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ABSTRACT 

NUMERICAL SIMULATION OF PARTICLE-LADEN FLOWS IN CURVED PIPES 

By 

Pusheng Zhang 

Particulate flows in curved pipes are commonplace in a variety of settings and involve aerosol 

deposition in airways as well as solids or droplets impacting pipe walls. The presence of bends in 

such flows is well-known to be associated with large pressure drops and phase separation due to 

the centrifugal force. The consideration of bends is thus important in designing multiphase flow 

equipment and pipes. For example, natural gas transported in pipes is often wet and water 

droplets, as they pass through the bend, may impact the bend wall where they form a film; this 

may well influence the performance of separation equipment located downstream. Phenomena 

associated with flows through curved pipes, such as the formation of secondary flow patterns, are 

thus studied in this work in order to evaluate their effects on the disperse phase. In addition, the 

accuracy of the numerical simulations for such flows is often in question when compared with 

experiments. This may be due to a number of factors which include the selection of an 

appropriate multiphase model and turbulence closure, or numerical aspects such as the quality of 

the treatment of the near wall behavior. 

In the first part of this work, dilute particle flows in curved pipes are modeled using one-way 

and two-way coupled models. In one-way coupling simulations, the influence of the particles on 

the carrier phase is ignored. The influence of turbulence closures on the flow and particle 

trajectories are investigated. The “standard” k-ε model and the Reynolds Stress Model (RSM) 

based on the Reynolds-Averaged Navier-Stokes (RANS) equation are employed with different 

near-wall treatments. For two-way coupling simulations, the drift flux model based on the 



 
  

mixture theory is used to consider the interaction between the phases. A realizable k-ε model is 

employed to close the RANS equation and the Enhance Wall Treatment (EWT) is applied for the 

flow in the near-wall region. Results show that the pressure drop of a single phase flow along the 

curved pipe is well predicted by the turbulent closures studied.  

For one-way coupled simulations, RSM with EWT is accurate in estimating grade efficiency 

curves. Compared to other possible combinations, using RSM with EWT can improve the 

accuracy by as much as 19% in a 90° bend and up to 30% in a 180° bend. The results of these 

simulations have allowed the development of an improved correlation for predicting grade 

efficiency curves. For two-way coupled simulations, results show that the pressure drop is 

significantly affected by the disperse phase. The computed pressure has a good agreement with 

the empirical correlation of Paliwado. Bend design using the mixture model shows that 90° and 

180° bends with the curvature ratios equal to 5 and 7 respectively can be used to achieve a high 

deposition efficiency with a relatively low pressure drop.  

Following the above studies, a modification of the Immersed Boundary (IB) method, an 

approach for the simulation of particles moving in a fluid, is introduced to perform a preliminary 

validation of the closures used in multiphase flow modeling. An algorithm is implemented to 

combine the MacCormack scheme with the IB method. The technique is applied to particulate-

laden flow simulations. This data is used to verify the performance of the mixture model on 

estimating particle behaviors in Couette flows and Poiseuille flows. Results show that IB method 

based on the MacCormack scheme is promising in dealing with fluid-structure interaction 

especially for particulate-laden flows. Comparison between the DNS data and the mixture model 

indicates that the mixture model is not able to capture particle migration. To improve the 

performance, the lift force needs to be considered in the model used to close the slip velocity. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

A particulate-laden flow is a two-phase flow in which one phase is continuously connected 

called carrier phase and the other phase composes of discrete immiscible particles. Particulate-

laden flows in curved channels are commonplace in nature and often seen in a variety of setting 

associated with biological, chemical, nuclear, pharmaceutical and food industries. They involve 

phenomena as varied as aerosol deposition in airways or pollution control systems, as well as 

solids or droplets impacting pipeline walls. Flows in most industrial applications are turbulent. 

Therefore understanding of the behavior of particle turbulent flows in curved pipes is of 

tremendous importance to help industries in cost saving and productivity increase.  

Compared to single-phase flows, particulate-laden flows are significantly more complex. New 

parameters are introduced due to the presence of particles such as the particle volume fraction αp, 

mass loading φ, Stokes numbers St, and particle Reynolds number Rep. The discrete phase can 

impact the pressure drop and the turbulent intensity of the carrier phase in a significant way. In 

general, the pressure drop of a particulate-laden flow is increased with the increase of the particle 

volume fraction (Hoang & Davis 1984). However, Marcus et al. (1990) observed that in some 

cases involving a small mass loading (φ<4) and transport of fine particles (in an order of 10
-5

 m), 

the increasing αp can actually decrease the pressure drop due to a reduction in the gas-phase 

stress. The particle diameter dp, volume fraction αp, and Reynolds number Rep have been shown 

to be responsible for turbulent intensity modulation. Theofanous & Sullivan (1982) showed 
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theoretically that the turbulence intensity is a function of the particle volume fraction. Gore & 

Growe (1989) provided a critical parameter pd / 0.1  , where   is the fluid integral length 

scale, to predict turbulence attenuation and augment. Turbulence intensity is suppressed for 

pd / 0.1  and enhanced for pd / 0.1  . Hetsroni (1989) stated that particles with Rep larger 

than 400 would enhance the turbulence due to particle vortex shedding.  

The Stokes number provides a measure of response time of the particles to the flow and is 

defined as p f
St /    where p is the particle relaxation time and 

f
 is the fluid characteristic 

time scale. Particles with a small Stokes number (St 1) would follow the carrier flow closely 

and particles with a large St ( St 1 ) would go across the flow streamlines. Starkey (1956) 

experimentally observed the non-uniform distribution of particles in pipe flows and 

demonstrated that neutrally buoyant spherical particles under certain conditions have lateral 

migration in a Poiseuille flow. Particle behavior such as particle clustering is not fully 

understood to date.  

To study particulate-laden flows, it is helpful to classify the flows into two distinct categories: 

dilute flows and dense flows.  Elghobashi (1991) used the mean distance S between the centers 

of two neighboring particles to define a suspension flow. He stated that the flow is considered to 

be dilute if pS 10d and dense if pS 10d . Crowe et al. (1998) defines a particulate-laden flow 

based on the forces dominated to control the particle motion. A flow is dilute if the particle 

motion is determined by hydrodynamic forces, such as drag and lift and is dense if controlled by 

particle collision. A simple classification of dilute and dense flows is based on the volume 

fraction of the dispersed phase αp. For industrial processes, flows are considered dilute if αp < 

10%. Depending on the mass loading (or mass fraction) used for the dispersed phase, dilute 
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flows can be further classified into one-way coupling and two-way coupling. If the particle mass 

fraction is small, it is reasonable to neglect the influence of the dynamics of the dispersed phase 

on the carrier phase called one-way coupling. However, a dilute flow has to be considered two-

way coupling if the mass fraction is so large that the influence of the dispersed phase on the 

carrier phase cannot be neglected.  

Recent advances on computational fluid dynamics (CFD) software and computer simulations 

provide an efficient approach for studying dilute flows. Models describing particulate-laden flow 

by convention can be divided into two groups: Eulerian-Lagrangian methods (Maxey and Riley 

1983) and Eulerian-Eulerian methods (Manninen et al. 1996). Although all of the approaches 

treat the carrier phase as a continuum, the particle phase is treated differently in these two groups. 

In the Eulerian-Lagrangian approaches, the particles are marked as discrete objects in the fluid 

flow. The motion of each particle is computed through a force balance equation. The Eulerian-

Lagrangian methods seem quite efficient in dealing with flows of one-way coupling. However, 

the methods are shown to be computationally expensive when a large number of particles are 

involved and their impact on the carrier phase becomes significant due to a high mass loading. A 

more sophisticated way of dealing with two-way coupling in industrial applications is to employ 

a Eulerian-Eulerian method or a two-fluid model which treats both phases as continua. The 

interaction between the phases is considered in a momentum term which requires to be closed by 

models.  

An alternative approach of studying particulate-laden flow is direct numerical simulation 

(DNS). To tackle the interaction between the phases, the no-slip boundary condition has to be 

imposed on the surface of the moving particles. A popular approach in dealing with such 

problems is to enforce the no-slip boundary condition directly on the structure surface which 
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requires an adaptive mesh to be built on the particle interface and extended to the fluid domain 

(called body-conformal mesh). However, building a body-conformal mesh is cumbersome even 

for a simple geometry like particles. This can be overcome by using a non-body conformal 

Cartesian grid. Because the structure surface does not line up with the Cartesian grid, 

modification to the fluid equation is required in the vicinity of the boundary. Clarke et al. (1986) 

proposed a cut-cell approach which imposes the boundary conditions through a cut-cell 

procedure. Majumdar et al. (2001) introduced a ghost-cell method where the boundary 

conditions are imposed by fixing suitable values of the solution on the ghost cells outside the 

computational domain. The most efficient and flexible method in this category is called the 

immersed boundary (IB) method which considers impact of the immersed structure in the force 

density term of the fluid equation. The IB method is therefore employed in this dissertation for 

DNS of particulate-laden flow. Although solving a turbulent flow using DNS is still challenging 

nowadays due to the limited computational power, DNS data for flows with a moderate 

Reynolds number can be used as experimental data to validate multiphase flow models. 

 

1.2 Objectives of this work 

Dilute particulate-laden flow systems constitute one of the most widely used conveying 

systems in industrial applications. This dissertation considers dilute flows conveying in curved 

pipes. A Eulerian-Lagrangian particle tracking method and a Eulerian-Eulerian method in the 

commercial software ANSYS FLUENT are employed to model one-way coupling and two-way 

coupling dilute flows, respectively. Direct numerical simulations of dilute suspension flows in 2-

D Couette and Poiseuille flows are conducted using an immersed boundary method for model 

validation. 

The objectives of this work are: 
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(1) Provide computational guidelines for modeling pressure drop and particle deposition of 

one-way coupling dilute gas/solid flow in the turbulent regime in curved pipes and 

develop an empirical model for estimating particle grade efficiency including the impacts 

of particle Stokes number, bend angle and curvature ratio. 

The accuracy of using the Discrete Phase Model (DPM) (a Eulerian-Lagrangian 

method) in FLUENT in predicting particle deposition of one-way coupling dilute 

turbulent flows in curved pipes is often in question when compared with experiments. 

This may be due to a number of factors which include the selection of an appropriate 

multiphase model and turbulence closure or numerical aspects such as the quality of the 

treatment of the near wall behavior. The accuracy of different closure models and the 

performance of using different near-wall treatments are thus studied in order to evaluate 

their effects on the pressure drop and the deposition efficiency of a particulate flow. 

 

(2) Systematically study and discuss the feasibility of using a drift flux model based on the 

mixture theory (a Eulerian-Eulerian method) in estimating pressure drop and liquid film of 

two-way coupling dilute gas/liquid (mist) flows in the turbulent regime in curved pipes. 

Design a curved pipe can promote film formation without causing a large pressure drop.  

This work is motivated by the possibility of using computational fluid dynamics (CFD) 

as a design tool applied to curved pipes feeding a gas/liquid separator. The question is to 

identify the curvature of such pipes that can promote film formation upstream of the 

separator and thus pre-condition the flow without creating a large pressure drop. As 

regards to liquid film modeling, two-way coupling needs to be considered for a 

particulate-laden flow. The one-way coupling DPM is shown accurate in estimating 
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particle deposition in Chapter 2. However, this method is not efficient and only suitable to 

predict a very thin film with the thickness limited to 500 μm (ANSYS FLUENT 12.1, 

2009). The mixture theory with a new drift flux model in FLUENT is considered to be an 

efficient version of the Eulerian-Eulerian method in dealing with two-way coupling 

particulate-laden flows. However, there is a lack of literature on the application of the drift 

flux model in estimating pressure drop and liquid film formation in curved pipes.  

 

(3) Developed an algorithm to combine the immersed boundary methods with the explicit 

MacCormack solver for direct numerical simulation of particulate-laden flow. DNS data is 

used to validate the performance of the mixture model in FLUENT on estimating the 

particle behavior of suspension flows. 

Particle migrating cross streamline in a unidirectional flow, i.e. Couette flow and 

Poiseuille flow, is caused due to the lateral force induced by fluid inertia (Ho and Leal 

1973). This phenomenon is known to be responsible for non-uniform concentration 

distribution of particles in pipe flow. The mixture model in FLUENT has been broadly 

used in industrial applications, such as sedimentation, cyclone separators and, particle-

laden flows. To accurately predict the particle concentration distribution, the model must 

possess the capability of capturing the phenomenon of inertia-induced cross-stream 

migration of small suspended particles. Nevertheless, study on the performance of the 

mixture model on estimating particle migration cannot be found in literature.  
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1.3 Outlines of this dissertation 

The structure of this work is shown in the flow chart in Fig 1.1. Chapter 2 of this dissertation 

investigates the performance of various Reynolds-Averaged Navier-Stokes (RANS) models and 

near-wall treatments with the discrete phase model on modeling one-way coupling dilute 

particulate-laden flows particle deposition in curved pipes. The study focus on the flow patterns, 

secondary flow intensity, pressure drop, and particle deposition. An empirical model is 

developed to estimate the grade efficiency of particle depositing on the curved pipe wall 

according to the particle Stokes number, the bend angel and curvature ratio. In Chapter 3, two-

way coupling dilute mist flows in curved pipes are simulated using a Eulerian-Eulerian technique 

referred to as a drift flux model based on the mixture theory. Bend design related the pressure 

drop and liquid film formation is conducted. Chapter 4 of this work introduces an immersed 

boundary method based on the elastic forcing method to tackle fluid-structure interaction. An 

algorithm is developed to combine the MacCormack scheme with the immersed boundary 

method for DNS of particulate-laden flow simulation. In Chapter 5, a direct forcing method 

proposed by Uhlmann (2005) is used to improve the stability and the accuracy of the immersed 

boundary method. The results are used to validate the performance of the mixture model in 

FLUENT on estimating particle migration in a Couette flow and a Poiseuille flow.  
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Figure 1.1: Flow chart shows the structure of this dissertation. 
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CHAPTER 2  

SIMULATION OF DILUTE PARTICULATE-LADEN TURBULENT FLOWS IN 

CURVED PIPES USING A EULERIAN-LAGRANGIAN METHOD 

 

2.1 Introduction 

Curved pipes form essential components of piping systems of the oil and gas industry. The 

presence of bends is well-known to be associated with complex flow patterns as well as large 

pressure drops and to affect the performance of downstream equipment. This is especially 

important for multiphase flows as the significant pressure gradient and secondary flow around 

the bends would affect the phase distribution. A variety of phenomena associated with flows 

through curved pipes, such as the formation of secondary flow patterns, are thus studied in this 

work in order to evaluate their effects on the disperse phase. 

Much work has been done on studying pressure drop, flow patterns, and particle deposition in 

curved pipes. Thomson (1876) first observed the curvature effects of bends on flows. Eustice 

(1910) also observed the existence of secondary flows by injecting ink into water passing 

through a coiled pipe. Wilson et al. (1922) observed that the pressure drop is dependent on the 

flow Reynolds number and Dean (1928) studied theoretically curved pipe flows and identified 

the condition for the onset of secondary vortices. Ito (1959) found that secondary flows can 

cause a rapid rise in friction and lead to a much increased pressure drop. Tunstall and Harvey 

(1968) observed the presence of a main (or primary) flow recirculation at the inner wall for tight 

bends (δ < 3). The literature on flow through curved pipes is vast and Berger et al. (1983) 

provided a comprehensive review of this subject. The intensity of secondary flows in bends 

depends on the combination of the main flow Reynolds number (Re=Ud/ν) and the curvature 

ratio (δ=Rb /Rt). It can be characterized by a dimensionless number called the Dean number 
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which is defined here as De=Re/δ
1/2

. Ito (1987) demonstrated that the size of the secondary flow 

patterns matches the size of the duct radius.  

Based on theoretical calculations, Cheng and Wang (1975) derived a formula to estimate 

particle deposition in bends but it does not account for secondary flow patterns. The empirical 

model is accurate for Reynolds numbers in the range of 1000<Re<5000.  Pui et al. (1987) 

observed that complex flow patterns as well as turbulent fluctuations play a major role in particle 

deposition patterns. They proposed an empirical model for the particle deposition efficiency for 

turbulent flows in a 90° bend that is a function of only the Stokes number (St). Peters and Leith 

(2003) measured the deposition efficiency of high Re number flows in large industrial curved 

pipes with different bend angles. Brockman (1993) extended the empirical model of Pui et al. 

(1987) by accounting for the bend angle in addition to the Stokes number.  McFarland et al. 

(1997), using numerical results, developed an empirical model that accounts for the bend angle, 

the Stokes number, and the bend curvature ratio to estimate the deposition efficiency. In spite of 

the vast amount of work performed, there is still a need to identify conditions under which 

computer simulations can provide relatively accurate results. 

Computer simulations provide an efficient approach for studying flows through curved pipes 

under various conditions. Practical simulations can be performed by solving the filtered Navier-

Stokes equation using a Large-Eddy Simulation (LES) for an instantaneous solution or by 

solving the Reynolds Average Navier-Stokes (RANS) equation for an ensemble averaged 

solution (with appropriate closure models for the Reynolds stress or the sub-grid stress tensors). 

For example, Breuer et al. (2006) and Berrouk et al. (2008) used LES to study particle deposition 

and their computed results are in good agreement with the work of Pui et al. (1987) except for 

small Stokes number St<0.2. A RANS approach was selected for this work because of the large 
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number of simulations expected. In addition, a Reynolds stress model was selected to complete 

the formulation of the RANS equation due to the anticipated presence of strong streamline 

curvatures.  

In this Chapter, the performance of RANS models with different near wall treatments is 

evaluated on estimating pressure drop and deposition efficiency of a dilute turbulent suspension 

flow through curved pipes. The quality of the results is assessed in various ways.  A comparison 

of the flow patterns at different pipe cross sections is made between the standard k-ε and 

Reynolds stress models. The intensity distribution of secondary flows is investigated at different 

cross sections of the U-bend with a fixed curvature ratio. Numerical calculations from different 

near-wall treatments based on the standard k-ε model and RSM of the pressure drop are 

compared to the experimental work of Sudo et al. (1998 and 2000). The performance of the k-ε 

model and RSM, in combination with different near-wall treatments in estimating particle 

deposition, is also examined, along with the effect of turbulent fluctuations on particle deposition. 

Grade efficiency curves are compared to the experimental work of Pui et al. (1987), Brockmann 

(1993) and McFarland et al. (1997). In addition, the effects of particle residence time, bend 

curvature ratio, and flow Reynolds number on the grade efficiency are investigated.  

 

2.2 Modeling the Continuous Phase  

A dilute particle-laden flow with a low mass loading is considered in this Chapter. For this 

kind of flows, the impact of the particles on the carrier fluid is ignorable (one-way coupling) and 

no particle-particle interaction is involved. Particles move with the local gas velocity, but no 

momentum and mass of the particles are transferred to their surrounding gas flow. Under this 

assumption, the single-phase gas flow and the particle trajectories can be solved independently. 
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The continuous phase is solved using a Eulerian approach. The Reynolds-Averaged Navier-

Stokes (RANS) equation governs the transport of all mean-flow properties of turbulent flows 

with the range of all scales being modeled. This allows computing costs to be reduced provided 

that an accurate closure model is used. The commercial software ANSYS FLUENT 12.1 was 

used for the simulations presented below. The software provides several models for closing the 

RANS equation and these include models based on eddy-viscosity closure approaches such as 

the “standard” k-ε and k-ω models. Various formulations of the Reynolds Stress Model (RSM) 

are also available; these involve solving transport equations for approximating the Reynolds 

stress and an equation for the dissipation rate. To estimate the grade efficiency, Matida et al. 

