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ABSTRACT 
 

LOW RANK MODELS FOR MULTI-DIMENSIONAL DATA 

RECOVERY AND IMAGE SUPER-RESOLUTION 

By 

 

Mohammed Al-Qizwini 

 

In the past decade tremendous research efforts focused on signals with specific features, 

especially sparse and low rank signals. Researchers showed that these signals can be 

recovered from much smaller number of samples than the Nyquist rate.  These efforts were 

promising for several applications in which the nature of the data is known to be sparse or 

low rank, but the available samples are much fewer than what is required by the traditional 

signal processing algorithms to grant an exact recovery.  

Our objective in the first part of this thesis is to develop new algorithms for low rank 

data recovery from few observed samples and for robust low rank and sparse data separation 

using the Robust Principal Component Analysis (RPCA). Most current approaches in this 

class of algorithms are based on using the computationally expensive Singular Value 

Decomposition (SVD) in each iteration to minimize the nuclear norm. 

In particular, we first develop new algorithms for low rank matrix completion that are 

more robust to noise and converge faster than the previous algorithms. Furthermore, we 

generalize our recovery function to the multi-dimensional tensor domain to target the 

applications that deal with multi-dimensional data. Based on this generalized function, we 

propose a new tensor completion algorithm to recover multi-dimensional tensors from few 

observed samples. We also used the same generalized functions for robust tensor recovery 

to reconstruct the sparse and low rank tensors from the tensor that is formed by the 

superposition of those parts. The experimental results for this application showed that our 



 
 

algorithms provide comparable performance, or even outperforms, state-of-the-art matrix 

completion, tensor completion and robust tensor recovery algorithms; but at the same time 

our algorithms converge faster.  

The main objective of the second part of the thesis develops new algorithms for example 

based single image super-resolution.  In this type of applications, we observe a low-

resolution image and using some external “example” high-resolution – low-resolution 

images pairs, we recover the underlying high-resolution image. The previous efforts in this 

field either assumed that there is a one-to-one mapping between low-resolution and high-

resolution image patches or they assumed that the high-resolution patches span the lower 

dimensional space. In this thesis, we propose a new algorithm that parts away from these 

assumptions. Our algorithm uses a subspace similarity measure to find the closes high-

resolution patch to each low-resolution patch. The experimental results showed that 

DMCSS achieves clear visual improvements and an average of 1dB improvement in PSNR 

over state-of-the-art algorithms in this field. 

Under this thesis, we are currently pursuing other low rank and image super-resolution 

applications to improve the performance of our current algorithms and to find other 

algorithms that can run faster and perform even better.  
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Chapter 1 
 

Introduction 
 

1.1 Matrix Completion 

According to the Nyquist-Shannon sampling theorem, a signal can be completely 

determined by its samples if the sampling rate is twice the maximum frequency of that 

signal. On the other hand, there are numerous applications where sampling at Nyquist 

frequency is either impossible, very expensive or time consuming [1]. In addition to that the 

tremendous number of images and videos that are being generated, transmitted and stored 

on the internet, researchers suggested that instead of the usual data acquisition method of 

collecting as much information as possible and then through away the redundant 

information, why not collecting only the information necessary to recover the data. 

Researchers proved that if the underlying signal has specific properties, then it can be 

recovered using much fewer samples than the Nyquist rate, for instance, if the signal is 

sparse or it can be transformed into a sparse domain, then only few number of samples are 

required to recover that signal using the Compressive Sampling framework [2]–[4]. From a 

similar concept to Compressed Sensing, Matrix Completion also emerged during the past 

decade as one of these theories and several researches are being performed in this topic to 

this day. The main concept behind matrix completion is recovering the underlying low rank 

data from only few observed samples of the original signal.  

There is a large number of applications in which we observe an incomplete matrix of 

measurements and we wish to fill in the unobserved matrix entries using the observed 

measurements [5], [6]. For instance, in collaborative filtering, the famous Netflix problem, 
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in which the vendor has a large number of users and a set of movies, each user represents a 

row and each column represents a movie, and the challenge was to predict each user’s 

ratings for the movies that he/she didn’t watch based on the ratings provided by the user for 

the movies that he/she watched in order to recommend other movies to that user. Because 

there is a small number of factors that can affect users’ taste of preferences about movies, 

these matrices are considered to be low rank matrices [7], [8].  Other applications include 

recovering missing pixels in images for computer vision, system identification in control, 

multi-class learning in data analysis, global positioning of sensors in a network, partial 

distance information, remote sensing applications in signal processing and many statistical 

problems involving succinct factor models [7]. Here we stop to ask a question, is it possible 

to recover the unknown entries of a matrix given a subset of its known entries? A first 

thought to the problem will give an answer no to the question, however if the matrix is low 

rank, then it is possible to recover the original matrix with high probability using nuclear 

norm minimization [5], [8], [9]. 

 

1.2 Robust Principal Component Analysis 

Principal Component Analysis (PCA) is one of the most used statistical techniques in 

dimension reduction. However, the performance of PCA-based approaches degrades 

significantly for non-Gaussian noise, and especially for grossly corrupted observations or 

in the present of outliers [9]–[11]. To overcome these shortcomings of traditional PCA and 

make it more robust, Candes et al. [10] suggested invoking the assumption that the observed 

data consists of two components, a low rank component 𝐿 and a sparse component 𝑆 and 

they introduced a novel algorithm based on tractable convex optimization to solve the 
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problem within a polynomial time and a strong performance guarantee. Consequently, the 

problem can be reduced to the recovery of 𝐿 from highly corrupted measurements 𝐷 = 𝐿 + 

𝑆, in which 𝑆 can have arbitrary large elements, but must be a sparse matrix. Furthermore, 

to make such modeling approach viable and meaningful, the low rank component 𝐿  is 

assumed to be not sparse [9], [10]. 

For some applications, the sparse matrix 𝑆 could carry useful information. For instance, 

on latent semantic indexing, the input matrix 𝐷 contains entries that encode the relevance 

of a word to a document. If 𝐷 can be decomposed into two components, low rank and 

sparse, then 𝐿 could represent common words, and 𝑆 captures some key words that could 

be used to distinguish each document from others [9], [12]. On the other hand, some 

applications consider 𝑆  as merely noise or outliers and they are only interested in 

recovering𝐿 . For example, in the face recognition problem 𝑆  represents the noise and 

outliers such as facial expression changes or glasses or other objects. While 𝐿 represents the 

original facial expressions to be recovered [13].  

Recovering the low rank and sparse components of an observed multidimensional signal 

(tensor) that is formed by the superposition of both components is a very interesting problem 

and it has a wide range of applicability in computer vision, bioinformatics and graph 

analysis [10],[14]. Also, since most applications of interest, especially those related to 

imaging and computer vision, have to handle multidimensional data that are inherently 3D 

or 4D [15], [16]. Applying the recovery algorithms to each two dimensional plane separately 

ignores the internal correlation in the signal. 
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1.3 Image Super-resolution   

Image super-resolution is the ill-posed problem of recovering the underlying High-

resolution (HR) image from an observed Low-resolution (LR) image(s). Image super-

resolution is important in several computer vision applications such as license plates 

recognition [17], object and face recognition [18] and restoration of historical images i.e. 

image inpainting [19] as it is promising to overcome the shortcoming of low cost camera 

sensors and allows a better utilization to the high-resolution screens. Many scenarios have 

been suggested for image super-resolution based on the availability of additional 

information to help with the recovery. In some scenarios additional LR images for the same 

object are available but under different conditions which are referred to as multi-frame 

image super-resolution [20]–[22]. In other scenarios no training images are used, instead 

researchers base their approaches to recover the HR image on information from the available 

LR image itself [23]–[25]. Other approaches assume only one LR image is available and 

examples of training HR and LR images are used to recover the target HR image, which is 

called example based image super-resolution [26]–[29]. This thesis falls in the example 

based single image super-resolution category since we will be using two external 

dictionaries, one for LR example images and the other for HR images. 

 

1.4 Notations  

Throughout this thesis, matrices are denoted using capital letters, e.g. 𝑀, and tensors by 

cursive capital letters, e.g. M. Also, 𝑀𝑇 is the transpose of 𝑀. 𝑀𝑖1𝑖2 is an entry of the matrix 

𝑀 ∈  ℝ𝑚×𝑛 at row 𝑖1 and column 𝑖2; and M𝑖1…𝑖𝑁 is an entry of the tensor M ∈ℝ𝑚1×𝑚2…𝑚𝑁  
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at indices 𝑖1 through 𝑖𝑁. For a matrix 𝑀 ∈  ℝ𝑚×𝑛, 𝑃𝛺(𝑀) is the sampling operator which is 

defined as: 

 

 

 

    

 

 

 

 

 

 

 

Figure 1.1: Visual explanation of the (. )(.) function in tensor domain. (a) the tensor in 3D 

domain, (b) the unfolded tensor along i1, (c) the unfolded tensor along i2 and (d) the unfolded 

tensor along i3. 

𝑃𝛺(𝑀) = {
𝑀𝑖1𝑖2 𝑖𝑓 𝑖1, 𝑖2  ∈  𝛺 

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  (1.1) 

where 𝛺 represents the set of observed entries.  
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For M ∈ ℝ𝑚1×𝑚2…𝑚𝑁  , the 𝑢𝑛𝑓𝑜𝑙𝑑(. )(𝑖)  operation over dimension 𝑖  unfolds the 𝑁 -

dimensional tensor into a matrix, 𝑓𝑜𝑙𝑑(. )(𝑖) is the inverse of 𝑢𝑛𝑓𝑜𝑙𝑑(. )(𝑖) and it can be 

defined as: 

M=𝑓𝑜𝑙𝑑((M)(𝑖))(𝑖) (1.2) 

A visual example of the tensor unfold operation is shown in Figure 1.1.  

The inner product between two matrices is defined by: 

〈𝐶, 𝐸〉 = 𝑇𝑟(𝐶𝐸)  (1.3) 

where 𝑇𝑟(. ) is the trace function. 

If 𝑀 = 𝑈𝛴𝑉𝑇 is the SVD decomposition of 𝑀, then the soft thresholding operator over 

𝑀 is defined as [30], [31]: 

𝐷𝑇ℎ(𝑀) = 𝑈𝛴𝑇ℎ𝑉𝑇 (1.4) 

Where  𝛴𝑇ℎ = 𝑚𝑎𝑥 (𝜎𝑖 − 𝑇ℎ, 0) is the diagonal soft thresholded singular values matrix. 

 

1.5 Literature Survey 

    

1.5.1. Matrix Completion 

For the past decade, many algorithms have been proposed mainly for matrix completion 

and several variations of the problem has been suggested. In this section, we are going to 

talk about some of the important work that has been done for matrix completion that is 

related to our contributions in this field. 

E. J. Candès and B. Recht, proposed the first convex programming algorithm to solve the 
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exact matrix completion algorithm in [5], they showed that low rank matrices can be 

recovered with very high probability if the number of observed samples (m) obey:      

𝑚 ≥ 𝐶𝑛1.2𝑟 log 𝑛 (1.5) 

For some positive constant 𝐶, most 𝑛×𝑛 matrices with rank 𝑟 can be recovered perfectly 

using convex optimization. They also showed that by replacing the 1.2 exponent with 1.25 

the recovery is guaranteed for all rank values. 

E. J. Candès and Y. plan proposed a relaxation to the equality constrains of the matrix 

completion problem in [7] to reduce the effect of noise on the signal reconstruction 

performance. They performed numerical and quantitative analysis and showed that nuclear 

norm minimization can perfectly fit large low rank matrices from only few observed noisy 

samples. 

A simple Singular Value Thresholding (SVT) algorithm for matrix completion was 

proposed in [32], the algorithm performs matrix completion by soft thresholding the 

singular values of the SVD decomposition of the estimated matrix. The authors provided 

convergence analysis of the algorithm and the experimental results showed that 1000×1000 

matrices can be recovered within one minute on an average desktop computer. 

A Fixed Point Continuation Algorithm with approximate SVD decomposition (FPCA) for 

nuclear norm minimization were proposed in [31]. The authors compared the algorithm to 

other semidefinite programming algorithms and showed that FPCA converges much faster 

than the others and at the same time it provided much better performance. Their 

experimental results showed that on 1000 ×1000 matrix with rank 50, they achieved 10-5 

error and the algorithm converged within 3 minutes. 

In [33], the authors used the nuclear norm regularized least square instead of minimizing 
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the nuclear norm. The regularized least square is the sum of a convex smooth function with 

Lipschitz continuous gradient and a convex function on a set of matrices. An accelerated 

proximal gradient algorithm is proposed to solve the objective function. The experimental 

results showed that the algorithm is robust and efficient to solve large scale matrices of 

dimensions up to 105 in less than 10 minutes on an average personal computer. 

In [34], the authors proposed a novel method by only minimizing the smaller singular 

values from the nuclear norm and leave the significant ones unchanged instead of all the 

singular values. The authors build an algorithm using the alternative direction method of 

multiplier (ADM) based on the Truncated Nuclear Norm Regularization (TNNR) by only 

minimizing the 𝑁 − 𝑟 singular values where 𝑁 is the number of singular values and 𝑟 is the 

rank of the matrix. The authors compared the performance of the algorithm against state of 

the art algorithms on grayscale and colored images and showed that the proposed algorithm 

achieve significant improvement in performance. 

A new set of Iterative Reweighted Least Squares (IRLS- 𝑝) where 0 ≥ 𝑝 ≤ 1 algorithms 

was proposed by K. Mohan and M. Fazel in [35]. The algorithms are used as a 

computationally efficient variation of the nuclear norm minimization. The authors also 

present smoothed version of the algorithms sIRLS- 𝑝 which shown very fast convergence 

results and at the same time improved the recovery performance when compared to the 

conventional nuclear norm minimization algorithms.  

Also recently, the notion of matrix completion over samples collected from different times 

has been proposed in [36]; the author modified and proposed several algorithms that 

performs adaptive matrix completion when the samples are collected from a process that is 

being changed over time and the goal is to recover all the underlying low rank matrices. The 
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proposed algorithm that performed the best in their experiments is a variation to the SVT 

algorithm in [32] and they referred to it as the Adaptive Singular Value Thresholding 

(ASVT). ASVT performance is evaluated against state-of-the-art matrix completion 

algorithms and it showed that ASVT outperforms all the other algorithms using the relative 

error measure. 

   

1.5.2. Tensor Completion 

Although the matrix completion problem has been studied thoroughly during the past 

years, less research was done in tensor completion due to the complexity of high 

dimensional mathematical analysis and the lack of definitions of simple matrix norms when 

we move to the higher dimensional space. Despite this difficulty, some researchers 

overcome these problems and proposed different algorithms to solve it. 

 Ji Liu et.al. proposed three algorithms for Low Rank Tensor Completion (LRTC) based 

on nuclear norm minimization over each fold of the tensor in [30], [37]. The SiLRTC is a 

simple algorithm and it implement a relaxation technique to separate the dependent 

components and the Block Coordinate Descent (BCD) to solve for each component 

separately and achieve the global optimization, the FaLRTC uses a smooth scheme to 

change the objective function to a smooth function and solved the general nuclear norm 

minimization problem. Finally, HaLRTC uses the Alternative Direction Methods of 

Multiplier (ADM) to minimize the tensor nuclear norm. The experimental results showed 

that all algorithms are applicable for image and video signals and the algorithms are more 

robust and faster than the available tensor completion algorithms. They also showed that 

FaLRTC and HaLRTC are more efficient that SiLRTC while FaLRTC is the most efficient 
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algorithm. 

In [38], the authors suggests minimizing the nuclear norm of the tensor without 

metricizing the tensor which was shown theoretically to perform better than minimizing the 

nuclear norm. The authors also develop a series of algebraic and probabilistic techniques 

such as characterization of sub-differential for tensor nuclear norm and concentration 

inequalities for tensor martingales, which are useful in other tensor related problems.  

