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ABSTRACT 

AN ANALYSIS OF CONTENT KNOWLEDGE AND COGNITIVE ABILITIES AS 

FACTORS THAT ARE ASSOCIATED WITH ALGEBRAIC PERFORMANCE 

By 

Tamika Ann McLean 

The current study investigated college students’ content knowledge and cognitive 

abilities as factors associated with their algebra performance, and examined how combinations of 

content knowledge and cognitive abilities related to their algebra performance. Specifically, the 

investigation examined the content knowledge factors of computational fluency, numeracy skills, 

fraction knowledge, understanding of equivalence, and algebraic reasoning skills, and the 

cognitive abilities of spatial visualization, crystallized intelligence, and fluid intelligence. A 

multiple regression analysis found that while controlling for gender, the highest math course 

taken, and the number of years since an algebra course, fraction knowledge and the spatial 

visualization ability of spatial imagery were statistically significant predictors of algebra 

performance along with the control variable identifying whether or not participants had taken at 

least one calculus course. In addition, cluster analysis identified six content knowledge and 

cognitive ability profiles, with varying levels of both content knowledge and cognitive abilities 

observed across the six clusters. The six profiles – characterized as Low All, Moderate-Low All, 

Moderate-High MASMI, Moderate-Low Spatial, Moderate-High All, and High Spatial – varied 

somewhat in terms of their algebra performance scores. In particular, the participants in the High 

Spatial cluster group and participants in the Moderate-High All cluster group had similarly high 

algebra performance scores, which were significantly higher than performances scores observed 

for participants in the other cluster groups. Additionally, the participants in the other cluster 

groups exhibited similar low algebra performance scores to each other except for participants in 



 

 

the in the Moderate-Low Spatial and Low All cluster groups. Participants in the Moderate-Low 

Spatial cluster group had significantly higher algebra performance scores than participants in the 

Low All cluster group. The differences in algebra performance scores among cluster groups 

suggested that the observation of higher algebra performance occurred when participants had 

strong spatial visualization skills, strong fluid intelligence skills, and high content knowledge or 

when participants had strong fraction knowledge, numeracy skills, algebraic reasoning skills, and 

spatial imagery skills.  
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CHAPTER 1: Introduction 

In a society that places emphasis on students’ ability to reason through quantitative 

situations in work, school, and daily life, it is important to understand students’ mathematical 

development.  One pivotal component of mathematical development is students’ understanding 

of algebra. It provides students with the tools in which to reason mathematically about real-life 

situations (Lacampagne, Blair, & Kaput, 1995; National Research Council, 1998; RAND 

Mathematics Study Panel, 2003). In addition, the completion of an algebra course is seen as a 

necessary requirement for learning higher level mathematics, having higher education 

opportunities, and getting technically skilled jobs (Kaput, 1998; R. P. Moses & Cobb Jr., 2001; 

National Mathematics Advisory Panel, 2008; Vogel, 2008). Yet, students encounter many 

obstacles as they learn algebra and exhibit difficulty comprehending a range of algebraic 

concepts (Booth, 1988; French, 2002; National Council of Teachers of Mathematics, 1988). 

The literature on the teaching and learning of algebra is substantial and centered on 

student learning and instructional approaches. It helps to explain the areas with which students 

have difficulty (e.g. Booth, 1984; French, 2002; Kuchemann, 1978; National Council of 

Teachers of Mathematics, 1988; Stacey & MacGregor, 1997b), the reasons for these difficulties 

(e.g. Godino, Neto, Wilhelmi, Ake, & Etchegaray, 2015; National Mathematics Advisory Panel, 

2008; Sfard & Linchevski, 1994), and the different ways to help students understand algebra 

(e.g. Bednarz, Kieran, & Lee, 1996; Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Nathan, 

Kintsch, & Young, 1992; Stacey & MacGregor, 2000). Results from the National Assessment of 

Educational Progress (NAEP) studies provide evidence that the focus on student learning and 

instructional approaches have increased average students’ scores in algebra (Kloosterman, 2016; 

Kloosterman & Lester, 2004; Kloosterman & Lester Jr., 2007; Kloosterman, Moher, & Walcott, 
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2016; National Center for Educational Statistics, 2012, 2015). In fact, Kloosterman (2016) stated 

that current 4
th

 and 8
th

 grade students are better prepared now to take a formal algebra course 

than 9
th

 grade students were in 1990. Nevertheless, the progress of improvement for 4
th

 and 8
th

 

grade students in algebra has slowed since 2005 and there have been no gains in 12
th

 grade 

students’ algebra performance since 2009 (Kloosterman, 2016; Perez, Roach, Creager, & 

Kloosterman, 2016). These findings seem to imply that there is a limit to how much 

improvement can occur when you focus on student learning and instructional approaches. 

One possible reason for this limitation is the narrow focus of the research on the teaching 

and learning of algebra, and in particular, the narrow viewpoint research has taken on student 

learning. Researchers assumed that students’ weak content knowledge led to weak algebra 

performance. Thus, examinations of student learning focused on identifying students’ errors and 

misconceptions as well as the fundamental mathematical concepts necessary for solving algebra 

problems (e.g. Booth, 1984; Ketterlin-Geller & Chard, 2011). This viewpoint on student learning 

ignores the fact that the student is more than what content knowledge they learn. Students are 

also a dynamic system that develops based on many factors that interact with one another, and 

these factors could be the mental, behavioral, and biological aspects of individual functioning as 

well as the social, cultural, or physical nature of the environment (Bergman, Magnusson, & El-

Khouri, 2003). Content knowledge as the sole determinant of student learning neglects the 

consideration of other aspects of individual functioning such as other factors like cognitive 

abilities, working memory, executive functioning, motivation, and personality, which have been 

shown to play a role in students learning (e.g. Bailey et al., 2014; Spinath, Spinath, Harlaar, & 

Plomin, 2006). Therefore, it begs the question what might be some other factors of individual 

functioning that associated with students’ algebra performance. 
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Research on the factors that predict mathematics achievement holds promise for helping 

us better understand and investigate additional factors of individual functioning that may shape 

students’ algebra performance. Of the many individual functioning predictors of mathematics 

achievement, cognitive abilities is frequently identified as the strongest predictor (Colom & 

Flores-Mendoza, 2007; Gagne & St. Pere, 2002; Hofer, Kuhnle, Kilian, & Fries, 2012; Karbach, 

Gottschling, Spengler, Hegewald, & Spinath, 2013; Kriegbaum, Jansen, & Spinath, 2014; 

Kyttälä & Lehto, 2008; Lu, Weber, Spinath, & Shi, 2011; Weber, Lu, Shi, & Spinath, 2013). 

This could be because cognitive abilities may limit and/or completely prevent students from 

being able to process the information presented to them. For instance, some students can take 

away from a course enough knowledge to use it in real life situations and others cannot 

(Anderson, Brubaker, Alleman-brooks, & Duffy, 1985; A. L. Brown, Campione, Reeve, Ferrara, 

& Palincsar, 1991; Erlwanger, 1973; Loveless, 2008; Stylianides & Stylianides, 2007). This 

difference could be because students receive and process information differently. Some process 

new information by connecting it to knowledge that they already have.  Others take it in as 

isolated facts they need to remember for a test, and then forget it. Some may argue that making 

connections versus isolated facts depends on the instructional approaches used, but the student 

still determines the reception of that information. For example, the teacher may present the 

connections between Lesson A and Lesson B multiple times throughout a course session in many 

different ways, and still have some students who get it and others who do not.  Because of these 

differences, it stands to reason that students’ cognitive abilities may influence their mathematics 

achievement, and may possibly be another factor that shapes students’ algebra performance.  

Some research has shown that an association existed between students’ general cognitive 

abilities, content knowledge, and algebra performance (Fuchs et al., 2012, 2016; Geary, Hoard, 
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Nugent, & Rouder, 2015; Lee, Ng, & Ng, 2009; Lee, Ng, Bull, Pe, & Ho, 2011), but a number of 

factors limited the finding from this research. With these limitations, it is hard to say how 

students’ cognitive abilities and content knowledge relate to their algebra performance. 

Therefore, in this study I sought to examine how students’ cognitive abilities and content 

knowledge related to their algebra performance by identifying what specific skills, 

understandings, and/or abilities were associated with algebra performance as well as how 

varying combinations of these characteristics of students relate to algebra performance. Knowing 

these specific details provides a deeper understanding of the factors associated with students’ 

algebra performance. 
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CHAPTER 2: Literature Review 

Many have recognized that there are numerous factors besides content knowledge and 

instructional experiences that relate to student performance (e.g. Wang, Haertel, & Walberg, 

1990, 1993). What these factors are depends upon what perspective you take. The perspective of 

this study is the holistic-interactionist perspective (Bergman et al., 2003; Magnusson, 2003). The 

holistic –interactionist perspective emphasizes the importance of the individual in the study of 

development because all individuals do not function and develop in the same way. It views the 

individual as an integrated organism that has mental, behavioral, and biological factors that 

influence functioning and development. By taking the holistic-interactionist perspective, I 

acknowledge that there are other factors besides content knowledge and instructional experiences 

that influence the way students perform, and assume that students are different with respect to 

their algebra performance because there are differences in their functioning and development. 

Differences in the way an individual functions and develops could be because of many different 

factors, but I contend that the differences in students’ cognitive abilities and content knowledge 

changes the way students perform.  Although there could be many other factors beyond cognitive 

abilities and content knowledge that change the way students perform (e.g. students’ motivation 

or personality), cognitive abilities are the most consistent and strongest predictors of students’ 

general academic achievement and mathematics achievement (Colom & Flores-Mendoza, 2007; 

Gagne & St. Pere, 2002; Hofer et al., 2012; Karbach et al., 2013; Kriegbaum et al., 2014; Kyttälä 

& Lehto, 2008; Lu et al., 2011; Weber et al., 2013). Thus, understanding how cognitive abilities 

and content knowledge combine to predict algebra performance is an important first step in 

understanding the complexity of variables that are associated with algebra performance. In the 

following sections, I give an overview of the research on the relation between cognitive abilities, 
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content knowledge, and algebra performance. Then I identify the specific forms of cognitive 

abilities and content knowledge investigated and how a relation exists between them and 

students’ algebra performance.  

Cognitive Abilities, Content Knowledge, and Algebra Performance 

Some researchers would agree that general mathematics performance depends on both 

content knowledge and general cognitive abilities (e.g. D. C. Geary, 2004; von Aster & Shalev, 

2007). This claim is based on prior research that establishes their effect both separately and 

together (G. Brown & Quinn, 2007; Bull, Espy, & Wiebe, 2008; De Smedt et al., 2009; Fuchs, 

Geary, Compton, Fuchs, Hamlett, & Bryant, 2010; Fuchs, Geary, Compton, Fuchs, Hamlett, 

Seethaler, et al., 2010; Kroesbergen, Van Luit, & Aunio, 2012; Siegler et al., 2012). Much of this 

research centered on the elementary grades. There is little research on mathematics performance 

beyond the elementary grades (Caviola, Mammarella, Lucangeli, & Cornoldi, 2014; Fuchs, 

Geary, Compton, Fuchs, Hamlett, Seethaler, et al., 2010; Jordan et al., 2013; Krajewski & 

Schneider, 2009; Lefevre et al., 2010; Seethaler, Fuchs, Star, & Bryant, 2011; Vukovic et al., 

2014; Ye et al., 2016). The focus on the elementary grades was most likely because of the desire 

to understand how mathematical competency develops in order to identify precursors to 

mathematics difficulties and learning disabilities. The assumption was that if research could 

identify the weaknesses in content knowledge and general cognitive abilities from the onset then 

interventions can be designed to help alleviate mathematical difficulties and support mathematics 

learning disabilities (Cowan & Powell, 2014; Hecht & Vagi, 2010; Hornung, Schiltz, Brunner, & 

Martin, 2014; Passolunghi & Lanfranchi, 2012; Peng et al., 2016). The few studies that 

examined mathematics performance in higher grade levels have also found that mathematics 
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performance depended upon both content knowledge and cognitive abilities (Cirino, Tolar, 

Fuchs, & Huston-Warren, 2016; Geary et al., 2015).  

Researchers defined content knowledge in terms of basic numerical competencies such as 

counting, computational strategies, quantity comparison, and studied general cognitive abilities 

such as intelligence, working memory, processing speed, and executive functioning (Geary, 

2011; C. M. Irwin, 2013; Krajewski & Schneider, 2009; Passolunghi & Lanfranchi, 2012; 

Passolunghi, Lanfranchi, Altoe, & Sollazzo, 2015). The relation of content knowledge and 

cognitive abilities on mathematics performance varied depending upon the type of mathematics 

performance investigated.  Prior research suggested that cognitive abilities and content 

knowledge were associated with students’ mathematics performance for calculations (e.g. 

Östergren & Träff, 2013; Peng et al., 2016), word problems (e.g. Cowan & Powell, 2014; Hecht 

& Vagi, 2010), fractions (Jordan et al., 2013; Ye et al., 2016), algebra (e.g. Fuchs et al., 2016; 

Lee, Ng, Bull, Pe, & Ho, 2011), and general mathematics achievement (e.g. Chu, Van Marle, & 

Geary, 2016; Geary, 2011).  The research findings suggested that mathematical performance is a 

complex association between content knowledge and general cognitive abilities where each 

context of mathematics learning comes with its own constellation of important content 

knowledge and cognitive abilities that facilitate its development. 

The few research studies that have looked at algebra performance in relation to general 

cognitive abilities and content knowledge have shown similar results to the studies for the 

different types of mathematics learning in the elementary grades. For instance, Fuchs et al. 

(2012) and Fuchs et al. (2016) investigated the connection between general cognitive abilities 

and content knowledge on algebra performance via students pre-algebraic knowledge. They 

defined pre-algebraic knowledge in terms of Pillay, Wilss, and Boulton-Lewis (1998)’s model of 
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algebra development. Students were within the pre-algebra stage of development when they 

understood the relational meaning of equivalence (i.e. both sides are the same value) in 

nonstandard equations (e.g. 7 = 3 + 4), recognized unknowns and variables in equations and 

expressions, and understood the concept of concatenation (i.e. 3x means 3 times x). Findings 

from the path analysis demonstrated that second grade word problem solving skills, calculation 

skills, approximate representation of numerical magnitudes, nonverbal reasoning, working 

memory, and attentive behavior had both direct and indirect effects on fourth grade students’ 

pre-algebra knowledge. In addition, second and third grade calculation skills and word problem 

solving skills mediated the indirect effects of these second grade skills.  

Instead of pre-algebraic knowledge, Lee et al. (2009) and Lee et al. (2011) focused on the 

contributions of general cognitive abilities and content knowledge on algebraic word problems. 

Specifically, they examined the effects of working memory, executive functioning, 

computational fluency, pattern recognition, problem formation, and problem representation. Lee 

and colleagues found an association between working memory and algebraic word problems. In 

particular, working memory was important for problem formation and problem representation. 

They also found that executive functioning had no bearing on algebraic word problems solving 

performance, but pattern recognition and computational fluency did.  

In an attempt to understand a more complex form of algebra performance, Geary et al. 

(2015) studied knowledge of the coordinate plane, fluency and accuracy in evaluating algebraic 

expressions, and memory for algebraic equations in relation to students’ acuity of the 

approximate number system (ANS) and memory for addition facts. While controlling for 

parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic 

number processing, intelligence, and the central executive component of working memory, they 
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found that ANS acuity was related to knowledge of the coordinate plane and fluency in 

evaluating algebraic expression. On the other hand, memory for addition facts related to memory 

of algebraic equations only.  While not considering how the control variables related to these 

algebraic topics, the researchers did examine the external validity of these algebraic topics as 

predictors of general algebra achievement. Algebra achievement was participant’s performance 

on questions concerning solving for x, systems of equations, factoring, determining equation 

slope, and concept questions such as the definition for a vertical line. Results indicated that 

knowledge of the coordinate plane, fluency and accuracy in evaluating expressions, and memory 

for algebraic equations were all significant predictors of algebraic achievement in both separate 

and simultaneous regression analyses.  

Even though these studies provided some evidence of the relation between cognitive 

abilities, content knowledge, and algebra performance, conclusions about students’ algebra 

performance are restricted by the age of the studies population and the measures for algebra 

performance. Using elementary grade populations meant that the results from these few studies 

did not cover a full range of algebra problems, cognitive abilities, nor types of content 

knowledge. This leaves questions concerning how cognitive abilities and content knowledge may 

associate with students’ algebra performance after formal algebra instruction. Thus, in this study 

I extended the research by considering how cognitive abilities and content knowledge related to 

the performance of students who have had formal algebra instruction. Additionally, given the 

differences in the knowledge and abilities of an elementary population versus those with formal 

algebra instruction, I also extended the research by considering other cognitive abilities and types 

of content knowledge that are relevant to algebra performance. In the following sections, I 

identify what theses abilities and skills are and how algebra performance relates to them. 
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Cognitive Abilities Related to Algebra Performance  

Research on content knowledge, cognitive abilities, and algebra performance has 

examined only a few cognitive abilities such as working memory, executive functioning, and 

processing speed. This is a limited perspective when there are many more types of cognitive 

abilities. Carroll (1993) defined cognitive ability as “any ability that concerns some class of 

cognitive tasks” (pg. 10), and cognitive tasks are “any task in which correct or appropriate 

processing of mental information is critical for performance” (pg. 10). In this sense, cognitive 

abilities are skills needed to perform certain types of tasks appropriately. Research suggested that 

cognitive abilities fall within a three stratum hierarchal model called the Carrol-Horn-Cattell 

(CHC) theory (Ackerman & Lohman, 2006; McGrew, 2009; McGrew & Wendling, 2010). 

Stratum I consisted of about 70 primary/narrow cognitive abilities. Each of these narrow abilities 

concerns different cognitive processes that are a greater specialization of the broad abilities 

found in Stratum II, and represent specific skills acquired through experience and learning 

(Carroll, 1993). Stratum II consisted of the nine broad abilities of fluid reasoning/intelligence, 

comprehension knowledge/crystallized intelligence, short-term memory, visual processing, 

auditory processing, long-term memory retrieval, processing speed, decision/reaction time, read 

and writing, and quantitative reasoning. The abilities in Stratum II are broad domains of behavior 

representative of an individual person with emphasis on the process (i.e. skills for reasoning, 

memory, and learning), content (i.e. information they know and perceive), and manner of 

response (i.e. speediness of response) (Carroll, 1993). Stratum III consisted of the general ability 

factor g, which is the idea that all cognitive abilities are independent factors of one main 

construct like general intelligence.  



11 

 

The research on cognitive abilities and general mathematics achievement has identified 

specific cognitive abilities that predict educational success in math. Some of these cognitive 

abilities were the broad abilities of crystallized intelligence, fluid intelligence, and processing 

speed (Floyd, Evans, & McGrew, 2003; Keith, 1999; McGrew & Hessler, 1995; McGrew & 

Wendling, 2010; Taub, Keith, Floyd, & Mcgrew, 2008) as well as the narrow abilities of 

phonological processing, working memory, and perceptual speed (McGrew & Wendling, 2010; 

Proctor, 2012).  From these, the three cognitive abilities most related to algebra were (1) 

crystallized intelligence, (2) fluid intelligence, and (3) spatial abilities (Floyd et al., 2003; 

McGrew & Wendling, 2010; Proctor, 2012; Taub et al., 2008; Tolar, Lederberg, & Fletcher, 

2009). Below is a discussion of both theory and research that suggest how each of these three 

cognitive abilities relates to algebra performance. 

Fluid intelligence. Fluid intelligence is the ability to solve novel tasks that cannot be 

performed automatically using mental operations such as identifying relations, drawing 

inferences, concept formation, concept recognition, extrapolating, etc. (Horn, 1989; McGrew, 

2009; McGrew & Evans, 2004). Research has shown that fluid intelligence related to many 

different types of mathematics achievement such as the measurement of students’ ability to solve 

a range of calculations problems (i.e. calculation skills) and the measurement of students’ ability 

to analyze and solve problems by comprehending what the problem is asking, recognizing 

relevant information, and choosing the appropriate strategy for calculations (i.e. problem 

solving) (Calderón-Tena, 2016; Floyd et al., 2003; Geary, 2011; Keith, 1999; McGrew & 

Wendling, 2010; Proctor, 2012). This cognitive ability related to algebra performance because 

the mental operations of fluid intelligence are similar to some algebraic reasoning skills. For 

example, the algebraic reasoning skill of generalization and functional thinking involve the 
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mental operations of drawing inferences, identifying relations, and extrapolation. Specifically, 

generalization requires that students draw inferences from a given set of information and 

transform that information into another form. This usually occurs when students are asked to 

write an algebraic equation in order to find a solution for a pattern of numerical values (Radford, 

2006; Rivera, 2010; Rivera & Becker, 2008; Steele, 2008). In addition, functional thinking is 

about identifying the relations between quantities (Kaput, 1995; Usiskin, 1999), and 

understanding how one quantity changes because of changes in the another. Thus, functional 

thinking requires that students must identify the relationship between two quantities from a small 

set of given values and be able to apply it for any value not given. Given that both generalization 

and functional thinking require the use of the fluid intelligence mental operations of extracting 

and applying information, fluid intelligence may be a cognitive ability related to students’ 

algebra performance. 

Research also suggested that fluid intelligence was associated with students’ 

understanding of algebra because it facilitated students’ ability to connect natural language to 

mathematical symbols. Herscovics (1988) and Stacey and MacGregor (1997b) mentioned that 

translating from natural language into algebraic symbolism is an area of difficulty for students. A 

reason for this difficulty was that students were not able to process the meaning of the words in 

conjunction with how mathematical symbols were used (Clement, 1982; MacGregor & Stacey, 

1993). The connection between the natural language and mathematical symbols may require that 

students develop a conceptual organization for the mathematical symbols, which includes the 

individual symbol’s meaning as well as the meaning behind combinations of symbols. Students' 

ability to process the connection between the meaning of the words and the use of mathematical 

symbols determines the formation of this conceptual organization. For example, Chesney et al. 
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(2014) investigated students’ conceptual organization of addition facts in relation to their 

understanding of the equal sign. They found those who mentally organized their addition facts 

around equivalent values were more likely to have a better interpretation of the equal sign. Since 

students’ poor interpretation of the equal sign is linked to poor algebraic performance (Kieran, 

1988, 1992; Knuth, Alibali, McNeil, Weinberg, & Stephens, 2005; Knuth, Stephens, Mcneil, & 

Alibali, 2006; Seo & Ginsburg, 2003), the results from Chesney et al. (2014) demonstrated that 

students’ fluid intelligence may be related to students’ algebra performance because this 

difficulty highlights students’ inability to perform the mental operation of concept formation.  

Crystallized intelligence. Crystallized intelligence is the ability to apply the breadth and 

depth of acquired knowledge from cultural, educational and life experiences (Floyd, Evans, & 

McGrew, 2003; McGrew, 2009; McGrew & Evans, 2004; Proctor, 2012), which emphasizes the 

importance of cultural, societal, and everyday knowledge. This is an important idea that has 

already been shown to have some bearing on students’ understanding of numbers and operations 

(Baranes, Perry, & Stigler, 1989; T. N. Carraher, Carraher, & Schiliemann, 1985; T. N. Carraher, 

Carraher, & Schliemann, 1987; Keith, 1999; Schliemann & Carraher, 2002). Carraher, Carraher, 

and Schiliemann (1985) in their study about how Brazillian children solved mathematics in and 

out of school found that children of street vendors were better able to solve math problems when 

they were presented in an out of school context rather than an in school context. Also, Baranes, 

Perry, and Stigler (1989) found that when math problems were presented in an out of school 

context using numbers that were meaningful to the context, students performed better on number 

matched content types of problems than the school type problems. This suggested that 

participants’ understanding of numbers and operations was dependent upon their cultural, 

societal, and everyday knowledge.  
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Additionally, measures of crystallized intelligence rely heavily on language, which have 

a big influence on students’ understanding of mathematical concepts as well as their algebra 

performance (Barton, Fairhall, & Trinick, 1998; MacGregor & Stacey, 1997; Philipp, 1992). For 

instance, one particular concept that is an area of difficulty is the concept of variable. The main 

reason for students’ trouble with the concept of variable was the many different uses of variables 

and how it is presented to students (Kieran, 1988; MacGregor & Stacey, 1997; Philipp, 1992). 

Philipp (1992) and MacGregor and Stacey (1997) both recognized the importance and influence 

language based teaching materials had on students’ understanding of the concept of variable. 