(2004) used the Spalart-Allmaras model and the k-ω model in a mouth-throat geometry and 

found that the grade efficiency curves computed from those models are highly overestimated for 

the entire range of particle diameters. The discrepancy from the results of Pui et al. (1987) 

reaches the order of 15%-25%. Furthermore, the agreement to the experiment of the standard k-ε 

model is observed to be worse than that of the k-ω model. To avoid using the Boussinesq 

approximation (or eddy-viscosity models), McFarland et al. (1997) employed the RSM and 

calculated the turbulent fluctuations using one-step correction approach of Abuzeid et al. (1991). 

However, deviations from the results of Pui et al. (1987) were still as high as 17% at Stokes 

number St=0.2. Although much work has been done using different closure models, the effect of 

the near-wall treatments on pressure drop along curved pipes and particle deposition on the pipe 

wall is rarely discussed. An accurate representation of the flow in the near-wall region is needed 

to model particle deposition as turbulent fluctuations strongly affect particle trajectories at the 

near-wall region. ANSYS FLUENT 12.1 allows to use the standard wall function (SWF), the 

non-equilibrium wall function (NEWF) or the enhanced wall treatment (EWT) as the near-wall 
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treatments (ANSYS FLUENT 12.1, 2009). Zhang et al. (2012) used the RSM and the EWT for 

near-wall treatment. Results are compared to the work of Pui et al. (1987) and show that the 

EWT based on the RSM closure is promising in predicting particle deposition in a 90° bend. An 

error of only about 3% is observed at small Stokes number. 

 

2.2.1 Governing Equations 

Since the flow is one-way coupling, a transient solution to the continuous flow field is not 

necessary and the flow can be solved in a steady state. The governing equations for the 

continuous phase include the averaged continuity equation 

i

i

U
0

x





           

 (2.1) 

 and the RANS equation 

 i
j i ji j i

j i j
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x x x

  
     

   
        (2.2) 

where Sji is the mean rate-of-strain tensor, p is the mean pressure, U represents the average 

velocity (or mean velocity) profile, u' is the fluctuating velocity, ρ is the continuous phase 

density, ν denotes kinematic viscosity, and g is the gravity. A model for i j
u u  is needed to close 

Eq. (2.2).  

The standard k-ε model and the Reynolds stress model are used in this study and are not 

presented here for the sake of brevity. The standard k-ε model, based on an eddy-viscosity 

closure, is still commonly used and requires a transport equation for the kinetic energy k and for 

the dissipation rate ε (Launder and Sharma, 1972). The RSM is more complicated as it requires 
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the solution of six transport equations for individual Reynolds stresses plus one equation for the 

dissipation rate (Launder et al., 1975; Gibson and Launder, 1978). 

 

2.2.2 Near-wall Treatment 

In wall bounded flows, modeling the near-wall region is problematic as the closure models are 

valid only for the core flow. The quality of the approximated near-wall region significantly 

impacts the numerical solutions for the whole domain as it is a major source of vortices and 

turbulence.  In dealing with wall-bounded flows, a common approach for modeling the near-wall 

region flow is to use semi-empirical wall functions. The standard wall function (SWF) and the 

non-equilibrium wall function (NEWF) are used in this work. The SWF is a semi-empirical 

formula proposed by Launder and Spalding (1974) based on the assumption that the production 

of kinetic energy and its dissipation rate in the wall-adjacent cell are equal. Kim and Choudhury 

(1995) provided a correction to the SWF which resulted in a two-layer-based NEWF. An 

alternative method of dealing with near-wall region is to capture the flow in that region by 

solving the one-equation model of Wolfshtein (1969); such an approach is called the enhanced 

wall treatment (EWT). The EWT is especially recommended for flow exhibiting strong 

streamline curvatures, boundary separation, or reattachment. However, extremely fine meshes 

near the wall are needed which leads to more demanding computations.  

 

2.3 Modeling the Discrete Phase  

The one-way coupling Discrete Phase Model (DPM), or Lagrangian particle tracking method, 

proposed by Maxey and Riley (1983) is used to track particles moving in the continuous phase 

through the curved pipes. In this method, fictitious particles are released in the continuous phase 
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and treated as a discrete phase.  The concentration of particles is assumed to be dilute i.e. the 

particles do not interact and they have no effects on the continuous phase. The trajectory for a 

particle is obtained by integrating the force balance, i.e.  

p,i pi
sD i p,i

p

du g ( )
F (u u ) F

dt

 
   


        (2.3) 

and 

p,i

p,i

dx
u

dt
               (2.4) 

and where 

D
D

p

pC Re1
F

24



          (2.5) 

In the above equations, u, up are the instantaneous gas and particle velocities; xp,i is the position 

vector of particle i; dp is the particle diameter; ρp is the particle density; τp is the particle 

relaxation time obtained from τp=ρpdp
2
/18µ; Rep is the relative Reynolds number from 

Rep=ρdp|u
p,i

-u
i
|/ µ; CD is the particle drag coefficient (particles are assumed to be spherical and 

the spherical drag law is used to compute CD (Morsi and Alexander, 1972)); Fs is an additional 

acceleration term that could be important under certain circumstance (e.g., severe pressure 

gradient, or great density difference). 

Equation (2.3) and (2.4) are solved using a Runge-Kutta scheme. The maximum number of 

time step is set to 100,000 in all cases for this work, which is sufficient to ensure that all the 

particles either ended on the wall or at the pipe exit (there were no particles not accounted for in 

the simulations).  The discretized time step ∆t is obtained from ∆t=∆t
*
/ λ where λ is the step 
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length factor equal to the maximum number of time step divided by number of cross-sections 

along the main-flow direction; ∆t
*
 is the transit time required for a particle to travel through the 

current mesh cell. This value is estimated according to the current particle velocity and the mesh 

size in the main flow direction following guidelines in ANSYS FLUENT 12.1 Documentation 

(2009). 

 

2.3.1 Stochastic Turbulent Model 

The effects of turbulent fluctuations on the particle deposition are modeled by using a discrete 

random walk model (DRWM), also called the stochastic turbulent model (Jang and Acharya, 

1988). The instantaneous gas velocity u
i
 in Eq. (2.3) is a combination of the mean gas velocity u

i 

and fluctuating components u
i

.́ If turbulent fluctuations are not considered, trajectories are 

computed by substituting the instant gas velocity with the mean gas velocity obtained from the 

continuous phase calculation. To include the turbulent influence, the fluctuating components are 

approximated using an ad-hoc random distribution given by: 

1 2 3
u u v v w wu ; v ; w                (2.6) 

where ζ1, ζ2 and ζ3 are normally distributed random numbers with zero mean and a unit standard 

deviation. The r.m.s. of fluctuation in Eq. (2.6) is not obtained from the transportation equations 

for the Reynolds stresses but is assumed isotropic and equal to 2k / 3 so that the above 

approximation can be used. 
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The fluctuating components are discrete piecewise parameters that are function of time. Their 

random value is kept constant over an interval of time τe estimated by the lifetime of the eddy 

defined as 

e
k

0.3- log(r)


            (2.7) 

where r is a uniform random number between 0 and 1. When this time is reached, a new value of 

the instantaneous velocity is obtained by applying a new value of ζ. The performance of the 

stochastic model on particle deposition is studied later in this work. 

 

2.3.2 Empirical Models for Grade Efficiency 

Grade efficiency curves can be obtained from the results of particle tracking simulations in 

order to evaluate the performance of a device in separating particles. The grade efficiency is 

defined as 

c cM N
(St)

M N
  

                                         
(2.8) 

where Mc is the mass of particles separated from the total particle mass M released. Since 

monodisperse particles having the same density are tracked, Mc and M are replaced respectively 

by Nc which is the number of particles trapped in the bend plus the straight pipe after the bend 

and by the total number of particles tracked N. The grade efficiency, or deposition efficiency, is 

presented in this paper as a function of the Stokes number St.  The Stokes number provides a 

measure of response time of the particles to the flow and is defined as the ratio of the particle 

relaxation time p and the fluid characteristic time scale the system response time
f
 . It is defined 

as  
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                      (2.9) 

where C is the Cunningham correction factor (Cunningham,1910) used to consider 

noncontinuum effects when computing the drag on small particles, U0 is the mean flow velocity 

[m/s] and ρ
P
 denotes the particle density. For given values of U0, d, ρ

p
 and μ, the particle size is 

then proportional to St
1/2

.  

The computed grade efficiency curves are compared to empirical models. Pui et al. (1987) 

conducted experiments for particulate flows passing through a 90° bend with an 8.51mm 

diameter. Based on the experiments, they provided an empirical model used to estimate the grade 

efficiency in 90-degree bends, given as 

0.963St ) 100%(1 10              (2.10) 

Brockmann (1993) extended Pui et al.’s work to include the effect of bend angles. The 

expression of the model is  

 1.412Ste 100%1               (2.11) 

where θ is bend angle in radians. Both empirical models are stated with a 3% uncertainty. Later, 

McFarland et al. (1997) developed a model based on their numerical results to account for the 

effect of the St number, the bend angle and the bend curvature ratio. The model is given as   

2 2

4.61 a St

1 b St c St d St
100% exp

  
 
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         (2.12) 

where  a = 0.9526 0.05686δ,    
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In this work, particles mimicking droplets are released at an upstream position of 3d prior to 

the entrance of the bend (z =́0). At this location, the flow can be treated as fully developed and 

the bend effect on particles can be neglected. 25,000 monodisperse spherical droplets are 

released at the mean flow velocity U0 with the density 895 kg/m
3
. The density used here is 

consistent with that used in Pui et al.’s experiment. The particles are released at 3D upstream 

from the bend inlet and injected normal to the cross section in a square region (the sides of the 

square is 0.5d).  This location keeps the particle away from the wall. Meanwhile, it avoids the 

influence of the bend and allows the particle to well mix with the continuous phase before the 

flow enters a bend. 

 

2.4 Numerical Approaches 

The governing equations for the continuous phase are solved assuming an adiabatic, steady 

flow in FLUENT using the pressure-based segregated algorithm, Semi-Implicit Method for 

Pressure-Linked Equations (SIMPLE) put forward by Patankar and Spalding (1972). The 

transport equations for k, ε and the Reynolds stress equations (for the RSM) are spatially 

discretized using a second-order upwind scheme. This is combined with a correction equation 

derived from the continuity equation and the momentum equation for pressure is discretized 

using the PRESTO! scheme (PRESsure STaggering Option) (ANSYS FLUENT 12.1, 2009) 

which is well-suited for flows with strong streamline curvatures. The stability of the numerical 

computations is improved by reducing the under-relaxation factor to 0.2 for the pressure and 0.5 

for the momentum. The residual criterion for convergence (the “monitor”) is set to 10
-5

 for all 

variables. Two monitors for the difference of the mass flow rate between the inlet and the outlet 

of a pipe and the area-average weighted pressure at the bend exit are used to ensure a converged 
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solution. Finally, to solve Eq. (2.3) for the discrete phase, a 5
th

 order Runge-Kutta scheme is 

used (Cash and Karp, 1990). 

 

2.5 Test Cases 

The parameters used in three test studies are summarized in Table 2.1. The geometric 

configuration and the Reynolds number are selected based on the experimental setups available 

for comparison. A tight bend with a curvature ratio δ=1.5 and a larger bend with δ=5.6 are used 

to study the curvature effect on the flow patterns. In addition, the effect of the flow Re number 

on the flow patterns is investigated by changing the flow velocities. The local pressure is 

estimated numerically from different near-wall treatments based on the standard k-ε model and 

RSM in a 90° bend and a 180° bend and compared to the experimental work of Sudo et al. (1998 

& 2000). The performance of the near-wall treatments in estimating particle deposition is 

evaluated by comparing the grade efficiency to the empirical work from the literature. Varying 

the bend curvature ratio and flow residence time is achieved by changing the bend radius and 

bend angles. Finally, the effect of the pipe dimension on the particle deposition is studied by 

increasing the pipe diameter from d=8.51mm to d=100mm while maintaining the Re number, the 

curvature ratio and the bend angle.  

 

Table 2.1: Summary of the parameters used in the test case studies 

 Qualitative Study 

on Flow Patterns 

Study on Pressure 

Drop 

Study on Particle 

Deposition 

Diameter, d [mm] 8.51 104 8.51 

Curvature Ratio, δ 1.5,5.6 4.0 1.5~20 

Bend Angle, θ [
o
]                  180 90,180 60~180 

Re Number Range 10,000~ 50,000 60,000 10,000~100,000 

Near-Wall Treatments EWT SWF,NEWF,EWT SWF,NEWF,EWT 

Closure Models  k-ε model, RSM k-ε model, RSM k-ε model, RSM 
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Table 2.2: Boundary conditions used in all simulations 

Inlet 

velocity inlet [m/s] 
Calculated from the 

known Re and d 

turbulent intensity [%] 0.05 

turbulent viscosity ratio  1.0 

Outlet pressure outlet [Pa] Pstatic=0 

Wall no-slip boundary [m/s] uwall=0 

   

In Fig. 2.1, the geometry of a curved pipe is shown with an unspecified bend angle θ. The 

outer and inner bends of the pipes are labeled as “O” and “I”, respectively. The boundary 

conditions in all simulations are specified to be uniform velocity at the pipe entrance. To ensure 

that the turbulent flow is fully developed before it enters the bend, a long entrance length l is 

roughly estimated using Eq. (2.13) (Spurk, 1997).  

l=4.4Re
1/6

                  (2.13) 
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Figure 2.1: Schematic display of 3D geometric parameters of a bend with a bend angle θ. 

 

At the pipe wall, a no-slip boundary condition is applied. The wall is “sticky” so that particles 

adhere to it on contact, which represent the conditions used in Pui et al.’s experiments (1987). 

Numerically, the trajectory calculations are terminated when particles enter the cell adjacent to 

the boundary. The boundary condition for the outflow is a pressure outlet with the static pressure 

equal to zero. The applied boundary conditions are summarized in Table 2.2. No heat transfer is 

considered in the process. Since the direction of the inlet flow is normal to the inlet cross section 

and its velocity is uniform, the turbulent intensity and turbulent viscosity ratio at the inlet are set 

to be small as recommended in ANSYS FLUENT 12.1 Documentation (2009).  
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Figure 2.2: O-type structured mesh used for a cross section; this mesh allow easy refinement 

close to the wall and prevents a singularity at the center of the pipe. 

 

The mesh construction for each cross section along the curved pipe is shown in Fig. 2.2. The 

density of the mesh is a function of the near-wall treatment used. The dimensionless distance y
+ 

= yuτ / ν is used to describe the distance from the wall, where y is the real distance of a location 

in the calculation domain from the wall; uτ denotes the friction velocity and ν is the kinematic 

viscosity of air. For SWF and NEWF, simulations using the distance of the first cell centroid 

from a wall has to be laid above the buffer layer at y
+ 

between 30 and 300 so that those semi-

empirical equations are relatively accurate. For EWT, simulations using the centroid of wall-
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adjacent cells is made at y
+ 

≈ 1 and at least 3 grid nodes are put inside the viscous sublayer (y
+
<5) 

to ensure the accuracy of the numerical solution. A higher Re could cause a larger friction 

velocity and hence increase the y
+
 value at the wall-adjacent cells. Therefore, a refinement to the 

wall-adjacent mesh size is needed to meet the y
+ 

≈ 1 requirement according to the flow Re used. 

Along the mainflow direction of the pipe, the number of cross sections is changed according to 

the length of the pipes. To study the simulation convergence of the near-wall treatments in 

estimating particle deposition, different mesh density for pipe cross-sections and for the main-

flow direction is used for SWF and EWT based on RSM. To reduce the computational effort, 

solution from the entrance length is used as the inlet boundary condition and only the segment 

after the entrance length (shown in Fig. 2.1) is refined for investigation. The mesh used for the 

grid independence study is summarized in Table 2.3. The mesh size is doubled at the cross-

sections as well as the main-flow direction. For example, SWF-Mesh1 uses 896 grid nodes for 

one pipe cross-section and 156 in the main-flow direction. For SWF-Mesh2, it possesses 1716 

and 325 for one pipe cross-section and the main-flow direction, respectively. Meanwhile, the 

refinement has to maintain a mesh that meets the y
+
 requirement of the utilization of SWF and 

EWT. 

Table 2.3: Mesh grid nodes used for the solution independent study 

 Number of nodes for 

one cross-section 

Number of cross-sections along 

the main-flow direction 
Total mesh grid nodes 

SWF-Mesh1 896 156           139,776 

SWF-Mesh2 1716 325           557,700 

SWF-Mesh3 3441 650           2,236,650 

EWT-Mesh1 1044 156           162,864 

EWT-Mesh2 2093 325           678,132 

EWT-Mesh3 4096 650           2,662,400 

 



25 
  

 

 

Figure 2.3: Independent study of particle deposition using RSM with (a) SWF and (b) EWT. 

(a) 

(b) 
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Before performing computations on pressure drop, flow patterns and particle deposition, a 

mesh independence study was performed.  The impact of the mesh on the particle deposition, 

which appears to most sensitive to the mesh, are reported below.  The meshes shown in Table 2.3 

are used to construct a 90° bend with δ=5.6 and d=8.51mm. The RSM with SWF and EWT is 

employed to compute the flow field. The resulting grade efficiency curves are compared to the 

empirical model of Pui et al. (1987) in Fig. 2.3. It can be seen that the SWF-Mesh2 and EWT-

Mesh2 are appropriate i.e the solution does not change with a refined mesh. A comparison of the 

empirical model of Pui et al (1987) with the results obtained from SWF-Mesh2 and EWT-Mesh2 

show a 22% and 3% discrepancies respectively at St=0.001. In the following, Mesh2 is used in 

the computations. 

 

2.6 Results and Discussions  

The complexity of the flow patterns observed in curved pipes and secondary flow intensity 

are first discussed below, followed by a comparison between the computation and the 

measurement of pressure drops and grade efficiency.  

 

2.6.1 Flow Patterns and Secondary Flow Intensity 

The flow patterns observed from the numerical simulations are presented in Fig 2.4-2.6. The 

streamlines are used to represent the flow pattern only. No information of flow intensity is 

indicated by the streamline density. The streamlines at the middle plane of a tight bend with 

δ=1.5 are shown in Fig. 2.4, in which a strong recirculation of the primary flow can be observed 

on the inner bend as the fluid is passing through the tight bend. Secondary flow patterns can be 

seen at various cross sections of the bend (at 0°, 45°, 90°, 135°, 180° of deflection and after the 

recirculation, respectively). No secondary flows are observed at the 0° deflection cross-section. 
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A pair of counter-rotating vortices is found at the 45° deflection and becomes distorted at 90°. 

The pair then evolves or split into two pairs of vortex cells at the 135° deflection and becomes 

more distorted at the 180° deflection. The additional pair of vortices at the inner bend is caused 

by the recirculation which generates a low velocity zone at the inner bend. The recirculation 

leads to a high pressure drop at the bend. Moreover, the recirculation affects the downstream 

flow patterns and partially formed Dean vortices are observed.   

 

 

 

Figure 2.4: The streamlines show the development of flow patterns in a tight bend (δ=1.5); the 

secondary flows are also shown at different cross-sections. 
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No primary recirculation (along the main flow direction) is observed in a bend with δ=5.6 

from the simulations performed with the standard k-ε model and RSM. Numerical results of flow 

patterns as well as secondary flow intensity are presented in Fig. 2.5. Flow patterns situated at a 

45°, 90° and 135° deflection angles estimated by the standard k-ε model combined with EWT are 

shown in Fig 2.5a, 2.5b and 2.5c and compared with those simulated by the RSM with the same 

near-wall treatment at the corresponding locations (shown in Fig 2.5d, 2.5e and 2.5f). The flow is 

turbulent with a Re=10,000. The streamlines at all cross sections show pronounced secondary 

flows with faster flowing central part of the flow. These results are consistent with the 

observations of Berger et al. (1983), who found that the pressure gradient caused by the 

centrifugal force around bends drives the flow near the wall to move inward, while the faster-

moving fluid in the core is swept outward.  

