopping
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term. The Hamiltonian, using standard notation for creation and annihilation operators, is

H(t) = −
∑
ij

τij(t)c
†
icj + (U − µ)

∑
i∈A

c
†
ici − µ

∑
i∈B

c
†
ici, (5.1)

where the chemical potential is µ = U/2 for half filling and the time-dependent hopping in

the presence of the laser pulse using Peierls substitution is

τij(t) = τij exp

[
ie

~c

ˆ Rj

Ri

A(r, t) · d~r

]
. (5.2)

Here A(r, t) is the time dependent vector potential in the Hamiltonian gauge, Ri is the

position vector of the ith lattice site, and r is a real space vector.

In the presence of a pump field, through the vector potential ~A(r, t), the electronic band

gap can be tuned [56], even though τij(t) only affects the phase but not the amplitude of

the hopping term of the Hamiltonian. In equilibrium, the density of states presents a gap

of width equal to U that is symmetric about zero energy. For the time dependent case,

the eigenfunctions change as a function of time and the nonequilibrium density of states is

modified by the presence of the external field. For this reason the non equilibrium energy

states are always influenced by the interaction of the system with the pulse field, and hence

it is possible to control the local charge density.

Translation symmetry is broken when U is nonzero, as the conversion from real space to

momentum space is more complicated than in a system with one atom per unit cell. The

momentum points k and k + Q are coupled, where Q = (π, π, π, ...) due to the presence of

the CDW order. The transformation from reciprocal space to real space becomes

c
†
i =

∑
k

(e−ik·Ric†k + e−i(k+Q)·Ric†k+Q), (5.3)

The electronic band in momentum space for the U = 0 case is time dependent and can

be written as

εk(t) = −
∑
ij

τij exp[−i(~k − e

~c
A(t)) · (RiA −RjB)] (5.4)
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where uniform vector potential is A(t) = A(t)(1, 1, ..., 1) and is directed along the diagonal

of the hypercubic lattice in d-dimensions, and we can rewrite as

εk(t) = εkAc(t) + ε̄kAs(t), (5.5)

with

Ac(t) = cos(eaA(t)/~c), (5.6)

As(t) = sin(eaA(t)/~c), (5.7)

and

εk = −
d∑
l=1

τ∗√
d

cos(akl), (5.8)

ε̄k = −
d∑
l=1

τ∗√
d

sin(akl). (5.9)

In this work we take the limit that dimension d goes to infinity as in the model of Ref. [56].

In our work, the two functions Ac(t) and As(t) are used as control parameters for optimal

control.

To simplify the notation, we set ~ = e = c = 1 and choose U = t∗, where t∗ is the

renormalized hopping for a hypercubic lattice in infinite dimensions. We also set the initial

temperature of the system equal to zero before the field is turned on. We can now derive

equations of motion for the creation operators in momentum space as

i~
dck(t)

dt
= [εk(t) + U

2 − µ]ck(t) + U
2 ck+Q(t) (5.10)

i~
dck+Q(t)

dt
= U

2 ck(t) + [−εk(t) + U
2 − µ]ck+Q(t). (5.11)

We are able to calculate the time evolution of different momentum k states, from which

we derive the nonequilibrium Green’s functions to obtain the physical properties of the sys-

tem at time t. In the following calculations, we use ck(t) = (ck(t), ck+Q(t)) and define a

superposition operator a(t) =
∑
k ck(t) in extended Hilbert space. Then the time evolu-

tion following Eq. (5.10) and (5.11) can be generally written as i~∂tck(t) = Hk(t)ck(t) or
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i~∂ta(t) = H(t)~a(t) with H(t) =
∑
kHk(t). and

Hk(t) =

εk(t) + U
2 − µ

U
2

U
2 −εk(t) + U

2 − µ

 . (5.12)

Since we have evolution equations, we can write down the time-evolution operator as

Uk(t, t′) = exp

[
− i
~

ˆ t

t′
d̄tHk(t̄)

]
, (5.13)

and, by using the Trotter formula, the time evolution in numerical calculation becomes

Uk(t, t′) = Uk(t, t−∆t)Uk(t, t− 2∆t)...Uk(t′ + ∆t, t′), (5.14)

where ∆t is a small time step. For each moment time t, we have

Uk(t, t−∆t) = exp

[
−i∆t

~
Hk(t−∆t/2)