MacGregor and Stacey (1997) demonstrated that the initial teaching practice of using letters as 

abbreviated words and letters contributed to the misinterpretations students had with variables. 

Likewise, Philipp (1992) theorized that a lack of discussion in mathematics leads to syntactically 

but semantically weak understanding of concepts. He used two discussion activities on the 

concept of variable to demonstrate that students can develop a better understanding of variables 

by talking about the many different ways variables are used. Since interactions with teachers and 

teaching materials rely on language, this research would suggest that language impacts students’ 

understanding of the concept of variable, and in turn their algebra performance. 

Spatial abilities. There are many different types of spatial abilities, but there is no 

broadly accepted definition that defines all spatial abilities. Some researchers have attempted to 

categorize the broad set of abilities referred to as spatial abilities based on whether or not spatial 

tasks involve a single object (i.e. intrinsic) or group of objects (i.e. extrinsic) and the movement 

of these objects in space (i.e. dynamic or static) (Mix & Cheng, 2012; Uttal et al., 2012). 

However, most researchers simply define spatial abilities based on a specific type of ability 

being assessed. For instance, spatial abilities have been defined in terms of disembedding, spatial 
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visualization, mental rotation, spatial perception, and perspective taking (Mix & Cheng, 2012; 

Uttal et al., 2012). In the current work, I focus on the type of spatial ability found to be 

associated with algebra performance (Chrysostomou et al., 2013; Logan, 2015; Terao, 

Koedinger, Sohn, Qin, & Anderson, 2004; Tolar et al., 2009), namely spatial visualization, 

which refers to the mental representation and transformation of an object or groups of objects in 

a 2-dimensional and 3-dimentisonal plane.  

 The empirical findings on the relationship between spatial abilities, broadly defined, and 

mathematics achievement are mixed, with some research suggesting that spatial abilities are 

important for mathematical development (e.g. Gunderson, Ramirez, Beilock, & Levine, 2012; 

Proctor et al., 2005; Skagerlund & Träff, 2016), and others suggesting the opposite (e.g. Floyd et 

al., 2003; McGrew & Wendling, 2010).  The inconsistency of the connection between spatial 

abilities and mathematics achievement may be because of the cognitive ability tests used to 

measure spatial abilities. For instance, measures of visual-spatial thinking, which is the ability to 

create, recognize, and transform visual images, typically use multiple forms of spatial abilities 

including visualization, spatial relations, closure speed, visual memory, spatial scanning, etc. 

(Floyd et al., 2003; McGrew, 2009; McGrew & Evans, 2004; Proctor, 2012). It is possible that 

including all these spatial abilities as a measure of visual-spatial thinking washes out the relation 

that any one of the spatial abilities may have with general mathematics achievement. This is 

evident by a detailed analysis of working memory that suggested the spatial component of 

working memory was predictive of general mathematics achievement (Kyttälä & Lehto, 2008; 

Reuhkala, 2001), and visual spatial representations were important for solving word problems 

(Hegarty & Kozhevnikov, 1999; van Garderen, 2006).  
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As for algebra performance, there have been a few studies that identified a relation with 

the specific spatial ability of spatial visualization (Chrysostomou et al., 2013; Logan, 2015; 

Terao et al., 2004; Tolar et al., 2009). Spatial visualization is the ability to imagine, manipulate, 

or transform mental images and identify how they would appear under different conditions 

(McGrew & Evans, 2004; Mix & Cheng, 2012; Tartre, 1990), and  is only one type of spatial 

ability. Measurements of spatial visualization abilities involve mental rotation and mental 

transformation tasks (Tartre, 1990).  Mental rotation tasks measure the ability to be able to 

determine if more than one objects are the same by mentally rotating them while mental 

transformation tasks measure the ability to identify the transformation of object by either 

mentally putting it together or taking it apart (Tartre, 1990). Studies on spatial visualization and 

algebra performance have shown that in a structural equation model it had a direct effect on 

algebra achievement (Tolar et al., 2009), was related to student performance on numeracy and 

algebraic reasoning (Chrysostomou et al., 2013), and solving algebra word problems activated 

the visuospatial regions of the brain (Terao et al., 2004). Spatial visualization was theorized to be 

important for algebra performance because in general, elements of mathematics inherently have 

a visuospatial component (Logan, 2015; Terao et al., 2004) and specifically, because algebra 

requires the ability to represent functional relationships graphically and manipulate visual-spatial 

representations mentally (Tolar et al., 2009).  

Content Knowledge Related to Algebra Performance  

Researchers investigated student learning to determine the reasons why students had 

difficulty learning algebra. Some of this research concentrated on eliciting student thinking while 

solving algebra problems in order to identify students’ errors and misconceptions about algebra  

(Booth, 1984; Greenes & Rubenstein, 2008; Kuchemann, 1978; National Council of Teachers of 
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Mathematics, 1988; M. Russell, O’Dwyer, & Miranda, 2009; Stacey & MacGregor, 1997b; 

Welder, 2012). Others tried to determine which foundational mathematical concepts were 

necessary for solving algebra problems (Britt & Irwin, 2008; K. C. Irwin & Britt, 2005; 

Ketterlin-Geller & Chard, 2011; Ketterlin-Geller, Gifford, & Perry, 2015; National Mathematics 

Advisory Panel, 2008; Schifter, 1999; Stacey & MacGregor, 1997a; Wu, 2001). From these 

investigations, multiple researchers have proposed many different types of content knowledge 

needed for learning algebra. The content knowledge needed for learning algebra consisted of 

things that student should be able to do (Ketterlin-Geller & Chard, 2011; Ketterlin-Geller et al., 

2015; Kieran, 1988, 1992; Schifter, 1999; Stacey & MacGregor, 1997a; Wu, 2001) as well as the 

necessary understandings needed to do those things (Blanton & Kaput, 2005; Herbert & Brown, 

1997; Herscovics, 1988; Jacobs et al., 2007; Kaput, 1999; Kieran, 2004; M. Russell et al., 2009; 

Stacey & MacGregor, 1997b; Welder, 2012). Theory and empirical evidence, taken together, 

point to the connection between content knowledge and students’ algebra performance as being 

dependent upon four key types of content knowledge: (1) understanding numbers and operations, 

(2) proficiency with fractions, (3) understanding equivalence, and (4) algebraic reasoning. Below 

is a discussion about the empirical evidence that demonstrated the relation between these types 

of content knowledge and algebra performance. 

Understanding of numbers and operations. Multiple researchers suggested that an 

understanding of numbers and operations is important for students’ understanding of algebra 

(Britt & Irwin, 2008; K. C. Irwin & Britt, 2005; Ketterlin-Geller & Chard, 2011; Ketterlin-Geller 

et al., 2015; National Mathematics Advisory Panel, 2008; Schifter, 1999; Stacey & MacGregor, 

1997a). An understanding of numbers and operations involves being able to understand place 

value, understand numerical magnitudes, to compose/decompose numbers, understand 
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mathematical operations, as well as understand the properties of numbers. Stacey and 

MacGregor (1997a) proposed that an understanding of numbers helps when students fail to 

remember the rules of symbolic manipulation. Students can use their knowledge about how to 

manipulate numbers to figure out how to work with algebraic expressions. K. C. Irwin and Britt 

(2005) theorized that the ability to generalize mental operational strategies and use them 

effectively to solve different numerical problems represents algebraic thinking. It was algebraic 

thinking because students were using the number as variables instead of letters. An investigation 

into the development of students’ generalized mental strategies demonstrated that those who had 

instructional experiences that promoted generalized mental strategies exhibited the use of 

algebraic operational strategies more often in comparison to others who had not. In a second 

study, Britt and Irwin (2008), showed that after developing their mental strategies students were 

able to transfer this knowledge to literal symbols. Given that students were able to demonstrate 

the same skills for numbers and operations with letters as variables suggested that their 

understanding of numbers and operations was associated with their algebra performance. 

Proficiency with fractions. Fractions are mathematical quantities that represent parts of 

a whole, and researchers theorized that students’ understanding of how to operate and use 

fractions relates to their algebra performance. Researchers have theorized various reasons for the 

connection between fractional knowledge and algebra performance. Wu (2001) and the National 

Mathematics Advisory Panel (2008) suggested that students’ knowledge about fractions provides 

a stepping stone for their understanding of rules of symbolic manipulation used in algebra. 

Empson, Levi,and Carpenter (2011) suggested that fraction knowledge related to students’ 

algebra performance because solving problems involving operation on and with fractions uses 

the same understanding of numbers and operations that are necessary for algebra. Additionally, 
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Kilpatrick and Izsak (2008) claimed that some big ideas used by fractions are also important for 

algebra. Specifically, an understanding of fractions helps to develop students’ multiplicative 

structures and understanding of the distributive property, which are important ideas for working 

with algebraic equations and expressions.  Even with these reasons, only a few studies have 

shown that proficiency with fractions does impact algebra performance (e.g. G. Brown & Quinn, 

2007; Siegler et al., 2012). G. Brown and Quinn (2007) investigated students’ proficiency with 

fractions in relation to their success in algebra. Proficiency, defined by this study, was as the 

ability to understand fractional concepts and manipulate fractions for accurate computation 

without the aid of a calculator. Success in algebra was student tests scores from an algebra 

course. A Pearson Correlation Coefficient calculation determined that there was a significant 

relationship between the two test scores. In addition, Siegler et al. (2012) found that fraction 

knowledge measured 5 or 6 years before algebra instruction was a stronger predictor of later 

algebra achievement than other types of mathematical knowledge, general intelligence, working 

memory, and family income and education. 

Understanding of equivalence.  Mathematics is heavily depended upon the use of 

symbols, and one symbol that demonstrated a relation to students’ algebra performance is the 

equal sign. The equal sign represents equivalence, which is the understanding that two quantities 

on each side of the equals sign are the same. Equivalence is seen as a common issue related to 

algebra because misunderstanding equivalence makes it difficult to understand, remember, or 

apply algebraic processes and principles (Seo & Ginsburg, 2003). Additionally, the 

misunderstanding of equivalence limits students’ understanding of why the process of doing the 

same operation on both sides of the equation balances the equation (Kieran, 1988), limits their 

understanding of the transformations used to solve algebraic equations (Knuth et al., 2005), and 
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limits their ability to perceive algebraic expressions as mathematical objects rather than 

processes (Kieran, 1992).  Additionally, researchers have demonstrated that students' 

understanding of equal sign as well as how misinterpretations of this symbol led to difficulties 

with algebra. In particular, Knuth, Stephens, McNeil, and Alibali (2006) examined middle school 

students’ understanding of the equal sign in relation to their performance on solving algebraic 

equations. Results demonstrated that participants with a relational understanding of equivalence 

(i.e. the equal sign means the same as) were more likely to solve algebraic equations correctly 

regardless of grade level and mathematics ability.  

Algebraic Reasoning. Some researchers found that the emphasis on teaching symbolism 

before the application of mathematical knowledge to word problems was counter to how students 

naturally approached problems (Godino, Aké, Gonzato, & Wilhelmi, 2014; Godino et al., 2015; 

Nathan & Koedinger, 2000; Nathan & Koellner, 2007; Nathan & Petrosino, 2003; Sfard & 

Linchevski, 1994). The researchers realized that students used verbal reasoning skills before 

symbolism, which allowed students to use their mathematical knowledge to solve algebra 

problems. As such, some researchers claimed that there are reasoning skills related to algebra. 

They suggested that the underdevelopment of these reasoning skills makes some students 

unsuccessful. Kaput (1998, 2000, 2008) stated that there are five forms of reasoning that 

constitute the reasoning skills needed for algebra: (1) the expression and use of generalizations 

based on arithmetic and quantitative reasoning, (2) reasoning with and acting upon symbols 

given the rules of manipulation, (3) the understanding of mathematical structures as objects 

rather than process based on generalizations built from arithmetic and quantitative reasoning, (4) 

the understanding of the relationship between two or more quantities that vary, and (5) the use of 

mathematic symbols as a language to express situational behaviors.  
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Beyond the validation studies for early algebra education (e. g. Bastable & Schifter, 

2008; M. L. Blanton & Kaput, 2004, 2011; D. W. Carraher, Martinez, & Schliemann, 2008; 

Cooper & Warren, 2011; Lannin, 2003, 2005; Moss & McNab, 2011; S. J. Russell et al., 2011), 

there has not been much research that has examined the connection between students’ algebra 

performance and their algebraic reasoning skills.  However, one particular study evaluated the 

effect of sustained and comprehensive early algebra instruction. The study was in fact the first 

step in trying to determine the influence of algebraic reasoning skills on students’ understanding 

of algebraic concepts.  Blanton et al. (2015) implemented a yearlong intervention focused on 

developing students’ algebraic reasoning alongside the traditional arithmetic focused elementary 

mathematics curriculum. Results demonstrated greater improvement in the understanding of 

algebraic concepts and practices of intervention students as compared to nonintervention 

students. The researchers suggested that traditional arithmetic-focused elementary mathematics 

curriculums alone are not enough to prepare students in the future for algebra. The results also 

suggested even though some basic mathematical content knowledge like understanding numbers 

and operations and fractions may be associated with algebra performance, algebraic reasoning 

skills are necessary for strong algebra performance. Thus, it is important to include algebraic 

reasoning skills as factors of students’ algebra performance. 

Current Study 

When trying to understand why students perform differently from expectations, past 

algebra research assumed that it was because of students’ content knowledge and the instruction 

that they experienced (e.g. Ketterlin-Geller & Chard, 2011; Ketterlin-Geller et al., 2015; Nathan 

& Koedinger, 2000; Sfard & Linchevski, 1994).  Researchers conducted studies that examined 

students’ understanding of multiple mathematical concepts (e.g. variables and equivalence, 
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Knuth, Alibali, McNeil, Weinberg, & Stephens, 2011), but little attention was given to other 

factors like cognitive abilities, which are the underlying cognitive processes that can affect what 

a person knows and understands. Cognitive abilities are another aspect of the individual that 

changes the ways students perform. Thus, in this study I examined both cognitive abilities (i.e. 

crystalized intelligence, fluid intelligence, spatial visualization) and content knowledge (i.e. 

understanding numbers and operations, fractions, equivalence, algebraic reasoning) in order to 

determine the different factors and combinations of factors that have a relation with students’ 

algebra performance.  

Rationale for design. In particular, I studied the cognitive abilities and content 

knowledge of undergraduate students. The population is particularly important because previous 

cognitive studies have always focused on student who are just beginning to study algebra, and 

rarely considered those who are expected to have a good grasp of the mathematical content 

(Kieran, 1990, 2006). This is particularly problematic because research has shown that algebraic 

misconceptions can linger well after formal algebra instruction (e.g. Bernardo et al., 1994; 

McNeil & Alibali, 2005b; Triguero & Ursini, 2003). For instance, multiple studies demonstrated 

that even though undergraduate students understand the equal sign as a relational symbol, an 

unsophisticated understanding still exists, and when this unsophisticated understanding is 

activated students perform in similar ways to beginning algebra students (Chesney & Mcneil, 

2014; Chesney, McNeil, Brockmole, & Kelley, 2013; McNeil & Alibali, 2005b; McNeil, Rittle-

Johnson, Hattikudur, & Peterson, 2010).  This performance is especially salient under timed 

conditions. Since the present study has time constraints it is possible that undergraduate students 

will demonstrate a less sophisticated understanding of equivalence that would relate to their 

algebra performance. Similarly, prior research has shown that even though undergraduate 
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students have a conceptualization of variables, they lack a rich conceptualization (Trigueros & 

Jacobs, 2014; Trigueros & Ursini, 2003; Weinberg, Dresen, & Slater, 2016) and use them 

incorrectly (Akgün, 2011; Bernardo & Okagaki, 1994; Clement, 1982; Clement, Lochhead, & 

Monk, 1981).  

With algebra having a heavy emphasis on both equivalence and variables, having these 

sorts of difficulties could influence performance. Thus, studying undergraduate students should 

provide an understanding of how cognitive abilities and content knowledge relate to algebra 

performance in similar ways that studying beginning algebra students would. It is also possible 

that students’ cognitive abilities may have helped them overcome these obstacles. Therefore, by 

studying college students, I am able to determine if students’ performance is heavily reliant on 

content knowledge or if cognitive abilities could have a supportive impact on students’ 

performance when content knowledge is limited. 

Another aspect that is different about this study is that in investigating cognitive abilities 

and content knowledge I am taking both a variable-oriented and person-oriented approach to 

algebra performance. Both of these approaches allow me to examine algebra performance in 

different ways. The person-oriented approach acknowledges the person as a complex system 

with many factors of influence, and seeks to answer questions concerning the differences among 

individuals (Bergman et al., 2003; Laursen & Hoff, 2006; Magnusson, 2003). This approach 

allows me to understand common patterns of knowledge and examine how these patterns relate 

to performance. It can describe what types of students do well or poorly. For example, a 

cognitive obstacle students faced in algebra has been the difference in meaning and 

interpretations given to operations and symbols in arithmetic as compared to their use in algebra 

(Booth, 1984; Kieran, 1990). The person-oriented approach can identify if those who do well 
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have strong vocabulary, reading skills or some other aspect of individual functioning. In contrast, 

the variable-oriented approach assumes that each individual will perform in similar ways and 

tries to determine how the different variables independently predict algebra performance, on 

average for the entire sample (Bergman et al., 2003; Laursen & Hoff, 2006; Magnusson, 2003). 

For the same cognitive obstacle mentioned above, the variable-oriented approach revealed that 

much of the difficulty students faced can be traced back to the type of instruction they had 

received (e.g. McNeil, 2008; McNeil et al., 2006), and changing that instructional experience 

helped (e.g. Chesney et al., 2014; McNeil, Fyfe, Petersen, Dunwiddie, & Brletic-Shipley, 2011). 

Separately, these two approaches may reveal two different stories, but taken together they 

provide new insights into the connection between content knowledge, cognitive abilities, and 

algebra performance. Specifically, these new insights could possible provide new avenues for 

teaching algebra as well as new ways to prepare students for learning algebra. 

Research questions and hypotheses. Much of what we know about the variations in 

students’ algebra performance has come from research that has examined how students solve 

algebra problems (e.g. Booth, 1984; Kuchemann, 1978). The focus of this research was on how 

the individual students made sense of the problems in order to solve them. This research has 

provided a wealth of information that has led to new understandings about student knowledge 

and the influence of instructional practices (Booth, 1984; Kieran, 1990, 2006). Nevertheless, 

recent research into the teaching and learning of algebra has focused less on the differences 

across individual students and more on the general tendencies among groups of people. This 

approach may have contributed to the slowdown in progress research was making in improving 

students’ algebra performance as evident from the recent analysis of NAEP scores (Kloosterman, 

2016; Perez et al., 2016). The current study returns the focus back on the differences across 
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individuals in order to determine what other factors besides content knowledge link to students’ 

algebra performance. Specifically, this study allowed me to answer the following questions: 

RQ 1: Which forms of content knowledge and cognitive abilities most strongly predict 

algebra performance?  One goal of this study is to determine if other factors besides content 

knowledge predict algebra performance. Prior research on the factors associated with 

mathematics achievement have demonstrated that both content knowledge and  general cognitive 

abilities (Fuchs, Geary, Compton, Fuchs, Hamlett, Seethaler, et al., 2010; Fuhs, Hornburg, & 

McNeil, 2016) predicted mathematics achievement; therefore, I expect that both students’ 

content knowledge and cognitive abilities will predict their algebra performance. It is uncertain 

which specific skills will indicate a significant relation to students’ algebra performance, but I 

hypothesize that the assessments of fluid intelligence, algebraic reasoning, equivalence, and 

numeracy will be particularly important predictors. These skills are particularly important 

predictors of algebra performance because they are measures of abilities that allow students to 

reason algebraically. For example, Britt and Irwin (2008) and  K. C. Irwin and Britt (2005) 

connected students’ numeracy skills to their ability to generalize with variables, which are an 

important part of algebra (e.g. Booth, 1984, 1988; Knuth et al., 2005). With fluid intelligence 

involving the same general skills as algebraic reasoning, it also seems to represent a more 

general reasoning ability that might facilitate algebra performance.  In addition, equivalence is 

important because those who think in relational terms have the necessary skills to reason 

algebraically (M. Stephens, 2007; M. Stephens & Wang, 2008). Moreover, researchers theorized 

that algebraic reasoning skills are important for learning algebra because they represent different 

ways of thinking based on the different approaches to teaching algebra (Bednarz et al., 1996; 

Kaput, 1998, 2000, 2008), and Kloosterman (2016) suggested that even when algebraic content 
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knowledge was lacking, reasoning skills helped to bolster 4
th

 and 8
th

 grade students’ algebra 

performance.  

RQ 2a: What combination of content knowledge and cognitive abilities naturally occur 

in students who have studied algebra?  Person-oriented analyses describe groups or types of 

individuals that share particular traits, attributes, or relations among variables (Laursen & Hoff, 

2006; Magnusson, 2003). These groups can help researchers identify specific reasons why 

certain students perform the way that they do.  By grouping people who are similar in content 

knowledge and cognitive abilities together and examining their algebra performance as a 

function of their grouping, one can gain a more natural picture to how different combinations of 

predictors are associated with algebra performance. Current studies suggested that linked to 

mathematics performance are combinations of content knowledge and cognitive abilities, so I 

hypothesize that it is possible that a mixture of content knowledge and cognitive abilities or 

content knowledge and cognitive abilities by themselves may characterize groups of participants. 

For my mixture hypothesis, there could be combinations of skills and abilities defined by 

participants’ performance scores that could be high or low for fluid intelligence, algebraic 

reasoning, equivalence, and numeracy because they measure skills related to algebraic reasoning. 

Given that there is a lack of research that used a person-oriented approach, this hypothesis just 

speculates about what could possible occur. 

RQ 2b: How do students with these different content knowledge and cognitive abilities 

profiles perform in algebra? It is impossible to know exactly what profiles will emerge, but I 

theorize that there will be the typical high and low performance groups characterized by 

strengths and weaknesses in both content knowledge and cognitive abilities or in one over the 

other that will have different algebra performance. Additionally, there could be unique groups, 
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which would defy expectations. For example, an expected low content knowledge group might 

perform well because they have strong cognitive abilities. Similarly, a group expected to do well 

(e.g. high content knowledge) may have low performance because they have weak cognitive 

abilities. Overall, I hypothesize that participants’ cognitive abilities will preclude better algebra 

performance over having a good grasp of content knowledge. 
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CHAPTER 3: Method 

Participants 

 Participants were (N = 141) undergraduate students at Michigan State University from all 

school levels (34 freshman, 29 sophomore, 30 junior, 37 senior, 11 5+ year senior) and a variety 

of majors (27% Biological Sciences, 19.1% Communication Arts & Sciences, 12.1% Social 

Sciences, 9.2% Business & Management, 8.5% Engineering, 8.5% Education, 6.4% 

Environmental Sciences, 3.5% Fine Arts & Letters, 2.1% Physical & Mathematical Sciences, 

2.8% Undecided, 0.7% Unknown). The mean age of participants was 20.28 years (SD = 1.98). 

The majority of participants were female students (110 female, 31 male). The distribution of 

race/ethnicity in the sample was as follows: 8.5% Asian, 22% Black/African American, 1.4% 

Hispanic/Latino, 61.7% White, and 6.4% Multiracial. 

Assessments and Measures 

 In the sections below, I described each of the assessments and measures used in the 

current study. There are three assessments for cognitive abilities, five assessments for content 

knowledge, and a single outcome measure for algebra performance. Additionally, see Table 1 for 

the number items, time limit, and calculator usage of each assessments and measures.   

