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ABSTRACT 

MOLECULAR MAPPING OF RUST RESISTANT QTLS IN A SYNTHETIC 

HEXAPLOID WHEAT POPULATION 

By 

Jeffrey David Kovach  

 

  Triticum aestivum, common wheat, is a widely grown crop that is responsible for a large 

portion of worldwide consumed calories. Bread wheat is an allohexaploid derived from a series 

of hybridization and polyploidization events between three diploid progenitor species. Due to its 

origin, genetic diversity across the hexaploid wheat genome is lacking, especially in the D 

genome. Ae. tauschii, the D genome diploid progenitor, is an important source of D genome 

variation and has been used to identify novel genes for multiple traits including disease 

resistance. The evolution and spread of new pathogenic Puccinia races highlight the need to 

identify and utilize novel sources of disease resistance. A recombinant inbred line population 

was derived from a cross between the synthetic 9.131.15(tetraPrelude/TA2474) and KS05HW14, 

a hard white winter wheat. This population was phenotyped for resistance to stem, stripe and leaf 

rust. All-stage resistance to stem and stripe rust was mapped on 5BL and 4DS originating from 

9.131.15 and TA2474, respectively. Leaf rust resistance was mapped to 3BL and adult plant 

resistance QTLs were mapped to the 6D and 7D chromosomes for leaf and stem rust resistance 

in Mason, MI in 2017. This study identifies resistance to all three Puccinia rust species in this 

RIL population. However, further work is needed to determine if the 4DS and 5BL loci are novel 

and the identified adult plant resistance QTLs can be repeatedly observed. A single RIL was 

phenotyped as resistant to all three Puccinia fungal pathogens in all tested environments. This 

line can be used as a useful source of disease resistance to these fungal pathogens.  
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CHAPTER 1: Introduction 

 

Wheat’s Importance, Evolution and Origin  

Wheat’s Importance in Agriculture  

Wheat is one of the most important row crops grown worldwide and a common sight 

when traveling through agricultural regions. However, a field full of amber wheat spikes can 

quickly transform into shriveled diseased heads attached to broken stems due to the presence of 

evolving virulent pathogens. In 2016, wheat was planted on over 50 million acres in the United 

States alone (USDA, 2016). Flour from wheat is used to produce a wide range of food products 

ranging from crackers to bread. Around nineteen percent of calories consumed by humans are 

from wheat (Braun et al. 2010). Since wheat is widely grown and an important food source there 

is a considerable world wide effort to continually improve yields. However, wheat yields are 

affected by both the environment they are grown in and the diseases present in their 

environment. The Puccinia fungal species are treacherous wheat pathogens because of their 

capability to evolve new aggressive and virulent races to overcome presently deployed resistance 

genes (Milus et al., 2009; Singh et al., 2011b; Hovmøller et al., 2016; Bhattacharya, 2017). In 

order to better understand methods to improve hexaploid wheat, it is important to understand the 

origin of hexaploid wheat to more effectively utilize available wild germplasm.  

Evolution and Origin of Hexaploid Wheat 

 The evolution of hexaploid wheat began over 10,000 years ago with the domestication of 

cereals beginning where present day Turkey and Syria are located and is tied with the 

development of agriculture (Lev-Yadun et al., 2000; Tanno, 2006). Wheat is a member of the 

grass family Poaceae and the tribe Tritceae which include barley and rye. Divergence between 
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wheat and these other members of Tritceae occurred 11 to 7 MYA respectively (Huang et al., 

2002). Common wheat, Triticum aestivum (AABBDD, 2n=6x=42), is the most widely cultivated 

wheat worldwide. Common wheat is an allohexaploid which consists of the independently 

segregating A, B, and D genomes. The grouping of these genomes during the evolution of 

common wheat involved a series of interspecific hybridizations, followed by subsequent 

polyplodization, between three different diploid progenitor species. The first in this series of 

hybridizations occurred between the A genome progenitor and the B genome progenitor species 

which, when followed by spontaneous chromosome doubling, generated the wild tetraploid 

emmer species T. turgidum ssp. dicoccoides (AABB, 2n=4x=28) (Feuillet et al., 2008). The A 

genome progenitor species that produced this wild tetraploid has been demonstrated to be, T. 

uratru (AA, 2n=2x=14) (Chapman et al., 1976; Dvorák et al., 1993). The identification of the B 

genome progenitor species has been difficult. It was originally speculated to be the wild goat 

grass species Ae. speltoides (SS, 2n=2x=14),(Sarkar and Stebbins, 1956). However, current 

research supports the theory that Ae. speltoides is instead a closely related relative of the B 

genome progenitor species (Salse et al., 2008). This wild emmer species was subsequently 

cultivated resulting in the formation of T. turgidum ssp. dicoccum (Peng et al., 2011).  

The second interspecific hybridization and spontaneous chromosome doubling occurred 

between cultivated emmer T. dicoccum (AABB, 2n=4x=28) and the D genome progenitor 

species resulting in the formation of hexaploid wheat (McFadden and Sears, 1946). The D 

genome of hexaploid wheat originated from the wild goat grass species Ae. tauschii ssp. 

strangulata (DD, 2n=2x=14) (Kihara, 1944; McFadden and Sears, 1946). It is thought that 

cultivated emmer, and not wild emmer, hybridized with Ae. tauschii to generate common wheat 

due to the shared geographical distribution of T. dicoccum with Ae. tauschii (Zohary et al., 1969; 
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Cox, 1997). Ae. tauschii itself is hypothesized to have arisen from a homoploid hybridization 

between the A and B genome progenitor species (Marcussen et al., 2014). However, taking into 

account the presence of additional genomes in the Aegilops-Triticum complex and using both 

nuclear and chloroplast DNA, evidence supports a hybrid origin of Ae. tauschii but further work 

is needed to determine the correct model describing its origins (Li et al., 2015). The origin of 

common wheat helps to explain the amount of genetic diversity present in current breeding 

populations and identify potential sources to improve it.  

Genetic Diversity in Hexaploid Wheat  

Genetic Diversity within the Hexaploid Subgenomes 

 The recent polyploidization of common wheat has resulted in a narrow genetic base 

(Feuillet et al., 2008; Peng et al., 2011). However, this lack of genetic diversity is not consistent 

between the three subgenomes. The A and B genomes contain a higher amount of 

polymorphisms  compared to the D genome  (Poland et al., 2012; Cavanagh et al., 2013; Wang et 

al., 2014). An explanation for the increased diversity in the A and B genomes present in 

hexaploid wheat is the potential formation of female fertile hybrids by tetraploid and hexaploid 

wheat crossing (Cox, 1997; Dvorak et al., 2006). These fertile hybrids would enable 

hybridization between tetraploids and the hexaploid population increasing genetic diversity of 

the shared genomes (Figure 1.1). However, in the case of the D genome, the recent 

polyplodization event between Ae. tauschii and T. turgidum created a genetic bottleneck, 

reducing the genetic diversity present in the D genome of T. aestivum compared to the diploid 

progenitor species (Dvorak et al., 1998; Caldwell et al., 2004; Reif et al., 2005).  
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It is widely thought that the Green Revolution, while significant in increasing wheat 

production, has reduced the genetic diversity in breeding populations (Trethowan et al., 2007). 

There was an initial decrease in genetic diversity after the Green Revolution where intense 

selection for high yielding and disease resistant varieties was undertaken (Warburton et al., 

2006). In efforts to introduce a greater amount of genetic diversity, specifically in the D genome, 

breeders can use available landraces or wild relatives in their programs. The use of wild species 

has increased the genetic diversity of both spring hexaploid and durum wheat varieties since the 

Green Revolution (~1980s to present) (Reif et al., 2005; Ren et al., 2013).  However, the 

difference in genomewide genetic diversity between land races and modern cultivars is minor, 

which is speculated to be because selection from breeding acts on only a subset of the genome 

(Cavanagh et al., 2013). In contrast, Ae. tauschii accessions have greater D genome variation 

compared to both landraces and modern bred cultivars  (Reif et al., 2005). The introduction of 

novel variation from wild species, such as Ae. tauschii, is paramount to continue the 

improvement of modern wheat varieties.   

Identification and Utilization of Ae. tauschii Genetic Diversity 

As modern breeding practices are used to develop new elite wheat varieties, there is an 

ever increasing emphasis to identify new sources of beneficial alleles to enhance current 

germplasm. Novel genetic variation that is available for use can be separated into different gene 

pools based on observed meiotic pairing and production of fertile hybrids with the primary gene 

pool allowing for recombination and fertile hybrids to be generated through hybridization 

(Figure 1.2) (Cox, 1997; Feuillet et al., 2008). Those species that are included in this primary 

gene pool include T. turgidum, and the progenitor diploid species (Harlan and de Wet, 1971; 

Cox, 1997). The low genetic diversity of the D genome can potentially be improved through the 
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introduction of novel alleles from Ae. tauschii. The lineage of Ae. tauschii accessions and the 

method of introgression can impact the successful introgression of beneficial alleles to common 

wheat. The Ae. tauschii gene pool itself can be split into two separate lineages based on DNA 

marker data (Dvorak et al., 1998; Wang et al., 2013). While it is unknown the specific number of 

hybridizations that occurred between Ae. tauschii and T. dicoccum to form hexaploid wheat, it  

has been demonstrated that a single Ae. tauschii sublineage is the most related to the original  D 

genome progenitor ancestor (Wang et al., 2013). Therefore, Ae. tauschii accessions that are not 

genetically similar to this sublineage may be of additional interest to use to introduce novel 

genetic variation. The introduction of novel variation from wild species into cultivated wheat has 

several key problems that need to be addressed including: (1) the phenotyping of wild and alien 

species for desired traits, (2) the introduction of genetic information from donor species into an 

adapted variety. 

 Identification of Ae. tauschii accessions that contain desirable alleles can be performed in 

a straightforward manner for those qualitative traits that are controlled by a few major effect 

genes. One example is disease resistance, especially major gene resistance, which can be 

evaluated directly in wild species. Examples of this  include Septoria tritici blotch (McKendry 

and Henke, 1994) and the rusts (Zaharieva et al., 2001; Assefa and Fehrmann, 2004; Liu et al., 

2010; Rouse et al., 2011). Thus, the identification of novel genetic variation that contributes to 

highly heritable traits can be done before the introgression of wild relatives into a common wheat 

background. However, identifying wild germplasm with desirable alleles that affect quantitative 

traits controlled by many minor effect QTLs, such as grain yield, can be difficult due to the 

presence of several negative alleles in the background of these un-adapted varieties (Cox, 1997).  

In order to identify genomic regions that confer positive alleles from wild germplasm it is often 
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necessary to evaluate wild material in an adapted background and use backcross methods to 

reduce linkage drag to eliminate negative alleles (Tanksley and Nelson, 1996).  

 Introduction of genetic variation from Ae. tauschii can be done through either direct 

crossing or the production of synthetic hexaploids. Direct crossing between hexaploid and 

diploid Ae. tauschii creates an F1 hybrid that has an AABBD genome. However, endosperm 

development of the F1 hybrids is halted and requires embryo rescue to successfully produce a 

plant (Gill and Raupp, 1987). These F1 hybrids are male sterile and are backcrossed twice to the 

recurrent parent to return to a normal ploidy level (Olson et al., 2013a). It has been previously 

demonstrated that the genotype of wild relatives other than Ae. tauschii has an impact on the 

number of F1 hybrids recovered during direct crosses (Sharma and Ohm, 1990; Valkoun et al., 

1990; Tixier et al., 1998; Fedak, 1999).  Differences in the number of F1 embryos per direct cross 

produced has been observed between white and red winter wheat and different Ae. tauschii 

accessions (E. Olson, Personal Communication). However, there are no known reasons for this 

genotypic effect in direct hexaploid wheat x Ae. tauschii crosses. Synthetic wheat is produced 

through the direct hybridization of tetraploid wheat (AABB) with Ae. tauschii (DD) to create a 

triploid (ABD), which, through chromosome doubling, produces a hexaploid wheat line 

(AABBDD) (McFadden and Sears, 1946). Production of direct hybrids can be technically 

challenging in comparison to the production of synthetic lines. However, it can allow for an 

accelerated return to an adapted background after the initial direct cross.  

