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ABSTRACT 
 

INVESTIGATING COMPLEXITY IN TRANSCRIPTOME EXPRESSION, REGULATION, 

AND EVOLUTION USING MATHEMATICAL MODELING 

 

By 

 

Nicholas Louis Panchy 

 

 To date, gene expression has been characterized in over one thousand species across 

more than a million experimental conditions. With this wealth of data, it is possible to investigate 

the role that differential expression has in key biological processes, such as development, stress 

response, and cell division. However, the complexity of the transcriptome makes the analysis of 

expression challenging, as a single genome can contain thousands of genes as well as millions of 

potential regulatory interactions shaped by more than a billion years of evolution. To address this 

complexity, we can use the language of mathematics to create models of gene expression, 

regulation, and evolution that define the system in a testable format. In the following chapters, I 

will present research that applies mathematical modeling to the identification and regulation of 

cyclically expressed genes as well as the evolution of transcriptional regulators following whole 

genome duplication. 

 Cyclically expressed genes were studied in two systems. First, I investigated day-night 

cycling or ‘diel’ genes in Chlamydomonas reinhardtii. Diel genes were identified de novo using 

two models of cyclic expression that jointly classified half of all genes in C. reinhardtii as diel 

expressed. To understand the regulation of diel expression, I clustered diel genes according their 

peak of expression, or ‘phase’, and searched for cis-regulatory elements enriched (CREs) in the 

promoters of each cluster. While I found putative CREs corresponding to each cluster, using 

these CREs to predict diel expression using machine learning performed poorly compared to 

previous models of expression regulation. Therefore, I changed systems to Saccharomyces 



cerevisiae and studied cyclic expression during the cell cycle. Here, I applied machine learning 

models to predict cell-cycle expression using regulatory interactions from four different data 

sets.  These models out performed the previous model of cyclic expression when using 

regulatory interactions defined by chromatin-immunoprecipitation, transcription factor knockout 

experiments, and position weight matrices. Further gains in performance were obtained by 

combing interactions across data sets and using co-regulation by pairs of regulators involved in 

feed-forward loops. The most important interactions for predicting cell-cycle expression 

included not only known cell-cycle regulators but also two groups of transcription factors not 

previously identified as being involved in cell-cycle regulation. 

 The evolution of transcriptional regulation was studied in Arabidopsis thaliana, which 

has undergone several rounds of whole genome duplication (WGD), after which transcriptions 

factors (TFs) are preferentially retained. Here, I applied maximum likelihood estimation to infer 

the most likely ancestral expression and regulatory state of pairs of duplicate TFs prior to WGD. 

Comparing this ancestral state to the existing TF duplicates, I found that one duplicate, the 

“ancestral’ copy, tends to retain the majority of ancestral expression state and CREs, while the 

other ‘non-ancestral’ copy loses ancestral expression and CREs, but also gains novel CREs 

instead. Modeling the evolution of TFs pairs using as system of ordinary differential equations, I 

demonstrated that the partitioning of ancestral states amongst duplicates is not random, but 

occurs because the loss of ancestral expression occurs orders of magnitude faster in the first copy 

than in the second. This suggests that TFs duplicate pairs are preferentially maintained such that 

one copy is ‘ancestral’ and the other is not. Taken as a whole, the research in this dissertation 

demonstrates how mathematical modeling can be applied to studying the expression, regulation 

and evolution of the transcriptome.
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CHAPTER 1: INTRODUCTION 
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Following the advent of microarray (Schulze and Downward, 2001; Hoheisel, 2006) and 

high-throughput sequencing (Reuter et al., 2015; Goodwin et al., 2016) technology, gene 

expression has been inferred using transcript quantification in over 3300 species, with more than 

400 having in excess of 100 samples publically available through online databases (GEO, 

https://www.ncbi.nlm.nih.gov/geo/summary/?type=taxfull). With such a breadth of expression 

data available, in terms of transcriptome coverage, organisms, and conditions, it has become 

possible to characterize genes using their expression profiles. The analysis of these profiles has 

been applied to a variety of research questions: the progression and outcome human disease 

(Henriksen and Kotelevtsev, 2002; van ’t Veer et al., 2002; Bergholdt et al., 2009; Cooper-

Knock et al., 2012), understanding the basis for variation in quantitative phenotypes (Jiménez-

Gómez et al., 2010; Jimenez-Gomez et al., 2011; Nica and Dermitzakis, 2013; Albert and 

Kruglyak, 2015), and predicting the phenotype/functions of genes (van Noort et al., 2003; Takagi 

et al., 2014; Lloyd et al., 2015; Uygun et al., 2016). Yet, while expression profile analysis can be 

useful for identifying and classifying genes, the question remains as to how patterns of 

expression are established and maintained. One approach to understanding how expression 

patterns are regulated is the use of mathematical modeling: the representation of a system using 

mathematical objects (variables, operators, equations, etc). For gene expression in particular, this 

involves defining using set of explanatory variables to predict the expression of genes as 

accurately as possible in order to answer a biological question about the genes, their regulators, 

or the dynamics of the system. Although the molecular mechanisms that regulate gene 

expression are understood (Lee and Young, 2000; Lelli et al., 2012; Voss and Hager, 2014) and 

broad patterns of expression can be inferred from sequence alone (Beer and Tavazoie, 2004), 

modeling gene expression remains a challenging task, particularly in response to specific 

https://paperpile.com/c/d7c5rp/nPXb+CG3c
https://paperpile.com/c/d7c5rp/wH7s+bXnn
https://www.ncbi.nlm.nih.gov/geo/summary/?type=taxfull
https://paperpile.com/c/d7c5rp/9Ekk+AZJK+ZsvV+X4L3
https://paperpile.com/c/d7c5rp/9Ekk+AZJK+ZsvV+X4L3
https://paperpile.com/c/d7c5rp/nCP4+sb4Z+uwWV+V3zw
https://paperpile.com/c/d7c5rp/nCP4+sb4Z+uwWV+V3zw
https://paperpile.com/c/d7c5rp/nCP4+sb4Z+uwWV+V3zw
https://paperpile.com/c/d7c5rp/XW1C+Ny70+hUVV+QGpj
https://paperpile.com/c/d7c5rp/XW1C+Ny70+hUVV+QGpj
https://paperpile.com/c/d7c5rp/tKOw+sBkb+qWTi
https://paperpile.com/c/d7c5rp/nQyi
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environmental conditions (Zou et al., 2011), cellular location (Uygun et al., 2017), and time 

(Panchy et al., 2014). My research focuses on the application of differential equations and 

machine learning models to understanding the regulation of cyclic expression and evolution of 

regulatory systems, but many different modeling approaches have been applied to an equally 

varied set of biological questions. 

MOLECULAR MECHANISMS OF GENE REGULATION 

As gene expression is often quantified by the level of mRNA transcript, approaches to 

modeling gene expression are guided by what is known about the regulation of transcription at 

the molecular level. The transcription of a gene is primarily (but not exclusively) regulated at the 

initiation stage when the RNA-polymerase complex is recruited to the promoter region upstream 

of the transcription start site (Lee and Young, 2000). This promoter region contains a core 

promoter element, which is ubiquitous in function across eukaryotic genes, that binds the 

components of the RNA-polymerase complex, which is also common across eukaryotes. 

However, the core promoter alone is insufficient for regulation of transcription in vivo, and 

additional factors, called transcription factors (TFs), are required to enhance or repress RNA-

polymerase binding and activity (Lee and Young, 2000). Because modeling is primarily focused 

on differences in expression either between genes or in a single gene across time or a set of 

conditions, the common core elements can be ignored in favor of the activity of TFs. 

The affinity of TFs for a particular promoter primarily depends on regions of DNA 

known as cis-regulatory elements (CREs), such that the presence or absence of these elements 

represent TF regulation. However, there is not a 1-to-1 relationship between TFs and CREs, but 

rather a single TF can bind multiple CREs with varying degrees of sequence similarity, and a 

single base change may or may not disrupt the binding potential of an element depending on the 

https://paperpile.com/c/d7c5rp/sPo3
https://paperpile.com/c/d7c5rp/m5VU
https://paperpile.com/c/d7c5rp/xzw7
https://paperpile.com/c/d7c5rp/tKOw
https://paperpile.com/c/d7c5rp/tKOw
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position of the change (Badis et al., 2009). Furthermore, whether or not a TF interacts with a 

promoter also depends on chromatin state, nucleosome positioning, histone modification, and 

cooperativity with other TFs (Lee and Young, 2000; Lelli et al., 2012; Voss and Hager, 2014). 

Although the presence or absence of CREs is relatively fixed in a given genome, the accessibility 

of chromatin, histone-code and concentration of other TFs are all dynamic, meaning that CREs 

alone are often insufficient to determine if a TF regulates a gene under a specific set of 

conditions and thus plays a role in regulation. Therefore, the first step in modeling gene 

expression is determining how to identify a set of relevant regulatory interactions. 

IDENTIFYING REGULATORY INTERACTIONS 

The types of evidence that can be used to identify regulatory interactions can be divided 

into three broad categories: directly assaying protein-DNA interactions, prediction of TF binding 

from promoter sequence, and inferring interaction between genes based on expression variation. 

The DNA sequence(s) that a protein will bind to can be assayed either in vitro using protein 

binding microarrays (Bulyk, 2007; Berger and Bulyk, 2009), or in vivo with chromatin 

immunoprecipitation (Buck and Lieb, 2004; Furey, 2012) or DNA affinity purification 

(O’Malley et al., 2016). Because all approaches used to define regulation are based on binding 

sequences, it is necessary for a genome to be sequenced and annotated so that the recovered 

sequence can be mapped to the promoter region of potential target genes. Often, post-processing 

is required to address noisy TF binding (i.e. false-positive interactions). For high-throughput 

sequencing approaches in particular (e.g. ChIP-seq and DAP-seq), high-confidence binding sites 

can be identified by mapping sequences reads to the genome and using software (Zhang et al., 

2008) to call “peaks” where multiple-reads overlap the same sequence (Feng et al., 2012; Landt 

et al., 2012; O’Malley et al., 2016). However, experimental evidence may not be available for 

https://paperpile.com/c/d7c5rp/9fry
https://paperpile.com/c/d7c5rp/tKOw+sBkb+qWTi
https://paperpile.com/c/d7c5rp/0RNK+1rid
https://paperpile.com/c/d7c5rp/bAOG+AepQ
https://paperpile.com/c/d7c5rp/a9m6
https://paperpile.com/c/d7c5rp/oDG8
https://paperpile.com/c/d7c5rp/oDG8
https://paperpile.com/c/d7c5rp/89if+lqsA+a9m6
https://paperpile.com/c/d7c5rp/89if+lqsA+a9m6
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every TF in an organism and, given that there are dozens of sequenced eukaryotic genomes with 

more than 1000 TF genes (Kummerfeld and Teichmann, 2006), assaying binding of the entire set 

of transcription factors may not be feasible in some cases.  

In the absence of direct binding information for TFs, the presence of “putative” cis-

regulatory elements (Beer and Tavazoie, 2004; Zou et al., 2011; Liu et al., 2015; Uygun et al., 

2017) may be inferred from the promoter sequence of target genes (reviewed in Das and Dai, 

2007 and Li et al., 2015). By using computational approaches for binding site prediction 

(software such as AlignAce, YMF, MEME), it is possible to identify pCREs using promoter 

sequences alone (Hughes et al., 2000; Sinha and Tompa, 2003; Bailey et al., 2006; Bailey et al., 

2009). There are also machine learning and deep learning methods for integrating multiple types 

of omics data, including DNA accessibility, chromatin structure, histone marks, and available 

binding site information from assays like ChIP (Pique-Regi et al., 2011; Hoffman et al., 2012; 

Alipanahi et al., 2015; Li et al., 2016). Furthermore, transcription initiation events associated 

with cis-regulatory elements can produce non-coding RNAs that can be captured by Global Run-

On sequencing and used to infer pCREs from data (Danko et al., 2015). Predictive methods do 

not necessarily connect pCREs to the TFs that bind them, but pCREs derived from the promoters 

of co-expressed genes do show similarity to known TF binding motifs (Uygun et al., 2017), 

which suggests that presence of pCREs do in fact reflect the binding potential of TFs. However, 

whether assayed or predicted, TF-target gene interactions identified based on TF binding suffer 

from the same drawback:  binding potential does not guarantee regulatory function as actual TF 

binding can be greatly affected by small changes in sequence (Kwasnieski et al., 2012) and the 

presence of other TFs at the promoter site (Spivak and Stormo, 2016). 

https://paperpile.com/c/d7c5rp/0CMx
https://paperpile.com/c/d7c5rp/nQyi+sPo3+tFxy+m5VU
https://paperpile.com/c/d7c5rp/nQyi+sPo3+tFxy+m5VU
https://paperpile.com/c/d7c5rp/JhG8
https://paperpile.com/c/d7c5rp/JhG8
https://paperpile.com/c/d7c5rp/oiSU
https://paperpile.com/c/d7c5rp/aU6T+LOsW+N5II+2Gm8
https://paperpile.com/c/d7c5rp/aU6T+LOsW+N5II+2Gm8
https://paperpile.com/c/d7c5rp/NEmr+CYgJ+Y9F1+CIbi
https://paperpile.com/c/d7c5rp/NEmr+CYgJ+Y9F1+CIbi
https://paperpile.com/c/d7c5rp/QJIp
https://paperpile.com/c/d7c5rp/m5VU
https://paperpile.com/c/d7c5rp/h99w
https://paperpile.com/c/d7c5rp/nEsN


 

6 

 

Alternatively, the interaction between TFs and target genes can be inferred based on 

changes in gene expression. In this case, the presence of an interaction is assumed if two genes 

share a “coordinated” pattern of expression, though what constitutes “coordinated” varies with 

approach. Coordination of expression has been characterized using mutual information 

(Margolin et al., 2006; Faith et al., 2007), regression (Geeven et al., 2012), differential equations 

(Honkela et al., 2010), and Bayesian networks (Friedman et al., 2000). However, the results of 

the Dialogue on Reverse Engineering Assessment and Methods (DREAM) network inference 

challenge, an open challenge to infer gene regulatory networks from a standard set of synthetic 

and actual expression data (Marbach et al., 2010; Marbach et al., 2012), suggest that ensemble 

methods that combine multiple approaches have the best performance when predicting an 

artificially generated gene regulatory network with 195 regulators and 1643 genes. However, 

even the best ensemble methods perform poorly when applied to Escherichia coli (296 

regulators, 4297 genes) and no better than random guessing on Saccharomyces cerevisiae (183 

regulators, 5677 genes), suggesting that the performance of expression based methods decline as 

the size of the network increases (Marbach et al., 2012). Furthermore, methods that predict 

interactions based on expression tend to exhibit common errors, such as inferring relationships 

between co-regulated genes where none exist (fan-out error), inflating the number of interactions 

possessed by highly connected target genes (fan-in error), and inferring “shortcuts” between the 

beginning and end of pathways (cascade error)(Marbach et al., 2010). Including expression from 

TF-knockout experiments helps reduce fan-in and fan-out error, and TF-knockout data has been 

used to directly infer interactions (Reimand et al., 2010). However, TF-knockout data was not 

useful for addressing cascade errors in a model context (Marbach et al., 2012). In S. cerevisiae, 

most TF-target interactions derived from TF-knockout studies lacked evidence of direct, in vivo 

https://paperpile.com/c/d7c5rp/DHYY+0Yi5
https://paperpile.com/c/d7c5rp/8BWg
https://paperpile.com/c/d7c5rp/fbQT
https://paperpile.com/c/d7c5rp/d2NA
https://paperpile.com/c/d7c5rp/HHZ3+u6hn
https://paperpile.com/c/d7c5rp/HHZ3
https://paperpile.com/c/d7c5rp/WXyx
https://paperpile.com/c/d7c5rp/u6hn


 

7 

 

binding when compared with ChIP-Chip binding data, though there was often was evidence of 

interaction through an intermediate TF. Keeping these caveats in mind, interactions inferred from 

expression data can provide useful information for modeling expression, and results presented 

later suggest that combing both binding data and TF-knockouts improves predictions of 

expression. Yet interactions are only half of the equation: before a mathematical model of 

expression can be made, what the model is trying to predict must also be defined. 

DEFINING GENE EXPRESSION 

Compared to identifying regulatory interactions, defining what the model is trying to 

predict may seem trivial as the question often comes before the model. Yet, even if the set of 

target genes and the pattern of interest are known beforehand, it is still be necessary to decide 

how to define gene expression. At its most basic, modeling expression can be treated as a 

quantification problem or a classification problem. Using stress response as an example, 

quantification would involve comparing two continuous expression values before and after 

stress, while classification would involve categorizing genes as up-regulated, down-regulated or 

unchanged following stress. There is no “best” way to treat expression in this regard, but rather 

how expression is defined should be guided by the question at hand; is it important to know that 

gene expression changes or the magnitude of the expression changes that occur? Making this 

distinction is an important first step to determining what type of data is needed, how to treat that 

data, and what modeling approach to use. 

Even if expression is treated as a classification problem, categorizing or identifying 

expression patterns often begins with quantifying the amount of mRNA transcript in a sample. 

Several technologies are currently available to quantify transcript levels, including Northern 

blotting (Fernyhough, 2001), fluorescence in situ hybridization (Femino et al., 1998), reverse 

https://paperpile.com/c/d7c5rp/jP6q
https://paperpile.com/c/d7c5rp/QGtx
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transcription PCR (Bustin, 2000; Nolan et al., 2006), microarrays (Xiang and Chen, 2000) and 

high-throughput sequencing (Wang et al., 2009). Of the more than two million expression data 

sets publically available through GEO, 96.6% are derived from microarray or sequencing, with 

PCR a distant third (1.3%). Microarray data from GEO can be accessed and analyzed using 

BioConductor (Gentleman et al., 2004; Davis and Meltzer, 2007) while sequencing data needs to 

pre-processed, mapped, and quantified (reviewed in Conesa et al., 2016). Metrics for quantifying 

sequenced reads comes in two types: (1) counts/transcripts per million (CPM/TPM), in which the 

number of reads/assembled transcripts is adjusted based on the total number of mapped 

reads/transcripts in millions, and (2) reads/fragments per kilobase of transcripts per million 

mapped reads (RPKM/FPKM). In general, RPKM/FPKM is preferred for comparing expression 

within samples because the longer transcripts tend to produce more reads, while CPM/TPM 

preferred for comparing across samples/species (Conesa et al., 2016).  

Expression can also be quantified as the difference in expression between genes across 

samples (e.g. treatment vs. control). For microarray data, BioConductor provides a protocol for 

differential expression (see https:// www.bioconductor.org/help/workflows/arrays/), but choosing 

the best approach for sequencing data depends on the number of experimental conditions, 

number of replicates per condition, sample size and available computational resources (see 

Soneson and Delorenzi, 2013 and Rapaport et al., 2013). Differential expression can also be 

applied to classification problems. In this case, the significance and direction of differential 

change can be used to classify genes as up-regulated, down-regulated, or not changed under 

specific treatments, though it is not uncommon to require a minimum level of change relative to 

control conditions as well (Kilian et al., 2007; Wu et al., 2015; Uygun et al., 2017). In the case of 

multiple treatment conditions, this scheme can be applied to each condition independently, but 

https://paperpile.com/c/d7c5rp/2Tc9+lNzR
https://paperpile.com/c/d7c5rp/39Az
https://paperpile.com/c/d7c5rp/AG4k
https://paperpile.com/c/d7c5rp/IvW6+1Ua6
https://paperpile.com/c/d7c5rp/oQHb
https://paperpile.com/c/d7c5rp/oQHb
https://www.bioconductor.org/help/workflows/arrays/
https://paperpile.com/c/d7c5rp/i4xD
https://paperpile.com/c/d7c5rp/3PEI
https://paperpile.com/c/d7c5rp/jJHd+2Tjx+m5VU
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the number of possible classes will increase quickly (3
N
) and require multiple-hypothesis testing. 

Software like edgeR (Robinson et al., 2010) and DESeq (Anders and Huber, 2010) can be used 

to directly test the significance of defined patterns of differential and non-differential expression 

across multiple conditions; however, if specific patterns of expression are not known, clustering 

can be applied to identify patterns of expression de-novo (Kerr et al., 2008; Oyelade et al., 2016).  

Differential expression is not the only criteria for classifying genes by expression. In the 

case of long time series, progressive or repeated change in expression relative to the mean or 

starting level of expression may be of interest. A good example of this is cyclic patterns of gene 

expression, such as occurs across the cell-cycle (Spellman et al., 1998) or in response to the 

circadian rhythm (Chen et al., 1998; Sukumaran et al., 2010). Approaches to identifying cyclic 

expression have employed both models of cyclic expression (Straume, 2004; Hughes et al., 

2010) and the underlying periodicity expected of cyclic expression (Wichert et al., 2004; Panchy 

et al., 2014). Although these models are specific to cyclic expression, the same sort of approach 

can be applied to any pattern of expression.  

A final consideration for classifying genes by expression is how to define a negative set, 

i.e. a set of genes without the desired pattern. Often, this is not as simple as using all other genes 

because genes which lack the target pattern of expression are not all alike. Therefore, it can be 

advantageous to define a negative set of genes using its own, separate pattern of expression. For 

example, when classifying salt-responsive genes, Zou et al. used negative genes that were not 

differentially expressed under any stress because of possible cross-talk between genes expressed 

under different stress conditions (Zou et al., 2011). The decision of how to define a negative set 

will also be influenced by what approach is used to model expression because certain methods, 

such as machine learning, are more sensitive to the choice of negative examples. Ideally, the 

https://paperpile.com/c/d7c5rp/zeJe
https://paperpile.com/c/d7c5rp/mlMM
https://paperpile.com/c/d7c5rp/CYyU+YEny
https://paperpile.com/c/d7c5rp/QbqT
https://paperpile.com/c/d7c5rp/5NzL+R825
https://paperpile.com/c/d7c5rp/Mgom+Tigp
https://paperpile.com/c/d7c5rp/Mgom+Tigp
https://paperpile.com/c/d7c5rp/vjZs+xzw7
https://paperpile.com/c/d7c5rp/vjZs+xzw7
https://paperpile.com/c/d7c5rp/sPo3
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overall process of defining expression will be co-simultaneous with model development in order 

to avoid conflict. 

APPROACHES FOR MODELING GENE EXPRESSION 

Defining the modeling problem will also influence the approach used to model gene 

expression.  At its most basic, the expression of a gene can be discretized as either active (1) or 

inactive (0), allowing interactions between genes and their regulators to be defined using logical 

operations (i.e. AND, OR, NOT) (Karlebach and Shamir, 2008; Ay and Arnosti, 2011). In this 

form, expression can be modeled using Boolean networks (Glass and Kauffman, 1973; Thomas, 

1973; Kauffman et al., 2003). Boolean networks have been used to study the robustness and 

stability of GRNs in a variety of systems including S. cerevisiae (Kauffman et al., 2003), human 

cancers (Shmulevich et al., 2003; Trairatphisan et al., 2016), and Drosophila melanogaster 

(Sánchez and Thieffry, 2001; Yuh et al., 2001; Albert and Othmer, 2003). This method can also 

be extended to cases where there is imperfect information about regulatory interactions by using 

probabilistic Boolean networks (Shmulevich et al., 2002; Shmulevich et al., 2003). However, 

Boolean networks fail to accurately capture the behavior of certain biological interactions, 

particularly cases where a gene negatively regulates its own expression (Karlebach and Shamir, 

2008; Ay and Arnosti, 2011).  

Another issue is that analyzing Boolean networks becomes increasingly difficult with 

increasing size of the GRN being studied (Karlebach and Shamir, 2008). The number of possible 

global states in a network grows according to the number of states per gene (k) and the number 

of genes (n) in exponential fashion (k
n
). Therefore, the number of global states in even a 

relatively small genome such E. coli K-12 becomes prohibitively large (2
4500

 ~ 10
1350

). For this 

reason, it is often beneficial to cluster co-expressed genes together so that, instead of modeling 

https://paperpile.com/c/d7c5rp/xBzZ+ybw7
https://paperpile.com/c/d7c5rp/lOve+2qWQ+zdGz
https://paperpile.com/c/d7c5rp/lOve+2qWQ+zdGz
https://paperpile.com/c/d7c5rp/zdGz
https://paperpile.com/c/d7c5rp/1w5L+reB9
https://paperpile.com/c/d7c5rp/ldxQ+1oGE+s5B9
https://paperpile.com/c/d7c5rp/kq11+1w5L
https://paperpile.com/c/d7c5rp/xBzZ+ybw7
https://paperpile.com/c/d7c5rp/xBzZ+ybw7
https://paperpile.com/c/d7c5rp/xBzZ
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the global pattern of expression across all genes, the problem becomes correctly assigning genes 

to a finite number of co-expression modules. This clustering approach was taken by Beer and 

Tavazoie (Beer and Tavazoie, 2004), who used Bayesian networks to assign S. cerevisiae genes 

to one of 49 representative clusters, and was extended by Yuan et al. (2007) with the use of a 

naive Bayes classifier. Though Beer and Tavazoie (2004) used k-means clustering in order to 

construct gene expression modules, other clustering methods are available, including hierarchical 

clustering, self-organizing maps, self-organizing tree algorithms (Yin et al., 2006), as well as 

more than a dozen different distance metrics (Jaskowiak et al., 2014).  

Alternatively, classification, either in the form of discretization or clustering, can be 

avoided altogether and the quantitative measures of expression taken from experimental data can 

be modeled directly. Using linear models, gene expression can be modeled from only expression 

data by assuming each regulator functions independently and its net effect on the target gene is 

summarized by a singular weight value. However, while linear models have been used to infer 

regulatory interactions (Yeung et al., 2002; Bansal et al., 2006) and understand risk factors in 

human disease (Li et al., 2014; Trabzuni et al., 2014), they cannot applied to questions about the 

dynamics of molecular regulation because the behavior of this system is non-linear (Karlebach 

and Shamir, 2008). In contrast, thermodynamic models (Bintu et al., 2005; Segal et al., 2008) 

and Michaelis–Menten kinetics (Nachman et al., 2004) have been used to account for the 

concentration-dependent nature of TF binding to CREs using probabilistic binding and non-

linear functions, respectively. Notably, the Michaelis-Menten equation was derived as a solution 

to a system of ordinary differential equations (ODEs) describing enzyme kinetics under certain 

assumptions (Schnell, 2014; Wong et al., 2015). Other systems of ODEs have been used to 

incorporate different assumptions and variables into models of expression such variable cell 

https://paperpile.com/c/d7c5rp/nQyi
https://paperpile.com/c/d7c5rp/zcvE
https://paperpile.com/c/d7c5rp/Nhh3
https://paperpile.com/c/d7c5rp/eNNo
https://paperpile.com/c/d7c5rp/merH+gOm1
https://paperpile.com/c/d7c5rp/WLE6+wMom
https://paperpile.com/c/d7c5rp/xBzZ
https://paperpile.com/c/d7c5rp/xBzZ
https://paperpile.com/c/d7c5rp/9GU2+Ysk5
https://paperpile.com/c/d7c5rp/oQOn
https://paperpile.com/c/d7c5rp/RBIp+XJ9f
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mass and volume (Chen et al., 2004; Li et al., 2008), spatial context and diffusion (Eldar et al., 

2002; Jaeger et al., 2004), and separate binding mechanics for protein regulators and microRNAs 

(Zhang et al. 2014; Hong et al. 2015). However, both systems of ODEs and thermodynamic 

models are sensitive to the choice of regulatory interactions, such that the erroneous omission or 

addition of a single regulator can potentially have a significant effect on the outcome (Ay and 

Arnosti, 2011). 

Though they are most obvious in complex models of quantitative expression measures, 

all modeling approaches described so far make assumptions about how regulators function to 

control the expression of their targets. Alternatively, the problem of modeling gene expression 

can be approached by trying to “learn” what features are important for regulating expression 

using machine learning algorithms (reviewed in Libbrecht and Noble, 2015). Rather than create 

an explicit model of how gene expression is regulated, these approaches employ programs 

designed to optimize some task (in this case, the prediction of gene expression) from a set of 

features (regulatory interactions and any other data). This approach represents a double edged 

sword in that machine learning algorithms can incorporate many different types of data without 

prior knowledge of how they function in a system and assess their importance to controlling gene 

expression, but little can be interpreted about why a specific feature is important from the 

resulting model. Traditional machine learning algorithms, such as support vector machines and 

random forest, have been applied to understand the effects of combinatorial regulation (Zou et 

al., 2011), nucleosome positioning (Liu et al., 2015), and tissue-specific regulation (Uygun et al., 

2017) on gene expression in Arabidopsis thaliana as well as the influence chromatin state on 

general expression in Caenorhabditis elegans (Cheng et al., 2011) and human cell lines (Cheng 

et al., 2011; Dong et al., 2012). Furthermore, so called “deep learning”, which uses multi-layered 

https://paperpile.com/c/d7c5rp/ikNx+WGUy
https://paperpile.com/c/d7c5rp/hpAx+nZzn
https://paperpile.com/c/d7c5rp/hpAx+nZzn
https://paperpile.com/c/d7c5rp/ybw7
https://paperpile.com/c/d7c5rp/ybw7
https://paperpile.com/c/d7c5rp/8DBB
https://paperpile.com/c/d7c5rp/sPo3
https://paperpile.com/c/d7c5rp/sPo3
https://paperpile.com/c/d7c5rp/tFxy
https://paperpile.com/c/d7c5rp/m5VU
https://paperpile.com/c/d7c5rp/m5VU
https://paperpile.com/c/d7c5rp/WWGD
https://paperpile.com/c/d7c5rp/WWGD+D8Z3
https://paperpile.com/c/d7c5rp/WWGD+D8Z3
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neural networks, has recently been applied to predict gene expression using expression data 

(Chen et al., 2016b) and histone modification (Singh et al., 2016). This method in particular 

holds great promise for biological research, not only because it has the potential to outperform 

traditional machine learning methods (Singh et al., 2016), but also because there have recent, 

rapid advances in this technology (Chen et al., 2016a; Min et al., 2016; Silver et al., 2016; 

Fernando et al. 2017) that promise new opportunities for applying deep learning to the biological 

sciences.  

APPLICATIONS FOR GENE EXPRESSION MODELS 

Ultimately, the objective of all expression models is to accurately predict expression in 

the target set of genes, and this predictive function alone is sufficient to answer biological 

questions. The resulting models can also be used to explore the dynamics of the GRN being 

modeled as well as discover new elements important for regulating expression. An example of a 

direct application of predictive models includes Li et al. (2008) who built an ODE model of cell 

division (including the expression of key regulatory and structural genes) in the stalked cells of 

Caulobacter crescentus. The parameters of the model were fit using the expression values in 

wild-type cells and subsequently validated by testing if known mutant phenotypes mutants could 

be reproduced by modifying the network to mimic the mutation. Expect when a mutation 

involved a process outside of the model (e.g. phosphorylation of regulators), the Li model was 

able to recreate mutant phenotypes and was subsequently used to predict the phenotype of 

previously uncharacterized mutants. Similarly, Chen et al. (2004) constructed an ODE model of 

the cell cycle of S. cerevisiae that could accurately model the wild-type cell-cycle as well as the 

phenotypes of 92% of characterized mutants. In some cases, predictions made about novel 

mutants were independently validated by another research group (Archambault et al., 2003). 

https://paperpile.com/c/d7c5rp/fWzR
https://paperpile.com/c/d7c5rp/TbTB
https://paperpile.com/c/d7c5rp/TbTB
https://paperpile.com/c/d7c5rp/FOAf+lekE+7hAe
https://paperpile.com/c/d7c5rp/FOAf+lekE+7hAe
https://paperpile.com/c/d7c5rp/WGUy
https://paperpile.com/c/d7c5rp/ikNx
https://paperpile.com/c/d7c5rp/c7x0
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However, Chen et al. noted that, though their model robustly predicted expression during the 

wild-type cell-cycle, accurately predicting mutant phenotypes was more sensitive to small 

changes in parameter values (2004). Hence, because of this sensitivity, it is reasonable to treat 

novel phenotype predictions with skepticism even when the underlying model accurately 

characterizes expression under normal conditions.  

Predictions are not the sole purview of expression models, and often it is the model itself 

which is of interest, as it can be used to explore the dynamics of the system. Li et al. (2004) 

constructed a Boolean network of 11 key regulators of the S. cerevisiae cell-cycle. They found 

that all possible initial conditions eventually progressed into one of seven steady states, with 

most (86%) initial conditions resulting in a steady state representative of the G1 phase, the 

resting state of the cell cycle. Furthermore, artificially inducing the cell-cycle (i.e. activating 

Cln3) in the model resulted in an unstable G1-phase state that evolved into an S-phase (DNA-

replication)-like state, followed by G2 (intermediate growth), and M (cell division) before 

returning the stable G1-phase state, mirroring normal progression through the cell cycle. 

Importantly, perturbing the Boolean network by deleting or adding interactions most often did 

not affect either the stability of the G1 state or the frequency with which other global states 

evolved into the G1 state. This suggests that the robustness of cell-cycle progression is in part 

due to the structure of its regulatory network. Another example of using expression models to 

explore model dynamics is an ODE model of epithelial to mesenchymal transition (EMT) in 

human cells lines (Hong et al., 2015). In addition to predicting the known reversibility of the 

transition between epithelial and mesenchymal cell populations, the model also predicts the 

existence of two stable intermediate states where cells express markers of both epithelial and 

mesenchymal cells. By perturbing regulatory interactions in the model, Hong et al. found that the 

https://paperpile.com/c/d7c5rp/DPPp
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stability of these intermediate cell types depends on feedback loops between transcription factors 

(Ovol2 and Zeb1) and between miRNAs and transcription factors (miR34a and Snail1, miR200 

and Zeb1). These intermediate states are of particular interest as certain human cancers display 

characteristics of both epithelial and mesenchymal cells (Hong et al., 2015). In general, dynamic 

models like these offer the advantage of being able to perturb complex systems in silico to guide 

or supplement experimental approaches. 

Finally, expression models have been used to discover important features of gene 

regulatory systems by looking at differences in performance after including/excluding different 

features. Although not the sole focus of their study, in building thermodynamic models of genes 

which regulate segmentation in Drosophila, Segal et al. (2008) found that including CREs that 

were neither enriched amongst segmentation gene promoters nor expected to bind to high 

affinity transcription factors were nevertheless important to accurately predict expression. These 

weak binding sites were found to be clustered with other cis-regulatory sites that bind the same 

transcription factors, suggesting that they might play a role in cooperative binding, which is 

important for predicting the sharp boundaries of expression between segments that are observed 

in nature. Taking a different approach, Zou et al. (2011) used support vector machine to predict 

genes in A. thaliana that are differentially expressed in response to stress based on the presence 

of CREs in the promoter of the gene. In addition to experimentally identified CREs, Zou et al. 

included computationally predicted pCREs enriched in the promoters of abiotic and biotic stress-

responsive genes, respectively. Including these pCREs improved the performance of the model, 

suggesting that they represent bona-fide binding sites for as of yet unidentified TFs. They also 

identified pairs of CREs enriched amongst stress-responsive genes, the inclusion of which 

https://paperpile.com/c/d7c5rp/0Sw0
https://paperpile.com/c/d7c5rp/Ysk5
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further strengthened the prediction of stress response. Like the results of Segal et al., this finding 

indicates that cooperative binding plays an important role in stress regulation.  

In the following chapters, I will present three applications of modeling gene expression I 

employed in my research. First, I used two models of cycling expression to identify diel 

expressed genes in the green alga Chlamydomonas reinhardtii and cluster them according to the 

timing of peak expression or phase. pCREs enriched in each phase-cluster were identified and 

subsequently used to predict the expression phase of diel genes. In the next chapter, I further 

explored predicting cyclic expression by comparing the performance of four different sets of 

regulatory interactions defined based on experimental evidence in predicting cell-cycle 

expression in S. cerevisiae. I also looked how the prediction performance was affected by 

including network motifs such as feed-forward loops as features and combining the best features 

from multiple data sets. Known cell-cycle regulators were identified as being amongst the most 

important TFs for correctly predicting cell-cycle expression. However, interactions amongst TFs 

that were neither individually important nor annotated cell-cycle regulators were also necessary 

to accurately predict expression. In the final chapter, I describe a different approach to 

understanding expression regulation, by modeling the evolution of ancestral expression and 

regulatory states in duplicate pairs of TFs. A system of ODEs was used to model the loss of 

expression and regulatory sites between these duplicate TFs, and this model suggests that 

asymmetry between copies, were one duplicate retains ancestral states and other diverges, is 

favored. Together these studies illustrate how expression modeling can be applied to a wide 

variety of biological questions as well as answer questions about how cyclically expressed genes 

are regulated and how the GRNs that control such complex patterns of expression may have 

evolved. 
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CHAPTER 2: PREVALENCE, EVOLUTION, AND CIS-REGULATION OF DIEL 

TRANSCRIPTION IN CHLAMYDOMONAS REINHARDTII
1
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ABSTRACT 

Endogenous (circadian) and exogenous (e.g. diel) biological rhythms are a prominent 

feature of many living systems. In green algal species, knowledge of the extent of diel 

rhythmicity of genome wide gene expression, its evolution, and its cis-regulatory mechanism is 

limited. In this study, we identified cyclically expressed genes under diel conditions in 

Chlamydomonas reinhardtii and found that ~50% of the 17,114 annotated genes exhibited cyclic 

expression. These cyclic expression patterns indicate a clear succession of biological processes 

during the course of a day. Among 237 functional categories enriched in cyclically expressed 

genes, >90% were phase-specific, including photosynthesis, cell division and motility related 

processes. By contrasting cyclic expression between C. reinhardtii and Arabidopsis thaliana 

putative orthologs, we found significant but weak conservation in cyclic gene expression 

patterns. On the other hand, within C. reinhardtii cyclic expression was preferentially maintained 

between duplicates and the evolution of phase between paralogs is limited to relatively minor 

time shifts. Finally, to better understand the cis regulatory basis of diel expression, putative cis-

regulatory elements were identified that could predict the expression phase of a subset of the 

cyclic transcriptome. Our findings demonstrate both the prevalence of cycling genes as well as 

the complex regulatory circuitry required to control cyclic expression in a green algal model, 

highlighting the need to consider diel expression in studying algal molecular networks and in 

future biotechnological applications.  
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INTRODUCTION 

Diel (24 hour, day/night periods) cycles dictate physiological changes at different times 

of day in many organisms. The timing of these physiological oscillations is regulated by a 

combination of environmental, metabolic and circadian signaling processes (Farre 2012; 

Kinmonth-Schultz et al. 2013; Song et al. 2013; Fonken and Nelson 2014). For example, 

circadian clock mutants lead to phase changes under entrained diel conditions (i.e. light-dark 

cycles) and changes in photoperiod sensitivity (Yanovsky and Kay 2002; McNabb and Truman 

2008). Oscillations can be a direct adaptation to environmental cycles, for example restricting 

photosynthesis and protection against UV radiation to periods of light. Diel cycles also influence 

biotic responses such as defense mechanisms (Arimura et al. 2008; Goodspeed et al. 2012; 

Baldwin and Meldau 2013) and mutualistic interactions (Frund et al. 2011; Lehmann et al. 

2011). Mechanistically, many of these cycling responses are regulated at the transcriptional 

level. For example, in the green alga Chlamydomonas reinhardtii, oscillations in starch levels are 

partially regulated by the cyclic expression of ADP-Glucose pyrophosphorylase (Ral et al. 2006). 

However, some circadian regulated processes are controlled at the post-transcriptional level 

(Kojima et al. 2011) and/or by the interaction between transcriptional and post-translational 

regulation (Kinmonth-Schultz et al. 2013; Song et al. 2013). Early transcriptome analyses of 

three model organisms, Arabidopsis thaliana, Drosophila melanogaster, and Mus musculus, 

indicated that between one and ten percent of genes exhibit circadian oscillation with periods of 

~24 hr (Doherty and Kay 2010). Moreover, in photosynthetic organisms, 30-90% of genes cycle 

under diel conditions (Michael et al. 2008; Monnier et al. 2010; Shi et al. 2010; Filichkin et al. 

2011). In land plants, about a third of the genes that cycle in light/dark are also circadian 

regulated (Michael et al. 2008; Filichkin et al. 2011). Several cis-regulatory elements (CREs) 
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necessary for circadian regulated gene expression have been identified (Michael and McClung 

2002; Harmer and Kay 2005; Michael et al. 2008), although it remains an open question how 

well the identified CREs explain global cyclic expression patterns.  

The green alga C. reinhardtii has been used extensively to study physiological processes 

under the control of circadian and/or diel cycle (Mittag et al. 2005; Matsuo and Ishiura 2010). C. 

reinhardtii’s size, short life-cycle, and extensive genetic tool set make it an ideal model organism 

(Harris 2001) particularly for studies such as experimental evolution from single to multi-

cellularity (Ratcliff et al. 2013) and the genetic engineering of triacylglycerol accumulation in 

algae (Grossman et al. 2007; Hu et al. 2008; Siaut et al. 2011). C. reinhardtii has also been used 

to study rhythmic responses to light (Bruce 1970), ammonium (Byrne et al. 1992) and nitrogen 

availability (Pajuelo et al. 1995). However, studies of cyclic expression in C. reinhardtii have 

been limited to single (Mittag et al. 2005; Matsuo and Ishiura 2010) or relatively small sets of 

genes (Kucho et al. 2005). Despite the large evolutionary distance, there are some conserved 

elements between both the circadian (Corellou et al. 2009; Matsuo and Ishiura 2010) and the 

photoperiodic (Romero and Valverde 2009) oscillators of flowering plants and green algae, 

raising the question whether and to what extent cyclic expression is conserved. Therefore, a 

genome wide analysis of cyclic expression in C. reinhardtii can provide insight not only into 

cyclic physiological behavior in green algae, but also how this behavior has evolved in divergent 

lineages of the Plantae. Such an analysis will also be relevant to economically important 

processes in algae such as oil production.  

In this study, we examined gene expression patterns under diel conditions in C. 

reinhardtii. We characterized the prevalence of cycling gene expression in the C. reinhardtii 

genome and observed that genes involved in distinct biological processes are consistently 
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expressed at certain times during the day/night cycle. We also investigated the conservation of 

cyclic expression patterns between orthologs in C. reinhardtii and Arabidopsis thaliana, which 

diverged ~650-800 million years ago (Sanderson et al. 2004) and the evolution of cycling 

paralogous genes. Finally, to understand the cis-regulatory basis of diel expression, we identified 

putative CREs (pCREs) associated with cyclic expression at different phases and investigated 

how these pCREs can be used to predict cycling gene expression. 
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RESULTS AND DISCUSSION 

 

Cycling gene expression is extensive in the C. reinhardtii genome 

To characterize cyclic expression in C. reinhardtii, the expression profiles of 17,114 

annotated C. reinhardtii genes were defined from samples taken at three hour intervals over two 

24-hour time courses (see Methods). A gene was defined as cyclically expressed if it exhibited 

statistically significant, non-random variation at a regular period as identified by either COSPOT 

or DFT (see Methods). The union of predictions for both methods covered 8072 cyclically 

expressed genes (47.2% of the C. reinhardtii genome), which we hereafter refer to as “cycling 

genes”. Both approaches generated cyclic expression models that correlated with the original 

expression data, with an average Pearson correlation coefficient of 0.987 for COSPOT and 0.880 

for DFT. The correlation for COSPOT models is higher compared to that of DFT because 

COSPOT models are fit directly to the overall pattern of the data while the DFT models are 

based only on variations which occur at a period of 24-hours. Taken together, cyclic variation in 

gene expression represented the predominant form of non-linear variation in RNA content at 

both the genome wide and individual gene level. 

Cyclic variation can be described using three parameters: period, amplitude, and phase 

(Figure 2.1A). Using the fitted models, we inferred the period, amplitude and phase of all 

cycling genes in the C. reinhardtii genome. The distribution of period for our set of cycling 

genes was centered around 24 hours (+/- 1.10 hours, 95% confidence interval) (Figure 2.1B, 

Supplemental Figure 2.1A). The amplitude of cyclic expression was highly correlated with 

mean expression level (r
2
 > 0.7) and, on average, was only half the size of the mean, indicating 

that most cycling genes are expressed at some constitutive level even during the trough of the 

cycle (Figure 2.1C, Supplemental Figure 2.1B). The phase distribution of cycling genes was 
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Figure 2.1 Period, amplitude, and phase of cyclic expression. (A) Three properties of cyclic 

variation: period, amplitude, and phase. (B) The distribution of period of cycling genes identified 

in C. reinhardtii. (C) The relationship between amplitude and mean expression level in FPKM 

(Fragments per Kilobase of transcript per Million mapped reads). (D) The distribution of the 

phase of cycling genes. 
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bimodal with one peak at around ZT 0 (20.6% of cycling genes) and a second around ZT 12 

(16.4% of cycling genes), corresponding to the night-to-day and the day-to-night transitions, 

respectively (Figure 2.1D, Supplemental Figure 2.1C). Our finding concurs with the phase 

distribution reported for A. thaliana and other plant species under diel conditions (Michael et al. 

2008; Filichkin et al. 2011) as well as a subset of circadian genes in C. reinhardtii (Kucho et al. 

2005).  

Phases of cycling gene expression are associated with a succession of biological functions 

Earlier studies have shown that multiple processes in C. reinhardtii have specific 

rhythms, including the expression of key photosystem components (Hwang and Herrin 1994; 

Jacobshagen and Johnson 1994) and the timing of gametogenesis (Jones 1970). Thus we first 

asked which processes tend to be rhythmic by identifying GO terms with an over-represented 

number of cycling genes. We found that cycling genes were enriched in 44 GO terms, including 

those related to the chloroplast, photosynthesis, and ribosomal subunits (Supplemental Table 

2.1). Among these terms, the most striking pattern was that 207 of 252 flagella related genes 

showed cyclic expression. In particular, 80% of cyclically expressed flagella genes (167 of 207) 

had peak expression at ZT 21, suggesting that biological functions can be phase specific. To 

further explore the association between phase and function, cycling genes were assigned to eight 

“phase clusters” (ZT 0, 3, 6, 9, 12, 15, 18, and 21; Figure 2.2A) and enrichment of GO 

categories within each cluster was determined. 

We found that 237 GO terms had over-represented numbers of genes in ≥1 phase cluster 

(Figure 2.2B). Enrichment values for each term in each phase group can be found in 

Supplemental File 2.1. The greatest number of enriched terms was found in the ZT 21 cluster, 

just before the night-day transition, (40/237, 16.7%) and the ZT 9 cluster, just before the day- 
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Figure 2.2 Phase of gene expression and cyclically expressed GO terms. (A) The normalized 

(relative) expression of each cycling gene in C. reinhardtii (each row) across the 48-hour period  
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Figure 2.2 (cont’d) 

(columns). Genes were assigned to phase clusters based on the predicted time of peak 

expression. Genes in each phase cluster were ordered using hierarchical clustering. The white 

and black bars below indicate samples from the light and the dark periods, respectively. (B) The 

test statistics of GO term (rows) enrichment in each phase (columns) in C. reinhardtii. The -

log(p-value) of the Fisher exact test is plotted. GO terms are ordered along the y-axis according 

to the most enriched phases and hierarchically clustered within each phase. (C) The test statistics 

of GO term enrichment in each phase in A. thaliana. Methods for assigning GO terms to phase, 

clustering, and the color legend are the same as in (B). 
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night transition (61/237, 25.7%). We also observed that over-represented GO terms tended to be 

phase-specific: of all 237 terms, only 19 were enriched in >1 phase and 12 of those were 

enriched only in two adjacent phases (Figure 2.2B, Supplemental Figure 2.2A). In contrast, the 

majority of under-represented categories (51%) spanned ≥ 4 phases (Supplemental Figure 

2.2B). Thus, genes involved in the same process not only tended to be enriched in a particular 

phase of expression, but were also depleted in other phases. This phase-specificity of functional 

categories was consistent with previous studies of light-response, metabolism, cell division, and 

flagellum biogenesis in C. reinhardtii demonstrating cyclic behavior at a specific time of the day 

(Jones 1970; Cavalier-Smith 1974; Teramoto et al. 2002). For example, DNA replication and 

mitotic events in C. reinhardtii are restricted to the early hours of the dark period (Jones 1970): 

not only is the transition into darkness required for normal cell division (Voight and Munzer 

1987), but DNA replication and cell separation occur between 2-5 hours after the light-dark 

transition (Fang et al. 2006). This specific timing of DNA replication after the light to dark 

transition matches the phase of expression for cycling genes related to this process. 

Alternatively, the gradual increase in expression of replication associated genes towards a peak 

early in the dark period may track with increases in cell size, as it has been shown that the 

concentration of cell cycle regulatory proteins HA-MAT3, DP1, and E2F1 remain constant in 

spite of the increase in cell volume during G1 (Olson et al. 2010). We should note that many of 

the phase-specific functional categories uncovered here, such as amino acid biosynthesis, 

phosphorelay activity, and mRNA splicing were not previously known to show time-specific 

cycling behavior in C. reinhardtii. While correlation alone is insufficient to prove causation, the 

coordination between cyclic expression and function is highly suggestive that timing of 

transcription can regulate the timing of higher order biological processes.  
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 Based on the apparent association between phase and function in this as well as in prior 

studies, GO terms were classified into broad “functional groups”: (1) ribosome and translation, 

(2) photosynthesis and light response, (3) mitochondria and metabolism, (4) cell cycle and 

mitosis and (5) microtubules and flagella (Figure 2.3, Supplemental Table 2.2). We found that 

group 1, 2, and 3 were over-represented in the middle of the day (ZT 3 and 6), group 4 in the 

early and mid-night (ZT 12 and 15), and group 5 at the end of the dark-period (ZT 21) (Figure 

2.3A). Consistent with the pattern of phase-specific enrichment of genes in different functional 

groups, the normalized expression profiles of cycling genes in each functional group clearly 

demonstrated phase specificity (Figure 2.3B-F). The diel expression data also highlighted the 

possibility of distinguishing different components of a biological process. For example, group 5 

genes are involved in forming microtubules and subsequently flagella. Within this group, genes 

associated with the microtubule cytoskeleton peaked earlier in the dark period while those 

associated with flagellum assembly peaked toward the end (Figure 2.3L), representing a clear 

delineation between spindle body formation and flagellar regeneration as described previously 

(Cavalier-Smith 1974). Taken together, our findings suggest that the timing of biological 

processes (translation, cell-replication, and regeneration of the flagellum) may be determined by 

transcriptional regulation. 

C. reinhardtii and A. thaliana orthologs have limited conservation in cycling gene 

expression patterns  

To test if the functional coordination and phase specificity of cyclic expression observed 

in C. reinhardtii can be found in related multicellular species, cycling genes were identified in A. 

thaliana using the same methods and cutoff values applied to C. reinhardtii on an existing diel 

expression data (Blasing et al. 2005). A total of 4945 genes in A. thaliana were identified as  
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Figure 2.3 Phase specific expression of broad functional categories. (A) Enrichment test 

statistics in each functional group (row) and in each phase cluster (column) among C. reinhardtii  
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Figure 2.3 (cont’d) 

cycling genes. The color indicates the averaged –log(p-value) of GO terms in a functional group 

(Supplemental Table 2.2). (B-F) Normalized expression profiles of genes in each functional 

group in C. reinhardtii. The black line indicates average expression values. The grey area 

represents plus/minus one standard deviation. (B) Ribosomes/Translation (C) 

Photosynthesis/Light-response (D) Mitochondria/Metabolism (E) Cell-cycle/Mitosis (F) 

Microtubules/Flagella (G) Enrichment test statistics for functional groups in A. thaliana. The 

functional group designation and color legends are the same as (A). Gray: not applicable. (H-K) 

Normalized expression profiles of genes in each functional group in A. thaliana. (H) 

Ribosomes/Translation (I) Photosynthesis/Light-response (J) Mitochondria/Metabolism (K) Cell-

cycle/Mitosis (L) Expression profiles of genes in the microtubule cytoskeleton (red), flagellum 

assembly (blue) and cell projection organization (black) categories. 
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cycling (21.7% of the annotated genes), less than half of what was seen in C. reinhardtii. This 

difference is in part due to a lower sampling density of the A. thaliana data (once every 4 hours), 

though the overall time span covered was longer (3 days). It is also possible that the mixture of 

different cell types in A. thaliana samples could mask some rhythmic expression patterns. We 

also observed that 992 GO terms in A. thaliana were over-represented in ≥1 phases compared to 

237 in C. reinhardtii, which is likely a function of significantly better annotation (Figure 2.2C). 

Enrichment values for each term in each phase group can be found in Supplemental File 2.2.  

In contrast to the strict phase-specificity in C. reinhardtii, A. thaliana group 2 GO terms 

(photosynthesis and light response) were enriched amongst cycling genes in all six time points, 

but were predominant at ZT 4. The other three groups (group 1, 3, and 4) were restricted to at 

most two adjacent phases (Figure 2.3G). Compared to C. reinhardtii, there is a greater variance 

in the phase of expression amongst the A. thaliana cycling genes within each group, potentially 

due to the fact that the A. thaliana expression data was derived from samples of mixed tissues 

and cell types.  Nonetheless, the peak expression of photosynthetic, mitochondrial, and 

ribosomal genes occurred at a similar time, as was observed in C. reinhardtii (Figure 2.3H-K). 

These results suggest that cyclic expression is conserved between a subset of functionally related 

genes, in both unicellular and multi-cellular plant systems.  

Due to the concern that the phase-specificity differences between C. reinhardtii and A. 

thaliana might be due to annotation quality difference, we next examined the degree to which 

cycling gene expression was conserved between orthologous genes in these two species. Among 

11,845 putative orthologs, 1,464 (12.4%) showed cyclic expression in both species (referred to 

as “co-cycling” orthologs), which is significantly higher than the random expectation (Chi-

Squared Test, pv < 0.001). The conserved co-cycling genes encode components of the ribosome 
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(particularly the small subunit), plasma and thylakoid membrane components, or are involved in 

stress response (Fisher Exact Tests, pv < 0.05). Nonetheless, we should emphasize that the 

difference between the observed and expected proportion of co-cycling orthologs was only 2.4%. 

Thus most cycling genes in C. reinhardtii are not cyclic in A. thaliana and vice versa. In 

addition, while the amplitude of cyclic expression is significantly correlated among co-cycling 

orthologs (r
2
 = 0.30, pv < 10

-100
), there are only weak relationships between their phases (r

2
 < 

0.01, pv < 0.006). The A. thaliana and C. reinhardtii lineages diverged 650-800 million years 

ago (Sanderson et al. 2004) and have extensive differences in life histories, distribution, 

complexity, and physiology. Thus the conserved components of cyclic expression are likely core 

processes strongly selected to be maintained, including photosynthetic, mitochondrial, and 

ribosomal genes (Figure 2.3H-K). However, most orthologs between green algae and flowering 

plants have divergent patterns of cyclic expression, and the extent of cyclic expression 

divergence highlights the fact that cycling gene expression can be plastic.  

Conservation of cyclic expression is more prevalent amongst older duplicate genes 

To further assess how quickly cyclic expression divergence occurred, we asked how the 

pattern of cycling gene expression evolved between duplicated genes in C. reinhardtii. Gene 

trees were inferred based on similarity of known protein domains and we retained only the closet 

pairs of paralogs (i.e. those separated by only a single ancestral node) for subsequent study (see 

Methods). The frequency with which the pattern of gene expression (cycling or non-cycling) was 

identical or divergent was compared to the timing of the inferred duplication event, estimated 

using the synonymous substitution rate (Ks) (Figure 2.4A). The overall frequency of diverged 

duplicates (one paralog cycling, the other non-cycling) increased with Ks, approaching an 

asymptote of ~0.45 for Ks > 0.9. While the frequency of non-cycling duplicates decreased with 
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Figure 2.4 Conservation of cyclic expression and phase of cyclic expression. (A) The 

frequency at which duplicate pairs of genes in C. reinhardtii maintain cycling expression, 

maintain non-cycling expression, or diverge as a function of the synonymous substitution rate 

(Ks). (B) Distribution of cycling retention, non-cycling retention and divergence between 

duplicate pairs in random simulations. The black bars cover the inter-quartile range of each 

distribution, and error bars represent the 95% confidence interval. Observed values are indicated 

by asterisks. (C) The frequency at which the phase is retained in pairs of cycling duplicates as a  
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Figure 2.4 (cont’d) 

function of Ks. (D) Enrichment values for phase retention (diagonal values) and phase change 

(off diagonal values) between actual duplicates and duplicate pairs in random simulations. 
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Ks, the frequency of cycling duplicates was greater on average for Ks > 0.9 indicating a net gain 

of cycling expression as duplicates age. We hypothesized that this gain of cycling expression 

results from a bias in the rate at which duplicate genes diverge that favors the cycling state.  

To test this hypothesis, we examined if the observed changes in the frequency of 

retention can be explained without assuming different rates of divergence. Therefore, a null 

model of duplicate gene divergence was created using a system of difference equations (see 

Methods). We fit the transition probabilities using the difference in frequencies between Ks 0.6 

and 0.9, and the predicted frequencies of identical and divergent duplicates closely matched our 

observed results at all time points (root mean squared error = 0.03), showing the same pattern of 

increases and decreases (Supplemental Figure 2.3). Hence, we have no evidence of a 

differential rate in divergence between cycling and non-cycling duplicates, however the 

predicted probability of transition from identical to divergent (0.42) is less than the probability of 

transition from divergent to identical (0.53), suggesting that there is a preference for maintaining 

duplicates in an identical state. This is consistent with our finding that the observed frequency of 

paralogs with identical states tends to be significantly higher than expected under random 

association (Z-test, pv < 10
-17

; Figure 2.4B). In contrast, the frequency of paralogs with 

divergent state is significantly lower than expected (Figure 2.4B).   