Based on the work in [34], L T Huang et.al. proposed an algorithm for tensor completion 

using the truncated nuclear norm in the tensor domain [39]. The used the Alternative 

Direction Method of Multiplier (ADM) to solve the problem, and they reduced the two-step 

solution in  [34] to one-step solution. They also ran extensive experimental results and 

showed that their algorithm performs significantly better than the state-of-art algorithms. 

In [40], the authors proposed an algorithm for tensor completion with high ratio of missing 

samples, in which situations the usual low rank and smoothness assumptions do not work. 

The authors address this issue by applying a novel PARAFAC decomposition. The 

decomposition is represented as a sum of the outer product of functional smooth component 

vectors, which are represented by linear combinations of smooth basis functions. Based on 

that, they also developed an algorithm with greedy deflation and rank-one tensor 

decomposition. The experimental results showed that this algorithm performs better than 

state-of-the-art algorithms for tensor completion. 

In [41] the authors proposed an alternative method for tensor completion using Tensor 

Train (TT) rank which is capable of capturing hidden information from tensors. Based on 

that, a new optimization function is proposed for tensor completion and two algorithms were 

proposed for tensor completion; the first one is SiLRTC-TT  which uses the usual nuclear 
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norm minimization based on TT rank and the other algorithm uses a multilinear factorization 

model to approximate the TT rank of a tensor, and is called tensor completion by parallel 

matrix factorization via TT (TMac-TT). The experimental results showed significant 

performance improvement of the proposed algorithms compared to the existing algorithms. 

 

1.5.3. Robust Tensor Recovery 

Similar to Matrix and Tensor Completion, despite the applicability of robust tensor 

recovery to several real-life applications, the area of Tensor recovery witnessed less research 

interest than robust matrix completion. In this section, we will talk about the key research 

articles that tackles the problem of robust matrix and tensor recovery. 

E. J. Candès et.al. in [10] proved that it is possible to separate a matrix that is generated 

by superposing a low rank and sparse matrices into its low rank and sparse components by 

solving convex problem called principal component pursuit. The algorithm they proposed 

works by minimizing both the nuclear norm of the predicted low rank matrix and the ℓ1 

norm of the sparse component. The authors also present several practical applications for 

this method such as video surveillance where the algorithm was able to successfully detect 

objects in cluttered environment, face detection where the algorithm is used to remove 

shadow and secularities.  

In [42] and similarly [43] the authors proposed a method to recover low rank matrices 

from corrupted observation by using robust matrix recovery. In this method, the noise matrix 

is considered the sparse portion and the recovered low rank matrix represents the predicted 

“clean” matrix. The authors provided a proof that most matrices can be recovered with very 

high probability using this approach. The algorithm was applied to several computer vision 
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problems and it shows promising performance. 

 For the tensor domain,  Goldfarb and Qin apply convex optimization to recover the low 

rank tensor using high order tensor PCA [14]. They propose an optimization algorithm 

based on the ADM and the Accelerated Proximal Gradient (APG) algorithms with 

convergence guarantees for solving both the constrained and the Lagrangian forms of the 

problem. They also propose a non-convex model that improves the results of the recovery 

from the convex model. They apply their algorithm to several real computer vision 

applications and showed the practical use of the proposed method. 

In [44] the authors used a new model for tensor Singular Value Decomposition (tSVD) 

that was proposed in [45] for third order tensors only. The proposed method uses ADM 

algorithm to separate the low rank and sparse components of the observed tensor. The 

algorithm was applied for colored image denoising and it showed significant performance 

improvements over the previous algorithms. 

 

1.5.4. Image Super-resolution 

Since our contributions in this thesis are related to single image super-resolution, we will 

only mention publications in the same category as our contributions.  

J. Yang et.al.  in [26] address the problem of image super-resolution from the compressed 

sensing perspective by assuming that the observed low-resolution image is a down sampled 

version of a high-resolution image. The patches of the high-resolution image is assumed to 

have a sparse representation. They also show the effect of the sparsity assumption for 

solving the ill-posed super-resolution problem. The authors also form a dictionary using a 

small set of randomly chosen raw patches from training images of similar statistical nature 
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to the input image. The experimental results showed that this method produce superior 

quality compared to the other super-resolution methods. 

In [46], the authors explore the relationship between neighbor pixels and the estimation 

of the high-resolution image from the observed low-resolution input. The authors propose 

an algorithm based on matrix completion concept by minimizing the sum of all the 

augmented matrices’ rank. The authors tested the algorithm on different applications and 

showed that the resulted image has both better visual quality and higher PSNR values. 

Another super-resolution algorithm based on clustered sparse representation and adaptive 

patch aggregation was proposed in [47]. The training patches pairs are collected randomly 

from example images and using K-means clustering algorithm, the patches are divided into 

multiple groups. The over-complete dictionary is learned over the clustered pairs. Only one 

cluster, sub-dictionary, is selected to represent the low-resolution patch. The authors 

compare the performance of the algorithm against several state-of-the-art algorithms for 

super-resolution and it showed that the proposed algorithm outperformed the rest of the 

methods. 

In [48], the authors propose an algorithm based on two other super-resolution algorithms,  

Anchored Neighborhood Regression (ANR) [49] and Simple Functions (SF) [50]. The 

resulted algorithm (A+) builds on the features and anchored regressors from ANR but 

instead of learning on the training dictionary, it learns on the entire training material, similar 

to SF. The authors used different example images and they showed that the PSNR improved 

by 0.2-0.7 dB over the ANR method, at the same time, the algorithm runs with low 

computational complexity. 
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A manifold linear approximation based approach for single image super-resolution was 

proposed in [28]. The authors exploit the non-linear space of the underlying high-resolution 

patches by considering it as low dimensional manifold in a high dimensional Euclidean 

space.  The Sparse Subspace Clustering (SSC) algorithm is used to create the set of low-

dimensional linear spaces that are considered as tangents in the higher resolution patches. 

Based on the obtained approximated tangent spaces, the structure of the underlying high-

resolution manifold is used to locate the corresponding high-resolution subspace. This 

approach requires a small number of training high-resolution samples, around 1000 patches, 

without any prior assumption about the low-resolution images. A comparison of the 

obtained results with other state-of-the-art methods clearly indicates the viability of the 

proposed approach. 

In [23], the authors proposed a learning-based method for image super-resolution using 

the low-dimensional manifold representation of high-resolution image patches space. The 

authors used the image and its down sampled scale to extract a set of training sample points 

using min-max algorithm. The ℓ1 norm of the resulted graph is then minimized to cluster 

these samples into a set of manifold neighborhoods and the high-resolution patch is 

estimated from these tangent spaces. The experimental results validate the effectiveness of 

the algorithm when compared to relative methods.  

 

1.6 Contributions 

1- Derive two robust algorithms for matrix completion using the Accelerated Proximal 

Gradient (APG) and the Alternating Direction Method of Multipliers (ADM). 
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Further, we compare both algorithms against each other and against the iterative 

reweighted least squares (IRLS-1) algorithm using a variety of noisy images. 

2- Extend the efficient matrix completion algorithms to the N-dimensional tensor 

completion problem by first providing a general definition for the Schatten-P 

function into the N-dimensional space. We also derive a multi-dimensional 

Augmented Lagrangian Multiplier (ALM) optimization algorithm to solve it. 

3- Formulate a new objective function for the tensor RPCA problem based on using 

the truncated and smoothed schatten-p functions. We also solve the formulated 

problem using the Augmented Lagrangian Multiplier (ALM) algorithm, which is the 

trivial algorithm to use with RPCA.  We also proposed two other algorithms based 

on the Accelerated Proximal Gradient (APG) and the Alternating Directions 

Methods of Multipliers (ADMM). We refer to our proposed method as the Truncated 

and Smoothed Robust Tensor Recovery (TSRTR) algorithm.   

4- Propose a novel image super-resolution framework that parts away from the 

similarity assumption between the low dimensional and high dimensional 

manifolds; instead the subspace similarity measure is used to find the closest HR 

subspace to each LR subspace. The test patch is projected to the closest low 

dimensional subspace, and the most similar HR subspace is selected and hence we 

get a better approximation to the LR test image than directly projecting the LR test 

patch to the HR space.  

 

1.7 The proposal outline  

This thesis is divided into two major parts. In the first part, the low rank matrix and 



16 
 

tensor completion problems are explored and we propose new algorithms for both matrix 

and tensor completion that outperforms state of the art algorithms in this field. The same 

part also studies the Robust PCA problem and its extension to the multi-dimensional tensor 

domain; we also propose a new algorithm for the tensor Robust PCA problem that 

outperforms the state of the art algorithms. The other part of the thesis studies the single 

image super-resolution problem for which we proposed a novel algorithm that makes no 

assumption about the similarity between the LR and HR subspaces. 

In chapter 2, we review state-of-the-art methods related to matrix and tensor completion 

and robust PCA topics. Most of these methods will be used as a benchmark to compare the 

performance of our algorithms. The chapter will also provide a detailed description and 

show our experimental results of the proposed algorithms for Matrix Completion, Tensor 

Completion and Robust Tensor Recovery.   

In chapter 3, we review the available algorithms for example based single image super-

resolution and we present our proposed algorithm along with several experimental results 

to compare the performance to the state-of-the-art algorithms in this field.  

Finally, chapter 4 outlines our current efforts and the ongoing research directions and 

provides some preliminary discussion and analysis of the methods presented in this thesis. 
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Chapter 2  
 

Matrix and Tensor Completion and  

Robust Tensor Recovery 
 

2.1 Matrix Rank Minimization  

Matrix completion is a special case of what is known as the affine rank minimization 

problem, defined as: 

𝑚𝑖𝑛
𝑋

𝑟𝑎𝑛𝑘(𝑋) 

𝑠. 𝑡.  𝐴(𝑋) = 𝑏 

(2.1) 

Where, X∈ ℝn1∗n2 is the decision variable, A is an affine mapping A ∶ ℝn1∗n2 →

 ℝp, and the vector b∈ ℝp represents the given samples. 

 

Table 2.1: A comparison between some important terms according to the rank minimization 

and cardinality minimization concepts 

Term Rank minimization Cardinality Minimization 

Sparsity inducing norm ℓ1 Nuclear  

Hilbert space norm ℓ2 (Euclidean) Frobenius 

Dual norm ℓ∞ Operator 

Norm additivity Disjoint support 

Orthogonal row and column 

spaces 

Convex optimization Linear programming Semi definite programming 
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The affine transformation 𝐴 is an operation on a matrix 𝑋 such that it preserves all 

the linear properties among data points of 𝑋 in the resulting vector b. The solution to the 

problem (2.1) can be stated as the simplest (lowest rank) feasible model that is affine in the 

matrix variable. In general, this type of rank minimization problems can be solved using the 

singular value decomposition [51]. In matrix completion we are interested only in finding 

the matrix with the lowest rank to fill in the unobserved entries based on the small number 

of samples that we have, under the constraint that, in the regions where we have samples, 

the values of the reconstructed samples should be the same as the original ones. The affine 

rank minimization problem (2.1) is reduced to the cardinality minimization problem of 

finding the element in the affine space that has the smallest number of nonzero singular 

values. In this section, we provide a comparison between the rank and cardinality 

minimization.  The main comparison points are listed in Table 2.1 [51]. 

The main idea behind matrix completion is to find the minimum rank matrix that fits the 

observed samples, so if there is only one low rank matrix that fits the observed data, this 

would recover the original matrix M [1]. Mathematically, this can be represented by [1, 2, 

3]: 

𝑚𝑖𝑛
𝑋

𝑟𝑎𝑛𝑘(𝑋) 

𝑠. 𝑡.  𝑃𝛺(𝑋) = 𝑃𝛺(𝑀) 

(2.2) 

 Where Ω is the region of the observed samples; Mij is an observed sample and Xij is an 

estimated sample.  

It is important to mention that not all low rank matrices can be recovered from few 

observed samples. Let us look at the matrix 𝑀 below [5]: 
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𝑀 = 𝑒1𝑒𝑛
∗ =

[
 
 
 
 
0 0
0 0

⋯
0 1
0 0

⋮ ⋱ ⋮
0 0
0 0

⋯
0 0
0 0]

 
 
 
 

 (2.3) 

The matrix 𝑀 is formed by the multiplication of the first canonical eigen vector 𝑒1by 

the n-th canonical eigen vector 𝑒𝑛
∗ . Even though 𝑀  is a rank one matrix, it cannot be 

recovered from partially observed samples, unless we observe the one in the top right corner. 

The reason is that the sampling sets will mostly see only zeros and there is no way for us to 

guess that there is an element of different value unless we observe it. Otherwise, the 

predicted matrix will always be zero no matter what recovery method we use.  

Therefore, not all low rank matrices can be recovered from a set of observed entries, to 

understand the set of matrices that can be recovered from partially observed samples, we 

need to look at the SVD decomposition of a matrix 𝑋 [5], [31].  

𝑋 = ∑ 𝜎𝑘𝑢𝑘𝑣𝑘
𝑇

𝑟

𝑘=1

 (2.4) 

where  𝑢𝑘 and 𝑣𝑘
𝑇 are both the left and right singular vectors and 𝜎𝑘 is the singular value 

at index 𝑘. In these terms, the generic set of recoverable low rank matrices can be thought 

of as the family {𝑢𝑘}1≤𝑘≤𝑟  is selected uniformly at random among all families of 𝑟 

orthonormal vectors; the same applies for {𝑣𝑘}1≤𝑘≤𝑟 and the families may or may not be 

dependent on each other [5].  

To show that the matrix cannot be in the null space of the sampling operator that is 

providing the observed samples, let us take a look at the SVD representation of the rank-2 

symmetric matrix 𝑀 below [5]: 
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𝑀 = ∑ 𝜎𝑘𝑢𝑘𝑣𝑘
𝑇

2

𝑘=1

  (2.5) 

where 𝑢1 = 
𝑒1+𝑒2

√2
, 𝑢2 = 

𝑒11𝑒2

√2
 . 

This matrix has all zero entries except for the 2×2 top left corner. Again, we will need 

to observe almost all entries of this matrix in order to recover it using any method. The 

reason is that the singular vector representation for this matrix is concentrated in one area 

which is the top-left corner in this example. In conclusion, the singular vectors of the matrix 

to be recovered need to be spread, uncorrelated with the standard basis, in order to reduce 

the number of observations required for the recovery [5], [7]. 

Another important aspect of successfully recovering a low rank matrix from few 

observed samples, is the way we sample the matrix. For example, we cannot hope to recover 

a matrix 𝑋from partially observed samples if the sampling operator misses a full row or 

column. Assume 𝑋 is a matrix of rank one and it is formed by multiplying 𝑏𝑐∗ where 𝑏, 𝑐 ∈

ℝ𝑛. Each entry of this matrix can be represented by [5]: 

𝑋𝑖,𝑗 = 𝑏𝑖𝑐𝑗 (2.6) 

In this case, if we do not observe any sample from the first row for example, then there 

is no way for us to predict the first element 𝑏1. This example can be extended to all rows 

and columns. Another example from collaborative filtering is shown in Figure 2.1; assume 

that the matrix represents the ratings that a user (row) has given to particular movies 

(column); each element in the matrix represent the rate that a user is given to the 

corresponding movie on a scale 1(not satisfied) to 5 (extremely satisfied). The question 

marks represent unrated movies by the corresponding user. The red rectangles represents 
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users who didn’t rate any movies and hence we have no information about their preference 

or taste in movies. Therefore, this sample of the matrix cannot be recovered using matrix 

completion. 

 

Figure 2.1: Collaborative filtering example of bad sampling for low rank matrix 

recovery. 

So in order to recover a low rank matrix with high probability from partially observed 

samples, we need a set of samples that are collected uniformly at random from the 

underlying matrix.  

 

2.2 Matrix Completion 

The equation (2.1) is an NP-Hard problem and all algorithms that solve it are doubly 

exponential in theory and practice [5], [7], [8], [51]. For the past decade, the main algorithms 

for matrix completion are based on the nuclear norm minimization [5], [31], [32], [34], [52]–

[54], which was introduced in [55] after proving that the nuclear norm is the tightest convex 

approximation to the rank function. Several algorithms have been proposed to recover a low 

rank matrix from a subset of its observed entries and it has been used in many different 

fields, for example computer vision [56], sensor networks [57], [58] and control [59]. The 

Users 

M
o
v
ies 
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core idea of this recovery is based on the nuclear norm minimization [5], [31], [32], [34], 

[52]–[54].  