The graphs at the 45° deflection show that very different patterns are observed for RSM and 

the standard k-ε model. The RSM estimates two pairs of counter-rotating vortices induced by the 

Coriolis and centrifugal forces, but the standard k-ε model only estimates one pair. At the 90° 

deflection, the standard k-ε model estimates an extra pair of vortices at the inner bend, which is 

very weak. In addition, vortices simulated by the RSM are more distorted than those estimated 

by the other model. At the 135° deflection, the vortices by RSM are located very close to the 

wall and highly distorted, which is not the case for the secondary flow estimated by the standard 

k-ε model. Experimental measurements performed in a 180˚ bend show that curvature effects are 

responsible for producing anisotropic turbulence in the core of the turbulent flow (Chang et al., 

1983). Ito (1987) observed that anisotropic turbulence cannot be reproduced by calculations 

performed with a k-ε model using a standard Boussinesq model for closing the Reynolds stress. 
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The selection of the closure model is probably the reason for the differences in the flow patterns 

estimated by the two closure models.  

 

 

Figure 2.5: The streamlines associated with secondary flow patterns are studied at a 45°, 90° and 

135° deflection and shown in (a), (b) and (c) by the stand k-ε model and in (d), (e) and (f) by the 

RSM. 

 

In Fig. 2.6, flows with a Reynolds number equal to 10,000, 30,000 and 50,000 are used and 

the flow patterns at a 135° deflection of the same bend are compared. Instead of two cells of 

vortices for flow with Re=10,000, four and six cells are observed at the higher Reynolds number.  
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Figure 2.6: Plots of the streamlines associated with the in–plane flow patterns at 135° in a U-

bend with δ=5.6 to demonstrate the effect of an increasing flow Re number. 

 

2.6.2 Pressure Drop along Curved Pipes 

Calculations  of  the  pressure coefficient (Cp) along the 90°  bend and the 180° bend are 

compared to the experiments of Sudo et al. (1998 and 2000) in which the pressure coefficient is 

computed with 

2
0ref

1
Cp (P P ) / ( U )

2
            (2.14) 

where P denotes the local static pressure, Pref represents a reference pressure and ρ is air density 

(1.225 kg/m
3
). The flow has a mean velocity of 8.7 m/s and is passing through a bend with a 

radius ratio of δ=4. The flow is turbulent with Re=60,000. The local static pressure is estimated 

by using the standard k-ε model and RSM with different near-wall treatments.  

Comparison between the numerical results and the experimental pressure along the outer bend, 

inner bend, and at the center are shown in Fig 2.7 and 2.8. The numerical static pressure is 

extracted from the locations slightly inside the outer bend wall (1 μm away from the wall), the 

inner bend wall and right at the center, respectively. The variables z' and z are the pipe 

longitudinal coordinates used to locate a cross section along the pipe direction and d is the pipe 
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diameter. The cross sections at the beginning and the end of the bend are located at z'=0 and z=0, 

respectively. The reference pressure is the pressure located at the outer bend at the cross section 

z' =-17.6d from the beginning of the bend. Comparison of the local static pressure estimated by 

the standard k-ε model and RSM combined with EWT in the 90-degree bend and the 180-degree 

bend is provided in Fig. 2.7. In Fig. 2.7a, the local pressure through the bend estimated from the 

standard k-ε model and the RSM is plotted. The lines obtained from the standard k-ε model and 

the RSM are hardly distinguishable. For the 90° bend, the maximum discrepancy between the 

experimental Cp and the numerical Cp estimated by both models is located at the 45° deflection 

of the inner bend wall, the numerical error is 7%. In the 180° bend, the performance of both 

models in estimating the local pressure worsens. On the outer bend wall, the maximum error 

occurs at 60° deflection with discrepancies of 21% and 26% for the standard k-ε model and the 

RSM respectively. On the inner bend wall, the maximum discrepancy is observed at the 75° 

deflection for both models with the same 26% error. Simulations results from both models with 

EWT match the empirical model curve well in the 90-degree bend, but underestimate the local 

pressure at the inner wall and the outer wall of the bend portion in the 180-degree bend, as 

shown in Fig. 2.7b. This seems to indicate that both models are performing well in short bends 

(small residence time), but for flows with a longer residence time the local pressure is not 

estimated accurately. 

In Fig. 2.8a, all three near-wall treatments are observed to be capable of modeling the local 

pressure along the outer wall and the side wall of the 90° bend. At the inner bend, however, 

results computed from the SWF and NEWF overestimate the local pressure at the inner wall of 

the straight pipe after the bend. A large discrepancy of 34.5% is observed at the inner pipe wall 

located at the downstream 0.5d.  The plot shows that results from EWT have a better agreement 
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at those locations. For the 180° bend in Fig. 2.8b, SWF and NEWF seem to improve the results 

along the inner wall and the outer wall of the U-bend portion. The maximum errors at the 60° 

deflection of the outer bend and at the 75° deflection of the inner bend are reduced to 18% and 

5%, respectively. Nevertheless, all methods estimate an accurate pressure drop when compared 

to the experiment measurement. Hence, they all appear suitable for bend design in estimating 

pressure drop.  
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Figure 2.7: A comparison between the computed (markers) and estimated (lines) pressure drop 

values by using different closure models combined with EWT. 

(a) 

(b) 
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Figure 2.8: A comparison between the computed (markers) and estimated (lines) pressure 

coefficient (Cp) from near-wall treatments is made at the outer bend, inner bend, and the sides. 

(a) 

(b) 
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2.6.3 Modeling Particle Deposition 

Grade efficiency curves for the 90° and the 180° bends computed from the RSM, combined 

with different wall functions and the stochastic turbulent model, are plotted against St and shown 

in Fig. 2.9 along with the results computed from the empirical models. The results from SWF 

and NEWF are in relatively good agreement for large St. However, when the value of St 

becomes small, a large discrepancy from the experiments can be observed. Fig. 2.9a shows that 

the maximal discrepancy (of 22%) occurs for a very small value of St (St=0.001) for both SWF 

and NEWF in the 90° bend. In the 180° bend, Fig. 2.9b shows a 40% discrepancy for SWF and 

43% for NEWF. Numerical error of SWF and NEWF increases when a flow is under a high 

streamline curvature for a longer travelling time of the particles in bends. Small particles are very 

sensitive to turbulent fluctuation because of their fast response to the system. The failure of the 

SWF and NEWF to adequately capture the turbulent fluctuations near the wall may explain this 

deviation. On the other hand, results computed using an EWT agree very well with the 

experimental data and the maximum deviation of the comparison is only 3% at St=0.001. 

Comparison in Fig. 2.9b of the grade efficiency between numerical simulation and the models in 

the U-bend shows a higher deviation (of 10%) than that in the 90° bend at St=0.001. But a great 

improvement by using EWT can be observed in the Figures. The EWT appears to capture more 

accurately the actual velocity profile in the boundary layer especially if separation and strong 

streamline curvatures occur. The SWF and the NEWF were formulated from empirical data 

obtained from a straight bend and are probably not appropriate for particle deposition in flows 

with strong streamline curvatures. In addition, since SWF and NEWF use thicker wall-adjacent 

cells, the odds increase for small particles to hit the wall-adjacent cells and be counted as  
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Figure 2.9: A comparison between computed and experimental data for the grade efficiency 

shows a discrepancy occurs at small value of St for SWF and NEWF and great improvement by 

using EWT in: (a) the 90-degree bend, (b) the 180-degree bend. 

(b) 

(a) 
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“deposited”. Therefore, a more accurate estimation of small particle deposition is expected when 

compared to SWF and NEWF. All the near-wall treatments perform well on estimating the grade 

efficiency for large particles. With the particles become larger, the influence of the continuous 

flow becomes minor due to their large inertia.  

To see whether using the stochastic model is necessary, particle tracking is also run without 

considering the effect of turbulent fluctuation by turning off the stochastic model. Comparison in 

Fig. 2.9a shows a very poor agreement in the 90° bend without using the stochastic model. Small 

particles are especially sensitive to the fluctuating velocity because of their low inertia, which 

account for the great discrepancy of the model when not considering particle dispersion.  

In Fig. 2.10, a comparison is presented between the grade efficiency curves obtained from the 

numerical results and the models. The standard k-ε model and RSM are used in the computations 

in combination with EWT and the stochastic model. In Fig. 2.10a, both grade efficiency curves 

obtained from the models agree with the experiment well in the 90° bend. It is difficult to 

identify which model is more accurate in estimating the grade efficiency. However, the k-ε 

model estimates a maximum deviation of 10% at St=0.05 while the RSM obtains 3% at St=0.001. 

Moreover, the error averaged over the range of St is 4.5% for the RSM, which is slightly lower 

than that for the k-ε model. Apparently, one can see from the Fig. 10.b that the performance of 

the standard k-ε model worsens in estimating the particle deposition in the 180° bend. In this 

case, the standard k-ε model and the RSM estimate the maximum discrepancy of 13% at St=0.1 

and 8% at St=0.001, respectively. The error averaged over the range of St is 9.5% and 6% for the 

standard k-ε model and the RSM, respectively. 
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Figure 2.10: Comparison of the models (makers) and the empirical models (lines) shows that the 

k-ε model over-estimates particle deposition when particles experience a longer residence time in 

(b) the 180° bend (τ=4.4ms) than in (a) the 90° bend (τ=2.2ms) 

(a) 

(b) 
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The results from the RSM closure appear promising and more accurate than models with the 

Boussinesq eddy-viscosity approximation in simulating flow encountering strong streamline 

curvatures. This is attributed to the ability to capture the anisotropy of the turbulence fluctuating 

motion and thus lead to improved results of particle deposition. The results discussed below are 

thus all from simulations performed using an RSM with EWT due to the accuracy of this 

combination.  

 

Figure 2.11: Comparison of grade efficiency shows that the particle cutsize is 30% smaller in the 

180° bend due to the longer particle residence time. 

 

In Fig. 2.11 computed grade efficiency curves are shown for curved pipes for a changing 

particle residence time. The flow Re number is 10,000 in the 90° bend and the 180° bend with 
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the curvature ratio equal to 5.6. The time needed for the flow to the 90° bend is 2.2 ms and it is 

twice for the 180° bend. The grade efficiency for the U-bend is obviously larger than that for the 

90° bend for the whole range of St, which indicates that particles experiencing a longer time 

inside a bend have larger chance to deposit on a pipe wall and thus higher grade efficiency can 

be obtained. The cutsize of a separation equipment is the size associated with a 50% probability 

that it will leave the equipment (the bend) with the fluid. The particle cutsize for the 180°-bend is 

3/5 of that for the 90° bend. 

The grade efficiency curves for 90-degree bends with different curvature ratios are calculated 

and plotted against the Stokes number in Fig. 2.12. The bend curvature ratio is increased from 

1.5 to 20. The pipe diameter and the flow Reynolds number are maintained the same as 8.51mm 

and 30,000, respectively. Results show that the grade efficiency increases with an increase of the 

bend curvature ratio. The empirical model of Pui et al. (1987) appears to be appropriate to a bend 

with certain curvature ratio and should account for, or be modified to include, the bend curvature 

ratio. For a 90-degree bend, an increase of the bend curvature ratio actually increases the particle 

residence time in a bend, particles thus experience a centrifugal force for a longer duration. 

The trend in Fig. 2.12 is likely due to the combined effects of the curvature ratio and the 

particle residence time. In order to investigate the effect of the bend curvature ratio, the particle 

residence time was fixed by using the same bend length in the simulations. The bend angles are 

thus different due to different curvature ratios used. Bends with curvature ratios of 3, 5 and 9 

corresponding to different bend angles of 180°, 108° and 60° are studied to match the total travel 

time. A comparison of the computed grade efficiency with Brockmann’s model (Eq. (2.11)) is 

shown in Fig. 2.13. The plot shows that the increasing curvature ratio reduces the grade 

efficiency of a curved pipe given the same total travel time. The centrifugal force is inversely 
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proportional to the bend radius, thus the increasing grade efficiency is due to a larger centrifugal 

force. This trend is consistent with the observation of the experiment done by McFarland et al. 

(1997). In Fig. 2.13, Brockmann’s model appears to provide accurate results except for cases 

where the bend with curvature ratio equal to 9, which probably indicates that the model should 

also account for the effect of a bend curvature ratio.  

 

Figure 2.12: Comparison of bends with a varying curvature ratio for a fixed flow Reynolds 

number in a 90° bend shows the grade efficiency is increased with the increase of the curvature 

ratio. 
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Figure 2.13: Comparison of results for curved pipes with different curvature ratio and fixed 

particle residence time shows the grade efficiency is increase with the decrease of bend curvature 

ratio. 

 

Fig. 2.14a shows the comparison between the different numerical results and the empirical 

models from literature. Since the effect of δ is not included in the models of Pui et al. and 

Brockman, the models are not accurate in estimating η in a bend with a changing δ. Although 

MarFarland et al.’s model includes the effect of δ, a comparison with the grade efficiency curves  
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Figure 2.14: (a) Comparison shows that the models are not appropriate for varying δ in a 90° 

bend  (b) Comparison shows the new model match the results relatively well for δ between 3 and 

8 but has reduced accuracy at extreme curvature ratios. 

(a) 

(b) 
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estimated from the models of Pui et al. and Brockmann are very different and it does not match 

the numerical results for the cases studied. Based on the numerical results, a new model is 

proposed to account for the effect of the St number, the bend angle, and the bend curvature ratio 

on the grade efficiency. To fit the numerical results, the model is given as  

0.5
1 exp 100%

1/20.528 St   
        

                             (2.15) 

This model is derived by curve fitting, without accounting for the numerous physical processes 

encountered over the range of parameters considered. The comparison is shown in Fig. 2.14b. 

The curves show that the new model fits the numerical results well for the cases when the 

curvature ratio is from 3 to 8. For δ=3, the curve obtains a maximum discrepancy of 5% at 

St=0.5. The maximum discrepancies for δ=5.6 and δ=8 are 7% and 7.5% at small Stokes number 

St=0.1 and St=0.05, respectively. According to the previous study in this work, some errors are 

caused by the overestimation of the grade efficiency of the numerical model at a small St number. 

This indicates that the maximum deviation at small St is lower than the plot shows. Therefore, 

the new model is actually very accurate for the cases discussed above. Extraordinary cases like 

δ=1.5 and δ=20 are not fitted by this model. For δ=1.5, a recirculation flow is generated in the 

tight bend. For δ=20, an extremely long bend may need to consider other factors for particle 

deposition such as entrainment. Therefore, those cases should be excluded when using this 

model. 

Fig. 2.15 shows the grade efficiency of the 90-degree bend under different flow Re numbers. 

The pipe diameter and the bend curvature ratio are fixed at 8.51mm and 5.6, respectively. The Re 

number is increased from 10,000 to 100,000 and the results are plotted against St. The 

comparison shows that the grade efficiency has a deviation of 9% when the Re number increases 

by a factor of 10, which indicates that the effect of flow Re number is insignificant. This 
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conclusion is consistent with the statement of Pui et al. (1987). The effect of changing Re 

number is actually accounted by using the St number. Since the particle size dp is inversely 

proportional to the mean axial flow velocity U0, higher Re number will give a smaller particle 

cutsize. 

 

 

Figure 2.15: Comparison of grade efficiency shows a deviation of 9% when the Re number 

increases by a factor of 10. 
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Since one is often interested in studying particle deposition in bends of various dimensions, 

the effect of changing the diameter is shown in Fig. 2.16. The Reynolds number is 30,000 for all 

the simulated cases and the bend curvature ratio is held at 5.6 in a 90° bend. The plot shows that 

the particle cutsize is significantly affected by the pipe dimension. The results indicate that the 

grade efficiency of the particles is decreased with the increase of the pipe size. 

 

 

Figure 2.16: Comparison results show the particle cutsize is increased as the increase of the pipe 

dimension. 
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Particle deposition patterns in the 90° bend with d=8.51mm and δ=5.6 are plotted with an 

increasing value of the St number in Fig. 2.17. The flow Reynolds number for this case is 10,000. 

All results are computed using EWT with a mesh that satisfies the required conditions. When 

values of the St number are very small and equal to 0.001, approximately 3% of particles were 

captured by the pipe wall. Deposition of small-size droplet due to turbulent fluctuations can 

account for this small amount of deposition. From the definition of Stokes number (see Eq. (2.9)), 

it can be seen that low values of the St number indicate a fast particle response time, and thus 

correspond to particles that will follow closely the continuous flow. In this case, most particles 

pass through the bend and only a small number of particles are trapped on the pipe wall because 

of the flow fluctuating velocity. When the particle size increases (higher St number), particles 

with high inertia tend to cross streamlines and deposit on the outer part of the bends because of 

the centrifugal force (see Fig. 2.17e-g). Similar deposition patterns can be observed in a 180-

degree bend. 

 To decrease the cutsize and increase the pressure drop, either decrease the curvature ratio, 

increase the residence time, or decrease the duct diameter, holding the other two parameters 

constant. If pressure drop is not a concern, high particle deposition efficiency can be expected for 

situations where a small pipe diameter d, a small bend curvature ratio τ, as well as a long 

residence time τ are adopted. To accurately estimate the particle deposition, a turbulence closure 

appropriate for flows with streamline curvatures should be used. In this work, the RSM is 

employed with the linear pressure-strain correlation.  The selection of an EWT as the near-wall 

treatment is crucial in correctly estimating particle deposition along with constructing a high-

quality mesh. 
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Figure 2.17: Estimation of deposition patterns of particles changes with Stokes number. 

 

2.7 Summary 

A dilute turbulent flow passing through circular curved pipes and particle deposition are 

studied in this work using computational fluid dynamic simulations. The simulations are 
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performed by solving the RANS equation and a force balance equation on the particles. Since the 

accuracy of such numerical simulations is often in question when compared with experiments, 

numerous case studies were performed to identify the potential source of the discrepancies.  

Empirical models were used to validate the computational results. 

Results of these computations show that turbulent bend flows possess, as expected, 

complicated patterns influenced by the flow Re number and the bend configuration.  Computed 

results for the pressure drop through a bend are obtained from different near-wall treatments 

based on the k-ε model and the RSM; all are close to experimental measurements provided that 

the mesh meets the y
+
 requirement for the wall treatment selected except the local pressure at the 

outer and inner pipe of the U-bend.  

The grade efficiency for particle deposition in curved pipes is influenced by the bend diameter 

d, the curvature ratio δ and the particle residence time inside the bend τ for a fixed flow rate. To 

decrease the cutsize and increase the pressure drop, either decrease the curvature ratio, increase 

the residence time, or decrease the duct diameter, holding the other two parameters constant. The 

selection of the turbulence model and the wall treatment were found to be crucial in these studies. 

Using RSM with EWT provides a much improved accuracy over the standard k-ε model in 

estimating particle deposition patterns. The inaccuracy of SWF and NEWF for particle 

deposition, when compared to EWT, indicates that these near-wall treatments are not appropriate 

for modeling particle deposition on curved surfaces; this is likely due to the importance of 

modeling the near wall fluctuations. In addition, a new model is developed to estimate the grade 

efficiency of particulate flow in bends which include the effect of the curvature ratio. The given 

model is an improvement in the empirical models of Pui et al. (1987) and Brockmann (1993). 
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The study of this work also provides the range of application of the empirical models discussed. 

