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ABSTRACT

BALANCING CONVERGENCE AND DIVERSITY IN EVOLUTIONARY SINGLE,
MULTI AND MANY OBJECTIVES

By
Haitham Seada

Single objective optimization targets only one solution, that is usually the global optimum. On
the other hand, the goal of multiobjective optimization is to represent the whole set of trade-off
Pareto-optimal solutions to a problem. For over thirty years, researchers have been develop-
ing Evolutionary Multiobjective Optimization (EMO) algorithms for solving multiobjective opti-
mization problems. Unfortunately, each of these algorithms were found to work well on a specific
range of objective dimensionality, i.e. number of objectives. Most researchers overlooked the idea
of creating a cross-dimensional algorithm that can adapt its operation from one level of objective
dimensionality to the other.One important aspect of creating such algorithm is achieving a careful
balance between convergence and diversity. Researchers proposed several techniques aiming at di-
viding computational resources uniformly between these two goals. However, in many situations,
only either of them is difficult to attain. Also for a new problem, it is difficult to tell beforehand if
it will be challenging in terms of convergence, diversity or both. In this study, we propose several
extensions to a state-of-the-art evolutionary many-objective optimization algorithm — NSGA-IIL
Our extensions collectively aim at (i) creating a unified optimization algorithm that dynamically
adapts itself to single, multi- and many objectives, and (ii) enabling this algorithm to automatically
focus on either convergence, diversity or both, according to the problem being considered. Our
approach augments the already existing algorithm with a niching-based selection operator. It also

utilizes the recently proposed Karush Kuhn Tucker Proximity Measure to identify ill-converged


seadahai@msu.edu

solutions, and finally, uses several combinations of point-to-point single objective local search pro-
cedures to remedy these solutions and enhance both convergence and diversity. Our extensions
are shown to produce better results than state-of-the-art algorithms over a set of single, multi- and

many-objective problems.
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Chapter 1

Introduction

Introducing Vector Evaluated Genetic Algorithms (VEGA) [1] was a turning point in the
history of Evolutionary Computation (EA). This is the birthdate of Evolutionary Multi-
objective Optimization (EMO). From this day on, the obligation of combining all objectives
into one fitness function started to fade. The history of this relatively new field can be
viewed from several perspectives. The one perspective that relates to our work here,
is how EMO has developed over the years in terms of objective dimensionality i.e. the
number of objectives. Roughly, the first fifteen years were focused on dealing with only
two objectives [5]. Several algorithms with variable rates of success were proposed (see
Chapter 2). Researchers then were concerned mainly about reaching and covering the
whole set of trade-off solutions, or what is formally known as the "Pareto-front" 1. Over
the next ten years (roughly), generalization efforts started and flourished. It was clear that
the best known algorithms in bi-objective optimization do not scale up to solve three or

more objectives [6]. Consequently, several successful algorithms were proposed to deal

Ihamed after the Italian economist "Vilfredo Pareto"



with mainly three or four objectives. Only recently [4, 7-10], the term "Many-Objective
Optimization" was coined to designate problems having a "large" number of objectives.
In this context, the term "large" means more than three. Researchers were able to develop
algorithms solving up to fifteen objectives (see Chapter 2). Today, the field is more active
than ever. Hundreds of researchers from a wide variety of scientific disciplines have
joined the field since its advent thirty years ago [1]. And it easy to tell how far the field

has gone.

In spite of the number of researchers working in the field and the number of studies
conducted, EMO is still facing many problems and challenges. In the next section we
summarize two of the problems currently facing both researchers and practitioners de-
veloping and applying algorithms dealing generally with evolutionary optimization and

specifically with more than one objective.

1.1 Problem Definition

Practitioners usually are obligated to follow one of two paths. The first path is to adapt the
number of objectives they are dealing with to the algorithm/software package in-hand.
This is usually done by combining several — may be conflicting — objectives into one.
This approach is undesirable because unlike optimizing objectives separately, optimizing
combined objectives is prone to loosing useful trade-off solutions, depending on the
relation between these objectives and how they are combined. The second path is to use
different algorithms, one for each level of objective dimensionality. This is an obvious

inconvenient approach to avoid the problems caused by the first path. The source of this



problem is that most researchers develop their algorithms targeting one specific level of

dimensionality, usually either single, bi- or multi-/many objectives.

On researchers’ side, the ever-existing trade-off between convergence and diversity be-
comes more complicated as the number of objectives increases. They are usually con-

flicting. Hasty convergence 2

may not give the algorithm enough opportunity to cover
the whole set of trade-off solutions. Conversely, putting early emphasis on diversity can
delay convergence. And without prior knowledge of problem landscape, it is difficult to
tell in advance which of the two (convergence and diversity) should be the main concern
of the optimizer. Because of this, most current algorithms maintain almost equal balance
between the two. In a nutshell, we can say that the ultimate goal of this line of research

is to create an algorithm that can dynamically balance its emphasis between convergence

and diversity according to the problem.

1.2 Motivation

Solving the first problem involves carefully designing an algorithm that can adapt its
operation to objective dimensionality automatically, without any hard-coded switches.
This is important because although problems are usually categorized into three or four
dimensional categories [4, 5, 11], the actual range of categories is more finely grained.
In other words, being in the same many-objective category does not mean that an 8-
objectives problem and a 15-objectives problem should be treated uniformly. Moreover,
the deficiencies with existing algorithms to either scale up (to solve higher dimensional

problems than initially anticipated) or down (to solve lower dimensional problems than

2premature convergence which results in reaching either an incomplete or a local Pareto front.



initially anticipated) makes it more difficult to rely on one of them to developed the

targeted algorithm.

In addition to algorithmic motivations, there are other practical motivations for the first
part of our study. We will discuss four of them here. First, In order to solve an optimization
problem, it (the problem) must first be implemented (coded or expressed symbolically)
within the optimizer (either a computer code or a commercial software). Often, this im-
plementation process involves linking the optimizer to a third-party evaluation software
such as a finite element or a computational fluid dynamics software or a network flow
simulator etc. Secondly, in order to achieve better results, it is also recommended to
customize the optimizer itself for the problem in hand [12, 13] by introducing new opera-
tors and/or modifying existing genetic operators utilizing the "heuristics" of the problem.
For example, instead of starting an optimization run from a random initial population, a
heuristically biased initial population is created. Such algorithmic modifications and cus-
tomized initializations involve careful analysis, efforts and are certainly time-consuming.
Thirdly, many multi- or many-objective optimization methods require the same problem
to be solved for individual objectives one at a time for obtaining ideal and Nadir 3 points
prior to solving the multi- or many-objective version of the problem. Often, such several
lower-dimensional runs are executed to verify or gain confidence in the obtained higher-
dimensional efficient front [14]. Fourthly, in design exploration problems, objectives and
constraints are interchanged to get a better idea of the possible range of optimal solutions

[15]. Taking these four considerations into account, assume that a distinct optimizer is

3Nadir point is the vector of the worst objective function values across all Pareto optimal solutions.



needed for each dimensional version of the original optimization problem. In such a situ-
ation, problem implementation, algorithmic modifications and custom initializations will
need to be reimplemented for every optimizer, thereby making the overall process slow,
tedious and error-prone. Solving a single objective version of a multi-objective problem
will be more complicated as it will need a different optimizer. Finally, each version of a
design exploration problem will need an optimizer that suites its dimensionality, which in
turn depends on the specific combination of constraints used as objectives and vice versa.
Instead, if one unified optimization algorithm capable of handling one to many objectives
efficiently is available, then a one-time algorithmic modification based on heuristics, one-
time implementation of the problem description and one-time linking with evaluation
softwares would be more convenient for solving different dimensional versions of the
original problem. This provides flexibility to users in moving back and forth between
different objective-dimensions of the same original problem and also saves time, effort

and most importantly makes the process less error-prone.

Developing a unified algorithm that can dynamically adapt to dimensionality is only one
part of the story. We also need to make sure that when it comes to more than one objective,
our state of the art algorithm is able to put more emphasis on either convergence, diversity
or both. Varying the emphasis of the algorithm can capture difficult-to-attain solutions
and/or reveal interesting aspects about the problem. It is very useful for a practitioner —
with little or no information about the problem — to try to put emphasis on convergence at
one time and on diversity at another time. And since it is very difficult to tell beforehand
what kind of emphasis the current problem needs, it will be of great practical usefulness if

the algorithm itself can dynamically sense the need for more convergence and/or diversity



based on the problem being solved.

1.3 Thesis Statement

This thesis develops a scalable unified algorithm that is able to automatically balance its
focus between convergence and diversity. This algorithm is created through an efficient
combination of EMO, Karush Kuhn Tucker (KKT) conditions and point-to-point single ob-
jective local search. Compared to state of the art algorithms including CMA-ES, NSGA-III
and MOEA/D — among others — the algorithm is shown to have promising results over

single-to-many objectives spectrum.

1.4 Contribution

A unified evolutionary optimization algorithm that can scale from one to many objectives.
With more than one objective, the algorithm should be smart enough to put its resources
where they are most needed by helping poorly converged solutions, covering efficient
front gaps and expanding coverage whenever possible. Through this selective strategy
the algorithm should be able to automatically balance its focus between convergence
and diversity throughout the optimization run. Creating this algorithm enables one-time
implementation of solution representation, operators, objectives and constraints formula-
tions while maintaining an outstanding performance across several objective dimensions.

The next subsections discuss the major parts of this study in brief.



1.4.1 Unified EMO for Single, Multiple and Many Objectives

In the first part of this dissertation and for the first time, we propose a unified evolu-
tionary optimization algorithm (U-NSGA-III) [16] for solving all three classes of problems
(single, multi and many), based on the recently-proposed, decomposition-based, elitist,
guided, Non-dominated Sorting Genetic Algorithm (NSGA-III) originally developed to
solve many-objectives problems. NSGA-III uses multiple pre-defined yet adaptable ref-
erence directions to maintain diversity among its solutions. With the intent of solving
many-objective problems, the authors of NSGA-III restricted population size to be equal
to the number of chosen reference directions (single-fold restriction). This restriction
hinders the usage of NSGA-III with single-objective optimization problems, where, by
definition, there is only one reference direction. U-NSGA-III is capable of adapting auto-
matically to the dimensionality of the problem in hand through its niching-based selection
operator. It automatically degenerates to an efficient equivalent population-based algo-
rithm for each class. No extra tunable parameters are needed. Extensive simulations
are performed on unconstrained and constrained test problems having single, two, multi
and many-objectives and on two engineering optimization design problems. The perfor-
mance of the unified approach is compared with a suitable population-based counterpart
at each dimensional level. Results amply demonstrate the merit of our proposed uni-
tied approach, encourage its further application, and motivate similar studies for a richer

understanding of the development of optimization algorithms.



1.4.2 Selection in NSGA-III

Because of the role played by selection in the first part of this study, we were urged to
further investigate its effect on this type of algorithms (reference-based, population-based,
evolutionary, multi-objective optimization algorithms) [17]. Unlike the first part of this
study, here we ignore the single-fold restriction (described above). In other words we allow
population size to increase freely beyond the pre-defined number of reference directions
(multi-fold approach). Over a wide range of constrained, unconstrained, single, multi-
and many-objective problems, we investigate the strengths and weaknesses of multi-fold
NSGA-III compared to those of U-NSGA-IIL. The robustness of NSGA-III in each type
of problems is also discussed. This study provides a more comprehensive evaluation of
the original NSGA-III procedure, which seems to have a wider scope than what both the

original study [4] and the first part of our study (U-NSGA-III) had foreseen.

1.4.3 Enhancing Convergence in EMO

In Chapter 5, we propose a multi-objective evolutionary algorithm with emphasis on
convergence. Traditionally, evolutionary multi-criterion optimization (EMO) algorithms
emphasize non-dominated (convergence) and less-crowded (diversity) solutions in a pop-
ulation iteratively until the population converges close to the Pareto-optimal set. During
the search process, non-dominated solutions are differentiated only by their local crowd-
ing or contribution to hypervolume or using a similar other metric. Thus, during evolution
and even at the final iteration, the true convergence behavior of each non-dominated so-
lution from the true Pareto-optimal set is unknown. Recent studies [18, 19] have used
Karush-Kuhn-Tucker (KKT) optimality conditions to develop a KKT Proximity Measure
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(KKTPM) for estimating proximity of a solution from Pareto-optimal set for a multi-
objective optimization problem. In this paper, we integrate KKTPM with NSGA-III to
enhance its convergence properties towards the true Pareto-optimal front. Specifically,
we use KKTPM to identify poorly converged non-dominated solutions in every gen-
eration and apply an achievement scalarizing function based local search procedure to
improve their convergence. Assisted by KKTPM, the modified algorithm is designed in
a way that maintains the total number of solution evaluations* as low as possible while
making use of local search where it is most needed. Simulations on both constrained
and unconstrained multi- and many-objective optimization problems demonstrate that
the hybrid algorithm significantly improves overall convergence properties. In addition,
this study brings evolutionary optimization closer to mainstream optimization field and
should motivate researchers to utilize KKTPM measure further within EMO and other

numerical optimization algorithms.

1.4.4 Balancing Convergence and Diversity

In the final part of our study (Chapter 6), we propose B-NSGA-III, a multi-phase ver-
sion of U-NSGA-III that adds a diversity preservation mechanism to the convergence
enhancement mechanism proposed in Chapter 5. B-NSGA-III combines EMO, KKTPM
and two types of local search operators into one algorithm. The algorithm is carefully
designed so that all these elements serve their designated purposes cooperatively rather
than competitively. The key behind cooperation is the alternating nature of the algorithm.

B-NSGA-III alternates seamlessly among three phases according to the current situation

* In a multiobjective optimization context, a Solution Evaluation (SE) refers to evaluating all the objectives of
one solution. Like Function Evaluation (FE) in single objective optimization, an efficient multiobjective optimization
algorithm should yield good performance with the minimum possible number of SEs.



faced by the algorithm. Thus, it adapts itself according to the problem it currently solves.
Logical justifications and extensive simulations are presented to show the usefulness of

the proposed multi-phase approach.

1.5 Summary

This chapter puts the rest of this study in it designated context and justifies its usefulness.
Initially, we define our problem and explain the benefits both researchers and practitioners
will gain from solving it. Then, we present our thesis statement to which everything in
this study boils down. Finally, every contribution we make in this study is briefly dis-
cussed starting with creating a unified optimization algorithm and ending with achieving

automatic balance between convergence and diversity.

The rest of this study is organized as follows. A brief history of EMO and a review
of related work are presented in Chapter 2. Chapter 3 discusses our proposed unified
approach (U-NSGA-III) in detail. Our selection study is presented in Chapter 4. In
Chapter 5, we discuss our approach to enhance convergence and extend it to B-NSGA-III

in Chapter 6. Finally, our conclusions and future work are discussed in Chapter 7.
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Chapter 2

Related Work

In this chapter we provide a review of the most important efforts in EMO literature that
relates to our study. Starting from a wide perspective, the discussion narrows down
gradually towards our focus here. Finally, we discuss a set of challenges facing state of

the art EMO, with a brief description of how our study handles each of them.

2.1 Introduction

Designing algorithms inspired by natural evolution started with John Holland’s work in
sixties and the seventies [20, 21]. In his book, Holland proposed the idea of Genetic Al-
gorithm (GA). Several researchers followed his ideas, most notably David Goldberg who
used GAs specifically in optimization applications [22-25]. Since that time researchers
have been using GA'’s successfully in different optimization applications [25, 26]. Similar

algorithms were proposed around the same time of Holland’s work, including Evolution
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Strategies [27, 28] and Genetic Programming [29, 30]. Survival-of-the-fittest is the prin-
ciple upon which all these Evolutionary Algorithms (EAs) were designed. All of them
are population-based, which means that optimization starts with a whole set of solutions
(population). This population evolves from one generation to the next using various types
of operators [25, 31-33]. These operators usually involve certain degrees of randomness.
Solutions keeps interacting through available operators until some stopping criterion is
met. Eventually, the fittest solution is returned. In their basic structure, EAs do not use
gradients. The disadvantage of using EAs is that there is no guarantee or proof that
the fittest solution will be the true global optimum. This outline opposes mathematical
(classical) optimization point-to-point philosophy, where the optimization process moves
from a single solution to the next in a deterministic way where gradients usually play
an important role [11, 34]. In mathematical optimization, a point is proven to be a local
optimum, given some conditions [35]. However, these conditions are rarely satisfied in
real world problems. Real world problems can be discontinuous and/or multimodal.
They can also be black box problems for which no mathematically formulated objective
function is known. In such cases, no accurate gradient information can be obtained. For
all these reasons, EAs outperform mathematical optimization techniques on many real

world optimization problems.

2.2 Evolutionary Multiobjective Optimization (EMO)

EA researchers kept there focus on single objective optimization problem until Schaffer
introduced his Vector Evaluated Genetic Algorithm (VEGA) in 1985 [1]. In his paper,

Schaffer raises the following question, "How might survival of the fittest be implemented
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FIGURE 2.1: Schematic Description of VEGA (copied from [1])

when there is more than one way to be fit?" [1]. As an answer to this question, he proposed
VEGA. In an M objectives problem, VEGA considers each objective to be — alone — the
comparison criterion used in selection. Thus, M selection cycles are performed, each
of which is responsible for contributing some of the members of the new population.
This simple approach is outlined in Figure 2.1. The idea behind this simple approach
is to maintain emphasis on all objectives throughout the entire optimization process.
Although, the idea seems plausible, it can easily loose trade-off solutions for the sake
of extreme solutions (i.e. those performing well only on a subset of the objectives). In
order to avoid this negative effect, VEGA incorporated a penalization scheme based on
the non-domination concept proposed by Pareto [36, 37]. Non-domination is a relation
between two vectors. In a minimization context!, a vector X = (x1,x2...xy) is said to be
non-dominated with respectto Y = (y1,vy2...yn) & x; <y;Yiand x; <y;, for atleast one
i. In this case, Y is said to be dominated-by or inferior-to X. For a proper 2 multiobjective

optimization problem, there will be a set of non-dominated solutions with respect to all

1 Throughout all parts of this study, the default context is minimization unless otherwise stated.
2A proper multiobjective optimization problem is a problem where objectives are conflicting. In other words, there
is no single solution that achieves the minimum (best) of all objectives simultaneously
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other solutions in the feasible search space. Obviously, an EMO algorithm targets this set.
In VEGA, dominated solutions are penalized and non-dominated solutions are rewarded.
Since then the non-domination concept has become a very important important factor in

EMO.

Over the past two decades, many successful evolutionary multi-objective optimization
(EMO) algorithms have been proposed. Among the first attempts of EMO methods are
MOGA [38], NPGA [39] and NSGA [40], where researchers devised different possible ways
of handling more than one objective by carefully balancing emphasis between convergence
and diversity preservation. For achieving convergence to Pareto-optimal solutions, these
algorithms continued to further incorporate the concept of Pareto domination [5]. MOGA
was the first algorithm to introduce the idea of grouping solutions into different layers
based on their non-dominated ranking. A true Pareto optimal solution will never be
dominated, consequently it will always be ranked 1. In terms of diversity preservation,
this family of algorithms continued to use several diversity-preservation methods studied

in the context of single-objective evolutionary computation methods [23, 41, 42].

A second wave of algorithms followed. These algorithms incorporated elite-preservation
concept which ensures the survival of non-dominated and well-diversified solutions from
one generation to the next. Some of the most prominent studies of this wave are NSGA-II

[2], SPEA [43], SPEA2 [44] and PAES [45] among others [5, 46—49].

Out of all these algorithms NSGA-II has been the most widely used algorithms in the field
[50-54]. In NSGA-II, elitism is ensured by merging both parents and their offspring into

one double-sized combined population, sorting them, then keeping the better half of the
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FIGURE 2.2: Crowding Distance in NSGA-II (taken from [2])

combined population. For diversity preservation, the authors of NSGA-II proposed an
efficient approach where each member is a assigned a crowding-distance value. This value
is simply an approximation of the perimeter of the cuboid whose edges are those pairs of
solutions surrounding the designated solution in each dimension as shown in Figure 2.2.
The larger the crowding-distance value, the more important the solution is. This is because
such an individual® is considered the only representative of a less crowded portion of the
objective space. By continuously emphasizing lower ranks then larger crowding distance
values (in this specific order), NSGA-II achieves high levels of both convergence and
diversity eventually. The whole NSGA-II procedure is shown in Figure 2.3. On the other
hand, SPEA and SPEA2 maintains an explicit external population of well-converged and
well-diversified solutions and use them for creating new populations. PAES performs a
competition between a parent and its child to enforce elite-preservation. Second wave

algorithms — in general — suffers their inability to scale up to more than two objectives.*

In response to the increasing need for algorithms capable of handling many objectives, a

3 The terms "solution”, "individual" and "points" are used interchangeably throughout this study.
4 It is worth noting that some of the later ones were shown to solve up to 3 objectives as well.
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FIGURE 2.3: NSGA-II Algorithm (taken from [2])

third wave of EMO algorithms emerged in the last decade [3, 6, 55-66]. Zhang and Li’s
MOEA/D [3] had the right ingredients for such an algorithm. They proposed a decom-
position based method, guided by a set of predefined evenly distributed set of reference
directions in the objective space. The original multiobjective optimization problem is de-
composed into a set of single objective optimization subproblems, one problem for each
reference direction. Each subproblem utilizes information from its neighbouring subprob-
lems only. The authors proposed several approaches for formulating these subproblems.
The most successful approach is the Penatly-based Boundary Intersection (PBI) approach
shown in Figure 2.4 (notice that the original study was proposed in a maximization con-
text). In this approach, for a given point x, objective vector F(x), reference point z* and
reference direction A, the weighted sum of the two distances d; and d; — in the objective
space — is minimized. d; represents the Euclidean distance between z* and the projection

Of F(x) on A, while d, represents the Euclidean distance between F(x) and its projection
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on A. Other formulation approaches including simple weighted sum, Tchebycheff and

non-penalized Boundary Intersection (BI) have also been discussed.

A

FIGURE 2.4: MOEA/D PBI (taken from [3])

Although their original study showed better results compared to NSGA-II and other
algorithms up to 4 objectives, their algorithm have been used successfully elsewhere up
to 10 objectives [4]. In 2013, Deb and Jain extended NSGA-II to handle many-objective
optimization problems and proposed NSGA-III [4][7]. Their study included problems
ranging from 3 to 15 objectives. NSGA-III is parameterless. It uses the same general
framework of NSGA-II, but with a modified diversity-preserving operator that is based
on a decomposition concept similar to that of MOEA/D. Although, the original study
shows the outstanding performance of NSGA-III in the many objectives realm, the authors
did not include neither bi-objective tests nor any comparison between NSGA-III and its

predecessor NSGA-II. Since our study builds on top of NSGA-III, we devote the next
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section to discuss its general philosophy and some of its details. For detailed explanations

and extensive simulation results the reader is advised to consult [4, 7].