In an ideal scenario, the convex approximation to the matrix completion problem can be 

represented by:  

𝑚𝑖𝑛
𝑋

 ‖𝑋‖∗ 

𝑠. 𝑡.  𝑃𝛺(𝑋) = 𝑃𝛺(𝑀) 

(2.7) 

where 𝑋 is the low rank matrix to be estimated, 𝑀 is the original matrix. 

Since the observed samples are usually contaminated with noise, we need to relax 

the equality constraint into an inequality constraint in order to make (2.7) more robust to 

noise [54]. 

 

𝑚𝑖𝑛
𝑋

 ‖𝑋‖∗ 

𝑠. 𝑡.  ‖𝑃𝛺(𝑋 ) − 𝑃𝛺(𝑀)‖𝐹
2 ≤ 𝜀 

 (2.8) 

Subsequently, the authors in [60] proposed to use the reweighted least squares algorithm 

to recover sparse signals from few observed samples. In [61] the authors introduced the 

reweighted nuclear norm concept into the matrix completion problem. The same authors 

proposed an efficient iterative algorithm [35], and they showed that it is more 

computationally efficient and achieves better performance than the heuristic matrix 

completion algorithms that require evaluating the computationally expensive Singular 

Value Decomposition (SVD) in each iteration. The IRLS-p algorithm in [35] used a simple 

gradient minimization approach to obtain the optimal minimum of a reweighted rank 

approximation function. Instead of minimizing the convex nuclear norm function in (2.7), 

the authors in [35] suggested to use a smooth approximation to the rank function and they 
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showed that it converges faster than minimizing the nuclear norm function; they considered 

the smooth Schatten-p function: 

𝑓𝑝(𝑋) = 𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)
𝑝
2 (2.9) 

Here, 𝐼 is the identity matrix and γ > 0. The function (2.9) is  convex for 𝑝 ≥ 1 [35].  

So the matrix rank minimization approximation problem can be written as [35]: 

𝑚𝑖𝑛
𝑋

𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)
𝑝
2 

𝑠. 𝑡.  𝑃𝛺(𝑋) = 𝑃𝛺(𝑀) 

 (2.10) 

The authors also provided a theoretical guarantee that when 𝑝 = 1   the algorithm 

provides similar results to minimizing the nuclear norm. The main issue with this iterative 

algorithm is that in each iteration, the authors used a strict equality constraint for the region 

of observed samples, and hence, when the observed samples are contaminated with noise, 

the algorithm will converge to the noisy version of the data.  

 

2.3 Tensor Completion  

In several computer vision applications, we usually deal with a higher dimensional 

space, we find few studies considered the N-dimensional tensor completion case because of 

the difficulties associated with higher dimensional space computations [30], [62]. Some 

researchers, for example in [34], applied their matrix completion algorithms to color images 

by considering each color channel as a separate matrix. Such algorithms don’t consider the 

correlation among the different channels. Previous algorithms solved the matrix and tensor 

completion problems based on minimizing the nuclear norm, which has been shown [55] to 

be the tightest approximation to the rank function [5], [30], [31], [54], [56], [63]. Some other 

algorithms also used a reweighted nuclear norm, for example in [61], to achieve better 
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results than using only the truncated nuclear norm. However, minimizing the nuclear norm 

requires evaluating the computationally expensive SVD in each iteration. As mentioned 

earlier, in [35] the authors proposed an extension of the work in [60] into the matrix 

completion problem and proposed computationally efficient algorithms for matrix 

completion. In this thesis we propose two matrix completion algorithms based on the 

schatten-p functions that are more robust to noise than the previous algorithms. 

Tensor completion is a generalization of the matrix completion concept explained in 

section 2.5.2. We generalize the completion algorithm for the matrix (i.e., 2- mode or 2-

order tensor) case to higher-order tensors by solving the following optimization problem 

[30], [39], [64]: 

𝑚𝑖𝑛
X

 ‖X‖∗ 

𝑠. 𝑡.  𝑃𝛺(X ) = 𝑃𝛺(M) 

(2.11) 

where both X  and M are n-mode tensors which have the same size in each mode. 

 One issue with this definition is that the nuclear norm of a high dimensional tensor has 

no unique definition, the mostly used format in tensor completion application is the average 

of the nuclear norm of the matrix formed by unfolding the tensor along each dimension [38], 

[39], [65]. This can be represented mathematically as: 

 ‖X ‖∗ =
1

𝑛
∑‖(X )(𝑖)‖∗

𝑛

𝑖=1

 (2.12) 

Since the unfolded tensors tend to form a relatively large matrix, the use of SVD 

decomposition for each unfold will take much longer time. In this thesis, we will also extend 

these efficient Schatten-p function that we defined for matrix completion in equation (2.9) 

to the multi-dimensional tensor domain and propose a tensor completion algorithm based 
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on these functions that outperforms state of the art tensor completion algorithms and at the 

same time reduces the computation time. 

 

2.4 Robust Tensor Recovery  

In matrix domain, several algorithms were developed to separate the low rank and sparse 

models which is known as the robust matrix recovery. The main idea is based on minimizing 

both the nuclear norm and the ℓ1  norm of the estimated low rank and sparse components 

[10], [42], [43], [66]. 

𝑚𝑖𝑛
𝑋,𝐸

 ‖𝑋‖∗ +  𝜆‖𝐸‖1  

𝑠. 𝑡.  𝑀 = 𝑋 + 𝐸 

(2.13) 

where 𝑋 is the estimated low rank matrix, 𝐸 is the estimated sparse matrix and 𝑀 is the 

observed matrix. 

Since most applications in real life, especially in computer vision such as colored images 

and video, are multidimensional data [15], [16]. Applying the recovery algorithms to each 

two-dimensional space separately will ignore the internal correlation in the signal. Hence, 

it is important to process the whole tensor data [16], [67]. In the few past years, some 

contributions have been made in the robust tensor recovery field. The authors in [15] 

proposed a robust algorithm for error data correction for image and video signals. The 

authors in [16] used the multi-linear augmented Lagrangian multiplier for tensor recovery 

and they applied it to recover corrupted multidimensional data. The authors in [14] applied 

different tensor recovery algorithms and they did a detailed performance analysis among 

them. The common problem with these algorithms is that they require computing the SVD 

of the tensor in every iteration, which is very computationally expensive. In this thesis, we 
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formulate a new objective function for the tensor RPCA problem based on using the 

truncated and smoothed Schatten-p functions. We refer to our proposed framework as the 

Truncated-and-Smoothed Robust Tensor Recovery (TSRTR). We solved the proposed 

objective function using the Augmented Lagrangian Multiplier (ALM) algorithm, which is 

the trivial algorithm to use with RPCA.  We also proposed two other algorithms based on 

the Accelerated Proximal Gradient (APG) and the Alternating Directions Methods of 

Multipliers (ADMM). 

  

2.5 Truncated Nuclear Norm 

Even though the nuclear norm based algorithms for matrix completion perform well on 

synthetic data, these algorithms do not perform well in practical applications due to the fact 

that nuclear norm doesn’t accurately approximate the rank function. The rank of a matrix 

treats all the non-zero singular values equally, while the nuclear norm treats singular values 

differently. Also, nuclear norm approaches do not converge sometimes due if the underlying 

matrix does not follow the theoretical bounds such as the coherence property [34].  

Instead of modifying all the singular values of the estimated matrix we need to keep 

the significant singular values unchanged and only modify the smaller singular values 

which we refer to as the Truncated Nuclear Norm Regularization (TNNR) of the matrix. 

For a matrix  𝑀 ∈ ℝ𝑚×𝑛 or rank 𝑟, TNNR can be represented as min(𝑚, 𝑛) − 𝑟. The 

truncated nuclear norm only minimizes the 𝑟 lower singular values which produces better 

approximation to the rank function [34], [39]. Now the matrix completion problem can be 

casted as: 
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𝑚𝑖𝑛
𝑋

 ‖𝑋‖𝑟 

𝑠. 𝑡.  ‖𝑃𝛺(𝑋 ) − 𝑃𝛺(𝑀)‖𝐹
2 ≤ 𝜀 

 

(2.14) 

 

 

However,  ‖. ‖𝑟 is not convex and hence we have to find a close convex approximation 

to it. In [34] the authors included a theorem to prove that TNNR can be bounded by a 

convex function approximation: 

𝑇𝑟(𝐴𝑋𝐵𝑇) ≤ ∑ 𝜎𝑖(𝑋)

min (𝑚,𝑛)

𝑖=1

   (2.15) 

where 𝑋 ∈ ℝ𝑚×𝑛, 𝐴 ∈ ℝ𝑚×𝑛 , 𝐵 ∈ ℝ𝑚×𝑛, A𝐴𝑇 = 𝐼 and 𝐵𝐵𝑇 = 𝐼 and 𝐼 is the identity 

matrix. 

Let the SVD of the matrix 𝑋 = 𝑈Σ𝑉𝑇 where 𝑈 = (𝑢1, 𝑢2, … 𝑢𝑚) ∈ ℝ𝑚×𝑚, 𝑉 =

(𝑣1, 𝑣2, … 𝑣𝑛) ∈ ℝ𝑛×𝑛  and Σ ∈ ℝ𝑚×𝑛, the equality in (2.15) will hold if we set [34]: 

𝐴 = (𝑢1, 𝑢2, … 𝑢𝑟)
𝑇 ∈ ℝ𝑟×𝑚 , 𝐵 = (𝑣1, 𝑣2, … 𝑣𝑟)

𝑇 ∈ ℝ𝑟×𝑛  (2.16) 

 

 Thus, the matrix completion optimization function can be represented as: 

𝑚𝑖𝑛
𝑋

 ‖𝑋‖∗ −𝑇𝑟(𝐴𝑋𝐵𝑇) 

𝑠. 𝑡.  ‖𝑃𝛺(𝑋 ) − 𝑃𝛺(𝑀)‖𝐹
2 ≤ 𝜀 

 (2.17) 

Since the objective function is convex by setting  𝐴 and 𝐵 as shown in (2.16), then it 

can be solved using any convex optimization algorithms. The solution to this function 

consists of two steps, the first one is to fix 𝑋 and compute 𝐴 and 𝐵, the next iteration is to 

estimate the new value of 𝑋. An example of this two-step optimization algorithm is shown 

in Algorithm 2.1 [34]. 

Similar approach can be applied to the tensor domain for an 𝑛 -fold tensor, which can 

be generally represented as [39]: 



28 
 

𝑚𝑖𝑛
X

∑𝛼𝑖‖(X )(𝑖)‖𝑟

𝑛

𝑖=1

  

𝑠. 𝑡.  𝑃𝛺(X ) = 𝑃𝛺(M) 

(2.18) 

where 𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝑛  is a weighting parameter for the TNNR of each unfold of the 

tensor.  

Using similar proof to [34], equation (2.18) can be rewritten as: 

𝑚𝑖𝑛
X

∑(𝛼𝑖‖(X )(𝑖)‖𝑟
− 𝛼𝑖𝐴𝑖(X )(𝑖)𝐵𝑖

𝑇)

𝑛

𝑖=1

  

𝑠. 𝑡.  𝑃𝛺(X ) = 𝑃𝛺(M) 

(2.19) 
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Algorithm 2.1:                  TNNR   Iterative Scheme Matrix Completion 

Input: 𝑃𝛺(𝑀), tolerance 𝜖 

Steps:  initialize 𝑋1 = 𝑃𝛺(𝑀)  

Repeat 

1:   Given 𝑋𝑙 

      [𝑈𝑙, Σ𝑙, 𝑉𝑙] = 𝑆𝑉𝐷(𝑋𝑙) 

      where 𝑈𝑙 = (𝑢1, 𝑢2, … 𝑢𝑚) ∈ ℝ𝑚×𝑚 

 𝑉𝑙 = (𝑣1, 𝑣2, … 𝑣𝑛) ∈ ℝ𝑛×𝑛 

      Compute 𝐴𝑙  = (𝑢1, 𝑢2, … 𝑢𝑟)
𝑇 ∈ ℝ𝑟×𝑚  

𝐵𝑙 = (𝑣1, 𝑣2, … 𝑣𝑟)
𝑇 ∈ ℝ𝑟×𝑛 

2: Solve  

      𝑋𝑙+1 = 𝑚𝑖𝑛
𝑋𝑙

 ‖𝑋𝑙‖∗ −𝑇𝑟(𝐴𝑙𝑋𝑙𝐵𝑙
𝑇) 

𝑠. 𝑡.  ‖𝑃𝛺(𝑋 ) − 𝑃𝛺(𝑀)‖𝐹
2 ≤ 𝜀 

      Until ‖𝑋𝑙+1 − 𝑋𝑙‖𝑭 ≤ 𝜖 

 

Output:  𝑋  
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Chapter 3 

  

Proposed Algorithms for Low Rank Models 
 

3.1 Matrix Completion Algorithms using Smooth Rank Approximation [68]  

In this work, we are interested in solving the matrix completion problem using the 

reweighted rank approximation minimization formulation proposed in [35]. To that end, we 

set the exponent parameter 𝑝 = 1 in the smooth approximation function (2.9). Further, and 

to make the solution to (2.10) more robust to noise, we also relax the equality constraints 

into an inequality constraint. Hence, we cast the matrix completion problem as follows: 

𝑚𝑖𝑛
𝑋

𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)
1
2   

𝑠. 𝑡. ‖𝑃𝛺(X-M)‖𝐹
2 ≤ 𝜀 

(3.1) 

where 𝜀 > 0. The Lagrangian equivalent of (3.1) is given by: 

𝑚𝑖𝑛
𝑋

𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)1/2 +
𝜆

2
‖𝑃𝛺(𝑋 − 𝑀)‖𝐹

2  (3.2) 

where 𝜆 is the lagrange multiplier. 

More importantly, we develop two algorithms to solve the reweighted-rank-

approximation matrix completion problem in (3.1). These algorithms are described in the 

following two subsections. 

 

3.1.1. Accelerated Proximal Gradient Algorithm for Reweighted Rank Approximation  

The APG algorithm solves problems of the form [69]: 

𝐹(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)      (3.3) 

And the APG solution to (3.2) is given by [69]: 
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𝑄𝜏(𝑥, 𝑧) = 𝑓(𝑧) + 𝑔(𝑥) + 〈𝛻𝑓(𝑧), 𝑥 − 𝑧〉 +
𝜏

2
‖𝑥 − 𝑧‖𝐹

2     (3.4) 

Completing the sum of squares and simplifying (3.4) give: 

𝑄𝜏(𝑥, 𝑧) = 𝑓(𝑧) +
𝜏

2
‖𝑥 − 𝑧 +

1

𝜏
𝛻𝑓(𝑧)‖

𝐹

2

−
1

2𝜏
‖𝛻𝑓(𝑧)‖𝐹

2 + 𝑔(𝑥)    (3.5) 

Now, we cast the reweighted-rank-approximation matrix completion considering the 

Lagrangian dual problem (3.1), by selecting: 

𝑔(𝑋) = 𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)
1
2, 𝑓(𝑋) =

𝜆

2
‖𝑃𝛺(𝑋 − 𝑀)‖𝐹

2   (3.6) 

Substitute from (3.6) into (3.5) we get: 

𝑚𝑖𝑛
𝑋,𝑍

𝑄𝜏(𝑋, 𝑍) =
𝜆

2
‖𝑃𝛺(𝑍 − 𝑀)‖𝐹

2 −
𝜆

2𝜏
‖𝑃𝛺(𝑍 − 𝑀)‖𝐹

2 +
𝜏

2
‖𝑋 − 𝑍 +

𝜆

𝜏
𝑃𝛺(𝑍 − 𝑀)‖

𝐹

2

+ 𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)1/2 

 (3.7) 

Using a similar idea to [53] for the nuclear norm minimization case, we introduce 

another matrix 𝑌. 