 The tetraploid parent in a synthetic cross can be a T. turgidum line or an extracted 

tetraploid. Extracted tetraploids are made through the crossing of a hexaploid line to a tetraploid 

line to create a pentaploid F1 hybrid which is then backcrossed for several generations to create 

an AABB extracted tetraploid (Kerber, 1964). These extracted tetraploids retain the A and B 
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genomes from their hexaploid form. The extracted tetraploids have less vigor than their 

hexaploid counterparts owing to the elimination of a third of their genome, though differences in 

vigor may be impacted by the tetraploid accession and  the number of backcrosses used to 

produce the extracted tetraploid (Figure 1.3) (Kerber, 1964; Kaltsikes, P. J. , Evans, L.E. , Larter, 

1969; Yang et al., 1999).   

Overview of the Puccinia Genus 

A major group of pathogens that affect wheat and other grass species are the fungi that 

are members of the Puccinia genus. The fungi in this genus can be delineated into multiple 

species dependent on the host plants they are capable of infecting. Puccinia striiformis f.sp. 

tritici (wheat stripe rust), Puccinia graminis f. sp. tritici (wheat stem rust) and Puccinia triticina 

f. sp. tritici (leaf rust)  being among the rust fungi that infect wheat. These species can be further 

delineated into “races” which describes a specific virulence/avirulence to a specific set of 

resistance genes (Roelfs, 1984).  

Life Cycle  

The life cycle of the members of the Puccinia genus is well understood (Chen, 2005; 

Leonard and Szabo, 2005; Chen et al., 2014). Briefly, the asexual uredinospores (n+n) germinate 

and fungal hyphae enter through the stomata. After the fungus has developed, hyphae burst 

through the epidermis and produce new uredinospores asexually. As the wheat plant begins to go 

through senescence, diploid teliaspores form through the fusion of the haploid genomes of the 

uredinospores. These teliospores undergo meiosis to produce haploid basidospores which infect 

the alternative host. After successful germination and proliferation, basidospores develop pycinia 

which produce spermagonia that fuse with other spermagonia to produce dikaryotic mycelium. 
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These mycelium develop and produce aecia which release aceiospores that infect wheat. The 

asexual uredinospores that are subsequently produced are capable of spreading over thousands of 

miles and can cause multiple cycles of infection over a single growing season (Roelfs and 

Bushnell, 1984). 

Stem, stripe, and leaf rust are examples of heterocious biotrophic fungal pathogens that 

complete their life cycle on two different hosts. Asexual propagation occurs on the primary host 

while an alternative host is required for the successful completion of sexual reproduction.  The 

alternative host for stem rust has been known to be barberry but it has not been demonstrated 

until recently that stripe rust can develop on both barberry species and Mahonia aquifolium, 

Oregon grape (Jin, 2011; M.N, 2013; Zhao et al., 2013). Unlike stem and stripe rust, leaf rust’s 

alternative host is Thalictrum speciosissimum (Bolton et al., 2008; Kolmer, 2013). The presence 

of this mixed reproduction in the rusts creates a situation where new virulent races are capable of 

being produced at a high rate (McDonald and Linde, 2002; Jin, 2011). Two factors that can 

influence the impact of these spores are the environment a wheat crop is grown in and the 

deployment of resistant varieties. Rust spores are sensitive to both humidity and temperature, 

which can affect spore germination and limits the initial presence of spores at the beginning of 

the growing season in more temperate growing zones (McGregor and Manners, 1985; Kramer 

and Eversmeyer, 1992; Chen, 2005). The evolution of new rust races that are more aggressive 

and are virulent to currently deployed resistance genes can have a potentially devastating effect 

on wheat yield. Thus, it is necessary for new novel sources of rust resistance to be identified.  
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Puccinia graminis as a Pathogen 

Highly Virulent Races are Capable of Overcoming a Majority of Current Resistance  

The overwintering of stem rust on the alternative host, Berberis vulgaris L, or what is 

known commonly as Common Barberry, allows for both sexual recombination and earlier 

infection to occur in these regions where it is grown (Jin, 2011). In the early 20
th

 century, there 

was a concerted effort to eliminate the common barberry from the United States and this 

program was a success with only occasional sightings of common barberry in non-grain growing 

areas (Roelfs, 1982). This “elimination” of the sexual recombination step in the stem rust’s life 

cycle can negatively impact its ability to adapt and overcome deployed resistance genes. 

However, the elimination of the alternative host does not completely eliminate the potential for 

new aggressive races. The proliferation of clonally propagated uredinospores and the 

accumulation of spontaneous mutations can lead to the formation of new virulent races (Jin, 

2011). Several new stem rust races have been identified including Pgt-TTKSK, also known as 

Ug99, and Pgt-TTTTF that are virulent against a large number of stem rust resistance genes that 

are currently used, with Ug99 being capable of successfully infecting over 80% of wheat 

cultivars (Singh et al., 2011b; Bhattacharya, 2017). There is a need to identify new sources of 

genetic variation in current wheat breeding germplasm and wild relatives that can be used to 

identify sources of resistant to these constantly evolving pathogens.  

Stem Rust Resistance Genes from Ae. tauschii  

Stem rust resistance genes have been identified on all three genomes. The diploid 

progenitor for the D genome Ae. tauschii has served as a useful source of resistant genes. Efforts 

have been directed towards identifying these disease resistance genes with 42 stem rust genes 
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officially designated(McIntosh et al., 2014). Currently designated stem rust genes successfully 

introgressed from Ae. tauschii into common wheat include Sr33, Sr45, Sr46, SrTA1662, 

SrTA10171, and SrTA10187 (Kerber and Dyck, 1979; Marais et al., 1998; McIntosh et al., 2013; 

Olson et al., 2013a; b).  Sr33 and Sr45 are located on the 1D chromosome and originated from 

Ae. tauschii accessions RL5288 and RL5289, respectively (Marais et al., 1998).  Sr46 is located 

on the 2D chromosome and is from the Ae. tauschii accession TA1703 (Rouse et al., 2011). 

SrTA1662, from the Ae. tauschii accession TA1662, is located on the 1D chromosome (Olson et 

al., 2013a). SrTA10171 and SrTA10187, from Ae. tauschii accessions TA10171 and TA10187, 

are located on the 7D and 6D chromosomes, respectively (Olson et al., 2013b). All six of these 

genes are all-stage resistance genes that are effective against Ug99 (Rouse et al., 2011; Olson et 

al., 2013a; b). However, Sr33, Sr45, and Sr46 were susceptible to Pgt-TTTTF based on seedling 

tests (Rouse et al., 2011).  

Puccinia striiformis as a Pathogen 

Aggressive Virulent Stripe Rust Races are becoming Widespread  

 Historically, the temperature sensitivity of stripe rust has limited its primary range to 

where local inoculum can survive until it is spread by wind into more temperate regions. The 

potential for stripe rust to develop adaptations to survive at a wider range of temperatures as well 

as the changing climate could be disastrous for wheat growing regions that had previously been 

mostly unaffected by stripe rust (Milus et al., 2009; Chakraborty et al., 2011; Hovmøller et al., 

2011). There has been a massive shift in the worldwide stripe rust population in the 2000s with 

high temperature adapted strains, such as PstS1, PstS2, and Pst-Warrior currently widespread 

(Hovmøller et al., 2016; Walter et al., 2016; Ali et al., 2017). In addition to temperature 

adaptation, stripe rust populations have developed virulence to a significant number of resistance 
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QTLs. In a survey of the global yellow rust population, only Yr5 and Yr15 displayed resistance to 

all tested races out of all of the tested QTLs, Yr1, Yr2, Yr3, Yr4, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, 

Yr15, Yr17, Yr24, Yr25, Yr27, Yr32 (Ali et al., 2017). Evidence has demonstrated that the Pst-

Warrior rust races, that has replaced the pre-2011 population of stripe rust in the United 

Kingdom, is more genetically diverse than the previous population (Hovmøller et al., 2016). 

Both the adaptation to a wider temperature range and the presence of genetically diverse virulent 

strains of stripe rust increases the need for the identification of novel stripe rust genes. 

Stripe Rust Resistance Genes from Ae. tauschii  

 Major efforts have focused on identifying stripe rust resistance with 61 resistance genes 

officially designated (McIntosh et al., 2014). The current officially identified stripe rust genes 

successfully introgressed from Ae. tauschii include Yr28 and YrAS2388 (Singh et al., 2000; 

Huang et al., 2011). Both of these genes were introgressed into hexaploid wheat through the use 

of synthetic lines. The diploid source of YrAS2388 has a highly resistant infection type (0-1) 

based on inoculation with a mixture of stripe rust races native to China (Huang et al., 2011). 

However, the AS2388 accession displays a higher resistance in the diploid background compared 

to the synthetic indicating that there may be interactions suppressing resistance from Ae. tauschii 

(Huang et al., 2011). YrAS2388 is present on the distal end of the 4DS chromosome and 

originates from AS2388 (Huang et al., 2011). Yr28 has a resistant infection type (2-4) as a 

synthetic and screening was not performed on the diploid parent (Singh et al., 2000). Yr28 

originated from the W-219 Ae. tauschii accession and is located on the distal end of 4DS (Singh 

et al., 2000). These genes are both all-stage resistance genes and have similar infection types in 

the synthetic background. Presently, it is unknown if Yr28 and YrAS2388 are the same or 
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different loci though Huang et. al. 2011 claims a difference based on differing IT reactions of 

Yr28 and YrAS2388 to the same rust race in separate studies. 

Puccinia triticina as a Pathogen 

Leaf Rust  

 Recently, attention has been focused on new highly virulent stem and stripe rust races. 

However, leaf rust is still a threat that, like stem and stripe rust, has the ability to quickly develop 

virulent races that can overcome widely deployed resistant genes.  In 1977, the presence of 

virulent races to J73, a widely grown variety of wheat in northwest Mexico, resulted in yield 

losses of over 40% and required government backed fungicide applications to protect the 

affected wheat in the region (Dubin, 1981). Leaf rust is more amiable to a wider range of 

temperatures compared to stripe and stem rust allowing it to spread across a greater number of 

geographical regions (Bolton et al., 2008). Leaf rust can cause around 7-50% yield loss 

dependent on stage of growth infection occurs (Singh et al., 2011a). Leaf rust not only can affect 

the yield of a wheat line but also may have an impact on its quality (Everts et al., 2001). Leaf 

rust is a highly diverse pathogen with new races identified annually from multiple countries 

(Bolton et al., 2008). A survey of North American  leaf rust races demonstrated races are 

geographically localized with virulence to wheat cultivars resistance genes (Kolmer and Hughes, 

2015).  Identifying novel sources of resistance to leaf rust will help protect cultivars from this 

diverse widespread rust pathogen.  

Leaf Rust Resistance Genes from Ae. tauschii  

 Over 55 leaf rust resistance genes have been officially designated (McIntosh et al., 2014). 

Those official leaf rust genes that originate from Ae. tauschii include Lr21, Lr22a, Lr32, Lr39 
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Lr41, and Lr42 (Kerber, 1987; Cox et al., 1994; Raupp et al., 2001; Hiebert et al., 2007; Sun et 

al., 2009).  Lr21 is seedling resistance gene present on the 1DS chromosome and originated from 

the RL5289 Ae. tauschii accession(Cox et al., 1994). Lr22a is the only adult plant resistance 

gene from Ae. tauschii that has been officially identified and is present on the 2DS chromosome 

(Hiebert et al., 2007). Lr32 is a seedling resistance gene (IT 0;-1) that originated from RL5497-1 

and is located on  the 3D chromosome (Kerber, 1987). The location of Lr43 is unknown (Cox et 

al., 1994). Lr41and Lr42 are seedling resistance genes located on the 1D chromosome and 

originated from TA2460 and TA2450, respectively (Cox et al., 1994). Recently, Lr39 was 

determined to be allelic with Lr41, which is actually located on 2DS (Singh et al., 2004). Lr39 is 

located on 2DS and originated from multiple tested germplasm lines (Raupp et al., 2001; Singh 

et al., 2004). 