]
. (5.15)

5.2.1 Equations for the Nonequilibrium Solution

In the paper, by following the theory of [56, 55], the retard and lesser Green’s function are

defined as

GRij(t, t
′) = −iθ(t− t′)〈{ci(t), c

†
j(t
′)}+〉, (5.16)

G<ij(t, t
′) = i〈c†j(t

′)ci(t)〉, (5.17)

where we take a quantum statistical average of time dependent creation and annihilation

operators. θ(t − t′) is the unit step function. In the Heisenberg representation, ci(t) and

c
†
i (t) are creation and annihilation operators for a spinless fermion at lattice site i. The angle

brakets represent a trace over all quantum states in real or momentum space weighted by

the equilibrium density matrix as is initialized in the far past. We can employ the Green’s

function to calculate the election concentration on the A and B sublattices, the DOS, the

current, the total energy and the time-resolved PES signal.
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We calculate the time-resolved PES response function as a probe pulse weighted time

Fourier transform of the lesser Green’s function centered at time tp (see Section 2.6),

P (ω, tp) = −i
ˆ
dt

ˆ
dt′s(t)s(t′)e−iω(t−t′)G<ii (t+ tp, t

′ + tp).

(5.18)

The response should be calculated for each sublattice and is then averaged over both sublat-

tices to compare with the experimental response. No extrapolation to large times is needed

for this calculation since the probe pulse provides a natural cutoff. The probe pulse is

assumed to be a gaussian function

s(t) =
1

σ
√
π
e−t

2/σ2
(5.19)

with width σ. The narrower the probe width, the better the time resolution and the worse

energy resolution.

We also calculate the total energy, the current and the occupancy in the upper/lower

bands of the instantaneous band structure varies with time. Only equal time expectation

values are needed considered for these quantities, and They are found in a straightforward

manner from the equal time lesser Green’s function. We write the calculations here in

terms of the equal time expectation values. Time-dependent number density for different

momentum k and k +Q are defined as nk1,k2
(t) = 〈c†k1

(t)ck2
(t)〉 with (k1, k2) is (k, k +Q).

The current in the case satisfies

j(t) =
∑

k:ε(k)<0

∇ε(k; t)
(
nk,k(t)− nk+Q,k+Q(t)

)
, (5.20)

The order parameter is of the form

Ω(t) =
∑

k:ε(k)<0

nk+Q,k(t)− nk,k+Q(t)

nk,k(t) + nk+Q,k+Q(t)
. (5.21)

and the total energy becomes

E(t) =
∑

k:ε(k)<0

[
ε(k; t)

(
nk,k(t)− nk+Q,k+Q(t)

)
+
U

2

(
nk+Q,k(t) + nk,k+Q(t)

)]
. (5.22)
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The occupancy of the upper and lower instantaneous bands become

n+(t) =
∑

k:ε(k)<0

[
α2(k; t)nk,k(t) + β2(k; t)nk+Q,k+Q(t))

+ α(k; t)β(k; t)
(
nk+Q,k(t) + nk,k+Q(t)

)]
(5.23)

and

n−(t) =
∑

k:ε(k)<0

[
β2(k; t)nk,k(t) + α2(k; t)nk+Q,k+Q(t)

− α(k; t)β(k; t)
(
nk+Q,k(t) + nk,k+Q(t)

)]
(5.24)

with the two time-dependent coefficients are given by

α(k; t) =
U/2√

2[ε2(k; t) + U2/4− ε(k; t)
√
ε2(k; t) + U2/4]

(5.25)

and

β(k; t) =
−ε(k; t) +

√
ε2(k; t) + U2/4√

2[ε2(k; t) + U2/4− ε(k; t)
√
ε2(k; t) + U2/4]

.

(5.26)

5.3 Quantum Optimal Control Method

In this section, we develop an optimal control method that maximizes the overlap between

the state of the system and a target (goal) state at time tf as implemented by QOCT. If

we denote an arbitrary target operator (state) as g, then the goal is to control the system

in such a way that the final operator is as close as possible to g. Fidelity is one way to

quantify performance of the optimal pulse. Fidelity is defined as the real part of the inner

product between the desired target operator g and the actual operator a(tf ) at time tf (see

e.g. [69, 72, 73, 71, 62]),

F = Re[〈g†a(tf )〉]N , (5.27)
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with N denotes normalization, so that the maximum fidelity is F = 1.