𝑌𝑘+1=𝑍𝑘 −
𝜆

𝜏
(𝑃𝛺(𝑍𝑘 − 𝑀)) (3.8) 

Now (3.7) becomes: 
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Algorithm 3.1:                     SRAMC-APG 

Input: 𝑃𝛺(𝑀), λ, τ 

Steps: 1: initialize 𝑋1=𝑋0=𝑌1=𝑍1 = 𝑃𝛺(𝑀), 𝑡1=𝑡0=1 

2: while  Not converged 

      Evaluate   𝑍𝑘+1 using (2.12)   

      Evaluate 𝑌𝑘+1 using (2.8) 

      Evaluate  𝑊 using (2.11) 

      Evaluate   𝑋𝑘+1 using (2.10) 

      Update 𝑡𝑘+1    using (2.13) 

    End While 

Output:  𝑋  

 

 

 

𝑚𝑖𝑛
𝑋,𝑌,𝑍

𝑄𝜏(𝑋, 𝑌, 𝑍 )

=
𝜆

2
‖𝑃𝛺(𝑍 − 𝑀)‖𝐹

2 +
𝜏

2
‖𝑋 − 𝑌 ‖𝐹

2 −
𝜆

2𝜏
‖𝑃𝛺(𝑍 − 𝑀)‖𝐹

2

+ 𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)1/2 

   (3.9) 

 

 

We can minimize (3.9) using Block Coordinate Descent (BCD), we fix Z,Y ; then we 

differentiate and solve for X. 

𝑋𝑘+1 = 𝑌𝑘+1 − 𝜏𝑋𝑘𝑊  (3.10) 

where 𝑊 is given by: 

𝑊 = (𝑋𝑇𝑋 + 𝛾𝐼)−1/2 (3.11) 
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As in [53] 𝑍𝑘 can be found by: 

𝑍𝑘+1=𝑋𝑘 + 
𝑡𝑘−1 − 1

𝑡𝑘
(𝑋𝑘 − 𝑋𝑘−1)  (3.12) 

And update 𝑡𝑘+1 using: 

𝑡𝑘+1 =
1 + √1 + 4(𝑡𝑘)2

2
 (3.13) 

Algorithm 3.1 shows the final procedure of our Reweighted Rank Approximation 

Matrix Completion with APG (SRAMC-APG). 

 

3.1.2. Alternating Direction Method of Multipliers for Reweighted Rank Approximation 

ADM solves general problems of the form [64]:  

𝑚𝑖𝑛
𝑥∈ℝ𝑞,𝑦∈ℝ𝑚

𝑓(𝑥) + 𝑔(𝑦) 

𝑠. 𝑡.  𝑥 ∈ ℂ𝑥, 𝑦 ∈ ℂ𝑦, 𝐺𝑥 = 𝑦 

    (3.14) 

where, ℂ𝑥 ⊂ ℝ𝑞 , ℂ𝑦 ⊂ ℝ𝑚and 𝐺 ∈ ℝ𝑞∗𝑚 

The Lagrangian dual problem of (2.14) is given by [52], [64]: 

𝑄(𝑋, 𝑌, 𝐿) = 𝑓(𝑋) + 𝑔(𝑌) + 〈𝐿𝑇 , 𝐺𝑋 − 𝑌〉 +
𝜏

2
‖𝐺𝑋 − 𝑌‖𝐹

2        (3.15) 

where 𝐿 ∈ ℝ𝑚 is the Lagrange multipliers matrix. 

In order to formulate (3.2) as an ADM problem, we need to split the function into two 

variables. 

𝑚𝑖𝑛
𝑋

𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)
1
2 +

𝜆

2
‖𝑃𝛺(𝑌 − 𝑀)‖𝐹

2    

𝑠. 𝑡.  𝑋 = 𝑌 

(3.16) 
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Algorithm 3.2:                    SRAMC-ADM 

Input: 𝑃𝛺(𝑀), λ, τ 

Steps: 1: initialize 𝑋1=𝑌1=PΩ(𝑀), 𝐿1 = 0 

2: while  Not converged 

     Evaluate   Y 𝑘+1 using (2.20)    

     Evaluate  𝑊 using (2.11) 

     Evaluate  X  𝑘+1 using (2.19) 

     Evaluate   L 𝑘+1 using (22)     

 End While 

Output:  𝑋  

 

The Lagrangian dual problem of (3.16) after setting 𝐺 to the identity matrix is given by: 

𝑚𝑖𝑛
X,Y,L

Q(X,Y,L) = 𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)
1
2+

𝜆

2
‖𝑃𝛺(𝑌 − 𝑀)‖𝐹

2 + 〈𝐿𝑇 , 𝑋 − 𝑌〉 +
𝜏

2
‖𝑋 − 𝑌‖𝐹

2  (3.17) 

Using BCD, we reduce (3.17) for X by fixing Y and L. After completing the sum of 

squares and neglecting the constants we get: 

𝑚𝑖𝑛
X

Q(X) = 𝑇𝑟(𝑋𝑇𝑋 + 𝛾𝐼)
1
2 +

𝜏

2
‖X − Y +

1

𝜏
L ‖

𝐹

2

      (3.18) 

Differentiating and solving (3.18) for X: 

𝑋𝑘+1 = 𝑌𝑘+1 − 𝜏(𝑋𝑘𝑊 + 𝐿) (3.19) 

where 𝑊  is defined as in (3.11) 

Next, we reduce (3.17) for Y  by fixing X and L and neglecting the constant terms; then 

we differentiate and solve for Y. 
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𝑌𝑘+1 = 𝑋𝑘 +
1

𝜏
(L 𝑘 − 𝜆 𝑃𝛺(𝑌𝑘 − 𝑀)) (3.20) 

Finally, we simplify (3.17) by completing the sum of squares and solve for L by fixing 

X and Y and neglecting the constant terms. 

𝑚𝑖𝑛
L

Q(L) =
𝜏

2
‖X − Y+

1

𝜏
L ‖

𝐹

2

−
1

2𝜏
‖L ‖𝐹

2  (3.21) 

Differentiating and solving for L: 

L 𝑘+1 = L 𝑘 + 𝜏(X 𝑘+1 − Y  𝑘+1) (3.22) 

The implementation of the Reweighted Rank Approximation Matrix Completion with 

ADM (SRAMC-ADM) is shown in Algorithm 3.2. 

 

3.2 Smooth Rank Approximation Tensor Completion [67]  

In this work, we are interested in solving the matrix completion problem using the 

reweighted rank approximation minimization formulation proposed in [35]. 

In this thesis we are interested in using a generalized version of the smooth Schatten-p 

function to solve the tensor completion problem, and hence we need to redefine (2.9) to the 

higher dimensional space.  

Definition 3.1: The smooth Schatten-p function for an N-dimensional signal is given 

by: 

𝑓𝑝(X ) =
1

𝑁
∑𝑇𝑟((X)(𝑖)

𝑇 (X)(𝑖) + 𝛾𝐼)
𝑝
2

𝑁

𝑖=1

  (3.23) 

One can verify the validity of Defintion 2.1 for the 2-dimensional Schatten-p case (𝑁 =

2) by observing that the trace of the matrix and its transpose are the same; and hence, (3.23) 

reduces to (2.9). 
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Now the tensor completion problem based on a smooth rank approximation function can 

be casted as: 

𝑚𝑖𝑛
X 

1

𝑁
∑𝑇𝑟((X )(𝑖)

𝑇 (X )(𝑖) + 𝛾𝐼)
𝑝
2

𝑁

𝑖=1

 

𝑠. 𝑡.  𝑃𝛺(X ) = 𝑃𝛺(M ) 

 (3.24) 

 

Next we derive the ALM optimization method to solve the tensor completion problem 

in (3.24). Using similar idea for the matrix case in [63], we can rewrite (3.24) in the tensor 

domain as: 

𝑚𝑖𝑛
X 

1

𝑁
∑𝑇𝑟((X )(𝑖)

𝑇 (X )(𝑖) + 𝛾𝐼)
𝑝
2

𝑁

𝑖=1

 

𝑠. 𝑡.  X + E = 𝑃𝛺(M ), 𝑃𝛺(E) = 0  

(3.25) 

Here, X  represents the non-observed entries of the original tensor M . The partial 

augmented Lagrange function for (3.25) is given by: 

𝐿(X, E,Y, 𝜇) = ∑𝛼𝑖𝑇𝑟((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

𝑝
2

𝑁

𝑖=1

+ 〈Y, 𝑃𝛺(M ) − X − E 〉

+
𝜇

2
‖𝑃𝛺(M ) − X − E‖𝐹

2  

(3.26) 

where Y  is the Lagrange multiplier tensor. 

In this section we state the solution for (3.26) with respect to each variable (X, E and Y 

) as three lemmas; the proofs are presented separately in section 3.5. 

Lemma 3.1: The optimal solution for (3.26) with respect to X is given by: 

X  𝑘+1 = 𝑃𝛺(M ) +
1

𝜇
Y  𝑘 − [E 𝑘 +

1
𝜇

∑ 𝛽𝑖
𝑁
𝑖=1  Z𝑖

𝑘+1

∑ 𝛽𝑖
𝑁
𝑖=1

] (3.27) 

where  𝛽 is a control parameter and   Z𝑖
𝑘+1is given by: 



37 
 

 

 

 Z𝑖
𝑘+1 = 𝑓𝑜𝑙𝑑 (𝛼𝑖(X 𝑘 )

(𝑖)
𝑊𝑖 )

(𝑖)
  (3.28) 

𝑊𝑖 is defined as: 

𝑊𝑖 = ((X  𝑘)(𝑖)
𝑇 (X  𝑘)(𝑖) + 𝛾𝐼)1− 

𝑝
2 (3.29) 

 

 

 

Algorithm 3.3:                     SRATC 

Input: 𝜇 > 0, 𝛽 ∈ ℝ𝑁, 𝑃𝛺(M) 

  Steps: 1: initialize X  1=PΩ(M), Y  1=E  1 = 0 

2: while  Not converged 

  Do:  For each dimension 𝑖 

                  Evaluate 𝑊𝑖 using (2.29)     

                  Evaluate  Z𝑖
k+1 using (2.28) 

          End For 

          Evaluate   X  𝑘+1 using (2.27) 

          Evaluate   E  𝑘+1 using (2.30) 

          Evaluate   Y  𝑘+1 using (2.31)     

 

   End While 

Output: X ,  E 
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Lemma 3.2: The optimal solution for (3.26) with respect to E is given by: 

𝑃𝛺̅(E 𝑘+1 ) = 𝑃𝛺̅(M +
1

𝜇
Y  𝑘 − X  𝑘+1) 

𝑃𝛺(E 𝑘+1 )=0 

(3.30) 

Lemma 3.3: The optimal solution for (3.26) with respect to Y is given by: 

Y  𝑘+1 = Y  𝑘 + 𝜇(𝑃𝛺(M ) − X  𝑘+1 − E 𝑘+1) (3.31) 

Benefitting from the smooth Schatten-P function formula we used a code optimization 

idea in order to reduce the computation complexity. Since the trace of the matrix (X  𝑘)(𝑖) ∈

 ℝ𝑝×𝑞 and its transpose are the same; then while computing  𝑊𝑖 we used the transpose of 

(X  𝑘)(𝑖) if   𝑞 > 𝑝 and we also used the term ((X 𝑘 )
(𝑖)

𝑊𝑖)
𝑇  in order to maintain the original 

dimensions of the unfolded tensor. The proposed Smooth Rank Approximation Tensor 

Completion (SRATC) algorithm is presented in algorithm 3.3. 

 

3.3 Smooth Rank Approximation for Robust Tensor Recovery [70]      

   This work is motivated by recent works [10][11], which show that matrix and tensor 

completion using the truncated nuclear norm provides a significant performance 

improvement over the traditional nuclear norm minimization framework. This imporvement 

can be attributed to the observatrion that minimizing the truncated nuclear norm keeps the 

high singular values (related to the actual low rank signal) intact, and at the same time it 

minimizes the lower singular values (related to noise or sparse part). 

Some challenges associated with applying the objective function in [11] for the tensor 

recovery problem are: First, it needs computing the singular value decomposition of the 

tensor (HoSVD) two times in each step, which is very computationally expensive. Second, 
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the nature of the RPCA problem requires adding a minimization function to the  ℓ1 term to 

estimate the sparse part of the observed tensor, which makes the derivation of the 

optimization algorithm quite challenging. 

In this thesis, we utilize the generalized multi-dimensional smoothed Schatten-p in [8] 

which was used to achieve lower execution time in tensor completion. The general objective 

function that we consider is: 

𝑚𝑖𝑛
X, E

∑[𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2] − 𝛽𝑖𝑇𝑟 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇) +  𝜆‖(E)(𝑖)‖1
]

𝑚

𝑖=1

 

𝑠. 𝑡.  M=X + E 

(3.32) 

where X  is the low rank tensor to be estimated and E  is the sparse tensor and M is the 

observed tensor. If the SVD decomposition of a matrix 𝑋 is described as 𝑋 = 𝑈𝛴𝑉𝑇, then 

𝐴𝑖 = (𝑢 1 … 𝑢𝑟)
𝑇, 𝐵𝑖 = (𝑣 1 … 𝑣𝑟)

𝑇. 

Since the trace function is linear and we are interested in minimizing the nuclear norm 

function, we set 𝑝 = 1 in the Schatten-p function. Now Equation (3.32) can be casted as: 

𝑚𝑖𝑛
X, E

∑[𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)] +  𝜆‖(E)(𝑖)‖1
]

𝑚

𝑖=1

 

𝑠. 𝑡.  M=X + E 

(3.33) 

In this thesis, we propose three different solutions to (3.33) using the Augmented 

Lagrangian Multiplier (ALM), Accelerated Proximal Gradient (APG) and Alternating 

Direction Methods of Multipliers (ADMM) optimization algorithms. We also provide 

analytical derivations and detailed proofs for key expressions of all three algorithms.  
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3.3.1. The Proposed ALM Solution 

The ALM is an optimization algorithm that is used to solve constrained optimization 

problems due to its Q-linear solution to the problem and because of the availability of an 

exact solution to the ALM [7], [12]. In general, ALM solves problems of the form: 

min𝑓(𝑥) + 𝑔(𝑦) 

s. t.𝑀𝑥 = 𝑦 

(3.34) 

Here 𝑥 and 𝑦 are the variables to be estimated from the optimization problem and 𝑀 is the 

sampling operator. 

Using the Lagrangian method for solving optimization problems by converting the 

condition into a term in the objective function, the general ALM solution to (3.34) can be 

represented as: 

min𝑓(𝑥) + 𝑔(𝑦)+< 𝑙,𝑀𝑥 − 𝑦 > +
𝜆

2
‖𝑀𝑥 − 𝑦‖𝐹

2    (3.35) 

where 𝑙 is the Lagrange multiplier vector. 

To solve (3.35) in the multi-dimensional tensor domain, we need to change all variables to 

tensors and we need to case our objective function (3.33) so that it can be solved using ALM, 

to this extent, we need to select the variables as shown below: 

𝑓(X) = ∑ [𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)]]

𝑚

𝑖=1

 

𝑔(E ) =  ‖(E)(𝑖)‖1
 

 

(3.36) 
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After substituting the variables in the general ALM solution (3.35), The ALM solution to 

the proposed framework can be represented as: 

𝐿(X, E,Y, 𝜇) = ∑[𝛼𝑖𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)]

𝑚

𝑖=1

+  𝜆‖(E)(𝑖)‖1
] + 〈Y, M − X − E 〉 +

𝜇

2
‖M − X − E‖𝐹

2  

(3.37) 

where Y  is the Lagrange multiplier tensor. 