Cognitive abilities. In the literature, the most common test of human cognitive abilities 

is the Woodcock Johnson Tests of Cognitive Abilities (WJ), which is a licensed restricted 

assessment in its fourth edition that measures all nine of the broad cognitive abilities as defined 

by the CHC theory of cognitive abilities (Mather & Wendling, 2014). Due to the restricted nature 

of the WJ, this study will be using alternative assessments for measuring participants’ cognitive 

abilities. The assessments for cognitive abilities consisted of a single measure to assess fluid and 

crystallized intelligence, and two measures to assess spatial visualization. 
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 Fluid and crystallized intelligence. To assess fluid and crystallized intelligence this study 

used the Reynolds Adaptable Intelligence Test (RAIT). The RAIT is a good alternative to the WJ 

because 1) it is a standardized assessment that does not require a license in psychology, 2) it 

measures fluid and crystallized intelligence in a similar way to the WJ, 3) it allows for group or 

individual administration, and 4) it has standardized scores for participants 10-75 years old. It 

consists of seven subtests for the measurement of fluid intelligence, crystallized intelligence, and 

quantitative intelligence. Each subtest has a time limit that allows the RAIT to be a “power” test 

instead of a “speeded” test which means that the time limits were set based on 95% of the 

participants being able to get the same number of answers correct regardless if they were given a 

time limit or not. For each subtest, raw scores were the number of questions correctly answered, 

which converted into T-scores with a mean of 50 and a standard deviation of 10. There was no 

penalty for incorrect answers. A combination of subtests yielded scaled scores or indexes for 

fluid intelligence, crystallized intelligence, quantitative intelligence, total intelligence (i.e. fluid 

and crystallized combined), and total battery intelligence (i.e. all three combined). The indexes 

are scaled scores set to a mean of 100 and a standard deviation of 15. This study only used the 

subtests for the Fluid Intelligence Index and the Crystallized Intelligence Index.  

 Fluid intelligence index (FII). The FII consisted of the subtest of Sequences (SEQ) and 

Nonverbal Analogies (NVA), which measure deductive reasoning using nonverbal reasoning 

tasks. The summation of the scaled scores for each subtest yields the FII scaled score. The 

median reliability for SEQ and NVA are .86 and .89 respectively, and the FII has a median 

composite reliability of .93. The SEQ subtest asked participants to complete a series of pictures 

that denoted a change progression by picking which image went next. Participants had 10 

minutes to complete the section. The NVA subtest asked participants to complete an analogy of 
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the format ___ is to___ as ___ is to ___ using images instead of words. Participants got three 

images and had to choose the fourth that completed the relationship. NVA had a time limit of 7 

minutes.  

 Crystallized intelligence index (CII). Three subtests comprised the CII. All three subtests 

assessed crystallized intelligence by using verbal reasoning tasks that invoked inductive 

reasoning. The three subtests are General Knowledge (GK), Odd Word Out (OWO), and Word 

Opposites (WO). They have median reliabilities of .84, .83, and .81 respectively, and the CII has 

a median composite reliability of .93.  The GK subtest measured common cultural knowledge, 

reasoning skills, and classification skills by asking participants to categorize the names of well-

known people into one of six categories like politics, military, religion, arts, and sciences. 

Participants only had 3 minutes to make these categorizations. OWO assessed vocabulary and 

verbal reasoning by having participants choose the one word that did not belong in the set. The 

set contained a group of five words where four words had a conceptual link to one another and 

one word did not. Participants had 5 minutes to complete this subtest. The last subtest WO also 

assessed vocabulary and verbal reasoning by having participants choosing the one word out of 

five that had the opposite meaning of the target word. Participants had 5 minutes to complete this 

subtest. 

 Spatial visualization. In order to measure spatial visualization, this study used two 

assessments that are similar to how WJ-IV measures spatial visualization. The measures were the 

Measure of the Ability to form Spatial Mental Imagery (MASMI) and the Measure of the Ability 

to Rotate Mental Images (MARMI) (Campos, 2009, 2012), which are companion measures of 

spatial visualization that used a net of an unfolded cube with different symbols on each side. In 

the WJ-IV, the measurement for spatial visualization used (a) a spatial relations task where 
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participants have to determine which pieces put together form a complete shape, and (b) block 

rotation, which requires the participants to identify the same 3-dimensional shape when rotated.  

The MASMI is the match for the spatial relations task because it asked participants to mental 

reassembly the cube in order to identify which cubes had the correct symbol for the left and right 

side of the target cube. Although different from the WJ-IV, the MASMI is measuring a similar 

construct because each task asked participants to form a mental image of a shape and answer 

questions about that shape. The MARMI is the match for the block rotation because each tasks 

had participants identify blocks that are the same when given a different rotation.  In both 

assessments, participants have to reassemble the cube in their mind in order to answer the 

assessment questions. Each question presents the same unfolded cube reassembled and rotated 

differently. Each assessment had 23 questions with four options. Of these four options, two 

options were correct and two were incorrect. Participants had to pick the two options that they 

thought were correct for each question. There was a penalty for incorrect responses where 

participants lost one point from the total amount of correct responses for each incorrect response. 

The internal sample reliabilities for MASMI and MARMI are .82 and .93 respectively. 

Content knowledge. The assessments for content knowledge measured participants’ 

performance on a number of tasks that related to the important skills and concepts of 

understanding of numbers and operations, fractions, equivalence, and algebraic reasoning. See 

Appendix C for complete details about all content knowledge assessments, and see Table 2 for 

Cronbach’s Alpha internal reliabilities for each assessment based on the given sample.   

Understanding of numbers and operations. An understanding of numbers and 

operations is demonstrated by: (1) an understanding of place value and magnitude, (2) the ability 

to compose and decompose numbers, (3) grasping the meaning of the operations, (4) the ability 
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to use and understand the properties of distributive, commutative, associative, and (5) automatic 

recall of addition, subtraction, multiplication, and division facts (Ketterlin-Geller & Chard, 2011; 

Ketterlin-Geller et al., 2015; National Mathematics Advisory Panel, 2008). The current study 

used two assessments (i.e. computational fluency and numeracy) to measure these different 

skills. Together both assessments measured each of the different ways to demonstrate an 

understanding of numbers and operations given above. The computational fluency assessment 

covers the an understanding of place value and recall of math facts (i.e. points 1 and 5) while the 

numeracy assessment covers the understanding of magnitude, the ability to compose and 

decompose numbers, and the ability to use the properties of numbers and operations (i.e. points 

1, 2, 3, 4). 

Computational fluency. This measure demonstrated an understanding of numbers and 

operations by assessing students’ understanding of place value and their recall of addition, 

subtraction, multiplication, and division facts.  It was called computational fluency to describe 

the fact that it asked participants to solve a number of computational math problems within a 

given time period. To measure computational fluency, this study used the Curriculum Based 

Measurement (CBM) Computational Fluency Assessment, which is a different type of 

assessment from those used by others (see Chapter 5 for further discussion). The CBM-

Computational Fluency Assessment is a time based assessment that allows for teachers to 

quickly and efficiently assess how accurately students can solve addition, subtraction, 

multiplication, and division problems (Wright, 2013). The computational fluency assessment 

considers accuracy to be the correct number of digits per problem. For example, in the given 

problem 6220 + 3545 the correct answer is 9765 which means that a participant can receive an 

accuracy score of 4 or less for this problem. The participant would receive a score of 4 if they 
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gave 9765 as their answer, but would receive a score of 3 if they gave 9755 because the second 

five is an incorrect digit. The correct digit coding is a more nuanced way of examining 

participants’ computational fluency. It gives them credit for being able to add, subtract, multiple, 

and divide numbers while also allowing for the occasional error. For this assessment, participants 

received a worksheet that included 16 items for addition, subtraction, multiplication, and division 

math facts. The worksheet focused on multi-digit calculations with regrouping and no 

remainders. Participants solved problems involving 2-6 digit numbers. They had 3 minutes to 

complete as many as they could without the use of a calculator.   

Numeracy. Numeracy is the ability to reason with numbers and numerical concepts by 

using knowledge about mathematical relationships. Numeracy skills include flexibility and 

efficiency with strategies, an understanding of algorithms, and using reasoning skills to calculate 

instead of performing prescribed steps (Harris, 2011). This assessment consisted of 24 multiple-

choice questions taken from the As Close as It Gets activities from Harris (2014). As Close as It 

Gets activities are multiple-choice questions with answer choices that do not have the correct 

answer. Such questions require students to consider the numbers in the problem to inform which 

strategy to use as well as determining the reasonableness of an answer choice based on the 

magnitudes of the numbers. These types of questions measure place value concepts, magnitude, 

the ability to compose and decompose numbers, meanings of operations, and an understanding of 

the properties of numbers. The 24 questions of this assessment consisted of six problems for each 

mathematical operation.  In addition, the questions included problems with whole numbers, 

decimals, and fractions. To encourage students to use their numeracy skills rather than 

algorithms, participants had only 4 minutes to complete the assessment without the aid of a 
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calculator. The time limit calculations were a 10-second time limit for each question and a 1-

minute time limit for each operation.  

Fractions. G. Brown and Quinn’s (2006) 25-question fractions assessment was a guide 

for the development of the fraction assessment for this study. The assessment used questions 

from previous research and questions devised by the researchers. It assessed conceptual 

knowledge and computational fluency aimed at developing an understanding of rational 

numbers. There were six categories of questions; algorithmic operations, application of basic 

fraction concepts in word problems, elementary algebraic concepts, specific arithmetic skills 

prerequisite for algebra, comprehension of the structure of rational numbers, and computational 

fluency.  

In this study, I adapted this assessment to include twelve questions covering all of the six 

categories. I kept two questions from each of the six categories. The algorithm operations 

category asked participants to find the difference of fractions and write a mixed number as an 

improper fraction. The word problem category asked participants to solve two word problems. 

The elementary algebraic concepts category question asked participants to solve two algebraic 

equations involving fractions. As part of the arithmetic skills prerequisite for algebra category, 

participants wrote a fraction in form of a sum and evaluated the value of fraction divided by zero. 

The questions from comprehension of the structure of rational numbers asked participants to 

order fractions and to compare the values of fractional quotients. For the computational fluency 

category, one question asked participants to find the sum of a complex fraction equation, and the 

second asked participants to find the remaining fractional component needed to equal one. 

Participants got 10 minutes to complete as many questions as they could without the aid of a 

calculator. 
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Equivalence. The equivalence assessment evaluated participants’ understanding of 

equivalence. Using prior research Matthews et al. (2012) created an equivalence assessment 

compiled from three different ways of measuring students’ understanding of equivalence; open 

equation solving items (e.g. 8 + 4 = ___ + 5), equation structure items (e.g. is 3 + 5 = 5 + 3 

true or false), and equal sign definition items. Matthews et al.'s (2012) assessment was for 

participants in grades 2-6. Since the participants in this study were much older, it was not 

feasible to use the same assessment. Nevertheless, the design of this assessment used similar 

items.  

This equivalence assessment consisted of six items; two open equation items, two 

equation structure items, and two equal sign definition items. All questions on this assessment 

required some form of explanation for participants’ answers, so participants received full credit 

(e.g. 2 points) for problems if and only if they provided an appropriate explanation. Students’ 

understanding of equivalence can be separated into two distinct views; a relational view and an 

operational view (Alibali, Knuth, Hattikudur, McNeil, & Stephens, 2007; Baroody & Ginsburg, 

1983; Kieran, 1981; Knuth, Alibali, Hattikudur, McNeil, & Stephens, 2008; Knuth et al., 2005, 

2006; MacGregor & Stacey, 1999; McNeil, 2007; McNeil & Alibali, 2005a). The relational view 

of equivalence is the general idea that the equal sign represents the relationship that the two 

quantities separated by the symbol are the same. The operational view of equivalence is the 

general idea that the equal sign means the answer comes next or to apply the operation to all the 

numbers. An appropriate explanation had answers that expressed a relational understanding, 

which used terms such as “the same as”, “can mean two numbers are the same”, “same as the 

other number”, or “the value on one side is the same as the value on the other side”. Otherwise, 

participants received partial credit (e.g. 1 point) for either having the correct answer and a non-
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relational explanation or an incorrect answer and a relational explanation. Participants received 

no credit for incorrect answers and non-relational explanations. Participants received 5 minutes 

to complete the assessment without the aid of a calculator. 

Algebraic reasoning. The algebraic reasoning assessment evaluated participants’ 

algebraic reasoning skills. The assessment consisted of two items for each of the five forms of 

algebraic reasoning. The five forms of algebraic reasoning are generalization, functional 

thinking, modeling, symbolic manipulation, and structure sense (Kaput, 1998, 2000, 2008). The 

items were questions used in prior research or were researcher designed based on common errors 

identified from prior research. Generalization is the ability to abstract out common relationships 

in order to apply rules to any particular instance such as writing equations from patterns. The 

generalization items in this assessment asked participants to write an equation or an expression 

that represented a functional relationship based on information presented in tabular form. 

Functional thinking is the ability to understand the relationship between two or more quantities 

such as being able to describe the relationship in multiple forms (e.g. symbolically or in words). 

The functional thinking items in this assessment required the participants to determine the 

relationship between two or more items using a table format. Then participants had to describe 

the relationship using words, an equation, and/or an expression. Modeling is the ability to 

represent real world situations with mathematics such as translating a written relationship into 

symbolic form. The modeling items in this assessment required participants to translate a written 

relationship into an equation. Symbolic manipulation is the ability to understand the rules that 

govern how to work with symbols such as knowing how to combine like terms, knowing how to 

balance an equation, and being able to evaluate symbolic solutions for accuracy.  In this 

assessment, symbolic manipulation items required participants to write an equivalent expression 
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for a given expression. Structure sense is the ability to look at the structure of a problem and use 

that understanding to help solve the problem. The structure sense items in this assessment asked 

participants to solve equations that have cancellable elements that make finding the answer 

easier. The ability to see cancellable elements of a problem to make problem solving easier 

rather than just solving the problem is an indicator of structure sense, and participants received 

credit for these questions if and only if they demonstrated cancellation. Participants received 10 

minutes to complete the assessment without the aid of a calculator. 

Algebra performance. The algebra performance assessment measured participants’ 

current algebra performance. Included in this assessment were the following topics: systems of 

equations, functions, solving equations, inequalities, graphing, exponents, factoring, complex 

numbers, polynomial division, and logarithms. The assessment consisted of 20 questions. The 

items were multiple-choice items with five answers choices. Participant had 20 minutes to 

complete the entire assessment. Questions for this assessment were from the National 

Assessment of Educational Progress (NAEP) mathematics released item database (n = 9) and 

supplemented by researcher-designed questions (n = 11). The NAEP release items are algebra 

content questions from the years of 1990-2013. The questions range in difficulty from medium to 

hard. This assessment used NAEP questions because multiple panels of experts had reviewed 

them, and the questions were pilot tested (National Center for Educational Statistics, 2016). The 

supplemental questions covered additional topics not found in the NAEP item release database. 

The inclusion of these items gave a good sample of questions that covered a range of topics 

found in college algebra courses.  

Participant demographic survey. The participant demographic survey collected 

demographic information about each participant (see Appendix C).  The survey asked 
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participants to identify their age, gender, race/ethnicity, school level, and major in school. The 

survey also asked about past mathematics education. Since the participants were college 

students, time and level of algebraic exposure are confounding variables. These are confounding 

variables because memory decays over time, especially for information that is not used on a 

regularly basis (Santrock, 2008), and as evident from practice effects the more exposure that a 

person has to something the better that can become (Bullard, Griss, Greene, & Gekker, 2013). 

Given these circumstances, there was a need to establish the length of time since the participants 

have taken a math course or studied algebra as well as the highest level of mathematics taken. So 

the survey had each participant identify the types of math courses taken in high school and 

college as well as the years taken. Variables for time since the last algebra based course taken 

and the highest level of mathematics taken were calculated and used as covariates in data 

analysis.  

Data Collection Procedures 

 Participants completed all assessments and measures in paper and pencil format during a 

2-hour individually administrated session. Since there are number of measures for this research 

study, there existed the possibility of order effects. Order effects are the differences in 

participants’ responses due to the order in which the assessments and measures occurred. The 

types of order effects that could possible show up in this research study are fatigue effects and 

carryover effects. Fatigue affects occur when the data collection procedure is long, repetitive, or 

uninteresting. In order to deal with fatigue all assessments had time limits of no longer than 20 

minutes (see Table 1). Additionally, researchers told participants that they could take a break at 

any time and asked participants if they wanted a break when they looked like they were tired. 

Carryover effects occur when participants’ performance on one assessment influence their 
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performance on another. In order to deal with the carryover effects, each participant got a pre-

assigned a randomized order (see Table 3). To create the testing orders, I first grouped the 

assessments into equally timed first hour and second hour of testing. The groups each equaled 

out to be 55 minutes of testing. Additionally, I made sure to separate any assessments that I 

thought would contribute to a carryover effect. For example, I separated MARMI and MASMI 

so that participants would know that they were two separate assessments even though they 

looked similar. Orders 1 and 3 consisted of the testing order of the first hour group and then the 

second hour group while orders 2 and 4 had the second hour group first then the first hour group. 

Within each hour group the tests were randomized across each of the four testing order, which 

made sure that no assessment or measure occurred in the same testing order (e.g. if fractions 

came first in order 1 it did not come first in order 3). 

Trained undergraduate research assistants or I gave each research session. Each session 

began with participants given time to read the information and consent form, and ask questions. 

Before signing the consent, the participant got a short summary of the consent form that 

explained what was going happen during the research session that participation was voluntary, 

and that they got compensation upon completion. The summary allowed the researchers to make 

sure that participant understood what the research process was and understood the information 

on the information and consent form. Then participants got the assessments and measures in the 

order indicated by their assigned order. The researcher read aloud the printed directions for each 

assessment and measure from the front cover. For complete details on the research protocols, see 

Appendix D.  
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Data Analysis 

 In this section, I briefly describe the analytical plan for answering each research question. 

The results section provides a more detailed description of each analysis. 

Research question 1. The first research question asked whether the prediction of 

participants’ algebra performance depended upon the degree to which they mastered the content 

and/or the strength of their cognitive abilities. To answer this question, I conducted a multiple 

regression analysis with participants’ scores on the algebra performance assessment as the 

outcome measure and participant scores on the assessments of computational fluency, numeracy, 

equivalence, algebraic reasoning, MARMI, MASMI, crystallized intelligence, and fluid 

intelligence were predictor variables.  Anticipating different lengths of time since participants 

had done the types of problems within the algebra performance assessment, I added to the 

regression model a control variable for the number of years since an algebra course. I also 

anticipated that there would be individual level variability in the degree to which participants had 

continued to take higher-level mathematics courses, so I also included a control variable 

indicating highest math course taken.  Due to the variety of higher-level math courses taken by 

the sample population (e.g. one or more algebra courses, pre-calculus/trigonometry, or 

multivariate calculus), I created a dichotomous variable that indicated if each participant’s 

highest math course was at or above Calculus 1. A control variable for gender was also included 

in the regression model due to the differences found for mathematics performance (e.g. Else-

Quest, Hyde, & Linn, 2010; Hyde, Fennema, & Lamon, 1990) and the uneven representation of 

gender in this sample population. 

Research question 2a. A multiple regression analysis assumes a linear relationship 

between algebra performance, content knowledge, and cognitive abilities, but development does 
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not necessarily occur in a linear fashion (Bergman et al., 2003). Thus, the second research 

question asked whether there existed groups of people who perform similarly on these 

assessments of content knowledge and cognitive abilities. I used cluster analysis to group 

participants, which identified groups of people that were closely related to one another but 

distinct from other groups. The cluster variables were participant scores on the cognitive 

assessments of crystallized intelligence, fluid intelligence, MARMI, and MASMI, and the 

content knowledge assessments of computational fluency, numeracy, fractions, equivalence, and 

algebraic reasoning.  

Analyses were conducted using a two-step procedure where I performed both a 

hierarchical (Ward’s Method) and a nonhierarchical (k-means) cluster analysis. Lastly, I 

examined differences in the clustering variables for the final cluster solution by performing a 

multivariate analysis of variance (MANOVA) on cluster variables by cluster membership and 

examined basic demographic differences across clusters using Chi-square Tests of Independence 

and a one-way analysis of variance (ANOVA). 

 Research question 2b. The third question asked whether the groups found from the 

cluster analysis varied in algebra performance. I used a one-way analysis of variance (ANOVA) 

to examine these differences. The outcome variable was participant scores on the algebra 

performance assessment, and the independent variable was the cluster memberships. This 

ANOVA analysis did not include any control variables because they were categorical variables, 

which cannot be included as covariates. Therefore, I also used a separate multiple regression 

analyses to determine if there was a difference in algebra performance by cluster group while 

accounting for the control variables. The regression model included participant scores on the 

algebra performance assessment as the outcome measure, and the predictor variables were the 
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different demographic characteristics of race/ethnicity, major, highest math course taken, and 

years since an algebra course as well as planned contrasts representing cluster membership. 
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CHAPTER 4: Results 

Preliminary Analyses 

See Table 2 and Table 4 for descriptive statistics, bivariate correlations, and internal 

reliabilities for all assessments. Participants’ average performance scores for all assessments 

were at or above 50% with the exception for algebra performance. The low scores on the algebra 

performance measure could be because of test difficulty. After completing the assessment 

multiple participants would remark on how hard the assessment was or how long it has been 

since they had seen certain types of problems. On the other hand, item level analysis of the 

content knowledge assessments (See Table 5) suggested that the low performance scores of 

participants were because participants made errors while taking the assessments or they did not 

have a complete understanding of the assessed mathematical content. This is evident by the fact 

that the majority of participants only received partial credit for most item categories as well as 

the low means of certain items on the fraction, equivalence, algebraic reasoning, and algebra 

performance assessments (See Appendix E). Another possibility is that the time limits for the 

assessment may not have provided enough time for the participants to complete the assessments. 

Moreover, there are a number of limitations that could have attributed to participants’ low 

performance scores. For more in depth discussion of the impact of these limitations, see the 

limitation section in Chapter 5. 

Bivariate correlations show that, as expected, all content knowledge assessments had 

statistically significant correlations with each other at p < 0.05, but did not have extremely high 

correlations (i.e. r > 0.70). All Pearson’s correlations were below 0.70 with the correlations 

between fractions and numeracy, fractions and algebraic reasoning, and crystallized and fluid 

intelligence being close to 0.70 at .626, .651, and .633 respectively. There were also statistically 
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significant correlations between all content knowledge and cognitive abilities assessments with 

the outcome measure of algebra performance between .366 and .657, with most around .400 to 

.500.  

Additionally, I conducted analyses on the randomized orders and gender to determine if 

the necessity of control variables for these issues in subsequent analyses. Multivariate analysis of 

variance (MANOVA) showed that were no statistically significant differences between 

randomized orders on all assessments, Wilks’s λ (30, 376.381) = .780, p = .319, and therefore 

randomized orders were not included as controls in any subsequent analyses. In order to 

determine gender differences, I performed both an Independent Samples T-Test and a Mann-

Whitney U Test for those measures that violated the assumptions for the t-test. The assumptions 

for the t-test assume that the data has no significant outliers, is approximately normally 

distributed, and that there is homogeneity of variance between the groups. To assess for outliers 

and normality, I inspected a boxplot for outliers and a Normal Q-Q Plot for the distribution of the 

data. There were only three measures (i.e. MARMI, crystallized intelligence, and fluid 

intelligence) that violated assumptions of normality with no outliers and normality assumptions 

and thus required the use of the Mann-Whitney U Test; all other measures met these 

assumptions. In addition, all measures except for algebra performance met the last assumption of 

equality of variance as assessed by Levene’s Test.  

An independent samples t-test indicated that there was a statistically significant 

difference in scores for males and females for numeracy, with males scoring higher than females 

(see Table 6). There were no significant differences in the assessments of computational fluency, 

fractions, equivalence, algebraic reasoning, MASMI, and algebra performance. The Mann-

Whitney U Test revealed that there were no statistical difference in scores for males and females 



45 

 

for the assessments of MARMI, crystallized intelligence, and fluid intelligence (See Table 6). 

Since there was a gender difference for one of the assessments, gender was also included as a 

control variable in the following analyses. 

Regression Analysis 

 To determine which forms of content knowledge and/or cognitive abilities predicted 

algebra performance, a multiple regression analysis was performed (RQ1). Participants’ scores 

on the algebra performance assessment was the outcome measure, and participant scores on the 

assessments of computational fluency, numeracy, equivalence, algebraic reasoning, MARMI, 

MASMI, crystallized intelligence, and fluid intelligence were predictor variables. In addition, 

there were control variables for the number of years since an algebra course, the highest math 

course taken, and gender. 