Next, we examined the frequency with which phase is identical amongst pairs of the 

cycling duplicates. Overall, the number of co-cycling paralogs for which the phase of cyclic 

expression was identical is more than twice the number randomly expected (Z-test, pv < 10
-85

) 

with 33.7% of co-cycling duplicates sharing the same phase. The identical phase state was more 

common amongst cycling duplicates with lower Ks and there was a sharp decrease in the 

frequency of duplicates with identical phases going from a Ks of 0.9 to 1.2 (Figure 2.4C). Next 



 

36 

 

we explored if there was a bias in the magnitude of phase change between co-cycling duplicates 

(Figure 2.4D). We found that small phase divergences of +/- 3 hr (covering 28.3% of all 

duplicates) tended to be enriched relative to random expectation, in particular at ZT0/ZT3 and 

ZT12/ZT15, although the identical phase state is still the most highly enriched scenario. 

Additionally, there was an inverse, linear relationship between the magnitude of the difference in 

phase between cycling duplicates and the enrichment of phase-shift events relative to random 

expectation (all cycling duplicates, r
2
 = 0.91; duplicates with Ks > 0.9, r

2
 = 0.93), indicating that 

large differences in phase between duplicates occur less frequently than expected by random 

chance. Furthermore, we found 33 GO terms enriched (adjusted p-value < 0.05) amongst cycling 

duplicates with the same phase, the majority of which (88%) were previously found to be 

enriched in a specific phase of cyclic expression.  

Cycling genes are enriched for specific putative Cis-regulatory elements 

The coordinated expression of functionally related genes suggests the existence of one or 

more regulatory mechanisms that drive phase specific expression. While mRNA levels may be 

affected at multiple levels of regulation, we chose to focus on transcriptional regulation driven 

by cis-regulatory sequences as circadian rhythm related cis-elements have previously been 

identified in plant and animal models (Michael and McClung 2002; Ueda et al. 2005; Michael et 

al. 2008). Using a motif finding pipeline (Zou et al. 2011), we found 687 putative cis-regulatory 

elements (pCREs) in the 1kb regions upstream of the transcriptional start sites of cycling genes 

for each of the eight C. reinhardtii phase clusters (Fisher Exact Test, adjusted pv < 0.05). The top 

enriched motifs for each phase can be found in Figure 2.5, and the entire list of enriched motifs 

can be found in Supplemental File 2.3. Each phase had 60-84 associated pCREs, except for ZT 

15 with 169; however, more than 20% of pCREs (141/687) were enriched in >1 phase and 43.8% 
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of ZT 15 pCREs (74/169) were enriched in ≥1 other phases (mostly ZT 12; Figure 2.6A). 

Therefore, each pCRE was assigned to the phase cluster in which it was most significantly 

enriched. 

To further assess whether the pCREs are meaningful, they were used to establish 

classifiers to predict cyclic expression in different phases. First, the pCREs assigned to each 

phase were used to predict which genes are cyclic in a naïve manner. That is, for pCREs 

enriched in a particular phase, we simply predicted that all genes with ≥1 pCREs mapped to their 

promoters would cycle at that phase. The performance of these predictions was assessed using 

the area under the receiver operating curve (AUC-ROC), a metric which quantifies the ability of 

a method to predict positive examples which, in our case, is phase specific expression. Perfect 

predictors have an AUC-ROC of 1 while random guessing has a value of 0.5; our naïve 

classification of phase had AUC-ROCs that ranged from 0.58 (ZT 9) to 0.62 (ZT 12) indicating 

that this simple classification procedure performed marginally better than randomly assigning 

phase (Figure 2.6B). The same conclusion can be reached based on the F-measure, another 

prediction performance metric (Figure 2.6C). Next, to further improve the prediction of the 

phase of cyclic expression, we used the support vector machine (SVM) algorithm to classify 

cycling genes according to the presence or absence of all pCREs (see Methods). The SVM 

classifier shows improved performance compared to naïve classification (Figure 2.6B-C, 

Supplemental Table 2.3) but AUC-ROC values are still relatively low, ranging from 0.58 (ZT 

9) to 0.65 (ZT18) (Supplemental Figure 2.4).  We also identified two pCRE association rules 

enriched in specific phases of cyclic expression using CBA (Liu et al. 1998); however, adding 

these rules to the SVM prediction models did not significantly improve the overall predictive 

power of our pCREs as the AUC-ROC increased by at most 0.01.  
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Figure 2.5 Top three pCREs enriched in each phase cluster of cyclic genes. Sequence logos 

representing the top three putative cis regulatory elements (pCREs) enriched in each phase 

cluster of cycling genes in C. reinhardtii. 
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Figure 2.6 Enrichment and performance of phase-specific pCREs. (A) The enrichment test 

statistics of 687 pCREs (rows) in genes of each phase cluster and non-cyclic (NC) genes 

(columns). (B) The area under the curve of the receiver operating characteristic (AUC-ROC) for 

phase expression prediction with naïve (green) and Support Vector Machine (SVM, white) 

classifiers. (C) The F-measures for phase expression prediction based on random guess (black), 

naïve (green) and SVM (white) classifiers. 
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Given that the C. reinhardtii pCREs are computationally derived, we next asked how 

well a known, experimentally verified, phase-specific cis-regulatory element may predict cyclic 

expression. For this purpose we examined the Evening Element that is necessary and sufficient 

to drive circadian expression in A. thaliana (Michael and McClung 2002; Harmer and Kay 2005; 

Michael et al. 2008). Using motifs related to the Evening Element identified in Michael et al. 

(2008), we generated a cycling gene classifier to predict the phase of the 4,945 A. thaliana 

cycling genes introduced in the earlier phase-specificity comparison section. The optimal AUC-

ROC of the Evening Element classifier was 0.57 and 0.56 at ZT 0 and 12 hours, respectively 

(compared to 0.58-0.65 in C. reinhardtii pCRE predictions). Therefore, although the Evening 

Element is known to function as a circadian regulator, similar to C. reinhardtii pCRES, it has 

only limited predictive power on a genome wide scale. To obtain accurate predictions the 

presence or absence of pCREs needs to be supplemented with additional information regarding 

the regulation of cycling expression. 

Phase of cyclic expression can be predicted for groups of genes with common expression 

patterns or common function 

The weak predictive power of pCREs likely results from an underlying complexity in the 

regulation of the phase of cyclic expression, either in the form of additional control mechanisms 

or the existence of more discrete regulatory groups. Timing of cyclic expression may be 

modified by interactions amongst regulatory motifs or post-transcriptional mechanisms. It is also 

possible that our phase clusters might consist of multiple regulatory subgroups. To address the 

latter possibility, we further classified genes in each phase group into sub-clusters containing 

genes with highly similar expression profiles (phase-expression clusters). Using SVM, 28 of 190 

phase-expression clusters covering 584 genes (7.23% of cycling genes) could be classified with 
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an AUC-ROC > 0.7 (these clusters are described in Supplemental File 2.4), which is better than 

any individual phase alone. The best predicted phase-expression clusters do not necessarily have 

stronger cyclic signals (Figure 2.7A) compared to the worst predicted (Figure 2.7B). 

Additionally, we eliminated size (r
2
 = 0.15) and the correlation of expression profiles within each 

phase-expression cluster (r
2
 < 0.01) as possible variables explaining the observed variance in 

AUC-ROC (Supplemental Figure 2.5). These results suggest that phase specific regulation does 

occur at the cis-regulatory level for particular groups of cycling genes and that presence or 

absence of pCREs alone is sufficient to accurately predict the pattern of phase specific 

expression for these clusters. Those pCREs which were informative (i.e. had the non-zero 

weights) when predicting the 28 best phase-expression clusters are listed in Supplemental File 

2.5. 

In addition to using highly similar expression patterns as a way of subdividing phase 

clusters, we looked for evidence of phase specific regulation amongst groups of genes in the 

same phase cluster that had related annotated function (phase-function clusters). Among 71 

phase-function clusters, genes belonging to 12 of these clusters could be classified with an AUC-

ROC > 0.7. These clusters covered 12.2% (175/1434) of genes present in all phase-function 

clusters, a higher percentage than the phase-expression clusters, although they constitute a 

smaller portion of all cycling genes due to limited GO annotation in C. reinhardtii (these cluster 

are described in Supplemental File 2.6).  Genes in most of these functional groups displayed a 

clear cyclic signal (Figure 2.7C), except for the groups related to the nucleolus and cell wall, 

which were predominantly non-cyclic genes but had a statistically significant subset of phase-

specific genes. Amongst the best classified sub-clusters contained genes relating to the large 

cytosolic ribosomal subunits (AUC-ROC = 0.73), cilium (0.72), small cytosolic ribosomal
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Figure 2.7 Expression of best predicted co-expression cluster and GO terms. (A) Averaged, 

normalized expression profile of genes in the top 28 co-expression clusters whose phase of 

expression can be predicted with AUC-ROC > 0.7. (B) Averaged, normalized expression profiles 

of genes in the bottom 28 co-expression clusters whose phase of expression can be predicted 

with AUC-ROC < 0.56. (C) Averaged, normalized expression profiles of genes in the 12 GO 

terms whose phase of expression can be predicted with AUC-ROC > 0.7. Both cycling and non-

cycling genes annotated in each GO term are included. 
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subunit (0.72), translation (0.71), and the chloroplast (0.68). This supports our earlier observation 

that the cyclic patterning of large scale processes such as photosynthesis, translation, and 

motility may be regulated at the transcriptional level. The pCREs which had non-zero weights 

when predicting the 12 best phase-function clusters are listed in Supplemental File 2.7. 
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CONCLUSIONS 

We have determined that cyclic expression is prevalent in the C. reinhardtii genome, and 

nearly half of all annotated genes cycle under diel conditions. There is a strong link between 

rhythmic patterns at the molecular and physiological levels. Diel cycling expression is influenced 

both by environmental factors, such as the availability of light, and endogenous factors, 

including metabolism and the circadian clock (Farre 2012; Kinmoth-Schultz et al. 2013; Song et 

al. 2013; Fonken and Nelson 2014). While the importance of photoperiod can be inferred for 

light-dependent (i.e. photo-synthesis) and light-sensitive (i.e. DNA replication) processes, for 

most cycling related functions it remains an open question as to what extent each factor 

influences cycling expression. This is particularly true of functions which were not previously 

known to exhibit cycling expression in green algae, for example, the regulation of RNA 

processing and amino-acid synthesis. 

In addition to the relationship between cyclic expression and gene function, we found that 

cyclic expression was significantly conserved between paralogous genes. The proportion of 

divergent duplicates reaches an asymptote at Ks > 0.9, which is similar to what was previously 

observed for stress responsive duplicate genes (Zou et al. 2009). However, while there appears to 

be a clear preference for the partitioning of ancestral expression states in stress responsive genes 

(Zou et al. 2009; Dong and Adams 2011), we found that duplicates genes tend to share the same 

expression state with respect to cycling and that cycling duplicates preferentially retain the same 

or similar phase of expression. We hypothesize this pattern of cyclicity/phase conservation 

among duplicates points to a fundamentally distinct regulatory logic from that of stress response. 

In stress response, a duplicate which has lost response to one condition may still be responsive to 

other conditions and thus retained. However, either loss or gain of cyclicity in a duplicate gene 
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would mean it is no longer temporally in sync with other genes in the processes which it was 

originally involved in. For example, if a replication initiation factor duplicate was not in sync 

with the expression of other components of the replication machinery, the duplicated factor 

would not be functional and eventually eliminated from the genome. This argument may also 

apply to the conservation of phase among duplicate cycling genes. Indeed, we found that most 

GO terms enriched amongst co-cycling duplicates with the same phase were highly phase 

specific, including those associated with DNA replication and flagellar components.  

Based on prior studies of stress response genes (Zou et al. 2009), we expected that the 

conservation of cycling expression state, particularly the phase of expression, would be 

correlated with the presence of shared cis-regulatory elements. However, contrary to this 

expectation, the set of putative cis-regulatory elements enriched in cycling genes does not 

accurately distinguish phase expression. While our results suggest that cis-regulation plays a 

significant role in controlling cyclic expression in C. reinhardtii, the presence or absence of 

promoter elements alone was insufficient to fully explain the observed patterns of cyclic 

variation across the entire C. reinhardtii genome. This suggests that additional regulatory 

components are involved in controlling cyclic expression. In other organisms the combinatorial 

interactions amongst regulatory factors play an important role in controlling the phase of cyclic 

gene expression (Harmer and Kay 2005; Ueda et al. 2005), but in C. reinhardtii there is evidence 

that response to changing light levels is mediated by multiple copies of the same or similar 

promoter elements (von Gromoff et al. 2006). While we did not see significant improvement 

when rules considering combinatorial relationships between pCREs were included in our model, 

this may be due to the fact that we were able to explore only a subset of all possible 

combinatorial interactions in our pCRE set. Additionally, post-transcriptional regulation has been 
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implicated in regulating circadian processes in Neurospora crassa, A. thaliana, and D. 

melanogaster (Kojima et al. 2011). In C. reinhardtii, the over or under expression of the RNA-

binding protein CHLAMY1 is known to result in the disruption or loss of circadian rhythms 

(Iliev et al. 2006). Further studies incorporating post-transcriptional regulatory features will be 

necessary to improve the prediction of phase specific cyclic expression  

The inability of pCREs to classify phase specific cycling expression on a genome wide 

scale does not contradict prior observations that certain cis-elements are necessary for cycling 

expression (Michael and McClung 2002; Harmer and Kay 2005; Michael et al. 2008). Rather it 

suggests that cis-elements alone are insufficient to explain the variation in cycling expression on 

a genome wide scale and that additional regulatory components remain to be discovered. Post-

transcriptional regulatory mechanisms and chromatin state are two promising avenues of 

investigation which, in conjunction with the cis elements we have identified, could be used to 

better predict the state of cycling expression. Although there remains substantial room for further 

improvement, our findings contribute to a better understanding of both the function and 

evolutionary origins of cyclic expression in a green alga, laying the foundation for further 

molecular dissection of the relationships between the rhythmic gene expression and 

physiological functions for potential biotechnological applications. 
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MATERIAL AND METHODS 

 

Growth of Chlamydomonas reinhardtii Cultures 

C. reinhardtii dw15.1 was grown in TAP (Tris-Acetate-Phosphate) media in flasks 

without aeration, shaken at 100 rpm, at 22 °C. While the acetate present in this media provides 

an alternative source of carbon, allowing for C. reinhardtii to grow in the dark, prior studies have 

shown that that the cell cycle (Voight and Munzner 1987; Davies and Grossman 1994) and other 

metabolic cycles (Ral et al. 2006) are still synchronized in C. reinhardtii grown in acetate-

containing media under light/dark cycles. Additionally, the amplitude and phase of cell cycle 

gene expression in our study and in previous studies where cultures were grown under 

autotrophic conditions (Bisova et al. 2005) are similar (Supplemental Figure 2.6). An initial 

200 mL culture was grown to a density of 25 million cells mL
-1

 in constant light (50 mol s
-1

 m
-

2
) and used to set up 50 mL cultures of 0.5 million cells mL

-1
 that were transferred to 12 hr light 

(50 mol s
-1

 m
-2

) and 12 hr dark conditions for 48 hours prior to sampling. Two biological 

replicates were collected every 3 hours between ZT (Zeitgeber Time, hours since last dawn) 0 

and ZT 21. Each sample originated from an independent 50 mL culture. Samples collected 

during the light to dark or dark to light transition were taken just prior to change of conditions. 

For collection, 2 mL of the culture was placed in a 2 mL tube and centrifuged at max speed in at 

4°C for 10 min. Amber tubes were used for samples collected during the dark period and the 

supernatant was removed under weak green light. The pellets were snap frozen in liquid 

nitrogen. The frozen samples were ground using the Qiagen tissue lyser for RNA extraction.   



 

48 

 

RNA-sequencing 

RNA was extracted using the Omega eZNA Plant RNA kit. The RNA was eluted in 50 

L DEPC-H2O and the concentration was measured using a Nanodrop (Thermo-Fisher).  A 

portion of the RNA was diluted to 1 ng uL
-1

 to check the RNA Integrity Number (RIN) with a 

Bioanalyzer (Agilent).  All samples had a RIN equal to or greater than 7. Library preparation and 

sequencing was performed at the MSU-Research Technology Support Facility using the Illumina 

Tru-Seq Stranded kit with an Illumina HiSeq 2500.  Eight samples were sequenced in each lane 

using a custom bar-coding, but the two biological replicates from the same time point were run 

in separate lanes. The average number of RNA-Seq reads per sample was 1.81e7 and they ranged 

between 7.07e6 and 2.58e7. The reads from each of 16 samples (8 time points, 2 samples each 

time point) were mapped to the C. reinhardtii genome (version 4.3 from Phytozome) using 

Tophat (Trapnell et al. 2009) with default parameters except for intron length (min 13, max 

8712) and max-multi-hits (1). Gene models on non-chromosomal fragments were not considered. 

FPKM (Fragments Per Kilobase of transcript per Million mapped reads) per gene was calculated 

using Cufflinks (Trapnell et al. 2010) with parameter –I 8712. A high percentage of reads 

mapped to the genome: the least mapped sample had 82% of reads mapped and the average of all 

samples was 85%. Upper quartile normalization was applied to all samples to correct for 

technical variation as recommend in (Bullard et al. 2010). The two biological replicates were 

appended and used as two consecutive days for downstream analysis. Raw read data is available 

through the NCBI SRA, BioProject accession [PRJNA264777]. 

Identification of Cycling Genes 

Two programs were used to identify cyclic patterns of expression in FPKM data: 

COSPOT (which is described in (Panda et al. 2002)) and an application of the discrete Fourier 
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transform (DFT). The DFT has previously been applied to the analysis of cyclic expression using 

RNA-Seq data (Rodriguez et al. 2013), but our method is based primarily on PRIISM (Rosa et 

al. 2012). We chose to use both COSPOT and the DFT in conjunction because we found that the 

combination of methods had superior coverage of known cycling genes without a substantial 

increase in the expected false positive rate (see Supplemental Materials and Methods) 

In our application, we take the discrete Fourier transform of each gene expression vector 

in the C. reinhardtii FPKM data set, converting a set of ‘N’ FPKM values (x) in terms 

expression vs. time to new values (y) in terms of expression vs. frequency such that: 
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Where xn is the FKPM value at the nth time point and yk is the kth frequency component with 

period T/k where T is the time period spanned by the expression vector. The set of frequency 

components represents the power spectra of the associated expression vector, that is, the 

contribution of each periodic cycle to the overall data. In calculating the power spectra of the 

expression data, we employed a non-windowed application of Welch’s Method (too few data 

points were present tolerate the loss of information involved in windowing) to average the power 

spectra over subsets of the expression vector with T = 24 hr. This was done to reduce bias in the 

calculation of the power spectra that might be induced by a particular subset of the expression 

data at the cost of reducing the overall resolution of the power spectra (though this loss of 

resolution was primarily at the extreme ends of the spectra and should not affect our results). 

Furthermore, the coefficients of each power spectra were normalized prior to averaging using the 

following equation: 
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Where ymin is the smallest coefficient of the power spectra and ymax is the largest. As such, the 

normalized values, *

ky , are on the interval [0,1], further reducing the affect that a single subset 

can have on the average power spectra. The “cyclic score” of each gene is defined as the 

normalized value of the 24 hour frequency component. This score is equated to a p-value by 

randomizing the order of values in each expression vector and scoring the vectors in this random 

population. For this study, we tested cyclic score thresholds equal to the 5
th

, 2
nd

, and 1
st
 

percentiles of the score distribution of the randomized data (equal to 0.745, 0.808, and 0.841 

respectively) and chose the 2
nd

 percentile as our cutoff for calling cycling genes (equivalent to a 

p-value of 0.02). In comparison, the 5
th

 percentile of cyclic score for the set of predicted cycling 

genes in C. reinhardtii was 1. Additional information about how these thresholds were 

determined as well as a comparison to COPSPOT can be found in the Supplemental Materials 

and Methods. 

Clustering Cycling Genes According to Phase 

Cycling genes in C. reinhardtii were first divided by their phase of expression, that is, the 

Zeitgeber Time (ZT) at which peak expression occurred in the FPKM data set. Within each 

phase cluster, genes were ordered using hierarchical clustering implemented in R for display 

purposes. Phase clusters were further broken down using two-rounds of k-means clustering, 

implemented using custom Python scripts. K-means clustering involves initially selecting “k” 

random centers in parameter space and assigning genes to clusters based on their distance to the 

nearest center. The mean of each cluster is then used to define new centers which in turn are used 

to redefine clusters; this process is repeated until the clusters converge or the amount change per 

iteration falls below a specified threshold. The final clusters used for pCRE identification 

contained 10 to 90 genes. Enrichment of Gene Ontology (GO) terms and pCREs in phase groups 
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was done using the Fisher Exact Test and the resulting p-values were corrected for multiple 

hypothesis testing using the Benjamini-Hochberg method (Bengamini and Hochberg 1995). 

Conservation of cyclic expression and phase of expression amongst duplicate genes 

Gene trees in C. reinhardtii were defined using the pipeline described in Zou et al. (2009) 

using a set of protein domains defined using PFAM (Punta et al. 2012). These domains were 

extracted from protein sequences and aligned using MAFFT (Katoh et al. 2002), and a 

phylogeny was inferred using RAxML (Stamatakis 2006) with parameters -f d -m 

PROTGAMMAJTT. Large domain families were divided by building neighbor joining trees with 

PHYLIP (Felesenstein 2005) and cutting at a distance to root ≥ 0.05 to create sub-clusters 

between 4 and 300 genes in size. Domains were mapped back to C. reinhardtii genes to infer 

gene trees. The gene trees, including the divided trees for large domain families, were reconciled 

with an existing species tree (Moreau et al. 2012) using NOTUNG (Chen et al. 2000). An 

archive of these gene trees in Nexus (.nex) format has been included as Supplemental File 2.8. 

Branches containing A. thaliana and C. reinhardtii genes were extracted from the overall tree. 

The significance of the retention rate of cyclic expression and the phase of cyclic expression was 

determined by randomly pairing genes in the set of duplicates 100,000 times and comparing 

retention among actual duplicates to the random population. 

Modeling cycling state divergence of duplicate genes  

 The divergence of duplicate genes was modeled using a system of three difference 

equations with a common rate ‘d’ for the divergence of both cycling and non-cycling duplicates 

and a common rate ‘s’ for the reversion of diverged duplicates back to an identical state. 

Duplicate gene pairs were binned according to Ks (width = 0.3), and we assume that the initial 

frequency of duplicates was the same within each bin (If the initial conditions were significantly 
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different, we would expect to see deviation from the observed frequencies in the model 

predictions, which was not the case). We then solved for values of ‘d’ and ‘s’ using the observed 

change between consecutive bins, arriving at a solution with the same qualitative behavior as the 

observed data. A detailed description of the model can be found in the Supporting Information. 

Identification of putative cis-regulatory elements and phase prediction 

Identification of pCREs in the promoter regions of C. reinhardtii genes followed the 

pipeline described in Zou et al. (2011). Cycling genes were clustered according to phase and 

expression profile as previously described. For each cycling gene the promoter region, defined as 

the first 1kb upstream of the transcription start site less any bases which overlap with another 

gene, was isolated. Six motif finders, AlignAce, MDscan MEME, Motif Sampler, Weeder, and 

YMF, were used to identify motifs enriched in the promoter region of each phase cluster 

compared to the promoters of all cycling genes. The resulting motifs were merged using 

UPGMA to reduce the number of motifs and remove redundant motifs. Merged motifs were 

mapped back to the C. reinhardtii genome using a threshold p-value of 1e-05. 

The presence or absence of pCREs was used to predict the phase of expression of cycling 

genes using a Support Vector Machine (SVM) implemented in Weka (Hall et al. 2009). Given a 

test-set of positive and negative examples defined using n-variables (in this case, presence or 

absence of pCREs), SVM seeks to define a linear classifier (i.e. a hyperplane in variable space), 

which best divides positive and negative examples. This classifier is then used to assign 

subsequent data points to either the positive or negative set. A grid search of two parameters, the 

minimum distance between positive and negative groups (C) and the ratio of negative to positive 

examples in the training set (R) were used to optimize separation and pick the best classifier. The 

tested range of each parameter was as follows: C = (0.01, 0.1, 0.5, 1, 1.5, 2.0) and R = (0.25, 0.5, 
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1, 1.5, 2, 2.5, 3, 3.5, 4).  Results were validated using 10-fold cross validation, which involved 

dividing positive and negative examples for each phase into training test sets using stratified 

random sampling. Each of the 10 test sets was classified by an independent SVM run and the 

average of the 10 runs was used to score the performance of the parameter set. 

Identifying groups of genes with common expression or common function 

Cyclic genes with common expression were defined using k-means clustering as 

described above. Cyclic genes with common function were defined as those which shared the 

same GO annotation. For the purpose of predicting cyclic expression, we used only those GO 

annotations over-enriched in at least one phase of cyclic expression and where at least 8 

annotated genes were over-enriched in the same phase. 
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Supplemental Materials and Methods 

Determining threshold scores for COSPOT and DFT 

Mittag et al. (2005) lists 18 proteins in C. reinhardtii which have previously show to 

exhibit circadian changes in the rate of transcription or concentration of mRNA. Amino acids 

sequences of these proteins were identified through KEGG and mapped to the C. reinhardtii 

genome using the TBLASTN tool available through Phytozome. We found fifteen proteins 

which mapped unambiguously to the C. reinhardtii genome and had matching annotation, only 

one of which was not present in the mRNA seq data set (Supplemental Table 2.4).  

To define a cutoff threshold for each of our methods, COSPOT and the DFT, each 

program was evaluated against our gold-standard set three different p-values thresholds (or the 

equivalent cyclic-score): 0.05, 0.02, and 0.01. For each p-value threshold, the coverage of both 

the gold-standard set and the whole C. reinhardtii genome is reported in Supplemental Table 

2.5. At each p-value threshold, the union of predictions from methods was used to define 

cyclically expressed genes in C. reinhardtii. As such, the p-value of the new two-dimensional 

threshold is defined by the joint distribution of COSPOT and DFT scores. Calculating this value 

is complicated by the fact that these scores are highly correlated (r
2
 > 0.7), but the joint 

probability can be estimated using a randomized population of expression vectors 

(Supplemental Table 2.6). For every test p-value threshold, the increase in joint probability 

(compared to individual significant thresholds) was relatively moderate whereas coverage of the 

gold standard increased by as much 20% over a single method. We chose to use the combination 

of COSPOT&DFT as our predictive method with a test p-value threshold of 0.02, which 

balances in the inflation of the joint probability with the coverage of the gold standard set. 



 

57 

 

The combined method is most effective at excluding non-cycling genes, rather than 

defining cycling genes, which can be seen by looking at the correlation of both methods at 

different scoring threshold (Supplemental Figure 2.7). While the overall correlation between 

both methods is high, the correlation amongst highly scoring genes (exceeding the 0.02 threshold 

for either method) is actually quite low (r
2
 < 0.2). Genes which score very highly with one 

method may be at or just below the margin for the other, however, a gene which scores poorly in 

one method generally scores poorly with the other. Therefore, we chose a more conservative 

score threshold as a cautionary measure.  

Derivation of the model of duplicate gene divergence 

Divergence of expression state was modeled using the following system of difference equations: 

2
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 Where C, N, and D represent the frequencies of cycling, non-cycling, and divergent 

duplicates at a given Ks (subscript “t”) and the subsequent Ks (subscript “t+1”). The variables d 

and s are, respectively, the probabilities of divergence from the identical state and reversion to 

the identical state. Since the null model assumes no bias, d and s are insensitive to whether the 

identical state is cycling or non-cycling.  

 Solving equations (3) and (4) for d, we obtain: 
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 Using the property that the right hand sides of (6) and (7) must be equal, we arrive at the 

following formula for s that depends solely on duplicate frequencies: 
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Initial conditions were set equal to values of C, D, and N observed at Ks = 0.3. We first 

attempted to fit values for d and s using frequencies at Ks 0.3 and 0.6, however because the 

percentage change in C is greater than N, we obtained a negative value for s. Since s is a 

probability, this results is unrealistic, so instead we fit d and s using Ks 0.6 and 0.9, obtaining 

values for d (0.42) and s (0.53) that were within [0,1]. Using these parameters, our model was 

able to replicate the overall behavior we observed, including the initial dip in C, though the 

percentage change is less than that of N (Supplemental Figure 2.3). The root mean squared 

error between our predictions and observation was 0.03. 
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Supplemental Figure 2.1 Period, amplitude, and phase of cyclic expression amongst 

predictions made by COSPOT, DFT, and both methods combined. (A) The distribution of  
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Supplemental Figure 2.1 (cont’d) 

the period of expression in cycling genes predicted by COSPOT (red), DFT (yellow) and both 

methods combined (blue). (B) Mean expression (x-axis) vs. the amplitude of cyclic expression 

(y-axis) of cycling genes. Color labels follow (A). (C) Phase of expression of cycling genes. 

Color labels follow (A). 
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Supplemental Figure 2.2 Most over- and under-enriched GO terms amongst phase clusters 

of cycling genes. (A) Heatmap showing the –log10 transformed Fisher’s exact test p-values 

(pval) of the top five GO terms with over-represented numbers of genes in each phase cluster  
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Supplemental Figure 2.2 (cont’d) 

(ZT 0, 3, 6, 9, 12, 15, 18, and 21). (B) Heatmap showing transformed p-values of GO terms with 

under-represented numbers of genes in at least one phase cluster (same as in (A)). P-values were 

calculated and transformed as in part (A) except that the left-tail p-value was used. 



 

63 

 

 
Supplemental Figure 2.3 Divergence of duplicate gene expression state modeled as a system 

of difference equations. The frequency at which duplicate pairs in C. reinhardtii are both 

cycling (blue), both non-cycling (red), or divergent expression (orange) as a function of the 

synonymous substitution rate (Ks). The difference equations used to generate these data are 

described in the Supporting Information. 
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Supplemental Figure 2.4 Precision-recall and AUC-ROC curves of SVM predictions for C. 

reinhardtii. (A) Precision-recall curves for the prediction of the each of the eight phase clusters 

in cycling genes in C. reinhardtii as classified using SVM. Each phase-cluster is represented as a 

different colored line: 0 (red), 3 (orange), 6 (lime), 9 (green), 12 (teal), 15 (blue), 18 (purple), 21 

(pink). Error bars represent the variance in 10 separate runs of the SVM classifier at optimal  
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Supplemental Figure 2.4 (cont’d) 

parameters. (B) ROC curves for the prediction of each of the eight phase clusters in cycling 

genes in C. reinhardtii as classified using SVM. Line color and error bars are assigned as in (A). 
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Supplemental Figure 2.5 Regression of the AUC-ROC of phase-expression clusters against 

cluster size, and Pearson Correlation Coefficient (PCC) of genes in the cluster. (A) Plot of 

phase-expression cluster size against AUC-ROC. The black line indicates the best linear  
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Supplemental Figure 2.5 (cont’d) 

regression of AUC-ROC against cluster size. The equation is reported above the figure. (B) Plot 

of the mean PCC amongst genes in each phase-expression cluster against AUC-ROC. The black 

line indicates the best linear regression of AUC-ROC against mean PCC. The equation is 

reported above the figure. (C) Plot of the standard deviation of PCC amongst genes in each 

expression cluster against AUC-ROC. The black line indicates the best linear regression of 

AUC-ROC against standard deviation of PCC. The equation is reported above the figure. 
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Supplemental Figure 2.6 Expression profiles of cell cycle genes (MAT3, E2F, CDKA1, and 

CDKB1) in C. reinhardtii grown in TAP (Tris-Acetate-Phosphate) culture. As observed in 

previous studies of C. reinhardtii grown on autotrophic conditions (BISOVA et al. 2005), MAT3, 

CDKA1, and CDKB1 are most highly expressed between 12 and 18 hours after dawn, while E2F 

expression increases slightly earlier (between 6 and 9 hours). 
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Supplemental Figure 2.7 Distribution of Fourier Transform cyclic score and COSPOT p-

values. Plot of Fourier Transform cyclic score (x-axis) against the negative log transform of the 

COSPOT p-value (y-axis). The black line is the best fit power-law regression of the transformed 

COSPOT p-value against Fourier Transform cyclic score. The red lines indicated the score 

threshold at a significance level of α < 0.02 for the Fourier Transform cyclic score (vertical) and 

the transformed COSPOT p-value (horizontal).  
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Supplemental Table 2.1 Distribution of Fourier Transform cyclic score and  

COSPOT p-values 

GO Term adjusted p-

value
1
 

Description 

GO:0019861 4.38E-28 flagellum 

GO:0005929 3.07E-11 cilium 

GO:0035086 4.41E-06 axoneme 

GO:0005874 1.16E-04 microtubule 

GO:0007018 4.59E-04 microtubule-based movement 

GO:0010287 4.59E-04 regulation of glucose transport 

GO:0003777 6.53E-04 microtubule motor activity 

GO:0009765 1.19E-03 carbohydrate mediated signaling 

GO:0022625 1.19E-03 cytosolic large ribosomal subunit 

GO:0006260 1.71E-03 DNA replication 

GO:0030286 1.89E-03 dynein complex 

GO:0005886 2.16E-03 plasma membrane 

GO:0030030 6.12E-03 cell projection organization 

GO:0005794 6.52E-03 Golgi apparatus 

GO:0042995 1.00E-02 cell projection 

GO:0005198 1.00E-02 structural molecule activity 

GO:0003774 1.00E-02 motor activity 

GO:0022627 1.00E-02 cytosolic small ribosomal subunit 

GO:0005774 1.42E-02 vacuolar membrane 

GO:0009653 1.77E-02 anatomical structure morphogenesis 

GO:0009535 1.77E-02 chloroplast thylakoid membrane 

GO:0009637 2.20E-02 response to blue light 

GO:0006364 2.20E-02 rRNA processing 

GO:0005932 2.65E-02 microtubule basal body 

GO:0009506 2.65E-02 plasmodesmata 

GO:0004674 2.65E-02 protein serine/threonine kinase 
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Supplemental Table 2.1 (cont’d) 

GO:0005509 2.66E-02 calcium ion binding 

GO:0005488 2.75E-02 binding 

GO:0030992 2.75E-02 intraciliary transport particle B 

GO:0009507 3.12E-02 chloroplast 

GO:0010114 3.34E-02 response to red light 

GO:0010218 3.34E-02 response to far red light 

GO:0046686 3.79E-02 response to cadmium ion 

GO:0009523 4.16E-02 photosystem II 

GO:0048046 4.21E-02 apoplast 

GO:0006270 4.21E-02 DNA replication initiation 

GO:0009296 4.21E-02 flagellum assembly 

GO:0010020 4.21E-02 chloroplast fission 

GO:0009434 4.21E-02 motile cilium 

GO:0044430 4.21E-02 cytoskeletal part 

GO:0019253 4.21E-02 reductive pentose-phosphate cycle 

GO:0019773 4.21E-02 proteasome core complex, alpha-subunit 

complex 

GO:0009826 4.21E-02 unidimensional cell growth 

GO:0004298 4.33E-02 threonine-type endopeptidase activity 

1. Fisher Exact Test p-value adjusted according to Benjamini-Hochberg 
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Supplemental Table 2.2 Descriptions of the GO terms in each of the five broad functional 

categories  

Category GO Terms Description 

photosynthesis and 

light response 

GO:0015671 

GO:0009773 

GO:0010206 

GO:0009765 

GO:0015979 

GO:0010218 

GO:0009637 

GO:0010114 

GO:0010304 

GO:0010020 

GO:0009507 

GO:0009579 

GO:0009570 

GO:0009941 

GO:0009543 

GO:0009523 

GO:0009522 

GO:0009533 

GO:0009534 

GO:0010287 

GO:0009535 

GO:0016168 

oxygen transport 

photosynthetic electron transport in photosystem I 

photosystem II repair 

photosynthesis, light harvesting 

photosynthesis 

response to far red light 

response to blue light 

response to red light 

PSII associated light-harvesting complex II catabolic process 

chloroplast fission 

chloroplast 

thylakoid 

chloroplast stroma 

chloroplast envelope 

chloroplast thylakoid lumen 

photosystem II 

photosystem I 

chloroplast stromal thylakoid 

chloroplast thylakoid 

plastoglobule 

chloroplast thylakoid membrane 

chlorophyll binding 

cell cycle and mitosis GO:0006260 

GO:0006270 

GO:0006268 

GO:0000910 

GO:0000724 

GO:0006302 

GO:0007062 

GO:0007067 

GO:0006259 

GO:0007049 

GO:0051726 

DNA replication 

DNA replication initiation 

DNA unwinding involved in replication 

cytokinesis 

double-strand break repair via homologous recombination 

double-strand break repair 

sister chromatid cohesion 

mitosis 

DNA metabolic process 

cell cycle 

regulation of cell cycle 
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Supplemental Table 2.2 (cont’d) 

 GO:0006281 

GO:0051301 

GO:0006310 

GO:0005819 

GO:0005815 

GO:0005694 

GO:0004003 

GO:0003887 

GO:0004386 

DNA repair 

cell division 

DNA recombination 

spindle 

microtubule organizing center 

chromosome 

ATP-dependent DNA helicase activity 

DNA-directed DNA polymerase activity 

helicase activity 

microtubules and 

flagella 

GO:0000226 

GO:0007018 

GO:0009296 

GO:0030030 

GO:0042384 

GO:0015630 

GO:0044430 

GO:0019861 

GO:0030286 

GO:0035086 

GO:0005813 

GO:0005932 

GO:0005874 

GO:0005929 

GO:0005856 

GO:0005858 

GO:0035085 

GO:0009434 

GO:0030992 

GO:0042995 

GO:0044463 

GO:0005876 

GO:0003777 

GO:0003774 

GO:0004835 

microtubule cytoskeleton organization 

microtubule-based movement 

flagellum assembly 

cell projection organization 

cilium assembly 

microtubule cytoskeleton 

cytoskeletal part 

flagellum 

dynein complex 

cilium axoneme 

centrosome 

microtubule basal body 

microtubule 

cilium 

cytoskeleton 

axonemal dynein complex 

cilium axoneme 

motile cilium 

intraflagellar transport particle B 

cell projection 

cell projection part 

spindle microtubule 

microtubule motor activity 

motor activity 

tubulin-tyrosine ligase activity 
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Supplemental Table 2.2 (cont’d) 

mitochondria and 

metabolism 

GO:0006096 

GO:0006122 

GO:0005983 

GO:0006098 

GO:0007005 

GO:0006508 

GO:0015986 

GO:0045261 

GO:0005750 

GO:0005747 

GO:0005739 

GO:0005759 

GO:0005741 

GO:0005743 

GO:0046933 

GO:0046961 

glycolysis 

mitochondrial electron transport, ubiquinol to cytochrome c 

starch catabolic process 

pentose-phosphate shunt 

mitochondrion organization 

proteolysis 

ATP synthesis coupled proton transport 

proton-transporting ATP synthase complex, catalytic coreF(1) 

mitochondrial respiratory chain complex III 

mitochondrial respiratory chain complex I 

mitochondrion 

mitochondrial matrix 

mitochondrial outer membrane 

mitochondrial inner membrane 

proton-transporting ATP synthase activity, rotational 

mechanism 

proton-transporting ATPase activity, rotational mechanism 

ribosome and 

translation 

GO:0006414 

GO:0006412 

GO:0022626 

GO:0022625 

GO:0022627 

GO:0019843 

GO:0003735 

translational elongation 

translation 

cytosolic ribosome 

cytosolic large ribosomal subunit 

cytosolic small ribosomal subunit 

rRNA binding 

structural constituent of ribosome 
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Supplemental Table 2.3: Optimal parameters and performance measures of SVM 

classification 

Phase C
1
 R

2
 AUC-ROC F-measure Precision Recall 

0 0.01 4 0.64 0.22 0.24 0.20 

3 0.1 1.5 0.62 0.21 0.14 0.39 

6 0.1 4 0.62 0.19 0.26 0.15 

9 0.1 2.5 0.58 0.22 0.27 0.18 

12 0.01 3.5 0.64 0.19 0.21 0.18 

15 0.1 1.5 0.64 0.27 0.21 0.40 

18 0.1 4 0.65 0.23 0.24 0.23 

21 0.01 3.5 0.61 0.21 0.38 0.15 

1. C = minimum separation 

2. R = ratio of negative to positive examples 
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Supplemental Table 2.4 “Gold Standard” cycling genes in C. reinhardtii 

Gene Name Reference Locus DFT 

Cyclic 

Score 

COSPOT 

p-value 

ATP2/ARF1 ADP-ribosylation 

factor 

MEMON et al. 

(1995) 

Cre17.g698000 0.90 1.9e-02 

CAH1 carbonic anhydrase FUJIWARA et 

al. (1996) 

Cre04.g223100 0.76 1.7e-01 

CYC4 cytochrome c JACOBSHAGEN 

et al. (2001) 

Cre16.g670950 0.78 6.2e-01 

Cytosolic 

thioredoxin 

h1 

Cytosolic 

thioredoxin h1 

LEMAIRE et al. 

(1999) 

Cre09.g391900 0.29 4.0e-01 

FBA1 chloroplastic 

fructose-

bisphosphate 

aldolase 

JACOBSHAGEN 

et al. (2001) 

Cre01.g006950 0.95 1.2e-02 

FBA2 chloroplastic 

fructose-

bisphosphate 

aldolase 

JACOBSHAGEN 

et al. (2001) 

Cre02.g093450 0.83 3.4e-02 

FBA3 chloroplastic 

fructose-

bisphosphate 

aldolase 

JACOBSHAGEN 

et al. (2001) 

Cre05.g234550 0.9 2.3e-02 

FBA4 chloroplastic 

fructose-

bisphosphate 

aldolase 

JACOBSHAGEN 

et al. (2001) 

Cre02.g115650 0.61 1.9e-02 
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Supplemental Tabel 2.4 (cont’d) 

FNR1 Ferredoxin NADP 

reductase 

LEMAIRE et al. 

(1999) 

Cre11.g476750 0.81 2.4e-02 

HSP70B 70kd family heat 

shock protein 

JACOBSHAGEN 

et al. (2001) 

Cre06.250100 0.32 8.5e-01 

LCHII Chlorophyll binding 

protein 

JACOBSHAGEN 

et al. (1996) 

Cre06.g283950 0.82 6.5e-03 

PRK1 phosphoribulokinase LEMAIRE et al. 

(1999) 

Cre12.g554800 0.99 1.0e-02 

TUB1 Beta-tubulin JACOBSHAGEN 

& JOHNSON 

(1994) 

Cre12.g542250 0.67 1.1e-02 

TUB2 Beta-tubulin JACOBSHAGEN 

& JOHNSON 

(1994) 

Cre12.g549550 0.98 1.1e-02 

TufA Elongation factor Tu HWANG et al. 

(1996) 

Cre06.g259150 0.77 1.1e-02 

  



 

78 

 

Supplemental Table 2.5 Performance COSPOT and DFT on C. reinhardtii 

Method and α levels Genome Coverage
1 

Gold Stand Coverage
2 

COSPOT   

α = 0.01 21.0% (3590) 6.7% (1) 

α = 0.02 37.4% (6400) 46.7% (7) 

α = 0.05 54.9% (9392) 73.3% (11) 

DFT   

α = 0.01 29.6% (5061) 33.3% (5) 

α = 0.02 37.6% (6443) 53.3% (8) 

α = 0.05 55.8% (9556) 73.3% (11) 

1. Parentheses indicated the actual number of genes covered 

2. Parentheses indicated how many of 15 gold standard genes are identified as cyclic 
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Supplemental Table 2.6 Performance of combining COPSOT and DFT on C. reinhardtii 

Test  

P-value 

Joint  

Probability
1 

Overlap
2 

Genome 

Coverage
3 

Gold Stand 

Coverage
4
 

α = 0.01 0.0134 39.6% (2414) 35.7% (6236) 40.0% (6)  

α = 0.02 0.0272 56.7% (4579) 47.2% (8072) 73.3% (11) 

α = 0.05 0.0734 73.5% (8024) 61.7% (10552) 86.6% (13) 

1. The joint probability of a gene having a score with a p-value of α in either COSPOT or DFT 

2. Parentheses indicated the actual number of genes in the overlap set 

3. Parentheses indicated the actual number of genes covered 

4. Parentheses indicated how many of 15 gold standard genes are identified as cyclic 
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Supplemental File 2.1 

Supplemental File 2.1 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/10/FileS3.xl

sx 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/10/FileS3.xlsx
http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/10/FileS3.xlsx
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Supplemental File 2.2 

Supplemental File 2.2 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/11/FileS4.xl

sx 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/11/FileS4.xlsx
http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/11/FileS4.xlsx
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Supplemental File 2.3 

Supplemental File 2.3 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/12/FileS5.txt 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/12/FileS5.txt
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Supplemental File 2.4 

Supplemental File 2.4 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/13/FileS6.xl

sx 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/13/FileS6.xlsx
http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/13/FileS6.xlsx
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Supplemental File 2.5 

Supplemental File 2.5 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/14/FileS7.txt 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/14/FileS7.txt
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Supplemental File 2.6 

Supplemental File 2.6 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/15/FileS8.xl

sx 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/15/FileS8.xlsx
http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/15/FileS8.xlsx
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Supplemental File 2.7 

Supplemental File 2.7 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/16/FileS9.txt 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/16/FileS9.txt
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Supplemental File 2.8 

Supplemental File 2.8 can be found at the following link: 

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/9/FileS2.zip 

  

http://www.g3journal.org/highwire/filestream/472423/field_highwire_adjunct_files/9/FileS2.zip
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CHAPTER 3: PREDICTING CELL-CYCLE EXPRESSED GENES IDENTIFIES 

CANONICAL AND NON-CANONICAL REGULATORS OF TIME-SPECIFIC 

EXPRESSION IN SACCHAROMYCES CEREVISIAE 
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ABSTRACT 

Gene expression is controlled by regulatory proteins know as transcription factors (TFs). 

The collection of all TFs, target genes and their interactions in an organism form a gene 

regulatory network (GRN), which can produce complex patterns of expression, such as cycling. 

However, identifying which interactions regulate expression in a specific context remains a 

challenging task complicated by the existence of multiple approaches to characterize GRNs. To 

assess how different methods of defining GRNs capture their regulatory function, we predicted 

general and phase-specific cell-cycle expression in Saccharomyces cerevisiae using four 

regulatory data sets: chromatin immunoprecipitation (ChIP), TF deletion data (Deletion), protein 

binding microarrays (PBMs), and position weight matrices (PWMs). Our results indicate that 

data sets with the highest coverage of the S. cerevisiae GRN (ChIP, Deletion and all PWMs) 

perform best in predicting cell-cycle expression. Furthermore, prediction performance was 

improved by including using TF-TF interactions from feed-forward loops as features as well as 

by combining the best predictive features from ChIP and Deletion data. The TFs that were the 

best predictors of cell-cycle expression were enriched for known cell-cycle regulators, but TFs 

important for predictive models built on ChIP and Deletion data were also enriched for GO 

annotations related to invasive growth and metabolism, respectively. Finally, analysis of 

important TF-TF interactions suggests that the GRN regulating cell cycle expression is highly 

interconnected and clustered around four groups of genes, two of which contain known cell-

cycle regulators, while the other two contain TFs not previously identified as being involved in 

cell-cycle expression. 
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INTRODUCTION 

Essential biological processes, from the replication of single cells (Spellman et al. 1998) 

to the development of multicellular organisms (Tomancak et al. 2002), are dependent on 

complex spatially and temporally specific  patterns of gene expression. The regulation of gene 

expression during the initiation of transcription depends on both core promoter elements that 

interact with the RNA-Polymerase II complex (Juven-Gershon et al. 2008) and accessory 

elements known as transcription factors (TFs) that further promote or block the recruitment of 

RNA-Polymerase to particular promoter regions (Lelli, Slattery, and Mann 2012; Spitz and 

Furlong 2012). TFs bind to short DNA-sequences called cis-regulatory sites, often located in the  

upstream promoter region of a gene, though not all of these sites are necessarily occupied at all 

times (Lelli, Slattery, and Mann 2012; Spitz and Furlong 2012). TFs do not work in isolation to 

regulate gene expression. For example changes in the chromatin state around a promoter can 

impact TF binding (M. Li et al. 2015; Benveniste et al. 2014; Miller and Widom 2003). TFs also 

interact with other TFs. These interactions can be direct, such as cooperative binding of 

regulatory sites (Jolma et al. 2015; Kazemian et al. 2013) or indirect, such as 

collaborative/competitive binding to sites (Miller and Widom 2003). There can also be higher-

order regulation, where the expression of one TF is regulated by other TFs, such that expression 

a gene may depend directly on the TF binding to its promoter and indirectly on the regulation of 

that TF. The sum total of direct (TF-target gene) and higher order (TF-TF) interactions 

regulating transcription in an organism is referred to as a gene regulatory network or GRN 

(Macneil and Walhout 2011). However, because TF binding is dependent on cooperative 

binding, cofactors, the chromatin state, and the abundance of the TF under the current conditions 

(Spitz and Furlong 2012), these direct and higher order interactions are not static. Therefore, 

https://paperpile.com/c/orDPDL/LHXM
https://paperpile.com/c/orDPDL/BaF7
https://paperpile.com/c/orDPDL/CPas
https://paperpile.com/c/orDPDL/KKID+kQrt
https://paperpile.com/c/orDPDL/KKID+kQrt
https://paperpile.com/c/orDPDL/KKID+kQrt
https://paperpile.com/c/orDPDL/7qJa+PQQZ+UuPb
https://paperpile.com/c/orDPDL/RQWc+2THd
https://paperpile.com/c/orDPDL/UuPb
https://paperpile.com/c/orDPDL/nFaU
https://paperpile.com/c/orDPDL/kQrt
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when attempting to understand complex patterns of gene expression, it is important to identify 

the relevant interactions.  

Although it is understood that the interaction between a TF and the promoter of a target 

gene is mediated by cis-regulatory elements, inferring whether a TF binds to a specific promoter 

in vivo is complicated by the fact that TFs may recognize multiple distinct nucleotides sequences 

(Badis et al. 2009). The promiscuity of TF binding can be addressed by representing the size of 

the binding motif and nucleotide preference at different positions of the motif as a position 

weight matrix (PWM, Y. Li et al. 2015; Wasserman and Sandelin 2004; Stormo et al. 1982). 

PWMs of putative cis-regulatory elements can be identified without experimental evidence of TF 

binding by looking for the overrepresentation of DNA sequences in the promoters of coregulated 

genes using computational models (Wasserman and Sandelin 2004; Y. Li et al. 2015). 

Alternatively, the affinity between  TFs and their binding sequence(s) can be assayed in vitro 

using protein binding microarrays (Bulyk 2007; Berger and Bulyk 2009) or in vivo by chromatin 

immunoprecipitation (ChIP, Buck and Lieb 2004; Furey 2012) or with other  emerging 

technologies like DapSeq (O’Malley et al. 2016). Binding site information from these in vivo/in 

vitro assays can be used to define TF-specific PWMs (de Boer and Hughes 2012), or regulatory 

interactions can be identified directly by mapping binding sequences/reads to an annotated 

genome (Bailey et al. 2013). Finally, regulatory interactions can be identified by screening for 

differentially expressed genes in TF knockouts (Reimand et al. 2010). As there is no single 

characterization of a regulatory interaction, it is important to have a method to assess how well a 

GRN explains a specific expression pattern. 

Before we use regulatory interactions to explain complex expression patterns, we first 

must define what we mean by a pattern of expression. Most simply, a gene’s pattern of 

https://paperpile.com/c/orDPDL/jxeW
https://paperpile.com/c/orDPDL/E167+NS9B+spak
https://paperpile.com/c/orDPDL/NS9B+E167
https://paperpile.com/c/orDPDL/X4pa+LxUs
https://paperpile.com/c/orDPDL/YoT8+jCHI
https://paperpile.com/c/orDPDL/rUGj
https://paperpile.com/c/orDPDL/HEVz
https://paperpile.com/c/orDPDL/oSyj
https://paperpile.com/c/orDPDL/GMZh
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expression is defined based on the magnitude of expression under a defined set of circumstances, 

such as a chosen environment/stress (Zou et al. 2011; Uygun et al. 2017), tissue/body part (Segal 

et al. 2008; Chikina et al. 2009), function/biological process (Beer and Tavazoie 2004; Panchy et 

al. 2014) or combination thereof (Uygun et al. 2017). Grouping genes based on clear criteria 

allows expression regulation to be approached as a classification problem where the presence or 

absence of a regulatory interaction is used to predict whether or not a gene exhibits the particular 

pattern of expression using a machine learning algorithm. To date, such machine learning 

algorithms have been applied to predicting expression in a variety of species, including 

Caenorhabditis elegans (Chikina et al. 2009), Arabidopsis thaliana (Zou et al. 2011; Uygun et 

al. 2017), and Chlamydomonas reinhardtii (Panchy et al. 2014)). This approach has been applied 

successfully to predict complex patterns of expression, such as tissue-specific response to stress 

(Uygun et al. 2017), while other modeling methods  have been applied to co-expression clusters 

based on >100 different environmental conditions (Beer and Tavazoie 2004). Despite these 

successes, certain types of patterns remain challenging to predict, such as the specific timing of 

expression within a cyclic process (Panchy et al. 2014). Previous studies have explored 

improving the performance of machine learning-based predictions of gene expression by 

supplementing TF-interaction information with additional information such as DNA accessibility 

and cross-species conservation (Uygun et al. 2017) and by including information about 

combinatorial rules between TFs that can bind to the same promoter (Zou et al. 2011). However, 

it remains to be seen if these approaches are useful for predicting timing of gene expression or 

identifying regulatory interactions important for controlling that timing. 

 

https://paperpile.com/c/orDPDL/frGu+VQRZ
https://paperpile.com/c/orDPDL/bkTY+F2up
https://paperpile.com/c/orDPDL/bkTY+F2up
https://paperpile.com/c/orDPDL/p0dR+21Hy
https://paperpile.com/c/orDPDL/p0dR+21Hy
https://paperpile.com/c/orDPDL/VQRZ
https://paperpile.com/c/orDPDL/F2up
https://paperpile.com/c/orDPDL/frGu+VQRZ
https://paperpile.com/c/orDPDL/frGu+VQRZ
https://paperpile.com/c/orDPDL/21Hy
https://paperpile.com/c/orDPDL/VQRZ
https://paperpile.com/c/orDPDL/p0dR
https://paperpile.com/c/orDPDL/21Hy
https://paperpile.com/c/orDPDL/VQRZ
https://paperpile.com/c/orDPDL/frGu
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The cell cycle of budding yeast, Saccharomyces cerevisiae, (reviewed in Bahler 2005) is 

an ideal system for studying the regulation of complex expression patterns because the 

progression of this process is divided into distinct phases: initial growth (G1-phase), DNA 

replication (S-phase), intermediate growth (G2-phase), and cell-division (M-phase). Therefore, 

clear patterns of expression can be defined based on when genes reach their peak expression 

during the cell cycle, and the expression of genes during the cell cycle has been extensively 

characterized in S. cerevisiae (Price et al. 1991; Spellman et al. 1998). Furthermore, 

transcriptional regulation is known to play a key role in the control of cyclic expression during 

the cell cycle (Futcher 2002, Breeden 2003), and there are multiple data sets defining TF-target 

interactions in S. cerevisiae on a genome-wide scale (Harbison et al. 2004, Zhu et al. 2009, 

Reimand et al. 2010, de Boer and Hughes 2012). For these reasons, we used the S. cerevisiae 

cell-cycle as a model of complex expression in order to study the effect of different approaches 

for defining the yeast GRN on our ability to correctly characterize transcriptional regulation. The 

TF-target interactions were defined using PWMs, PBMs, ChIP-Chip, or Deletion data, and for 

each type of interaction data predictions were made using the same machine learning algorithms 

across all cell cycle time points, allowing us to examine the usefulness of each type of data. We 

also investigated whether performance could be improved by including TF-TF interactions as 

model inputs, applying feature selection algorithms to remove uninformative features, and by 

combining TF-interaction information from different data types. Once the best performing model 

was identified, Gene Ontology (GO) analysis was used to identify biological functions that are 

over- or under-represented in TFs most important for predicting the timing of cell cycle 

expression. Finally, we used the most important TF-TF interactions from our models to construct 
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putative GRNs, allowing us to identify subclusters of TFs whose interactions are central to 

controlling the timing of expression. 
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RESULTS AND DISCUSSION 

 

Comparing TF-target interactions from multiple regulatory data sets 

Although there is a single GRN which describes transcriptional regulation in an 

organism, different approaches to defining regulatory interactions may results in inferred GRNs 

that have greater or lesser degrees of similarity. In this study, TF-target interactions in S. 

cerevisiae was defined using four distinct data sets: TF binding sites inferred from ChIP-Chip 

experiments (ChIP-Chip), interactions inferred from changes in expression in deletion mutants 

(Deletion), TF binding sites inferred from PWMs (PWM), and TF binding sites inferred from 

PBM data (PBM) (Table 3.1). Further details about the processing of each data set can be found 

in the Methods section. Because of methodological differences, we would expect to find 

differences between GRNs defined using different data sets, both in the total number of 

regulatory interactions and the specific relationships between TFs and target genes. The number 

of TF-target interactions in the S. cerevisiae GRNs varies from 16,602 in the ChIP-Chip data set 

to 78,095 in the PWM data set. This almost 5-fold difference in the number of interactions 

identified is not due to differences in the amount of data; each data set includes at least 80 TFs 

and 4,701 annotated gene ORFs (Table 3.1). The large difference is driven instead by 

differences in the average number of interactions per TF, which varies from 105.6 in the ChIP-

Chip GRN to 558.8 in the PBM GRN. The distribution of TF number per target is positively 

skewed for the ChIP-Chip (2.23), Deletion (4.04), and PWM (3.43) GRNs, indicating that most 

TFs have fewer interactions than the average value while a few have many more interactions. 