In many optimal theories and machine learning, we restrict control parameters to a finite

range is necessary to prevent divergence or discontinuity, and, in physical problems, the

power of the pump pulse should be considered in a finite range as well. We are therefore

looking for a solution of the optimal control method that can achieve high fidelity while

keeping the total power transferred to the system from the control parameters finite. To

achieve the goal, we require that the power close to the power of the pulse that we use as

previous iteration. This is expressed by [72]

K =

ˆ tf

0
dt′λ(t′)[

∑
j=c,s

(Al+1
j (t′)− Alj(t

′))2], (5.28)

with l, l + 1 represent the l, l + 1 iteration times of the quantum optimal control algorithm.

We set A0
c(t) → 1 and A0

s(t) → 0 for the 0th iteration because of the initial condition of

A(t) = 0. λ(t′) is a positive function chosen empirically that can be adjusted during the

optimal control procedure. It influences the rate of change of the control parameters at each

iteration step. We choose λ(t′) as a constant proportional to the number of energy points

used in the simulation.

Since we know (Ac(t))
2 + (As(t))

2 = 1, we add an additional constraint through a

Lagrangian multiplier R to ensure that this equation is satisfied for all time steps t. Defining

β(t) as another adjustable and positive function, we have

R =

ˆ tf

0
dt′β(t′)((Ac(t′))2 + (As(t

′))2 − 1). (5.29)

When everything is put together, an objective function is introduced of the form

J = F −K −R, (5.30)

where F , K and R are defined in Eqs. (5.27)-(5.29). Our goal is to maximize the objective

function given the equation of motion for the operator a(t).

In practice the algorithm consists of the following steps: First, choose an initial control

sequence Ac(t) and As(t), second, given the initial condition the operator a at very beginning,
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apply the equations of motion to find the forward propagated operator al(t). Third, calculate

an auxiliary backward evolved operator bl(t) analogous to a(t) with the condition b†(tf ) =

g†. Fourth, propagate al+1(t) forward in time and update the control sequence iteratively

with the relation

Al+1
c (t) = (Alc(t) + δAc(t))/α(t), (5.31)

and

δAc(t) =
1

2λ(t)
Re

[
〈b†l(t)∂H(t)

∂Ac(t)
al+1(t)〉

]
, (5.32)

where α(t) = 1+β(t)/λ(t) is an positive and adjustable term, which ensures that (Al+1
c (t))2+

(Al+1
s (t))2 = 1 is satisfied for every time t.

Specifically α(t) is an arbitrary function greater or equal to one and it can be arbitrar-

ily assigned at every iteration and every time t since the contribution of the Lagrangian

multiplier in the objective function J is 0. The equation for Al+1
s (t) has the same form,

and can be obtained by replacing Alc, Al+1
c with Als, Al+1

s in Eq. (5.32). Steps (3) and (4)

are repeated until a desired fidelity F is reached or until a given number of iterations has

been accomplished. Note that here we derive δAc,s(t) base on the initial conditions, while

in other cases, one can derive state-independent results by using a trace instead of an inner

product. We terminate our program when 1-F is smaller than 10−4 or when the fidelity

|F l+1 − F l|/|1− F l| is smaller than 10−3.

5.3.1 Proof of Optimality

Using the cost function mentioned in the text

J =Re[〈~g†~a(tf )〉]−
ˆ tf

0
dtλ(t)[

∑
j=c,s

(Aj(t
′)− A0

j (t
′))2]

−
ˆ tf

0
dtβ(t)(A2

c(t) + A2
s(t)− 1), (5.33)

we will now prove that the iteration algorithm for the cost function J exhibits monotonic

convergence. The simple proof for two-level quantum system can be found in Ref. [69]. First,
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following Krotov’s method (see Chapter 4), we group the terms in J in the following way

J̄ = G(tf ) +

ˆ tf

0
dtR(t). (5.34)