Lemma 3.4: For a tensor M ∈ ℝ𝑛1×𝑛2…×𝑛𝑚 that is formed by the superposition of low 

rank and sparse tensors, X  and E  respectively; the optimal solution for (3.37) with respect 

to X  is given by: 

X  𝑘+1 = [∑ 𝛼𝑖 𝑓𝑜𝑙𝑑 (𝑍𝑖 −
1

𝜇
(X𝑖

  𝑘)
(𝑖)

𝑊𝑖 +
𝛽𝑖

𝜇
𝐴𝑖

𝑇𝐵𝑖)
(𝑖)

 𝑚
𝑖=1 ] /∑ 𝛼𝑖

𝑛
𝑖=1   

 

(3.38) 

where 𝑊𝑖 is represented by: 

𝑊𝑖 = ((X  𝑘)(𝑖)
𝑇 (X  𝑘)(𝑖) + 𝛾𝐼)− 

1
2 (3.39) 

and  Z𝑖 is represented by: 

Z𝑖 = (M − E  𝑘 +
1

𝜇
Y  𝑘)(𝑖) 

 

(3.40) 

Lemma 3.5: For a tensor M ∈ ℝ𝑛1×𝑛2…×𝑛𝑚 that is formed by the superposition of low rank 

and sparse tensors, X  and E  respectively; the optimal solution for (3.37) with respect to E  

is given by: 
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E  𝑘+1 = 𝔖 𝜆
𝜇

 (M − X  𝑘+1 +
1

𝜇
Y  𝑘) 

 

(3.41) 

The optimal solution for (3.37) with respect to Y  is given by: 

    Y  𝑘+1 = Y  𝑘 + 𝜇(M − X  𝑘+1 − E  𝑘+1)    (3.42) 

The proofs for lemmas 3.4 and 3.5 are shown in section 3.5. The proposed TSRTR-ALM 

algorithm is presented in Algorithm 1.  

 

3.3.2. The Proposed APG Solution 

The proximal gradient algorithms solve unconstrained optimization problems. It works by 

evaluating the proximal operator of the function. The accelerated version of these algorithms 

is achieved by adding a weighted difference of the estimated iterative solution which helps 

speeding up the convergence of the algorithm. APG solves problems of the form [13]: 

𝐹(𝑥) = 𝑓(𝑧) + 𝑔(𝑥)  (3.43) 

and the APG solution to (3.43) is given by [13]: 

𝑄𝜏(𝑥, 𝑧) = 𝑓(𝑧) + 𝑔(𝑥) + 〈𝛻𝑓(𝑧), 𝑥 − 𝑧〉 +
𝜏

2
‖𝑥 − 𝑧‖𝐹

2   (3.44) 

Completing the sum of squares and simplifying (3.44) give: 

𝑄𝜏(𝑥, 𝑧) = 𝑓(𝑧) +
𝜏

2
‖𝑥 − 𝑧 +

1

𝜏
𝛻𝑓(𝑧)‖

𝐹

2

−
1

2𝜏
‖𝛻𝑓(𝑧)‖𝐹

2 + 𝑔(𝑥)       (3.45) 

The objective function (3.45) solves for a single variable (𝑥), while our objective function 

(3.32) consists of two variables (X, E). To solve this, we extend the idea in [5], which was 

implemented on matrix robust PCA with nuclear norm minimization, to the multi-

dimensional tensor domain by defining a pair of two-tensor variables S = (SX = X , SE =
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E) ∈ ℝ𝑛1×𝑛2…×𝑛𝑚×ℝ𝑛1×𝑛2…×𝑛𝑚    and Z = (ZX , ZE ) ∈ ℝ𝑛1×𝑛2…×𝑛𝑚×ℝ𝑛1×𝑛2…×𝑛𝑚  

instead of the variables (𝑥 and z). Now, we can solve the Truncated Robust Tensor Recovery 

problem (3.32), by selecting: 

𝑔(S) = ∑[𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)] +  𝜆‖(E)(𝑖)‖1
]

𝑚

𝑖=1

 

𝑓(Z) =
𝜇

2
‖M − ZX − Z E‖𝐹

2   

        

(3.46) 

Substitute from (3.46) into (3.45) we get: 

𝑚𝑖𝑛
S, Z

𝑄𝜏(S, Z) =
𝜇

2
‖M − ZX − Z E‖𝐹

2

+ ∑[(𝑇𝑟(SX )(𝑖)
𝑇 (SX )(𝑖) + 𝛾𝐼)

𝑝
2 − 𝛽𝑖𝑇𝑟 (𝐴𝑖(SX )

(𝑖)
𝐵𝑖

𝑇)

𝑚

𝑖=1

+  𝜆‖(SE )(𝑖)‖1
] 

 

(3.47) 
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Algorithm 3.4:                     TSRTR-ALM 

Input: M 

Steps: 1:initialize, X  0 = M, Y  0 = E  0 = 0, 𝜆 > 0 , 𝛽𝑖 > 0, 𝛼𝑖 > 0, 𝜂 > 1, 𝜇 

2: while  Not converged 

For each dimension 𝑖  

   [𝑈, 𝛴, 𝑉] =  𝐻𝑜𝑆𝑉𝐷((X𝑖
  𝑘)

(𝑖)
)  

       𝐴𝑖 = (𝑢 1 … 𝑢 𝑟𝑖
)𝑇,  𝐵𝑖 = (𝑣 1 … 𝑣 𝑟𝑖

)𝑇 

      𝑊𝑖 = ((X  𝑘)(𝑖)
𝑇 (X  𝑘)(𝑖) + 𝛾𝐼)− 

1

2 

     𝑍𝑖 = (M − E  𝑘 +
1

𝜇
Y  𝑘)(𝑖) 

      (X  𝑘+1)(𝑖) = 𝛼𝑖  𝑓𝑜𝑙𝑑 (𝑍𝑖 −
1

𝜇
(X𝑖

  𝑘)
(𝑖)

𝑊𝑖 +      
𝛽𝑖

𝜇
𝐴𝑖

𝑇𝐵𝑖)
(𝑖)

 

 End For 

   X  𝑘+1 = ∑ (X  𝑘+1)(𝑖) 
𝑚
𝑖=1 /∑ 𝛼𝑖

𝑛
𝑖=1  

E  𝑘+1 = 𝔖 𝜆

𝜇

 (M − X  𝑘+1 +
1

𝜇
Y  𝑘)   

  Y  𝑘+1 = Y  𝑘 + 𝜇(M − X  𝑘+1 − E  𝑘+1) 

     𝜇 = η ∗ 𝜇 

 End While 

Output:  X  ∗, E ∗  

 

To simplify the mathematical solution, we introduce another tensor pair Y = (YX , YE) ∈

ℝ𝑛1×𝑛2…×𝑛𝑚×ℝ𝑛1×𝑛2…×𝑛𝑚 . Similar idea was used in [14] for the nuclear norm 

minimization case and we define it for each member of the tensor pair. 
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Y  X
𝑘+1=Z X

𝑘 −
𝜇

𝜏
(M − ZX)  

Y E
 𝑘+1=Z E

𝑘 −
𝜆

𝜏
(M − Z E) 

s.t. S =  Y 

    (3.48) 

Now (3.48) becomes: 

𝑚𝑖𝑛
S, Y, Z

𝑄𝜏(S, Y, Z )

=
𝜇

2
‖M − ZX − Z E‖𝐹

2 −
𝜆

2𝜏
‖M − ZX − Z E‖𝐹

2 +
𝜏

2
‖S −  Y ‖𝐹

2

+ ∑[𝛼𝑖𝑇𝑟 [((SX )(𝑖)
𝑇 (SX )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(SX )

(𝑖)
𝐵𝑖

𝑇)]

𝑚

𝑖=1

+  𝜆‖(E)(𝑖)‖1
] 

    (3.49) 

We use the default APG update rule proposed in [14] for each variable [14]: 

ZX
𝑘+1=S X

𝑘 + 
𝑡𝑘−1 − 1

𝑡𝑘
(S X

𝑘 − S X
𝑘−1) 

ZE
𝑘+1=S E

𝑘 + 
𝑡𝑘−1 − 1

𝑡𝑘
(S E

𝑘 − S E
𝑘−1) 

    (3.50) 

And update 𝑡𝑘+1 using: 

𝑡𝑘+1 =
1 + √1 + 4(𝑡𝑘)2

2
      (3.51) 

Lemma 3.6:  For a tensor M ∈ ℝ𝑛1×𝑛2…×𝑛𝑚 that is formed by the superposition of low 

rank and sparse tensors, X  and E  respectively; The optimal solution for the low rank (SX) 

and sparse (SE) tensors using APG is given by: 



46 
 

S X
𝑘+1 = [∑𝛼𝑖 𝑓𝑜𝑙𝑑 ((Y X

 𝑘+1)(𝑖) −
1

𝜏
(SX

  𝑘)
(𝑖)

𝑊𝑖 +
𝛽𝑖

𝜏
𝐴𝑖

𝑇𝐵𝑖)
(𝑖)

 

𝑚

𝑖=1

] /∑𝛼𝑖

𝑛𝑚

𝑖=1

 

S E
𝑘+1 = 𝔖 𝜆

𝜇

 (Y E
 𝑘+1) 

     

(3.52) 

where 𝑊𝑖 is as defined in (3.32). 

The proof of lemma 3.6 is shown in section 3.5. Algorithm 2 shows the optimization 

procedure for the Truncated and Smooth Robust Tensor Recovery using Accelerated 

Proximal Gradient (TSRTR-APG). 

 

3.3.3. The Proposed ADMM Solution 

ADMM is an extension of the ALM algorithm. ADMM solves structured optimization 

problems of the form [15]:  

𝑚𝑖𝑛
𝑥∈ℝ𝑞,𝑦∈ℝ𝑚

𝑓(𝑥) + 𝑔(𝑦) 

s. t.  𝑥 ∈ ℂ𝑥, 𝑦 ∈ ℂ𝑦, 𝐺𝑥 = 𝑦 

    (3.53) 

where, ℂ𝑥 ⊂ ℝ𝑞 , ℂ𝑦 ⊂ ℝ𝑚and 𝐺 ∈ ℝ𝑞∗𝑚 

Similar to ALM, the optimization is done by alternatively solving for  𝑥 and 𝑦. 
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Algorithm 2:                     TSRTR-APG 

Input: M, 𝜇, λ, τ 

Steps: 1: initialize S X
1=S X

0=S E
1=S E

0 = 0, 𝑡1=𝑡0=1 

2: while  Not converged 

      ZX
𝑘+1=S X

𝑘 + 
𝑡𝑘−1−1

𝑡𝑘 (S X
𝑘 − S X

𝑘−1) 

      ZE
𝑘+1=S E

𝑘 + 
𝑡𝑘−1−1

𝑡𝑘
(S E

𝑘 − S E
𝑘−1) 

     Y X
𝑘+1=Z X

𝑘 −
𝜇

𝜏
(M − ZX)  

Y E
𝑘+1=Z E

𝑘 −
𝜆

𝜏
(M − Z E) 

     For each fold 𝑖 

𝑊𝑖 = ((X  𝑘)(𝑖)
𝑇 (X  𝑘)(𝑖) + 𝛾𝐼)− 

1
2 

       (S 
X

𝑘+1)(𝑖) = 𝛼𝑖  𝑓𝑜𝑙𝑑 ((Y X
 𝑘+1)(𝑖) −

1

𝜏
(S X

𝑘)
(𝑖)

𝑊𝑖 +
𝛽𝑖

𝜏
𝐴𝑖

𝑇𝐵𝑖)
(𝑖)

 

     End for 

S X
𝑘+1 = [∑𝛼𝑖 (S 

X

𝑘+1)(𝑖) 

𝑚

𝑖=1

] /∑ 𝛼𝑖

𝑚

𝑖=1

 

S E
𝑘+1 = 𝔖 𝜆

𝜇

 (Y E
 𝑘+1) 

𝑡𝑘+1 =
1 + √1 + 4(𝑡𝑘)2

2
 

    End While 

Output: S X
∗  , S E

∗  
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The Lagrangian dual problem of (3.53) is given by [15], [16]: 

𝑄(𝑥, 𝑦, 𝐿) = 𝑓(𝑥) + 𝑔(𝑦) + 〈𝐿, 𝐺𝑥 − 𝑦〉 

+
𝜏

2
‖𝐺𝑥 − 𝑦‖𝐹

2  

     (3.54) 

where 𝐿 ∈ ℝ𝑚 is the Lagrange multipliers matrix. 

Due to the separable structure of ADMM, it is considered an improvement over ALM in 

solving convex programming problems [17], [18]. 

Since our cost function (3.32) already has two variables, then we can select the 𝑓 and 𝑔 

functions as follow: 

 

𝑓(X ) =∑[𝛼𝑖𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)]]

𝑚

𝑖=1

 

𝑔(E) = ∑  ‖(E)(𝑖)‖1

𝑚

𝑖=1

 

(3.55) 

Using the functions defined in (3.55) the ADMM optimization function can be casted as: 

𝑚𝑖𝑛
X , E , L

Q(X , E , L)

= ∑[𝛼𝑖𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)]

𝑚

𝑖=1

+  𝜆‖(E)(𝑖)‖1
] + 〈L, X +E − M〉 +

𝜏

2
‖X +E − M‖𝐹

2  

     (3.56) 

Lemma 3.7: The optimal solution for the low rank (X ) and sparse (E) and the Lagrange 

multiplier (L)  tensors is given by: 
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Algorithm 3:                    TSRTR-ADMM 

Input: M, 𝜇, λ, τ 

Steps:  1: initialize X 0=E 0=0, 𝐿1 = 0 

2: while  Not converged 

    For each fold 𝑖 

 𝑊𝑖 = ((X  𝑘)(𝑖)
𝑇 (X  𝑘)(𝑖) + 𝛾𝐼)− 

1
2 

       (X  𝑘+1)(𝑖) = (E  𝑘+1)(𝑖) −
1

𝜏
(X𝑖

  𝑘)
(𝑖)

𝑊𝑖 +
𝛽𝑖

𝜏
𝐴𝑖

𝑇𝐵𝑖  

     End for    

X  𝑘+1 = M −
1

𝜏
[∑𝛼𝑖  (S 

X

𝑘+1)(𝑖) 

𝑚

𝑖=1

] /∑𝛼𝑖

𝑛𝑚

𝑖=1

+
1

𝜏
L 

    

E  𝑘+1 = 𝔖 𝜆
𝜏

 (M − X 𝑘 +
1

𝜏
L) 

L 𝑘+1 = L 𝑘 − 𝜏(X 𝑘+1 + E  𝑘+1 − M) 

 End While 

Output:  X ∗, E ∗  

 

X 𝑘+1 = M −
1

𝜏

[
 
 
 
 

∑𝛼𝑖 𝑓𝑜𝑙𝑑 (
(E  𝑘+1)(𝑖) −

1

𝜏
(X𝑖

  𝑘)
(𝑖)

𝑊𝑖 + 

𝛽𝑖

𝜏
𝐴𝑖

𝑇𝐵𝑖

)

(𝑖)

 

𝑚

𝑖=1
]
 
 
 
 

/∑𝛼𝑖

𝑚

𝑖=1

+
1

𝜏
L 

E  𝑘+1 = 𝔖 𝜆
𝜏

 (M − X 𝑘 +
1

𝜏
L) 

L 𝑘+1 = L 𝑘 − 𝜏(X 𝑘+1 + E  𝑘+1 − M) 

    

(3.57) 
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where 𝑊𝑖 is as defined in (3.32). 

The proof of lemma 3.7 is shown in section 3.5. The implementation of the Truncated and 

Smooth Robust Tensor Recovery using with ADMM (TSRTR-ADMM) is shown in 

Algorithm 2. 