The majority of TFs were present in more than one data set (Figure 3.1A); however, the number 

of interactions that each TF is involved in is only weakly correlated between the ChIP and  
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Table 3.1 Size and origin of GRNs defined from each data set 

Data Set Transcription 

Factors 

All Genes Interactions Source 

ChIP-Chip 152 4701 16,062 ScerTF 

Deletion 151 5256 26,757 ScerTF 

PWM 230 6536 78,095 YeTFaSCO 

Expert PWM 104 4740 9726 YeTFaSCO 

PBM 81 4922 45,264 Zhu et al. (2009) 
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Figure 3.1 Coverage of TF and TF-interactions by data set (A) Heatmap of the coverage of S. 

cerevisiae TFs in GRNs derived from different data sets. Each row represents a TF and each 

column represents the GRN derived from a different data set (ChIP-Chip, Deletion, PWM, 

PBM). TFs are sorted according the GRNs they are found in such that TFs belonging to the same 

set of GRNs are grouped together. The number of TFs belonging to each group is indicated on  
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Figure 3.1 (cont’d) 

the right side of the graph. (B) Heatmap of the percentage of TF-target interactions for each S. 

cerevisiae TF belonging to each GRN. Each row represents a TF, and each column represents the 

GRN derived from a different data set (ChIP-Chip, Deletion, PWM, PBM). Dark red indicates a 

higher percentage of interactions found within a data set, while dark blue indicates a lower 

percentage of interactions. TFs are ordered as in (A). 
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Deletion (Pearson’s product moment correlation coefficient (PCC) = 0.092), ChIP and PWM 

(PCC = 0.109), and Deletion and PWM (PCC=0.046) datasets. 

To further investigate the consistency of inferred TF-target interactions, for each TF we 

calculated the percentage of total interactions originating from each data set and grouped them 

using hierarchical clustering (Figure 3.1B). Although most TFs are found in > 1 GRN, TFs are 

primarily clustered based on the GRN in which they are most prominent, which is not 

unexpected given that for the majority (80.5%) of TFs, more than half of their interactions were 

identified  from a single data type. This pattern held true even when TFs unique to a single data 

set were excluded: for 73.6% of TFs found in >1 GRN, more than half of their interactions were 

from a single data set. We also looked at the overlap of specific interactions (i.e. the same TF 

and target gene) between the different data sets, including a subset of the PWM data set 

including only curated binding sites (Figure 3.2). Of the 156,710 TF-target interactions 

identified, 89.0% were unique to a single data set, with 40.0% of unique interactions belonging 

to the PWM data set. As expected, there was a large overlap between the full PWM data set and 

the curated PWM subset, totaling 9,458 interactions or 96.8% of all interactions from the curated 

PWMs. However, the degree of overlap between the four main GRNs varied; when TF targets 

were chosen at random, ChIP-Chip overlap with Deletion (pv=2.37e-65) and PWM (pv<1e-307) 

was higher than expected by random chance, but PWM overlap with Deletion (pv=1.74e-111) 

and PBM (pv=1.87e-106) lower (see Methods). The number of overlaps between ChIP-Chip and 

PBM (0.057) and Deletion and PBM (0.43) were not significant in either direction 

(Supplementary Figure 3.1). This suggests that the ChIP-Chip data set is generally more 

similar to the other data sets, while PWMs are more dissimilar. Although, given the low overall  
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Figure 3.2 Overlap in TF-target interactions across data sets. Colors of different regions 

indicate different data sets: ChIP-Chip (blue), Deletion (yellow), PWM (orange), Expert PWM 

(green), PBM (purple).  
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overlap between data sets, we would still expect models built on each data set to perform 

differently. 

Predicting timing of expression in the S. cerevisiae cell-cycle using direct regulatory 

interactions 

Previously, regulatory interactions were used to predicted gene expression in S. 

cerevisiae (Beer and Tavazoie, 2004) as well as other species (Chikina et al., 2009; Zou et al., 

2011; Panchy et al., 2014; Uygun et al., 2017). Both general patterns of expression (Beer and 

Tavazoie, 2004) and response to specific conditions (Zou et al., 2011) have been accurately 

predicted, but distinguishing the phases of cycling expression patterns has proven difficult, even 

when the phases are associated with distinct functions and the timing of the cycle is expected to 

be strictly controlled (Panchy et al., 2014). Our previous attempt to identify regulators of timed 

expression relied primarily on computationally identified putative regulatory interactions 

(Panchy et al., 2014). However, we can take advantage of the nearly complete characterization of 

regulatory interactions in S. cerevisiae to address this question more directly. Because the TF-

target interactions amongst our four data sets show little overlap, we cannot define a single GRN 

for S. cerevisiae. Therefore, we chose to compare the predictive power of TF-target interactions 

derived from different data sets and determine which are the most useful for predicting cell-cycle 

expressed genes. 

To examine cell-cycle expression, we used cell-cycle expressed genes from Spellman et 

al. (1998), which are available at the Yeast Cell Cycle Analysis Project (http://genome-

www.stanford.edu/cellcycle/). In this study, cell-cycle expressed genes are defined as those 

genes whose expression oscillates in a sinusoidal-like fashion over the cell cycle with distinct 

minima and maxima. These genes can be clustered into broad categories based on the timing or 
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“phase” of peak expression during the cell-cycle. Spellman et al. identified five such clusters of 

71 to 300 genes corresponding to the G1, S, S/G2, G2/M, and M/G1 phases of the cell cycle. 

(Supplementary Figure 3.2). While it is known that each phase represents a functionally 

distinct period of the cell-cycle, the extent to which regulatory mechanisms are distinct or shared 

both within cluster and across all phase clusters is unknown. The coverage of the genes in each 

phase cluster by TF-target interactions from different data sets varies between 64% and 100%, 

but the average coverage of expression clusters is >70% for all data sets (see Supplementary 

Table 3.1), such that we expect the results of any predictor to be generalizable across the entire 

cluster.  

In order to predict both general and phase-specific expression during the cell cycle, we 

used a Support Vector Machine (SVM) algorithm to classify S. cerevisiae genes as being cell-

cycle expressed or not and, independently, classify genes as being expressed in specific phases of 

the cell cycle as defined in Spellman et al. (see Methods for details). The performance of each 

classifier was assessed using the Area Under the Curve of the Receiver Operating Characteristic 

(AUC-ROC), which ranges from a value of 0.5 for a random classifier to 1.0 for a perfect 

classifier. To compare different types of interaction data, we used each of the five sets of TF-

target interactions to independently predict expression. The AUC-ROC values for the best-

performing classifiers generated by each data set are reported in Figure 3.3.  

From the distribution of AUC-ROC values, there is an apparent relationship between 

performance and both the source of TF-target interactions and the timing of expression during 

the cell cycle. We confirmed these relationships by doing analysis of variance (ANOVA) on the 

performance of classifiers from each data set (see Methods). There was a significant relationship 

between AUC-ROC and data set (pv < 2e-16), expression phase (pv < 2e-16), and the interaction  
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Figure 3.3 Performances of classifiers using TF-target interactions across all data sets. 

Heatmap of the AUC-ROC values for SVM models trained each set of cell-cycle expressed 

genes (all cell-cycle genes and genes expressed during the G1, S, S/G2, G2/M, or M/G1 phase) 

and classified using TF-target interactions derived from each feature set (ChIP-Chip, Deletion, 

PWM, Expect PWM, and PBM). The reported AUC-ROC for each classifier is the average 

AUC-ROC of 100 data sets composed of a balanced number of positive (cell-cycle genes) and 

negative (non-cell-cycle genes) classified using the parameters that maximize performance for 

that model (see Methods). Dark red shading indicates an AUC-ROC closer to 1 while dark blue 

indicates an AUC-ROC closer to zero.  
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between data and phase (pv < 2e-16). This relationship is not entirely dependent on the number 

of feature types, as the performance of the PWM classifier remains is unaffected if we only 

include features for TFs present in the ChIP-Chip data set or in Deletion data set 

(Supplementary Figure 3.3A). Similarly, if only the most important 150 features defined using 

SVM weights (see Methods) are included, so that the total number of features is similar to the 

number in the ChIP-Chip and Deletion data sets, the AUC-ROC only declines for G1 and 

improves slightly for S-G2 and all cyclic genes. However, if we restrict the ChIP-Chip, Deletion, 

and PWM to only TF features present the PBM data set (the one with the fewest TFs), we do see 

reduction the performance (Supplementary Figure 3.3B), though ChIP-Chip, Deletion and 

PWM still perform better than PBM, even with a reduced feature set. This indicates that, after a 

certain threshold, reducing the number of TFs covered by set of TF-target interactions will affect 

the ability to predict cyclic expression, though the magnitude of this effect is dependent on how 

the TF-target interactions were defined. 

Overall, these results indicate that both cell-cycle expression in general and timing of 

cell-cycle expression can be predicted using direct regulator interactions, with ChIP-Chip 

interactions alone able to predict all clusters except S/G2 with  an AUC-ROC > 0.7. While this 

suggests that there is significant regulatory information present in TF-target interactions that is 

relevant to cell-cycle expression, this information is incomplete given that our classifiers are 

imperfect. In particular, no set of TF-target interactions can classify S/G2 expressed genes with 

an AUC-ROC > 0.7. One possible explanation for this shortcoming is that this phase bridges the 

replicative phase (S) and the second growth phase (G2) of the cell-cycle, and therefore represents 

a heterogeneous set of genes with diverse functions and regulatory programs. This hypothesis is 

supported by the fact that S/G2 genes are not significantly over-enriched for any Gene Ontology 
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terms (Ashburner et al. 2000; Gene Ontology Consortium 2015) and are only significantly under-

enriched for genes with mitochondrion (GO:0005739), nucleus (GO:0005643), cytoplasm 

(GO:0005737), and RNA binding (GO:0003723) annotations, which are also under-enriched for 

all expression clusters expect S-phase. Alternatively, direct regulators alone could be insufficient 

to characterize the regulation of genes in this phase cluster as higher-order interaction between 

regulators could be involved in regulation of S/G2 expression. With respect to the cell cycle and 

gene expression timing in general, the question is what sort of regulatory interactions would we 

expect to give rise to expression only at a particular time?  

Predicting timing of expression during the S. cerevisiae cell-cycle using feed-forward loops 

Given that TF-target interactions produced useful, but imperfect classifiers of cell-cycle 

expression, our next step was to identify interactions between TFs that can be used to improve 

prediction. Previously, statistical enrichment of TF-binding co-occurring amongst co-expressed 

genes has been used to identify regulatory interactions that are useful for prediction (Zou et al., 

2011). However, there is no guarantee that these statistically significant interactions are 

biologically important. Instead, we decided to focus specifically on “network motifs”, which are 

patterns of regulatory interactions that are enriched in a biological network and thus theorized to 

be functionally important (Alon 2007a). In particular, we chose to focus on feed-forward loops 

(FFLs). An FFL is a network motif that consists of a primary TF that regulates a secondary TF 

and a target gene that is regulated by both the primary and secondary TFs (see Figure 3.4A). 

This type of network motif is expected to result in peak expression following a delay after the 

expression of the primary TF is induced (Alon 2007a), and is therefore a potential regulatory 

mechanism for phase-specific expression in the cell-cycle. Furthermore, FFLs can be used to 

compose more complex interactions. For example, negative-feedback loops, which have  

https://paperpile.com/c/orDPDL/16Ne+gSK6
https://paperpile.com/c/orDPDL/scdR
https://paperpile.com/c/orDPDL/scdR
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Figure 3.4 Performance of classifiers using only FFLs across all data sets (A) Representative 

feed-forward loops (FFLs) in a GRN. The presence of a regulatory interaction between TF1 and  
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Figure 3.4 (cont’d) 

TF2 means that any target gene which is co-regulated by both of these TFs is part of a FFL. For 

example, TF1 and TF2 form a FFL with both Tar2 and Ta3, but not Tar1 or Tar4 because they 

are not regulated by TF2 and TF1, respectively. (B) Heatmap of AUC-ROC values for SVM 

classification models of each cell-cycle expression set (All cell-cycle genes and genes expressed 

during the G1, S, S/G2, G2,M, or M/G1 phase) using FFLs derived from each feature set (ChIP-

Chip, Deletion, PWM, Expect PWM, and PBM). The reported AUC-ROC for each classifier is 

the average AUC-ROC of 100 data sets composed of a balanced number of positive (cell-cycle 

genes) and negative (non-cell-cycle genes) classified using the parameters that maximizes 

performance for that model (see Methods). Dark red shading indicates an AUC-ROC closer to 1 

while dark blue indicates an AUC-ROC closer to zero.  
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previously been identified as being involved in the regulation of biological oscillations (Bertoli, 

Skotheim, and de Bruin 2013; Pett et al. 2016), are composed of two FFLs which identical but 

for the direction of the regulatory interaction between the TFs. We can potentially capture 

elements of more complicated regulatory pathways by identifying their constituent FFLs. 

We defined FFLs in S. cerevisiae using the same four types of regulatory data sets used 

to identify TF-target interactions. In order to confirm that FFLs do represent a significantly 

enriched network motif in S. cerevisiae GRNs, we calculated the expected number of FFLs based 

on the total number of interactions in each GRN and the frequency of TF-TF interactions (see 

Methods). We compared these expected values to the actual number of FFLs in each of the five 

GRNs and found that in each case, more FFLs were present in the GRN than expected, indicating 

FFLs are, in fact, an overrepresented network motif (see Table 3.2).  TF-TF interactions alone 

are highly correlated with the frequency of TFs (r
2
 = 0.93) and the total number of TF-TF 

interactions (r
2
 = 0.87) in each data set (see Supplementary Figure 3.4). Given that the 

occurrence of TF-TF interactions appears to depend on network size and TF frequency, the 

enrichment of FFLs indicate interacting TFs co-regulate the same target genes more often than 

expected by random chance.  

Given that FFLs are enriched in our GRNs, we built models of cell-cycle expression 

using only regulation by FFLs as features. As with TF-target regulations, we treated each GRN 

independently because there was little overlap between data sets; 97.6% of FFLs were unique to 

one data set and no FFL was common to all data sets (see Supplementary Figure 3.5). Fewer of 

the 800 cell-cycle genes defined in Spellman et al. (1998) were targets of an FFL, with three of 

the five sets having fewer than 50% of genes covered by a FFL (see Supplementary Table 3.2). 

Hence, the models made with FFLs will likely be relevant to only a subset of cell-cycle 

https://paperpile.com/c/orDPDL/oMsl+j8uG
https://paperpile.com/c/orDPDL/oMsl+j8uG
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Table 3.2 Observed and expected number of FFLs in GRNs defined using different data 

sets 

Data Set Observed FFLs Mean Expected 

FFLs
1 

Stdv of 

Expected FFLs
2 

Z-Score
3 

ChIP-Chip 3777 811 28.47 104.15 

Deletion 13,162 2427 49.26 217.90 

PWM 75,514 52,915 230.03 98.24 

Expert PWM 1700 398 19.94 65.26 

PBM 67,895 47,371 217.64 94.30 

1. The mean of FFLs expected in a GRN was determined using the cube of the mean 

connectivity of the GRN (see Methods) 

2. The standard deviation of FFLs expected in a GRN was determined using the cube of the 

mean connectivity of the GRN (see Methods) 

3. The z-score reflects the difference between the observed and expected number of FFLs 

divided by the standard deviation of the expected number of FFLs (see Methods). 
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expressed genes, but may still be useful for identifying TF-TF interactions important for the 

regulation of cell-cyclic expression. Using the same machine learning approach for prediction 

and assessment, we found the same overall pattern of performance with FFLs as we did using 

direct regulators (Figure 3.4B). Again, the best predictions were from GRNs derived from ChIP-

Chip, Deletion, and all PWMs. However, predictions using ChIP-Chip FFLs had the highest 

AUC-ROC values for all phases of expression. ChIP-Chip FFL models also had higher AUC-

ROCs for each phase than those based on direct regulation, though it is important to note that the 

ChIP-Chip FFL set had a much lower coverage of cell-cycle expressed genes, 34%, compared to 

82% for direct regulators. To test how restricting the set of cell-cycle genes impacts 

preformance, we used ChIP-Chip TF-target interactions to predict cell-cycle expression for the 

same 34% of cell cycle genes and found performance of predictions was improved 

(Supplementary Table 3.3) compared to using all cell-cycle genes (see Figure 3.3). Hence, the 

improved performance from FFLs may stem from the subset of cell-cycle genes being used 

covered by the ChIP-Chip FFL set being easier to predict using any type of regulatory feature.  

Given that models based on ChIP-Chip TF-target interactions predict cell-cycle genes 

covered by ChIP-Chip FFLs as well as the FFL model, one might assume the information present 

in FFLs is redundant with TF-target interactions. However, it is important to remember that this 

subset of cell-cycle genes, which is easier to predict, could not be identified without using FFLs. 

For this reason, in spite of their limited coverage of cell-cycle genes, FFLs complement TF-

target regulations, specifically by contributing the classification of the subset that they do predict 

well. Additionally, the results of the ANOVA analysis described in the previous section 

indicated that the interaction between data type and phase of expression had a significant effect 

on the performance of the classifier. Hence, further improvement could be gained not only by 
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including both direct TF-target and FFL interactions, but also by combining interaction across 

data sets. However, it is unlikely that all the features from any single data set are relevant to 

making accurate predictions, so it is necessary to distinguish between important and unimportant 

features before attempting to construct a classifier based on different types of TF-targets and FFL 

interactions from multiple data sets. 

Using feature importance to merge GRNs and improve prediction of cell-cycle expression 

Both the improved performance of FFLs on a subset of cyclic-genes and the effect which 

data set has on the performance predicting specific time suggest that a better classifier can be 

constructed by combining features and data sets. To do this we focused on interactions identified 

from the ChIP-Chip and Deletion data sets because these interactions had better predictive 

performance than PBM, PWM and Expert PWM interactions. Furthermore, using ChIP-Chip and 

Deletion GRNs are expected to be complementary because they identify interactions using 

independent methods: ChIP-Chip interactions represent binding in the absence of a proven 

change in expression, while in the Deletion data there is evidence of changes in expression, but 

not binding. 

In order to merge regulatory information from the ChIP-Chip and Deletion GRNs, we 

first identified TF and TF-TF interactions that were important for each of the classifiers based on 

SVM weight (see Methods). Features enriched in cell-cycle expressed and non-cell-cycle 

expressed genes are differentiated by the sign of the weight: positive weights indicate a feature is 

over-enriched in cell-cycle genes while a negative weight indicates a feature is under-enriched in 

cell-cycle genes. Because we expect importance to vary across phases in a data set-dependent 

fashion, we defined the importance of each feature for each phase-specific classifier based on 

ChIP-Chip and Deletion data independently. We used the same criteria for importance across all 
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models, we selected features based on four different percentiles of SVM weight: (1) 10th 

percentile of positive weights, (2) 25th percentile of positive weights, (3) 10th percentile of 

positive and negative weights, (4) 25th percentile of positive and negative weights (see 

Methods).  Using this approach allowed us to assess if accurate predictions only require cell-

cycle associated (i.e. positive weight) features, or if performance depends on exclusionary (i.e. 

negative weight) features as well.  

Before combining features selected using the above criteria, we first assessed the 

predictive power of each subset of TF-target or FFL features, separately and combined, for both 

ChIP-Chip (Figure 3.5A) and Deletion (Figure 3.5B) interactions. We found the same overall 

pattern of performance as previous classifiers; classifiers built using ChIP-Chip FFL subsets 

outperformed classifiers from ChIP-Chip direct interactions across all phases, while the 

performance of classifiers using Deletion TF-target interactions and FFLs varied depending on 

the phase, with FFL classifiers performing better with S/G2 and G2/M genes like before. For all 

subsets consisting either entirely of TF-target regulations or FFLs, the 25th percentile of both 

positive and negative SVM weights performed best, except for Deletion FFL predictions for the 

S/G2 phase. While this would seem to suggest that more features leads to better performance, 

these  25th percentile subsets  perform equally well or better than the full data set for both TF-

target interactions and FFLs with a few exceptions (Deletion direct interactions for G2/M and 

both ChIP direct interactions and FFLs for G1) (see Figures 3.3 and 3.4B). Similarly, when 

combining direct regulators and FFLs, the 10th percentile of positive and negative SVM weights 

had the best performance in 75% of cases. These results indicate that we can achieve equal or 

improved performance predicting cell-cycle expression using a subset of important features, so 

long as both features associated with cell-cycle and non-cell-cycle gene expression are included. 
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Figure 3.5 Performance of classifiers built using important features from ChIP-Chip, 

Deletion, and combined ChIP-Chip/Deletion data set. (A) Heatmap of AUC-ROC values for 

SVM classification models for each cell-cycle expression set (All cell-cycle genes and genes 

expressed during the G1, S, S/G2, G2, M, and M/G1 phases) constructed using a subset of ChIP-

Chip TF-target interactions, FFLs, or both. Subsets of features were defined using the importance 

of features (either TFs or TF-TF interactions) as follows: features in the top 10th percentile of 

importance (Top 10th), in the top 25th percentile of importance (Top 25th), the top and bottom 

10th percentiles of importance (Two-way 10th), and the top and bottom 25th percentiles of 

importance (Two-way 25th) (see Methods). The reported AUC-ROC for each classifier is the 

average AUC-ROC of 100 data sets composed of a balanced number of positive (cell-cycle 

genes) and negative (non-cell-cycle genes) examples classified using parameters that maximize  
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Figure 3.5 (cont’d) 

performance for that model (see Methods). Because of the wide range of values, the heatmap is 

scaled such that the darkest blue value indicates an AUC-ROC <0.6 and the darkest red color 

indicates an AUC-ROC > 0.8. (B) Heatmap of AUC-ROC values for SVM classification models 

for each cell-cycle expression set (All cell-cycle genes and genes expressed during the G1, S, 

S/G2, G2, M, and M/G1 phases) constructed using a subset of Deletion TF-target interactions, 

FFLs, or both. Subsets of genes are defined as in (A). AUC-ROC was calculated and the 

heatmap colored as in (A). (C) Heatmap of AUC-ROC values for SVM classification models of 

each cell-cycle expression set (All cell-cycle genes and genes expressed during the G1, S, S/G2, 

G2, M, and M/G1 phases) constructed using a subset of TF-target interactions, FFLs, or both 

from combined ChIP-Chip and Deletion data. Subsets of features are defined as in (A) expect 

that only the Two-way 10
th

 and Two-way 25
th

 cutoffs are used and they are applied to both the 

ChIP-Chip and Deletion data sets. AUC-ROC was calculated and the heatmap colored as in (A). 
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The final models were built by combining ChIP-Chip and Deletion features, including subsets 

with both positive and negative weights. The total number of features in each subset can be 

found in Table S4. Although some cell-cycle genes are regulated by a TF-target interaction but 

not an FFL, to ensure that the results are comparable, we used all cell-cycles genes covered by at 

least one TF-target interaction from either data set to assess the combined ChIP-Chip/Deletion 

models. As such, it is not unexpected that the performance of combined models using FFLs was 

lower compared with those using TF-target interactions (Figure 3.5C). Nevertheless, the AUC-

ROC of the combined FFL models were > 0.70 for all phase clusters (Figure 3.5C) and, except 

for G1, outperformed predictors based on any full set of TF-target interactions (Figure 3.3). 

Furthermore, the combined FFL models outperformed combined TF-target interaction models in 

predicting cell-cycle gene expression during S/G2. Both 25th percentile models had similar 

precision (96.0%), but the FFL model had higher recall of cell-cycle expressed genes (49.3%) 

than the TF-target interaction model (44.9%). These two models also correctly identified slightly 

different subsets of S/G2 expressed genes, with seven correctly predicted only by the FFL model 

and four correctly predicted only by the TF-target interaction model. Hence, it is not surprising 

that using both TF-target interactions and FFLs showed the best performance for all phases of 

cell cycle expression (Figure 3.5). 

Overall, the consistency with which classifiers built using both ChIP-Chip and Deletion 

data outperform classifiers built with just one data type indicates the power of using 

complementary characterizations of a GRN to predict expression. Furthermore, these combined 

models outperform classifiers based on single data sets even though they contain fewer total 

features. The performance of features which were found to be important in one of our original 

models, both alone and in combination, not only indicates that feature selection can be a 
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powerful tool for improving gene expression predictions, but also that features with high 

importance may be enriched in TF and TF-TF interactions that are specific to the control of cell-

cycle expression. While we would expect that many TFs with high importance are cell-cycle 

regulators, we may also use important TF-target and TF-TF interactions to discover novel TF 

functions that are associated with cell-cycle regulation. 

Functions of TFs important for predicting cell-cycle expression 

In our analysis of the ChIP-Chip and Deletion data sets, we found that performance of 

classifiers could be maintained while including only the most important features. To test if the 

selecting for features important to predicting cell cycle expression identifies true biological 

regulations, we asked whether the 10th and 25th percentile of TFs features were enriched in cell 

cycle-related genes. Of the 25 TFs that have been annotated as cell-cycle regulators in S. 

cerevisiae (GO:0051726), 20 were identified as features important to predicting cell-cycle 

expression in either the ChIP-Chip or Deletion data set. For ChIP-Chip, the 10th percentile of the 

most important TFs from all phases except M/G1 is enriched for cell-cycle genes, while for the 

25th percentile of  important TFs, only the features of general classifier (i.e. cell-cycle genes 

from all phases) are enriched for cell-cycle genes (Fisher’s Exact Test, Supplemental Table 

3.5). The pattern of enrichment was less clear for the Deletion interactions. While important 

Deletion TFs from either the 10
th

 or 25
th

 percentile are not enriched for cell-cycle genes, the top 

three most important TFs from the general classifier are annotated as cell-cycle genes 

(Supplemental Table 3.5). Furthermore, the majority of the 25 cell-cycle annotated TFs are 

present in the 25th percentile of important features in at least one phase of cell cycle in both the 

ChIP-Chip (14) and Deletion (13) data sets. To summarize these findings, the important features 

from our classifiers tend to be associated with the cell-cycle, which suggests our data accurately 
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represents the true S. cerevisiae GRN and that our predictive methodology correctly identified 

associations between regulators and expression patterns.  

While the set of important TFs identified by our classifiers are enriched for cell-cycle 

TFs, these TFs still represent the minority of important TFs. To better understand the functions 

of these other important TFs, we looked for additional enriched GO Terms in the 10th and 25th 

percentile of important TFs from both the ChIP-Chip and Deletion data sets (Supplemental 

Table 3.6). We found 124 GO terms over-represented and 5 under-represented in at least one 

feature set, with no terms being over-represented in one set and under-represented in another. 

One GO term, mitochondrion (GO:0005739), was under-represented in all four feature sets while 

cytoplasm (GO:0005737) and membrane components (GO:0016020 and GO:0016021) were 

under-represented in both 25th-percentile feature sets. This was expected given that all features 

are TFs. There were 19 GO terms over-represented in all four features sets, including several 

generic TF functions (e.g. transcription, DNA-templated, regulation of transcription, DNA-

templated , DNA binding), but also more specific functions including the positive regulation of 

transcription in response to variety of stress conditions (e.g. salt, starvation, freezing; 

Supplemental Table 3.6). This association is not without precedent, as a previous study found 

that cell-cycle genes, particularly those involved in the G1-S phase transition, are needed for 

heat-shock response (Jarolim et al. 2013). However, our results indicate a much broader overlap 

between cell-cycle regulation and stress response. 

The majority of over-enriched GO terms were unique either to ChIP-Chip features (45) or 

Deletion features (29). In general, ChIP-Chip TFs were over-represented for terms related to 

regulation of growth and phenotype switching while Deletion TFs were over-represented for 

terms related to metabolism and the regulation of ribosomes. The full list of GO terms and the 

https://paperpile.com/c/orDPDL/KPLK
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features sets they are enriched in can be found in Supplemental Table 3.6. Though there is a 

large degree of overlap in the TFs present in the ChIP-Chip and Deletion sets, the difference in 

TF-target interactions results in different subsets of these TFs being identified as the most 

important, and therefore differential enrichment of gene function amongst the best features of 

each set. In particular, the best features derived from ChIP-Chip interactions were over-enriched 

for growth related functions, while the features derived from Deletion were enriched for 

regulation of metabolism. The distinct functions of important TFs from the ChIP-Chip and 

Deletion data supports the hypothesis that the improvement in predictive power from combining 

feature sets was due to the distinct, but complementary characterization of gene regulation in S. 

cerevisiae. 

Finally, we identified GO annotations enriched in TFs important for predicting individual 

phases of cell-cycle expression. Because we previously identified GO terms enriched in all 

regulators of the cell-cycle, we specifically looked for terms that were not only robust to data set 

and importance threshold, but also unique to a single phase of the cell cycle. Out of 274 terms 

enriched in at least one phase of the cell cycle, 94 were unique to a single phase (see 

Supplemental Table 3.7), but only one was enriched in all four data sets (selenite ion response, 

GO:007271, in G2M). An additional 20 unique GO terms were enriched in all ChIP-Chip feature 

sets and 4 were in all Deletion feature sets; however there were 60 GO terms whose enrichment 

in more than one phase is supported by multiple feature sets. This indicates that the regulation of 

expression timing across the cell-cycle involves a certain degree of overlap and that we should 

be able to find examples of TFs that are important for multiple phases of cell-cycle expression. 

We theorize that such “general” regulators of cell-cycle expression are central to GRNs specific 
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to cell-cycle regulation. To test this hypothesis we made use of the importance of both individual 

TF-target and regulatory TF-TF interactions to characterize the structure of cell-cycle regulation. 

Identifying regulatory modules for cell-cycle expression 

Although looking at the importance and functional enrichment of individual TFs is 

important for identifying the factors and processes important to the timing of cell-cycle 

expression, ultimately what we want understand is how regulatory interactions play a role in 

determining time-specific expression across the cell-cycle. In particular, the prominence of 

overlapping enriched functions across the cell-cycle suggests that there may be groups or 

“modules” of TFs responsible for regulating multiple phases of expression. This is supported by 

the observation that 7.9 and 10.6% of TFs are important for >1 phase at the 10th percentile cutoff 

and 32.2% and 30.4% are important for >1 phase at the 25th percentile cutoff for ChIP-Chip and 

Deletion interactions, respectively. However, when we hierarchically clustered TF interactions 

based on their importance for general and cell-cycle phase specific classifiers (Supplemental 

Figure 3.6) we found no large clusters of TFs that could be responsible for regulating expression 

at multiple phases. One possible explanation for this could be that, although both positive and 

negative importance features were necessary to construct a good predictor of cyclic expression, 

using the full range of importance values for all features is confounding. For example, if a 

module was important for regulating expression at M/G1 and G1, we would expect that the 

importance scores for TFs in that module would be highly correlated during those phases, but 

could vary from slightly positive to very negative in the other phases. Thus, different criteria are 

required for defining potential regulatory modules. 

In order to identify regulatory modules without relying on correlated importance scores, 

we used TF-TF interactions to build a network of regulators. To begin, we filtered the set of 
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ChIP-Chip TF-TF interactions by the 10th percentile of importance for predicting cell cycle 

genes (Figure 3.6A). We then identified TF-TF interactions that were above the 10th percentile 

of importance for one or more phases and found that 61% of all interactions important for 

predicting cell-cycle genes were also important for predicting at least one phase cluster and 

34.8% were within the top 10th percentile for >1 phases. All but one of the interactions 

important for predicting phase-specific expression were concentrated around four groups of 

genes (colored regions, Figure 3.6A). Two of these groups, Swi6-Swi4-Mbp1 (red), which is a 

regulator of the G1/S phase transition, (Iyer et al. 2001; Wittenberg and Reed 2005; Bean, 

Siggia, and Cross 2005) and Fkh1-Fkh2-Ndd1, which is involved in the regulation of S/G2 (G. 

Zhu et al. 2000) and G2/M (Koranda et al. 2000) expressed genes, are known regulatory 

complexes. Therefore, it is not surprising that interactions amongst these groups are primarily 

important for early (G1 through S/G2) and middle (S to G2/M) phases of cell-cycle expression, 

respectively. In summary, we were able to identify regulatory modules important for predicting 

multiple expression phases that are made up of regulatory complexes known to be important for 

cell-cycle progression. 

We also found interactions important for multiple phases of cyclic-expression that are not 

part of canonical cell-cycle regulatory complexes. For example, the feedback loop between Ste12 

and Tec1 was identified in our models as an important regulator of gene expression during S/G2 

and M/G1. (purple, Figure 3.6A) Ste12 and Tec1 are known form a complex that shares co-

regulators with Swi4 and Mbp1 to promote filamentous growth (van der Felden et al. 2014), one 

of the functions enriched amongst TFs important for predicting cell cycle expression. However, 

neither of these TFs interacts directly with the Swi6-Swi4-Mbp1 complex (van der Felden et al. 

2014) nor are they part of the annotated set of cell-cycle regulators. Similarly, interactions 

https://paperpile.com/c/orDPDL/oAmF+aBBC+ybSM
https://paperpile.com/c/orDPDL/oAmF+aBBC+ybSM
https://paperpile.com/c/orDPDL/OQSv
https://paperpile.com/c/orDPDL/OQSv
https://paperpile.com/c/orDPDL/iZHD
https://paperpile.com/c/orDPDL/zZ8q
https://paperpile.com/c/orDPDL/zZ8q
https://paperpile.com/c/orDPDL/zZ8q
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Figure 3.6 The cell-cycle expression GRN defined using the 10
th

 percentile of ChIP-Chip 

features. (A) A network of ChIP-Chip TF-TF interactions selected from the ChIP-Chip GRN 

constructed using the ChIP-Chip FFLs from the top 10th percentile (see Methods) of importance 

for predicting all cell-cycle expressed genes. Interactions are further annotated with the stage of 

cell-cycle expression (1 = G1, 2 = S, 3 = S/G2, 4 = G2/M, 5 = M/G1) they are important for 

predicting (10
th

 percentile of SVM weight in ChIP-Chip models). Four modules with interactions 

important for predicting >1 phase of cell-cycle expression are highlighted by color: Swi6-Swi4-

Mbp1 (red), Fkh2-Fkh1-Ndd1 (green), Ste12 and Tec1 (purple) and Rap1-Msn4-Hap1 (blue).  
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Figure 3.6 (cont’d) 

(B) A network of TF-TF interactions from the ChIP-Chip GRN which exists amongst TFs in the 

top 10th percentile of importance for predicting all cell-cycle expressed genes using ChIP-Chip 

TF-target interactions. Genes are colored as in (A). 
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between Rap1, Hap1, and Msn4 are in the top 10
th

 percentile of important ChIP-Chip TF-TF 

features for predicting the M/G1 and G1 phases (blue, Figure 3.6A). However, none of these 

TFs are annotated cell-cycle regulators; Rap1 is involved in telomere organization (Guidi et al. 

2015; Laporte et al. 2016), Hap1 is an oxygen response regulator (Keng 1992; Ter Linde and 

Steensma 2002), and Msn4 is a general stress response regulator (8641288, 8650168). 

Of the genes involved in complexes that regulate multiple phases of the cell cycle, but 

that are not annotated cell-cycle regulators, only Tec1 is found in the 10
th

 percentile of important 

TF features in ChIP-Chip data. Furthermore, Rap1 and Hap1 are not found in any important TF 

feature set. Rather their SVM weights are near zero, suggesting that direct regulation by Rap1 or 

Hap1 is not significantly associated with either cell-cycle expression or non-cell-cycle 

expression. Hence, it is only by looking at interaction between regulators that the importance of 

these TFs becomes apparent. In addition, had we only considered interaction amongst the 10th 

percentile of TF features with the best performance in ChIP-Chip data (Figure 3.6B), we would 

missed the Ste12-Tec1 and Rap1-Hap1-Msn4 modules entirely. Additionally, Fkh1 is not 

amongst the 10
th

 percentile of TF features, so part of the Fkh1-Fkh2-Ndd1 module would have 

been overlooked as well. The network of all interactions amongst the 10th percentile of TFs also 

includes many TF-TF interactions involving Ndd1 and Swi5 that were not found to be important 

to predicting cell-cycle expression in our classifiers. The source of TF-interactions is significant  

as performing the same analysis on the 10th percentile of TF-TF interactions in the Deletion data 

set revealed none of the same modules as in the ChIP-Chip networks (Supplemental Figure 

3.7). This includes all of the canonical interactions between Fkh1-Fkh2-Ndd1 as well as the 

interaction between Swi6-Mbp1. This illustrates the power of identifying potential TF-TF 
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interactions in a way that is independent of individual TF importance, though the results are 

highly dependent on how such interactions are defined. 

To further investigate important regulatory interactions, we expanded our network to 

include the 25th percentile of TF-TF interactions from ChIP-Chip data (Figure 3.7). In the 

resulting network, 38 of 46 TFs (82.6%) formed a single network, while only 0.8% of networks 

formed by randomly drawing the same number of interactions from ChIP-Chip data had a similar 

or greater degree of interactivity. Comparably, 57 of 67 TFs (85.1%) of the 25th percentile of 

TF-TF interactions in the Deletion data set are interconnected, but 28.6% of random networks of 

equal size have a similar or greater degree of connectivity. We again identified the interactions of 

the expanded ChIP-Chip network using the 25th percentile of importance across expression 

phases, which resulted in 89% of the TF-TF interactions being significant in at least one phase, 

an increase from 61% in the 10th percentile network, but the frequency of interactions important 

for >1 phase remained about the same (35.6%). We should also note that the interaction between 

Swi4 and Mcm1, which fell just below the 25th percentile cutoff of importance for predicting 

general cell cycle expression, was above the 25th percentile cutoff for all phases except for G1, 

making it the only near universal regulatory interaction observed in this study. The majority of 

the new interactions important for >1 phase originated from one of the four multi-phase modules 

identified in the network built from 10th percentile interactions, while the remainder are 

distributed through the rest of the network (Cup9-Yap6, Ino4-Met4, and Met32-Ume6). 

Therefore, the modular structure identified in the previous ChIP-Chip network appears to be 

robust to the threshold we used to define importance. 

Overall, the structure of the GRN built from the ChIP-Chip network indicates the 

presence of multiple, broad regulatory modules that interact with each other and with peripheral,  
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Figure 3.7 The cell-cycle expression GRN defined using the 25
th

 percentile of ChIP-Chip 

TF-TF interactions. A network of TF-TF interactions selected from the ChIP-Chip GRNs 

constructed using ChIP-Chip FFLs from the top 25th percentile (see Methods) of importance for 

predicting all cell-cycle expressed genes. Interactions are further annotated with the stage of cell- 
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Figure 3.7 (cont’d) 

cycle expression (1 = G1, 2 = S, 3 = S/G2, 4 = G2/M, 5 = M/G1) they are important for 

predicting (25
h
 percentile of SVM weight in ChIP-Chip models). Four modules with interactions 

important for predicting >1 phase of cell-cycle expression are highlighted by color: Swi6-Swi4-

Mbp1 (red), Fkh2-Fkh1-Ndd1 (green), Ste12 and Tec1 (purple) and Rap1-Msn4-Hap1 (blue). 
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phase-specific regulators to control expression timing across the cell-cycle. Importantly, this is 

only true of the network built from TF-TF interactions in the ChIP-Chip feature set, while the 

network derived from Deletion TF-TF interactions lacks the same modularity). Differences in 

network structure are not unexpected, given that interactions derived from the ChIP-Chip data 

are inferred using direct binding to target promoters, while those from Deletion data include any 

target whose expression is affected by the loss of the TF, whether it binds directly or acts 

indirectly through another gene. Hence, we interpret the contrasting results from these data sets 

to mean that the direct regulation of cell-cycle expression timing involves the regulatory modules 

identified in the ChIP-Chip network, while there is another set of regulators identified in the 

Deletion network whose net effect on transcription through both direct and indirect regulatory 

interactions is also important for timing of expression during specific phases. 
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CONCLUSIONS 

Predicting the expression of genes from their regulatory elements remains a challenging 

exercise, but one that can be useful for studying how organisms respond to various stimuli and 

how that response is regulated at the molecular level. Here, we have shown that the problem of 

predicting complex expression patterns, such as the timing of expression across the cell-cycle, is 

tractable using a variety of experimental and computational methods of defining TF-target 

interactions. In spite of painting distinctly different pictures of the S. cerevisiae GRN, 

interactions inferred from ChIP-Chip, Deletion and PWM data sets were useful for predicting 

genes expressed during the cell cycle and for distinguishing between genes expressed at different 

phases. In fact, because some cell-cycle genes were only correctly predicted using ChIP-Chip or 

Deletion data, integrating interactions from both data sets into a single model improved the 

overall accuracy of machine learning models. Furthermore, we found that models were improved 

with the addition of TF-TF interactions in the form of FFLs and that a subset of the most 

important interactions, combined with a subset of the most important TF-target interactions, 

performed better than either the full set of TF-target interactions or FFLs.  

By studying the TFs involved in the most important TF-target interactions and FFLs we 

were able to infer that these interactions play a biologically significant role in regulating the cell-

cycle. Using GO analysis, we found that the 10th percentile of  important TFs from every phase 

except M/G1 were enriched for TFs with cell-cycle annotations. For the M/G1 phase we 

identified important TF-TF interactions that involve non-canonical cell-cycle regulators, such as 

the regulatory modules Ste12-Tec1 and Rap1-Msn4-Hap1. The Rap1-Msn4-Hap1 module stands 

out in that, while these regulators are individually poor predictors of cell-cycle expressions, 

interactions between these TFs are among the best predictors of both cell-cycle expression in 
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general and of the M/G1 and G1 phases in particular. Our GO analysis also indicated that TFs 

important for predicting cell-cycle expression were enriched for genes associated with 

metabolism, invasive growth, and stress responses, which was reflected in the network analysis 

as we found that interactions important for >1 phases of cell-cycle expression were clustered 

around TFs involved in those processes (Cst6, Ste12-Tect, Rpn4, Rap1-Msn4-Hap1). 

Even though our best performing data has nearly complete coverage of the S. cerevisiae 

transcriptome, our models do not provide a complete picture of the regulation of cell-cycle 

expression. In particular, kinases and the interaction between kinases and TFs are known to play 

a key role in regulating the timing of the cell cycle, and FFLs are frequently observed in this TF-

kinase network (Csikász-Nagy et al. 2009). Better characterization of TF binding sites will also 

help provide more accurate representation of the GRN regulating expression timing, such as 

novel methods of characterizing binding sites that incorporate information about both position 

and DNA modification (Csikász-Nagy et al. 2009; O’Malley et al. 2016). Nevertheless, this work 

shows that predictive models can provide a framework for identifying both regulators and 

regulatory interactions with biological significance to processes of interest. Understanding the 

molecular basis of the timing of expression is of interest not only to the cell-cycle, but other 

important biological processes, such as response to environmental cues, including acute stresses 

like predation and infection as well as cyclical changes in the environment such as light and heat. 

Furthermore, the approach described here is not limited to the study of expression timing, but 

can also be applied to any expression pattern with discrete phases. 

 

 

 

https://paperpile.com/c/orDPDL/sqMt
https://paperpile.com/c/orDPDL/sqMt+rUGj
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MATERIALS AND METHODS 

 

TF-target interaction data and regulatory cite mapping 

Data used to infer TF-target interactions in S. cerevisiae were obtained from the 

following sources: ChIP-Chip (Harbison et al. 2004) and Deletion (Reimand et al. 2010) data 

were downloaded from ScerTF (http://stormo.wustl.edu/ScerTF/), PWMs (de Boer and Hughes 

2012) and the expert curated subset of these PWMs were downloaded from YetFaSCO 

(http://yetfasco.ccbr.utoronto.ca/), and PBM binding scores were taken from Zhu et al. (see 

Supplemental Table 5, (C. Zhu et al. 2009). For ChIP-Chip and Deletion data, the interaction 

between TF and their target genes were directly annotated, however, for PWMs and PBMs data 

we mapped inferred binding sites to the promoters of genes in S. cerevisiae downloaded from 

Yeastract (http://www.yeastract.com/). All position weight matrices were mapped for the PWM 

data set, however for PBM data we only used the oligonucleotides in the top 10th percentile of 

scores for every TF. This threshold was determined using a pilot study which found that using 

the 10th percentile as a cutoff maximized performance of prediction using PBM data. Mapping 

was done according to the pipeline previously described in Zou et al. (2011) using a threshold 

mapping p-value of 1e-5 to infer a TF-target interaction. 

Overlap between TF-target interaction data 

To evaluate the significance of the overlap in TF-target interactions between different 

GRNs, we compared the observed number of overlaps to what we expected were the genes 

regulated by each transcription factor randomized. In detail, for each set of TF-target interactions 

we replaced the target gene of each interaction with one that was randomly drawn from the total 

set of target genes across all data sets, such that the number of interactions for each TF were 

https://paperpile.com/c/orDPDL/8dtZ
https://paperpile.com/c/orDPDL/GMZh
http://stormo.wustl.edu/ScerTF/
https://paperpile.com/c/orDPDL/HEVz
https://paperpile.com/c/orDPDL/HEVz
http://yetfasco.ccbr.utoronto.ca/
https://paperpile.com/c/orDPDL/7TVI
http://www.yeastract.com/
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preserved. For each randomization of target gene, the number of overlapping features between 

each pair of data set was calculated. This process was repeated 1000 time to determine the mean 

and standard deviation of overlap between each data set expected under this randomization 

regimen. To determine to degree to which our observation differed from the expectation under 

this random model, we applied the two-tailed z-test to the differences between the observed 

number of overlaps and the distribution of overlaps from the randomized trials. 

Expected feed-forward loops in S. cerevisiae regulatory networks 

FFLs were defined in each set of TF-target interactions as any pair of TFs with a common 

target genes where a TF-target interaction also existed between one TF (the primary TF) and the 

other (the secondary TF) which, for clarity, we refer to as a TF-TF interaction. The expected 

number of FFLs in each data set was determined according to the method described by Uri Alon 

in “An Introduction to Systems Biology” (Chapter 4, 2007b). Briefly, the expected number of 

FFLs (NFFL) in a randomly arranged GRN is approximated by the cube of the mean connectivity 

(λ) of the network with a standard deviation equal to the square-root of the mean. Therefore, for 

each data set we compared the observed number of FFLs to the expected number of FFLs from a  

network with the same number of connections, but with those connections randomly arranged by 

defining λ as the number of TF-target interactions divided by the total number of nodes (TFs + 

target genes) and calculating mean the standard deviation as above. 

Validating FFLs in cell-cycle expression 

FFLs were validated in the context of cell-cycle expression by modeling the regulation 

and expression of genes involved in the FFL using a system of ordinary differential equations: 

 

∆ (
𝑆
𝑇

) = (
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Where S and T are the expression of the secondary TF and target gene respectively, ∝S and ∝T 

are the decay rates of the secondary TF and target gene respectively, and βS,T indicates the 

production rate of the target gene dependent on the secondary TF. In the nonhomogeneous term 

portion of the equation, βP,S and βP,T are the production rate of the secondary TF and target gene, 

respectively, which depend on the primary TF, while f(t) is the expression of the primary TF 

over time which is independent of both the secondary TF and the target gene. This system was 

solved in Maxima (http://maxima.sourceforge.net/index.html). For each FFL, maximum 

likelihood estimation, implemented using the bbmle package in R (https://cran.r-project.org/web/ 

packages/bbmle/index.html), was used to fit the model parameters to the observed expression of 

genes during the cell-cycle as defined by Spellman et al. (1998). Each run was initialized using 

the same set of initial conditions and only FFLs for which a reasonable (∝ < 0, βs > 0), non-

initial parameters could be fit were kept. Between 80 and 90% of FFLs in each data set passed 

this threshold, while only 21% of FFLs built from random TF-TF-target triplets were fit. 

Classifying cell-cycle genes using machine learning 

Predicting cell-cycle expression and phase of cell-cycle expression was done using the 

Support Vector Machine (SVM) algorithm implemented in Weka (Hall et al. 2009). For each 

SVM run, the full set of positive instances (either cell-cycle genes or genes expressed at a certain 

phase of the cell-cycle) and negative instances (genes in the Spellmen et al. expression data set 

which were not cell-cycle expressed) was used to generate 100 balanced (i.e. 1-to-1 ratio of 

positive to negative) inputs. Genes were only selected for the input of a SVM run if at least one 

interaction feature was involving that gene was present. Features consist of the presence of 

http://maxima.sourceforge.net/index.html
https://cran.r-project.org/web/packages/bbmle/index.html
https://cran.r-project.org/web/packages/bbmle/index.html
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regulation by a TFs FFL, or a combination of both from one or more regulatory data sets (ChIP-

Chip, Deletion, PWM, Expert-PWM, PBM).  

Each balanced input set was further divided into 10-folds for cross validation. SVM uses 

the training data to define a linear classifier (i.e. a hyperplane) in the space defined by features, 

which is then used to classify positive and negative instances in the test set. Each run was 

optimized using a grid search of two parameters: the minimum distance between the positive and 

negative groups (C) and the ratio of negative to positive examples in the training set (R).The 

tested range of each parameter was as follows: C = (0.01, 0.1, 0.5, 1, 1.5, 2.0) and R = (0.25, 0.5, 

1, 1.5, 2, 2.5, 3, 3.5, 4). For each pair of parameters, performance was measured using the AUC-

ROC values averaged across the 100 balanced input sets. For each choice of positive class and 

feature set, the pair of grid search parameters which maximized the average AUC-ROC was used 

to define the representative model for that predictor and calculate the reported AUC-ROC for 

that predictor. 

Evaluating the relationship between model performance, class and feature  

The effect of the phase (general cell-cycle, G1, S, S/G2, G2/M or M/G1) of expression 

being predicted (class) and the data set (ChIP-Chip, Deletion, PWM, Expert PWM or PBM) 

from which TF-target interactions were derived (feature) on the performance of each SVM 

model was evaluated using analysis of variance (ANOVA). This was done using the “aov” 

function in the R statistical language using the following model: 

𝑆 =  𝐶 + 𝐷 + 𝐶 ∗ 𝐷 

Where “S” is the representative AUC-ROC score of the SVM model, “C” is a categorical feature 

representing the positive-class set (cyclic expression or a specific phase of expression), and “D” 

is a categorical feature representing the data set of regulations used.  
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Importance of features to predicting cell-cycle expression 

The importance of a feature for each model was determined by rerunning each SVM 

model using the best pair of parameters with the options “-i -k” in order to generate an output 

files with class and features statistics. From the resulting output file, custom Python scripts were 

used to extract the weight value for each of the features used in the linear classifier. Features 

were then ordered by their weight to determine importance, such that the feature with the largest 

positive value (most strongly associated with the positive class) had the highest rank and the 

feature with the largest negative value (most strongly associated with the negative class) had the 

lowest rank. Because multiple features often had the same weight value, we defined cutoff scores 

for the 10th and 25th percentile conservatively, such that the cutoff for the Xth percentile of 

positive features was smallest weight above which includes X% or less of all features and the 

Xth percentile of negative features was the largest weight below which includes X% or less of all 

features. The effect of this is observed most prominently in the 25th percentile features sets as 

ties between feature weights were more common towards the middle of the weight distributions. 

GO Analysis 

GO annotation for genes in S. cerevisiae were obtained from the Saccharomyces Genome 

Database (http://www.yeastgenome.org/download-data/curation). The significance of enrichment 

of a particular term in a set of important TF was determined using the Fisher’s Exact Test and 

adjusted for multiple-hypothesis testing using the Benjamini-Hochberg method (Benjamini and 

Hochberg, 1995).  

 

 

 

 

http://www.yeastgenome.org/download-data/curation
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Supplemental Figure 3.1 Expected overlaps of TF-target interactions across regulatory data sets.  