2.3 Introduction to NSGA-III
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(a) Reference points(directions) in NSGA-III (B) Association in NSGA-III

FIGURE 2.5: Niching in NSGA-III (taken from [4])

NSGA-III starts with a random population of size N and a set of H evenly-distributed, pre-
specified M-dimensional reference points® on a unit hyper-plane having a normal vector
of Ones covering the entire RM region. The hyper-plane is placed in a manner so that it
intersects each objective axis at 1 (see Figure 2.5a ([4])). Das and Dennis’s technique [67] is

used to place H = (MJ;? -1

) reference points on the hyper-plane having (p + 1) points along
each boundary. The population size N is chosen to almost equal to H, with the idea that

for every reference point, one population member is expected to be found.

At generation t, the following operations are performed. An offspring population Q is

created from the parent population P; using usual recombination and mutation operators.

5 Although the original study used the notion of a "reference point", here we will mostly use the notion of a "reference
directions", which is the vector connecting the ideal point to the "reference point". We found this notion more conceivable
and avoids the confusion that may arise between the two terms "point” (an actual solution) and "reference point" (a
hypothetical point in the objective space).
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Since only one population member is expected to be found for each reference point, there is
no need for any selection operation among feasible solutions in NSGA-III, as any selection
operator will allow a competition to be set among different reference points. A combined
population R = P;U Qy is then formed, and the whole combined population is sorted
into different non-domination levels, in the same way it is done in NSGA-IL. Thereafter,
solutions starting from the first non-dominated front are included in P;,; (the next parent
population) one front at a time. Typically, the algorithm will reach a front that has more
individuals than the remaining slots in the next parent population i.e. a front that cannot
be fully accommodated in P;,1. Let’s denote this last front as F;. In such a case, a niche-
preserving operator is used to select the subset of Fy that will be included in P;;y. The
niche-preserving operator works as follows. First, each population member of P;,; and F|,
is normalized using the current population spread so that all objective vectors and reference
points have commensurate values. Thereafter, each member of P;.; and F is associated
with its closest reference direction (in terms of perpendicular distance). Then a careful
niching strategy is employed to choose those F;, members that are associated with the least
represented reference points in P;,;. The niching strategy puts an emphasis on selecting a
population member for as many supplied reference directions as possible. A population
member associated with an under-represented or un-represented reference direction is
immediately preferred. With a continuous stress on non-dominated individuals, the
whole process is then expected to find one population member corresponding to each
supplied reference point close to the Pareto-optimal front, provided the genetic variation
operators (recombination and mutation) are capable of producing respective solutions.

The use of a well-spread reference directions ensures a well-distributed set of trade-off
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solutions at the end (see Figure 2.5b ([4])).

ALGORITHM 1 Generation t of NSGA-III procedure

Input: H structured reference points Z° or supplied aspiration points Z?, parent population P;
Output: Py
: St = @, i=1
Q¢ = Recombination+Mutation(P;)
Ry =PrUQ;
(F1,F>,...) = Non-dominated-sort(R;)
repeat
St :StUFZ' andi=i+1
until |S;| > N
Last front to be included: F; = F;
if |S;| = N then
Piy1 =S4, break
: else
Piq = u;;llF]-
Points to be chosen from F;: K= N —|P;,1]
Normalize objectives and create reference set Z": Normalize (f",5:,27,78,7%)
Associate each member s of S; with a reference point: [n(s),d(s)] =Associate(5,Z") %
7i(s): closest reference point, d: distance between s and 7(s)
16:  Compute niche count of reference point j € Z": p; = Y.ges,/r, ((1(s) =) ? 1 : 0)
17:  Choose K members one at a time from F; to construct Py,1: Niching (K, pj,7,d,Z",F}, Pt11)
18: end if

Y XN AR

gy
LIRS S

The original NSGA-III study [4] have been demonstrated to work well from three to 15-
objective DTLZ and other problems. A key aspect of NSGA-III is that it does not require
any additional parameter. The method was also extended to handle constraints without
introducing any new parameters [7]. That study has also introduced a computationally
fast approach by which reference directions are adaptively updated on the fly based on
the association status of each of them over a number of generations. The algorithm is

outlined in Algorithm 1.

20



2.4 Convergence versus Diversity in EMO

Balancing convergence and diversity has been drawing researchers’ interest since the first
ever multiobjective optimization algorithm [1]. Most early studies gave higher priority
to convergence over diversity [5]. Gradually, researchers started to realize that strictly
following this specific order might be too restrictive [3]. In this section we will discuss a

selected set of notable efforts showing the progression of research in this topic.
2.4.1 Towards a Better Balance

In 2001, Deb and Goel proposed Controlled Elitist NSGA-II [68]. Their algorithm used a
geometric distribution with a user defined parameter r that caps the number of allowed
individuals in each front, in an exponentially decreasing order. Their approach is intended
to preserve diversity by keeping a larger number of fronts represented in the population at
all times. They showed that their approach can use this diversity preservation scheme to
enhance convergence as well. A few years later, Bosman and Thierens discussed several
ways by which EMO algorithms performs exploitations and exploration of both proximity
(convergence) and diversity [69]. In their study they stated that "the exploitation of
diversity should not precede the exploitation of proximity". Yet they warned that delaying
diversity preservation can result in finding only discontinuous sections of the Pareto front
instead of showing the entire trade-off. They also suggested a parameter-based approach

to control how much emphasis is put on diversity.

From a different perspective, the desired balance can be attained through variation oper-

ators. The study conducted by Tan et al. [70] explored this idea in the context of binary
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chromosome representation. They proposed an Adaptive Variation Operator (AVO).
AVO utilizes the chromosomal structure to tune crossover and mutation rates of each
gene independently. Genes representing most significant bits are assigned higher rates
in the beginning of optimization to encourage exploration. These rates decrease (either
linearly or non-linearly) as optimization proceeds. The opposite is applied to genes rep-
resenting the least significant bits, in order to encourage exploitation at the final stages of
optimization. Thus, emphasizing diversity (a consequence of exploration) then moving
gradually towards emphasizing convergence (a consequence of exploitation). They also
combined crossover and mutation in a way intended to prevent mutation from disrupt-
ing the flow of information created by crossover. Despite the restricted context of this
study, it represents the converse of the commonly adopted convergence-first idea at the
time. However, It is important to emphasis that their results are based on the assumption
that a chromosome is the direct binary representation of a number. Consequently, their

conclusion cannot be extended, even over binary chromosomes in general.

Due to the recent success of many-objective optimization algorithms ( > 3 objectives)
[3, 4, 7, 16], balancing convergence and diversity becomes even more challenging than
before. As the number of objectives grows, the percentage of non-dominated solutions
increases significantly. Consequently, one of the most widely used converging forces —
non-domination — becomes ineffective. Although this effect can be generally considered a
disadvantage, it can be beneficial in the realm of many objectives. As the dimensionality of
the objective space increases, EMO algorithms become more prone to loosing parts of the
Pareto front due to premature convergence. In such cases, maintaining mild convergence

pressure allows for more exploration, which in turn can result in better diversity. This is
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the reason behind the reduced selection pressure adopted in NSGA-III [4].

In this context, Ke Li et al. proposed an interesting extension to MOEA/D [71]. Their
approach treats subproblems and solutions as two different types of agents. Each sub-
problem creates a preference list of all available solutions sorted by their performance
in the employed scalarization function (which is a metric of convergence in this specific
subproblem). On the other hand, each solution creates a preference list of all available
subproblems sorted by the perpendicular distance between the solution itself and each
of them (which signifies diversity). After each agent — from both sides — creates its own
preference list, a stable matching algorithm [72] dictates the final subproblem-solution

associations. Those selected solutions move to the next generation.

Researchers continued to experiment with MOEA/D in the last few years. Wang et al.
proposed amodification of its replacement strategy (Global replacement) [73]. The original
version of MOEA/D simply assumes that a solution coming out of a specific subproblem
can only replace another solution in the vicinity of this subproblem. Their approach on
the other hand looks for the subproblem at which the new solution fits best, and performs
replacement in the vicinity of this subproblem instead of the original one, hence the name
"Global replacement”. They showed how this simple modification performs better on a
set of test problems. Another recent study by Yuan et al. [74] proposed a modified version
of MOEA/D that achieves better balance. In their study they use a slightly relaxed mating
restriction (controlled by a probability parameter 6). Their approach - MOEA/D-DU -
utilizes the perpendicular distances between solutions and directions (d») for enhanced
diversity. Unlike the Penalty Boundary Based Intersection MOEA/D (MOEA/D-PBI) they

are not incorporating d; in the scalarization function itself. They are still using Tchebycheff
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scalarization function. Instead, they compare each new solution (from subproblem F;)
with a non-decreasing sorted list of the K closest solutions to F; (sorted by d>). If the new
solution y has a better Tchebycheff value than solution x;, y replaces x; immediately. It
is worth noting that MOEA/D-DU is a steady state algorithm. The study also included a

similar extension of EFR [75].

Most of these studies do not propose truly automatic balancing approaches. We can gener-
ally classify them into two categories. The first category follows a predefined preference
scheme to achieve the desired balance, either by focusing on convergence then diversity,
or doing the opposite! Although following either way can show some merit on a selected
set of problems, none of the two approaches can be considered appropriate in general. In
addition, many problems would not fit in any of these two extremes. A parallel emphasis
would be more robust and predictable over the whole spectrum of optimization problems.
This parallel approach is adopted by the second category, however, this category uses an
additional user-defined parameter to indicate the relative effort put to either convergence
or diversity. Now it is the user’s responsibility to find the right value for this parameter,
which is a very challenging task given a new — possibly black-box — optimization problem.

Thus, none of these approaches can be considered truly automatic.

One of the contributions of this study is the infinite seamless alternation of phases it
follows, in order to reach the desired balance without adding explicit preferential param-
eters. In the remaining part of this chapter we study some key components that enabled

us to reach this balance.
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2.4.2 Optimality in EMO

Karush-Kuhn-Tucker (KKT) conditions are one of the early and most widely used forms
of optimality conditions [11, 76-78]. KKT conditions generalize the method of Lagrange
multipliers previously applicable only to handle equality constraints. They are necessity
conditions that each optimal point must satisfy. The opposite is not true, however. A KKT
point is not necessarily optimal. Despite this fact many researchers and even popular
softwares use some form of KKT conditions to check the optimality of their solutions.
Thus, it would be more accurate if we said that these studies/softwares search for KKT
points, instead of actual optimal points. To ensure optimality another set of more involved
conditions (sufficiency conditions) should be used. But, sufficiency conditions are more
difficult to apply in real world problems. For example, KKT conditions are sufficient
(ensure global optimality) if the problem satisfies moderate convexity assumptions, a rare

case in practice.

Recent studies [79, 80] have clearly revealed one aspect: KKT optimality conditions are
"singular" properties, applicable only at a KKT point (including an optimal point). The
extent of violation of KKT optimality conditions cannot be construed in any way to predict
a point’s closeness to a KKT point. In other words, KKT conditions do not provide any
clue regarding how far an arbitrary solution can be from being a true KKT point. Thus, in
their original form, KKT conditions cannot be used as a convergence metric. To tackle this
shortcoming, Dutta et al. [79] proposed a KKT proximity metric (KKTPM) computation
procedure which behaves monotonically as points get closer to a KKT point for single-

objective optimization problems. In 2015, Deb et al. extended this work for multi-objective
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optimization problems [18] and showed that the respective KKTPM value for any point
has a high correlation to the distance of the point from the efficient frontier (in the objective
space). However, one drawback of the approach is that computing KKTPM value for a
single point requires solving an auxiliary optimization problem with parabolic constraints,
for which the number of variables is two more than the total number of constraints in the
original problem. A later study [19] proposed an approximation procedure to compute
KKTPM. In [19], Deb et al. showed that computing approximate KKTPM does not require
solving a full optimization problem anymore, instead, a linear system of equations is
solved to find the approximate value. This procedure opened the door wide for using

KKTPM in various contexts.

The ability to efficiently compute a reliable value of KKTPM allows for its use beyond
simply ascertaining termination of an optimization run — which was the initial moti-
vation behind proposing KKTPM. In an EMO algorithm, non-dominated solutions are
emphasized more than dominated solutions and when solutions from an identical non-
dominated level are compared, the one having less crowding in its vicinity (in the objective
space) is emphasized. Some algorithms compute a crowding measure [2, 44] to each so-
lution for this purpose, while others compute contribution of each solution to an overall
performance measure, such as incremental hypervolume [81]. However, none of these
diversity indicators nor any other proposed measures are able to rank non-dominated
solutions in terms of their convergence from the true Pareto-optimal set. It is unlikely
that all non-dominated solutions are equally convergent to the true Pareto-optimal set at
any generation, and niching properties alone cannot show. Moreover, there can be cer-

tain "spurious” population members which remain non-dominated in the population, but
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are not close to true Pareto-optimal set. If only some critical Pareto-optimal points are
discovered, these spurious solutions will be termed dominated in the population. None
of the existing operators allow us to identify such poorly converged yet non-dominated
population members. The discovery and fast computation of KKTPM fills the gap and
allows us to identify poorly converged population members, which can then be operated
on by means of a Local Search (LS) procedure to enhance their convergence properties. In
this sense, our proposed study is a hybrid that fits mathematical optimization elements
(KKT concepts and point-to-point LS procedures) into a larger EMO framework. Sec-
tion 2.4.3 discusses the most important attempts made by researchers to utilize LS in an

EMO context.

2.4.3 Local Search

In a multi-objective optimization context, local search (LS) refers to optimizing an aggregate
(combined) form of all the original objective functions. So, to perform an LS that targets
one Pareto point, you/the algorithm needs to (i) pick a starting point, and (ii) specify a
search direction (i) pick a starting point, and (ii) specify a search direction (in the objective

space).

e Pick a Starting Point
Although, it may be straightforward to prefer non-dominated over dominated so-
lutions, it is not clear which non-dominated ones! If two points are non-dominated
with respect to each other they are non-comparable by definition (this is the whole
idea behind the non-domination concept). In such a case, Picking your starting
point is not an easy task. Choosing one non-dominated solution at random can be
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a strategy. However, it is obviously prone to pick points that are already close to
the true front one the expense of other points that are still struggling although still
non-dominated! Without further information, any adopted selection scheme will be

ad-hoc and any claims about its broad applicability can be easily refuted.

e Pick a Search Direction
Choosing a search direction needs careful attention as well. Fortunately, many
scalarization strategies exist in the MCDM literature [11, 34, 82] and a suitable one
can be chosen for this purpose. There also exist derivative-based methods [83, 84].
It worth noting that this step has direct impact on the diversity of the final efficient

set.

Several studies used LS in EMO. Ishibuchi et al. started this interesting combination in
IM-MOGLS [85]. Their approach uses a simple weighted-sum aggregate (scalarization)
function to combine all objectives. IM-MOGLS then starts an LS from each point in the
population. Because of the possibly large amount of function evaluations consumed by
each LS, another study proposed a modification where LS is applied to a selected set of
points only [86]. After the proposal of NSGA-II, Ishibuchi and Narukawa proposed an
NSGA-II extension that uses LS to solve multiobjective 0/1 knapsack problems [87]. Other
researchers followed the same path by adding LS to already existing EMO algorithms.

Knowles and Corne proposed a similar extension to PAES [88].

Harada et al. proposed the notion of a Pareto descent direction, which is a direction "to

which no other descent directions are superior in improving all objective functions" [89].
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Their algorithm, Pareto Descent Method (PDM), solves a Linear Programming (LP) prob-
lem to get each of these directions. However, PDM is hardly considered an evolutionary
algorithm. It does not involve any genetic operators either for interaction among indi-
viduals (i.e. recombination) or for randomly modifying each individual independently
(i.e. mutation). PDM is rather an Evolutionary Strategy (ES)-like algorithm where muta-
tion is replaced by an LS in the Pareto descent direction of each solution. Later, Bosman
proposed and tested several multiobjective gradient-based algorithms in [90]. Starting at
some solution, he also provided an analytical representation of the directions in which ob-
jective values can not deteriorate (they either improve or remain constant). And although
Bosman’s work considers EMO algorithms for hybridization, it can be extended beyond

the evolutionary domain.

The reader can notice that different studies used different ways to combine objectives
i.e. scalarization methods. [82, 91]. Eventually, all these studies conduct LS in some
directions. However these directions may harm diversity if they are calculated based
on potentially decreasing objective values only. In addition, some scalarization functions
may cause further complications in specific situations. For example, using a weighted sum
approach yields the algorithm unable to attain non-convex sections of the Pareto front. For
this reason, we generally recommend using Achievement Scalarization Function (ASF) as
a general way of combining objectives, as it enables the algorithm to reach any point —
theoretically —regardless of the convexity of the region at which this point lies on the front.
In addition, given a reference directions based algorithm like NSGA-III, ASF can use those
readily available directions. On the other hand, we have also noticed that using ASF can

significantly distort the contour lines of the aggregate function if the direction (weight
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vector) is too flat or steep. Consequently, optimizing ASF exhibits poor performance
when used to reach objective-wise extreme points. This means that ASF is not a universal
formulation that can be used unconditionally. Now, the reader can obviously see that
before thinking about the single objective optimization algorithm that LS is going to use,
we need to pay careful attention to the formulation of the aggregate optimization function
itself. How the objectives are combined can significantly affect results either positively or

negatively according to the situation.

Throughout this study, we are not concerned with the specific single objective optimization
algorithm used by the single objective LS optimizers. We are more concerned with the
formulation of the aggregate function itself, and how LS can be employed within the
course of a bigger algorithm, in order to serve the ultimate purpose of automatically
balancing convergence and diversity. One of the contributions of this study is using

different formulations according to the current state/phase of the optimization process.

To reduce the overall computational burden, another algorithmic issue is whether to
hybridize EMO and local search sequentially or concurrently [92]. If the hybridization is
sequential, meaning that LS is to be performed after EMO is completed, the distribution
of computational efforts between EMO and local search becomes crucial to the success
of the overall hybrid approach. On the other extreme, a pure concurrent hybridization
where every population member is used to start a local search (during the course of the
larger optimization algorithm), will waste FEs significantly. Other intermediate schemes
are possible, but they will also require a fine balance between LS and EMO on a case to

case basis.
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2.5 Road Map

The ultimate goal of this study, is to explore the possibility of creating a new algorithm that
can efficiently move up and down the scale of objective dimensionality, while automati-
cally balancing emphasis between convergence and diversity. In a systematic way, we first
extend NSGA-III so that it can deal successfully with single and bi-objective optimization
problems, and at the same time maintain its outstanding performance with many objec-
tives. Then we combine NSGA-III with KKTPM and local search to create an algorithm
that is able to identify ill-converged solutions and improve them with little sacrifice on
diversity. Then we introduce another type of LS that can significantly enhance diversity.
Finally, we try to combine the two techniques in a dynamic multi-phase procedure that can
adaptively balance its focus based on the problem in hand without any prior knowledge
of the problem or user predefined preferential parameters. Figure 2.6 shows the road map

connecting all parts of this study.

2.6 Summary

In this chapter, we went through the most notable studies in the field. A brief overview
of the history of evolutionary algorithms led to a detailed discussion of researchers’
efforts in developing multi- and many-objective optimization algorithms, trying to balance
convergence and diversity, formulating optimality metrics and the role local search played

in previous studies.

The following chapters discuss how we address these challenges discussed in Chap-

ters 1 and 2. Simulation results are conducted to verify our conclusions in each chapter

31



NSGA-III KKTPM

What is the problem?

Dimensional Scalability

U-NSGA-III

Diversity vs. Convergence

Selection Convergence

Diversity

Balanced NSGA-III

FIGURE 2.6: Road Map

separately. Each chapter starts with a detailed description of the algorithm and/or the idea
and the logic behind it, followed by a set of extensive experiments and results. Finally a

brief summary concludes. The final chapter discusses potential future extensions.
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Chapter 3

A Unified Evolutionary Optimization
Procedure for Single, Multiple, and

Many Objectives

In this part of the study we propose our first contribution, U-NSGA-IIL. Initially, we
discuss the operation of NSGA-III across different dimensions in Section 3.1. Then in
Section 3.2, we discuss the details of our proposed algorithm and explain how it automat-
ically degenerates to an efficient single, multi- or many-objective optimization algorithm
according to the problem. Simulation results on a variety of single, multi- and many-
objective problems, both constrained and unconstrained are presented using U-NSGA-III
and compared to a real-parameter genetic algorithm (EliteRGA), CMA-ES [93], NSGA-II

and NSGA-III in Section 3.3. Finally, conclusions are drawn in Section 3.4. !

For better readability, additional figures and tables are moved to the appendix. A leading ‘A’ in some labels signifies
such a figure or a table.
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3.1 NSGA-III for Single and Multi-objective Problems

NSGA-III was primarily proposed to solve many-objective optimization problems having
three or more objectives. And although the authors of the original study demonstrated
clearly how NSGA-III deals successfully with this category of problems [4, 7], they did
not include any single or bi-objective problems in the original study. Here, we discuss the
potential of using NSGA-III in bi-objective problems and then highlight its difficulties in

scaling down to solve single-objective optimization problems.

The differences in working principles of NSGA-II and NSGA-III on two-objective problems

are outlined below:

1. Although both NSGA-II and NSGA-III give preference to feasible over infeasible and
less violating over more violating solutions during the selection phase, NSGA-III's
selection operator does not employ any preferential criteria when comparing two
feasible solutions. In such a case NSGA-III picks one of the feasible solutions ran-
domly. On the other hand, NSGA-II's selection operator compares feasible solutions

using non-dominated ranking then crowding distance (if they have the same rank).

2. NSGA-III uses a set of reference directions to maintain diversity among solutions.
This technique can scale easily up to higher objective dimensions. On the contrary,
NSGA-II uses a more adaptive yet non-scalable scheme, through its crowding dis-

tance operator for the same purpose, as illustrated in Figure 3.1.

If NSGA-III is compared to NSGA-II with the same population size, the former will
exhibit milder selection pressure. The rationale behind decreasing selection pressure is
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FIGURE 3.1: Working principles of NSGA-II and NSGA-IIL
that — typically — each population member in NSGA-III becomes associated with a unique
reference direction and becomes consequently too important to be compared to any other
individual. The only selection pressure (among feasible) in NSGA-III comes from the

non-dominated sorting phase.