 

3.4 Experimental Results  

 

3.4.1. Matrix Completion 

In this work we compare our algorithms against each other and against IRLS-1. For the 

sake of fair comparison, we ran all algorithms using MATLAB R2012b on a computer with 

3.3 GHz i-5 CPU and 4GB Memory. We also set the same maximum number of iterations 

to 1000 for all algorithms.  Since IRLS-1 [35] has shown performance and execution time 

improvements over the matrix completion algorithms with nuclear norm minimization,  we 

will consider comparing our algorithms to each other and to the IRLS-1 only. Figure 3.1 

shows the results of recovering the cameraman image (rank 80) with 50% observed entries 

and additive Gaussian noise (zero mean and 0.007 variance). The results show that SRAMC-

ADM achieves the highest SNR followed by SRAMC-APG and both are higher than IRLS-

1 algorithm. The reason is because we used the relaxed equality constraints for the smoothed 

rank approximation algorithms and as a result we minimized the noise variance and reduce 

the noise effect. Figure 3.2 shows the convergence rate for the algorithms using the same 

image in Figure 3.1. It shows that both SRAMC-ADM and IRLS-1 need more iterations to 

converge to the final SNR, while SRAMC-APG converges within less iterations. 
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(a) 

  
(b) (c) 14.37 

  
(d) 15.16 (e) 15.44 

Figure 3.1: (a) Original image (rank 80) (b) The observed noisy samples, (c-e) 

Inpainted image and the corresponding SNR (dB) using (c) ILRS-1, (d) SRAMC-

APG, (e)  SRAMC-ADM 
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Figure 3.2: Iterations versus signal to noise ratio for cameraman image with 50% 

observed entries. 

Figure 3.3 shows a comparison for the SNR versus the noise variance for all three algorithms 

using the same cameraman image with 50% random observed noisy entries. From  Figure 

3.3 we notice that when the noise level is close to zero, there is a slight difference in 

performance between all algorithms; while once the noise increases we note that SRAMC-

ADM achieves the best performance followed by SRAMC-APG and then IRLS-1. 
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Figure 3.3: SNR versus the noise variance using cameraman image with 50% observed 

entries. 

 

Figure 3.4: Columns correlation coefficient for the recovered cameraman image from 

50% observed noisy entries. 
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Table 3.1: Comparison of average execution time vs. SNR for matrix completion 

algorithms using a set of 12 grayscale images. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 shows a plot for the correlation between each column of the recovered and 

the original images. It also shows that the SRAMC-ADM has the largest correlation with 

the original image followed by the SRAMC-APG and the IRLS-1. 

In Table 3.1, we compare the average SNR and the execution time for the three 

algorithms when applied to a set of 12 standard images1 (256×256 and rank 60). We also 

added Gaussian noise with variance 0.01. 

It can be observed that the SRAMC-ADM always gives the highest SNR. On the other 

hand SRAMC-APG achieves the lowest execution time. 

Missing Method SNR (dB) Time (Sec) 

30% 

IRLS-1 15.43 25 

SRAMC-ADM 17.62 20 

SRAMC-APG 16.74 10 

50% 

IRLS-1 14.74 25 

SRAMC-ADM 16.22 21 

SRAMC-APG 15.76 12 

70% 

IRLS-1 12.85 24 

SRAMC-ADM 13.47 21 

SRAMC-APG 13.16 13 
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(a) 

  

(b) (c) 15.76 

  

(d) 17.34 (e) 18.57 

Figure 3.5: (a) The original façade image, (b) The noisy observation, (b-d) Inpainted 

image and the corresponding SNR (dB) using (b) ILRS-1, (c) SRAMC-APG, (d)  

SRAMC-ADM 
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 After presenting our algorithms and using them in general image completion from 

random noisy measurements, we compare the performance of our methods to the IRLS-1 

algorithm using image inpainting application.  

We apply the algorithms for color image inpainting from texture masking by completing 

each color channel separately as shown in Figure 3.5 for the façade image2 (256×256) with 

Gaussian noise (variance 0.005).  The figure also shows that our algorithms achieve better 

results than IRLS-1. 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

  

(a) (b) 

  

(c) 14.91 (d) 15.76 

 

(e) 16.69 

Figure 3.6: (a) The original drop image, (b) The masked noisy observation, (b-d) 

Inpainted image and the corresponding SNR (dB) using (b) ILRS-1, (c) SRAMC-APG, 

(d)  SRAMC-ADM 
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Figure 3.6 shows the results of applying the algorithms for colored image inpainting 

from a text mask. Again, SRAMC-ADM achieves the highest SNR, followed by SRAMC-

APG and the IRLS-1 comes last.  

For this application, we used the drop image3 (size 220×220, rank 200). 

 

3.4.2. Tensor Completion 

In this section we present the results of the experiments that we performed to compare 

the performance of our SRATC algorithm to the Low Rank Tensor Completion (LRTC) 

algorithm in [30] and the Accelerated Proximal Gradient (APG) tensor completion  in [71].  

The quality of the recovered data is evaluated using the Peak Signal to Noise Ratio 

(PSNR) and the convergence rate is evaluated based on the time needed by the algorithm to 

converge to the final results. We ran the algorithms with MATLAB 2012b on the same 

desktop computer with a 3.3 GHz i-5 CPU and a 4GB Memory. 

In the first application we applied the tensor completion algorithms to recover the house 

color image (size 256×256) [30] with rank 80 in each color channel from random 50% 

observed samples; the results are shown in Figure 3.7.  

From Figure 3.7 we see that the APG takes less execution time than LRTC but it 

converges to the lowest PSNR, while the LRTC takes more time to execute than APG but 

it achieves higher PSNR. Our algorithm achieves comparative PSNR to LRTC, but it needs 

the lowest execution time. To test the performance of the tensor completion algorithms 

under high number of missing entries, we used the algorithms to recover the façade image 

(size 256×256 and rank 80 for each color channel) in [30] and using only 30% observed 

samples; the results are presented in Figure 3.8. 



59 
 

  

(a) (b) PSNR:26.30, Time:76.5 

  

(c) PSNR:25.79, Time:64.1 (d) PSNR:26.34, Time:37.8 

Figure 3.7: (a) The original house image, (b-d) Recovered images with the 

corresponding PSNR (dB) and execution time (Sec.) using (b) LRTC, (c) APG, (d)  

SRATC 
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(a) (b) PSNR:21.34,Time: 90.7 

  

(c) PSNR:20.41,Time:75.5 (d) PSNR: 21.27,Time:49.5 

Figure 3.8: (a) The original façade image, (b-d) Recovered images with the 

corresponding PSNR (dB) and execution time (Sec.) using (b) LRTC, (c) APG, (d)  

SRATC 
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Figure 3.9: Peak Signal to Noise Ratio versus the rank of the matrix using lena 

colored image with 50% observed samples. 

Again, Figure 3.8 shows that APG achieves the lowest PSNR measure but converges 

faster than LRTC, while the proposed SRATC algorithm converges the fastest with almost 

the same performance as LRTC. LRTC converges the slowest but it achieves a good PSNR 

value. 

Figure 3.9 shows the effect of changing the rank on the performance of the tensor 

completion algorithms. In this experiment we used the color lena image (size 256×256) with 

50% observed samples. 

From Figure 3.9 we see that when the rank of the data is very low, SRATC achieves the 

highest PSNR. While when the rank starts to increase, the SRATC and LRTC algorithms 

both have approximately the same PSNR measure. From this experiment, we also noticed 

that the computation time remains approximately constant as we change the rank. 
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Table 3.2: Average execution time and PSNR comparison for tensor completion 

algorithms using a set of 10 colored images. 

Missing (%) Method PSNR (dB) Time (Second) 

30 

LRTC 32.84 63.5 

APG 30.51 57.6 

SRATC 33.85 28.7 

50 

LRTC 26.59 77.3 

APG 24.93 57.1 

SRATC 26.74 31.5 

70 

LRTC 21.54 77.3 

APG 19.39 70.0 

SRATC 21.46 40.3 

 

 To give an accurate performance evaluation for the tensor completion algorithms, we 

apply the algorithms to recover a set of 10 different color images1 (size 256×256 and rank 

60 for each color channel) from (70, 50 and 30)% observed entries; then we average the 

PSNR and the execution time; the results are shown in Table 3.2 We notice that regardless 

of the number of observed entries, the SRATC algorithm achieves the lowest execution time 

while LRTC and APG require significantly longer time to converge because of using the 

SVD decomposition in each iteration. 

 

 

 



63 
 

 

(a) 

 

(b) Time:751.8 

Figure 3.10a: (a) Original façade image (b) Recovered images with the corresponding 

execution time (Sec.) using  LRTC. 
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(a) Time:631.4 

 

(b) Time:395.9 

Figure 3.10b: Recovered images with the corresponding execution time (Sec.) using (a) APG, 

(b)  SRATC. 

 

Another application for testing the tensor completion algorithms is blocks image 

inpainting. We used the façade image of size 318×861 [30]. In this application we are trying 

to recover the missing parts of the façade image texture by inpainting missing blocks of the 

image. The results are shown in Figures 3.10a and 3.10b; These results show that our 

algorithm also converges faster than state-of-the-art tensor completion algorithms. For this 

particular simulation, we don’t have the original image for evaluating the PSNR values; 
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however, by observing the visual quality of the different results, one can observe that the 

proposed SRATC algorithm provides a visual quality similar to the LRTC algorithm while 

converging with about one-half of the time required by LRTC.  

To show the applicability of our SRATC algorithm for higher dimensional data and non-

square tensors, we show in Figure 3.11 the result of recovering a video sequence of the 

tomato video [30]; we used 20 frames with each frame of size 242×320 pixels. We also 

compared the SRATC result to LRTC and APG. As shown in Figure 3.11, our SRATC 

algorithm saves about 4 minutes when compared to the APG algorithm in addition to the 

higher PSNR and the visually better recovered frames. Compared to LRTC, our algorithm 

saves approximately 10 minutes execution time and achieves the same PSNR value. 
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(a) (b) PSNR: 22.82, Time: 1892.6 

  

(c) PSNR:21.01, Time:1530.8 (d) PSNR: 22.86, Time: 1311.4 

Figure 3.11: (a) The original tomato frame (number 6), (b-d) Recovered frames with the 

corresponding PSNR (dB) and execution time (Sec.) using (b) LRTC, (c) APG, (d)  

SRATC 
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3.4.3. Robust Tensor Recovery 

In this section we compare the performance and execution time of our proposed 

algorithms against the Rank Sparsity Tensor Decomposition (RSTD) algorithm which is 

proposed in [6], the Multi-linear Augmented Lagrangian Multiplier (MALM)  in [7] and 

finally the Inexact Alternating Direction Augmented Lagrangian  (IADAL) in [2]. For a fair 

comparison, we ran all algorithms using MATLAB R2016a on a computer with 3.3 GHz i-

5 CPU and 4GB Memory. We also set the same maximum number of iterations to 700 for 

all algorithms since most of the algorithms converge before reaching this number of 

iterations, while the algorithms that do not converge they do not achieve significant PSNR 

improvements if kept running longer. Further, for all algorithms, we used the relative 

absolute error ‖X  𝑘+1 − X  𝑘‖
𝐹
/‖X  𝑘‖

𝐹
< 𝜖 as a stopping condition. 

Figure 3.12 shows the results of applying the robust tensor recovery algorithms for image 

inpainting using the facade image of size 256×256×3. We set the rank for each unfold to 

80×80×3. The figure shows that our framework, in general, achieves a significant 

improvement in PSNR and execution time followed by IADAL, RSTD and finally MALM.  
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MALM: PSNR:21.43 dB, Time:96 Sec 

Figure 3.12a: Top: The observed image. Left: low rank model. Right: Sparse model 

using MALM. 
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RSTD: PSNR:22.79 dB, Time:113 Sec 

  

IADAL: PSNR:24.16 dB, Time:76 Sec 

Figure 3.12b: Left: low rank model. Right: Sparse model using RSTD (Top) and 

IADAL (Bottom). 
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TSRTR-ALM: PSNR: 26.71 dB, Time: 50 Sec 

  

TSRTR-APG: PSNR:25.68 dB, Time: 39 Sec 

Figure 3.12c: Left: low rank model. Right: Sparse model using TSRTR-ALM (Top) 

and TSRTR-APG (Bottom). 
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TSRTR-ADMM: PSNR:26.97 dB, Time:69 Sec 

Figure 3.12d: Left: low rank model. Right: Sparse model using TSRTR-ADMM. 

 

Among our proposed algorithms, we notice that using TSRTR-APG does accelerate the 

convergence of the recovery with a small sacrifice in terms of quality. On the other hand, 

TSRTR-ADMM consumes longer time to converge but achieves the best reconstruction 

quality due to the advantage of the separable structure over TSRTR-ALM, which came in 

between both algorithms. 

Even though all these algorithms compute the SVD one time in each iteration, we notice 

that the algorithms derived based on the proposed framework still have the fastest 

computation time due to the fast PSNR correction throughout iterations. 

As shown in Figure 3.13, which plots the progress of PSNR improvements over iterations 

for all tensor RPCA algorithms, TSRTR-APG converges within 200 iterations, while 

TSRTR-ADMM consumes the whole 700 iterations without convergence. However, 

TSRTR-ADMM has the highest PSNR and the best visual quality than the rest of the 
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algorithms. TSRTR-ALM requires less than 300 iterations to converge and its performance 

is slightly higher than TSRTR-APG. 

In comparison to the rest of the algorithms, both MLAM and RSTD consume the 

maximum 700 iterations; IADAL converges within less than 500 iterations, but the PSNR 

values of these algorithms are more than 2dB less than the PSNR values of the proposed 

framework. 

Figure 3.14 shows the effect of increasing the rank for the first two unfolds (for example 

rank 100 means the rank of the unfolded tensor is 100×100×3) of the same façade image on 

the performance of the tensor recovery algorithms. 

We notice that TSRTR-ADMM algorithm achieves the highest PSNR over the whole rank 

range followed by IADAL by an average of 2 dB. We also see that as the rank increases, the 

difference in performance between TSRTR-ALM and IADAL increases. In addition to that, 

when the rank is high, MALM achieves higher PSNR than RSTD. For lower rank signals, 

RSTD achieves better PSNR than MALM. MALM is the least affected algorithm by 

increasing the rank of the image. 

In Table 3.3, we compare the average PSNR and the execution time for the four algorithms 

using different masks applied to a set of 10 colored images shown in Figure 3.15 after setting 

the rank of each one of the unfolded tensor over each dimension to 100×100×3 before adding 

the mask. 
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Figure 3.13: PSNR versus iteration number for the façade image in Figure 3.12. 
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Figure 3.14: PSNR versus rank of the first two folds for the façade image in Figure 3.12. 

 

   

 

    

 

  

 

Figure 3.15: Set of images used for performance comparison in Table 3.3.  
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Table 3.3:  Average execution time and PSNR comparison for tensor RPCA algorithms 

using a set of 10 colored images. 

 

Mask Algorithm PSNR (dB) 

Time 

(Sec) 

 

MALM 24.91 94 

RSTD 25.38 110 

IADAL 25.71 68 

TSRTR-ALM 27.46 50 

TSRTR-APG 26.92 43 

TSRTR-ADMM 27.83 61 

 

MALM 30.98 87 

RSTD 32.53 106 

IADAL 32.98 73 

TSRTR-ALM 35.02 56 

TSRTR-APG 34.18 41 

TSRTR-ADMM 35.64 64 

 

MALM 30.16 83 

RSTD 30.92 97 

IADAL 31.74 60 

TSRTR-ALM 33.57 41 

TSRTR-APG 33.22 38 

TSRTR-ADMM 34.06 59 
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It shows clearly that on average our proposed framework achieves higher dB improvements 

over state-of-the-art algorithms. For example, TSRTR-ALM has average performance 

compared to the others, yet it achieves about 2 dB improvement in PSNR, and TSRTR-

ADMM achieves about 1dB over that. One important reason for this improvement is using 

the truncated Schatten-p functions, which will only modify the smaller singular values and 

leave the higher singular values intact, which capture the main information of the image, 

intact. In addition to that and despite the fact that our framework has similar degree of 

complexity to the other tensor recovery algorithms, it needs less iteration to converge and it 

reduces the execution time by an average of 18%.  