IQR plots of the expected number of overlapping TF-target interactions between each pair of 

GRNs based on randomly drawing TF-target interactions from the total pool of interactions 

across all data sets (see Methods). Blue points indicate the observed number of overlaps 

between each pair of GRNs.  
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Supplemental Figure 3.2 Expression profiles of genes expressed at specific phases of the 

cell-cycle. Expression profiles of genes expressed at each phase of the cell-cycle: G1 (red), S 

(yellow), S/G2 (green), G2/M (blue), and M/G1 (purple). Time (x-axis) is expressed in minutes 

and, for the purpose of display, the expression (y-axis) of each gene was normalized between 0  
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Supplemental Figure 3.2 (cont’d) 

and 1. Each figure shows the mean expression of the phase cluster (dark line) and the range of 

values (transparent shading). 
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Supplemental Figure 3.3 Performance of classifier using alternative feature sets. (A) 

Heatmap of AUC-ROC values for SVM classification models for each cell-cycle expression set 

(all cell-cycle genes and genes expressed during the G1, S, S/G2, G2/M, and M/G1 phases) using 

TF-target interactions derived from PWM features filtered using TFs found in the ChIP-Chip 

data set, TFs found in the Deletion data set, and the 150 PWMs in the original PWM classifier 

with the highest absolute important values. The reported AUC-ROC for each classifier is the 

average AUC-ROC of 100 data sets composed of a balanced number of positive (cell-cycle 

genes) and negative (non-cell-cycle genes) classified using the parameters that maximize 

performance for that model (see Methods). Dark red shading indicates an AUC-ROC closer to 1  
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Supplemental Figure 3.3 (cont’d) 

while dark blue indicates an AUC-ROC closer to zero. (B) Heatmap of AUC-ROC values for 

SVM classification models for each cell-cycle expression set (all cell-cycle genes and genes  

expressed during the G1, S, S/G2, G2/M, and M/G1 phases) using TF-target interactions derived 

from the ChIP-Chip, Deletion and PWM data sets filtered using the TFs covered by the PBM 

data set. AUR-ROC was calculated and the heatmap colored as described in (A) 
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Supplemental Figure 3.4 Relationship between TF genes and TF-TF interactions. (A) The 

relationship between the percent of genes that are TFs (x-axis) in each of the five feature sets 

(ChIP-Chip, Deletion, PWM, Expert PWM, and PBM) and the percent of TF-TF interactions in 

that data set. Blue data points represent the observed values for each data set, and the black line 

is the best fit linear trendline between percent TFs and percent TF-TF interactions. The trendline 

equation and associated coefficient of determination are reported below the graph. (B) The  
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Supplemental Figure 3.4 (cont’d) 

relationship between total number of interactions (x-axis) in each of the five feature sets (ChIP-

Chip, Deletion, PWM, Expert PWM, and PBM) and the number of TF-TF interactions in that 

data set. Blue data points represent the observed values for each data set, and the black line is the 

best fit linear trendline between percent TFs and percent TF-TF interactions. The trendline 

equation and associated coefficient of determination are reported below the graph 
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Supplemental Figure 3.5 Overlap of FFLs across data sets. Venn-diagram of the number of 

overlapping FFLs from different feature sets used to predict cell-cycle expression: ChIP-Chip 

(blue), Deletion (yellow), PWM (orange), Expert PWM (green), PBM (purple). 
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Supplemental Figure 3.6 Importance of TF features across classification models. Heatmaps 

of the importance, determined by SVM weight, of TF features from ChIP-Chip (top) and 

Deletion (bottom) data sets across each classifier of cell-cycle expression (All cell-cycle genes  
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Supplemental Figure 3.6 (cont’d) 

and genes expressed during the G1, S, S/G2, G2/M and M/G1 phases). TFs in each heatmap are 

ordered by hierarchical clustering, and the resulting dendrogram is depicted on the left side of 

each heatmap. Darker red indicates that a TF has a more positive SVM weight (i.e. more 

enriched in cell-cycle genes) for a given model while darker blue indicates that a TF has a more 

negative SVM weight (i.e. more enriched in non-cell-cycle genes). 
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Supplemental Figure 3.7 The cell-cycle expression GRN defined using the 25
th

 percentile of 

Deletion TF-TF interactions. (A) A network of TF-TF interactions selected from the Deletion  
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Supplemental Figure 3.7 (cont’d) 

GRNs constructed using FFL features from the top 10th percentile (see Methods) of importance 

for predicting all cell-cycle expressed genes. Interactions are annotated with the stage of cell-

cycle expression (1 = G1, 2 = S, 3 = S/G2, 4 = G2/M, 5 = M/G1) they are important for 

predicting (10
th

 percentile of SVM weight in Deletion models). For the purpose of contrast, 

elements four modules identified as being important for predicting >1 phase of cell-cycle 

expression in the ChIP-Chip GRN are highlighted by color: Swi6-Swi4-Mbp1 r (red), Ste12 and 

Tec1 (purple) and Rap1-Msn4-Hap1 (blue). This is done to illustrating the disruption of modules 

found in the network of TF-TF interactions selected from the ChIP-Chip GRN. (B) A network of 

TF-TF interactions from the Deletion GRN constructed using TF-target interactions in the top 

10th percentile of importance for predicting all cell-cycle expressed genes. Genes are colored as 

in (A). 
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Supplemental Table 3.1 Coverage of cell-cycle genes by TF-target interactions in each data 

set 

Expression Cluster ChIP-Chip
1
 Deletion

1
 PWM

1
 Expert PWM

1
 PBM

1
 

G1 238 (79%) 242 (81%) 292 (97%) 192 (64%) 250 (83%) 

S 59 (83%) 62 (87%) 71 (100%) 51 (72%) 61 (86%) 

S/G2 94 (78%) 107 (88%) 117 (97%) 93 (77%) 104 (86%) 

G2/M1 163 (84%) 177 (91%) 190 (97%) 148 (76%) 163 (84%) 

M1/G 98 (87%) 103 (91%) 112 (99%) 74 (65%) 93 (82%) 

Total 652 (82%) 691 (86%) 782 (98%) 558 (70%) 671 (84%) 

1. Parentheses indicate the percentage of total genes in the expression cluster covered  
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Supplemental Table 3.2 Coverage of cell-cycle genes by FFL interactions in each data set  

Expression 

Cluster 

ChIP-Chip
1
 Deletion

1
 PWM

1
 Expert 

PWM
1
 

PBM
1
 

G1 98 (33%) 125 (42%) 266 (89%) 40 (13%) 185 (62%) 

S 20 (28%) 36 (51%) 64 (90%) 15 (21%) 51 (72%) 

S/G2 34 (37%) 54 (45%) 112 (93%) 30 (25%) 83 (69%) 

G2/M1 72 (39%) 104 (53%) 178 (91%) 41 (21%) 128 (66%) 

M1/G 44 (39%) 66 (58%) 99 (88%) 23 (20%) 69 (61%) 

Total 268 (34%) 385 (48%) 719 (90%) 149 (19%) 516 (65%) 

1. Parentheses indicate the percentage of total genes in the expression cluster covered  
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Supplemental Table 3.3 Performance of classifiers built using TF-target interactions on 

only cell-cycle genes covered by ChIP-Chip FFLs 

 All G1 S S/G2 G2/M M/G1 

AUC-ROC 0.74 0.8 0.77 0.76 0.78 0.79 
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Supplemental Table 3.4 Total number of feature present in each model built from 

combined features sets  

Feature Set Cyclic G1 S S/G2 G2/M M/G1 

Direct, Two-way 20% 54 84 51 52 45 41 

Direct, Two-way 50% 114 113 111 114 104 93 

FFLs, Two-way 20% 113 74 97 68 46 57 

FFLs, Two-way 50% 263 217 221 199 126 136 

Direct and FFLs, Two-way 20% 166 125 147 119 90 97 

Direct and FFLs, Two-way 50% 376 329 331 312 229 228 
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Supplemental Table 3.5 Enrichment of TFs with cell-cycle regulation GO annotation in 

features of the ChIP-Chip and Deletion data sets 

Feature Set Cyclic G1 S S-G2 G2-M M-G1 

ChIP-Chip, 10th 

Percentile 

7.31E-06 0.035 0.0004 0.004 0.0007 0.085 

ChIP-Chip, 25th 

Percentile 

0.0003 0.099 0.099 0.26 0.27 0.1 

Deletion, 10th 

Percentile 

0.42 0.123 0.41 0.41 1 0.11 

Deletion, 25th 

Percentile 

1 0.2755 1 0.78 0.27 0.58 
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Supplemental Table 3.6 Over and under enrichment of GO Terms in ChIP-Chip and 

Deletion feature sets  

GO Term Ench.
1
 CC

2
,  

10th 

CC
2
,  

25th 

D
3
,  

10th 

D
3
,  

25th 

Description 

GO:0009074 Over No No No Yes aromatic amino acid family catabolic process 

GO:0036003 Over No No No Yes positive regulation of transcription from RNA 

polymerase II promoter in response to stress 

GO:0016458 Over No No No Yes gene silencing 

GO:1901717 Over No No No Yes positive regulation of gamma-aminobutyric acid 

catabolic process 

GO:0001133 Over No No No Yes RNA polymerase II transcription factor activity, 

sequence-specific transcription regulatory region 

DNA binding 

GO:0045848 Over No No No Yes positive regulation of nitrogen utilization 

GO:0061414 Over No No No Yes positive regulation of transcription from RNA 

polymerase II promoter by a nonfermentable 

carbon source 

GO:0061400 Over No No No Yes positive regulation of transcription from RNA 

polymerase II promoter in response to calcium ion 

GO:1901714 Over No No No Yes positive regulation of urea catabolic process 

GO:0008301 Over No No No Yes DNA binding, bending 

GO:0050801 Over No No No Yes ion homeostasis 

GO:0001185 Over No No No Yes termination of RNA polymerase I transcription 

from promoter for nuclear large rRNA transcript 

GO:0000183 Over No No No Yes chromatin silencing at rDNA 

GO:1900008 Over No No No Yes negative regulation of extrachromosomal rDNA 

circle accumulation involved in cell aging 

 



 

155 

 

Supplemental Table 3.6 (cont’d) 

GO:0061423 Over No No No Yes positive regulation of sodium ion transport by 

positive regulation of transcription from RNA 

polymerase II promoter 

GO:0042991 Over No No Yes No transcription factor import into nucleus 

GO:0031930 Over No No Yes No mitochondria-nucleus signaling pathway 

GO:0009410 Over No No Yes No response to xenobiotic stimulus 

GO:0001228 Over No No Yes No transcriptional activator activity, RNA polymerase 

II transcription regulatory region sequence-

specific binding 

GO:0071400 Over No No Yes No cellular response to oleic acid 

GO:0035957 Over No No Yes No positive regulation of starch catabolic process by 

positive regulation of transcription from RNA 

polymerase II promoter 

GO:1900461 Over No No Yes No positive regulation of pseudohyphal growth by 

positive regulation of transcription from RNA 

polymerase II promoter 

GO:0000165 Over No No Yes Yes MAPK cascade 

GO:0031940 Over No No Yes Yes positive regulation of chromatin silencing at 

telomere 

GO:0001085 Over No No Yes Yes RNA polymerase II transcription factor binding 

GO:0006357 Over No No Yes Yes regulation of transcription from RNA polymerase 

II promoter 

GO:0071468 Over No No Yes Yes cellular response to acidic pH 

GO:1900399 Over No No Yes Yes positive regulation of pyrimidine nucleotide 

biosynthetic process 

GO:0031335 Over No No Yes Yes regulation of sulfur amino acid metabolic process 
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Supplemental Table 3.6 (cont’d) 

GO:0006986 Over No Yes No No response to unfolded protein 

GO:0030968 Over No Yes No No endoplasmic reticulum unfolded protein response 

GO:1900079 Over No Yes No No regulation of arginine biosynthetic process 

GO:0033673 Over No Yes No No negative regulation of kinase activity 

GO:0045821 Over No Yes No No positive regulation of glycolytic process 

GO:1902352 Over No Yes No No negative regulation of filamentous growth of a 

population of unicellular organisms in response to 

starvation by negative regulation of transcription 

from RNA polymerase II promoter 

GO:0007124 Over No Yes No No pseudohyphal growth 

GO:0071470 Over No Yes No No cellular response to osmotic stress 

GO:0090606 Over No Yes No No single-species surface biofilm formation 

GO:0010895 Over No Yes No No negative regulation of ergosterol biosynthetic 

process 

GO:0001103 Over No Yes No No RNA polymerase II repressing transcription factor 

binding 

GO:2001278 Over No Yes No No positive regulation of leucine biosynthetic process 

GO:0071940 Over No Yes No No fungal-type cell wall assembly 

GO:0000433 Over No Yes No No negative regulation of transcription from RNA 

polymerase II promoter by glucose 

GO:0000430 Over No Yes No No regulation of transcription from RNA polymerase 

II promoter by glucose 

GO:0006525 Over No Yes No No arginine metabolic process 

GO:1900081 Over No Yes No No regulation of arginine catabolic process 

GO:0019210 Over No Yes No No kinase inhibitor activity 
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Supplemental Table 3.6 (cont’d) 

GO:1900464 Over No Yes No No negative regulation of cellular hyperosmotic 

salinity response by negative regulation of 

transcription from RNA polymerase II promoter 

GO:0036083 Over No Yes No Yes positive regulation of unsaturated fatty acid 

biosynthetic process by positive regulation of 

transcription from RNA polymerase II promoter 

GO:0006990 Over No Yes No Yes positive regulation of transcription from RNA 

polymerase II promoter involved in unfolded 

protein response 

GO:0003700 Over No Yes No Yes transcription factor activity, sequence-specific 

DNA binding 

GO:0016602 Over No Yes Yes No CCAAT-binding factor complex 

GO:0043457 Over No Yes Yes No regulation of cellular respiration 

GO:0000436 Over No Yes Yes No carbon catabolite activation of transcription from 

RNA polymerase II promoter 

GO:0000982 Over No Yes Yes Yes transcription factor activity, RNA polymerase II 

core promoter proximal region sequence-specific 

binding 

GO:0061408 Over No Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to heat stress 

GO:0000977 Over No Yes Yes Yes RNA polymerase II regulatory region sequence-

specific DNA binding 

GO:0046983 Over No Yes Yes Yes protein dimerization activity 

GO:0097239 Over No Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to 

methylglyoxal 
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Supplemental Table 3.6 (cont’d) 

GO:0010688 Over Yes No No No negative regulation of ribosomal protein gene 

transcription from RNA polymerase II promoter 

GO:0045835 Over Yes No No No negative regulation of meiotic nuclear division 

GO:0032545 Over Yes No No No CURI complex 

GO:0051038 Over Yes No No No negative regulation of transcription involved in 

meiotic cell cycle 

GO:0090294 Over Yes No No No nitrogen catabolite activation of transcription 

GO:0000217 Over Yes No No No DNA secondary structure binding 

GO:0071406 Over Yes No No No cellular response to methylmercury 

GO:0043631 Over Yes No No No RNA polyadenylation 

GO:0046685 Over Yes No No No response to arsenic-containing substance 

GO:1990526 Over Yes No No No Ste12p-Dig1p-Dig2p complex 

GO:1990527 Over Yes No No No Tec1p-Ste12p-Dig1p complex 

GO:0001046 Over Yes No No No core promoter sequence-specific DNA binding 

GO:2000221 Over Yes No No No negative regulation of pseudohyphal growth 

GO:0061402 Over Yes No No Yes positive regulation of transcription from RNA 

polymerase II promoter in response to acidic pH 

GO:0001080 Over Yes No No Yes nitrogen catabolite activation of transcription from 

RNA polymerase II promoter 

GO:0090180 Over Yes No Yes No positive regulation of thiamine biosynthetic 

process 

GO:0061410 Over Yes No Yes No positive regulation of transcription from RNA 

polymerase II promoter in response to ethanol 

GO:0061411 Over Yes No Yes No positive regulation of transcription from RNA 

polymerase II promoter in response to cold 
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Supplemental Table 3.6 (cont’d) 

GO:0061401 Over Yes No Yes No positive regulation of transcription from RNA 

polymerase II promoter in response to a hypotonic 

environment 

GO:0061407 Over Yes No Yes No positive regulation of transcription from RNA 

polymerase II promoter in response to hydrogen 

peroxide 

GO:0001324 Over Yes No Yes No age-dependent response to oxidative stress 

involved in chronological cell aging 

GO:0097236 Over Yes No Yes No positive regulation of transcription from RNA 

polymerase II promoter in response to zinc ion 

starvation 

GO:0061412 Over Yes No Yes No positive regulation of transcription from RNA 

polymerase II promoter in response to amino acid 

starvation 

GO:0061422 Over Yes No Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to alkaline pH 

GO:0061429 Over Yes No Yes Yes positive regulation of transcription from RNA 

polymerase II promoter by oleic acid 

GO:0005667 Over Yes No Yes Yes transcription factor complex 

GO:0032000 Over Yes No Yes Yes positive regulation of fatty acid beta-oxidation 

GO:0030154 Over Yes No Yes Yes cell differentiation 

GO:0089716 Over Yes No Yes Yes Pip2-Oaf1 complex 

GO:0001078 Over Yes Yes No No transcriptional repressor activity, RNA 

polymerase II core promoter proximal region 

sequence-specific binding 
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Supplemental Table 3.6 (cont’d) 

GO:0061395 Over Yes Yes No No positive regulation of transcription from RNA 

polymerase II promoter in response to arsenic-

containing substance 

GO:0061426 Over Yes Yes No No positive regulation of sulfite transport by positive 

regulation of transcription from RNA polymerase 

II promoter 

GO:0005641 Over Yes Yes No No nuclear envelope lumen 

GO:1900436 Over Yes Yes No No positive regulation of filamentous growth of a 

population of unicellular organisms in response to 

starvation 

GO:2000218 Over Yes Yes No No negative regulation of invasive growth in response 

to glucose limitation 

GO:0001225 Over Yes Yes No No RNA polymerase II transcription coactivator 

binding 

GO:0001226 Over Yes Yes No No RNA polymerase II transcription corepressor 

binding 

GO:0097201 Over Yes Yes No No negative regulation of transcription from RNA 

polymerase II promoter in response to stress 

GO:1900240 Over Yes Yes No No negative regulation of phenotypic switching 

GO:0060963 Over Yes Yes No No positive regulation of ribosomal protein gene 

transcription from RNA polymerase II promoter 

GO:0071931 Over Yes Yes No No positive regulation of transcription involved in 

G1/S transition of mitotic cell cycle 

GO:0001076 Over Yes Yes No Yes transcription factor activity, RNA polymerase II 

transcription factor binding 

GO:0000790 Over Yes Yes No Yes nuclear chromatin 
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Supplemental Table 3.6 (cont’d) 

GO:0003676 Over Yes Yes No Yes nucleic acid binding 

GO:0071483 Over Yes Yes No Yes cellular response to blue light 

GO:0000122 Over Yes Yes No Yes negative regulation of transcription from RNA 

polymerase II promoter 

GO:0036095 Over Yes Yes Yes No positive regulation of invasive growth in response 

to glucose limitation by positive regulation of 

transcription from RNA polymerase II promoter 

GO:0001077 Over Yes Yes Yes Yes transcriptional activator activity, RNA polymerase 

II core promoter proximal region sequence-

specific binding 

GO:0008270 Over Yes Yes Yes Yes zinc ion binding 

GO:0061434 Over Yes Yes Yes Yes regulation of replicative cell aging by regulation 

of transcription from RNA polymerase II 

promoter in response to caloric restriction 

GO:0046872 Over Yes Yes Yes Yes metal ion binding 

GO:0000981 Over Yes Yes Yes Yes RNA polymerase II transcription factor activity, 

sequence-specific DNA binding 

GO:0003677 Over Yes Yes Yes Yes DNA binding 

GO:0006366 Over Yes Yes Yes Yes transcription from RNA polymerase II promoter 

GO:0000987 Over Yes Yes Yes Yes core promoter proximal region sequence-specific 

DNA binding 

GO:0061409 Over Yes Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to freezing 

GO:0061403 Over Yes Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to nitrosative 

stress 
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Supplemental Table 3.6 (cont’d) 

GO:0061406 Over Yes Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to glucose 

starvation 

GO:0061405 Over Yes Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to hydrostatic 

pressure 

GO:0061404 Over Yes Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter in response to increased 

salt 

GO:0006355 Over Yes Yes Yes Yes regulation of transcription, DNA-templated 

GO:0043565 Over Yes Yes Yes Yes sequence-specific DNA binding 

GO:0045944 Over Yes Yes Yes Yes positive regulation of transcription from RNA 

polymerase II promoter 

GO:0006351 Over Yes Yes Yes Yes transcription, DNA-templated 

GO:0000978 Over Yes Yes Yes Yes RNA polymerase II core promoter proximal 

region sequence-specific DNA binding 

GO:0005524 Under No Yes No No ATP binding 

GO:0016021 Under No Yes No Yes integral component of membrane 

GO:0016020 Under No Yes No Yes membrane 

GO:0005737 Under No Yes No Yes cytoplasm 

GO:0005739 Under Yes Yes Yes Yes mitochondrion 

1. Direction of enrichment 

2. CC = ChIP-Chip 

3. D = Deletion 



 

163 

 

Supplemental Table 3.7 Over enrichment of GO Terms in ChIP-Chip and Deletion feature 

sets for specific phases of cell cycle expression  

Term ChIP-Chip, 

10th Percentile 

ChIP-Chip, 

25th Percentile 

Deletion, 10th 

Percentile 

Deletion, 25th 

Percentile 

Unique
1 

GO:0071475 G1 NA G1 NA G1 

GO:0006363 NA NA G1 NA G1 

GO:0061426 G1 G1 NA NA G1 

GO:0031065 G1 NA NA NA G1 

GO:0071280 G1 NA NA NA G1 

GO:0045732 G1 NA NA NA G1 

GO:0001202 G1 NA NA NA G1 

GO:0005635 NA G1 NA NA G1 

GO:0003682 NA G1 NA NA G1 

GO:0072715 G2M G2M G2M G2M G2M 

GO:0036086 G2M NA G2M G2M G2M 

GO:0043388 NA NA G2M G2M G2M 

GO:2000185 G2M NA G2M NA G2M 

GO:0032048 G2M NA G2M NA G2M 

GO:0000435 NA NA G2M NA G2M 

GO:0033309 NA G2M NA G2M G2M 

GO:0042538 NA NA NA G2M G2M 

GO:0001185 NA NA NA G2M G2M 

GO:0071483 NA NA NA G2M G2M 

GO:0010845 NA NA NA G2M G2M 

GO:1900008 NA NA NA G2M G2M 

GO:0051300 NA NA NA G2M G2M 

GO:0005641 G2M NA NA NA G2M 
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Supplemental Table 3.7 (cont’d) 

GO:0000217 G2M NA NA NA G2M 

GO:0043631 G2M NA NA NA G2M 

GO:0061393 NA G2M NA NA G2M 

GO:0046686 MG1 NA MG1 NA MG1 

GO:0043433 NA NA MG1 NA MG1 

GO:0071276 NA NA MG1 NA MG1 

GO:0051457 NA NA MG1 NA MG1 

GO:1901717 MG1 MG1 NA MG1 MG1 

GO:1901714 MG1 MG1 NA MG1 MG1 

GO:0045848 MG1 MG1 NA MG1 MG1 

GO:0061415 NA NA NA MG1 MG1 

GO:0036003 NA NA NA MG1 MG1 

GO:0071466 NA NA NA MG1 MG1 

GO:0035948 NA NA NA MG1 MG1 

GO:1900079 MG1 MG1 NA NA MG1 

GO:0034644 MG1 MG1 NA NA MG1 

GO:0045471 MG1 MG1 NA NA MG1 

GO:0010768 MG1 MG1 NA NA MG1 

GO:0006525 MG1 MG1 NA NA MG1 

GO:0000430 MG1 MG1 NA NA MG1 

GO:1900081 MG1 MG1 NA NA MG1 

GO:0031335 MG1 MG1 NA NA MG1 

GO:0010038 MG1 NA NA NA MG1 

GO:0001128 MG1 NA NA NA MG1 

GO:0019413 MG1 NA NA NA MG1 

GO:0070211 NA MG1 NA NA MG1 

 



 

165 

 

Supplemental Table 3.7 (cont’d) 

GO:0090282 NA MG1 NA NA MG1 

GO:0008652 NA MG1 NA NA MG1 

GO:0007624 NA NA S S S 

GO:0010512 NA NA S S S 

 NA S NA NA S 

GO:0003713 NA S NA NA S 

GO:0071072 NA S NA NA S 

GO:0009062 NA S NA NA S 

GO:0070544 NA S NA NA S 

GO:0035952 NA S NA NA S 

GO:0046020 S NA NA NA S 

GO:0030447 S NA NA NA S 

GO:1900375 NA NA NA S S 

GO:0000156 NA NA NA S S 

GO:0071454 NA NA NA S S 

GO:0071469 NA NA NA S S 

GO:0007126 NA NA NA S S 

GO:0001198 NA NA NA S S 

GO:1900466 NA NA NA S S 

GO:0046685 NA NA S NA S 

GO:0031936 SG2 SG2 NA NA SG2 

GO:0061425 SG2 SG2 NA NA SG2 

GO:0000228 SG2 SG2 NA NA SG2 

GO:0001094 SG2 SG2 NA NA SG2 

GO:0001093 SG2 SG2 NA NA SG2 

GO:0030466 SG2 SG2 NA NA SG2 
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Supplemental Table 3.7 (cont’d) 

GO:0097235 SG2 SG2 NA NA SG2 

GO:0061424 SG2 SG2 NA NA SG2 

GO:0010944 NA SG2 NA NA SG2 

GO:0032436 SG2 NA NA NA SG2 

GO:0006282 SG2 NA NA NA SG2 

GO:0001132 SG2 NA NA NA SG2 

GO:0010833 SG2 NA NA NA SG2 

GO:0071169 SG2 NA NA NA SG2 

GO:0031492 SG2 NA NA NA SG2 

GO:0051880 SG2 NA NA NA SG2 

GO:0071930 NA NA NA SG2 SG2 

GO:0061407 NA NA SG2 NA SG2 

GO:0009083 NA NA SG2 NA SG2 

GO:0061412 NA NA SG2 NA SG2 

GO:0001324 NA NA SG2 NA SG2 

GO:0043618 NA NA SG2 NA SG2 

GO:0071244 NA NA SG2 NA SG2 

GO:0006560 NA NA SG2 NA SG2 

GO:0061410 SG2 NA SG2 NA SG2 

GO:1900464 G1 G1,S G1 G1,S NA 

GO:0061435 G1,G2M,MG1,S G1,G2M,MG1,S G2M G2M NA 

GO:0036083 G2M,MG1,SG2 G2M,MG1,SG2 G2M,SG2 G2M NA 

GO:0001077 G1,G2M,S,SG2 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0006366 G1,G2M,S,SG2 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 
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Supplemental Table 3.7 (cont’d) 

GO:0001080 G1,MG1 G1,MG1,SG2 MG1,SG2 G1,G2M,MG1,S

G2 

NA 

GO:0046872 G1,MG1 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

G2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0003700 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G2M,MG1,S,SG

2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0003677 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0000978 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0000981 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0006355 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0043565 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0045944 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0006351 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA 

GO:0060196 S,SG2 NA G1 G1 NA 

GO:0000977 NA G1,G2M,SG2 G1 G1,G2M,MG1,S

G2 

NA 

GO:0001078 G2M,MG1 G2M,MG1,S G1 G1,S NA 

GO:0003676 G2M,MG1 G1,G2M,S G1 G1,S,SG2 NA 

GO:0089716 SG2 NA G1,G2M G1 NA 
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Supplemental Table 3.7 (cont’d) 

GO:0031930 NA NA G1,MG1 G1 NA 

GO:0010674 NA NA G1,MG1 G1,G2M NA 

GO:0061402 NA NA G1,SG2 G1,G2M NA 

GO:0009074 NA G1,MG1 G1,SG2 G1,G2M,S NA 

GO:0031940 NA NA G1,G2M G1,G2M NA 

GO:0032000 SG2 NA G1,G2M G1,G2M NA 

GO:0035969 S S G1,G2M,MG1 G1,G2M,MG1 NA 

GO:1902352 S S,SG2 G1,G2M,MG1 G1,G2M,MG1 NA 

GO:0008270 NA G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

G2 

G1,G2M,MG1,S

,SG2 

NA 

GO:1900475 NA G2M G1,MG1 G1,G2M,MG1 NA 

GO:1900476 NA G2M G1,MG1 G1,G2M,MG1 NA 

GO:1900472 NA G2M G1,MG1 G1,G2M,MG1 NA 

GO:0009847 NA G2M G1,MG1 G1,G2M,MG1 NA 

GO:1900471 NA G2M G1,MG1 G1,G2M,MG1 NA 

GO:0001081 NA G2M G1,MG1 G1,G2M,MG1 NA 

GO:1900525 NA G2M G1,MG1 G1,G2M,MG1 NA 

GO:0001103 S G1,G2M,S G1,MG1 G1,G2M,MG1,S

,SG2 

NA 

GO:0046983 G2M G1,G2M,MG1,S

,SG2 

G1,S,SG2 G1,G2M,MG1,S

,SG2 

NA 

GO:0097236 NA NA G1,SG2 G1,G2M,S,SG2 NA 

GO:0097239 NA G1,G2M G1,SG2 G1,SG2 NA 

GO:0061404 NA NA G1,SG2 G1,SG2 NA 

GO:1902353 S S G1,G2M,MG1 G2M NA 
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Supplemental Table 3.7 (cont’d) 

GO:0005739 MG1 G1,G2M,MG1,S

,SG2 

G2M G1,G2M,S,SG2 NA 

GO:0034728 G1,G2M,MG1,S MG1,S G2M G2M NA 

GO:2000679 NA MG1 G2M G2M NA 

GO:0010723 NA MG1,S G2M G2M NA 

GO:0046324 NA SG2 G2M G2M NA 

GO:0001085 NA G1,SG2 G2M,MG1 G1,G2M,MG1,S

G2 

NA 

GO:0010527 NA NA G2M,S G2M,S NA 

GO:0045937 NA S G2M,S,SG2 G1,G2M,MG1,S NA 

GO:0070210 NA NA MG1 G1,MG1 NA 

GO:0033673 NA G1,SG2 MG1 MG1 NA 

GO:0019210 NA G1,SG2 MG1 MG1 NA 

GO:0000989 G2M G2M G1,MG1,S G2M,MG1,S NA 

GO:0016458 NA NA MG1,SG2 MG1,SG2 NA 

GO:0009410 NA NA G2M,MG1,S S NA 

GO:1900399 NA MG1 S G2M,MG1,S NA 

GO:0043619 MG1 MG1 S S NA 

GO:0090575 SG2 S S,SG2 S NA 

GO:0036095 G2M,MG1 G2M G1,SG2 SG2 NA 

GO:0001010 S,SG2 S G2M,SG2 SG2 NA 

GO:0005737 G1 G1,G2M,MG1,S

,SG2 

SG2 G1,G2M,S,SG2 NA 

GO:0061408 NA NA SG2 G1,G2M,SG2 NA 

GO:1900240 G2M,S G2M,S SG2 SG2 NA 

GO:2000221 MG1,S NA SG2 SG2 NA 
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Supplemental Table 3.7 (cont’d) 

GO:2001158 NA G1,G2M SG2 SG2 NA 

GO:0007124 NA NA G1 G2M,S NA 

GO:0000165 G2M NA G1 NA NA 

GO:1900463 G1 S G1 S NA 

GO:0090606 G1 S G1 S NA 

GO:0072363 G1,G2M,MG1,S

,SG2 

G1,S G1,G2M NA NA 

GO:0010673 NA NA G1,MG1 G2M NA 

GO:0007070 NA NA G1,MG1 NA NA 

GO:0042991 NA NA G1,MG1 NA NA 

GO:0070491 NA NA G1,MG1,S G2M NA 

GO:1900460 G1 NA G1,MG1,SG2 NA NA 

GO:2000218 G1,G2M,S S G1,SG2 NA NA 

GO:0034225 NA NA G1,SG2 NA NA 

GO:0035957 NA NA G1,SG2 NA NA 

GO:1900461 NA NA G1,SG2 NA NA 

GO:0090180 NA NA G2M,MG1,SG2 NA NA 

GO:2000222 S,SG2 NA G2M,S S NA 

GO:0016036 NA NA G2M,S,SG2 NA NA 

GO:0070417 G2M,MG1,SG2 NA G2M,SG2 NA NA 

GO:0009450 NA NA G2M,SG2 NA NA 

GO:0019740 NA NA G2M,SG2 NA NA 

GO:0030154 G1 G1 MG1 NA NA 

GO:0001228 G1 G1 MG1 NA NA 

GO:0090295 NA G1 MG1 NA NA 
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Supplemental Table 3.7 (cont’d) 

GO:0001046 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S MG1 S NA 

GO:0005667 G1 G1 MG1,S G2M NA 

GO:1900462 NA NA MG1,SG2 NA NA 

GO:0097201 MG1,SG2 MG1,S,SG2 NA G1 NA 

GO:2001043 S,SG2 S,SG2 NA G1 NA 

GO:0008301 NA G2M,S NA G1 NA 

GO:0000790 G1,G2M,MG1,S

G2 

G1,G2M,MG1,S NA G1,G2M NA 

GO:0045821 NA G1,G2M,MG1 NA G1,G2M,MG1 NA 

GO:0001135 MG1 MG1 NA G1,G2M,MG1,S NA 

GO:0006357 NA G1,MG1 NA G1,G2M,MG1,S NA 

GO:0000982 MG1,S,SG2 MG1,S,SG2 NA G1,G2M,MG1,S

,SG2 

NA 

GO:0001076 NA G1,G2M,MG1,S

G2 

NA G1,G2M,S,SG2 NA 

GO:0006990 NA G1 NA G1,G2M,SG2 NA 

GO:0016020 NA G1,MG1 NA G1,MG1,S NA 

GO:0061432 NA G2M NA G1,S NA 

GO:0061427 NA G2M NA G1,S NA 

GO:1900478 NA G2M NA G1,S NA 

GO:0000122 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA G1,S,SG2 NA 

GO:0000987 MG1,S,SG2 G1,MG1,S,SG2 NA G1,S,SG2 NA 

GO:0016021 NA G1,MG1,SG2 NA G1,S,SG2 NA 

GO:0001191 G1,S G1,MG1,S,SG2 NA G1,SG2 NA 
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Supplemental Table 3.7 (cont’d) 

GO:0033169 NA S NA G1,SG2 NA 

GO:0032454 NA S NA G1,SG2 NA 

GO:0030907 G1,G2M G2M NA G2M NA 

GO:0071931 G1,G2M,MG1 G2M NA G2M NA 

GO:0007074 G2M,S G2M,S NA G2M NA 

GO:0000083 G2M,S G2M,S,SG2 NA G2M NA 

GO:0006530 S G2M,SG2 NA G2M NA 

GO:0004067 NA G2M,SG2 NA G2M NA 

GO:0001133 S G1,G2M,MG1,S NA G2M,MG1 NA 

GO:0061414 NA MG1,SG2 NA G2M,MG1 NA 

GO:0070822 G1,G2M G2M NA MG1 NA 

GO:0003674 NA G1,G2M NA MG1 NA 

GO:1900423 G2M G2M,SG2 NA MG1,S NA 

GO:0009063 G1 G1,MG1 NA NA NA 

GO:0042128 G1 G1,S NA NA NA 

GO:0001159 G1 G1,SG2 NA NA NA 

GO:0060963 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S NA NA NA 

GO:0001225 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA NA NA 

GO:0001226 G1,G2M,MG1,S

,SG2 

G1,G2M,MG1,S

,SG2 

NA NA NA 

GO:2001278 G2M G2M,MG1 NA NA NA 

GO:0051038 G2M,MG1 MG1 NA NA NA 

GO:0001190 MG1,SG2 MG1 NA NA NA 
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Supplemental Table 3.7 (cont’d) 

GO:0010688 G1,G2M,MG1,S

,SG2 

S NA NA NA 

GO:0031496 G2M,S S NA NA NA 

GO:0001012 G2M,S S NA NA NA 

GO:0036033 G2M,S S NA NA NA 

GO:0051019 S MG1,S NA NA NA 

GO:0031848 SG2 S,SG2 NA NA NA 

GO:0032545 G1,G2M,MG1,S

,SG2 

NA NA NA NA 

GO:0045835 G2M,MG1 NA NA NA NA 

GO:0000821 MG1 S NA NA NA 

GO:0010895 NA G1,G2M NA NA NA 

GO:0044374 NA G1,G2M,MG1 NA NA NA 

GO:0001084 NA G1,MG1 NA NA NA 

GO:0010691 NA G1,MG1 NA NA NA 

GO:0071322 NA G2M,S,SG2 NA NA NA 

GO:0061416 NA MG1,S NA NA NA 

GO:0070187 SG2 S NA NA NA 

GO:0000433 G1,G2M,S G1,G2M,S NA S NA 

GO:0000304 MG1 MG1 NA S NA 

GO:1900436 G2M NA NA S NA 

GO:0031494 NA G1 NA S NA 

GO:0001102 NA G1 NA S NA 

GO:0001197 NA G1 NA S NA 

GO:1900465 NA G1 NA S NA 

GO:0061395 NA MG1 NA S NA 
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Supplemental Table 3.7 (cont’d) 

GO:0008134 G2M,S G2M NA SG2 NA 

GO:0035390 SG2 S,SG2 NA SG2 NA 

GO:0070200 SG2 S,SG2 NA SG2 NA 

GO:0030968 NA G1 NA SG2 NA 

GO:0016602 G1 G1 S NA NA 

GO:0043457 G1 G1 S NA NA 

GO:0000436 G1 G1,MG1 S NA NA 

GO:0061434 NA NA SG2 G1,G2M,S NA 

GO:0061409 NA NA SG2 G1,G2M,S NA 

GO:0061403 NA NA SG2 G1,G2M,S NA 

GO:0061406 NA NA SG2 G1,G2M,S NA 

GO:0061405 NA NA SG2 G1,G2M,S NA 

GO:0006338 NA NA SG2 G1,G2M,S NA 

GO:0090419 MG1 MG1 SG2 NA NA 

GO:1903468 MG1 MG1 SG2 NA NA 

GO:1990526 G2M,S S SG2 NA NA 

GO:0032298 MG1 NA SG2 NA NA 

GO:0071468 G1 NA SG2 S NA 

GO:0006572 NA MG1 SG2 S NA 

GO:0061422 NA NA SG2 S NA 

GO:0061401 NA NA SG2 S NA 

GO:0061411 NA NA SG2 S NA 

GO:1990527 G2M,S S G2M,S,SG2 G2M,S NA 

GO:0071400 SG2 SG2 G1,MG1,SG2 G1,SG2 NA 

GO:0061429 SG2 SG2 G1,SG2 G1,SG2 NA 

1. Unique indicates that a GO term is only enriched in a single phase across data sets 
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CHAPTER 4: EXPRESSION AND REGULATORY ASYMMETRY IS A FEATURE OF 

RETAINED TRANSCRIPTION FACTOR DUPLICATES
1 

 

1
 The work described in this chapter has been submitted for publication: 

Nicholas L. Panchy, Christina B. Azodi, Eamon F. Winship, Ronan C. O’Malley, Shin-Han 

Shiu (2017) Expression and regulatory asymmetry is a feature of retained transcription factor 

duplicates. Submitted 
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ABSTRACT 

Transcription factors (TFs) play a key role in regulating plant development and response 

to environmental stimuli. While most genes revert to single copy after whole genome duplication 

(WGD) event, transcription factors are retained at a significantly higher rate. To assess why TF 

duplicates have higher rates of retention relative to other genes, we used Arabidopsis thaliana as 

a model and established linear models with expression, sequence, and conservation features to 

predict the extent of duplicate retention following WGD events among TFs and 19 groups of 

genes with other functions. We found that TFs in particular are retained more often than would 

be expected based on the models. Furthermore, the evolution of TF expression patterns and cis-

regulatory sites favors the partitioning of ancestral states among the resulting duplicates. 

However, this is not because TF duplicates tend to subfunctionalize. Instead, one "ancestral" TF 

duplicate retains the majority of ancestral expression and cis-regulatory sites, while the “non-

ancestral” duplicate is enriched for novel regulatory sites. To investigate how this pattern of 

biased partitioning has evolved, we modeled the retention of ancestral expression and regulatory 

states in duplicate pairs using a system of differential equations. In our best models, TF duplicate 

pairs are preferentially maintained in a partitioned state. Our findings suggest that the TF 

duplicates with asymmetrically partitioned ancestral states are maintained because one copy 

retains ancestral functions while the other, at least in some cases, acquire novel expression 

pattern and/or cis-regulatory sites. 
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INTRODUCTION 

Plant genomes are replete with paralogous genes derived from a variety of duplication 

events and mechanisms (Panchy et al., 2016). Among them, whole genome duplication (WGD) 

events are responsible for most extant duplicate genes (Panchy et al. 2016). Two ancient WGD 

events took place prior to the divergence of angiosperms (Jiao et al. 2011). Subsequently, more 

than a dozen WGD events have occurred across a variety of angiosperm lineages (Lyons et al. 

2008; Lee et al. 2013; Myburg et al. 2014; Renny-Byfield et al. 2014; Soltis et al. 2014; Wang et 

al. 2014), including three in the lineage leading to Arabidopsis thaliana (Bowers et al. 2003). As 

the last known WGD event in the Saccharomyces cerevisiae (Wolfe and Shields 1997; Kellis et 

al. 2004) and human (Panopoulou et al. 2003; Dehal and Boore 2005) lineages occurred prior to 

the radiation of angiosperms, WGD occurs more frequently in plants relative to other eukaryotic 

lineages.  

WGD accounts for ~90% of the expansion of TF families across plants lineages (Maere 

et al. 2005) and TFs are consistently enriched among WGD duplicates across divergent plant 

species ( Lespinet et al. 2002; Shiu et al. 2005; Carretero-Paulet and Fares 2012). In addition, 

plant TF duplicates derived from WGD are retained at higher rates than most plant genes with 

other functions (Seoighe and Gehring 2004; Shiu et al. 2005). These duplicate TFs contribute 

significantly to plant adaption (Lehti-Shiu et al. 2016), agricultural traits (Zhang et al. 2011), and 

domestication (Liu et al. 2015). The expansion of several TF families coincides with major 

events in the evolution of plants, such as the migration to land and expansion of flowering plants 

(De Bodt et al. 2005, Soltis et al. 2008, Weirauch and Hughes 2011). TF duplication is also 

central to the evolution of flowering time (Schranz et al. 2002), floral structures (Theissen and 

Melzer 2007) and fruit development (Litt and Irish 2003, McCarthy et al. 2015). 

https://paperpile.com/c/WskiiM/2dx4
https://paperpile.com/c/WskiiM/Ojqb
https://paperpile.com/c/WskiiM/6brR+dn8D+RECM+Yetp+dJMa+nD0A
https://paperpile.com/c/WskiiM/6brR+dn8D+RECM+Yetp+dJMa+nD0A
https://paperpile.com/c/WskiiM/6brR+dn8D+RECM+Yetp+dJMa+nD0A
https://paperpile.com/c/WskiiM/xSNt
https://paperpile.com/c/WskiiM/l8DL+5tKP
https://paperpile.com/c/WskiiM/l8DL+5tKP
https://paperpile.com/c/WskiiM/Xkev+xqN8
https://paperpile.com/c/WskiiM/mKVJ
https://paperpile.com/c/WskiiM/mKVJ
https://paperpile.com/c/WskiiM/DGuH
https://paperpile.com/c/WskiiM/44xy
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Because WGD results in duplication of all genes in a genome, the differences in the 

degrees of expansion of different gene families (Blanc and Wolfe 2004; Seoighe and Gehring 

2004; Hanada et al. 2008; Li et al. 2016) must result from differential rates of gene retention. 

Previously, a collection of features including sequence properties (e.g. gene length), biochemical 

activities (e.g. expression level), evolutionary characteristics (e.g. substitution rates), and 

annotated functions have been used to assess the properties of retained duplicates in general 

(Jiang et al. 2013; Moghe et al. 2014). It is still unclear what properties are associated with 

retained TFs, how well these properties explain the differences in retention rates between TFs 

and other function groups, and how the retained duplicate pairs differ in their properties that may 

shed light on the mechanisms of their retention.   

In this study, we first assessed how the retention rates of A. thaliana WGD duplicates 

differ among TFs, all other genes, and genes in each of 19 other “function groups” of similar size 

to TFs. Next, to identify the features contributing to the differences in the percent of retained 

duplicates amongst different function groups of genes, we modeled the percent of retained 

duplicates as a function of 34 features of genes in three broad categories (expression, sequence, 

and conservation) in each function group. In addition, we examined whether the correlations 

between a feature and retention status was consistent across function groups or if some groups, 

like TFs, deviated from the norm. Furthermore, to assess how the ancestral and extant functions 

of duplicate pairs have diverged relative to their ancestral function, we determined how gene 

expression and cis-regulatory sites of TF duplicates have likely evolved post WGD by inferring 

the ancestral expression and cis-regulatory states of extant TF duplicates. Finally, we modeled 

the evolution of TF WGD duplicates as a system of differential equations which tracks the 

change in frequency of duplicate pairs retaining the ancestral state in both, one, or neither, to 

https://paperpile.com/c/WskiiM/sMve+dWFI+oFOG+oVXt
https://paperpile.com/c/WskiiM/sMve+dWFI+oFOG+oVXt
https://paperpile.com/c/WskiiM/eEnc+WIpb
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assess whether the partitioning of TF duplicates pairs is maintained by a bias against losing the 

ancestral state in the second duplicate copy. 
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RESULTS AND DICUSSION 

 

Retention of duplicate genes in different function groups following WGD 

To assess the factors contributing to the differential retention of TF duplicates from 

WGD events and duplicates from WGD events involved in other functions, we first quantified 

the degree of duplicate retention of A. thaliana WGD duplicates in 20 different function groups. 

These function groups include TFs (Jin et al. 2014) and 19 other groups defined based on Gene 

Ontology (GO) molecular functions (see Methods). The other functional groups were chosen 

based on their larger sizes for comparisons with TFs and their large differences in duplicate 

retention (see below). Within each function group, genes were classified as “WGD-duplicates” 

(both duplicate copies retained) or “WGD-singletons” (only one copy retained) depending on 

whether there were paralogs in corresponding duplicate blocks (Bowers et al. 2003). Because 

duplicate retention is expected to differ across different WGD events, duplicate pairs derived 

from the , , and  WGD events (Bowers et al. 2003) were analyzed separately. To test the 

association between the duplicate retention and membership in a function group, we calculated 

the log odds ratio of genes having a retained WGD-duplicate derived from a specific WGD event 

for each function group relative to all A. thaliana genes (see Methods). This odds ratio is used to 

indicate the degree of duplicate retention. If duplicate retention of a function group is not 

significantly different from the rest of the genome, we would expect a log odds ratio ~ 0. A 

positive and a negative log odds ratio indicate that a function group contains a proportionally 

higher and lower number of retained WGD-duplicates compared to the genome average, 

respectively. Among the 20 function groups examined, the log odds ratios were highly 

https://paperpile.com/c/WskiiM/2Itm
https://paperpile.com/c/WskiiM/xSNt
https://paperpile.com/c/WskiiM/xSNt
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heterogeneous and only TFs and protein kinases had significantly higher degrees of retention 

than the genome average for all three WGD events (Figure 4.1).  

Although both protein kinases and TFs have odds ratio greater than the genome average 

across all three WGD events, based on the confidence interval of the odds of retention (Figure 

4.1), the log odds ratios of TF retention are even higher for the older (β and γ) duplication events 

than those for protein kinases, indicating that on average, the longevity of TF WGD-duplicates is 

higher than that of protein kinases. This observation could be an artefact of the ages of these 

events, as some duplicates formed due to WGDs would remain in the genome, but are defined as 

such because they are not located in recognizable syntenic blocks. This would be particularly 

problematic for γ duplicates, as there are fewer syntenic regions and they are smaller (Bower et 

al., 2003).  To address this issue, we included A. thaliana paralogs that may be γ WGD 

duplicates based the criteria used in Panchy et al. (2017) and used their synonymous substitution 

rate (Ks, see Methods) to assess if TF retention degree for older duplicates is higher than that of 

protein kinases. If we were to consider putative paralogs with Ks around the  event (2.7 < Ks < 

2.9) as  WGD duplicates, the log odds ratio of retention from the  event would still be 

significant for both kinases (0.52, pv = 0.02) and TFs (1.27, pv < 2.2e-16) compared to the rest 

of genome and TFs are still retained more frequently from this event (0.67, pv = 0.005) 

(Supplemental Figure 4.1). In summary, TFs were retained more frequently post WGD than 

most other function groups irrespective of group size or the timing of the event. Compared to 

protein kinases, one of the largest gene families in plants (Lehti-Shiu and Shiu, 2012), that also 

have significant higher degree of retention in all WGD events, TFs tend to be retained from older 

WGDs, suggesting a higher longevity of duplicates. 
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Figure 4.1 Retention of WGD-duplicate genes in A. thaliana. The duplicate gene retention 

rates (log odds ratios) within 20 function groups relative to whole genome. Groups are ordered  
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Figure 4.1 (cont’d) 

by the odds in the alpha event. Colors represent different WGD duplication events (α = orange, β 

= green, γ = blue). Bars indicate the 95% confidence interval of the odds of retention. If the 

confidence interval does not overlap with zero, this indicates the odd of retaining a duplicate 

gene is significantly different than the genome average from that functional group at the 5% 
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Linear model of WGD-duplicate retention across function groups 

Amongst function groups, TFs stand out as one of only two that are retained more often 

than the genome average consistently across all WGD events. For the rest of the function groups, 

the degrees of retention vary above and below the genome average across WGD events. One 

possibility is that the degree of retention correlates with gene numbers among functional groups. 

However, gene counts and degrees of retention are only very weakly correlated for any WGD 

event (r
2
;  = 0.05,  = 0.16,  = 0.04; Figure 4.2A). Therefore, the reason for the differences in 

degree of retention must involve factors beyond gene function, group size, and timing of 

duplication. To address why the degrees of retention differs, we examined how sequence, 

expression, conservation, and other miscellaneous features (Figure 4.2B, Supplemental Table 

4.1) differ among WGD-duplicate and WGD-singleton genes between function groups. We also 

asked how well the degree of retention differences between function groups can be explained by 

these different features.  

To see how well the features we considered could explain the differences in degree of 

retention among function groups, we constructed a linear model of the degree of retention for 

each WGD event. Here the degree of retention is the odds ratio defined in the previous section. A 

subset of the features examined here has previously been shown to be significantly associated 

with retention of WGD-duplicates as a whole without considering individual events (Jiang et al. 

2013). Here we choose to separate WGD events because there was a large variance in degree of 

retention across events and across function groups (Figure 4.1). Thus the features associated 

with each event and function group may differ. Consistent with this, the correlations between 

degrees of retention and feature values have different signs (black arrows, Figure 4.2B) and 

magnitudes (white arrows, Figure 4.2B) depending on the WGD events. Hence, in the next step 

https://paperpile.com/c/WskiiM/eEnc
https://paperpile.com/c/WskiiM/eEnc
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Figure 4.2 Linear model of the degree of duplicate retention in function groups based on 

genes features. (A) Relationships between gene counts and odds of retention of WGD duplicates  
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Figure 4.2 (cont’d) 

across functional groups (α = orange, β = green, γ = blue). The correspondence between group 

sizes (numbers of genes) and degrees of retention (odds ratios) was determined using the square 

of the Pearson product-moment correlation coefficient (r
2
, α = 0.05, β = 0.16, γ = 0.04). (B) A 

heatmap of the Pearson product-moment correlation coefficient (PCC) between the values of a 

feature across different function groups (rows) and the odds of retention of functions groups 

from a particular WGD event (columns, indicated by the symbols α, β, and γ). Darker red: 

stronger positive correlation. Darker blue: stronger negative correlation. Features with different 

sign of correlation across WGD events are indicated by black arrows. Features with a large 

(≥0.20) difference in PCCs with the same sign are indicated by open arrows. (C) The observed 

odds of duplicate retention (x-axis) for each group plotted against the predicted odds of retention 

(y-axis) from the best model for each event (α = orange, β = green, γ = blue). Dotted line:  

equality between predicted and observed retention odds. Values from TFs are indicated by a 

black arrow while values from protein kinases are indicated by an open arrow. Red dot (TFγ'): 

the predicted odd ratio for TFs from the γ event after adjusting for difference in percent identity 

of TF genes. Performance of the models was assessed by calculating the r
2
 between the observed 

and predicted odds ratio for each event (α = 0.87, β = 0.83, γ = 0.65) 

  



 

187 

 

where we established linear models to predict the degree of retention with the features in Figure 

4.2C, a model was built to describe the relationship between the average features of function 

groups and degree of retention for each WGD event separately. Beginning with the full set of 34 

features, for each WGD event we determined the subset of features (between 5 and 6 in each 

case, see Methods) that maximized the F-statistic of the model (see Supplementary File 4.1). 

Our models explained 87%, 83%, and 65% of the variance in degree of retention for the ,  and 

events respectively (Table 4.1). Applying the F-test to the maximum F-statistic for each model, 

we found that each model performs significantly better at the 5% level in explaining the degrees 

of retention of function groups than the null model (i.e. fitting the degree of retention to their 

mean, Table 4.1). 

Features explaining degrees of retention across function groups and WGD events 

To determine the importance of individual features in explaining the differences in degree 

of retention among function groups, we determined the change in explained variance caused by 

independently removing each feature from the model (Table 4.2). Generally, degree of retention 

among function groups correlate with higher evolutionary rates (Ka/Ks) within species (paralog) 

but lower rate across species (orthologs to one of five species, Figure 4.2B). Degrees of 

retentions also negatively correlated with mean expression level and breadth of expression 

(Figure 4.2B). However, features with high correlation did not necessarily have a significant 

impact on our model performance. In contrast, the features that were retained in multiple linear 

models (due to their ability to maximize the F-statistic) have a greater impact on variance 

explained when removed. For example, maximum expression (RNA-seq) and expression mean 

(AtGenExpress microarray) were, respectively, positively and negatively with duplicate retention 

for all three WGD events. This would suggest that functional groups with genes that have more  
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Table 4.1 Performance of best fitting models of the odds ratio of duplicate retention  

WGD Event # Features
1 

CoD
2
 F-statistic

3 
p-value

4 

α 6 0.87 13.8 5.6E-05 

β 5 0.83 13.2 7.1E-05 

γ 5 0.65 5.1 7.2E-03 

1. The number of explanatory variables (features) used in the best fitting model  

2. Coefficient of Determination (r
2
) 

3. The F-statistic is a measure of the goodness of fit of the model to the observed odds ratio. 

4. The p-value of goodness of fit based on the F-statistic. A significant p-value (< 0.05) 

indicates that the model performs better than fitting the mean value to the data, after 

accounting for the number of features in the model. 
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Table 4.2 Importance of features used in the linear models of duplicate retention  

Feature Sign
1 


2 


2 


2 

Expression Mean (AtGenExpress) - -0.29 -0.09 -0.49 

Expression Maximum (RNASeq) + -0.56 -0.59 -0.14 

Number of Domains - -0.06 -0.36 n/a 

Nucleotide Diversity (Pi) - -0.06 n/a -0.32 

Expression Correlation (AtGenExpress) - n/a -0.24 -0.21 

Expression MAD/Median 

(AtGenExpress) 

- -0.09 n/a n/a 

Protein Length (in Amino Acids) + -0.07 n/a n/a 

Paralog dn + n/a -0.07 n/a 

Maximum Percent Identity + n/a n/a -0.2 

1. The sign of the association between the feature and duplicate retention 

2. Importance of features measured as the decrease in r
2
 when the feature is removed from 

the model, with more negative values indicating greater impact and therefore greater 

importance. An ‘n/a’ indicates the feature was not used in the model for that event. 
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specific expression patterns (i.e. lower average across all conditions, but higher maximum 

expression under a few specific conditions) tend to retain more duplicates pairs following a 

WGD event. Nonetheless, there are a number of cases that defy generalization due to differences 

across events. For example, lower expression correlation within function groups was a 

significant feature only in the  and  models, while having fewer conserved domains and lower 

nucleotide diversity were more important to the  and  models respectively (Table 4.2). These 

features more strongly correlated with retention of older duplicate genes suggests long term 

retention of duplicates favors genes experiencing stronger purifying selection (low nucleotide 

diversity) and those diverged expression patterns (lower expression correlation). The remaining 

feature were found in only one of the models and had significant but much smaller impacts the 

variance explained (Table 4.2). 

Although the degree of retention predicted by the models closely align with the actual 

values for each function groups across each event (r
2
,  = 0.87,  = 0.83,  = 0.65; see Figure 

4.2C), our model based on these features alone is obviously imperfect. In particular, degree of 

retention for TF were consistently underestimated (black arrows, Figure 4.2C; Supplementary 

Figure 4.2), particularly in the  model where the TF odd ratio is predicted to be only 76% of the 

actual value. The difficulty of predicting the degree of TF duplicate retention is likely due to the 

atypical feature distributions among TFs. For example, the percent base identity between a gene 

and its top BLAST hit within A. thaliana is an important predictor of the degree of retention of 

duplicates from the  event. This is because the similarity of WGD-duplicates to their best 

BLAST for TFs (71.3% identity) resemebles the genome-wide average (72.5%), but the 

similarity WGD-singletons to their best hits are significantly higher (Welch’s t-test, pv = 

1.9e223) for TF-singletons (66.9%) compared to the genome-wide singleton average (61.3%). 
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This indicates that TFs, once becoming singletons, have higher degrees of sequence conservation 

relative to their closest paralog, presumably due to stronger selective pressure, compared to most 

other genes. If we inflate the mean difference in perfect identity between WGD-duplicates and 

WGD-singleton for TFs by a factor of 2.55 to adjust the decreased difference in percent identity, 

the predicted degree of TF retention of the  event becomes 2.94 (red dot, Figure 4.2C), 

reducing the error by almost half. In addition to the linear models for predicting degrees of 

retention at the function group level, we have established machine learning models incorporating 

the same features to predict whether a gene likely has retained duplicate or not. Although this 

machine learning model could accurately identify genes with and without retained duplicates, the 

overall performance of the model and importance of features varied between kinases, TF and the 

rest of the genome. This suggests that, on a gene by gene level, there is dependence between 

gene features and functions and, therefore, these models are not useful for explain differences in 

the degree of retention between function groups (Supplemental File 4.2). 

Taken together, we demonstrated that degree of retention for genes in different function 

groups are related to multiple features that are impacted by the timing of WGD events. However, 

while these features are useful for predicting the degree of retention for some function groups, 

they systematically underestimated degree of retention for TFs. The behavior of TFs departs 

from the norm in part because underlying differences in the features of TFs and genome average, 

suggesting their evolution following duplication likely differ significantly from other genes. 

Partitioning of ancestral expression states following TF duplication 

While the gene features (Table 4.2) were generally useful predictors of WGD-duplicates, 

they were less useful for predicting TF duplicates specifically. To further explore what 

characteristics retained TF WGD-duplicates possess, we examined how the functions of retained 



 

192 

 

TF WGD-duplicates have evolved following WGD events. Approaches to infer ancestral 

functions based on those of extant genes have been used to determine the rate of gene activation 

and repression in duplicate genes in Drosophila melanogaster (Oakley et al. 2006) and analyze 

the evolution of stress response in A. thaliana (Zou et al. 2009b). This approach allows for the 

explicit characterization of how duplicate TFs may have deviated (or not) from their ancestral 

state over the course of evolution, which in turn may provide information about the 

mechanism(s) contributing to TF retention. We first used expression patterns as a proxy of TF 

function(s) and inferred the likely expression states of the ancestral TFs prior to WGD (see 

Methods). Ancestral expression values were inferred from extant gene expression values that had 

been discretized into quartiles (expression state = 0, 1, 2, or 3), based on the distribution of 

expression levels for each expression experiment. Additionally, expression data were grouped 

into four subsets and analyzed separately, including light and development sets (LightDev), 

control conditions (Ctrl), abiotic and biotic stress treatments (Stress), and differential expression 

between stress treatments and controls (Diff). This grouping was then used to distinguish 

between trends that were universal or specific to certain datasets. We were able to infer 165,385 

ancestral expression states across 474 TF WGD-duplicate pairs (a detailed breakdown of inferred 

states can be found in Supplementary Table 4.2).  

To test how often the ancestral expression states of TFs are retained post-duplication, we 

compared the expression states of individual, extant TF WGD-duplicate to its inferred ancestral 

states (Figure 4.3A). Although all possible changes in expression state were observed between 

ancestral and extant TFs in each expression data subset, the most common ancestral-extant 

expression state combination was that the ancestral and extant TFs had the same expression 

quartiles (diagonal red boxes, Figure 4.3B). This is true across all expression quartiles, though  

https://paperpile.com/c/WskiiM/cIAc
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Figure 4.3 Evolution of expression in TF WGD-duplicates. (A) An illustration of how the z-

scores in (B) are calculated. Individual TF duplicates are assigned to a cell using the extant (x-

axis) and ancestral (y-axis) expression quartile values (dark green = 4th, green = 3rd , yellow = 

2nd, white = 1st). Z-scores are then determined by comparing the frequency of the observed 

values to frequency distribution that would be expected if expression values were chosen 

randomly from a pool of extant and ancestral values. (B) Difference in expression quartile of 

individual TFs compared to their ancestors. Heatmaps show the z-scores of the observed 

frequency of each difference compared to the expected frequency for LightDev (left column) and 

Diff (right column) dataset in three WGD events (α = top, β = middle, γ = bottom). Darker red 

indicates counts further above random expectation. Darker blue indicates counts further below  
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Figure 4.3 (cont’d) 

random expectation. (C) An illustration of how the z-scores in (D) were calculated. For each pair 

of WGD TF duplicates, the difference in the expression quartile values (colored the same as in 

(A)) of an extant duplicate and its ancestral gene is defined as "deviation". Duplicate 1 is the 

copy with a higher or equal expression quartile value compared to the other copy (duplicate 2). 

The deviation values from each duplicate copy are then used to assign the pair to a cell, where 

the duplicate 1 and 2 deviation values are along the x- and the y-axis, respectively. Z-scores are 

then determined as in (A). (D) Deviation values of pairs of TF WGD-duplicates from their 

ancestral state. Heatmaps show the z-scores of the observed frequency of WGD-duplicate pair 

deviation compared to the expected frequency for LightDev (left column) and Diff (right 

column) datasets in three WGD events (α = top, β = middle, γ = bottom). Color correlates with 

the magnitude of the z-score as in (A) 
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the deviation from expectation was greatest for expression values in the lowest (1) and highest 

(4) quartiles. This general pattern holds across all four data subsets (Supplemental Figure 4.3), 

suggesting that most TF WGD-duplicates retain their original expression irrespective of the 

expression context. However, when considering a pair of duplicates (Figure 4.3C), we found 

that, when the ancestral state was retained in one duplicate, it was lost more often in the other 

duplicate than expected by random chance (Figure 4.3D). This may seem to contradict the 

results from Figure 4.3B, but we should emphasize that the cases where both duplicates have the 

ancestral expression states are still more common (e.g. account for 53% of cases from the α-

LightDev data set). However, under random permutation of duplicate pairs, 58% of α-duplicates 

in the LightDev data set are expected to be ancestral-ancestral (Supplemental Table 4.3). In 

contrast, we only expected 37% of pairs to be partitioned, but observed 45% pairs to have on 

ancestral and one non-ancestral expression state. We find the same trend for duplicates from 

Control, Stress, and Diff data sets originating from the relatively younger α and β events (see 

Supplemental Table 4.3).   

Influence of the timing of TF duplication and expression state evolution  

The “partitioned” state of TF WGD-duplicates pairs is over-represented at higher degrees 

for more recent WGD events (Figure 4.3D). In the relatively older WGD events (β and γ), 

having neither duplicate inherit the ancestral expression state is more common than the 

partitioned state where only one copy inherits the ancestral state. Using ANOVA, we confirmed 

that there is indeed significant interaction between the expression state of a TF WGD-duplicate 

pair and the timing of the WGD event (pv < 2e-16), which indicated that partitioning occurred 

relatively quickly after the most recent WGD, but that these partitioned patterns were not 

necessarily retained as the duplicates age. 
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Next we asked if TF duplicate expression levels tend to increase or decrease when they 

deviate away from the ancestral state. Because we found a significant interaction between the 

expression state evolution of TF WGD-duplicate pairs and the subset of the expression data used 

(pv < 3e-05), we asked this question using each expression data subset. For the LightDev 

(Figure 4.3D), Ctrl, and Stress expression subsets (Supplemental Figure 4.4), partitioning of 

ancestral expression states among duplicates favors small, negative changes from the ancestral 

states. Based on an earlier study showing that A. thaliana up-regulation in response to stress is 

lost more frequently that down regulation (Zou et al. 2009b), we anticipated TFs would most 

often lower expression quartiles compared to their ancestral state. However, when we looked at 

the Diff subset (the contrast between samples in the Stress subset and their respective controls) 

we found that TFs were equally likely to increase or decrease differential expression in response 

to stress compared to the ancestral state, in contrast to absolute expression levels where decrease 

is the norm.  