Broad guidelines for designing a bend with a high deposition efficiency are finally provided.  
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CHAPTER 3  

SIMULATION OF DILUTE TURBULENT MIST FLOW IN CURVED PIPES USING AN 

EULERIAN-EULERIAN METHOD 

 

3.1 Introduction 

In parts of the study presented in in Chapter 2, it is found that bends are associated with a 

large pressure drop for single-phase flows. Particle trajectories obtained from the Lagrangian 

particle tracking method also indicate that phase separation may occur when particulate-laden 

flows pass through curved pipes. For gas/liquid mist flows with a large mass loading, Hoang and 

Davis (1984) observed that the pressure drop associated with particle-laden flows is significantly 

greater than that of a single-phase flow. Crane (1957) summarized that the total pressure drop for 

an incompressible, adiabatic flow should include the contribution of wall friction, flow 

detachment, momentum exchange between phases and downstream flow velocity profile 

recovery. When mist flows pass through curved pipes, droplets may impinge on the pipe wall 

where they accumulate and form a wall film. In general, the structure of this film is stratified 

along the outer bend wall (Hoang and Davis 1984). However, Banerjee et al. (1967) observed 

that within certain ranges of liquid flow rate and gas flow rate this film can travel inversely from 

the outer band wall to the inner bend wall. This phenomenon is referred to as “film inversion”. 

The consideration of bends is important in designing multiphase flows equipment and pipes. The 

liquid film may be mitigated by varying the pipe geometry to prevent pipe erosion and reduce 

pressure drop or, alternatively, promoted to improve the performance of a downstream separator.  

The liquid film formation for gas/liquid flows passing through curved pipes has been vastly 

studied in the literature, mostly from an experimental standpoint [5, 27, 34, 36, 38, 66, 90]. 

Computational fluid dynamics (CFD) provides a means to study such complex flows. In Chapter 
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2, the one-way coupling DPM has been proven accurate and efficient for flows under the 

assumption of one-way coupling. To study the impact of the disperse phase and liquid film 

formation, the flow has to be considered two-way coupling. Two-way coupling mist flows can be 

modeled using the two-way coupling DPM where particle impact is treated as a momentum 

source in the transient momentum equation. However, using the two-way coupling DPM is very 

limited in film thickness for liquid film modeling (ANSYS FLUENT 12.1, 2009). Another 

drawback is that the method is computationally expensive in tracking a large amount since 

particles for fully coupled converged solutions are difficult to achieve. An alternative approach 

of modeling a two-way coupling flow is to use the drift flux model based on the mixture theory 

proposed by Manninen et al. (1996). The drift flux model has been broadly used in simulating 

aerosol deposition in human airways and fine particles (typically smaller than 1µm) in laminar 

flows were usually studied in this field [62, 88, 110]. Hossain and Naser (2004) studied a 

turbulent bend flow with larger particles (2 µm - 20 µm) and showed that the method is 

promising in predicting the concentration of a gas-solid granular flow in a pipe loop with four 90° 

bends. However, the application of the drift flux model in predicting pressure drop and liquid 

film formation in bends cannot be found in literature.  

In this Chapter, a study is performed for evaluating the performance of the drift flux model in 

predicting pressure drop and film formation of a turbulent mist flow when passing through a 

curved pipe. In addition, the numerical method is used as a tool for bend design related to 

pressure drop and deposition efficiency. The Realizable k-ε model was used to close the RANS 

equation. It would have been preferable to close the RANS equation with the Reynolds Stress 

Model but converged solutions for most multiphase flow problems studied here could not be 

obtained. The flow at the near-wall region is resolved by the enhanced wall treatment (EWT). 
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Numerical results allow verifying if the model is able to capture phenomena such as secondary 

flows and film inversion. Furthermore, the accuracy of the model was validated by comparing 

the numerical results of pressure drop with the empirical models from literature. Subsequently, 

the influence of parameters such droplet size dp and the volume fraction of the water phase αp on 

the flow patterns is studied, as well as on pressure drop, secondary flow intensity and the liquid 

film thickness. Finally, a bend allows for a low pressure drop and high droplet deposition 

efficiency is identified for a given flow condition. 

    

3.2 Multiphase flow modeling 

Multiphase flows can be categorized as gas-liquid, gas-solid, solid-liquid and liquid-liquid 

flows. Widely different processes are encountered in each flow and this makes it nearly 

impossible to find a universal model appropriate for simulating all possible situations. The 

selection of appropriate closures for a given theory will thus vary according to the nature of the 

flow studied. Eulerian-Eulerian methods found in the literature include the Volume of Fluid 

(VOF) model, the drift flux model, and the two-fluid model. The application of a VOF model 

requires significant computer resources to track in detail the movement of a liquid/gas interface. 

The two-fluid model can tackle a wide variety of flows but also requires significant computing 

effort due to the number of differential equations to solve. The drift flux model in the mixture 

theory appears to be efficient and can be accurate, it requires a smaller set of governing equation 

and provide the mixture properties of the  multiphase flow studied [Manninen et al., 1996]; it is a 

statistical approach that does not provide the same information as a two-equation model. The 

mixture theory with a drift flux model of [Manninen et al., 1996] was selected in this work since 

it involves design and numerous simulations.  
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3.2.1 Multiphase turbulent flow modeling 

The mixture theory is a set of governing equations that includes a balance of mass and a 

balance of momentum. A second continuity equation is needed to compute the volume fraction 

of the secondary phase. These equations result from phase averaging, followed by ensemble 

averaging.  Equations similar to the Reynolds-Averaged Navier Stokes (RANS) equation for 

single phase flows are obtained. The equivalent of the Reynolds stress found in the momentum 

equation is closed using the realizable k-ε turbulent model; the coefficients used in the closure 

are those found for single phase flows. The averaged continuity equation for the air-water 

mixture is given as 

mix mix( ) 0u             (3.1) 

with the mean mixture density  

p pmix f f
                (3.2) 

and the mean mixture velocity  

p p pmix f f f mix
( ) /u u u              (3.3) 

where ρ is the density; α is the volume fraction; u is the instant velocity; the subscript “f” and “p” 

denote the carrier phase and the disperse phase. In this work, the carrier phase is air and the 

disperse phase is water droplets. 

The drift flux model allows different phases to be interpenetrable with a volume fraction 

characterizing each phase. The summation of the volume fraction of all phases satisfies 

n

k
k 1

1


             (3.4) 

For a gas/liquid two-phase mist flow, the liquid is treated as the disperse phase. The distribution 

of the liquid phase is determined by the value of the liquid volume fraction αp in the flow domain. 
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The media is liquid for αp=1 and gas for αp=0. It is a mixture for the liquid volume fraction 

between 0 and 1. The liquid volume fraction is obtained from a transport equation derived from 

mass balance and is given as  

p pmix dr,p( ) ( )u u    
        

(3.5) 

where 
dr,p

u is called the drift velocity for the liquid phase which needs to be closed through 

models. It defined as the velocity difference between the droplet velocity and the mixture 

velocity, given as  

pdr,p mixu u u 
          

(3.6) 

To model the above drift velocity, one relates it by convention to the phase slip velocity, 

obtained  

pdr,p f ,p(1 G )u u 
          

(3.7) 

The slip velocity u
f,p is a difference between the gas phase and the liquid phase defined as 

pf ,p fu u u 
          

(3.8) 

Gp is the mass fraction of the water phase defined as  

p p p mix
G /   

          
(3.9) 

The momentum equation as presented in Manninen et al. (1996) for the mixture is given as 

m Tmmix mix mix mix

p pmix f ,p f ,p

( ) P ( )

[ G (1 G ) ]

u u g τ τ

                                            u u

       

  
            

(3.10) 

where τ
m

 and τ
Tm

 are the viscous shear stress and the turbulent shear stress which are closed by 

using the following constitutive equations according to Johansen et al. (1990): 

T
m mix mix mix

( )τ u u   
         

(3.11)
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T
p p p pTm Tmix f f f f ,p

( ) D ( )τ u u u u        
     

(3.12) 

where the mixture dynamic viscosity is defined as  

p pmix f f
     

          
(3.13) 

According to Picart et al (1986), the diffusion coefficient for the liquid phase Dp is given as: 

1/2
2
f ,p

p TD 1 0.85
2k / 3

u


 
   
 
 

         (3.14) 

where νT is the turbulent viscosity for the gas phase, defined as  

T

2k
C 

            (3.15) 

An essential prerequisite of using the drift flux model is to close the slip velocity in Eq. (3.7), 

(3.10), (3.12), and (3.14). Ishii (1975) developed the algebraic slip model based on an 

assumption of a local equilibrium. The constitutive equation for the slip velocity is given as 

p p mix
f ,p mix mix

pdrag

( )
( )

f
u g u u

  
  


  

    

(3.16) 

The droplet relaxation time τp is given in Eq. (2.5). The disperse liquid phase is treated as 

solid spherical droplets with a single diameter dp. Drop breakup, drop coalescence, and droplet 

interaction are ignored. Under this assumption, the drag function fdrag is proportional to the 

Reynolds number of the mixture Remix obtained from the empirical measurement of Schiller and 

Naumann (1935) for a turbulent flow passing a spherical particle, given as 

drag mixf 0.0183Re           (3.17) 
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A simplified version of the mixture model can be achieved for a homogenous flow which 

assumes that the velocity difference between the phases 
f ,p

u equals to zero. This kind of flow is 

out of the scope in this work since the slip velocity is significant due to the gravity and the 

centrifugal force induced by a bend. 

 

3.2.2 Turbulence closure 

To complete the formulation of the turbulent mixture momentum equations, transport 

equations need to be solved each for the turbulent kinetic energy k and the dissipation rate ε, 

respectively. The realizable k-ε two-equation model [Shih et al., 1995] is used in this work based 

on the Boussinesq viscosity assumption [Boussinesq, 1877]. Any model based on an eddy-

viscosity approach has shortcomings for flows with strong streamline curvatures but this option 

the only available choice that could converge easily with EWT. Using the approach of 

Pourahmadi (1982), the transport equations are extended to a two-phase flow. The equations are 

presented in Appendix A for the sake of brevity. 

 

3.2.3 Near-wall treatment 

From Chapter 2, the EWT was proven to be the most accurate near-wall treatment method in 

dealing with particle deposition in curved pipes. Since studies will be focused on droplet 

deposition and liquid film formation on pipe wall of a mist air-water flow, the EWT is used in 

this work for the near-wall treatment. 
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3.3 Numerical methodologies 

The governing equations are solved in a steady and adiabatic state in the commercial code 

ANSYS FLUENT 12 using a SIMPLE algorithm (Patankar and Spalding 1972). The transport 

equations for k and ε are spatially discretized using a second-order upwind scheme. A correction 

equation derived from the continuity equation and the momentum equation for pressure is 

discretized using the same PRESTO! scheme as we did in the previous chapter. The Quick 

Scheme (quadratic upstream interpolation convective kinetics), a higher-order unwinding method 

proposed by Perng and Street (1989), is employed for computing the volume fraction of the 

droplet phase αp. The stability of the numerical computations is improved by reducing the under-

relaxation factor to 0.2 for the pressure, 0.5 for the momentum and 0.001 for the slip velocity. 

The residual criterion for convergence (the “monitors”) is set to 10
-4

 for all variables. Meanwhile, 

three monitors including the difference of the mass flow rates at the inlet and the outlet of a bend, 

the area-average weighted pressure and the flow rate of the secondary phase at the bend exit are 

used to ensure a converged solution. 

 

3.4 Geometry and meshing 

The geometric configuration and the mesh construction can be referred to Fig. 2.1 and Fig. 2.2 

in Chapter 2. Compared to the one-way DPM, the drift flux model is more computationally 

expensive for more equations need to be solved. To reduce the computational effort, a fully 

developed velocity profile as well as the turbulent intensity profile based on the flow Reynolds 

number is applied to the entrance of the pipe as the boundary conditions in all simulations. At the 

pipe wall, the no-slip boundary condition is applied. The boundary condition for the outflow is 
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set as pressure outlet with the static pressure equal to zero. The applied boundary conditions are 

summarized in Table 3.1. No heat transfer is considered in the process. 

 

3.5 Results and discussion 

The work consists of two parts. Part one is to assess the performance of the numerical 

approach. In part two, a parametric study is conducted to investigate the impacts of the droplet 

size and the volume fraction. The model is used for a bend geometry design based on the 

numerical results of droplet deposition and pressure drop by changing the curvature ratios of a 

bend.  

 

Table 3.1: Boundary conditions used in all simulations 

Inlet 

velocity inlet [m/s] Fully developed profiles 

turbulent intensity [%] Fully developed profiles 

turbulent viscosity ratio  Fully developed profiles 

Outlet pressure outlet [Pa] Pstatic=0 

Wall no-slip boundary [m/s] u
wall

=0 

 

3.5.1 Model assessment 

Empirical studies show that air-water flows passing a bend not only create complex flow 

patterns, such as secondary flow and film inversion but also cause a large pressure drop. The 

mixture model was checked qualitatively to see whether or not the model is capable of capturing 

the complex flow patterns and film formation. Moreover, to investigate its accuracy, the model 

was tested quantitatively by comparing the numerical results of the pressure loss with the 

empirical models from literature. 
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(a) Flow patterns and liquid film modeling  

Fig. 3.1 shows the numerical results of an air-water flow passing through a vertical 180˚ bend 

(U-bend) with the diameter equal to 0.0508m and the curvature ratio δ equal to 5. The flow is in 

the turbulent region with Re=1.25×10
5
 and with the volume fraction for the water phase α=0.06. 

The droplet size for this case is 30μm. The liquid distribution (expressed by the volume fraction 

for the water phase) and the streamline of the continuous phase are shown at the middle plane. 

Furthermore, the liquid distribution and the streamlines for the gas and the liquid phase (“G” and 

“L” for short) are shown along the bend at the cross sections of 0°, 45°, 90°, 135°, 180° 

deflections and the location at downstream 2d from the bend exit. 

The plots show that the streamlines for both phases exhibit very similar patterns at the cross 

section of 0° deflection and the location at downstream 2d which is reasonable since at those 

locations flows are only under the gravity field. Around the bend, the results show that the air 

phase and the water phase have different behavior. Due to the centrifugal force, the air 

streamline and the water streamline present a secondary flow pattern at the cross section of 45° 

deflection. Meanwhile, the streamlines ended at the wall illustrate that the disperse phase tends to 

deposit and start to accumulate to form a liquid film on the outer bend wall. Further downstream 

in the bend, while simple streamlines of the water phase show that the droplets are traveling from 

the inner bend to the outer bend due to the centrifugal force, the streamline for the air phase 

exhibit more complex patterns due to the interaction between the phases. With respect to the 

liquid film, it can be seen from the diagram that the structure presents a stratified feature along 

the outer bend. This statement is consistent with the observation of Hoang and Davis (1984). 
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Figure 3.1: The air and water streamlines show the development of the flow patterns and the 

interaction between two phases. The contour of αp shows the liquid film formation along the 

180˚ bend. “G” and “L” denotes gas and liquid, respective. 

  

αp 
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(b) Film inversion  

In most situations of a horizontal bend, a liquid film forms on the pipe wall and travels along 

the outer bends due to the centrifugal force. Under certain flow condition, however, liquid film 

can travel along the inner bends regardless of existence of the centrifugal force. This 

extraordinary phenomenon is referred as “film inversion” and was observed in a helical pipe by 

Banerjee et al. in 1967. They stated that film inversion only occurs at low liquid but high gas 

flow rates in a horizontal bend. Hart et al. (1988) derived a criterion for this phenomenon based 

on the static equilibrium of moment, given as 

1/2 3/4
p p pf f f

m / m 195( / ) ( / )             (3.19) 

where pf
m ,  m are the air and the liquid mass flow rate; pf

,    denote the gas and liquid density; 

pf
,    indicate the air and the liquid dynamic viscosity. The ratio of the air mass flow rate and 

the liquid mass flow rate is the function of their density and the volume fraction, obtained 

pff

p pf

(1 )m

m

 


 
          (3.20) 

Eq. (3.19) and Eq. (3.20) are solved to obtain the following criterion for an air-water flow 

p 0.0037 
           

(3.21) 

To verify the models, the case is run for a mist flow with αp=0.003 passing through a horizontal 

U-bend with d=0.0508m and δ=30. The gravity is in a negative z direction. The flow is in the 

turbulent region with Re=16800. The droplet size uses the Sauter mean diameter d32=149μm. 

This is solved by Eq. (3.22) (Azzopardi 1985) 

32 LE
0.58

p f

Gd 15.4
3.5

UWe
 

 
         (3.22) 
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where p/ g    is a length scale; 
2

p f
We U /    is a Weber number; GLE = ρpUp is the 

entrained liquid mass flux ; the surface tension σ for air and water is equal to 0.072; the inlet air 

velocity Uf and the inlet water velocity Up are 25m/s and 0.075m/s.  

 

 

Figure 3.2: Water film forms at the inner bend wall affected by the secondary flow pattern. 

 

Fig. 3.2 shows the numerical result of the film location at the outlet cross-section of the U-

bend. The gravity is in a minus z direction. It can be seen that the film locates at -23° from the 

vertical centerline which indicates film inversion occurs and the model is able to capture the 

phenomenon. The liquid film is thin due to the low water flow rate. The secondary flow patterns 

are not symmetric to the horizontal axis due to the gravity. The film inversion is enhanced by this 

secondary flow which transfers the liquid film from the outer wall to the inner wall. In addition, 

a small vortex is generated due to the liquid film.  From Fig. 3.3, more detail is covered for the 

volume fraction distribution of the water phase at the pipe wall for the same cross section. The 

αp 
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volume fractions are almost the same around the outer bend except -270° where it is as low as 

0.05. This may be caused by the secondary flow of the air phase due to the centrifugal force. In 

addition, liquid film is observed at the inner bend between 0° and -30° where the volume fraction 

is equal to unit which indicates that film inversion occurs.  

 

 

Figure 3.3: Volume fraction distribution of the water phase shows the location of liquid film at 

the pipe wall of the outlet cross section. 

 

(c) Pressure drop prediction 

Much work has been done on measuring the pressure loss of turbulent gas/liquid flow in 

horizontal 90° bends since 1960s (Fitzsimmons 1964, Sookprasong 1980, Norstebo 1986, 

Mandal and Das 2001, etc.). Based on the experimental data, different empirical models were 
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developed to predict the pressure drop of two-phase flows. Lockhart and Martinelli (1949) 

computed the pressure loss of a gas/liquid flow by using a multiplier concept. This method has 

been wildly used in developing empirical models by many authors (Chisholm 1971, 

Sookprasoog 1980 and Paliwoda 1991). An alternative proposed by Mandal and Das (2001) is 

the friction factor method based on the Fanning friction factor equation. A detail review on 

empirical models of pressure drop was given by Azzi et al. (2000).  

 

 

Figure 3.4: Comparison shows good agreement of the numerical results with the Paliwoda’s 

empirical model 

 

Simulations are run for a mist flow passing through a horizontal 90° bend with d=0.0508 and 

δ=5. The air mass quality is from 0.056 to 0.16. Numerical results of the pressure drop between 



66 
  

the entrance and the exit of the bend are compared to different empirical models from literature 

and shown in Fig. 3.4. The plot shows that the numerical results agree with Paliwoda’s empirical 

model very well.  It can be also seen that Chisholm’s B-type predicts a very high pressure drop 

compared to other empirical models. This deviation is consistent with Norstebo’s observation. 

He obtained a 110%+ discrepancy when he compared his experimental data with the Chisholm’s 

method which indicates that Chisholm’s empirical model may overpredict the pressure drop. 

Another observation of the plot is that the deviation of the pressure drop predicted by other 

empirical models is getting greater when the air flow mass quality is increased. Since deviation 

of the pressure drop predicted by different empirical models is large, it is uncertain whether the 

mixture model is accurate. But it can be concluded that the model predicts results in a reasonable 

range. 