Let us now discuss how NSGA-III would work on a single-objective optimization problem.
In single-objective optimization, the domination concept degenerates to fitness superiority
— a domination check between two solutions chooses the one having better objective
value. Consequently, only one solution would occupy each non-dominated front in a
single-objective problem?. Thus, it is expected to have N fronts in a population of size N.
These characteristics of single-objective problems affect the workings of NSGA-III in the

following manner:

1. First, in NSGA-III, there will be only one reference direction (the real line) to which

all individuals will be associated. Abiding by the single-fold restriction imposed

2 Unless identical solutions exist.
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by NSGA-III authors, the algorithm should use a population of size 1! For obvious

practical considerations 3

, we use 4 individuals instead, for all single-objective opti-
mization problems. For all practical purposes, this population size is too small and
prohibitive for NSGA-III's recombination operator to find useful offspring solutions.

This is a major issue in developing a unified algorithm that will seamlessly work for

many as well as single-objective problems.

2. Moreover, since no explicit selection operator is used among feasible solutions, the
algorithm will pick a random solution for its recombination and mutation operators.
In other words, the only selection pressure comes from the elite-preserving operation
4 used to choose P;;q (next parent population) from a combination of P; (current
parent population) and Q; (current offspring population). This is another major

issue, which needs to be addressed while developing a unified approach.

3. Niching in NSGA-III becomes defunct when applied to single-objective problems, as
there is the concept of perpendicular distance of an individual (in the objective space)
from the corresponding reference direction is not useful anymore. All individuals

fall on the real line, providing an identical perpendicular distance of zero.

4. NSGA-III's Normalization also becomes a defunct operation for the same above

reason.

It is now clear that a straightforward application of the original NSGA-III to single-
objective optimization problems will result in an extremely small population size and a

random selection process, neither of which is recommended for a successful evolutionary

3 Evolutionary operators need more that one individual to conduct recombination
4 Non-dominated sorting ensures elite preservation in NSGA-III
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optimization algorithm. On the other hand, niching and normalization operators of are
essential to the success of NSGA-III in multi and many-objective optimization problem. So,
simply removing them is out of question. Hence, a modification of NSGA-III is needed
so that the resulting unified approach becomes efficient for single to many-objective
problems by making the niching and normalization operators automatically defunct for

single-objective problems and active for multi and many-objective problems.

3.2 Proposed Unified Approach: U-NSGA-III

The above discussion suggests that overcoming the difficulties in scaling down to bi- and
single-objective problems — mentioned above — require certain changes in the algorithm.
But we need to modify NSGA-III in such a way so that the changes do not affect its

working on three and more objective problems.

One way to alleviate these difficulties is to use a population size N that is larger than the
number of reference points (H) and introduce a selection operator. Thus, unlike NSGA-III,
N and H will now be independent parameters such that N > H. Although this seems to
introduce an additional parameter to our proposed U-NSGA-III, it does not. H is the
desired number of optimal solutions expected at the end of a simulation run, and hence
it is not a parameter that needs to be tuned for U-NSGA-III to work well on different
problems, it is rather a decision making preference. In Chapter 4 we show in detail that
this change alone is not sufficient as it leaves most solutions wandering randomly in the
search space without convergence force to drag them towards the Pareto front. For single-
objective problems, we have to do so, because H is always 1 and N must be independent

of H to move up freely. For bi-objective problems, keeping the single-fold restriction or
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moving to multi-folds is a matter of choice though. If the multi-fold approach is adopted,
H can be only a handful of solutions (such as 10 or 20) for the decision-makers to consider,
while the population size N can be much larger, such as 100 or 200. The population
size consideration mainly comes from the complexity of the problem and the desire for
an adequate sample size that enables genetic operators (essentially the recombination
operator) to work well. In this case, although N different Pareto-optimal solutions could
be present in the final population, the H specific Pareto-optimal solutions, each closest to
a unique reference direction will be the outcome of the U-NSGA-III algorithm and will
be presented to the decision-maker for choosing a single preferred solution. For three
or more objective problems, since the number of specified reference directions (H) can
already be quite high (due to the increase in H with M according to Das and Dennis’s

approach [67]), we recommend keeping N almost equal to H.

Let us now discuss the algorithmic implications of introducing more population members
than H when solving single and bi-objective optimization problems. Itis now expected that
for each reference direction, there will be more than one population member associated.
We can use this fact to introduce a nichig-based-selection operator that adapts selection
pressure according to the problem in hand. We add a niching-based tournament selection
operator as follows. If the two solutions being compared come from two different niches
(associated to different reference directions), one of them is chosen at random, thereby
preserving multiple niches in the population. Otherwise (if both are associated to the same
reference direction), the solution coming from a better non-dominated front is chosen.
Finally, if both solutions belong to the same niche and same non-dominated front, the one

closer to the reference direction is chosen. It is important to emphasis that this operator
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is applied when comparing feasible solutions. It is now obvious that unlike NSGA-III,
U-NSGA-III does not consider all feasible solutions equal. Instead, it provides preferential
treatment in the way we discussed. The pseudo-code shown in Algorithm 2 shows how
our nichingbased selection operator compares two feasible parent solutions (p; and p»)

and pick a winner (ps).

ALGORITHM 2 Niching based selection of U-NSGA-III.

Input: Two parents: p; and p;
Output: Selected individual, p,
1: if n(p1) = 1(p2) then

2:  if py.rank < py.rank then
3: Ps =p1
4:  else
5: if py.rank < py.rank then
6: Ps =p2
7: else
8: if d, (p1) <d.(p2) then
9: Ps=p1
10: else
11: Ps =p2
12: end if
13: end if
14:  endif
15: else
16:  ps = randomPick(p1,p2)
17: end if

Figure 3.2 shows graphically the new operator works in U-NSGA-III. In the case depicted,
point A is the only representative of its niche (reference direction). So, if A goes through
selection with any other point, one will be picked randomly. On the other hand since B, C
and D belong to the same niche, they are comparable. B will be preferred over either C or
D because it dominates both of them. If C and D are compared, D will be selected, because
although both of them are non-dominated with respect to each other, D is closer to the
designated reference direction. On the other hand, If at least one of them is infeasible,
the traditional NSGA-III selection is used. This operation can be repeated N/2 times
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FIGURE 3.2: Selection in U-NSGA-III.

systematically by using two consecutive population members of the parent population
P; to choose N/2 parents. The procedure can be repeated one more time by shuffling
population P; to obtain another set of N/2 parents. These two chosen parent sets can be
combined to form the complete mating pool P; of size N in the NichingBasedSelection(P;)
procedure. The mating pool P; can then be used to create the offspring population Q;
applying usual recombination and mutation operators. Thus, the complete U-NSGA-III
procedure can be achieved by simply replacing line 2 in Algorithm 1 with the two lines

shown in Algorithm 3.

ALGORITHM 3 Generation t of U-NSGA-III procedure.
Input: H structured reference points Z° or supplied aspiration points Z?, parent population P;
Output: Py
: % Identical to Algorithm 1 (Line 1)
2: P; = NichingBasedSelection(P;)
3: Q¢ = Recombination+Mutation(P;)
% Identical to Algorithm 1 (Lines 3 to 18)

For single-objective problems, the niched selection operator degenerates to a usual binary
tournament selection operator for which the solution having a better objective value
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becomes the winner. Next we discuss the behavior of U-NSGA-III with single, multi- and

many-objective optimization problems.
3.2.1 U-NSGA-III for Single-objective Problems

The pseudo-code of the resulting U-NSGA-III (at M = 1) is presented in Algorithm 4. It is
interesting to note that Das and Dennis’s [67] strategy results in (1+5_1) or one single refer-
ence point and is independent of the value of p. The resulting U-NSGA-IIl is a generational
evolutionary algorithm that uses (i) a binary tournament selection, (ii) recombination and
mutation operators, and (iii) an elite-preserving operator. Thus, our proposed U-NSGA-III
is similar to other generational EAs, such as elite-preserving real-coded genetic algorithm

[94] or the (u/p + A) evolution strategy [95], where 1 = A =N and p = 2.

ALGORITHM 4 Degenerated U-NSGA-III algorithm for single-objective problems.

Input: Single-objective problem
Output: Best solution found, ppes
1: P = initialize()
2: while termination condition do
Q=¢
while |Q| < |P| do
p1 = tournamentSelect(P)
p2 = tournamentSelect(P)
(c1,¢2) = recombination(py,p2)
c1 = mutate(cy)
cp = mutate(cy)
10: QU{cy, 0}
11:  end while
122 P=best(PUQ)
13: end while
14: Ppest = best(P)
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3.2.2 U-NSGA-III for Multi-objective Problems

For two or three-objective problems, in case N is chosen to be greater than H, U-NSGA-III
is expected to have multiple population members for each reference direction. For multi-
objective problems having two or three objectives, the non-dominated sorting will, in
general, divide the population into multiple non-dominated fronts. The proposed nich-
ing based tournament selection operator of U-NSGA-III emphasizes (i) non-dominated
solutions over dominated solutions and (ii) solutions closer to reference directions over
other non-dominated but distant solutions from the reference directions. The rest of the
U-NSGA-III algorithm works the same way as NSGA-II would work on multi-objective
problems. All members of the final population are expected to be non-dominated to
each other. The distribution of additional (N — H) population members need not have
a good diversity among them. Only H population members closest to each H reference
directions are expected to be well distributed. This is not a problem, because the user is
interested in reporting only H solutions at the end (implied by the value of H specified in
the beginning). The additional (N — H) points although not reported are expected to help

throughout optimization.

As the factor N/H goes down towards 1, each niche will have approximately 1 solution. In
these cases, our niching based selection operator tends to behave like the default NSGA-III
selection operator. In either case (N/H =1 or N/H > 1), U-NSGA-III provides the adequate

selection pressure.
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3.2.3 U-NSGA-III for Many-objective Problems

For many-objective optimization problems, most population members are expected to be
non-dominated to each other. Hence, the niched tournament selection operator degen-
erates in choosing the closer of the two parent solutions with respect to their associated
reference direction, when both parent solutions lie on the same niche. When N/H is much
greater than one, this allows for an additional filtering that keeps solutions closer to ref-
erence directions to undergo subsequent mating operations. This — in general — is a good
behavior, particularly when there are multiple population members available around a
specific reference direction. But due to the explosion of reference directions generated by
Das and Dennis approach in higher dimensions, U-NSGA-III with N greater than H may
end up with a too large population. For this reason we recommend to have N/H = 1 in
many-objective problems. This will yield the niching based selection operator defunct

and the algorithm degenerates to the original NSGA-III.

The above properties of U-NSGA-III suggests a possible way to construct a single unified
optimization algorithm that automatically degenerates to efficient optimization algorithms
for single, multi- and many-objective optimization problems simply by the specification
of the number of objectives presented in the problem description. The number of desired
optimal points H is dictated by the number of points desired along each objective axis.
The population size parameter N is detached from H and the user is free to provide any
value greater or equal to H. U-NSGA-III is capable of handling constraints. The proposed
niching based selection operator requires O(N) computations. As discussed in NSGA-III

study, the rest of computations is bounded by the maximum of O(N?1og™~2 N) or O(MN?).
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Thus, M > logM™2 N, the generation-wise complexity of the overall U-NSGA-III procedure

is O(MN?), which is similar to those of NSGA-II and NSGA-III.

3.3 Results

In the following sections, we present simulation results of U-NSGA-III applied to a variety
of constrained and unconstrained single, multi- and many-objective problems. Two real-
world engineering problems are also solved using the proposed U-NSGA-III algorithm.
The stopping criterion is set according to the type of experiment being conducted. When
the stopping criterion is a fixed maximum number of generations, this number is chosen
according to the difficulty ° of the problem. In most situations, more-than-required °
number of generations is used to show that all algorithms were given enough time to
reach their best performance. It is worth noting that due to the high complexity of
calculating hypervolume, all hypervolume values in this study are calculated using the

efficient implementation provided by JMetal optimization software package [96].
3.3.1 Single-objective Problems

First, we present the results of U-NSGA-III on standard single-objective optimization

problems.

5The term "difficulty" when used with single-objective problems in this study refers to multi-modality. Finding the
global optimum of a multi-modal problem needs a large population size and/or number of generations compared to a
uni-modal problem.

®Empirically determined.
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3.3.1.1 Unconstrained Problems

For the unconstrained case, we chose six single-objective test problems as our test-bed,
namely, Ellipsoidal, Rosenbrock’s, Zakharov’s, Schwefel’s, Ackley’s and Rastrigin’s. The
problems are chosen so that they cover different levels of difficulty. The performance of
U-NSGA-III is compared to a generational real-parameter genetic algorithm (EliteRGA)
which was used to solve various problems in the past [32], as well as CMA-ES [97] which is
a state of the art algorithm for single objective optimization. We employ an elite-preserving
operator between parent and offspring populations in the EliteRGA algorithm to make it
equivalent to the degenerated form of U-NSGA-III for single-objective problems (that is,
the (u/2+ u)-ES form). Problem definitions are given in Equations 3.1, 3.2, 3.3, 3.4, 3.5 and

3.6.

n

felp(x) = Z ixizr
i=1 3.1)

~10<x<10,i=1,...,n

n—1

fros(3) = ) 110002 = x1:1)* + (= 1)?],
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For each problem, n = 20 is used and 31 simulations with the same set of parameters but
from different initial populations are conducted. Although the first three problems are

simple, fs; and fr4s are difficult multi-modal problems. We use N = 48, 100, 100, 100
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and 300 for Ellipsoidal, Rosenbrock’s, Zakharov’s, Rastrigin’s and Schwefel’s problems,

respectively.

Figures 3.3a, 3.3b, 51, S2 and 3.3c show the median function value (y-axis) for Ellipsoidal,
Rosenbrock’s, Rastrigin’s, Zakharov’s and Schwefel’s problems over 31 runs for different
function evaluations (x-axis). EliteRGA, NSGA-III and U-NSGA-III perform similarly for
unimodal and easy problems. However they are generally outperformed by CMA-ES in
this category of problems. On the other hand, for the multi-modal problems U-NSGA-III
and EliteRGA are the best, since both NSGA-III and CMA-ES are very prone to be trapped
in local optima, as shown in Figures 3.3 Figure A.1 confirms our conclusion using Rastri-

gin's, a highly multi-modal function.

In order to confirm the superiority of U-NSGA-IIl over NSGA-III in multi-modal problems,
we did the same comparison again over a range of polynomial mutation indices (1,
values), using two highly multi-modal test problems (Ackley's and Rastrigin's). Again,
it is clear that NSGA-III is prone to get stuck into local optima because of its prohibitive
restriction on population size. Even in the cases where NSGA-III is able to converge to
the global optimum, we found it to be very sensitive to the polynomial mutation index
(Nm). Only, a small (close to zero) 1, may enable NSGA-III to escape local optima and
converge to the global optimum. This observation is clearly visible in Figures A.3 and A.4

for Ackley’s and Rastrigin’s, respectively.

Table A.3 summarizes the best, median and worst fitness values achieved by each of the

four algorithms on unconstrained test problems.
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3.3.1.2 Constrained Problems

The superiority of U-NSGA-III and its equivalence to EliteRGA are more evident when
it comes to constrained problems. The three algorithms under investigation have been
tested against ten constrained test problems from the G-family test suite [98].
median and worst achieved fitness are presented in Table A.4. Obviously, according to

Figures A.5 and A.6, NSGA-III in most cases is not able to converge to the global optimum
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FIGURE 3.3: Objective function value with respect to the number of function evaluations.

as expected. Again, U-NSGA-III and EliteRGA perform almost identically.
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We conducted a Wilcoxon significance test over the medians of the final result of our
31 runs in each experiment. Tables A.1 and A.2 show the p —values of U-NSGA-III vs.
NSGA-III, U-NSGA-III vs. EliteRGA and U-NSGA-III vs CMA-ES (the last comparison
is conducted only for unconstrained test problems, because the original CMA-ES and its
available implementation support only boxing constraints). Obviously, there is a statisti-
cally significant difference between U-NSGA-III and NSGA-III especially in multimodal
problems (largest p = 9.2668 X 10™°). On the other hand, when comparing U-NSGA-III
and EliteRGA these large p —values reported in the majority of our problems mean that
we have to accept the null hypothesis. The null hypothesis simply means that the two
distributions — from which the two sets of results are taken — have the same median. In
other words, the two algorithms perform similarly without any statistically significant
difference between them. It is also evident, that there is a statistically significant differ-
ence between U-NSGA-III and CMA-ES (largest p = 5.7257 X 107%). However, according
to the corresponding figures, this difference does not mean that one of them is better
than the other in all problems. Actually, U-NSGA-III is found to be much better than
CMA-ES in multimodal problems (see Rastrigin’s and Schwefel’s), while CMA-ES signif-
icantly outperforms U-NSGA-III in simpler problems (see Ellipsoidal, Rosenbrock’s and

Zakharov’s). Similar conclusions can be reached for constrained test problems.

3.3.2 Bi-objective Problems

As mentioned before, the performance of NSGA-III was not tested on bi-objective opti-

mization problems in the original study [4]. In this section, NSGA-II NSGA-III and
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U-NSGA-III are compared over an extensive set of unconstrained and constrained bi-
objective problems. Two types of experiments are shown here. These two experiments
are supposed to help us draw conclusions about the niching mechanisms used in the
three algorithms, and the effect of the niching-based selection operator of U-NSGA-III.
We used ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 as our unconstrained testbeds while, OSY,
TNK, BNH and SRN are used as constrained test problems. Two additional real-world
engineering problems — welded beam and pressure vessel design [49] — are also included.
For all runs, we use SBX p. = 0.9, . = 30 and polynomial mutation p,, = 1/n and 1, = 20.
In all ZDT problems, we use 30 variables and 31 different simulation runs are performed

(except for ZDT6, where we use 10 variables, as used in the original study [99]).

3.3.21 N Equal to H

The first experiment compares the performance of the three algorithms when population
size (N) is equal to the number of reference directions (H). By comparing the results of
NSGA-II and NSGA-III only (ignoring U-NSGA-III for the time being), we can draw con-
clusions about the effectiveness of both NSGA-II and NSGA-III on bi-objective problems.
Also, we can draw conclusions about the effect of the new niching-based selection opera-
tor introduced in U-NSGA-III by comparing the results of NSGA-III and U-NSGA-III only

(ignoring NSGA-II).

Figures 3.4 and A.7 show the best, median and worst hypervolume (HV) achieved by each
of the three algorithms on ZDT1, ZDT2, ZDT4 and ZDT6 (the figure of ZDT6 is removed
for the sake of brevity). HV is calculated using an HV reference point 1% larger in every

component than the corresponding nadir point.
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FIGURE 3.4: Performance of NSGA-II, NSGA-III, and U-NSGA-III with N = H on unconstrained
bi-objective test problems.

Although the results are comparable in most cases, NSGA-II's performance deteriorates
significantly in ZDT4 compared to NSGA-III and U-NSGA-III especially at smaller pop-
ulation sizes. Table A.5 shows that the three algorithms are close to each other. However,
from Table A.8, we can see that in ZDT3 and ZDT6, there is a statistically significant
difference in favor of NSGA-II, while in ZDT4, U-NSGA-III significantly outperforms

NSGA-IL
The same observation can be noticed for constrained test problems in Figure A.8.

The more difficult the problem is (BNH and SRN), the bigger the difference in favor of
NSGA-III and U-NSGA-III. It is also clear that NSGA-II is the most negatively affected
by very small population sizes (namely, N = 8), while both NSGA-III and U-NSGA-III are

more robust with respect to small population sizes (see Table A.6).

The same observation can be made in Figures A.9 and A.10 showing the results of welded
beam and pressure vessel problems, respectively. The ideal and reference points used to

compute HV values for constrained problems are shown in Table 3.3.
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TABLE 3.1: Threshold HV values used in bi-objective ZDT problems for N > H simulations.

Problem | Fixed HV | Problem | Fixed HV
ZDT1 0.640 ZDT4 0.530
ZDT2 0.316 ZDT6 0.390
ZDT3 0.512

The statistical significance test results (Table A.9) shows that there is a statistically signif-
icant difference in favor of U-NSGA-III over NSGA-II in BNH, SRN and Pressure Vessel.

The opposite however is never valid.

3.3.2.2 N Greater Than H

In the second set of experiments for handling bi-objective problems, we evaluate the use-
fulness of using N > H. In this experiment, two straight lines, one representing the per-
formance of NSGA-II with N = 16 and another representing the performance of NSGA-III
with N = H = 16 are shown for convenience. The jagged line represents the performance

of U-NSGA-III with N > H and H = 16.

The criterion of comparison used here is the number of function evaluations required to
reach a pre-defined threshold hyper-volume (HV) value. Table 3.1 presents the HV values

used in our bi-objective simulations.

For U-NSGA-III, we have used different population sizes N > H. Average numbers of
function evaluations over 31 runs — needed to achieve the prespecified HV — are plotted in
Figures 3.5 and A.11 for unconstrained ZDT test problems. Constrained problems results

are shown in Figure A.12.
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FIGURE 3.5: Performance of NSGA-II, NSGA-III, and U-NSGA-III with N > H on unconstrained
bi-objective ZDT test problems.

For runs having a population size larger than number of reference directions, out of all the
individuals attached to a reference direction, only one contributes to the HV calculation
(the closest). that is, for all U-NSGA-III simulations, only 16 individuals one closest to
each specified reference direction are used to calculate the final HV value, no matter
what population size is used. We did so to retain our ability to compare HV values for
all simulations with different population sizes. For ZDT1, ZDT3 and TNK, the use of
a larger population size is not found to be beneficial, whereas for ZDT2, ZDT4, BNH
and SRN (more difficult problems), a larger population brings in the necessary diversity
needed to solve the respective problem adequately. It is clear that in all problems, there
exists certain population sizes, in general, higher than H that make U-NSGA-III to perform
better than NSGA-III and NSGA-II. For relatively difficult problems, the difference is quite
obvious. In most cases, however, the performance of NSGA-III is better than NSGA-II,
due to the use of an external guidance for diversity through a uniformly distributed
set of reference directions. These results are interesting and demonstrate the usefulness

of a larger population size than the number of reference directions for the proposed
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U-NSGA-III algorithm.
3.3.3 Three-objective Problems

To enable U-NSGA-III to work well on single and bi-objectives, there should not be
any performance degradation to three and many-objective problems. In this section,
we present results on three-objective unconstrained DTLZ1, DTLZ2, scaled DTLZ1 and
scaled DTLZ2 problems. We also include the two constrained test problems C3-DTLZ1
and C3-DTLZ4 proposed in [7]. In this section, U-NSGA-III is compared to both NSGA-II

and NSGA-III.

