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ABSTRACT

EXPERIMENTAL MEASUREMENT OF THE RESPONSE OF
CENTRIFUGAL PENDULUM VIBRATION ABSORBERS

By

Abhisek Jain

Centrifugal pendulum vibration absorbers (CPVAs) are devices designed to reduce tor-

sional oscillations in order-excited rotational systems. The focus of this research is to develop

and test algorithms that allow one to determine the absorber motion (amplitude and phase)

using the readouts from an accelerometer attached to the absorber and an encoder sensing

the rotor motion. This requires a detailed analysis of the pendulum kinematics, which de-

pends on the path followed by the absorber mass and the rotation of the absorber relative

to the rotor. The absorber kinematics are governed by a di↵erential equation that relates

the absolute absorber acceleration (measured signal from an accelerometer) and the rotor

speed and acceleration (measured signal from an encoder), to the motion of the absorber

relative to the rotor. This di↵erential equation is solved approximately using a harmonic-

balance method, based on assumptions regarding the significant harmonics in the rotor and

absorber dynamics. The resulting approximations are tested using numerical simulations

of the equations of motion, as well as in experiments in which the approximated absorber

motions are compared to direct encoder measurements of the response. Both simulations

and experiments show that absorber motions are successfully estimated from measurements

of the absolute acceleration of the absorber and rotor motions, although some deviation is

apparent when absorber motions have large amplitudes. This approach will allow test engi-

neers to validate models that predict and assess absorber performance in rotational systems

(e.g., automobile engines), which will improve confidence in the absorber design process.
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R

, and the
rectangular box in the figure represents the absorber moving along
the specified path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.7 Location of accelerometer from COM of a bifilar absorber. . . . . . . 17

Figure 2.8 Experimental rig. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.9 Closeup of unmounted absorber mass, with accelerometer and encoder. 28

Figure 2.10 Procedure to measure the absorber COM distance from the rotor center. 29

Figure 2.11 Order n amplitude of the rotor angular acceleration divided by the
amplitude of fluctuating torque as a function of the applied torque
order, n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.12 Normalized absorber displacement amplitude estimated from linear
(4) and cubic (2) analysis compared with exact values (#) at 400
RPM, over a range of absorber response amplitudes. . . . . . . . . . 35

Figure 2.13 Normalized absorber displacement amplitude estimated from linear
(4) and cubic (2) analyses compared with exact values (#) at 300
RPM, over a range of absorber response amplitudes. . . . . . . . . . 35

Figure 2.14 Absorber displacement amplitude S estimated from linear (4) and
cubic (2) analyses compared with encoder values (#) at 300 RPM. . 38

Figure 2.15 Absorber displacement amplitude S estimated from linear (4) and
cubic (2) analyses compared with encoder values (#) at 400 RPM. . 38

Figure 2.16 Absorber displacement amplitude S estimated from linear (4) and
cubic (2) analyses compared with encoder values (#) at 500 RPM. . 39

ix



Figure 2.17 Comparison of cubic estimation from simulations and experiments. . 39

Figure 3.1 Comparison of simulated absorber dynamics with the numerical so-
lution of di↵erential equation (2.8). . . . . . . . . . . . . . . . . . . 42

x



Chapter 1

Introduction

This study considers the development of a method for experimentally measuring the response

of centrifugally driven pendulum vibration absorbers (CPVAs). These absorbers consist of

masses suspended from a rotor (hinged or suspended through rollers) such that they are free

to oscillate relative to the rotor. When correctly tuned they are capable of reducing machine-

order torsional (twisting) vibrations in rotating machinery. These absorbers are currently

being developed for automotive engine applications, where reduction of crankshaft torsional

vibrations will allow for low-speed, high-torque operation, resulting in significant improve-

ments in fuel economy. The development of these absorbers requires extensive testing, and

while it is quite simple to measure rotor torsional vibrations, currently no convenient method

exists for determining the motion of the absorbers in a rotating machine. The present work

is aimed at developing the tools needed to measure absorber dynamics using an accelerom-

eter fixed to the absorber mass, where the signal can be transmitted via a slip ring or by

telemetry [3].

In this chapter we will state the motivation of this research and will later include some

background on centrifugal pendulum vibration absorbers. The second chapter contains the

theory developed for this research and the validation of the theory with simulations and

experiments. The third and final chapter contains conclusions and inferences from this

research, and some directions for future work in this area.
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1.1 Motivation

CPVAs are devices that reduce undesired torsional vibration in a rotating systems. Torsional

vibrations occur in rotors when the torque source is oscillatory in nature. When the torque

input to the system is periodic, with frequency proportional to mean speed (known as engine-

order excitation), CPVAs can be implemented to absorb the torsional vibrations in the rotor

at the problematic order. A typical example of order excitation occurs in an automobile

engine, where the excitation arises from cylinder pressure, resulting in an order equal to half

the number of cylinders.

A basic CPVA device consists of a rotor and an absorber mass hinged to the rotor.

The rotor is free to rotate about its axis and the absorber is restricted to move along a

certain path with respect to the rotor. CPVA systems have been researched for several

decades [4, 5, 6, 7, 8, 9] and have been implemented in various rotational systems, including

helicopter rotors and automobile engines [6, 8, 9, 2, 1]; see Figures 1.1 and 1.2. Once

properly designed and implemented, there is no need to measure the response of a CPVA

system. However, such measurements are very important during the development of these

systems. The rotor dynamics of the CPVA system can be easily measured using encoders.

The absorber dynamics can be easily measured using encoders in a laboratory environment if

there is ample space, but it is not feasible to implement encoders for absorbers in experiments

that are tightly spaced, or in prototype engines and drive trains which may have harsh

environments. These issues provide motivation to find alternative ways to measure absorbers

in a rotating machine.

The goal of this research is to develop a strategy by which one can conveniently measure

the dynamics of these absorbers in running machines such as internal combustion engines.
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Figure 1.1: Cycloidal path CPVAs on a helicopter rotor, picture taken by Steve Shaw. For
interpretation of the references to color in this and all other figures, the reader is referred to
the electronic version of this thesis.

Figure 1.2: Circular path CPVA on the crankshaft of a prototype internal combustion en-
gine [2].

3



In this research, we develop an analysis method by which one can estimate the dynamics

of absorbers using accelerometers fixed to the absorber mass. The benefits and limitations

of using accelerometers over encoders are listed in Table 1.1. The idea is to measure the

absolute acceleration of the absorber, and also independently measure the rotor dynamics

using an encoder (which is already implemented in many rotating systems) and use these

measurements to estimate the motion of the absorbers relative to the rotor. The success of

this approach will help with the testing of proposed absorber designs, and will also aid in

basic research related to these absorbers.

Table 1.1: Acclerometer vs encoder

Accelerometer Encoder

Small size, and mass. Can directly be

attached to absorber

Comparatively large, typically at-

tached to rotor and requires extra space

and arrangement on absorber

Measurement has to be further pro-

cessed to determine the absorber dy-

namics relative to rotor

Provides a direct and independent mea-

surement of absorber dynamics relative

to rotor

1.2 Basic Operation of a CPVA

The physical arrangement of a centrifugal pendulum is similar to that of a simple pendulum.

However, the restoring force arises from a centrifugal field instead of gravity, as depicted in

Figure 1.3.