To further assess how what rates of evolution are from ancestral expression states to 

extant states, we modeled the transition from ancestral expression (O) to higher (+) and lower (-) 

expression states following a WGD duplication event (see Methods). We compared a one-

parameter model where the rates of transition from (O) to (+) and (-) were equal to a two-

parameter model where the rates from (O) to (+) and (-) were allowed to differ (Supplemental 

Figure 4.5). The two-parameter model was significantly better than the one parameter model 

when absolute expression levels are considered using the LightDev (likelihood ratio test, pv = 

2.2e-11), Ctrl (pv = 2.7e-3), and Stress (pv = 2.9e-3) subsets. For these subsets, the rate of 

evolution from (O) to (-) was 1.9~3.1 times more frequent than that from (O) to (+). For the Diff 

subset, (O) to (-) was only 1.2 times more frequent, which was not significant (pv = 0.43). In 
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summary, these results suggest that the evolution of TF duplicates favors decreasing expression 

levels relative to the ancestral expression state (Control, LightDev, and Stress). However, when 

looking at differential expression in response to stress, TF duplicates can evolve in either 

direction with approximately equal likelihood. Thus, following duplication, TF duplicates may 

have increased or decreased responses to stress, rather than losing the response altogether. 

Asymmetry in the partitioning of ancestral expression and regulatory sites 

Thus far we show that an ancestral expression state tends to be retained by only one copy 

of a TF WGD-duplicate pair and each expression state is considered individually. One 

outstanding question is whether each copy would retain different parts of the ancestral 

expression state, as would be expected if the TF duplicates were retained due to 

subfunctionalization (Force et al. 1999). To address this, we considered all the partitioned 

expression states (i.e. all expression series showing partitioning) across a pair of TF WGD-

duplicates. If partitioning were random, the number of ancestral states retained by a single 

WGD-duplicate is expected to follow a binomial distribution for the given number of partitioned 

expression states and a retention probability of 0.5 (both copy equally likely to retain ancestral 

states). Under this scenario, the expected asymmetry of a duplicate pair (the difference in the 

fraction of ancestral states inherited between duplicates) is 0.18 (Figure 4.4A). However, the 

actual mean asymmetry between TF WGD-duplicates was 0.68, significantly different from 

random partitioning (pv < 1e-323) expected under the subfunctionalization model (Figure 4.4B). 

As with mean asymmetry, the skewed distribution of asymmetry values is also significantly 

different from what was expected from random partitioning (Kolmogorov–Smirnov test, pv < 

2.2e-16). This biased partitioning was also found within the Ctrl (mean asymmetry= 0.84), 

LightDev (mean = 0.67), Stress (mean = 0.70), and Diff (mean = 0.56) subsets. To assess the  
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Figure 4.4 Asymmetry of ancestral state retention in TF WGD-duplicates. (A) Example of 

how Asymmetry score (Asy, see Methods) is calculated. Ancestral conditions are indicated by 

yellow boxes and non-ancestral conditions by grey boxes. Among a pair of duplicates, an 

‘ancestral’ copy (red arrow) is the duplicate retains more ancestral states than the other, ‘non-

ancestral’ copy (blue arrow).  In case where equal numbers of ancestral states are inherited (the  
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Figure 4.4 (cont’d) 

first case with Asy=0), the ancestral and non-ancestral designation is assigned randomly. (B) The 

Asymmetry scores of ancestral expression partitioning between TF WGD-duplicates. Red 

columns indicate the expected frequency of each score bin based on a series of grouped 

Bernoulli trials (see Methods) while blue columns indicated the observed frequency. (C) The 

Asymmetry scores of ancestral cis-regulatory site partitioning between TF WGD-duplicates. Red 

and blue columns are as described in (B). (D) The frequency distribution of the difference in 

number of novel cis¬-regulatory sites between ancestral and non-ancestral WGD duplicate 

copies. The value on the x-axis is calculated as the number of novel regulatory sites in the non-

ancestral copy minus the number in the ancestral copy. 
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possibility that the observed pattern of partitioning may result from non-independent loss of 

ancestral expression due to the use of correlated time course data, we assembled subsets of 

LightDev, Stress, and Diff conditions by using only the first or last time point in each time 

course and found that the asymmetry scores for these subsets were virtually unchanged from 

those using the full datasets, the first time points (LightDev = 0.68, Stress = 0.73, Diff = 0.58) or 

the last (LightDev = 0.68, Stress = 0.71, Diff = 0.59) time points. Given these results, for each 

TF WGD-duplicate pair, we can generally define one duplicate as being “ancestral” and the other 

as being “non-ancestral”.  

Why then is the non-ancestral copy being retained? One hypothesis is that the non-

ancestral copy is retained because it has acquired a novel function in the form or new expression 

or regulation. To test this, we first applied our model of ancestral-state partitioning to cis-

regulatory sites. We used cis-regulatory sites here because the discretized expression levels used 

above allowed us to determine the direction of changes away from the ancestral expression state, 

but not whether an expression state was novel. The cis-regulatory sites used here are from 

putative binding sites of 345 A. thaliana TFs (O’Malley et al. 2016). We applied the same 

methodology used to infer ancestral gene expression to infer ancestral cis-regulatory sites of 

ancestral TFs (see Methods). In 16,015 cases, we found a cis-regulatory site in either one of the 

duplicate copies or the ancestral genes. Of these, in 57.8% of cases, an ancestral site was lost in 

one duplicate, while 10.5% and 16.2% cases we saw the ancestral cis-regulatory site lost or kept 

in both duplicates, respectively Similar to what we see for the partitioning of an ancestral 

expression state (Figure 4.3), loss of an ancestral cis-regulatory site in only one copy occurs 

more often than what would be expected if WGD-duplicate and ancestral genes were randomly 

associated (42.3%; t-test, pv < 1e-323). In contrast, retention (expected = 24.0%, pv < 1e-323) 

https://paperpile.com/c/WskiiM/ZjOo
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and loss (expected = 18.5%, pv < 1e-323) of ancestral cis-regulatory sites in both WGD-

duplicates were significantly less frequent than randomly expected. In addition, similar to 

ancestral expression state evolution, the partitioning patterns of ancestral cis-regulatory sites 

were highly asymmetric (Figure 4.4C), significantly different from random partitioning 

(Kolmogorov–Smirnov test, pv < 2.2e-16). Thus, much like what we observed for expression, TF 

WGD-duplicates can be classified into ancestral and non-ancestral copies with regard to cis-

regulatory sites. Most importantly, amongst the 249 duplicate pairs with at least one novel 

regulatory site, in 71.0% of cases the non-ancestral copy had more novel cis-regulatory sites 

(Figure 4.4C), significantly higher than random expectation (49.8%, pv < 3.8e-12). Furthermore, 

in 61.8% of duplicate pairs the novel cis-regulatory sites are only found in the non-ancestral 

copies, compared to 14% of pairs where all of the novel sites are in the ancestral copies. These 

patterns suggested that, the acquisition of novel cis-regulatory sites likely contribute to the 

retention of the non-ancestral TF duplicate copies. This conclusion may be similar if we consider 

novel expression states, considering that the ancestral and non-ancestral designation defined 

according to expression data tend to have the same designation based on cis-regulatory sites 

(59.8%, compared to expected by random association at 24.6%, pv = 1.8e-20).  

Within this pool of duplicate pairs with distinct ancestral and non-ancestral duplicates, 

there are a number of examples the non-ancestral copies exhibiting a different function from the 

ancestral duplicate. The non-ancestral gene KNAT4 has gained 37 novel regulatory sites relative 

to KNAT3, which has retained all partitioned expression and regulatory sites (Figure 4.5A). In 

this case, both genes retain a development regulatory function, but KNAT4 is primarily found in 

the elongation zone of roots in phloem and pericycle cells, while KNAT3 is found in the 

differentiation zone in pericycle and cortex cells (Truernit et al., 2006, Truernit and Haseloff,  
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Figure 4.5 Expression partitioning between duplicate pairs with high regulatory 

asymmetry. Expression partitioning of three duplicate pairs KNAT3/4 (A), BCP2/3 (B), 

DAG1/2 (C) where the non-ancestral duplicate (blue arrow) exhibits differential function from  
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Figure 4.5 (cont’d) 

the ancestral duplicate (red arrow). Expression quartile is indicated by color (dark green = 4th, 

green = 3rd, yellow = 2nd, white = 1st). Note that only expression conditions under which 

function differs between the duplicates are shown 
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2007). In another example, BPC3 is a non-ancestral duplicate which has 20 novel regulatory sites 

and has lost ancestral expression in 15 conditions where it is retained in its duplicate, BPC2 

(Figure 4.5B). Previous research found BPC3 functions antagonistically not only to BPC2, but 

other members of BPC regulatory family in regard to controlling growth, leaf shape, and flower 

development (Monfared et al., 2011). Finally, the non-ancestral copy DAG2 is a positive 

regulator of phyB induced germination which is directly regulated by the ancestral copy DAG1 

(Santopolo et al. 2015). This is of particular interest because, in spite of having opposite 

regulatory roles, both duplicates have similar expression breadth (Gualbertia et al 2002) and our 

own data indicates that ~40% of inferred ancestral cis-regulatory elements are conserved in both 

copies even though the DAG1 retains most of the ancestral response to light (Figure 4.5C). This 

indicates that function differentiation can arise even when ancestral expression is incompletely 

partitioned between copies.  

Patterns of WGD-duplicate divergences and partitioning results from evolutionary bias 

 We have demonstrated that partitioning of ancestral expression and regulation into 

ancestral and non-ancestral duplicates is favored following duplication of TFs. It remains an 

open question if this ancestral state partitioning is maintained and thus the duplicate retains the 

ancestral expression/regulation is likely under selection. Alternatively, if the rate of ancestral 

state loss of the second copy is similar to that of the first, it would suggest the partitioning is 

simply a transition state and is not maintained. To determine which of the above cases is likely 

true, we modeled loss of ancestral states of TF WGD-duplicate pairs (see Methods). Using the 

synonymous substitution rate (ds) of TF WGD-duplicate pairs derived from the , , or  events 

as a proxy for time, the rate of transition between WGD-duplicate pairs where neither (state O), 

only one (state I), or both (state I) duplicates had lost ancestral expression was modeled (Figure 
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4.6A). We compared a model where the rates of transitions between all states were equivalent 

(same rates for losing the ancestral states in both duplicates, one-parameter model) with a model 

where the transition rates between state O and I were allowed to vary from those between state I 

and O (two-parameter model). These models were applied to all expression subsets 

(Supplemental Figure 4.6), the results of the one and the two parameter models using the 

LightDev dataset are shown as an example in Figure 4.6B. 

We found the two-parameter model to be significantly better at explaining the observed 

difference in WGD-duplicate states over time (Likelihood Ratio Test, p-value < 2e-14). 

Regardless of the expression data set, the transition rates between state O (ancestral expression in 

both duplicates) and I (ancestral expression in on duplicate) were 7-13 times higher than the rates 

between state I and II (ancestral expression in neither duplicate) (Figure 4.6). In addition, based 

on the estimated rates of ancestral state loss over time by the two-parameter model (curves in 

Figure 4.6B), the number of partitioned WGD-duplicates accumulated rapidly post WGD, 

followed by a relatively slow accumulation of bases where ancestral expression states had been 

lost in both duplicates. We also assessed a four-parameter model (OI, III, III, IO) that 

was not better than the two-parameter model. Applying this same approach to model regulatory 

site evolution revealed that the best fit model for regulatory site evolution involved allowing all 

four rate parameters to vary (p-values 4.8e-13 and 1.2e-11 vs. one and two-parameter models, 

respectively; Figure 4.6C). The rates governing the OI transition (x) are two orders of 

magnitude higher than the III transition (w, Figure 4.6D). Importantly, in the four-parameter 

model, there was a high rate of OI transition estimated at the early stage of WGD (blue curve, 

Figure 4.6C). In addition, an appreciable proportion of partitioned duplicates lost ancestral 

regulatory sites in the second copy (green curve, Figure 4.6C) that contributed to the pattern  
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Figure 4.6 ODE models of TF WGD-duplicate expression and cis-regulatory site evolution 

relative to the ancestral state. (A) In this model, we consider the transition of WGD-duplicate 

pair expression states between three possible scenarios (O = both retained, I = one retained, II = 

neither retained) using four variables representing the rate of transition between state (x,y,w,z). 

(B) Left and middle: results for the one parameter (x=y=w=z) and two parameter (x=y|w=z) 

versions of the expression state model showing the change in time (x-axis) and the frequency (y-

axis) of each scenarios. Curves represent the continuous output of the model in different 

scenarios. The significance of including additional parameters (the p-value between the curly 

brackets) was determined using the likelihood ratio test. Right: A bar graph of the parameter 

values for the one (orange) and two (green) parameter versions of the expression ODE model. 

(C) Left three sub-graphs: results for the one parameter (x=y=w=z), two parameter (x=y|w=z), 

and four parameter (x|y|w|z) versions of the cis-regulatory site model showing the change in time  
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Figure 4.6 (cont’d) 

(x-axis) and the frequency (y-axis) of each WGD-duplicate-pair scenario. Curves represent the 

continuous output of the model in different scenarios. The p-values are derived from the 

likelihood ratio tests between models. Far right: a bar graph of the parameter values (x,y,w,z) for 

the one (orange), two (green), and four (blue) parameter versions for the cis-regulatory site ODE 

model. 
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where the proportion of partitioned duplicated peaked at low ds followed by a reduction. This is 

in sharp contrast compared to the transition rate estimate over time for expression where second 

copies tend not to lose ancestral expression state (Figure 4.6B), indicating that regulatory sites 

are faster evolving and more labile compared to expression states.   
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CONCLUSIONS 

In this study, we have shown that duplicates are retained at different rates across function 

groups. In addition, we established linear models to assess how expression, conservation, and 

sequence structural features of genes in these functional groups may explain their retention rate 

difference. Although the linear model is far from perfect, it serves as the basis for exploring more 

complicated interactions underlying duplicate retention, i.e., the potential interaction between 

gene features and annotated gene function suggested by our results. We also demonstrate a 

preference for maintaining partitioned expression and regulatory site states between TF WGD-

duplicate pairs. Yet, while we have established that retained duplicate genes have distinct 

expression, sequence and regulatory features and TF duplicate genes in particular are 

characterized by asymmetric-partitioning, the question of what this implies about why duplicate 

genes are retained remains to be addressed. 

 Many mechanisms have been proposed to explain why duplicate genes are retained. Any 

duplicate pair could potentially be retained via neofunctionalization (Ohno,1970)) or escape from 

adaptive conflict (Des Marais and Rausher 2008) which involve the evolution of new or 

improved function that is positively selected for. However, subfunctionalization (Force et al. 

1999) or gene balance (Birchler and Veitia 2007; Birchler and Veitia 2010; Baker et al. 2013) are 

specific to TFs and other gene with a large number of interactions/functions (Seoighe and 

Gehring 2004; Maere et al. 2005; Shiu et al. 2005, Alvarez-Ponce and Fares 2012) which all 

need to maintained following WGD. On an experiment-by-experiment basis, the partitioning of 

ancestral expression states (Figure 4.3D) would appear to support the notion of WGD-duplicate 

retention by subfunctionalization (Force et al., 1999). However, when examining the ancestral 

state partitioning patterns across multiple experiments, we find an extreme bias where one TF 

https://paperpile.com/c/WskiiM/7mpF
https://paperpile.com/c/WskiiM/7mpF
https://paperpile.com/c/WskiiM/CGSs+y7qM+UCZH
https://paperpile.com/c/WskiiM/dWFI+mKVJ+44xy
https://paperpile.com/c/WskiiM/dWFI+mKVJ+44xy
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duplicate retains most of the ancestral states and the other, non-ancestral copy retains few or 

none (Figure 4.5). Most importantly, we showed that the non-ancestral copy tends to gain novel 

cis-regulatory sites (Figure 4.5D) and exhibit differential expression from the ancestral state. 

This pattern harkens back to the notion of there being an ancestral copy and a neofunctionalized 

copy after duplication, contributing to the retention of both duplicates (Ohno, 1970). This would 

appear to be the case for duplicate pairs like KNAT3/4, BPC2/3, and DAG1/2.  

Nonetheless, we should note that there remain asymmetrically partitioned duplicates that 

are retained without clear evidence of neofunctionalization. A clear case of this is the duplicate 

pair ANAC19/72 which, in spite of ANAC72 gaining novel 21 regulatory sites, appears to have 

redundant function regulating stress response, both with each other and with others NAC-family 

TFs (Tran et al., 2004; Zheng et al., 2012; Takasaki et al., 2015). It has been theorized that 

seemingly redundant duplicates may be retained due to subfunctionalization at the expression 

level following a reduction expression after duplication and/or subsequent “rebalancing” of 

expression that could be positively selected (Qian et al., 2011). Yet while this might explain the 

retention of asymmetric duplicates with similar function, it cannot explain the retention duplicate 

pairs where ancestral expression in maintained across both copies. For example, 7.5% and 13.9% 

of duplicates TF pairs have retained >80% of ancestral expression in both copies in the Stress 

and LightDev data set respectively. Thus, while neofunctionalization and subfunctionalization 

may explain the retention of partitioned duplicates, the presence of duplicate pairs with a high 

degree of ancestral expression in both copies and the overall prevalence of retaining ancestral 

expression following the α and β WGD events (Supplemental Table 4.3) remains to be 

addressed.  
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If subfunctionalization does not play a predominant role in TF duplicate retention, what 

other mechanisms may be responsible? One prominent hypothesis is gene balance where 

stipulate that duplicate genes with products that form multimeric complexes will tend to be 

retained to maintain the stoichiometry (Birchler and Veitia 2007; Birchler and Veitia 2010) and 

enables future sub- and/or neofunctionalization (Veitia et al. 2013).  If gene balance does play a 

significant role in retention of TF duplicates, we would expect duplicates from more recent 

WGD events to have higher proportion of cases where both copies retained the ancestral 

expression and regulatory site states. However, our ODE model for evolution of duplicate TF 

pairs indicate that the proportion of duplicates both retaining ancestral states reduces quickly 

following WGD (Figure 4.6), suggesting that, if gene balance plays a significant role, it is 

limited to the initial period after WGD. The caveat is that our current ODE models of ancestral 

expression and regulatory site evolution is based on WGD events that are >50 million old. It will 

be useful to incorporate data from other species with more recent WGD events into the model to 

further address this question. Additionally, WGD-Duplicates TFs are known to be preferentially 

retained across many plant species (Carretero-Paulet and Fares 2012), it will be of interest to see 

if the patterns of ancestral expression and regulatory site partitioning we have uncovered in A. 

thaliana are shared in other plant lineages sharing the , , and  events, or common to any 

species with ancient WGD events. Furthermore, our study focuses on the overall pattern of TF 

evolution. It is anticipated that different TF families will evolve differently from each other. In 

future studies, it will be important to directly compare the size, rate of retention, and rate of 

partitioning both within and across species in individual families. 

  

https://paperpile.com/c/WskiiM/CGSs+y7qM
https://paperpile.com/c/WskiiM/M8sC
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MATERIALS AND METHODS 

 

Genome sequences, gene annotation, and Expression Data 

Genome sequences, protein sequences, and gene annotation information for A. thaliana 

was obtained from Phytozome v10 (https://phytozome.jgi.doe.gov/pz/portal.html). WGDs were 

defined according to Bowers et al. (2003) and tandem genes in A. thaliana were defined as pairs 

of reciprocal best BLAST hits with an e-value < 1e-10 and ≤ 5 intervening genes. Expression 

microarray data for this study was taken from AtGenExpress (Schmid et al. 2005; Kilian et al. 

2007; Goda et al. 2008), normalized using RMA (Irizarry et al. 2003) in R as performed 

previously (Zou et al. 2009a). The array data was divided into four groups: control conditions (in 

environmental condition experiments, Ctrl), light and development set (LightDev), abiotic and 

biotic stress treatments (Stress), and differential expression between stress treatments and 

controls (Diff) (Supplemental Table 4.4). The Diff data contains the log2 normalized difference 

between data sets for each stress condition/treatment/duration and its corresponding controls. In 

addition to microarray data, we have included a set of 214 RNA-sequencing samples 

(Supplemental Table 4.5) from A. thaliana Col1 wildtype from the Sequence Read Archive 

(https://www.ncbi.nlm.nih.gov/sra) as of September 30, 2014. Raw sequence reads were 

processed using Trimmomatic (Bolger et al. 2014), with a quality threshold of 20, window size 

of 4, and hard-clipping length of 3 for leading and trailing bases. Processed reads were then 

mapped to the A. thaliana genome using Tophat2 (Kim et al. 2013) and expression levels 

calculated with Cufflinks (Trapnell et al. 2010), both with a maximum intron length of 5,000bp. 

https://paperpile.com/c/WskiiM/kyaL+k63V+Megn
https://paperpile.com/c/WskiiM/kyaL+k63V+Megn
https://paperpile.com/c/WskiiM/pZW5
https://www.ncbi.nlm.nih.gov/sra
https://paperpile.com/c/WskiiM/YNcv
https://paperpile.com/c/WskiiM/5VPn
https://paperpile.com/c/WskiiM/4jxo
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Defining TFs and other groups of genes in A. thaliana 

TFs were defined according to the criteria used by the Plant Transcription Factor 

Database (Jin et al. 2014) with 1,717 annotated TF loci in A. thaliana. To assess the degrees of 

TF duplicate retention after each WGD event, we defined a set of “functional groups” for 

comparison following from the procedure used in Maere et al. (2005). To compare among genes 

with divergent functions and to ensure the log odds indicative of the degrees of retention could 

be defined for each group, function groups were defined using Gene Ontology (GO) (Ashburner 

et al. 2000) terms in the molecular function and biological process categories from The 

Arabidopsis Information Resource (https://www.arabidopsis.org/), and only groups containing 

100-2,000 genes and ≥20 WGD-duplicate pairs were kept. We excluded GO:0006355 (regulation 

of transcription, DNA-templated) due to its substantial overlap with the TF group we have 

defined above. The remaining 19 function groups include: ATP Binding (GO:0005524), catalytic 

activity (GO:0003824), defense response (GO:0006952), DNA endoreduplication 

(GO:0042023), hydrolase activity hydrolyzing O-glycosyl compounds (GO:0004553), kinase 

activity (GO:0016301), lipid binding (GO:0008289), oxidoreductase activity (GO:001649), 

oxygen binding (GO:0019825), protein binding (GO:0005515), proteolysis (GO:0006508), 

response to auxin (GO:0009733), response to chitin (GO:0010200), RNA binding 

(GO:0003723), transferase activity, transferring glycosyl groups (GO:0016757), translation 

(GO:0006412), transporter activity (GO:0005215), ubiquitin-protein transferase activity 

(GO:0004842), zinc ion binding (GO:0008270). A list of genes in each group can be found in 

Supplemental Table 4.6. 

 

https://paperpile.com/c/WskiiM/2Itm
https://paperpile.com/c/WskiiM/BQDW
https://paperpile.com/c/WskiiM/BQDW
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Fitting odds ratio of duplicate retention within each group of genes for each WGD event 

using linear models 

A gene was designated as a "WGD-duplicate" if its paralog derived from a particular 

WGD event is present. For a gene without its paralog from WGD, it was designated as a "WGD-

singleton" gene. The degree of retention for a function group, g, after a specific WGD event, w, 

is defined as: 

𝑅𝑔,𝑤 =
(𝐷𝑔,𝑤/𝑆𝑔,𝑤)

(𝐷¬𝑔,𝑤/𝑆¬𝑔,𝑤)
 

Where Dg,w and D¬g,w are the numbers of WGD-duplicate genes in group g and those not in 

group g (¬g), respectively. Sg,w and S¬g,w are the numbers of WGD-singleton genes in group g 

and those not in group g (¬g), respectively. The 95% confidence interval around the point-

estimate Rg,w was defined using the “fisher.exact” function in R, the details of which can be 

found at in Fay (2010). For each WGD event, we established a general linear model with the glm 

function in the R environment which relates the Rg,w to a set of features of each gene group. The 

34 features (predictor variables, Supplemental Table 4.1) were filtered with the following 

procedures to prevent over-fitting because we have only 20 function groups. We calculated the 

correlation between all features to find all cases where the absolute value of correlation was 

>0.7. The considerations for which features to keep included: (1) how well each feature 

correlated with Rg,w on its own, (2) whether the feature was derived from a subset of another 

feature, and (3) the number of other features with a correlation > 0.7 (favored the elimination of 

more features). In addition to the above criteria, one data set (protein-protein interactions) was 

eliminated because of a high frequency of missing values (88%). The synonymous substitution 

rate (KS) feature and any feature using KS in their calculation were also excluded because they 

would be highly correlated with WGD timing and confound our analyses comparing the three 
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WGD events. The filtering step left 11 features for building the general linear model. Following 

fitting the glm function, features were ranked according to their p values from the least to the 

greatest and the feature with the largest p-value was dropped. The model was then fit to the 

reduced feature set and features were once again ranked. This process was repeated until the F-

statistic (a measure of goodness of fit of the given model against a null model where all 

coefficients are set to zero) of the model was maximized and the final p value was calculated 

based on the maximal F-statistic. The final model for each event can be found in Supplementary 

File 4.1. 

Inferring ancestral expression levels and cis-regulatory sites 

DNA-binding domains were identified in TF protein coding sequences using hmmscan 

via HMMER3 (Mistry et al. 2013) based on the Pfam-A version 29.0 HMMs  (Finn et al. 2016) 

with a threshold e-value of 1e-5. TFs were classified into families according to their DNA-

binding domains and 44 of 59 TF families with ≥4 members were used for further analysis 

(Supplemental Table 4.7). For each TF family, full-length protein sequences were aligned using 

MAFFT (Katoh and Standley 2013) with default parameters. The phylogeny of each TF family 

was obtained using RAxML (Stamatakis 2014) with the following approach: rapid Bootstrapping 

algorithm, 100 runs, GAMMA rate heterogeneity, and the JTT amino-acid substitution model. 

These trees were then mid-point rooted with retree in PHYLIP (Felsenstein, 1989) and used to 

infer the ancestral gene expression states and the cis-regulatory sites of WGD-duplicate TF pairs 

with BayesTrait (Pagel et al. 2004) as was done in our earlier study (Zou et al. 2009a). The 

expression data sets used are described in Supplemental Table 4.4. The discretized gene 

expression state (0,1,2,3) was based on the quartiles of gene expression levels within each 

experiment. Thus the inferred, ancestral expression state was also discretized. For cis-regulatory 

https://paperpile.com/c/WskiiM/gpoG
https://paperpile.com/c/WskiiM/Qdhl
https://paperpile.com/c/WskiiM/s308
https://paperpile.com/c/WskiiM/CpIX
https://paperpile.com/c/WskiiM/fsFV
https://paperpile.com/c/WskiiM/pZW5


 

216 

 

sites, the binding targets of 345 A. thaliana TFs were defined based DNA Affinity Purification-

Sequencing data (O’Malley et al., 2016) from the Plant Cistrome Database 

(http://neomorph.salk.edu/dap_web/pages/index.php) where at least 5% of the read associated 

with a site were found to be in the 200bp peak region. We inferred whether a particular site was 

present or absent (0,1) in the common ancestor of a duplicate pair. For both expression and 

regulatory site data, in cases where there was a missing value, it was explicitly included as an 

ambiguous state. To call the ancestral state from the expression or cis-regulatory site data, we 

required a posterior probability > 0.5. Cases where the called state was ambiguous or no majority 

existed were excluded from further analysis. 

Asymmetry of the retention of ancestral expression and regulatory sites 

 For determining expression state asymmetry, only TF WGD-duplicates with ≥5 

partitioned ancestral expression states in one of the four expression datasets (Ctrl, LightDev, 

Stress, and Diff) were considered. For a WGD-duplicate pair with genes A and B, if the number 

of inherited ancestral expression states in A was larger or equal to that in B, then A and B were 

defined as the ancestral and the non-ancestral duplicate copies, respectively. The degree of 

asymmetry (YA,B) of expression states between two duplicates was defined as: 

𝑌𝐴,𝐵 = max(𝐹𝐴, 𝐹𝐵) − (1 − max(𝐹𝐴, 𝐹𝐵)) 

Where FA and FB are the frequency with which ancestral expression was retained for duplicates 

A and B, respectively. By definition, FA + FB = 1, such that YA,B has value between 0 (when FA = 

FB, no asymmetry) and 1 (when either FA or FB = 1, maximum asymmetry).  

With the asymmetry values for each TF pair, an average asymmetry value of all TF pairs 

was calculated for each expression dataset, as well as for the union of all TF duplicates from all 

datasets (1,239 values total) to assess how the observed degree of asymmetry compared to what 
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would be expected from if every partitioned state was independent (i.e. each gene has an equal 

chance of retaining the ancestral state regardless of the outcome of previous partitioning events). 

We also defined two subsets of the LightDev, Stress, and Diff data sets using the first and last 

element of each times series respectively because the expression of genes at different points of a 

time series are potentially correlated. The number of genes with >5 partitioned conditions genes 

decreased in the subsets of LightDev (all = 334, first = 327, last = 325), Stress (all = 347, first = 

265, last = 272), and Diff (all = 351, first = 277, last = 269) data sets. We excluded the Ctrl data 

set because it is composed of only four series, mean that no genes could pass the >5 partitioned 

condition cutoff. 

The expected distribution of asymmetry values for the expression states of TF WGD-

duplicates (under the assumption of independent of partitioning events) was determined by 

conducting a series of Bernoulli trails equal to the total number of partitioned states amongst TF-

WGD duplicates. In each of these trials there was an equal probability that either the first or 

second duplicate receive the ancestral state. The results of these trials were then grouped 

according the exact per gene distribution of partitioned states in TF-WGD duplicates and an 

asymmetry value was calculated for each group. This procedure was repeated 1,000 times using 

an independent set of trials and subsequent groupings  

For assessing cis-regulatory site asymmetry, only TF WGD-duplicates with ≥5 inferred 

ancestral cis-regulatory sites we considered (402 WGD-duplicate pairs total). Similar to 

expression state asymmetry, in each duplicate pair the ancestral and non-ancestral duplicates 

were defined according to the number of inherited ancestral sites. For each WGD-duplicate pair, 

the degree of asymmetry of cis-regulatory site among a TF pair was defined analogous to what 
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was done for expression. The expected distribution of asymmetry values for the cis-regulatory 

sites of TF WGD-duplicates was determined using the same procedure as for expression states. 

Ordinary differential equation models of TF state evolution 

 The change in expression states from the ancestral expression quartile to either a higher 

or lower quartile in an extant TF was modeled as a system of ordinary differential equations such 

that: 

𝑑

𝑑𝑡
(

𝑂
+
−

) = (
−(𝑥 + 𝑦) 𝑤 𝑧

𝑥 −𝑤 0
−𝑦 0 −𝑧

) (
𝑂
+
−

) 

Where O, +, and - are the frequency of TF WGD duplicate genes retaining the ancestral 

expression states, having a higher-than-ancestral expression level, and having a lower-than-

ancestral expression level, respectively. The parameters x, y, w, and z, define the transition rates 

between these states. This system of equations was solved in Maxima 

(http://maxima.sourceforge.net/index.html) and best parameters for the observed distribution of 

duplicates pairs were determined using maximum likelihood estimates calculated with the bbmle 

package in R (https://cran.r-project.org/web/ packages/bbmle/index.html). Non-linear 

minimization was used to approximate an initial guess, although the actual initial parameters 

often needed to be adjusted to reach a convergent solution. The best fit parameters for this single 

duplicate expression state evolution model can be found in Supplemental Table 4.8. 

The loss of ancestral expression states in a pair of duplicated TFs was modeled as a 

system of ordinary differential equations such that: 

𝑑

𝑑𝑡
(

𝑂
𝐼
𝐼𝐼

) = (
−𝑥 𝑦 0
𝑥 −(𝑦 + 𝑤) 𝑧
0 𝑤 −𝑧

) (
𝑂
𝐼
𝐼𝐼

) 

Where O, I, and II are the frequency of TF WGD duplicate pairs where both, one, or neither 

duplicate retained the ancestral expression state. The parameters x, y, w, and z, define the 

http://maxima.sourceforge.net/index.html
https://cran.r-project.org/web/packages/bbmle/index.html
https://cran.r-project.org/web/packages/bbmle/index.html
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transition rates between these states. This system of equations was solved and the initial and best 

parameters were estimated in the same fashion as above. The best fit parameters for this pairwise 

expression state evolution model can be found in Supplemental Table 4.9. The same model was 

also applied to ancestral regulatory sites with O, I, and II representing the frequency of TF WGD 

duplicate pairs where both, one, or neither duplicate retained the ancestral regulatory site. 

 

  



 

220 

 

ACKNOWLEDGEMENTS 

We thank Johnny Lloyd and Zing Tsung-Yeh Tsai for their advice regarding modeling 

duplicate retention and analyzing the importance of predictive features.  

  



 

221 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

  



 

222 

 

Supplemental File 4.1: Linear equations used to predict odds of duplicate of retention in 

different WGD events across function groups 

 

𝑂𝑑𝑑𝑠(𝛼) =       −0.370 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑒𝑎𝑛, 𝐴𝑡𝐺𝑒𝑛𝐸𝑥𝑝𝑟𝑒𝑠𝑠) 

+ 4.763 ∗ 10−4 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑎𝑥, 𝑅𝑁𝐴) 

−140.6 ∗ (𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, 𝜋) 

−1.073 ∗ 10−3 ∗ (𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝐿𝑒𝑛𝑔𝑡ℎ) 

−2.325 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝐴𝐷/𝑀𝑒𝑑𝑖𝑎𝑛, 𝐴𝑡𝐺𝑒𝑛𝐸𝑥𝑝𝑟𝑒𝑠𝑠) 

−0.190 ∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛𝑠) 

+4.786 

𝑂𝑑𝑑𝑠(𝛽) =       −0.294 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑒𝑎𝑛, 𝐴𝑡𝐺𝑒𝑛𝐸𝑥𝑝𝑟𝑒𝑠𝑠) 

+ 6.745 ∗ 10−4 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑎𝑥, 𝑅𝑁𝐴) 

−4.103 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝐴𝑡𝐺𝑒𝑛𝐸𝑥𝑝𝑟𝑒𝑠𝑠) 

+2.686 ∗ (𝑃𝑎𝑟𝑎𝑙𝑜𝑔 𝐷𝑛) 

−0.484 ∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑜𝑚𝑎𝑖𝑛𝑠) 

+4.130 

𝑂𝑑𝑑𝑠(𝛾) =       −0.806 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑒𝑎𝑛, 𝐴𝑡𝐺𝑒𝑛𝐸𝑥𝑝𝑟𝑒𝑠𝑠) 

+ 4.329 ∗ 10−4 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑎𝑥, 𝑅𝑁𝐴) 

−587.5 ∗ (𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, 𝜋) 

−5.553 ∗ (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝐴𝑡𝐺𝑒𝑛𝐸𝑥𝑝𝑟𝑒𝑠𝑠) 

−0.133 ∗ (𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦) 

+5.282 
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Supplemental File 4.2: Predicting WGD-duplicate retention status of individual genes using 

machine learning 

Machine learning models for TFs, kinases, and all genes in the genome were generated to 

predict whether a gene in a particular group had a retained WGD paralog from either the , , 

and  event, as small numbers of β and γ made the difficult to correctly classify on their own.. 

The machine learning was performed using the Random Forest algorithm implement in the R 

package randomForest (https://cran.r-project.org/web/packages/randomForest/index.html). We 

filtered the gene level feature set from a previous study (Lloyd et al. 2015) by removing those 

with missing values for ≥5% of genes. For the remaining features, missing values were imputed 

with the rfImpute algorithm in randomForest using 10 iterations of 500 trees. The final matrix of 

genes and features for TFs, kinases, and the whole genome can be found in Tables S7, S8, and 

S9, respectively. Using the imputed data set for each group of genes and for each WGD event, 

we ran the Random Forest algorithm 10 times with 500 trees (each time with 10 fold cross 

validation) and collected the resulting votes (retained or not) for constructing Receiver Operating 

Characteristic curves (ROCs). The importance of each individual feature was assessed using 

Mean Decrease in Accuracy (MDA), the average number of genes misclassified across multiple 

runs as a result of removing the feature in question. The statistical significance of the difference 

in values of a feature between WGD-duplicates and WGD-singletons was determined using 

Welch’s t-test. 

To evaluate the performance of our classifiers, we determined receiver operating 

characteristic curves (ROCs) for each model (Fig 1) and calculated the Area Under Curve (AUC-

ROC), a metric that summarizes the ability of the classifier to recover true positive WGD-

duplicate genes at different false positive rates. An AUC-ROC of 0.5 indicates that the classifier 

https://paperpile.com/c/WskiiM/Ms3r
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is no better than randomly labeling genes as having a retained duplicate or not, while an AUC-

ROC of 1.0 indicates that the classifier can make predictions without error. Among the 

classifiers, the one characterizing the full genome performed best (AUC-ROC = 0.86), followed 

closely by protein kinases (AUC-ROC = 0.82), while the classifier for TFs, while much better 

than random, did not perform as well (AUC-ROC = 0.74). To investigate the source of the 

difference, we determined the importance of each feature to the classifier by calculating the 

Mean Decrease in Accuracy (MDA) which is the average number of genes misclassified across 

multiple runs as a result of removing a feature (Supplemental Table 4.10). Given TFs are the 

least well predicted, we suspected the informative features for predicting retention in TFs would 

differ greatly from those for the genome at large and the protein kinases. Contrary to this 

expectation, the ranking of importance for TF WGD-duplicate prediction was more similar to the 

ranking of features for the whole genome prediction (Spearman’s rank, ρ = 0.86) than the 

ranking of features protein kinases to the whole genome prediction (Spearman’s rank, ρ = 0.51). 

This finding suggests that the feature value distributions of TF WGD-duplicate and WGD-

singletons are more similar to the genome at large. Therefore, the reason that TF duplicate 

prediction model had lower performance was not simply because their feature values were 

substantially different from other duplicate genes. Instead, the features examined simply have 

lower importance in general for predicting TF retention (average MDA=11.3) than for other 

genes (average MDA=47.9), suggesting there are additional features important for TF retention 

that were not considered. For example, we might expect the number of DNA binding sites to be 

predictive of duplication status as an indication of the breadth of function of the TF which is 

related to the probability that a duplicate copy has been retained through subfunctionalization or 

gene balance. 
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Furthermore, the most informative feature for classifying kinases and the whole genome, 

the percent identity to the best matching paralog in A. thaliana, was less important when applied 

to TFs (Table 3). Although the maximum percent identity of WGD-duplicates compared to 

WGD-singletons is significantly higher in full genome (pv = 1e-320), protein kinases (pv = 1.1e-

36), and TFs (pv = 6.2e-12), the magnitude of the difference was greater for protein kinases 

(11.2%) and the whole genome (11.3%) than TFs (4.4%). This is due to WGD duplicate TFs 

having lower maximum percent identity (71.3%) than either kinases (75.2%, p=4.1e-24, t-test) or 

all genes (72.5%, p=5.9e-83 , t-test), while WGD-singletons TF had higher identity (66.9%) than 

kinases (64.0%, p=4.2E-35, t-test) and all genes (61.3%, p=1.9e-223, t-test). This observation 

may related to non-duplicate TF genes having apparent paralogs more often than non-duplicate 

genes do on average across the A. thaliana genome (Fig S2). The variance in the importance of 

maximum percent identity accounts for most of the performance difference across the classifiers 

as removing this feature yields similar results from all three (Fig S3). Similarly, inflating the 

difference in the percent identity of TF WGD-duplicates and WGD-singletons from 4.4% to 

11.2% (the difference for protein kinases) would raise the predicted retention of TF from the γ 

WGD from 2.50 to 2.94, making up for more than half of the original error. 

We would expect that other features used in our linear models would also be useful for 

classifying genes within function groups. However, the average importance rank of features 

found in more than one linear model was low (13.9 of 20), with the maximum expression value 

in RNA-seq being the worst feature in both the whole genome and TF classifiers. Of the four 

linear model features, mean expression in AtGenExpress had the highest rank in the whole 

genome (12th), TF (7th), and kinase classifiers (5th). However, the difference in mean 

expression between WGD-duplicates and WGD-singletons was not consistent: WGD duplicates 
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genes were more highly expressed across the whole genome (+0.32, p=4.0e-23), and TFs (+0.37, 

p=1.0e-4), but in protein kinases WGD-singletons were more highly expressed, though not at a 

significant level (-1.1, p=0.77). Hence, not only does relationship between gene features and 

retention depend on the gene function, but the relationship within individual function groups can 

be the opposite direction of the relationship across function groups. For example, the high 

retention of the TF function group is in part due to relatively low average expression in 

AtGenExpress, but within TFs, genes with higher average expression are more often WGD 

duplicates. This suggests that selection for duplicate retention is dependent not only on function 

and features, but their interaction as well, though the exact nature of these interactions is beyond 

the scope of this study. 
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Supplemental Figure 4.1 Frequency distribution of synonymous substitution rate (Ks) 

between putative paralogs.  Colors correspond to putative paralogs that are TFs (blue), kinases 

(green), or any other genes (orange). Known WGD and tandem duplicates are excluded from 

each group. 
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Supplemental Figure 4.2 Difference between the observed rates of duplicate retention and 

rates predicted by the linear models of duplicate retention. Different events are indicated by 

color (α = orange, β = green, γ = blue). Positive values indicate the observed rate is larger than 

the prediction while negative values indicate the observed rate is less than the prediction. 
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Supplemental Figure 4.3 Difference in expression quartile of individual TF duplicates 

compared to their ancestral state. Expression subsets (Ctrl, LightDev, Diff, and Stress) are 

indicated on the left and WGD event (α = left, β = middle, γ = right) along the top. Heatmaps 

show the z-scores of the observed frequency of each difference compared to the expected 

frequency. Color correlates with the magnitude of the z-score, with darker red values indicating 

counts further above random expectation and darker blue values indicating counts further below 

random expectation. 
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Supplemental Figure 4.4 Deviation of pairs of TF WGD-duplicates from their ancestral 

state. Deviation is defined as the difference value that each duplicate in a pair has from its 

ancestral state. Expression subsets (Ctrl, LightDev, Diff, and Stress) are indicated on the left and 

WGD event (α = left, β = middle, γ = right) along the top. Heatmaps show the z-scores of the 

observed frequency of the WGD-duplicate pair deviation compared to the expected frequency 

across all three duplicate events (α = top, β = middle, γ = bottom). Color correlates with the 

magnitude of the z-score, with darker red values indicating counts further above random 

expectation and darker blue values indicating counts further below random expectation. 
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Supplemental Figure 4.5 ODE models of the evolution of ancestral expression into either a 

higher or lower expression quartile. In this model, we consider the transition of a single WGD  
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Supplemental Figure 4.5 (cont’d) 

duplicate from an ancestral expression state (O) to either a higher (+) or lower (-) expression 

state. Results for one (left column) and two (right column) parameter models show the change in 

time (x-axis) of the frequency (y-axis) of each state (O = orange, + = blue, - = green). Curves 

represent the continuous output of the model while symbols indicate the observed values on 

which the models were built (O = circle, + = square, - = triangle). 
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Supplemental Figure 4.6 ODE models of TF WGD-duplicate expression evolution relative 

to ancestral state for the Ctrl, Diff, and Stress expression subsets. In this model, we consider  
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Supplemental Figure 4.6 (cont’d) 

the transition of the WGD-duplicate pair expression between three possible states relative to their 

ancestral state (O = both retained, I = one retained, II = neither retained). Results for one (left 

column) and two (right column) parameter models showing the change in time (x-axis) of the 

frequency (y-axis) of each WGD-duplicate-pair state (O = orange, I = blue, II = green). Curves 

represent the continuous output of the models while the symbols indicate the observed values on 

which the models were built (O = circle, I = square, II = triangle).   
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Supplemental Table 4.1 Data sets used in linear model of duplicate retention 

Name Description Source Use
1
 

Gene Count Number of genes in each Group Internal Kept 

Paralog Ks Synonymous substitution rate relative to the highest 

scoring BLAST hit Arabidopsis thaliana 

Lloyd et al. (2015) Dropped 

Paralog Ka Non-synonymous substitution rate relative to highest 

scoring BLAST hit in Arabidopsis thaliana (derived from 

paralog Ks and Ka/Ks) 

Lloyd et al. (2015) Kept 

Paralog Ka/Ks Ka/Ks relative to the highest scoring BLAST hit 

Arabidopsis thaliana 

Lloyd et al. (2015) Dropped 

Ka/Ks (A. lyrata) Median Ka/Ks relative to genes in Arabidopsis lyrata in 

the same OrthoMCL Cluster 

Lloyd et al. (2015) Dropped 

Ka/Ks (O. sativa) Median Ka/Ks relative to genes in Oryza sativa in the 

same OrthoMCL Cluster 

Lloyd et al. (2015) Dropped 

Ka/Ks (P. patens) Median Ka/Ks relative to genes in Physcomitrella 

patensin the same OrthoMCL Cluster 

Lloyd et al. (2015) Dropped 

Ka/Ks (P. 

trichocarpa) 

Median Ka/Ks relative to genes in Populus trichocarpa 

in the same OrthoMCL Cluster 

Lloyd et al. (2015) Dropped 

Ka/Ks (V. vinfera) Median Ka/Ks relative to genes in A. lyrata in the same 

OrthoMCL Cluster 

Lloyd et al. (2015) Dropped 

Expression Mean 

(AtGenExpress) 

Mean of expression in AtGenExpress data Internal Kept 

Expression Mean 

(Stress Data) 

Mean of expression in StressTreatment subset of 

AtGenExpress Data 

Internal Dropped 

Expression Mean 

(DevLight Data) 

Mean of expression in Development and Light subset of 

AtGenExpress data 

Internal Dropped 
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Supplemental Table 4.1 (cont’d) 

Expression Mean 

(Control Data) 

Mean of expression in Control subset of AtGenExpress 

data 

Internal Dropped 

Expression Mean 

(Diff Data) 

Mean of expression in Stress Difference data set Internal Dropped 

Expression Median 

(AtGenExpress) 

Median of gene expression in AtGenExpress Lloyd et al. (2015) Dropped 

Expression 

MAD/Median 

(AtGenExpress) 

Median absolute deviation of expression over median 

expression using AtGenExpress 

Lloyd et al. (2015) Kept 

Expression Breadth 

(AtGenExpress) 

Number of AtGenExpress expression data sets with log2 

intensity > 4 

Lloyd et al. (2015) Dropped 

Expression 

Correlation 

(AtGenExpress) 

Max of expression correlation with genes in the same 

OrthoMCL cluster using data from AtGenExpress 

Lloyd et al. (2015) Kept 

Expression 

Correlation 

(AtGenExpress, Ks 

< 2) 

Max of expression correlation with genes in the same 

OrthoMCL cluster that have Ks < 2 using data from 

AtGenExpress 

Lloyd et al. (2015) Dropped 

Expression Module 

Size 

(AtGenExpress) 

Size of co-expression module defined using K-means 

clustering of expression vectors from AtGeneExpress 

Lloyd et al. (2015) Dropped 

Expression Breadth 

(RNASeq) 

Number of expression in RNA-Seq Data set where the 

95% confidence interval of FPKM does not include 0 

Internal Dropped 

Expression Mean 

(RNASeq) 

Mean of expression in RNA-Seq Data Set Internal Dropped 
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Supplemental Table 4.1 (cont’d) 

Expression Median 

(RNASeq) 

Median of expression in RNA-Seq Data Set Internal Dropped 

Expression 

Maximum 

(RNASeq) 

Maximum of expression in the RNA-Seq Data Set Internal Kept 

Sequence 

Conservation 

(Viridiplantae) 

Percent identity of BLAST hits with 34 plant species 

(described in Lloyd et al., 2015) 

Lloyd et al. (2015) Dropped 

Sequence 

Conservation 

(Fungi) 

Percent identity of BLAST hits with 8 fungal species 

(described in Lloyd et al., 2015) 

Lloyd et al. (2015) Dropped 

Sequence 

Conservation 

(Metazoa) 

Percent identity of BLAST hits with 8 metazoan species 

(described in Lloyd et al., 2015) 

Lloyd et al. (2015) Kept 

Function 

Interactions 

(AraNet) 

Number of functional interactions annotated in AraNet 

(http://www.functionalnet.org/aranet/) 

Lloyd et al. (2015) Dropped 

Protein-Protein 

Interactions (AIMC) 

Number of protein-protein interactions annotated in the 

Arabidopsis Interaction Network Map 

(http://interactome.dfci.harvard.edu/A_thaliana/) 

Lloyd et al. (2015) Dropped 

Nucleotide Diversity 

(Pi) 

Nucleotide Diversity (Pi) calculate between 80 

Arabidopsis accessions 

Lloyd et al. (2015) Kept 

Number of Protein 

Domains 

Number of annotated protein domains Lloyd et al. (2015) Kept 

Protein Length (in 

Amino Acids) 

Length of gene's longest protein product Lloyd et al. (2015) Kept 

 



 

238 

 

Supplemental Table 4.1 (cont’d) 

Maximum Percent 

Identity 

Percent identity with the highest scoring BLAST hit in 

Arabidopsis thaliana 

Lloyd et al. (2015) Kept 

Gene Family Size 

(OrthoMCL) 

Number of genes in the same OrthoMCL Family Lloyd et al. (2015) Dropped 

1. Indicates whether the feature was kept in the final linear model according to the filtering 

procedures described in Methods 
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Supplemental Table 4.2 Subsets of AtGenExpress used for ancestral expression inference  

Data Set Experimental 

Conditions 

Total 

Samples 

Number of Inferred States 

Control 4 24 13600 

Light and 

Development 

34 91 47792 

Stress Treatment 32 70 37391 

Stress Differential 48 175 66602 
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Supplemental Table 4.3 Observed and expected frequency of duplicates TF pairs in a 

conserved, partitioned, and diverged state 

Data Set Duplicate State α WGD β WGD γ WGD 

Observed Expected Observed Expected Observed Expected 

C
tr

l 

Conserved 0.54 0.58 0.46 0.50 0.49 0.49 

Partitioned 0.45 0.37 0.49 0.42 0.42 0.42 

Diverged 0.01 0.05 0.05 0.08 0.09 0.08 

L
ig

h
tD

ev
 

Conserved 0.53 0.58 0.47 0.51 0.49 0.50 

Partitioned 0.45 0.37 0.48 0.41 0.42 0.42 

Diverged 0.01 0.06 0.04 0.08 0.08 0.08 

D
if

f 

Conserved 0.57 0.62 0.53 0.57 0.49 0.51 

Partitioned 0.43 0.34 0.44 0.39 0.43 0.43 

Diverged 0.01 0.04 0.03 0.05 0.08 0.07 

S
tr

es
s 

Conserved 0.54 0.59 0.48 0.52 0.46 0.47 

Partitioned 0.44 0.36 0.47 0.41 0.44 0.44 

Diverged 0.01 0.05 0.05 0.07 0.10 0.10 
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Supplemental Table 4.4 Experimental conditions used in each subset of AtGenExpress 

 

Data Set Conditions 

Controls Biotic control, Shoot control, Root control, Cell control 

Light and 

Development 

1st node, Carpels, Cauline leaves, Continuous blue light, Continuous darkness, 

Continuous far red light, Continuous red light, Continuous white light, Flower, 

Flower, Hypocotyl, Leaf 7, Leaf 7, Leaves, Mature Pollen, Mature Rosette, 

Mutant Rosette, Mutant Shoot, Pedicel, Petals, Red light pulse, Rif, Roots, 

Rosette, Seedling, Seed siliques, Senescing leaves, Shoot apex, Sepals, 

Stamens, Stem, UV-A-B light pulse, UV-A light pulse, Vegetative Rosette 

Stress 

Treatment 

avrRpm1, DC3000, Flg22, GST, GST-NPP1, H2O, HrcC, HrpZ, LPS, MgCl1, 

P, Psph, heat, MgCa, Root Cold, Root Drought, Root Genotoxic, Root Heat, 

Root Osmotic, Root Oxidative, Root Salt, Root UV-B, Root Wounding, Shoot 

Cold, Shoot Drought, Shoot Genotoxic, Shoot heat, Shoot Osmotic, Shoot 

Oxidative, Shoot Salt, Shoot UV-B, Shoot Wounding 

Stress 

Differential 

Root Cold 4C, Root Drought, Root Genotoxic, Root Heat, Root Osmotic, Root 

Salt, Root UV-B, Root Wounding, Root avrRpm1, Root DC3000, Root Flg22, 

Root GST-NPP1, Root HrcC, Root HrpZ, Root P. infestans, Root Psph, Root 

Cold 4C, Root Columnar, Root Cortex, Root Drought, Root Endo, Root Epi, 

Root Genotoxic, Root Heat, Root Osmotic, Root Oxidative, Root Protophl, 

Root Salt, Root Stele, Root UV-B, Root Wounding, Shoot avrRpms1, Shoot 

Cold4C, Shoot D3C300, Shoot Drought, Shoot Flg22, Shoot genotoxic, Shoot 

GST-Npp1, Shoot Heat, Shoot HrcC, Shoot HrpZ, Shoot Osmotic, Shoot P. 

infestans, Shoot Psph, Shoot Salt, Shoot UV-B, Shoot Wounding 
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Supplemental Table 4.5 RNA-seq data sets 

Sequence Read Archive Identifiers 

SRR1257404, SRR1257403, SRR1257402, SRR1257401, SRR1257392, SRR1257391, 

SRR1257390, SRR1257389, SRR976397, SRR976398, SRR976391, SRR976394, 

SRR929001, SRR929000, SRR921316, SRR921315, SRR921314, SRR921313, 

SRR921312, SRR921311, SRR671949, SRR671948, SRR671947, SRR671946, 

SRR653578, SRR653577, SRR653576, SRR653575, SRR653574, SRR653573, 

SRR653572, SRR653571, SRR653570, SRR653569, SRR653568, SRR653567, 

SRR653566, SRR653565, SRR653564, SRR653563, SRR653562, SRR653561, 

SRR653557, SRR653556, SRR653555, SRR649539, SRR649538, SRR649537, 

SRR634971, SRR634970, SRR634969, SRR584126, SRR584125, SRR584120, 

SRR584119, SRR520239, SRR520238, SRR520237, SRR515492, SRR515491, 

SRR515490, SRR515489, SRR479032, SRR477076, SRR477075, SRR452279, 

SRR452278, SRR452277, SRR452275, SRR452276, SRR452274, SRR445738, 

SRR445737, SRR441559, SRR441558, SRR402997, SRR402996, SRR402995, 

SRR402994, SRR391052, SRR391051, SRR070570, SRR070571, SRR069568, 

SRR069569, SRR069565, SRR069566, SRR069567, SRR069558, SRR069559, 

SRR069556, SRR069557, SRR974753, SRR974752, SRR974751, SRR974750, 

SRR652153, SRR652152, SRR652151, SRR652150, ERR274309, ERR274308, 

ERR274311, ERR274310, SRR1146545, SRR1055106, SRR1023821, SRR1020622, 

SRR1020621, SRR1005386, SRR1005385, SRR1005239, SRR1005238, SRR1001910, 

SRR1001909, SRR902025, SRR835483, SRR800754, SRR800753, SRR609268, 

SRR609267, SRR578948, SRR578947, SRR522012, SRR520363, SRR520364, 

SRR505746, SRR505745, SRR505744, SRR505743, SRR505137, SRR505135, 

SRR493043, SRR493039, SRR493036, SRR493033, SRR445736, SRR445735, 

SRR445214, SRR445215, SRR445216, SRR445217, SRR445218, SRR445209, 

SRR445210, SRR445211, SRR445212, SRR445213, SRR445204, SRR445205, 

SRR445206, SRR445207, SRR445208, SRR443169, SRR443165, SRR443164, 

SRR443163, SRR419186, SRR419182, SRR404277, SRR403907, SRR403903, 

SRR402370, SRR402371, SRR390314, SRR390312, SRR390313, SRR390311, 

SRR390310, SRR390308, SRR390309, SRR390306, SRR390307, SRR390305, 

SRR390303, SRR390304, SRR390302, SRR388670, SRR388669, SRR388668, 

SRR970149, SRR953401, SRR953400, SRR953399, SRR952321, SRR847505, 

SRR847506, SRR847503, SRR847504, SRR847501, SRR847502, SRR218098, 

SRR522916, SRR360147, SRR360152, SRR360153, SRR360154, SRR360205, 

SRR218099, SRR218100, SRR218092, SRR339951, SRR218101, SRR218102, 

SRR218096, SRR218097, SRR218089, SRR218090, SRR218085, SRR218086, 

SRR218087, SRR218088, SRR218094, SRR218095 
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Supplemental Table 4.6 Genes belonging to each GO-defined function group 

Function 

Group 

Genes 

ATP Binding 

(GO:0005524) 