Preliminary test for assumptions. Tests for all assumptions for multiple regression 

analysis confirmed the validity of the regression model. The first assumption was independence 

of observations. There was independence of observations as determined by a Durbin-Watson 

statistic of 2.229; a value close to two indicates an independence of observations. The next 

assumption was that there are linear relations between the dependent variable and independent 

variables both separately and collectively. There was linearity as assessed by partial regression 

plots and a plot of studentized residuals against predicted values. For the partial regression plots, 

no violation of linearity occurs when the plots visually show the points falling in somewhat of a 

straight line. All the partial plots visually showed somewhat of a straight line with Highest Math 

– Calculus or Above, Fractions, and MASMI showing a defined upward sloping line and all 

others a straight horizontal line.  
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The third tested assumption was that of constant error variance. The usual evaluation of 

constant variance is a visual inspection of the scatterplot of the studentized residuals against the 

predicted values. The scatterplot must show that the variance along the line of best fit remains 

similar as you move along the x-axis. A visual examination of the scatterplot seemed to meet the 

assumption of constant variance, but there was still a level of uncertainty; therefore, a statistical 

inference test also determined the assumption of constant variance. The Breusch-Pagan Test for 

Heteroscedasticity uses a chi-square test statistic to test a null hypothesis of constant variance 

against the alternative hypothesis of no constant variance. A large chi-square value means that 

there were no constant variance and returns a small p-value. In this regression model, there was 

constant variance, χ
2 

(1) = 10.149, p = .603. The next assumption was that there are no issues of 

multicollinearity. An examination of correlation coefficients and tolerance values assessed 

multicollinearity. Correlation coefficients should not have values above 0.70, which 

demonstrates a high correlation between variables, and tolerance values should be greater than 

0.1. For all predictor variables, there were no correlation coefficients above 0.70 or tolerance 

values below 0.1.  

Another assumption was that there are no significant outliers, influential points or 

leverage points. There were no outliers as assessed by not having any studentized deleted 

residuals at ±3. Cook’s distance values measured the influence of each observation by 

calculating the amount the data changes by deleting the observed value. The optimal Cook’s 

distance values are those less than 1.0. In this regression model, all Cook’s values were less than 

1.0. Leverage points are extremely low or high values of the predictor that may exert undue 

influence on the statistical analysis. Safe leverage points are those less than 0.20, but risky 

leverage points occur between 0.20 and 0.50. All leverage points were safe except one, which 
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had a value of 0.27. Even though this one participant had a risky leverage point, the regression 

model included this participant because all other tests for unusual points deemed this participant 

within acceptable range. The last assumption test was that the data in the regression model is 

approximately normal. There was normality as assessed by the visual examination of a Q-Q Plot. 

For the data to be approximately normal, the data points should fall closely along the diagonal 

line of the Q-Q Plot. The Q-Q Plot showed that the data points follow the line closely enough to 

be approximately normally distributed. 

Regression model. The multiple regression model statistically significantly predicted 

algebra performance, F(12, 128) = 12.368, p < .001. The predictors explained about 50% of the 

variation in algebra performance, R
2
 = .537, Adjusted R

2
 = .494 (see Figure1).  The only 

significant predictors of algebra performance were participant scores on fractions and MASMI, 

and having taken at least one calculus course (see Table 7). The squared semi partial correlations 

showed that fraction scores accounted for 5.8% of the variation in algebra performance. MASMI 

scores accounted for 2.2% of the variation, and having taken at least one calculus course 

accounted for 1.8% of the variance in algebra performance. Thus, the results of this regression 

model suggested that better algebra performance is more likely for those having taken at least 

one calculus course, those with strong fraction knowledge, and those with strong spatial imagery 

ability. 

Cluster Analysis 

 The use of cluster analysis in this study provided information about the different 

participant profiles as a function of content knowledge and cognitive abilities. The profiles 

highlighted the different combinations of content knowledge and cognitive abilities that naturally 

occur within participants who have studied algebra (RQ2a). Since both the presence of outliers 



48 

 

and the scale of the clustering variables affect measures of similarity, I made adjustments for 

each of these issues before identifying cluster groups. By not checking for outliers and adjusting 

the scale for each of the clustering variables, the measure of similarity would be unduly 

influenced by the variable with the largest standard deviation, which would mask the influence 

of any other clustering variable (Hair & Black, 2000; Hair, Black, Babin, & Anderson, 2009). I 

used Grubbs' (1969) outlier test to identify any potential outliers for each clustering variable. The 

test only identified a single outlier for the crystallized intelligence assessment. Since the 

participant had only that one outlier, I changed the crystallized intelligence score to the same 

score as its closest neighbor in order to retain the participant. After adjusting for outliers, I 

calculated standardized z-scores to change all cluster variable raw scores to the same scale with a 

total sample mean of 0 and standard deviation of 1.  

The first step in the analysis identified the number of cluster groups within the sample. 

Specifically, I conducted a hierarchical clustering procedure called Ward’s Method, with squared 

Euclidean distance as the measure of similarity, to develop different numbers of cluster 

solutions. Ward’s method systematically combines clusters by joining the clusters that minimizes 

the within-cluster variance (Hair & Black, 2000; Hair et al., 2009; Mooi & Sarstedt, 2011; Tan, 

Steinbach, & Kumar, 2005). The generated cluster solutions range from individual cases in a 

cluster group by themselves to all cases in one single cluster group. An inspection of the 

agglomeration schedule for large differences in the fusion coefficients can aid in the 

identification of possible cluster solutions. Large differences in the fusion coefficient suggest 

that moving to a smaller number of clusters combines more disparate clusters or groups of 

participants. Table 8 shows the agglomeration schedule for the first nine cluster solutions where 

large differences in the fusion coefficients start to occur. The changes in the fusion coefficients 
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were large, but how similar or different those changes are can pinpoint viable cluster solutions. 

As would be expected, a very large change in the fusion coefficient occurred when the entire 

sample was one cluster; the change from 1 to 2 clusters resulted in a difference in fusion 

coefficient of 445.352. The most similar changes in the fusion coefficients were the differences 

between 5-to 6-cluster solution, 6-to 7- cluster solutions, and 7-to 8-cluster solution; the 

differences in their fusion coefficients were within 3-5 points of each other. On the other hand, 

the most dissimilar fusion coefficient differences were between 4-to 5-cluster solution and 5-to 

6- cluster solutions as well as 7-to 8- cluster solutions and 8-to 9- cluster solutions; their fusion 

coefficient were more than 10 points apart. Based on these differences, it was possible that a 

viable cluster solution could involve anywhere between 4 to 8 cluster groups. 

The next step in the analysis was to narrow down the number of possible cluster 

solutions. To do this I performed a multivariate analysis of variance (MANOVA) of all 

clustering variables for the 4-8 cluster solutions. The MANOVA provided means, standard 

deviations, and partial eta squared values for all cluster variables as well as the sample sizes of 

each cluster group within each possible cluster solution. See Table 9 for information on the 

variance explained and sample sizes for the 4-8 cluster solutions. An examination of all this 

information helped to narrow down the number of possible cluster solutions. First, I examined 

the sample size of each cluster group for unreasonable numbers. There is no general rule for 

what is a reasonable and unreasonable sample size, so I considered a sample sizes less than 10% 

of the total sample size as unreasonable. Using a 10% cutoff value, takes into consideration the 

use of the final cluster solution in further data analysis where small sample sizes would be 

problematic. For this criteria, any cluster solution that had cluster group sample sizes smaller 
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than 14 would not be a viable solution. This eliminated both the 7- and 8-cluster solutions, which 

had cluster group sample sizes of 10 and 13.  

Next, I considered partial eta squared values. Partial eta squared values are the proportion 

of variance explained by the cluster groups on the cluster variables when accounting for the 

effect  the cluster variables have on each other (Richardson, 2011). Richardson (2011) stated that 

partial eta squared measures are comparable to the Cohen’s d measure of effect size which 

suggest a good partial eta squared value would be at or above 0.40. All cluster solutions had 

partial eta squared value below 0.40 except for the 8-cluster solution, but they increased when 

going from a 4 to a 5 to a 6 cluster solution. In particular, in going from the 4 to 5 clusters there 

was a substantial increase in the variance explained for numeracy (i.e. Δ = .178) and large 

increases (e.g. Δ > .050) for algebraic reasoning and MASMI, and in going from 5 to 6 clusters 

there was a substantial increase for MASMI (Δ = .176) and a large increase for fluid intelligence.  

Since there was some improvement of the variance explained for each of these cluster solutions, 

I did not eliminate the 4-, 5-, or 6-cluster solutions as possible final cluster solutions.  

The last thing that I considered was the changes in the means of each cluster variable 

when moving from one cluster solution to the next. With Ward’s hierarchical procedure, cluster 

groups combined based on preexisting cluster groups, so it is possible to consider the theoretical 

and practical implications for the separation or addition of cluster groups. Going from a 4-cluster 

solution to a 5-cluster solution split apart a cluster group from the 4-cluster solution that had 

performance scores above the mean for all cluster variables except for MARMI, which was 

below the mean. Splitting this cluster group into 2 clusters for the 5-cluster solution resulted in 

one cluster with scores above the mean on numeracy, algebraic reasoning, and MASMI and the 

other cluster had scores at or below the mean. This suggests that there may be potentially 
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important differences in these three variables that were lost within a 4-cluster solution. In 

addition, going from a 5-cluster solution to a 6-cluster solution split apart a cluster group from 

the 5-cluster solution that had performance scores below the mean for all cluster variables into 

two clusters in the 6-cluster solution differentiated by their performance on MASMI. One cluster 

had a MASMI performance score below the mean while the other had a MASMI performance 

score above the mean. The separation of cluster groups produced high/low MASMI scores or 

high/low MASMI scores in conjunction with high/low scores on other variables (i.e. numeracy 

and algebraic reasoning). The identification of this shared but different characteristic may 

support my hypothesis that both content knowledge and cognitive abilities are associated with 

algebra performance, as well as that there are combinations of content knowledge and cognitive 

abilities related to changes in algebra performance. In addition, MASMI was one of the 

significant predictors found in the regression analysis, which determining if there are differences 

in algebra performance for these cluster groups may corroborate the finding from the regression 

analysis. On the other hand, it is possible that the 4-cluster solution had enough differentiation 

between groups for changes in algebra performance. Thus, I conducted the next step in the 

cluster analysis using the 4-, 5-, and 6-cluster solutions.  

The third step was to find a final cluster solution by rerunning the cluster analysis using a 

nonhierarchical clustering procedure called k-means. The k-means analysis partitions the sample 

into a specified number of clusters, using the variable means from the hierarchical cluster 

analyses, and iteratively moves cases into and out of clusters in order to maximize the 

homogeneity within the cluster and the differences between cluster groups (Hair & Black, 2000; 

Hair et al., 2009; Mooi & Sarstedt, 2011; Tan et al., 2005). The k-means analysis has an 

advantage over hierarchical (Ward’s) because with Ward’s there is no switching of cases once 
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combined. By not switching cases once combined, there is an increased chance that the final 

cluster groups obtained with Ward’s method have combined less homogenous cases together due 

to the order of the cases in the dataset.  Another MANOVA analysis provided the necessary 

information for choosing a final cluster solution.  

As shown in Table 10, all cluster solutions had reasonable sample sizes for each cluster 

group, and moderate to large amount of variance explained. There were some fluctuations in the 

variance explained. Specifically, the variance explained for equivalence, fluid intelligence, and 

algebraic reasoning decreased slightly when adding another cluster group. On the other hand, the 

variance explained for MASMI increased substantially with each addition of a cluster group; the 

MASMI variance increased by .123 when going from 4 to 5 clusters and increased by .102 when 

going from 5 to 6 clusters. In addition, the changes in means for each cluster variable were 

similar to the changes found with Ward’s where the defining characteristic of change was 

MASMI scores. In particular, going from a 4 to 5 clusters splits apart a cluster with just a low 

MARMI score into two groups with either a high or a low MASMI score and a low MARMI 

score. Similarly, going from a 5 to 6 clusters splits a cluster group with low scores on all cluster 

variables into two groups with low scores on the cluster variables with either a high or a low 

MASMI score.  As mentioned above, this distinction based on MASMI performance scores, 

which the 4-cluster solution suppresses, was valuable information so the best choice for the final 

cluster solution was either the 5-cluster solution or the 6-cluster solution. Given that both cluster 

solutions provided conceptually different cluster groups and there were moderate to large 

amounts of variance explained, the final cluster solution selected was the 6-cluster solution. The 

final 6-cluster solution demonstrated statistically significant differences between cluster groups 

on all cluster variables, Wilks’s λ (45, 571.205) = .017, p < .001, partial η
2
 = .559. See Table 10 
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for the raw score means, standard deviations, and partial eta squared values of the final cluster 

solution, and Figure 2 for a graphical representation of the average standardized means for each 

cluster variable by cluster group. This final 6-cluster solution is described in greater detailed in 

the next section. 

The last step was to validate the stability and replicability of the final cluster solution 

using the double-split cross-validation procedure. The guidelines for the double-split cross-

validation procedure are: (1) split the sample into two equal halves, (2) perform the two-step 

(Ward’s followed by K-means) cluster analysis on both halves, (3) combine the two datasets by 

reassigning similar cases into the same cluster group, (4) conduct a nearest neighbor analysis and 

(5) compare your assignment with the nearest neighbor analysis. By doing a nearest neighbor 

analysis, which reassigns half of the cases in your dataset to the most similar profile of the most 

similar case in the other, you can determine how well you did in cluster classification. Cohen’s 

kappa, which is a measurement of interrater reliability (κ > 0.60 indicates acceptable 

replicability), was then used as a way to check the stability and reliability of the cluster solution. 

For the 6-cluster solution, Cohen’s kappa was 0.536. This is a moderate level of agreement, 

which indicates that the cluster solution is somewhat stable and replicable. The lack of strong 

stability and replicability could be due to number of cluster variables used for this particular 

sample size, which is a limitation of this study. 

Cluster labels. I labelled each cluster group to reflect the level of each clustering 

variable, with a particularly emphasis on labeling clusters based on the more extreme values 

(high or low based on sample averages). Since I used standardized z-scores instead of raw scores 

to create the cluster groups, extremely high and low means for the clustering variables were the 

variables that had standardized means that were greater than 1 and less than -1, but the 
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standardized means that fall between -1 and 1 are moderately high and low. Also included are 

further descriptions of each cluster group focusing on raw scores instead of standardized scores 

in order to compare this sample’s performance scores across different studies. In particular, I 

interpreted all content knowledge scores using the NAEP Achievement Levels for grade 12, see 

Table 12 for a description of each achievement level. To interpret spatial visualization 

performance scores, I used previously published means, which were 21.49 and 22.49 for 

MASMI (Campos, 2009, 2012) and 8.90 for MARMI (Campos, 2012). Additionally, I used 

percentile ranks to interpret how well the participants in each cluster group did on the 

standardized intelligence measures.  

The first cluster group (n = 21, 14.89%) had participants with low average standardized 

scores on all clustering variables with seven out of the nine being extremely low. Specifically, 

the participants performed extremely low on numeracy, fractions, equivalence, algebraic 

reasoning, MASMI, crystallized intelligence, and fluid intelligence, and had low average 

performance scores on computational fluency and MARMI. Given these low average scores on 

all assessments and their extremely low average standardized scores on seven out of nine 

clustering variables, the label for this cluster group was Low All. With these scores, the 

participants in this cluster group had statistically significantly lower performance scores than 

participants in the other cluster groups on all clustering variables except for algebraic reasoning 

and computational fluency. The participants’ scores in the Low All cluster group were similar to 

the Moderate-High MASMI cluster groups’ participants’ scores for computational fluency and 

the Moderate-Low All and Moderate-High MASMI cluster groups’ participants’ performance 

scores for algebraic reasoning. In terms of raw scores, the participants in this cluster group 

averaged between 20-45% accuracy on all content knowledge variables, averaged less than 10 
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correct problems for both spatial visualization measures, were within the 21
st
 percentile for 

crystallized intelligence, and were within the 37
th

 percentile for fluid intelligence.  Their content 

knowledge accuracy performance placed them below basic level using the NAEP achievement 

level classification. This means that participants in the Low All cluster group were not able to 

solve the most basic of mathematical problems. In comparison to previously published means for 

the measures of spatial visualization, the participants in this cluster group were well below 

average for both their MARMI and MASMI scores, which were more than 7 points below the 

published means (e.g. 21.49 vs. 7.00, 22.49 vs. 7.00, and 8.90 vs. 1.14).  

The second cluster group (n = 22, 15.60%) had participants with moderately low average 

standardized scores on all clustering variables, with none being extremely low. Thus, the label 

for this cluster group was Moderate-Low All. Even though Low All and Moderately Low-All have 

participants with low average standardized scores on all clustering variables, they were 

statistically significantly differences on all clustering variables except for all the cognitive 

variables and algebraic reasoning. In raw score performance, the participants in this cluster group 

averaged between 45-50% accuracy on all content knowledge variables, averaged less than one 

correct problem for MARMI, averaged 11 correct problems for MASMI, was within the 37
th

 

percentile for crystallized intelligence, and was within the 47
th

 percentile for fluid intelligence. 

NAEP achievement level classifications suggested that participants in the Moderate-Low All 

cluster group were below the basic level for algebraic reasoning and equivalence, at or above the 

basic level for computational fluency, and at or above the proficient level for numeracy and 

fractions. This means that participants in this cluster group could not solve the most basic 

algebraic reasoning and equivalence problems, but could solve basic computational fluency 

problems as well as apply and integrate mathematical concepts for numeracy and fractions. 
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Similar to the participants in the Low All cluster group, the participants in the Moderate-Low All 

cluster group was also well below average for spatial visualization; both means were more than 

10 points below the published means. 

The third cluster group (n = 27, 19.15%) had participants with moderately high average 

standardized scores on all clustering variables except for the MARMI and MASMI variables, 

which were moderately low average standardized scores. Thus, the label for this cluster group is 

Moderate-Low Spatial. The participants in this cluster group averaged 60-78% accuracy on all 

content knowledge variables, averaged about two correct problems for MARMI, averaged  20 

correct problems for MASMI, was within the 63
rd

 percentile for crystallized intelligence, and 

was within the 77
th

 percentile for fluid intelligence. Some of their content knowledge scores were 

at or above the proficient level and others were at or above the advanced level. Specifically, the 

participants in the Moderate-Low Spatial cluster group were at or above proficient for 

computational fluency, numeracy, equivalence, and algebraic reasoning as well as at or above the 

advanced level for fractions. Even with moderately low spatial visualization scores, the 

participants in this cluster group had similar performance scores on all content knowledge 

variables as the participants in the sixth cluster group (i.e. High Spatial) that had extremely high 

spatial visualization scores. For spatial visualization comparisons, the participants in the 

Moderate-Low Spatial cluster group were below the published mean averages; both the MASMI 

and MARMI scores were at least two points below average. 

The fourth cluster group (n = 19, 13.48%) had participants with moderately low average 

standardized scores for all clustering variables except for one. Specifically, the average 

standardized scores for MASMI was moderately high while all other clustering variables were 

moderately low. Given the distinctive moderately high average standardized score on MASMI, 
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the label for this cluster group was Moderate-High MASMI. Even with a single clustering 

variable with a moderately high average standardized score, the participants in Moderate-High 

MASMI cluster group had similar performance scores to the participants in the Moderate-Low All 

cluster group on the content knowledge variables. The content knowledge raw scores were also 

similar to the participants in the Moderate-Low All cluster group with 40-63% accuracy. In 

particular, they were below basic for computational fluency and equivalence, at or above basic 

for fractions and algebraic reasoning, and at or above proficient for numeracy. As for the 

cognitive variables, the participants in Moderate-High MASMI cluster group had similar 

performance scores to the participants in the Moderate-Low Spatial cluster group on everything 

but MASMI. Their average crystallized intelligence standardized score was within the 47
th

 

percentile and their average fluid intelligence score was within the 70
th

 percentile. Additionally, 

their average MARMI raw score was below average with more than three points below the 

published mean. Conversely, on MASMI their average raw score was well above average at 14 

or more points above the published means.  

The fifth and largest cluster group (n = 37, 26.24%) had participants with moderately 

high average standardized scores on all clustering variable with no extremely low or high values; 

thus I labeled this cluster group Moderate-High All. The participants in this cluster group had 

raw score values at or above average for all clustering variables. The averages for their content 

knowledge scores were between 70-89%, which means that their performance was at or above 

both the proficient and advanced levels. Specifically, their scores were at or above proficient on 

computational fluency and equivalence, and were at or above advanced for numeracy, fractions, 

and algebraic reasoning. Additionally, their MASMI scores were more than 13 points above the 

published means. The only performance score that was not at or above average was MARMI. 
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Even though the participants in the Moderate-High All cluster group had an average MARMI 

scores that was the second highest among all cluster group averages, it was still about two points 

below the published average mean. In overall performance across all clustering variables, the 

participants in the Moderate-High All cluster group outperformed all other cluster groups’ 

participants by having the highest raw scores on five out of nine times. 

The sixth cluster group (n = 15, 10.64%) had participants with moderately high average 

standardized scores for all cluster variables with two of those scores being extremely high. 

Specifically, while the scores for MASMI and MARMI were extremely high, the average 

standardized scores on all content knowledge and intelligence cluster variables were moderately 

high, which were similar to the performance scores of participants in the Moderate -High All 

cluster group. Given that the two extremely high scores were measures of spatial visualization, 

the label for this cluster group was High Spatial. The raw score performance for the participants 

in this cluster group was 62-86% accuracy for all content knowledge variables, more than 50% 

accuracy for MARMI, more than 90% accuracy for MASMI, was within the 75
th

 percentile for 

crystallized intelligence, and was within the 90
th

 percentile for fluid intelligence. Similar to the 

Moderate-High All cluster group, this cluster group had content knowledge scores at or above 

both the proficient and advanced levels, but unlike the Moderate-High All group, their scores on 

algebraic reasoning were at or above the proficient level rather than at or above the advanced 

level. MASMI scores were also well above average like the Moderate-High All group, but the 

participants in the High Spatial group outperformed them on the MARMI with performance 

scores more than 20 points above the published means. 

Demographic characteristics. In addition to the differences in clustering variables, I 

also considered differences in the demographic variables. I performed a Chi-square Test of 
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Independence to determine if there was a difference in the proportion of students in each cluster 

group based on demographic characteristics. Given the number of participants and the variety of 

categories for some of the demographic variables, most demographic variables failed to meet the 

expected count assumption for Chi-square analysis, so for all the categorical demographic 

variables that were not already dichotomous I recoded them into dichotomous variables. For 

instance, the majority of students in this study majored in the natural sciences, so I reclassified 

the majors as STEM (Science, Technology, Engineering, and Mathematics) and Non-STEM (e.g. 

social sciences, fine arts business, etc.). In addition, the majority of participants in the sample 

were White, so I reclassified race/ethnicity to White and Non-White. I also changed school levels 

from a five classification to a dichotomous classification where freshmen and sophomores 

categorized as lowerclassmen and juniors, seniors, and 5+ seniors as upperclassmen.  

As shown in Table 13, Chi-square analyses revealed that there was no statistically 

significant difference for gender [χ
2
 (5) = 4.715, p = .460] and school level [χ

2
 (5) = 3.042, p = 

.693], but there were for race/ethnicity [χ
2
 (5) = 14.356, p = .013], major [χ

2
 (5) = 21.364, p = 

.001], and highest math course taken [χ
2
 (5) = 32.954, p < .001]. To identify the difference in 

cluster membership for each of the demographic variables I used the adjusted standardized 

residuals, which were the difference in the observed frequency and expected frequency. Large 

residuals values over 2.0, both positive and negative, identified any associations (Laerd 

Statistics, 2016). The race/ethnicity difference in cluster membership was driven by the more 

than expected number of Non-White participants in the Low All group (residual = 2.9).  The 

statistically significant difference in cluster membership for majors was because of the less than 

expected number of STEM participants in the Low All cluster group (residual = 2.5), less than 

expected number of STEM participants in the Moderate-Low All cluster group (residual = 2.7) , 
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and the more than expected number of STEM participants in the Moderate-High All cluster 

group (residual = 3.4). The difference in cluster membership for highest math course taken was 

because of the less than expected number of Calculus participants in the Low All cluster group 

(residual = 4.2) as well as more than expected number of Calculus participants in the Moderate-

High All cluster group (residual = 4.0). 

