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ABSTRACT

EVOLUTION AND EVOLVABILITY IN CHANGING ENVIRONMENTS

By

Rosangela Canino-Koning

The specific meaning of the term “evolvability” is heavily debated, but most definitions can

be summarized as: the potential of populations and genomes to produce adaptive variation

and complex structures in response to mutation and selection. Changing environments are

thought to play a significant role in shaping and promoting evolvability through alternating

selective pressures.

In this dissertation, I will discuss my recent research on the interplay between changing

environments, evolvability, genetic architecture, and the evolution of horizontal gene transfer

(HGT), an information-rich mutagenic function that is ubiquitous in nature. Before delving

into my own research, however, I begin in the first chapter by providing a survey of current

literature on each of these topics, with emphases on how they are believed to arise, how they

affect subsequent evolution, and how they relate to each other.

Genetic architecture and population dynamics clearly have a complex interplay in ongo-

ing evolutionary dynamics. Evolutionary history, population diversity, modularity, and task

size all play a role in determining the location and characteristics of populations in genotype

space, and alter the genotype to phenotype map that permits neutral genetic variation. All of

these features contribute to evolvability. In Chapter 2, I demonstrate how changing environ-

ments provided a sufficient selective pressure to produce quasi-modular genetic architectures

that allow for rapid adaptation to the meta-environment of environmental change.

Horizontal gene transfer is a highly regulated, ubiquitous, and ancient mechanism for

exchanging genetic material between unrelated organisms. In the third chapter, I explore

conditions which may have led to the evolution of horizontal gene transfer through transfor-

mation, and identify mechanisms that might support its continued performance.



In Chapter 4, I compare the fitness and phenotypic effects of the HGT process against

other types of increasingly less information rich mutational operators. I demonstrate that

not only is HGT selected for in harsh changing environments, but that other mutagenic

instructions that contain less information, or provide lesser fitness benefits are not similarly

selected for.

In the fifth chapter, I explore the long-term evolutionary potential of populations evolved

in changing environments by evolving two different populations, one evolved in a minimal

changing environment, and the other in a rich changing environment, and exposing them to

a brand new environment. I demonstrate that while populations adapted to harsh changing

environments are indeed able to adapt quickly to previously seen environmental changes, that

these populations do not fare as well in brand new environments. Rather, benign changing

environments perform best in measures of task discovery and exploration.

In the final chapter, I conclude with a synthesis of my results, along with implications

for the field, as well as identification of some new directions for pursuing my research into

changing environments.
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CHAPTER 1

INTRODUCTION - CHANGE, ADAPTATION AND THE EVOLUTION OF
EVOLVABILITY

1.1 Evolvability and Evolutionary Potential - Why Study It

The evolutionary potential of a genome is a controversial and nuanced topic, ultimately

measurable only in retrospect once the evolutionary success of its descendants is known.

Questions relating to evolutionary potential, however, are some of the biggest in Evolution-

ary Biology: What selective pressures drive organisms to become more evolvable? What

aspects of genetic architecture influence evolutionary potential? How do we go about pre-

dicting longer-term evolutionary success? And how do features of the environment, such as

complexity, change, and periodicity drive and constrain movement across mutational land-

scapes?

The evolution of sex, multi-cellularity, and other major transitions are characterized by

significant changes in genetic architecture that coincide with the transitions [1]. The adap-

tive radiations that accompanied Metazoan evolution were also accompanied by changes in

genetic architecture that were carried along as species diversified and colonized new ecolog-

ical niches [2]. The vast diversity of species and their complex ecological interplay depends

fundamentally on the ability of populations to not only adapt to their environment, but also

create new niches and rapidly explore and exploit their environment as it changes around

them. Evolvability has many subtle forms that are produced in different types of changing

environment.

Within evolutionary computation, evolvability is also fundamental. The “representation

problem”, which influences every aspect of evolutionary search, can be characterized as a

problem of how to design the underlying genetic encoding such that genomes can not only

express complex solutions, but can also be mutated in meaningful ways [3]. In particular,
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good designs for genetic representations often involve increasing the probability that a re-

combination between potential solutions can produce a result that is not only viable, but

more fit than either parent. The entire goal of the representation problem is to improve

evolvability so that better solutions can be found. By definition, systems that exhibit good

characteristics in evolvability produce good solutions more quickly, while avoiding premature

convergence [4] so adaptive evolution continues to as high a level as possible. Beyond the

representation problem, many of the barriers to complexity are actually barriers to evolv-

ability.

1.2 What is Evolvability (and why is it so hard to pin down)

In its most abstract sense, evolvability appears to be a simple concept: the ability of

genetic systems to produce adaptive variation. However, the devil is in the details. How,

exactly do genetic systems generate adaptive variation? How do we measure this potential?

Should all forms of variation count as evolvability? At what time-scales does evolvability

act? And finally, how did it evolve in the first place? That is, are evolvable features under

some form of direct selection, or are they by-products of other processes?

Evolvability, in its details, must mean different things at different evolutionary scopes

and time-scales. Depending on your perspective, evolvability can describe the response

to selection at the population level [5, 6], the ability of populations to adapt to changing

conditions [7], larger phenomena such as variability generation [8], exploration of neutral

spaces and robustness [9, 10], generation of novel features [11, 12], or even the potential to

generate the larger clade-level innovations [2] and major transitions [1]. Beyond that, there

is a lot of confusion and controversy about the definitions and components of evolvability

even within any one of these scopes [13].

Finally, it is unclear whether evolvability is acted upon by direct selection, or whether it

is a byproduct of other traits that are selected upon, or some combination of the two. At the

individual level, its possible that some traits that support evolvability, such as robustness of
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developmental or cell processes [2] could have been selected for directly in response to adverse

environmental conditions. However, at the population level, traits like neutral variation

generation are more likely to have hitchhiked on the genomes of the adaptive variants that

they produced. Finally, at the clade level, genetic structures that produced populations

of adaptive variants with robust and flexible genetic architectures would have been more

successful at adaptive radiations [3], and thus go on to found whole branches of life with

those traits [2].

Of course, we must be careful when invoking selection at higher levels than the individual.

While there is some evidence to support clade-level selection in the evolution of evolvabil-

ity [14], caution should be applied when attributing evolutionary outcomes to higher levels of

selection when random chance or lower levels of selection are adequately explanatory. Specif-

ically, we need to be careful to avoid falling into the trap of adaptationism [15] by assuming

that evolvability is an end in itself. Selection can only act on organisms and populations

as they exist, against the current environment, and it is an error to assume that patterns

identified in hind-sight are predictive of future evolution.

1.3 Changing Environments and Evolvability

Sustained directional selection adjusts the composition of phenotypes and genotypes in

a population [16], typically moving that population across the mutational landscape to local

regions of higher fitness. When populations find a fitness peak, they tend to cluster there,

and exploration of regions further away slows dramatically.

In changing environments, however, the direction of selection is not fixed and peaks are

not stable. Instead, as the environment changes, populations are driven to explore new

regions of the mutational landscape [17, 18]. As they proceed, populations accumulate and

carry with them the genetic material acquired in prior explorations and adaptations, and

use this history as raw material for new adaptation [19]. Indeed, earlier work has shown

that changing environments promote evolvability in many contexts, without compromising
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robustness [20, 21]. Strength of selection is also an important component of this exploration,

since the harshness of the environment drives the speed with which organisms adapt to new

conditions [22].

Evolution has many subtle forms that are produced due to evolution in different types

of changing environments. In this dissertation, we show how changing environments not

only drive exploration of the mutational landscape, but also select for populations whose

genetic architectures are qualitatively different than those from populations evolved in static

environmental conditions under purely directional selection. We argue that alternating the

direction of selection acts as an engine for evolvability, promoting the acquisition of new

traits, increasing the rate of exploration of the mutational landscape, and promotes the use

and maintenance of certain kinds of evolvability-promoting mutations.

1.4 Historical Conceptions of Evolvability

Evolvability is described at many different scopes and levels in the literature, each with

varying amounts of detail and predictive power. As such, it may be best to avoid attempting

to unify the concept, and rather acknowledge that evolvability is not a singular idea, but

rather an overlapping and interrelated set of concepts relating to adaptation and evolutionary

potential. In order to synthesize the large field of evolvability and understand how the

distinct scopes and ideas connect together, a historical narrative is clearly useful.

1.4.1 Modern Synthesis

The evolution of evolvability as a formalized theory originated with Dawkins [3] and

Alberch [11], though the underlying concept (as the response to selection, measured by heri-

tability) existed much earlier, in the work of Fisher [5] and Wright [16]. Fishers fundamental

theorem of the response of a population to selection identified narrow-sense heritability (h2)

as a measure for how evolvable populations were. Evolvability as heritability (h2) is a mea-

sure of the portion of the phenotypic variation in a population that can be accounted for by
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additive genetic effects. h2 therefore is the component that directly relates to a populations

response to selection [6].

h2 =
V arA
V arP

(1.1)

In contrast to narrow-sense heritability (h2), broad-sense heritability (H2) refers to the

entire genetic contribution to a populations variance, including dominance and epistasis.

Because of these other contributors, it is unsuitable for isolating the response to selection.

As a measure of evolvability, narrow-sense heritability (h2) was also used as a term in the

breeders equation, in order to estimate the response of a population to artificial selection.

R = h2S (1.2)

Heritability, however, is not an ideal predictor for the response to selection because it

fails to integrate factors such as the population distribution of variability in a trait [6].

Heritability, being scaled by total population variation in a trait, would predict the same

response to selection regardless of whether the standard deviation of variance of that trait

was large or small, or where the mean of that trait lay.

Houle advocated for an alternative genetic variability measure that suffered from fewer

of these problems: the Additive Genetic Coefficient of Genetic Variation (CVA).

CVA = 100

√
VA
X̄

(1.3)

Using CVA as the measure of genetic variability is superior to narrow-sense heritability

because it scales additive genetic variance by the trait mean, rather than by total population

variation. Thus, the additive variation component isnt overwhelmed by large population

trait variance [23]. Since life-history (fitness-related) traits tend to have large population

variances, h2 predicts that life-history traits have low heritability and thus low response to

selection [24]. CVA, however, being scaled by trait mean, predicts much higher response to

selection for life-history traits [25, 6].
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CVA still suffers from significant drawbacks as predictors for adaptation and evolvability

in a larger sense [25]. Both h2 and CVA measures predict the response to selection based on

the expressed trait variation in a population, under the current environmental conditions.

They say nothing of the potential for cryptic variation that may be revealed in different

genetic background, nor do they address differences in genetic architecture that may promote

faster adaptation. Ultimately, CVA is best when examining the short-term response to

selection in artificially-selected populations, in static environments, with low mutational

load [6].

Clearly, such short-term, population-based measures are unsuitable for measuring larger

patterns of the evolution of evolvability, especially over the long term.

1.4.2 Evolvability as a Distinct Concept

Dawkins, in his foundational paper on evolvability and evolutionary constraint [3], re-framed

the problem of evolvability in the context of computational evolution and development.

Dawkins described a generative genetic system based on a few alleles, and rules that gov-

erned development based on the traits encoded in the alleles. Each allele would govern the

execution of a generative rule, and the rules would interact with each other as they produced

the phenotype. As he added new kinds of rules (constraints) into the generative process, he

showed that the system produced more and more complexity.

Dawkins used this example to draw parallels to biological generative developmental sys-

tems and how evolutionary constraints in development allow for more complex and robust

phenotypes. Dawkins identified a few key themes that underlay the more powerful features

of developmental systems. These systems would be organized in such a way as to facilitate

cumulative effects. That is, innovations in constraints can build upon each other and are

cumulative in evolutionarily interesting ways[3].

Dawkins hypothesized that these kinds of generative developmental systems, or embry-

ologies were the basis for evolvability, and that they must have evolved as a result of their
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intrinsic power to produce adaptive variation. Dawkins further suggested that the genetic

systems that persisted were those that facilitated adaptive radiations into new or otherwise

empty ecological niches.

Alberch followed up Dawkins ideas with a more thorough accounting of how, exactly,

these kinds of evolvable traits translate into an analyzable phenotype space [11]. Alberch

dismantled the concept of a simplistic, hierarchical genotype-to-phenotype mapping function

and emphasized that developmental and cell metabolic systems are strongly dynamical,

nonlinear systems, for which genes are just one part of the regulatory cycle. Because of the

dynamic nature of cell processes, it was clear that the gene-centric, population genetics view

was inadequate to fully describe the complexity of the processes involved, and how they

translated complex parameters into phenotypes. To that end, a new framework for analysis

was required.

Alberch introduced the concept of “parameter spaces” to describe the variation in geno-

typic parameters that results in distinct phenotypes, while addressing the lack of one-to-one

correlation between alleles (parameters) and phenotype. Parameter spaces are multidimen-

sional spaces, divided by parameter thresholds (bifurcation boundaries) that form borders

between phenotypes. The domains bounded by these thresholds include all of the parameter

combinations that produce a given phenotype. Larger domains can be described as more

stable than smaller domains, because there are larger ranges of neutral variation available

before organisms tip into a different phenotype. Populations with distinct phenotypes and

varying parameters can thus be visualized as blobs occupying areas in parameter space.

Alberch contended that the “evolvability potential” of a dynamical system is encapsu-

lated by the properties of the parameter space. Specifically, the topology of the bifurcation

boundaries govern the ease with which the systems can produce both neutral and adaptive

variation. Alberch asserted that the generative systems must have undergone selection that

favors those systems that provide a good balance between exploration and stability, but

provided no mechanism for that selection.
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Dawkins and Alberch laid out a compelling case for the role generative developmental

systems in facilitating evolvability, but their theoretical frameworks were far from complete.

1.4.3 Theoretical Frameworks for the Evolution of Evolvability

The Wagner and Altenberg paper on the evolution of evolvability significantly expanded the

theoretical framework behind the evolution of the genotype-phenotype map [8]. The authors

draw on knowledge from computational evolution to inform their perspective on evolvability,

since the problem of evolvability is central to the representation problem in evolutionary

computer science.

Initially, Wagner and Altenberg emphasized a distinction between variation and variabil-

ity. Variation is the realized diversity in a population, which is a concept that lies firmly

within population genetics and the gene-centric modern synthesis. Variability, on the other

hand, is a concept that they introduced to describe the ability to generate new phenotypes

in response to mutation or environmental change. Variability is a metric associated with a

local neighborhood in a genotype to phenotype map, and depends on features of that map,

including pleiotropy and modularity, and robustness and flexibility of biological processes.

Wagner and Altenberg’s paper led to a vast proliferation of new work exploring the evo-

lution of evolvability. Of particular note is the Kirschner and Gerhart 1998 paper [2], which

explored metazoan evolution for examples of traits that, in combination, acted to increase

evolvability. The authors found numerous examples of new, evolvable features coinciding

with adaptive radiations. The authors also develop a case for a combination of direct selec-

tion upon the individual for evolvability-enhancing features, and those traits persisting as

by-products as a result of adaptive radiations, setting the stage for the evolution of more

and more complex evolvable features.
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1.5 So, what do I mean by Evolvability?

As I described above, evolvability is a series of distinct, but overlapping concepts that are

generally concerned with adaptation, variation, and/or novelty generation. For the purposes

of this dissertation, I am using the Wagner/Altenberg conception of evolvability, which

focuses on variability (i.e., the generation of adaptive variation in response to mutation).

Variability depends primarily on the organization and interrelation of the components of the

genome; that is, the genetic architecture, and the resulting genotype-to-phenotype map.

The major features that influence this metric for evolvability appear to be modularity

of functional components and phenotypic robustness to mutation and environmental per-

turbation. While there are other architectural features that are also likely to contribute to

evolvability, they will not be the focus of this dissertation.

1.5.1 What is Modularity?

Modularity is the degree to which traits are both self-contained and decoupled from each

other. Modular organization can appear at different scales, from the reduction of overlap

between unrelated gene regions (spatial modularity [26]), to the decoupling the mutational

effects on distinct traits (functional modularity [8]), to the composition of groups of related

trait complexes (variational modularity [27, 28]).

Features such as evolvability and robustness are thought to rely heavily on modular-

ity [8]. For example, traits with high functional modularity will have low pleiotropy and

therefore should be able to evolve independently—a critical feature if individual traits need

to quickly respond to changes in selection. Additionally, modular traits may be more easily

re-purposed or co-opted by other traits to add new function [28]. Conversely, spatially mod-

ular genomic regions, because they are more self-contained, tend to better resist disruption

from recombination, thus increasing robustness [26].

The relationship between modularity and pleiotropy is complex. At small scales, spatial
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modularity acts to directly reduce pleiotropy by reducing the number of traits affected by

a single locus [26]. However, at higher scales, modularity may rely on pleiotropic links

within groups of related trait complexes to enable those groups to evolve and optimize in

concert [27].

Despite the benefits described above, modularity, like many other variational trait com-

plexes, may not be an unmitigated boon for evolvability. High levels of functional modularity

may reduce the overall evolvability of a genotype by reducing the incidence of mutations of

large effect and reducing the size of mutational targets [29]. Reducing the incidence of large

changes reduces the likelihood of the development of entirely new traits as a result of rela-

tively few mutations. Thus, the evolvability benefit of modularity may be mediated by the

scale and degree to which it occurs.

1.5.1.1 Measuring Modularity

At the phenotypic level, modularity is assessed based on the functional independence of

traits and trait complexes. Spatial modularity is correlated with functional modularity,

though it is possible to have spatially modular genomes that are not functionally modular

and vice-versa [30, 31].

For the purposes of this research, I will focus on spatial modularity. Spatial modularity

may be measured by calculating the proportion of traits that are affected by a given site in

the genome, normalized by the number of sites that code for a trait [26]. Trivially, this can

be measured by performing knock-out experiments to identify the sites that contribute to

particular function.