Breeding for Disease Resistance 

Types of Genetic Resistance  

The original hypothesis concerning gene-for-gene interactions was first identified by Flor 

concerning resistance of flax to rust (Flor, 1955). This hypothesis states that an interaction 

between a substrate from a pathogen is recognized by the host organism resulting in a resistant 

phenotype. These gene-for-gene interactions in terms of rust resistance are exemplified by 

seedling resistance genes. Seedling resistance is characterized by a qualitative hypersensitive 

response to infection that is present throughout all growth stages of the plant and tends to be race 

specific (Leonard and Szabo, 2005; Chen et al., 2014). This hypersensitive response typically 

entails necrosis occurring around the point of infection which prevents the spread of this 

biotrophic pathogen past the point of infection (Stakman, 1915). Adult plant resistance (APR) is 

typically quantitative, is present in the adult growth stages and tends to be non-race specific. 
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APR does not prevent initial infection but lessens its proliferation (Singh et al., 2011c). While 

APR tends to be non-race specific, there are examples of stripe rust race specific APR genes  

(Milus et al., 2015). Rust resistance can be influenced by the environment with some 

environments decreasing the effectiveness and others increasing the effectiveness of certain APR 

genes (Chakraborty et al., 2011). An example of environment being a positive influence on rust 

resistance is high temperature adult plant resistance (HTAPR) (Qayoum and Line, 1985; Chen, 

2005; Lin and Chen, 2007).  HTAPR is characterized by the susceptibility of a variety at the 

seedling stage but as the plant develops and the temperature increases, host resistance increases 

as well.  

In addition to the environment affecting the expression of resistance QTLs, epistatic 

interactions have been identified between these QTLs and genomic regions present in different 

genetic backgrounds. These regions are capable of reducing the effect of a resistance QTL and 

termed as suppressors. Examples of suppressors are present on all three wheat subgenomes and 

lessen the impact of introgressed resistance QTLs for stem (Kerber and Green, 1980; Dyck, 

1987; Bai and Knott, 1992), stripe (Ma and Singh, 1995), as well as leaf rust  (Bai and Knott, 

1992). Thus, the background of the recurrent parent needs to be taken into account when 

determining the effectiveness of resistance QTL. 

Due to its phenotype, all-stage resistance genes are relatively easy and inexpensive to 

screen for. However, these seedling resistance genes when deployed can be quickly overcome by 

increased selective pressure to produce virulent stripe rust races through random mutations 

(Poland et al., 2009; Hulbert and Pumphrey, 2014). Thus, a common method that can be used to 

increase the durability of newly identified seedling resistance genes, called gene pyramiding, is 

to combine multiple seedling resistance genes together in one cultivar (St.Clair, 2010; Mundt, 
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2014). This reduces the chances that races will become virulent when compared to deployment 

of a single seedling resistance gene (Mundt, 2014; Bourget et al., 2015).  In addition to the use of 

seedling resistance genes in breeding program, there is an increased effort to identify and use 

quantitative APR resistance. APR is thought to be the more durable resistance compared to 

seedling resistance. However, even when pathogens develop virulence to major gene resistance, 

these “defeated” genes can still have a residual effect on resistance (Bodny et al., 1986; Li et al., 

1999). Enough of these defeated QTLs together can potentially provide a durable resistance to 

disease (Li et al., 1999). Screening for APR typically requires more time, a greater amount of 

space, and a greater risk of environmental variation and contamination from other field diseases 

when compared to seedling assays, which occur in a controlled environment. However, work has 

been done that attempts to measure APR in artificially inoculated and controlled setting in the 

greenhouse for both stripe (Pretorius et al., 2007) and stem rust (Bender and Pretorius, 2016).  

Apparent Association between the Origins of Ae. tauschii Accessions and Disease Resistance 

Ae. tauschii is a useful source for disease resistance QTL for breeders but it’s necessary 

to be able to identify potentially useful accessions before undergoing the process of creating 

direct crosses or synthetic lines for greater efficiency. As discussed earlier in the chapter, genetic 

analysis and screening for disease resistance has been performed previously on the Ae. tauschii 

accessions themselves before their introduction into a hexaploid genetic background. In order to 

identify those accessions useful for screening, a breeder may select lines that originate from 

certain geographical regions. The geographic origin of a line has been demonstrated to be 

associated with resistance to stem rust (Cox et al., 1992), stripe rust (Liu et al., 2010), and 

fusarium head blight (Brisco et al., 2017). Those environments that are favorable to disease tend 

to contain more resistant accessions as these environments would exhibit a higher disease 
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pressure to drive R gene evolution and selection (Cox et al., 1992). Breeders can use associations 

between environments conducive to disease development and resistance to more effectively 

identify Ae. tauschii accessions more likely to contain disease resistance QTLs in order to 

introgress them into their breeding germplasm.  

Problem Statement 

 Common wheat is a widely grown row crop that first originated in the Middle East and 

evolved through a series of interspecific hybridizations between three diploid progenitor species. 

These recent hybridizations resulted in a diminished genetic diversity in common wheat, 

specifically in the D genome. Ae. tauschii, the D genome progenitor, has been used to increase 

the novel genic variation in hexaploid wheat. This progenitor species has been shown to harbor 

numerous QTLs for disease resistance to all three rust species.  New races of rust have been 

observed that have increased aggressiveness and virulence to currently utilized resistance. In the 

study described in this thesis, a synthetic RIL population was used to identify novel genes 

conferring resistance to stem, stripe, and leaf rust. This RIL population was created by crossing 

9.131.15x (tetraPrelude/TA2474) with KS05HW14 and tested for all-stage resistance and APR 

in the field and greenhouse. QTL analysis allowed for the identification of disease resistance in 

this population that can be used to improve current wheat varieties.  
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APPENDIX 

Figure 1.1.  Hybridization and polyploidization events that result in the formation of hexaploid 

wheat. Dash lines indicate potential hybridizations that can occur between domesticated and 

cultivated tetraploid wheat and between tetraploid wheat and hexaploid wheat. Figure adapted 

from Feuillet et al., (2008). 

 

 

 

  



  

19 

 

Figure 1.2. The gene pools of T. aestivum. Gene pools are determined by F1 fertility and meiotic 

pairing. Ae. tauschii is a part of the primary gene pool due to its homology to the D genome 

regardless of its ploidy difference with bread wheat. Figure adapted from Cox, (1997) and 

Feuillet et al., (2008). 
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Figure 1.3.  Development of an extracted tetraploid from a hexaploid parent. Briefly, the 

hexaploid parent is crossed to a tetraploid variety and pentaploid F1 plants are backcrossed back 

to the hexaploid parent. Pentaploid progeny are selected in each generation and backcrossed 

multiple times. Pentaploid progeny from the last backcross were selfed and tetraploid progeny 

were retained. The size and vigor of the extracted tetraploid is stunted compared to the 

hexaploid. Flow through adapted from and photograph from Zhang et al., (2014). Extracted 

tetraploid procedure originates from Kerber, (1964. 
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CHAPTER 2: Mapping Rust Resistance in a Synthetic (tetraPrelude/TA2474) 

Hexaploid Wheat Population 

 

Abstract  

  New pathogenic Puccinia races highlight the need to identify new sources of disease 

resistance. Disease resistance from the D genome progenitor of common wheat, Ae. tauschii, can 

be introgressed into hexaploid wheat. Two BC1F5:6 RIL families (n = 70) were derived from a 

cross between synthetic hexaploid 9.131.15x (tetraPrelude/TA2474) and a hard white winter 

wheat line, KS05HW14. All-stage and adult plant resistance to stripe, stem, and leaf rust were 

evaluated in the growth chamber, greenhouse and field environments. Both families segregated 

for stem rust resistance in all environments tested and only one family segregated for stripe rust 

resistance. Using composite interval mapping, a region on 4DS was identified that confers all-

stage resistance to stripe rust and a region on 5BL confers all-stage resistance to stem rust. The 

4DS region is inherited from the Ae. tauschii donor TA2474 and the 5BL region is from 

9.131.15x. Resistance to leaf rust, originating from KS05HW14, segregated in both families on 

3BL. Adult plant resistance to leaf and stem rust, on 6D and 7D respectively, segregated in 

U6708-03 and originated from TA2474. Currently, there are no officially designated adult plant 

resistance genes on either 6D or 7D from Ae. tauschii. This study identifies potentially novel 

resistance to all three Puccinia rust species and can be used to develop rust resistant varieties.   

Introduction 

There is a constant need to identify new effective sources of resistance as new highly 

pathogenic diseases emerge throughout the world and threaten the yield of common wheat. The 

need to ensure crop productivity worldwide is becoming increasingly important as the climate 
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shifts and the world population continues to increase (Lobell et al., 2008; Godfray et al., 2010). 

Over 224 million bushels of wheat were produced in 2016 and provide about a fifth of human 

consumed calories worldwide (Shiferaw et al., 2013; FAO, 2015).  In consequence, there has 

been a continued focus by plant breeders both to improve the yield of new varieties and to 

protect against wheat fungal pathogens.  

Identifying new sources of genetic diversity and disease resistance allows breeders to 

respond to newly evolved pathogen races. The potential for a pathogen to evolve highly virulent 

races is exemplified by stripe rust (Puccinia striiformis f. sp. tritici, Pst), stem (Puccinia 

graminis f. sp. tritici, Pgt) and leaf rust (Puccinia triticina, Pt), all members of the Puccinia 

genus. These rusts are heteroecious biotrophic fungi which are capable of both asexual and 

sexual propagation. Infection of susceptible plants by these pathogens can affect yield by 

reducing quantity and quality of produced grain (Leonard and Szabo, 2005; Chen et al., 2014).  

Despite the extensive efforts by breeders to find and utilize effective resistance genes, 

new Pst and Pgt races have developed new virulence patterns (Milus et al., 2009; Singh et al., 

2011b). The Ug99 Pgt race, Pgt-TTKSK, is capable of overcoming a majority of known 

resistance genes that are currently deployed in cultivated wheat (Singh et al., 2011b). While 

Ug99 is currently contained in Africa and parts of the Middle East, the potential for its spread is 

concerning. The emergence of new Pgt races such as Pgt-TTTTF with similar virulence patterns 

to Ug99 raises the concern that currently grown cultivars are inadequate in their protection 

(Bhattacharya, 2017). Pst races, like Pst-Warrior and PstS2, are spreading quickly worldwide 

and are virulent to many resistance genes (Hovmøller et al., 2016; Ali et al., 2017). While there 

are currently no widespread hyper-virulent Pt races similar to PstS2 and Ug99, this pathogen is 

capable of evolving new virulent races like Pgt and Pst. Mexico experienced a widespread leaf 



  

35 

 

rust epidemic in 1977 which resulted in yield losses of over 40% and required government 

backed fungicide applications to control the spread of an aggressive Pt race (Dubin, 1981). Also, 

Pt is capable of tolerating a wider temperature range compared to either Pgt or Pst and is a 

highly diverse pathogen with multiple new races identified annually in different countries 

(Bolton et al., 2008). A survey of North American leaf rust races demonstrated that races are 

geographically localized with virulence to wheat cultivars resistance genes (Kolmer and Hughes, 

2015).Thus, the identification of new rust resistance genes and their introgression into hexaploid 

wheat is necessary to counter the proliferation of new rust races.  

There is concern that intense selection by plant breeders has decreased the amount of 

genetic diversity present in modern cultivars (Warburton et al., 2006; Trethowan et al., 2007). 