The only demographic variable that was continuous was the number of years since an 

algebra course; therefore, a one-way Analysis of Variance was conducted to determine if the 

number of years since an algebra course differed by cluster groups. There were some outliers for 

the Moderate-Low Spatial (n = 1), Moderate-Low All, (n = 4), and High Spatial (n = 1) cluster 

groups that were changed to the value of the nearest neighbor instead of being removed in order 

to keep the composition of each cluster group. There was also a lack of homogeneity of error 

variance as identified by Levene’s Test of Homogeneity of Variances (p = .003), but the data was 

normally distributed by inspection of Normal Q-Q Plot. Since there was a lack of constant 

variance a one-way Welch ANOVA revealed that the number of years since an algebra course 

was statistically significantly different between cluster groups, Welch’s F(5, 55.650) = 12.392, p 

< .001. The number of years increased from the Moderate-Low All (M = 2.73, SD = .985) to the 

Low All (M = 3.76, SD = 2.143), Moderate-High MASMI (M = 3.74, SD = 1.968), Moderate-Low 

Spatial (M = 4.11, SD = 2.225), High Spatial (M = 4.93, SD = 1.280), and Moderate-High All (M 

= 5.08, SD = 1.479) cluster groups in that order. Games-Howell post-hoc analysis showed that 

the statistically significant difference in cluster membership was because of the Moderate-Low 

All, High Spatial, Moderate-High All cluster groups. The participants in the Moderate-Low All 

cluster group had more than two years difference between the participants in the High Spatial 

and the Moderate-High All cluster groups, which mean that the Moderate-Low All cluster group 
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had more participants who have had an algebra course more recently as compared to the High 

Spatial and the Moderate-High All cluster groups. This could be because they have taken a 

college algebra course or they recently graduated from high school. 

Cluster Membership and Algebra Performance 

 The cluster memberships outlined above identified participant profiles with different 

combinations of strengths and weaknesses in content knowledge and cognitive abilities. Each 

profile had certain skills, understandings, and/or abilities that participants were good at, which 

could have a different association with their algebra performance (RQ2b). To determine if cluster 

membership made a difference in algebra performance, I conducted a one-way Analysis of 

Variance (ANOVA). Before analysis, I checked to ensure the data meet all assumptions such as 

no outliers, linearity, and homogeneity of variance. There were no outliers as assessed by 

inspecting a boxplot. The inspection of a Normal Q-Q Plot determined that algebra performance 

scores were normally distributed. In addition, there was a violation of homogeneity of variance 

as assessed by Levene’s Test of Homogeneity of Variances (p = .004), so a Welch ANOVA was 

performed instead. As shown in Table 14 and Figure 3, analysis revealed that there was 

statistically significant difference in algebra performance as a function of cluster membership, 

F(5, 56.603) = 18.896, p < .001. In particular, the participants in the High Spatial and Moderate-

High All cluster groups had similar algebra performance scores to each other but were 

significantly different from the algebra performance scores of participants in the rest of the 

cluster groups. Additionally, the participants in the Moderate-High MASMI and Moderate-Low 

All cluster groups had similar algebra performance scores to the participants in the Moderate-

Low Spatial and Low All cluster groups, but the participants in the Moderate-Low Spatial and 

Low All cluster groups had different algebra performance scores from each other. 
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 In describing the cluster groups, Chi-squared analyses indicated statistically significant 

differences in cluster membership for some demographic variables. The previous ANOVA 

analysis did not account for any of the demographic variables because they were categorical 

instead of continuous variables, so I performed a multiple regression analysis to determine if 

cluster membership made a difference in algebra performance after controlling for demographic 

characteristics. In this multiple regression analysis, the outcome measure was participants’ raw 

score on the algebra performance measure, and the predictor variables were the dichotomous 

demographic variables already shown to have statistically significant association with cluster 

membership (i.e., highest math taken, race/ethnicity, major, and the continuous variable of years 

since last algebra course). The demographic variables that were not statistically significant (i.e. 

gender and school level) were not included because they were not a differences in cluster 

membership that could be attributed to differences in algebra performance.  In addition, I used 

planned contrasts to compare cluster groups while controlling for these demographic variables.  

Planned contrast variables are an extended form of dummy coding that allows for 

researchers to examine mean differences between groups (Davis, 2010). They are categorical 

variables like cluster membership, but instead of the values denoting cluster membership they 

were coded to denote the cluster groups being compared. For example, for the comparison of 

clusters groups 1 and 3, the planned contrast variable would be (1, 0, -1, 0, 0, 0).  Cluster groups 

1 and 3 have the values of 1 and -1 because they are the comparison groups. In addition, each 

contrast was orthogonal so that each contrast was not affected by other contrasts (Davis, 2010). 

To construct orthogonal contrasts, the sum of the cluster membership values should equal to zero 

as well as the summation of the cross product of each contrast to another contrast. The advantage 

of using orthogonal contrasts is that it accounts for issues of suppression effects when comparing 
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groups within a regression model; however, it also restricts cluster group comparisons, which 

makes it difficult to do pairwise comparisons. 

 In this model, I created five planned contrasts, which examined group comparisons 

based on theoretical implications for the differences in cluster groups, which the differences in 

clustering variables identified. Specifically, the first three contrasts examined differences in 

cluster groups based on participants’ levels of content knowledge to address the question of 

whether or not there were differences between cluster groups whose participants had different 

levels of content knowledge or similar levels of content knowledge. The last two contrasts 

investigated differences in participants’ cognitive abilities given participants’ similar levels of 

content knowledge (e.g., whether or not there were differences in algebra performance for cluster 

groups that had participant performance that varied for spatial visualization and fluid intelligence 

abilities but had similar levels of content knowledge).  I describe the five contrasts in more detail 

below in the presentation of the findings. 

 See Table 15 for the results of the multiple regression analysis. The multiple regression 

model statistically significantly predicted algebra performance, F(9, 131) = 12.273, p < .001, and 

met all assumptions. There was independence of observations as determined by a Durbin-Watson 

statistic of 2.129. There was linearity as assessed by partial regression plots and a plot of 

studentized residuals against predicted values. There was somewhat of a straight horizontal line 

for all plots except for Highest Math Taken-Calculus or Above and the orthogonal contrast 

between participants within the low and high content knowledge cluster groups, which showed 

an upward sloping line. The Breusch-Pagan Test for Heteroscedasticity demonstrated constant 

variance, χ
2 

(1, N = 140) = 11.213, p = .261). There were no issues of multicollinearity as 

assessed by all correlation coefficients below 0.70 and all tolerance values greater than 0.10. 
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There were no outliers as assessed by not having any studentized deleted residuals at ±3, and no 

influential or leverage points as assessed by no Cook’s distances above 1 and no leverage values 

greater than 0.2. Lastly, the Normal Q-Q Plot showed that the data points follow the line closely 

enough to be approximately normally distributed. The predictors explained 42% of the variance 

in algebra performance, R
2
 = .457, Adjusted R

2
 = .420. The only statistically significant 

demographic predictor was the highest math course taken. Taking at least one calculus course 

predicted a 1.652 point increase in algebra performance, which suggests that the increased 

exposure to mathematics improves algebra performance. As for group comparisons, only two of 

the five contrasts were statistically significantly different.  

The first contrast investigated the differences between participants’ algebra performance 

scores of those within low content knowledge cluster groups (i.e. Low All, Moderate-Low All, 

and Moderate-High MASMI) and the high content knowledge cluster groups (i.e. Moderate-High 

All, High Spatial, and Moderate-Low Spatial). The most basic assumption when examining 

group difference is that better performance is associated with being more knowledgeable. The 

comparison of participants within these cluster groups helped to provide evidence for this basic 

assumption. Even though this contrast was a given, it was included in the regression model 

because differences in content knowledge was one of the main distinctive features of cluster 

membership, and it was assumed that it would explain a good portion of the variance in algebra 

performance.  As expected, results revealed that there was a statistically significant difference 

between participants’ algebra performance scores for those in the low content knowledge cluster 

groups and the high content knowledge cluster groups, which being in the high content 

knowledge cluster groups predicted a 5.179 point increase in participants’ algebra performance 

scores. 
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The next two contrasts compared the differences in algebra performance between 

participants in the cluster groups with similar levels of content knowledge. Specifically, I 

compared the participants in all of the high content knowledge cluster groups to each other, and 

the participants in all of the low content knowledge groups to each other. Rules for orthogonal 

contrasts dictated that to compare the participants of three cluster groups I would need to 

combine two cluster groups together. Orthogonal contrasts also allowed for the direct 

comparison of the participants of the two combined cluster groups. Therefore, the choice of 

which two cluster groups to combine had to make sense theoretically.  

I chose to combine the participants in the High Spatial and Moderate-Low Spatial cluster 

groups and the participants in the Moderate-Low All and Moderate-High MASMI cluster groups. 

The reason I chose these particular cluster groups was because both pairs of cluster groups had 

participants with similar content knowledge and crystallized intelligence scores but different 

spatial visualization and fluid intelligence scores. The only differences between the participants 

in the cluster group pairs were their levels of content knowledge. Participants in the High Spatial 

and Moderate-Low Spatial cluster groups had moderately high levels of content knowledge 

while participants in the Moderate-Low All and Moderate-High MASMI cluster groups had 

moderately low levels of content knowledge. By comparing, the participants in these cluster 

groups (i.e. High Spatial vs. Moderate-Low Spatial and Moderate-Low All vs. Moderate-High 

MASMI), I could make possible conclusions about how content knowledge might interact with 

cognitive abilities, and in particular did the differences in participants’ spatial visualization and 

fluid intelligence abilities support their algebra performance irrespective of their level of content 

knowledge.  
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Thus, for the investigation of the differences in algebra performance scores of 

participants with similar levels of content knowledge, I combined the two cluster groups that I 

wanted to do a pairwise comparison for later on. In particular, I compared the participants in 

Moderate-High All cluster group to the combined performance of participants in the Moderate-

Low Spatial and High Spatial cluster groups as well as the participants in the Low All cluster 

group to the combined performance of the participants in the Moderate-Low All and Moderate-

High MASMI cluster groups. The analysis showed that there was no statistically significant 

difference in algebra performance scores for participants for either level of content knowledge. 

Specifically, the Moderate-High All cluster group had participants’ algebra performance scores 

that were similar to the algebra performance scores of participants in the Moderate-Low Spatial 

and High Spatial cluster groups combined. In addition, the algebra performance scores of 

participants in the Low All cluster group were similar to the algebra performance scores of the 

participants in the Moderate-Low All and Moderate-High MASMI cluster groups combined. This 

suggests that even with differences in the performance scores for content knowledge and 

cognitive abilities, participants with similar levels of content knowledge had similar algebra 

performance scores.  

The fourth contrast compared cluster groups based on participants with similar levels of 

content knowledge but different levels of spatial visualization and fluid intelligence. Specifically, 

the contrast examined the differences between the participants in the Moderate-Low Spatial and 

High Spatial cluster groups. The comparison of the participants in these two cluster groups 

helped to determine if cognitive abilities supported algebra performance irrespective of 

moderately high content knowledge, since their participants had similar levels of moderately-

high content knowledge but differed in terms of spatial abilities and fluid intelligence. Analysis 
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indicated that the participants in the Moderate-Low Spatial group had statistically different 

algebra performance scores from the participants in the High Spatial cluster group. In particular, 

being in the High Spatial cluster group increased participants’ algebra performance scores by 

1.340 points. This suggests that having stronger spatial visualization and fluid intelligence 

abilities was associated with higher algebra performance scores for those students who already 

have moderately high content knowledge. 

Lastly, the fifth planned contrasts also compared cluster groups who had participants with 

similar performance scores on the content knowledge variables but were different on spatial 

visualization and fluid intelligence. Instead of examining the differences between two cluster 

groups with participants with moderately high content knowledge this contrast examined the 

differences between two cluster groups with participants with moderately low content 

knowledge. In particular, the contrasts compared the differences between participants in the 

Moderate-Low All and the Moderate-High MASMI cluster groups. Thus, the comparison of 

Moderate-Low All and Moderate-High MASMI helped to clarify if participants’ differences in 

spatial visualization and fluid intelligence related to their algebra performance given the 

similarity between their moderately low content knowledge scores. Results indicated that there 

were no statistically significant differences between the participants in the Moderate-Low All and 

Moderate-High MASMI cluster groups. This suggests that for students with moderately low 

content knowledge stronger spatial visualization and fluid intelligence skills are not enough to 

show higher algebra performance scores.  

Even though the multiple regression analysis did not allow for the same pairwise 

comparisons as the one-way ANOVA, the planned contrasts indicated that the analyses shared 

similar results. In particular, participants in the low content knowledge cluster groups (i.e. Low 
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All, Moderate-Low All, and Moderate-High MASMI) had similar algebra performance scores. 

Participants in the high content knowledge cluster groups (i.e. Moderate-High All, High Spatial, 

and Moderate-Low Spatial), on the other hand, had varying levels of algebra performance scores. 

In particular, the participants in the Moderate-Low Spatial group had different algebra 

performance scores than the participants in the Moderate-High All and High Spatial cluster 

groups, but had similar algebra performance scores to the participants in the low content 

knowledge cluster groups of Moderate-Low All and Moderate-High MASMI.  In contrast, 

participants’ spatial visualization scores were not classified based on just high or low scores for 

the all spatial visualization variables. Instead, there was a high spatial group (i.e. High Spatial 

and Moderate-High All), a low spatial group (i.e. Low All and Moderate-Low All), and a mixed 

spatial group (i.e. Moderate-Low Spatial and Moderate-High MASMI). The low and high spatial 

groups had participants with similar performance scores for both MASMI and MARMI, but the 

mixed spatial group had participants with similar MARMI scores but different MASMI scores. 

Unlike the content knowledge groups, there was no statistically significant difference in algebra 

performance for participants within these groups, but there was similarity in participant 

performance scores across cluster groups. Specifically, both mixed spatial cluster groups had 

participants with similar algebra performance to the participants in the Moderate-Low All cluster 

group, but only participants in the Moderate-High MASMI cluster group had similar algebra 

performance scores to participants in the Low ALL cluster group.  
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CHAPTER 5: Discussion 

Previous research on improving students’ algebra performance has focused on 

instructional approaches and students’ content knowledge (e.g. Blanton et al., 2015; Ketterlin-

Geller, Gifford, & Perry, 2015; Sfard & Linchevski, 1994). The assumption was that better 

instructional practices and math skills would more likely lead to better performance. Even 

though changes in instructional approaches and students’ content knowledge have been 

somewhat effective in improving students’ algebra performance, there is still more to understand 

(Kloosterman, 2016; Kloosterman & Lester, 2004; Kloosterman & Lester Jr., 2007). Prior 

research on pre-algebra knowledge demonstrated that domain general and domain specific 

factors such as cognitive abilities and content knowledge related to pre-algebra performance, but 

there is a lack of corroboration for these findings with investigations focused on algebra 

performance. Thus, this study aimed to extend the research on algebra performance by 

examining the connection students’ cognitive abilities and content knowledge may have on 

algebra performance. This study also extends previous research by taking a person-oriented 

approach, which allows for the identification of different constellations of skills associated with 

algebra performance. The research findings provide a more nuanced understanding of algebra 

performance as well as new insights into how different combinations of skills, understandings, 

and/or abilities related to algebra performance. 

Predictors of Algebra Performance 

Similar to prior research, the current study suggested that both content knowledge and 

general cognitive abilities are associated with algebra performance. However, contrary to my 

hypothesis, the skills related to algebra performance were not fluid intelligence, algebraic 

reasoning, equivalence, and numeracy. I assumed that given their seemingly close relation to 
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algebra they would be significant predictors. Instead, the regression analysis revealed that 

fraction knowledge and spatial imagery better predicted algebra performance along with the 

control variable for calculus as the highest math course taken. The finding regarding prior 

calculus course completion also seemed to indicate that exposure to higher-level mathematics 

may improve algebra performance because algebraic concepts are integrated within higher-level 

mathematics. The reason that fractions and spatial imagery were positively associated with 

algebra performance could be because they each have something to do with understanding 

relationships. In particular, fraction knowledge helps with working with quantitative 

relationships while spatial imagery helps with identifying the relationships between knowns and 

unknowns variables. 

Fraction are another form of numbers that can speak to the value of discrete (e.g. the 

number of objects) and continuous (e.g., length, area, volume) quantitates. Reasoning with these 

values requires an understanding of the relationship between numbers and operations, which 

prior research has connected to algebra performance. Siegler et al. (2012) theorized that fraction 

knowledge is important for algebra because understanding fractional magnitudes help with 

estimating values of unknowns and evaluating the reasonableness of algebraic equations. As 

Siegler et al. (2012) explained, when given the equation 
3

4
𝑥 = 6, understanding fractions allows 

you to see that the value of the unknown is slightly larger than six because you understand how 

multiplication works with fractions. Similarly, linear functions use fractions to denote the ratio 

between the independent and dependent variable, which when multiplied by a value of the 

independent variable determines a value for the dependent variable. By understanding how 

multiplication works with fractions, students can also understand the multiplicative relationship 

between the independent and dependent variables of a linear function.  
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Spatial imagery focuses on the mental transformation of images such as putting things 

together or taking them apart. This is also similar to understanding relationships because Terao et 

al. (2004) found that visuospatial regions of the brain activated when participants constructed an 

equation from a problem statement, which requires an understanding of the relationships 

between the known and unknown elements of a problem. Similarly, Tolar et al. (2009) suggested 

that spatial visualization, which includes spatial imagery, was linked to problem solving abilities. 

Problem solving abilities also involve identifying the relationship between knowns and 

unknowns. Moreover, Chrysostomou et al. (2013) found that those who had higher spatial 

imagery had better algebraic reasoning achievement, and connected to the algebraic reasoning 

skills of functional thinking, generalization, and modelling is the ability to understand 

relationships between quantities as well as known and unknown variables.  

My current research findings are both consistent and inconsistent with prior research.  

The consistency was mostly for the fact that I examined both content knowledge and general 

cognitive abilities as predictors of algebra performance. Only one particular study, Tolar et al. 

(2009), closely resembled my current study. Both studies investigated content knowledge and 

cognitive abilities as factors associated with algebra performance of college students, and 

defined algebra performance in terms of symbolic algebra. Also consistent with Tolar et al. 

(2009) was the fact that past algebra education and spatial visualization were directly connected 

with algebra performance. As much as the current study and Tolar et al. (2009) had their 

similarities in sample population and some findings, there were inconsistencies in the design that 

were in turn reflected in the results. In particular, Tolar et al. (2009) examined only four factors 

while the current study examined nine different factors. The addition of more content knowledge 

and cognitive ability factors may help to explain the differences between the two studies in the 
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relation between computational fluency and algebra performance. Computational fluency was no 

longer directly associated with algebra performance; instead, fraction knowledge took precedent. 

In addition, the results indicated that a specific form of spatial visualization connected to algebra 

performance instead of a composite measure. 

The current study was also inconsistent with prior research in terms of the specific factors 

theorized to be connected to algebra performance. While past research would consider content 

knowledge as basic numerical competencies (e.g. Geary, 2011; Passolunghi & Lanfranchi, 

2012), the current study considered content knowledge in similar ways to the algebra readiness 

research (e.g. Ketterlin-Geller & Chard, 2011; Ketterlin-Geller et al., 2015). This perspective 

allowed for the identification of additional potential content knowledge factors not previously 

considered by those who studied the predictors of algebra performance. For example, researchers 

studying the predictors of algebra performance have not considered fraction knowledge. Their 

focus has been on students’ understanding of whole numbers and their properties as well as 

calculation and word problem solving skills (e.g. Fuchs et al., 2012, 2016). This is mostly 

because their research populations are in the elementary grades that have not begun to learn 

about fractions. The lack of consideration given to fractions neglects the fact that the entire 

number system, which includes whole numbers, fractions, and decimals, lays the foundation for 

learning algebra as well as many other mathematical subjects. 

Another inconsistency was that most studies about the predictors of algebra performance 

examined grade levels without formal algebra instruction. By studying the earlier grades on pre-

algebra knowledge, researchers hoped to find the foundational mathematics skills that would 

support the learning of algebra, and alleviate mathematical learning difficulties  (e,g, Caviola et 

al., 2014; Vukovic et al., 2014; Ye et al., 2016). The present study also wanted to determine what 
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skills would help to alleviate mathematical learning difficulties, but instead of investigating the 

foundational skills before instruction, this study investigated the foundational skills after 

instruction. Unlike previous studies, I aimed to identify which existing skills would predict 

current algebra performance, and more specifically which existing skills currently support strong 

algebra performance given that time has elapsed since formal instruction.  By taking a top down 

approach rather than the bottom up approach, I hoped to determine which developed skills might 

alleviate mathematical learning difficulties.  

The current findings suggested that, after formal algebra instruction, both fraction 

knowledge and spatial imagery statistically significantly predicted algebra performance. 

Unfortunately, very few studies have examined fractional knowledge and spatial imagery in 

relation to algebra performance. Some have made theoretical claims about fraction knowledge 

and spatial imagery (e.g. Kilpatrick & Izsak, 2008; Mix & Cheng, 2012; National Mathematics 

Advisory Panel, 2008; Wu, 2001), but few have proven it with empirical evidence. The present 

study adds to this literature by showing that even when considering other forms of mathematical 

content knowledge (e.g. computational fluency, understanding of equivalence, numeracy) and 

cognitive abilities (e.g. crystallized and fluid intelligence), fraction knowledge and spatial 

imagery stand out as important factors related to algebra performance. Thus, it may be prudent 

for teachers to focus on developing students’ fractional knowledge and spatial imagery skills in 

preparation for formal algebra instruction. 

Cognitive Abilities and Content Knowledge Profiles and Algebra Performance 

Previous research has shown that content knowledge and cognitive abilities are 

associated with algebra performance. It has even identified which forms of content knowledge 

and cognitive abilities have a strong association. What previous research does not explain is how 
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different combinations of content knowledge and cognitive abilities may change algebra 

performance. Thus, the present study sought to identify these different combinations of content 

knowledge and cognitive abilities and their relation to algebra performance. Specifically, I 

conducted a cluster analysis to identify groups of participants with similar performance on all 

predictors within the group, but had different performance on all predictors across groups. The 

subsequent one-way ANOVA analyses determined the differences between each group, and 

interpretations of these differences explained the different combinations of skills, knowledge, 

and/or abilities that can contribute to changes in algebra performance. 

The results of the cluster analysis indicated that within the current sample there were six 

cluster groups with different levels of content knowledge and cognitive ability performance. The 

speculation about the types of groups that would emerge held true for the idea that there would 

be separate groups based on strengths and weaknesses for content knowledge or cognitive 

abilities, but did not for the idea that there would be defined groups characterized by certain 

types of skills sets. The lack of defined skill sets could be because the 6-cluster solution 

suppressed any skill set differences. The sample size of the current study limits the number of 

possible cluster solutions. With more clusters, it may be possible to find skill set differences, but 

with the current study, the more salient differences were for overall performance on both content 

knowledge and cognitive ability measures and spatial visualization. Specifically, there were two 

groups with low performance on all variables (i.e. Low All and Moderate-Low All), one group 

with high performance on all variables (i.e. Moderate-High All), and three groups that had 

distinguishable differences in spatial visualization performance in comparison to content 

knowledge and intelligence (i.e. Moderate-Low Spatial, Moderate-High MASMI, High Spatial). 

Unlike the results of the regression analysis, fractions did not appear to be a key factor in 
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differentiating among clusters.  Fractions may not have contributed to the creation of the cluster 

groups because there were larger differences in participants’ spatial visualization performance 

scores in which to group cases than there were for fractions. In addition, not captured by the 

cluster analysis is the fact that fractions have a higher association with algebra performance such 

that even when accounting for its association with other predictors it still stood out, and because 

the clusters were not based on its association with algebra performance fraction knowledge did 

not stand out when clustering participants. 

Differences in clustering variable performance suggested that cluster group spatial 

visualization differences can vary regardless of the level of content knowledge and/or 

intelligence. This was evident by the content knowledge and/or intelligence performance scores 

similarities for the participants in cluster groups with differences in spatial visualization 

performance scores.  For example, the participants in the Moderate-Low All group and 

Moderate-High MASMI group had different performance scores on both measures of spatial 

visualization, yet they had similar moderately low content knowledge performance scores (see 

Figure 4). The participants in the Moderate-Low Spatial group and High Spatial group also had 

different performance scores on both measures of spatial visualization, but they had similar 

moderately high content knowledge performance scores  (see Figure 5). Moreover, the 

participants in the Moderate-High All and High Spatial groups had different performance scores 

on both measures of spatial visualization, but had similar performance scores on all content 

knowledge and intelligence variables (see Figure 6). Also highlighted was the fact that the 

cluster group with the highest participants’ raw score averages for five out of nine clustering 

variables was the Moderate-High All cluster group, which is not one of the cluster groups with 

distinctive participants’ performance scores for spatial visualization.  These findings would 
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suggested that even though there were identifiable variations in spatial visualization performance 

scores, the participants in the cluster groups were mostly different based on their overall low and 

high performance scores on both content knowledge and cognitive abilities measures.  