Here G(tf ) depends only on the terminal time tf and is defined as

G(tf ) ≡ Re
[
〈~g†~a(tf )〉 − 〈~b†(t)~a(t)〉

∣∣∣tf
0

]
, (5.35)

where ~b(t) is an arbitrary continuously differentiable propagator which can be considered as

a Lagrange multiplier function constraining the system to obey the equation of motion. The

second term R(t) is related to the time integral part and is of the form

R(t) ≡ Re

[
〈~b†(t)H(t)~a(t) +

∂~b†(t)
∂t

~a(t)〉

]
−λ(t)[

∑
j=c,s

(Aj(t
′)− A0

j (t
′))2]

−β(t)(A2
c(t) + A2

s(t)− 1). (5.36)

In our case we have two control parameters in the Hamiltonian H(t) = H0 +HcAc(t) +

HsAs(t). To maximize J̄ one can simply maximize G and R independently. Note that if R

is maximized at each time t the integral of R will be maximized as well. Second, to prove

that J̄ converges at every iteration, it is straightforward to show that

J̄(l+1) − J̄(l) = ∆1 + ∆2c + ∆2s + ∆3 ≥ 0 (5.37)

where

∆1 ≡ G(~a(l+1)(tf ))−G(~a(l)(tf ))

= Re[〈(~g† −~b†(tf ))∆~a(tf )〉], (5.38)
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∆2c ≡
ˆ tf

0
dt[R(t,~a(l+1)(t), A

(l+1)
c (t), A

(l)
s (t))

−R(t,~a(l+1)(t), A
(l)
c (t), A

(l)
s (t))]

= Re

[ˆ tf

0
dt〈~b†(t)(Ĥc∆Ac(t))~a

(l+1)(t)〉
]

−
ˆ tf

0
dt2λ(t)(A

(l+1)
c (t)− A0

c(t))∆Ac(t)

−
ˆ tf

0
dt2β(t)A

(l+1)
c (t)∆Ac(t)

+λ(t)∆A2
c(t) + β(t)∆A2

c(t), (5.39)

and ∆2s also follows the same form by substituting Ac(t) with As(t).

∆3 ≡
ˆ tf

0
dt[R(t,~a(l+1)(t), A

(l)
c (t), A

(l)
s (t))

−R(t,~a(l)(t), A
(l)
c (t), A

(l)
s (t))]

= Re
[ˆ tf

0
dt〈~b†(t)(H0 + HcA

i
c(t) + HsA

i
s(t))∆~a(t)〉

−
ˆ tf

0
dt〈∂

~b†(t)
∂t

)∆~a(t)〉

]
. (5.40)

Here ∆Ac = A
(l+1)
c (t) − A

(l)
c (t) and ∆~a(t) = ~a(l+1)(t) − ~a(l)(t) , and in deriving these

expressions we also have chosen ~b(t) ≡ ~b(l)(t) in the expression for J̄(l+1) as well as in that

for J̄(l). We can write the equation of motion and initial state of ~b(t) by making the choice

~b†(tf ) = ~g†, (5.41)

∂~b†(t)
∂t

= ~b†(t)(H0 + HcAc(t) + HsAs(t)), (5.42)

Therefore we obtain the result

∆1 = 0,∆3 = 0. (5.43)

Finally, the control parameter A(l+1)
c (t) can be chosen as Al+1

c (t) = (Alc(t)+δAc(t))/α(t)

and

δAc(t) =
1

2λ(t)
Re

[
〈~b†

l
(t)
∂H(t)

∂Ac(t)
~al+1(t)〉

]
, (5.44)
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which implies that

∆2 = (λ(t) + β(t))[(∆Ac)
2 + (∆As)

2] ≥ 0. (5.45)

Here λ(t) is a positive function that can be decided empirically and α(t) = 1 + β(t)/λ(t) is

a normalization term, which ensures that (Al+1
c (t))2 + (Al+1

s (t))2 = 1 is satisfied at every

time t.