AT1G14390, AT1G58050, AT1G01910, AT3G24240, AT2G24130, AT3G52570, 

AT5G26860, AT4G36180, AT4G17380, AT1G25320, AT5G49030, AT3G59760, 

AT5G44800, AT3G45300, AT2G23300, AT3G10350, AT3G57300, AT4G22730, 

AT4G01800, AT5G57450, AT4G36270, AT2G07040, AT5G63410, AT1G05120, 

AT4G02930, AT4G37870, AT4G36290, AT2G19860, AT3G10690, AT1G11100, 

AT2G26730, AT5G56030, AT2G27490, AT2G02090, AT5G58150, AT1G10850, 

AT2G45500, AT1G62750, AT5G17760, AT3G05780, AT1G32060, AT3G24340, 

AT1G74310, AT1G17750, AT3G28450, AT4G01020, AT5G51560, AT1G17290, 

AT2G42290, AT3G24660, AT4G23740, AT1G24290, AT2G28970, AT1G01220, 

AT5G38830, AT2G25790, AT3G46370, AT4G21800, AT1G70460, AT1G28440, 

AT2G21450, AT3G52200, AT5G21326, AT2G27600, AT1G62950, AT2G27170, 

AT3G28520, AT1G29900, AT5G65710, AT5G06820, AT3G53230, AT1G26190, 

AT1G49250, AT3G14350, AT3G20190, AT5G07660, AT3G49670, AT5G66760, 

AT2G13370, AT5G61030, AT1G74260, AT5G49770, AT3G56100, AT5G46330, 

AT3G19210, AT3G57760, AT1G75640, AT1G18130, AT2G15300, AT1G69990, 

AT4G00570, AT2G13800, AT4G24190, AT4G13850, AT3G27440, AT4G35740, 

AT5G03290, AT5G56040, AT4G34220, AT1G48650, AT3G54660, AT5G22370, 

AT5G40000, AT5G17730, AT3G62120, AT3G09660, AT5G63950, AT2G24230, 

AT4G25120, AT2G16250, AT4G28650, AT3G27190, AT2G26080, AT3G24495, 

AT4G10320, AT1G48480, AT3G13065, AT2G20420, AT1G74230, AT5G45840, 

AT1G74330, AT3G50940, AT1G58060, AT5G67520, AT5G14610, AT5G07810, 

AT5G61480, AT1G51980, AT4G26300, AT4G31180, AT2G32800, AT5G14470, 

AT2G02220, AT3G06480, AT3G06483, AT3G57640, AT2G30800, AT1G29750, 

AT5G04110, AT4G23240, AT4G18640, AT3G02130, AT5G10020, AT5G46280, 

AT3G18810, AT3G28610, AT5G16715, AT2G35120, AT3G51740, AT4G36280, 

AT5G65720, AT4G12790, AT5G56000, AT4G01900, AT3G20475, AT1G27880, 

AT1G63940, AT1G72180, AT4G23900, AT3G56370, AT2G26280, AT1G27190, 

AT1G73080, AT3G14840, AT5G61460, AT5G35390, AT1G78900, AT5G07440, 

AT4G37840, AT2G45280, AT2G36570, AT5G19310, AT5G52520, AT1G66830, 

AT1G53730, AT4G03390, AT2G25840, AT1G29870, AT2G27060, AT5G60730, 

AT1G72300, AT2G18470, AT5G48600, AT2G44350, AT3G16600, AT3G02880, 

AT1G09970, AT3G47110, AT5G44635, AT3G50930, AT2G01130, AT1G06840, 

AT5G20690, AT1G53420, AT5G24100, AT5G45800, AT1G14610, AT2G44980, 

AT3G50230, AT3G10270, AT3G13170, AT3G53590, AT1G14000, AT4G11010, 

AT3G22880, AT4G00960, AT5G44700, AT5G26742, AT1G64210, AT5G16050, 

AT2G41820, AT3G02660, AT4G23270, AT4G20270, AT1G07200, AT3G02065, 

AT1G51830, AT2G01950, AT1G79930, AT1G50410, AT4G04350, AT5G50920, 

AT1G72040, KATE, AT1G75820, AT2G01460, AT1G50480, AT5G22010, AT3G23890, 

AT5G01890, AT4G37250, AT5G63310, AT5G59660, AT1G55810, AT3G20010, 

AT3G54670, AT1G63680, AT1G51390, AT3G19700, AT5G58300, AT2G33840, 

AT3G56300, AT1G79620, AT3G06010, AT3G08680, AT3G28570, AT3G28580, 

AT2G01210, AT4G33760, AT3G42850, AT5G01950, AT4G35030, AT3G49240, 

AT1G73980, AT3G04600, AT3G47090, AT5G37450, AT1G72460, AT2G02780, 

AT4G12060, AT2G14050, AT2G14750, AT3G25840, AT5G14210, AT1G09620, 

AT3G54280, AT4G35520, AT3G42670, AT3G45450, AT5G49780, AT5G41180, 

AT3G47570, AT2G13560, AT4G31250, AT5G20480, AT3G28600, AT5G16590, 

AT4G37910, AT4G24830, AT1G65190, AT3G45770, AT5G65700, AT1G21650, 

AT3G06580, AT1G31420, AT1G43910, AT5G56010, AT1G78980, AT5G05130, 

AT3G23990, AT1G66530, AT2G18190, AT1G05910, AT2G18193, AT3G07770, 

AT1G48310, AT1G03030, AT2G31170, AT5G55200, AT5G04895, AT3G24320, 

AT2G18760, AT2G16440, AT3G12580, AT5G54590, AT5G51350, AT4G30250,  
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 AT3G03770, AT1G74360, AT3G20040, AT2G16390, AT4G25370, AT5G47040, 

AT2G45590, AT4G20140, AT2G35920, AT3G28540, AT5G10880, AT2G04030, 

AT2G45340, AT5G17740, AT3G48870, AT1G72330, AT1G49270, AT1G63990, 

AT5G51070, AT3G24550, AT1G17410, AT1G68400, AT3G57830, AT2G25140, 

AT1G08600, AT4G29130, AT5G09590, AT3G47580, AT3G59410, AT1G08130, 

AT4G28490, AT3G13490, AT5G63710, AT3G48000, AT1G02670, AT1G67840, 

AT5G45780, AT2G33170, AT3G17840, AT1G07190, AT5G15920, AT1G33390, 

AT3G10700, AT3G03900, AT5G53320, AT2G46020, AT1G44900, AT1G50460, 

AT4G34200, AT3G12810, AT2G05710, AT5G05160, AT4G24280, AT5G54090, 

AT1G67510, AT3G05790, AT4G39940, AT5G48940, AT2G45490, AT1G22300, 

AT5G64580, AT4G16130, AT1G35710, AT2G39730, AT5G15450, AT4G14350, 

AT1G52290, AT2G07690, AT2G32850, AT1G35720, AT3G44740, AT5G06580, 

AT5G22750, AT1G56130, AT3G27730, AT2G33210, AT3G28040, AT2G46370, 

AT5G20420, AT4G02460, AT2G46620, AT5G19720, AT4G26510, AT5G04130, 

AT3G18524, AT1G66730, AT5G58720, AT1G28350, AT4G09320, AT1G61140, 

AT5G65690, AT5G40870, AT1G63430, AT5G43020, AT3G11710, AT3G29800, 

AT5G10370, AT4G29990, AT1G34110, AT2G26700, AT4G02060, AT4G39280, 

AT5G43530, AT3G01640, AT1G12460, AT3G55010, AT1G07650, AT1G50610, 

AT1G48030, AT5G08670, AT3G55400, AT5G63930, AT1G65070, AT5G50780, 

AT5G02820, AT1G47840, AT5G18170, AT3G42880, AT2G34560, AT4G39270, 

AT5G67200, AT1G45332, AT3G17240, AT5G38480, AT4G29380, AT2G31880, 

AT5G40010, AT3G58140, AT3G26560, AT5G53890, AT4G08920, AT1G60630, 

AT5G20040, AT5G17750, AT5G67280 

catalytic activity 

(GO:0003824) 

AT1G14290, AT1G64660, AT1G78050, AT1G50090, AT4G32790, AT5G20260, 

AT5G40270, AT3G55180, AT3G14790, AT4G12960, AT2G26000, AT2G31955, 

AT3G03990, AT2G04440, AT3G46440, AT2G38660, AT1G02270, AT4G02850, 

AT1G03210, AT5G37000, AT1G74290, AT5G19290, AT5G65280, AT5G62220, 

AT3G10572, AT4G10100, AT2G47630, AT4G14440, AT3G17365, AT5G44480, 

AT3G20650, AT2G35100, AT3G49680, AT3G55190, AT3G23820, AT3G62860, 

AT3G23940, AT1G08940, AT5G02970, AT4G12870, ARA2, AT3G26820, AT5G41250, 

AT4G34360, AT4G13360, AT4G29530, AT1G78500, AT1G29840, AT3G24030, 

AT2G29630, ARA1, AT5G03800, AT5G41650, AT2G43400, AT4G00620, AT4G22330, 

AT5G40290, AT4G14430, AT2G47760, AT5G57040, AT5G11130, AT1G12350, 

AT3G19710, AT4G12250, AT5G14180, AT2G25100, AT4G38800, AT3G10690, 

AT5G48010, AT1G53500, AT5G01260, AT1G13635, AT4G08170, AT3G03230, 

AT5G27410, AT1G63450, AT4G30440, AT2G20370, AT1G30620, AT3G14890, 

AT4G34700, AT3G05170, AT5G37530, AT1G76730, AT1G07645, AT1G27440, 

AT1G64185, AT2G22570, AT5G14980, AT4G33540, AT4G30540, AT2G01730, 

AT4G24340, AT3G57630, AT4G18270, AT1G10060, AT1G34380, AT5G38360, 

AT5G23220, AT2G32410, AT2G29040, AT2G45310, AT2G34770, AT1G01290, 

AT4G22756, AT5G57800, AT2G39725, AT4G33180, AT2G46370, AT1G13700, 

AT5G52810, AT1G25375, AT4G00110, AT1G22170, AT1G09935, AT1G74300, 

AT3G16700, AT4G12230, AT1G34270, AT5G64150, AT3G12290, AT5G19670, 

AT3G47560, AT1G68470, AT4G22580, AT5G11910, AT3G04390, AT4G16690, 

AT1G10070, AT4G25720, AT1G74680, AT4G13990, AT3G53520, AT2G25710, 

AT3G62830, AT3G13800, AT5G25820, AT2G28760, AT4G16210, AT3G26780, 

AT2G43980, AT5G16890, AT2G31990, AT5G04120, AT4G12890, AT1G65520, 

AT1G69640, AT5G26570, AT3G12260, AT3G24730, AT2G17280, AT2G47650, 

AT1G05350, AT4G22753, AT5G36150, AT2G20770, AT3G60510, AT2G39420, 

AT3G14990, AT1G48420, AT5G41120, AT2G23820, AT5G11610, AT1G37150, 

AT5G49570, AT5G62840, AT4G25434, AT3G45400, AT1G26160, AT3G42180, 

AT5G02080, AT5G08290, AT4G02860, AT4G15940, AT5G01580, AT5G22940, 

AT3G19820, AT1G74260, AT5G44930, AT2G32960, AT1G54570, AT4G38370,  
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 AT2G34850, AT1G02190, AT5G22460, AT4G30530, AT3G07620, AT3G47590, 

AT1G67410, AT3G60910, AT4G30550, AT1G07080, AT5G25310, AT3G52050, 

AT1G17890, AT3G26840, AT5G11560, AT5G65780, AT1G78570, AT1G52160, 

AT1G76060, AT4G12900, AT3G03240, AT3G50520, AT5G61840, AT5G33290, 

AT1G52920, AT4G29120, AT4G38040, AT4G00600, AT2G32740, AT2G42160, 

AT5G59290, AT3G49360, AT5G63420, AT3G16260, AT4G20870, AT3G62810, 

AT1G34340, AT3G16190, AT2G37700, AT5G57850, AT4G15370, AT5G28840, 

AT3G58830, AT5G24400, AT5G41130, AT2G19550, AT5G11350, AT3G03650, 

AT5G23230, AT3G05190, AT1G12850, AT4G12110, AT1G08310, AT1G02000, 

AT4G20460, AT1G21480, AT5G61220, AT2G32750, AT5G22620, AT5G42600, 

AT1G50110, AT4G37500, AT5G16760 

defense response 

(GO:0006952) 

AT3G44480, AT5G06870, AT1G53350, AT5G44870, AT3G50950, AT5G51060, 

AT5G51700, AT1G12290, AT1G19610, AT1G61100, AT1G72840, AT4G04110, 

AT1G72920, AT1G64070, AT1G55010, AT4G02600, AT1G14410, AT5G25910, 

AT2G03300, AT3G46530, AT1G57830, AT2G39940, AT1G52040, AT1G61070, 

AT4G09360, AT3G05370, AT5G48620, AT4G16920, AT5G66910, AT1G69550, 

AT2G26380, AT2G15170, AT5G46470, AT5G17890, AT5G46270, AT5G56030, 

AT1G66100, AT5G63660, AT3G23180, AT2G32660, AT1G17615, AT1G63870, 

AT1G26700, AT4G11210, AT1G61310, AT3G26830, AT3G05650, AT5G23820, 

AT5G38340, AT3G51570, AT1G63750, AT1G57650, AT1G58400, AT4G36140, 

AT4G19510, AT2G38900, AT1G52660, AT1G09090, AT4G10780, AT5G18360, 

AT1G33560, AT4G08450, AT4G03550, AT1G72870, AT2G43510, AT5G43740, 

AT3G11820, AT4G02150, AT2G02100, AT5G45080, AT2G39200, AT4G13920, 

AT1G66090, AT1G12220, AT1G64160, AT2G33050, AT5G24780, AT5G41740, 

AT1G42560, AT3G24900, AT2G02740, AT2G23960, AT3G04220, AT3G13662, 

AT3G13660, AT1G79680, AT3G23120, AT2G32140, AT3G25010, AT5G64930, 

AT1G75830, AT5G44420, AT4G16890, AT1G59124, AT5G13160, AT5G18350, 

AT2G17430, AT4G16960, AT2G34930, AT1G71260, AT5G35450, AT1G12210, 

AT2G22330, AT1G61180, AT5G45260, AT5G45060, AT3G05660, AT2G03760, 

AT2G33670, AT3G46860, AT5G06860, AT5G44900, AT1G63360, AT4G09430, 

AT5G36930, AT1G58848, AT3G14460, AT3G46730, AT3G15010, AT1G72850, 

AT1G64060, AT1G72910, AT1G72520, AT3G49120, AT5G46760, AT3G51560, 

AT4G14370, AT3G45290, AT4G24230, AT3G53260, AT4G33300, AT3G09710, 

AT2G43520, AT4G23515, AT4G11170, AT1G66340, AT5G65970, AT3G05360, 

AT4G16930, AT5G17880, AT1G47890, AT2G02130, RPP22, AT4G13810, AT4G11190, 

AT5G46260, AT5G48780, AT2G02140, AT2G43910, AT1G17600, AT1G58390, 

AT5G04230, AT2G15010, AT3G23010, AT1G61300, AT1G63740, AT3G25020, 

AT5G44510, AT1G56520, AT2G15080, AT1G52900, AT5G38330, AT5G04720, 

AT1G58410, AT1G58807, AT4G19500, AT4G17880, AT5G42510, AT5G49040, 

AT4G04220, AT3G44630, AT1G60320, AT2G03030, AT3G50020, AT4G16940, 

AT2G14080, AT5G46520, AT3G20600, AT1G72260, AT1G17420, AT4G24250, 

AT2G15220, AT3G25510, AT1G65870, AT3G52450, AT1G19230, AT3G14470, 

AT1G50180, AT5G45090, AT2G33060, AT4G09420, AT4G38700, AT3G04210, 

AT3G23110, AT3G13650, AT5G46450, AT1G59780, AT1G65390, AT5G64905, 

AT4G26090, AT5G43580, AT5G17680, AT2G21100, AT5G07390, AT2G47730, 

AT5G05170, AT3G11080, AT5G45230, AT3G61220, AT5G40170, AT5G11250, 

AT1G72950, AT4G39950, AT3G15700, AT5G45070, AT3G56860, AT1G58602, 

AT1G56510, AT5G15130, AT2G35930, AT5G44910, AT1G58170, AT1G51480, 

AT5G40100, AT5G43730, AT5G41540, AT1G72860, AT1G72900, AT5G45200, 

AT4G39030, AT4G30070, AT5G48770, AT3G49110, AT4G16990, AT5G47910, 

AT5G40910, AT1G22900, AT4G19920, EDS9, AT4G19925, AT4G16900, AT1G63350,  

 



 

246 

 

Supplemental Table 4.6 (cont’d) 

 AT1G15890, AT5G46490, AT5G58120, AT2G02120, AT4G11340, AT1G31540, 

AT4G11180, AT2G30860, AT3G48090, AT3G23240, AT5G47250, AT2G16870, 

AT1G27180, AT4G27190, AT1G63880, AT1G63730, AT1G45616, AT1G55210, 

AT5G53760, AT1G57670, AT4G19530, AT3G20820, AT3G44670, AT5G46510, 

AT1G72940, AT5G45240, AT1G09665, AT2G17050, AT4G26740, AT4G23570, 

AT3G11010, AT3G11480, AT1G57850, AT1G12280, AT3G45860, AT1G72930, 

AT2G41060, AT5G45220, AT3G16720, AT1G31580, AT1G10920, AT1G11000, 

AT2G32680, AT3G44400, AT1G47370, AT5G41550, AT4G19910, VET1, AT4G16950, 

AT5G66900, AT1G59620, AT2G23970, AT2G26010, AT5G43470, AT3G11340, 

AT2G21110, AT5G43570, AT1G57630, AT4G23310, AT5G47260, AT1G66980, 

AT5G18370, AT1G27170, AT2G14610, AT2G43710, AT1G59218, AT5G38350, 

AT5G36910, AT3G55230, AT5G22690, AT3G46710, AT5G51630, AT3G11840, 

AT5G45210, AT4G12010, AT1G61560, AT1G55020, AT5G49140, AT1G61190, 

AT2G17060, AT5G38850, AT1G73050, CIR3, AT1G72890, AT5G66890, AT1G33590, 

AT5G23400, AT4G23690, AT5G27060, AT4G23510, AT5G42500, AT2G37040, 

AT1G52030, AT3G07040, AT5G42650, AT1G71400, AT1G65850, AT5G44920, 

AT1G71390, AT4G23280, AT2G44110, AT1G12663, AT1G12660, AT5G55240, 

AT5G17970, AT5G13530, AT5G41750, AT4G27220, AT5G63020, AT4G36150, 

AT2G15130, AT2G26020, AT5G45000, AT5G47280, AT5G44430, AT5G15410, 

AT5G05400, AT1G56540, AT1G62630, AT4G16860, AT5G11270, AT4G19520, 

AT2G17480, AT5G45250, AT1G11310 

DNA 

endoreduplication 

(GO:0042023) 

AT3G21860, AT1G15570, AT2G27960, AT5G04470, AT2G19330, AT5G20570, 

AT3G20780, AT5G42190, AT1G20930, AT2G20140, AT4G26760, AT3G53970, 

AT3G08690, AT2G21550, AT1G49910, AT1G80370, AT1G70210, AT3G50070, 

AT4G05190, AT1G64520, AT1G47870, AT5G24630, AT2G22490, AT2G23430, 

AT1G69690, AT1G78770, AT1G77390, AT5G24330, AT3G13550, AT5G22220, 

AT1G75950, AT5G27620, AT4G34160, AT1G50490, AT3G11270, AT1G03780, 

AT3G48150, AT5G05560, AT5G11300, AT1G73690, AT1G66750, AT1G76540, 

AT5G48820, AT3G60010, AT5G41700, AT2G40550, AT5G57950, AT1G15660, 

AT2G16740, AT4G24820, AT4G28980, AT3G48750, AT3G12280, AT3G19150, 

AT5G10440, AT3G54180, AT1G64230, RFI, AT5G03415, AT1G20200, AT5G02470, 

AT3G42830, AT2G32710, AT3G24810, AT5G63610, AT3G25980, AT5G56150, 

AT3G20060, AT2G18290, AT2G42260, AT4G22910, AT2G39090, AT5G08550, 

AT2G03430, AT3G11520, AT3G15180, AT3G21850, AT3G48160, AT1G59540, 

AT5G11510, AT1G75990, AT1G47230, AT4G11920, AT5G64760, AT1G48380, 

AT5G13840, AT3G50630, AT5G09900, AT4G03270, AT5G51600, AT4G22970, 

AT2G27970, AT2G20000, AT5G65420, AT1G49620, AT4G29040, AT3G16320, 

AT4G14150, AT1G02970, AT1G06590, AT5G05780, AT1G29150, AT4G37630, 

AT2G36010, AT5G25380, AT1G50240, AT1G18040, AT3G60840, AT3G59550, 

AT4G38600, AT5G67100, AT3G19590 

hydrolase activity 

hydrolyzing O-

glycosyl 

compounds 

(GO:0004553) 

AT1G11820, AT4G02290, AT4G27830, AT3G55260, AT4G19820, AT1G77780, 

AT3G57270, AT5G20870, AT3G60130, AT1G51470, AT1G75940, AT1G66270, 

AT5G58480, AT4G23560, AT5G16580, AT2G44480, AT3G09260, AT4G29360, 

AT1G64390, AT4G27820, AT4G19730, AT1G51490, AT1G75680, AT5G20940, 

AT5G09730, AT3G57260, AT5G20250, AT5G48375, AT2G05790, AT3G18080, 

AT3G62740, AT5G58090, AT3G47000, AT5G11920, AT3G60140, AT4G33810, 

AT3G13790, AT1G22880, AT4G22100, AT3G57520, AT1G33220, AT4G33830, 

AT4G33860, AT3G23770, AT5G20950, AT5G25980, AT2G20680, AT1G52400, 

AT3G30540, AT3G62750, AT3G47040, AT3G47010, AT2G44470, AT5G11720, 

AT2G19440, AT1G10050, AT4G19770, AT1G02310, AT1G55120, AT5G20390, 

AT4G08160, AT4G38650, AT3G19620, AT3G03640, AT2G14690, AT5G28510, 

AT3G43860, AT1G65610, AT2G01630, AT3G57240, AT3G55780, AT1G02640, 

AT3G04010, AT5G63840, AT3G55430, AT4G11050, AT1G12240, AT3G10900,  
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 AT3G45940, AT2G44460, AT5G67460, AT1G70710, AT2G32990, AT1G66280, 

AT1G62660, AT4G19760, AT1G48930, AT2G39640, AT2G44490, AT5G42260, 

AT3G13784, AT1G13130, AT1G55740, AT1G71380, AT2G44550, AT4G18340, 

AT1G02850, AT4G17180, AT5G20340, AT5G49360, AT4G33840, AT3G23640, 

AT1G09010, AT5G64570, AT5G55180, AT3G61810, AT3G18070, AT4G26830, 

AT4G19750, AT1G30080, AT3G15800, AT4G21760, AT4G34480, AT4G19810, 

AT2G44540, AT3G26140, AT5G18220, AT4G39000, AT5G24540, AT1G78060, 

AT1G26560, AT1G60090, AT1G32860, AT3G07320, AT3G52600, AT3G46570, 

AT2G27500, AT4G19740, AT2G44450, AT5G36890, AT1G47600, AT4G31140, 

AT5G20330, AT1G05590, AT5G56590, AT4G01040, AT2G44570, AT5G16700, 

AT4G16260, AT1G61810, AT5G64790, AT4G33820, AT1G64760, AT3G54440, 

AT5G24550, AT5G49720, AT3G24330, AT4G14080, AT3G62710, AT4G09740, 

AT3G47050, AT2G25630, AT4G01970, AT2G36190, AT3G13560, AT2G16230, 

AT1G61820, AT2G44560, AT1G66250, AT1G23210, AT5G26000, AT1G02800, 

AT3G06510, AT5G20560, AT1G77790, AT4G38300, AT4G39010, AT5G01930, 

AT1G58370, AT5G54570, AT4G28320, AT3G10890, AT4G24260, AT5G44640, 

AT5G10560, AT1G68560, AT5G04885, AT5G40390, AT3G21370, AT1G19940, 

AT2G26600, AT4G19800, AT4G19720, AT5G24090, AT5G42100, AT5G66460, 

AT3G60120, AT5G42720, AT3G26130, AT2G32860, AT5G17500 

kinase activity 

(GO:0016301) 

AT4G40010, AT5G46080, AT1G51660, AT5G66850, AT2G25880, AT5G02290, 

AT1G01540, AT1G73500, AT5G27510, AT1G28390, AT3G17750, AT1G68400, 

AT1G67470, AT3G59350, AT2G02800, AT4G36180, AT4G10390, AT1G17160, 

AT1G25320, AT4G28860, AT1G09600, AT2G28940, AT5G15730, AT2G39180, 

AT3G48260, AT3G23340, AT1G29730, AT4G04500, AT2G23300, AT3G45430, 

AT4G28540, AT5G02070, AT3G57710, AT3G26940, AT3G63280, AT1G65250, 

AT4G23250, AT1G29230, AT4G23150, AT4G01330, AT1G12580, AT1G71530, 

AT5G08590, AT2G25760, AT2G14510, AT5G07620, AT5G10930, AT3G15220, 

AT2G21480, AT1G16440, AT5G59270, AT5G56580, AT1G03930, AT4G38230, 

AT1G51890, AT1G47890, AT5G65500, AT4G04570, AT2G24360, AT3G46330, 

AT2G41970, AT2G40560, AT3G53380, AT2G18530, AT2G40120, AT5G22050, 

AT4G33950, AT4G24480, AT2G43230, AT2G32660, AT4G23320, AT5G67080, 

AT3G12690, AT5G60310, AT2G34180, AT5G57035, AT4G38830, AT4G14780, 

AT3G13670, AT2G17220, AT3G23000, AT3G54180, AT1G22720, AT1G54610, 

AT5G10520, AT3G28450, AT3G05650, AT1G11350, AT1G09000, AT5G38990, 

AT2G42290, AT1G77720, AT1G70520, AT4G23740, AT4G13020, AT2G01460, 

AT5G04510, AT1G73460, AT2G28970, AT5G49470, AT3G50730, AT2G46700, 

AT1G16130, AT3G44200, AT2G25790, AT1G67000, AT1G56120, AT3G46370, 

AT3G44610, AT1G28440, AT1G67580, AT1G66920, AT3G19100, AT1G61550, 

AT5G66710, AT2G39110, AT1G62950, AT1G79670, AT5G60080, AT1G61380, 

AT4G39110, AT1G64630, AT2G17170, AT4G01370, AT1G33560, AT4G16970, 

AT5G61350, AT5G06820, AT5G66880, AT5G47850, AT1G26190, AT4G28880, 

AT3G01085, AT3G45670, AT3G20200, AT5G40540, AT1G67720, AT2G37050, 

AT1G53430, AT3G20190, AT1G06390, AT2G31390, AT4G28350, AT3G05050, 

AT1G61420, AT4G26610, AT4G08850, AT3G45790, AT3G01490, AT2G07020, 

AT3G10540, AT5G62230, AT1G33260, AT5G46330, AT4G13920, AT1G77280, 

AT1G11410, AT3G48750, AT5G18610, AT2G41930, AT5G35980, AT3G28040, 

AT2G33050, AT4G13190, AT1G52310, AT5G25910, AT1G75640, AT4G23160, 

AT2G15300, AT1G69990, AT1G14370, AT4G11480, AT4G02630, AT2G42960, 

AT1G51805, AT2G23950, AT1G79680, AT3G59790, AT4G33080, AT3G23120, 

AT2G33580, AT5G65530, AT2G45910, AT5G59650, AT3G24660, AT5G51830, 

AT3G20530, AT3G27440, AT4G34500, AT1G21230, AT5G56040, AT1G16120, 

AT1G18350, AT2G40500, AT5G41730, AT5G39440, AT2G30360, AT3G07980, 

AT5G13160, AT1G62400, AT5G54380, AT3G17410, AT1G70740, AT3G54030,  



 

248 

 

Supplemental Table 4.6 (cont’d) 

 AT5G60280, AT3G17840, AT1G20930, AT3G59480, AT2G16750, AT2G19230, 

AT2G37840, AT4G31110, AT1G61610, AT1G69270, AT3G27190, AT4G24100, 

AT1G24030, AT4G14580, AT4G23290, AT1G09440, AT3G17420, AT3G13065, 

AT1G78940, AT3G46930, AT4G04695, AT1G11330, AT1G61860, AT1G51810, 

AT1G73450, AT1G49350, AT5G01810, AT5G61550, AT1G53570, AT5G19450, 

AT3G04910, AT1G18670, AT1G61460, AT1G61500, AT1G19600, AT4G32830, 

AT2G04300, AT5G18190, AT1G16670, AT2G34290, AT4G08470, AT2G28930, 

AT1G61480, AT3G46160, AT2G46070, AT3G45440, AT3G22750, AT4G11530, 

AT2G05940, AT1G29750, AT1G32320, AT2G34650, AT3G46420, AT3G02130, 

AT1G51790, AT5G48380, AT5G07140, AT5G13290, AT4G21230, AT4G35310, 

AT2G14440, AT5G28290, AT3G05360, AT5G59260, AT5G67380, AT3G46400, 

AT1G03920, AT5G58520, AT3G51740, AT1G07870, AT3G21450, AT1G07150, 

AT4G18700, AT1G51800, AT5G01560, AT2G19190, AT3G59110, AT1G01450, 

AT1G18390, AT3G27560, AT3G05370, AT5G60550, AT5G55560, AT5G28680, 

AT2G41860, AT4G23230, AT3G13530, AT5G58140, AT1G23540, AT5G60890, 

AT1G72180, AT5G01060, AT4G11900, AT1G07570, AT4G04960, AT1G73670, 

AT1G18890, AT5G25110, AT5G58350, AT5G60320, AT2G43850, AT3G56370, 

AT1G27190, AT5G18910, AT4G04700, AT1G51870, AT2G23070, AT5G45430, 

AT5G24360, AT3G53640, AT2G20850, AT5G02800, AT5G11850, AT1G07880, 

AT4G04490, AT2G35620, AT2G38620, AT4G19110, AT1G55610, AT4G02410, 

AT3G50500, AT2G15080, AT3G12200, AT2G30980, AT1G21240, AT1G49730, 

AT5G12480, AT5G39000, AT3G25010, AT2G28960, AT2G28990, AT3G20830, 

AT3G50720, AT1G35670, AT1G80870, AT4G26890, AT1G66930, AT3G04810, 

AT3G55550, AT1G66830, AT1G03740, AT2G19470, AT1G25390, AT3G58640, 

AT4G21400, AT4G04220, AT2G38910, AT4G03390, AT5G11020, AT3G45860, 

AT1G69200, AT5G16900, AT4G18950, AT4G29050, AT3G05140, AT3G59730, 

AT2G38490, AT1G66750, AT5G35960, AT2G40270, AT3G55950, AT5G08160, 

AT1G05100, AT3G21630, AT2G39360, AT3G02880, AT3G11870, AT1G34210, 

AT1G09970, AT3G47110, AT1G17540, AT4G10730, AT3G45640, AT3G24540, 

AT5G28080, AT5G20690, AT1G53420, AT1G60800, AT1G61430, AT4G32660, 

AT3G53840, AT4G21940, AT3G02810, AT3G50230, AT3G59420, AT5G49760, 

AT5G51270, AT5G25930, AT3G45780, AT2G23450, AT4G11460, AT3G06230, 

AT5G59670, AT1G16260, AT1G06020, AT5G43910, AT1G12680, AT3G45410, 

AT2G36570, AT1G54960, AT5G60300, AT1G01140, AT2G40580, AT3G17850, 

AT2G41820, AT2G33060, AT4G11490, AT2G32510, AT1G18040, AT4G26540, 

AT1G65800, AT5G14720, AT1G10940, AT1G08720, AT1G48260, AT1G51830, 

AT4G13000, AT4G14340, AT2G43790, AT3G23110, AT5G62310, AT1G78290, 

AT3G22420, AT1G21590, AT3G09830, AT2G23030, AT1G64300, AT3G08870, 

AT3G57750, AT4G24740, AT2G30940, AT2G42550, AT1G63700, AT1G75820, 

AT4G31170, AT5G24080, AT5G04870, AT1G53050, AT5G67520, AT2G43700, 

AT3G11080, AT5G01890, AT4G37250, AT3G06620, AT4G23650, AT1G55810, 

AT1G16760, AT5G24430, AT5G40170, AT3G17510, AT5G58300, AT5G16000, 

AT1G66970, AT5G47070, AT4G18250, AT2G25440, AT3G13690, AT3G59830, 

AT1G70430, AT3G55450, AT4G26690, AT5G63940, AT1G79620, AT3G08680, 

AT3G58760, AT4G31100, AT3G51990, AT4G28706, AT1G61370, AT2G01210, 

AT3G53570, AT5G38560, AT4G35030, AT4G10010, AT1G49160, AT2G29220, 

AT2G17530, AT1G73980, AT3G51550, AT4G10260, AT1G16110, AT5G11400, 

AT1G60630, AT1G01560, AT5G37450, AT1G72460, AT5G18500, AT5G39030, 

AT3G20860, AT3G15890, AT3G62220, AT3G25490, AT3G09010, AT1G49180, 

AT5G58950, AT1G22870, AT5G19360, AT3G28690, AT3G25250, AT5G01820, 

AT5G41260, AT4G20450, AT1G29720, AT3G46340, AT3G53810, AT1G78530, 

AT4G08480, AT2G14750, AT1G68830, AT1G16160, AT3G58690, AT2G26830, 

AT5G01950, AT3G59740, AT1G72760, AT1G30640, AT5G07280, AT5G06740,  
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 AT3G14370, AT1G18160, AT3G46410, AT2G41140, AT5G20480, AT2G33020, 

AT1G15530, AT4G36450, AT1G76040, AT3G49060, AT4G32000, AT4G04710, 

AT5G63610, AT4G13820, AT1G11280, AT3G09780, AT3G53030, AT5G65700, 

AT2G30730, AT3G05660, AT1G74490, AT4G33430, AT4G18710, AT5G56460, 

AT4G29180, AT3G57740, AT1G31420, AT5G55830, AT1G01740, AT1G78980, 

AT5G41680, AT3G01300, AT2G41910, AT5G10290, AT3G44850, AT1G80640, 

AT1G48490, AT5G39420, AT4G23220, AT2G23080, AT1G66430, AT4G00710, 

AT5G65240, AT1G07560, AT3G04690, AT1G73660, AT1G51940, AT2G31010, 

AT5G35370, AT1G51860, AT1G30270, AT2G26290, AT2G37710, AT1G48480, 

AT5G58730, AT2G28250, AT3G08720, AT5G50180, AT4G11330, AT3G21340, 

AT3G52530, AT3G50530, AT5G44290, AT2G20300, AT4G35600, AT1G21250, 

AT1G53165, AT2G20470, AT4G35230, AT1G67890, AT2G47060, AT5G42120, 

AT5G51350, AT1G50700, AT1G69790, AT3G49370, AT5G26150, AT3G45390, 

AT4G27600, AT5G58540, AT2G18890, AT1G08590, AT5G11410, AT4G32300, 

AT3G46350, AT3G54090, AT5G43320, AT1G53700, AT4G23130, AT1G10620, 

AT5G40380, AT2G36350, AT5G22840, AT4G08800, AT1G61400, AT1G11300, 

AT5G42440, AT3G59700, AT2G07180, AT5G20050, AT3G16030, AT1G67520, 

AT5G38250, AT3G06640, AT2G29250, AT1G02970, AT5G61570, AT5G35380, 

AT1G04440, AT1G61590, AT4G32250, AT5G51770, AT4G14480, AT1G73080, 

AT5G60900, AT3G61960, AT2G44830, AT5G59680, AT4G23300, AT3G57830, 

AT1G26970, AT2G19410, AT2G31800, AT1G61440, AT5G37790, AT5G15080, 

AT5G45810, AT1G51170, AT2G19400, AT1G72540, AT5G50000, AT4G11890, 

AT1G16150, AT3G47580, AT5G41990, AT4G04510, AT4G28490, AT5G59700, 

AT4G02420, AT5G59660, AT5G65600, AT1G67840, AT3G57700, AT3G45420, 

AT2G32680, AT5G45780, AT3G45240, AT4G34440, AT2G24370, AT1G61950, 

AT1G65790, AT5G64960, AT5G61560, AT3G10660, AT4G23140, AT3G56760, 

AT3G01840, AT2G23200, AT4G00720, AT3G03900, AT3G08760, AT1G51820, 

AT1G48210, AT1G70530, AT5G63370, AT4G09570, AT1G59580, AT5G53320, 

AT5G25440, AT4G00330, AT5G44100, AT2G30740, AT4G23180, AT2G43690, 

AT5G38280, AT2G26980, AT1G54820, AT5G01540, AT1G74740, AT5G03320, 

AT3G18750, AT3G27580, AT1G52540, AT3G52890, AT3G20410, AT5G05160, 

AT1G70450, AT3G03940, AT1G53440, AT1G66460, AT5G63650, AT1G66980, 

AT1G49100, AT3G19300, AT5G01550, AT5G35580, AT1G51910, AT1G73690, 

AT5G09890, AT5G55090, AT4G27300, AT2G30040, AT1G51850, AT3G47090, 

AT1G61360, AT1G71830, AT2G28590, AT4G29810, AT1G10210, AT5G20930, 

AT3G61080, AT4G05200, AT5G12180, AT3G21220, AT1G76540, AT1G11340, 

AT2G17520, AT1G49580, AT4G22130, AT5G58380, AT5G23170, AT1G17910, 

AT4G14350, AT5G35410, AT5G60270, AT2G31500, AT1G57700, AT3G57530, 

AT1G34300, AT4G28980, AT5G39020, AT5G56890, AT3G57120, AT4G29450, 

AT1G17750, AT5G01920, AT4G21410, AT4G17660, AT5G57630, AT1G66910, 

AT5G58940, AT3G57770, AT2G11520, AT5G24010, AT1G69220, AT1G79640, 

AT1G54510, AT5G23580, AT3G59750, AT5G60090, AT1G05700, AT1G61390, 

AT4G03230, AT1G06700, AT2G48010, AT1G72710, AT1G67510, AT1G19390, 

AT4G02010, AT4G26510, AT2G25090, AT1G06730, AT5G27060, AT5G27790, 

AT5G56790, AT3G26700, AT4G25390, AT1G19090, AT2G05060, AT1G23700, 

AT3G46760, AT4G39940, AT3G53930, AT5G49660, AT5G40870, AT1G60940, 

AT5G66790, AT5G45820, AT5G35390, AT5G43020, AT4G23280, AT3G57720, 

AT5G10270, AT5G03730, AT4G04540, AT1G69910, AT3G56050, AT1G30570, 

AT5G07180, AT3G07070, AT2G23770, AT3G45330, AT2G18170, AT2G26700, 

AT5G18700, AT2G41920, AT1G79250, AT5G40030, AT1G64210, AT2G19210, 

AT4G04740, AT5G12000, AT3G46140, AT3G51850, AT1G51620, AT1G69730, 

AT4G25160, AT1G56720, AT1G07550, AT4G23210, AT5G03140, AT4G32710, 

AT5G48740, AT4G23190, AT3G23310, AT4G22940, AT1G70110, AT2G17290,  
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 AT1G61490, AT2G39660, AT3G57730, AT1G11050, AT5G49780, AT3G63260, 

AT5G46570, AT1G70130, AT4G15530, AT1G45160, AT5G37850, AT1G29740, 

AT3G47570, AT1G03030, AT4G21380, AT1G50610, AT1G71410, AT4G31250, 

AT5G65710, AT3G08730, AT1G08650, AT4G24400, AT4G04720, AT4G30960, 

AT1G12460, AT2G17090, AT5G10530, AT3G42880, AT3G11010, AT5G55910, 

AT4G26100, AT5G57015, AT1G76370, AT1G55200, AT4G28670, AT5G01020, 

AT3G04530, AT5G67280, AT1G33770, AT5G03640, AT5G12090, AT5G58050, 

AT4G08500, AT4G39400, AT3G50310, AT5G16500, AT3G28890, AT2G25220, 

AT5G38240, AT3G24790, AT2G31880, AT5G07070, AT5G47750, AT2G35890, 

AT3G06030, AT5G53450, AT5G01850, AT1G06030, AT1G76360, AT1G51880, 

AT5G06940, AT4G26070, AT4G35500, AT5G16590, AT3G50000, AT5G03300, 

AT5G38260, AT3G46290, AT1G07650 

lipid binding 

(GO:0008289) 

AT5G07540, AT4G33355, AT2G15050, AT4G08670, AT1G43665, AT1G12100, 

AT1G62790, AT5G38170, AT4G27140, AT2G15325, AT1G55260, AT5G46900, 

AT2G27130, AT3G61050, AT3G18280, AT2G37870, AT5G07530, AT5G55460, 

AT1G32280, AT5G45560, AT3G22620, AT5G38160, AT5G55410, AT3G22580, 

AT2G48130, AT4G22630, AT4G27150, AT2G13820, AT4G12470, AT3G08770, 

AT1G73560, AT5G07520, AT5G56480, AT1G62500, AT5G48490, AT1G48750, 

AT3G57310, AT3G20270, AT4G30880, AT5G38195, AT4G22520, AT5G62080, 

AT3G22600, AT5G48485, AT1G62510, AT1G66850, AT4G22610, AT5G01870, 

AT5G07550, AT3G58550, AT1G04970, AT4G12490, AT5G38180, AT3G43720, 

AT5G13900, AT5G07230, AT2G10940, AT4G08530, AT3G52130, AT3G53980, 

AT3G22570, AT2G48140, AT3G51590, AT1G36150, AT4G12480, AT1G12090, 

AT4G12510, AT5G07510, AT4G22460, AT2G45180, AT5G46890, AT4G00165, 

AT4G12550, AT1G73780, AT5G54740, AT5G53470, AT1G73890, AT5G09370, 

AT4G22470, AT4G12520, AT3G22120, AT2G18370, AT5G07560, AT4G33550, 

AT2G44290, AT5G52160, AT4G19040, AT4G14815, AT4G27160, AT3G07450, 

AT1G73550, AT4G12530, AT4G12360, AT4G15160, AT4G22490, AT2G14846, 

AT5G05960, AT5G60690, AT5G64080, AT4G12500, AT4G27170, AT1G18280, 

AT5G55450 

oxidoreductase 

activity 

(GO:001649) 

AT3G03910, AT3G61580, AT3G05260, AT1G06350, AT3G61220, AT2G46210, 

AT1G14520, AT2G31360, AT5G04070, AT5G21482, AT3G03350, AT1G63380, 

AT2G29330, AT5G50600, AT1G20020, AT3G49620, AT5G49740, AT1G06100, 

AT1G49670, AT3G03100, AT5G06060, AT1G07440, AT4G10020, AT1G76150, 

AT3G20790, AT4G09670, AT1G72190, AT5G50690, AT1G06360, AT5G59540, 

AT3G03980, AT1G15140, AT5G49730, AT3G55290, AT4G20760, AT5G04900, 

AT3G49630, AT3G02280, AT3G06810, AT5G18210, AT2G29340, AT4G03140, 

AT1G07450, AT2G17845, AT5G07440, AT5G19200, AT1G51720, AT2G29290, 

AT3G01980, AT1G67730, AT4G24050, AT5G18170, AT1G03630, AT4G13250, 

AT3G08970, AT3G26760, AT3G50560, AT3G03330, AT5G50130, AT2G29350, 

AT2G47140, AT2G05990, AT2G24190, AT3G50210, AT2G22260, AT3G15850, 

AT1G75200, AT5G28310, AT1G52340, AT3G26770, AT5G02540, AT5G51030, 

AT5G50770, AT2G23096, AT4G23420, AT1G25460, AT2G29360, AT3G15870, 

AT5G10050, AT1G06090, AT1G15220, AT3G04000, AT1G12550, AT3G06060, 

AT3G21420, AT5G53090, AT2G29170, AT1G03990, AT3G60370, AT5G50590, 

AT4G23340, AT5G63290, AT4G26965, AT2G29370, AT1G62610, AT5G11330, 

AT5G60020, AT4G04930, AT4G17370, AT1G06080, AT3G46170, AT1G34200, 

AT2G47150, AT5G48440, AT4G05390, AT2G37540, AT5G56470, AT3G55310, 

AT5G61830, AT1G24470, AT3G47360, AT1G64590, AT3G51680, AT5G54190, 

AT1G79870, AT2G29300, AT1G57770, AT1G01800, AT2G29260, AT4G15093, 

AT1G68540, AT4G11410, AT5G64250, AT3G51840, AT5G67290, AT1G54870, 

AT1G10310, AT2G29150, AT2G47120, AT1G32480, AT4G05530, AT3G47350, 

AT4G23430, AT5G50700, AT2G07718, AT3G42960, AT1G58300, AT5G15940,  
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 AT1G61720, AT1G06120, AT2G29310, AT2G38080, AT1G30510, AT4G09750, 

AT5G65205, AT2G30670, AT3G29250, AT5G53100, AT2G47130, AT5G66190, 

AT2G07727, AT3G29260, AT4G13180, AT2G29320, AT3G59710, AT4G16765, 

AT4G27440, AT3G56840, AT5G50160, AT4G27760, AT1G52810, AT5G60340 

oxygen binding 

(GO:0019825) 

AT4G31500, AT5G04660, AT3G48310, AT2G46660, AT4G39950, AT1G13110, 

AT3G20960, AT3G20140, AT2G30770, AT3G26180, AT4G15110, AT3G53280, 

AT2G34500, AT2G32440, AT1G55940, AT1G69500, AT4G37400, AT5G25130, 

AT4G37310, AT4G31950, AT1G74110, AT5G06905, AT2G12190, AT1G64940, 

AT3G14650, AT3G10570, AT2G29090, AT4G32170, AT5G51900, AT1G67110, 

AT1G33720, AT4G27710, AT1G28430, AT1G57750, AT3G20100, AT1G11680, 

AT3G26190, AT1G73340, AT3G56630, AT4G15350, AT4G19230, AT3G20090, 

AT1G12740, AT4G31940, AT4G37410, AT3G26290, AT1G64950, AT5G09970, 

AT5G25120, AT4G15360, AT2G44890, AT3G48520, AT4G37360, AT2G21910, 

AT2G14100, AT3G10560, AT3G14660, AT1G13090, AT1G17060, AT3G14620, 

AT4G12310, AT3G48300, AT2G30750, AT2G24180, AT3G53300, AT3G26280, 

AT5G23190, AT5G05690, AT3G20080, AT3G26150, AT1G01280, AT1G13080, 

AT1G01600, AT3G01900, AT1G58260, AT3G26200, AT5G44620, AT5G24900, 

AT2G23220, AT3G28740, AT3G26160, AT2G45550, AT5G36110, AT2G27010, 

AT5G24960, AT1G11610, AT5G14400, AT2G28860, AT5G25180, AT1G50520, 

AT5G10600, AT5G57220, AT4G15330, AT1G34540, AT2G27690, AT5G48000, 

AT2G46950, AT2G26170, AT5G08250, AT3G14680, AT3G26830, AT1G47620, 

AT1G75130, AT5G38450, AT5G47990, AT1G64930, AT2G27000, AT1G62580, 

AT5G24910, AT3G26270, AT5G67310, AT1G33730, AT1G74550, AT3G26170, 

AT3G26210, AT3G13730, AT1G01190, AT5G61320, AT2G42850, AT1G11600, 

AT4G39510, AT5G35715, AT3G19270, AT5G10610, AT2G28850, AT3G25180, 

AT1G16400, AT2G22330, AT5G04330, AT5G42580, AT5G38970, AT3G53130, 

AT5G45340, AT3G14690, AT3G48290, AT2G25160, AT1G64900, AT5G42650, 

AT1G13710, AT2G45570, AT3G53305, AT2G05180, AT3G14610, AT3G52970, 

AT3G26300, AT1G74540, AT5G04630, AT1G13140, AT4G13290, AT2G26710, 

AT1G65670, AT5G42590, AT2G45970, AT3G20110, AT1G24540, AT3G30290, 

AT5G07990, AT5G06900, AT3G26220, AT3G03470, AT4G13310, AT4G13770, 

AT5G52400, AT1G31800, AT4G37340, AT1G05160, AT4G37370, AT5G63450, 

AT1G66540, AT3G26310, AT4G12330, AT2G34490, AT1G13150, AT3G20120, 

AT4G15300, AT2G45580, AT3G20940, AT5G05260, AT2G46960, AT4G12320, 

AT4G15380, AT4G20240, AT2G16060, AT4G12300, AT4G22690, AT4G36380, 

AT3G44970, AT5G02900, AT4G00360, AT4G31970, AT3G48320, AT3G14630, 

AT3G61880, AT3G26125, AT1G19630, AT2G45510, AT4G39500, AT2G23180, 

AT1G65340, AT3G26320, AT1G13100, AT5G52320, AT3G20130, AT5G36130, 

AT1G50560, AT4G37330, AT3G20950, AT5G57260, AT5G25900, AT2G42250, 

AT3G14640, AT4G39480, AT3G53290, AT5G25140, AT4G22710, AT5G58860, 

AT3G44250, AT3G48280, AT1G63710, AT1G78490, AT4G37430, AT3G26330, 

AT5G36220, AT3G61040, AT3G30180, AT4G37320, AT5G24950, AT3G26230, 

AT1G79370, AT2G02580, AT3G48270, AT2G23190 

protein binding 

(GO:0005515) 

AT1G06190, AT3G21860, AT3G21865, AT1G76490, AT3G09770, AT2G43010, 

AT4G37150, AT1G23420, AT2G46280, AT1G16280, AT5G59710, AT5G33280, 

AT3G23820, AT4G02020, AT2G46260, AT5G13180, AT3G10670, AT3G01280, 

AT3G15150, AT3G56710, AT3G58040, AT1G50430, AT5G08130, AT5G65460, 

AT1G28520, AT3G05870, AT5G06950, AT5G45680, AT5G61960, AT5G51700, 

AT5G51120, AT5G16000, AT3G12690, AT3G62440, AT5G58440, AT5G27320, 

AT3G53120, AT4G35620, AT4G01026, AT5G23820, AT1G78080, AT5G37500, 

AT2G42830, AT5G04920, AT3G18730, AT2G32710, AT5G56860, AT1G15220, 

AT5G22330, AT5G15840, AT1G70700, AT5G57900, AT2G39090, AT1G10270, 

AT4G10920, AT2G25850, AT2G18840, AT2G38250, AT4G34000, AT3G28910,  
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 AT3G11820, AT2G34150, AT2G45980, AT5G49500, AT5G46330, AT4G00150, 

AT1G15910, AT4G35090, AT5G23310, AT2G41310, AT1G56650, AT1G25490, 

AT2G20080, AT3G11220, AT4G00570, AT4G20260, AT5G63880, AT1G02280, 

AT1G33410, AT2G44740, AT1G48270, AT2G17950, AT5G24520, AT5G43350, 

AT4G32650, AT4G19640, AT5G17690, AT3G24620, AT5G25780, AT3G50060, 

AT5G20570, AT4G26090, AT5G06140, AT2G47450, AT1G19120, AT5G35750, 

AT2G18710, AT2G27040, AT4G26160, AT5G40480, AT1G62360, AT1G28490, 

AT3G21870, AT5G64050, AT4G25320, AT5G41990, AT1G48500, AT5G40460, 

AT5G25760, AT3G14010, AT3G15540, AT4G27780, AT5G48820, AT5G43170, 

AT1G30135, AT3G06560, AT4G28270, AT2G46070, AT3G53260, AT5G13190, 

AT4G13250, AT1G71130, AT1G07270, AT3G60010, AT1G54320, AT3G56650, 

AT1G09530, AT5G16490, AT2G07560, AT1G31350, AT1G74890, AT5G44740, 

AT4G38130, AT1G30950, AT1G75410, AT1G69840, AT2G45770, AT4G28450, 

AT5G04930, AT4G30260, AT4G14700, AT1G24280, AT2G32720, AT3G48160, 

AT3G25500, AT4G14560, AT4G25530, AT5G03530, AT4G18290, AT1G74380, 

AT2G22810, AT1G74470, AT1G15100, AT5G37600, AT4G14147, AT4G20780, 

AT3G19290, AT2G14120, AT2G45190, AT5G46520, ATCG01130, AT1G73150, 

AT3G18980, AT3G45640, AT5G19400, AT5G67510, AT2G31380, AT2G20160, 

AT5G66570, AT5G08470, AT4G00360, AT3G45240, AT4G31730, AT5G14250, 

AT4G11880, AT3G16320, AT3G16857, AT1G60430, AT4G20870, AT1G17880, 

AT5G24400, AT1G01140, AT4G14960, AT1G13740, AT1G18040, AT3G19590, 

AT1G08720, AT2G40030, AT3G54170, AT4G11260, AT1G17080, AT5G56290, 

AT5G01410, AT2G19830, AT4G23650, AT5G01380, AT3G50070, AT2G22490, 

AT4G03190, AT5G24330, AT5G14920, AT1G02140, AT1G55310, AT5G64330, 

AT1G28480, AT2G29680, AT5G61010, AT1G77920, AT5G12900, AT4G17615, 

AT5G17020, AT4G28840, AT3G15000, AT1G06040, AT5G06150, AT5G21940, 

AT5G07280, AT5G48670, AT4G33270, AT5G55230, AT4G22920, AT2G24790, 

AT4G37770, AT5G61380, AT5G02470, AT3G06400, AT5G65800, AT5G20320, 

AT5G48250, AT4G26200, AT4G08980, AT3G10525, AT1G10470, AT4G38580, 

AT1G16330, AT2G26650, AT1G30490, AT1G29260, AT5G51100, AT3G17880, 

AT2G20890, AT3G06190, AT5G53160, AT5G43900, AT2G45740, AT3G14990, 

AT3G25810, AT4G35600, AT4G29910, AT4G14713, AT2G29570, AT3G61060, 

AT4G04780, AT2G38470, AT4G23810, AT5G16510, AT5G03520, AT4G39980, 

AT4G25540, AT2G44900, AT5G36250, AT1G13120, AT4G35040, AT5G37055, 

AT5G22220, AT4G14150, AT1G02970, AT4G14880, AT3G03450, AT5G51230, 

AT4G18130, AT2G36490, AT2G26150, AT3G02470, AT5G49450, AT2G17750, 

AT3G12360, AT1G15750, AT1G73830, AT5G10300, AT2G41680, AT3G63130, 

AT2G37630, AT5G42190, AT4G18620, AT5G42750, AT4G26840, AT4G24940, 

AT5G40930, AT1G19050, AT4G14550, AT5G63370, AT4G09570, AT1G47870, 

AT3G56980, AT1G17980, AT1G55520, AT3G04680, AT3G12810, AT4G19660, 

AT1G32230, AT5G05340, AT5G02110, AT4G25230, AT3G60250, AT5G27620, 

AT2G26300, AT5G51450, AT2G36960, AT2G40550, AT2G40000, AT5G05760, 

AT5G40280, AT4G09820, AT4G28980, AT4G27630, AT5G64070, AT3G54610, 

AT3G46710, AT3G27080, AT1G16890, AT5G55000, AT3G10730, AT4G26455, 

AT4G12720, AT1G53310, AT1G47220, AT3G57230, AT4G24540, AT4G17060, 

AT3G18524, AT2G37040, AT4G22910, AT3G21850, AT3G05420, AT2G30250, 

AT4G13520, AT4G13830, AT5G03730, AT1G64350, AT1G21700, AT3G50820, 

AT5G13530, AT1G30970, AT4G25160, AT1G20140, AT5G13840, AT1G51950, 

AT2G17290, AT4G21100, AT3G52750, AT3G52190, AT5G55910, AT2G33610, 

AT5G51200, AT1G24260, AT5G03280, AT1G50460, AT3G61070, AT3G19720, 

AT3G16050, AT2G31270, AT4G01090, AT5G16850, AT2G42880, AT5G61650, 

AT5G16690, AT4G25550, AT5G45250, AT2G36910, AT4G35050, AT1G45249, 

AT2G42400, AT5G22780, AT3G62410, AT2G31470, AT3G13300, AT3G45620,  
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 AT4G24972, AT1G32330, AT2G01120, AT5G41410, AT5G56580, AT4G11280, 