The left panel of Figure 1.3 shows a simple pendulum with mass P and length L hinged
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Simple'pendulum' Centrifugal'pendulum'

Figure 1.3: Comparison of a CPVA with a simple pendulum: left: simple pendulum. Right:
centrifugal pendulum.

with a stationary base at point A. The restoring force for any deviation from the equilibrium

position is provided by the gravitational field g, which points downward, and the small

amplitude natural frequency of oscillation is !
n

=
q

g

L

. The right panel of Figure 1.3

is that of a centrifugal pendulum with a base rotating about an axis passing through O,

perpendicular to the plane of paper, at a constant speed ⌦. The pendulum is hinged at a

point A to the rotating base, referred to here as the “rotor”. The radially outward arrows

show the centrifugal field of magnitude ⌦2r, r being the radial distance of the point of interest

from the rotation axis O. When the rotor is spinning at a constant speed, the equilibrium

position of the absorber with respect to the rotor is radially outward. The absorber starts

working as soon as there is a disturbance in the mean speed of the rotating system, which

arises, for example, from a fluctuation in the applied torque. For small oscillations in angle
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� about equilibrium, the linearized natural frequency of the absorber with the rotor spinning

at a constant speed ⌦ is given by

!
n

=

r
R

L
⌦

where R is the distance between the points O and A (see Figure 1.3), and L is the length

of the ideal pendulum. The factor
q

R

L

is called the tuning order of the absorber and is

denoted by ñ. The term order is used to replace frequency in CPVA systems, and it is equal

to the number of complete oscillation cycles occurring in each rotor revolution.

This order tuning feature of a centrifugal pendulum is special because it allows the CPVA

to operate in reducing engine-order torsional vibrations (defined below) at all rotor speeds.

There are a variety of rotational systems where the mean speed of the rotor is variable, and

the rotor is subjected to a fluctuating torque that is synchronous with the rotor, resulting

in engine order excitation, which has frequency n⌦, where n is referred to as the excitation

order. If we design the centrifugal pendulum such that its tuning order ñ is close to n,

the pendulum will e�ciently absorb vibrations occurring at that order, resulting in lowering

the torsional vibration of the rotor at that order [4, 5, 6, 7]. This property makes them

highly suitable for a variety of rotating systems, such as internal combustion engines, where

the torsional excitation arises from cylinder gas pressure acting through the pistons and

connecting rod. For a four stroke engine with N cylinders, the excitation order is n = N

2 .

In summary, the CPVA system behaves like the classical tuned absorber, with excitation

and response focused on a given order (which is fixed for a given machine), rather than a

frequency. The dynamics of these absorbers has been studied extensively [5, 6, 7, 8].

Here we focus on a kinematic measurement problem, for which the dynamics are not

essential. The basic problem can be viewed from the right panel of Figure 1.3. Of interest is
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knowing the pendulum response � relative to the rotor so that the experiments can be used

to correlate models and validate analysis, and also to allow the absorber response range to

be monitored. Since it is often di�cult to measure directly, we develop a method that allows

one to compute the relative absorber response � from measurement of the rotor response ✓̇

(taken from an encoder) and the absolute acceleration of the pendulum mass P (taken from

an accelerometer).

For small amplitude absorber motions this is a linear problem. However, these absorbers

are designed to undergo large amplitude oscillations, in which case the kinematics become

nonlinear. In fact, the absorbers can be designed so that they follow quite general paths

(not just circles) which further complicates the kinematics.

We now turn to the details of this problem and its solutions.
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Chapter 2

Methods and Results

In this chapter we develop a theory that will enable us to map the measurements from an

accelerometer into absorber response. This mapping will require addition information about

the rotor dynamics that can be easily measured using encoders. The analytical approach is

developed using basic kinematic relationships, which are then used to derive some convenient

approximate expressions for the absorber response. Once the theory is developed, we describe

the experimental setup and methodology required to perform experiments. In the third

section we show results obtained from simulations and experiments and compare these with

the analytical approximations.

2.1 Kinematic Analysis

To develop the model of interest, we assume that the rotor is rigid and spins with fluctuations

about a constant mean speed ⌦. It is also assumed that the fluctuations in the rotor and

the absorber response are periodic. We express the dynamics of the absorber (amplitude

and phase) in terms of the absolute acceleration of absorber, the rotor dynamics, and other

design parameters. We discuss two di↵erent absorber types in section 2.1.1, and describe

the models developed for these types in section 2.1.1.1 and section 2.1.1.2, respectively.
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2.1.1 Absorber Arrangement

Based on their means of attachment to the rotor, the absorbers can be categorized in two

ways: i) single-point hinged compound pendulums (mainly for circular path absorbers) as

shown in Figure 2.1 and, ii) two-point suspensions using rollers, also called the bifilar ar-

rangement, as shown in Figure 2.2. For each type it is assumed that the accelerometer is

fixed to the absorber mass, so that the accelerations measured are two components of its

absolute acceleration oriented with the absorber.

Figure 2.1: Hinged circular path absorbers.

A compound pendulum pivoted about a fixed point (point A in Figure 2.1) on the ab-

sorber is called a single-point hinged absorber. Due to the construction of these absorbers,

the path traversed by the center of mass (COM) of these absorbers relative to the rotor is

a circle and the absorber body undergoes a rotational motion relative to the rotor. Because

of this rotation, an accelerometer (see Figure 2.5) fixed to the absorber will measure its
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absolute acceleration along a coordinate system fixed to the absorber. These absorber fixed

coordinates (discussed in section 2.1.1.1) will be selected as per convenience.

Figure 2.2: Bifilar absorber arrangement.

A bifilar absorber is a compound pendulum restricted at two distinct points (either on

a moving base, such as the rotor, or on a base fixed to ground) in such a way that the

COM of the pendulum moves along a specific path with respect to the base (see Figure 2.2).

Typically, these absorbers are supported using a pair of rollers, as shown in Figure 2.2. Here

the absorber and the base each have identical but inverted cutout curves between which

cylindrical rollers are placed (see Figure 2.2). The rollers are assumed to roll without slip.

The constraint between the absorber and the base makes the COM of the absorber move

along a desired path with respect to the base, the path itself prescribed by the design of

the cutout curves. This arrangement of the absorber makes the motion of the absorber with

10



respect to its base purely translational, i.e., it does not rotate relative to the base (in contrast

with the hinged absorber). This fact implies that the directions along which the axes of the

accelerometer (see Figure 2.5) will be aligned are fixed relative to both the rotor and the

absorber. This bifilar arrangement provides a convenient way to construct a general path

along which the absorbers are allowed to move relative to the rotor. Bifilar absorbers are

most often used in practice. In fact, the absorbers shown in Figure 1.1 and 1.2 are bifilar.

The goal of this e↵ort is to develop a method for both bifilar and hinged arrangements.

An analytical approach is formulated and approximate solutions are developed for both types

of absorbers. The method developed for bifilar epicycloid path absorbers is experimentally

verified.

2.1.1.1 Hinged Circular Path Absorbers

Figure 2.3 shows a schematic model of a hinged type absorber. The caption in Figure 2.3

defines the parameters noted in the figure. Angles ✓ and � are the degrees of freedom of the

absorber-rotor system, � being the absorber coordinate measured relative to a line rotating

with the rotor, which we are interested in estimating, and ✓ being the rotor angle. For

convenience, the x and y axes of the accelerometer (shown in Figure 2.5) are assumed to be

aligned with unit vectors ê
�

and ê
L

, respectively, from Figure 2.3. The position vector ~r
a

of any general point on the pendulum mass (shown in Figure 2.3) can be written as

~r
a

= ~r
c

+ �
x

ê
�

+ �
y

ê
L

(2.1)

where �
x

and �
y

are the o↵sets from the COM to the point of interest; see Figure 2.4.