 

3.5.2 Applications 

The test cases for parametric studies are summarized in Table 3.2. Case 1 and case 2 are to 

investigate the effect of the droplet sizes and the volume fraction of the water phase on the flow 

patterns, droplet deposition and pressure drop. A 90° bend with the pipe diameter d=0.0508m 

and with the curvature ratio δ=5 is used. In addition, a single-phase air flow with the same Re  

 

Table 3.2: Summary of the parameters used in the test cases 

Test cases Case 1 Case 2 Case 3 Case 4 

Droplet size, dp [μm] 1~50 30 30 30 

Volume fraction, αp[%] 
6 3~15 6 6 

Re (×10
5
) 1.25 1.1~2.3 1.25 1.25 

Bend angle, θ [°] 90 90 180 90,180 

Incline angle, β [°] 90 90 0~90 0 

Curvature ratio, δ 5 5 5 1.5~9.0 
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number is modeled in the same bend geometry. The results are compared those from air-water 

flows. In Case 3, the effect of the incline angle on the pressure as well as the deposition 

efficiency is investigated. In case 4, the mixture model is used for optimizing the bend geometry 

for low pressure drop as well as high droplet deposition efficiency in a horizontal bend by 

changing the curvature ratio.  

 

(a) Parametric studies 

Fig. 3.5 shows the comparison between the air flow and the air-water flows for the 

streamlines of the continuous phase at the exit of a vertical 90° bend. The droplet sizes are 

changed from 1μm to 50μm. The volume fraction equal to 6% is used for all droplet sizes. For 

droplets as small as 1μm (Fig. 3.5c), the secondary flow streamline looks similar to the single-

phase flow (Fig. 3.5b), which indicates that droplets with a small size like this have a marginally 

effect on the continuous flow. However, with the increase of the droplet size, the effect of the 

water phase becomes significant. Fig. 3.5e shows that the secondary flow of the continuous 

phase is reversed by the disperse phase and rotates clockwise. With a larger droplet size, more 

complex patterns like multi-pair secondary flows occur (Fig. 3.5f).  
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Figure 3.5: Comparison between the single-phase air flow (b) and the air-water flows (c-f) on the 

secondary flow patterns at the cross section of 90° deflection (a) changing with different droplet 

size 

 

The different effects of the droplet size are attributed to the droplet behavior and can be 

studied using the St number. The definition of this dimensionless number and how it affects the 

particle behavior have been discussed in Chapter 2. Fig. 3.6 shows the volume fraction 

distribution of the water phase at the bend exit. Here we assume that a liquid film is formed 

when αp≥0.8. It can be seen from Fig. 3.6a that for a small St number the droplets follow the air 

flow closely and no separation between the phases occurs. A small St number means the disperse 

phase responds to the continuous phase quickly which results in a homogenous type of flow. For 

St=0.027, droplets start moving from the inner bend to the outer bend which indicates separation 

between two phases occurs (Fig. 3.6b). With a larger St number, droplets deposit on the wall and 

accumulate to form a liquid film. This film becomes thicker with more droplets deposited on the 

wall (Fig. 3.6c-f). Finally, droplets with large enough St number will all deposit on the wall to 
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thicken the liquid film (Fig. 3.6e). From the above discussion, it is found that the conclusion 

made for a dilute flow on the effect of the St number on the particle behavior is still valid for 

dilute flows with a large mass loading. 

Plots from Fig. 3.7 show that the continuous secondary flow patterns vary with the increase of 

αp at the bend exit. A single size equal to 30μm is used for the droplets. It can be seen that the 

streamlines of the secondary flow patterns at the cross section are resemblant, which indicates 

that the volume fraction of water phase has marginally effect on the flow patterns and the flow 

intensity. 

As regards the pressure drop, Fig. 3.8 shows the comparison of the pressure drop caused by 

the bend component between the air flow and the air/liquid flow. The pressure drop in the air 

flow is labeled with a circle. One can observe that the pressure drop in the air-water flow is much 

greater than that in the air flow. This observation is consistent with Hoang and Davis’ statement 

(1984). From Fig. 3.8a, it is shown that the pressure drop is increased with the increase of the 

droplet size. It then decreases for droplets larger than 12μm because more droplets escape from 

the core flow and deposit on the bend wall. For droplets greater than 40μm, the pressure drop 

tends to be stable since those cases have the same situation where almost all the droplets deposit 

on the pipe wall. In Fig. 3.8b, nevertheless, it can be seen that the pressure drop is simply 

proportional to the volume fraction of the water phase. 
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Figure 3.6: Volume fraction distribution shows the liquid film location at the cross section of 90° 

deflection changing with different droplet size 

 

 

Figure 3.7: Secondary flow patterns and flow intensity at the cross section of 90° deflection for 

flow with a different αp 
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Figure 3.8: Pressure drop of the bend section changing with (a) the droplet size, (b) volume 

fraction of the water phase 
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Figure 3.9: Droplet deposition efficiency changing with (a) the droplet size, (b) volume fraction 

of the water phase 
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The droplet deposition efficiency is defined as the ratio of the mass flow rate for the liquid 

film to the total mass flow rate for the liquid at the bend exit. Fig. 3.9 shows the tendency of the 

droplet deposition efficiency changes with the increase of the droplet size and the volume 

fraction of the water phase, respectively. It can be seen from Fig. 3.9a that no deposition 

efficiency is obtained for the droplet size less than 5μm due to a small St number. For droplets 

larger than 5μm, the droplet deposition efficiency is proportional to the droplet size. The 

deposition efficiency reaches 0.92 and becomes stable when droplets are larger than 40μm. This 

can be treated as the maximal deposition efficiency that this bend geometry can obtain. With 

regards to the influence of αp, Fig. 3.9b shows that αp only has a marginal effect on deposition 

efficiency. 

 

(b) Incline angles 

The effect of the incline angle on the pressure drop and the deposition efficiency is 

investigated. Fig. 3.10 demonstrates a U-bend changing its incline angle β from 0° (horizontal) to 

90° (vertical) with an increment 15°. Comparison of the pressure drop and droplet deposition 

efficiency is shown in Table 3.3. Result shows that the bend incline angle does not affect the 

pressure drop and the droplet deposition efficiency. 

 

Table 3.3: Pressure drop and deposition efficiency in a U-bend with different incline angles  

Angle β[°] 0 15 30 45 60 75 90 

η [%] 89.6 89.8 90.0 90.1 90.2 90.1 90.2 

∆P [Pa] 1196 1194 1194 1196 1200 1205 1200 
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Figure 3.10: Schematic of a U-bend changing from horizontal position to vertical position with 

an increment of 15
o
. For interpretation of the references to color in this and all other figures, the 

reader is referred to the electronic version of this dissertation. 

 

(c) Bend optimization 

Since the pressure drop is simply proportional to αp and the droplet deposition efficiency is 

not affected by αp. A moderate droplet size with a single volume fraction can be chosen for a 

bend geometry optimization based on the pressure drop and the deposition efficiency. The word 

“moderate” here means the droplets have to be large enough to allow the occurrence of 

separation between the phases but not too large so that not all the droplets deposit on the bend 

wall regardless of the geometry of bends. In industrial transportation, a large range of droplet 

sizes would exist in gas/liquid mist flow. The idea is that if we can obtain a geometric 

configuration to improve the deposition efficiency by using a moderate size, the configuration 
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could be employed to improve the deposition efficiency for practical applications. In this work, 

30μm is chosen as the droplet size with the volume fraction equal to 6%. 

Fig. 3.11 shows the bend pressure drop and the droplet deposition efficiency changed due to 

the varying curvature ratio of a 90° bend and a 180° bend with the same pipe diameter equal to 

0.0508m at the horizontal plane. Results show that the tendency looks similar for both bends. It 

can be seen from the plots that a tight bend causes extremely high pressure drop and low droplet 

deposition efficiency. This extraordinarily high pressure drop is caused partially due to flow 

detachment. Secondly, it is because the flow is “chocked” by a recirculation flow formed after 

the tight bend due to the extremely sharp curvature streamline. On the other hand, the low 

deposition efficiency is due to the short experience of centrifugal force and film entrainment. At 

the same curvature ratio, pressure drop and deposition efficiency in a 180° bend is higher than 

those in a 90° bend. The pressure drop is decreased with the increase of the curvature ratio at the 

beginning as a sharp curvature streamline can cause flow detachment and lead to a high pressure 

drop. With a higher curvature ratio (e.g. δ ≥ 7), however, the pressure drop smoothly increases 

with the increase of the curvature ratio. The effect of the residence time at this curvature ratio 

becomes more important than that of the curvature streamline as more wall friction can be 

expected due to a longer residence time for the flow to stay in a bend. On the other hand, the 

droplet deposition efficiency is proportional to the curvature ratio at the beginning and becomes 

flat or increases slowly after the curvature ratio is larger than 5 and 7 for the 90° bend and 180°  
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Figure 3.10: Tendency of bend pressure drop and droplet deposition efficiency in a horizontal 90° 

bend and a 180° bend shows the bend geometry is optimal at curvature ratio equal to 5 and 7, 

respectively. 
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bend, respectively. Therefore, it can be concluded that a bend with the curvature ratio equal to 5 

and 7 is the optimal geometry respectively for the 90° bend and 180° bend to minimize the 

pressure drop as well as obtain relatively high droplet deposition efficiency. 

 

3.6 Summary 

Numerical simulations are performed using the commercial code ANSYS FLUENT to model 

turbulent mist air-water flows passing through circular 90° and 180° bends. The flow patterns, 

pressure drop and droplet deposition efficiency of the bend component are studied in this work. 

The simulations are performed using the mixture model closed by the modified Realizable k-ε 

model and using the enhanced wall treatment to solve the flow at the near-wall region.  

It is observed that a two-way coupling mist flow is much more complicated than a one-way 

coupling flow. The drift flux model studied in this Chapter is proven to be capable of capturing 

the complex flow patterns observed experimentally. For example, secondary flows of the 

continuous phase are induced by the centrifugal force and impacted by the disperse phase. The 

liquid film formed by droplet deposition is usually stratified along the outer bend but the film can 

be inversed to the inner bend under certain conditions. In addition, the comparison between the 

numerical results and the empirical models shows the pressure drop estimated by the model 

agree well with Paliwoda’s work. Results also show that the pressure drop and the droplet 

deposition efficiency are significantly affected by a bend. Based on these computations, bend 

geometry design was performed. It is found that 90° and 180° bends with the curvature ratios 

equal to 5 and 7 respectively can be used to achieve a minimal pressure drop as well as relatively 

high deposition efficiency regardless of the bend angles.  
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CHAPTER 4  

SIMULATION OF FLUID-STRUCTURE INTERACTION USING AN ELASTIC 

FORCING METHOD BASED ON AN IMMERSED BOUNDARY METHOD 

 

In this Chapter, a numerical technique called the immersed boundary (IB) method is discussed 

and modified for the simulation of a solid structure immersed in a fluid flow. The purpose of this 

technique is to tackle the fluid-structure interaction and use a simple Cartesian rectangular mesh 

to solve the fluid flow.   

 

4.1 Introduction 

Fluid-structure interactions are commonplace in biological systems and industrial applications. 

Examples include blood flow in hearts, red blood cells in arteries, aquatic animal locomotion, 

and vehicles or aircrafts in turbulent air flows. The numerical simulation of a fluid interacting 

with a structure is a very challenging problem. Consider a structure immersed in a fluid flow 

shown as in Fig. 4.1a. Conventional approaches of Direct Numerical Simulation (DNS) of fluid-

structure interaction use a body-fitted mesh. The grid is first constructed on the object surface 

S  and extended to the fluid flow Ωf. There is no grid located inside the structure. This method 

allows to easily imposing the no-slip boundary condition on the surface of the immersed 

structures. However, if the structure is complex in geometry, deformable, and movable in the 

flow, an adaptive mesh is inevitable. This requires an intense computational effort and frequent 

human input as the flow is matching with time. 

To avoid using an adaptive mesh, an alternative approach called immersed boundary (IB) 

method can be used. The method considers the impact of the immersed structure in a force 

density term of the fluid equation and solves the equation for the entire domain using a Cartesian 
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rectangular mesh. In general, the structure surface does not coincide with the Cartesian mesh 

(Fig. 4.1b). Nevertheless, communication of variables, such as velocity and force density 

between the Cartesian mesh and the structure surface could be achieved by using an interpolation 

or an extrapolation process. The focus at this moment is on how the force density term is 

obtained. Numerical approaches used for rigid structure simulation in literature can be classified 

into two categories: virtual boundary methods (Peskin 1972, Goldstein et al. 1993) and fictitious 

domain methods (Mohd-Yusof 1997, Fadlun et al. 2000, Kim et al. 2001, and Uhlmann 2005). A 

virtual boundary method uses a set of discrete points to mark the structure surface and evaluate 

the force at those points. The points are treated as virtual points existing in the flow domain. The 

points representing the structure surface can be tracked and moved. The virtual boundary method 

was first proposed by Peskin in 1972 to study a blood flow interacting with heart valves. By 

assuming that the structure surface is an elastic boundary, the Lagrangian points are linked with 

springs. The springs are dampened or stretched by the Lagragian points moving with the 

surrounding flow. The force exerted on the points is then a function of the spring deformation 

and its stiffness coefficient. This method is also referred to as the elastic forcing method.  

Goldstein et al. (1993) used the similar idea for a stationary rigid structure by applying large 

stiffness coefficients. However, Lee (2003) stated that a large stiffness coefficient may cause 

numerical instability if the time step used is larger than the characteristic time scales of the 

spring oscillation. Instead of evaluating the force on the Lagrangian points with an elastic 

boundary assumption, Mohd-Yusof (1997) obtained the force density term from the momentum 

equations by imposing a desired velocity at the points wherever the surface is intersected with 

the Eulerian mesh via a B-Spine function. This approach was referred to as a fictitious domain 

method. Fadlun et al. (2000) applied the method to flow interaction with complex geometries. 
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The desired velocity on the boundary was obtained via volume fraction weighing or a linear 

interpolation. The method was proved to be able to overcome the drawback of an elastic forcing 

method on time step restriction. Kim et al. (2001) improved the approximation scheme for 

stability and accuracy by using a second-order-accurate interpolation scheme. However, force 

oscillations occur at the boundary when the above methods were used to move the structure 

boundaries. Uhlmann (2003) stated that force oscillations are not appropriate for particulate flow 

simulation. Later, Uhlmann (2005) improved the stability of the direct forcing method by 

combining the Dirac delta function of Peskin (1972) to smooth the force on the boundary of a 

rigid body. 

 

 

Figure 4.1: Schematic configuration shows a Eulerian mesh for the fluid domain Ωf and a 

Lagrangian mesh around the fluid-object interface S . 
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By treating the impact of the immersed boundary in a force density term of the fluid equations, 

the IB method possesses great flexibility and is compatible with most of the numerical schemes. 

Recently, it becomes popular to combine the technique with the lattice Boltzmann method. The 

lattice Boltzmann method is proved to be simple, algebraic, and intrinsically parallelized (Wu 

and Shu 2010). Fogelson and Peskin (1988) implemented the IB method based on a spectral 

method for rigid particle simulation in a Stokes flow. Glowinski et al. (1999) combined the IB 

method with a Finite Element Method for particle sedimentation. The IB method based on a 

finite volume method was used by Sharma and Patankar (2000) for rigid particulate flows. In this 

work, a finite different method is used. It is very common that the incompressible N-S equation 

is used with the IB method in dealing with fluid-structure interaction (Lai and Peskin 2000, 

Höfler and Schwarzer 2000, Fadlun et al. 2000, Uhlmann 2005). However, solving the 

incompressible N-S equation usually ends up with finding a solution to a system of equations or 

the Poisson equation. The elliptic behavior of the Poisson equation needs the equations to be 

solved for the whole domain simultaneously through an iteration process. This requires a large 

computational effort each time step. Although the overall computational effort could be reduced 

by using a large time step, a large time step is not suitable for research on fluid-structure 

interaction. Structure moving with a large time step would lead to information missing and thus 

cause inaccuracy in predicting its trajectory. In this work, in order to improve the computational 

efficiency, compressible N-S equation is solved by using an explicit MacCormack scheme 

(MacCormack 1969). The MacCormack scheme with a second-order accuracy in space and time 

has been widely applied to compressible flows as well as incompressible flows due to the 

advantages of easy implementation and friendly parallelizing computation. However, literature 
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on using the IB method based on the MacCormack scheme for fluid-structure interaction 

simulation cannot be found.  

In this chapter, an algorithm is developed for combining the MacCormack scheme with the IB 

method and used for fluid-structure interaction. The equations are discretized in time and space. 

The performance of the numerical approach on simulating fixed and movable rigid structure is 

investigated. The numerical approach is tested in the following 2-D cases (1) pressure driven 

flow, (2) uniform flow passing a stationary cylinder, and (3) settling rigid body impinging on a 

wall.  

 

4.2 The MacCormack/IB method 

To implement the IB method based on the MacCormack scheme, we consider the impact of 

the immersed structure to its surrounding flow in a force density term f of the compressible N-S 

equation. For a 2-D case, the equations for the MacCormack/IB method are given as  

t x y

U E F
f

  
  

  
           (4.1) 

h
( , t) ( , t) ( (s, t))dsff x F X x X           (4.2) 

h

(s, t)
( (s, t), t)

t

( , t) ( (s, t))d

X
U X

                  = u x x X x






 
       (4.3) 

where U, E, and F are in a vector form, given as 

u

v

G

 
 

 
 
  

           (4.4) 
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2
xx

xy

u

u p

uv

E

 
 

     
              

 (4.5) 
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2
yy

v

uv

v p

F

 
 
    
 
               

 (4.6) 

x

y

f

f
f

 
  
 

           (4.7) 

The shear stress in the above vectors are given by 

xx

yy

xy yx

2 u v
2

3 x y

2 v u
2

3 y x

u v

y x

  
    

  

  
    

  

  
      

           

 (4.8) 

The pressure p is related to the flow density through the equation of state  

p = ρc
2
            (4.9)  

where c is the speed of sound in the media. For isothermal flow with a low Mach number 

(Ma=||u||/c: ratio of the flow speed and the sound speed), the flow can be approximated to be 

incompressible (Kundu and Cohen 2004). The explicit MacCormack scheme uses a predictor 

step and a corrector step to solve Eq. (4.1) (MacCormack 1969). The equation is discretized in 

time as follows 

Predictor: 

n n
* n nt t

x y

E F
G G f

  
    

           

(4.10) 
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Corrector: 

n 1 n
* *

* *1
t t

2 x y

E F
G G G f


   

                  

(4.11) 

In the predictor step, the variables with
 *

 are preliminary results computed using the variables 

at the current time step n. In the corrector step, the variables at time step n+1 are obtained from 

the preliminary results. The detail of equation discretization is presented in Section 4.3. 

One should notice that the force density term (f and f
*
) in the above equations should be 

computed first before Eq. (4.10)-(4.11) can be solved. Eq. (4.2) converts the force density from 

the Lagrangian points Ff (X,t) to the Eulerian mesh f (x,t) through a Dirac delta distribution δh(x-

X(s,t)). When the velocity field is updated by solving the fluid equation (Eq. (4.1)), the second 

row of Eq. (4.3) is used to interpolate the velocity from the Eulerian mesh u(x, t) to the 

Lagrangian points U(X(s,t)) using the same Dirac delta function. The Lagrangian points 

representing the structure are then moved to a new location by using the first row of Eq. (4.3).  

The approach used to compute the force density on the Lagrangian points Ff and the Dirac delta 

function δh used in this work are covered in the following sections. 