This loss in genetic diversity is not consistent across the three subgenomes of wheat. The D 

genome has the least amount of genetic diversity compared to both the A and B genomes based 

on the presence of significantly fewer polymorphisms (Poland et al., 2012; Cavanagh et al., 

2013; Wang et al., 2014). The lack of genetic diversity in hexaploid wheat, particularly in the D 

genome, is also a consequence of the evolutionary history of hexaploid wheat which resulted in 

severe genetic bottleneck (Dvorak et al., 1998; Caldwell et al., 2004; Reif et al., 2005). 

Hexaploid wheat is an allohexaploid composed of three subgenomes: A, B, and D. This 

allohexaploid is derived from the hybridization between T. turgidum (AABB, n=14) with the D 

genome progenitor Ae. tauschii (DD, n=7) followed by spontaneous chromosome doubling 

(Kihara, 1944; McFadden and Sears, 1946).  

Wheat breeders use a wide range of gene pools composed of diploid and polypoid wheat 

progenitor species and wild relatives to improve genetic diversity and identify novel variation. 

The use of wild relatives introduces challenges to breeders based on differences in ploidy, lack of 
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homology, infertile offspring, and linkage drag (Cox, 1997; Feuillet et al., 2008). One relative 

that has been extensively used to improve hexaploid wheat is Ae. tauschii.  Ae. tauschii contains 

a greater amount of genetic polymorphisms in its genome compared to the D genome of both 

elite and landrace hexaploid wheat (Reif et al., 2005). Thus, Ae. tauschii can be used as a source 

of novel alleles by plant breeders to increase D genome variation. One common method used to 

introgress novel variation from Ae. tauschii into common wheat is the production of synthetic 

hexaploid wheat (SHW) lines. SHW is produced by the same process that originally resulted in 

the formation of hexaploid wheat. A tetraploid parent is crossed to an Ae. tauschii accession 

resulting in an F1 triploid. This F1 triploid has its genome doubled by a doubling agent which 

results in the formation of a hexaploid plant (Ogbonnaya et al., 2013). Ae. tauschii has been used 

to improve multiple traits including quality (Hsam et al., 2001; Kunert et al., 2007) and disease 

resistance (Liu et al., 2010; Rouse et al., 2011; Brisco et al., 2017). Utilizing these genetic 

resources is critical when it comes to disease resistance as continued evolution of pathogens can 

render currently utilized resistance genes ineffective.  

Resistance to rust can be categorized as seedling resistance or adult plant resistance. 

Seedling resistance tends to be race-specific and confers resistance throughout all growth stages 

while adult plant resistance (APR) is typically non race-specific and is only effective during the 

adult stages of development (Leonard and Szabo, 2005; Singh et al., 2011c). It has been 

demonstrated in Pst that infection type decreases and latency period increases as wheat continues 

to develop with resistance greatest during anthesis (Ma and Singh, 1996). Some APR genes have 

been identified that provide protection against multiple diseases either through a pleiotropic 

effect of a single gene or a haplotype of tightly linked genes. Two examples of pleiotropy 

include Sr2 and Lr67/Yr46. Sr2 is a Pgt APR gene that is either tightly linked with other 
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resistance genes or confers by itself, resistance to Pt and powdery mildew (Mago et al., 2011). 

Lr67/Yr46, located on chromosome 4DL, is associated with powdery mildew, Pgt, Pst, and Pt 

resistance (Herrera-Foessel et al., 2011, 2014). Although APR is commonly viewed as more 

durable than seedling resistance, proper utilization of seedling resistance can help mitigate the 

potential for virulent populations to evolve. Deployment of seedling resistance in gene pyramids 

or use of different resistance genes in back-to-back seasons can reduce the likelihood of 

pathogen races developing the necessary mutations to bypass deployed resistance genes.  

Currently two Pst, eight Pgt, and five Pt resistance genes originating from Ae. tauschii 

have been officially designated (McIntosh et al., 2014). Yr28 and YrAS2388 on chromosome 4D, 

Sr46 on chromosome 2D, and SrTA10187 on chromosome 6D are four examples of known rust 

resistance genes derived from Ae. tauschii (Singh et al., 2000; Huang et al., 2011; Rouse et al., 

2011; Olson et al., 2013b). Both Yr28 and YrAS2388 were derived from SHW lines developed 

from Ae. tauschii accessions, W-219 and AS2388 respectively and are seedling resistance genes 

(Singh et al., 2000; Huang et al., 2011). Sr46 is an seedling resistance gene effective against 

several Pgt races including Ug99 but is susceptible to Pgt-TTTTF (Rouse et al., 2011). 

SrTA10187 is an seedling resistance gene that is resistant to multiple Pgt  races such as Pgt-

TTKSK, Pgt-QFCSC and Pgt-RKQQC (Olson et al., 2013b; Wiersma et al., 2016). Pt resistance 

genes that originate from Ae. tauschii include Lr21, Lr22a, Lr32, Lr39, Lr41, and Lr42 (Cox et 

al., 1994; Raupp et al., 2001; Hiebert et al., 2007; Sun et al., 2009). Currently, Lr22a is the only 

identified Pt APR gene from Ae. tauschii (Hiebert et al., 2007). Wheat breeders have been able 

to use other wheat relatives, landraces, and elite varieties to identify novel disease resistance 

genes located on the A and B genomes. On chromosome 5BL there are two officially designated 
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Pgt resistance genes, Sr49 and Sr56. Both of these genes originate from common wheat (Bansal 

et al., 2014, 2015). Sr49 is a seedling resistance gene and Sr56 is an APR gene. 

Due to the evolution of more aggressive and virulent races of Pst, Pgt, and Pt there is a 

need to identify new sources of disease resistance. The SHW accession 9.131.15x 

(tetraPrelude/TA2474) is resistant to Pst-37 and Pgt-QFCSC. The objective of this study was to 

identify and map sources of Pst and Pgt resistance in two RIL families derived from a cross 

between 9.131.15x (tetraPrelude/TA2474) and KS05HW14. Regions were identified that 

confirm seedling resistance to Pst on 4D and to Pgt on 5B. Additionally, Pt resistance was 

phenotyped in both families in response to an endemic population of leaf rust in Mason, MI, in 

2017.  

Materials and Methods 

Plant Materials  

 The SHW, 9.131.15x, was derived from a direct cross between the Ae. tauschii accession 

TA2474 and an extracted  tetraploid of the hexaploid wheat variety ‘Prelude’, tetraPrelude 

(Kerber, 1964), followed by colchicine treatment as described in Kalia (2015). TA2474, was 

confirmed to be resistant to Pgt-TTKSK (Rouse et al., 2011) and seedling susceptible to a 

number of leaf rust races (Kalia et al., 2017). 9.131.15x was crossed with KS05HW14 and the 

resulting F1 progeny was self-pollinated to produce the F2 population herein referred to as U6523 

(Figure 2.1). A single F2 plant from this population, U6523-1-156, was identified as resistant to 

Pgt-RKQQC and backcrossed with KS05HW14. Two BC1F1 individuals were self-pollinated 

and the resulting BC1F2 progeny from each population were advanced by single seed descent to 

generate the RIL families U6708-03 (n=71) and U6708-04 (n=73) (Figure 2.1).  
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Stem Rust Phenotyping  

 Stem rust phenotyping was performed on U6708-03 and U6708-04 at the seedling stage 

using Pgt-QFCSC. Ten to twenty seeds per pot were planted for each RIL, ten to fifteen seeds 

per pot for KS05HW14 and five seeds per pot for each inbred parent using a standard 

Arabidopsis thaliana potting soil media. Each inoculated tray contained one check of 

KS05HW14. Seeds were cold-imbibed (4⁰C) to promote even germination. After cold-imbibing, 

plants were placed into a growth chamber (20 ±0.5⁰C). Lines were inoculated with Pgt-QFCSC 

spores suspended in Solitrol using an atomizer after the emergence of the second leaf. After 

inoculation, the seedlings were incubated in a dew chamber for 16h (20⁰C, 100% RH). Seedlings 

were then returned to the growth chamber. Disease measurements for infection type were based 

on a 0-4 scale (Stakman et al., 1962). The Pgt seedling phenotypic scores for the U6708 

populations were subsequently converted to a quantitative 1-5 scale from the 0-4 scale (Dunckel 

et al., 2015). 

 Stem rust phenotyping was performed on U6708-03 and U6708-04 families at the adult 

plant stage under greenhouse conditions using Pgt-QFCSC. Lines from the U6708-03 and 

U6708-04 families were planted in SureMix plant media in 4” pots. Lines were unreplicated and 

1-6 seeds were planted per line. Pots were assigned randomly to trays and placed into a 

greenhouse (70±2⁰C) on a 16/8 h day/night cycle. Lines were inoculated at anthesis with an 

atomizer using Pgt-QFCSC spores suspended in Solitrol. These plants were incubated in a dew 

chamber for 16h (20⁰C, 100% RH). Plants were returned to the greenhouse and individual 

inoculated plants were scored for infection type and severity. Infection type was scored  resistant 

(R), moderately resistant (MR), intermediate (M),  moderately susceptible (MS), or susceptible 

(S) (Roelfs et al., 1992). This APR infection type score was converted to a 1-5 quantitative scale 
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to allow QTL mapping. Rust severity on the flag leaf was measure on a scale of 0-100% based 

on the Cobb scale (Peterson et al., 1948). Scores within pots for the adult plant screening in the 

greenhouse were averaged together. 

Stem rust phenotyping was performed on U6708-03 and U6708-04 at the adult plant 

stage under inoculated field conditions using Pgt-QFCSC. Lines from both U6708 families were 

planted in the field using 1.5m single row plots in April 2017. Lines were replicated twice. 

However, twenty-six lines out of a total of 132 lines for both families had only a single replicate 

due to seed availability and plant survival. ‘Morocco’ was planted around and within the trial to 

serve as spreader row as well as a susceptible check. The entire trial was inoculated with Pgt-

QFCSC spores suspended in Solitrol using a commercial RoundUp® H-style sprayer. The trial 

was inoculated three times, with around 0.5 g of spores per inoculation, at growth stages 5, 9, 

and 12 based on the feekes scale. Lines were phenotyped for both infection type and severity in 

the same manner as performed in the greenhouse.  

Stripe Rust Phenotyping 

 Stripe rust phenotyping was performed on U6708-03 and U6708-04 at the seedling stage 

using Pst-37. Ten to twenty seeds per pot were planted for each RIL, ten to fifteen seeds per pot 

for KS05HW14 and five seeds per pot for each inbred parent. Each inoculated tray contained one 

check of KS05HW14. Planting and imbibing was performed using the same previously described 

procedure for seedling screens. After cold-imbibing, these plants were placed into the growth 

chamber (14±0.5⁰C). Lines were inoculated with Pst-37 suspended in Solitrol using an atomizer 

after the emergence of the second leaf. After inoculation, the seedlings were incubated in a dew 

chamber for 16h (14⁰C, 100% RH). Seedlings were then returned to the growth chamber. Disease 
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measurements for infection type were based on a 0-9 infection type (IT) scale (McNeal et al., 

1971).  

 Stripe rust phenotyping was performed on U6708-03 at the adult plant stage under 

greenhouse conditions using Pst-37. Lines from the U6708-03 family were planted in two 

replicates in 4” square pots using SureMix plant media. Each pot consisted of 1-6 seeds. Pots 

were randomly assigned to a tray and were placed into a greenhouse (65±2⁰C) on a 16/8 h 

day/night cycle. Plants were inoculated using an atomizer with Pst-37 spores suspended in 

Solitrol at approximately Feekes 10. After inoculation, plants were incubated in a dew chamber 

for 16h (14⁰C, 100% RH). Plants were then returned to the greenhouse.  Individual flag leaves, 

or lower leaves if the flag leaf could not be scored,  were scored for infection type using the 0-9 

IT scale and severity based on the Cobb scale (Peterson et al., 1948; McNeal et al., 1971).  

Scores within pots for the adult plant screening in the greenhouse were averaged together. 