Di↵erentiating ~r
a

in equation (2.1) twice with respect to time, we the obtain acceleration
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èf

èLèR

èq rc
Æ

O

A

V
C

q

Figure 2.3: Model of a circular path absorber, hinged at point A. Axis of rotation of rotor is
point O, R is the distance between rotor axis O and absorber hinge point A, L is the distance
between point A and the absorber path vertex V (equal to the constant pendulum length),
point C shows the location of the COM of the absorber, ê

R

is the unit vector normal to the
absorber COM path at vertex V and moving with the rotor at ✓̇, ê

✓

is the unit vector tangent
to the absorber COM path at vertex V , � is the angular displacement of the absorber with
respect to the rotor, ~r

c

is the position vector of absorber COM measured from point O, ê
L

is the unit vector normal to the absorber COM path at a location which is at an angle �
from V and it moves with the absorber at angular speed (✓̇ + �̇), and ê

�

is the unit vector
tangent to the absorber COM path at same location as ê

L

and moves at an angular speed
of (✓̇ + �̇).
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~a of this point on the absorber as

~a = R
⇣
✓̈ê

✓

� ✓̇2ê
R

⌘
� �

x

✓⇣
✓̈ + �̈

⌘
ê
L

+
⇣
✓̇ + �̇

⌘2
ê
�

◆

+
�
L+ �

y

� ⇣
(✓̈ + �̈)ê

�

� (✓̇ + �̇)2ê
L

⌘
(2.2)

Accelerometer)
loca+on)

a

Figure 2.4: Location of accelerometer from COM of a hinged absorber.

The acceleration expression in equation (2.2) needs to be expressed in terms of the unit

vectors corresponding to the absorber fixed axes, namely, ê
L

and ê
�

. Using the following

transformation from unit vector pair ê
R

and ê
✓

ê
R

= ê
L

cos�� ê
�

sin�

ê
✓

= ê
L

sin�+ ê
�

cos�
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we obtain

~a = a
�

ê
�

+ a
L

ê
L

(2.3)

where

a
�

= R
⇣
✓̈ cos�+ ✓̇2 sin�

⌘
+
�
L+ �

y

� ⇣
✓̈ + �̈

⌘
� �

x

⇣
✓̇ + �̇

⌘2
(2.4)

a
L

= R
⇣
✓̈ sin�� ✓̇2 cos�

⌘
�
�
L+ �

y

� ⇣
✓̇ + �̇

⌘2
� �

x

⇣
✓̈ + �̈

⌘
(2.5)

The expression of the acceleration in equation (2.3) will be used for estimating the relative

absorber angle � in terms of other measured quantities, as discussed in section 2.1.3. Now

we derive a similar expression for the bifilar arrangement of absorbers.

Figure 2.5: x and y axes fixed to accelerometer frame along which the absolute acceleration
is measured.

2.1.1.2 Bifilar Absorbers

Figure 2.6 shows a schematic model for a bifilar absorber, where the rectangular box in

Figure 2.6 represents the absorber with its COM at point A. The rotor rotates about the
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Figure 2.6: Model for a general path bifilar absorber attached to a rotor. Axis of rotation
passing through point O (perpendicular to the plane of paper) with COM of absorber at
point C, ê

R

and ê
✓

are unit vectors as defined in Figure 2.3, ✓ is the instantaneous angular
displacement of rotor from a reference position, s is the instantaneous distance of the absorber
from the vertex V and measured along the path traversed by the COM, V is the vertex of
the path, ~r

c

is the position vector of absorber COM measured from point O, X(s) is the
instantaneous distance of the absorber from the rotor axis O and measured along unit vector
ê
✓

, Y (s) is the instantaneous distance of the absorber from the rotor axis O and measured
along unit vector ê

R

, and the rectangular box in the figure represents the absorber moving
along the specified path.
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axis passing through point O. The parameters for the model are defined in the caption

of Figure 2.6. Coordinates ✓ and s represent the two degrees of freedom of this absorber-

rotor system. The functions X(s) and Y (s) for a useful class of paths that includes circles,

cycloids, and epicycloids can be found in [6]. Note that ê
R

and ê
✓

are, for convenience,

taken to be the directions along which the axes (x and y) of the accelerometer are aligned

(see Figure 2.5).

The position vector of any general point on such an absorber can be written in terms of

ê
R

and ê
✓

as

~r
a

= ~r
c

+ �
x

ê
✓

+ �
y

ê
R

(2.6)

where �
x

and �
y

are o↵sets from the COM to the point of interest; see Figure 2.7.

Di↵erentiating equation (2.6) with respect to time twice, we obtain the acceleration of

the point as follows

~a = a
✓

ê
✓

+ a
R

ê
R

(2.7)

where

a
✓

=
⇣
Ẍ � (X + �

x

) ✓̇2 + 2 Ẏ ✓̇ +
�
Y + �

y

�
✓̈
⌘

(2.8)

a
R

=
⇣
Ÿ � 2 Ẋ ✓̇ � (X + �

x

) ✓̈ �
�
Y + �

y

�
✓̇2
⌘

(2.9)

where, by the chain rule,

Ẋ =
dX

ds
ṡ

Ẍ =
d2X

ds2
ṡ2 +

dX

ds
s̈

Ẏ =
dY

ds
ṡ

Ÿ =
d2Y

ds2
ṡ2 +

dY

ds
s̈

(2.10)
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Equation (2.7) provides an expression which relates measured variables (a
R

, a
✓

, ✓̇, ✓̈) to

desired absorber response, expressed as s, through the specified path functions (X(s), Y (s)).

Accelerometer)
loca+on)

a

C

Figure 2.7: Location of accelerometer from COM of a bifilar absorber.

2.1.2 Kinematic Di↵erential Equation for the Absorber Response

Equations (2.3) - (2.5), and equations (2.7) - (2.10), define di↵erential equations in terms of

the unknown variables � and s, respectively, with coe�cients involving a
�

, a
L

, ✓̇, ✓̈, �
x

, �
y

,

L and R for hinged absorbers, and a
✓

, a
R

, ✓̇, ✓̈, �
x

, �
y

and the path parameters for bifilar

absorbers. The known coe�cients such as a
i

measured from accelerometers, ✓ measured from

rotor encoders and the time independent parameters can directly be substituted into the

di↵erential equations (2.3) and (2.7). These second-order di↵erential equations are strongly

nonlinear and have several time-periodic terms that arise from the measured acceleration and

rotor responses. Finding the desired time-periodic solution of these equations is the central
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problem of the analysis. One could use numerical techniques (e.g., shooting methods) for

their solution. However, it is convenient to have approximate analytical expressions for the

time-periodic response. Thus we use a harmonic balance method to solve (2.3) and (2.7),

and for this we require some modifications of these equations. This will be developed in

section 2.1.3. We will further discuss solutions of the di↵erential equations (2.3) and (2.7)

in the last chapter of this thesis.

2.1.3 Approximate Kinematic Solutions

If an accelerometer is fixed on the absorber and the rotating system is in motion, the ac-

celerometer will provide time signals of the absorber acceleration components in directions

ê
L

and ê
�

(Figure 2.3) for hinged absorbers, and ê
R

and ê
✓

(Figure 2.6) for bifilar ab-

sorbers. An encoder attached to the rotor will provide (✓̇, ✓̈) by standard di↵erentiation

methods in MATLABTM or LabViewTM. In the present analysis, we intend to measure the

absorber and rotor dynamics at steady state, i.e., when the fluctuation over the mean rotor

speed is periodic, and the absorber response is periodic. The various assumptions taken in

transforming the expressions for the acceleration are as follows (detailed justifications follow

below):

(a) The oscillatory contribution to the acceleration is more useful in the ê
�

and ê
✓

compo-

nents, for the hinged and bifilar absorbers, respectively, than the ê
L

and ê
R

components.