To measure Spatial Modularity, mS :

1. count the total number of traits expressed in a genome: T

2. identify the number of sites that code for any trait: set K

3. count the number of items in set K: k
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4. count the number of traits coded for by each site within set K: tk;

5. calculate the inverse of the average number of traits coded for per site to

reflect the level of spatial modularity (mS) of coding regions of a genome

mS =
1

1
k

∑k
i=1

tk
T

(1.4)

1.5.2 What is Robustness?

Much like evolvability, robustness is a set of overlapping concepts concerned with the ability

of a genotype to maintain a given phenotype despite an unexpected disruption [10, 32].

Most commonly, robustness is studied in regard to either perturbations in the environment

or else mutational disruptions. In the first case, the evolution of robustness to environmental

disturbances depends heavily on the flexibility and decoupling of gene regulatory or signaling

pathways [2]. For example, a gene-regulatory or signaling pathway that is loosely coupled

may make use of signaling from multiple incoming paths, rather than depending on a single,

rigid precursor. This type of arrangement is more likely to continue to function even if some

part of the signaling path is disrupted. An example of this kind of robust arrangement is

nerve conduction in vertebrates where axons connect several cells, thus routing signals in

parallel, and avoiding single points of failure [2].

For the purposes of my research, I will focus on the second case: mutational robustness.

Distinct from robustness to environmental perturbation, robustness against mutation de-

pends largely on degeneracy, redundancy, and regulatory decoupling [10]. Degeneracy refers

to a many-to-one relationship between an encoding and a product, such that several codes

can produce a single output. Thus, there is a chance that mutations in the code will not

alter the product. One example of this feature is codon degeneracy in biological organisms,

where, depending on the hydropathy of the amino-acid, single, or even double mutations in

some positions of the encoding do not affect the binding of the encoded amino-acid [33].
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Similarly, redundancy refers to the duplication of function in multiple places in the

genome, such that mutations altering function in one copy of a gene do not alter func-

tion in the other copy. Redundancy may also refer to redundancy of function within genes,

such that if a mutation occurs in one portion of a gene, other neighboring portions of the

protein will compensate, and the protein will retain its structure and function.[34]

Finally, regulatory decoupling allows for more than one kind regulatory precursor to

provide inputs for a process [34]. Thus, if mutation were to damage one set of precursors,

others can take their place and preserve function. An example of this kind of architecture is in

the production of the acetate precursor for the Krebs cycle, which produces ATP in all aerobic

organisms [35]. Acetate can be derived from either carbohydrates, lipids, or proteins, thus if

any of those pathways are damaged by mutation, or limited by environmental perturbation,

acetate can still be produced from other sources, and ATP production can continue.

It is worth noting that many of the architectural features that confer robustness to

processes and genomes are based on arrangements of modular structures [36, 37]. In this

way, much of robustness is facilitated by the evolution of modularity.

1.5.2.1 Measuring Robustness to Mutation

Robustness to mutation can be assessed in multiple ways, either from the perspective of a

specific phenotype, a specific genotype, or combinations of the two. From the perspective

of an individual genotype, you can assess its robustness by calculating the proportion of

mutations that produce a phenotype that is different from the one expressed by the target

genotype [38]. In most cases it is easiest to focus on single-step mutations (to cover the 1-

neighborhood in the fitness landscape), but sampling from the full distribution of mutation

combinations that occur naturally will produce a more exact results.

To measure Genotypic Robustness, rG, of a genotype G:

1. count the number of loci in the genome: n
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2. count the number of possible alleles at a given site: D

3. enumerate all possible single-step mutants that may arise from the given

genotype (or sample from a more realistic distribution): n(D − 1);

4. count those mutants that prove to be neutral phenotypic variants: RG;

5. calculate the proportion of neutral phenotypic variants to reflect the prob-

ability of a neutral variant being produced by this genotype in response to

mutation.

rG =
RG

n(D − 1)
(1.5)

Genotypic robustness is trivially negatively correlated with genotypic evolvability, be-

cause each neutral variant in the 1-neighborhood of a genotype is, by definition, not of a

different phenotype. However, the inverse is not necessarily the case, because each non-

neutral neighbor phenotype may not be unique. Therefore, a non-robust genotype may not

necessarily have high evolvability if its neighborhood is dominated by a single or few distinct

phenotypes [38].

From the perspective of the phenotype, robustness may be assessed by to taking the

average genotypic robustness across the phenotype.

To measure Phenotypic robustness, rP :

1. count the number of distinct neutral genetic variants that produce a given

phenotypic trait in a population, (SetK : k);

2. calculate the proportion of neutral variants produced by single-step mu-

tations rG, averaged over all of the neutral genetic variants to reflect the

probability of a neutral genotype currently in the population producing an-

other neutral genotype in response to mutation.

rP =
1

k

k∑
i=1

rG (1.6)
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Unlike genotypic robustness, higher phenotypic robustness has been shown to correlate

with phenotypic evolvability in cases where the possible number of neutral variants in a

phenotype (the frequency of the phenotype) is high [38]. With increasing numbers of neutral

variants, the number of potential unique phenotypes in the 1-neighborhood of the phenotype

increases.

These measures of robustness are each limited in that they do not address realized pop-

ulation composition, the shape of the mutational landscape, nor the expected frequency of

the target phenotype. In particular, the correlation of phenotypic robustness with evolvabil-

ity depends on the expected phenotypic frequency [38]. Thus, if the frequency is unknown,

phenotypic robustness may not predict evolvability.

Further, different populations may have vastly different numbers of realized neutral vari-

ants for a given phenotype. Factors such as gene-flow, bottle-necking, linkage dis-equilibrium,

founder effects, and sexual selection may strongly affect overall diversity in populations, in-

cluding the neutral diversity for a particular phenotypic trait that we are concerned with [11].

For this reason, while population level metrics may cause a phenotype to appear to be

non-robust, this apparent value may be the result of the amount and type of realized diversity

present in a given population, rather than the robustness of that phenotype as predicted by

its potential neutral network [11].

1.5.3 Predicting Short-Term Evolvability with Landscape Metrics

As indicated above, the features that confer robustness may also promote evolvability by

allowing for greater neutral genetic diversity within a given phenotype. The larger the

number of distinct genotypes with the same phenotype in a connected region of the fitness

landscape, the more exploration of the genotype space that can be done without decreasing

organismal fitness. As a population diffuses through such a neutral region, more potential

phenotypes become available in few mutational steps [9].

Historically, predicting this robust-yet-evolvable quality has been challenging. Previously-
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used measures for robustness that focus on counting the proportion of unique genotypes that

compose a phenotype (Phenotypic Robustness [38]) are limited in their ability to predict the

evolvability of a population, especially where phenotypic frequency is unknown.

In contrast, we will use Genomic Diffusion Rate, which is the probability that an offspring

will be different from its parent, while expressing a neutral or positive fitness effect. This

metric may be used to characterize overall population evolvability as it approximates the

overall rate in which entirely new genotypes are encountered [39].

To calculate the Genomic Diffusion Rate (Dg) in the local neighborhood of a genotype,

first calculate its Fidelity (F ), or the probability of an offspring sharing this genotype with

its parent. Given a uniform mutation rate, Fidelity can be calculated by measuring the

probability that a single locus is not mutated (1 − µ) and raising it to the power of the

genome length (l). Next, measure the proportion of one-step mutants that are neutral or

beneficial when compared to the parent (pν) as well as those that are detrimental or lethal

(pd), which must sum to one (pν + pd = 1). The Neutral Fidelity (Fν) of a genotype is thus

the probability that no harmful mutations occur, assuming no epistasis. Finally, subtracting

Fidelity from Neutral Fidelity will yield the overall probability of producing an offspring

with a different genotype, yet neutral or better fitness (Dg).

F = (1− µ)l (1.7)

Fν = (1− µpd)l (1.8)

Dg = Fν − F (1.9)

Measures of neutral exploration, however, only show part of the picture. While some

form of neutrality is necessary for exploring a fitness landscape, new phenotypes must be

discovered to achieve higher local evolvability. In order to assess evolvability more specifically,

we introduce a related measure, the Phenotypic Diffusion Rate (Dp), which represents the
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probability that an offspring will be fitness-neutral (or better), but also express a different

phenotype than its parent. To do so, we must first measure the proportion of one-step

mutants that are phenotypically neutral as compared to their parent (ppν) and follow a similar

procedure as above, first calculating the probability that a phenotype-changing mutation will

occur (µpheno), then the phenotypic-level Fidelity (Fpν).

µpheno = µ(1− ppν) (1.10)

Fpν = (1− µpheno)l (1.11)

Dp = Fν − Fpν (1.12)

The difference between the overall neutral fidelity and the phenotype-preserving neutral

fidelity (Fν − Fpν) yields the phenotypic diffusion rate.

1.5.4 Expected Value of Fitness Landscapes

In the context of changing environments, the expected fitness value (E(w)), and thus the

neutrality, of a mutant in the mutational landscape will vary depending on the environmental

context. So, in one environment, a mutant may be highly fit, but the same allele may

be highly deleterious in a different environment. In order to address this variation, all

metrics must be normalized by the probability that a particular environment will occur (Pi).

That is, the nearby mutational landscape must be evaluated in each possible environment,

yielding a traditional fitness landscape. Then, the set of fitnesses of each mutant (wi) in each

environment must be aggregated according to the probability of that environment occurring.

E(w) =
e∑
i=1

wiPi (1.13)
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1.6 Digital Evolution

Digital Evolution uses self-replicating computer programs as model organisms to study

evolutionary dynamics [40]. Unlike theoretical simulations, digital organisms have a fully

functional genome that direct them to self-replicate, mutate, and compete with their peers

for resources and space in which to reproduce. Because digital organisms undergo genetic

mutations (i.e., variation) that are passed on to their offspring (inheritance), and their sur-

vival is based on the actions they take (differential selection), they undergo evolution by

natural selection [41].

Digital organisms do not suffer from many of the drawbacks of experimentation on natural

organisms. Three of the advantages of digital organisms are particularly relevant for our

studies. First, the rates of reproduction in digital systems are much faster than in even the

most rapidly-reproducing physical organisms; we can process generations of organisms in

seconds, rather than the hours required for the fastest biological organisms under sustained

conditions [42, 43], or the weeks to years needed for more complex multicellular organisms [44,

45].

Second, using digital organisms allows us to tightly control and verify experimental con-

ditions. For example, in physical organisms, factors such as mutation rate can generally be

measured only after the fact, or coarsely altered through mutagens. In digital organisms,

however, we can not only control mutation rates with fine-grained precision, but also types

and probabilities of different types mutations (e.g., substitutions vs. insertions vs. dele-

tions). Furthermore, we are also able to track and replay the evolutionary history of every

organism at any point in time to verify that unusual or unexpected results do not represent

measurement error. This ability to exactly replicate evolutionary results at an individual

organism level is firmly out of reach for experiments with physical organisms.

Finally, we can precisely and perfectly map the mutational landscape around the genome

of a digital organism, and identify the role of every site in its genome [39]; such exhaustive

techniques are not feasible in even the simplest physical organisms. All of these factors make
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digital organisms ideal for studying the effects of changing environments on the mutational

landscape.

It is also worth noting that certain kinds of experimental evolution experiments are simply

intractable in biological systems. For example, experiments comparing the fitness effects and

outcomes of different kinds of mutations would be extremely difficult, time-consuming, and

data-poor at a population-level scale. In contrast, these kinds of experiments can be easily

performed using digital evolution models.

1.6.1 Avida

Throughout the rest of this dissertation, I use the Avida digital evolution platform to explore

the effects of changing environments on the evolvability of populations of digital organisms,

both in the short and long-term. Avida is a software platform for performing evolution

experiments with digital organisms in a virtual world.

Figure 1.1: An example virtual CPU from Avida, with a circular genome (blue),
three registers (purple), input and output handlers (tan), and an instruction pointer
(yellow) indicating the next instruction to be executed.
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An Avida organism is composed of a circular genome of assembly-like computer instruc-

tions that are executed in a virtual CPU (Fig 1.1). Populations of these organisms are placed

in a toroidal world in individual cells where they are allowed to execute, reproduce, compete

for space, mutate, and evolve.

Organisms in Avida are self-replicating, and experience mutation. The genomes of the

initial default organisms contain all of the instructions necessary for reproduction. How-

ever, the instructions are not copied into an offspring with perfect fidelity. By default, the

reproductive copy instruction is faulty, meaning that it will probabilistically introduce er-

rors (mutations) into the offspring genomes. These offspring organisms execute their own

genomes even when different from their parent, and in turn pass on their inherited mutations,

along with new mutations, to their own offspring (i.e., variation in the systems is heritable).

Avida worlds can be space- or resource-constrained. Avida allows the experimenter to

configure many aspects of the environment, thus subjecting the organisms to various kinds

of selective pressures. In many cases, these environments will include resources that can be

metabolized by performing specific functions or activities, resulting in a boost to execution

speed that gives the organisms a competitive advantage. However, even without explicit

external pressures, organisms still experience an implicit pressure to execute more quickly

and efficiently. The organisms that run fastest are typically able to also reproduce fastest,

and thus out-compete their peers for space.

Avida is available for download without cost from http://avida.devosoft.org/,

and specific versions along with data-files to reproduce the experiments described in this dis-

sertation may be found at https://github.com/voidptr/avida, https://github.

com/voidptr/dissertation, and https://github.com/voidptr/dissertation_

data.
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1.7 Statistical Methods

Most of the statistical techniques used in this dissertation are non-parametric, and focused

on differentiating between sample distributions. In general, we applied Wilcoxon Rank-Sum

tests [46] to distinguish between pairs of distributions, as well as Kruskal-Wallis [47] for

identifying whether we could reject the null hypothesis of sameness between several different

distributions. We assume all distributions are independent, and that compared distributions

have similar shapes. In all situations where there were multiple comparisons of a given

distributions, we applied Bonferonni corrections [48] before assessing statistical significance.

In certain cases, we report mean and median values of distributions. In these cases, we

also report the standard deviation or 95% confidence intervals.

In specific cases, we also apply Spearman’s rank-order correlation coefficient ρ (or rs) [49]

to measure correlations between data sets. In all cases, data points are matched from within

a replicate.
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CHAPTER 2

CHANGING ENVIRONMENTS PROMOTE RAPID ADAPTATION IN
DIGITAL ORGANISMS

2.1 Background

The interaction between an environment and possible genomes can be mathematically

expressed by a fitness landscape. Fitness landscapes are a mathematical tool to map genetic

sequences to reproductive fitness. Many studies have examined the important role that

different types of fitness landscapes play on evolutionary dynamics and outcomes, both in

biological populations [50, 51, 52, 53] and in evolutionary computation settings [54, 55, 56].

However, real-world fitness landscapes are far more complex and varied than the limited

or idealized models that are used in most of these studies. Neighboring regions of real

landscapes can have starkly different properties from each other based on the effects of

and interactions among mutations; as such, a local region of a fitness landscape around a

genotype is commonly referred to as its mutational landscape.

Examples of the type of properties that we are interested in include robustness, epistasis,

and modularity, all of which are measurements of how information is organized inside of a

genome and commonly categorized as components of an organism’s “genetic architecture”.

Isolated pockets in a landscape can often be characteristically different from the landscape as

a whole due to the amount and organization of genetic information. In fact, in most natural

fitness landscapes, the vast majority of neighborhoods consist entirely of non-replicating

genomes with zero fitness (and thus no genetic information), making life itself appear to be

a rare exception [57].

Evolution on these convoluted landscapes is clearly limited to those regions that have

non-zero fitness, with a selective pressure for fitness to increase. Beyond that, however,

populations can evolve toward neighborhoods with specific local properties based on the

21



evolutionary forces acting upon the populations. For example, high mutation rates drive

populations toward neighborhoods with a higher fraction of neutral mutations in an effect

dubbed survival of the flattest [21]. Similarly, sexual populations tend toward regions of the

fitness landscape with more modularity [26] and more negative epistasis [58] than otherwise

equivalent asexual populations.

Understanding these dynamics is of broad interest. It is important to evolutionary com-

putation, given the strong influence of local landscape properties on the quality of the final

solutions that an evolving population is able to obtain. Its relevance to evolutionary biology

is equally obvious – the local landscape that a population occupies will influence the selective

forces at play in the population, creating a feedback cycle between these two important evo-

lutionary factors [59, 60, 61, 62]. Disentangling such interactions is likely to provide further

insights into fundamental evolutionary dynamics. Computational artificial life systems have

the advantage of being able to bridge these two realms: they have unconstrained evolution-

ary dynamics similar to natural systems, while maintaining the ability to rapidly perform

experiments and collect any data we need about populations or their local landscapes.

2.1.1 Evolvability and Genetic Architecture

As described in Chapter 1, evolvability refers to a series of distinct but overlapping concepts

that are generally concerned with adaptation, variation, and/or novelty generation [13]. De-

pending on your perspective, evolvability can describe the response to selection at the pop-

ulation level [5, 6], the ability of populations to adapt to changing conditions [7], larger

phenomena such as variability generation [8], exploration of neutral spaces and robust-

ness [9, 10], generation of novel features [11, 12], or even the potential to generate clade-level

innovations [2] and major transitions [1]. For the purposes this chapter, we will focus on

evolvability as the capacity for mutations to generate adaptive variation in a genome.

In the short-term, this kind of evolvability determines a population’s response to se-

lection, and depends primarily on the organization and interrelation of information in the
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genome; that is, the genetic architecture, and the resulting genotype-to-phenotype map [8].

An example of evolvable architecture can be found in some bacterial genomes that contain

highly mutable genome regions, called contingency loci. Small sets of insertions or dele-

tions to these regions create transcription frameshifts that alter the expression of nearby

coding regions, thus allowing populations to easily switch phenotypes via minor mutations.

Contingency loci are most often seen in the genomes of pathogens, which are subject to fre-

quent environmental shifts caused by the host immune system [63]. Thus, these populations

are able to produce large amounts of heritable variation despite their reduction in diversity

resulting from population bottlenecks.