Adult Plant Leaf Rust Phenotyping      

 Leaf rust phenotyping was performed on U6708-03 and U6708-04 at the adult plant stage 

under endemic leaf rust inoculation at Mason, MI, for the 2017 growing season. The U6708 

families were planted in 1.5m single row plots in April 2017 in two separate trials with lines 

replicated twice per trial with U6708-03 lines replicated a total of four times. However, due to 

seed availability and plant survival, six lines out of a total of 143 lines for both families had only 

a single replicate. Morocco was planted on the borders of each trial and within each trial to serve 

as a susceptible check and spreader. Lines were naturally inoculated with leaf rust endemic to 

Mason, MI, during the summer of 2017. Plant flag leaves were scored for infection type using a 

categorical system (R: resistant, MR: moderately resistant, M: intermediate, MS: moderately 

susceptible, S: susceptible) (Roelfs et al., 1992). This APR infection type score was converted to 
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a quantitative 1-5 scale to allow QTL mapping. Severity was measured and was based on the 

Cobb scale (Peterson et al., 1948). 

Phenotypic Data Analysis  

 Mean Pst and Pgt seedling scores were obtained for each genotype. Using Proc GLM in 

SAS® 9.4 (SAS Institute Inc, Cary, NC, USA), a mixed model was developed for Pst infection 

type. Genotype was considered a fixed factor while inoculation group and leaf scored were 

treated as random factors. An AUDPC was generated for each line from severity scores.  

In order to account for field effect in Mason, MI, in 2017, both infection type and 

severity for Pgt and Pt ratings were adjusted using the susceptible check Morocco. For Pgt rating 

adjustments, the stem rust nursery was split into two separate replications with each replication 

consisting of two incomplete blocks. The grand mean of Morocco for infection type and severity 

was calculated for each replication and was compared to the mean of Morocco within the 

respective incomplete blocks. The phenotypes of the lines were adjusted based on these 

differences between incomplete blocks nested within replicates. SAS® 9.4 (SAS Institute Inc, 

Cary, NC, USA) was used to perform an ANOVA with genotype as a fixed factor and replication 

as a random factor. LSMeans for both severity and infection type were generated using this 

mixed model for Pgt APR. Pt rating adjustments were performed in a similar manner, however 

both the Pgt-inoculated nursery and a second nursery inoculated with Pst were included (note: 

Pst disease development was not observed). Effect of replication and nursery were ANOVA 

tested with SAS® 9.4 (SAS Institute Inc, Cary, NC, USA). A mixed model with replication as a 

random effect and line as a fixed effect was used to calculate LSMeans for Pt adult plant 

phenotypes. 
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Genotyping-by-sequencing 

 Leaf tissue of BC1F5 seedlings from each line (U6708-03, n=71; and U6708-04, n=73) 

were collected in a 96-well format and stored at -80⁰C. DNA was extracted, quantified, and 

normalized according to Wiersma et al., (2016). Genotyping-by-sequencing (GBS) libraries were 

prepared using a two enzyme protocol as performed by Poland et al., (2012). Briefly, DNA was 

normalized to 20 ng/µL, samples were digested using PstI and MspI restriction enzymes, 

adapters and barcode sequences were ligated to digested genomic fragments, and pooled libraries 

were PCR amplified and confirmed using gel electrophoresis.                                                                                                                      

Pooled libraries were sequenced at the MSU sequencing facility on an Illumina HiSeq 

2500 platform. Tags were called using the TASSEL 5.0-GBS pipeline (Bradbury et al., 2007; 

Glaubitz et al., 2014). Tags were then aligned to the IWGSC (2014) Chinese Spring v1.0 

reference genome and filtered using TASSEL 5 for greater than 0.05 MAF and less than 70% 

missing data (Bradbury et al., 2007; Poland et al., 2012; Glaubitz et al., 2014). GBS tags were 

retained if they were polymorphic between the recurrent parent KS05HW14 and 9.131.15x 

resulting in 3,554 unique tags. 

Linkage Map Construction  

 Using JoinMap 4.0 (Van Ooijen, 2006), separate linkage maps for the U6708-03 and the 

U6708-04 families with the 3554 retained GBS markers were constructed. Markers were 

grouped together based on independent LOD scores with a minimum of LOD score of 3.0. 

Markers were sorted in each group using the “fixed” and “start” order options. Map distances 

were calculated using the Kosambi’s mapping function with default parameters (Kosambi, 
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1943). Comparisons between these linkage maps to the IWGSC (2014)  Chinese Spring v1.0  

reference genome were visualized using MapChart (Supp. Figure 2.1-7A,B)  (Voorrips, 2002). 

QTL Analysis 

 QTL analysis was performed using Windows QTL cartographer version 2.5 (WinQTL) 

(Wang et al., 2012). Composite interval mapping (CIM) was performed for each trait based on 

the following parameters: walk speed=1.0 cM, window size=10.0 cM, control markers=5, and 

backwards regression. Genomewide threshold values were generated for each trait individually 

using 1000 permutations at α=0.05 (Sup. Table 1). Graphical representations of QTL positions 

were generated using MapChart (Voorrips, 2002).  

Results 

Linkage Map Construction 

There were a total of 96,164 GBS raw tags generated using genotyping-by-sequencing. 

After filtering, for markers that had a maximum of 30% missing data and 0.05 MAF, and 

removing, indels, non bi-allelic, heterozygous and missing markers, a total of 5,831 markers that 

were polymorphic or monomorphic between 9.131.15x and KS05HW14 were identified. Out of 

those markers, around 39% were monomorphic and fail to segregate in the population. After 

selecting for polymorphic markers, a total of 3,554 GBS SNPs were retained for further analysis. 

A total of 34 and 32 linkage groups were assembled for U6708-03 and U6708-04 respectively 

(Sup. Figure 2.1-7). In total, 1,840 polymorphic markers segregate in the U6708-04 family and 

1,967 polymorphic markers segregate in the U6708-03 family. There was an average of 57 

markers per linkage group for each family (Sup. Table 2). However, some linkage groups are 

composed of a large amount of markers (Sup. Figure 2.3A, B) and others are composed of very 
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few markers (Sup. Figure 2.1A, B) indicating that there is a wide range in the number of markers 

per linkage group. No linkage groups were able to be constructed that aligned to chromosome 2B 

in U6708-04 and chromosome 3D from U6708-03 due to a lack of polymorphic markers present. 

Linkage groups typically aligned to the telomeric ends of the chromosomes with only a few, 

notably 6D in both families, capturing regions near the centromere.  

Screening for Stripe Rust Seedling Resistance  

 Both U6708 families were screened for resistance to Pst-37 at the seedling stage, 

however, only U6708-03 segregated for Pst resistance while U6708-04 was completely 

susceptible. Prelude was susceptible while the synthetic was resistant (Figure 2.5). Infection type 

measured at the seedling stage was mapped to two distinct 4D linkage groups. The first 

significant association between IT and GBS-SNP markers is located on the short arm of 4D and 

originated from TA2474 (Table 2.1) with an R
2
 of 0.64 and the allelic effect (a) is -1.60 based on 

the 0-9 IT scale (Table 2.1). The second significant association between IT and GBS-SNP 

markers is located on the long arm of 4D and originates from the recurrent parent KS05HW14 

(Table 2.1).  

Screening for Stem Rust Seedling Resistance 

The U6708-03 and U6708-04 families were screened for resistance to the Pgt-QFCSC 

race in a seedling assay and both families segregated for Pgt resistance. An intermediate IT to 

Pgt-QFCSC was observed in the synthetic while a highly resistant reaction was observed in 

Prelude (Figure 2.6). In the U6708-03 family, the 2D, 4D, and 5B linkage groups contained 

significant regions associated with IT measured in the three tested environments (Figure 2.2). In 

the U6708-04 family, regions on the 2D and 5B linkage groups were associated with IT 
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measured in the three environments (Figure 2.3). Both significant associations between the IT 

phenotype measured in the GC with GBS-SNP markers located on the short arm of chromosome 

2D in the U6708-03 family (R
2
 = 0.12 and a= -0.29) and the U6708-04 family (R

2
 = 0.17 and a= 

-0.38) originated from TA2474 (Table 2.1). Significant associations between the IT phenotype 

measured in the GC with GBS-SNP markers located on the long arm of chromosome 5B in the 

U6708-03 family (R
2
 = 0.29 and a= -0.45) and U6708-04 family (R

2
 = 0.25 and a= -0.56) 

originated from 9.131.15x.  

Greenhouse Screening of Adult Plants for Stem and Stripe Rust Resistance  

 The U6708-03 family segregated for Pst resistance at the adult plant stage for both 

infection type (IT) and severity in the greenhouse. Significant associations between markers and 

adult plant ITs were located on the short arms of chromosome 4D and 3B (Figure 2.2).  An 

AUDPC score was generated from the Pst severity scores. Both the AUDPC and adult plant IT 

phenotype co-localize with the seedling IT phenotype on chromosome 4D (Figure 2.2).   

 Both U6708-03 and U6708-04 segregated for Pgt resistance at the adult plant stage for 

both infection type and severity in the greenhouse. Significant associations between markers on 

4B and 5B for infection type in the U6708-03 family were identified (Table 2.1). However, no 

significant associations for severity in the U6708-03 family were identified. Infection type 

measured in the U6708-03 family in the greenhouse (R
2
 = 0.29 and a = -0.84) co-localized with 

seedling IT (Figure 2.2). Significant markers located on 4B associated with IT in the U6708-03 

family are derived from KS05HW14, the recurrent parent (Table 2.1).  Adult plant infection type 

measured in the U6708-04 family had significant associations with markers on chromosome 5B 

and 4B. Additionally, severity measured in the U6708-04 was significantly associated with 

markers located on chromosome 5B. Both adult plant infection type (R
2
 = 0.46 and a= -0.86) and 
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severity (R
2
=0.16 and a= -7.47) measured in the greenhouse co-localize with the seedling IT 

measured in the growth chamber (Figure 2.3). Infection type associated with markers on 

chromosome 4B does not co-localize with any other phenotypes identified in the U6708-04 

family. 

Field Analysis of Stem Rust 

   Both Prelude and 9.131.15x showed an intermediate infection type in Mason, MI, in 

2017. Pgt resistance segregated in both the U6708-03 and U6708-04 families (Figure 2.2, 2.3). 

Associated regions for severity and infection type on chromosome 5B co-localized with IT 

mapped in the seedling and greenhouse adult plant screen for the presumed major effect Pgt 

seedling resistance QTL (Figure 2.2, 2.3). Multiple genomic regions associated with severity, 

inherited from KS05HW14, were identified in U6708-04 located on 7D and 3D and, in U6708-

03, on 1B (Table 2.1). Infection type and severity in the U6708-03 family co-localized on the 

short arm of chromosome 7D with marker alleles which originated from TA2474 (Figure 

2.2).These putative QTLs did not align with any of the previously mapped Pgt phenotypes in 

either the seedling or greenhouse experiments. In the U6708-04 family a genomic region 

associated with severity, with alleles inherited from 9.131.15x, was mapped to 3BS with 

infection type slightly under the genomewide threshold level on the same linkage group (Figure 

2.3). Both infection types with significant associations on 4B identified in the greenhouse, and 

infection types with significant associations on 2D identified in the growth chamber did not co-

localize with any phenotypes that were deemed significant in the 2017 field analysis. 
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Adult Plant Reaction to Leaf Rust in Mason, Michigan 2017 

 Both the U6708-03 and U6708-04 families segregated for resistance to Pt during the 

2017 field season in Mason, MI. Prelude and 9.131.15x were scored as susceptible in the field 

with moderately resistant phenotypes occurring in the RILs (Figure 2.5). In the U6708-03 family, 

there were two putative resistance QTLs, one identified on 3BL and one on 6DL (Table 2.1). 