Finally, we apply the RPCA algorithms to recover the ocean video sequence [6] of size 

112×160×3×32 and rank 50×50×3×10 that is corrupted by different random masks for 

different frames; the results are shown in Figure 3.16 for frame number 16 as a representative 

example of visual quality. From Figure 3.16 we also see that our proposed framework 

achieves about 2 dB enhancement in PSNR compared to IADAL, which achieved the 

second-best performance, after the algorithms based on the proposed framework, followed 

by RSTD and MALM. Even when the proposed algorithms are tested on four-dimensional 

data, TSRTR-ADMM still achieves the highest PSNR among the proposed algorithms with 

relatively high execution time, followed by TSRTR-ALM and then TSRTR-APG, which 

provided the lowest PSNR values when compared to the proposed algorithms. In terms of 

execution time, TSRTR-APG is still the fastest converging algorithm among the others 

followed by TSRTR-ALM by 31 seconds and then TSRTR-ADMM, which requires 58 

seconds more than TSRTR-APG. 
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MALM-PSNR:23.75 dB, Time:214 Sec 

  

RSTD-PSNR: 25.21 dB, Time:263 Sec 

Figure 3.16a: Top: The observed image. Left: low rank model. Right: Sparse 

model using MALM (Top) and RSTD (Bottom). 
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IADAL-PSNR:27.12 dB, Time:185 Sec 

  

TSRTR-ALM: PSNR:29.08 dB, Time:116 Sec 

  

TSRTR-APG: PSNR:28.41 dB, Time:85 Sec 

Figure 3.16b: Left: low rank model. Right: Sparse model using IADAL (Top), 

TSRTR-ALM (Middle) and TSRTR-APG (Bottom). 
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TSRTR-ADMM: PSNR:29.67dB, Time:143 Sec 

Figure 3.16c: Left: The observed image. Middle: low rank model. Right: Sparse 

model using TSRTR-ADMM. 

 

3.5 Proof of Lemmas 

 

3.5.1. Proof of Lemma 3.1: 

From (3.26) we complete the sum of squares: 

𝐿(X, E,Y, 𝜇) = ∑𝛼𝑖𝑇𝑟((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

𝑝
2

𝑁

𝑖=1

+
𝜇

2
‖𝑃𝛺(M ) − X − E +

1

𝜇
Y ‖

𝐹

2

−
1

𝜇
‖Y ‖𝐹

2  

 (A1) 

Deriving and solving (A1) for X : 

∑
𝛼𝑖((X )(𝑖)

𝑇 )

((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)1−

𝑝
2

𝑁

𝑖=1

− 𝜇(𝑃𝛺(M ) − X − E +
1

𝜇
Y ) = 0 (A2) 

For simplicity, we assume 𝑊𝑖 is given by (3.32). Then the solution for X  is: 
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X 𝑘+1 = 𝑃𝛺(M ) − E +
1

𝜇
Y −

1
𝜇

∑ 𝛽𝑖 𝑓𝑜𝑙𝑑𝑁
𝑖=1 (𝛼𝑖 (X )(𝑖)

𝑇 𝑊𝑖)(𝑖)

∑ 𝛽𝑖
𝑁
𝑖=1

 (A3) 

For further simplification, we assume  Z𝑖
𝑘+1 as presented in (3.28) and hence X 𝑘+1 is 

reduced to (3.27). 

        

3.5.2. Proof of Lemma 3.2:  

We start from (A1) and derive for E. But here we need to include another constraint to 

force the entries of E at the observed samples entries to be zero. 

𝜇(𝑃𝛺(M ) − X − E +
1

𝜇
Y ) = 0 

𝑠. 𝑡. 𝑃𝛺(E )=0 

(A4) 

Now solving for E: 

E𝑘+1 = 𝑃𝛺(M ) − X +
1

𝜇
Y 

𝑃𝛺(E𝑘+1 )=0 

(A5) 

Or we can rewrite (A4) as in (3.30). 

 

3.5.3. Proof of Lemma 3.3: 

Also starting from (A1), we derive for Y : 

𝑃𝛺(M ) − X − E +
1

𝜇
Y −

1

𝜇
Y = 0  (A6) 

Solving for Y : 
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Y 𝑘+1 = Y 𝑘 + 𝜇(𝑃𝛺(M ) − X − E)  (A7) 

Which is the same result shown in (3.31). 

 

3.5.4. Proof of Lemma 3.4: 

First we complete the sum of squares: 

𝐿(X, E,Y, 𝜇) = ∑[𝛼𝑖𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)]

𝑚

𝑖=1

+  𝜆‖(E)(𝑖)‖1
] +

𝜇

2
‖M − X − E +

1

𝜇
Y ‖

𝐹

2

−
1

𝜇
‖Y ‖𝐹

2  

(A8) 

Differentiating (A1) for X : 

∑
𝛼𝑖 𝑓𝑜𝑙𝑑((X )(𝑖)

𝑇 )

((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)1−

𝑝
2

𝑚

𝑖=1

−𝛽𝑖(𝐴𝑖
𝑇𝐵𝑖) − 𝜇(M − X − E +

1

𝜇
Y ) = 0 (A9) 

Assuming 𝑊𝑖 is given by (3.32). Then the solution for X  is: 

X 𝑘+1 = M − E +
1

𝜇
Y −  

1
𝜇

∑  𝛼𝑖 𝑓𝑜𝑙𝑑𝑚
𝑖=1 ( (X )(𝑖)

𝑇 𝑊𝑖)(𝑖)−𝛽𝑖(𝐴𝑖
𝑇𝐵𝑖))

∑ 𝛼𝑖
𝑁
𝑖=1

 

(A10) 

By letting Z𝑖
𝑘+1 as presented in (10), X 𝑘+1 is reduced to (8). 

 

3.5.5. Proof of Lemma 3.5: 

We start from (A1) and differentiate the equation for E.  
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𝜕

𝜕E
𝐿(X, E,Y, 𝜇) =

𝜕

𝜕E
[∑  𝜆‖(E)(𝑖)‖1

𝑚

𝑖=1

+
𝜇

2
‖M − X − E +

1

𝜇
Y ‖

𝐹

2

] (A11) 

The solution to (A4) for E is by soft thresholding [4] : 

E  𝑘+1 = 𝔖 𝜆
𝜇

 (M − X  𝑘+1 +
1

𝜇
Y  𝑘) (A12) 

 

3.5.6. Proof of Lemma 3.6: 

To find the low rank (SX) and sparse (SE) tensors, we can minimize (3.47) using Block 

Coordinate Descent (BCD), we fix Y, Z ; then we differentiate and solve for SX  and SE 

separately. 

𝑚𝑖𝑛
SE

𝑄𝜏(SE) =
𝜏

2
‖SE − YE ‖𝐹

2 +  𝜆‖SE‖1 (A13) 

By removing all constant terms, equation (A6) becomes a standard ℓ1  minimization 

equation [19] represented in the tensor domain, and by applying the thresholding solution 

we can easily get the optimal solution for the sparse tensor SE in (3.52). 

Now, we solve (3.47) for SX and we start by removing the constant terms. 

𝑚𝑖𝑛
𝑆X

𝑄𝜏(SX) =
𝜏

2
‖SX − YX ‖𝐹

2

+ ∑[𝛼𝑖𝑇𝑟 [((SX )(𝑖)
𝑇 (SX )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(SX )

(𝑖)
𝐵𝑖

𝑇)]]

𝑚

𝑖=1

 

(A14) 

 

 

Diffrenciating (A8) and adding a weighting parameter 0 ≤ 𝛼𝑖 ≤ 1 to control the weight of 

each fold of the tensor. 
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𝜏(SX − YX ) +
∑  𝑚

𝑖=1 [𝛼𝑖 𝑓𝑜𝑙𝑑( (SX )(𝑖)
𝑇 𝑊𝑖)(𝑖)−𝛽𝑖(𝐴𝑖

𝑇𝐵𝑖))]

∑ 𝛼𝑖
𝑚
𝑖=1

= 0 (A15) 

The final step is to find the low rank tensor SX which is equivalent to (3.52). 

SX = YX −
1

𝜏

∑  𝑚
𝑖=1 [𝛼𝑖 𝑓𝑜𝑙𝑑( (X )(𝑖)

𝑇 𝑊𝑖)(𝑖)−𝛽𝑖(𝐴𝑖
𝑇𝐵𝑖))]

∑ 𝛼𝑖
𝑚
𝑖=1

 

    

(A16) 

 

3.5.7. Proof of Lemma 3.7: 

Before we start solving (3.47), we need to simplify the mathematical representation by 

completing the sum of squares. 

𝑚𝑖𝑛
X , E , L

Q(X , E , L)

= ∑[𝛼𝑖𝑇𝑟 [((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2 − 𝛽𝑖 (𝐴𝑖(X )

(𝑖)
𝐵𝑖

𝑇)]

𝑚

𝑖=1

+  𝜆‖(E)(𝑖)‖1
] +

𝜏

2
‖X +E − M +

1

𝜏
L ‖

𝐹

2

−
1

𝜏
‖L‖𝐹

2  

   

(A17) 

To find X , we solve (3.52) using BCD.  First, we fix E, L ; and differentiate for X. We 

also add a weighting parameter 0 ≤ 𝛼𝑖 ≤ 1 to control the weight of each fold of the 

tensor. 

∑
𝛼𝑖 𝑓𝑜𝑙𝑑((X )(𝑖)

𝑇 )

((X )(𝑖)
𝑇 (X )(𝑖) + 𝛾𝐼)

1
2

−𝛽𝑖(𝐴𝑖
𝑇𝐵𝑖)

𝑚
𝑖=1

∑ 𝛼𝑖
𝑚
𝑖=1

+ 𝜏 (X +E − M +
1

𝜏
L) = 0 

(A18) 

Using the definition of 𝑊𝑖 in (3.32)  and solving for X. 
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X 𝑘+1 = M −

[
 
 
 
 

∑𝛼𝑖 𝑓𝑜𝑙𝑑 (
(E  𝑘+1)(𝑖) −

1

𝜏
(X𝑖

  𝑘)
(𝑖)

𝑊𝑖 + 

𝛽𝑖

𝜏
𝐴𝑖

𝑇𝐵𝑖

)

(𝑖)

 

𝑚

𝑖=1
]
 
 
 
 

/∑𝛼𝑖

𝑚

𝑖=1

+
1

𝜏
L (A19) 

To solve for E, we fix the other tensor variables and remove all constant terms, equation 

(A10) is reduced to: 

𝑚𝑖𝑛
E 

Q(E ) = ∑  𝜆‖(E)(𝑖)‖1

𝑚

𝑖=1

+
𝜏

2
‖X +E − M +

1

𝜏
L ‖

𝐹

2

 

     

(A20) 

Equation (A10) can also be solved using the thresholding solution used to solve the 

standard ℓ1 optimization equation [19] represented in the tensor domain. 

Now, we differentiate (A14) and solve it for E, which results in: 

E  𝑘+1 = 𝔖 𝜆
𝜏

 (M − X 𝑘 +
1

𝜏
L) (A21) 

 

 

The update step for L can be easily found by fixing X and E and neglecting the constant 

terms. 

𝑚𝑖𝑛
L

Q(L) =
𝜏

2
‖X +E − M +

1

𝜏
L ‖

𝐹

2

−
1

2𝜏
‖L ‖𝐹

2         (A22) 

Differentiating and solving for L: 

L 𝑘+1 = L 𝑘 − 𝜏(X 𝑘+1 + E  𝑘+1 − M)      (A23) 
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Chapter 4  
 

Single Image Super-Resolution 
 

4.1 Example Based Single Image Super-resolution  

Most previous example based single image super-resolution algorithms use two training 

dictionaries one for LR and the other for  HR patches. These methods assume that there is 

a one-to-one mapping between LR and HR image patches. The training is usually done over 

a large set of pairs of LR and HR patches. During the testing phase, the test patch is 

approximated by a linear combination of LR patches from the over complete dictionary; and 

because of the one-to-one mapping assumption, the corresponding HR patches are 

substituted instead [26], [27], [29], [48], [72]. However, the down-sampling, noise and blur 

operations that the HR patches went through to produce the LR patches are non-unique 

transformations and hence the one-to-one mapping assumption is not accurate. To mitigate 

some of the issues with prior work, our recent effort in this area was based on the assumption 

that the HR patches span a lower dimensional space, and hence, by projecting the test LR 

patch directly to the HR manifold, one may expect optimal approximations can be achieved 

[28], [73]. However, one key issue with this assumption is the problem of projecting 

between two spaces that are different in both geometry and dimension. We have observed 

that this difference in geometry and dimension can lead to inaccurate results. In particular, 

since the test LR patch is in general smooth; then, when projecting a LR patch into a HR 

manifold, the projection is steered and biased toward smooth subspaces of the HR manifold. 

Hence, some of the HR details are not being exploited. This issue limited the level of 

improvements that could be achieved. In addition, our prior work [28] used sparse subspace 
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clustering (SSC), which is not guaranteed to be robust against noise [74]. Since one can’t 

guarantee that the examples images are noise free, this can be another drawback for this 

approach. Finally, since in [28] the number of clusters is provided as an input, it may force 

patches that truly belong to different subspaces to be placed in the same cluster. 

 

 

4.2 Subspace Clustering  

Many applications in real-life deal with high dimensional data, for example in computer 

vision applications, a video can have thousands of frames. Same issue happens in machine 

learning, data mining, etc. Dealing with such high dimensional data decreases the 

performance of the algorithms and increase the computation time. This problem is known 

as the curse of dimensionality [75], [76]. 

For the past decades, several methods have been proposed to reduce the dimensionality 

of the data to avoid this problem. The most commonly used method is the Principal 

Component Analysis (PCA). The drawback of PCA is that it models the data into a single 

low-dimensional subspace, while in most applications the data need to be represented in 

multiple low-dimensional subspaces with known, or unknown, memberships to each 

subspace. Hence, we need to segment the data into multiple subspaces and fit each group 

into a low-dimensional subspace [74]. Subspace clustering algorithms can be categorized 

into: 

• Iterative: Examples of these approaches are K-subspaces [77] and median K-

flats which approximates data by a mixture of flats (subspaces) [78]. In these 

methods, data points are assigned to the closest subspace and subspaces are fitted 

into clusters. The problem with such algorithms is that they are sensitive to 
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initialization values and they require knowledge about the dimensionality of the 

subspaces [75].  

• Factorization: For example [79], [80]. These methods are usually based on 

segmenting the similarity matrix that is built from the data points. Although  

these methods do not require knowledge about the dimensionality of subspaces, 

they only work if the subspaces are independent, they are also sensitive to noise 

and outliers in the data [75]. 

• Geometric: For example [81] in which the subspaces are represented by a set of 

homogenous polynomials whose degree is the number of subspaces. A distance 

function is used to assign the data points into subspaces. The problems with this 

approach is that it is sensitive to noise and outliers and its computational 

complexity increases exponentially with the number and dimensions of 

subspaces [75]. 

• Statistical: Some of these methods are iterative, such as [82] which is based on 

the assumption that the distribution of data points in subspaces follow a Gaussian 

distribution. Similar to iterative methods, these algorithms require a knowledge 

of the number of subspaces and they are also sensitive to initialization [75]. 

Another robust statistical methods such as RANSAC [83] which assigns data 

points into subspaces until there is enough inlier data points. The problem with 

RANSAC is that the number and dimension of subspaces should be equal and 

known. 
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• Spectral: There are two main groups under this category, the local spectral 

clustering which uses local information of each data point to build a similarity 

matrix and then a spectral clustering algorithm is applied to segment the 

similarity matrix into subspaces. Examples of these approaches can be found in 

[84], [85]. The problem with these approaches is dealing with points that are 

close to two, or more, subspaces and they are require selecting the size of the 

neighborhood that they use to compute the distance between local data points.   

  The other group is global spectral clustering, in which the similarity between 

all data points is used to assign the data points to subspaces. To capture the global 

relationship between data points, researchers rely on the concept of compressed 

sensing[1], [2] or matrix completion. Example of these methods is the Sparse 

Subspace Clustering (SSC)[75], which tries to enforce the sparsity assumption 

on the global similarity matrix that is built from all the data points. The benefit 

of these algorithms is that there is no need to know the number or dimension of 

subspaces. 

 

4.3 Low Rank Subspace Clustering (LRSC) 

LRSC belongs to the global spectral subspace clustering group and it is built on the 

foundation of Robust Principal Component Analysis (RPCA) that attempts to recover a low-

rank component 𝑋 and a sparse component 𝐸 from a given observation matrix: 𝑀 = 𝑋 + 𝐸. 