AT2G22540, AT2G38880, AT1G59610, AT5G51590, AT1G18080, AT5G25350, 

AT3G07780, AT5G47670, AT2G45820, AT2G27250, AT1G78600, AT5G56030, 

AT1G62170, AT5G41700, AT1G18400, AT1G22770, AT1G17200, ATMG00290, 

AT1G32060, AT5G10440, AT5G47010, AT4G30935, AT4G15630, AT5G41070, 

AT5G17790, AT1G17840, AT1G49620, AT1G69670, AT2G40010, AT1G31140, 

AT3G57130, AT3G54620, AT5G47700, AT5G35410, AT3G49850, AT2G46790, 

AT1G49950, AT1G49480, AT4G20940, AT1G31360, AT3G53230, AT4G02570, 

AT2G46225, AT2G43160, AT5G13300, AT1G14850, AT3G01770, AT3G15970, 

AT2G27100, AT3G50630, AT4G02150, AT5G44280, AT5G49910, AT4G27950, 

AT3G10540, AT5G48720, AT5G02100, AT3G57040, AT5G20850, AT3G20330, 

AT2G37180, AT5G02030, AT1G75080, AT5G03340, AT3G56400, AT3G52180, 

AT5G61850, AT1G68050, AT1G16610, AT4G37930, AT5G13160, AT5G52830, 

AT1G80840, AT4G10090, AT3G17510, AT4G25560, AT2G44920, AT1G20930, 

AT1G30210, AT3G53760, AT1G52740, AT1G10230, AT1G72450, AT1G04250, 

AT5G22570, AT1G01370, AT3G17609, AT5G08330, AT2G24120, AT3G52560, 

AT5G14750, AT3G48150, AT5G11300, AT1G48050, AT2G18020, AT4G32180, 

AT2G16770, AT3G22590, AT5G18580, AT4G24210, AT5G01840, AT1G19850, 

AT2G28060, AT4G09550, AT3G11730, AT5G63350, AT4G18700, AT5G24290, 

AT1G26670, AT3G22680, AT4G22200, AT5G60550, AT5G56280, AT3G51260, 

AT5G67250, AT3G03490, AT2G42810, AT4G08150, AT1G22985, AT1G66840, 

AT3G11130, AT2G17820, AT3G51860, AT1G03445, AT5G10450, AT4G17460, 

AT4G16110, AT3G23150, AT5G46860, AT5G09810, AT1G55610, AT1G01620, 

AT5G01590, AT1G35670, AT5G35620, AT4G23750, AT1G03840, AT1G64750, 

AT3G62980, AT5G13220, AT1G03190, AT2G31900, AT1G35580, AT5G39760, 

AT2G36010, AT4G27500, AT1G64990, AT2G46410, AT4G02560, AT5G65700, 

AT3G21630, AT4G24560, AT5G06850, AT5G44635, AT5G01820, AT3G01090, 

AT1G67710, AT4G16890, AT1G09570, AT5G05410, AT1G51510, AT5G13480, 

AT1G23900, AT4G04910, AT4G05420, AT1G50640, AT5G42970, AT1G65480, 

AT1G11400, AT1G31770, AT4G13180, AT4G25100, AT4G37630, AT3G46510, 

AT1G50240, AT4G13340, AT5G07070, AT1G64280, AT5G13790, AT5G62430, 

AT5G13820, AT1G58290, AT3G52770, AT1G65620, AT2G43790, AT5G45130, 

AT2G35110, AT3G01435, AT5G07090, AT2G26990, AT4G24740, AT4G29940, 

AT4G34210, AT3G10572, AT5G20900, AT5G65410, AT5G04990, AT4G25570, 

AT5G57050, AT3G28180, AT4G04770, AT3G09840, AT3G53570, AT4G15900, 

AT2G33560, AT5G09830, AT1G01560, AT5G27080, AT1G04240, AT1G01360, 

AT5G15290, AT3G25250, AT1G73590, AT5G66730, AT2G45790, AT2G38440, 

AT5G18260, AT4G11110, AT5G23430, AT5G62920, AT3G16650, AT5G11530, 

AT5G27150, AT1G04400, AT3G03000, AT5G63160, AT2G41140, AT1G61010, 

AT1G02170, AT3G24810, AT5G63610, AT2G26040, AT4G30820, AT1G02580, 

AT4G00850, AT4G18710, AT2G18160, AT2G20580, AT5G56540, AT4G32040, 

AT5G67260, AT4G27330, AT4G14830, AT3G02150, AT3G11630, AT3G23780, 

AT4G04720, AT3G15354, AT2G36100, AT3G22942, AT1G09415, AT1G09140, 

AT3G18165, AT5G14960, AT4G27420, AT1G77740, AT1G22190, AT4G23980, 

AT4G17870, AT5G05000, AT3G26090, AT3G03950, AT5G01900, AT4G08455, 

AT3G04740, AT4G12570, AT4G37130, AT3G60600, AT5G52250, AT4G12020, 

AT2G19560, AT1G09700, AT2G27050, AT5G01630, AT4G00355, AT5G65420, 

AT5G45860, AT4G02510, AT2G03160, AT4G02680, AT1G80080, AT4G37000, 

AT5G21274, AT1G16970, AT2G04240, AT4G32850, AT5G06200, AT5G55160, 

AT1G65700, AT3G21150, AT3G20310, AT2G33770, AT5G55300, AT4G02195, 

AT4G34110, AT1G50250, AT3G06530, AT3G01330, AT5G61600, AT1G65380, 

AT3G09920, AT3G20550, AT3G52890, AT1G20590, AT5G62390, AT1G71230, 

AT3G28860, AT4G39400, AT5G43830, AT1G73690, AT1G73000, AT5G61480,  
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 AT4G11850, AT3G21200, AT2G18915, AT1G01820, AT4G31160, AT1G08370, 

AT5G13860, AT3G62770, AT3G26060, AT3G52430, AT3G07040, AT5G63110, 

AT1G32900, AT5G10270, AT1G31440, AT5G46240, AT2G18170, AT3G03300, 

AT4G11920, AT2G41370, AT5G10470, AT1G79690, AT3G17860, AT3G46060, 

AT5G02820, AT4G00480, AT1G27630, AT1G75840, AT5G64920, AT2G19080, MPI1, 

AT4G27450, AT1G59660, AT3G47620, AT3G50310, AT3G54650, AT5G39340, 

AT5G47750, AT1G48760, AT1G76080, AT3G05590, AT2G03190, AT2G33310, 

AT4G26070, AT5G25380, AT3G58780, AT1G09770, AT1G63650, AT3G50000, 

AT3G54010, AT2G47430, AT4G12560, AT5G45870, AT3G20780, AT4G02500, 

AT2G03170, AT4G22950, AT4G33000, AT1G02450, AT2G22640, AT1G28250, 

AT5G60910, AT5G51660, AT1G74950, AT5G48930, AT3G08850, AT5G43060, 

AT3G15210, AT3G59760, AT5G02220, AT3G57090, AT2G06005, AT3G13550, 

AT2G39940, AT4G34470, AT2G13540, AT5G08590, AT4G37650, AT1G50710, 

AT5G13800, AT5G65720, AT3G01320, AT2G37560, AT1G69390, AT5G42480, 

AT1G30400, AT4G12780, AT4G30200, ATMG00090, AT4G33950, AT1G27930, 

AT1G07500, AT5G15160, AT1G75540, AT5G03220, AT3G12280, AT5G42080, 

AT5G45050, AT2G45640, AT1G24590, AT5G22290, AT5G60120, AT5G19280, 

AT5G62740, AT5G04510, AT1G04260, AT1G70660, AT3G05120, AT3G57860, 

AT3G02310, AT1G53720, AT1G14320, AT2G27600, AT2G45000, AT3G16830, 

AT2G18960, AT2G38310, AT4G01050, AT3G48100, AT3G28030, AT1G21410, 

AT3G19760, AT3G11540, AT5G66880, AT1G14920, AT3G09440, AT5G57360, 

AT3G26650, AT3G02000, AT3G49670, AT4G04020, AT2G34010, AT5G13120, 

AT5G63320, AT1G32640, AT5G24800, AT3G08530, AT2G41740, AT3G63010, 

AT1G05020, AT3G19210, AT2G36060, AT3G55000, AT3G55005, AT3G19180, 

AT3G02170, AT1G08180, AT3G24650, AT2G22430, AT1G12980, AT3G59790, 

AT1G77760, AT1G52890, AT5G27600, AT1G52380, AT5G60450, AT5G60100, 

AT3G51300, AT2G47510, AT5G40160, AT3G50670, AT5G50680, AT3G23050, 

AT4G16250, AT2G36270, AT5G56210, AT3G15730, AT1G17790, AT3G24495, 

AT2G40340, AT3G09260, AT5G06310, AT1G29680, AT3G57260, AT4G33010, 

AT5G05680, AT2G19430, AT2G36307, AT1G06110, AT5G50750, AT5G43070, 

AT1G09340, AT2G02560, AT2G05520, AT3G10340, AT2G36890, AT5G20810, 

AT4G34460, AT3G54840, AT5G38110, AT1G27320, AT2G34650, AT1G80350, 

AT4G37460, AT5G48380, AT5G13290, AT1G07370, AT2G30330, AT1G23860, 

AT1G52410, AT5G48160, AT5G45110, AT3G09900, AT3G21510, AT5G20920, 

AT3G28200, AT1G07880, AT3G20770, AT4G33945, AT5G03940, AT2G38620, 

AT5G58220, AT1G23260, AT2G42580, AT5G04230, AT3G52850, AT5G03540, 

AT1G10760, AT3G27920, AT1G53650, AT5G59880, AT4G24660, AT5G53490, 

AT3G14110, AT3G61570, AT2G38940, AT5G53470, AT3G06110, AT3G48680, 

AT5G49160, AT5G28770, AT1G47230, AT5G23880, AT5G23730, AT3G19770, 

AT3G11550, AT1G43850, AT2G05120, AT2G20000, AT4G23570, AT4G18040, 

AT4G36810, AT5G14620, AT5G23080, AT1G47128, AT3G18910, AT2G45450, 

AT3G45780, AT5G23260, AT3G22880, AT3G45140, AT4G29130, AT1G44800, 

AT4G32010, AT1G68640, AT3G05040, AT2G23350, AT5G67580, AT2G40750, 

AT5G66055, AT1G66390, AT1G49760, AT2G01950, AT3G07880, AT1G79830, 

AT2G18790, AT1G76310, AT5G63790, AT5G21010, AT1G75820, AT5G64900, 

AT1G69600, AT5G35840, AT3G43920, AT1G55490, AT5G63310, AT1G02860, 

AT1G12220, AT2G22240, AT2G02950, AT5G63860, AT4G19030, AT3G60890, 

AT1G09020, AT1G75950, AT3G56900, AT1G78870, AT3G43810, AT5G20240, 

AT1G44110, AT2G24765, AT4G17750, AT1G17745, AT3G14470, AT4G32551, 

AT5G43080, AT1G26840, AT1G31280, AT4G08480, AT4G29160, AT5G02200, 

AT4G02740, AT2G46340, AT5G07120, AT4G28560, AT5G03150, AT2G24490, 

AT2G01730, AT3G54850, AT2G13560, AT2G25700, AT3G60360, AT5G20480, 

AT1G23490, AT3G61140, AT1G30460, AT3G62090, AT1G80170, AT5G48170,  
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 AT4G35230, AT5G53480, AT1G21780, AT1G54040, AT3G12400, AT5G18620, 

AT2G21470, AT4G20380, AT1G73790, AT5G57160, AT3G26510, AT1G47750, 

AT1G10390, AT1G24150, AT2G30490, AT2G39770, AT5G12880, AT2G28380, 

AT5G16560, AT5G23720, AT3G48300, AT3G63140, AT5G14520, AT4G39710, 

AT3G62720, AT2G18300, AT4G36800, AT1G17760, AT1G73080, AT2G45280, 

AT2G41100, AT3G11410, AT5G11440, AT3G43440, AT2G46310, AT5G46210, 

AT4G35900, AT1G77140, AT3G62030, AT4G14870, AT3G29160, AT5G57740, 

AT3G48090, AT3G48360, AT4G23140, AT4G00650, AT4G20360, AT4G36480, 

AT1G32530, AT2G24840, AT5G05440, AT2G41430, AT3G23100, AT2G23430, 

AT5G11710, AT2G23380, AT3G25070, AT2G04660, AT5G39510, AT2G28800, 

AT4G24280, AT5G67480, AT5G64350, AT3G20000, AT1G55805, AT1G28420, 

AT4G19003, AT2G36250, AT3G51960, AT1G09030, AT4G26020, AT1G76540, 

AT1G02090, AT2G46970, AT4G03280, AT5G40740, AT3G56970, AT5G17620, 

AT4G02640, AT3G57530, AT1G63020, AT4G29510, AT5G20720, AT3G54220, 

AT3G15880, AT2G22670, AT3G25980, AT1G67580, AT2G26570, AT3G62800, 

AT1G50030, AT1G26830, AT4G29170, AT3G50360, AT1G53090, AT5G44200, 

AT1G27300, AT2G32400, AT3G15660, AT3G05380, AT1G06770, AT3G27010, 

AT5G13570, AT1G07130, AT4G27860, AT1G06950, AT4G13930, AT3G43300, 

AT1G16240, AT3G06590, AT3G53430, AT2G26700, AT4G02060, AT1G79250, 

AT2G46020, AT5G58590, AT1G29170, AT2G25000, AT5G50580, AT1G65290, 

AT2G31570, AT3G56370, AT1G30270, AT1G32310, AT4G32980, AT4G14310, 

AT4G37530, AT5G53290, AT4G09960, AT3G61600, AT5G03455, AT1G47580, 

AT5G58040, AT2G06530, AT3G29575, AT4G28640, AT1G25540, AT2G33460, 

AT3G53610, AT5G23860, AT2G39760, AT2G42010, AT2G17730, AT1G80680, 

AT1G73500, AT5G26980, AT5G15800, AT5G27100, AT4G18020, AT2G41110, 

AT2G16070, AT2G32950, AT1G04940, AT1G19180, AT2G22840, AT5G47100, 

AT1G01040, AT3G19220, AT4G15510, AT4G10760, AT5G27030, AT5G23040, 

AT5G41790, AT4G31580, AT2G40730, AT5G66030, ATCG00500, AT4G11140, 

AT3G48590, AT1G22070, AT4G36290, AT4G16420, AT4G33690, AT4G35800, 

AT4G19170, AT5G64960, AT3G55120, AT1G77080, AT3G25710, AT3G51970, 

AT5G63510, AT5G48570, AT5G52220, AT3G23000, AT3G54180, AT1G54610, 

AT2G37340, AT5G01370, AT5G47080, AT1G59750, AT2G01620, AT2G46700, 

AT3G04000, AT3G24440, AT4G32570, AT1G12390, AT3G03740, AT5G59430, 

AT1G71310, AT2G25490, AT1G35160, AT5G48400, AT1G69400, AT2G27370, 

AT3G24590, AT5G48990, AT5G55190, AT5G13490, AT3G25882, AT1G75010, 

AT3G15500, AT4G21560, AT5G20730, AT4G26610, AT2G31985, AT4G28910, 

AT5G55990, AT5G21170, AT5G20910, AT4G05000, AT3G18780, AT4G02070, 

AT1G08550, AT3G57290, AT3G13110, AT3G13445, AT1G70510, AT4G27920, 

AT4G35580, AT1G71860, AT1G34030, AT5G45010, AT2G01570, AT2G38170, 

AT4G29830, AT1G29010, AT1G75340, AT1G24310, AT3G14120, AT5G28640, 

AT2G30360, AT5G19000, AT5G11260, AT4G39800, AT5G15580, AT3G25230, 

AT4G30190, AT1G08830, AT4G35100, AT1G74500, AT5G13930, AT2G16850, 

AT4G38460, AT5G04240, AT1G04310, AT1G66740, AT5G11390, ATCG00190, 

AT5G16830, AT2G44950, AT5G08720, AT1G08780, AT2G30580, AT1G19350, 

AT3G02280, AT5G23670, AT5G46760, AT5G24020, AT3G63500, AT4G33510, 

AT1G72770, AT1G04550, AT5G27000, AT2G40890, AT1G66340, AT5G40810, 

AT5G10350, AT3G23670, AT5G24110, AT4G01900, AT5G09250, AT5G60410, 

AT3G33520, AT1G56330, AT5G24590, AT3G61190, AT2G26280, AT2G15400, 

AT1G05200, AT2G40380, AT3G50500, AT2G01980, AT2G40470, AT3G07560, 

AT1G77180, AT3G51630, AT5G40030, AT1G17730, AT1G02340, AT2G33270, 

AT4G26750, AT2G26350, AT5G06960, AT4G29350, AT1G76920, AT4G12620, 

AT4G26570, AT2G01760, AT3G57350, AT2G46600, AT3G46580, AT3G20600, 

AT3G47500, AT4G37520, AT1G02840, AT1G09270, AT5G65930, AT4G19990,  
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 AT5G20010, AT4G14180, AT5G08450, AT1G69120, AT2G34180, AT5G26860, 

AT5G66750, ATCG00020, AT3G49700, AT1G47260, AT5G66280, AT5G07300, 

AT1G05460, AT2G30470, AT1G01160, AT1G69690, AT5G57450, AT1G78770, 

AT4G01370, AT5G18410, AT5G04140, AT1G22920, AT2G04550, AT3G43700, 

AT1G65030, AT3G02230, AT1G71830, AT2G45650, AT4G08920, AT1G01910, 

AT5G09800, AT3G62420, AT1G10690, AT4G14220, AT5G19330, AT3G19150, 

AT1G74310, AT3G57870, AT5G09790, AT3G59220, AT5G03415, AT3G13920, 

AT1G46408, AT5G20930, AT2G42260, AT2G24540, AT3G20740, AT1G70310, 

AT1G10970, AT5G58230, AT1G04450, AT3G06720, AT5G12390, AT1G71800, 

AT2G05380, AT2G45660, AT3G21430, AT2G04890, AT3G14080, AT1G21250, 

AT5G02500, AT3G21640, AT5G22880, AT3G47430, AT2G26760, AT4G31800, 

AT1G10940, AT4G02440, AT3G10650, AT5G04470, AT2G27960, AT5G16620, 

AT1G15570, AT5G58550, AT2G30770, AT1G21750, AT5G44550, AT5G04870, 

AT1G65650, AT1G70210, AT4G14110, AT5G57110, AT5G62000, AT5G41315, 

AT5G53120, AT2G21240, AT5G54490, AT5G04900, AT3G17590, AT3G12250, 

AT5G22640, AT4G09010, AT1G66750, AT4G04740, AT3G29350, AT5G42520, 

AT2G45140, AT3G16770, AT1G05560, AT2G19110, AT3G48750, AT1G73360, 

AT1G01510, AT1G21970, AT1G61790, AT1G53510, AT2G40940, AT1G22275, 

AT2G41620, AT5G10030, AT5G17560, AT4G37490, AT4G33430, AT3G63400, 

AT2G18040, AT5G09260, AT3G16420, AT2G40330, AT4G03080, AT5G40330, 

AT4G30960, AT5G25890, AT1G76260, AT5G44180, AT5G20020, AT5G24270, 

AT5G46790, AT5G35790, AT1G48380, AT1G32500, AT1G56250, AT1G49720, 

AT3G05280, AT4G03270, AT4G17710, AT2G44610, AT5G52550, AT2G36350, 

AT1G48410, AT2G46830, AT4G33650, AT1G80490, AT4G27160, AT1G17380, 

AT3G04730, AT1G62300, AT3G46590, AT1G12110, AT1G01640, AT2G36990, 

AT1G64860, AT4G32910, AT3G08900, AT5G55280, AT5G01640, AT3G57560, 

AT5G65210, AT5G54640, AT5G64630, AT5G22770, AT3G13460, AT1G03000, 

AT5G62810, AT5G02420, AT5G08120, AT2G27970, AT5G16320, AT4G13870, 

AT4G37940, AT5G59380, AT5G44560, AT2G38280, AT3G18690, AT4G39890, 

AT2G29100, AT1G74740, AT1G20610, AT4G29810, AT4G34160, AT3G06380, 

AT5G13060, AT5G15210, AT3G61630, AT3G44530, AT5G02490, AT1G30330, 

AT4G04885, AT2G05210, AT2G29210, AT1G79040, AT1G20780, AT4G14720, 

AT3G55840, AT1G79280, AT2G31500, AT5G14270, AT5G57380, AT5G15850, 

AT3G59380, AT1G10060, AT5G49060, AT3G54820, AT1G24510, AT1G02980, 

AT5G18400, AT4G36930, AT2G18290, AT4G23450, AT4G00180, AT5G67570, 

AT2G20180, AT4G31710, AT3G11520, AT5G14070, AT2G28160, AT5G50950, 

AT1G14740, AT3G23380, AT4G15410, AT1G26110, AT2G40670, AT1G80670, 

AT1G43700, AT4G15090, AT1G32400, AT3G51920, AT3G08730, AT2G01830, 

AT3G23030, AT4G30840, AT5G47120, AT1G09070, AT2G35720, AT5G52120, 

AT2G32980, AT1G56260, AT4G08500, AT4G26080, AT1G12360, AT3G54710, 

AT2G36160, AT5G25220, AT4G17490, AT3G50410, AT4G16144, AT5G39660, 

AT5G61210, AT5G60340 

proteolysis 

(GO:0006508) 

AT4G31500, AT5G04660, AT3G48310, AT2G46660, AT4G39950, AT1G13110, 

AT3G20960, AT3G20140, AT2G30770, AT3G26180, AT4G15110, AT3G53280, 

AT2G34500, AT2G32440, AT1G55940, AT1G69500, AT4G37400, AT5G25130, 

AT4G37310, AT4G31950, AT1G74110, AT5G06905, AT2G12190, AT1G64940, 

AT3G14650, AT3G10570, AT2G29090, AT4G32170, AT5G51900, AT1G67110, 

AT1G33720, AT4G27710, AT1G28430, AT1G57750, AT3G20100, AT1G11680, 

AT3G26190, AT1G73340, AT3G56630, AT4G15350, AT4G19230, AT3G20090, 

AT1G12740, AT4G31940, AT4G37410, AT3G26290, AT1G64950, AT5G09970, 

AT5G25120, AT4G15360, AT2G44890, AT3G48520, AT4G37360, AT2G21910, 

AT2G14100, AT3G10560, AT3G14660, AT1G13090, AT1G17060, AT3G14620, 

AT4G12310, AT3G48300, AT2G30750, AT2G24180, AT3G53300, AT3G26280,  
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 AT5G23190, AT5G05690, AT3G20080, AT3G26150, AT1G01280, AT1G13080, 

AT1G01600, AT3G01900, AT1G58260, AT3G26200, AT5G44620, AT5G24900, 

AT2G23220, AT3G28740, AT3G26160, AT2G45550, AT5G36110, AT2G27010, 

AT5G24960, AT1G11610, AT5G14400, AT2G28860, AT5G25180, AT1G50520, 

AT5G10600, AT5G57220, AT4G15330, AT1G34540, AT2G27690, AT5G48000, 

AT2G46950, AT2G26170, AT5G08250, AT3G14680, AT3G26830, AT1G47620, 

AT1G75130, AT5G38450, AT5G47990, AT1G64930, AT2G27000, AT1G62580, 

AT5G24910, AT3G26270, AT5G67310, AT1G33730, AT1G74550, AT3G26170, 

AT3G26210, AT3G13730, AT1G01190, AT5G61320, AT2G42850, AT1G11600, 

AT4G39510, AT5G35715, AT3G19270, AT5G10610, AT2G28850, AT3G25180, 

AT1G16400, AT2G22330, AT5G04330, AT5G42580, AT5G38970, AT3G53130, 

AT5G45340, AT3G14690, AT3G48290, AT2G25160, AT1G64900, AT5G42650, 

AT1G13710, AT2G45570, AT3G53305, AT2G05180, AT3G14610, AT3G52970, 

AT3G26300, AT1G74540, AT5G04630, AT1G13140, AT4G13290, AT2G26710, 

AT1G65670, AT5G42590, AT2G45970, AT3G20110, AT1G24540, AT3G30290, 

AT5G07990, AT5G06900, AT3G26220, AT3G03470, AT4G13310, AT4G13770, 

AT5G52400, AT1G31800, AT4G37340, AT1G05160, AT4G37370, AT5G63450, 

AT1G66540, AT3G26310, AT4G12330, AT2G34490, AT1G13150, AT3G20120, 

AT4G15300, AT2G45580, AT3G20940, AT5G05260, AT2G46960, AT4G12320, 

AT4G15380, AT4G20240, AT2G16060, AT4G12300, AT4G22690, AT4G36380, 

AT3G44970, AT5G02900, AT4G00360, AT4G31970, AT3G48320, AT3G14630, 

AT3G61880, AT3G26125, AT1G19630, AT2G45510, AT4G39500, AT2G23180, 

AT1G65340, AT3G26320, AT1G13100, AT5G52320, AT3G20130, AT5G36130, 

AT1G50560, AT4G37330, AT3G20950, AT5G57260, AT5G25900, AT2G42250, 

AT3G14640, AT4G39480, AT3G53290, AT5G25140, AT4G22710, AT5G58860, 

AT3G44250, AT3G48280, AT1G63710, AT1G78490, AT4G37430, AT3G26330, 

AT5G36220, AT3G61040, AT3G30180, AT4G37320, AT5G24950, AT3G26230, 

AT1G79370, AT2G02580, AT3G48270, AT2G23190 

response to auxin 

(GO:0009733) 

AT5G06300, AT1G80680, AT4G37390, AT3G43120, AT5G13370, AT1G74950, 

AT4G13790, AT2G46690, AT1G19220, AT1G72430, AT2G35940, AT1G19180, 

AT5G47370, AT1G64520, AT3G06490, AT1G78100, AT2G26740, AT3G12955, 

AT5G18060, AT3G07390, AT5G27420, AT3G52400, AT5G13300, AT5G59780, 

AT4G11280, AT5G03310, AT2G24850, AT3G07370, AT4G16420, AT3G28210, 

AT1G19640, AT2G38120, AT5G37020, AT2G24400, AT3G55120, AT1G59500, 

AT1G48660, CPR6, AT2G47460, AT1G29510, AT4G34390, AT2G27690, HCA, 

AT2G21220, AT2G33860, AT5G01270, AT3G09980, AT5G09810, AT4G34710, 

AT1G59750, AT3G24280, AT4G14550, AT2G25790, AT2G44840, AT2G47260, 

AT1G29460, AT2G28085, SAR1, AT5G50760, AT5G59430, AT3G49850, AT1G49950, 

AT1G15520, AT3G28910, AT4G01370, AT5G59220, AT2G39370, AT5G27780, 

AT5G18020, AT5G20820, AT4G02570, AT4G32810, AT3G25880, AT1G56150, 

AT1G22920, AT3G14050, AT2G04550, AT5G65940, AT3G15500, AT3G11820, 

AT1G09540, AT5G20730, AT1G80390, AT5G54500, AT3G01220, AT3G63010, 

AT5G57560, AT1G74840, AT2G06050, AT4G00080, AT1G56650, AT1G25490, 

AT5G13930, AT2G45210, AT3G24650, AT1G33410, AT3G09940, AT5G24520, 

AT2G01570, AT1G52890, AT4G16780, AT5G06960, AT2G46830, AT5G20570, 

AT1G29420, AT5G05730, AT3G03850, AT3G23050, AT5G02840, AT1G69270, 

AT5G01490, AT1G75580, AT5G39610, ICR2, AT5G53590, AT4G34760, AT2G31180, 

AT1G16510, AT2G25930, AT1G04250, AT3G17600, AT4G18010, AT3G61900, 

AT4G21440, AT3G04730, AT3G15540, AT5G07700, AT1G04100, AT2G02560, 

AT2G21210, AT1G64060, AT2G46070, AT5G20810, AT1G04550, AT2G46270, 

AT4G25030, AT3G26760, AT2G34650, AT1G75590, AT3G11260, AT1G66340, 

AT3G58190, AT1G19850, AT4G38630, AT2G19690, AT2G16580, AT4G32690, 

AT2G04160, AT5G65670, AT4G34790, AT3G12830, AT4G15430, AT3G20770,  
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 AT4G33940, AT1G28480, AT4G34810, AT1G18890, AT1G29500, AT1G52830, 

AT2G23170, AT1G76190, AT3G09870, AT1G34670, AT5G51470, AT5G12330, 

AT4G12410, AT3G20830, AT5G37260, AT1G15580, AT1G49010, AT3G47600, 

AT4G14560, AT3G62980, AT5G13220, AT1G23160, AT4G38850, AT5G57090, 

AT4G00880, AT1G54060, AT4G01280, AT2G34600, AT1G54100, AT2G22810, 

AT4G18950, AT3G22650, AT3G16350, AT1G16540, AT5G18030, AT4G03400, 

AT1G28370, AT2G20000, AT2G35270, AT4G16890, AT1G47510, AT4G31320, 

AT4G34780, AT3G48360, AT1G61120, AT3G19580, AT1G14000, AT4G26400, 

AT2G18010, AT2G41820, AT2G34720, AT1G43040, AT5G67580, AT2G36910, 

AT2G43790, AT5G56290, AT4G05100, AT4G22620, AT4G29940, AT1G29430, 

AT2G22240, AT1G70000, AT3G03820, AT4G03190, AT4G38860, AT5G42410, 

AT5G54490, AGE2, AT4G34770, AT1G74100, AT2G46510, AT1G73730, AT5G40770, 

AT5G55120, AT1G53230, AT1G01560, AT1G04240, AT1G29440, AT5G13350, 

AT4G17615, AT5G51640, AT1G28130, AT1G73590, AT3G05630, AT2G06850, 

AT1G17345, AT1G15430, AT3G53250, AT2G37030, AT1G20470, AT5G63160, 

AT2G39550, AT1G19840, AT3G21110, AT4G18710, AT1G69260, AT2G26710, 

AT5G67300, AT5G57420, AT4G34800, AT4G23915, AT5G08640, AT1G77690, 

AT2G21200, AT5G07990, AT1G24590, AT5G25890, AT4G30080, AT1G27740, 

AT2G25170, AT5G14960, AT5G19140, AT5G64890, AT1G74660, AT3G26090, 

AT5G15310, GUP1, GUP2, AT4G20380, AT3G59900, AT5G66260, AT4G38840, 

AT1G48410, AT2G19560, AT2G36210, AT1G09700, AT1G15050, AT5G37770, 

AT1G17380, AT5G22220, AT3G60690, AT5G45710, AT1G19830, AT3G20220, 

AT4G36800, AT5G13360, AT4G29080, AT1G29490, AT1G26870, AT1G15750, 

AT1G08030, AT3G16500, AT2G37630, AT5G18050, AT5G57740, AT1G31340, 

AT2G47750, AT4G33880, AT5G43700, AT1G63840, AT4G36740, AT2G05710, 

AT4G27260, AT1G48670, AT1G18570, AT1G22640, AT1G71230, AT3G28860, 

AT3G62100, AT4G14430, AT4G36110, AT5G17300, AT3G03830, AT1G30330, 

AT1G10210, AT2G14960, AT2G01200, AT1G32230, AT4G27410, AT2G47190, 

AT3G57530, AT2G22670, AT1G29450, AT5G10990, AT5G66700, AT1G79130, 

AT2G46370, AT5G50120, AT5G67480, AT1G01060, AT1G54990, AT4G19690, 

AT3G02260, AT5G18010, AT4G37295, AT1G17520, AT4G32280, AT4G12550, 

AT4G32880, AT5G18080, AT4G13520, AT4G09530, AT1G06400, AT5G54510, 

AT4G28640, AT3G51200, AT4G37610, AT3G23250, AT3G26790, AT1G57560, 

AT5G13380, AT2G47000, AT3G09600, AT1G51950, AT2G17290, SSA-2, AT3G23030, 

AT1G48690, AT3G63300, AT3G55730, AT1G27730, AT1G63720, AT4G39403, 

AT4G26080, AT2G34680, AT2G46990, AT3G03847, AT3G03840, AT2G33310, 

AT3G50410, AT5G38895, AT4G34750 

response to chitin 

(GO:0010200) 

AT5G06300, AT1G80680, AT4G37390, AT3G43120, AT5G13370, AT1G74950, 

AT4G13790, AT2G46690, AT1G19220, AT1G72430, AT2G35940, AT1G19180, 

AT5G47370, AT1G64520, AT3G06490, AT1G78100, AT2G26740, AT3G12955, 

AT5G18060, AT3G07390, AT5G27420, AT3G52400, AT5G13300, AT5G59780, 

AT4G11280, AT5G03310, AT2G24850, AT3G07370, AT4G16420, AT3G28210, 

AT1G19640, AT2G38120, AT5G37020, AT2G24400, AT3G55120, AT1G59500, 

AT1G48660, CPR6, AT2G47460, AT1G29510, AT4G34390, AT2G27690, HCA, 

AT2G21220, AT2G33860, AT5G01270, AT3G09980, AT5G09810, AT4G34710, 

AT1G59750, AT3G24280, AT4G14550, AT2G25790, AT2G44840, AT2G47260, 

AT1G29460, AT2G28085, SAR1, AT5G50760, AT5G59430, AT3G49850, AT1G49950, 

AT1G15520, AT3G28910, AT4G01370, AT5G59220, AT2G39370, AT5G27780, 

AT5G18020, AT5G20820, AT4G02570, AT4G32810, AT3G25880, AT1G56150, 

AT1G22920, AT3G14050, AT2G04550, AT5G65940, AT3G15500, AT3G11820, 

AT1G09540, AT5G20730, AT1G80390, AT5G54500, AT3G01220, AT3G63010, 

AT5G57560, AT1G74840, AT2G06050, AT4G00080, AT1G56650, AT1G25490, 

AT5G13930, AT2G45210, AT3G24650, AT1G33410, AT3G09940, AT5G24520,  
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 AT2G01570, AT1G52890, AT4G16780, AT5G06960, AT2G46830, AT5G20570, 

AT1G29420, AT5G05730, AT3G03850, AT3G23050, AT5G02840, AT1G69270, 

AT5G01490, AT1G75580, AT5G39610, ICR2, AT5G53590, AT4G34760, AT2G31180, 

AT1G16510, AT2G25930, AT1G04250, AT3G17600, AT4G18010, AT3G61900, 

AT4G21440, AT3G04730, AT3G15540, AT5G07700, AT1G04100, AT2G02560, 

AT2G21210, AT1G64060, AT2G46070, AT5G20810, AT1G04550, AT2G46270, 

AT4G25030, AT3G26760, AT2G34650, AT1G75590, AT3G11260, AT1G66340, 

AT3G58190, AT1G19850, AT4G38630, AT2G19690, AT2G16580, AT4G32690, 

AT2G04160, AT5G65670, AT4G34790, AT3G12830, AT4G15430, AT3G20770, 

AT4G33940, AT1G28480, AT4G34810, AT1G18890, AT1G29500, AT1G52830, 

AT2G23170, AT1G76190, AT3G09870, AT1G34670, AT5G51470, AT5G12330, 

AT4G12410, AT3G20830, AT5G37260, AT1G15580, AT1G49010, AT3G47600, 

AT4G14560, AT3G62980, AT5G13220, AT1G23160, AT4G38850, AT5G57090, 

AT4G00880, AT1G54060, AT4G01280, AT2G34600, AT1G54100, AT2G22810, 

AT4G18950, AT3G22650, AT3G16350, AT1G16540, AT5G18030, AT4G03400, 

AT1G28370, AT2G20000, AT2G35270, AT4G16890, AT1G47510, AT4G31320, 

AT4G34780, AT3G48360, AT1G61120, AT3G19580, AT1G14000, AT4G26400, 

AT2G18010, AT2G41820, AT2G34720, AT1G43040, AT5G67580, AT2G36910, 

AT2G43790, AT5G56290, AT4G05100, AT4G22620, AT4G29940, AT1G29430, 

AT2G22240, AT1G70000, AT3G03820, AT4G03190, AT4G38860, AT5G42410, 

AT5G54490, AGE2, AT4G34770, AT1G74100, AT2G46510, AT1G73730, AT5G40770, 

AT5G55120, AT1G53230, AT1G01560, AT1G04240, AT1G29440, AT5G13350, 

AT4G17615, AT5G51640, AT1G28130, AT1G73590, AT3G05630, AT2G06850, 

AT1G17345, AT1G15430, AT3G53250, AT2G37030, AT1G20470, AT5G63160, 

AT2G39550, AT1G19840, AT3G21110, AT4G18710, AT1G69260, AT2G26710, 

AT5G67300, AT5G57420, AT4G34800, AT4G23915, AT5G08640, AT1G77690, 

AT2G21200, AT5G07990, AT1G24590, AT5G25890, AT4G30080, AT1G27740, 

AT2G25170, AT5G14960, AT5G19140, AT5G64890, AT1G74660, AT3G26090, 

AT5G15310, GUP1, GUP2, AT4G20380, AT3G59900, AT5G66260, AT4G38840, 

AT1G48410, AT2G19560, AT2G36210, AT1G09700, AT1G15050, AT5G37770, 

AT1G17380, AT5G22220, AT3G60690, AT5G45710, AT1G19830, AT3G20220, 

AT4G36800, AT5G13360, AT4G29080, AT1G29490, AT1G26870, AT1G15750, 

AT1G08030, AT3G16500, AT2G37630, AT5G18050, AT5G57740, AT1G31340, 

AT2G47750, AT4G33880, AT5G43700, AT1G63840, AT4G36740, AT2G05710, 

AT4G27260, AT1G48670, AT1G18570, AT1G22640, AT1G71230, AT3G28860, 

AT3G62100, AT4G14430, AT4G36110, AT5G17300, AT3G03830, AT1G30330, 

AT1G10210, AT2G14960, AT2G01200, AT1G32230, AT4G27410, AT2G47190, 

AT3G57530, AT2G22670, AT1G29450, AT5G10990, AT5G66700, AT1G79130, 

AT2G46370, AT5G50120, AT5G67480, AT1G01060, AT1G54990, AT4G19690, 

AT3G02260, AT5G18010, AT4G37295, AT1G17520, AT4G32280, AT4G12550, 

AT4G32880, AT5G18080, AT4G13520, AT4G09530, AT1G06400, AT5G54510, 

AT4G28640, AT3G51200, AT4G37610, AT3G23250, AT3G26790, AT1G57560, 

AT5G13380, AT2G47000, AT3G09600, AT1G51950, AT2G17290, SSA-2, AT3G23030, 

AT1G48690, AT3G63300, AT3G55730, AT1G27730, AT1G63720, AT4G39403, 

AT4G26080, AT2G34680, AT2G46990, AT3G03847, AT3G03840, AT2G33310, 

AT3G50410, AT5G38895, AT4G34750 

RNA binding 

(GO:0003723) 

AT3G50670, AT4G26650, AT1G49760, AT5G43110, AT1G14640, AT3G10360, 

AT5G18110, AT5G55670, AT4G36690, AT4G16830, AT3G55460, AT2G31890, 

AT1G67770, AT2G42890, AT4G13860, AT2G43640, AT3G20250, AT2G47220, 

AT2G14870, AT2G07734, AT5G19350, AT5G18810, AT4G29090, AT1G71720, 

AT4G22380, AT3G20890, AT4G34110, AT1G28090, AT1G27650, AT5G55100, 

AT1G18050, AT3G55340, AT5G50250, AT1G07350, AT1G35730, AT5G19030, 

AT3G11400, AT1G60000, AT2G47580, AT5G47210, AT1G64810, AT4G09040,  
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 AT1G74350, AT3G07250, AT2G19380, AT3G26120, AT1G74230, AT5G60170, 

AT4G27000, AT5G12190, AT3G19130, AT4G27490, AT4G02430, AT3G54770, 

AT3G10845, AT5G07060, AT3G07810, AT3G51950, AT1G60650, AT5G54900, 

AT3G61620, AT3G63450, AT1G53120, ATCG00040, AT3G27700, AT3G02320, 

AT1G33470, AT3G20550, AT1G58470, AT5G60960, AT3G56860, AT1G09340, 

AT1G55310, AT1G80930, AT1G22760, AT1G50300, AT3G27750, AT2G30260, 

AT4G24270, AT4G10110, AT4G26370, AT3G49430, AT1G49600, AT1G17640, 

AT3G45630, AT3G49390, AT5G04210, AT3G15010, AT5G59860, AT3G26560, 

AT5G61780, AT5G55550, AT3G46020, AT3G12680, AT4G17610, AT3G23830, 

AT1G06960, AT5G23690, AT3G52150, AT1G34140, AT2G37510, AT2G22090, 

AT1G13190, AT1G47490, AT3G56330, AT4G25500, AT1G62670, AT5G14580, 

AT1G09140, AT1G01760, AT2G05160, AT4G08840, AT3G55280, AT1G09230, 

AT1G22240, AT4G25630, AT2G29190, AT5G06520, AT1G13730, AT5G18180, 

AT5G51120, AT3G16810, AT1G12800, AT1G14650, AT2G33410, AT2G29580, 

AT5G52040, AT1G33520, AT4G03110, AT5G60110, AT2G19870, AT5G58130, 

AT5G07350, AT5G08620, AT5G10350, AT5G16260, AT5G42820, AT4G12600, 

AT5G09610, AT5G11530, AT3G48830, AT5G24440, AT1G29590, AT2G47310, 

AT1G56030, AT3G06970, AT5G19960, AT1G07360, AT4G25880, AT3G03710, 

AT2G29200, AT1G24450, AT3G19090, AT3G13570, AT2G23350, AT1G15910, 

AT4G11175, AT1G43860, AT2G25900, AT1G16610, AT4G10610, AT5G53180, 

AT5G53720, AT1G30460, AT3G13224, AT5G02250, AT4G15520, AT1G76460, 

AT1G29550, AT1G30010, AT3G14450, AT5G44200, AT3G53460, AT3G21215, 

AT2G18510, AT1G53720, AT5G46250, AT1G09150, AT1G22910, AT5G25060, 

AT4G38020, AT1G53650, AT4G19610, AT2G21690, AT2G03640, AT1G60830, 

AT5G48870, AT3G16380, AT1G37140, AT5G64200, AT2G33435, AT3G03920, 

AT3G43920, AT3G08010, AT2G39460, AT2G21660, AT5G05720, AT2G43960, 

AT5G04600, AT1G01080, AT4G16280, AT5G57870, AT4G36020, AT5G47620, 

AT3G52120, AT3G29390, AT1G71800, AT5G30510, AT3G21100, AT2G29140, 

AT4G17520, AT3G22310, AT2G43410, AT3G23700, AT4G15417, AT3G26420, 

AT3G10400, AT1G45100, AT2G24350, AT4G16200, AT1G21620, AT1G18630, 

AT1G43190, AT1G71770, AT3G61860, AT4G24770, AT4G34730, AT4G39260, 

AT2G46780, AT1G78260, AT2G39120, AT4G14300, AT4G12640, AT2G33440, 

AT1G60080, AT3G25150, AT5G61030, AT4G20030, AT2G39260, AT5G41690, 

AT3G08000, AT1G77680, AT2G21440, AT5G66010, AT5G07290, AT2G39140, 

AT1G22330, AT3G01150, AT5G26880, AT5G60180, AT1G29400, AT5G04280, 

AT2G41060, AT5G52490, AT3G46210, AT5G64390, AT5G20320, AT2G22100, 

AT4G18120, AT5G15390, AT5G65260, AT4G18040, AT5G43090, AT1G35750, 

AT5G28390, AT4G00830, AT2G17510, AT1G69250, AT2G36660, AT5G06210, 

AT1G73490, AT2G37220, AT2G43370, AT3G47120, AT3G07750, AT5G23080, 

AT1G02840, AT5G10800, AT5G48650, AT5G08180, AT2G44710, AT1G51510, 

AT5G15750, AT4G31200, AT2G46610, AT5G54580, AT3G12990, AT5G60980, 

AT3G13700, AT1G78160, AT1G73530, AT3G04500, AT5G58040, AT5G43960, 

AT3G60500, AT5G59280, AT5G15810, AT4G13850, AT4G36960, AT2G35410, 

AT5G56510, AT5G06000, AT1G11650, AT1G72320, AT1G20880, AT1G35850, 

AT4G32720, AT2G24050, AT5G51410, AT2G20490, AT3G12640, AT5G61960, 

AT3G11964, AT1G10320, AT3G52660, AT3G20930, AT1G47500, AT5G20160, 

AT4G37510, AT5G35620, AT2G17580, AT1G32790, AT2G40290, AT5G40490, 

AT5G47320, AT3G52380, AT1G60900, AT5G46920, AT5G03580, AT5G53680, 

AT5G05470, AT5G46840, AT1G03457 
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transferase 

activity, 

transferring 

glycosyl groups 

(GO:0016757) 

AT2G37730, AT4G02500, AT5G15740, AT2G29740, AT1G11720, AT5G05870, 

AT2G31750, AT2G04560, AT3G46720, AT2G03280, AT3G46680, AT4G26250, 

AT4G00300, AT1G60450, AT1G74420, AT4G03340, AT1G09350, AT5G20410, 

AT1G54940, AT1G67850, AT5G64740, AT3G21780, AT4G15290, AT1G52420, 

AT2G15350, AT4G19900, AT4G13410, AT1G22370, AT1G32930, AT3G27470, 

AT3G59100, AT1G71220, AT5G13500, AT3G61130, AT5G41460, AT1G30530, 

AT4G04970, AT2G32540, AT3G46970, AT5G03490, AT2G25540, AT1G13250, 

AT1G75420, AT2G44660, AT3G46650, AT2G31960, AT5G14860, AT1G27600, 

AT2G22930, AT1G70090, AT4G18780, AT3G26370, AT1G38131, AT1G24570, 

AT4G15320, AT2G30140, AT2G28080, AT4G17770, AT3G02250, AT1G24170, 

AT5G37200, AT1G24070, AT3G11540, AT4G16600, AT2G03220, AT4G15550, 

AT2G24630, AT1G20550, AT4G03550, AT3G62660, AT2G32430, AT1G08660, 

AT3G29320, AT1G68380, AT1G73810, AT5G01100, AT1G14070, AT5G16190, 

AT4G21060, AT2G26100, AT2G19160, AT5G38010, AT3G16520, AT5G59530, 

AT1G68020, AT5G49690, AT1G77810, AT1G50580, AT2G21770, AT3G07020, 

AT2G23260, AT4G36890, AT5G04480, AT1G78280, AT3G53160, AT1G70290, 

AT5G53340, AT2G35650, AT5G12260, AT2G35710, AT2G37980, AT4G09500, 

AT2G32610, AT4G14100, AT1G04920, AT5G17040, AT5G47780, AT3G02350, 

AT3G21310, AT3G01040, AT1G01570, AT1G11730, AT5G15050, AT3G50760, 

AT5G01220, AT4G19460, AT1G70630, AT5G17030, AT1G28240, AT1G38065, 

AT1G24100, AT4G12700, AT1G34550, AT1G05570, AT3G21770, AT4G15500, 

AT1G74800, AT1G29200, AT3G57200, AT3G01720, AT1G80290, AT1G16900, 

AT1G23480, AT1G05150, AT4G11350, AT5G65470, AT1G22340, AT5G11730, 

AT1G60140, AT2G20810, AT1G77130, AT4G32110, AT2G36750, AT2G26480, 

AT5G03760, AT5G09870, AT3G52060, AT3G03810, AT1G10880, AT1G08040, 

AT3G21190, AT1G22460, AT4G39350, AT2G16890, AT4G16590, AT2G43820, 

AT3G54100, AT1G67880, AT5G49190, AT1G35510, AT1G11940, AT5G15470, 

AT3G43190, AT4G24000, AT2G30150, AT1G26810, AT2G02910, AT1G74380, 

AT3G42180, AT2G31790, AT3G57420, AT1G04910, AT1G62330, AT2G01480, 

AT2G36780, AT2G03210, AT4G15260, AT5G57270, AT4G26940, AT5G05880, 

AT1G71070, AT1G68390, AT1G08990, AT3G11420, AT4G02280, AT2G44500, 

AT3G11670, AT3G01620, AT5G46220, AT3G03690, AT4G33330, AT4G32410, 

AT5G13000, AT1G18690, AT3G02100, AT3G06440, AT4G31350, AT1G61050, 

AT1G05530, AT2G15390, AT2G23210, AT2G30575, AT1G71990, AT4G38310, 

AT3G56000, AT5G54010, AT5G25330, AT4G12840, AT5G57500, AT3G25140, 

AT5G38460, AT5G03770, AT4G36770, AT5G05170, AT2G41451, AT5G59070, 

AT4G27550, AT1G73740, AT5G60700, AT1G78580, AT2G41150, AT1G52630, 

AT3G28180, AT1G14020, AT2G29730, AT5G01250, AT4G02130, AT1G11990, 

AT3G46700, AT5G22740, AT1G16980, AT1G22400, AT3G14570, AT1G60470, 

AT1G63450, AT4G25870, AT3G14960, AT1G05560, AT1G02720, AT2G37580, 

AT2G15480, AT1G51630, AT3G45100, AT5G64600, AT3G21760, AT5G63390, 

AT1G73160, AT1G20570, AT1G53290, AT5G42660, AT1G07240, AT4G32290, 

AT3G29630, AT5G59520, AT3G07170, AT3G30300, AT4G38190, AT1G05280, 

AT1G43620, AT1G23870, AT3G08550, AT1G06410, AT4G37690, AT1G03520, 

AT1G06780, AT1G32180, AT1G01420, AT5G18480, AT2G36760, AT4G38270, 

AT3G55700, AT5G25970, AT3G46670, AT3G24040, AT5G22130, AT4G09630, 

AT2G43840, AT2G15370, AT3G15350, AT2G22590, AT2G28310, AT5G54060, 

AT1G64910, AT2G18560, AT1G11170, AT2G38650, AT2G38150, AT3G15940, 

AT4G27560, AT5G23790, AT5G35570, AT5G44030, AT4G24530, AT4G24010, 

AT2G29750, AT2G25300, AT1G73880, AT5G24300, AT3G58790, AT1G06000, 

AT4G10120, AT1G76270, AT4G01070, AT1G62305, AT1G55850, AT1G78800, 

AT3G19280, AT4G15270, AT3G62720, AT2G36790, AT1G16570, AT2G33100, 

AT5G05860, AT1G01390, AT2G32450, AT2G13290, AT3G46690, AT2G36850,  
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 AT3G21800, AT5G05890, AT2G36970, AT4G16710, AT1G14970, AT1G07260, 

AT4G16650, AT1G22380, AT4G15280, AT3G03050, AT1G14080, AT4G00550, 

AT4G23490, AT4G31590, AT4G23990, AT1G51770, AT4G38240, AT5G22070, 

AT1G10280, AT4G17430, AT1G22360, AT2G35100, AT1G33430, AT1G07850, 

AT3G06260, AT5G25990, AT1G53040, AT5G67230, AT4G38390, AT1G56600, 

AT2G37090, AT3G55830, AT4G27480, AT4G18240, AT1G61240, AT4G18530, 

AT2G22900, AT2G39630, AT5G14850, AT1G64920, AT2G20370, AT5G04500, 

AT3G50740, AT3G09020, AT3G01180, AT2G46480, AT5G05900, AT1G33250, 

AT2G04280, AT5G53990, AT5G07720, AT5G25265, AT4G30060, AT3G56750, 

AT4G15480, AT2G15490, AT2G23250, AT3G48820, AT4G31780, AT5G14550, 

AT3G55710, AT4G15240, AT1G05680, AT3G21750, AT4G07960, AT1G07250, 

AT5G14480, AT1G19300, AT2G36800, AT1G05170, AT1G19710, AT1G05670, 

AT4G01210, AT1G32900, AT5G66690, AT2G41770, AT5G65550, AT1G10400, 

AT3G27540, AT5G54690, AT3G22250, AT2G36770, AT1G06490, AT4G38500, 

AT5G26310, AT2G32530, AT5G16170, AT3G10630, AT3G46660, AT1G12990, 

AT2G40190, AT3G07900, AT4G15490, AT2G25260, AT1G51210, AT3G07330, 

AT2G18570, AT3G18660, AT1G49710, AT3G04240, AT1G13000, AT2G32620, 

AT4G27570, AT5G17050, AT5G16910, AT1G27120, AT5G20280, AT4G08810, 

AT2G18700, AT3G26440, AT2G29710, AT5G12890 

translation 

(GO:0006412) 

AT1G14400, AT3G07550, AT3G21860, AT2G03170, AT3G09770, AT2G16920, 

AT2G33770, AT2G36370, AT3G06140, AT5G02750, AT2G26000, AT1G80570, 

AT4G03510, AT2G01150, AT3G54780, AT4G27470, AT3G29270, AT1G10230, 

AT5G06460, AT4G33160, AT1G63900, AT5G43190, AT3G08690, AT2G02760, 

AT1G12820, AT2G32950, AT4G34210, AT4G04690, AT1G02860, AT5G49980, 

AT1G51550, AT5G59300, AT4G12570, AT5G46210, AT4G10160, AT3G60220, 

AT1G36340, AT3G53060, AT2G30110, AT3G26810, AT1G49210, AT4G19700, 

AT2G44950, AT5G14420, AT3G13550, AT5G27420, AT3G52560, AT2G04660, 

AT4G37890, AT2G30580, AT1G75950, AT4G34470, AT5G05280, AT5G10380, 

AT5G65683, AT1G50490, AT1G55860, AT3G60020, AT1G78870, AT5G42190, 

AT5G05560, AT2G44330, AT4G03190, AT3G61590, AT4G25230, AT2G22010, 

AT5G60710, AT3G21840, AT3G46620, AT3G07370, AT3G19140, AT2G42620, 

AT4G28370, AT2G16740, AT5G50430, AT5G02310, AT4G11360, AT1G79810, 

AT3G55530, AT3G05870, AT1G77000, AT4G05470, AT5G42200, AT1G57820, 

AT5G27920, AT5G51450, AT3G60010, AT5G41700, AT3G17205, AT3G12630, 

AT5G38070, AT3G25650, AT2G28830, AT1G75440, AT4G14220, AT5G53300, 

AT5G50870, AT3G05545, AT5G02920, AT3G07360, AT1G20140, AT4G27960, 

AT2G16810, AT4G05460, AT3G08700, AT3G24515, AT2G39810, AT2G45950, 

AT2G35000, AT1G64230, AT3G54850, AT2G38970, AT2G04920, AT2G32790, 

AT1G66050, AT1G08050, AT2G25700, AT1G53020, AT3G53410, AT3G04460, 

AT1G26830, AT5G67250, AT4G05490, AT1G65430, AT1G30950, AT3G42830, 

AT1G69670, AT4G07400, AT3G53090, AT1G70320, AT1G23260, AT3G61415, 

AT3G55380, AT4G08980, AT3G17000, AT1G70660, AT5G56150, AT1G29340, 

AT5G05080, AT5G25760, AT5G45100, AT1G79380, AT1G45050, AT4G36410, 

AT5G57740, AT1G20780, AT2G39940, AT4G23450, AT2G25490, AT1G27910, 

AT4G30640, AT5G53840, AT1G22500, AT1G17280, AT3G24800, AT4G28270, 

AT1G06770, AT5G49665, AT3G21850, AT5G02880, AT5G18650, AT5G03200, 

AT1G10560, AT1G63800, AT5G57360, AT5G42990, SFO1, AT2G18600, AT2G46030, 

AT4G33210, AT5G13530, AT3G20060, AT2G35930, AT2G26350, AT3G47990, 

AT5G39550, AT2G21950, AT1G15100, AT2G22680, AT1G76920, AT3G18710, 

AT4G28890, AT3G01650, AT5G07270, AT3G50080, AT2G18915, AT5G20910, 

AT2G42360, AT5G19080, AT5G41340, AT2G36060, AT2G44900, AT4G21070, 

AT3G60350, AT2G20160, AT3G46460, AT1G14260, AT3G12775, AT3G05200, 

AT3G56580, AT2G42160, AT1G51290, AT1G16890, AT3G21830, AT4G24390,  
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 AT5G62540, AT2G47700, AT2G03160, AT3G54650, AT5G65200, AT3G21410, 

AT3G63530, AT3G06330, AT5G59550, AT5G63970, AT5G53910, AT3G23280, 

AT1G21410, AT2G03190, AT3G52450, AT1G12760, AT1G51320, AT1G47056, 

AT1G68050, AT3G46510, AT4G15475, AT2G20650, AT3G62980, AT2G03560, 

AT5G01720, AT4G08590, AT4G38600, AT2G17020, AT4G02440, AT4G34100 

transporter 

activity 

(GO:0005215) 

AT2G37730, AT4G02500, AT5G15740, AT2G29740, AT1G11720, AT5G05870, 

AT2G31750, AT2G04560, AT3G46720, AT2G03280, AT3G46680, AT4G26250, 

AT4G00300, AT1G60450, AT1G74420, AT4G03340, AT1G09350, AT5G20410, 

AT1G54940, AT1G67850, AT5G64740, AT3G21780, AT4G15290, AT1G52420, 

AT2G15350, AT4G19900, AT4G13410, AT1G22370, AT1G32930, AT3G27470, 

AT3G59100, AT1G71220, AT5G13500, AT3G61130, AT5G41460, AT1G30530, 

AT4G04970, AT2G32540, AT3G46970, AT5G03490, AT2G25540, AT1G13250, 

AT1G75420, AT2G44660, AT3G46650, AT2G31960, AT5G14860, AT1G27600, 

AT2G22930, AT1G70090, AT4G18780, AT3G26370, AT1G38131, AT1G24570, 

AT4G15320, AT2G30140, AT2G28080, AT4G17770, AT3G02250, AT1G24170, 

AT5G37200, AT1G24070, AT3G11540, AT4G16600, AT2G03220, AT4G15550, 

AT2G24630, AT1G20550, AT4G03550, AT3G62660, AT2G32430, AT1G08660, 

AT3G29320, AT1G68380, AT1G73810, AT5G01100, AT1G14070, AT5G16190, 

AT4G21060, AT2G26100, AT2G19160, AT5G38010, AT3G16520, AT5G59530, 

AT1G68020, AT5G49690, AT1G77810, AT1G50580, AT2G21770, AT3G07020, 

AT2G23260, AT4G36890, AT5G04480, AT1G78280, AT3G53160, AT1G70290, 

AT5G53340, AT2G35650, AT5G12260, AT2G35710, AT2G37980, AT4G09500, 

AT2G32610, AT4G14100, AT1G04920, AT5G17040, AT5G47780, AT3G02350, 

AT3G21310, AT3G01040, AT1G01570, AT1G11730, AT5G15050, AT3G50760, 

AT5G01220, AT4G19460, AT1G70630, AT5G17030, AT1G28240, AT1G38065, 

AT1G24100, AT4G12700, AT1G34550, AT1G05570, AT3G21770, AT4G15500, 

AT1G74800, AT1G29200, AT3G57200, AT3G01720, AT1G80290, AT1G16900, 

AT1G23480, AT1G05150, AT4G11350, AT5G65470, AT1G22340, AT5G11730, 

AT1G60140, AT2G20810, AT1G77130, AT4G32110, AT2G36750, AT2G26480, 

AT5G03760, AT5G09870, AT3G52060, AT3G03810, AT1G10880, AT1G08040, 

AT3G21190, AT1G22460, AT4G39350, AT2G16890, AT4G16590, AT2G43820, 

AT3G54100, AT1G67880, AT5G49190, AT1G35510, AT1G11940, AT5G15470, 

AT3G43190, AT4G24000, AT2G30150, AT1G26810, AT2G02910, AT1G74380, 

AT3G42180, AT2G31790, AT3G57420, AT1G04910, AT1G62330, AT2G01480, 

AT2G36780, AT2G03210, AT4G15260, AT5G57270, AT4G26940, AT5G05880, 

AT1G71070, AT1G68390, AT1G08990, AT3G11420, AT4G02280, AT2G44500, 

AT3G11670, AT3G01620, AT5G46220, AT3G03690, AT4G33330, AT4G32410, 

AT5G13000, AT1G18690, AT3G02100, AT3G06440, AT4G31350, AT1G61050, 

AT1G05530, AT2G15390, AT2G23210, AT2G30575, AT1G71990, AT4G38310, 

AT3G56000, AT5G54010, AT5G25330, AT4G12840, AT5G57500, AT3G25140, 

AT5G38460, AT5G03770, AT4G36770, AT5G05170, AT2G41451, AT5G59070, 

AT4G27550, AT1G73740, AT5G60700, AT1G78580, AT2G41150, AT1G52630, 

AT3G28180, AT1G14020, AT2G29730, AT5G01250, AT4G02130, AT1G11990, 

AT3G46700, AT5G22740, AT1G16980, AT1G22400, AT3G14570, AT1G60470, 

AT1G63450, AT4G25870, AT3G14960, AT1G05560, AT1G02720, AT2G37580, 

AT2G15480, AT1G51630, AT3G45100, AT5G64600, AT3G21760, AT5G63390, 

AT1G73160, AT1G20570, AT1G53290, AT5G42660, AT1G07240, AT4G32290, 

AT3G29630, AT5G59520, AT3G07170, AT3G30300, AT4G38190, AT1G05280, 

AT1G43620, AT1G23870, AT3G08550, AT1G06410, AT4G37690, AT1G03520, 

AT1G06780, AT1G32180, AT1G01420, AT5G18480, AT2G36760, AT4G38270, 

AT3G55700, AT5G25970, AT3G46670, AT3G24040, AT5G22130, AT4G09630, 

AT2G43840, AT2G15370, AT3G15350, AT2G22590, AT2G28310, AT5G54060, 

AT1G64910, AT2G18560, AT1G11170, AT2G38650, AT2G38150, AT3G15940,  
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 AT4G27560, AT5G23790, AT5G35570, AT5G44030, AT4G24530, AT4G24010, 