2.1.1.1 Mutational Landscapes

Properties of genetic architectures such as evolvability and robustness are determined by

the shape of the resulting mutational landscape (local fitness landscape around a genotype,

accessible in a single mutation) [38]. Robust genetic architectures that can tolerate more

mutations without altering their phenotype reside in mutational landscapes that connect to

more neutral mutants. Similarly, architectures where mutations are more likely to cause phe-

notype switching without substantial reductions in fitness, reside in more evolvable regions

of genotype-space.

It is worth noting that not all regions of the mutational landscape may be equally acces-

sible. Some genome regions may be more resistant to mutation than others. For example, in

Escherichia coli, the methyl-directed mismatch repair (MMR) pathway has been shown to

preferentially repair coding regions over non-coding regions [64]. Alternately, some kinds of

mutations may be more likely to occur than others. A mutation accumulation (MA) study

of Salmonella typhimurium found a strong bias toward GC-to-TA transversions rather than

GC-to-AT transitions [65]. These kinds of effects thereby skew the probabilities of some

kinds mutations occurring that might lead into certain neighborhoods of the mutational

landscape. These kinds of differential probabilities may therefore moderate a population’s
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diffusion through the mutational landscape.

Further, response to selection is likely to be weaker in regions of the landscape where there

are fewer available mutations that provide potentially adaptive traits, whereas response to

selection will be stronger in regions where there are many adaptive variants available within a

few mutational steps [11, 66]. This differential response to selection may therefore constrain

the ability of populations to diffuse across a fitness landscape.

In order to assess the potential of different regions of the fitness landscape to promote or

hinder evolvability, we will use both the Genomic Diffusion Rate (Dg) (Eq 1.9) and the

Phenotypic Diffusion Rate (Dp) (Eq 1.12), as normalized across changing environments

(Eq 1.13).

2.2 Methods

2.2.1 Experimental Design

In order to examine the dynamics and mechanisms of evolving populations in changing en-

vironments, we performed two sets of experiments. We subjected populations of evolving

digital organisms to a set of cyclic changing environments, and a set stochastic changing en-

vironments. The cyclic environments were designed to simulate predictable cycles of change,

such as day/night or seasonal cycles, whereas the stochastic environments represent less pre-

dictable oscillations in environmental states, such as random weather patterns, or climactic

changes. These experiments allow organisms to adapt to a predictable set of environments,

and explores short-term evolvability dynamics. See Table 2.1

2.2.1.1 Cyclic and Stochastic Changing Environments

For the cyclic environment, we subjected a total of 150 replicate populations of digital

organisms to two different treatments of two-phase cyclically changing environments, plus a

static control. The environment cycles between 500 updates of reward, and 500 updates of

punishment; as such each full cycle is 1000 updates, or roughly 30 generations. We chose
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Table 2.1: Experimental Treatments - Cyclic and Stochastic Changing
Environments

Treatment Changing
Environment

Rewarded Tasks

XOR EQU

Control
None

(static)
constant

23
constant

25

CCE
Benign

Cyclic
constant

23

benign
fluctuating

0 or 25

CCE
Harsh

Cyclic
constant

23

harsh
fluctuating

−25 or 25

SCE
Benign

Stochastic
constant

23

benign
fluctuating

0 or 25

SCE
Harsh

Stochastic
constant

23

harsh
fluctuating

−25 or 25

Four types of changing environment, plus a static control. In the first two treatments, the
environment switches in a predictable cycle, whereas in the second two, the environment
switches at random intervals.

this cycle length after surveying a series of possible values in order to determine an optimal

length of time. That is, long enough to allow adaptation to occur and spread through

the population, but short enough to reduce the effects of drift destroying vestigial genetic

information. For more details about this survey, please refer to Appendix A.

In the static control, there is no cycle. Rather, the rewards remain constant. The first

phase of the experiment extends for 200 cycles, or 200,000 updates, approximately 6,000

generations.

The stochastic changing environment experiment is similar to the cyclic environment, ex-

cept that rather than the environment toggling every 500 updates, the environmental switch

happens randomly, with a 0.002 probability of changing on every update. This averages, in

the long term, to approximately one switch every 500 updates, but in the short term, the

environmental switches are unpredictable.
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We set up the system to detect organisms that performed XOR or EQU, two challenging

bitwise logical tasks. In the static control, XOR is rewarded with a CPU speed (and thus

fitness) multiple of 8, while EQU is rewarded with a CPU speed multiple of 32. In the harsh

treatment, as the cycle progresses, the XOR reward remains constant, while the EQU reward

cycles between a 32-fold bonus and a correspondingly harsh 32-fold penalty (i.e., CPU speed

is divided by 32 when EQU is performed in the off cycle). The benign treatment is nearly

identical to the harsh treatment, except that the reward merely goes away in the off-cycle

as opposed to incurring a severe penalty.

In both environments, we identify EQU as the Fluctuating Task. XOR, because it is

rewarded continuously, is the Backbone Task, and is used as a background for comparing the

separation or intertwining of functional genetic components in the evolution of EQU. Further,

the 4-fold difference in reward level between XOR and EQU encourages the evolution and

maintenance of EQU when possible.

For all of the experiments described in this section, we held the individual genomes at

a fixed length of 1211 instructions, but tested the new genomes for mutations after each

successful replication event at a substitution probability of 0.00075 per site. We configured

the Avida world to have local interactions on a toroidal grid that is 60-by-60 cells (3600 cells

in total), and we seeded the initial populations with an ancestor that was previously evolved

to perform XOR and EQU under a static reward. The genetic architecture for performing

XOR and EQU is tightly intertwined in this ancestral organism, as it was evolved with no

selective pressure for modularity.

2.3 Results and Discussion

Our experiments demonstrate that digital organisms that were evolved in changing en-

vironments differ substantially from those that evolved in static environments in a number

1As part of our initial controls, we hand-wrote an organism with separated sections that
performed XOR and EQU. This hand-written organism had 121 instructions and as such we
used this genome length as a constraint for the evolve organisms as well.
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of ways. These differences include the number of mutations that fix in the lineage from

the ancestor (the “phylogenetic depth”), key metrics of their genetic architecture, and the

presence of reservoirs of pseudogenes that change the nearby mutational landscape. These

features represent adaptation to the larger regime of repeated environmental switching. We

also show that while populations evolved in cyclic environments are slightly better adapted to

change than those that evolved in stochastic environments, in most measures of adaptation

and short-term evolvability, these differences are generally not significant. This result indi-

cates that while regular periodicity may offer a slight advantage for adaptation, stochastic

environments perform similarly in most respects.

2.3.1 Cyclic Changing Environments

We will begin by examining the characteristics of populations evolved in cyclic changing

environments.

2.3.1.1 Performance of EQU

Each population was seeded with organisms that performed both the EQU fluctuating task,

and the XOR backbone task. We measured the execution of the EQU task, and observed that

in the static control treatment, EQU is fixed in the population and remains so throughout the

run. In contrast, we observed a periodic dip in the execution of EQU in the benign changing

environment during the non-rewarded phase of the cycle, followed by a rapid recovery when

rewards are reinstated. Finally, in the harsh treatment, we observed abrupt disappearance

of EQU performance, followed by rapid recoveries, coinciding with phases of reward and

punishment. As expected, these results suggest that the populations are responding to the

selective pressures to perform EQU when it is rewarded, and to lose functionality when it is

not rewarded or when it is punished.
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Figure 2.1: Number of organisms performing EQU task. We measured the execution
of the EQU task in all treatments. By the end of the run, we observed fixation in the control
treatment. In the benign treatment, we observed increasing periodic dips in execution that
coincide with phases of non-reward as the experiments progressed. In the harsh treatment,
we observed adaptation, resulting in abrupt disappearance of EQU in the punishment
phase, followed by rapid recovery of EQU performance during the reward phase.

2.3.1.2 Evolutionary History and Population Structure

We then surveyed the evolutionary history and population structure of the evolving popula-

tions. Evolution in the harsh cyclic changing environment resulted in many more mutations

fixing, and thus populations with substantially higher phylogenetic depth as compared to

those evolved in static or benign environments. At each environmental shift, adaptive mu-

tations rapidly swept and fixed in the populations. (Fig 2.2)

The populations that evolved in the control and benign environments displayed more

genetic diversity as compared to those evolved in the harsh cyclic environment, which un-

derwent a bottleneck at each cycle shift (see Fig 2.4). Because a selective sweep reduces

current diversity within a population, the smaller number of sweeps in the benign and con-

trol treatments led populations in them to have higher standing diversity for most of their

evolutionary history than those populations from the harsh changing environment. Despite

this higher standing diversity in the benign and control treatments, regions of low diversity

are still evident in the genomes of these populations, implying purifying selection on the

traits encoded at these sites (see Fig 2.3).
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Figure 2.2: Phylogenetic depth over time of a sample population evolved in each of the
three treatments of the cyclic changing environments. Phylogenetic depth is the number of
mutational steps from the original ancestor, and is a rough analog for generations. White
horizontal lines mark the depth of the most recent common ancestor, and discontinuities in
this line indicate that the most recent common ancestor has changed, and thus that a
sweep occurred, or that a competing clade went extinct. The control treatments had a
mean of 18 sweeps (STD=9.05), the benign treatments had a mean of 21 (STD=19.05),
and the harsh treatments had a mean of 88 sweeps (STD=23.37). Note the difference in
scales between y-axes: the control-evolved population has a maximum depth of 400
mutational steps from ancestor, while the harsh-evolved has upward of 1100.
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Figure 2.3: Per-site entropy over time of a representative sample population. Each
vertical slice represents the per-site entropy of the population at each update by genetic
locus. Hotter colors (red/orange/yellow) indicate greater diversity at this locus, while
cooler colors (blues) indicate the a locus is more consistent across the population.

2.3.1.3 Genetic Architecture

The alternating selection in both benign and harsh changing environments results in quali-

tatively different architectural styles as compared with those genomes evolved in the static

environment. The task arrangements evolved under both experimental treatments are much

more scattered throughout the genome than in the control, which is tightly compacted.

Specifically, the bulk of the sites responsible for performing the fluctuating task (EQU) did

not overlap with the backbone task (XOR), except for a small core region, which represents

portions of the tasks that are shared between XOR and EQU. That is, in the changing en-

vironment treatments, we see many more sites that only code for a single task, whereas in

30



Figure 2.4: Population entropy over time of the representative sample population in
Figure 2.3. Mean population entropy indicates the relative diversity of the population at
any given time, while the per-site entropy (see Fig 2.3) shows where in the genomes the
population diversity is located.

the static treatment, the majority of functional tasks sites code for both XOR and EQU. (See

Figs 2.5, 2.6, and 2.7)

Figure 2.5: Genetic architecture of XOR and EQU over time in static
environment for the final dominant genotype in a randomly selected replicate.
Proceeding from the left of each figure, each vertical slice represents an organism along the
line-of-descent to the final dominant. Positions along the Y-axis represent each genome
locus; loci in an organism are colored based on the tasks that they code for. Sites in red
are active sites that code for the XOR task only, sites in blue are active sites for the EQU
task only, and purple sites code for both XOR and EQU. Knockouts to the sites in black
are lethal to the organism. Sites in the lighter colors (tan, light blue, lavender) represent
vestigial sites for XOR only, EQU only, or both tasks, respectively. As we proceed from left
to right, we can see the evolutionary history of the final dominant genotype. XOR and EQU
overlap almost completely throughout the run.
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Figure 2.6: Genetic architecture of XOR and EQU over time in benign
environment for the final dominant genotype in a randomly selected replicate.
Proceeding from the left of each figure, each vertical slice represents an organism along the
line-of-descent to the final dominant, and as in Figure 2.5, colors represent tasks performed
by each genome locus. In this genome, XOR and EQU evolve to overlap much less than in
the control.

Figure 2.7: Genetic architecture of XOR and EQU over time in harsh
environment for the final dominant genotype in a randomly selected replicate.
Proceeding from the left of each figure, each vertical slice represents an organism along the
line-of-descent to the final dominant, and as in Figures 2.5 and 2.6, colors represent tasks
performed by each genome locus. In this genome, XOR and EQU evolve to overlap even less
than in the control and benign treatments, with the EQU-only task sites becoming
increasingly scattered throughout the genome.

In terms of site placement over time, functional task site locations in the control treatment

did not change substantially over the course of the experiment. In the benign treatment,

many more regions that performed the fluctuating task (XOR) were scattered throughout
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the genome, but site positions remained relatively fixed throughout the run after an initial

adaptive phase. In the harsh treatment, however, not only are the active sites scattered, but

the positions of active sites change and proliferate wildly over time.

In addition to the variation in site placement, populations in the benign and harsh chang-

ing environment treatments had significantly more functional sites devoted to performing just

the EQU task (Wilcoxon Rank Sum Test: Z = -5.57 and -6.96, respectively, p << 0.001).

Interestingly, populations evolved in both the benign and harsh treatments also show de-

velopment of a large reservoir of formerly functional, now vestigial, sites; that is, sites that

remain unchanged from when they were previously active in performing a task, but were

disabled by a mutation elsewhere and are thus now neutral. These vestigial pseudogene-like

sites may be important for allowing the organisms to quickly re-adapt as the fluctuations in

the environment restore the previously-rewarded functions. (Fig 2.8)

Figure 2.8: Number of functional and vestigial sites by treatment. Both the benign
and harsh changing environments had significantly more sites devoted to performing only
the EQU function (Wilcoxon Rank Sum Test: Z = -5.57 and -6.96, respectively, p <<
0.001). The harsh environment has a significantly larger number of vestigial sites for the
fluctuating (EQU) task compared to the benign treatment or control (Wilcoxon Rank-Sum
Z = -6.57 and -8.33, p << 0.0001).
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2.3.1.4 Nearby Mutational Landscape

In order to identify the role that these longer task footprints and pseudogene-like structures

play, we performed a survey of the single-step mutational neighborhood surrounding the

most abundant genotype present at the end of the experiment for each replicate population.

Each neighborhood contained 3,025 distinct mutants (121 loci with 25 possible mutations

per locus) in each of the 50 replicates per treatment, for a total of nearly 450,000 mutants

surveyed. We measured the fraction of mutants that lost each of the rewarded tasks. (Fig 2.9.

Figure 2.9: A survey of the single-step mutational neighborhood around organisms
that performed the fluctuating task. Note that in both the benign and harsh treatments,
there were significantly more mutants that lost the EQU task as compared to the control
(Wilcoxon Rank Sum Test: Z = -5.46 and -7.80 respectively, p << 0.0001). This result
indicates that it was easier for the organisms in both treatments to turn off the EQU task
in response to one mutation.

We found that in both the benign and harsh treatments, there were many more mutations

that resulted in loss of the fluctuating task as compared to the control (Wilcoxon Rank Sum

Test: Z = -5.46 and -7.80 respectively, p << 0.0001). An increase in task loss in the harsh

treatment is to be expected, but why would the benign treatment lose EQU nearly as easily as

the harsh treatment? One possibility is selective pressure to lose the task. There is no explicit
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pressure for task loss, merely an absence of reward. Even so, there is certainly an implicit

penalty for performing a complex task for which there is no reward. Another possibility

is drift. Indeed, in Figure 2.1, we observe a steady downward trend in execution of EQU

when rewards are withdrawn. Then, as the reward returns, new mutations are applied that

reactivate the task, and overall performance recovers quickly. This pattern of loss and regain

would, over time tend, to increase the length of the task. Indeed, as noted in Figure 2.7,

there is a rapid increase in task length as EQU is cyclically lost and regained.

However, is increased task length enough to account for increased task vulnerability

to mutation? In order to begin to address this question, we calculated the correlation

between task length and the fraction of mutants that lost each of the tasks. We discovered

a strong correlation between the number of functional sites and the number of task-losing

mutants for the EQU task, both alone, and overlapping with XOR (Spearman’s Rho: rs =

8.72 and 6.45, respectively, p = << 0.001) (Fig 2.10). We also found a weaker, but still

significant correlation between the number of XOR-only functional sites and loss of the XOR

task (Spearman’s Rho: rs = 3.85, p << 0.001). This result confirms our intuition that the

longer the task, the more targets there are for mutation to disable the task.

Further, the lower correlation between length and task loss for the XOR suggests that it

is not only task length, but some other architectural feature that makes the XOR task more

robust to mutation, and the EQU task more fragile. Even so, the question of what kinds of

architectural features account for this differential robustness remains open.

We then measured the proportion of second step mutants that regained EQU after having

lost it in the single-step survey. We found that changing environments shifted shifted the

populations’ position in the mutational landscape, such that when a task that was lost due

to mutation, that task could be regained via one or two additional mutations elsewhere.

That is, once a mutation caused the loss of a task, a different mutation could reactivate the

task. (Fig 2.11).

We speculate that this effect is due to the availability of reservoirs of formerly vestigial
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Figure 2.10: Correlation between task length and mutational task loss in the
1-step neighborhood across all treatments. Note the strong correlation between the length
of the EQU task and the fraction of mutants that lost EQU (Spearman’s Rho: rs = 8.72, p
<< 0.001). Further, consider the weaker correlation between XOR task length, and fraction
of mutants that lost XOR. This suggests that EQU is even less robust to mutation compared
to XOR than can be accounted for by task length alone.

sites. How such reservoirs might perform these functions remains an open question. New

mutations may either re-enable the old functional sites, or recruit vestigial functionality to

perform the task elsewhere. Potentially, these vestigial sites are not altogether dormant at

all. They might individually appear vestigial in the context of a single knockout survey, but

they might also be related to other sites in a network of backup functionality that becomes

activated in response to mutation. More research is needed to explore what role these feature

play.