(b) The nonlinear terms can be approximated by expansions to cubic degree in the absorber

response coordinates � and s.
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(c) For a single harmonic excitation order, the rotor response is represented by three signif-

icant harmonics, and the absorber response consists of a single significant harmonic.

The justifications for these assumptions are detailed below.

Regarding assumption (a), the expressions for the acceleration given in equation (2.3)

and equation (2.7) consist of two components that are orthogonal to each other, but as per

assumption (a) only one of these components is needed to determine the absorber dynamics.

In fact, the radial components ê
L

and ê
R

are dominated by centripetal e↵ects (represented

in the (R+L)✓̇2 and Y (s)✓̇2 terms) and are thus less useful for measurement of the absorber

motion, since one would have to consider a small oscillation riding on a signal with a large

mean value. Thus we consider the ê
�

and ê
✓

components of acceleration a
�

and a
✓

, for

hinged and bifilar absorbers, respectively, to estimate the absorber dynamics.

To simplify the expression of the acceleration as per assumption (b), we Taylor expand

the path functions. For a hinged absorber we expand sin � and cos� in terms of �, as follows:

sin� = �� �3

3!
+ · · ·

cos� = 1� �2

2!
+ · · ·

(2.11)

For bifilar absorbers we expand X and Y in terms of s, making use of the fact that the

curve followed by the absorbers is symmetric about X = 0, so that the expansions take the

following form

X = �
x

+X1s+X3s
3 + · · ·

Y = �
y

+ Y0 + Y2s
2 + · · ·

(2.12)
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where the values of the coe�cients X
i

and Y
i

depend on the geometry of the absorber path,

and we have again assumed that the accelerometer is installed at position (�
x

, �
y

) from the

absorber COM. Coe�cients X and Y for various paths can be found in [6]. We substitute

these expansions of equations (2.11) and (2.12) into the acceleration coe�cients of ê
�

and ê
✓

given in equation (2.3) and equation (2.7), respectively, and using assumption (b) we obtain

expressions for a
�

and a
✓

as

a
�

⇠=
�
R + L+ �

y

�
✓̈ +

�
L+ �

y

�
�̈� �

x

⇣
✓̇ + �̇

⌘2
+

R✓̇2
✓
�� �3

3!

◆
�R✓̈

�2

2!
(2.13)

a
✓

⇠= X1s̈� (X1s+ �
x

) ✓̇2 +
�
Y0 + �

y

�
✓̈+

(6X3sṡ+ 4Y2s✓̇)ṡ+
⇣
3X3s̈+ Y2✓̈ �X3s✓̇

2
⌘
s2 (2.14)

where we note that ✓̇ = ⌦ +  (t) will have a DC (mean) component of ⌦, the mean rotor

speed, plus oscillations  (t), and all other time-varying terms will be oscillatory with zero

mean. Equations (2.13) and (2.14) are simplified versions of exact di↵erential equations (2.3)

and (2.7). The main results of the analysis are obtained by doing a balance of the order n

harmonics in these equations. For small amplitudes, the linear truncation may be su�cient,

and we also make use of it for comparison purposes, and to determine the limitations of

the linearized analysis. The cubic truncations in equations (2.13) and (2.14) are useful for

capturing nonlinear kinematic e↵ects of the paths at moderate amplitudes.
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Regarding assumption (c), the torque acting on the rotor in the cases of interest is

composed of mean and periodic components, with frequencies proportional to the mean

speed ⌦. If n is the fundamental order of this excitation, the torque can be expressed as

T ⇠= T0 +
NX

k=1

⇣
T

k

eikn⌦t + T ⇤
k

e�ikn⌦t

⌘

where k’s allow for multiple harmonics, and the complex conjugate of T is indicated by T ⇤.

Note that these torques arise from loads that depend on the rotor angle ✓, and are then

approximated by a Fourier series in which ✓ ⇡ ⌦t is assumed. In general, the torque is

dominated by a single order and thus using assumption (c) we claim that the rotor response,

represented by ✓̇, is dominated by its mean component plus three harmonics. In complex

form the rotor speed can be expressed as

✓̇ ⇠= ⌦+
3X

k=1

⇣
Q

k

eikn⌦t +Q⇤
k

e�ikn⌦t

⌘
(2.15)

where the complex conjugate of Q is indicated by Q⇤. Note that the harmonic amplitudes

Q
k

will be determined from measurements of the rotor response.

Similarly, it is observed in simulations and experiments that the absorber response is

dominated by a single harmonic at order n [7, 10, 11]. The absorber response is therefore

approximated by the following expressions, for hinged and bifilar absorbers, respectively:

� ⇠= Pein⌦t + P ⇤e�in⌦t (2.16)

s ⇠= Sein⌦t + S⇤e�in⌦t (2.17)
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It is the goal of this study to determine complex coe�cients P and S from more easily

measured quantities, namely, the rotor harmonics, typically obtained from an encoder, and

the accelerometer output.

Since the absorber response is dominated by a single harmonic (order n), for each type

of absorber only two unknowns are of interest, namely, the real and imaginary parts of P

or S, or, equivalently, the amplitude and phase of the order n component of the absorber

response. Thus, only two equations are needed to obtain expressions for these unknowns.

This allows us to consider only the first harmonic of the series expressions for the acceleration

components, which can be expressed as,

a
�

⇠= �1e
in⌦t + �⇤1e

�in⌦t (2.18)

a
✓

⇠= ⇥1e
in⌦t +⇥⇤

1e
�in⌦t (2.19)

Harmonic assumptions (2.16 - 2.19) are inserted into equations (2.13) and (2.14), which

are then expanded in terms of their harmonic components. The equations to be solved for

the unknowns P and S are obtained by retaining only the first harmonic of the resulting

expansion, resulting in a pair of equations for the real and imaginary parts of P and S. It

is important to note that due to nonlinear kinematic e↵ects, harmonics will couple to one

another, resulting in equations that involve order n harmonics from all sources, as well as

higher order harmonic coe�cients from the rotor response. These equations are detailed in

Appendix A, specifically equations (A.12 - A.13) for hinged absorbers and equations (A.44

- A.45) for bifilar absorbers. Each set of equations is a pair of coupled cubic equations in

the unknown coe�cients, and therefore they cannot be solved in closed form. If one retains
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only linear terms, the equations become two linear equations in two unknowns which can be

inverted in closed form. For solving the equations for the unknowns of interest, P and S,

the following information is used: The harmonic coe�cient �1 or ⇥1 is determined from a

Fourier analysis of the signal from the accelerometer; quantities Q
k

and ⌦ are determined

from a Fourier analysis of the measured rotor response; and the excitation order n and system

geometric variables are known from the physical configuration of the system.

In the following section, we demonstrate results for a bifilar absorber system using three

levels of approximation. The first is the linear approximation, which can be solved in closed

form; the second is the cubic approximation, which requires the solution of the polynomial

equations given in Appendix A and B; the third approximation comes from direct simulation

of the system dynamic equations, which are labeled as “exact”. The closed form solution for

linear approximations will be discussed here.

If we linearize the expressions for a
�

and a
✓

in equations (2.13) and (2.14) and substitute

the harmonic expansions given in equations (2.15 - 2.17), we obtain expressions for �1 and

⇥1, respectively, that are linear in terms of the absorber amplitudes P and S. Expressing

�1 and P in terms of real and imaginary parts, with the subscripts “r” and “i”, respectively,

and inverting the expressions, yields

P
r

=
(�

r

� c1) f4 � (�
i

� c2) f2

f1f4 � f2f3

P
i

=
(�

r

� c1) f3 � (�
i

� c2) f1

f2f3 � f4f1

(2.20)

where f1, f2, f3, f4, c1 and c2 are expressions of known variables and measured quantities

(see Appendix (A.1.1) for expression for the f
i

’s and c1,2).
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Doing the same for ⇥1 and S, we find

S
r

=
(⇥

r

� C1)F4 � (⇥
i

� C2)F2

F1F4 � F2F3

S
i

=
(⇥

r

� C1)F3 � (⇥
i

� C2)F1

F2F3 � F4F1

(2.21)

where F1, F2, F3, F4, C1 and C2 are expressions of known variables and measured quantities

(see Appendix (A.2.1) for expressions for the of F
j

’s and C1,2).