The performance metric used for these problems is also the hypervolume metric, but
due to the increased computational efforts in extending the hypervolume computation
to many-objective problems, we use the fast technique proposed elsewhere [100]. It is
understood that DTLZ problems have mathematically defined description of their efficient
fronts, thereby making it possible for us to compute the theoretical hypervolume if infinite
points are put on the true efficient front. For DTLZ1 problem, the efficient front is a M-
dimensional linear hyperplane making equal angle with all objective axis and intersecting
each axis at 0.5. Thus, the efficient front is a M-simplex in M-dimensional space and the
volume under the front is given as follows [101]: V(M) = (1 /M!(0.5M). Therefore, the
theoretically maximum hypervolume for a reference points at z = (1+¢)(0.5,0.5,...,0.5)T
is

HVr=(051+e)M- A%O.SM. (3.7)
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The normalized hypervolume for a set of non-dominated individuals P is then defined

from the calculated hypervolume HV(P), as follows:

HV(P)

HV yorm = H—VT

(3.8)

For DTLZ2 problem, the efficient front is a part of the M-dimensional hypersphere of

radius one and the volume under the efficient front is given as follows [102]:

7M/2
2M(M/2)!”

(n/2)M-D/2
MM-—2)(M—-2)-1"

if M is even,
Vo(M) =

if M is odd.

For areference pointz=(1+€)(1,1,..., 1)T, the theoretical hypervolume is given as follows:

HVr=1+eM-v,(M), (3.9)

and the normalized hypervolume can be computed by using Equation 3.8. Table 3.2

presents HVt values for a few M values for both DTLZ1 and DTLZ2 for € = 0.01.

TABLE 3.2: The theoretical hupervolume HVr for DTLZ1 and DTLZ2 for 3, 5, 8, 10 and 15 objectives

(€=0.01)
Prob- Objective dimension, M
lem 3 5 8 10 15

DTLZ1 | 0.107954 | 0.032584 | 0.004230 | 0.001079 | 0.000035
DTLZ2 | 0.506702 | 0.886517 | 1.067002 | 1.102132 | 1.160957

For solving three-objective problems, we have used N =92 for all three algorithms and
H =91 for U-NSGA-III and NSGA-III. Each figure represents the best of 11 distinct runs.

Figure A.15 shows how the three algorithms perform on DTLZ1 and DTLZ2.
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TABLE 3.3: Ideal and reference points used for constrained bi-objective problems.

Problem Ideal Point Reference Point
OsY (—275,5) (—40.4,77.77)
TNK (0.029,0.029) (1.0605,1.0605)
BNH (0,3.667) (138.407,50.5)
SRN (5,-215) (227.25,0)

Welded (0,0) (40.4,0.00505)

Pressure | (42,—62761000) | (330270,—8080)

Results of the scaled versions of the two problems are shown in Figures 3.6a, 3.6b, 3.6c,

3.6d, 3.6e and 3.6f, respectively.

(p) NSGA-II on scaled DTLZ2

(8) NSGA-III on scaled DTLZ1

(e) NSGA-III on scaled DTLZ2

©

(¥)

U-NSGA-III
DTLZ1

U-NSGA-III
DTLZ2

on

on

scaled

scaled

FIGURE 3.6: Performance of NSGA-II, NSGA-III, and U-NSGA-III on scaled unconstrained three-
objective DTLZ problems.

Finally, Figure A.16 presents the final population of the three algorithms for problems

C3-DTLZ1 and C3-DTLZA4.
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TABLE 3.4: Best, medium and worst HV(norm) on multi/many-objective unconstrained DTLZ

problems.
Problem Obj. G P NSGA-II NSGA-IIL U-NSGA-IIL

Best [ Median [ Worst Best Median Worst Best Median Worst

3 400 92 .9198 9136 .8597 .9487 .9465 .9388 .9462 9464 934

DTLZ1 5 600 212 — — — 9767 9762 9757 9766 9760 9751
8 750 156 — — — 9953 19953 9953 9953 9953 9953

10 1000 276 — — — 9972 29972 9972 9972 9972 9972

3 250 92 .8976 .8830 8711 9828 9819 9812 9838 9824 9808

DTLZ2 5 350 212 3763 3143 2072 .8407 .8396 8371 8404 .8398 .8382
8 500 156 — — — .8532 .8492 .8452 .8525 .8497 .847

10 750 276 — — — 8769 .8760 .8743 8769 8751 .8743

3 400 92 9204 9111 .8993 .9488 9482 9456 .9485 9472 9445

SDTLZ1 5 600 212 — — — 9767 9762 9675 9768 9764 9565
8 750 156 —_ —_ —_ 9946 9941 9931 9943 9941 9920

10 1000 276 — — — 9991 9991 9981 9991 9991 9981

3 250 92 .8034 7914 7739 .8756 .8741 .8715 .8749 .8739 .8705

S-DTLZ2 5 350 212 3761 2895 2376 .8393 .8349 .8314 8384 .8353 8285
8 500 156 — — — .8510 .8485 .8463 .8512 .8490 8459

10 750 276 — — — 9218 9173 9066 9228 9200 .8935

It can be seen from the figures that while NSGA-II fails to maintain adequate distribution of
individuals, both NSGA-III and U-NSGA-III successfully achieve a uniformly distributed
set of individuals covering the entire efficient front in each case. Only minor differences
can be seen between the plots of NSGA-III and U-NSGA-III. Best, median and worst HV
values in Tables 3.4 and A.7 show the equivalence in performance between NSGA-III and
U-NSGA-III, as anticipated. For scaled problems, we first unscale the objective values
using the scaling factor used in the optimization process and then compute HV o, metric

value.

3.3.4 Many-objective Problems

Finally, we consider five, eight, and 10-objective versions of the same 6 problems used in
the previous subsection. We compare our proposed U-NSGA-III with NSGA-III (with N
equal to H) in using hyper-volume values, which are computed using the sampling based

strategy proposed elsewhere [100] due to the computational complexities involved in HV
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calculations in higher dimensions. The differences between U-NSGA-III and NSGA-III
were analyzed to be negligible for many-objective optimization problems from an algo-
rithmic point of view. Here, we investigate how both these methods perform empirically
on a series of test problems. In these problems, we use the same N and H values used in

the original NSGA-III study.

Tables 3.4 and A.7 clearly show that NSGA-II fails in terms of both convergence and
maintaining diversity, at the level of five or more objectives, to the extent that none of the
individuals of the final population passed the reference point used to calculate HV. On the
other hand, NSGA-III and U-NSGA-III produce very similar HV values in all problems.
Almost-identical Parallel Coordinate Plots (PCP) can be observed for the 10-objective
versions of DTLZ problems in Figures A.13, 3.7 and A.14. A PCP is a set of vertical bars,
each represents one objective. Each zigzag horizontal line represents one individual. The
point at which a zigzag line cuts a vertical bar represents the corresponding objective
value of the corresponding individual. A PCP plot gives a rough picture of the diversity
of set of solutions. The more intersections and the more coverage of the whole plot, the

better.

Finally, Table A.10 shows that from a statistical point of view, U-NSGA-III and NSGA-III
are equivalent on almost all multi/many-objective problems up to ten objectives. which
means that the new niching based operator did not affect NSGA-III ability to tackle higher

dimensional problems.

All these results demonstrate that the introduction of the niched tournament selection in

the original NSGA-III algorithm and the flexibility of using a different population size
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FIGURE 3.7: Performance of NSGA-III and U-NSGA-III on scaled unconstrained many-objective
DTLZ problems.

from the number of reference directions do not change its performance in U-NSGA-III on

many-objective optimization problems.

3.4 Summary

In this chapter, we developed a unified evolutionary optimization algorithm U-NSGA-III
which is a modification of a recently proposed evolutionary many-objective optimization
method. U-NSGA-III has been carefully designed to solve single, multi-, and many-
objective optimization problems. Simulation results on a number of single, two, three,
five, eight and ten-objective constrained and unconstrained problems have demonstrated
the efficacy of the proposed unified approach. In each category having multiple prob-
lem instances, it has been found that the proposed U-NSGA-III performs in a similar
manner and sometimes better than a respective specific EA — an elite-preserving RGA

for single-objective problems, NSGA-II for bi-objective problems, and NSGA-III for three
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and many-objective problems. The ability of one optimization algorithm to solve differ-
ent types of problems equally efficiently and sometimes better, with the added flexibility
brought in through a population size control remains a hallmark achievement of this
study. In addition, several useful insights have been elaborated on, both algorithmically
and empirically about the relative effectiveness of all the algorithms included in this

chapter.

This type of unification has not been attempted before, except in omni-optimizer approach
[103] which is not scalable for many-objective problems. In this regard, this study makes a
key contribution in suggesting one single optimization algorithm that is able to degenerate
into efficient single, multi- and many-objective optimization methods. dictated simply by
the number of objectives in a given problem. Due to these reasons, the study is important
from the efficient optimization software development point of view and its applicability
to practical problems having separate one and many-objective versions. Such unification
approaches also provide researchers the key insight about operator interactions needed

to constitute scalable algorithms.

The unified optimization algorithm proposed here elevates the act of optimization as a
computing-friendly approach. Computing algorithms are usually developed for handling
genericinputs having large-dimensional attributes or parameters. However, the algorithm
is also expected to work on a specific lower-dimensional or trivial input as a degenerate
case of the generic case. For example, the Gauss-elimination computing algorithm was
developed to solve a multi-variable linear system of equations Ax = b, but if the same
algorithm is used to solve a single-variable linear equation, ax = b (a degenerate case),

the algorithm should find the solution x = b/a without any hitch. In the same way,
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depending on the number of objectives, U-NSGA-III attempts to find multiple Pareto-
optimal solutions if the objectives are greater than one, but when the number of objectives

is only one, U-NSGA-III finds a single optimal solution as a degenerate case.

It is obvious from all the results presented earlier that U-NSGA-III performs as expected
in both convex and non-convex continuous real-variable single, bi-, multi- and many-
objective optimization problems. And although some problems have discontinuous
Pareto fronts (like ZDT3) the whole search space of the problem remains continuous.
A proper extension to this study is to test the performance of U-NSGA-III on discrete or
generally discontinuous problems. Also, many EMO algorithms — including NSGA-III
and U-NSGA-III - tend to ignore combinatorial optimization despite the fact that it is one

of the most important categories of optimization.

Because of the important role selection plays in NSGA-III and U-NSGA-III, in the next

chapter, we further explore how selection affects this type of algorithms.
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Chapter 4

Effect of Selection Operator on NSGA-III
in Single, Multi, and Many-Objective

Optimization

Chapter 3 shows clearly the effect selection has on the performance of NSGA-III, and how
it is the key behind the superiority of U-NSGA-III in lower dimensions. This urged us
to further explore how selection changes the behavior of the algorithm across different
types of problems. In this chapter, we examine the possibility of ignoring the single fold
restriction (N = H when applying NSGA-III to different types of problems. Performance
of the unrestricted (multi-fold) NSGA-III is compared to the performance of U-NSGA-III
over a wide range of constrained and unconstrained problems. We propose two main

hypotheses in this study and try logically and empirically to validate their correctness.
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As shown in Chapter 3, the larger the difference (N — H), the more selection we need.
Unlike NSGA-III, U-NSGA-III is free from the N = H restriction. The frequency and effect
of selection depends on N and H relative values. For example, in single-objective scenarios,
where H =1 and N > H, selection will be performed at all times, because all individuals
will belong to the same unique reference direction. On the other extreme, in many-
objective scenarios, where N = H was restricted to make the algorithm computationally
efficient, each solution is expected to be attached to a different direction, meaning that
selection is practically absent. In the U-NSGA-III study, we were able to further show
the efficiency of U-NSGA-III in single, multi and many-objective problems and for both
constrained and unconstrained situations due to its adaptive selection operator. We
also compared the proposed unrestricted U-NSGA-III with the already existing restricted
NSGA-III (where N = H). None of the simulations tested the performance of NSGA-III if

the single-fold restriction is ignored.

In Section 4.1 we propose our two hypotheses and justify each through arguments. Results
of our extensive simulations confirming our logical arguments are presented in Section 4.2.

Finally, Section 4.3 concludes this study:.

4.1 Hypotheses

From the previous section, we can see that the two main features characterizing NSGA-III
are the absence of selection and the usage of reference directions as an external guidance
mechanism to preserve diversity among solutions. In the following two subsections, our
two main hypotheses are stated and discussed in detail in highlight of the absence of

selection in NSGA-III and its effect when N is significantly larger than H.
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4.1.1 NSGA-III Convergence

Aslong as the population size is equal to the number of reference directions, the absence of
selection is not expected to affect the results, because each reference direction is expected
to attract only one point as they go further in generations. However, the situation becomes
different if N is greater than H. In such a case, some population members will be guided
by the reference directions while the others will keep floating randomly in the search
space due to lack of any selection pressure guiding anywhere in the search space. No
selection to decide between individuals and not enough reference directions to guide
the whole population, this effect should be more evident as the gap between N and H
becomes bigger. We call this behavior "excessive randomness", and it leads us to our first

hypothesis.

Hypothesis 1. In NSGA-III, the use of a population size larger than the number of reference

directions slows down convergence.

A direct consequence of hypothesis 1 is that NSGA-III should be converging slower than
any equivalent evolutionary algorithm involving any form of selection that honors better
solutions. This very same fact can be stated differently by saying that NSGA-III tends to

be less greedy than other selection-based evolutionary algorithms.

4.1.2 NSGA-III and Local Optima

Although NSGA-III is expected to be slower than its selection-based counterparts, this is
not always a disadvantage. Actually, this might be beneficial in some cases. Because of the

inherent diversity of solutions maintained through "excessive randomness" in NSGA-III
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(discussed above), the algorithm is expected to have higher ability to escape local optima.
It is also expected to be less-dependent on mutation operators. Again, this behavior is
justified, owing to the less-greedy nature of the algorithm. Hence, we can state our second

hypothesis.

Hypothesis 2. If N > H, NSGA-III will have a higher ability to escape local optima than its
selection-based counterparts, and consequently it becomes less dependent on mutation

operators.

In Section 4.2, our simulation results are presented and discussed in the highlight of these
two hypothesis. Besides supporting our hypotheses, we also paint a clear picture of the
performance of multi-fold NSGA-III with single, multi, and many-objective optimization

problems.

4.2 Results

In this section we conduct two experiments. In both experiments, we compare NSGA-III
with U-NSGA-III. As mentioned earlier, U-NSGA-III is a variant of NSGA-III with the
additional niching-based selection operator. We previously showed that U-NSGA-III in
single-objective scenarios becomes equivalent to a standard (u + A) evolutionary strategy
(ES) [95]. The parameters used in our single-objective simulations are shown in Table 4.1.
For each problem, n =20 (number of decision variables) is used. The results shown in
all the plots of this study are the medians of 11 simulations with the same set of param-
eters. Regarding higher dimensions, U-NSGA-III and NSGA-III have been compared in

the first study, abiding by the condition N = H in both algorithms. Using such a setting,
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U-NSGA-III degenerates to NSGA-III after its additional selection operator loses its ef-
tect. Here in all our comparisons we use the same number of population folds for both
algorithms. This will enable us to investigate the effect of selection in higher dimensions

as well.

TABLE 4.1: Parameter listing.

Parameter Value
SBX distribution index (1)) 0
Polynomial mutation distribution index(,,,) 20
Crossover Probability 0.75
Mutation Probability 0.02

4.2.1 Single-Objective Problems

The first experiment is to compare both NSGA-III and U-NSGA-III using multiple popu-
lation folds. In single objective problems, only one reference direction exists, which is the
extreme of the N >> H case. Our simulations are performed on a group of unconstrained
as well as constrained problems spanning a wide range of difficulties. The unconstrained
test problems are Ellipsoidal, Rosenbrock’s, Schwefel’s, Ackley’s and Rastrigin’s listed in
Equations 3.1, 3.2, 3.4, 3.5 and 3.6, while the constrained problems are G01, G02, G04,
G06, G07, G08, G09, G10, G18 and G24 form the standard G-test suite [98]. Each fig-
ure compares both methods for three different population sizes; 100, 300 and 500. The
only exception is the relatively easy Ellipsoidal problem, for which we used N =48, 100
and 148. Log scale is used whenever necessary to show performance differences in late
generations. It is clear from Figures 4.1, 4.2 and 4.3 that NSGA-III converges slower than
U-NSGA-III in both constrained and unconstrained problems across all three population

sizes, thereby confirming the correctness of our first hypothesis 1. In most cases, NSGA-III

66



is able to catch up with U-NSGA-III if enough time (or generations) is given. In some
cases, especially in constrained problems, like G01, G06, G07 and G10, NSGA-III needs
almost twice the number of generations needed by U-NSGA-III to achieve the same level
of convergence. Of course, U-NSGA-III can only save algorithmic time and has no effect

on the time spent on function evaluations.

We have also included the median GD per generation of 11 NSGA-III runs where N = H
(blue line), in order to feel the usefulness multiple folds compared to a single fold. For
the blue line, the x-axis does not represent the number of generations anymore. However,
to maintain a fair comparison, at any given point on the x-axis, the blue line and the
dotted black and red lines have the same number of solution evaluations. The figures
show that NSGA-III where N = H tends to converge very quickly at the beginning then it
gets stuck after a while without reaching the global optimum. This is expected because
of the too small population size (N=4) which makes the algorithm prone to be trapped in
local optima even if given the same number of solution evaluations as the multiple folds

version of the algorithm.

4.2.2 Multi and Many-Objective Problems

In higher dimensions however, diversity becomes as important as convergence. Since
Hypothesis 1 relates only to convergence speed, we needed a way of testing only the
convergence ability of each algorithm. Having this in mind, we use Generational Distance
(GD) as our metric. Although, in some cases, GD does not reach Zero (full convergence),
it can still show the relative difference in performance. Another important aspect is

problem selection. Our test problems should primarily test the convergence ability of the
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FIGURE 4.3: Single-objective Constrained Problems (G9, G10, G18 and G24).

algorithm. For this reason, we choose ZDT4 [99] as our bi-objective test bed. ZDT4 has
(21° - 1) local Pareto optimal fronts. Unless the convergence ability of the algorithm is
good, it will get trapped in one of these local fronts. We also included two easy problems,

ZDT1 and ZDT2 to show the effect of selection in simple and easy problems.

For three and five objectives, we choose DTLZ1 [104], which has (11° — 1) local Pareto-

optimal fronts, requiring good convergence ability as well.

In simple and easy problems containing no local Pareto-optimal fronts, both the algorithms
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exhibit almost identical convergence behaviors, as shown in Figures 4.4a and 4.4b. This
is expected, because in order for the difference to show up between these algorithms, the
problems should exhibit adequate difficulty preventing them from reaching the global
Pareto-optimal front. This difficulty is introduced in ZDT4. Figure 4.4c shows the median
GD metric of 11 runs for 500 generations using N = 1.5H,N = 2H and N = 2.5H. It is clear
from the figure that U-NSGA-III converges faster than NSGA-III. The difference between
the two algorithms becomes more obvious from Figures 4.5a and 4.5b. Final fronts of
the best, median and worst runs for the two simulations (N = 1.5H) and (N = 2H) are
shown in these two figures, respectively. The difference is negligible in the best runs. It
increases gradually becoming visible at median runs, and relatively large at worst runs.
Using a smaller population size increases the difference in convergence between the two
algorithms. Figures 4.6a and 4.6b show the behavior of the GD metric for DTLZ1 in three
and and five-objective problems, respectively. Although, U-NSGA-III still maintains a
slight edge over NSGA-III in terms of convergence, the difference is small. This can be
attributed to the fact that convergence becomes less important compared to diversity
maintenance as the number of objectives increases. All these results clearly support the

correctness of our first hypothesis 1 for bi-objective and multi-objective problems.

Again, in order to justify using multiple folds in multi-objective scenarios, median GD
plotsof 11 runson ZDT1, ZDT2 and ZDT4 (single fold) are added to Figures 4.4a, 4.4b and 4.4c
respectively. Obviously, using only single fold NSGA-III prevents the algorithm from con-

verging to the true Pareto front.

In ZDT4, it is obvious that as fold size grows (1.5, 2, 2.5 etc.), NSGA-III's convergence

ability approaches that of U-NSGA-III. This has nothing to do with hypothesis 1, it is
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actually a clear consequence of hypothesis 2. Since ZDT-4 has so many local fronts, an
algorithm with higher ability to escape these local optima is preferable. This is exactly
the case here. Although, multi-fold NSGA-III suffers from being slow, its ability to avoid
local optima increases as the number of folds increases. This compensates for its slowness

and enables it to catch up with U-NSGA-III. More on hypothesis 2 in Section 4.2.3.
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4.2.3 Multi-modal Problems

Our second experiment tests the ability of NSGA-III to escape local optima and its depen-

dence on the mutation operator compared to U-NSGA-III. Again, U-NSGA-III is used

here as a candidate single-objective algorithm involving selection. For our purpose, we

choose three highly multi-modal problems, namely, Ackley’s, Rastrigin’s and Schwefel’s.
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A relatively small population size (N = 48) is used to make both the algorithms more
prone to be trapped in local optima. We set mutation probability to zero, thus completely
removing mutation from both. Now the ability of both algorithms to escape local optima
by themselves — without any help from a mutation operator — can be clearly observed. As
shown in Figure 4.7, the ability of NSGA-III to escape local optima is evident compared
to U-NSGA-III, which got easily trapped in local optima in the absence of mutation. This
goes hand in hand with the less-greedy nature of NSGA-III discussed earlier, and confirms

the correctness of Hypothesis 2.
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FIGURE 4.7: Small population size in multi-modal problems.
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4.3 Summary

In this study we explored the performance of a multi-fold version of a recently proposed
evolutionary many-objective optimization algorithm (NSGA-III), in which the population
size is significantly larger than the number of pre-specified reference directions. This
setting has never been tested before with NSGA-III. Through a careful set of computational
optimizations, we have revealed a new and extended scope of the multi-fold NSGA-IIL
We have also proposed two hypotheses and discussed the correctness of each of them,
both logically and empirically. Hypothesis 1 states that NSGA-III is slower than its
selection-based counterparts when it comes to convergence. Hypothesis 2 states that
NSGA-III has a higher ability to escape local optima and is less-dependent on mutation
operators compared to its selection-based counterparts. A logically driven discussion of
both hypotheses attributes their correctness mainly to the less greedy nature of NSGA-III
due to the absence of selection. Finally, two carefully designed experiments have been

conducted and the results obtained from both supported the correctness of our hypotheses.