As an overall measure of neutral exploration, we also measured the proportion of non-

deleterious mutants in the nearby fitness landscape - the Genomic Diffusion Rate. We

found that this proportion remained approximately the same between all treatments (Kruskal

Wallis: H(2) = 1.44, p = 0.49). However, we found that the Phenotypic Diffusion Rate, the

proportion of these mutants with different (and potentially adaptive) phenotypes, increased

in the changing environment treatments as compared to the controls (Wilcoxon Rank Sum

Test: Z = -8.02, -8.39, respectively, p << 0.001). In this way, the organisms from the

changing environment treatments have an advantage over organisms from the control runs
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Figure 2.11: A survey of the two-step mutational neighborhood of the organisms
that lost EQU function in the one-step survey. We found that in both the harsh and benign
treatments, there were significantly more organisms that regained function in response to
mutation than the control. (Wilcoxon Rank Sum Test: Z = -47.9 and -57.82 respectively, p
<< 0.0001). This result indicates that it was easier for the organisms in both fluctuating
environments to regain the task in response to one additional, non-reversion mutation.

in the short-term evolvability of the fluctuating task. This result is consistent with real

adaptation, not only to resources in their local environment, but a direct adaptation to the

environmental change. (Fig 2.12)

What might account for this adaptation? Similar to the relationship between the number

of functional sites of a task, and the number of single-step mutants that lost that task (See

Fig 2.10), we hypothesize that the reacquisition of tasks in the 2nd-step survey may be

mediated by the amount of useful task material present in the genome. We performed a

multiple linear regression, predicting the mean fraction of mutants that regained EQU, by

the number of functional and vestigial sites contained in the original genome (See Table 2.2

and Fig 2.13).

We can predict approximately 47% of the variation in mean number of second step

mutants that regained EQU based on the number of functional and vestigial sites. Most
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Figure 2.12: Genomic and phenotypic diffusion rates, showing the probabilities of
producing offspring that are genotypically (Dg) or phenotypically (Dp) distinct from the
parent, while not reducing fitness. Note that while overall neutral exploration capacity
remains relatively stable between treatments (Kruskal Wallis: H(2) = 1.44, p = 0.49),
phenotypic exploration capacity is increased in both treatments, but especially in the
Harsh treatment. (Wilcoxon Rank Sum Test: Z = -8.02, -8.39, respectively, p << 0.001).
This result is consistent with changing environments promoting the phenotypic evolvability
of populations.

of the variation is predicted by the number of functional sites, though vestigial sites do

contribute a small amount. This result is consistent with the role of task length, and thus

the number of informational sites, being important for regaining task function. We could

not, however, account for all variation, indicating that there are other factors, possibly in

robustness or modular architecture of tasks, that are important to this kind evolvability.

2.3.2 Stochastic Changing Environments

Contrary to our expectations, stochastic changing environments were, overall, no more effec-

tive at promoting evolvability than cyclically changing environments. Harsh environments

performed slightly worse, whereas benign environments were slightly better, though neither

result was consistently statistically significant. There was a slight but significant reduction
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Figure 2.13: Multiple linear regression predicting mean fraction of second-step
mutants from the number of functional and vestigial sites in the original organism. See
Table 2.2.

in the Phenotypic Diffusion Rate (Dp) between the cyclic and stochastic harsh changing

environments; Dp settled on a lower median (Mdn = 0.0) in the stochastic harsh treatment

as compared to the cyclic harsh (Mdn = 0.0058) (Wilcoxon Rank-Sum Test: Z = -6.19, p

<< 0.0001), indicating a lower probability of the population producing offspring that would

switch phenotypes neutrally. In the Benign treatments, however, Stochastic environments

fared slightly better than cyclic, though this result was only barely statistically significant

(Wilcoxon Rank-Sum Test: Z = 2.2, p<0.03). (Fig 2.14)

Despite the reduced Dp in the harsh treatment, both the overall fraction of 1-step mu-

tants that lost EQU, and the fraction of 2nd-step regaining of EQU, were only very slightly

reduced in comparison to the cyclic treatments, and this effect was not statistically signifi-

cant(Fig 2.15, 2.16). This result suggests that stochastic harsh environments are certainly
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Table 2.2: OLS Regression Results - Mean Fraction of Mutants Regained EQU
vs Number of Functional and Vestigial Sites

Dep. Variable: Mean Fraction R-squared: 0.472
Model: OLS Adj. R-squared: 0.464
Method: Least Squares F-statistic: 61.65
No. Observations: 141 Prob (F-statistic): 7.39e-20
Df Residuals: 138 Log-Likelihood: 467.28
Df Model: 2 AIC: -928.6

BIC: -919.7

coef std err t P>|t| [0.025 0.975]

Intercept 0.0003 0.001 0.243 0.808 -0.002 0.003
Func Sites 0.0016 0.000 8.115 0.000 0.001 0.002
Vest Sites 0.0005 0.000 3.180 0.002 0.000 0.001

Omnibus: 79.316 Durbin-Watson: 1.928
Prob(Omnibus): 0.000 Jarque-Bera (JB): 437.211
Skew: 1.970 Prob(JB): 1.15e-95
Kurtosis: 10.675 Cond. No. 15.0

Multiple linear regression, predicting Mean fraction of second-step mutants that regained
EQU, based on the number of Functional and Vestigial sites in the original genome.

no more effective at promoting evolution toward areas of the mutational landscape where

such mutations were common, and may, in fact perform worse.

In contrast, we observed a very slight, but statistically significant increase in the fraction

of 1-step mutants that lost EQU in the stochastic treatment versus the cyclic (Wilcoxon

Rank-Sum Test: Z = -2.4, p = 0.015). This effect was matched by a slight increase in

the fraction of 2-step mutants that regained EQU in the benign stochastic treatment vs

cyclic (Wilcoxon Rank-Sum Test: Z = -18.42, p << 0.0001). This result suggests that in

stochastic changing environments, benign environments might possibly perform better than

harsh environments for promoting evolvability. However, because the effect sizes were so

small, we cannot conclusively find that stochastic environments perform any differently from

cyclic at promoting evolvability.

Few differences between the cyclic and stochastic treatments also appeared in the number

of functional and vestigial sites. Both the numbers of functional and vestigial sites in the

40



Figure 2.14: Genomic and phenotypic diffusion rates in stochastic changing
environments, showing the probabilities of producing offspring that are genotypically and
phenotypically different from the parent, while remaining fitness neutral or better. As in
the cyclic environment, Dg remains stable for the Benign treatment, but drops slightly in
the Harsh as compared to the control, though this drop isn’t statistically significant
(Kruskal Wallis H(2) = 1.11, p = 0.57). Harsh Dp however, is significantly lower than seen
in the cyclic environment treatment (Wilcoxon Rank-Sum Test: Z = -6.19, p << 0.0001).
This result shows that harsh stochastic environments may not be as effective as cyclic
environments at increasing the probability that organisms will produce phenotypically
different, yet neutral offspring.

stochastic environment were similar to those in the cyclic environment. In the stochastic

harsh treatment, there was a small, but significant reduction in the number of XOR+EQU

overlapping functional sites (Mdn = 14) as compared to the cyclic treatment (Mdn = 16) .

(Fig 2.17)

Together, from these measures, we conclude that stochastic environments exert similar

evolutionary pressure to move toward regions of the mutational landscape that are more

congenial to neutral phenotypic exploration and evolvability. However, the combination of

the slight improvements in benign stochastic environments, matched by slight decreases in

effectiveness in harsh stochastic environments, suggests that the periodicity of the cyclic

environment provides a slight advantage to adapting to harsh environments. In the benign
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Figure 2.15: A survey of the single-step mutational neighborhood in the stochastic
changing environment around organisms that performed the fluctuating task. Again, in the
static and harsh treatments, values are comparable to the cyclic changing environment .
However, in the benign treatment, the mean for the loss of the fluctuating task (EQU) was
slightly higher in the stochastic treatment (Mdn = 0.2) than the cyclic (Mdn = 0.17),
though the effect is barely statistically significant (Wilcoxon Rank-Sum Test: Z = -2.4, p =
0.015). This result is consistent with stochastic environmental change being equivalently
effective at moving organisms to areas of the fitness landscape where they can more easily
switch task expression.

environments, however, the stochastic nature may be less of a disadvantage. We hypothe-

size that this dynamic may be due to the randomly-occurring environmental changes either

occurring too rapidly for a response to selection, or too slowly, such that drift may cause the

information contained in vestigial sites to mutate away. While the environment, on average,

experiences as many changes as in the cyclic experiment, the distribution of the length of

those environment periods may be very different. We conclude that our stochastic chang-

ing environment is not more effective than a cyclic changing environment, and under harsh

conditions, may actually be slightly worse for promoting the evolution of evolvability.

42



Figure 2.16: A survey of the two-step mutational neighborhood in the stochastic
changing environment of the organisms that lost EQU function in the one-step survey. We
found that the fraction of organisms regaining the fluctuating task (EQU) from a single
additional mutation in the harsh treatment (Mdn = 0.013) were reduced compared to the
cyclic harsh treatment (Mdn = 0.01) (Wilcoxon Rank-Sum Test: Z = 12.75, p << 0.0001)
The opposite, however, was true of the Benign treatments. As in Fig 2.15, we find that
stochastic outperforms cyclic (Wilcoxon Rank-Sum Test: Z = -18.43, p << 0.0001) This
result confirms that the harsh stochastic environment is probably less effective than the
cyclic harsh at promoting evolvability, but that the opposite may be true for a benign
environment.

2.4 Conclusion

In cyclic changing environments, the direction of selection shifts frequently, and period-

ically drives populations to not only explore new regions of the genetic landscape, but also

to carry with them vestigial genetic information about previous environmental conditions.

Thus, the resulting populations are not only adapted to the current environment, but also to

the meta-environment of cyclic change. Because of their evolutionary history, the genomes

contain vestigial fragments of genetic material that were adapted to prior environments. As

this exploration proceeds, mutations accumulate in the population, each creating a link to

a new region of the mutational landscape. As these links accumulate, they form a reservoir
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Figure 2.17: Number of functional and vestigial sites by treatment in a stochastic
changing environment. The vestigial site counts for EQU-only performing organisms remain
comparable to the cyclic environment (Wilcoxon Rank-Sum Z = 0.46, 1.45, and -1.10, p =
0.6, 0.14, and 0.2). The functional sites were also comparable, however, there was a slight,
but statistically significant decrease in the number of XOR & EQU overlapping sites in the
stochastic vs cyclic environments (Wilcoxon Rank-Sum Test: Z = -3.05, p<0.01).

of mobility for the population to quickly shift to new phenotypes as dictated by current

selective conditions. In this way, the accumulation of vestigial or pseudogene-like regions

acts as an indirect adaptation to the larger pattern of changing selective forces.

By contrast, in static (non-changing) environments, the majority of neutral mutations

do not connect to as many phenotypically-interesting regions of genotype-space. There are

far fewer pseudogene-like regions available that could regain functionality should conditions

change. Thus, populations evolved in static environments are less evolvable in the short-term.

These results suggest, therefore, that architectural features that help with evolvability

are more likely the result of repeated hitchhiking on adaptive mutants. In particular, we

observed that much of the task-loss associated with the harsh changing environment could be

attributed to increasing task length which is a result of the continuous addition of new mu-

tations activating and deactivating the task. Despite this correlation, however, we observed
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a potential difference in robustness between the XOR and EQU tasks, which suggest that a

kind of anti-robustness may also be selected for as a result of the changing environments.

Surprisingly, stochastically changing environments are not more effective at exploration

than cyclic changing environments, even if, on average, the amount of time spent in each

environment was equal. We hypothesize that this result is because of more opportunity for

drift to destroy the information contained in vestigial regions, as well as potentially fewer

opportunities for populations to respond to selection.
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CHAPTER 3

CHANGING ENVIRONMENTS AND THE EVOLUTION OF HORIZONTAL
GENE TRANSFER

3.1 Background

Horizontal Gene Transfer (HGT) is a broad term for the non-reproductive transfer of

genetic material between organisms. Organisms may uptake genes directly from the envi-

ronment (transformation via natural competence [67]), or else receive them via bacterial

conjugation [68] or viral infection (transduction [69, 70]). In the case of transformation, the

fragments may either be decomposed inside the recipient cell for their nutrients, or recom-

bined into their genomes.

HGT has had a profound impact on the evolutionary history of both prokaryotes and

eukaryotes, with one study showing approximately 81% of genes in the sample “being in-

volved in HGT at some point in their history” [71]. For example, HGT appears to be the

primary mechanism by which antibiotic resistance is conferred [72, 73] since most antibiotics

are sourced from the environment, and the organisms that develop them are themselves re-

sistant to the compounds. However, the origins and evolution of HGT mechanisms remain

unclear.

3.1.1 Origins of Horizontal Gene Transfer in nature

In prokaryotes, ”transformation” is an HGT mechanism by which organisms spontaneously

uptake the DNA of dead organisms in the environment. Competent organisms benefit in

several ways. 1) DNA is composed of a 5-carbon sugar, a phosphate, and nitrogenous bases,

materials that are useful for DNA synthesis and repair. 2) The organisms may also benefit

from taking up gene fragments that confer new adaptive functionality into the genome [74].

However, it is unclear whether the origins of transformation functions were developed solely in
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order to obtain nutrients (the Grazing Hypothesis), or if the acquisition of new functionality

was selected for as well. While grazing for gene fragments as nutrients certainly conveys

an advantage, the possibility of integrating these gene fragments is likely to be deleterious

to organisms more often than it is beneficial [75]. For example, since the DNA would be

originating from dead organisms, DNA fragments may be of low quality, and recombine

deleterious mutations, or even remove competence altogether [75]. Alternately, errors in

homologous recombination may apply fragments to random locations in the genome.

Although advances in molecular biology are allowing researchers to investigate the mech-

anisms of HGT and even reconstruct specific inferred cases of HGT (as reviewed in Bock

2015 [76]), the processes themselves are ancient and nearly ubiquitous [77]. This very an-

cientness makes studying the early evolution of HGT in physical organisms exceedingly

challenging, as we lack easily tractable systems that differ only in whether or not HGT

exists within them. Therefore, empirical studies in natural systems remain exceedingly rare.

In order to test the Grazing Hypothesis of the origin of HGT, and to address the ques-

tion of whether there are circumstances where gene fragment integration may be beneficial,

we subjected populations of evolving digital organisms to a harsh changing environment,

where there is a strong selective pressure to quickly switch phenotype. We supplied organ-

isms with an instruction that performs Horizontal Gene Transfer (HGT-Uptake). That is,

the instruction triggers uptake of a genetic fragment from the environment, and there is a

probability that, rather than metabolizing the fragment for a bonus to execution speed, the

fragment will instead be homologously recombined into the organism’s genome. We show

that in harsh changing environments, without any kind of bonus, organisms increase use of

HGT as compared to execution in a static environment.

3.2 Methods

In this chapter, we use Avida to test hypotheses about the origins of Horizontal Gene

Transfer.
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3.2.1 HGT in Avida

In Avida, HGT is triggered by the HGT-Uptake instruction that, when executed, attempts

to uptake a genome fragment from the individual cell reservoirs in the environment. As

organisms die in Avida runs with HGT enabled, we collect fragments of their genomes in

reservoirs. These fragments will deteriorate over time, with older genomes disappearing from

the reservoir as new ones enter. Fragments for uptake will be randomly selected from the

reservoir.

We have implemented a configurable probability that, when a fragment is taken up, it is

not metabolized; instead, homologous recombination may occur (Figure 3.1). We performed

experiments to derive bonus levels, fragment sizes, and recombination probabilities to arrive

at a maximum use level for the HGT instruction. See Appendix B for more details.

For all experiments described in this chapter, we used a 10% recombination probability.

Please refer to Appendix B for more information about the selection of this probability value.

We also required three instructions as the minimal homologous match length on either side

of the fragment. Three instructions on either side of the fragment (263 unique sequences)

approximates the number of unique values keyed by 7 nucleotides (47 unique sequences).

For the purposes of homologous recombination in plasmid cloning in E. coli, 20bp is enough

to assume identity [78].

Homologous recombination requires a pair of valid matching sites in the genome, which

are selected as follows: We search for a set of sites that match the first three instructions

of the uptaken fragment, starting at the beginning of the genome. We search the whole

genome, until we find a matching site for the front three instructions of the fragment. Then,

we begin searching for a match for the back three instructions of the fragment, starting at

the edge of the front match. If a valid back-end match site is not found, we scan forward,

looking for the next front-end match and repeat the process until all possible match sites on

the genome are exhausted.

If no match is found, recombination fails. If recombination succeeds, it replaces the
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content of the organism’s genome between the selected beginning and end match sites with

the content of the fragment. This may result in the genome growing or shrinking, depending

on the distance between the matches, and the length of the fragment.

Figure 3.1: The HGT process. Organisms can execute instructions that trigger uptake
from the environment. When uptake occurs, there is an experimenter-defined chance that
either it will yield a boost to speed of execution or, alternatively, that the fragment will be
integrated into the genome.

3.2.1.1 Environmental Conditions

All experiments in this chapter compared outcomes between static environments, and harsh

changing environments. In a similar manner to the experiments listed in the previous chapter

(Chapter 2, Table 2.1), task rewards in the harsh changing environment switched from a
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Table 3.1: Logic-9 Rewarded Task Groupings

Tasks
Reward
Phase 1

Reward
Phase 2

Group 1

NOT
AND
OR
NOR
EQU

21

22

23

24

25

−21

−22

−23

−24

−25

Group 2

NAND
ORN
ANDN
XOR

−21

−22

−23

−24

21

22

23

24

Logic-9 tasks were divided into to groups, with one task from each pair of tasks of
equivalent complexity assigned to a group. The EQU task, which has no complexity
equivalent, was arbitrarily assigned to the first group. During the first half of a cycle, we
rewarded the first group of tasks and punished the second group (see Reward Phase 1).
During the second half of the cycle, reversed the pattern, and rewarded the second group,
and punished the first group (Reward Phase 2).

positive to a negative reward. For the HGT experiments, we did not establish a backbone

task that was always rewarded. Rather, we divided the Logic-9 environment into two halves,

and alternated positive and negative rewards for each task in each set. There are four

pairs of tasks of equivalent complexity, and we randomly allocated one from each pair to

an experimental group. We also assigned EQU, which is the most complex task, and has

no equivalent, to a random group. Thus, for the first phase of the cycle, we punished the

NOT, AND, OR, NOR, and EQU instructions at −21, −22, −23, −24, and −25 respectively,

while rewarding NAND, ORN, ANDN, and XOR at 21, 22, 23, and 24. In the second phase of

the cycle, these rewards flipped, such that we rewarded NOT, AND, OR, NOR, and EQU, and

punished NAND, ORN, ANDN, and XOR (See Table 3.1).