Equations (2.20) and (2.21) provide closed-form approximate solutions for the real and

imaginary parts of the absorber response, from which the amplitude and phase can be de-

termined. These expressions have linear relationships between the acceleration component

of interest and the absorber complex amplitude. However, in order to consider a range

of response amplitudes for the dynamic system, one varies the amplitude of the fluctuating

torque applied to the rotor, denoted here by �, and the absorber and accelerometer responses

are nonlinear in terms of �. Therefore, when one plots results for the absorber amplitude

obtained from the linear approximation, the curve will be linear if plotted versus the accel-

eration component, but nonlinear if plotted versus �. In our study we vary �, since this

corresponds to what is done when investigating the system dynamics.

While the linear approximation yields convenient (if lengthy) closed form expressions,

more accurate approximations can be obtained by considering nonlinear relationships. A first

step in this direction is to use the cubic approximations given in equations (2.13) and (2.14).

Applying the harmonic approximations to these equations leads to polynomial (coupled

cubic) equations for P
r

and P
i

for hinged absorbers, and for S
r

and S
i

for bifilar absorbers.

These equations, which are given in Appendix A.2.2, cannot be solved in closed form, and

therefore numerical solutions are required. It is found that these cubic approximations

24



improve the accuracy of the results when compared to the linear approximations, but the

gain is generally not worth the increased complexity in the equations.

If one is going to use numerical methods, it is suggested that the kinematic di↵erential

equations for a
�

(given in equation (2.4)) or a
✓

(given in equation (2.8)) be solved by more

direct methods. These expressions do not involve any approximations, but they require

numerical solution of a di↵erential equation with unknown initial conditions. Specifically,

one would feed into these equations data from the accelerometer and rotor encoder (in the

form of harmonic amplitudes and phases), and seek the periodic solution for � for hinged

absorbers, or for S for bifilar absorbers (recalling in the latter case thatX and Y are functions

of S). This would require a method for numerically solving a boundary value problem, from

which one would find a very good approximation for the absorber response. This issue is

explored further in the final chapter of the thesis.
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2.2 Experimental Setup and Methods

In this section we first describe the experimental setup and equipments required for the

experiments, and then describe the methods used to obtain the estimated absorber response

from experiments.

2.2.1 Experimental Rig

Figure 2.8: Experimental rig.

The experiments were performed using the existing rotor rig shown in Figure 2.8. This

rig is described in detail in [9, 12]. It consists of a vertical shaft that is driven by a servo

motor. The servo motor is controlled through a control system that takes its input from a
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LabViewTM program.

The servo motor can be instructed through the program to run at a desired mean rotor

speed ⌦ using a DC torque. An oscillating torque can be superimposed on the DC torque,

resulting in torsional oscillations. The program allows for engine order excitation that mimics

many applications, including automotive engines. The rig is designed to hold up to four

torsional absorbers, but in the present study a single absorber is employed. The rotor

dynamics (✓̇) are measured through data captured by an encoder. The absorber used in

this study is shown in Figure 2.9. The absorber is mounted onto the rig using a pair of

rollers. The absorber and encoder can be locked to the rotor (for reference measurements)

or free to oscillate, in which case the angular displacement of the absorber relative to the

rotor is measured using an encoder, as shown in Figure 2.9. In the bifilar case, it has been

shown that the output of the encoder is nearly exactly proportional to the S displacement

of the absorber, even out to large amplitudes [13]. The output from this encoder provides a

measurement of the absorber motion that is independent of the accelerometer measurement,

allowing for a means of validating the approach developed in this work.

2.2.2 Accelerometer Arrangement

Accelerometers measure absolute acceleration along certain predefined axes, x and y as

shown in Figure 2.5, relative to the accelerometer. We measure the absolute acceleration of

the absorbers using accelerometers by mounting them directly on the absorbers in such an

orientation that the x and y axes of the accelerometer (see Figure 2.5) are aligned with the

desired axes on the absorber, namely, ê
L

and ê
�

for hinged absorbers (Figure 2.1) and ê
✓

and

ê
R

for bifilar absorbers (Figure 2.2). Figure 2.9 shows an unmounted absorber mass, with
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accelerometer and encoder mounted. The accelerometer is mounted on the absorber using

super glue. To avoid surface damage of the absorber, the absorber is covered with masking

tape and the accelerometer is mounted on the masking tape as shown in Figure 2.9.

Figure 2.9: Closeup of unmounted absorber mass, with accelerometer and encoder.

2.2.3 System Parameter Values

To demonstrate the present method, we need to compare the expressions for acceleration

from Equations (2.18) and (2.19) with the corresponding measured harmonics obtained from

the accelerometer during experiment, from which the absorber response, given by P or S,

can be determined. The quantities needed for the calculations are the distance c of the

absorber COM from the rotor axis, the coe�cients X
i

’s and Y
i

’s as given in Equation (2.12),

and the accelerometer o↵set values �
x

and �
y

.

The distance c is measured using a vernier caliper. In our experimental setup, the rotor

is cylindrical and thus, for convenience and accuracy, the distance from the further edge of
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the rotor to the absorber COM (c + r) is noted and then the radius of rotor r is deducted

from this measured value (see Figure 2.10). The accelerometer o↵sets �
x

and �
y

are also

measured using a vernier caliper.

Rotor%

Absorber%

2r

c + r

Figure 2.10: Procedure to measure the absorber COM distance from the rotor center.

The coe�cients X
i

and Y
i

for the bifilar absorber have been derived from the exact

expressions for X(s) and Y (s), as given in [6]. These coe�cients, up to the cubic order are

as follows,

X1
⇠= 1 (2.22)

X3
⇠= � 1

6⇢2
0

(2.23)

Y0
⇠= c (2.24)

Y2
⇠= � 1

2⇢0
(2.25)

where ⇢0 is the radius of curvature of the absorber at its vertex. It is determined using the
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value of absorber tuning ñ (measured as described below) and distance c as follows [5, 6],

⇢0 =
c

1 + ñ2 (2.26)

The parameters R and L for hinged absorbers can also be estimated distance c and the

absorber tuning ñ using [5, 6, 7],

L =
c

1 + ñ2 (2.27)

R = c� L (2.28)

To determine these values, we need to estimate the absorber tuning order ñ. The ab-

sorbers are designed to be tuned to a certain order, but one can experimentally verify the

actual absorber tuning order. It can be shown [11] that the steady-state amplitude of the

rotor angular acceleration, will have a minimum at ñ as the excitation order while n is varied.

Shown in Figure 2.11 is the amplitude of the order n harmonic of the rotor angular acceler-

ation normalized by the measured amplitude of the order n applied order torque versus the

excitation order n. The tuning order estimated from this experiment is ñ ⇡ 2.31.