 

4.2.1 Elastic forcing method 

The elastic forcing method introduced by Peskin (1972) assumes that the structure surface 

marked by Lagrangian points is an elastic boundary. This can be accomplished by connecting the 

Lagrangian points with springs. Each spring possesses a stiffness coefficient and a length 

decided by the material property and the relative location of two Lagrangian points, respectively. 

The surrounding flow interacting with the structure could move the Lagrangian points, which 
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could lead to spring stretching or damping. Therefore, the force generated on the Lagrangian 

points is a function of the spring deformation and the material elasticity. The method has been 

proven to be well-suited in deformable structure applications. Examples are blood flows in a 

beating heart (Peskin 1972, Kovacs et al. 2001, McQueen and Peskin 2001, Vigmond et al 2003), 

blood cells transporting in arteries (Pacull 2006, Kim et al. 2009, Adib et al. 2010), and 

parachute dynamics (Kim and Peskin 2006, Kim and Peskin 2009, Miyoshi et al. 2009). In this 

work, the technique is employed to construct a rigid body based on a feed-back mechanism. 

Depending on whether a rigid structure is stationary or movable, the springs are constructed 

differently.  

 

(a) Stationary rigid body 

The elastic forcing method is quite handy in stationary rigid body modeling. According to Lai 

and Peskin (2000), each Lagrangian point on the structure surface is linked to its equilibrium 

location by a spring with a sufficiently large stiffness coefficient κ. All the springs obey the 

Hooks’ law and the forcing on the kth Lagrangian Fk(t) is given as 

e
k k k
(t) ( (t) )F X X  

       
       (4.12) 

Where k
(t)X is the location of the kth Lagrangian point at time t; 

e
k

X denotes the equilibrium 

location of the kth Lagrangian point. An equilibrium location is the initial location of a 

Lagrangian point (
e

t 0k k
(t)X X  ). To enforce the boundary staying close to its equilibrium 

location, a large value for the stiffness coefficient κ of the springs is required. Since a Lagrangian 

point only links to its equilibrium point and the relative location to other Lagrangian point does 

not matter, this method can be applied to a stationary structure with a complicated boundary. 
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(b) Movable rigid body 

Fogelson and Peskin (1988) applied the elastic forcing method to deal with rigid particle 

settling in a Stokes flow. Under the assumption that the structure surface is an elastic boundary, 

the rigid body is actually allowed to be slightly deformable. The springs are connected to resist 

deformation in the following manner: each Lagrangian point was linked to its adjacent points. 

An assistant point located at the center of the rigid body was linked to all Lagrangian points on 

the surface. A large stiffness coefficient is used so that the sprints can resist the deformation 

caused by the surrounding flow. In this work, instead of using the center point, we proposed a 

method to constructe a rigid body using a triangle structure. Triangle is a geometry known to be 

with a reliable support to a structure. Fig. 4.2 shows how the springs connect for a circle and an 

ellipse with k Lagrangian points. The blue circles are Lagrangian points used to represent the 

boundaries. Only a few Lagrangrian points are used in the diagrams for simplicity. To ensure 

using the Largrangian points only once for the triangle connection, the number of Lagrangian 

points is set to be divided exactly by 3. The red dash lines are springs for triangles. The blue dash 

lines are springs connecting the neighbor points. The stiffness coefficient for all the springs is 

sufficiently large to resist surface deformation.  

Each spring linking to two Lagrangian points generates an opposite force with the same 

magnitude. For example, the force generated at point k due to the spring k-3 is computed from 

e
k3 k-3 k-3

(t) ( (t) )F l l              (4.13) 

where k-3
(t)l  is the length of spring k-3 in two perpendicular directions equal to ||Xk-X3||; 

e
k-3

l  

is the reference length of spring k-3 in two perpendicular directions; κ is the spring stiffness 

which is sufficient large so that Δlk-3 will keep a length close to its reference length. The force 
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generated at point k is a combination of the forces contributed by spring k-1, k-3, k-6, and k-(k-

1). This method can be extended to a 3-D case using triangular pyramids. 

 

 

Figure 4.2: Schematic of spring construction for a movable rigid structure using a Lagrangian 

forcing method. 

 

According to Forgelson and Peskin (1988), if a rigid body is under an external force, such as 

the gravitational, magnetic, and electrical force, the force acting on the rigid body can be forced 

directly on the Lagrangian points by using extintfF F F  , where int
F is the internal force due to 

the springs connecting to the Lagrangian points and extF is the external forces acting on the rigid 

body.  

 

4.2.2 Construction of the Dirac delta function δh 

The immersed boundary method involves two mesh systems, including a Eulerian mesh and a 

Lagrangian mesh. Shown in Fig. 4.3, the Lagrangian mesh is a set of discrete points used to track 
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the structure surface. Since the Lagrangian mesh does not concise with the Eulerian mesh, a 

distribution function is needed for information communication between two mesh systems.  

Several distribution functions could be used in the past, such as a narrow Gaussian 

distribution (Goldstein et al. 1993), a discrete hat function (Saiki & Biringen 1996), and various 

versions of the Dirac direct function (Beyer & Leveque 1992, Lai & Peskin 2000, and Peskin 

2002). In this work, a discrete Dirac delta function δh developed by Peskin (2002) is used. The 

expression of δh for a 2-D case is assumed to be 

1 2h 2

1
(r) (r ) (r )

h
               (4.14) 

where 1 2
1 2

x x
r ; r

h h
  ; x1 and x2 are two different space components; h denotes the Eulerian 

grid size. The Eulerian grid size h is set to be at least two times larger than the Lagrangian grid 

size H to avoid missing when information is converted between mesh systems. The scalar 

function (r)  has to obey the following criterions of a delta function in a discrete form: 

1. (r) is continuous for all real r, 

2. (r) 0  for | r | 2 , 

3. 
j

j (r j) r    for all real r, 

Based on the above conditions, the expression for (r) is given as 

2

2

(r) 0,  | r | 2

1
        = (3 2 | r | 1 4 | r | 4r ),  0 | r | 1

8

1
        = (5 2 | r | 7 12 | r | 4r ),  1 | r | 2

8

  

     

      

                 (4.15) 
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(r) is a continuous and symmetric distribution plotted in Fig. 4.4. When |r| is larger than 2, (r)  

is δh has no contribution to information communication between two mesh systems. This 

generates a smooth but somewhat shape distribution at the vicinity of the immersed surface. 

Inclusion of more points blurs the boundary and reduces the accuracy while involvement of too 

few points might cause an extremely shape distribution which worsen the stability.  

Fig. 4.3 shows how the delta distribution is used for information communication between two 

mesh systems. Take the Lagrangian point highlighted by a blue circle for example, in the 

spreading procedure, the force on the Lagrangian point is distributed through Eq. (4.14) to the 

blue dots on the Eulerian mesh. In the interpolation procedure, the same delta distribution 

function is used to interpolate the velocity on the blue dots of the Eulerian mesh to the velocity 

of the Lagrangian point circled blue.  

 

 

Figure 4.3: Schematic configuration shows two mesh systems and the Eulerian points involved in 

a spreading procedure and an interpolation procedure for one Lagrangian point. 
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Figure 4.4: Distribution of (r) shows how the Dirac delta function works. 

 

4.3 Algorithm 

In this section, the algorithm of using the IB method based on the MacCormack scheme is 

provided for 2-D cases as the follows.  

1. The predictor process solves the preliminary variables u
*
, v

*
, and ρ

*
 from the 

compressible N-S equation using the variables at the current time step u
n
, v

n
, and ρ

n
.   

* n n n n n n
i, j i, j i 1, j i, j i, j 1 i, j

t t
( ) ( ) t

x y
G G E E F F f

 

 
     

 
    (4.16) 

2. The preliminary velocity at the Lagrangian points U
*
, V

*
 is solved by Eq. (4.17) through 

an interpolation procedure. The Lagrangian points are moved to a preliminary location 

X(s)
*
 from the location at the current time X(s) using Eq. (4.18).  
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h

* * n 2
k h k

x g

( ) ( ) ( )hU X u x x X


          (4.17) 

* n *
k k k

t ( )X X U X           (4.18) 

3. Depending on whether the structure is stationary or movable in the fluid flow, the 

preliminary Lagrangian forcing 
*
fF is obtained from X

n
, X

*
, and κ using Eq (4.12) or Eq 

(4.13). The preliminary force density term f
*
 is solved by Eq. (4.20) given as 

bN
* *

k h k
k 1

( ) ( , t) ( - )Hff x = F X x X         


       (4.20) 

4. Substitute the source term *
f into Eq. (4.11) which is solved for the velocity and density 

at the next time step u
n+1

, v
n+1

 and ρ
n+1

  

n 1 n * * * * * *
i, j i, j i, j i, j i 1, j i, j i, j 1

1 t t t
( ) ( )

2 x y 2
G G G E E F F + f     


 

   
      

  
  (4.21) 

5. The location of the Lagrangian points at the time step n+1, n 1
X

  is obtained by using the 

same equations in Step 2 

h

n 1 n 1 n 2
k h k

x g

( ) ( ) ( )hU X u x x X
 



         (4.22) 

n 1 n n 1
k k k

t ( )X X U X
           (4.23) 

6. Again the Lagrangian forcing F
f

n+1 is computed and used to obtain the force density 

term for the next time step f
n+1 

through Eq. (4.24)  

bN
n 1 n 1

k h k
k 1

( ) ( , t) ( - )Hff x = F X x X         
 



       (4.24) 
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The steps above are repeated as time is matching. To reduce the numerical viscosity, one can 

use different combinations of forward/backward difference schemes for the space derivative 

discretization. In this work, the combinations are circled in an order shown in Table 4.1. 

 

Table 4.1: Differencing sequence for the space derivative discretization 

step 
predictor corrector 

/ x   / y   / x   / y   

1 F F B B 

2 F B F B 

3 B B F F 

4 B F B F 

                                   F: forward   B: backward 

 

It is suggested by Tannehill et al. (1997) that circling those arrangements in the chronological 

order can reduce the truncation error.  For particulate flow simulation or particle problems, 

Perrin and Hu (2006) found the arrangement helps avoid asymmetries due to the truncation error. 

To maintain second-order accuracy, the derivative terms in E and F are discretized differently. 

The terms with derivative in a different direction of / xE  and / xF   are always differenced 

with a central difference while the terms with derivative in the same direction of / xE   and

/ xF  are differenced in an opposite direction. For example, consider the term E3 in the 

momentum equation in the y direction: 

3

u v
E uv

y x

 
   

          

 (4.25) 

The term should be differenced in the predictor procedure as follows 

n n n n
i, j 1 i, j 1 i, j i 1, jn n n

i, j i, j i, j
n
i,j

u u v v
( uv)

2 y x
E

  
 

   
 

      (4.26) 
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The MacCormack scheme is an explicit time-marching approach. To obtain a converged solution, 

the time step has to satisfy the CFL condition. The following semi-empirical stability criterion is 

given by Tannehill et al. (1997)  

1

2 2

| u | | v | 1 1
t c

(1 2 / Re ) x y x x





 
     

            

(4.27)

 

 

where σ is a safety constant equal to 0.9; Re∆ =min(ρ|u|∆x/μ, ρ|v|∆y/μ) is the minimal mesh 

Reynolds number. According to this criterion, the MacCormack scheme will be inefficient for a 

small Reynolds number (Re<10). For a moderate Reynolds number, Perrin and Hu (2006) 

suggested using t 0.5h / c   as the time step. In this work, in order to obtain simulation 

convergence, we conduct a dependence study for both the grid size and the time step size.  

 

4.4 Results and discussion   

In order to test the performance of the numerical approach discussed above, the following 2-D 

cases are studied: (1) Poiseuille flow, (2) flow passing a stationary cylinder, and (3) rigid body 

impinging on a wall.  

 

4.4.1 Poiseuille flow 

Fig. 4.5 demonstrates the boundary conditions used for a simple Poiseuille flow and a 

Poiseuille flow with a stationary cylinder immersed. In Case 2, a cylinder with a diameter equal 

to L/6 (dp=0.17) stays at the location of (5/12L, L/2). The computational domain for both cases is 

L (L=1) in width and 4L in length. The bounds at the top and at the bottom are wall using a no-

slip boundary condition (u=0, v=0). The pressure at the left bound (inlet) and at the right bound 

(outlet) are P1=101 and P1=101, respectively. The flow viscosity μ is equal to 0.01. The grid 
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number in the channel length Nx and the channel width Ny is [60,240] which creates a uniform 

Cartesian mesh for the fluid flow.   

Analytical solution to the velocity profile is available for Poiseuille flows. For an arbitrary 

cross-section in the stream-wise direction, the velocity profiles are the same and given as  

u(y) cy(1 y)                  (4.28) 

where c is a constant. Comparison of the velocity profile at the centerline of the channel length 

between the analytical solution and the numerical result is shown in Fig. 4.6. The plot shows that 

the MacCormack scheme is accurate in predicting the flow velocity. 

 

 

Figure 4.5: Schematic of a flow passing two parallel planes (a) without an immersed cylinder and 

(b) with an immersed cylinder   

 

Fig. 4.7 demonstrates the comparison of the vector and vorticity distribution between the two 

cases. The vorticity is a measure of the local ‘spin’ or ‘rotation’ of the fluid and defined as the 

curl of the velocity field, u . For a 2-D flow, 
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v u

x y

 
  

 
          (4.29)  

In Fig. 4.7a, the vector shows a parabolic profile cross the channel width. Since the flow is 

unidirectional, no vortex is observed in the flow domain. The figure on the top of Fig. 4.7b 

shows that the stationary cylinder located in the flow domain split the flow into two streams 

which are recovered downstream. Meanwhile, the velocity at the vicinity of the stationary 

structure is nearly zero. The figure on the bottom of Fig. 4.7b demonstrates that two vortices in 

an opposite direction are generated due to the presence of the cylinder. 

 

 

Figure 4.6: Comparison of the velocity profiles between the analytical solution and the numerical 

results cross the channel shows a very good agreement. 
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(a)  

 
(b) 

Figure 4.7: Comparison of the vector and the vorticity between (a) a Poiseuille flow (b) a 

Poiseuille flow interacted with a stationary structure. 
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Figure 4.8: Comparison of the velocity profiles along Line AB between two cases 
 

 

Figure 4.9: Comparison of the pressure distribution along Line CD between two cases 
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To study the impact of the stationary cylinder on the fluid flow, the velocity and the pressure 

along the line AB and CD in the above diagram are plotted in Fig. 4.8 and Fig. 4.9, respectively. 

The solid line in Fig. 4.8 shows a maximum velocity at the center when no cylinder is 

interrupting. The dash line with red dots shows that the maximum velocity is reduced due to the 

presence of the cylinder. In reality, velocity is equal to zero at the boundary and inside the 

cylinder. However, the result shows that the boundary is blurry for the Dirac delta function is 

used to smooth the structure surface. Accuracy would be improved by using a finer mesh. A 

mesh dependence study is conducted in the following section. In Fig. 4.9, the solid line shows a 

linear decrease along the stream-wise direction. For the other case, the presence of the stationary 

cylinder causes a high pressure in the front and a low pressure behind the cylinder. These 

phenomena are consistent with the observation in experiments. 

 

4.4.2 Flow passing a stationary cylinder 

Uniform flow passing a two-dimension stationary circular cylinder is often used as a 

benchmark case to evaluate the performance of a numerical method. Lai and Peskin (2000), and 

Uhlmann (2005) tackled the stationary cylinder by using the IB boundary method based on a 

projection method. Perrin and Hu (2006) enforced the no-slip boundary on the cylinder using a 

Taylor expansion and solved the fluid equation by the MacCormack scheme. Experiment of flow 

passing a stationary cylinder shows that the flow may present different flow patterns for different 

Reynolds number. Flow with a low Reynolds number generates two stable and symmetrical 

vortices behind the cylinder. Flow is unstable for Reynolds number in a certain range (typically 

50<Re<10
5
), which leads to a periodic alternate shedding of vortices. This well-known 

phenomenon is referred to as “Kármán Vortex Street”.  
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To characterize the flow, dimensionless numbers, such as Reynolds number Re, Strouhal number 

Sr, drag coefficient CD, and the lift coefficient CL are introduced. The Reynolds number is 

defined as 

f

f

u d
Re





           (4.30) 

where u
∞

 is the far-field velocity, and d is the cylinder diameter. The Strouhal number is a 

measure to the vortex shedding frequency, defined as 

c

d
Sr f

u
              (4.31) 

where fc is the vortex shedding frequency. The drag coefficient CD and the lift coefficient CL are 

to quantify the drag force or the lift force when an exterior flow is passing a blunt body. They are 

obtained respectively from    

x
D 2

f

F
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1/ 2 u d
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
          (4.32) 
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          (4.33) 

where the drag force Fx and the lift force Fy are the force components exerted on the cylinder in 

the direction of the flow velocity and in the direction perpendicular the flow velocity, 

respectively.  

Fig. 4.10 demonstrates the boundary condition used for the computational domain used for [0, 

0] × [40d, 40d]. A circular cylinder with d=0.2m in diameter is located at (6d, 20d). The 

boundary conditions on the left, bottom and top bounds are imposed with velocity u = (u
∞

, 0) 
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where the far-field velocity u∞ is equal to 1. The Neumann boundary condition is applied to the 

right bound using 

( u ( v
0

x x

) )   
 

 
          (4.34)  

The Reynolds number for the flow studied is equal to 100. The flow viscosity µ
f
 is 0.002. A 

low Mach number (Ma= 0.1) is maintained by using 10 for the speed of sound. Fig. 4.11 plots 

the vorticity patterns proceeding with time. At the beginning, two symmetric vortices rotating in 

the opposite direction are generated (Fig. 4.11a). With the increase of the time, the vortices are 

stretched further downstream (Fig. 4.11b). Fig. 4.11c shows that as the vortices grow with time, 

they are distorted due to the instability of the status. The vortices begin detaching from the 

cylinder at t=9.0s and form an alternative vortex shedding (Fig. 4.11d). This well-known 

phenomenon is referred to as the “Kármán Vortex Street”.  With the time growing, the Kármán 

Vortex Street becomes periodic in time (Fig. 4.11e). The above phenomena have a good 

agreement with the observation in experiments qualitatively.  
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Figure 4.10: Schematic of the computational domain used for flow passing a stationary cylinder 
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Figure 4.11: The developing vorticity patterns with a changing time shows the flow eventually 

breaks into a periodic Kármán Vortex Street. 
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Table 4.2 compares the drag coefficient CD between the present scheme and the reference data 

provided by Liu et al. (1998). The reference drag coefficient is 1.35 for flow with Re=100.  A 

mesh dependence study is conducted at first by using different grid sizes h equal to 1/32, 1/64, 

and 1/128. The time step uses the one suggested by Perrin and Hu (2006), which is h
t 0.5g / c  . 

The table shows that the discrepancy of CD predicted by the elastic forcing method is reduced 

drastically from 94.8% to 11.8% when the grid size is decreased from 1/32 to 1/128.  Using a 

smaller time step 2/5∆t improves the accuracy for the cases with the grid size 1/64 by 14%. Since 

no much change is obtained from 1/48 to 1/64 for time step 2/5∆t, it can be concluded that the 

solution is mesh dependence.  For time step 1/5∆t with the mesh size 1/48, the discrepancy is 

reduced from 18.5% to 11.9%. Therefore, the time step size 1/5∆t is recommended to avoid 

using a dense mesh. Although dependence study was performed in time and space for 

computational convergence, the scheme is inaccurate in predicting CD with a discrepancy of 

11.9%. 