This proves that the iteration algorithm for cost function J exhibits monotonic conver-

gence, given the proper choice of the equation of motion and initial condition for ~b†(t), and

using Eq. (5.44) for the optimal control parameter at the next time step. Note that A0
c(t) in

the l+ 1 iteration can be substituted with the optimal control parameter A(l)
c (t) acquired in

the l iteration. Similarly, the result of the As(t) is of the form Al+1
s (t) = (Als(t)+δAs(t))/α(t)

and

δAs(t) =
1

2λ(t)
Re

[
〈~b†

l
(t)|∂H(t)

∂As(t)
|~al+1(t)〉

]
, (5.46)

5.4 Application to a CDW Model

We illustrate the Krotov method above using a solvable spinless fermion model on hypercubic

lattices described by a hopping term τij and a periodic potential Ui, which is equal to U on

the A sublattice and equal to zero on the B sublattice (See chapter 2).

H(t) = −
∑
ij

τij(t)c
†
icj + (U − µ)

∑
i∈A

c
†
ici − µ

∑
i∈B

c
†
ici, (5.47)

where the chemical potential is µ = U/2 for half filling, and the time dependence of the

hopping parameter is as given in Eq. (5.2). This model provides a useful starting point in

understanding of the electronic response of CDW systems to an ultrafast laser pulse [56, 55].

For U = 0, the time dependence of the energy levels in the problem is given by

ε(~k − e ~A(t)/~c) = εkAc(t) + ε̄kAs(t) (5.48)
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where Ac, As are given in Eq. (5.6). In order to compare with previous work [56], we

take the limit of a hypercubic lattice in infinite dimensions εk = −
∑d=∞
l=1

t∗√
d

cos(r0kl),

ε̄k = −
∑d=∞
l=1

t∗√
d

sin(r0kl).

When U is finite the Hamiltonian breaks up into 2× 2 blocks for each value of k, as the

unit cell is now of size 2. When the laser is off, the energy eigenvalues of the system are

given by εk± = U/2 − µ ±
√
ε2
k + U2/4, where εk are the eigenvalues for U = 0, and the

destruction operators after diagonalization may be written in terms of the U = 0 destruction

operators ck and ck+Q where Q = (π, π, π, ...). The energy spectrum breaks up into two

bands with band gap U , and the destruction operators are ck+ = αkck + βkck+Q for states

in the conduction band and ck− = βkck−αkck+Q for states in the valence band. To impose

the condition that an arbitrary target state with quantum number q+ is occupied at the

final time tf we need 〈c†q+cq+〉 = 1 and 〈c†q−cq−〉 = 0. This is achieved by defining the goal

operator ~g =
∑
q c
†
q+cq−, where the sum is over the target excited states. In the remainder

of our discussion, the units are taken as r0 = t∗ = U = 1, the speed of light and Planck’s

constant are in natural units, the chemical potential µ = U/2, the temperature of the initial

state is T = 0, while the time and energy steps are ∆t = 0.01 and ∆ε ≤ 0.02, as used in

previous work [56] on this model.

The equations of motion for the operators in momentum space are given by,

i~
dck(t)

dt
= [εk(t) + U

2 − µ]ck(t) + U
2 ck+Q(t) (5.49)

i~
dck+Q(t)

dt
= U

2 ck(t) + [−εk(t) + U
2 − µ]ck+Q(t) (5.50)

where k is a wave vector and and εk(t) ≡ ε(~k− e ~A(t)/~c). It is useful to introduce the more

compact notation ~ck(t) = (ck(t), ck+Q(t)) and a superposition operator ~a(t) = ⊕k~ck(t). The

time evolution in Eq. (5.49) and (5.50) can then be written as i~∂t~ck(t) = Hk(t)~ck(t) or

i~∂t~a(t) = H(t)~a(t) with H(t) =
⊕

kHk(t), where Hk(t) is deduced by comparing with

Eq. (5.49) and Eq. (5.50) [55, 56]. The calculations are directed at optimizing the fidelity

from Eq. (5.27), and we terminate the calculations when 1−F is smaller than 10−3 or when

the difference ratio |F l+1 − F l|/|1 − F l| is smaller than 10−3. The initial condition before
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arrival of the laser pulse is taken to be the half filled state so that the Fermi energy is at

zero energy and in the middle of the band gap, which is U in this model.
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Figure 5.1: Time-resolved PES of the electronic CDW system before, during and after
application of the optimal pulse (Ac(t), As(t), A(t)) from time t = 0 to t = 20 h/t∗ with
the initial state a filled lower band at temperature T = 0. The target is excitation of a
single state with the goal energy 1t∗. In this calculation λ(t) = 2πh/∆ε is a constant, with
∆ε = 0.02 and h = 100.