The excellent performance of NSGA-III in many-objective problems demonstrated in
the original two-part papers [4, 7] has now been aided in this study by showing the
performance of a multi-fold NSGA-III approach. Thus, along with the original study; this
study portrays a much wider scope of NSGA-III for solving different types of problems

than the authors of original NSGA-III perceived.
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Chapter 5

Towards Faster Convergence of
Evolutionary Multi-Criterion
Optimization Algorithms using
Karush-Kuhn-Tucker Optimality Based

Local Search

The following chapters address the convergence-diversity dilemma mentioned in Chap-
ter 1. First, we try to deal with convergence in this chapter, then we move to the other
problems in the remaining chapters. Here, we augment NSGA-III [4] with an efficient
Local Search (LS) method that avoids most of the limitations mentioned previously (see

Chapter 2). In Section 5.1, we summarize KKTPM computational procedure briefly.
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Thereafter, we present and discuss the proposed hybrid algorithm in detail in Section 5.2.
Section 5.3 presents our extensive simulation results, as well as some carefully chosen
special cases showing the merits of our approach. Finally, we draw conclusions in Sec-

tion 5.4.

5.1 A Brief Review of KKTPM NSGA-III

In this section, we first summarize the exact KKTPM computation procedure based on
solution of an optimization task. Thereafter, we summarize a computationally fast yet

approximate procedure which has been recently proposed.
5.1.1 Exact KKT Proximity Measure

As mentioned in Chapter 1, Deb et al. [18] defined an approximate KKT solution to
compute a KKT proximity measure for any iterate (solution), x € R", for an M-objective

optimization problem of the following type:

Minimizey) {f1(x), f2(x),..., fm ()},

Subject to gix) <0, j=12,..,]

(5.1)

For a given iterate x*, they formulated an achievement scalarization function (ASF) opti-
mization problem [82]:

Minimizeyy ASF(x,z,w)= maxﬁle ( fM(;(/L_ZM)’

(5.2)
Subject to gix)<0, j=12,..,]
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The reference point z € RM in the objective space can be considered a utopian point and

each component of the weight vector w € RM is set for x* as follows:

fi(X) —z;
w; = .
VI () =202

(5.3)

Thereafter, the KKT proximity measure is computed by extending the procedure devel-
oped for single-objective problems elsewhere [79]. Since the ASF formulation makes the
objective function non-differentiable, a smooth transformation was first made by intro-

ducing a slack variable x,,+1 and reformulating the as follows:

Minimize(x,xwrl) F(X/xn+1) = Xn+1,

Subject to (%) — X1 <0,

i=1,....M, (5.4)

Now, the KKTPM optimization problem for the above smooth objective function y =

(x;x,,+1) can be written as follows:
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2
o« . . k
Minimizee, x,,,u) €+ Z§=1 (uM+ igi(x )) ,

2
Subject to  ||[VF(y) + Z?g] u;VGiy)ll < e,

Zoy uiGi(y) = —ex, (5.5)

(fj();)k_zj) _xi’l+1 S O/ ] = 1/' . '/M/
j

w20, j=1,2,..,(M+]).

The constraints G(y) are given below:

Gj(y) = (]7(’2;21' )—xn+1 <0, j=1,..,M, (5.6)
]
Gum+j(y) =8j(x) <0, j=12,...,] (5.7)

The value of €; at the optimal point of the above problem (Equation 5.5) corresponds to
the exact KKT proximity measure. It is observed that for a feasible solution x*, <L

hence the exact KKTPM can be defined as follows:

Exact KKT Proximity Measure(x*) =

el’z, if x* is feasible, (5.8)

2
1+ Z§:1 <gj(xk)> , otherwise.
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5.1.2 Approximate KKTPM Computation Method

There are three constraint sets to the optimization task in Equation 5.5. The first constraint

requires computing the gradients of F and G functions and can be rewritten as:

M

2 2
J M
Z”J’ k Z k Z
€ = .1Eij(X)+'1uM+jvg]‘(X) + 1—‘11/1]' .
=1 7 j= j=

The second constraint can be rewritten as follows:

Since x,1 is a slack variable, the third constraint will be satisfied by setting

M { j(Xk)—Zj]
Xpe1 = max| ——|.

< k
j=1 w"
]

(5.9)

(5.10)

(5.11)

A recent study [19] proposed a way to avoid the computationally expensive optimization

procedure required to compute exact KKTPM and suggested several alternative approxi-

mate methods. The following paragraphs summarize this methods.

The first approximation (referred here as the ‘Direct’ method) ignored the second con-

straint given in Equation 5.10 and only the first (quadratic) constraint is used to find the

KKTPM value. This is explained in Figure 5.1.
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In this case, the second constraint gets automatically satisfied at a point where the first
constraint is feasible. The respective optimization problem is equivalent to solving a set

of linear system of equations and the process gives rise to the following solution for ekD :

2
el =1-17 ub—(6™uP)". (5.12)

Since ug >0, u? >0, and GGT is a matrix with positive elements, it can be concluded
that el? <1 for any feasible iterate x*. Deb et al. [19] has also observed that this scenario

happens only when the following condition is true at (uzl\)/y u? )-vector:
T D T. DY? T
T=Tppqum— (g u; ) >-G uy, (5.13)
or, 17, ub—(6"uP)(1-g"uP) <1. (5.14)

Let us now get back to a more generic scenario (illustrated in Figure 5.2) in which the
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k

condition 5.14 is not satisfied for an iterate x*. In this scenario, el’; * GE and in fact,

*

€k

> e]?. Authors proposed approximate values of €; by using three computationally fast

approaches, which we discuss in the following subsections.
5.1.2.1 Adjusted KKTPM Computation Method

From the direct solution u” and corresponding ekD (point ‘D’ in the Figure 5.2), we compute
an adjusted point A’ (marked in the figure), by simply computing the €; value from the

second constraint boundary at u = u®, as follows:

e = -G, (5.15)

5.1.2.2 Projected KKTPM Computation Method

Next, we consider another approximation method using u? . This time, we make a
projection from the direct solution (point ‘D’) (u” ,el? ) on the second (linear) constraint

boundary and obtain the projected KKTPM value (for point P), as follows:

i
= 1 +§TQ

(5.16)

5.1.2.3 Estimated KKTPM Computation Method

After calculating above approximate KKTPM values on many test problems and on a

number of engineering design problems, the authors have suggested an aggregate KKTPM
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value by averaging them and referring to it as the estimated KKTPM, as follows:

1 Adj
et =2 (e +ef +e. ). (5.17)

5.2 Proposed KKTPM based Hybrid Local Search-EMO

The proposed hybrid approach involves an EMO procedure (NSGA-III), an identification

process for choosing a population member for performing LS and a LS procedure.
5.2.1 Identification of a Population Member for Local Search

In a population based EMO procedure, non-dominated population members are closest
to the Pareto-optimal set. However, without any knowledge of the true Pareto-optimal
points, it is difficult to determine their relative proximity from the true Pareto-optimal
front. Moreover, some solutions can stay non-dominated within the currently existing set
of Pareto-optimal solutions in a population and can never be exposed being dominated
unless one or more crucial but difficult-to-find Pareto-optimal points are discovered. In
these situations, the relative KKTPM value of non-dominated solutions can play a crucial

role.

For a set of non-dominated solutions in every generation of an EMO algorithm, KK-
TPM values can be calculated using the exact (Equation 5.8) or the approximate method

(Equation 5.17) discussed above. Since a KKTPM value is found to be correlated to the
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FIGURE 5.3: Identification of poorly converged non-dominated solution for LS.

distance from the efficient front [18], the non-dominated solution having the largest KK-
TPM value is expected to have the worst convergence property and can be considered an

ideal candidate for an improvement using a LS method. Figure 5.3 illustrates this aspect.

All seven points in the figure are non-dominated with respect to each other. Since the
knowledge of the efficient front is not available, it is difficult to evaluate the relative
closeness of each non-dominated solution from the efficient front. The usual crowding
information (such as crowding distance used in NSGA-II) or other similar niching metrics
do not provide any such closeness information. The crowding distance may find point 4
to be the worst, but in terms of closeness, it may not be the worst of all points. KKTPM
value provides us with closeness information which can be exploited to identify the worst

non-dominated point (point 6 in the figure) in terms of convergence.
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5.2.2 Local Search Procedure

After a poorly converged population member x" is identified using KKTPM, the solution
is improved by applying an LS method. In the presence of multiple conflicting objectives,
we would require a scalarization method to execute a LS. The achievement scalarizing
function (ASF) [82] is one scalarization method that has been popularly used in the recent
past in EMO studies. It requires two entities: (i) a reference point z’, and (ii) a weight
vector w:

Minixmize ASF(x,z",w) = m%x(@),

i

=1 (5.18)

subjectto ¢i(x)<0, j=12,...,]
The use of ASF benefits from being used with NSGA-III, which already uses a set of
predefined reference directions in its operation. Let us say that the solution x" is associated
with reference direction w. This reference direction vector can be used in Equation 5.18
directly. Also the ASF function can directly use the ideal point and intercepts found so
far during the course of NSGA-III operation, to transform the objectives vector f to the
normalized objectives vector f. The utopian point (u) is calculated by subtracting a very

small value (typically 107%) from all the coordinates of the ideal point z’, as shown in

Figure 5.4.

To minimize the ASF, we use x¥ as the starting point and employ Matlab’s® fmincon()

routine as the LS algorithm.
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FIGURE 5.4: ASF-based LS performed in the normalized objective space.

5.2.3 Overall Proposed Algorithm

We are now ready to present the overall hybrid LS based EMO procedure. The whole

procedure is described in Algorithm 5.

ALGORITHM 5 KKTPM-based LS procedure.

Input: Population (P), ideal point (D), intercepts (I), utopian point (U), maximum number of
function evaluations (FE_MAX)
Output: Population after local search P’
1: F « getFeasible(P)
2: inds; <~ x| x € F & KKTPM(x) > KKTPM(y)Vy€eF
% indy: initial solution for local search
3: indy < localSearch(inds, inds.dir,D,1,U FE_MAX)
% indy: solution after local search
4: P’ « replace(P,indy)

The idea is to pick the worst feasible individual (having the largest KKTPM value) in
every generation. If this solution is infeasible, LS is postponed until a feasible solution
is found. If the solution is feasible, this means that it has already been associated with a

specific reference direction. Using this individual as a starting point, an ASF-based LS is

86



then performed along the direction to which it is associated. Finally, the original solution

is replaced by the individual resulting from the LS.

5.2.4 Frequency of Local Search

It may be tempting to perform the above LS for every individual in every generation, but
this is not a good idea considering the overall computational burden. A single LS opera-
tion is a complete single-objective optimization process (performed using the fmincon()
routine). The number of function evaluations needed to solve an ASF problem is unknown
beforehand. It depends on the starting point, the LS algorithm and the problem itself.
To control the number of Solution Evaluations (SEs), in our implementation, a maximum
limit of 500 solution evaluations per LS is allowed (SE;s=500). LS can also be performed
once every T generations. Although this parameter needs tuning, our initial investigation
showed that a value of T = 1 works better on difficult problems while T = 5 suite simpler

problems more.

5.3 Results

In this section, we present simulation results on a number of test problems and a few
engineering design problems. But before we do that, we highlight the importance of
using the proposed LS based hybrid approach by demonstrating its use on a special
problem. In all simulations, we use the SBX recombination operator [32] with p. = 0.9 and
e = 30 and the polynomial mutation operator [5] with p,, = 1/n (where n is the number

of variables) and 7,, = 20. All other parameters are shown in Table 5.1.
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TABLE 5.1: Parameters - Columns represent — left-to-right — problem name, population size,
number of function evaluations, frequency of LS (per generation), maximum allowed number
of function evaluations per one LS, number of generations with LS and number of generations

without LS
Problem | Popsize | Frequency | FEnax for LS # Gen. for Total # Gen. for
(N) (T) (FELs) Hybrid EMO SE Orig. EMO
Var-Dens 40 5 200 200 14490 334
ZDT1 40 5 200 200 16053 400
ZDT2 40 5 200 200 15017 374
ZDT3 40 5 200 200 15193 378
ZDT4 48 5 500 300 32776 681
ZDT6 40 5 200 200 11595 288
TNK 20 1 200 200 15705 784
BNH 40 1 500 300 30219 754
SRN 40 1 500 300 27986 698
OSsYy 40 1 500 300 43030 1074
DTLZ1(3) 92 5 500 500 68159 739
DTLZ1(10) 276 5 500 500 175157 633
DTLZ2(3) 92 5 500 400 49917 541
DTLZ2(10) 276 5 500 400 143271 518
DTLZ5(3) 92 5 500 400 52645 571
WELD 40 1 500 300 30499 761
CAR 92 1 500 500 85792 931

Population size N, frequency of local search T, solution evaluations for each local search
SE;s and number of generations for the hybrid NSGA-III approach are set based on
standard practices and complexity of each problem. After the hybrid approach is run
for prescribed number of generations with local search, the total SE (TSE) is recorded for
each run and the median value is presented in Table 5.1. TSE is then set for the original
NSGA-III procedure and the number of generations needed to spend an identical TSE
is computed and tabulated in the last column. This allows us to compare our proposed

hybrid approach with the original NSGA-III for an identical SE count.

5.3.1 A Variable-Density Problem

Consider the following n-dimensional variable density (Var-Dens) problem:
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minimize fi(x) = x7,
X

e (mBf1(x)— (3.5 (x)-1)°+16.625
mml){mze hx) = g(x)(cos B fi(x 18.({%5)( ), 519

subject to g(x) =1+-L3" x;

0<x;<1, i=1,...,n.

a controls the degree of sparseness as we move across the objective space, while  deter-
mines the number of fallacious Pareto points (regions) that will not be removed until some
dominating point from a less sparse region is found. In our implementation, « is set to
0.05and fissetto5. A careful analysis of the problem reveals that this problem introduces
a biased density of points towards large f; objective values. Figure 5.5 shows the relative
density of 10,000 objective vectors created randomly in the two-variable search space. Itis
clear that points near small f; are rare. The problem has two disjointed efficient fronts: AB
and CD. Due to the varying density of solutions in the objective space, it may be difficult
to find the part AB, whereas it is expected that an EMO algorithm will find the part CD

relatively easily.
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FIGURE 5.5: Pareto-optimal front and rel- FIGURE 5.6: Proposed LS replaces non-
ative density of solutions for the varying Pareto-optimal solution with a true Pareto-
density problem. optimal solution.
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Figure 5.6 shows a typical performance of the proposed hybrid algorithm with 100 popu-
lation members. Non-dominated solutions after 200 generations are shown in the figure

and they seem to fall on the true Pareto-optimal front.

It is clear that the part AB of the front is undiscovered and this allows a few non-Pareto-
optimal solutions to tag along with the other easy part of the Pareto-optimal front. How-
ever, when KKTPM values are found for all these non-dominated solutions, it is observed
that one of the non-Pareto-optimal point has the worst KKTPM value (shown with bars
— larger value signify worse convergence). Once this point is identified and an LS is
performed starting at it, the point gets replaced by a Pareto-optimal solution on the part
AB of the Pareto front. The discovery of this new Pareto-optimal point by LS achieves

two desired goals:

1. It helps improve the convergence property of the original set of non-dominated

solutions, and

2. It also helps eliminate some non-Pareto-optimal solutions that are still present in the

non-dominated set.

Both of the above properties help make the overall search procedure faster and more
convergent. It is not clear how else such desired goals can be achieved by using existing

methods.

5.3.2 Bi-Objective Test Problems

We now present results of our proposed hybrid procedure applied to a number of bi-
objective constrained and unconstrained problems. For all problems, we compare our
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results to the original NSGA-III for an identical SE count. Finally, all our aggregate results

are calculated for 31 independent runs, starting from different initial populations.

5.3.2.1 Specific Test Problems

First, we consider results on three specific test problems to illustrate in detail the usefulness

of our hybrid NSGA-III procedure.

We consider the constrained problem OSY [5]. Figure 5.7 presents the variation of the
smallest, median and the worst KKTPM values for original NSGA-III and hybrid NSGA-III

procedures on problem OSY [5].
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circles are from the LS based method. FIGURE 5.8: Effect of LS on problem OSY.

x-axis represents SE count in both cases. Since hybrid NSGA-III spends additional SEs
on every LS operation, SE count is used as a basis for comparison instead of the usual
number of generations. In all figures, circles mark our hybrid approach. Since circled
lines show smaller KKTPM values than respective non-circle lines, we can safely conclude
that the use of LS has significantly improved KKTPM values, thereby indicating a better
convergence property of the proposed hybrid procedure.
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Figure 5.8 shows the obtained non-dominated front for a typical run after 1,072 generations

using a population of 40.

The figure also plots the KKTPM value of each of the non-dominated point using a bar.
It can be observed that although small f; points have small KKTPM values, the largest
f1 point has a KKTPM value of almost one (0.9142). It is important to note that this
extreme point stays non-dominated with the rest of well-converged trade-off points, but
the fact that it has a very high KKTPM value indicates that this point may not be be
a part of the true Pareto-optimal front. The inset figure shows that when this poorly
converged point is locally searched using the ASF based LS presented in Section 5.2.2, a
new and well-converged point with a KKTPM value of only 0.0086 is found. Although not
visually obvious, this new point is very close to the true Pareto-optimal front, as evident
from its small KKTPM value. Thus, without the use of KKTPM information, it will be
difficult to identify such poorly converged points, which can then be improved using the
proposed LS procedure. Identification of such poorly converged points independently
and their modification to find better converged solutions through genetic operations
(such as selection, recombination and mutation) may require a very large number of
generations, thereby making the convergence process too slow. A direct identification
and fixation of such solutions using KKTPM values and LS operations makes the whole

process computationally fast, as evident from Figure 5.7.

Next, we consider the BNH problem with a population of size 40. Figure 5.9 shows the
variation of KKTPM for NSGA-III with and without the LS procedure for identical SE

counts.
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The figure shows that a remarkable improvement in convergence behavior is obtained

with the LS procedure. To illustrate the effect of LS, we plot the variation of two variables

(x1 and x3) for non-dominated points after 250 generations in Figure 5.11.
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FIGURE 5.11: Effect of LS on BNH variable space.

The KKTPM values are also shown for each point. It can be observed that variables follow

a pattern, a matter which has been observed in many real-world problems as well and has

the potential of revealing innovative solution principles [105]. However, for this specific
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case, there is one point — although still non-dominated with respect to the rest of the

non-dominated set — seems to be out of sync with the observed pattern (see Figure 5.10).

Interestingly, the deviation from the pattern from other non-dominated solutions cannot
be observed visually from the objective space plot. However, The KKTPM value for this
point is computed to be large (0.39057), indicating a poor convergence property of this
point. When this solution is identified and locally searched using our ASF scalarization
procedure, the point gets improved and agrees with the observed pattern. The KKTPM
value of this improved point becomes 0.00118 after being 0.39057 before LS. Interestingly,
the two sets of points (before and after LS) seem to have very similar distributions in
the objective space, which means that in this case an investigation of the variable space
was necessary to reveal poorly converged non-dominated points. Irrespective of poor
convergence of solutions in variable or objective spaces, KKTPM is capable of identifying

them for a subsequent LS to improve their convergence behavior.

The third specific problem is ZDT4. Generally, our KKTPM/ASE-based hybrid approach
takes the least converged individuals — with the highest KKTPM value — and pull them
towards the front along their already pre-defined reference directions. This is expected
to enhance convergence significantly. To show this effect we compared our approach to
the original NSGA-III on ZDT4 test problem [99]. As mentioned before, ZDT4 is a hard
problem having 21 local Pareto-optimal fronts. It requires at least 100 individuals with a
relatively high number of generation (> 300 generations) for NSGA-III to converge to the
true Pareto front [18]. For the sake of comparison, we use a relatively small population

of only 48 individuals as an additional hurdle against the optimization algorithm. Out of
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31 independent runs for each algorithm, the run having the median hypervolume (HV) is

plotted in Figure 5.12.
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FIGURE 5.12: NSGA-III with and without LS on ZDT4.

Both algorithms use the same number of SEs per run. It is clear from the figure that the
original NSGA-III is not able to converge to the Pareto front, whereas our hybrid NSGA-III

is, but with worse diversity.

For a multi-modal problem, the value of KKTPM is dependent on how far an individual
is from its closest local Pareto-optimal front. This is because every local optimum is also a
KKT point and will have a zero KKTPM value. In other words, in a problem like ZDT4
having a large number of local Pareto-optimal fronts, KKTPM cannot really tell how far a
point is from the global Pareto front. It can rather tell how far a point is from a local Pareto
front. But since we pick the worst KKTPM point from the best non-dominated front in
a population, it is likely that LS will eventually contribute to convergence. The behavior
of ZDT4 shows what we call the "leaping" etfect. The term "leap" here refers to the big

jump one point makes so that it dominates the rest of the population. It is highly unlikely
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to experience Leaping with only standard genetic operators (selection, recombination and
mutation). However, using our selective LS procedure, we can increase its probability.
In order to investigate leaping in our proposed approach, we recorded the frequency of
LS operations that produced a solution which dominates the entire parent population.
One such leap is illustrated in Figure 5.13a. The histogram plotted in Figure 5.13b shows
the frequency of leaps across generations. It is clear that leaps are more frequent at
the beginning and they decrease rapidly as generations proceed. On one side, leaping

helps convergence, but on the other side, this may negatively affect diversity as shown in

Figure 5.12.
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FIGURE 5.13: Leaps enable faster convergence on ZDT4

This indicates that our LS procedure using Matlab’s® fmincon() routine is able to avoid

many local Pareto-optimal fronts, resulting in better convergence (see Figure 5.12).

The few previous examples show a microscopic view of how our hybrid approach works
and how it positively affects convergence. In the remaining part of this chapter we conduct

extensive simulations on a wide range of bi-objective problems, in order to see the bigger
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picture. In our simulations we run each algorithm 31 times on each test problem from
different initial populations. For each algorithm, the minimum, median and maximum
individuals in terms of KKTPM are selected for each generation across all runs. Each plot

compares these three metric values form the first to the last generation.

Our bi-objective simulations include two sets of test problems. The first set has six
unconstrained test problems: which are ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 [99] and
the proposed variable-density problem. Figures 5.14a to 5.14e present KKTPM values for
ZDT1 to ZDT6 problems for NSGA-III and hybrid NSGA-IIT algorithms. Hybrid NSGA-III

results are shown using circle-marked lines.