 

Table 4.2: Mesh dependence study in space and time for flow with Re=100 

Time step h
t 0.5g / c   2/5∆t 1/5∆t Reference CD 

Mesh Size CD Discrepancy CD Discrepancy CD Discrepancy Lin et al.(1998) 

 

1.35 
1/32 2.63 94.8% 1.87 38.5% - - 

1/48 - - 1.60 18.5% 1.51 11.9% 

1/64 1.78 31.9% 1.59 17.8% - - 

1/128 1.51 11.9% - - - - 

 

4.4.3 Particle impinging on a wall  

In this section, a rigid disc settling under gravity and impinging on a stationary wall is 

simulated using the elastic forcing method. The computational domain is shown in Fig. 4.12 with 
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the dimension of [0 0] × [48dp 48dp]. A periodic boundary condition is imposed on all the 

bounds. The domain has grid points of [480 480] to ensure 10 grid points are across the disc.  At 

t=0, the disc is located at (38.4dp, 24dp). A stationary wall is located below the disc at the cross 

section of y=6dp. The disc is equal to 1 in diameter (dp=1). The ratio of the disc density and the 

fluid density is p f
/ 1.1    and the flow viscosity μ is 0.1. Both the wall and the disc are treated 

as immersed boundaries. The disc is released under the gravity g= (0,-9.8). The maximum 

Reynolds number Remax for this case is Remax≈10.  

 

 

Figure 4.12: Schematic of computational domain for a disc settling under gravity and a stationary 

wall 
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The curves in Fig. 4.13 show the vertical velocity and the vertical location at the center of a 

disc as well as the wall location changing with time under gravity. The vertical axis on the left is 

velocity while on the right is location. The disc experiences four different stages as the plot 

shown. Snapshots of the velocity contour during this process are also shown in Fig. 4.14.  

 

 

Figure 4.13: The vertical velocity and center location of the disc changing with time shows the 

settling disc is (1) accelerated, (2) with constant velocity, (3) decelerated, and (4) at rest. 

 

At the beginning, the velocity of the disc speeds up very fast due to the gravitational force. 

The acceleration is slowed down when the drag force is enhanced due to an increasing disc 

Reynolds number. When the increasing drag force and the gravity become equilibrium at t=20s, 
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the disc reaches the maximum velocity called the “terminal velocity”. Shown in Fig. 4.14b, the 

terminal velocity is 0.97m/s in the negative y direction. In stage 2, the disc is falling with the 

terminal velocity until the equilibrium between the drag force and the gravity is broken at t≈30s 

due to the presence of the wall. When a particle comes near a wall, the drag force is inversely 

proportional to the distance from the disc to the wall (Brenner 1961). This force is also referred 

to as “lubrication force” from the wall which is so large when the disc is getting close to the wall 

that the disc velocity is reduced dramatically in a short time (stage 3). Finally, the disc is resting 

on the top the wall. The curves in Fig. 4.13 show that the disc center and the wall location are 

6.502m and 6m, respectively. Therefore, it is reasonable to say that the bottom of the disc is 

located right on the stationary wall. This can also be seen in Fig. 4.14d. Although no collision 

scheme is used when the disc is approaching to the wall, the elastic forcing method handles the 

boundary well. The gravity is balanced through the fluid flow in the vicinity of the disc 

contributed by the deformation of the stationary wall.  
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Figure 4.14: Schematic of velocity contour shows a disc is settling under gravity and impinging 

on a stationary wall. 

 

4.5 Summary 

An algorithm is developed for combining the MacCormack scheme with the IB method. The 

technique tracks the structure surface using a set of discrete Lagrangian points.  The force 

exerted on the Lagrangian points is computed via an elastic forcing method. Considering the 

reacting force on the fluid flow in a source term of the momentum equation, the fluid equations 

were solved in a rectangular Cartesian mesh. The method is flexible and easy to implement. In 

this chapter, the method is tested in the cases of stationary disc in a Poiseuille flow, uniform flow 

passing a stationary cylinder, and particle impinging on a stationary wall.  
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For stationary bodies, result shows that the no-slip boundary is handled properly by the 

numerical approach. For example, using the elastic forcing method for a sealed stationary 

structure can avoid flow penetrating into the body. It is observed that blurry boundary due to the 

application of the Dirac delta function can cause numerical viscosity. This would be overcome 

by using a finer mesh in the vicinity of the immersed boundary. When two rigid bodies are 

approaching closely to each other, the hydrodynamic force generated is handled automatically by 

the method without using a collision scheme. This is a great benefit of using a virtual boundary 

method. The numerical method is promising and able to qualitatively capture important physical 

phenomena observed in experiment, such as Kármán Vortex Street, particle impinging on a wall, 

etc. However, quantitative study of flow passing a stationary cylinder indicates that the 

numerical approach is not accurate compared to other models in estimating the drag coefficient 

and the lift coefficient. A numerical viscosity is caused due to the intrinsic defect of treating a 

rigid surface as an elastic boundary. It seems that to reduce the numerical viscosity, one can use 

an extremely large stiffness coefficient for the springs. However using such a large stiffness 

coefficient could cause stability issue. To ensure the stability, the time step size ∆t has to be 

larger than the characteristic time of spring damping and stretching ts. A very large stiffness 

coefficient could dramatically reduce ts and thus put a severe restriction on the time step used. In 

order to increase the accuracy while maintain the stability, a fictitious domain method is 

introduced to simulate particulate-laden flows in the following chapter.   
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CHAPTER 5  

DIRECT NUMERICAL SIMULATION OF PARTICULATE-LADEN FLOW USING AN 

FICFICIOUS DOMAIN METHOD BASED ON THE IMMERSED BOUNDARY 

METHOD 

 

In Chapter 4, it was found that the elastic forcing method can predict important physical 

phenomena, such as Kármán Vortex Street behind a cylinder and particles impinging on a wall. 

However, since the method treats a rigid body as a slightly deformable boundary using a large 

stiffness, the technique may exhibit stability problems during the solution. In this chapter, instead 

of using the elastic forcing method, the fictitious domain method developed by Uhlmann (2005) 

is employed to compute the force density terms used to enforce the no slip boundary condition. 

The technique is combined with the MacCormack scheme to simulate particulate-laden flows. A 

collision scheme introduced by Glowinski et al. (1999) is used to account for rigid body collision. 

Simulations of flow passing a stationary cylinder, particle sedimentation, and inertia-induced 

particle sedimentation are performed to test the numerical method. Finally, the method is used to 

validate the mixture model in the commercial software ANSYS FLUENT. Study focuses on the 

behavior of neutrally buoyant particles in a Couette flow and a Poiseuille flow. 

 

5.1 The fictitious domain method 

The immersed boundary method considers the impact of an immersed structure on a fluid 

flow in a force density term added to the momentum equation (Mohd-Yusof 1997). For a time 

derivative term evaluated at an intermediate time level, n+1/2, then the time-discretized 

incompressible N-S equation is given by 

n 1 n
n 1/2 n 1/2

t

u u
rhs f


 

 


                (5.1) 



110 
  

where rhs
n+1/2

 combines the convective, pressure and viscous terms. To satisfy the no-slip 

boundary condition, the desired velocity (v) of a flow imposed on the immersed boundary 

generates the force density term given by  

n 1 n
n 1/2 n 1/2

t

v u
f rhs


 

 


        (5.2) 

Uhlmann (2005) states that Eq. (5.2) can be evaluated at the Lagrangian points representing 

the moving body through Dirac delta functions. The corresponding expression is given as  

n 1
n 1/2 k k

k

( ) ( )
( )

t

V X U X
F X


 




        (5.3) 

where U  is the Lagrangian form of the preliminary velocity u  

n n 1/2tu u rhs
             (5.4) 

A compressible N-S equation can also be solved for u by using the MacCormack scheme 

introduced in Chapter 4. The desired velocity at the kth Lagrangian point V(Xk) can be obtained 

from   

c c ck k
( ) ( )V X u ω X x   

       
  (5.5) 

In Eq. (5.5), xc is the coordinate of the geometric center. uc is the translational velocity. For a 

2-D case, the angular velocity ωc is a scalar. For situation of stationary rigid boundaries, both the 

translational velocity and the angular velocity are set to be zero. When considering a moving 

rigid boundary, uc and ωc are determined from the force balance equation and the torque balance 

equation, given as 

S
c p c c pf f f

V ( ) d V ( )u F x g              (5.6) 
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S

f
c c cf

p

I (1 ) ( ) dX x F x


     
          (5.7) 

The derivation for Eq. (5.6)-(5.7) can be found in Appendix B. The discrete form of the above 

equations for a 2-D case is 

n 1 n
c c

c p c pf f k k fk
V ( ) ( ) V V ( )

t

u u
F X g

 
       


     (5.8) 
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c cf k k kk
p

I (1 ) ( ) ( ) V
t

X x F X
  

     
 

      (5.9) 

ΔVk is the control volume of the kth Lagrangian point equal to the square of the Lagrangian grid 

size H
2
.  

The preliminary velocity on the Lagrangian points,
k

( , t)U X , and the force density on the 

Eulerian mesh, f(x,t) are obtained through intergrating the Dirac delta function from Eq. (4.15). 

We have 

2
k h k

h
g

( , t) ( , t) ( - )h
x

U X = u x x X


         (5.10) 

k k h k k

b
N

k 1
( , t) ( , t) ( - ) Vf x = F X x X


          (5.11) 

 

5.2 Collision scheme 

Unlike the elastic forcing method which directly moves the Lagrangian points, the fictitious 

domain method moves and rotates the geometric center of a rigid structure through the 

translational velocity uc and the angular velocity ωc. Therefore, there is a possibility for surface 

superposition when two particles approach to each other. This violates the famous Stokes 
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paradox saying that two rigid bodies can never make contact in a finite time in a viscous fluid 

because of the infinite “lubrication force” when the distance approaches zero at the last moment 

of contact (Zhang et al. 2005). Therefore a collision scheme is necessary to prevent collision 

when two rigid structures approach closely to each other. 

For particulate-laden flow, we use the collision scheme developed by Glowinski et al. (1999). 

Fig. 5.1 demonstrates the method used for two spherical particles and for a particle moving 

toward a stationary wall. In Fig. 5.1a, d12 denotes the distance between the center of two 

particles P1 and P2. A safety zone with the thickness ls is imposed on each particle to avoid 

collision. For particles in radius R1 and R2, the repulsive force Fr is generated when d12 is 

smaller than the critical distance ds= R1+R2+ls. For d12> ds, the repulsive force Fr is zero. The 

above method can also be used to avoid collision when a rigid particle is approaching to a 

stationary wall by adding a ghost particle in the same radius in the wall (shown as in Fig. 5.1b). 

The equation for the collision scheme for m rigid particles is given as 

sij
p p

2i i, j
s si j ij ij

p

m
m

j i
j i

0 d d

1
( )(d d ) d d

                                                  >

Fr Fr
X X            <






  
  






       (5.12) 

where εp is a small stiffness constant; the critical distance between particle Pi and Pj is 

ds=Ri+Rj+ls; the distance between the center of Pi and Pj is computed by |Xi-Xj|. The force 

acting on the particle Pi is the summation of force exerted by all other particle Pj (j≠i). For 

example, Fig. 5.2 plots the repulsive force for two particles with the same radius 1. The thickness 

of the safety zone is 0.1. The stiffness constant εp uses a small value 1×10
-7

. The curve shows 
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that when the distance of two particles is larger than 2.1, the repulsive force acting on the particle 

is equal to zero. Within the safety zone, the force is activated and is increased exponentially with 

the decrease of the particle distance. This force is so large than two particles coming to together 

will be push back to their opposite directions. For elliptical particles, the scheme can be applied 

by using an equivalent diameter. The equivalent diameter for a ellipsoid is the diameter for a 

sphere possessing the same volume of this ellipsoid. 

 

 

Figure 5.1: Schematic of the collision scheme used to prevent collision between (a) two particles 

(b) a particle and a stationary wall 
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Figure 5.2: A curve shows the repulsive force acting on a rigid particle is decreased dramatically 

as the increase of particle distance within the safety zone and is zero out of the safety zone.  

 

5.3 Test cases 

The performance of the fictitious domain method based on the explicit MacCormack scheme 

is tested in the following cases: flow around a stationary cylinder, particle sedimentation, and 

inertia-induced particle migration.    

 

5.3.1 Flow passing a stationary cylinder 

In Chapter 4, simulation of flow passing a stationary rigid cylinder is performed by using 

the elastic forcing method. As a benchmark case, we use it to validate the fictitious domain 

method based on the MacCormack scheme. The application of the fictitious domain method on a 
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stationary rigid structure can be simply achieved through setting the desired velocity V(X) (Eq. 

(5.5)) equals to zero. The Reynolds number for this case is 100. One can refer to Section 4.4.2 

for the detail of the case studied.  Numerical results of the drag coefficient CD, the drag 

coefficient fluctuation CD', the lift coefficient CL, and the Strouhal number Sr are compared to 

the elastic forcing method and other sources in Table 5.1. The mesh and the time step size used 

in this case are 1/48 and 1/5∆t (∆t=0.5h/c), respectively.  

Compared to the reference data (Liu et al. 1998), the fictitious domain method performs the 

best in estimating the drag coefficient with a discrepancy of 0.7%. Lai & Peskin (2000) and 

Uhlmann (2005) used the elastic forcing method and the fictitious domain method based on a 

project method, respectively. The discrepancies of CD from their schemes are both 7.4%. The 

reason that our scheme (the fictitious domain method based on the MacCormack solver) 

outmatches the other two models may be due to the small time step used.  

 

Table 5.1: Comparison of results from the current schemes and other methods (Re=100) 

 CD Discrepancy [%] CD' CL Sr 

Elastic forcing method 1.51 11.9 ±0.014 ±0.342 0.165 

Fictitious domain method 1.34 0.7 ±0.013 ±0.337 0.164 

Lai & Peskin (2000) 1.45 7.4 - ±0.329 0.165 

Uhlmann (2005) 1.45 7.4 ±0.011 ±0.339 0.169 

Perrin and Hu (2006) 2.0 48.1 - - 0.233 

Liu et al. (1998) 1.35 - ±0.012 ±0.339 0.165 

 

5.3.2 Particle sedimentation  

In this section, simulations of disc settling under gravity are conducted. The cases include 

single disc sedimentation, two discs drafting-kissing-tumbling (DKT) and 240 particles settling 

in a sealed container.  
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(a) Single disc setting under gravity  

A single circular disk falling under gravity is simulated using the MacCormack solver with 

the elastic forcing method and the fictitious domain method. The circular disc is 0.2m in 

diameter (dp= 0.2m). It is located at the original point of the computational domain [-12dp, 12dp] 

× [-65dp, 7dp]. The ratio of the disc density ρp and the flow density ρ
f
 is 1.5. The mesh size uses 

240×720. The boundary conditions on the top and the bottom are periodic. On the left and right 

bounds, the outflow boundary condition from Eq. (4.34) is used. At t=0, the velocity for the disc 

and the fluid flow are at rest. At t>0, the disc is released under the gravity g= (0, -9.8m/s2). The 

computation is stopped when the disc reaches y=-7m. 

Fig. 5.3a shows the comparison of the elastic forcing method and the fictitious domain 

method in estimating the center position of the disc settling. The maximum Reynolds number 

obtained for this case is 100. At the beginning of the settling process, it can be seen that no 

horizontal displacement ∆y is generated for two methods. Due to the increase of the particle 

velocity, the Re number is increased and the elastic forcing method predicts a ∆y for t>2.5s. Fig. 

5.3b shows the comparison of the disc velocity from two methods. It can be seen that the 

velocity of the disc increases with time until the gravity is balanced with the increasing drag 

force. Thereafter, the disc velocity becomes a constant called the terminal velocity. Analytical 

solution to the terminal velocity is available for comparison. For Re=100, the analytical solution 

to the terminal velocity is 1.08m/s (shown as a dot line in Fig. 5.3b). Fig. 5.3b shows that the 

terminal velocity from the fictitious domain method has a good agreement with the analytical 

solution where a deviation of 3% is obtained. The elastic forcing method underestimates the 

terminal velocity with a deviation of 20%. Moreover, the elastic forcing method could cause 
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velocity fluctuation in the vertical direction u
x
' and a horizontal velocity u

y
 when t>2.5s. The 

reason of causing the fluctuation may be due to the participation of large amount of springs to 

mimic a rigid body.  For the fictitious domain method, no u
x
' and u

y
 are observed in the results. 

This indicates that the method has a good stability.  

Fig. 5.4 shows the comparison of the disc center position and the disc velocity between two 

methods for Re≈10. For a small Reynolds number, both the elastic forcing method and the 

fictitious domain method predict the disc falling on the centerline of the flow domain, which 

indicates both the methods are stable for flow with a low Reynolds number. The terminal 

velocity from the elastic force method is 14% lower compared to the result from the fictitious 

domain method. We know from the last section that the elastic force method tends to 

overestimate the drag coefficient C
D

 and thus reduces the terminal velocity. Since the fictitious 

domain method performs better in stability and accuracy on rigid particle simulation, we use this 

method for particle flow simulation for the rest cases.    
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Figure 5.3: Comparison of (a) disc position and (b) disc velocity between the elastic forcing 

method and the fictitious domain method shows that the fictitious domain method (short dash) 

outperforms the elastic forcing method (solid line) in estimating the terminal velocity of a disc 

falling in a flow with Re=100. 

 

 

 

 

 

 

 

 

 

 

(a) 
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Figure 5.3 (cont’d) 

 

(b) 
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Figure 5.4: Comparison of (a) disc position and (b) disc velocity between the elastic forcing 

method and the fictitious domain method shows that both methods are numerically symmetric in 

estimating the terminal velocity of a disc falling in a flow with small Reynolds number (Re=10 

for the fictitious domain method). 

 

 

 

 

 

 

 

 

 

 

(a) 
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Figure 5.4 (cont’d) 

 
 

(b) Particles Drafting-Kissing-Tumbling  

In this section, two discs settling under gravity are modeled via the fictitious domain method 

based on the MacComack scheme. The discs are with an identical size dp=0.2m. The density 

ratio of the discs and the flow p f
/  is 1.5. The flow viscosity is µ=0.01kg/m·s.  At t=0s, Disc 1 

is located at the original point of the computational domain [-12dp, 12dp] × [-7dp, 65dp]. The 

mesh size for this case is 240×720. The center of Disc 2 is located 2dp below the center of Disc 1. 

When t>0s, two discs are released simultaneously under the gravity g= (0, - 9.8m/s
2
).  

Fig. 5.5 shows the velocity contour when two discs are falling under gravity. When a disc is 

settling, a low pressure wake is generated behind the disc. If another disc is caught in this zone, 

the disc could speed up due to the reduced drag force. This phenomenon is referred to as 

(b) 
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“drafting”. In Fig. 5.5a, Disc 1 is drafting behind Disc 2 at t=2.25s. The velocity of Disc 1 (u
c1

= 

0.78m/s) is larger than the velocity of Disc 2 (u
c2

= 0.70m/s). Two discs are drafting for a while 

until the lagging disc catches up with the lead one, called “kissing” shown in Fig. 5.5b. In Fig. 

5.5b, two kissing discs travel as a single long body in a position parallel to the flow at an 

identical velocity (u
c1

= u
c2

= 0.97m/s). The long body is not stable traveling at this position 

which would tumble to a position perpendicular to the flow stream (Fig. 5.5c). Two discs are 

pushed apart until a stable separation distance is established (Fig. 5.5d). The above phenomena 

obtained from the numerical results are consistent with the observation in the experiment 

conducted by Joseph et al. (1987).  
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Figure 5.5: Schematic demonstration of two particles (a) drafting, (b) kissing, (c) tumbling and 

(d) being apart after tumbling. 