It should be noted that the absorber tuning will be a↵ected by the placement of the

accelerometers with respect to the absorber COM, and the accelerometer mass relative to

the absorber mass. If �
y

is the o↵set of the accelerometer mass and m
a

is the mass of

accelerometer, the COM of the absorber will move from its original position due to the
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Figure 2.11: Order n amplitude of the rotor angular acceleration divided by the amplitude
of fluctuating torque as a function of the applied torque order, n.

attachment of the accelerometer by �, given by

� =
m

a

�
y

m
p

+m
a

(2.29)

where m
p

is the mass of the absorber. With this deviation in the location of the absorber

COM, the absorber tuning order becomes ñ0, given by

ñ0 =
ñq

1 + �
⇢0

(2.30)

where ⇢0 is the original radius of curvature of the absorber path at the vertex. In our system

ñ and ñ0 di↵er by �ñ ⇠= 0.336 %, given by

�ñ =
|ñ0 � ñ|

ñ
⇤ 100 (2.31)
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The resulting parameter values measured and estimated from experiments are summa-

rized in Table 2.1

Table 2.1: Parameter Values for Experiments

Rotor center to absorber COM (c) 0.123 m

Absorber tuning (ñ) 2.31

Radius of curvature at vertex (⇢0) 0.0196

Accelerometer o↵set (�
x

) 0.000 m

Accelerometer o↵set (�
y

) 0.025 m

Absorber mass (m
p

) 0.432 kg

Accelerometer mass (m
a

) 0.0023 kg

The corresponding values for X
i

and Y
i

are obtained using the parameter values listed

in Table 2.1 and Equations (2.22-2.25).

In order to simulate the dynamics equations of motion that correspond to the experimen-

tal conditions, we require additional dynamic parameters including the rotor inertia J , the

absorber mass m
p

, the rotor damping c0, and the absorber damping ratio µ
a

. The dynamic

parameters required for simulation are measured and estimated as given in [1] and are listed

in Table 2.2.

32



Table 2.2: Parameter Values for Dynamic Simulations [1]

Parameter Value

Absorber mass (m
p

) 0.4312 kg

Rotor inertia (J) 0.01075 kg-m2

Absorber viscous damping (µ
a

) 0.105

Rotor damping (c0) 0 .0144 Nms
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2.3 Results

This section describes results obtained from the proposed method, for both simulations and

experiments.

2.3.1 Simulations

The above sections outline a method for mapping data from an absorber-mounted accelerom-

eter and a rotor encoder into the amplitude and phase of the absorber motion relative to

the rotor. Before considering experimental data, the method is tested using simulation data.

Since this is a purely kinematic exercise, it is possible to examine the method using some pre-

scribed motions for the rotor and absorber and compute the resulting absorber acceleration

components. However, in order to mimic the experimental procedure, the motions are com-

puted using numerical integration of the known equations of motion for the rotor-absorber

system, which are well known and can be found in [6, 7, 8, 9]. The typical outputs from the

simulation are the rotor response (✓̇) and the absorber motion (� or s). The components

of absolute acceleration, which would be measured by an accelerometer in an experiment,

need to be constructed from simulation data of ✓̇ and � or s, and their derivatives, using

equations (2.4) and (2.8). In order to test the results based on the linear and cubic approx-

imations, the signals from the acceleration and the rotor response are Fourier decomposed,

keeping a single harmonic for the acceleration component of interest (a
�

or a
✓

) and three

harmonics for the rotor response. This filters out noise and provides the harmonic coe�-

cients that are used to determine the complex amplitude of the first harmonic of the relative

absorber motion.

The estimated data from the linear and cubic approximations are then plotted along
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Figure 2.12: Normalized absorber displacement amplitude estimated from linear (4) and
cubic (2) analysis compared with exact values (#) at 400 RPM, over a range of absorber
response amplitudes.
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Figure 2.13: Normalized absorber displacement amplitude estimated from linear (4) and
cubic (2) analyses compared with exact values (#) at 300 RPM, over a range of absorber
response amplitudes.

with the reference results obtained directly from simulations. The resulting plots are shown

in Figure 2.12. Figures 2.12 and 2.13 shows result obtained from simulations of a bi-

filar absorber moving along a tautochronic epicycloidal path [8] with the rotor running at

a mean speed of ⌦ =400 and 300 rpm respectively. The simulations were performed at a
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low speed since we intend to compare it with experiments, which are also performed at low

speeds due to the hardware constraints of the experimental rig. The scaled amplitude of the

oscillating torque applied to the rotor varies along the horizontal axis and the corresponding

absorber response is plotted along the vertical axis. The absorber response in the plot is

the non-dimensional absorber amplitude S

S

max

which corresponds to the absorber amplitude

normalized by the maximum amplitude the absorber can achieve (S
max

is set by the cusp

of the epicyloid [5]). The scaled oscillating torque amplitude is a non-dimensional quantity

�, which corresponds to the ratio of the oscillating torque to twice the rotor kinetic energy,

i.e., � = |T |
J⌦2 . The plot shows three di↵erent curves, representing the absorber amplitude

obtained in three di↵erent ways. The (#) curve represents the solutions from numerical sim-

ulations of EOM of the CPVA system. This data is analogous to the measured and filtered

amplitude of the absorber obtained directly from the absorber encoders in the laboratory.

The (2) and (4) curves represent estimated values of the absorber amplitude from the cubic

(equation (2.14), appendix A.2.2) and linear (equation (2.21)) approximations, respectively.

The result in Figure 2.12 shows that the predictions from the analysis are accurate when

compared with the exact results from simulations for a moderate range of absorber ampli-

tudes, say up to 60% of the cusp value. The approximate results begin to deviate from the

simulation data at large absorber amplitudes, higher than 60% of the cusp value. The errors

grow at a higher rate for estimations using the linear approximation as compared to estima-

tions using the cubic approximation. This deviation is due to the Taylor series and finite

harmonic assumptions used to approximate the non-linear system dynamics. Of course, one

could improve the method by including more terms in the approximations. However, a more

reasonable approach is to numerically find solutions of the di↵erential equations for a
�

or
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, which is discussed in the final chapter of this thesis. We now experimentally examine

the proposed method.

2.3.2 Experimental Results

The absorber response that is estimated from the accelerometer and rotor encoder data

using the present method will be compared to the absorber response taken directly from

the absorber encoders. The response data is stored and post-processed using a LabViewTM

program. The program computes the Fourier components of the signals taken from the

accelerometer (for ⇥1), the rotor encoder (for ⌦ and the Q
i

s), and the absorber encoder

(for verification). The known and measured quantities are used as follows: For the linear

approximation, they are substituted into equation (2.21) and solved in close form for S
r

and

S
i

. For the cubic approximation, they are substituted into equations (A.44 - A.45), which

are solved numerically for S
r

and S
i

. The absorber encoder is used to generate the reference

result, which is the amplitude of the order n harmonic of the directly measured absorber

response.

Results for a range of absorber amplitudes are obtained by sweeping the amplitude of

the oscillating part of the torque acting on the rotor. Runs were carried out at 300, 400 and

500 RPM. The results obtained from each sweep, using the linear and cubic approximations,

as well as the reference results from the absorber encoder, are shown in Figures 2.14, 2.15

and 2.16. The trends are the same as those observed in the simulations. Here the linear

approximation works well up to about 50% of the maximum absorber amplitude, and the

cubic approximation works well at all amplitudes we were able to measure, that is, up to

about 80% of the allowable absorber amplitude. This agreement validates the approach
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derived in this thesis.
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Figure 2.14: Absorber displacement amplitude S estimated from linear (4) and cubic (2)
analyses compared with encoder values (#) at 300 RPM.
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Figure 2.15: Absorber displacement amplitude S estimated from linear (4) and cubic (2)
analyses compared with encoder values (#) at 400 RPM.