Each complete cycle lasted 1000 updates, and the whole experimental run extended for

200,000 updates. The static environment rewarded executions of all the Logic-9 tasks at

their default levels, with no reward switching.
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3.2.2 Experimental Design

For the treatments corresponding to the first set of hypotheses on the origins of horizontal

gene transfer, we subjected four populations of evolving digital organisms with HGT to

harsh changing environments (Table 3.2), plus a pair of non-HGT control. The treatments

correspond to the combination of two factors: static vs changing environment, and grazing

bonus vs no bonus.

For the second set of hypotheses, where we identify the mechanisms that promote the

use of HGT, we manipulated the content of the reservoirs to contain fragments drawn from

specific phases in the cyclically changing environment, such that fragments either matched or

did not match the environment (Table 3.3). We then measured HGT use, as well as average

fitness effects of the HGT mutations, and the fraction of mutations that led to beneficial

phenotype switches.

3.3 Results and Discussion

Our results, discussed in detail below, show that both an uptake bonus and changing

environment promote the use of HGT, and that the increases in uptake are largely additive.

Further, we found that while on average, HGT mutations are neutral, that the majority of

the benefits conveyed by HGT in changing environments come from fragments originating

in periods of the cycle where the environment matched the current environment. This result

is consistent with the information content of the fragment being valuable. Finally, we find

that providing only fragments from the matching cycle elevates uptake rates significantly.

3.3.1 Changing environments elevate HGT use

We measured HGT fragment uptake in four conditions (see Table 3.2), plus of pair of non-

HGT controls. Without a bonus, in a static environment, fragment uptake was depressed

to a low level as compared to the rate of the non-HGT control, where the HGT-Uptake

instruction does nothing (Wilcoxon Rank-Sum Test: Z = 9.74, p << 0.0001). This result is
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Table 3.2: Experimental Treatments - Evolution of HGT

Treatment

Changing
Env.
Type

HGT
Action Bonus

Static Control
(no HGT)

Static None n/a

CE Control
(no HGT)

Harsh Cyclic None n/a

HGT
B0.0

(Natural Competence
No Bonus)

Static
10%

Recombination
Probability

n/a

HGT
B0.0
CE

(Natural Competence
No Bonus)

Harsh
Cyclic

10%
Recombination

Probability
n/a

HGT
B0.8

(Natural Competence
with Bonus)

Static

10%
Recombination

Probability
otherwise

Bonus
Allocation

20.8 per
Uptake

HGT
B0.8
CE

(Natural Competence
with Bonus)

Harsh
Cyclic

10%
Recombination

Probability
otherwise

Bonus
Allocation

20.8 per
Uptake

Four treatments corresponding to the combination of two factors: Static vs Changing
Environment, and Grazing Bonus vs No Grazing Bonus, plus a non-HGT control, where
the HGT instruction is inert.
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Table 3.3: Experimental Treatments - Effects of HGT

Treatment
Fragment

Source

HGT organism death
Both sampled from organisms from both phases

OnPhase sampled from organisms from the matching phase
OffPhase sampled from organisms from the non-matching phase

Four treatments corresponding to the sources of fragments. The first treatment used the
default fragment source (dead organisms from the environment). The second treatment
sampled a population for organisms corresponding to both phases, and injected those into
the reservoirs. The third and fourth treatments sampled the population, but only injected
fragments from the matching and non-matching phases, respectively.

consistent with HGT in a static environment being largely deleterious (Figure 3.2). However,

in a no-bonus harsh changing environment, fragment uptake was elevated compared to the

static environment (Wilcoxon Rank Sum-Test: Z = -8.44, p << 0.0001). This shows that

in the context of a harsh changing environment, the integration of new genetic material is

more beneficial than in the static environment. We also found that, regardless of whether the

environment is static or changing, when a bonus to fragment uptake was provided (analogous

to the nutritive benefit granted by natural competence in biological organisms), fragment

uptake also increased (Wilcoxon Rank Sum Test: Z = -8.44, and -7.47, p << 0.0001).

In order to investigate the relationship between the effects granted by a nutritive bonus

and the benefit of fragment recombination in a changing environment, we selected a bonus

level that increased fragment uptake in a static environment to a level comparable to the

increase seen in changing environments without a bonus (for more details of this bonus

selection, please see Appendix B). We then combined these factors, giving a bonus plus a

changing environment. We saw that the resulting uptake level increased largely additively.

This result suggests that the benefits granted by a grazing bonus are generally independent

of the benefits conveyed by integrating new genetic material.

Thus, not only is HGT evolution possible absent a bonus, the benefit stacks with that of
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Figure 3.2: Number of HGT fragment uptakes in static and changing environments,
without a grazing bonus, with a grazing bonus, and a no HGT control, where the
HGT-Uptake instruction is inert. HGT uptake increased in response to a changing
environment, and also in response to a grazing bonus. The grazing environment and a
changing environment combined resulted in an even larger increase of fragment uptakes
than either the changing environment, or the bonus alone (Wilcoxon Rank Sum Test: Z =
-4.93 and -7.47 respectively, p << 0.0001).

a grazing bonus, proving a more likely scenario by which HGT might evolve.

3.3.2 HGT derives most benefit from on-cycle fragments, but not all

3.3.2.1 Fitness Effects

In order to understand the basis of the beneficial nature of HGT in changing environments,

we measured the fitness effect of individual fragments on individual organisms within a

population. We calculated the average fitness effects of fragments of the non-replaced HGT
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control treatment at the end of the last environmental cycle, and generated a distribution

of fragments, and sorted the fragments by age and fitness-effect (Figures 3.3). We observe

a clear pattern of more beneficial fitness effects from fragments of organisms originating in

the matching cycle phase.

Figure 3.3: Origin and fitness effect distributions of HGT fragments, sampled
midway through the experiment at 100,000 updates, and aggregated across all replicates.
We applied each fragment in each cell’s reservoir, one at a time, to the organism in the cell,
then recorded the fitness effect. The x-axis is the birth update of fragment’s original donor
organism. The y-axis is a fragment’s fitness effect. The color of each point represents the
number of fragments that originate in that birth update a given fitness value. Hotter
values indicate more fragments from that time origin at that fitness effect. Most fragments
with a positive fitness effect (the upper half of the figure) appear in bands that correspond
with the matching phase of an earlier cycle.

To quantify this observation, we performed experiments where we replaced the fragments

in the reservoir with fragments originating in the matching phase, the off-phase, and mixture

of both phases as a control. We measured the mean and median fitness effects of fragments

in these treatments (Figure 3.4). We found that HGT mutations were, on average, neutral,

or nearly neutral in all the treatments. Both the non-replaced control (Mdn = 0.0, 95%
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CI [0, 0]) and the replaced-”both” treatment (Mdn = -0.008, 95% CI [-0.009, -0.008]) were

neutral or nearly neutral. The median fitness effect in the ”on-phase” treatment was mildly

deleterious (Mdn = -0.054, 95% CI [-0.055, -0.052]), while the mean was more strongly

beneficial (M = 1.19, SD = 19.7). In contrast, in the ”off-phase” treatment, the median

fitness effect was, again, mildly deleterious (Mdn = -0.0005, 95% CI [-0.0006, -0.0004]), but

with a much more deleterious mean (M = -23.06, SD = 101.8). This suggests that while, on

average, HGT mutations remain nearly neutral, a few fragments from the matching phase

were strongly beneficial, while the opposite was the case for the non-matching phase.

Figure 3.4: Mean and median fitness effects of fragments in reservoirs, with 95%
confidence intervals. Fragments in reservoirs are replaced by fragments based on the origin
of donor organism. For the On-Phase treatment, We only permitted fragments in reservoirs
that originated in a matching phase of the current cycle. For the Off-Phase treatment, we
only permitted fragments from non-matching phases. Plus two controls: first, where no
filtration takes place, and ”Both” where fragments are injected from a mixed set of origins.
The Off-Phase treatment had a significantly lower fitness effect than either of the controls
(Wilcoxon Rank-Sum Test: Z = 143 and 31 respectively, p << 0.001), while the On-Phase
treatment had a significantly better fitness effect (Wilcoxon Rank-Sum Test: Z = 105 and
3 respectively, p < 0.002).

56



3.3.2.2 Beneficial Phenotype Switching

In our environments, mutations that convey phenotypic change should have the largest

impact. Specifically, the largest fitness benefits should occur when a mutation leads to the

acquisition of a new rewarded task, or the loss of a punished task.

Figure 3.5: Fraction of all fragments that produced a beneficial phenotype
changes, with 95% confidence intervals. The ”On-Phase” treatment had significantly more
fragments that convey a beneficial phenotype change than either of the controls (Wilcoxon
Rank Sum Test: Z = -6.42 and -6.12 respectively, p << 0.001), while the ”Off-Phase” had
significantly fewer (Wilcoxon Rank-Sum Test: Z = 7.11 and 7.35 respectively, p << 0.001).

We quantified the phenotypic effect of each fragment by counting the number of times

that fragments produced a beneficial phenotype change, vs all HGT mutations (Figure 3.5).

We saw that a significantly larger proportion of fragments in the ”on-phase” treatment pro-

duced beneficial phenotype changes (Mdn = 0.09, 95% CI [0.07, 0.11]), as compared to fewer

in the normal HGT control (Mdn = 0.03, 95% CI [0.03, 0.04]) and ”both” treatments (Mdn

= 0.04, 95% CI [0.035, 0.05]) (Wilcoxon Rank Sum Test: Z = -6.42 and -6.12 respectively,

p << 0.001). In contrast, we observed virtually no beneficial phenotype changes originating

in fragments from the ”off-phase” treatment (Mdn = 0.009, 95% CI [0.006, 0.01]). This
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result was significantly worse than both the control and the ”both” treatments, which pro-

duced non-zero beneficial phenotype switches (Wilcoxon Rank-Sum Test: Z = 7.11 and 7.35

respectively, p << 0.001)

These results suggest that most direct benefit of using HGT derives from taking up

fragments that match the cycle phase of the environment of the affected organism, and thus

likely contains information that relates to that environment. Further, if fragments from the

Figure 3.6: Number of uptaken fragments in the filtered reservoir treatments. The
”On-Phase” treatment has a significantly larger number of HGT fragment uptakes, as
compared to control, ”both”, and ”off-phase” treatments (Wilcoxon Rank-Sum Test: Z =
-3.9**, -3.2*, and -6.5**, respectively, p < 0.002* and p << 0.001**) This shows that HGT
is significantly more beneficial when fragments match the current phase of the cycle. Thus,
this suggests that the primary benefit from HGT is not mutational disruption, but the
information that fragments convey about the current environment.

matching phase are indeed beneficial, we would expect to see an increase in HGT use in those

treatments, as compared to those where the fitness effects are mixed or deleterious. And

indeed (Figure 3.6), we observed just such an increase. Thus we can conclude that HGT

in our changing environments is most beneficial when the fragments in the environment

contain information that would be beneficial in that environment. However, even when no
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such information was available, HGT use was not significantly depressed as compared to the

control treatment. This suggests that despite the lack of exclusively matched environmental

information, that fragments could still provide some benefit.

3.4 Conclusion

Our experiments confirm our expectations about the evolution of horizontal gene transfer,

and match what we would expect to see in nature. First, we find that grazing bonuses, such

as those conveyed by the uptake of nutrient-rich DNA fragments in natural systems, cause

an elevation of use of the horizontal gene transfer instruction, regardless of the potential risk

of recombining uptaken gene fragments.

Further, when there is direct selection for phenotypic change - such as in a changing

environment - we observe an increase in the use of the HGT instruction, even when no

grazing bonus is offered. This is consistent with the possibility of recombination itself being

selected for. Beyond this, we find that it is not only the fact of the recombination that

is beneficial, but the information contained in the fragment. We found that most of the

benefit conveyed by HGT derived from fragments that match the current environment, but

also that when we filter so that only those fragments are available, that use of the HGT

instruction increases even further. Even so, HGT use is still modestly elevated even when no

new information is provided by fragments. This suggests that it is not just novel information

that conveys a benefit. Rather, it is possible that HGT might be useful for other functions,

such as error correction.

In natural systems, evidence for phenotype change via HGT is apparent in the evolution

of antibiotic resistance in bacteria, where resistance is acquired largely by the spread of

resistance genes via horizontal gene transfer. Therefore, our results provide a key insight

into how horizontal gene transfer mechanisms could be selected for, and evolve in natural

systems.

It is worth noting that most prior studies of HGT have been observational studies that
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look at existing traits and phylogenies and attempt to make inferences about the evolution

of those traits on that basis. Performing experimental evolution studies of the evolution

of HGT in organic systems is currently intractable. Digital evolution, on the other hand,

allows us to explore and test many hypotheses about the evolution of HGT, such as the

explicit benefits and consequences of different types of mutations. It gives us an opportunity

to compare granular fragment grazing bonuses and quantify their effects on evolutionary

outcomes. These experiments are ones that we would not be able to perform any other way.
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CHAPTER 4

HORIZONTAL GENE TRANSFER VS OTHER TYPES OF MUTATION

4.1 Background

In both natural and artificial systems, populations evolve mechanisms to reduce or elim-

inate mutations [79], despite evidence that higher mutation rates are optimal for adaptive

evolution [80]. In artificial systems, prior research has failed to show a substantial increase in

endogenously-controlled mutation rates, even when such an increase would be beneficial for

long-term adaptive evolution, such as in a changing environment [80]. However, Horizontal

Gene Transfer through transformation seems to be an exception to this rule.

In nature, transformation is a highly regulated and refined mechanism for taking up DNA

fragments from the environment [81, 82, 83]. Clearly, evolution is acting to maintain and

preserve these functions, despite the risk of harmful recombinations. In the previous chapter,

we showed that HGT is under positive selection in harsh changing environments. Despite the

fact that the fitness effects of recombination tend to be neutral to slightly deleterious, HGT

use is up-regulated. What makes HGT different from other types of mutations? Is it the

beneficial fitness effects of HGT mutations? The information content of fragments relating

to a new environment? The probability of phenotypic changes? Furthermore, we need to

ask what makes HGT special as compared to other types of mutations in these respects.

And can any of the differences the we uncover account for the increased selection pressure

for HGT as compared to other mutation types?

We hypothesize that those instructions that convey the largest amount of information,

the best fitness outcomes, and the best likelihood of beneficial phenotype change will be used

more than those that convey less information or lead to worse fitness outcomes.

In order to address these question, we created instructions that create different kinds of

mutational effects with similar per-instruction impact to HGT. Each new instruction controls
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for one specific aspect of HGT to determine how important it is as compared to others. We

performed experiments with these new mutagenic instructions under the identical conditions

as our evaluation of HGT, in static vs. changing environments. We found that not only are

these new instructions triggered at significantly lowered rates as compared to HGT, but that

the rate at which they are used correlates significantly with the amount of useful information

expected to be conveyed by the mutation.

4.2 Methods

In this chapter, we use Avida to compare mutational effects of HGT to other types of

mutations. As in the previous chapter, HGT is triggered by the HGT-Uptake instruction,

and fragments are collected from reservoirs in the environment.

All experiments in this chapter compare outcomes between static environments and harsh

changing environments. Similarly to the experiments in the previous chapter, task rewards

in the harsh changing environment switch from a positive to a negative reward between

the divided set of tasks in the Logic-9 environment. Please refer to Table 3.2 for additional

details. Each complete cycle lasts 1000 updates, and the whole experimental run continues for

200,000 updates. Also as in the previous chapter, the static environment rewards executions

of all the Logic-9 tasks at their default levels, with no reward switching.

4.2.1 Experimental Design

We conducted a total of 14 treatments in order to isolate the advantages of HGT-Uptake

and to identify the underlying reasons why this instruction is under positive selection. Each

treatment differed by either environmental condition (static vs. changing) or the available

mutagenic instruction.
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4.2.1.1 Alternative Mutagenic Instructions

In order to perform experiments comparing HGT to other types of mutagenic instructions, we

modified the functioning of the HGT instruction to perform a new set of mutagenic functions

which should have the same raw, per-instruction effect as the normal HGT instruction. All

mutagenic instructions have the same 10% probability of triggering their mutagenic effect.

All instructions also have the same viable recombination site requirements as the default

HGT instruction (as detailed in Chapter 3, Methods), in order to be able to compare use

rates across treatments.

The specific set of possible instructions are:

• HGT (Intact Fragment): The default HGT operation, as detailed in Chapter 3,

Methods. We uptake a fragment from the environment. We apply a 10% probabil-

ity that the fragment is recombined into the organism’s executing genome. A valid

recombination site is required for recombination to occur.

• HGT Shuffle: We uptake a fragment from the environment, and a valid recombination

site is found, as above. Prior to recombination, however, we shuffle the fragment. The

identical set of instructions are inserted, but the order of each instruction randomized.

We then insert the fragment at the selected site.

• HGT Random: We uptake a fragment from the environment, and find a valid re-

combination site, as above. Prior to recombination, however, we replace the entire

fragment with an equal number of randomly selected instructions, and insert this new

sequence at the selected site.