As for algebra performance, interpretations of both the one-way ANOVA and multiple 

regression analysis suggested that the same differences between cluster groups existed even 

when controlling for demographic characteristics. With the similarities in results for both the 

multiple regression and one-way ANOVA analysis, I used the ANOVA post hoc analysis results 

as the primary for interpreting the relation between cluster membership and algebra performance, 

and the results of the multiple regression analysis were a supplement. The results indicated that 

similar to previous research both content knowledge and cognitive abilities were associated with 

algebra performance. As shown in Table 14 and Figure 2, the highest algebra performance scores 

were for those participants in clusters groups with both high content knowledge and high 

cognitive abilities, and lower algebra performance scores accompanied lower cognitive abilities 

or content knowledge performance scores.  

Additionally, the current findings suggested that higher algebra performance scores 

occurred for participants with higher levels of overall content knowledge as indicated by the 

difference in algebra performance scores for participants within the Moderate-High All and 

Moderate-High MASMI cluster groups (see Figure 7). These two cluster groups shared similar 

performance scores on the spatial visualization variables and fluid intelligence, but were 

different on all content knowledge variables and crystallized intelligence. Thus, the difference in 

algebra performance scores suggested that higher content knowledge and stronger crystallized 

intelligence scores demonstrated higher algebra performance scores.  
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The research finding also suggested that there were specific combinations of content 

knowledge and cognitive abilities that were associated with higher algebra performance scores. 

In particular, the combination of strong spatial visualization abilities, strong fluid intelligence, 

and high content knowledge was associated with higher algebra performance scores as found by 

the comparing participants within the High Spatial and Moderate-Low Spatial cluster groups (see 

Figure 5), the participants within the High Spatial and Moderate-High All cluster groups (see 

Figure 6), and the participants within the Moderate-High MASMI and Moderate-Low All cluster 

groups (see Figure 7). In addition, stronger fraction, numeracy, algebraic reasoning, and spatial 

imagery skills appear to be associated with higher algebra performance scores as seen by 

comparing participants within the Moderate-High All cluster group and the participants in the 

Moderate-Low Spatial cluster group (see Figure 8). 

The participants in the High Spatial and Moderate-Low Spatial cluster groups had similar 

performance scores for all content knowledge variables, but had different performance scores on 

spatial visualization and fluid intelligence (see Figure 5). In particular, the participants in the 

High Spatial cluster group had higher mean averages for spatial visualization and fluid 

intelligence. Their difference in algebra performance scores showed that the High Spatial cluster 

group’s participants had a statistically significant higher scores on algebra performance than the 

Moderate-Low Spatial cluster groups’ participants, which suggested that the stronger spatial 

visualization and fluid intelligence abilities of the participants in the High Spatial cluster group 

might have contributed to better scores on algebra performance.  

Additionally, participants within the High Spatial and Moderate-High All were different 

only on the measures of spatial visualization (see Figure 6). The similarity between their algebra 

performance scores suggested that spatial visualization skills alone are not enough to 
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demonstrate higher algebra performance scores. On the other hand, the participants within the 

Moderate-High MASMI and Moderate-Low All cluster groups were very similar to the 

participants within the Moderate-Low Spatial and High Spatial cluster groups in differences in 

clustering variables (see Figure 4 and Figure 5). They too were only different for their scores on 

spatial visualization and fluid intelligence, but the participants in these cluster groups 

demonstrated low levels of content knowledge instead. The lack of difference in their algebra 

performance scores suggests that for participants with low levels of content knowledge, stronger 

spatial visualization, and fluid intelligence abilities may not be enough to yield higher algebra 

performance scores. Taken together the results of these three comparisons suggest that it is the 

combination of stronger spatial visualization, fluid intelligence abilities, and moderately high 

levels of content knowledge that may best support higher algebra performance scores rather than 

any of these skills by themselves.  

Moreover, the participants in the Moderate-High All cluster group and the Moderate-Low 

Spatial cluster group had similar performance scores on all content knowledge and cognitive 

ability assessments except for numeracy, fractions, algebraic reasoning, and MASMI (see Figure 

8). The statistically significant higher algebra performance scores for the participants in the 

Moderate-High All cluster group over the Moderate-Low Spatial cluster group suggested that 

stronger skills in numeracy, fractions, algebraic reasoning, and MASMI might have contributed 

to the difference in algebra performance.  

These research findings confirmed my hypothesis that better cognitive abilities (e.g., fluid 

intelligence, spatial visualization) may support better algebra performance scores, but the fact 

that the better cognitive abilities occurred in addition to high content knowledge was surprising. 

This was a surprising finding because I would logically assume that better cognitive abilities 
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would support better algebra performance scores irrespective of level of content knowledge.  

One possible explanation would be that the relative differences in content knowledge are more 

salient at this level of knowledge. In particular, the High Spatial cluster group’s advanced 

achievement level in numeracy and fractions may have contributed to the differences in algebra 

performance. Unfortunately, the information provided by the current study does not allow for 

definite conclusions on this matter, but the statistically significant difference in algebra 

performance for Moderate-High All and Moderate-Low Spatial suggested that this assumption 

could be true.  

Even though it is the beyond the scope of this study to uncover why or how these 

different combinations of skills, understandings, and/or abilities relate to algebra performance, 

the results did provide a more nuanced understanding of how the factors of content knowledge, 

spatial visualization, and intelligence could contribute to differences in algebra performance. The 

understanding was that there are two circumstances associated with higher algebra performance 

scores:  students who had strong spatial visualization skills, strong fluid intelligence skills, and 

high content knowledge or students who had strong fraction knowledge, numeracy skills, 

algebraic reasoning skills, and spatial imagery skills. 

Variable-Oriented vs. Person-Oriented: What do the differences mean? 

Most studies about the predictors of algebra performance have taken a variable-oriented 

approach that emphasizes the independent relation of each predictor variable on the average 

performance of the whole sample. Few have considered a person-oriented approach that 

emphasizes individual patterns of development. Research that has come close to the person-

oriented approach were the studies that focused on understanding common errors and 

misconceptions of specific topics based on group level performances (e.g. Booth, 1988; 
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Kuchemann, 1978). These studies were individual interviews that drew conclusions about the 

whole sample instead of evaluating individual patterns of development for different 

combinations of skills, knowledge, and/or abilities related to algebra performance.  

Investigating individual patterns of development highlights how combinations of skills, 

knowledge, and/or abilities can differentially predict algebra performance that the variable-

oriented approach may obscure. For instance, findings from the regression analysis suggested 

that fraction and MASMI scores predicted algebra performance scores while the cluster analysis 

suggested that a noticeable difference in algebra performance occurs when you have strong 

content knowledge in addition to strong spatial visualization abilities and fluid intelligence. 

Additionally, the cluster analysis suggested that other skills that related to algebra performance 

were numeracy and algebraic reasoning. The only findings shared between the regression 

analysis and cluster analysis were the importance of taking at least one calculus course and 

spatial visualization. In both analyses those who had taken a calculus course had higher 

performance scores compared to those who had only taken at least one algebra course, 

trigonometry, or pre-calculus course, and strong spatial imagery abilities were defining factors 

for high algebra performance. 

The differences found between the cluster and regression analysis highlight the fact that 

there are certain patterns of relations among the clustering variables that multiple regression may 

or may not detect. The multiple regression analysis has limited capacity to identify these 

relationships.  The regression model does not automatically account for these unless it is a 

predetermined addition to the model in terms of an interaction term. Their detection depends 

upon whether or not there is sufficient power within the model to detect statistically significant 

associations, which depends upon sample size and the number of predictors (Hair et al., 2009). 
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Too many or too little in sample size and the number of predictors can change the outcome of the 

multiple regression. While cluster analysis may bring our attention to the sorts of relationships 

missed by regression analysis, it is a more subjective research methodology. It requires the 

researcher to make decisions based on theoretical implications guided by statistical outcomes. 

This means that generalizability of the research findings depends on researchers coming to the 

similar conclusions. This may be difficult because each researcher has his or her own theoretical 

framework for identifying clusters.  Nevertheless, the information gleaned from the cluster 

analysis gives new insight to algebra performance given the limitations of the multiple regression 

analysis.  

Limitations  

 There are a number of limitations for this study. The first limitation would be for the 

sample population, which are college students whose exposure to mathematics goes beyond 

algebra. Most prior research on algebra performance has examined grade levels without formal 

algebra instruction or those who are just beginning to learn algebra. It is possible that the 

exposure to additional math topics altered the association between algebra performance and the 

content knowledge variables, and would alter the findings from this study. Therefore, it is 

necessary to replicate this study with beginning algebra students in order to be able to generalize.  

Similarly, the current study’s small sample size is also a limitation of the study that could 

alter the findings. The plan was to conduct the study with 200 participants, which apriori power 

analyses suggested would be sufficient for about 80% - 95% power depending on the statistical 

analysis. Additionally, these power analysis were made with the assumption that the present 

study would have a medium effect size (i.e. f 
2
 = .15 or f = .25) (Faul, Erdfelder, Lang, & 

Buchner, 2007). The actual sample size for the current study was 141 participants, which is 
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smaller the targeted number of participants. Even though I was not able to run 200 participants, 

the calculated effect sizes for the multiple regression and ANOVA analyses were large (i.e. f 
2 

> 

.35  or f  > .40) instead of  the assumed medium effect (Faul et al., 2007) . For the multiple 

regression analysis to determine the strongest predictors of algebra performance the calculated 

effect size was 1.159, and the one-way ANOVA and multiple regression analysis used to 

determine the differences in algebra performance based on cluster membership had calculated 

effect sizes of 0.834 and 0.845 respectively.  The larger effect sizes meant that I was able to 

achieve 95% power with a smaller sample size, so the multiple regression and ANOVA analyses 

had sufficient power with only 141 participants instead of the targeted 200. The only analysis 

that the small sample size may have affected was the cluster analysis. The recommended sample 

size for cluster analysis is 2
m
, where m is the number of clustering variables. In the present study, 

there were 9 clustering variables, so the recommended sample size was 2
9
 = 512. The current 

sample size of 141 is much smaller than the suggested 512. This smaller sample size would have 

limited the number of cluster groups found, the number of participants within each cluster group, 

changed the general make-up of the types of clusters groups found, as well as possible changed 

the differences in algebra performance between cluster groups. In the current study, the biggest 

impact that the small sample size had was on the number of clusters found. As shown in Table 9, 

the amount of explained variance in the cluster variables was higher with more cluster groups, 

which suggested that there was more differentiation in participant performance scores on the 

cluster variables that may denote more types of participants. This differentiation could have 

signified more combinations of content knowledge and cognitive abilities that may relate to 

participants’ algebra performance scores. Nevertheless, the results found in the current study 
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have given the first indication that there are certain combinations of content knowledge and 

cognitive abilities that are associated with better algebra performance scores.  

Another limitation is that each content knowledge assessment had a time limit, which 

may or may not have been enough for all participants. Very few participants finished each 

assessment, even though pilot testing showed that all assessments could be finished within the 

given period. This means that the score of zero for incorrect and blank answers may not be an 

accurate representation of the knowledge participants had.  

In addition to the time limit, most content knowledge measures were also researcher 

designed measures that had some design flaws. One particular design flaw was the issues of 

counterbalancing problem types. Not all assessments made sure that participants were able to see 

all problem types no matter if they finished or not. Specifically, the numeracy and algebra 

performance assessments had issues with counterbalance. For numeracy, the problem was that all 

addition problems and subtraction problems came before all the multiplication problems and 

division problems. This was an issue when participants focused on using algorithms instead of 

their knowledge of the properties of numbers and operations to answer the problem because the 

focus on doing the algorithms rarely got them beyond the addition or the subtraction problems 

within three minutes, and they missed the multiplication and division problems. Unlike the 

numeracy assessment, I tried to counterbalance the algebra performance assessments, but the 

procedure that I used did not provide true randomization. The assessment ended up with all the 

factoring and exponent questions at the end of the tests, which some students did not reach. A 

better way to counterbalance would be to make sure that one question out from each item 

category would end up in each half of the test in a randomized order.  
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Another design flaw was for the types of questions used to assess the mathematical 

content knowledge. This is an issue because there are many different ways to measure the 

mathematical content knowledge. For instance, Tolar et al. (2009) measured computational using 

the ‘number facility’ subtest of the ETS Kit of Factored-Referenced Cognitive Tests, which 

measured computational fluency with both multi-digit calculation problems and problems that 

had participants determine if the suggested as was correct for the given problem. I on the other 

hand only measured computational fluency with multiple multi-digit calculation problems, which 

could possible account for the differences in the results for computational fluency. Similarly, 

Hecht, Close, and Santisi (2003) and  Hecht and Vagi (2010) measured fraction knowledge with 

assessments for computing fractions, estimating fractions, word problems, comparing fractions, 

and identifying fractions while  I based my fraction assessment off of the assessment designed by 

G. Brown and Quinn (2007). Their assessment measured fraction knowledge for algorithmic 

applications, word problems, elementary algebraic concepts, arithmetic skills, structure of 

rational numbers, and computational fluency. The inconsistency of assessments between research 

studies makes it difficult to know if the questions used are an accurate representation of the 

mathematical content knowledge. All that guides us is whether or not the internal consistency of 

the assessment has an acceptable Cronbach’s Alpha value of 0.70 or better, but this only 

provides evidence that the questions we are using are measuring the same construct, which may 

or may not be the same given another set of questions.  

The algebra performance assessment was also a limitation of this study. This study 

defined algebra performance in similar ways to Tolar et al. (2009), whose definition is the ability 

to solve algebra problems using pre-learned symbolic manipulation algorithms. The heavy 

emphasis on symbolic algebra may not be an accurate representation of what algebra is. The 
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choice for focusing on symbolic algebra was to make sure that it did not overlap with the 

algebraic reasoning assessment. If I could change the algebra performance assessment, I would 

probably put more emphasis on application type questions. I think this would have shown 

participants ability to both demonstrate symbolic knowledge as well as reasoning skills. The only 

downside to the application questions would be that I would have to eliminate algebraic 

reasoning as a predictor variable in multiple regression analysis because of possible issue with 

being highly related to the outcome measure; however, it would not be a problem with a cluster 

analysis, and is worth considering. 

Implications 

 Although more work is needed to have a better understanding of why factors such as 

fraction knowledge and spatial imagery (a.k.a. MASMI) predict algebra performance, their 

statistically significance in the regression model suggest that, in preparation for formal algebra 

instruction, it may be useful for students to develop their fraction knowledge and spatial imagery 

skills. Spatial imagery development may be as simple as encouraging students to draw more 

pictures when trying to solve problems or using more pictorial based problems solving method 

such as the Singapore Model Method (e.g. Lee & Ng, 2009). On the other hand developing 

fraction knowledge can be more challenging. Fractions are a mathematical concept with which 

students already have difficulty (e.g. G. Brown & Quinn, 2006; Peck & Matassa, 2016). Some 

researchers have attributed this difficulty to the lack of personal understanding that teachers have 

for fractions (e.g. Siegler et al., 2012), so developing students’ fraction knowledge may involve 

developing not only students fractional content knowledge but teachers as well.   

 Just like with the results found from the multiple regression analysis, more work is need 

to understand completely how content knowledge and cognitive abilities profiles are associated 
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with algebra performance. In particular, the why and how the different combinations of content 

knowledge and cognitive abilities support algebra performance; however, the current findings 

have certain implication for educators. One implication is that educators may scaffold the 

development of content knowledge with the use of instructional practices that take advantage of 

the spatial imagery and fluid intelligence of students. For example, the use of more discussions 

about students’ problem solving strategies that include visual depictions of different strategies 

emphasizes both spatial imagery and fluid intelligence. The different strategies make apparent 

the different logical steps used to arrive at the same answer, and promote the use of fluid 

intelligence skills by getting student to synthesize across methods as to why they both work. The 

use of visual depictions of the solution method gets students to use their spatial imagery skills 

and makes apparent how students think about the relationship between the known and unknown 

variables.  

Another implication is that the elementary grades are a place to develop the skills of 

necessary for strong algebra performance. In particular, the development of the skills of fractions 

and numeracy already occur in the elementary grades while algebraic reasoning and spatial 

imagery can be (e.g. Cooper & Warren, 2011; Lannin, 2003; Lee & Ng, 2009; Moss & McNab, 

2011). In fact, the identification of these sets of skills as factors that can improve algebra 

performance provided credence to the recommendation to teach algebraic concepts starting in the 

elementary grades (Blanton et al., 2015; A. Stephens, Blanton, Knuth, Isler, & Gardiner, 2015).  

Additionally, with more research we can also identify which content knowledge and cognitive 

abilities relates to particular algebraic topics, which may point towards a way to provide extra 

help for those who do not have mathematics learning disabilities. 
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 Conclusion 

 The present study investigated content knowledge and cognitive abilities as factors 

associated with algebra performance. This association was determined by conducting a multiple 

regression and cluster analysis. The two approaches allowed the examination of algebra 

performance from both variable-oriented and person-oriented approaches. The variable-oriented 

approach (i.e. multiple regression analysis) revealed the independent predictors of algebra 

performance, while the person-oriented approach (i.e. cluster analysis) revealed how different 

patterns of content knowledge and cognitive abilities related to algebra performance. Each 

perspective brings out its own unique understanding of algebra performance that has expanded 

our understanding of what factors are associated with it. The finding from the current study 

proposed that fraction knowledge and spatial imagery are additional predictors of algebra 

performance not covered by previous research, which makes necessary more research in order to 

understand how they connect with the other factors already known. Additionally, the claim that 

algebra performance is associated with both content knowledge and general cognitive abilities 

was supported through not only with the addition of fraction knowledge and spatial imagery as 

predictors, but with different combinations of content knowledge and cognitive abilities between 

participants in the cluster groups that may have contributed to differences in their algebra 

performance. More research is needed to corroborate these findings but they are an important 

first step into understanding how content knowledge and cognitive abilities extend our 

understanding of the complex array of factors associated with algebra performance.  
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Appendix A: Tables 

Table 1  

Basic Information about Assessments and Measures 

Tests Time (mins) Calculator Number of Items 

Cognitive Abilities    

 Fluid Intelligence    

  Nonverbal Analogies 7 N 52 

  Sequences 10 N 43 

 Crystallized Intelligence    

  General Knowledge 3 N 47 

  Odd Word Out 5 N 40 

  Word Opposites 5 N 40 

 Spatial Visualization    

  MASMI 10 N 23 

  MARMI 10 N 23 

Content Knowledge    

 Computational Fluency 3 N 16 

 Numeracy 4 N 24 

 Fractions 10 N 12 

 Equivalence 5 N 6 

 Algebraic Reasoning 10 N 7 

Algebra Performance 20 Y 20 

Note. Y = Yes; N = No; MASMI = Measure of the Ability to Form Spatial Mental Images; 

MARMI = Measure of the Ability to Rotate Mental Images. 

 

  



90 

 

Table 2 

Descriptive Statistics for Assessments and Measures 

Assessments & Measures M SD α Minimum Score Maximum Score 

Control Variables      

 Gender − − − − − 

 Calculus − − − − − 

 Years since algebra course 4.20 2.112 − 0 14 

Content Knowledge      

 Computational Fluency 31.57 10.19 0.80 0 55 

 Numeracy 16.86 4.98 0.87 0 24 

 Fractions 8.30 2.70 0.76 0 12 

 Equivalence 6.11 2.70 0.73 0 11 

 Algebraic Reasoning 12.73 4.49 0.85 0 22 

Cognitive Abilities      

 MARMI 5.99 10.89 0.82 -46 46 

 MASMI 25.55 15.30 0.93 -46 46 

 Crystallized Intelligence
a
 102.22 12.39 −

b
 35 185 

 Fluid Intelligence
a
 108.18 11.12 −

b
 35 171 

Algebra Performance 7.64 3.79 0.76 0 20 

Note.  MASMI = Measure of the Ability to Form Spatial Mental Images; MARMI = Measure of 

the Ability to Rotate Mental Images.  
a 
Standardized assessments with standard scores of µ = 100, σ =15. 

b 
Sample internal reliabilities 

not calculated because assessments were standardized. 
**

p < 0.01. 
*
p < 0.05. 
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Table 3 

Randomized Testing Orders 

Test Order 

Group Order 

1 2 3 4 

1 Fractions Numeracy 
Algebra 

Performance 
MASMI 

2 
Computational 

Fluency 
RAIT Equivalence 

Algebraic 

Reasoning 

3 MARMI MASMI 
Computational 

Fluency 
RAIT 

4 Equivalence 
Algebraic 

Reasoning 
MARMI Numeracy 

5 
Algebra 

Performance 
MARMI Fractions 

Computational 

Fluency 

6 RAIT Fractions 
Algebraic 

Reasoning 
MARMI 

7 Numeracy 
Algebra 

Performance 
MASMI Equivalence 

8 
Algebraic 

Reasoning 

Computational 

Fluency 
Numeracy Fractions 

9 MASMI Equivalence RAIT 
Algebra 

Performance 

Note. MASMI = Measure of the Ability to Form Spatial Mental Images; MARMI = Measure of 

the Ability to Rotate Mental Images. 
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Table 4 

Bivariate Correlations for Assessments and Measures 

Assessments & Measures 1 2 3 4 5 6 7 8 9 10 11 12 

Control Variables             

 1. Gender ‒            

 2. Calculus -.143 ‒           

 3. Years since algebra course -.300
**

 .281
**

 ‒          

Content Knowledge             

 4. Computational Fluency -.045 .312
**

 .128 ‒         

 5. Numeracy -.219
**

 .394
**

 .239
**

 .399
**

 ‒        

 6. Fractions -.118 .415
**

 .218
**

 .496
**

 .626
**

 ‒       

 7. Equivalence -.035 .418
**

 .171
*
 .433

**
 .475

**
 .536

**
 ‒      

 8. Algebraic Reasoning -.082 .419
**

 .180
*
 .363

**
 .567

**
 .651

**
 .517

**
 ‒     

Cognitive Abilities             

 9. MARMI -.113 .238
**

 .184
*
 .202

*
 .316

**
 .293

**
 .300

**
 .267

**
 ‒    

 10. MASMI .014 .350
**

 .150 .216
**

 .446
**

 .474
**

 .432
**

 .499
**

 .475
**

 ‒   

 11. Crystallized Intelligence
a
 -.004 .228

**
 .222

**
 .377

**
 .482

**
 .605

**
 .529

**
 .482

**
 .264

**
 .412

**
 ‒  

 12. Fluid Intelligence
a
 .010 .353

**
 .210

*
 .350

**
 .535

**
 .527

**
 .589

**
 .540

**
 .428

**
 .585

**
 .633

**
 ‒ 

Algebra Performance -.110 .471
**

 .200
*
 .443

**
 .470

**
 .657

**
 .459

**
 .544

**
 .336

**
 .504

**
 .411

**
 .425

**
 

Note. MASMI = Measure of the Ability to Form Spatial Mental Images; MARMI = Measure of the Ability to Rotate Mental Images.  
a 
Standardized assessments with standard scores of µ = 100, σ =15. 