Figures 5.14f, 5.15a, and 5.15b show similar plots for variable-density problem, SRN and
TNK, respectively. It is clear from these figures that for all problems the hybrid NSGA-III

has achieved much smaller KKTPM values with identical number of SEs.

Figure 5.16a shows the obtained non-dominated set of solutions using both original and
hybrid NSGA-III on ZDT1. The figure shows clearly that the hybrid approach is able
to converge better than the original NSGA-III approach. Figure 5.16b shows a similar

behavior on ZDT6.

Figure 5.14f needs a more detailed explanation. In this case, LS was able to reach the
hard-to-reach section of the Pareto-optimal front in most of our simulations. This is
the reason behind the clear improvement in the highest KKTPM value shown in the
figure. On the other hand, there is no visible improvement in the median KKTPM. Since
the relatively easy-to-reach part of the Pareto-optimal front is bigger than the harder-to-

reach part, the median KKTPM comes from the easy-to-reach part and hence there is not
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much difference in the median KKTPM values between NSGA-III and hybrid NSGA-III.

However, significant improvements in best and worst KKTPM values are obvious in the

hybrid NSGA-III approach.

Similar observations can be made for bi-objective constrained test problems shown in

Figure 5.15. Just like the previously discussed ZDT problems, OSY and BNH, in these two

problems a clear improvement in all KKTPM values is visible from the figures.
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KKTPM is expected to indicate and, if used in an optimization algorithm, improve the
convergence characteristics of a solution. Thus, the proposed hybrid approach is not
expected to improve the diversity aspect of an EMO. But to investigate if an emphasis
on convergence deteriorates the diversity aspect, we compute the hypervolume (HV) of
the obtained non-dominated set of solutions at every generation and plot them for all the

above unconstrained problems using both original and hybrid NSGA-III in Figure 5.17.
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FIGURE5.18: Hypervolumes compared with and without LS for bi-objective constrained problems.
In most cases, hypervolume is better for the hybrid approach.

All hypervolumes are calculated using a reference point that is equal to 1.1 times the
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known nadir point of each test problem. The results show that with simple problems
both approaches are comparable. Some observations can be made as problems gets
more challenging. In some problems, the reader can notice that HV values of the hybrid
approach shoots up early in the optimization process. This early improvement can be
attributed to the initial fruitful LS operations. In most cases, original NSGA-III will be
able to catch up and in some cases even achieve better HV values given enough time
(generations). This can happen because of the ability of original NSGA-III to achieve
better diversity in some problems. But mostly, this is because, in easy problems, early
LS operations are less useful. They spend too much SEs compared to the amount of
improvement they achieve (if any). Finally, on difficult problems (e.g. ZDT4) where the
original NSGA-III fails to reach the Pareto front, our hybrid approach remains superior.

Figure 5.18 shows a similar comparison of HV for constrained problems.

These figures amply indicate that the two approaches work differently from start to end,
ultimately achieving a similar HV, but our proposed hybrid approach finds points that

are much better converged than the original NSGA-III approach.

Identification of worst-converged non-dominated solution and its improvement using an
ASF-based LS procedure demonstrated in ZDT and standard constrained test problems
have indicated a faster convergence of the hybrid NSGA-III approach. It is important
to highlight that there is no other way to differentiate one non-dominated solution from
another in terms of their convergence characteristics and use of KKTPM provides us with
this opportunity to apply a special action on less-converged solutions for an improvement

of the overall algorithm.
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FIGURE 5.19: Effect of LS on three-objective DTLZ problems demonstrating better convergence
property.

5.3.2.2 Three and Many-objective DTLZ Problems

We now consider three and many-objective DTLZ test problems [104]. Figures 5.19a to
5.19c show the variation of KKTPM values on three-objective DTLZ1, DTLZ2, and DTLZ5
problems. A remarkable improvement in the convergence speed is observed by hybrid

NSGA-III approach.

From [4], it is known that for a population of 92 solutions, it takes NSGA-III about 400

generations to reach close enough to the true Pareto-optimal front with an appropriate
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distribution. After 400 generation it is hard if not impossible to detect any further im-
provement just by naked eye. Here we limit our number of generations to 323 generations
(without LS) in order to compare the results of our two approaches during the course of
the optimization process. For our hybrid approach we used only 250 generations, thus
having an equal number of SEs for both approaches. Figures 5.20a and 5.20b show the

final DTLZ1 fronts reached by each approach at the aforementioned generations.
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FIGURE 5.20: Final fronts of DTLZ1 and DTLZ2, with (right) and without (left) local search, on
three objectives obtained with a limited FE.

It is clear that although both the two approaches did not fully converge (because of the
limited number of SEs allowed, a better final front is reached using the hybrid approach.

104



Similar figures (5.20c and 5.20d) for DTLZ2 are shown but obviously the problem is too
easy to show any superiority of one approach over the other. HV values of both DTLZ1

and DTLZ2 over generations are compared in Figure 5.21.
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FIGURE 5.21: Comparable hypervolume for DTLZ1 and DTLZ2 with and without LS on three
objective test problems.

To demonstrate the advantage of hybrid NSGA-III approach on many-objective problems,
we consider 10-objective DTLZ1 and DTLZ2 problems. Figures 5.22a and 5.22b show

the variation of best, median and worst KKTPM values using both original and hybrid

NSGA-III approaches.

The performance of hybrid NSGA-III is significantly better on DTLZ1, but since DTLZ2 is
a relatively easy problem to solve, the performance of the hybrid NSGA-III is marginally

better. In general, our hybrid approach is able to improve the best KKTPM values signifi-

cantly.
5.3.2.3 Engineering Design Problems

Finally, we include two engineering design problems: welded-beam design (WELD) [49]
and car-side-impact (CAR) [7] problems. In Figures 5.23a and 5.23b the minimum KKTPM
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FIGURE 5.22: Effect of LS on 10-objective DTLZ problems. The hybrid approach shows a better
convergence property.

value shows a significant improvement.
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FIGURE 5.23: Effect of LS on two engineering design problems. The hybrid approach shows a
better convergence property.

A slight improvement can be seen in the median KKTPM values, while the maximum

KKTPM measure results are more or less similar between the two algorithms.
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5.4 Summary

In this study, we have proposed a new hybrid EMO procedure that first identifies poorly
converged non-dominated solutions and then improves them using an ASF based LS op-
erator. Simulation results on a number of two-objective, three-objective, and 10-objective
unconstrained and constrained problems have clearly demonstrated a much faster con-
vergence achieved by our hybrid NSGA-III approach compared to the original NSGA-III

approach.

In this study, a recently proposed KKT proximity measure (KKTPM), originally suggested
for devising a termination criterion for multi-objective optimization algorithms, has been
used to identify the worst-converged non-dominated solution in a population. Such a
classification was not possible before and EMO algorithms had to rely on a diversity char-
acterization for differentiating non-dominated solutions. This unique ability facilitated by
KKTPM has allowed us to devise an LS based EMO approach to improve the convergence
characteristics of the worst-converged population member. The extent of computations
has been kept at a low level by allowing only one population member to undergo LS at
each generation. It has been observed that for an identical number of solution evaluations,
the proposed hybrid NSGA-III with one LS at every generation has been enough to find

better-converged population members than the original NSGA-IIL

The convergence speed of the hybrid EMO approach as demonstrated here is remarkable
and encourages further use of KKTPM in devising improved EMO operators. One dis-
advantage of the proposed approach is that in some cases, it sacrifices a little on diversity

for the sake of convergence. One way to extend the hybrid approach is to introduce
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a special handling of diversity preservation as well. As observed through hypervolume
plots, the proposed hybrid approach has achieved a better convergence with an initial sac-
rifice on diversity of non-dominated solutions. Nevertheless, this study has amply shown
the importance of KKTPM in identifying poorly converged non-dominated solutions for
achieving an increased convergence property of an EMO algorithm. The study should
encourage researchers to pay more attention to KKTPM and other theoretical optimality

properties of solutions in arriving at better multi-objective optimization algorithms.

In Chapter 6, we conclude our study by proposing Balanced NSGA-III (B-NSGA-III),
an algorithm that employs our convergence enhancement procedure (proposed in this
chapter) and a novel diversity preservation procedure side by side. B-NSGA-III maintains

an adaptive balance between the two procedures according to the problem in hand.
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Chapter 6

Multi-Phase Balance of Diversity and
Convergence in Multiobjective

Optimization

In this chapter, we propose our multi-phased algorithm (B-NSGA-III). In each phase,
B-NSGA-III focuses on one multi-objective optimization aspect. With enough temporary
evidence that the designated aspect has been fulfilled, the algorithm moves to the next
phase dealing with a different aspect. Phase-1 tries to stretch the non-dominated set of solu-
tions as much as possible by looking for farther extreme points. Once settled, phases 2 and 3
try to cover the gaps found in the non-dominated front and pull least-converged solutions
towards the true Pareto front respectively. The key behind the success of B-NSGA-III is
its alternating nature. B-NSGA-III follows the following principle: "At any given point

during the course of optimization, the conviction that any of the aforementioned aspects
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has been truly fulfilled may not be true.". For example, the belief that all extreme points
found so far are the true extremes of the Pareto front is only temporary, as better extreme
points can be still hiding there awaiting discovery. With this principle in mind, we de-
signed B-NSGA-III so that it can return to any prior phase once it discovers the falsehood

of an already established conviction.

B-NSGA-III is available as an Open Source Software for researchers willing to further

investigate this path!.

6.1 Proposed B-NSGA-III

B-NSGA-III follows the general outline of U-NSGA-III. Starting with a randomly gener-
ated initial population, B-NSGA-III generates an equal number of offspring individuals
(solutions/points) using niche-based tournament selection, Simulated Binary Crossover
and polynomial mutation [32]. The two populations are then combined and the ideal
point is updated. The combined population goes through non-dominated sorting [2] and
the next population is formed by collecting individuals front by front starting at the first
front. Since population size is fixed, the algorithm will typically reach a situation where
the number of individuals needed to complete the next population is less than the number
of individuals available in the front currently being considered. B-NSGA-III collects only
as many individuals as it needs using a niching procedure. This niching procedure nor-

malizes the objectives of all fronts considered. Then, using a fixed set of evenly distributed

1 https://www.coin-laboratory.com/evolib
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reference directions (in the normalized objective space) preference is given to those solu-
tions representing the least represented reference directions in the objective space so far.

Interested readers are encouraged to consult Chapter 3 for more details.

U-NSGA-III maintains a constant preference of convergence over diversity. A solution in
front n+1 will never be considered for inclusion in the next population unless all solutions
in front n are already included. This convergence-always-first scheme has been recently
criticized by several researchers [3, 106]. Moreover, our approach discussed in Chapter 5
although enhances convergence, it can negatively affect diversity. B-NSGA-III breaks this
constant emphasis on convergence. Every a generations, the proposed algorithm changes
its survival selection strategy, by favoring solutions solely representing some reference
directions over other — possibly dominating — redundant solution. A redundant solution
is a solution that is not the best representative of its niche i.e. there exists another solution

—in the same front — that is closer to the reference direction representing their niche.

Another difference between U-NSGA-III and B-NSGA-III is that U-NSGA-III treats all
individuals/regions of the search space equally at all generations. And although it might
seem better from a generic point of view, we claim the opposite. One of the most important
resources in optimization is the number of Solution Evaluations (SEs) consumed to reach
a solution. Being fair the way U-NSGA-III is, can lead to wasting SEs on easy sections
of the Pareto front. Those wasted SEs could have been put into better use, if they were
directed towards reaching more difficult sections of the front. Obviously, in order to
achieve the maximum possible utilization of SEs, a truly dynamic algorithm that gives
more attention to more difficult sections/points of the front is needed. However, designing

such an algorithm needs an oracle that knows deterministically the difficulty of attaining
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each point on the front relative to others. Unfortunately, for an arbitrary optimization
problem, perfecting such an oracle is a far-fetched dream so far, despite some studies
[107]. However, recent studies show some clues that can drive creating a non-deterministic

version of the targeted oracle. We summarize these clues in the following points:

1. Researchers have repeatedly shown the important role normalization plays espe-
cially in achieving better coverage of the Pareto front. Usually, the extreme points
of the current population dictate normalization parameters. During evolution, as
new extreme points appear, all previously normalized objective values become out-
dated, and normalization is repeated. Hence, the importance of extreme points in
optimization. And as pointed in [108], the earlier we reach extreme points, the better

normalization we have and the better coverage we attain.

2. Reaching some parts of the Pareto front may require more effort than others. Several
test as well as real world problems exhibit such behavior [99, 104]. Usually such
difficult regions appear as gaps in the first front. In reference directions based
optimization algorithms (like MOEA/D, NSGA-III and U-NSGA-III), gaps can be

identified by looking for reference directions having no associations so far.

3. In multiobjective optimization, all non-dominated solutions are considered equally
good, thus deserving equal attention. This is notideal though. Being non-dominated
with respect to each other does not mean that two solutions are equally converged.
The recently published approximate KKTPM enables us to efficiently differentiate

non-dominated solutions based on their proximity from local optima.
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These clues are realized in B-NSGA-III through several phases. In a generations, the
algorithm switches back and forth among three different phases. Each phase uses a
specific LS operator to fulfill its goal. The following subsection discusses these phases in

greater detail.

6.1.1 Alternating Phases

One naive approach is to use sequential phases. Given their relative importance the first
phase may seek extreme points. Once found, the algorithm moves to subsequent phases
and never looks back. But, as shown in [108], reaching true extreme points is not a trivial
task. Even using LS, several optimizations might be needed to attain one extreme point.
And since we can never safely assume that we have reached the true extreme points, this
sequential design is not recommended. The same argument is valid for covering gaps.
In an earlier generation, although your solutions may not provide the desired spread, it
might be the case that there are no gaps within the small region they cover. As generations
proceed and solutions expand, gaps may appear. This is a frequent pattern that is likely
to repeat through an optimization run. Again, the sequential pattern is prone to failure,

as we can never know if more gaps will appear in the future.

Another more involved yet simple approach is to move from one phase to the next after
a fixed number of generations (or SEs). Once, the algorithm reaches the final phase it
goes back to the first cyclically. This cyclic approach is more appealing, but how many
generations (or SEs) to wait for before switching from one phase to the next? Obviously, it

is never easy to tell. In addition, using this rigid design obligates the algorithm to spend
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FIGURE 6.1: Phase-1, Phase-2 and Phase-3 in action

resources (SEs) in possibly unnecessary phases, just because it is their turn in the alternation

cycle.

B-NSGA-III alternates among three phases dynamically and adaptively. Figure 6.1 shows
the three phases in action. During Phase-1, the algorithm seeks extreme points. Phase-2 is
where an attempt is made to cover gaps found in the non-dominated front. Finally, during
Phase-3 the focus is shifted towards helping poorly converged non-dominated solutions.
In order to avoid the shortcomings of the two aforementioned approaches, B-NSGA-III
watches for specific incidents that trigger transitions from one phase to another. Those
transitions are completely unrestricted i.e. B-NSGA-III can move from any phase to the
other if the appropriate trigger is observed. Figure 6.2 shows all possible transitions along

with their triggers.

In the first a generation, the algorithm puts itself in Phase-1. Algorithm 6 shows the
details of this phase. For an M objectives problem, Phase-1 uses an Extreme-LS operator

(discussed later) to search for its M extreme points. If all extreme points remain unchanged
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FIGURE 6.2: Alternation of Phases

from one a generation to the next, B-NSGA-III assumes temporarily that these settled points
are the true extreme points, and moves to Phase-2. While being in phases 2 or 3, finding
a better extreme point through evolution indicates that those extreme points previously
settled are not the true ones. Consequently, B-NSGA-III returns to Phase-1 in search for

better extreme points again.

ALGORITHM 6 Phase 1

Input: parentpopulation (P), offspring (O) population size (N), reference directions (D), ideal point
(I), intercepts (T), maximum number of function evaluations (FeMax), maximum number of
local search operations per iteration 8, augmentation factor €

Output: None

: Al PUO

: E « getExtremePoints(All)

: fori=1toMdo

E; « localSearchpws(E;, I, T,FeMax, €),

i=1,... M
O(randomIndex) < E;,

1 < randomIndex < |O|

=W N

a1

i—i+1
end for

N

As mentioned earlier, B-NSGA-III gives a chance to possibly dominated solutions that
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ALGORITHM 7 Phases 2 and 3
Input: parents (P), offspring (O), number of objectives (M), population size (N), reference direc-
tions (D), ideal point (I), intercepts (T), maximum number of function evaluations (FeMax),
maximum number of local search operations per iteration f5, last point used to cover direction
d (prevy) for all d in D
Output: New Population (P)
1: F « nonDominatedSorting(All)
2: Al <~PVO
3: P « getBestWithinNiche(d,0) Vd € D
4: if stagnant(E) then

5 Dempty —{deD| (ﬂx)[x €FiAxe dsurroundings]}
6:  Skktpm < calculateKKTPM(s) Vs¢€ p
7. fori=1tof do
8: if Dempty # ¢ then » Phase-2
9: d « randomPick(Denpty)
10: s« {xeF|
(@ly e FiA Ly (y) <La (0]}
11: if prevy = null or L4 (s) <L, (prev,) then
12: prevy < s
13: else
14: s « null
15: Dempty — Dempty \ {d}
16: end if
17: else » Phase-3
18: s—{xeP]|
(ﬂy)[y € p A Ykktpm > xkktpm]}
19: end if
20: if s # null then
21: $ « localSearchasp(s,I, T, FeMax)
22: P Dvi{3
23: ‘B «— ﬁ +1
24: end if
25:  end for
26: end if

solely represent their niche, every a generations. This is shown in Algorithm 7, line 3 and
expanded in Algorithm 8. The points surrounding each non-empty reference direction are
collected from the merged population (parents and offspring) (line 2), and the best ranked
point is selected to represent this direction/niche (line 4). If more than one point share the
same rank, the point closest to the direction is selected (line 5). Obviously, as opposed

to U-NSGA-III points in B-NSGA-III compete only with their niche peers, which means
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that an inferiorly ranked point from one niche, can be included because it is the best
representative of its niche, while a superior point from another niche is left out because a

better representative if its niche exists.

Once in Phase-2, B-NSGA-III looks for reference directions having no associations in the
first front (empty directions). These directions represent gaps in the non-dominated front
(Algorithm 7, line 5). If several such directions exist, one is picked randomly (line 9) and
the closest first front point to this direction is saved (line 10) to be used later as a starting
point in LS. Notice that lines 11 to 16 ensures that B-NSGA-III will not re-try to cover a gap
until a closer starting point than the one previously used is found. If no empty directions
exist, B-NSGA-III moves to Phase-3, looking for the least converged point among those
selected so far. This point should have the highest KKTPM among all (line 18). An ASF-LS
operator (discussed later) is employed in both cases (line 21), either to cover a gap (Phase-2)
or to bring a poorly converged point closer to the front (Phase-3). In order to keep SEs as
low as possible, a maximum of § LS operations are allowed, even if the number of gaps is
more than f. Notice the ability of the algorithm to move directly from Phase-1 to Phase-3

if no gaps are found.

ALGORITHM 8 getBestWithinNiche(All, D)

Input: merged parents and offspring (All), reference directions (D)
Output: selected Individuals (one from each niche) (P)
: p — gf)
: § « getSurroundings(d, All)
: forallde D do
Xg < {xesS| (35y)[]/ €S A Yrank < Xrank]}
Xg— {xeXq|(Ay)ly €S A La (y) <La ()]}
P« PU{x,}
end for

NS g e

It is worth noting that phases 2 and 3 may run simultaneously. If the number of empty
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ALGORITHM 9 fillUpPop(All, N, P)

Input: merged parents and offspring (All), population size (N), partially full new population (P)
Output: completely full new population (P)
1. All — AlI\P
2: while |[P| < N do
3 Z —{xeAll| (35]/)[y € AllA Yrank < xmnk]}
z « pickRandom(Z)
All < All\ {z}
P—Dviz)
end while

directions (gaps) is less than f, B-NSGA-III moves to Phase-3 and uses the remaining
budget to help poorly converged solutions. Obviously, Phase-1 has the highest priority
followed by Phase-2 then Phase-3. The following two subsections discuss both Extreme-LS

and ASF-LS operators in detail.

Finally, since all the three phases are not guaranteed to completely fill the next population,
a final pass is made to fill up the next population using points that B-NSGA-III has
discarded so far. Algorithm 9 shows that the best ranked points — out of those not

included yet in the next population — are given higher priority.

6.1.2 Two Local Search Operators

As mentioned earlier, B-NSGA-III uses two different local search operators. In each, all
the objectives are combined into some aggregate function (scalarization). Any single
objective optimizer can be used to minimize these aggregate functions. Here we chose
to use the same Matlab’s® fmincon() optimization routine used in Chapter 5, a point-
to-point deterministic optimizer. Point-to-point optimizers use less function evaluations
compared to set-based methods (e.g. evolutionary algorithms). But, they are also less

guaranteed to reach global optima. Yet, in an alternating multi-phased algorithm like
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B-NSGA-III the embedded single objective optimizer is not expected to reach the global
optimum in one shot. That’s why fmincon() fits our criteria for an embedded single
objective optimizer. Earlier we discussed the role of our two LS operators. Next we

discuss their formulations and how they fit into their designated roles.
6.1.2.1 Extreme-LS

Phase-1 uses Extreme-LS to find extreme points. This operator is formulated simply as a
Biased Weighted Sum (BWS) aggregate function of all objectives (Equation 6.1). f(x) rep-
resents the normalized value of objective k. When seeking the i extreme point, the term
Biased refers to the significantly smaller weight (we call it augmentation factor) multiplied
by the iy, objective, compared to the weights of all other objectives. Although, weighted
sum aggregate functions are straightforward and easy to implement, they (including ours)
can only reach points lying on convex sections of the Pareto front. While, this makes them
less plausible as a generic formulation, they perfectly serve their purpose in B-NSGA-III,
since extreme points by definition can never lie in a non-convex section of the Pareto front.
Unlike [109], the operator we are proposing here is normalized based on the number of
objectives. This allows using the same augmentation factor for different dimensions. It is
important to note that adding the i-th objective term to the formula helps avoiding weakly

dominated points.