• Mutation Event - Sampled: We uptake a fragment from the environment, and find

a valid recombination site, as above. Rather than recombine, however, we apply a

number of point mutations in random locations throughout the genome. The num-

ber of applied mutations matches the number of instructions in the fragment. The
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mutations applied are sampled, with replacement, from the selected fragment. This

mutagenic instruction is analogous to the the HGT Shuffle mutagen, except that

instead of having a shuffled fragment applied in a single location, the instructions from

the fragment are sampled and applied randomly throughout the genome.

• Mutation Event - Random: We uptake a fragment from the environment, and find

a valid recombination site, as above. Rather than recombine, we apply a number of

random point mutations, matching the number of instructions in the fragment. This

mutagenic instruction is analogous to the HGT Random mutagen, except that, again,

its effects are applied randomly throughout the genome instead of at a single location.

• Mutation Rate Increase: We uptake a fragment from the environment, and find

a valid recombination site, as above. Rather than recombine, we increase the point-

mutation rate for the organism, such that it will experience an expected additional

number of point mutations matching the number of instructions in the uptaken frag-

ment.

• Die: We uptake a fragment from the environment, and find a valid recombination site,

as above. Rather than recombine the fragment in, the organism instead dies. As with

each of the other cases, the finding of a recombination site is simply to control for

the frequency of success to ensure that this effect is trigged with the same probability

as recombination. The Die instruction is a control, to identify a minimal level of use

where populations would suppress the use of the instruction as much as possible.

4.2.1.2 Comparing HGT to Other Mutation Types

For the experiments comparing the mutational effects of different types of mutations, we

provided populations of evolving digital organisms with instructions that endogenously trig-

ger different kinds of mutation events (see above), then subjected them to both static and

harsh changing environments (Table 4.1).
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Table 4.1: Experimental Treatments - Mutation Types

Treatment Environment Mutagenic Instructions

HGT Static
HGT

HGT CE Changing
HGT-Shuffle Static

HGT-Shuffle
HGT-Shuffle CE Changing
HGT-Random Static

HGT-Random
HGT-Random CE Changing

ME-Sampled Static ME-Sampled
(Mutation Event - Sampled)ME-Sampled CE Changing

ME-Random Static ME-Random
(Mutation Event - Random)ME-Random CE Changing

MRI Static MRI
(Mutation Rate Increase)MRI CE Changing

Die Static
Die

Die CE Changing

Two types of environment (static vs changing environment), for each mutagen. No bonus
was given for performing any of the mutagenic instructions.

The goal of each treatment is to compare the use rates of each of the different mutagenic

instruction across several factors. We can examine the effects of localization (concentrating

mutations in a single area) by comparing the HGT-Random vs the ME-Random treatments.

We can measure the effect of time-concentration (all mutations happening at once vs spread

out over time) by comparing the ME-Random and MRI treatments. We can examine the

effect of information content by comparing the HGT, HGT-Shuffle, and ME-Sampled

treatments. We can identify a basement-level for mutagenic instruction use by comparing

against the use of the entirely deleterious Die instruction. Finally, we can compare all these

factors with their environment by comparing the static vs changing environment treatments.

4.3 Results and Discussion

Our experimental results (detailed below) show that only mutagenic instructions contain-

ing useful information are elevated in response to changing environments. Intact-fragment

HGT is used most, with shuffled-fragment (HGT-Shuffle) used less, and the other, non-
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information-bearing mutagenic instruction types used at the lowest levels. Further, we find

a positive correlation between expected fitness and mutagenic instruction use. That is, mu-

tagenic instructions that have higher expected fitness effects are used more. Finally, we see

a strong positive correlation between the fraction of mutations from a mutagenic instruction

that provide a beneficial phenotype-altering change, and the resulting use of that instruction.

4.3.1 Other mutation types are not elevated in response to HGT

Figure 4.1: Executions of mutagenic instructions. In static environments, use of all
mutagenic instructions was strongly suppressed (Wilcoxon Rank Sum Test: Z = -22.65,
p<<0.001). In changing environment treatments, the HGT and HGT-Shuffled
instructions were used at elevated rates, compared to the other mutagenic instructions,
including the Die control (Wilcoxon Rank Sum Test: Z = 10.66, p<<0.001). The HGT
instruction (Mdn = 87389.71, CI 95% [82982.98, 96000.3]) is used more than the
HGT-Shuffle instruction (Mdn = 52220.3, CI 95% [45094.92, 57465.52]), which is used
more than HGT-Random (Mdn = 25442.98, CI 95% [22099.45, 30490.08]), indicating that
the information content of the mutation matters.

In order to compare the use of HGT against other kinds of mutations, we compared rates
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of non-bonus HGT fragment uptake against a series of other mutation types, in both static

and changing environments (Fig 4.1). As expected, in the static environment, endogenously-

controlled performance of all types of mutations (including HGT) is strongly suppressed

(Wilcoxon Rank Sum Test: Z = -22.65, p << 0.001). However, in harsh changing environ-

ments, use of HGT dominates the other mutation types (Wilcoxon Rank Sum Test: Z =

10.66, p << 0.001). Of particular interest is ranking of the use of the HGT-like instructions

by order of information content.

The baseline intact-HGT instruction is used most (Mdn = 87389.71, CI 95% [82982.98,

96000.3]), followed by the HGT-Shuffle instruction(Mdn = 52220.3, CI 95% [45094.92,

57465.52]), and finally followed by HGT-Random(Mdn = 25442.98, CI 95% [22099.45, 30490.08]),

where no information remains. The latter (Mdn = 25,442.98, CI 95% [22099.45, 30490.08])

performs comparably to the remaining mutation event types: ME-Sampled (Mdn = 25,798.03,

CI 95% [24335.01, 30824.09]), and ME-Random (Mdn = 28,369.85, CI 95% [22829.31,

33745.83]) (Kruskal-Wallis H2 = 1.91, p = 0.3). The MRI and Die instructions are used

at even lower levels (Mdn = 22493.75, CI 95% [19330.91, 24818.06] and 21021.12, CI 95%

[17722.93, 23308.02]), respectively). This result is consistent with our hypothesis that the

information content of the fragment is an important predictor of the use of HGT.

Also of note is that the primary difference between the ME-Sampled and HGT-Shuffle

treatments is the localization of the mutation effect (the HGT-Shuffle fragment insertion

is applied to a single location, whereas with ME-Sampled, the instructions are scattered

randomly throughout the genome), however their use rates are significantly and substan-

tially different (Wilcoxon Rank Sum Test: Z = 7.19, p << 0.001). This result suggests

that localization of the HGT mutation plays an important role, over and above any useful

enrichment of instructions originating in a living organism.

We speculate that this effect may also synergize with the level of modularity of a genome.

If a genome is even slightly modular, there are gradients of relatedness between loci that

decrease with physical distance. A single mutation is enough to disrupt a function. Thus, if
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all mutations are concentrated in one region, they would be more likely to affect fewer total

functions. Thus, concentrating mutations to a single area may limit the reach of the damage,

so to speak, as opposed to hitting many different locations at once. We would expect this

effect to increase as modularity of a genome increases.

4.3.2 Mutation fitness effect correlate with mutagenic instruction use

Figure 4.2: Mutagenic instruction use vs fitness effect of mutation. The use of the
mutagenic instruction correlates with the fitness effect of that instruction (Spearman’s Rho:
rs = 0.41, p << 0.001). Because mutagenic instructions are integrated into the genomes,
those instructions that produce a beneficial fitness effect are more likely to be selected for.

Prior research has failed to show a substantial increase in endogenously-controlled mu-

tation rates, when such an increase would be beneficial for long-term evolution, such as in

a changing environment [80]. Why should HGT mutations be different? In order to address

this question, we measured the average fitness effect of each mutation, and compared it to

that mutation’s usage rate in changing environments. We observed a positive correlation be-

tween the average fitness effect, and the use of the mutagenic instruction (Spearman’s Rho:

rs = 0.41, p << 0.001). We observed many more positive or neutral fitness effects from the
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HGT instruction (Mdn = 0.08, CI 95% [-0.12, 0.37]) than the other mutagenic instruction

types, which exhibited primarily neutral or negative mutation effects (Mdn = -0.62, CI 95%

[-0.79, -0.52]) (Wilcoxon Rank Sum Test: Z = 7.09, p << 0.001). This result is consistent

with mutagenic instruction use being under direct selection (Fig 4.2).

4.3.3 HGT mutations increase evolved probability of beneficial phenotype switch-
ing

Figure 4.3: Fraction of beneficial phenotype-switching mutations vs mutagenic
instruction use. We observe a strong correlation between the fraction of mutations that
produce beneficial phenotype switches, and the use of the mutagenic instruction
(Spearman’s Rho: rs = 0.59, p = << 0.001). This correlation is much stronger than the
correlation between fitness effect and mutagenic instruction use. As such, this result
suggests that it is not only the absolute fitness effect that is selected for, but the
evolvability benefit.

We measured the proportion of mutations that produce beneficial phenotype changes

(Fig 4.3). In the context of a changing environment, a mutation that switches an organism’s

phenotype to match the environment should be strongly selected for. Indeed, we found that

this proportion was significantly and substantially higher for HGT mutations (Mdn = 0.041,

CI 95% [0.0291, 0.0463]) than other mutation types (Mdn = 0.004, CI 95% [0.0036, 0.0053])
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(Wilcoxon Rank Sum Test: Z = 8.56, p << 0.001), and that there was strong correlation

between the proportion of beneficial phenotype-switching mutations and use of mutagenic

instructions (Spearman’s Rho: rs = 0.59, p = << 0.001). This correlation is much stronger

than the correlation with fitness effect, suggesting that the magnitude of the fitness effect is

less important to selection than the sign of the effect.

4.4 Conclusion

Our experiments expand on our understanding of the evolution of horizontal gene transfer,

and how it relates to other types of mutations in the context of changing environments. As

expected, we find that the fitness effects of different types of mutations vary significantly,

and that these effects predict the levels of use of that mutagenic instruction.

In particular, we observed a substantial increase in the use of the HGT instruction in

response to a changing environment. What could account for this increase? If this increase

were driven purely by an increase in the effective mutation rate, we would expect to see

a similar increase in all instructions that increase this mutation rate. Instead, we do not

observe such an increase in the use of the MRI instruction, which explicitly increases the

mutation rate in just such a way. Instead, the use of this instruction was not noticeably

different from the level of the Die instruction control.

Another possibility that might account for increase in the use of the HGT instruction

would be the benefit of limiting mutations to a single contiguous region. In this case, we

would expect to see an increase in the rate of the HGT-Random instruction over the level of

the Die control. We do observe just such an increase, but while it is statistically significant,

it is not substantial compared to the elevation we observe of the HGT instruction.

One other possibility is that there is a benefit to biasing mutation toward known-useful

instructions, such as those collected from living organisms. In this case, we would expect to

see a similar increase in use of the HGT-Shuffle instruction. We do observe a substantial

increase of this instruction over HGT-Random, however, the increase of HGT is much higher.
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This is consistent with some benefit occurring from a biased instruction content, but does

not account for the entirety of the effect.

Thus, the most likely possibility is that it is specifically the information content of the

fragment that accounts for the extra increase of HGT over HGT-Shuffle. We found a strong

correlation between the fraction of mutations that produce a beneficial phenotype change,

and the use of that mutagenic instruction. Thus, in the context of a changing environ-

ment, where there are strong selective pressures to change your phenotype, the information

corresponding to the target environment would be very valuable.

This result is consistent with prior research that shows that populations will tend to

depress the use of non-information-rich mutagens, even though, in the long-term, higher mu-

tation rates are likely to be optimal [80]. This result is further evidence that selection tends

to act in the short term. Thus, even though certain kinds of mutations and architectural

features may promote long-term evolvability, these features are hitchhiking on short-term

adaptive benefits. Thus, our research shows that even though evolvability may evolve, it is

not necessarily selected due to its long-term consequences.

As with the experiments described in the previous chapter, performing equivalent tests of

horizontal gene transfer in an organic system would be extremely difficult, time consuming,

and data poor. Even using the latest techniques in molecular biology, experiments comparing

the effects of different kinds of mutations, measuring their use, and isolating their fitness

effects are impossible at population-level scales [84]. Digital evolution allows us to perform

the kinds of experiments that otherwise could not be done in natural systems.
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CHAPTER 5

CHANGING ENVIRONMENTS AND LONG TERM EVOLVABILITY

5.1 Background

For longer evolutionary timescales, beyond the limited scope of direct response to se-

lection against an environment, evolvability is concerned with variability generation and

exploration of neutral spaces. Populations that exhibit this kind of evolvability would pos-

sess genomes with genetic architectures that more easily traverse the mutational landscape

along neutral roads and thereby discover new fitness peaks while avoiding needing to cross

fitness valleys. This kind of evolvability would allow populations to more easily colonize new

ecological niches and form new clades [2, 12].

Despite some common features, the relationship between short-term and long-term evolv-

ability is not obvious. Architectural features and evolutionary pressures that convey short-

term evolvability may not be the same as those that confer longer-term evolvability [13]. For

example, features such as anti-robustness that promote rapid adaptation to a harsh fluctu-

ating environment might reduce fitness in constant or benign fluctuating environments as

compared to that of wild-type invaders. Alternately, the adaptation to harsh fluctuating

environments and the resulting bottlenecks would potentially reduce diversity to the point

where large amounts of neutral novelty generation could not occur.

Finally, there is some evidence that the types of selection regimes typically used in ex-

periments with changing environments and evolvability might preferentially favor individual

evolvability (the probability of an individual’s offspring accessing novel phenotypes) over

population-level evolvability (the probability of the population at large accessing novel phe-

notypes) [85, 86]. Adaptive selection, that is, selection toward a particular goal, has been

shown to depress population diversity even while it increases individual evolvability in chang-

ing environment regimes. In contrast, divergent selection, such as frequency-dependent selec-
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tion, increases standing diversity, and thus evolvability at the population level [85]. There-

fore, it is not clear that the kinds of selective pressures that promote short-term adaptation

in changing environments would, in turn, promote exploration and exploitation of novel

environments.

In this chapter, we examine how two different kinds of changing environments affect

long-term evolutionary potential. We introduce change-evolved populations from prior ex-

periments, to an entirely new environment, where we can assess long-term variability gener-

ation in the form of new task discovery and exploration.

5.2 Methods

For the experiments described in this chapter, we evolve populations in both minimal

and rich environments. Minimal environments have few rewarded tasks, and genomes are

fixed length and limited in size. Rich environments allow rewards for many tasks, and

genome lengths are allowed to vary. For our experiments with minimal environments, we

used populations originally evolved in Chapter 2 to survey the long-term evolutionary po-

tential of populations originating in environments with a single fluctuating task. For the rich

environment experiments, we evolved a new set of populations that originate in a more com-

plex changing environment, with alternating sets of fluctuating tasks, and variable length

genomes.

5.2.1 Experimental Design

The goal of our experiments is to evolve populations where short-term evolutionary pressures

dominate, and then subject them to an entirely new environment, where we can measure

their long-term evolutionary potential. In order to examine the long-term dynamics and

mechanisms of evolving populations in changing environments, we performed two sets of

experiments, one set with populations evolving in a minimal environment, and the other in

a rich environment.
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Each set is composed of five environmental treatments per set, for a total of 10 treatments.

Each treatment was divided into two stages, with the first stage focusing on short-term

adaptation to a changing environment, and the second stage on long-term evolvability via

adaptation to an expanded set of tasks.

For both set of experiments, we took populations evolved in conditions where short-term

evolvability pressures dominated, and introduced them to a completely new environment,

with an expanded set of rewarded bitwise tasks to perform: Logic-77. For the purposes of

this chapter, we refer to those tasks which were selected for in stage 1 as the basic task

set. The Logic-77 task set is a super-set of the basic task set, and includes all bitwise tasks

for which there are up to 3 inputs, including those that were initially rewarded in stage 1.

We refer to the additional tasks from Logic-77 - those which are not part of the basic tasks

set, and that we reward only in stage 2 - as the expanded task set. The total Logic-77

task set is a combination of both the basic and expanded task sets.

The first set of experiments examines the evolutionary dynamics of populations in a

minimal changing environments, with a single fluctuating task. These experiments are a

continuation of the experiments described in Chapter 2. For the second set of experiments,

we evolved populations in a rich changing environment where rather than evolving to turn a

single task on and off, we evolved populations that switch back and forth between perform-

ing two halves of the Logic-9 environment. The environment and genetic structure of the

second set of experiments derives from the experiments described in Chapter 3. However,

these populations were evolved without a working HGT instruction. The first stage of each

experiment is as described above, while the second stage takes the evolved populations and

adds the expanded task set.

5.2.1.1 Environmental Treatments

As outlined above, for each of our experiment sets, we prepared four different types of chang-

ing environment treatments, plus a static control. In the second stage of each treatment, we
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examine how populations adapt to a brand new environment. The active changing environ-

ment treatments will still juggle the alternating direction of selective pressures associated

with cycling rewards and punishments. The quiescent treatments, in contrast, remove the

reward alternation in the second stage Thus, these treatments provide only directional selec-

tion for adaptation to the new environment. This allows us to isolate the effect of alternating

directions of selection on adaptation to a new environment.

• Static (Control): This treatment is a baseline for comparing adaptation to the ex-

panded task set. For the first 200k updates (stage 1), we reward populations for

performing either XOR and EQU for the minimal environment (Table 5.1), or the

whole Logic-9 task set (Table 5.3). For the second 200k updates (stage 2), we add

constant rewards for the expanded task set. Each new task is rewarded at a 1.2-fold

bonus to task execution.

• Benign Changing Environment: This treatment shows the effects of a continuing

benign changing environment on adaptation to the expanded task set. For the first

200k updates (stage 1), we alternate rewarding and not rewarding populations for

performing either the EQU task (the minimal environment - Table 5.1), or we alternate

rewarding each half of the Logic-9 task set (Tables 5.3 and 3.1). For the second stage of

the experiment, starting at 200k updates, we add constant rewards for each of the new

tasks in the expanded task set, at a 1.2-fold bonus to task execution. The environmental

fluctuation from the first stage continues through the end of the experiment.