**
p < 0.01. 

*
p < 0.05. 
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Table 5 

Analysis of Item Categories for All Content Knowledge Assessments 

Assessment Items Categories 

Descriptive Statistics Percent Correct 

M SD 

Total 

Points 

Full 

Credit 

Partial 

Credit
 

No 

Credit 

Computational Fluency       

 Addition 11.23 2.517 16 10.6 89.4 0.0 

 Subtraction 8.43 3.514 15 13.5 86.5 0.0 

 Multiplication 8.47 4.633 17 7.1 85.1 7.8 

 Division 3.44 2.237 7 8.5 75.9 15.6 

Numeracy       

 Addition 5.10 1.110 6 48.2 51.8 0.0 

 Subtraction 4.64 1.091 6 24.8 75.2 0.0 

 Multiplication 3.77 1.843 6 24.8 67.4 7.8 

 Division 3.35 2.208 6 25.5 55.4 19.1 

 Whole Numbers 4.65 1.459 6 41.8 58.2 0.0 

 Decimals 8.08 1.848 10 29.8 70.2 0.0 

 Fractions 4.13 2.507 8 11.3 82.3 6.4 

Fractions       

 Algorithmic Operations 1.59 .633 2 66.7 25.5 7.8 

 Word Problems 1.74 .516 2 77.3 19.1 3.5 

 Algebraic Concepts 1.68 .552 2 72.3 23.4 4.3 

 Arithmetic Skills .98 .788 2 29.8 38.3 31.9 

 Rational Number 1.38 .692 2 49.6 38.3 12.1 

 Computational Fluency .94 .791 2 28.4 37.6 34.0 

Equivalence       

 Interpretation 1.98 1.017 3 38.3 49.6 12.1 

 Structure 1.76 1.242 4 8.5 71.6 19.9 

 Open Equation 2.38 1.251 4 25.5 67.4 7.1 

Algebraic Reasoning       

 Functional Thinking 1.55 1.485 4 14.2 51.0 34.8 

 Generalization 2.43 1.431 4 23.4 56.0 20.6 

 Modeling .55 .671 2 9.9 34.8 55.3 

 Symbolic Manipulation 5.97 1.912 8 15.6 81.6 2.8 

 Structure Sense 2.23 1.155 4 17.7 73.1 9.2 

Algebra Performance       

 Systems of Equations .91 .774 2 25.5 39.7 34.8 

 Functions 1.14 .713 2 33.3 47.5 19.1 

 Solving Equations 1.31 .698 2 44.7 41.8 13.5 

 Inequalities .72 .658 2 11.3 48.9 39.7 

 Graphing .98 .751 2 27.0 44.0 29.1 

 Exponents .42 .611 2 6.4 29.1 64.5 

 Factoring .84 .733 2 19.9 44.0 36.2 

 Complex Numbers .28 .468 2 0.7 27.0 72.3 

 Polynomial Division .49 .683 2 10.6 27.7 61.7 

 Logarithms .55 .659 2 9.2 36.9 53.9 



94 

 

Table 6 

Summary of Independent Samples T-Test and Mann-Whitney U Test Analysis for Gender Differences 

Assessment 

Independent Samples T-Test  Mann-Whitney 

p 
Mean 

Difference
a 

Standard 

Error 

Difference t(139) 

 Mean Rank 

U z 

 Female  

(n = 110) 

Male  

(n = 31) 

Content Knowledge   
  

     

 
Computational Fluency -1.092 2.077 -.526      .600 

 
Numeracy -2.621 .991 -2.645 

     
.009

 

 
Fraction -.767 .546 -1.403      .163 

 
Equivalence -.227 .549 -.413      .680 

 
Algebraic Reasoning -.883 .913 -.967      .335 

Cognitive Abilities    
 

     

 
MARMI     68.55 79.71 1435.00 -1.346 .178 

 
MASMI .502 3.122 .161      .872 

 
Crystallized Intelligence     70.28 73.55 1626.00 -0.393 .694 

 
Fluid Intelligence     71.09 70.69 1695.50 -0.047 .962 

Algebra Performance -1.001 .843 -1.188 
 

    .242 

Note. MASMI = Measure of the Ability to Form Spatial Mental Images; MARMI = Measure of the Ability to Rotate Mental Images. 

a
Mean Difference calculated by subtracting the mean scores of Males from the mean scores of Females. 
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Table 7 

Summary of Multiple Regression Analysis 

Variable B SEb β p rpartial r
2

partial 

Intercept 1.876 2.897  .518  
 

Gender -.229 .601 -.025 .704 -.023 .001 

Calculus 1.286
 

.575
 

.163
 

.027
 

.134 .018 

Years Since Algebra Course .011 .119 .006 .925 .006 < .001 

Computational Fluency .051 .027 .136 .063 .113 .013 

Numeracy -.028 .065 -.037 .671 -.026 .001 

Fraction .553
 

.138
 

.393
 

< .001
 

.241 .058 

Equivalence .043 .118 .030 .716 .022 < .001 

Algebraic Reasoning .087 .074 .103 .241 .071 .005 

MARMI .023 .025 .067 .349 .057 .003 

MASMI .051
 

.021
 

.204
 

.015
 

.148 .022 

Crystallized Intelligence -.005 .027 -.016 .857 -.011 < .001 

Fluid Intelligence -.027 .033 -.080 .405 -.050 .003 

Note. B = unstandardized regression coefficient; SEb = standard error of unstandardized 

regression coefficient; β = standardized regression coefficient; rpartial = semi partial correlation; 

r
2

partial = unique variance of predictors; MARMI = Measure of the Ability to Rotate Mental 

Images; MASMI = Measure of the Ability to Form Spatial Mental Images. 
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Table 8 

Ward’s Method Agglomeration Schedule for Clusters 1-9 

Number of Clusters Coefficient Δcoefficient 

1 1260.000 − 

2 814.648 445.352 

3 731.239 83.409 

4 666.827 64.412 

5 610.524 56.303 

6 572.588 37.936 

7 539.223 33.365 

8 508.884 30.340 

9 489.169 19.715 

Note. Δcoefficient = absolute difference in coefficients. 
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Table 9 

Indices for Ward’s Method Cluster Solutions 

Cluster 

Solutions 

Variance Explained 

Sample Sizes CF N F E AR MARMI MASMI CII FII 

4 0.271 0.450 0.640 0.554 0.428 0.616 0.427 0.399 0.450 21, 38, 63, 19 

5 0.294 0.628 0.649 0.555 0.496 0.623 0.501 0.420 0.472 21, 38, 27, 36, 19 

6 0.301 0.628 0.651 0.555 0.497 0.651 0.677 0.426 0.525 21, 21, 27, 17, 36, 19 

7 0.373 0.652 0.651 0.556 0.513 0.652 0.734 0.493 0.525 21, 21, 17, 17, 36, 19, 10 

8 0.530 0.655 0.663 0.560 0.526 0.656 0.735 0.517 0.525 21, 21, 17, 17, 23, 19, 10, 13 

Note. CF = computational fluency; N = numeracy; F = fractions; E = equivalence; AR = algebraic reasoning; MARMI = Measure of 

the Ability to Rotate Mental Images; MASMI = Measure of the Ability to Form Spatial Mental Images; CII = crystalized intelligence 

index; FII = fluid intelligence index 
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Table 10 

Indices for K-Means Cluster Solutions 

Cluster 

Solutions 

Variance Explained 

Sample Sizes CF N F E AR MARMI MASMI CII FII 

4 0.313 0.514 0.600 0.521 0.539 0.639 0.483 0.423 0.502 23, 44, 51, 23 

5 0.354 0.536 0.638 0.512 0.588 0.657 0.606 0.424 0.490 23, 43, 23, 43, 18 

6 0.397 0.558 0.654 0.526 0.579 0.683 0.708 0.432 0.526 21, 22, 27, 19, 37, 15 

Note. CF = computational fluency; N = numeracy; F = fractions; E = equivalence; AR = algebraic reasoning; MARMI = Measure of 

the Ability to Rotate Mental Images; MASMI = Measure of the Ability to Form Spatial Mental Images; CII = crystalized intelligence 

index; FII = fluid intelligence index 
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Table 11 

Raw Score Mean, Standard Deviation, F-Statistic, and Partial Eta Squared for Cluster Variables by Cluster Groups 

Variable 

Cluster Group 

F(5,135) η
2
 

Low All 
Mod. Low 

All 

Mod. Low 

Spatial 

Mod. High 

MASMI 

Mod. High 

All 

High 

Spatial 

Total n 21 22 27 19 37 15   

Computational Fluency         

 M 21.62
d 

29.09
bc 

34.11
ab 

24.37
cd 

39.43
a 

34.27
ab 

17.799 .397 

 SD 3.918 5.740 10.207 6.898 9.257 8.884   

Numeracy         

 M 10.24
d 

14.95
c 

17.00
bc 

15.11
c 

21.35
a 

19.80
ab 

34.130 .558 

 SD 2.644 3.359 3.893 4.202 2.761 3.468   

Fractions         

 M 4.29
d 

7.27
c 

9.37
b 

6.74
c 

10.43
a 

10.27
ab 

50.934 .654 

 SD 1.875 1.830 1.275 2.023 1.345 1.486   

Equivalence         

 M 2.57
c 

4.68
b 

7.52
a 

5.05
b 

7.73
a 

8.00
a 

29.941 .526 

 SD 1.469 1.524 1.626 2.248 2.077 2.299   

Algebraic Reasoning         

 M 7.57
d 

10.18
d 

12.74
bc 

10.58
cd 

17.22
a 

15.33
ab 

37.185 .579 

 SD 3.059 2.889 3.096 3.746 2.573 2.469   

MARMI         

 M 1.14
cd 

-2.36
d 

2.44
bc 

5.16
bc 

6.81
b 

30.40
a 

58.250 .683 

 SD 4.693 4.489 5.515 5.747 7.222 8.990   

MASMI         

 M 7.00
d 

11.41
cd 

19.81
c 

36.95
ab 

36.16
b 

42.00
a 

65.535 .708 

 SD 6.550 8.798 11.533 6.169 8.719 3.761   

Crystallized Intelligence         

 M 88.71
d 

95.23
cd 

105.19
ab 

99.21
bc 

110.81
a 

109.53
a 

20.514 .432 

 SD 9.012 9.507 9.319 7.406 10.298 8.700   

Fluid Intelligence         

 M 95.43
c 

98.64
c 

110.89
b 

107.79
b 

114.78
ab 

119.33
a 

29.903 .526 

 SD 9.453 6.091 6.247 9.265 7.307 9.131   
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Table 11 cont’d 

Note. All F values are significant at p <.001. Uncommon superscripts indicate means that are statistically significantly different at p < 

.05. MARMI = Measure of the Ability to Rotate Mental Images; MASMI = Measure of the Ability to Form Spatial Mental Images. 
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Table 12 

NAEP Achievement Level Descriptions 

Achievement Levels 

Cut Score 

Description Points Percentage 

Basic 141 47 The ability to solve problems that are the direct 

application of mathematical concepts and 

procedures. 

Proficient 176 57 The mastery of mathematical concepts 

demonstrated by the appropriate application of 

concepts and procedures to solve and analyze 

problems. 

Advanced 216 72 The ability to use mathematical knowledge to 

solve unfamiliar and challenging problems, make 

mathematical justifications, make justifiable 

generalization, and use appropriate mathematical 

language and notation. 

Note. Cut score is out of 300 possible points. 
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Table 13 

Frequency Counts and Percentages of Demographic Characteristics by Cluster Group 

Demographic Characteristic 

Cluster Groups 

Total χ
2
 

Low All 

(n = 21) 

Mod. Low 

All 

(n = 22) 

Mod. Low 

Spatial 

(n = 27) 

Mod. 

High 

MASMI 

(n = 19) 

Mod. 

High All 

(n = 37) 

High 

Spatial 

(n = 15) 

Highest math course taken
a
         

 Calculus 5 (3.5) 11 (7.8) 17 (12.1) 11 (7.8) 34 (24.1) 13 (9.2) 91 (64.5) 32.954
**

 

 No Calculus 16 (11.3) 11 (7.8) 10 (7.1) 8 (5.7) 3 (2.1) 2 (1.4) 50 (35.5)  

Gender
a
          

 Female 16 (11.3) 19 (13.5) 23 (16.3) 16 (11.3) 25 (17.7) 11 (7.8) 110 (78.0) 4.715 

 Male 5 (3.5) 3 (2.1) 4 (2.8) 3 (2.1) 12 (8.5) 4 (2.8) 31 (22.0)  

Majors
a
          

 STEM 4 (2.8) 4 (2.8) 11 (7.8) 9 (6.4) 25 (17.7) 9 (6.4) 62 (44.0) 21.364
* 

 Non-STEM 17 (12.1) 18 (12.8) 16 (11.3) 10 (7.1) 12 (8.5) 6 (4.3) 79 (56.0)  

Race/Ethnicity
a 

        

 White 7 (5.0) 14 (9.9) 13 (9.2) 14 (9.9) 28 (19.9) 11 (7.8) 87 (61.7) 14.356
*
 

 Non-White 14 (9.9) 8 (5.7) 14 (9.9) 5 (3.5) 9 (6.4) 4 (2.8) 54 (38.3)  

School Level         

 Lowerclassmen (F, So) 8 (5.7) 8 (5.7) 15 (10.6) 9 (6.4) 15 (10.6) 8 (5.7) 63 (44.7)  3.042 

 Upperclassmen (Jr., Sr., 5+ ) 13 (9.2) 14 (9.9) 12 (8.5) 10 (7.1) 22 (15.6) 7 (5.0) 78 (55.3)  

Note. F = Freshmen. So = Sophomore. Jr. = Junior. Sr. = Senior 5+. = 5+ year Senior.  
*
p < .05. 

**
 p < .001. 
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Table 14 

Raw Score Mean, Standard Deviation, F-Statistic, and Partial Eta Squared for Algebra Performance by Cluster Groups 

Variable 

Cluster Group 

F(5,56.603) η
2
 

Low All 
Mod. Low 

All 

Mod. Low 

Spatial 

Mod. High 

MASMI 

Mod. High 

All 

High 

Spatial 

Total n 21 22 27 19 37 15   

Algebra Performance         

 M 4.33
c 

5.64
bc 

7.81
b 

5.58
bc 

10.30
a 

10.93
a 

18.896 .410 

 SD 2.153 2.300 2.936 2.735 3.650 3.218   

Note. All F values are significant at p <.001. Uncommon superscripts indicate means that are statistically significantly different at p < 

.05.  
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Table 15 

Summary of Multiple Regression Analysis for Demographic Characteristics and Cluster Contrasts 

Variable b SEb β p rpartial r
2

partial 

Intercept 7.148 .867  < .001   

Calculus 1.652 .621 .209
 

.009 .171 .029 

Years Since Algebra Course -.076 .146 -.038 .604 -.033 .001 

Race/Ethnicity -.079 .535 -.010 .883 -.009 < .001 

Major -.671 .563 -.088 .236 -.077 .006 

MLA, MHM, LA – MHA, HS, MLS
a 

5.719 .870 .502
 

< .001 .423 .179 

MLS, HS – MHA
a 

.348 .457 .053 .447 .049 .0024 

LA – MLA, MHM
a 

.410 .550 .051 .457 .048 .0023 

MLS – HS
a 

1.340 .480 .191 .006 .180 .032 

MLA – MHM
a 

.150 .466 .021
 

.749 .021 < .001 

Note. MHA = moderate high all; HS = high spatial; MLS = moderate low spatial; MHM = moderate high MASMI; MLA = moderate 

low all; LA = low all; b = unstandardized regression coefficient; SEb = standard error of unstandardized regression coefficient; β = 

standardized regression coefficient; rpartial = semi partial correlation. 
a
Planned contrasts for cluster membership comparisons going from cluster group (s) A to cluster group(s) B. 



 

 

Appendix B: Figures 

 

Figure 1.Variance explained in algebra performance scores by predictor variables in multiple regression analysis.

0.053% 1.809% 0.003% 1.274% 

0.066% 

5.814% 

0.048% 

0.502% 0.320% 

2.192% 0.012% 

0.253% 

46.300% 

41.355% 

Gender

Calculus

Years Since Algebra Course

Computational Fluency

Numeracy

Fraction

Equivalence

Algebraic Reasoning

MARMI

MASMI

Crystallized Intelligence

Fluid Intelligence

Unexplained

Shared



 

 

 

Figure 2. Results of six-cluster solution, showing the average standardized scores on all 

clustering variables for each cluster group. 
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Figure 3. Mean algebra performance scores for participants in each cluster group. 

  



 

 

   

 

 

 

 

Figure 4. Cluster variable scores and algebra performance score comparison of participants in the Moderate Low All and Moderate 

High MASMI cluster groups.  
*
statistically significant difference at p < .05.
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* * 
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Figure 5.Cluster variable scores and algebra performance score comparison of participants in the Moderate Low Spatial and High 

Spatial cluster groups. 
*
statistically significant difference at p < .05. 
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Figure 6. Cluster variable scores and algebra performance score comparison of participants in the Moderate High All and High Spatial 

cluster groups. 
*
statistically significant difference at p < .05. 
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Figure 7. Cluster variable scores and algebra performance score comparison of participants in the Moderate High MASMI and 

Moderate High All cluster groups. 
*
statistically significant difference at p < .05. 

* * 
* 

* 

* 

* 

* 



 

 

 

 

 

 

 

 

 

 

Figure 8. Cluster variable scores and algebra performance score comparison of participants in the Moderate Low Spatial and 

Moderate High All cluster groups. 
*
statistically significant difference at p < .05. 
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Appendix C: Assessments and Measures 

Computational Fluency Assessment 

1. 6220 + 3545 

2. 104 ÷ 4 

3. 4352 − 2311 

4. 21 × 13 

5. 444 − 387 

6. 36 × 48 

7. 27531 + 18515 

8. 432 ÷ 54 

9. 785 × 37 

10. 43 + 58 + 28 

11. 488 ÷ 8 

12. 9101 − 7247 

13. 630 ÷ 15 

14. 93245 − 71378 

15. 2615 × 11 

16. 811 + 168 + 237 + 753 

  



 

 

Numeracy Assessment 

Addition and Subtraction 

1. 1,504 + 6.2 

a. 1,560  b. 1,100 

c. 1,510  d. 1,504.62 

2. −7.2 + 6.9 

a. -14  b. 0 

c. 1  d. 14 

3. 11.98 + 6.02 

a. 7  b. 18 

c. 1,800  d. 1,000 

4. 73 + 7.3 

a. 140  b. 150 

c. 80  d. 70 

5. 782 − 83 

a. 700  b. 600 

c. 800  d. 750 

6. 3,012 − 2,998 

a. 0  b. 100 

c. 1,000  d. 1,999 

7. 609 − 0.69 

a. 550  b. 500 

c. 600  d. 609 

8. 0.25 − 0.12 

a. 0.05  b. 0.12 

c. 0.5  d. 0 

9. 
4

5
+

9

8
 

a. 2  b. 1 

c. 3  d. 4 

10. 2
1

3
+

1

4
 

a. 2.5  b. 2 

c. 1  d. 3 

11. 
8

6
−

6

8
 

a. 0  b. 0.5 

c. 
8

4
  d. 

9

4
 

 

12. 5
1

5
− 2

1

2
 

a. 
1

2
  b. 1

1

2
 

c. 2
1

2
  d. 3

1

2
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Multiplication and Division 

13. 15 × 9 

a. 150  b. 200 

c. 900  d. 1,500 

14. 26 × 16 

a. 50  b. 400 

c. 800  d. 4,000 

15. 0.9 × 5 

a. 0  b. 2 

c. 5  d. 45 

16. 0.3 × 9 

a. 0.1  b. 0.5 

c. 2  d. 3 

17. 1,602 ÷ 99 

a. 0  b. 1 

c. 10  d. 16 

18. 4,942 ÷ 49 

a. 0.5  b. 10 

c. 100  d. 1,000 

19. 8.2 ÷ 10 

a. 1  b. 4 

c. 8  d. 82 

20. 61 ÷ 5.9 

a. 1  b. 10 

c. 15  d. 20 

21. 
1

2
×

15

16
 

a. 0  b. 
1

10
 

d. 
1

2
  d. 1 

22. 
7

8
×

8

4
 

a. 0  b. 1 

e. 2  d. 2
1

2
 

23. 2 ÷
49

100
 

a. 0  b. 
1

2
 

f. 
3

4
  d. 4 

24. 
11

12
÷ 3 

a. 0  b. 
1

3
 

d. 1  d. 3 
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Fractions Assessment 

Category I: Algorithmic Operations 

1. Subtract 
3

5
 from 8. 

2. Write 3
5

6
 as an improper fraction. 

Category II: Application of Basic Fraction Concepts in Word Problems 

1. If you have a half ball of string and each kite needs an eighth of a ball, how many kites 

can you fly? 

2. Adrian has conquered only 6 giants in his new video game, Giant Trouble, but it is only 

two-fifths of the giants that he must conquer. How many giants are there in the new video 

game? 

Category III: Elementary Algebraic Concepts 

1. Solve 𝑥 +
1

3
= 7. 

2. 
1

3
× 𝑎 =? 

Category IV: Specific Arithmetic Skills that are Prerequisite for Algebra 

1. Write 5
2

7
 as a sum. 

2. Find 
18

0
. 

Category V: Comprehension of the Structure of Rational Numbers 

1. Write fractions 
4

7
,

5

9
,

3

5
 in order from least to greatest. 

2. The quotient of  
1

2
÷

1

3
 is greater than (>) or less than (<) 

1

2
? 

Category VI: Computational Fluency 

1. Find the sum 
7+5

3+5
+

5

6
5

3

. 

2. In an election, candidate A got 
1

3
 of the votes, candidate B got 

9

20
 of the votes, and 

candidate C got 
2

15
 of the votes. What fraction of the votes did candidate D get? 
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Equivalence Assessment 

Equal Sign Interpretation 

1. What does the equal sign (=) mean? Can it mean anything else?  

2. What does the equal sing mean in this statement?  1 dollar = 100 pennies 

Equation Structure 

1. Is the number that goes in the blank the same number in the following two number 

sentences?  Yes, No, How do you know?  2 × ____ = 58   8 × 2 × ____ = 8 × 58 

2. Find a number that can go in each blank. Can another number go in these blanks? 

Explain. 8 + 2 + ____ = 10 + ____ 

Open Equation 

1. Fill in the blanks with the value that makes the following number sentences true.  

a. 4,436 + 2,897 = _____ + 3,000   

b. 3,901 − 2,012 = 3,889 − _____    

2. Place the four numbers 𝑛 − 1, 𝑛 + 1, 𝑚 + 3, 𝑚 + 1 in the following boxes so that the number 

sentence is always true.  □ + □ = □ + □   
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Algebraic Reasoning Assessment 

Functional Thinking & Generalization 

1.  

Number of sets Number of red 

Tiles 

Number of green 

tiles 

Total number of 

tiles 

1 1 2 3 

2 2 4 6 

3 3 6 9 

4 4 8 12 

5 5 10 15 

   33 

 12   

  40  

Using the information in the table answer: 

a. Identify the relationship between the number of red tiles and any given number of 

sets (x). 

b. Identify the relationship between the number of green tiles and any given number 

of sets (x). 

c. Identify the relationship between the total number of tiles and any given number 

of sets (x). 

 

2.  

 

 

 

 

 

 

 

a. Suppose you are given the pattern of squares shown above. How would you describe the 

relationship between the number of squares and the number of vertices in words?  

b. How would you represent the relationship between the number of squares and the number 

of vertices using algebra? 

 
Number of Squares 

Number of 

Vertices 

 1 4 

 
2 7 

 
3 10 

 4 __________ 

 10 __________ 

 100 __________ 
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Modeling 

1. Write an equation using the variables C and S to represent the following statement: “At 

Mindy’s restaurant, for every four people who ordered cheesecake, there are five people 

who ordered strudel.” Let C represent the number of cheesecakes and S represent the 

number of strudels ordered. 

2. Write an equation using the variables S and P to represent the following statement: "There 

are six times as many students as professors at a certain university." Use S for the number 

of students and P for the number of professors. 

Structure Sense 

1. Solve for x.  

a. (
1

4
−

𝑥

𝑥−1
) − 𝑥 = 6 + (

1

4
−

𝑥

𝑥−1
) 

b. 1 −
1

𝑥+2
− (1 −

1

𝑥+2
) =

1

110
 

2. Solve the following number sentences. 

a. 237 + 89 − 89 + 267 − 92 + 92 = ?  

b. 217 − 59 + 59 + 62 − 28 − 28 = ?                         

Symbolic Manipulation 

1. For each example, write an equivalent expression. 

a. 4ℎ + 𝑡 = _______________    

b. 𝑢 + 5 + 6 + 5 + 𝑢 = _____________      

c. 4(𝑛 + 5) = _______________      

d. 𝑝 + 0.05𝑝 = _____________      

e. 5(𝑒 + 2) = _____________       

f. 𝑥 − 𝑥 + 2 = _______________                     

g. (15 + 10𝑥) + (35 + 5𝑥) = _______________  

h. 3𝑥 + 4 + 6(𝑥 + 5) = _____________   
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Algebra Performance Assessment 

Systems of Equations 

x + 2 y = 17 

 x - 2 y = 3 

1. The graphs of the two equations shown above intersect at the point . What is the value of 

x at the point of intersection? 

A.  

B. 5 

C. 7 

D. 10 

E. 20 

(NAEP Question ID: 2005-12M3 #12 M095201) 

 

2. In the solution of the system of equations above, what is the value of x? 

A. - 1 

B.   2 

C.   3 

D.   4 

E.   5 

(NAEP Question ID: 2005-12M4 #11 M053201) 

 

Functions 

1. If  and , then  

A. 3 

B. 5 

C. 7 

D. 7 5/9 

E. 16 2/3 

(NAEP Question ID: 1992-12M5 #20 M025401) 
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2. Yvonne has studied the cost of tickets over time for her favorite sports team. She has created a 

model to predict the cost of a ticket in the future. Let C represent the cost of a ticket in dollars 

and y represent the number of years in the future. Her model is as follows. 