M -
L N w;fi(x)
M1n1xm1ze BWSi(x) = efi(x) + | Z M1 (6.1)
j=1, j#i
where € is set as one percent of miné.\’:I 1,j2i Wj-
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6.1.2.2 Achievement Scalarization Function LS (ASF-LS)

As mentioned earlier, a generic LS operator that is required to get an arbitrary Pareto point
cannot rely on BWS. That’s why we use ASF to formulate our second LS operator, ASF-LS.
The formulation in Equation 6.2 shows that ASF-LS targets the intersection between the
provided direction and the Pareto front. Since, B-NSGA-III is a reference direction based
algorithm, ASF-LS can follow these already existing directions. And because of its ability
to reach points lying on both convex and non-convex sections of the Pareto front, this
is the operator employed in both Phase-2 and Phase-3 of B-NSGA-III. It is worth noting
that according to our earlier experiments, ASF-LS does not perform as well if used to
tind extreme points. This can be attributed to the steep gradient of the aggregate ASF
function (at these points) on one side of the global optimum, which usually misleads the
single objective optimizer. Hence, we need both operators in B-NSGA-III, each playing
its designated role.

Minixmize ASF(x,z,w) = m%x(@),

i

=1 (6.2)

subjectto ¢i(x)<0, j=12,...,]

6.2 Results

The set of problems used here are carefully selected and/or modified to exhibit different
types of difficulties. Both unconstrained and constrained problems are taken into account.
Some of them have disconnected Pareto fronts. Others, challenge the convergence ability

of the multiobjective algorithm, while others test its ability to cover the entire front evenly
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(diversity). Some of these problems are differentiable while others are not. We have
even modified some problems to exhibit certain types of behavior, different from what
they were originally designed for. Our problems cover a wide range of dimensionality as
well, namely 2, 3, 5 and 10 objectives. B-NSGA-III is compared to two other state-of-the-
art reference direction based algorithms, U-NSGA-IIIl and MOEA/D. Since the original
study [3] did not mention a specific way to handle constraints, we use MOEA/D with
unconstrained problems only. U-NSGA-III on the other hand is applied to all problems.
Population size is kept at a small value to maintain a strict testing conditions on all
algorithms. We use Inverted Generational Distance (IGD) and Generational Distance
(GD) to test both overall performance and convergence respectively. Sometimes, we also
show how KKTPM progresses during optimization. All results presented here are the
medians of 31 independent runs of each algorithm on each problem. Table 6.1 shows the
parameters used by B-NSGA-III in each problem. The other two algorithms use the same

values for common parameters.

Before going through the details of our simulations, we emphasize the alternating nature
of B-NSGA-III by showing it in action. Figure 6.3 shows a typical alternation of phases

performed by B-NSGA-III while solving ZDT4 [104].

6.2.1 Multi-objective problems

We start our experiments by solving three unconstrained bi-objective problems, ZDT3,
ZDT4 and ZDT6 [99] to test the ability of our algorithm to deal with disconnected Pareto

fronts, local Pareto fronts and variable density objective spaces respectively. As shown in

2Using numerical derivatives.
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TABLE 6.1: Parameters used by B-NSGA-IIL. M is the number of objectives. N is population size.

SEs stands for Solution Evaluations. « is the frequency explained in Section 6.1 while f is the

maximum limit of function evaluations the single objective optimizer (fmincon()) can use. The
final column shows the values of € in Equation 6.1.

Problem M N SEs a FEpax €
ZDT3 2 72 8000 10 200 0.1
ZDT4 2 48 30000 10 200 0.1
ZDT6 2 48 5000 10 200 0.1
oSy 2 48 15000 10 200 0.1
TNK 2 24 5000 10 200 0.1
DTLZ4 3 3 7000 10 200 0.1
DTLZ4 5 120 25000 10 200 0.1
DTLZ4 10 276 50000 10 200 0.1
DTLZ7 3 92 20000 10 200 0.1
WFG1 3 92 20000 10 200 0.1

TABLE 6.2: Each problem test one or more aspects of the algorithm

Problem Properties
ZDT3 disconnected Pareto Front (PF)
ZDT4 large number of local PFs, distant initial population
ZDT6 biased density objective space
osy PF sections vary in difficulty
TNK disconnected PF
DTLZ4 biased density objective space, distant initial population
DTLZ7 disconnected PF, PF sections vary in difficulty
WEFG1 non-differentiable, local PFs, differently scaled objectives

TABLE 6.3: p-values of a two sided Wilcoxon rank sum test.

Problem M B-NSGA-III vs. U-NSGA-III B-NSGA-III vs. MOEA/D

ZDT3 2 3.98x 107! 6.47 x 10711
ZDT4 2 1.40%x 10711 1.68x10~°
ZDT6 2 1.40x 10711 1.99%x10~°
(05)'% 2 1.51x1077 —

0SY? 2 7.57 x1076 —

TNK 2 432x107% —

DTLZ4 3 2.40%x107° 1.51x1077
DTLZ4 5 1.40%x 10711 1.40%x 10711
DTLZ4 10 6.47 x 10711 1.40%x 10711
DTLZ7 3 1.11x1077 1.08x10~*
WEG1 3 5.38 x 1072 1.40x 1071
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FIGURE 6.3: A typical alternation of phases of B-NSGA-III while solving ZDT4
Figure 6.4, in ZDT3, B-NSGA-III and U-NSGA-III achieve better convergence compared
to MOEA/D. The slight difference observed in IGD is not statistically significant (see
Table 6.3). In both ZDT4 and ZDT6, B-NSGA-III is a clear winner in terms of both

convergence and diversity as shown in Figures 6.5 and 6.6.
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FIGURE 6.4: Performance of B-NSGA-III, U-NSGA-III, and MOEA/D on bi-objective ZDT3
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FIGURE 6.5: Performance of B-NSGA-III, U-NSGA-III, and MOEA/D on bi-objective ZDT4
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FIGURE 6.6: Performance of B-NSGA-III, U-NSGA-III, and MOEA/D on bi-objective ZDT6

The same outcome can be observed with constrained problems, see Figures 6.7 and 6.8. For
these two problems, TNK and OSY [5], we exclude MOEA/D since the original study did
not provide a specific way to handle constraints. Notice that for simple problems requir-
ing no special attention to either convergence or diversity, B-NSGA-III and U-NSGA-III
behave similarly, which is expected. However as problems get more difficult the merits of
B-NSGA-III becomes evident. Notice, how B-NSGA-III was able to cover the entire Pareto
front providing a nice distribution in Figures 6.5¢, 6.6c and 6.8c using a limited number of
function evaluations (see Table 6.1). Both, U-NSGA-III and MOEA/D need more solution

evaluations to catch up with B-NSGA-III, if they ever do.
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FIGURE 6.7: Performance of B-NSGA-III, U-NSGA-III, and MOEA/D on bi-objective TNK

Looking at KKTPM yields another perspective that can confirm the convergence edge
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FIGURE 6.8: Performance of B-NSGA-III, U-NSGA-III, and MOEA/D on bi-objective OSY

B-NSGA-III has. Figures 6.9a, 6.9b and 6.9c show how median KKTPM of non-dominated

solutions progresses throughout optimization in ZDT4, ZDT6 and OSY, respectively.

Obviously, B-NSGA-III can reach Pareto optimal points (either local or global) much

faster than U-NSGA-III and MOEA/D. Combined with the previous GD plots, the reader

can easily conclude that B-NSGA-III hits global Pareto optimal points much earlier than

U-NSGA-III and MOEA/D. Fluctuations can be seen in initial generations (see Figure 6.9b)

because of the rapidly changing limited count of non-dominated solutions at early gener-

ations.
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FIGURE 6.9: How median KKTPM progresses over generations in ZDT4, ZDT6 and OSY

For three objectives, we use DTLZ4 and DTLZ7 problems [104]. DTLZ4 tests the ability

of an optimization algorithm to diversify solutions in a variable density objective space.
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A randomly generated set of Pareto optimal solutions will be dense near the fy-f; plane,
and as you move away from it, solutions get sparser. Degree of density/sparseness can
be controlled via the parameter y (called a in the original study and changed here not to
be confused with our @ parameter shown in Table 6.1). However, DTLZ4 does not test
the ability of an algorithm to converge. Actually, all randomly generated solutions are
relatively close to the Pareto front (compared to other problems from the same family,
like DTLZ1). And since B-NSGA-III is designed to tackle both convergence and diversity
simultaneously, we need a problem that is able to test both capabilities at the same time.
We can get such a problem by multiplying the g(x) function of DTLZ4 by a constant factor
D. The larger D is, the more distant randomly generated solutions will be from the Pareto
front. In this study we use y =20 and D = 100. On the other hand, the Pareto front of
DTLZ7 has four disconnected regions. One region is relatively easier than the others. An
optimization algorithm can easily get attracted to the easily attainable region and ignore

some/all others.
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FIGURE 6.10: Performance of B-NSGA-III, U-NSGA-III, and MOEA/D on DTLZ4 (3 objectives).

Figures 6.10a, 6.10b and 6.10c shows the overall performance of B-NSGA-III compared
to U-NSGA-III and MOEA/Don DTLZ4. B-NSGA-III is better in terms of both overall
performance and convergence. Median Pareto fronts (those having median IGD values)
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FIGURE 6.11: Median final fronts of U-NSGA-III, and MOEA/D on DTLZ4 (3 objectives).

shown in Figures 6.11a, 6.11b and 6.11c confirm the overall superiority of B-NSGA-III and
U-NSGA-III over MOEA/D, especially in terms of diversity. The superiority of B-NSGA-III

is even more evident on DTLZ7 as show in Figures 6.12 and 6.13.
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6.2.2 Many-Objective Optimization
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FIGURE 6.14: Performance of B-NSGA-III, U-NSGA-III, and MOEA/D on DTLZ4 (5 objectives).
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FIGURE 6.16: PCPs of B-NSGA-III, U-NSGA-III, and MOEA/D on DTLZ4 (10 objectives).

A many-objective optimization problem is a problem having more than 3 objectives. Both

MOEA/D and U-NSGA-III are known to be very efficient with this category of problems. In
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this section, we consider a difficult problem (our modified version of DTLZ4) and compare
the performance of B-NSGA-III to these two powerful algorithms. Here, we use two
instances of the problem, one with 5 objectives and the other with 10. For the 5 objectives
instance, Figure 6.14a is a Parallel Coordinate Plot (PCP) showing the 25%, median and
75% quantile values of each objective among the three algorithms. The values plotted for
each algorithm are taken from the final population of the run having the median IGD value
of its 31 independent runs. Unmarked lines represent the benchmark quantile values of
the selected Pareto optimal set. Lines marked with circles, squares and triangles represent
B-NSGA-III, U-NSGA-IIl and MOEA/D respectively. The closer the lines representing one
algorithm to the benchmark lines, the better this algorithm performs. All three algorithms
successfully attain the 25% quantile values. However median and 75% quantile results
vary. Obviously, B-NSGA-III achieves the best approximation of the two benchmark lines
among the three algorithms. U-NSGA-III is still acceptable while MOEA/D misses the
target lines completely. In addition, IGD and GD median comparisons are shown in
Figures 6.14b and 6.14c respectively. Obviously, B-NSGA-III outperforms the other two

algorithms in terms of overall performance and convergence.

The same conclusions can be drawn for the 10 objectives problem instance. Since most
of the Pareto points are on the edges of the hyper simplex, the median of each objective
is the same as the minimum (Zero). Figure 6.15a shows that unlike both U-NSGA-III
and MOEA/D, B-NSGA-III achieves a close approximation of the benchmark lines. Those
results are supported by IGD and GD results in Figures 6.15b and 6.15c respectively. In
order to further confirm our results, we have included the PCPs of all non-dominated

solutions of the median run of each algorithm in Figure 6.16. Obviously, the PCP of
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B-NSGA-III in Figure 6.16b is closer to the benchmark PCP (Figure 6.16a) than both the

PCPs of U-NSGA-III and MOEA/D.

6.2.3 Using numerical gradients

Up to this point, our approach has been using exact analytical gradients — provided by the
user — to calculate KKTPM. However for many problems — especially real-world problems
— these gradients may not be available in their analytical form. In such cases we resort to
using numerical gradients. In most cases numerical gradients yield acceptable gradient
approximations, but this comes on the expense of consuming more SEs. In order to
investigate the effect of using numerical gradients on our approach, first we use numerical
gradients with a problem for which we know the exact analytical gradients, namely OSY.
Then we apply the same approach to WFG1 [110], a problem with non-differentiable

objective functions.
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FIGURE 6.17: Performance of B-NSGA-III (exact & numerical) and U-NSGA-III on OSY problem.

Figure 6.17 clearly show how using numerical gradients has a minor negative effect on
the performance of B-NSGA-III. As the reader can observe, B-NSGA-III using numerical
gradients still outperforms U-NSGA-III. In addition, although using numerical gradients

consumes more SEs, it is clear from both figures that the magnitude of sacrifice is minimal.
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FIGURE 6.20: GD of the three algorithms on WFG1

B-NSGA-III with numerical gradients even catches up with the exact gradients version in

some cases.

The reader can easily reach a similar conclusion by looking at Figures 6.18, 6.19 and 6.20.

Here we use a slightly modified version of WFG1. We noticed that in order to reach about
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100 Pareto Front points in the original version of WFG1, we can only use a code whose
precision goes beyond ~ 107! This value represents the difference between objective
values of two neighboring points in such a front. This is true because of the very small
power used at the third transformation of WEG1 (0.02). To the best of our knowledge,
most of the codes available are not even close to this level of precision. In order to solve

this problem we changed the power of the third transformation from 0.02 to 0.2.

Since, all the objectives of WFG1 are non-differentiable, the only possible option for
B-NSGA-III is to use numerical gradients. Even with the burden of additional solution
evaluations, B-NSGA-III (with numerical gradients) still outperforms both MOEA/D and
U-NSGA-III. It is worth noting that, although Figures 6.18a and 6.18b look similar, the
points obtained by B-NSGA-III are more converged (closer to the front) than those obtained

by U-NSGA-IIL

The good performance of numerical gradient based B-NSGA-III can be attributed to
the very conservative approach B-NSGA-III follows with KKTPM calculations, which is

summarized in the following points:

e Since our modified niching approach is applied every a generations, KKTPM calcu-
lations are only possible in 1/a of the total number of generations. Typically, in our
case —since a = 10 - KKTPM values may be calculated in only 10% of all generations

at max.

e Even when it comes to these 10% of generations, Phases-1 and 2 do not require any
KKTPM calculations. And as we showed earlier, in most problems B-NSGA-III

spends the majority of its time in these two phases.
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e Phase-3 is where most KKTPM calculations are required. In this phase, KKTPM
values are calculated only for those individuals selected so far, which are usually less

than N (population size).

6.3 Summary

This chapter concludes our contributions by proposing B-NSGA-III, a multi-phased many-
objective evolutionary optimization algorithm capable of automatically balancing conver-
gence and diversity of population members. B-NSGA-III does not use explicit preferential
parameters or weights to distribute its effort among the two aspects. It rather waits for
signals based on which it changes from one phase to the other. This alternation of phases
is completely unrestricted and the exact way it happens adapts automatically to the prob-
lem in hand. Two types of local search operators are used during optimization. The
tirst is designed to find extreme points while the second is more suited to move arbitrary
points towards the Pareto optimal front. Approximate KKTPM is used to identify weakly
dominated points that need to be locally enhanced. On a wide range of problems with
different attributes and difficulties, B-NSGA-III shows superior performance to a number

of state-of-the-art algorithms for an equal number of solution evaluations.

The specific algorithmic setup proposed in this study should be viewed as one among
many possibilities by which several optimization techniques, metrics and algorithms
can communicate and cooperate to reach better results. We argue that our open source
implementation of B-NSGA-III can serve as a starting point for researchers willing to

further exploit these possibilities towards more balanced many-objective optimization.
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Chapter 7

Conclusions and Future Work

Throughout the chapters of this study, we were able to devise a unified evolutionary opti-
mization algorithm that can efficiently scale up from one to many objectives (Chapter 3).
We have also provided detailed evidence on the role selection plays in our algorithm
(U-NSGA-III) and its predecessor (NSGA-III), while further justifying our approach to-

wards a successful unified algorithm (Chapter 4).

Then we shifted our focus to the ability of our proposed approach to balance convergence
and diversity in multi- and many-objective optimization problems. First, we proposed a
novel convergence enhancement mechanism using a combination of the recently proposed
KKTPM and a local search operator using a point-to-point optimizer (Chapter 5). Finally,
we extended our approach by employing an additional diversity preservation procedure
that works along side the convergence enhancement mechanism. The final product of

our study is B-NSGA-III, a unified scalable multi-phase optimization algorithm that can
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distribute emphasis between convergence and diversity automatically based on the prob-
lem (Chapter 6). B-NSGA-III provides seamless transitions from one phase to another
maintaining a high degree of flexibility that suites a wide range of problems regardless of

their difficulty.

All our hypothesis and algorithms were logically developed then tested using exten-
sive set of simulations on a wide range of single, multi- and many-objective optimization
problems. Both constrained, unconstrained, differentiable and non-differentiable problems

were included.

Finally, in order to boost this field of research, we provide open source implementations
of all the ideas (algorithms) proposed in this study ! ? 3 4. Interested researchers aided
with these open source libraries, can explore unprecedented combinations of evolution-
ary operators, local search mechanisms and optimality metrics among others. These

combinations can open new horizons of single, multi- and many-objective optimization.

7.1 Future Work

In the course of our work on different parts of this study, some interesting questions
arose. Will it be beneficial to study diversity in the genotypic (design) space, as opposed
to the focus of our study on phenotypic diversity? This approach can be useful with

certain categories of problems. For example, in design problems, this approach can reveal

1EvoLib (coin-laboratory.com/evolib): An open source implementation of NSGA-III, U-NSGA-III and B-NSGA-III

2KKTPM Calculator (coin-laboratory.com/kktpm): An open source implementation of Karush Kuhn Tucker Proxim-
ity Measure

3Tx2Ex (github.com/000haitham000/tx2ex): An open source library for parsing and evaluating complex mathematical
expressions efficiently and on the fly.

4CMA-ES and MOEA/D runs were conducted using JMetal (jmetal.github.io/jMetal) and MOEA Framework
(moeaframework.org) libraries respectively.
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innovative designs. Being innovative means that these solutions lie on unattended regions
of the design (genotypic) space. These designs can be overlooked if the usual objective
(phenotypic) space diversity is used, just because they fall in the same vicinity of other

non-dominated solutions.

Another question that needs more investigation in reference-based EMO is how to dis-
tribute an arbitrary number of reference directions uniformly on the Pareto front. The
currently used Das and Dennis approach allows only for a specific number of points
depending on the objective dimensionality of the problem. This situation becomes more

complicated with discontinuous Pareto fronts.

A very promising line of research is to devise a method to re-allocate reference directions
if their original locations are not as fruitful as expected e.g. assigned to gaps where not
Pareto points exist. Although the original NSGA-III study provided some insights in
this regard they remain limited, leaving significant potential of finding more innovative

approaches.

A fourth direction is to mitigate the rapid increase in solution evaluations as objective
dimensionality grows. This can be done through combining many-objective optimization
with meta-modeling methods. A carefully crafted combination can enable us to solve

many objective problems with much lower budget than what we currently use.

Finally, given the contributions of ours study, interested researchers must be urged to
extend the ideas and concepts used her to massive objectives (25+ objectives). This

extension is not expected to be easy. The gap we need to cover to move from many to
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massive objectives might be even bigger than the gap that used to exist between multi

and many objectives.

All these questions and more need further research and investigation. Hence, they are

promising extensions to this study.
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Appendix

Additional figures and tables of
Chapter 3
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FIGURE A.1: Performance comparison between EliteRGA, NSGA-III, U-NSGA-III and CMA-ES
on Rastrigin's unconstrained multimodal problem

TABLE A.1: Single objective unconstrained significance test (p —value)

Problem | U-NSGA-III vs. | U-NSGA-III vs. | U-NSGA-III vs.
NSGA-III EliteRGA CMA-ES
ELL 0.5957 0.2073 8.0606E-10
ROS 0.6625 0.2975 5.0518E-13
ZAK 3.2751E-5 0.3528 5.0402E-13
SCH 5.0518E-13 0.0816 6.0875E-15
RAS 9.2668E-5 0.3267 5.7257E-8
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FIGURE A.2: Performance of EliteRGA, NSGA-III, U-NSGA-III and CMA-ES on Zakharov's un-

constrained test problem
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FIGURE A.5: Single objective constrained optimization problems (G1, G2, G6, G8, G18 and G24)
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FIGURE A.11: Bi-objective multi-fold simulations (experiment 2) on unconstrained test problems
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(d) NSGA-II on DTLZ2

(e) NSGA-III on DTLZ2

FIGURE A.15: Final population reached on unconstrained normalized multi-objective problems

TABLE A.2: Single objective constrained significance test (p —value)

Problem | U-NSGA-III vs. | U-NSGA-III vs.
NSGA-III EliteRGA
GO01 1.3115E-12 0.5700
G02 1.4018E-11 0.6986
G04 7.8055E-11 5.3326E-5
GO06 1.2719E-11 0.7999
G07 7.635E-10 0.3313
GO08 1.3629E-4 0.3332
G09 1.1997E-7 0.0784
G10 8.5683E-5 0.7461
G18 0.0471 0.9495
G24 4.911E-6 0.4728
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TABLE A.3: Best, medium and worst function values for mono-objective unconstrained test

problems.
Prob. | Eval. EliteRGA NSGA-III U-NSGA-III CMA-ES
Best | Median | Worst Best | Median | Worst || Best | Median | Worst Best | Median | Worst
ELL | 24000 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
RAS | 50000 || 0.00 0.00 24.87 0.00 0.00 0.01 0.00 0.00 0.02 497 8.95 13.93
ROS | 50000 || 0.07 | 16.45 74.75 0.28 5.92 76.38 0.02 14.43 75.25 0.00 0.00 0.03
SCH | 150000 || 0.00 0.00 355.32 || 473.75 | 1065.95 | 1895.01 || 0.00 0.00 0.00 || 8300.75 | 8300.75 | 8300.75
ZAK | 50000 || 0.01 0.03 0.11 0.02 0.06 0.13 0.01 0.03 0.08 0.00 0.00 0.00
TABLE A .4: Best, medium and worst function values for mono-objective constrained test problems.
Problem | Eval. P EliteRGA NSGA-III U-NSGA-III
Best Median Worst Best Median Worst Best Median Worst
GO01 50000 | 100 -15.00 -15.00 -12.68 -14.98 -10.35 -6.66 -15.00 -15.00 -12.79
G02 50000 | 100 -0.79 -0.73 -0.56 -0.54 -0.32 -0.21 -0.78 -0.71 -0.60
G04 50000 | 100 || -30492.26 | -30243.94 | -29751.42 || -30410.59 | -29752.80 | -28612.74 || -30663.20 | -30429.92 | -30076.46
G06 50000 | 100 || -6944.90 | -6890.16 | -1573.78 -6706.96 | -5947.95 | -5587.55 -6950.77 | -6893.85 | -6745.78
G07 50000 | 100 24.37 26.03 34.42 26.40 47.67 174.27 24.56 26.53 40.84
GO08 50000 | 100 -0.10 -0.10 -0.10 -0.10 -0.10 -0.02 -0.10 -0.10 -0.03
G09 50000 | 100 681.16 684.36 698.09 684.11 693.02 805.70 680.66 683.30 701.24
G10 50000 | 100 7071.57 8245.21 10740.75 7438.34 9428.18 15917.65 7124.45 7958.67 | 10863.69
G18 50000 | 100 -0.87 -0.65 -0.50 -0.86 -0.58 -0.37 -0.86 -0.66 -0.50
G24 50000 | 100 -5.51 -5.43 -5.20 -5.50 -5.04 -3.91 -5.51 -5.46 -5.08
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TABLE A.5: Best, medium and worst HV for bi-objective unconstrained ZDTtest problems