We calculate several physical properties in the final state that is produced by the optimal

pulse, and we first focus on the time resolved photoemission spectra (tr-PES), P (ω, t), where

P (ω, t) = Im
∑
α

[´ t
−∞ dt2

´ t
−∞ dt1s(t1)s(t2)eiω(t2−t1)G<α,α(t2, t1)

]
, where s(t) is the probe
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laser pulse shape and α = A,B. G<α,β(t1, t2) = i〈c†α(t2)cβ(t1)〉 is the lesser Green’s function;

α and β can be either of the two sublattices A,B of a hypercubic lattice; and t1, t2 are

two times on the Keldysh contour (see [55] for details). The ultrafast time resolved PES

presented in Fig. (5.1) is found when we choose an excitation band centered on Energy t∗.

In this calculation U = t∗ which is the band gap. This solvable system consists of a set

of two-level systems (TLS) labeled by k with energy splitting (for q = k) δεq = εq+ − εq−
with associated generalized Rabi frequency Ωq = (χ2

q + ∆2
q)

1/2 where χq = ~µq · ~E/~ is the

Rabi frequency, ~µq the transition dipole moment, ~E the electric field and the detuning is

∆q = ω − δεq/~ with ω the laser frequency. The optimal pulse found in this case (see

Fig. (5.1) is in the weak field limit so that the dominant frequency is 2 which corresponds

to the excitation energy δεq for the target TLS. However some TLS near the target are also

excited and the optimal pulse attempts to minimize excitation of TLS other than the target.

The resulting optimal pulse is clearly not single mode with a Gaussian envelope, reflecting

the fact that the target state is embedded in a continuum.

Fig. (5.2) presents the tr-PES and optimal pulse found when the target is a fully excited

state, i.e. excitation of all electrons from the valence band to the conduction band. This is

an extreme excitation condition that can be interpreted as a state with a very large negative

temperature. The QOCT method yields a laser pulse where the primary mode no longer

corresponds to a single photon excitation of the TLS at the midband condition. Instead

the optimal pulse is in the strong field limit where higher order processes are dominant.

Moreover the optimal pulse is complex and asymmetric. An intriguing feature of this system

is that the optimal control procedure acts on the parameters Ac(t), As(t) which are harmonic

functions, and the form of the vector potential A(t) is deduced from them. This leads to a

multitude of solutions for A(t) → A(t) + 2nπ (n is an integer) corresponding to the same

functions As(t) and Ac(t). The result for A(t) presented in Fig. (5.2) is chosen to be the

most continuous amongst this family of solutions.

In Fig.5.3 we present several quantities to measure the time evolution of the real space and
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momentum space occupancies of the CDW model. The first panel shows that the occupancy

of the valence band (n−(t)) and conduction band (n+(t)) are almost completely inverted

by the optimal pulse. This is also evident in the real space occupancies, as in the initial

state the electron occupancy on sublattice A (nA(t)) is much lower than that on sublattice

B (nB(t)) due to the higher potential (U > 0) on the A sublattice. The order parameter

Ω(t) = (nB(t) − nA(t))/(nB(t) + nA(t)) is presented in the second panel showing that the

optimal laser pulse fully “melts" the electronic CDW state producing an almost complete

inversion of the sublattice occupancy. The third panel gives the total energy of the electronic

system as a function of time (〈H(t)〉), illustrating the fact that the energy in the electronic

system is not monotonically increasing as the ensemble of Rabi oscillators in the model both

absorb and emit photons into the radiation field.