Both the severity and infection type phenotypes co-localized on the 3B linkage group and 

originated from the recurrent parent KS05HW14 (Figure 2.2).  The 6DL QTL, associated with 

the infection type phenotype, originated from the Ae. tauschii accession TA2474. Both the 

severity and infection type phenotypes co-localized to the 3BL linkage group present in the 

U6708-04 population and originated from KS05HW14 (Figure 2.3). KS05HW14 was not 

included in the study because it is a winter wheat. In 2006, the Regional Germplasm 

Observational Nursery (RGON) included KS05HW14 in their field trials. It garnered a 50% 

severity and a moderately susceptible IT rating in St. Paul, MN.  

Discussion  

Stripe Rust Resistance from TA2474 

A seedling resistance QTL, QYr.msu-4DS, has been identified in the SHW 9.131.15x on 

4D for resistance to Pst. Infection type observed in the seedling stage and co-localized with adult 

plant infection type and AUDPC phenotypes measured in the greenhouse environment (Figure 

2.2).  QYr.msu-4DS is located on the short arm of chromosome 4D and originated from the Ae. 

tauschii accession TA2474. Currently, two officially designated Pst seedling genes have been 

identified on 4D, Yr28 (Singh et al., 2000)and YrAS2388 (Huang et al., 2011), both at the distal 

end of the short arm of chromosome 4D.  Yr28 and YrAS2388 are distinct based on their 
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differential resistance  and physical position (Huang et al., 2011). These genes originate from 

two different Ae. tauschii accessions, W-219 and AS2388, respectively, while QYr.msu-4DS is 

from TA2474 (Singh et al., 2000; Huang et al., 2011). Owing to its own distal nature on 4DS, 

QYr.msu-4DS is likely either a novel resistance QTL or a potential variant of YrAS2388.   Further 

tests, like an allelism test, need to be performed to confirm the novelty of QYr.msu-4DS. 

Although numerous Ae. tauschii accessions and other wild wheat relatives have been 

screened for stripe rust resistance, either in their diploid form or in a synthetic, the designated 

stripe rust genes derived from these accessions have only been observed at the proximal end of 

4DS (Singh et al., 2000; Huang et al., 2011).  A recent survey of Ae. tauschii germplasm has 

postulated that YrAS2388 is a common gene present in multiple Ae. tauschii accessions and is 

most likely a variant of Yr28 (Liu et al., 2013). This indicates the possibility that common rust 

resistance genes are shared among Ae. tauschii germplasm. Further investigation into the 

distribution of YrAS2388 in the Ae. tauschii germplasm can provide insight into the evolution of 

major gene resistance to Puccinia in natural populations. 

Stem Rust Resistance from the Synthetic 9.131.15x   

The putative stem rust seedling resistance QTL QSr.msu-5BL  was  identified on 

chromosome 5B in both families and with infection type and severity taken in multiple 

environments co-localizing. Both of these QTLs were linked to similar markers. Therefore, it is 

likely that the 5B Pgt seedling resistance QTL is the same locus in both families (Sup Fig 

2.5A,B). The origin of resistance for this QTL is the synthetic parent. There are currently two 

officially designated stem rust genes present on 5BL, Sr56 and Sr49. Both of these genes 

originated from hexaploid wheat. However, Sr49 is a seedling resistance gene and Sr56 is an 

APR gene (Bansal et al., 2014, 2015). Sr49 originated from the land race Mahmoudi (Bansal et 
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al., 2015). The very distal nature of QSr.msu-5BL indicates the potential for it to be a novel Pgt 

seedling resistance QTL or a variant of Sr49. Sr49 confers an intermediate resistant phenotype in 

Mahmoudi similar to QSr.msu-5BL in 9.131.15x (Bansal et al., 2015). However, the putative 

originator of the 5B Pgt seedling resistance QTL, hexaploid Prelude, exhibits a highly resistant 

fleck phenotype to both Pgt-QFCSC (Figure 2.4) as well as the Pgt-98-1,2,(3),(5),6 (Hiebert et 

al., 2016), a Pgt race from Australia used to map Sr49 (Bansal et al., 2015). This supports the 

possibility that QSr.msu-5BL and Sr49 confer different ITs, although only if QSr.msu-5BL is 

present in different hexaploid backgrounds. A potential 7D APR QTL originating from TA2474 

was identified in the 2017 field trial at Mason, MI. This QTL is a small effect QTL and was not 

observed in the greenhouse study. There are currently no officially designated Pgt APR QTLs 

located on 7D that originate from Ae. tauschii making this a potential, novel QTL (McIntosh et 

al., 2013). However, this will require further testing to confirm that this 7D QTL is repeatable.  

The origin of resistance for the QSr.msu-5BL QTL is the synthetic parent and rationally 

from tetraPrelude (due to its location in the B genome). This is supported additionally by the 

highly resistant phenotype of the hexaploid Prelude. However, sequencing of hexaploid Prelude 

revealed significant marker differences present throughout the A and B genome from the 

synthetic. It has been observed that the creation of the tetraPrelude may have resulted in 

translocation events between the 1D chromosome and the A and B genome (Dronzek et al., 

1970). In order to test this, an LD analysis was performed between SNP markers aligned to the 

1D chromosome and SNPs aligned to the A and B genome (data not shown). Our results indicate 

that it is unlikely that the tetraploid Prelude used to create this SHW suffered from the same 

translocation events that have previously been observed (Dronzek et al., 1970). Further 

investigation will be needed to pinpoint the exact origin of the QSr.msu-5BL QTL. 
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Alignment of YrAS2388 and Sr49 Markers to the Reference Genome   

In an effort to discover additional evidence on the potential novelty of these identified 

QTLs, the recent release of the IWGSC (IWGSC, 2014b) Chinese Spring v1.0 reference genome 

was used to align markers linked to Sr49 and YrAS2388 using BLAST (Huang et al., 2011; 

Bansal et al., 2015). Both the Sr49 and YrAS2388 markers that were aligned to the reference 

were situated in overlapping molecular positions with markers associated with QSr.msu-5BL and 

QYr.msu-4DS respectively (data not shown). This additional data supports the hypothesis that 

these identified seedling resistance QTLs may be variants of YrAs2388 and Sr49. However, both 

the length of DNA sequence associated between flanked markers as well as the propensity for R 

genes to be clustered together in the genome, indicates the needs for additional tests. Therefore, 

allelism tests should be performed to better determine the novelty of QTLs that may be located 

very close together (Bergelson et al., 2001; Leister, 2004).  

Adult Plant Reaction to Leaf Rust Segregating in the U6708 Population  

 The 9.131.15x synthetic (tetraPrelude/TA2474) was originally created at Kansas State 

University by Dr. Bhanu Kalia for the purpose of identifying adult plant resistance to leaf rust 

isolates present in Kansas (Kalia, 2015). TA2474 and 9.131.15x were phenotyped as susceptible 

to a number of leaf rust isolates at the seedling stage (Kalia, 2015; Kalia et al., 2017).  A 

mapping population was created by crossing 9.131.15x to WL711 which was phenotyped at 

several locations, and  APR QTLs were identified on 1B, 1A, 2D, 5D, 5A and 6B (Kalia, 2015). 

All regions from the D genome were contributions from TA2474. 

 None of the previously identified leaf rust APR QTLs from 9.131.15x were identified in 

the U6708 population. There are a multitude of reasons why this may be the case. First, the 
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populations could have had a differential inheritance of genetic information from the synthetic 

parent. This is supported by the extremely small 1A and 1B linkage groups that are present in the 

U6708 population, indicating the probability that these previously identified QTLs were not 

captured during the creation of this population. Second, the genetic background of this 

population is different. The recurrent parent in the U6708 population is KS05HW14, a hard 

white winter wheat, and a parent in the other mapping population was W7111, a spring wheat 

variety. The genetic background of wheat has been shown to be significant in influencing QTLs 

in the case of rust where suppressors can alter the effectiveness of rust resistance QTLs (Bai and 

Knott, 1992; Assefa and Fehrmann, 2004). Third, the endemic leaf rust isolates likely differ 

between Kansas/CIMMYT disease nurseries compared to Mason, MI. Thus, previously 

identified QTLs that are shared between these two populations may be either environmental or 

race specific. 

The susceptible reaction of Prelude and 9.131.15x compared to the moderately resistant 

phenotype that is segregating through the population indicates that either KS05HW14 is the 

contributor of Pt resistance or suppression is occurring in the SHW. There were three putative 

QTLs identified in these two families, two occurring on 3B and one occurring on 6D. The major 

effect QTLs that have been identified in both populations occur on the 3B chromosome with 

both originating from KS05HW14, appear to be located near one another, and are likely shared 

between the populations (Figure 2.2, 2.3). The 6D QTL originates from TA2474 and was only 

observed in a single family (Table 2.1). KS05HW14, a winter wheat, was not rated for leaf rust 

during the 2017 field season as the U6708 population is spring type, but it was rated in 2006 in 

the RGON and displayed a moderately susceptible infection type and a 50% severity. A follow 
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up study testing KS05HW14 for APR to leaf rust in Mason, MI, will need to be performed to test 

if the resistance observed may originate from a race-specific resistance QTL. 

The substitution at this genomic region for KS05HW14 alleles providing enhanced leaf 

rust resistance is an indication of two possibilities: an unidentified resistance QTL is present in 

KS05HW14 on 3B, or this substitution eliminates a suppressor. Phenotyping KS05HW14 for Pt 

resistance and testing 9.131.15x for Pt resistance in different hexaploid background could test 

these two hypotheses. Only one Pt resistance QTL originating from Ae. tauschii was observed 

and it was only present in one family (Table 2.1). The large effect of the 3B QTLs in both 

families may make it difficult to identify minor effect QTLs present, especially with the small 

number of individuals in this population (Beavis, 1998; Xu, 2003). Thus, resistance may be 

originating from multiple TA2474 derived QTLs, but their effect is masked by the presence of a 

highly significant suppressor. No QTL that have been identified for stem or stripe rust in the 

U6708 population co-localized with the QTL on 3B or on 6D. Thus, the Pt resistance QTLs 

identified in this experiment is not currently thought to be either pleiotropic or linked to 

previously identified QTLs. Further testing of the population with a single-spore Pt isolate can 

help further delineate whether or not the segregating resistance in U6708 is a seedling resistance 

gene or an APR loci.  

Phenotyping of Adult Plant Resistance  

Recent efforts have demonstrated the feasibility of using the greenhouse to both screen 

and identify new sources of genetic resistance to stripe and stem rust at the adult plant stage 

(Pretorius et al., 2007; Bender and Pretorius, 2016). In this study, greenhouse screening of adult 

plants was successful in identifying both major and minor effect QTLs (Table 2.1). However, 

greenhouse screening of adult plants failed to identify minor effect seedling resistance QTLs 
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from the seedling assay as well as APR QTLs identified in Mason, MI, for Pgt resistance. Minor 

effect QTL for Pst and Pgt resistance originating from the KS05HW14 were identified, which 

was rated as susceptible at the seedling stage to both stripe and stem rust. There can be a 

multitude of reasons for this lack of repeatability of these minor effect QTLs between 

environments. The lack of replication due to space and time constraints in the greenhouse and 

loss of replication for some lines in the field may impact the ability to detect QTLs with a low R
2
 

value, especially in the presence of other major QTLs. Also, due to the population size, it is 

likely the Beavis effect influenced the ability to detect authentic minor effect QTL and caused 

spurious minor effect QTLs to appear (Beavis, 1998; Xu, 2003). While minor seedling QTLs are 

more readily identified in controlled assays, the question remains for the breeder if these QTLs 

will be effective in the field environment when deployed. Minor seedling QTLs for stem rust that 

were detected in the seedling stage and not in the greenhouse were also not detected in the field 

environment (Table 2.1). However, the major seedling QTL present on 5BL could be identified 

in all three environments and the major seedling QTL present on 4DS could be detected in all Pst 

experiments. Those minor effect QTLs that failed to display significance in multiple 

environments are thus likely aberrations due to population size limitations and, if they are real 

seedling resistance genes, likely not effective in the adult plant stage, making their identification 

difficult regardless of the method.  