AT2G29750, AT2G25300, AT1G73880, AT5G24300, AT3G58790, AT1G06000, 

AT4G10120, AT1G76270, AT4G01070, AT1G62305, AT1G55850, AT1G78800, 

AT3G19280, AT4G15270, AT3G62720, AT2G36790, AT1G16570, AT2G33100, 

AT5G05860, AT1G01390, AT2G32450, AT2G13290, AT3G46690, AT2G36850, 

AT3G21800, AT5G05890, AT2G36970, AT4G16710, AT1G14970, AT1G07260, 

AT4G16650, AT1G22380, AT4G15280, AT3G03050, AT1G14080, AT4G00550, 

AT4G23490, AT4G31590, AT4G23990, AT1G51770, AT4G38240, AT5G22070, 

AT1G10280, AT4G17430, AT1G22360, AT2G35100, AT1G33430, AT1G07850, 

AT3G06260, AT5G25990, AT1G53040, AT5G67230, AT4G38390, AT1G56600, 

AT2G37090, AT3G55830, AT4G27480, AT4G18240, AT1G61240, AT4G18530, 

AT2G22900, AT2G39630, AT5G14850, AT1G64920, AT2G20370, AT5G04500, 

AT3G50740, AT3G09020, AT3G01180, AT2G46480, AT5G05900, AT1G33250, 

AT2G04280, AT5G53990, AT5G07720, AT5G25265, AT4G30060, AT3G56750, 

AT4G15480, AT2G15490, AT2G23250, AT3G48820, AT4G31780, AT5G14550, 

AT3G55710, AT4G15240, AT1G05680, AT3G21750, AT4G07960, AT1G07250, 

AT5G14480, AT1G19300, AT2G36800, AT1G05170, AT1G19710, AT1G05670, 

AT4G01210, AT1G32900, AT5G66690, AT2G41770, AT5G65550, AT1G10400, 

AT3G27540, AT5G54690, AT3G22250, AT2G36770, AT1G06490, AT4G38500, 

AT5G26310, AT2G32530, AT5G16170, AT3G10630, AT3G46660, AT1G12990, 

AT2G40190, AT3G07900, AT4G15490, AT2G25260, AT1G51210, AT3G07330, 

AT2G18570, AT3G18660, AT1G49710, AT3G04240, AT1G13000, AT2G32620, 

AT4G27570, AT5G17050, AT5G16910, AT1G27120, AT5G20280, AT4G08810, 

AT2G18700, AT3G26440, AT2G29710, AT5G12890 

ubiquitin-protein 

transferase 

activity 

(GO:0004842) 

AT1G14400, AT3G07550, AT3G21860, AT2G03170, AT3G09770, AT2G16920, 

AT2G33770, AT2G36370, AT3G06140, AT5G02750, AT2G26000, AT1G80570, 

AT4G03510, AT2G01150, AT3G54780, AT4G27470, AT3G29270, AT1G10230, 

AT5G06460, AT4G33160, AT1G63900, AT5G43190, AT3G08690, AT2G02760, 

AT1G12820, AT2G32950, AT4G34210, AT4G04690, AT1G02860, AT5G49980, 

AT1G51550, AT5G59300, AT4G12570, AT5G46210, AT4G10160, AT3G60220, 

AT1G36340, AT3G53060, AT2G30110, AT3G26810, AT1G49210, AT4G19700, 

AT2G44950, AT5G14420, AT3G13550, AT5G27420, AT3G52560, AT2G04660, 

AT4G37890, AT2G30580, AT1G75950, AT4G34470, AT5G05280, AT5G10380, 

AT5G65683, AT1G50490, AT1G55860, AT3G60020, AT1G78870, AT5G42190, 

AT5G05560, AT2G44330, AT4G03190, AT3G61590, AT4G25230, AT2G22010, 

AT5G60710, AT3G21840, AT3G46620, AT3G07370, AT3G19140, AT2G42620, 

AT4G28370, AT2G16740, AT5G50430, AT5G02310, AT4G11360, AT1G79810, 

AT3G55530, AT3G05870, AT1G77000, AT4G05470, AT5G42200, AT1G57820, 

AT5G27920, AT5G51450, AT3G60010, AT5G41700, AT3G17205, AT3G12630, 

AT5G38070, AT3G25650, AT2G28830, AT1G75440, AT4G14220, AT5G53300, 

AT5G50870, AT3G05545, AT5G02920, AT3G07360, AT1G20140, AT4G27960, 

AT2G16810, AT4G05460, AT3G08700, AT3G24515, AT2G39810, AT2G45950, 

AT2G35000, AT1G64230, AT3G54850, AT2G38970, AT2G04920, AT2G32790, 

AT1G66050, AT1G08050, AT2G25700, AT1G53020, AT3G53410, AT3G04460, 

AT1G26830, AT5G67250, AT4G05490, AT1G65430, AT1G30950, AT3G42830, 

AT1G69670, AT4G07400, AT3G53090, AT1G70320, AT1G23260, AT3G61415, 

AT3G55380, AT4G08980, AT3G17000, AT1G70660, AT5G56150, AT1G29340, 

AT5G05080, AT5G25760, AT5G45100, AT1G79380, AT1G45050, AT4G36410, 

AT5G57740, AT1G20780, AT2G39940, AT4G23450, AT2G25490, AT1G27910, 

AT4G30640, AT5G53840, AT1G22500, AT1G17280, AT3G24800, AT4G28270, 

AT1G06770, AT5G49665, AT3G21850, AT5G02880, AT5G18650, AT5G03200, 

AT1G10560, AT1G63800, AT5G57360, AT5G42990, SFO1, AT2G18600, AT2G46030, 

AT4G33210, AT5G13530, AT3G20060, AT2G35930, AT2G26350, AT3G47990,  
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 AT5G39550, AT2G21950, AT1G15100, AT2G22680, AT1G76920, AT3G18710, 

AT4G28890, AT3G01650, AT5G07270, AT3G50080, AT2G18915, AT5G20910, 

AT2G42360, AT5G19080, AT5G41340, AT2G36060, AT2G44900, AT4G21070, 

AT3G60350, AT2G20160, AT3G46460, AT1G14260, AT3G12775, AT3G05200, 

AT3G56580, AT2G42160, AT1G51290, AT1G16890, AT3G21830, AT4G24390, 

AT5G62540, AT2G47700, AT2G03160, AT3G54650, AT5G65200, AT3G21410, 

AT3G63530, AT3G06330, AT5G59550, AT5G63970, AT5G53910, AT3G23280, 

AT1G21410, AT2G03190, AT3G52450, AT1G12760, AT1G51320, AT1G47056, 

AT1G68050, AT3G46510, AT4G15475, AT2G20650, AT3G62980, AT2G03560, 

AT5G01720, AT4G08590, AT4G38600, AT2G17020, AT4G02440, AT4G34100 

zinc ion binding 

(GO:0008270) 

AT1G14400, AT3G07550, AT3G21860, AT2G03170, AT3G09770, AT2G16920, 

AT2G33770, AT2G36370, AT3G06140, AT5G02750, AT2G26000, AT1G80570, 

AT4G03510, AT2G01150, AT3G54780, AT4G27470, AT3G29270, AT1G10230, 

AT5G06460, AT4G33160, AT1G63900, AT5G43190, AT3G08690, AT2G02760, 

AT1G12820, AT2G32950, AT4G34210, AT4G04690, AT1G02860, AT5G49980, 

AT1G51550, AT5G59300, AT4G12570, AT5G46210, AT4G10160, AT3G60220, 

AT1G36340, AT3G53060, AT2G30110, AT3G26810, AT1G49210, AT4G19700, 

AT2G44950, AT5G14420, AT3G13550, AT5G27420, AT3G52560, AT2G04660, 

AT4G37890, AT2G30580, AT1G75950, AT4G34470, AT5G05280, AT5G10380, 

AT5G65683, AT1G50490, AT1G55860, AT3G60020, AT1G78870, AT5G42190, 

AT5G05560, AT2G44330, AT4G03190, AT3G61590, AT4G25230, AT2G22010, 

AT5G60710, AT3G21840, AT3G46620, AT3G07370, AT3G19140, AT2G42620, 

AT4G28370, AT2G16740, AT5G50430, AT5G02310, AT4G11360, AT1G79810, 

AT3G55530, AT3G05870, AT1G77000, AT4G05470, AT5G42200, AT1G57820, 

AT5G27920, AT5G51450, AT3G60010, AT5G41700, AT3G17205, AT3G12630, 

AT5G38070, AT3G25650, AT2G28830, AT1G75440, AT4G14220, AT5G53300, 

AT5G50870, AT3G05545, AT5G02920, AT3G07360, AT1G20140, AT4G27960, 

AT2G16810, AT4G05460, AT3G08700, AT3G24515, AT2G39810, AT2G45950, 

AT2G35000, AT1G64230, AT3G54850, AT2G38970, AT2G04920, AT2G32790, 

AT1G66050, AT1G08050, AT2G25700, AT1G53020, AT3G53410, AT3G04460, 

AT1G26830, AT5G67250, AT4G05490, AT1G65430, AT1G30950, AT3G42830, 

AT1G69670, AT4G07400, AT3G53090, AT1G70320, AT1G23260, AT3G61415, 

AT3G55380, AT4G08980, AT3G17000, AT1G70660, AT5G56150, AT1G29340, 

AT5G05080, AT5G25760, AT5G45100, AT1G79380, AT1G45050, AT4G36410, 

AT5G57740, AT1G20780, AT2G39940, AT4G23450, AT2G25490, AT1G27910, 

AT4G30640, AT5G53840, AT1G22500, AT1G17280, AT3G24800, AT4G28270, 

AT1G06770, AT5G49665, AT3G21850, AT5G02880, AT5G18650, AT5G03200, 

AT1G10560, AT1G63800, AT5G57360, AT5G42990, SFO1, AT2G18600, AT2G46030, 

AT4G33210, AT5G13530, AT3G20060, AT2G35930, AT2G26350, AT3G47990, 

AT5G39550, AT2G21950, AT1G15100, AT2G22680, AT1G76920, AT3G18710, 

AT4G28890, AT3G01650, AT5G07270, AT3G50080, AT2G18915, AT5G20910, 

AT2G42360, AT5G19080, AT5G41340, AT2G36060, AT2G44900, AT4G21070, 

AT3G60350, AT2G20160, AT3G46460, AT1G14260, AT3G12775, AT3G05200, 

AT3G56580, AT2G42160, AT1G51290, AT1G16890, AT3G21830, AT4G24390, 

AT5G62540, AT2G47700, AT2G03160, AT3G54650, AT5G65200, AT3G21410, 

AT3G63530, AT3G06330, AT5G59550, AT5G63970, AT5G53910, AT3G23280, 

AT1G21410, AT2G03190, AT3G52450, AT1G12760, AT1G51320, AT1G47056, 

AT1G68050, AT3G46510, AT4G15475, AT2G20650, AT3G62980, AT2G03560, 

AT5G01720, AT4G08590, AT4G38600, AT2G17020, AT4G02440, AT4G34100 
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Supplemental Table 4.7 TF genes belonging to each TF family in A. thaliana 

TF Family TFs 

AP2 AT1G64380, AT5G47220, AT3G20310, AT4G18450, AT2G35700, AT4G28140, AT5G57390, 

AT1G25560, AT1G22810, AT2G20350, AT1G12610, AT1G71520, AT4G25480, AT2G23340, 

AT1G46768, AT3G25730, AT5G65510, AT2G40340, AT5G65130, AT5G18450, AT5G21960, 

AT5G61600, AT1G36060, AT4G25470, AT1G21910, AT4G36900, AT1G79700, AT4G39780, 

AT3G50260, AT1G80580, AT1G28160, AT4G11140, AT1G12890, AT5G53290, AT3G61630, 

AT5G64750, AT5G25190, AT3G60490, AT5G51990, AT1G12630, AT2G33710, AT2G44940, 

AT5G67000, AT2G39250, AT1G71130, AT1G06160, AT3G16770, AT1G51120, AT5G17430, 

AT1G72570, AT1G04370, AT2G31230, AT1G19210, AT3G54990, AT2G36450, AT5G61890, 

AT5G44210, AT1G50640, AT4G34410, AT5G43410, AT1G77640, AT4G36920, AT2G25820, 

AT1G78080, AT1G43160, AT5G52020, AT1G22985, AT2G20880, AT3G20840, AT2G46310, 

AT4G17500, AT1G63030, AT4G13040, AT5G18560, AT4G16750, AT2G44840, AT4G25490, 

AT5G10510, AT1G44830, AT5G13330, AT1G50680, AT4G32800, AT1G53910, AT3G23240, 

AT4G23750, AT2G41710, AT4G13620, AT5G13910, AT3G23220, AT5G25810, AT2G47520, 

AT2G22200, AT5G51190, AT3G54320, AT1G51190, AT1G24590, AT3G11020, AT1G28360, 

AT3G15210, AT4G37750, AT5G07580, AT5G11190, AT1G25470, AT1G22190, AT1G72360, 

AT1G75490, AT1G49120, AT5G60120, AT3G23230, AT4G27950, AT3G57600, AT5G47230, 

AT1G15360, AT3G25890, AT1G28370, AT1G53170, AT5G67190, AT2G28550, AT5G25390, 

AT5G19790, AT1G77200, AT1G74930, AT1G68550, AT1G33760, AT5G11590, AT3G16280, 

AT1G03800, AT1G68840, AT1G12980, AT5G07310, AT4G31060, AT2G40220, AT1G01250, 

AT5G61590, AT1G16060, AT4G06746, AT5G50080, AT5G67180, AT4G17490, AT3G14230, 

AT5G67010, AT2G38340, AT5G05410, AT2G40350, AT1G13260, AT1G71450 

B3 AT1G35540, AT2G30470, AT2G36080, AT5G32460, AT2G24680, AT4G31690, AT1G43950, 

AT1G19220, AT4G31660, AT4G03170, AT3G25730, AT4G31610, AT5G62000, AT3G11580, 

AT2G28350, AT3G06220, AT1G34310, AT5G60142, AT1G35240, AT5G60140, AT3G06160, 

AT4G31640, AT1G30330, AT1G34390, AT1G34410, AT2G46870, AT5G57720, AT3G61830, 

AT1G20600, AT5G06250, AT1G51120, AT1G19850, AT4G31650, AT2G24650, AT3G17010, 

AT4G01580, AT3G53310, AT5G20730, AT5G18000, AT5G42700, AT2G33860, AT1G59750, 

AT4G31620, AT1G25560, AT5G25470, AT5G58280, AT5G25475, AT2G24700, AT1G01030, 

AT2G35310, AT5G09780, AT4G34400, AT1G50680, AT2G24645, AT2G16210, AT4G00260, 

AT4G21550, AT4G01500, AT1G49480, AT4G33280, AT1G34170, AT1G16640, AT4G31630, 

AT1G77850, AT3G18990, AT4G31615, AT2G33720, AT4G30080, AT3G46770, AT4G23980, 

AT3G26790, AT3G18960, AT1G08985, AT5G18090, AT1G49475, AT1G26680, AT3G19184, 

AT2G24681, AT3G61970, AT5G60130, AT1G05930, AT3G24650, AT1G68840, AT5G66980, 

AT5G37020, AT4G32010, AT2G24690, AT4G31680, AT2G24696, AT1G28300, AT5G60450, 

AT1G35520, AT1G13260, AT2G46530 

bHLH-

MYC N 

AT5G46760, AT4G09820, AT1G32640, AT4G00870, AT2G31280, AT2G16910, AT4G16430, 

AT4G17880, AT1G10610, AT1G63650, AT2G46510, AT5G41315, AT1G01260, AT4G00480, 

AT5G46830 

bZIP 1 AT3G54620, AT3G19290, AT5G11260, AT2G17770, AT1G77920, AT5G24800, AT3G51960, 

AT3G44460, AT2G16770, AT1G32150, AT4G35900, AT3G30530, AT2G18160, AT1G06850, 

AT1G75390, AT2G46270, AT2G21230, AT5G06839, AT1G22070, AT5G06950, AT4G34590, 

AT2G40620, AT5G60830, AT4G37730, AT3G49760, AT4G36730, AT4G35040, AT2G35530, 

AT2G41070, AT3G62420, AT2G42380, AT4G34000, AT4G38900, AT5G28770, AT3G56660, 

AT2G04038, AT4G02640, AT5G42910, AT1G08320, AT3G17609, AT5G07160, AT2G31370, 

AT5G38800, AT5G08141, AT5G49450, AT1G68880, AT5G15830, AT3G58120, AT2G12940, 

AT5G44080, AT2G13150, AT3G10800, AT1G42990, AT2G40950, AT5G06960, AT3G56850, 

AT1G68640, AT1G13600, AT2G22850, AT4G01120, AT1G43700, AT5G10030, AT1G49720, 

AT5G65210, AT1G06070, AT3G12250, AT2G36270, AT1G03970, AT1G59530 
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Supplemental Table 4.7 (cont’d) 

bZIP 2 AT3G54620, AT3G19290, AT5G11260, AT2G17770, AT5G24800, AT3G51960, AT3G44460, 

AT2G16770, AT1G32150, AT4G35900, AT3G30530, AT2G18160, AT1G06850, AT1G75390, 

AT2G46270, AT2G21230, AT5G06839, AT4G38900, AT5G06950, AT2G22850, AT2G40620, 

AT5G60830, AT4G37730, AT3G49760, AT5G44080, AT4G36730, AT4G35040, AT2G35530, 

AT2G41070, AT3G62420, AT2G42380, AT4G34000, AT5G07160, AT5G28770, AT3G56660, 

AT2G04038, AT4G02640, AT5G42910, AT1G08320, AT3G17609, AT2G31370, AT5G38800, 

AT5G08141, AT5G49450, AT2G12900, AT1G68880, AT5G15830, AT3G58120, AT2G12940, 

AT4G34590, AT2G13150, AT3G10800, AT1G42990, AT2G40950, AT5G06960, AT3G56850, 

AT1G68640, AT1G13600, AT1G45249, AT4G01120, AT1G43700, AT5G10030, AT1G49720, 

AT5G65210, AT1G06070, AT3G12250, AT2G36270, AT1G03970, AT1G59530 

bZIP C AT4G02640, AT5G24800, AT5G28770, AT3G54620 

CBFB 

NFYA 

AT3G05690, AT1G17590, AT3G20910, AT1G30500, AT1G72830, AT2G34720, AT3G14020, 

AT1G54160, AT5G06510, AT5G12840 

E2F TDP AT3G48160, AT5G14960, AT2G36010, AT1G47870, AT5G02470, AT3G01330, AT5G22220, 

AT5G03415 

EIN3 AT5G21120, AT3G20770, AT2G27050, AT5G65100, AT1G73730, AT5G10120 

FAR1 AT5G18960, AT1G52520, AT5G28530, AT2G32250, AT4G19990, AT3G07500, AT1G10240, 

AT1G76320, AT3G59470, AT4G12850, AT4G15090, AT2G43280, AT2G27110, AT4G38180, 

AT3G06250, AT3G22170, AT1G80010 

GAGA AT2G01930, AT2G35550, AT1G68120, AT1G14685, AT4G38910, AT5G42520, AT2G21240 

GATA AT1G51600, AT5G56860, AT3G24050, AT3G60530, AT3G21175, AT1G08010, AT5G47140, 

AT4G34680, AT3G45170, AT5G66320, AT2G28340, AT3G50870, AT5G26930, AT4G36240, 

AT3G16870, AT5G25830, AT3G06740, AT1G08000, AT3G54810, AT4G24470, AT4G17570, 

AT3G20750, AT2G45050, AT3G51080, AT2G18380, AT4G36620, AT4G16141, AT4G26150, 

AT4G32890, AT5G49300 

HALZ AT5G65310, AT2G22430, AT3G60390, AT2G01430, AT5G06710, AT2G46680, AT3G61890, 

AT3G01220, AT2G22800, AT3G01470, AT1G27045, AT4G37790, AT4G17460, AT5G47370, 

AT4G40060, AT1G70920, AT1G26960, AT5G15150, AT1G69780, AT2G44910, AT4G16780 

HLH AT5G61270, AT5G37800, AT1G01260, AT4G25400, AT5G43650, AT2G43010, AT2G42300, 

AT3G26744, AT1G05805, AT1G51140, AT4G02590, AT1G59640, AT5G51780, AT1G74500, 

AT1G66470, AT1G71200, AT5G65320, AT3G56970, AT5G58010, AT4G21330, AT4G16430, 

AT1G72210, AT1G10610, AT2G31210, AT5G41315, AT2G31215, AT3G56980, AT3G23690, 

AT4G33880, AT1G10120, AT5G46690, AT5G43175, AT2G46510, AT3G19860, AT5G01310, 

AT3G23210, AT2G42280, AT3G47710, AT5G08130, AT4G00050, AT4G28790, AT2G31220, 

AT5G62610, AT3G59060, AT2G41130, AT2G46970, AT1G18400, AT3G25710, AT1G68920, 

AT4G09820, AT5G51790, AT5G48560, AT3G24140, AT2G22770, AT2G24260, AT1G22490, 

AT1G06170, AT2G14760, AT1G68810, AT1G26260, AT1G35460, AT5G46760, AT4G36930, 

AT2G22760, AT5G54680, AT5G65640, AT1G03040, AT3G61950, AT3G56770, AT2G20180, 

AT1G12860, AT4G30980, AT5G67060, AT2G46810, AT1G26945, AT2G41240, AT3G07340, 

AT3G50330, AT2G40200, AT1G12540, AT5G57150, AT5G50915, AT4G17880, AT2G28160, 

AT1G69010, AT2G22750, AT1G27740, AT4G34530, AT1G02340, AT4G14410, AT4G37850, 

AT1G09530, AT3G62090, AT1G32640, AT4G00870, AT5G10570, AT5G04150, AT3G06120, 

AT4G00120, AT4G09180, AT3G21330, AT4G36540, AT4G28800, AT5G67110, AT5G56960, 

AT1G49770, AT5G38860, AT2G16910, AT2G18300, AT4G20970, AT2G43140, AT5G09750, 

AT1G68240, AT5G53210, AT5G46830, AT1G62975, AT4G29930, AT4G25410, AT4G28811, 

AT1G25330, AT4G28815, AT1G63650, AT4G38070, AT1G51070, AT4G01460, AT1G73830 

Homeobox 

KN 

AT2G27220, AT1G75430, AT1G62990, AT1G75410, AT2G23760, AT4G36870, AT4G32040, 

AT1G62360, AT2G35940, AT5G02030, AT5G11060, AT1G70510, AT4G32980, AT1G23380, 

AT4G25530, AT2G16400, AT5G25220, AT2G27990, AT4G34610, AT5G41410, AT1G19700, 

AT4G08150 
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HSF DNA-

bind 

AT2G27220, AT1G75430, AT1G62990, AT1G75410, AT2G23760, AT4G36870, AT4G32040, 

AT1G62360, AT2G35940, AT5G02030, AT5G11060, AT1G70510, AT4G32980, AT1G23380, 

AT4G25530, AT2G16400, AT5G25220, AT2G27990, AT4G34610, AT5G41410, AT1G19700, 

AT4G08150 

K-box AT5G20240, AT1G31140, AT2G22540, AT5G65060, AT4G22950, AT5G51860, AT3G57230, 

AT4G24540, AT5G65080, AT3G02310, AT5G60910, AT1G69120, AT2G45650, AT3G57390, 

AT1G24260, AT1G77080, AT4G18960, AT5G10140, AT3G61120, AT4G11880, AT5G65050, 

AT5G51870, AT1G26310, AT4G37940, AT5G23260, AT2G22630, AT4G09960, AT5G62165, 

AT2G14210, AT3G54340, AT5G65070, AT2G45660, AT3G58780, AT5G15800, AT2G03710, 

AT2G42830, AT1G71692, AT5G13790, AT3G30260 

KNOX1 AT4G32040, AT1G70510, AT5G25220, AT5G11060, AT1G62990, AT1G23380, AT1G62360, 

AT4G08150 

KNOX2 AT4G32040, AT1G70510, AT5G25220, AT5G11060, AT1G62990, AT1G23380, AT1G62360, 

AT4G08150 

MADF 

DNA bdg 

AT1G33240, AT3G10030, AT3G24490, AT1G76880, AT1G76890, AT2G44730 

MEKHLA AT1G30490, AT2G34710, AT5G60690, AT4G32880, AT1G52150 

MFMR AT4G01120, AT2G46270, AT2G35530, AT4G36730, AT1G32150 

Myb CC 

LHEQLE 

AT3G12730, AT3G13040, AT4G13640, AT4G28610, AT5G29000, AT3G04030, AT3G04450, 

AT5G06800, AT5G18240, AT5G45580, AT3G24120, AT1G69580, AT2G20400, AT1G79430, 

AT2G01060 

Myb DNA-

bind 4 

AT1G31310, AT1G33240, AT3G58630, AT1G76880, AT2G44730, AT2G35640, AT1G21200, 

AT2G33550, AT3G10030, AT3G24490, AT3G24860, AT1G76870, AT2G38250, AT5G63420, 

AT5G01380, AT5G03680, AT5G05550, AT1G13450, AT5G47660, AT1G54060, AT1G76890, 

AT3G11100, AT3G14180, AT3G10040, AT5G28300, AT3G54390, AT4G31270, AT3G10000, 

AT3G25990 

Myb DNA-

bind 5 

AT1G33240, AT3G25990, AT1G76890, AT1G13450 

Myb DNA-

bind 6 

AT3G50060, AT3G24310, AT3G09370, AT4G38620, AT5G40360, AT2G37630, AT4G25560, 

AT5G65790, AT1G56160, AT3G01530, AT5G12870, AT4G05100, AT4G32730, AT1G79180, 

AT3G13540, AT1G48000, AT3G01140, AT4G17785, AT4G37780, AT2G31180, AT3G46130, 

AT5G14340, AT1G72740, AT3G06490, AT3G52250, AT3G27810, AT1G76890, AT4G13480, 

AT2G25230, AT5G56110, AT4G21440, AT3G28470, AT5G07700, AT5G14750, AT1G66370, 

AT4G00540, AT1G18570, AT1G74430, AT4G37260, AT3G49690, AT5G07690, AT5G54230, 

AT4G33450, AT3G11450, AT2G36890, AT3G27785, AT2G13960, AT5G59780, AT2G32460, 

AT3G55730, AT3G48920, AT1G08810, AT3G13890, AT2G39880, AT3G10113, AT3G12820, 

AT1G71030, AT2G47190, AT4G34990, AT1G25340, AT4G22680, AT2G47460, AT1G15720, 

AT5G40350, AT4G28110, AT1G18960, AT5G52600, AT5G45420, AT3G11280, AT1G18710, 

AT1G74080, AT3G12720, AT5G41020, AT1G26780, AT3G29020, AT5G67300, AT5G10280, 

AT5G55020, AT5G61420, AT3G53200, AT5G39700, AT3G02940, AT3G09230, AT1G22640, 

AT5G62470, AT5G57620, AT5G11050, AT3G27920, AT5G40430, AT5G35550, AT1G34670, 

AT3G61250, AT1G17520, AT3G49850, AT5G17800, AT5G60890, AT5G01200, AT1G74650, 

AT1G69560, AT3G11440, AT2G26950, AT5G65230, AT3G28910, AT1G66230, AT1G35515, 

AT1G73410, AT5G58340, AT5G23000, AT5G11510, AT3G47600, AT5G40330, AT4G01680, 

AT2G16720, AT3G60460, AT5G62320, AT4G09460, AT1G14350, AT5G06100, AT3G23250, 

AT1G09540, AT1G57560, AT2G38090, AT1G72650, AT2G46410, AT1G18330, AT5G16600, 

AT5G15310, AT5G04760, AT4G12350, AT2G23290, AT5G05790, AT4G18770, AT5G58850, 

AT1G16490, AT1G56650, AT1G58220, AT5G02320, AT5G06110, AT3G30210, AT1G17950, 

AT1G66380, AT5G16770, AT3G08500, AT5G49330, AT5G49620, AT1G06180, AT1G68320, 

AT5G58900, AT4G26930, AT3G18100, AT5G52260, AT5G26660, AT1G63910, AT2G02820, 

AT1G09770, AT2G26960, AT5G67580, AT3G62610, AT1G66390 
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Myb DNA-

binding 

AT3G50060, AT2G25180, AT3G24310, AT3G09370, AT4G38620, AT5G40360, AT2G37630, 

AT3G57980, AT5G05790, AT2G44430, AT5G65790, AT1G56160, AT3G01530, AT5G12870, 

AT4G05100, AT1G01380, AT4G32730, AT1G79180, AT5G02840, AT3G13540, AT3G25790, 

AT4G18020, AT3G10590, AT4G09450, AT5G59570, AT3G04450, AT1G48000, AT3G01140, 

AT4G17785, AT4G37780, AT1G66230, AT2G31180, AT3G46130, AT5G14340, AT4G13640, 

AT1G72740, AT2G18328, AT3G52250, AT1G70000, AT1G06910, AT3G27810, AT4G13480, 

AT2G40970, AT4G04580, AT2G25230, AT1G66380, AT5G39700, AT5G56110, AT4G21440, 

AT3G28470, AT5G07700, AT5G08520, AT4G36570, AT1G66370, AT4G25560, AT4G00540, 

AT1G18570, AT1G22640, AT4G37260, AT3G49690, AT5G07690, AT5G54230, AT4G33450, 

AT3G11450, AT2G36890, AT3G27785, AT2G13960, AT5G59780, AT3G08500, AT2G32460, 

AT5G26660, AT1G17460, AT5G58080, AT1G69580, AT3G55730, AT5G18240, AT5G53200, 

AT3G12730, AT3G48920, AT4G16110, AT1G08810, AT3G13890, AT2G39880, AT3G10113, 

AT3G12820, AT1G71030, AT5G06100, AT2G47190, AT4G34990, AT1G25340, AT3G10760, 

AT4G22680, AT2G47460, AT4G37180, AT1G15720, AT5G40350, AT1G09710, AT3G53790, 

AT5G67300, AT5G41020, AT4G28110, AT1G18960, AT5G52600, AT4G39250, AT3G11280, 

AT2G06020, AT1G79430, AT2G01060, AT1G74080, AT3G12720, AT5G44190, AT4G31920, 

AT5G16770, AT1G26780, AT3G29020, AT2G42660, AT5G61620, AT3G10580, AT5G10280, 

AT5G55020, AT1G18330, AT4G17695, AT3G53200, AT2G38300, AT3G02940, AT3G09230, 

AT5G62470, AT5G57620, AT5G11050, AT3G60460, AT5G23650, AT3G46640, AT3G27920, 

AT2G30432, AT5G40430, AT5G35550, AT5G45420, AT3G62670, AT1G34670, AT3G61250, 

AT1G17520, AT1G74430, AT3G49850, AT5G17800, AT5G60890, AT4G28610, AT5G29000, 

AT1G18710, AT5G01200, AT1G74650, AT1G13300, AT1G68670, AT1G69560, AT3G11440, 

AT2G26950, AT2G40260, AT4G39160, AT3G28910, AT1G49950, AT5G05090, AT1G35515, 

AT1G73410, AT3G13040, AT5G37260, AT5G23000, AT1G49010, AT3G47600, AT5G40330, 

AT3G04030, AT4G01680, AT2G16720, AT2G30420, AT5G62320, AT2G30424, AT3G24120, 

AT4G09460, AT3G21430, AT4G01280, AT5G07210, AT5G47390, AT1G14350, AT1G14600, 

AT3G23250, AT2G20570, AT1G09540, AT1G57560, AT5G11510, AT1G19000, AT2G38090, 

AT1G72650, AT2G46410, AT2G03500, AT5G16600, AT5G15310, AT3G09600, AT5G17300, 

AT5G04760, AT5G65230, AT5G56840, AT1G01520, AT3G16350, AT4G12350, AT2G01760, 

AT2G23290, AT5G14750, AT5G42630, AT1G67710, AT4G18770, AT1G32240, AT5G58340, 

AT5G58850, AT1G74840, AT1G16490, AT3G60110, AT1G56650, AT1G58220, AT5G02320, 

AT5G06110, AT3G30210, AT2G20400, AT1G17950, AT1G25550, AT5G16560, AT3G16857, 

AT1G49560, AT3G06490, AT5G49330, AT5G49620, AT5G06800, AT2G36960, AT1G06180, 

AT1G68320, AT1G01060, AT5G58900, AT5G61420, AT4G26930, AT3G18100, AT5G52260, 

AT4G01060, AT1G63910, AT2G02820, AT1G09770, AT5G52660, AT2G26960, AT2G46830, 

AT5G45580, AT5G67580, AT3G62610, AT2G02060, AT1G66390, AT2G42150 

NAM AT3G49530, AT5G64530, AT5G39690, AT5G63790, AT3G61910, AT3G15510, AT5G62380, 

AT5G04400, AT1G79580, AT1G60350, AT4G36160, AT5G56620, AT3G01600, AT2G46770, 

AT3G55210, AT1G60280, AT5G46590, AT5G13180, AT2G43000, AT2G33480, AT1G03490, 

AT5G09330, AT2G27300, AT1G19040, AT4G01550, AT1G54330, AT3G10500, AT5G07680, 

AT1G71930, AT3G56530, AT1G02250, AT5G66300, AT4G27410, AT5G50820, AT1G76420, 

AT3G04070, AT4G01520, AT1G32510, AT4G17980, AT3G56520, AT3G44350, AT1G60380, 

AT5G39820, AT1G25580, AT5G22290, AT3G15170, AT1G60300, AT5G24590, AT3G04060, 

AT5G18270, AT5G64060, AT5G14000, AT3G18400, AT5G08790, AT1G64105, AT1G02230, 

AT3G29035, AT3G04410, AT5G41090, AT3G44290, AT1G65910, AT4G10350, AT5G39610, 

AT3G10480, AT4G29230, AT4G28500, AT1G12260, AT1G56010, AT1G52890, AT2G24430, 

AT1G28470, AT1G01010, AT1G69490, AT1G33280, AT5G61430, AT1G02220, AT2G17040, 

AT5G14490, AT3G12910, AT1G60240, AT3G15500, AT1G77450, AT1G32770, AT1G32870, 

AT5G18037, AT3G10490, AT3G17730, AT4G28530, AT3G04430, AT3G03200, AT1G01720, 

AT1G02210, AT2G02450, AT5G22380, AT1G34190, AT5G18300, AT4G01540, AT1G52880, 

AT4G35580, AT3G56560, AT3G12977, AT3G04420, AT1G33060, AT1G61110, AT1G26870, 

AT2G18060, AT5G04410, AT5G17260, AT5G53950, AT1G60340, AT1G62700, AT1G34180 
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Plant zn 

clust 

AT2G23320, AT5G28650, AT3G04670, AT2G30590, AT2G24570, AT4G31550, AT4G24240 

SBP AT1G76580, AT1G69170, AT5G50670, AT1G02065, AT3G60030, AT2G42200, AT1G53160, 

AT5G50570, AT1G20980, AT5G18830, AT3G57920, AT2G33810, AT2G47070, AT5G43270, 

AT1G27370, AT1G27360, AT3G15270 

SRF-TF AT1G31140, AT4G22950, AT5G15800, AT5G60910, AT3G66656, AT1G69120, AT2G26320, 

AT5G39750, AT5G60440, AT3G04100, AT1G65360, AT5G49420, AT1G65300, AT2G24840, 

AT1G26310, AT4G37940, AT5G27130, AT5G62165, AT2G14210, AT1G47760, AT3G05860, 

AT1G60040, AT5G27580, AT5G20240, AT2G22540, AT4G36590, AT1G65330, AT5G49490, 

AT5G58890, AT4G02235, AT2G34440, AT2G45650, AT5G26630, AT2G03060, AT3G57390, 

AT1G77080, AT5G10140, AT1G77950, AT1G72350, AT1G31630, AT2G22630, AT5G51870, 

AT5G48670, AT3G54340, AT1G28450, AT5G27810, AT2G03710, AT3G61120, AT1G22130, 

AT1G22590, AT5G51860, AT3G57230, AT4G24540, AT5G65080, AT1G46408, AT5G40120, 

AT3G02310, AT5G41200, AT5G38740, AT5G39810, AT5G65060, AT5G26650, AT5G27944, 

AT5G38620, AT5G27090, AT5G04640, AT1G60920, AT5G06500, AT4G09960, AT5G40220, 

AT5G65070, AT5G27070, AT1G01530, AT2G45660, AT5G26950, AT3G18650, AT1G77980, 

AT1G17310, AT1G48150, AT5G26880, AT2G40210, AT5G37415, AT5G65050, AT1G28460, 

AT1G59810, AT5G27960, AT1G69540, AT1G60880, AT5G55690, AT1G24260, AT4G18960, 

AT2G42830, AT2G28700, AT4G11880, AT1G29962, AT5G23260, AT5G27050, AT4G11250, 

AT1G18750, AT3G58780, AT5G26580, AT1G71692, AT5G65330, AT5G13790, AT3G30260, 

AT1G31640 

SWIM AT5G18960, AT5G28530, AT2G32250, AT4G19990, AT1G10240, AT1G76320, AT4G15090, 

AT2G27110, AT4G38180, AT3G06250, AT1G80010 

TCP AT1G53230, AT5G51910, AT1G35560, AT5G08070, AT1G30210, AT1G72010, AT3G45150, 

AT2G37000, AT5G41030, AT3G27010, AT3G02150, AT1G58100, AT1G68800, AT5G23280, 

AT3G47620, AT1G67260, AT2G31070, AT1G69690, AT5G08330, AT3G18550, AT4G18390, 

AT3G15030, AT2G45680, AT5G60970 

WRKY AT5G45260, AT5G49520, AT1G30650, AT1G29280, AT1G80840, AT2G38470, AT2G30250, 

AT1G64000, AT2G34830, AT4G04450, AT3G58710, AT4G23550, AT2G47260, AT2G46130, 

AT5G46350, AT2G04880, AT5G56270, AT4G26440, AT2G37260, AT1G13960, AT4G12020, 

AT1G69310, AT2G40740, AT5G24110, AT2G30590, AT4G01720, AT5G01900, AT5G64810, 

AT1G29860, AT5G52830, AT1G80590, AT3G04670, AT5G07100, AT1G66550, AT4G31550, 

AT2G46400, AT1G62300, AT2G23320, AT2G03340, AT2G21900, AT2G44745, AT3G56400, 

AT1G18860, AT5G22570, AT4G39410, AT3G62340, AT5G41570, AT5G13080, AT3G01080, 

AT1G69810, AT4G30935, AT4G22070, AT4G11070, AT4G01250, AT1G68150, AT4G24240, 

AT1G66600, AT4G18170, AT5G28650, AT4G31800, AT2G24570, AT2G25000, AT1G55600, 

AT5G45050, AT4G23810, AT5G43290, AT4G26640, AT5G26170, AT2G40750, AT3G01970, 

AT5G15130, AT1G66560 

YABBY AT4G00180, AT2G45190, AT1G69180, AT1G23420, AT2G26580, AT1G08465 

zf-B box AT5G57660, AT1G25440, AT4G10240, AT1G28050, AT5G15840, AT4G38960, AT2G31380, 

AT1G78600, AT1G06040, AT3G07650, AT4G39070, AT1G75540, AT2G47890, AT5G15850, 

AT4G15250, AT2G21320, AT2G24790, AT1G73870, AT2G33500, AT1G68520, AT5G48250, 

AT5G24930, AT3G02380 

zf-C2H2 AT3G10470, AT1G14580, AT1G02030, AT2G41835, AT3G48430, AT4G06634, AT5G66730, 

AT2G45120, AT5G04390, AT1G26590, AT2G02070, AT3G45260, AT5G61470, AT5G03150, 

AT1G72050, AT3G57670, AT2G17180, AT1G55110, AT3G60580, AT5G56200, AT1G68130, 

AT2G02080, AT5G14140 

zf-C2H2 4 AT5G61470, AT3G48430, AT3G20880, AT3G60580, AT1G08290, AT1G02030, AT1G51220, 

AT1G13290, AT5G14140, AT1G72050, AT1G34790, AT2G45120, AT1G26590, AT4G06634 
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zf-C2H2 6 AT3G10470, AT4G16610, AT5G15480, AT5G59820, AT4G17810, AT5G67450, AT3G23130, 

AT1G02030, AT5G01860, AT3G46080, AT3G53600, AT1G27730, AT2G28200, AT3G49930, 

AT2G42410, AT2G45120, AT1G26590, AT4G35280, AT3G19580, AT5G61470, AT3G46070, 

AT2G37740, AT3G46090, AT2G17180, AT5G03510, AT3G29340, AT3G60580, AT1G26610, 

AT2G37430, AT5G04390, AT5G43170, AT5G56200, AT2G28710, AT5G04340 

zf-C2H2 jaz AT5G61470, AT1G27730, AT1G74250, AT2G28200, AT5G56200, AT5G26749, AT2G45120, 

AT1G02030, AT2G26940, AT2G37430, AT1G26590, AT2G17180, AT3G60580 

zf-CCCH AT5G06770, AT3G12130, AT5G49200, AT3G12680, AT5G44260, AT3G19360, AT1G29560, 

AT1G48195, AT5G06420, AT5G16540, AT1G32360, AT2G28450, AT5G58620, AT3G06410, 

AT1G04990, AT2G47850, AT3G21810, AT1G29600, AT3G02830, AT2G32930, AT5G18550, 

AT3G08505, AT1G10320, AT1G29570, AT1G68200, AT1G01350, AT5G63260, AT2G35430, 

AT1G66810, AT1G75340, AT3G44785, AT3G48440, AT2G25900, AT1G03790 

zf-Dof AT2G37590, AT1G51700, AT2G46590, AT5G60850, AT1G47655, AT3G47500, AT3G61850, 

AT1G64620, AT1G29160, AT3G21270, AT1G28310, AT5G65590, AT1G26790, AT4G38000, 

AT5G02460, AT2G34140, AT2G28510, AT4G21050, AT5G66940, AT3G45610, AT1G07640, 

AT4G00940, AT4G21030, AT4G24060, AT3G52440, AT3G50410, AT3G55370, AT5G62940, 

AT5G39660, AT4G21080, AT1G69570, AT1G21340, AT5G60200, AT4G21040, AT5G62430, 

AT2G28810 

ZF-HD 

dimer 

AT3G50890, AT5G60480, AT5G15210, AT2G02540, AT1G69600, AT1G14687, AT4G24660, 

AT2G18350, AT3G28920, AT1G18835, AT5G42780, AT1G74660, AT3G28917, AT1G75240, 

AT5G65410, AT1G14440, AT5G39760 

zf-met AT5G61470, AT1G27730, AT1G74250, AT1G02030 
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Supplemental Table 4.8 Best fit parameters of ODE models of the evolution of TF 

expression above or below the ancestral state 

Number of 

Parameters 

Data x y z w mu
1
 Sigma

2
 -2  

log(L)
3
 

1 Control 0.089 0.089 0.089 0.089 0.002 0.002 -90.6 

1 LightDev 0.095 0.095 0.095 0.095 0.004 0.003 -80.2 

1 StressDiff 0.081 0.081 0.081 0.081 0.001 0.001 -100.7 

1 Treatment 0.090 0.090 0.090 0.090 0.001 0.001 -94.0 

2 Control 0.113 0.113 0.067 0.067 0.001 0.001 -98.0 

2 LightDev 0.148 0.148 0.056 0.056 0.001 0.002 -125.0 

2 StressDiff 0.074 0.074 0.087 0.087 0.001 0.001 -101.3 

2 Treatment 0.121 0.121 0.064 0.064 0.001 0.001 -103.0 

1. Mean of error distribution 

2. Standard deviation of error distribution 

3. -2 log-likelihood of model fit 
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Supplemental Table 4.9 Best fit parameters of ODE models of partitioning of ancestral 

states between duplicate TFs 

Number of 

Parameters 

Data x y z w mu
1
 sigma

2
 -2 log 

L
3
 

1 Control 0.537 0.537 0.537 0.537 0.010 0.010 -75.5 

1 LightDev 0.5298 0.5298 0.5298 0.5298 0.010 0.010 -75.3 

1 StressDiff 0.471 0.471 0.471 0.471 0.008 0.008 -81.4 

1 Treatment 0.054 0.054 0.054 0.05 0.010 0.010 -77.5 

1 DapSeq 1.756 1.756 1.756 1.756 0.041 0.048 -38.8 

2 Control 0.957 0.957 0.0779 0.0779 0.001 0.001 -140.3 

2 LightDev 0.978 0.978 0.08 0.08 0.001 0.001 -139.4 

2 StressDiff 0.747 0.747 0.0669 0.0669 0.001 0.001 -140.2 

2 Treatment 1.368 1.368 0.0749 0.0749 1.70E-

05 

0.001 -137.7 

2 DapSeq 40.43 40.43 0.222 0.222 0.031 0.031 -48.8 

4 DapSeq 10.12 4.1 0.2063 0.4175 0.003 0.004 -97.8 

1. Mean of error distribution 

2. Standard deviation of error distribution 

3. -2 log-likelihood of model fit 
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Supplemental Table 4.10 The importance of all features used in the classification of 

individual duplicate genes 

Feature Genome
1 

Kinases
1 

TFs
1 

Maximum Percent Identity (Paralog) 171.6 (1) 57.9 (1) 29.4 (2) 

Sequence Conservation (Viridiplantae) 109.3 (2) 27.2 (2) 31.8 (1) 

Gene Family Size (OrthoMCL) 81.6 (3) 2.0 (19) 27.7 (3) 

Protein Length (in Amino Acids) 52.5 (4) 14.2 (3) 10.5 (11) 

Expression Breadth (AtGenExpress) 46.2 (5) 9.4 (10) 11.2 (8) 

Expression MAD/Median 

(AtGenExpress) 

41.0 (6) 5.4 (11) 11.8 (5) 

Expression Mean (LightDev Data) 40.8 (7) 10.4 (7) 10.7 (9) 

Expression Breadth (RNASeq) 40.0 (8) 3.3 (15) 11.5 (6) 

Expression Mean (Control Data) 39.2 (9) 10.7 (6) 10.7 (10) 

Expression Median (AtGenExpress) 37.5 (10) 10.2 (8) 10.2 (12) 

Expression Mean (Stress Data) 37.0 (11) 11.5 (4) 12.0 (4) 

Expression Mean (AtGenExpress) 36.9 (12) 11.3 (5) 11.3 (7) 

Expression Median (RNASeq) 34.8 (13) 4.7 (12) 4.9 (16) 

Sequence Conservation (Metazoa) 34.5 (14) 3.6 (13) 4.4 (18) 

Nucleotide Diversity (Pi) 32.4 (15) 9.7 (9) 6.2 (14) 

Expression Mean (Diff Data) 31.6 (16) 1.7 (2) 7.9 (13) 

Sequence Conservation (Fungi) 30.6 (17) 2.4 (17) 4.6 (17) 

Number of Protein Domains 28.4 (18) 2.3 (18) 5.6 (15) 

Expression Mean (RNASeq) 18.6 (19) 3.0 (16) 2.9 (19) 

Expression Maximum (RNASeq) 12.9 (20) 3.3 (14) 0.4 (20) 

1: The importance of the feature as defined by the mean decrease in accuracy of the classification 

when the feature is removed. Features are ordered according to the rank of their importance in 

the whole genome model and the rank of each value for each model is indicated by (). 
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CHAPTER 5: CONCLUSION 
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In the preceding chapters, I have presented the application of mathematical modeling 

techniques to my research, including the characterization of cyclic expression in two species and 

the evolution of TF function and regulation. Here, I will further discuss the results of these 

models as well as future directions for my research specifically and the application of modeling 

to the understanding of gene expression in general. 

PREDICTING CYCLIC EXPRESSION PATTERNS USING CIS-REGULATORY 

ELEMENTS 

In the work presented in Chapter 2, we identified genes that were cyclically expressed 

under diel conditions in the algae C. reinhardtii and clustered them according their phase of 

expression. Using these phase clusters, we found pCREs enriched in the promoters of genes 

sharing the same phase of expression and trained a SVM model of diel expression using these 

pCREs as features. The resulting model was able to predict the expression phase of diel genes 

better than both random guessing and naive classifiers, but performed worse than previous SVM 

models for predicting stress response in A. thaliana (Zou et al., 2011). However, we were able to 

improve the performance of our classifier for subsets of cyclic genes by subdividing phase-

clusters according to enriched gene functions. This improvement was not unexpected, given the 

strict association between annotated gene function and phase of expression observed in our 

study, but still indicates that the identified pCREs are important for regulating a subset of diel 

expressed genes.  

Continuing to look at cyclic expression, Chapter 3 describes a project where we changed 

the system to cell-cycle expression in S. cerevisiae in order to take advantage of the extensive 

expression and regulatory data available in this species. Here, we found that classifiers built 

using TF-target interactions derived from ChIP-Chip, TF Deletion, and PWM data performed 
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better at predicting the phase of cell-cycle expression than the pCRE model of C. reinhardtii diel 

expression. This improved performance is in part dependent on the near complete coverage of 

TFs in S. cerevisiae by each data set, as reducing coverage of the best performing data sets to 

less than half of the total S. cerevisiae TFs resulted in models with similar performance to those 

in C. reinhardtii. Conversely, performance was improved by using interactions between TFs that 

were part of regulatory FFLs and by combining features from the ChIP-Chip and Deletion data 

sets. Subsequent importance and network analysis of features revealed that both canonical cell-

cycle regulators and at least two modules of TFs which lack evidence of being cell-cycle 

regulators are amongst the best predictors of cell-cycle expression.  

Nevertheless, even in our final model of S. cerevisiae cell-cycle regulation, there is room 

to improve classification and learn more about the regulatory mechanisms controlling 

expression. Using the optimal scoring threshold, our best cell-cycle model had an ~5% false 

positive rate across the different phase classes, but recovered only half of the known cell-cycle 

genes in each class. Why are these genes improperly classified? What aspects of cell-cycle 

regulation are missing from our model? In the case of cell-cycle expression, it is known that 

cyclin-dependent kinases play a key role in controlling cell-cycle progression both through direct 

regulation of cell-cycle proteins and indirectly by modulating TF activity (Csikász-Nagy et al., 

2009). In particular, phosphorylation controls the activity of Swi6 (Sidorova et al., 1995; 

Lomberk et al., 2006; Shimada et al., 2009), a known regulator of cell-cycle initiation (Ho et al., 

1999) and one of the most important features in our model of cell-cycle expression. Swi6 itself 

participates in chromatin remodeling (Grewal and Elgin, 2002; Haldar et al., 2011), thus cyclin-

dependent kinases may further, indirectly regulate TF activity by affecting DNA accessibility. 

Likewise, posttranscriptional regulation is of transcription is thought to play a role in 
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maintenance of diel and circadian cycles (Kojima et al., 2011; Romanowski and Yanovsky, 

2015). Altering the expression of RNA-binding proteins in C. reinhardtii can not only lead to the 

loss of cyclic expression, but disrupt the normal phase of cycling genes (Iliev et al. 2006), 

indicating the post-transcriptional regulation exerts fine-grain control of the timing of circadian 

and diel cycles. These additional layers of regulation, protein activation, DNA accessibility and 

post-transcriptional regulation, likely hold the key to improving models of cyclic expression 

beyond what is able to be done with CREs and pCREs alone. 

DUPLICATION AND EVOLUTION OF TRANSCRIPTION FACTORS 

While our previous models focused on the relationship between existing TFs and their 

target genes, in model described in Chapter 4 we looked at the retention of duplicate genes pairs 

following WGD events and specifically inferred the changes in expression and regulation of TFs 

post-duplication. We found that TFs duplicates are retained more often than expected compared 

to genes with other general functions (i.e. kinases, transporter activity, defense response), owing 

in part to the fact that sequence divergence between duplicate TFs is on average greater than that 

of other duplicate genes. Looking further into the relationship between duplicate TFs, we found 

that the loss of an ancestral expression pattern or CREs from one duplicate copy but not the other 

occurred more frequently than expected by random chance. Furthermore, loss of ancestral 

expression and CREs occurred asymmetrically, such that duplicated TF pairs could be divided 

into distinct “ancestral” copy, which retains almost all ancestral expression and regulatory sites, 

and “non-ancestral” copy, which losses almost all ancestral expression and cis-regulatory sites, 

but gains novel cis-regulatory sites instead. Furthermore, the partitioning of ancestral states is not 

random as loss of ancestral expression in the first duplicate copy occurs at approximately an 

order of magnitude faster than in the second duplicate copy, and the loss of ancestral regulation 
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occurs two orders of magnitude faster. We theorize that the preference for partitioning retained 

duplicate TFs in ancestral and non-ancestral copies is due to the neofunctionalization of the non-

ancestral copy. This hypothesis is supported by examples where there is experimental evidence 

supporting neo-functionalization of the non-ancestral copy of a TF duplicate pair. 

However, expression and regulation are, at best, only a proxy for biological function. Our 

model of TF evolution is, therefore, restricted by the fact that we cannot characterize gain or loss 

of specific functions in the same way we can identify changes in expression or cis-regulatory 

sites. The appropriate way to define biological function has been the subject of some controversy 

(ENCODE Project Consortium, 2012; Doolittle, 2013; Graur et al., 2013; Brunet and Doolittle, 

2014; Kellis et al., 2014a, Kellis et al., 2014b), and while a definition of function relying of 

biochemical activity is useful for the purpose of broad categorization (e.g. transcription factor, 

kinase, etc.), when considering gene evolution and retention, the definition of biological function 

requires evidence of selection as a criterion. Assessing selection on large scale is difficult, even 

under laboratory conditions (Winzeler et al., 1999; Tong et al., 2001), so an extensive catalog of 

selective function would be challenging to produce, particularly for organisms with comparably 

larger genomes and longer life-cycles. Thus, modeling the evolution of functions in the same 

way we modeled the evolution of expression and regulation may not be possible, but a different 

type of biological model might offer us an alternative approach. Recent studies have shown that 

essential (Lloyd et al., 2015) and functional (Tsai et al., 2017) regions of the genome can be 

classified by their molecular, genetic, and evolutionary features, including expression, 

conservation, and interactions. Classification is done by scoring regions/genes based on their 

features and comparing that score to the distribution of scores for genes that are known to be 

essential, genes with known functions, and putatively non-functional regions such as 
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pseudogenes. In this way, the likelihood that a gene is essential, functional, or non-functional can 

be quantified. Therefore, the evolution of the functions of retained duplicates may be explored in 

a probabilistic manner by comparing the so called “functional-likelihood” score of non-ancestral 

duplicates across different groups of genes as well as to the functional likelihood of ancestral 

duplicate copies. 

FUTURE PROSPECTS FOR MODELING GENE EXPRESSION 

Modeling gene expression, particularly complex patterns sensitive to variations in time, 

location or condition, is poised to benefit greatly from the continued improvement of sequencing 

technology and computational methods. Independent of any particular sequencing approach, the 

declining cost of sequencing DNA (Wetterstrand 2016) means that quantifying expression under 

broader sets of conditions or with greater detail have become progressively more feasible. For 

circadian and diel expression in particular, the increase in sampling resolution has generally lead 

to the identification of more genes having cyclic patterns of expression (Harmer et al., 2000; 

Edwards et al., 2006; Michael et al., 2008; Panchy et al., 2014; Zones et al., 2015). Long read 

sequencing technologies, such as PacBio, also hold the promise of improving how we quantify 

expression by removing the need to infer expression from short-reads that represent a fragment 

of the actual transcript. Currently, full-length transcript sequencing data from PacBio have been 

used to reassemble and re-annotate the genome of Triticum aestivum (Liu et al., 2017) as well as 

profile the transcriptomes of Schizosaccharomyces pombe (Kuang et al., 2017) and Oryctolagus 

cuniculus (Chen et al., 2017; Liu et al., 2017). However, short-read Illumina sequences are 

needed in conjunction with PacBio reads due to the high per-base error rate of this technology 

(Chen et al., 2017; Liu et al., 2017). As PacBio continues to improve and/or other technologies 

become available that can offer the same long-read sequencing with fewer errors we can expect 
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to see transcriptome annotation and transcription quantification done using full-length transcript 

sequences alone. In addition to less costly, higher quality quantification of expression, advances 

in computing offer new opportunities for expression modeling. Specifically, so called “deep 

learning” approaches involving neural networks have provided solutions to problems where 

learning approaches previously had failed (Silver et al., 2016; Litjens et al., 2017). Yet, like other 

machine learning methods, the models created by deep learning are a “black box” when it comes 

to deriving biological significance (Albrecht et al., 2017). Though these new technologies offer 

great potential for both generating and analyzing expression data, it will be up to enterprising 

modelers to find way to apply these new approaches to answer biological questions. 
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