 

Based on this model, how much will the cost of a ticket increase in two years? 

A. $5 

B. $8 

C. $13 

D. $18 

E. $26 

(NAEP Question ID: 2005-12M12 #17 M130101) 

 

Solving Equations 

1. If  and  in the formula , then   

A.  

B.  

C. 5 

D.  

E. 6 

(NAEP Question ID: 1990-12M9 #12 M030231) 

2. If 
 𝟏

𝒂
+

𝟒

𝟕
=

𝟏

𝟐
, then a = (?).  

A. 
3

5
 

B. -14 

C. 
−3

5
 

D. 14 

E. 
14

3
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Inequalities 

1. What are all values of x such that  ? 

A.  

B.  

C.  

D.  

E.  

(NAEP Question ID: 2005-12M4 #16 M019401) 

2. For which values of w is 1.25 ≤
𝑙

𝑤
≤ 2.5 if 𝑙 = 4? 

A. 𝑤 ≥ 1.6 𝑜𝑟 𝑤 ≤ 3.2 

B. 1.6 ≤ 𝑤 ≤ 3.2 

C. 𝑤 ≥ 0.16 𝑜𝑟 𝑤 ≤ 0.30 

D. 0.16 ≤ 𝑤 ≤ 0.30 

E. 5 ≤ 𝑤 ≤ 10 

Graphing 

 

1. The graphs of  and  for  are shown in the figure above. For how 

many values of x is the product  for ? 

A. Two 

B. Four 

C. Five 

D. Six 

E. Seven 

(NAEP Question ID: 1990-12M9 #19 M030931) 
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2. Which of the following is the graph of  ? 

A.  

B.  

C.  

D.  

E.  

(NAEP Question ID: 2005-12M3 #15 M011831) 

Exponents 

1. For what value of x is ? 

A. 3 

B. 4 

C. 8 

D. 9 

E. 12 

(NAEP Question ID: 1992-12M7 #6 M057701) 

2. 121
3

2 = 

A. 1331 

B. 1728 

C. 2197 

D. 4096 

E. 1452 
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Factoring 

1. Factor 28𝑛4 + 16𝑛3 − 80𝑛2. One of the factors is (?). 

A. 7𝑛 + 10 

B. 𝑛 − 2 

C. 𝑛 + 5 

D. 4𝑛2 

E. 𝑛 − 4 

2. 𝑚2 + 10𝑚 + 14 + 𝑏 is a perfect square. Find b. 

A. 0 

B. 7 

C. -4 

D. 11 

E. 21 

Complex Numbers 

1. If 𝑖 = √−1 then 
1

6+4𝑖
= ? 

A. 
6−4𝑖

52
 

B. 
6+4𝑖

52
 

C. 
6+4𝑖

20
 

D. 
6−4𝑖

20
 

E. 
6−4𝑖

32
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2. Let 𝒊 = √−𝟏. After expanding and simplifying (𝟐 + 𝒊)𝟑 =? 

A. 8 + 𝑖3 

B. 8 − 𝑖 

C. 2 + 11𝑖 

D. 6 + 3𝑖 

E. 10 + 11𝑖 

Polynomial Division 

1. If 6𝑥3 + 5𝑥 − 8 is divided by 𝑥 − 2, the remainder is? 

A. 50 

B. -64 

C. -8 

D. 0 

E. -16 

2. (𝑥3 + 12𝑥2 + 47𝑥 + 60) ÷ (𝑥 + 5) = ? 

A. 𝑥2 + 17𝑥 + 132 +
720

𝑥+5
 

B. 𝑥2 + 17𝑥 − 38 −
50

𝑥+5
 

C. 𝑥2 + 7𝑥 + 12 

D. 𝑥3 + 7𝑥2 + 12𝑥 

E. 𝑥2 + 7𝑥 − 31 +
215

𝑥+5
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Logarithms 

1. Which one is equivalent to log4(16𝑥6)? 

A. 4 + 6 log4 𝑥 

B. 12 log4 𝑥 

C. 2 + 6 log4 𝑥 

D. 6 log4 𝑥 

E. 2 log4 𝑥 

2. Solve log𝑥 16 = 2 for x. x = (?). 

A. 
2

16
 

B. 4 

C. 256 

D. 32 

E. 8 
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Participant Demographic Survey 

Please answer the following questions. 

Name (please print): __________________________________ 

Age: _____________________ 

Gender: □ Female □ Male  □ Other: _______________ 

Race/Ethnicity (check all that apply):  

□ American Indian/Alaska Native □ Asian  □ Black/African American  

□ Hispanic/Latino  □ Native Hawaiian/Other Pacific Islander □ White 

□ Other: _______________ 

 School Level:   

  □ Freshman □ Sophomore    □ Junior □ Senior □ 5+ year Senior  

 Major: _________________________________________________ 

List all mathematics courses taken in high school and the year in which it was taken. 

High School Mathematics Course Year Taken 

a) ___________________ _______________ 

b) ___________________ _______________ 

c) ___________________ _______________ 

d) ___________________ _______________ 

e) ___________________ _______________ 

 

List all mathematics courses taken in college and the year in which it was taken. 

College Mathematics Course Year Taken 

a) ___________________ _______________ 

b) ___________________ _______________ 

c) ___________________ _______________ 

d) ___________________ _______________ 

e) ___________________ _______________ 
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Appendix D: Research Protocols 

Starting Procedures 

1. As the participant comes in pass out the participant information and consent form and 

say, “Hi my name is [your name}. Welcome to the Factors of Algebra Performance 

study. Thank you for coming. Here is the Participant Information and Consent form. 

This form explains this study in detail. Take a minute to read it.” 

2. Give the participant a few minutes to read, and then say, “Today I am going to be asking 

you to do a number of different tasks. Some of them will be mathematical in nature 

and some will not. Some questions will be easy and some will be hard. Each task will 

have a time limit. Most people do not get to all the questions nor do they get them all 

right. We just want you to do your best. Participation is voluntary and you may quit at 

any time. You may also take a break when you need to. After the completion of the 

study, you will receive $15 dollars as a thank you for participating. Are there any 

questions?” Answer any questions. 

3. Then say, “If you are willing to continue please fill out and sign the second page of the 

Participant Information and Consent Form that I have pass out to you, and hand it 

back to me. You may keep the first page.” Collect the signed form. 

4. Then say, “Thank you for agreeing to participate in this study. Let’s get started with the 

first task.” Use the given order for the group and begin with the first task. 

Computational Fluency 

1. Distribute the computational fluency packet to the student, and say, “Now we are going 

to be doing another math task. Follow along with me as I read the directions aloud. 

The sheets in front of you are math facts. There are several types of problems on the 

sheet. Some are addition, some are subtraction, some are multiplication, and some are 

division. Look at each problem carefully before you answer it. When I say, begin, turn 

to the next page and begin answering the problems. Start on the first problem on the 

left on the top row [point]. Work across then go to the next row. If you cannot answer a 

problem, make an ‘X’ on it and go to the next one. If you finish one page, go to the 

next one. You will have only three minutes to complete all problems. It is okay if you do 

not complete all the problems. Just try to do your best. Are there any questions?” 

Answer any questions.  

2. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 3 minutes to complete each worksheet.  

3. After three minutes have passed say, “Pencil down. Time is up and we need to move on 

to the next task” and collect the computational fluency worksheet. 
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Numeracy 

1. Distribute the numeracy packet to the student, and say, “Now we will be doing another 

math task. Follow along with me as I read the directions aloud. When I say, ‘Begin’ 

turn to the next page, and begin with the first problem. Pay close attention to all the 

signs indicating positive and negative numbers. For each problem, the exact answer is 

not listed, so choose the answer that is as close to the exact answer as possible by 

circling your answer. You will only get 4 minutes to complete the whole task, so work 

as quickly as you can. It is okay if you do not complete all problems. Just try to do your 

best. Again, the exact answer is not listed, so choose an answer that is closest to the 

exact answer as possible. Are there any questions?”  Answer any questions. 

2. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 4 minutes to complete the task.  

3. After 4 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next task.” and collect the numeracy packets. 

Fractions 

1. Distribute the fraction packet to the student, and say, “Now we will be doing another 

math task. Follow along with me as I read the directions aloud. When I say, ‘Begin’ 

turn to the next page, and begin with the first problem. Make sure to show all your 

work in the space provided. If you need more space, you may use scratch paper. If you 

use scratch paper, please label your work by writing the problem number next to it. 

After you solve each problem, circle your answer. Some of these problems will be easy 

and some will be hard. If you do not know how to solve a problem, guess or estimate to 

the best of your ability or go on to the next one until you have completed as many as 

you can or are told to stop. You will only get 10 minutes to complete all the problems. It 

is okay if you do not complete all problems. Just try to do your best.  Are there any 

questions?” Answer any questions. 

2. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 10 minutes to complete the task.  

3. After 10 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next task.” and collect the fraction packets. 

Equivalence 

1. Distribute the equivalence packet to the student, and say, “Now we will be doing another 

math task. Follow along as I read the directions aloud. When I say, ‘Begin’ turn to the 

next page, and begin with the first problem. Make sure to show all your work in the 

space provided. If you do not know how to solve a problem, guess or estimate to the 

best of your ability or go on to the next one until you have completed as many as you 

can or are told to stop. You will only get 10 minutes to complete all the problems. It is 
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okay if you do not complete all problems. Just try to do your best. Are there any 

questions?” Answer any questions. 

2. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 10 minutes to complete the task.  

3. After 10 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next task.” and collect the equivalence packets. 

Algebraic Reasoning 

1. Distribute the algebraic reasoning packet to the student, and say, “Now we will be doing 

another math task. Follow along as I read the directions aloud. When I say, ‘Begin’ 

turn to the next page, and begin with the first problem. Pay close attention to all the 

signs indicating positive and negative numbers. Make sure to show all your work in the 

space provided. If you need more space, you may use scratch paper. If you use scratch 

paper, please label your work by writing the problem number next to it. Some of these 

problems will be easy and some will be hard. If you do not know how to solve a 

problem, guess or estimate to the best of your ability or go on to the next one until you 

have completed as many as you can or are told to stop. You will only get 10 minutes to 

complete all the problems. It is okay if you do not complete all problems. Just try to do 

your best. Are there any questions?” Answer any questions. 

2. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 10 minutes to complete the task.  

3. After 10 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next task.” and collect the algebraic reasoning packets. 

Algebra Performance 

1. Distribute the algebraic reasoning packet to the student, and say, “Now we will be doing 

another math task. Follow along as I read the directions aloud.  When I say, ‘Begin’ 

turn to the next page, and begin with the first problem. Pay close attention to all the 

signs indicating positive and negative numbers and exponentials. You may use the 

calculator or scratch paper to help you solve the problems. If you use scratch paper, 

please label your work by writing the problem number next to it. After you solve each 

problem, make sure to circle your answer. Some of these problems will be easy and 

some will be hard. If you do not know how to solve a problem, guess or estimate to the 

best of your ability or go on to the next one until you have completed as many as you 

can or are told to stop. You will only get 20 minutes to complete all the problems. It is 

okay if you do not complete all problems. Just try to do your best. Are there any 

questions?” Answer any questions. 

2. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 20 minutes to complete the task.  
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3. After 20 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next task.” and collect the algebra performance packets. 

MASMI: Measure of the Ability to form Spatial Mental Imagery 

1. Distribute the MARMI/MASMI packet to the student, and say, “Now we will be doing 

another cognitive task. Follow along as I read the directions aloud.” Use one of the 

MASMI copies to read the directions on the first page.  

2. Then say, “Are there any questions?” Answer any questions. 

3. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 10 minutes to complete the task.  

4. After 10 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next task.” and collect the MARMI/MASMI packets. 

RAIT: Reynolds Adaptable Intelligence Test 

1. Distribute the test booklets and answer sheets to all students, and say, “Now we will be 

doing another cognitive task. Here is your test booklet and answer sheet. Go ahead and 

read the instructions on the front cover of the test booklet. Do not turn to then next 

page until I tell you to. Then write your date of birth in the correct spaces on the 

answer sheets. Do not worry about filling out the rest. Let me know when you are 

finished.” 

2. After the student has read the instructions on the front cover of the test booklet and filled 

out the answer sheet, say, “We will not do all the sections in the test booklet. I will let 

you know which sections we are going to complete. We will do one section at a time to, 

so please pay close attention to which page numbers that I give so that you can 

complete the right section. It will only take 30 minutes to complete the all the sections. 

Are there any questions about the instructions on the cover of the test booklet?” 

Answer any questions. 

3. Then say, “If there are not any [more] questions, then please turn to page 3 in your test 

booklet. We will start with the first section in the test booklet. Take a moment to read 

the example for section 1. Let me know when you are finished.” 

4. Once the student has read the example, say, “Do you understand what to do for section 

1? [wait for affirmation] You will have only 3 minutes to complete this section. Please 

do not mark in your test booklet. Mark all your answers on your answer sheet in the 

first section on left labeled GK. If you finish before time is up, you may review your 

answer for section 1 only. Otherwise, let me know when you are finished so we can 

move on to the next section. Are there any questions?” Answer any questions. 

5. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 3 minutes to complete section1.  

6. After 3 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next section.”  
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7. Then say, “Please turn to page 7 in your test booklet. This should be section 2. Take a 

moment and read the example for section 2. Let me know when you are finished” 

8. Once the student has read the example, say, “Do you understand what to do for section 

2? [wait for affirmation] You will have only 7 minutes to complete this section. Please 

do not mark in your test booklet. Mark all your answers on your answer sheet in the 

middle section labeled NVA. If you finish before time is up, you may review your 

answer for section 2 only. Otherwise, let me know when you are finished so we can 

move on to the next section. Are there any questions?” Answer any questions. 

9. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 7 minutes to complete section 2.  

10. After 7 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next section.”  

11. Then say, “Please turn to page 35 in your test booklet. This should be section 3. Take a 

moment and read through the example for section 3. Let me know when you are 

finished.” 

12. Once the student has read the example, say, “Do you understand what to do for section 

3? [wait for affirmation] You will have only 10 minutes to complete this section. Please 

do not mark in your test booklet. Mark all your answers on your answer sheet in the 

section on the right labeled SEQ. If you finish before time is up, you may review your 

answer for section 3 only. Otherwise, let me know when you are finished so we can 

move on to the next section. Are there any questions?” Answer any questions. 

13. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 10 minutes to complete section 3.  

14. After 10 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next section.”  

15. Then say, “Please turn to page 67 in your test booklet. This should be section 6. Take a 

moment and read through the example for section 6. Let me know when you are 

finished.” 

16. Once the student has read the example, say, “Do you understand what to do for section 

6? [wait for affirmation] You will have only 5 minutes to complete this section. Please 

do not mark in your test booklet. Mark all your answers on your answer sheet in the 

third section from the left section labeled OWO on side 2. If you finish before time is 

up, you may review your answer for section 6 only. Otherwise, let me know when you 

are finished so we can move on to the next section. Are there any questions?” Answer 

any questions. 

17. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 5 minutes to complete section 6.  

18. After 5 minutes have passed say, “Pencil down. Time is up and we need to move on to 

the next section.”  
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19. Then say, “Please turn to page 70 in your test booklet. This should be section 7. Take a 

moment and read through the example for section 7.” 

20. Once the student has read the example, say, “Do you understand what to do for section 

7? [wait for affirmation] You will have only 5 minutes to complete this section. Please 

do not mark in your test booklet. Mark all your answers on your answer sheet in the 

last section labeled WO on side 2. If you finish before time is up, you may review your 

answer for section 7 only. Otherwise, let me know when you are finished so we can 

move on to the next section. Are there any questions?” Answer any questions. 

21. Then say, “If there are not any [more] questions [pause], then you may begin.”  Start 

the timer. Participants get 5 minutes to complete section1.  

22. After 5 minutes have passed say, “Pencil down. Time is up. This was the last section for 

this task. Make sure you have filled out your date of birth on your answer sheet before 

handing it back.”  

Participant Demographic Survey 

1. Say, “We are now at the end of the study. You have completed all the tasks. Now I 

would like to ask you to fill out this survey. [pass out survey to the participant] The 

survey will ask you a number of demographic questions and about your past 

mathematics education. Please answer all questions to the best of your ability. If you 

come to a question that you do not wish to answer, please feel free to skip it and move 

on to the next one. Once you have completed the survey, place hand it back to me. I 

will then give you your appreciation gift and you are free to go. Are there any 

questions?” Answer any questions.  

2. Collect the complete surveys. As participants hand in their survey, say, “Thank you 

again for participating in the Factors of Algebra Performance Study. Have a great 

day!” 
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Appendix E: Item Level Analyses 

Item Level Analysis for Fraction Assessment 

Problems M SD 
Total 

Points 

Algorithmic Operations 
   

 1. Subtract 
3

5
 from 8. .84 .364 1 

 2. Write 3
5

6
 as an improper fraction. .74 .438 1 

Word Problems    

 1. If you have a half ball of string and each kite needs an eighth of a ball, how many kites can 

you fly? 
.92 .269 1 

 2. Adrian has conquered only 6 giants in his new video game, Giant Trouble, but it is only two-

fifths of the giants that he must conquer. How many giants are there in the new video game? 
.82 .389 1 

Algebraic Concepts    

 1. Solve 𝑥 +
1

3
= 7. .79 .406 1 

 2. 
1

3
× 𝑎 =? .89 .318 1 

Arithmetic Skills    

 1. Write 5
2

7
 as a sum. .43 .497 1 

 2. Find 
18

0
. .55 .500 1 

Rational Number    

 1. Write fractions 
4

7
,

5

9
,

3

5
 in order from least to greatest. .62 .488 1 

 2. The quotient of  
1

2
÷

1

3
 is greater than (>) or less than (<) 

1

2
? .76 .429 1 

Computational Fluency    

 
1. Find the sum 

7+5

3+5
+

5

6
5

3

. .51 .502 1 

 2. In an election, candidate A got 
1

3
 of the votes, candidate B got 

9

20
 of the votes, and candidate 

C got 
2

15
 of the votes. What fraction of the votes did candidate D get? 

.43 .497 1 
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Item Level Analysis for Equivalence Assessment 

Problems M SD 
Total 

Points 

Equal Sing Interpretation    

 1. What does the equal sign (=) mean? Can it mean anything else?  1.39 .800 2 

 2. What does the equal sing mean in this statement?  1 dollar = 100 pennies .59 .494 2 

Equation Structure    

 1. Is the number that goes in the blank the same number in the following two number 

sentences?  Yes, No, How do you know?  2 × ____ = 58   8 × 2 × ____ = 8 × 58 
.99 .815 2 

 2. Find a number that can go in each blank. Can another number go in these blanks? Explain. 

8 + 2 + ____ = 10 + ____ 
1.02 .882 2 

Open Equation    

 1. Fill in the blanks with the value that makes the following number sentences true.     

  a. 4,436 + 2,897 = _____ + 3,000  .79 .411 1 

  b. 3,901 − 2,012 = 3,889 − _____ .57 .497 1 

 2. Place the four numbers 𝑛 − 1, 𝑛 + 1, 𝑚 + 3, 𝑚 + 1 in the following boxes so that the number 

sentence is always true.  □ + □ = □ + □   
.77 .762 2 
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Item Level Analysis for Algebraic Reasoning Assessment 

Problems M SD 
Total 

Points 

Functional Thinking & Generalization 
   

 1a. Identify the relationship between the number of red tiles and any given number of sets (x). .72 .449 1 

 1b. Identify the relationship between the number of green tiles and any given number of sets (x). .74 .438 1 

 1c. Identify the relationship between the total number of tiles and any given number of sets (x). .70 .459 1 

 2. Table: 4 squares = ___ vertices .62 .486 1 

 2. Table: 10 squares = ___ vertices .41 .494 1 

 2. Table: 100 squares = ___ vertices .35 .478 1 

 2a. Suppose you are given the pattern of squares shown above. How would you describe the 

relationship between the number of squares and the number of vertices in words? .17 .377 1 

 2b. How would you represent the relationship between the number of squares and the number of 

vertices using algebra? .26 .442 1 

Modeling    

 1. Write an equation using the variables C and S to represent the following statement: “At 

Mindy’s restaurant, for every four people who ordered cheesecake, there are five people who 

ordered strudel.” Let C represent the number of cheesecakes and S represent the number of 

strudels ordered. 

.10 .300 1 

 2. Write an equation using the variables S and P to represent the following statement: "There 

are six times as many students as professors at a certain university." Use S for the number of 

students and P for the number of professors. 

.45 .499 1 

Structure Sense    

 1. Solve for x.    

  
a. (

1

4
−

𝑥

𝑥−1
) − 𝑥 = 6 + (

1

4
−

𝑥

𝑥−1
) .36 .482 1 

  
b. 1 −

1

𝑥+2
− (1 −

1

𝑥+2
) =

1

110
 .29 .456 1 

 2. Solve the following number sentences.    

  a. 237 + 89 − 89 + 267 − 92 + 92 = ? .87 .343 1 

  b. 217 − 59 + 59 + 62 − 28 − 28 = ?       .71 .456 1 
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Item Level Analysis for Algebraic Reasoning Assessment 

Problems M SD 
Total 

Points 

Symbolic Manipulation    

 
1. For each example, write an equivalent expression.    

  a. 4ℎ + 𝑡 = _______________ .23 .420 1 

  
b. 𝑢 + 5 + 6 + 5 + 𝑢 = _____________   .82 .389 1 

  
c. 4(𝑛 + 5) = _______________  .91 .290 1 

  
d. 𝑝 + 0.05𝑝 = _____________  .65 .478 1 

  
e. 5(𝑒 + 2) = _____________   .93 .258 1 

  
f. 𝑥 − 𝑥 + 2 = _______________  .89 .318 1 

  
g. (15 + 10𝑥) + (35 + 5𝑥) = _______________ .72 .452 1 

  h. 3𝑥 + 4 + 6(𝑥 + 5) = _____________ .84 .371 1 
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Item Level Analysis for Algebra Performance Assessment 

Problems M SD 
Total 

Points 

System Equations    

 1. The graphs of the two equations shown above intersect at the point . What is the value 

of x at the point of intersection? 
.37 .484 1 

 2. In the solution of the system of equations above, what is the value of x? .54 .500 1 

Functions    

 1. If  and , then  .77 .425 1 

 2. Yvonne has studied the cost of tickets over time for her favorite sports team. She has created 

a model to predict the cost of a ticket in the future. Let C represent the cost of a ticket in 

dollars and y represent the number of years in the future. Her model is as follows. 

 Based on this model, how much will the cost of a ticket increase in two 

years? 

.38 .486 1 

Solving Equations    

 1. If  and  in the formula , then   .74 .442 1 

 2. If 
 𝟏

𝒂
+

𝟒

𝟕
=

𝟏

𝟐
, then a = (?).  .57 .496 1 

Inequalities    

 1. What are all values of x such that  ? .26 .438 1 

 2. For which values of w is 1.25 ≤
𝑙

𝑤
≤ 2.5 if 𝑙 = 4? .46 .500 1 

Graphing    

 1. The graphs of  and  for  are shown in the figure above. For how 

many values of x is the product  for ? 
.55 .499 1 

 2. Which of the following is the graph of  ? .43 .496 1 

Exponents    

 1. For what value of x is ? .12 .327 1 

 
2. 121

3

2 = .30 .459 1 

Factoring    

 1. Factor 28𝑛4 + 16𝑛3 − 80𝑛2. One of the factors is (?). .57 .497 1 

 2. 𝑚2 + 10𝑚 + 14 + 𝑏 is a perfect square. Find b. .27 .445 1 



139 

 

Item Level Analysis for Algebra Performance Assessment 

Problems M SD 
Total 

Points 

Complex Numbers    

 1. If 𝑖 = √−1 then 
1

6+4𝑖
= ? .07 .258 1 

 2. Let 𝒊 = √−𝟏. After expanding and simplifying (𝟐 + 𝒊)𝟑 =? .21 .411 1 

Polynomial Division    

 1. If 6𝑥3 + 5𝑥 − 8 is divided by 𝑥 − 2, the remainder is? .13 .335 1 

 2. (𝑥3 + 12𝑥2 + 47𝑥 + 60) ÷ (𝑥 + 5) = ? .36 .482 1 

Logarithms    

 1. Which one is equivalent to log4(16𝑥6)? .14 .350 1 

 2. Solve log𝑥 16 = 2 for x. x = (?). .41 .494 1 
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