• Benign Quiescent Changing Environment: In contrast to the benign changing

environment treatment, this treatment tests the abilities of populations initially evolved

in a benign changing environment to adapt to the expanded task set, but without active

environmental fluctuation during the adaptation. For the first 200k updates (stage 1),

we alternate rewarding and not rewarding populations, as in the Benign Changing

Environment above. For the second stage of the experiment, starting at 200k updates,
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we add constant rewards for each of the new tasks in the expanded task set, at a 1.2-

fold bonus to task execution. The environmental fluctuation from the first phase stops

at 200k updates, and we instead reward the tasks of the first phase (the basic task-set)

as we did in the static treatment (all constant reward).

• Harsh Changing Environment: This treatment shows the effects of a continuing

harsh changing environment on adaptation to the expanded task set. For the first 200k

updates (stage 1), we alternate rewarding and punishing populations for performing

either the EQU task (the minimal environment) (Table 5.1), or we alternate rewarding

and punishing each half of the Logic-9 task set (Tables 5.3 and 3.1). For the second

stage of the experiment, starting at 200k updates, we add constant rewards for each

of the new tasks of the expanded task set, at a 1.2-fold bonus to task execution.

The environmental fluctuation from the first phase continues through the end of the

experiment.

• Harsh Quiescent Changing Environment: In contrast to the harsh changing en-

vironment treatment, this treatment tests the abilities of populations initially evolved

in a harsh changing environment to adapt to the expanded task set, but without active

environmental fluctuation during the adaptation. For the first 200k updates (stage 1),

we alternate rewarding and punishing populations, as in the Harsh Changing Envi-

ronment above. For the second stage of the experiment, starting at 200k updates, we

add constant rewards for each of the new tasks in the expanded task set, at a 1.2-fold

bonus to task execution. The environmental fluctuation from the first stage stops at

200k updates, and we instead reward the basic tasks of the first phase as we did in the

static treatment (all constant reward).
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5.2.1.2 Set 1 - Minimal Cyclic Changing Environments

As described above, the first set of experiments consisted of four treatments, plus a control,

and each treatment was divided into two stages. In the first stage, for a duration of 200,000

updates (analogous to our earlier experiments, detailed in Chapter 2), we rewarded a pair of

two-input bitwise logical tasks: XOR and EQU. We rewarded XOR at a constant rate, with an

8-fold bonus to execution, and we alternated rewarding and punishing (or non-rewarding)

the EQU task with a reward that switches between 32-fold bonus to execution and either

0 reward for the benign treatments, or a -32-fold punishment in the harsh treatment. For

the second stage, lasting an additional 200,000 updates, we added a constant reward for

executing the expanded task set. Each task in the expanded task set was rewarded with a

constant 1.2-fold bonus to execution (20.3). This reward structure provided a mild selective

pressure to evolve these task. However, the benefits to performing them do not overwhelm

the existing selective pressure to continue performing the basic tasks rewarded by the original

changing or static environment.

As in Chapter 2, we held the individual genomes at a fixed length of 121 instructions,

and applied mutations after each successful replication event at a substitution probability

of 0.00075 per site. This limitation in genome length, plus the limited set of tasks initially

rewarded results in a less rich environment for evolution to occur. We configured the Avida

world to have local interactions on a toroidal grid that is 60-by-60 cells (3600 cells in total).

5.2.1.3 Set 2 - Rich Cyclic Changing Environment

The second set of experiments looked at the evolution of populations of organisms with

variable-length genomes, evolved in a richer cyclic changing environment. As in the minimal

environment experiment set, we performed four experimental treatments, plus a static control

(Table 5.3). For the first stage of the experiments, we divided the basic Logic-9 tasks into two

groups (Table 5.2) and alternated reward and punishment (or non-reward) between them.

For the control treatment, we rewarded all of the Logic-9 basic task set. For the second
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Table 5.1: Experimental Treatments - Minimal Cyclic Changing Environment

Treatment
Changing

Env.
Type

Rewarded Tasks

Stage 1
(0-200,000 Updates)

Stage 2
(200,000-400,000 Updates)

XOR EQU XOR EQU

Expanded
Task-set
(Logic-77

minus
XOR & EQU)

Control
None

(static)
constant

23
constant

25
constant

23
constant

25
constant

20.3

Benign Cyclic
constant

23

benign
fluctuating

0 or 25

constant

23

benign
fluctuating

0 or 25

constant

20.3

Benign
Quiescent

Cyclic
constant

23

benign
fluctuating

0 or 25

constant

23
constant

25
constant

20.3

Harsh Cyclic
constant

23

harsh
fluctuating

−25 or 25

constant

23

harsh
fluctuating

−25 or 25

constant

20.3

Harsh
Quiescent

Cyclic
constant

23

harsh
fluctuating

−25 or 25

constant

23
constant

25
constant

20.3

Four types of cyclic changing environment, plus a static control. Each treatment is split
into two stages. The first stage is a normal changing environment like those found in
Chapter 2, Table 2.1. The second stage introduces an additional set of tasks (the expanded
task set) that are rewarded at a lower rate.

stage, we introduced rewards for performing the new expanded task set tasks, either with

continuing alternating selection (CE), or switching to constant reward (Quiescent).

5.2.2 Measuring Task Discovery and Task Performance

Task discovery and task performance are important measures not only for the adaptation

of digital organisms to their local environment, but they also indicate the extent to which

populations are more or less evolvable. Populations that are more evolvable should be able

to acquire new tasks at a faster rate than less evolvable populations. If the evolvability of our
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Table 5.2: Rich Changing Environments - Basic Task-set Rewarded Task
Groupings

Basic
Task-set
(Logic-9) Tasks

Reward
Phase 1

Reward
Phase 2

Group A

NOT
AND
OR
NOR
EQU

21

22

23

24

25

−21

−22

−23

−24

−25

Group B

NAND
ORN
ANDN
XOR

−21

−22

−23

−24

21

22

23

24

The basic task-set (Logic-9) tasks are divided into to two groups, with one task from each
pair of tasks of equivalent complexity assigned to each group. The EQU task, which has no
complexity equivalent, is assigned to the first group. During the first phase of a cycle, we
reward the first group of tasks and punish the second group (see Reward Phase 1). During
the second phase of the cycle, we reward the second group, and punish the first group
(Reward Phase 2).

populations is affected by evolution in a changing environment, then this effect should result

in differential rates of task discovery and performance. Task discovery and performance

together describe the exploration and exploitation of the environment by a population.

5.2.2.1 Task Discovery

Task discovery represents the level of exploration of the fitness landscape. We measured task

discovery by counting the number of unique non-ephemeral tasks that have been discovered

by a population. Each task may be performed only once per organism, yielding a maximum

task count of 3600 at any given time. We define a non-ephemeral task as one that is performed

by at least than 0.1% of the population. Therefore, in order for a new task to be marked as

discovered, it must be performed by at least 4 individuals at the time of sampling.

Once a task is discovered, it may not be undiscovered; task discovery counts will always
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Table 5.3: Experimental Treatments - Rich Cyclic Changing Environment

Treatment
Changing

Env.
Type

Rewarded Tasks

Stage 1
(0-200,000 Updates)

Stage 2
(200,000-400,000 Updates)

Basic Task-set
(Logic-9)
Groups
A & B

Basic Task-set
(Logic-9)
Groups
A & B

Expanded
Task-set
(Logic-77

minus
Logic-9)

Control
None

(static)
constant

21−5
constant

21−5
constant

20.3

Benign Cyclic

benign
fluctuating

A: 21−5 or 0

B: 21−4 or 0

benign
fluctuating

A: 21−5 or 0

B: 21−4 or 0

constant

20.3

Benign
Quiescent

Cyclic
to Static

benign
fluctuating

A: 21−5 or 0

B: 21−4 or 0

constant

21−5
constant

20.3

Harsh Cyclic

harsh
fluctuating

A: 21−5 or −21−5

B: 21−4 or −21−4

harsh
fluctuating

A: 21−5 or −21−5

B: 21−4 or −21−4

constant

20.3

Harsh
Quiescent

Cyclic
to Static

harsh
fluctuating

A: 21−5 or −21−5

B: 21−4 or −21−4

constant

21−5
constant

20.3

Four types of cyclic changing environment, plus a static control. Each treatment is split
into two stages. The first stage is a normal changing environment like those found in
Table 2.1. The second stage introduces an additional set of tasks (the expanded task
set) that are rewarded at a lower rate.
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increase monotonically. We measure overall task discovery by beginning to collect unique

tasks starting at the beginning of the run. For the overall measurement, we count all possible

tasks - the entire Logic-77 task set - even though not all tasks are rewarded in the first stage

of the experiment. We also measure post-reward task discovery, where we begin counting

new tasks from the beginning of the second stage of the experiment, once we have begun

rewarding execution of the expanded task set. Task discovery can range anywhere from a

minimum of zero tasks discovered, to a maximum of 77.

5.2.2.2 Task Performance

In addition to counting the number of unique task discovered, we also measure task per-

formance. We measure task performance by counting the total number of unique, non-

ephemeral tasks that a population is performing at each sampling point. This measure

represents the level of exploitation of the fitness landscape. This measure can range from

0 to a maximum of 77 task being performed by the population. This value will always be

either equal to, or smaller than the number of tasks discovered, since a population can’t

perform a task it hasn’t discovered yet.

5.3 Results and Discussion

5.3.1 Task Discovery

Task discovery is an important measure of long-term evolvability in that it quantifies the

ability of populations to explore and adapt to entirely new environments. We measured task

discovery in each of the changing environment treatments.

5.3.1.1 Benign changing environments outperform harsh environments in task
discovery

We found that once we began rewarding the expanded task set, populations evolving in harsh

changing environments discovered many fewer tasks that those evolving in benign changing
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environments. This effect is consistent across both the minimal (Wilcoxon Rank Sum Test:

Z = 2.75, p < 0.01) and the rich environment sets (Wilcoxon Rank Sum Test: Z = 5.96, p

<< 0.001) (Figs 5.1, 5.2). We hypothesize that this effect is due to the relative differences

in the strength of selection between the harsh changing environment and the directional

selection toward the expanded task set.

Figure 5.1: Number of new expanded task set tasks discovered in post-reward in
the minimal environments. The left plot shows a time-series of the number of
non-ephemeral tasks discovered by populations by each treatment. The right plot shows
the number of tasks discovered at the end of the experiments. While the individual values
overlap their neighbors, the top and bottom-most treatments (Benign and Harsh) are
significantly different from each other (Wilcoxon Rank Sum Test: Z = 2.75, p < 0.01).

In the harsh changing environments, the selective pressure to gain or lose the fluctuating

tasks represents up to a 2 ∗ 25-fold bonus over the course of a single cycle, whereas the

expanded task set can individually only offer a 1.2-fold bonus to execution speed. Thus,

those organisms that promptly gain or lose a fluctuating task are more likely to survive,

regardless of whether or not they have gained one of the new expanded task set tasks.
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Figure 5.2: Number of new expanded task set tasks discovered post-reward in
rich environments. The left plot shows a time-series of the number of non-ephemeral
tasks discovered by populations in each treatment. The right plot shows the number of
tasks discovered by the end of the experiments. Overall, the number of expanded task
set tasks discovered in the rich environments (Mdn = 24.0, CI 95% [23.0, 25.0]) is
significantly lower than those found in the minimal environments (Mdn = 36.0, CI 95%
[35.0, 36.0]) (Wilcoxon Rank Sum Test: Z = -16.15, p << 0.001). However, the same
pattern holds, where the benign changing environment treatment discovers significantly
more tasks than the harsh changing environment (Wilcoxon Rank Sum Test: Z = 5.96, p
<< 0.001).

Thus pressures to gain and lose the fluctuating tasks are much stronger than the pressure to

acquire new expanded task set tasks, thereby depressing the rate at which they are found.

In contrast, the benign environment experiences a weaker strength of selection for EQU

task gain and loss, in the form of a maximum 25-fold bonus directional selection pressure to

gain the tasks, and no direct pressure to lose the task. Thus, when compared to the harsh

treatments, the fraction of the total selective pressure for gaining new expanded tasks is

greater in the benign treatment. This increased pressure, plus the benefit of an increased

exploration rate conveyed by the benign changing environment, result in a higher overall
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task discovery rates.

Interestingly, in the harsh quiescent treatment (HarshQuiescent) beginning in stage 2, we

saw that task exploration recovered and achieved a comparable level to the control (Wilcoxon

Rank Sum Test: Z = -0.91, p = 0.37). What could account for this recovery?

One possibility is that the introduction of the new tasks provided sufficient selective

pressure to cause the increase in the discovery rate. In this case, we would expect to see a

similar increase in task exploration in the harsh changing environment treatment (HarshCE).

Another possibility is that the alternating environment in the first part of the experiment

created a diversity disadvantage in populations in those treatments. If this were the case,

we would expect HarshQuiescent’s task discovery to initially grow more slowly than the

control, which would have suffered from no such disadvantage. Then, as diversity recovered,

we would expect to see task discovery grow at comparable rates.

Finally, there is the possibility is that the alternating selection regime was directly re-

sponsible for depressing task exploration. In this case, once we stopped alternating task

rewards, we would expect to see a significant difference in task discovery rates between the

HarshQuiescent and HarshCE treatments.

Indeed, we found that the the HarshQuiescent treatment has a much higher task dis-

covery rate than the HarshCE treatment. This is inconsistent with the hypothesis that the

task rewards alone account for the recovery of the HarshQuiescent. Instead, this result is

consistent with the possibility of a direct negative effect from the continuing alternating

selection. We also found that there was a lag in task discovery compared to the control.

This suggests that there was, at least initially, some population-level disadvantage occurring

in the HarshQuiescent populations. We also observed that after the initially slow recovery

phase, the quiescent treatment rapidly increased its task discovery rate, and exceeded that

of the control. This is consistent with a recovery of diversity, plus, potentially some lingering

architectural advantage for finding new tasks.

Also of interest is the difference in task discovery rates between the benign environment
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populations BenignCE and BenignQuiescent. Once the expanded task rewards are intro-

duced, the BenignCE populations continue to be subject to a benign changing environment,

whereas the BenignQuiescent populations are only subject to directional selection toward the

evolution of the original and expanded tasks. In both environment types, the task discovery

rate for the BenignCE populations (Minimal: Mdn = 37.0, CI 95% [36.0, 38.0]; Rich: Mdn

= 29.0, CI 95% [26.0, 31.0]) are slightly higher than for BenignQuiescent (Minimal: Mdn

= 36.0, CI 95% [34.0, 38.0]; Rich: Mdn = 24.0, CI 95% [22.0, 27.0]), but the effect is not

statistically significant in the minimal environment (Rich: Wilcoxon Rank Sum Test: Z =

3.15, p < 0.01; Minimal: Wilcoxon Rank Sum Test: Z = 1.39, p = 0.16). Both, however, still

perform better than the control treatment (Minimal: Mdn = 34.5, CI 95% [32.0, 38.0]; Rich:

Mdn = 22.0, CI 95% [21.0, 25.0]), though this effect is only statistically significant between

the BenignCE and Control treatments in the rich environment (Wilcoxon Rank Sum Test:

Z = -4.33, p < 0.001). What could account for this reversal of the pattern observed between

HarshCE and HarshQuiescent?

One possibility is that some population-level diversity advantage is being conveyed by

the activity of the benign changing environment. In this case, we would expect the Benign-

Quiescent task discovery rates to initially closely track that of the BenignCE treatments,

and then as diversity equalized, to drop down to rates comparable to the control.

Another possibility is that the benign changing environment is directly promoting task

exploration. In this case, we would expect to see a significant difference in task discovery

rates between the BenignCE and BenignQuiescent treatments.

We observe that following the introduction of the expanded task set tasks, the Be-

nignQuiescent treatment task rates quickly depart from the BenignCE task discovery rates.

This result is inconsistent with the hypothesis of a population diversity advantage. If any-

thing, task discovery levels lag behind the control treatment. Thus, we find that it is most

likely that the benign changing environment is directly promoting task discovery, though the

mechanism of this promotion remains unclear.
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5.3.1.2 Harsh changing environments drive populations across the mutational
landscape

Figure 5.3: Number of new expanded task set tasks discovered in minimal
environments, over the whole experiment. The left plot shows a time-series of all
new tasks discovered over the course of the entire run, including non-rewarded expanded
task set tasks. The right-hand plot shows the final count at the end of the run. Before we
introduce rewards for performing expanded task set tasks, the harsh changing
environment discovers far more new tasks (Mdn = 28.0, CI 95% [27.0, 30.0]) than either of
the other treatments (Mdn = 22.0, CI 95% [22.0, 23.0]) (Wilcoxon Rank Sum Test: Z =
8.61, p << 0.001). This occurs despite no reward being given for performing the
expanded task set tasks in the first part of the experiment.