Figure 2.17 shows a comparison of the simulation and experimental results, both obtained

using the cubic approximations. This comparison shows that the cubic estimation of the

absorber response from simulations and experiments are in agreement up to about 80% of

the peak absorber amplitude, which is at the limit of the experimental setup.
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Figure 2.16: Absorber displacement amplitude S estimated from linear (4) and cubic (2)
analyses compared with encoder values (#) at 500 RPM.
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Figure 2.17: Comparison of cubic estimation from simulations and experiments.
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Chapter 3

Conclusions and Future Work

The results generated from simulations as well as from experiments support the proposed

method, of using an absorber-mounted accelerometer, as an e↵ective means of determining

the response of a centrifugal pendulum absorber in a running machine. The approximations

developed are very good at low and moderate absorber amplitudes, but degrade at large

amplitudes, due to the truncated nonlinear expansions and the approximations made in the

harmonic balance analysis.

The proposed approach o↵ers the benefit of small packaging space, and the potential for

using telemetry [3] for data transfer, makes it appealing for applications. The main use of

this approach will be in the development and testing of passive absorber systems, but it

could also be used for active or semi-active pendulum absorber systems.

The present study provides a method for mapping the absorber acceleration into the

information about the steady state response of the absorber. Some topics for improving

and/or continuing this work include the following:

(i) In our present analysis, we had assumed that the torque in the system is periodic with

one harmonic. This method may be further modified and extended to include cases

where the torque has multiple harmonics.

(ii) The method can be generalized to the case of the transient response of absorbers in a
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running system. In this case the issue of the initial conditions used in Equations (2.4)

and (2.8) is crucial.

(iii) This approach can also be extended to estimate the absorber damping using ring down

tests. For this, a transformation of the absorber acceleration into a log decrement

of the absorber response is required. Absorber damping is a key aspect in absorber

performance and is often di�cult to predict in a running engine. If we can propose a

method of estimating the absorber damping coe�cient using accelerometers, it will be

important in the absorber design process.

(iv) A detailed investigation of how uncertainties in measurements and the various approxi-

mations used a↵ect the precision af the results would be beneficial for the understanding

the limitations of the approach.

(v) When absorbers are operated at large amplitudes, the linear approximation developed

herein breaks down. One can use the cubic approximation, also described in this the-

sis, but it requires numerical solution of polynomial equations. If one is going to use

numerical methods, it is probably worthwhile to deal more directly with the kinematic

di↵erential equations (2.4) and (2.8), and not resort to harmonic balance. Here we out-

line a proposed method for doing so for the case of bifilar absorbers; the approach for

hinged absorbers is the same. For this direct approach, one would take measured signals

for a
✓

(from the accelerometer) and ✓̇ (from the rotor encoder) and Fourier decompose

each into a finite set of harmonics, essentially filtering these signals. These harmonic

expressions would be used to generate the corresponding terms in equation (2.8), re-

sulting in a second order ordinary di↵erential equation for the unknown S(t). The

resulting equation has many time-periodic terms, both additive and multiplicative to
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Figure 3.1: Comparison of simulated absorber dynamics with the numerical solution of
di↵erential equation (2.8).

S and its derivatives, and the unknown S appears through the known path functions

X(S) and Y (S). The desired solution of this equation is time-periodic, and the initial

conditions for this solution are unknown. It would be convenient if direct simulations

of equation (2.8) with arbitrary initial conditions would settle onto this desired solu-

tion, but this is not the case. In fact, the desired solution is locally unstable. (Note

that the periodic response of interest is dynamically stable, but here we are solving a

purely kinematic equation.) Figure 3.1 shows two curves: the steady-state absorber

response taken from direct simulations of the systems dynamics equations of motion

(given in [7]), and a numerical solution of equation (2.8) obtained using initial condi-

tions taken from the simulated response. In this case, the direct dynamic simulation

provides all features of the periodic response S(t) of interest to within small numerical

errors, including the required initial conditions. By treating S(t) as unknown in the

corresponding kinematic di↵erential equation (2.8), and using the correct initial condi-

tions (to some finite precision), the solution of the kinematic equation should track the
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desired solution. Figure 3.1 shows that it does so for a short time, but it quite quickly

diverges from the desired periodic response, indicating its local instability. Therefore,

one must formulate the solution of equation (2.8) as a boundary value problem and

use numerical methods, for example, shooting methods, in order to obtain the desired

solution. The resulting periodic solution will provide the desired absorber response

relative to the rotor, from which its harmonic component at order n can be obtained.

This is the recommended approach for large amplitude absorber motions.

(vi) In fact, solutions of Equations (2.4) and (2.8) is central to all such studies, and a

fundamental study of its properties would be of interest.
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Appendix A

Full Coe�cients

A.1 Full Coe�cients: Hinged Absorbers

From equation (2.16) we can write the absorber dynamics in terms of harmonics with complex

coe�cients P and P ⇤, where

P = P
r

+ iP
i

(A.1)

Similarly in equation (2.15), the individual coe�cients Q
j

can be written as

Q
j

=
�
Q

jr

+ iQ
ji

�
, j = 1, 2, 3 (A.2)

We substitute these values into equation (2.15), and then into the expression for a
�

in

equation (2.13) to obtain a Fourier series, as given in equation (2.18). Since we are only

interested in the �1 term, we extract the first harmonic in complex form to obtain

�1 = �
r

+ i�
i

(A.3)
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A.1.1 Linear Approximation

If we truncate equation (2.13) at linear terms in � and substitute the expressions of P and

Q in the linear expression, we get the �
r

and �
i

as

�
r

= f1Pr

+ f2P
i

+ c1

�
i

= f3Pr

+ f4P
i

+ c2

(A.4)

where f1, f2, f3, f4, c1 and c2 are as follows:

f1 = R (2⌦Q2i

+ 2 (Q1i

+Q3i

)Q1r

� n⌦Q2r

� 2Q1i

Q3r

) + 2n⌦ (�⌦+Q2r

) �
x

(A.5)

f2 =
⇣
�Ln2 +R

⌘
⌦2 + 3RQ2

1i

+ 2RQ2
2i

� 2RQ1i

Q3i

+

R
⇣
2Q2

3i

+Q2
1r

+ 2Q2r

(�⌦+Q2r

)� 2Q1r

Q3r

+ 2Q2
3r

⌘
� n⌦Q2i

(R� 2�
x

)� n2⌦2�
y

(A.6)

f3 =
⇣
�Ln2 +R

⌘
⌦2 +RQ2

1i

+ 2RQ2
2i

+ 2RQ1i

Q3i

+

R
⇣
2Q2

3i

+ 3Q2
1r

+ 2Q2r

(⌦+Q2r

) + 2Q1r

Q3r

+ 2Q2
3r

⌘
+ n⌦Q2i

(R� 2�
x

)� n2⌦2�
y

(A.7)

f4 = R (2⌦Q2i

+ 2 (Q1i

+Q3i

)Q1r

� n⌦Q2r

� 2Q1i

Q3r

) + 2n⌦ (⌦+Q2r

) �
x

(A.8)

c1 = 2 (�⌦Q1i

+ (Q1i

�Q3i

)Q2r

+Q2i

Q3r

) �
x

+Q1r

�
�2Q2i

�
x

+ n⌦
�
L+R + �

y

��
(A.9)

c2 = �2 (Q2i

Q3i

+Q1r

(⌦+Q2r

) +Q2r

Q3r

) �
x

�Q1i

�
2Q2i

�
x

+ n⌦
�
L+R + �

y

��
(A.10)
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Using equations (A.5) to (A.10) we can obtain the amplitude of absorber P in closed form

as shown in equation (2.20)

P
r

=
(�

r

� c1) f4 � (�
i

� c2) f2

f1f4 � f2f3

P
i

=
(�

r

� c1) f3 � (�
i

� c2) f1

f2f3 � f4f1

(A.11)