Summary  

The SHW 9.131.15x was analyzed using seedling, greenhouse, and field experiments to 

identify sources of resistance to both Pst-37 and Pgt-QFCSC. U6708-03 and U6708-04 both 

segregated for Pgt resistance while only U6708-03 segregated for Pst resistance. Two seedling 

resistance loci, QYr.msu-4DS and QSr.msu-5BL, were identified in the seedling, greenhouse, and 
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field environments. QYr.msu-4DS is located on 4DS and originated from the Ae. tauschii parent 

TA2474. It is either a novel stripe rust QTL or a variant of the most distal Pst gene on 4DS, 

YrAS2388. QSr.msu-5BL is located on 5BL and originated from 9.131.15x. Due to its distal 

nature on 5BL, this is likely a novel Pgt QTL or a variant of Sr49. In addition to Pgt and Pst 

resistance, QTLs for Pt resistance are also present in the population. Thus, in addition to 

harboring potentially new putative disease resistance QTLs for stem, stripe, and leaf rust, lines 

extracted from this population can  be used to increase resistance to multiple Puccinia species 

when crossed into a breeding program.  
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APPENDIX 

 

Table 2.1. Quantitative trait loci for resistance to stem, stripe, and leaf rust.  

a: Sr= Stem rust, Lr=Leaf rust, Yr= Stripe rust, IT was rated based on the 0–9 McNeal scale for Pst resistance at both the seedling 

and adult stage. IT for Pgt and Pt resistance were measured using the 0–4 Stakman scale for seedling resistance and were rated as 

susceptible (S), moderately susceptible (MS), moderate (M), moderately resistant (MR) or resistant (R) as adult plants. Severity 

was rated from 0–100% based on the Cobb scale, AUDPC = area under the disease progression curve. GC = growth chamber 

phenotyping environment; GH = greenhouse phenotyping environment; MM = Mason, Michigan, 2017 phenotyping 

environment. 

b: Most significant marker based on LOD. 

c: Additive effect of the alleles. 

Disease QTL Family Stage Trait Location Chr Position LOD R2 Effectc Origin 

Stem 

Rust 

QSr.msu-1BS U6708-03 Adult IT Field 1BS 665,403,509 3.96 0.12 -7.36 KS05HW14 

  QSr.msu-3BL U6708-04 Adult IT Field 3BL 573,497,145 6.66 0.08 -0.35 Synthetic 

  QSr.msu-4BL U6708-03 Adult IT GH 4BL 619,589,061 4.72 0.13 -0.56 KS05HW14 

    U6708-04 Adult IT GH 4BL 626,604,202 3.78 0.08 -0.37 KS05HW14 

  QSr.msu-5BL U6708-03 Seedling IT GC 5BL 699,455,437 10.77 0.29 -0.45 Synthetic 

    U6708-04 Seedling IT GC 5BL 699,728,464 7.07 0.25 -0.56 Synthetic 

    U6708-03 Adult IT GH 5BL 693,686,064 8.23 0.29 -0.84 Synthetic 

    U6708-04 Adult IT GH 5BL 699,728,464 14.03 0.46 -0.86 Synthetic 

    U6708-04 Adult Severity GH 5BL 697,611,190 4.37 0.16 -7.47 Synthetic 

    U6708-03 Adult IT Field 5BL 699,455,437 15.76 0.52 -0.84 Synthetic 

    U6708-04 Adult IT Field 5BL 699,407,657 25.21 0.69 -1.01 Synthetic 

    U6708-03 Adult Severity Field 5BL 699,422,973 8.83 0.32 -11.81 Synthetic 

    U6708-04 Adult Severity Field 5BL 697,865,267 7.69 0.29 -12.83 Synthetic 

  QSr.msu-2DS U6708-03 Seedling IT GC 2DS 7,527,954 6.34 0.12 -0.29 TA2474 

    U6708-04 Seedling IT GC 2DS 13,242,604 5.61 0.17 -0.38 TA2474 

  QSr.msu-3DL U6708-04 Adult IT Field 3DL 45,015,647 3.87 0.05 -0.26 KS05HW14 

  QSr.msu-

7DS.1 

U6708-04 Adult Severity Field 7DS 1,570,012 5.63 0.16 -9.69 KS05HW14 

  QSr.msu-

7DS.2 

U6708-03 Adult IT Field 7DS 62,120,102 3.81 0.074 -0.33 TA2474 

    U6708-03 Adult Severity Field 7DS 72,699,333 5.25 0.17 -8.90 TA2474 

Stripe 

Rust 

QYr.msu-3BS U6708-03 Adult IT GH 3BS 14,482,106 4.21 0.12 -0.63 KS05HW14 

  QYr.msu-4DS U6708-03 Adult IT GH 4DS 2,828,876 4.78 0.15 -0.70 TA2474 

   U6708-03 Adult AUDPC GH 4DS 1,704,666 6.72 0.22 -17.17 TA2474 

    U6708-03 Seedling IT GC 4DS 1,242,429 19.43 0.64 -1.60 TA2474 

  QYr.msu-4DL U6708-03 Seedling IT GC 4DL 345,415,047 5.85 0.09 -0.62 KS05HW14 

Leaf 

Rust 

QLr.msu-3BL U6708-03 Adult IT Field 3BL 748,448,161 22.83 0.76 -1.06 KS05HW14 

    U6708-04 Adult IT Field 3BL 748,448,161 14.62 0.47 -0.81 KS05HW14 

    U6708-03 Adult Severity Field 3BL 748,448,161 16.63 0.68 -13.75 KS05HW14 

    U6708-04 Adult Severity Field 3BL 748,448,161 10.11 0.38 -11.48 KS05HW14 

  QLr.msu-6DL U6708-03 Adult IT Field 6DL 347,713,271 6.73 0.08 -0.37 TA2474 
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Sup Table 2.1. Genomewide threshold values generated for each trait individually using 1000 

permutations at α=0.05. 

 

U6708-04  U6708-03 

Trait  LOD LOD 

Yr IT GC N/A 3.6 

Yr IT GH  N/A 3.51 

Yr AUDPC GH N/A 3.58 

Sr IT GC 3.58 3.59 

Sr IT GH 3.58 3.7 

Sr Severity GH 3.47 6.16 

Sr IT Mason, 

Michigan 2017 
3.67 3.73 

Sr Severity Mason, 

Michigan 2017 
3.66 3.65 

Lr IT Mason, 

Michigan 2017 
3.62 3.78 

Lr Severity Mason, 

Michigan 2017 
3.62 3.62 

 

Figure 2.1. Flow through of the population development of the U6708-03 and U6708-04 

families. A single F2 individual from the U6523 population, U6523-1-156, was backcrossed to 

KS05HW14 to create the two individual U6708 families.  
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Figure 2.2.  QTL analysis of the U6708-03 family using composite interval mapping for stem, 

stripe, and leaf rust resistance QTL. Eight linkage groups, of chromosomes 1B, 2D, 3B, 4B, 4D, 

5B, 6D, and 7D, were identified that carry rust resistance QTL. Leaf, stripe, and stem rust 

resistance QTL are shown in blue, green and black, respectively.  
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Figure 2.3.  QTL analysis of the U6708-04 family using composite interval mapping for stem 

and leaf rust resistance QTL. Seven linkage groups, of chromosomes 2D, 3B, 3D, 4B, 5B, and 

7D were identified that carry rust resistance QTL. Leaf and stem rust resistance QTL are shown 

in blue and black, respectively.  
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Figure 2.4. Examples of Pst seedling reactions to Pst-37 in the U6523 F2:3 population: A. 

Prelude displays a susceptible reaction. B. 9.131.15x exhibits a resistant reaction with a 

hypersensitive response seen by necrosis and low sporulation. C. U6523-1-87 is a susceptible 

line in the population with abundant sporulation. D. U6523-1-90 is resistant, displaying an 

infection type similar to 9.131.15x. The U6708 population has the same infection types 

segregating as the U6523 population. 

 

Figure 2.5.  Examples of adult plant reactions to leaf rust in the U6708 population in Mason, 

Michigan 2017: A. Prelude displays a susceptible reaction with abundant sporulation and no 

chlorosis. B. 9.131.15x displays a susceptible to moderately susceptible reaction with abundant 

sporulation and slight chlorosis. C. A moderately resistant line with necrosis and small uredinia. 

KS05HW14, the recurrent parent, was not measured in the field as it was a winter wheat and not 

available to rate. 
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Figure 2.6. Examples of Pgt seedling reactions to Pgt-QFCSC in the U6708 population: A. 

Morocco serves as a susceptible check. B. KS05HW14 is the susceptible recurrent parent. C. 

Prelude displays a highly resistant fleck phenotype with no uredinia present and necrosis is 

evident. D. 9.131.15x displays an intermediate resistant phenoytpe. E. U6708-03-025 D. U6708-

03-044 G. U6708-03-073 H. U6708-03-08. E and D are examples of the intermediate resistance 

segregating in the U6708 population. G and H are examples of susceptible reactions in the 

population. The same infection types for resistant and susceptible RILs were observed in both 

families. 
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Sup Table 2.2. Polymorphic segregating on each chromosome in the U6708-03 and U6708-04 

families. 

 

U6708-04  U6708-03 

Chromosome  

Number of 

markers  

Number of 

markers  

1A 21 26 

1B 26 25 

1D 9 3 

2A 140 113 

2B N/A 100 

2D 132 191 

3A 133 134 

3B 92 105 

3D 65 N/A 

4A 59 50 

4B 103 105 

4D 49 98 

5A 141 113 

5B 48 86 

5D 76 75 

6A 5 76 

6B 92 5 

6D 173 172 

7A 200 163 

7B 215 170 

7D 63 157 

 

 

 

 

 

 

 

 

 

 

 



  

64 

 

Sup Fig. 2.1A. U6708-04 linkage groups for group 1 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  

 

Sup Fig. 2.1B. U6708-03 linkage groups for group 1 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions. 
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Sup Fig. 2.2A. U6708-04 linkage groups for group 2 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  
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Sup Fig. 2.2B. U6708-03 linkage groups for group 2 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions. 
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Sup Fig. 2.3A. U6708-04 linkage groups for group 3 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions. 
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Sup Fig. 2.3B. U6708-03 linkage groups for group 3 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  
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Sup Fig. 2.4A. U6708-04 linkage groups for group 4 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  

 

 

 

 

 

4B 4D 4A 



  

70 

 

Sup Fig. 2.4B. U6708-03 linkage groups for group 4 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  
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Sup Fig. 2.5A. U6708-04 linkage groups for group 5 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  
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Sup Fig. 2.5B. U6708-03 linkage groups for group 5 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  
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Sup Fig. 2.6A. U6708-04 linkage groups for group 6 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  
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Sup Fig. 2.6B. U6708-03 linkage groups for group 6 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.  
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Sup Fig. 2.7A. U6708-04 linkage groups for group 7 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions.
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Sup Fig. 2.7B. U6708-03 linkage groups for group 7 aligned to the respective representative 

chromosomes of the reference genome based on aligned marker positions. 
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Sup Fig. 2.8. Histograms of both IT and severity scores recorded for the U6708 population in 

response to Puccinia inoculation.  

Severity was rated from 0–100% based on the Cobb scale, AUDPC = area under the disease progression curve. GC 

= growth chamber phenotyping environment; GH = greenhouse phenotyping environment; Field = Mason, 

Michigan, 2017 phenotyping environment. IT scores were converted to a 1-5 qualitative scale as described in 

materials and methods.  
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CHAPTER 3: Conclusions  

 

Conclusions of Current Research 

A SHW RIL population, consisting of two families (U6708-03 and U6708-04), was 

developed from a cross between the synthetic line 9.131.15x (tetraPrelude/TA2474) and 

KS05HW14, a hard white winter wheat. The RIL population was genotyped using genotyping-

by-sequence and GBS-SNP markers were identified using the TASSEL 5.0-GBS pipeline 

(Bradbury et al., 2007; Glaubitz et al., 2014). GBS-SNP markers were aligned to the recently 

released IWGSC ( 2014) Chinese spring v1.0 reference genome and linkage groups were created 

for each family. Twenty of twenty-one chromosomes segregated in each family with a majority 

of linkage groups aligning near the telomeres of each respective chromosome. The RIL 

population was phenotyped for disease resistance to three different Puccinia species, stripe (P. 

striiformis f. sp. tritici, Pst), stem (P. graminis f. sp. tritici, Pgt), and leaf rust (P. triticina, Pt). 