The sparse matrix 𝐸 can represent an error (or noise) signal that is corrupting the low-rank 

matrix 𝑋. This recovery can be achieved by minimizing the  ℓ1 norm of the error matrix 

(noise) and the nuclear norm  ‖𝑋‖∗ of the data matrix 𝑋 [10]: 
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𝑚𝑖𝑛
𝑋,𝐸

 ‖𝑋‖∗ + 𝛼‖𝐸‖1 + 
𝜆

2
 ‖𝑀 − (𝑋 + 𝐸)‖𝐹

2  (4.1) 

In LRSC, the self-expressive property is assumed for the low-rank matrix 𝑋 = 𝑋𝐶 . 

Hence, the observed data matrix 𝑀 is assumed to be the graph obtained from using a noisy 

version of the final clean low rank adjacency matrix (𝐶), in addition to additive sparse noise: 

𝑀 = 𝑋𝐶 + 𝐸 (4.2) 

The LRSC formula is obtained by substituting (4.2) for the RPCA equation (4.1) and 

adding a condition to maintain the symmetric property of 𝐶 [74]: 

𝑚𝑖𝑛
𝐶,𝑋,𝐸

 ‖𝐶‖∗ + 𝛼‖𝐸‖1 + 
𝜆

2
 ‖𝑀 − 𝑋𝐶 − 𝐸‖𝐹

2   

𝑠. 𝑡.  𝐶 = 𝐶𝑇  

(4.3) 

Using the self-expressive property of 𝑋 , i.e. 𝑋 = 𝑋𝐶  and substituting in (4.3), the 

minimization equation can be casted as [74]: 

𝑚𝑖𝑛
𝐶,𝑋,𝐸

 ‖𝐶‖∗ + 𝛼‖𝐸‖1 +
𝜏

2
‖𝑋 − 𝑋𝐶‖𝐹

2 + 
𝜆

2
 ‖𝑀 − 𝑋 − 𝐸‖𝐹

2   

𝑠. 𝑡.  𝐶 = 𝐶𝑇  

(4.4) 

The output from (4.4) is the noise free adjacency matrix of the clustered graph (𝐶∗) and 

the noise free data matrix (𝑋∗). 

 

4.4  Dual-manifold clustering and subspace similarity [86] 

Similar to the previous example based methods, the proposed algorithm consists of two 

main phases; training phase and testing phase. Each phase is explained in details in the 

following sections. 
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4.4.1. Training Phase: 

For training, the algorithm picks 1000 randomly generated LR patches of size 8x8 

pixels. For each LR patch, the spatially equivalent HR patch, in addition to its 4 direct 

neighbors, are selected. The experimental results showed that this approach helps capturing 

not only the equivalent pixels locations from the HR patch, as in previous methods, but also 

the direct neighbor pixels that contributed to generating that patch during the down-

sampling and blurring processes. In total we generate less than 6000 training patches.  

A low-resolution patch (𝑙) used for training is generated from a HR patch (ℎ) by down-

sampling, blurring and adding noise:  

𝑙 = 𝐷𝐵ℎ + 𝑁   (4.5) 

where 𝐷, 𝐵  and 𝑁  are the down-sampling, blur and additive noise matrices, 

respectively. 

The LRSC algorithm is applied to both LR and HR patches, and hence, two clustering-based 

approximations of the LR and HR manifolds are generated independently. Here, it is 

important to emphasize that unlike previous algorithms, we don’t assume any similarity in 

the geometry between the LR and the HR manifolds; instead, an affinity (similarity) 

measure (𝑚) is used to find the closest HR subspace to the selected LR subspace. 

𝑠𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑚(𝐿𝑖 , 𝐻𝑗)  (4.6) 

where 1 ≤ 𝑖 ≤ 𝑘1 , 1 ≤ 𝑗 ≤ 𝑘2 . 𝑘1, 𝑘2  represent the number of  LR and HR clusters 

respectively. 
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Figure 4.1: The test phase summary of the DMCSS algorithm. d1,d2 and d3 represent the 

distance between the LR test patch and each cluster in the LR manifold. T:L2-H1 is an 

entry in the subspace similarity table (T) and it represents the closest HR subspace to the 

corresponding LR subspace. 
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The similarity between two subspaces 𝐿𝑖  and 𝐻𝑗  with PCA dimensions 𝛿𝑖  and 𝛿𝑗  is 

given by [87], [88]:  

𝑚(𝐿𝑖, 𝐻𝑗) =
𝑟

∑ 𝜎𝑘
𝑟
𝑘=1

  (3.7) 

where 𝑟 = min(𝛿𝑖, 𝛿𝑗), 𝜎𝑘 represents the k-th singular value of the orthonormal basis 

product ( 𝑃𝑖
𝑇𝑃𝑗).  𝑃𝑖 ∈ ℝ𝛿×𝛿𝑖 and 𝑃𝑗 ∈ ℝ𝛿×𝛿𝑗 are the orthogonal basis matrices of 𝐿𝑖 and 𝐻𝑗 

respectively. 𝛿 = 64 is the length of the vector that results from the vectorization of each 

patch.    

Since the similarity measure applies to subspaces with different dimensions, it fits quite 

well with our application.  

 

 

 

As the experimental results show, using the similarity measure between LR and HR 

subspaces gives better approximation to the test image patches than projecting the patch 

directly to the HR manifold. This helps preventing the problem of selecting the wrong HR 

subspace in case there are two HR subspaces that are close to each other or in case of the 

availability of a smooth subspace. 

 

 

 

 

 

 

𝑃𝑖
𝑇𝑃𝑗 = 𝑈ΣV𝑇 

Σ = 𝑑𝑖𝑎𝑔(𝜎1 …𝜎𝑟) 

(4.8) 
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Algorithm 4.1: The training and testing phases for the proposed DMCSS algorithm. 

Algorithm 4.1:                     DMCSS 

Training Phase 

Input: Training Images, patch size (𝑝), 𝜏, 𝛼 and 𝜆 

Build the manifolds L and H for LR and HR patches by random selection 

from training images. 

Cluster L and H independently using (3.4). 

For each LR subspace (𝐿𝑖) 

     Evaluate 𝑚(𝐿𝑖 , 𝐻𝑗) to all HR clusters (𝐻𝑗) using (3.7).  

     Store the indices of the pair (𝐿𝑖, 𝐻𝑗) that satisfies (3.6) in T. 

End For 

Testing Phase 

Input: T, a set of LR and HR clusters, 𝑝, overlap (o) and test image (G). 

For each test patch (𝑔). 

  Find the closest 𝐿𝑖 to 𝑔 using (3.9). 

      Use T to find the corresponding 𝐻𝑗. 

      Average the HR patches in 𝐻𝑗. 

End for 

Output: G* 

 

 

4.4.2. Testing Phase: 

In this phase, the bicubic interpolation method is applied first to the test LR image to 
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increase its size by the desired scaling factor. The image is then divided to 8x8 patches with 

7 overlapping pixels. Finding the closest LR subspace to the test patch (𝑔) can be simply 

done by projecting the test patch onto the LR subspaces (𝐿𝑖) and selecting the subspace that 

produces the minimum distance.  

where 1 ≤ 𝑖 ≤ 𝑘,  and 𝑘 is the number of clusters. 

The similarity table that was built in the training phase is then used to locate the closest 

HR subspace. The average of the patches in the HR cluster is used to find the final HR patch 

that is equivalent to the LR test patch. Similar to previous methods, the overlapped pixels 

in the final HR image are averaged and we added a condition to maintain the global 

smoothness of the result similar to [28], [89]. 

A demonstration of the testing phase is shown in Figure 4.1.The summary of the Dual-

Manifold Clustering and Subspace Similarity (DMCSS) algorithm is shown in Algorithm 

4.1. 

 

4.5  Experimental Results 

In this section the performance of DMCSS algorithm is compared against state-of-the-

art super-resolution algorithms. We compared the algorithm against the standard MATLAB 

built-in bicubic interpolation function, the Adjusted Anchored Neighborhood Regression 

for Fast Super-Resolution algorithm (A+) [48], the sparse representation method (ScSR) 

[26] and SSC-based Linear Approximation of Manifolds algorithm (SLAM) [28], which 

provided superior results when compared. For the sake of fair comparison, we ran all 

algorithms using MATLAB R2012b on a computer with a 3.3 GHz i-5 CPU and a 4GB 

𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛 𝑑(𝑔, 𝐿𝑖)   (4.9) 
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Memory. Similar to the previous image super-resolution methods, we used the YCBCR 

image representation model. 

Since the human eye is only sensitive to luminance, we used bicubic interpolation to 

scale up the CB and CR channels and applied the algorithm to the luminance channel only. 

We used the same training set in [28] and added 5 more extra images with different texture 

from [26]. The HR training set is shown in Figure 4.2.  

Figure 4.3. shows the results of applying the super-resolution algorithms to scale up the 

Lena test image of size 85×85 by a magnification factor of 3. It clearly shows that our 

algorithm recovers most of the edges and details with more accuracy than the other 

algorithms. It also achieved about 0.9dB improvement in PSNR and 0.029 improvement in 

SSIM. 

Next we applied the algorithms to other standard test images which are shown in Figure 

4.4 and recorded the results as shown in Table 4.1. It also shows that DMCSS achieves an 

average of 1dB improvement in PSNR and over 0.02 SSIM improvement. Since most of 

these algorithms depend on random selection of training patches, we ran each algorithm for 

20 times and took the average of the results.  
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Figure 4.2: The training images used for the DMCSS algorithm. The pictures are 

proportionally resized to fit in the table. 
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(a) Bicubic PSNR:29.70, SSIM:0.836 (b) A+ PSNR:30.65, SSIM:0.852 

  

(c) ScSR (PSNR:31.05, SSIM:0.861) (d) SLAM (PSNR:31.30, SSIM:0.873) 

  

(e) DMCSS (PSNR:32.11, SSIM:0.902) (f) Original HR image 
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Figure 4.3:  The results of applying different super-resolution methods to lena image with 

magnification factor of 3.   

 
 

(a) Baby (b) Raccoon 

 
 

(c) Truck (d) Freckles 

 
 

(e) House (f) Mountain 
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Figure 4.4:  Testing images for super-resolution algorithms.   

Table 4.1:    Performance of super-resolution algorithms on different test images with a 

magnification factor of 3. 

 

 

 

 

 

Image title Bicubic A+ ScSR SLAM DMCSS 

Baby 

31.73 32.54 32.49 32.98 33.02 

0.768 0.794 0.795 0.852 0.896 

Raccoon 

28.33 28.84 29.14 28.97 30.43 

0.715 0.758 0.771 0.762 0.781 

Truck 

27.43 27.76 28.39 28.31 29.12 

0.842 0.849 0.860 0.874 0.892 

Freckles 

30.14 30.83 31.05 31.46 32.38 

0.820 0.852 0.870 0.890 0.901 

House 

24.32 24.81 24.80 24.94 26.62 

0.685 0.694 0.731 0.730 0.763 

Mountain 

27.13 27.64 27.61 27.89 28.79 

0.710 0.745 0.746 0.762 0.771 

Average 

28.18 28.74 28.91 29.09 30.06 

0.757 0.782 0.796 0.812 0.834 
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Chapter 5 

  

Conclusions and Future Works 
 

5.1  Conclusions 

In the first part of this work, we have reviewed the main challenges associated with low 

rank matrix and tensor completion and robust tensor recovery problems, and described 

several state-of-the-art methods dealing with these problems and provided solutions to them 

based on the nuclear norm minimization. We proposed new algorithms for matrix 

completion using the smoothed Schatten- 𝑝 function. Moreover, we extended the Schatten-

 𝑝 functions to the multi-dimensional tensor domain and proposed other algorithms for 

tensor completion and robust recovery. The experimental results showed, as expected, that 

in general all the proposed algorithms provide higher PSNR and better visual quality due to 

employing the truncated nuclear norm which leaves the most significant singular values 

untouched while minimizing the insignificant ones. TSRTR-ADMM achieves the highest 

PSNR but it has higher convergence time compared to TSRTR-ALM; on the other hand, 

TSRTR-APG is the fasted converging algorithm due to the acceleration of the gradient 

convergence, but its PSNR level falls below TSRTR-ALM. Several experiments have been 

carried out on three-dimensional and four-dimensional data. It has been shown that in 

general, our proposed framework performs much better, in terms of visual quality, PSNR 

and execution time, over the previous state-of-the-art algorithms. The reason for the quality 

improvement is due to selecting the truncated schatten-p function that approximated 

minimizing the rank of the low rank data more accurately than the traditional nuclear norm 

minimization function. The reason for the faster execution time is due to selecting more 
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efficient and less complex optimization solutions to the Robust Tensor Recovery problem 

that require less extensive computation and converge faster than the other algorithms. 

Based on the results obtained in this thesis and from an application point of view, we 

can categorize our algorithms as follow: if for a specific application timing is important and 

obtaining an acceptable quality results within small amount of time, then TSRTR-APG will 

be the best algorithm to be selected for that application. If for another application accurate 

results are required for the recovery no matter how much time it takes, then TSRTR-ADMM 

is the best option to select as it always achieves the highest PSNR. For general use and to 

provide very satisfying results within realistic timing, TSRTR-ALM satisfies that balance 

between execution time and quality. 

The second part of this thesis is related to the ill-posed problem of image super-

resolution. We reviewed the current main methods for image super-resolution and we 

introduced a new image super-resolution algorithm that makes no assumption about the 

structural similarity between the HR and LR manifolds. The LR and HR manifolds are 

trained independently and the subspace similarity measure is utilized to find the closest HR 

subspace to the selected LR subspace. Second, we used LRSC to prevent the effect of noise 

and gross errors on the algorithm performance. The experimental results showed that the 

algorithm achieves better results than state-of-the-art algorithms in this application using 

both subjective and objective measures.  
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5.2  Future works 

 

5.2.1. Matrix and Tensor Completion and Robust Tensor Recovery 

Throughout this thesis, the algorithms we proposed for Matrix and Tensor completion 

and Tensor RPCA problems are applied to recover small size visual data from few observed 

samples or highly corrupted multi-dimensional signals. For many applications, we usually 

deal with huge low rank datasets, such as in the NETFLIX problem, although our algorithms 

are designed to get rid of the SVD or HoSVD computations, it still very time consuming if 

applied to big datasets. For future works we will focus on reducing the computation time of 

these algorithms. Since matrix operations are separable and can run on different machines 

and/or parallel processed and the results can be combined, we will be looking into applying 

our algorithms into parallel processing environment by either applying them on a powerful 

parallel computing devices such as GPUs or distribute it on several computers and combine 

the results. This should help reducing the computation time of the algorithms even further. 

 

5.2.2. Sparse\redundant representation for a single video frame 

An interesting future direction is to adapt and apply our algorithm for is multi-frame 

image super-resolution, in which the training manifold will consist of different LR images 

of the same target image but under different conditions. Hence the HR manifold will be 

absent and we have to modify our algorithm to work for this scenario.    

We will also attempt to improve and apply this method on video sequences and other 

applications that require real time results. One of the known issues when dealing with video 

signals is that each frame needs to be super-resolved in real time inorder for the human eye 
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to watch the video smoothly without any interruption in the video; this makes it very crucial 

to make the algorithms that applies on videos to be run in real time. Since our test phase for 

each frame run in an average of around 1/3 of a second on our computer to super-resolve a 

colored image of size 85x85 by a factor of 3. This makes our algorithm applicable for only 

videos of 3 Frames Per Second (FPS) maximum, which is nowhere near a good quality 

video play rate of an average of 30-60 FPS. This is a great motivation for us to start looking 

into other ways to improve the speed of our algorithm using different methods such as doing 

fast interpolation to background and constant colored areas and pay more attention to edges 

and other borders that blur or makes block effect when using the normal interpolation 

methods. This should help reducing the number of batches being processed for super-

resolution and it is promising to improve the running times of our algorithm.  
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