A.1.2 Cubic Approximation

Substituting equations (A.1) and (A.2) into the cubic expression of equation (2.13), we get

expression for �
r

and �
i

as follows:

�
r

= c00 + c10Pr

+ c20P
2
r

+ c30P
3
r

+ c11Pr

P
i

+

c12Pr

P 2
i

+ c21P
2
r

P
i

+ c01P
i

+ c02P
2
i

+ c03P
3
i

(A.12)

�
i

= d00 + d10Pr

+ d20P
2
r

+ d30P
3
r

+ d11Pr

P
i

+

d12Pr

P 2
i

+ d21P
2
r

P
i

+ d01P
i

+ d02P
2
i

+ d03P
3
i

(A.13)

where the values of coe�cients c
ii

and d
ii

are as follows:

c00 = c1 (A.14)

c10 = f1 (A.15)
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c20 = 0 (A.16)

c30 = �1

3
R (3Q3i

Q1r

+Q2i

(2⌦+Q2r

) +Q1i

(2Q1r

�Q3r

)) (A.17)

c11 = 0 (A.18)

c12 = R (� (2Q1i

+Q3i

)Q1r

+Q2i

(�2⌦+Q2r

) + 3Q1i

Q3r

) (A.19)

c21 = �1

2
R
⇣
⌦2 + 3Q2

2i

+ 2
⇣
Q2

1i

+Q1i

Q3i

+Q2
3i

⌘
+Q2

2r

+ 2
⇣
Q2

1r

�Q1r

Q3r

+Q2
3r

⌘⌘

(A.20)

c01 = f2 (A.21)

c02 = 0 (A.22)

c03 = �1

6
R
⇣
3⌦2 + 10Q2

1i

+ 5Q2
2i

� 10Q1i

Q3i

⌘
+

� 1

6

⇣
6Q2

3i

+ 2Q2
1r

� 8⌦Q2r

+ 7Q2
2r

� 6Q1r

Q3r

+ 6Q2
3r

⌘
(A.23)

d00 = c2 (A.24)

d10 = f3 (A.25)

d20 = 0 (A.26)

d30 = �1

6
R
⇣
3⌦2 + 2Q2

1i

+ 5Q2
2i

+ 6Q1i

Q3i

⌘
+

� 1

6

⇣
6Q2

3i

+ 10Q2
1r

+ 8⌦Q2r

+ 7Q2
2r

+ 10Q1r

Q3r

+ 6Q2
3r

⌘
(A.27)

d11 = 0 (A.28)
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d12 = �1

2
R
⇣
⌦2 + 3Q2

2i

+ 2
⇣
Q2

1i

+Q1i

Q3i

+Q2
3i

⌘
+Q2

2r

+ 2
⇣
Q2

1r

�Q1r

Q3r

+Q2
3r

⌘⌘

(A.29)

d21 = �R (3Q3i

Q1r

+Q2i

(2⌦+Q2r

) +Q1i

(2Q1r

�Q3r

)) (A.30)

d01 = f4 (A.31)

d02 = 0 (A.32)

d03 = �1

3
R (� (2Q1i

+Q3i

)Q1r

+Q2i

(�2⌦+Q2r

) + 3Q1i

Q3r

) (A.33)

A.2 Full Coe�cients: Bifilar Absorbers

Using a similar approach, as in section A.1.1 with hinged absorbers we can write the order

n harmonic coe�cient of S as follows

S = S
r

+ iS
i

(A.34)

The rotor harmonics are expressed as given in equation (A.2). We substitute these expres-

sions into equation (2.14) and carry out a Fourier expansion. Since we are only interested in

the ⇥1 term, we retain the first harmonic from the expression obtained by the substitution

of equation (A.34) and (A.2) into (2.19) to obtain

⇥1 = ⇥
r

+⇥
i

(A.35)
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A.2.1 Linear Approximation

If we truncate equation (2.14) to include only linear terms in ✓ and substitute the expressions

of S and Q into the linear expression, we get the ⇥
r

and ⇥
i

as

⇥
r

= F1Sr

+ F2S
i

+ C1

⇥
i

= F3Sr

+ F4S
i

+ C2

(A.36)

where F1, F2, F3, F4, C1 and C2 are given by

F1 = �
⇣⇣

1 + n2
⌘
⌦2 +Q2

1i

+ 2Q2
2i

+ 2Q1i

Q3i

⌘
X1�

⇣
2Q2

3i

+ 3Q2
1r

+ 2Q2r

(⌦+Q2r

) + 2Q1r

Q3r

+ 2Q2
3r

⌘
X1 (A.37)

F2 = �2 (⌦Q2i

+ (Q1i

+Q3i

)Q1r

�Q1i

Q3r

)X1 (A.38)

F3 = �F2 (A.39)

F4 = �
⇣⇣

1 + n2
⌘
⌦2 + 3Q2

1i

+ 2Q2
2i

� 2Q1i

Q3i

⌘
X1+

⇣
2Q2

3i

+Q2
1r

+ 2Q2r

(�⌦+Q2r

)� 2Q1r

Q3r

+ 2Q2
3r

⌘
X1 (A.40)

C1 = �2 (Q2i

Q3i

+Q1r

(⌦+Q2r

) +Q2r

Q3r

) �
X

+

Q1i

(2Q2i

�
X

+ n⌦ (Y0 + �
Y

)) (A.41)
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C2 = 2 (�⌦Q1i

+ (Q1i

�Q3i

)Q2r

+Q2i

Q3r

) �
X

+

Q1r

(�2Q2i

�
X

+ n⌦ (Y0 + �
Y

)) (A.42)

where X1 = 1, X3 = � 1
6⇢

2
0
, Y0 = c, Y2 = � 1

2⇢0
and ⇢0 is the radius of curvature of the

absorber COM path at the vertex.

Using equations (A.37) to (A.42) we can obtain the amplitude of absorber P in closed

form as shown in equation (2.21).

S
r

=
(⇥

r

� C1)F4 � (⇥
i

� C2)F2

F1F4 � F2F3

S
i

=
(⇥

r

� C1)F3 � (⇥
i

� C2)F1

F2F3 � F4F1

(A.43)

A.2.2 Cubic Approximation

Similar to the cubic expressions developed for hinged absorbers in Appendix A.1.2 , we can

develop a cubic approximation of equation (2.14), resulting in expressions for ⇥
r

and ⇥
i

as

⇥
r

= a00 + a10Sr

+ a20S
2
r

+ a30S
3
r

+ a11Sr

S
i

+

a21S
2
r

S
i

+ a12Sr

S2
i

+ a01S
i

+ a02S
2
i

+ a03S
3
i

(A.44)

⇥
i

= b00 + b10Sr

+ b20S
2
r

+ b30S
3
r

+ b11Sr

S
i

+

b21S
2
r

S
i

+ b12Sr

S2
i

+ b01S
i

+ b02S
2
i

+ b03S
3
i

(A.45)
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where the values of coe�cient a
ii

and b
ii

are as follows:

a00 = C1 (A.46)

a10 = F1 (A.47)

a20 = n⌦ (Q1i

+Q3i

)Y2 (A.48)

a30 = �
⇣
3
⇣
1 + n2

⌘
⌦2 + 2Q2

1i

+ 5Q2
2i

+ 6Q1i

Q3i

⌘
X3�
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6Q2
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+ 10Q2
1r

+Q2r
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)
⌘
X3�

⇣
10Q1r

Q3r

+ 6Q2
3r

⌘
X3 (A.49)
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)Y2 (A.50)
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))X3 (A.52)
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b00 = C2 (A.56)

b10 = F3 (A.57)

b20 = n⌦ (5Q1r

�Q3r

)Y2 (A.58)
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