Phenotyping was performed at the seedling and adult plant stages with seedling evaluations 

performed in the growth chamber and adult plant evaluations performed in both the greenhouse 

and field. Greenhouse adult plant evaluations were implemented for additional phenotyping 

under a more controlled environment compared to the field. This controlled greenhouse 

screening was effective in mapping seedling resistance loci. 

Seedling resistance to Pst, conferred by QYr.msu-4DS was mapped to the 4DS 

chromosome and originated from TA2474. QYr.msu-4DS was first mapped in a seedling test 

conducted in the growth chamber and segregated in only the U6708-03 family. Severity and 

infection type phenotypes, scored in a subsequent adult plant greenhouse evaluation, co-

localized. Both growth chamber and greenhouse-grown plants were artificially inoculated with 
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Pst-37 uredinospores. Two other previously identified Pst seedling resistance genes have been 

mapped to chromosome 4DS, Yr28 and YrAS2338 which originated from two different Ae. 

tauschii accessions,W-219 and AS2338, respectively (Singh et al., 2000; Huang et al., 2011).  

Seedling resistance to Pgt, conferred by QSr.msu-5BL, was mapped to the 5BL 

chromosome and segregated in both U6708 families. This seedling resistance locus originated 

from 9.131.15x and was associated with the same markers in both families indicating that the 

same QTL is present in both families. Phenotyping for Pgt resistance was performed in the 

growth chamber, greenhouse, and field environments, which were all artificially inoculated with 

Pgt-QFCSC uredinospores. Infection type and severity phenotypes, scored in both the 

greenhouse and field environments, co-localized with seedling resistance measured at the 

seedling stage. Only one Pgt seedling resistance gene has been previously mapped to 5BL, Sr49, 

which originated from the T. aestivum landrace Mahmoudi (Bansal et al., 2015). Further work 

will need to be carried out to determine the novelty of QSr.msu-5BL. Potential Pgt APR QTLs 

were identified in the greenhouse and field, but these were not repeated between environments. 

A putative APR QTL, originating from TA2474, was identified on the 7D chromosome in 

Mason, MI. Additional field trials could be performed to determine if the 7D QTL observed in 

the field can be observed in a repeatable manner.  

Endemic Pt was present in Mason, MI, in 2017 and both families were phenotyped for Pt 

disease resistance against local Pt races. In both families, a major effect QTL that originated 

from KS05HW14 was mapped to 3BL at GBS-SNP markers shared between families. An 

additional Pt resistance QTL was identified on 6D segregating in the U6078-03 family and 

originated from TA2474. Previous work on 9.131.15x failed to identify leaf rust resistance on 6D 

and there is no currently known Pt QTLs on 6D that have originated from Ae. tauschii (Kalia, 
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2015). A synthetic RIL population consisting of two families U6708-03 and U6708-04 

segregated for resistance to three different rust species with all three parents used in the 

construction of this U6708 mapping population conferring disease resistance QTL.  

Future Directions  

The study described previously was successful in mapping seedling resistance to both Pgt 

and Pst from 9.131.15x and identifying a Pt resistance QTL from KS05HW14. There are 

currently two officially identified Pst seedling resistance genes on 4DS (Huang et al., 2011) and 

one Pgt seedling resistance gene on 5BL (Bansal et al., 2015) that are at similar locations as 

QYr.msu-4DS and QSr.msu-5BL according to molecular positions based on the IWGSC v1.0 

reference genome (2014).  Additional testing is required to determine if QYr.msu-4DS and 

QSr.msu-5BL are novel resistance loci or variants of previously identified resistance genes. 

Future work will involve using an allelism test to better determine the novelty of these QTLs. 

Several lines from the U6708 population that are fixed for QSr.msu-5BL will be crossed to the 

landrace Mahmoudi, the hexaploid which is the origin of Sr49 (Bansal et al., 2015), and lines 

from U6708-03 fixed for QYr.msu-4DS will be crossed with the synthetic harboring the 

YrAS2388 gene (Huang et al., 2011). The resulting F1 seeds will be taken to the F2 generation 

and subsequently screened at the seedling stage for resistance with either Pst-37 or Pgt-QFCSC. 

Segregation for resistance will be analyzed to better characterize the novelty of QYr.msu-4DS 

and QSr.msu-5BL with respect to previously identified resistance genes.  

The U6708 population was screened against Pst-37 and Pgt-QFCSC. However, with the 

emergence of new virulent rust races, it is important to determine if these loci are effective 

against the new highly virulent races like Pgt-TTTTF, Pgt-TTKSK, Pst-Warrior, and PstS2 

races. RILs will be selected from the population to be sent to St. Paul, MN to be screened for 
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seedling resistance to these rust races in a biocontainment safety level 3 (BSL-3) facility (Jin et 

al., 2007). If resistance is observed within the population to Pgt-TTKSK, lines may be sent to 

Njoro, Kenya for additional phenotyping for APR in a disease screening nursery.  

Additional screening of the U6708 experiment will be required to decipher the 

segregating leaf rust resistance in this population. A seedling screen against the previously 

identified leaf rust race in Mason, MI, Pt-MCTNB, will be performed to identify if the major 

effect 3BL QTL is seedling resistance gene or an APR gene. Screening of KS05HW14 will need 

to be performed to confirm that it displays a resistant phenotype to local leaf rust races. 

  The U6708 population segregated for resistance to three rust species: stem, stripe, and 

leaf rust. Resistant lines from this population can be used in the Michigan State University 

Wheat breeding program and eventually released as useful germplasm lines for the wheat 

breeding community. There is a single RIL in the U6708-03 family that was phenotyped as 

resistant to stem, stripe, and leaf rust in all environments (Table 3.1). This RIL contains the 

QYr.msu-4DS, QSr.msu-5BL, QSr.msu-7DS.2, QLr.msu-3BL, and QLr.msu-6DL. This line would 

be useful to incorporate into wheat breeding programs as a multiple disease resistance donor. 
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APPENDIX 
 

 

 

Table 3.1. Disease scores for a U6708-03 line that displays disease resistance to all three 

Puccinia species tested in all environments.  
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Sup Fig. 3.1. Graphical genotypes of linkage groups containing resistance QTLs in  

U6708-03-028. Blue colored intervals contain KS05HW14 alleles, red colored intervals contain 

9131.15x alleles, green intervals are heterozygous calls and black intervals are missing marker 

data. 
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S6D_42869777345.8
S6D_42967494046.7
S6D_43117330847.6
S6D_43114861547.8
S6D_43292938049.2
S6D_43420790750.0
S6D_43530631750.2
S6D_43581016750.7
S6D_43475148950.9
S6D_43595033651.3
S6D_43583447952.1
S6D_436673680 S6D_43646607452.7
S6D_43645277052.9
S6D_43681607053.2
S6D_43729622853.3
S6D_43681380053.7
S6D_43672211554.1
S6D_43809724554.7
S6D_43882992156.7
S6D_44533735959.8
S6D_44545819660.3
S6D_44691915361.3
S6D_44647730762.1
S6D_446478084 S6D_44577310362.7
S6D_44784510463.5
S6D_44887205664.8
S6D_44992313165.1
S6D_44887211765.6
S6D_45191501868.2
S6D_45241058968.7
S6D_45240596068.9
S6D_45234225369.3
S6D_45241066770.2
S6D_45317464270.7
S6D_45258715471.7
S6D_45573564372.4
S6D_45571870172.7
S6D_455558727 S6D_45562650773.4
S6D_46673858674.3
S6D_46374487075.5
S6D_46046825278.1
S6D_46046830878.3
S6D_46150188579.8
S6D_46247936680.0
S6D_46307959280.9
S6D_46146757281.3
S6D_456683425 S6D_46354745181.6
S6D_46249460182.0
S6D_46448332882.9
S6D_46305154083.0
S6D_46483067483.7
S6D_46720809084.4
S6D_46786147784.5
S6D_467803310 S6D_467187468

S6D_467198574
84.6

S6D_46883364085.1
S6D_46956735585.2
S6D_46958380785.5
S6D_46934449285.6
S6D_46953786585.7
S6D_46811343585.9
S6D_47037359686.3
S6D_47182820086.5
S6D_47240406586.8
S6D_47253368386.9

S6D_472369559100.3

S6D_471330647104.4

S6D_472103008105.3

S6D_472073634107.6

LG14

S5B_6936860640.0

S5B_6994229732.0

S5B_6978311552.4

S5B_699728464 S5B_699407657

S5B_697611190 S5B_699455437
2.8

S5B_7032337304.0
S5B_7015197954.2
S5B_7032294704.3

S5B_7112447849.6

S5B_7107846509.9

LG23

S4D_17046660.0

S4D_12424299.7

S4D_199994211.4

S4D_282887612.7

S4D_323823213.7

LG17

S3B_144821060.0
S3B_158029380.5
S3B_176135801.5
S3B_160005711.9
S3B_183939182.6
S3B_170703783.5
S3B_164025174.0
S3B_178029094.3
S3B_184847344.6
S3B_179742534.9
S3B_178665675.1
S3B_186645295.3
S3B_175879605.5
S3B_193967245.7
S3B_189666376.1
S3B_193947216.3
S3B_182533256.9
S3B_233986207.8
S3B_237199428.1
S3B_230214238.3
S3B_243977279.4
S3B_251808929.9
S3B_2494072310.1
S3B_2580318510.8

S3B_3199403917.3
S3B_2949864317.9
S3B_3170148718.5
S3B_3101054219.1
S3B_3199543019.4
S3B_3136680819.9
S3B_3097849220.0
S3B_3130613220.6
S3B_3259297921.1
S3B_3400539121.3
S3B_3428410422.3
S3B_3764385222.8
S3B_6570537823.9
S3B_22153261624.3
S3B_4987054624.6
S3B_4428790325.8
S3B_4519760526.0
S3B_73836773326.7
S3B_6534248528.4
S3B_5429471628.6
S3B_11524454229.0
S3B_5903636229.2
S3B_20779562530.0
S3B_6449811331.3
S3B_12630447731.7
S3B_13609574632.4
S3B_15763729633.2
S3B_24108701433.7
S3B_22224720134.5
S3B_20629197235.2
S3B_24108708435.5
S3B_24614529735.7
S3B_25056834336.0
S3B_56136601138.6
S3B_56227266838.7
S3B_56700122938.8
S3B_56527318339.0
S3B_57763949639.2
S3B_57349714539.3
S3B_566830710 S3B_56572517939.5
S3B_57763958739.6
S3B_58034885739.8
S3B_59474512340.0
S3B_579446416 S3B_58078489040.1
S3B_58052128240.3
S3B_589561483 S3B_58945827440.4
S3B_62671279040.5
S3B_60740611340.6
S3B_59062367640.9
S3B_63039855941.1
S3B_62365451741.2
S3B_581268461 S3B_59623228441.4
S3B_60441699342.0
S3B_70801350145.4
S3B_72104644245.9
S3B_71016786946.5
S3B_70953374246.9
S3B_70790656847.1
S3B_5106226648.4
S3B_73243601148.8
S3B_73951027549.7
S3B_73760772650.7
S3B_738504067 S3B_73850400351.3
S3B_73744242651.6
S3B_73811012051.9
S3B_73763927452.3
S3B_74010681652.6
S3B_74054757353.1
S3B_74013351953.6
S3B_76636445554.0
S3B_74844816154.4
S3B_76953506655.6
S3B_73992318156.6
S3B_77246752358.2
S3B_77356561758.5
S3B_77565991261.4

LG12

3B 4D 6D 7D 

5B 
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