Problem | G p NSGA-II NSGA-III U-NSGA-III
Best | Median | Worst Best | Median | Worst Best | Median | Worst
100 | 8 || 0.31255 | 0.15265 - 0.35012 | 0.16162 - 0.36055 | 0.14030 -
100 | 28 || 0.64243 | 0.61575 | 0.48198 || 0.64081 | 0.61047 | 0.39062 || 0.64492 | 0.62125 | 0.52632
100 | 48 || 0.65743 | 0.64843 | 0.51849 || 0.65752 | 0.64615 | 0.55251 || 0.65785 | 0.65264 | 0.56625
ZDT1 100 | 68 || 0.66285 | 0.66162 | 0.54258 || 0.66391 | 0.66090 | 0.63014 || 0.66391 | 0.66095 | 0.62233
100 | 88 || 0.66575 | 0.66509 | 0.63593 || 0.66650 | 0.66440 | 0.60850 || 0.66610 | 0.66486 | 0.63939
100 | 108 || 0.66740 | 0.66669 | 0.62304 || 0.66771 | 0.66653 | 0.60942 || 0.66782 | 0.66695 | 0.61261
100 | 128 || 0.66842 | 0.66795 | 0.64771 || 0.66872 | 0.66807 | 0.59472 || 0.66882 | 0.66818 | 0.65361
200 | 8 || 0.03594 | 0.00412 - 0.13508 | 0.02911 - 0.15684 | 0.00981 -
200 | 28 || 0.32234 | 0.23566 | 0.09729 || 0.31200 | 0.22042 | 0.13453 || 0.32835 | 0.23215 | 0.10257
200 | 48 || 0.33414 | 0.32573 | 0.17742 || 0.33635 | 0.31545 | 0.20360 || 0.33640 | 0.31865 | 0.20072
ZDT2 200 | 68 || 0.33808 | 0.33696 | 0.29766 || 0.33943 | 0.33808 | 0.23877 || 0.33943 | 0.33772 | 0.23743
200 | 88 || 0.34000 | 0.33952 | 0.33027 || 0.34104 | 0.34058 | 0.31611 || 0.34104 | 0.34005 | 0.26554
200 | 108 || 0.34129 | 0.34091 | 0.33920 || 0.34206 | 0.34191 | 0.32017 || 0.34206 | 0.34185 | 0.31294
200 | 128 || 0.34213 | 0.34185 | 0.34056 || 0.34275 | 0.34265 | 0.30644 || 0.34275 | 0.34262 | 0.33499
200 | 8 || 0.43814 | 0.32651 | 0.19916 || 0.43706 | 0.31813 | 0.04954 || 0.46156 | 0.30742 | 0.13125
200 | 28 || 0.52300 | 0.51984 | 0.36770 || 0.52208 | 0.51787 | 0.36786 || 0.52259 | 0.51747 | 0.36728
200 | 48 || 0.52736 | 0.52675 | 0.47301 || 0.52684 | 0.52584 | 0.47320 || 0.52684 | 0.52604 | 0.49646
ZDT3 200 | 68 || 0.52889 | 0.52853 | 0.47395 || 0.52831 | 0.52728 | 0.47409 || 0.52783 | 0.52730 | 0.47394
200 | 88 || 0.52969 | 0.52938 | 0.47436 || 0.52948 | 0.52922 | 0.52367 || 0.52945 | 0.52924 | 0.52364
200 | 108 || 0.53009 | 0.52994 | 0.48929 || 0.52985 | 0.52933 | 0.52433 || 0.52990 | 0.52941 | 0.52420
200 | 128 || 0.53038 | 0.53027 | 0.52502 || 0.53010 | 0.52993 | 0.52454 || 0.53016 | 0.52992 | 0.52975
500 | 48 || 0.33839 | 0.04026 - 0.66203 | 0.21306 - 0.65648 | 0.34481 -
500 | 68 || 0.49728 | 0.21448 - 0.66581 | 0.50134 - 0.66582 | 0.34738 -
500 | 88 || 0.66539 | 0.34671 - 0.66754 | 0.50285 - 0.66754 | 0.50285 -
ZDT4 500 | 108 || 0.66759 | 0.50186 - 0.66862 | 0.66861 | 0.21769 || 0.66862 | 0.66861 | 0.04251
500 | 128 || 0.66835 | 0.50241 - 0.66936 | 0.66935 | 0.35016 || 0.66935 | 0.66935 -
500 | 148 || 0.66898 | 0.66855 - 0.66989 | 0.66989 | 0.11491 || 0.66989 | 0.66988 | 0.35058
500 | 168 || 0.66946 | 0.66906 | 0.21820 || 0.67029 | 0.67029 | 0.35091 || 0.67029 | 0.67029 | 0.67029
350 | 8 0.28920 | 0.23570 | 0.18862 || 0.29998 | 0.25482 | 0.20220 || 0.28805 | 0.24376 | 0.14628
350 | 28 || 0.38522 | 0.37737 | 0.36650 || 0.38282 | 0.37177 | 0.36487 || 0.38265 | 0.37172 | 0.36335
350 | 48 || 0.39975 | 0.39620 | 0.39084 || 0.39787 | 0.39054 | 0.38482 || 0.39874 | 0.39212 | 0.38452
ZDT6 350 | 68 || 0.40618 | 0.40350 | 0.39854 || 0.40429 | 0.39956 | 0.39021 || 0.40323 | 0.39981 | 0.39199
350 | 88 || 0.40889 | 0.40713 | 0.40503 || 0.40731 | 0.40446 | 0.39908 || 0.40824 | 0.40435 | 0.40038
350 | 108 || 0.41152 | 0.40904 | 0.40668 || 0.41116 | 0.40673 | 0.40219 || 0.40990 | 0.40754 | 0.40478
350 | 128 || 0.41268 | 0.41127 | 0.40948 || 0.41209 | 0.40872 | 0.40672 || 0.41168 | 0.40960 | 0.40668
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TABLE A.6: Best, medium and worst HV for bi-objective constrained test problems.

NSGA-II NSGA-III U-NSGA-III
Problem G P - - -

Best Median | Worst Best Median | Worst Best Median | Worst

200 | 8 0.73267 | 0.43286 | 0.27728 || 0.71041 | 0.50770 | 0.25537 || 0.68121 | 0.43682 | 0.28905

200 | 28 || 0.76322 | 0.71092 | 0.31686 || 0.73737 | 0.72044 | 0.32286 || 0.75790 | 0.71367 | 0.36675

200 | 48 || 0.78083 | 0.73526 | 0.39313 || 0.77030 | 0.72800 | 0.38988 || 0.77410 | 0.73554 | 0.39322

oSy 200 | 68 || 0.79128 | 0.75182 | 0.71650 || 0.78267 | 0.73498 | 0.39543 || 0.77829 | 0.73933 | 0.69218
200 | 88 || 0.79068 | 0.74280 | 0.42947 || 0.78554 | 0.73974 | 0.42535 || 0.78263 | 0.75166 | 0.42622

200 | 108 || 0.79211 | 0.76037 | 0.72657 || 0.78919 | 0.74610 | 0.35518 || 0.78957 | 0.76359 | 0.42809

200 | 128 || 0.79231 | 0.76461 | 0.72355 || 0.79144 | 0.75792 | 0.39478 || 0.79106 | 0.76385 | 0.39651

200 | 148 || 0.79363 | 0.77470 | 0.70024 || 0.79042 | 0.75030 | 0.73477 || 0.78990 | 0.75957 | 0.71990

100 | 8 0.26681 | 0.22514 | 0.10037 || 0.27533 | 0.23054 | 0.10537 || 0.26700 | 0.23425 | 0.08196

100 | 28 || 0.31311 | 0.30724 | 0.29245 || 0.31042 | 0.30438 | 0.26994 || 0.31049 | 0.30587 | 0.29835

100 | 48 || 0.31831 | 0.31482 | 0.30610 || 0.31849 | 0.31621 | 0.30598 || 0.31953 | 0.31467 | 0.29697

TNK 100 | 68 || 0.32154 | 0.32004 | 0.31459 || 0.32148 | 0.31916 | 0.31160 || 0.32180 | 0.31957 | 0.31634
100 | 88 || 0.32320 | 0.32123 | 0.31727 || 0.32348 | 0.32160 | 0.31762 || 0.32366 | 0.32143 | 0.31921

100 | 108 || 0.32422 | 0.32309 | 0.31612 || 0.32469 | 0.32259 | 0.31933 || 0.32426 | 0.32276 | 0.31861

100 | 128 || 0.32567 | 0.32389 | 0.31925 || 0.32478 | 0.32380 | 0.32126 || 0.32519 | 0.32375 | 0.32115

100 | 148 || 0.32588 | 0.32433 | 0.32194 || 0.32546 | 0.32439 | 0.31897 || 0.32599 | 0.32452 | 0.32219

500 | 8 0.71911 | 0.65178 | 0.46963 || 0.73939 | 0.73913 | 0.73752 || 0.73934 | 0.73897 | 0.73719

500 | 28 || 0.79432 | 0.78961 | 0.78559 || 0.79551 | 0.79541 | 0.79506 || 0.79550 | 0.79544 | 0.79532

500 | 48 || 0.80399 | 0.80260 | 0.80044 | 0.80382 | 0.80378 | 0.80371 || 0.80382 | 0.80377 | 0.80370

BNH 500 | 68 || 0.80727 | 0.80636 | 0.80541 || 0.80714 | 0.80711 | 0.80705 || 0.80714 | 0.80711 | 0.80706
500 | 88 || 0.80893 | 0.80832 | 0.80762 || 0.80894 | 0.80891 | 0.80888 || 0.80894 | 0.80891 | 0.80885

500 | 108 || 0.81014 | 0.80961 | 0.80927 || 0.81005 | 0.81003 | 0.80999 | 0.81005 | 0.81003 | 0.81001

500 | 128 || 0.81067 | 0.81042 | 0.81006 || 0.81080 | 0.81079 | 0.81076 || 0.81081 | 0.81079 | 0.81074

500 | 148 || 0.81128 | 0.81103 | 0.81056 || 0.81135 | 0.81134 | 0.81131 || 0.81135 | 0.81134 | 0.81125

500 | 8 0.43492 | 0.39308 | 0.32611 || 0.47003 | 0.46449 | 0.46083 || 0.46816 | 0.46507 | 0.46180

500 | 28 || 0.51194 | 0.50831 | 0.49744 || 0.52032 | 0.51984 | 0.51938 || 0.52031 | 0.51995 | 0.51902

500 | 48 || 0.52326 | 0.52162 | 0.51805 || 0.52826 | 0.52788 | 0.52650 || 0.52814 | 0.52783 | 0.52724

SRN 500 | 68 || 0.52764 | 0.52707 | 0.52524 || 0.53129 | 0.53110 | 0.53073 || 0.53130 | 0.53110 | 0.53075
500 | 88 || 0.53062 | 0.52991 | 0.52891 || 0.53298 | 0.53282 | 0.53262 || 0.53300 | 0.53289 | 0.53257

500 | 108 || 0.53217 | 0.53151 | 0.53090 || 0.53403 | 0.53392 | 0.53378 || 0.53405 | 0.53396 | 0.53294

500 | 128 || 0.53316 | 0.53269 | 0.53182 || 0.53476 | 0.53469 | 0.53443 || 0.53480 | 0.53468 | 0.53435

500 | 148 || 0.53380 | 0.53350 | 0.53296 || 0.53530 | 0.53523 | 0.53508 || 0.53529 | 0.53523 | 0.53479

500 | 8 0.63954 | 0.57632 | 0.46291 || 0.66332 | 0.63933 | 0.54086 || 0.66218 | 0.64006 | 0.58499

500 | 28 || 0.68947 | 0.67875 | 0.66257 || 0.69148 | 0.68622 | 0.67273 || 0.69125 | 0.68633 | 0.66719

500 | 48 || 0.69494 | 0.69096 | 0.68464 || 0.69650 | 0.69312 | 0.68133 || 0.69618 | 0.69355 | 0.68419

WELDED 500 | 68 || 0.69797 | 0.69578 | 0.69193 || 0.69846 | 0.69685 | 0.67457 || 0.69885 | 0.69665 | 0.69103
500 | 88 || 0.69959 | 0.69774 | 0.69080 | 0.69997 | 0.69786 | 0.68756 | 0.70009 | 0.69856 | 0.69153

500 | 108 || 0.69998 | 0.69894 | 0.69605 || 0.70078 | 0.69959 | 0.69134 || 0.70068 | 0.69938 | 0.69433

500 | 128 || 0.70074 | 0.69988 | 0.69861 || 0.70151 | 0.70009 | 0.69351 || 0.70131 | 0.70040 | 0.69342

500 | 148 || 0.70134 | 0.70032 | 0.69937 || 0.70181 | 0.70069 | 0.69443 || 0.70166 | 0.70066 | 0.69566

500 | 8 0.38960 | 0.32313 | 0.19438 || 0.43992 | 0.41892 | 0.22107 || 0.44201 | 0.42504 | 0.17113

500 | 28 || 0.48139 | 0.47588 | 0.45720 || 0.49792 | 0.49122 | 0.42564 || 0.49814 | 0.49209 | 0.26740

500 | 48 || 0.50168 | 0.49740 | 0.37640 || 0.50918 | 0.50484 | 0.36382 || 0.50897 | 0.50522 | 0.49962
PRESSURE 500 | 68 || 0.50906 | 0.50706 | 0.50430 || 0.51413 | 0.51072 | 0.50591 || 0.51494 | 0.51189 | 0.50757
500 | 88 || 0.51352 | 0.51189 | 0.51009 || 0.51741 | 0.51473 | 0.51157 || 0.51683 | 0.51519 | 0.51161

500 | 108 || 0.51633 | 0.51502 | 0.51360 || 0.51937 | 0.51707 | 0.51332 || 0.51895 | 0.51686 | 0.51434

500 | 128 || 0.51796 | 0.51712 | 0.51610 || 0.51981 | 0.51842 | 0.51538 || 0.51967 | 0.51832 | 0.51685

500 | 148 || 0.51940 | 0.51871 | 0.51793 || 0.52134 | 0.51983 | 0.51740 || 0.52111 | 0.51974 | 0.51796
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TABLE A.7: Best, medium and worst HV on multi/many-objective constrained C3-DTLZ problems.

Problem | Obj. G p NSGA-II NSGA-III U-NSGA-III
Best ‘ Median ‘ Worst Best ‘ Median ‘ Worst Best ‘ Median ‘ Worst
3 750 | 92 || 8.786E-1 | 8.679E-1 | 7.705E-1 || 9.114E-1 | 9.078E-1 | 9.031E-1 || 9.107E-1 | 9.072E-1 | 8.97E-1
C3-DTLZ1 5 1250 | 212 || 8.862E-1 | 7.968E-2 — 9.942E-1 | 9.935E-1 | 9.933E-1 || 9.941E-1 | 9.938E-1 | 9.932E-1
8 2000 | 156 — — — 1.083E0 | 1.082E0 | 1.082E0 || 1.082E0 | 1.082E0 | 1.082E0
10 | 3000 | 276 — — — 1.105E0 | 1.105E0 | 1.104E0 || 1.105E0 | 1.105E0 | 1.105E0
750 | 92 || 7.046E-1 | 6.893E-1 | 6.794E-1 || 7.358E-1 | 7.316E-1 | 7.229E-1 || 7.362E-1 | 7.326E-1 | 7.308E-1
C3.DTLZ4 1250 | 212 || 7.699E-1 | 7.515E-1 | 6.972E-1 || 9.454E-1 | 9.45E-1 | 9.444E-1 || 9.453E-1 | 9.449E-1 | 9.442E-1
8 2000 | 156 || 1.83E2 | 1.594E2 | 147E2 || 2.751E2 | 2.751E2 | 2.75E2 || 2.752E2 | 2.751E2 | 2.751E2
10 | 3000 | 276 || 8.09E2 | 7.366E2 | 6.863E2 1.13E3 1.13E3 1.13E3 1.13E3 1.13E3 1.13E3
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TABLE A.8: (p-values) of Wilcoxon significance test for unconstrained bi-objective test problems

] Problem H P \ U-NSGA-III vs. NSGA-II \ U-NSGA-III vs. NSGA-III \
8 0803 05274
78 03827 01677
13 0.4387 01677
&3 0.9103 0.8327
ZDT1 (G =100) |—gg 0.4992 03751
108 01024 0.4062
128 0.0069 04992
148 0.4556 0.0194
8 04749 0.6533
78 0.6831 0.7039
13 0.7249 0.888
&3 01116 0.7354
ZDT1(G =100) |—gg 0.0939 0.7354
108 1.82E-06 0.7249
128 3.36E-00 05403
148 543606 04022
8 0.3041 05543
78 0.0037 0.9883
13 0.0967 0.1857
&3 1.58E-06 0.8548
ZDT1(G =100) |—gg 0.0302 03455
108 775E-07 0147
128 6.44E08 0.9103
148 3.36E-00 04556
8 04364 05757
28 7.50E-05 05206
13 79104 0.7089
B 68 T.62E-07 0.4429
ZDT1 (G =100) |—gg 3.66E-08 0.6523
108 164507 0.7782
128 1.39E-11 0.8824
148 1.39E-11 0.7566
8 0.1085 05082
78 8.08E-05 0.7039
13 7.09E-06 05264
B 68 1.65E-08 0.9551
ZDT1(G =100) |—gg 5.28E-08 0.7563
108 3.28E-05 04142
128 5.01E-07 01054
148 321607 05082
128 8.95E-07 0.4641
148 1.28E-06 0.8108
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TABLE A.9: (p-values) of Wilcoxon significance test for constrained bi-objective problems

Problem H P \ U-NSGA-III vs. NSGA-II \ U-NSGA-III vs. NSGA-III \

28 1.40E-11 0.0833

48 2.59E-10 0.4641

68 1.24E-09 0.7091

BNH (G = 500) 88 1.09E-09 0.6882
108 3.66E-09 0.7837

128 1.40E-11 0.6172

148 1.54E-11 0.2541

28 0.6625 0.888

48 0.3041 0.6222

68 0.0143 0.1904

OSY (G =200) 88 0.4556 0.1952
108 0.4903 0.0611

128 0.7461 0.9551

148 0.0143 0.8658

28 1.40E-11 0.3866

48 1.40E-11 0.4903

68 1.40E-11 0.9775

SRN (G = 500) 88 1.40E-11 0.1302
108 1.40E-11 0.1215

128 1.40E-11 0.3983

148 1.40E-11 0.6882

28 0.2541 0.1721

48 0.3041 0.0651

68 0.4142 0.2314

TNK (G = 100) 88 1 0.4305
108 0.6322 0.7354

128 0.9663 0.7568

148 0.1375 0.8437

28 3.13E-04 0.2783

48 0.0217 0.5638

68 0.0302 0.7461

Welded Beam (G = 500) 88 0.0281 0.3107
108 0.4305 0.3244

128 0.0441 0.3455

148 0.0761 0.7675

28 1.09E-08 0.4471

48 2.50E-11 0.2154

68 5.36E-11 0.0456

Pressure Vessel (G =500) || 88 1.80E-10 0.3827
108 1.19E-08 0.8218

128 8.95E-07 0.4641

148 1.28E-06 0.8108
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TABLE A.10: (p-values) of Wilcoxon significance test for unconstrained, constrained and scaled
multi/many-objectives problems

| Category | Problem | P | G ] U-NSGA-II vs. NSGA-II | U-NSGA-III vs. NSGA-III |
DTLZ1 (3 obj.) 92 | 400 8.15E-05 0.8955
DTLZ2 (3 obj.) 92 || 250 8.15E-05 0.3079
DTLZ1 (5 obj.) 212 || 600 2.55E-05 0.3752
Unconstrained | DTLZ2 (5 obj.) 212 || 350 8.15E-05 0.8438
DTLZI (8 obj.) 156 || 750 1.46E-05 0.0774
DTLZ2 (8 obj.) 156 || 500 2.55E-05 0.9476
DLTZ1 (10 obj.) 276 || 1000 1.78E-05 0.4375
DLTZ2 (10 obj.) 276 || 750 2.55E-05 0.5112
C3-DTLZ1 (3 obj.) 92 [ 750 8.15E-05 0.7427
C3-DTLZ4 (3 obj)) 92 || 750 8.15E-05 0.3086
C3-DTLZI (5 obj.) 212 || 1250 7 42E-05 0.4115
Constrained | C3-DTLZ4 (5 obj.) 212 || 1250 8.11E-05 0.6933
C3-DTLZ1 (8 obj.) 156 || 2000 2.52E-05 0.0354
C3-DTLZ4 (8 obj.) 156 || 2000 8.15E-05 0.115
C3-DTLZ1 (10 obj.) 276 || 3000 2.48E-05 0.4644
C3-DTLZ4 (10 obj.) 276 || 3000 8.15E-05 0.5545
Scaled DTLZ1 (30bj.) [ 92 | 400 8.15E-05 0.1891
Scaled DTLZ2 (30bj.) | 92 || 250 8.15E-05 0.8955
Scaled DTLZI (5 0bj.) | 212 || 600 2.55E-05 0.7928
Scaled Scaled DTLZ2 (5 0bj.) | 212 || 350 8.15E-05 0.8438
Scaled DTLZI (8 obj.) | 156 || 750 2.52E-05 0.3241
Scaled DTLZ2 (8 obj.) | 156 || 500 2.55E-05 0.7427
Scaled DTLZI (10 obj.) | 276 || 1000 2.23E-05 0.2827
Scaled DTLZ2 (10 obj.) | 276 || 750 2.55E-05 0.115
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