5.5 Conclusion

To conclude, we developed a new QOCT for tight binding models. Effective laser pulses

have been found for the Photo-induced phase transitions (PIPT) in non-equilibruim time-

dependent charge density wave (CDW) systems based on a promising Quantum optimal-

control theory (QOCT). The optical and structural properties as well as the temporal evo-

lution of such states provide insight into the mutual dependence of electronic and atomic

structure. Through simulations based on non-equilibrium Keldysh Green’s functions we find

that the optimal laser pulse can achieve population inversion PIPT. This novel study can

apply to many other complex materials and may-body dynamic problems.
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Figure 5.2: Time-resolved PES, with the optimal pulse interacting with the system from
time t = 0 to t = 20 h/t∗. The initial state is a filled valence band at temperature T = 0,
and the goal is to excite all of the states in the conduction band. The electron density at
a given energy is plotted in false color and is high near the band edges as this model has
a square root singularity in the density of states at both the valence band and conduction
band edges. In this calculation λ(t) = 2πh/∆ε is a constant, with ∆ε = 0.02 and h = 10.
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Figure 5.3: Properties of the system with the optimal pulse acting on the system from time
t = 0 to t = 20 h/t∗ (a) The average occupancy of the conduction and valence bands n±(t),
(b) The real space order parameter Ω(t), which measures the difference in occupancy of the
two sublattices, (c) The energy 〈H(t)〉 of the CDW system.
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CHAPTER 6

SUMMARY AND OUTLOOK

This thesis presents two main contributions to the field of photo-induced topological states

of matter. (i) A new variant of the SSH model is utilized to show how the interplay of

polarized light and lattice structure can lead to tunable topological properties. (ii) A new

quantum optimal control method was developed and demonstrated for a simple model of

charge density wave response at femtosecond time scales.

Moreover, we find that short optical pulses can lead to local spectral and novel pseudospin

textures in one-dimensional topological insulators such as the SSH model. Pump-probe pho-

toemission spectroscopy can probe these states and can demonstrate tunable energy gaps

and Floquet band formation on femtosecond time scales. Analyzing band structures and

pseudospin textures, we identify new states with optically induced nontrivial changes of sub-

lattice mixing that leads to novel topological phenomenon. This study reveals the possibility

to discover new topological phases driven by optical pulses in many insulators.

As a first step toward optimal control of topological states, effective laser pulses have been

found for the photo-induced phase transitions (PIPT) in non-equilibruim time-dependent

charge density wave (CDW) systems based on a new and promising Quantum Optimal

Control Theory (QOCT). Through simulations based on non-equilibrium Keldysh Green’s

function we find the optimal laser pulse can achieve a high degree of population inversion.

This new QOCT approach is applicable to many other complex materials and many-body

dynamic problems.

Future work has a variety of possible directions: One can include disorder terms into

the tight-binding models [94, 95]. The effect of disorder may localize electrons and induce
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Anderson localisation. Topological order may be influenced by the disorder effects if it is

large enough to break the topologically protected states. Moreover, the interaction between

light and disorder is also an interesting problem. Using disorder to describe noise in the

system can also lead to real applications in quantum devices.

Adding phonon effects to the tight binding models is already a very vivid field in physics.

The effect of electron-phonon interactions on optical absorption spectra requires a special

treatment. By incorporating key phonon modes into the charge density wave response

or in topological materials, many novel responses and new physics have been discovered

[96, 97, 98, 99].

Tuning these response with optimized light pulses is a promising future direction. Inter-

action effects between electrons is important for many charge density wave systems and for

some topological orders so this is an important and challenging topic to study [100, 101, 102].

By introducing the Hubbard model, which is an approximate model used in solid state physics

to describe the transition between conducting and insulating systems, one can discuss elec-

tron behaviors with Hubbard interaction and discover new phenomena in charge density

wave and topological phases; and the effect of light on these phenomena.

Finally quantum optimal control is important for operating quantum dots in quantum

computing and advanced quantum devices. One of the possible applications is to control

Majorana edge states in the time domain, and in general to understand and control Floquet-

Bloch topological states of matter [103, 104].
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CHAPTER 7

EXPERIMENTS AND APPLICATIONS

Recently many novel experiments have been designed for studying the field of photo-induced

phase transitions and topological states of matter. In this Chapter a brief overview of four

very different experimental systems are described. In Ref. [7], they used trARPES to study

photo-induced band gaps. When the photon energy of the laser is less than 300 meV, the co-

herent interaction between light and the TI surface states is the main effect. Therefore they

used polarized photons at midinfrared (MIR) wavelengths to investigate the photon-dressed

surface states in Bi2Se3. The laser pulses are focused to a 300 mm diameter spot on the

single-crystal Bi2Se3 sample at an angle of 45◦, and the pulses are tunable in wavelength

from 4 mm to 17 mm with 1 mJ peak energy; with the amplitude of the electric field to be

E0 = 2.5 (T1) × 107 V/m and the pulsewidth estimated to be 250 fs (FWHM) on the surface

of the sample: Fig. 7.1 shows energy-momentum spectra of Bi2Se3 obtained at several time

delays after arrival of the intense linearly polarized MIR excitation. Note that the probe

pulse is a linearly polarized ultraviolet (UV) pulse.