In the first part of the experiments, despite the expanded task set tasks not being re-

warded, both changing-environment treatments (BenignCE and HarshCE) discovered more

new tasks than the control (Minimal: Wilcoxon Rank Sum Test: Z = -5.75 and -11.15 re-

spectively, p << 0.001; Rich: Wilcoxon Rank Sum Test: Z = -4.32 and -3.73 respectively,

p < 0.001). In the minimal environment, the harsh treatment in particular discovered sub-

stantially and significantly more expanded task set tasks than either the benign treatment

(Wilcoxon Rank Sum Test: Z = -8.0, p << 0.001) or the control, despite these tasks not
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Figure 5.4: Number of new expanded task set tasks discovered in rich
environments, over the whole experiment. The left plot shows a time-series of all
new tasks discovered over the course of the entire run, included non-rewarded expanded
task set tasks. The right-hand plot shows the final count of tasks discovered by the end of
the run. Again, both sets of changing environments (BenignCE and HarshCE) randomly
discover more expanded task set tasks than the control treatment before rewards for
those tasks are offered (Wilcoxon Rank Sum Test: Z = -4.32 and -3.73 respectively, p <
0.001). This result suggests that the alternation of the direction of selection drives
populations to explore new regions of the fitness landscape more effectively than directional
selection alone.

being rewarded (Fig 5.3. We speculate that this effect may be due to the large phylogenetic

depth of the harsh-evolved populations, where the repeated bottlenecks drive the populations

along a kind of forced march across the mutational landscape. However, as the experiment

proceeds, and expanded task set task rewards are introduced, this effect disappears, and

task discovery rates converge (Kruskal Wallis: H(2) = 6.97, p = 0.03).
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5.3.2 Task Performance

In additiona to task discovery, task performance is another an important measure of long-

term evolvability, in that it quantifies exploitation and fixation of traits that are beneficial

in new environments. We measured task performance in each of the changing environment

treatments.

5.3.2.1 Benign changing environments outperform harsh environments in task
performance

Figure 5.5: Number of distinct tasks performed in minimal environments. The
left plot shows a time-series of the number of distinct tasks performed by the treatment
populations over time. The right-had plot shows the number of tasks performed at the end
of the experiments. The harsh changing environment treatment performs substantially and
significantly fewer tasks than any of the benign or control treatments (Wilcoxon Rank Sum
Test: Z = -11.22 and -11.15 respectively, p << 0.001). The benign treatments perform
best, but the differences are not statistically significant from the control (Kruskal Wallis:
H(2) = 2.76, p = 0.25).

Similar to task discovery, populations evolving in harsh changing environments performed

88



Figure 5.6: Number of distinct tasks performed in rich environments. The left plot
shows a time-series of the number of distinct tasks performed by the treatment populations
over time. The right-had plot shows the number of tasks performed at the end of the
experiments. Similar to the minimal environment, the harsh changing environment
treatment performs substantially and significantly fewer tasks than any of the benign or
control treatments (Wilcoxon Rank Sum Test: Z = -4.32 and -3.73 respectively, p <<
0.001). Similarly to task discovery, the rich environment performs fewer tasks overall (Mdn
= 11.0, CI 95% [10.0, 12.0]), compared to the minimal environment(Mdn = 17.0, CI 95%
[17.0, 18.0]) (Wilcoxon Rank Sum Test: Z = -9.25, p << 0.001). Interestingly, the Harsh
Quiescent treatment performs the most tasks, though this effect is only slightly significantly
different from the benign treatments (Wilcoxon Rank Sum Test: Control Z = 4.33,
HarshCE Z = -9.3, p < 0.001; BenignCE Z = 2.25, Benign Quiesce Z = 1.96, p < 0.05).

far fewer distinct tasks than either the control, or either benign populations (Wilcoxon

Rank Sum Test: Minimal: Z = -11.22 and -11.15 respectively; Rich: Z = -4.32 and -3.73

respectively, p << 0.001) (Fig 5.5 and 5.6). While both the BenignCE and BenignQuiescent

populations seemed to outperform the control, this effect was only statistically significant

in the rich environment (Wilcoxon Rank Sum Test: Z = 2.42 and 2.37 respectively, p <

0.05). In the minimal environment, the differences were not statistically significant (Kruskal

Wallis: H(2) = 2.76, p = 0.25).
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Interestingly, in the rich environments, the HarshQuiescent treatments seemed to out-

perform all other environment types in task performance, though the differences between

HarshQuiescent and both benign treatments are only barely statistically significant (Wilcoxon

Rank Sum Test: Control Z = 4.33, HarshCE Z = -9.3, p < 0.001; BenignCE Z = 2.25, Be-

nign Quiesce Z = 1.96, p < 0.05). We speculate that this effect may be due to a lingering

architectural effect of evolving in harsh changing environments. For example, because task

length increases in changing environments, these tasks are more likely to experience muta-

tions that could change their phenotype in a variety of ways. Thus, once the pressure to limit

diversity is released, the population would be much more likely to produce a large amount

of population variation in a short time. Thus, we would expect to see a significant increase

in measures of task performance, but might also expect to see a relatively lower number of

task being performed by the entire population. Further research is needed to identify the

mechanisms responsible for this effect.

5.4 Conclusion

The relationship between short and long term evolvability is non-obvious. Architectural

features and selective pressures that promote repeated re-adaptation to a known set of en-

vironments may not be beneficial for the acquisition of entirely new adaptive traits. For

example, harsh changing environments act to depress both fitness and population diversity,

which might make these populations less effective at adaptation when introduced into a new

environment.

Indeed, our experiments show that harsh changing environments, with their strong se-

lective pressures, suppress the ability of populations to acquire new, weakly-selected traits.

However, benign changing environments, with their milder set of selective pressures, are

able to leverage their accumulated heritage of dormant vestigial sites to rapidly respond to

selection, and acquire new tasks at a faster rate than either harsh or non-change-evolved

populations. However, despite the direct negative effects of harsh changing environments,
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populations initially evolved in these environments are able to rapidly acquire new tasks if

alternating selection is removed. This result suggests that there are important architectural

features conveyed by these environments that are beneficial for new task acquisition.

Our results are consistent across both the minimal and rich environment types. This sug-

gests that regardless of environmental and genomic complexity, changing environments are

important drivers of adaptation and long-term evolvability, either directly by driving popula-

tions to move across the fitness landscape, or indirectly, by conveying lingering architectural

advantages.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we explore the evolutionary dynamics of changing environments, along

with their impact on both short and long-term evolvability. We find that changing environ-

ments promote short-term adaptation by driving populations to regions of genotype space

where more adaptive mutants are available within one or two mutational steps.

Harsh changing environments create selective pressures to switch phenotypes, rather

than selecting only for increasing fitness. These kinds of selective pressures are well suited

to promoting the evolution of information-rich mutation types like horizontal gene transfer

via transformation. HGT in particular is an excellent adaptation to harsh changing environ-

ments, where there is a strong selective pressure for phenotype switching. Indeed, we observe

that HGT is much more strongly selected for than other types of mutation operators with

similar associated mutation rates. The fragments from the environment serve as reservoirs

for dormant functionality, just as vestigial regions within genomes do, thus providing more

opportunities for mutations to produce switches between phenotypes.

In the context of long-term evolutionary potential, the benefits of changing environments

are less clear. Benign changing environments appear to perform at least, if not more effi-

ciently, than purely directional selection at acquiring traits in a novel environment. While

benign changing environments appear to convey some architectural advantages in terms of

task discovery and performance, the effects are slight. This result may be due to the types of

selection at play in our changing environments. The selective pressures in our changing envi-

ronments are largely adaptive selective pressures, rather than divergent selective pressures.

Divergent selection pressures, such as negative frequency dependence, have been shown to

outperform adaptive selection pressures in measures of population-level evolvability [85]. Our

results are consistent with these findings, and suggest that changing environments alone are

insufficient for promoting long-term population-level evolvability.
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6.1 Limitations of Cyclic Changing Environments

Changing environments produce a set of selective pressures that speed up exploration of

genotype space, while also building reservoirs of partial functionality that may be co-opted in

the evolution of more complex structures. These features make changing environments useful

for both their exploratory power in natural evolution, and as practical tools in the Artificial

Life toolkit. Ultimately, however, as alluded to above, cyclic changing environments only

re-tread existing phenotypic ground, and though genotypic exploration can be faster than

under purely directional or stabilizing selection, the space explored remains constrained by

the type of phenotypes that are selected. Despite this constraint, however, we see that,

particularly under harsh conditions, a lot of novel genotypic ground may be explored, even

without direct selection for novelty.

Even so, there must exist methods of exploring genotype space that do not suffer from

these limitations at all. For example, perhaps repeated bottlenecking of populations could

promote faster traversal of the fitness landscape in quasi-random directions. More ambi-

tiously, perhaps these kinds of environments could be coupled with dynamically increasing

open-ended complexity goals, or divergent selection mechanisms such as negative frequency

dependence to promote the maintenance of diversity in evolving populations.

Understanding the mechanisms by which select environmental conditions alter fitness

landscapes is vital to understanding the forces that promote evolvability and increase com-

plexity. In particular, understanding the role of vestigial sites may help us untangle how

robustness can promote evolvability. Are these vestigial sites merely inactive remnants,

reservoirs of function, or are they part of a complex compensatory framework supporting

and buffering the expression of the phenotype? Or all of these things? Changing envi-

ronments provide one view into these dynamics, but we must explore further to find other

mechanisms for exploring and exploiting genotype space.
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6.2 Future Directions - Horizontal Gene Transfer and Long Term
Evolvability

Our work in understanding how changing environments interact with evolvability and

different kinds of mutations is obviously by no means complete. In particular, questions of

how mutational operators like horizontal gene transfer or sexual reproduction interact with

long-term evolutionary potential remain open.

In addition to our experiments characterizing the long-term evolutionary potential of

populations evolved in minimal and rich changing environments, we also subjected HGT-

evolved populations to the same expanded task set environments as described in Chapter 5.

Intriguingly, we found a strong negative correlation between the use of a grazing HGT bonus

Figure 6.1: Task discovery, with and without HGT grazing bonus. Populations
evolving with a grazing bonus had a strong negative correlation between task discovery and
HGT use (Spearman’s Rho: rs = -0.71, p << 0.001).

and rates of task discovery (Spearman’s Rho: rs = -0.71, p << 0.001). In contrast, we

found a much weaker and less robust correlation when no grazing bonus was given for HGT

(Spearman’s Rho: rs = -0.12, p < 0.01) (Fig 6.1). This result is surprising because we
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would expect that an information rich mutation operator would promote the discovery of

new tasks by combining existing functionality in novel ways. However, in the case of the

grazing bonus, while HGT does use generally increases, we also observed that this increase

was negatively associated with discovery of new tasks. Why should mutation by HGT reduce

task discovery? There are several factors that may account for this counterintuitive result.

First, evolving HGT with a grazing bonus may lead to fundamentally different genetic

architectures than those found in treatments where HGT use gives no direct reward. Because

the HGT instruction is relatively simple to acquire and confers a substantial execution bonus,

those genetic architectures that use it might have evolved features that are more robust

against HGT-caused mutations, while still being able to reap the benefits of the grazing

bonus. This very robustness might then make these architectures slower to adapt to new

environments.

Another possibility is that this correlation is related to treatment use patterns, where

treatments under harsh alternating selection not only use HGT more, but also exhibit lower

amounts of task discovery. In fact, this is the pattern that appears in the non-bonus HGT

treatments. However, in the grazing bonus treatments, we observed an overall increase in

the use of HGT across all treatment types, with no associated increase in task discovery.

This relationship would therefore suggest that HGT does not itself have a significant effect

on task discovery at all, and that instead this correlation is related purely to the fact that

HGT levels increase due to a bonus, and thus have no strong effect on task discovery one way

or another. If so, then this might also provide evidence for the possibility of architectural

adaptation to HGT with a grazing bonus.

This result underlines how much we have yet to learn about how changing environments

interact with different kinds of mutations that affect genetic architectures in different ways.

Evolvability remains a complex and rich topic of study, and there is still much to learn.
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APPENDIX A

EXPERIMENTALLY DERIVING PARAMETERS FOR CHANGING
ENVIRONMENT CYCLE LENGTHS

Cyclic changing environments have predictable cycles and thus have consistent periods of

time that allow adaptation and fixation of traits. Too short a cycle, and traits are not able

to fix. Too long a cycle and traits that are no longer selected for in one phase, but are useful

in the other, become increasingly vulnerable to loss through genetic drift.

In order to identify an optical cycle time to support our experiments, we surveyed a series

of cycle lengths, and measured task performance rates in both benign and harsh changing

environments (Fig A.1).

We found that, of our surveyed values, a cycle time of 1000 updates (roughly 30 genera-

tions) both provided adequate time for traits to evolve and fix (and thus be performed by the

entire population), but also not enough time for drift to destroy alternate-phase traits, thus

minimizing the time required to re-evolve the task. Cycle times that were too short never

acquired and fixed adaptive traits in the entire population, while as cycles got longer, the

fluctuating tasks would take much longer to re-evolve, indicating that the populations had

drifted away from the regions of the mutational landscape that contained them (Fig A.2).
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Figure A.1: Survey of task execution for a series of cycle-lengths. The top plots count
the number of executions of the EQU instruction in the control treatment. Each organism
only receives a bonus for executing EQU once. The seed population performed EQU, and it
is never lost. The middle and lower plots show EQU execution in benign and harsh
changing environments, respectively. Each line describes a different cycle-length treatment.
The longer cycle lengths correspond with longer times to lose and regain EQU. Only
treatments with cycles longer than 1000 updates achieve fixation, at a maximum value of
3600 EQU executions.
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Figure A.2: Survey of task time to EQU fixation for harsh changing environments
for a series of cycle-lengths. Only those treatments where EQU fixation occurs (cycle
lengths greater than 1000 updates), were surveyed. The longer the cycle time, the longer it
takes for fixation to occur.
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APPENDIX B

EXPERIMENTALLY DERIVING PARAMETERS FOR HGT
RECOMBINATION PROBABILITY AND BONUS LEVELS

B.1 Recombination Probability Sweep

Figure B.1: Survey of HGT use for a series of recombination probabilities in a
static environment. The left-hand figure shows a time-series of fragment uptakes, with and
without bonus values. The right-hand plot shows the final uptake counts at the end of the
runs. Those values at a recombination probability of less than 0.1 are not meaningfully
depressed as compared to the bonus values. Values greater than 0.1 showed more
suppression, and ultimately reached mutational melt-downs with few surviving populations.

In nature, the probability of horizontal gene transfer occurring varies wildly by species,

environmental conditions, and mechanism of action. In order to identify an optimal prob-

ability of HGT uptake resulting in recombination, we performed a series of experiments
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comparing different probabilities, coupled with a pair of basic grazing bonuses. Our initial

grazing bonuses were based on the reward given for a similarly complex task - NAND - which

only requires a single instruction, plus an IO instruction, to implement. NAND is typically

rewarded with a bonus of 21 to execution speed. Thus, performing HGT, which only requires

a single instruction - HGT-Uptake, was rewarded similarly.

The goal was to identify a probability of recombination that would, without a grazing

bonus, result in a reduced HGT uptake level as compared to with a grazing bonus. Further,

we wanted the recombination probability to not be so high as to result in mutational melt-

down, thus frequently killing the populations. We found that a level of 0.1 probability met

these characteristics. That is, recombination probabilities of less than 0.1 had similar HGT

expression rates with and without a bonus, while probabilities above 0.1 tended to have

many many fewer surviving populations (Fig B.1).

B.2 Bonus Sweep

Figure B.2: Survey of HGT use for a series of bonus values in a static environment.
The left plot shows a time-series of HGT fragment uptakes, while the right-hand plot
shows final uptake values at the end of the experimental runs. With recombination
probability at 0.1, bonus values of zero depress HGT use. A bonus of 0.1 increases uptake
dramatically, indicating a very high use. Bonuses at 0.5 and greater show diminishing
returns in increasing HGT use.
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Similarly, in nature, the amount of nutritive benefit derived from taking up DNA frag-

ments from the environment is difficult to quantify. In Avida, when populations are presented

with instructions that provide a direct boost to execution speed, use of these instructions

is strongly selected for. Populations rapidly fill their genomes with these instructions, to

the exclusion of virtually all else. Thus, our goal in selecting potential bonus levels lay in

finding a range of minimal value that would balance the presumably deleterious effects of the

HGT uptake instruction, without completely overwhelming the balance of selective pressures

we wished to apply to our experiments. As expected, and coupled with the recombination

probability above, values around 21 seemed to perform the best (Fig B.2). Above a value of

22, there seem to be diminishing returns.

B.3 Comparable Bonus Values

Figure B.3: Survey of HGT use, across a series of comparable bonus values in a
static environment, with a recombination probability of 0.1. This figure shows a sweep of
bonus values, demonstrating a largely linear progression of increasing HGT use as bonus
values increase, thus balancing negative effects caused by recombination in a static
environment.

For later experiments, in order to identify the relationship between HGT uptakes prompted

by grazing bonus, and uptakes prompted by evolvability pressures in changing environments,
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we surveyed a series of bonuses to find a value that, in a static environment, would yield

an HGT fragment uptake rate similar to that found in changing environments without a

grazing bonus. We found that a bonus value of 20.8 yielded similar HGT fragment uptake

levels (Fig B.3).
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APPENDIX C

CHANGING ENVIRONMENTS ELEVATE ALL INSTRUCTION USE DUE
TO REPEATED BOTTLENECKS

Figure C.1: Die instruction executions across a series of artificial bottlenecks. We
observe that the Die instruction is elevated in a harsh changing environment as compared
to a static environment. We apply a pair of bottlenecking procedures. In the ”Serial
Transfer” treatments, we kill the population, but select increasingly fewer organisms to
seed from. As the number of seed organisms become fewer, the expression of the Die
instruction increases. This is consistent with founder effects being likely the cause of
increasing expression of strongly deleterious traits in harsh changing environments.

In Chapter 4, we observed that the Die instruction control is elevated in the changing

environments treatment, as compared to the control treatment. This counterintuitive effect

is due to the repeated bottlenecking of the populations subjected to the harsh changing

environment (Fig C.1). We observe that under increasingly harsh bottlenecks, rates of

execution of the Die instruction increase to levels comparable to what is seen in the changing
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environment treatments. Because not all instructions contained in an organism’s genome are

necessarily executed (due to genetic flow-control structures), it is possible for any instruction

to remain dormant. Thus, not all organisms with the ”die” instruction in their genome will

express it. Thus, the selective pressures of the environmental change may ultimately outweigh

that of the Die instruction if it were initially dormant in a genome that survived a harsh

environmental change and reproduced.
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