Figure 7.1: Angle-resolved photoemission spectra (APRES) of Bi2Se3. (A) A sketch of the
experimental geometry for the p-polarized case. kx is defined to be the in-plane electron
momentum parallel to the pump scattering plane. (B to F) ARPES data for several pump-
probe time delays t (values indicated in the figure) under strong linearly polarized mid-
infrared (MIR) excitation of wavelength l = 10 mm. Figure and caption are taken from
[7].
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In Ref. [8], arrays of evanescently coupled dielectric-loaded surface-plasmon polariton

(SPP) waveguides was used to study the SSH model. The arrays are built by negative-

tone gray-scale electron beam lithography on top of a chromium (10 nm) and gold (60 nm)

coated glass substrate. The waveguides consist of polymethylmethacrylate (PMMA) ridges

with a height of 140 nm and a width of 250 nm. They used weak and strong bonds (1000

and 600 nm) as in the SSH model by alternating different separations between neighboring

waveguides, as depicted in Fig. 7.2, giving in a = 1600 nm for the SSH unit cell separation

distance. These geometrical parameters ensure, for the vacuum wavelength λ = 980 nm,

single-mode operation of the waveguides and sufficient coupling among them.

In Ref. [9], they studied on the imaging and probing of topological bound states in

the SSH model through adiabatic preparation, quench dynamics and phase-sensitive injec-

tion by using an atom-optics realization of lattice tight-binding models. With an optical

lattice potential formed by lasers of wave number k = 2π/λ and wavelength λ = 1064

nm, momentum-space dynamics of Rb87 condensate atoms was started through controlled,

time-dependent driving. The lasers couple 21 discrete atomic momentum states coherently,

inducing a momentum-space lattice of states such that atomic population may change. The

momentum states are defined by momenta pn = 2n~k and site indices n(relative to the

lowest momentum value). Through 20 distinct two-photon Bragg diffraction processes, the

coupling between these states is fully controlled, letting them to simulate tight-binding mod-

els with local, arbitrary and time-dependent control of all tunnelling terms and site energies.

Fig. 7.3 is the absorption images taken after 760µs(≈ 0.78h/t) of evolution following the

initialization and quench, corresponding to phases of π (top) and 0 (bottom), respectively,

for ∆/t = 0.38(1).

In Ref. [10], photonic waveguide arrays were used (see Fig. 7.4), which are an excep-

tional system for implementing PT-symmetric non-hermitian Hamiltonians. By wiggling
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Figure 7.2: (a) Waveguide array fabricated out of PMMA on top of a Cr- and Au-coated
glass substrate. Alternating center-to-center separations, 600 and 1000 nm, implement the
bulk SSH model. (b) Plasmonic waveguide array incorporating a topological defect where
the long separation is repeated twice. Three different excitation sites, I, II, and III, are
highlighted. Figure and caption are taken from [8].

the waveguides, which causes radiative loss (coupling to the continuum states), the loss in

photonic lattices can be precisely designed. The frequency and amplitude of the wiggling

can be tuned to generate a particular loss.

The four examples above are a small subset of experimental systems where photo-induced

phase transitions and photo-induced topological properties are being explored; as outlined

in Chapter 1.
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Figure 7.3: Absorption images taken after 760µs(≈ 0.78h/t) of evolution following the
initialization and quench, corresponding to phases of π (top) and 0 (bottom), respectively,
for ∆/t = 0.38(1). Figure and caption are taken from [9].

Figure 7.4: (a) Sketch of the passive waveguide array acting like a PT-symmetric structure
with a topological interface. (b) End facet of the experimentally realized structure in fused
silica glass. Image courtesy of Mark Kremer, FSU Jena. Figure and caption are taken from
[10].
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