 

(c) Particles settling in a sealed container 

240 circular particles settling in a sealed container under gravity is investigated using the 

fictitious domain method based on the MacCormack scheme. The collision scheme is used to 

avoid collision among the particles and between a particle and the container wall. Fig. 5.6 shows 

the velocity vector and the particle position at time t= 0s, t=2.5s, t=5s, t=7s, t=10s, and t=20s, 

respectively. The diameter dp of all the particles is 0.2. The density ratio of the particle and the 
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fluid flow p f
/  equals to 2. The flow viscosity μ is 0.0075. In Fig. 5.6a, the discs are initially 

located on the top of a square container with [24.2dp 24.2dp] in dimension. For a sealed 

container, the no-slip boundary condition is enforced on all four bounds. The Eulerian mesh size 

h uses 1/20d so that there are 20 grids across each particle. The gap between two particles is 3h. 

The mesh grids for the computational domain in the x direction and y direction is 484×484. At 

t=0s, the particles at the bottom are marked in red to highlight the interface between two phases. 

When t>0s, the particles are settling under the gravity.  Since the light phase is located at the 

bottom of the computational domain, the heavy particles on the top are pushed by flow which 

causes interface instability. This phenomenon was referred to as Rayleigh-Taylor instability  

 

 

(a) t=0s 

Figure 5.6: Schematic demonstration of 240 particles doing sedimentation under gravity in a 

sealed container at (a) t=0s, (b) t=2.5s, (c) t=5s, (d) t=7s, and (e) t=20s. 

 



125 
  

 

Figure 5.6 (cont’d) 

 

(b) t=2.5s 

 

(c) t=5s 
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Figure 5.6 (cont’d) 

 

(d) t=7s 

 

 

(e) t=20s 
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(Sharp, D. H. 1984). Fig. 5.6b shows the interface is distorted due to Rayleigh-Taylor instability 

at t=2.5s. The interface instability keeps growing with two vortices generated close to the wall 

pulling down the particles on the sides. These two vortices develop with time and push those 

particles around the container center upward (Fig. 5.6c - d). Finally, a stable state is achieved 

when all the particles settle down at the bottom of the container (Fig. 5.6e).    

 

5.3.3 Particle behavior  

(a) Single elliptical fiber 

Jeffery (1922) solved the translation and rotation of a neutrally buoyant ellipsoid in a shear 

Stokes flow. The case is used here to validate the present scheme in a 2-D scenario. Consider an 

elliptical disc located at the center of a square domain [L L] in Fig. 5.7. The elliptical disc has the 

aspect ratio re=1.5. The angle between the major axis and the horizontal direction is ϕ=π/2.  The 

wall on the top is moving to the right with the velocity Uw=1 while the wall at the bottom is 

moving to the left with the same velocity. The shear rate is  =0.4. The particle Reynolds number 

Rep for an elliptical disc is defined through an equivalent diameter dp
e
 and is obtained by  

e
w p

p

U d
Re





          (5.13) 

To compare with the Jeffery’s solution, simulation of particle Reynolds number equal to 0.4, 

4, and 20 are performed. The angular velocity given by Jeffery’s solution is  

2 2 2
c e2

e

( ) (r sin cos )
r 1


    


        (5.14) 
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The period is obtained from  

2
e

e

r 12
T

r

 
     

          (5.15) 

Fig. 5.8 shows the comparison of the angular velocity and the corresponding period between 

the DNS method and Jeffery’s analytical solution. The angular velocity ωc(ϕ) is plotted against 

the angle ϕ. The negative sign indicates that the particle is rotating clockwise. When Rep=0.4, 

the curve of the DNS data matches exactly that of Jeffery’s solution. The difference of the period 

between two methods is marginal with 0.01s. This indicates that the fictitious domain method 

based on the MacCormack scheme is accurate. It can also be concluded that the flow with 

Rep=0.4 is small enough to be treated as a Stokes flow. The DNS method underestimates the 

angular velocity for the cases Rep=4 and Rep=20, which leads to a longer period time. Jeffery’s 

solution was derived based on Stokes flow ( pRe 1) and thus cannot handle flow with a large 

Rep.  

 

Figure 5.7: Schematic of computational domain for a neutrally buoyant elliptical disc moving in 

a Stokes shear flow. 
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Figure 5.8: Comparison of results from the DNS method for different Rep and Jeffery’s solution 

shows that the angular velocity and the period are well predicted by the present DNS scheme for 

Rep=0.4. 

 

(b) Particle migration 

One important phenomenon that could cause non-uniform distribution of a uniform 

suspension flow is particle moving across streamlines, referred to as particle migration. The 

phenomenon could be resulted from the effects of fluid inertia, particle inertia, particle-particle 

interaction, and particle Brownian motion. The effect of particle inertia was discussed in Chapter 

2 and Chapter 3. The Brownian motion can be ignored as the size studied in this work is 

sufficiently large. Research of interest in this section focuses on neutrally buoyant particle 
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migration induced by fluid inertia. A neutrally buoyant particle is a particle in a condition that its 

density is equal to the density of the flow in which it is immersed. 

Fig. 5.9 shows the computational domain and the initial location of a neutrally buoyant 

particle in a Couette flow. The boundary condition for the top and the bottom bounds are walls 

moving with Uw=7 in the opposition directions. The flow Reynolds number Re is 700. The 

minor radius of the disc ae is 0.1. The aspect ratio re is equal to 1.5. The particle density and the 

fluid density equal to 1. The effect of the particle size is investigated by using larger minor 

radiuses equal to 1.5ae and 2ae. A circular disc with the equivalent diameter dp
e 

of the elliptical 

disc is also used to study the effect of the particle shape on the particle location. dp
e
 is the 

diameter when the area of the circular disc is equal to the area of the elliptical disc with ae. Fig. 

5.10 plots the dimensionless vertical location (y/L2) with the dimensionless time (t·Uw/L2) for 

comparison. The non-dimensional centerline is located at 0.5. The curves show that all the 

particles would move to the centerline of the shear flow eventually regardless of the size and the 

shape of the particles. The curve of the circular disc with dp
e
 is close to that of the elliptical disc 

which may indicate that the shape effect could be ignored if an equivalent diameter of an 

elliptical disc is used for a circular particle. Result also shows that the elliptical discs with a 

larger minor radius are faster to reach the equilibrium location as a faster angular velocity is 

obtained for a larger particle under a simple shear flow. Rubinow & Keller (1961) claimed that 

the lateral force (lift force) is function of the angular velocity. 

Fig. 5.11 shows the configuration of the computational domain for a single particle moving in 

a Poiseuille flow. A periodic boundary condition is used for the left and the right bounds. A 
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pressure gradient is imposed on the domain which could generate a flow with Re=700. The no-

slip boundary condition is used to the top and the bottom bounds. Simulations are run for 

particles with the same shape and size as the last case. It can be seen from the curves in Fig. 5.12 

that the particles regardless of their shape and size reach the vertical location around 0.2 which is 

60% of the distance from the centerline of the flow to the bottom wall. This result is consistent 

with the observation in experiment of Segré & Silberberg (1962a,b) who stated that, for 

undisturbed flow, lateral migration of a neutrally buoyant sphere induced by fluid inertia can 

finally attain an equilibrium location about 60%  from the centerline to the wall in a Poiseuille 

flow. The establishment of the equilibrium position is likely due to the balance between the 

lubrication force from the wall and the lift force induced by the fluid inertia. Autal et al. (1991) 

stated that when a rigid body is moving close to the wall, the lubrication force is inversely 

proportional to the distance between the body and the wall. Unlike the shear flow, the plot shows 

that the vertical location the particle is fluctuating around the equilibrium location in the 

pressure-driven flow, which indicates that the lift force induced by the fluid inertia and the 

lubrication force is fighting back and forth to find a balance. 
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Figure 5.9: Schematic of the computational domain dimension [L1 L2] and the initial location of 

an elliptical disc located at (1/4L1, 1/5L2) in a Couette flow with Re=700. 

 

 
Figure 5.10: Comparison of the particle location changing with time in the vertical direction 

shows that particles attain the centerline in a Couette flow regardless of the size and shape of a 

particle 
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Figure 5.11: Schematic of the computational domain dimension [L1 L2] and the initial location 

of an elliptical disc located at (1/4L1, 7/16L2) in a Poiseuille flow with Re=700. 

 
Figure 5.12: Comparison of the particle location changing with time in the vertical direction 

shows that particles attain approximately the location 60% from the centerline to the wall in a 

Poiseuille flow regardless of the size and shape of a particle. 
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Fig. 5.13 shows the velocity contour and the concentration distribution of a uniform 

particulate-laden flow changing with time in a Couette flow. At t=0s, elliptical particles are 

uniformly distributed in the flow domain. The flow is dilute with the volume fraction αp=10%. 

Monodisperse particles are used with the minor radius ae=0.1 and an aspect ratio equal to 1.5. 

The computational domain is square with the mesh size 250×250. The Reynolds number Re is 

equal to 700. Fig. 5.13b shows that although the particles are moving with a different 

translational velocity along an arbitrary vertical cross-section, all the particles are rotating with 

an identical angular velocity caused by the single shear rate of a Couette flow. In Fig. 5.13c, the 

plot shows that the particles are moving toward the centerline due to the phenomenon of particle 

migration across streamlines. This leads to high concentration at the flow center. In Fig. 5.13d-e, 

due to the high concentration at the flow center, interaction between the elliptical particles 

becomes outstanding. It can be seen that both the velocity profile and the particle concentration 

are affected by particle-particle interaction. Finally, Fig. 5.13f shows that the flow forms clusters. 

It can be seen from those particles marked in the white circles that certain part of the particles 

overlap, which indicates that the collision scheme designed for body in spherical shape is not 

working properly for ellipsoids.   

Fig. 5.14a shows the velocity contour and the concentration distribution of a uniform 

particulate-laden flow changing with time in a Poiseuille flow. The particles in the pressure-

driven flow act totally differently from those in the shear flow. Since a Poiseuille flow possesses 

a parabolic flow pattern, along an arbitrary vertical cross-section the particles are rotating in a 

different angular velocity due to the non-uniform shear rate.  Moreover, the particles in the upper 

half part of the domain are rotating in an opposite direction of those in the lower half shown as in 

Fig. 5.14b. Due to particle migration in the Poiseuille flow, most particles are moving toward the 
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wall (Fig. 5.14c-e) except for those located at the centerline. The particles at the centerline 

encounter shear in both directions. They stick near the centerline for a long time before they fall 

into the either side of the centerline and move toward the wall.  Eventually, all the particles 

concentrate somewhere between the centerline and the walls. Fig 5.14f shows that the particles 

are clustering which forms larger structures near the wall.  

 

 

Figure 5.13: Schematic demonstration of the velocity contour and the concentration distribution 

of a uniform particulate-laden flow with αp=10% in a Couette flow at t=0s, 5.5s, 100s, 125s, 

135s and 160s. 
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Figure 5.14: Schematic demonstration of the velocity contour and the concentration distribution 

of a uniform particulate-laden flow with αp=10% in a Poiseuille flow at t=0s, 1s, 30s, 60s, 100s 

and 416.0 s 

 

5.4 Validation of the mixture model in FLUENT 

Based on the above study, the numerical approach, fictitious domain method with the 

MacCormack scheme, is accurate in predicting particle behavior in a viscous flow. The result can 

be used as a reliable reference to validate the mixture model in FLUENT. In this section, 

particulate-laden flows with a non-uniform concentration and a uniform concentration are 

investigated. Focus is put on the performance of the mixture model on predicting the 

concentration distribution of neutrally buoyant particles under a simple shear flow. 
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5.4.1 Transport of a non-uniform shear flow 

Fig. 5.15 shows the initial concentration distribution of the disperse phase in the 

computational domain of [3 1]. The mesh size uses 750×250 in two methods. Both the carrier 

phase and the disperse phase are at rest at t=0s. The disperse phase concentrates in a square 

domain with the volume fraction αp equal to 46%. The color in Fig. 5.15a shows the phase 

distribution. Red means the region for the highest concentration and blue indicates the location 

with zero concentration of the disperse phase. The disperse phase is neutrally buoyant and has an 

identical density as the carrier phase (ρp= ρ
f
=1). The wall on the top is moving to the right with 

the velocity Uw=1 while on the bottom is moving to the left with the same velocity. A periodical 

boundary condition is imposed on the left and the right bounds.  The flow is within the laminar 

regime with Re=100.   

Fig. 5.16 shows the comparison of the disperse phase distribution at t=10s. The concentration 

predicted by the mixture model is similar to the result from DNS. Under the shear, the square 

shape distribution is changed. It can be seen that the disperse phase closer to the wall is moving 

faster due to a higher flow velocity. In Fig. 5.16b, the edge on four corners becomes blurry with 

a lighter color which indicates a lower concentration at those places. This distribution is 

consistent with the result in Fig. 5.16a, showing as a longer distance among the particles on four 

corners. In Fig. 5.17, the distribution is stretched by the flow and forms a stripe at t=25s. Due to 

the periodic boundary condition, the disperse phase that passes the right bound will enter the left 

bound and vice versa. At t=50s, Fig. 5.18b shows that the concentrated disperse phase is 

stretched further with five stripes. The concentration is higher close to the centerline due to 
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slower velocity at the center. This distribution predicted by the mixture model is consistent 

qualitatively with the result by the fictitious domain method shown in Fig.5.18a.  

 

Figure 5.15: Initial condition shows the concentration of the dispersed phase in the 

computational domain for (a) the present scheme (b) the mixture model 



139 
  

 

Figure 5.16: Comparison of the concentration of the dispersed phase at t=10s for (a) the present 

scheme (b) the mixture model 
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Figure 5.17: Comparison of the concentration of the dispersed phase at t=25s for (a) the present 

scheme (b) the mixture model 
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Figure 5.18: Comparison of the concentration of the dispersed phase at t=60s for (a) the present 

scheme (b) the mixture model 

 

5.4.2 Transport of a uniform unidirectional flow 

To validate the performance of the mixture model in transporting a uniform shear flow, 

simulations are run for a uniform particulate-laden flow in a Couette flow and a Poieuille flow. 

Fig. 5.19 shows a square domain [L L] in which neutrally buoyant particles are uniformly 

distributed. The volume fraction αp is 10%. The mesh size uses 250×250.  For the Couette flow, 

two walls are moving at a velocity Uw=7, the Reynolds number is 700. Fig. 5.20 shows the 

comparison of volume fraction distribution along an arbitrary vertical cross-section between the 

fictitious method based on the MacCormack scheme and the mixture model at t=50s and t=100s. 

The horizontal axis is a dimensionless location (y/L) and the vertical axis is the flow volume 
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fraction. Since the flow is symmetric to the centerline, only half of the line is plotted for 

simplicity. Result from the present scheme shows that at t=50s, the maximum flow concentration 

is 16.5% located at 0.2. At t=100s, a higher concentration is observed equal to 19%. The location 

for maximum concentration is moved from 0.2 to 0.4 which is closer to the centerline (0.5). On 

the other hand, the result shows that the distribution predicted by the mixture model stay at 10% 

along the cross-section which indicates that the model is not able to predict the distribution 

correctly. Fig. 5.21 shows the comparison of the flow volume fraction between two methods for 

the Poiseuille flow with Re=700. Result from the present scheme at t=20s and t=40s shows that 

the flow concentration becomes lower close to the centerline (0.5) and higher close to the wall 

(0.0). Same conclusion can be draw from the curves that the mixture model is not able to predict 

the phenomenon of disperse phase across streamline due to fluid inertia. The mixture model 

considers the impact of the disperse phase in a momentum term contributed by the slip velocity. 

We know from Chapter 3 that the slip velocity is the velocity between two phases which needs to 

be closed by model. The only model in ANSYS FLUENT 12 is called the algebraic slip model 

by Ishii (1975) (Eq. 3.16). It can be seen from the equation that the effect of the lateral force 

generated due to fluid inertia is not included in the equation which cause the model fail to predict 

the phenomenon studied in this work.  
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Figure 5.19: Schematic of the computational domain for a uniform flow with αp=10%. 

 

 
Figure 5.20: Comparison of volume fraction distribution along a vertical cross-section between 

two methods at t=50s and t=100s shows that the mixture model fails to predict a higher 

concentration near the center for a uniform particulate-laden shear flow. 
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Figure 5.21: Comparison of volume fraction distribution along a vertical cross-section between 

two methods at t=20s and t=40s shows that the mixture model fails to predict a higher 

concentration close to the wall for a uniform particulate-laden pressure-driven flow (Re=700). 

 

5.5 Summary 

To improve the stability and accuracy of using the immersed boundary method for rigid 

structures immersed in a fluid flow, the fictitious domain method was used.  The technique was 

combined with the MacCormack solver to simulate a flow passing a stationary rigid cylinder. 

Result shows that the method is accurate in estimating the drag coefficient. Later, the method, 

combined with a collision scheme, was applied to particulate-laden flow simulation. Result 

shows that the terminal velocity of a single particle settling was well predicted by the numerical 

method. In addition, compared to the elastic forcing method, the present method is more suitable 

for a movable rigid body since it can tackle flow with a higher Reynolds number. Result also 
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indicates that the present method can capture two particles DKT (drafting-kissing-tumbling) and 

the phenomenon of Rayleigh-Taylor instability at two phase interface. Subsequently, the method 

was used to study the behavior of a neutrally buoyant particle in both Couette flow and Poiseuille 

flow. Result shows that for a Couette flow, the particle would move toward the centerline while 

for a Poiseuille flow, the particle would finally attain an equilibrium location that is 60% of the 

distance from the centerline to the wall. Finally, the numerical approach was employed to 

validate the mixture model in predicting the disperse phase concentration in a simple shear flow 

and a pressure-driven flow. It can be concluded from the result that the mixture model is not able 

to predict the concentration distribution correctly.  To predict the phenomenon, the constitutive 

equation used in the mixture model to close the slip velocity should include the effect of the 

lateral force induced by fluid inertia. 

 

 

 

  



146 
  

CHAPTER 6  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

6.1 Summary and Conclusions 

The work in this dissertation can be divided into two parts. The first part uses CFD modeling 

to study turbulent particulate-laden flows passing through curved pipes. The one-way coupling 

DPM in FLUENT is used for dilute flow with a low mass loading. The study focuses on the 

performance of the turbulent closures based on the RANS equation with different near-wall 

treatments on estimating the pressure drop and the particle deposition efficiency in bends. The 

effects of the particle Stokes number as well as the bend configuration, including the bend angle, 

the bend curvature ratio, and the bend diameter, are investigated. For dilute flows with a high 

mass loading, the mixture model in FLUENT is employed to study the effect of the disperse 

phase on the carrier phase. The flow patterns, pressure drop and liquid films are investigated. 

Bend design is conducted for performance related to pressure drop and deposition efficiency. In 

the second part, DNS of rigid structures immersed in a viscous fluid are performed at low 

Reynolds number using the IB method. The elastic forcing method and the fictitious domain 

method are used to compute the force density term contributed by the immersed structures. The 

IB method is combined with the explicit MacCormack scheme to solve the fluid equations. The 

performance is tested in the cases including flow passing a stationary cylinder, particle 

impinging on a wall, particle sedimentation, and particle behavior in unidirectional flows. Finally, 

DNS result is used to validate the mixture model in predicting concentration distribution of 

neutrally buoyant particle flows in a Couette flow and a Poiseuille flow. Important observations 

associated with these studies are presented below. 
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Turbulent air flow passing through a curved pipe possesses complicated flow patterns that 

change with bend configuration and flow Reynolds number. A tight bend with a curvature ratio δ 

less than 3 is usually associated with a recirculation zone located at the inner bend wall. Flow 

passing a curved pipe generates secondary vortices and the intensity of these secondary vortices 

is stronger at the inner wall and can become as high as 35% of the bulk velocity.  For flows with 

a high mass loading, the patterns are significantly affected by the dispersed phase and become 

even more complex. For example, the disperse phase with a large size would reverse the 

direction of the secondary vortices or cause multi-pair secondary vortices in a bend cross-section.    

When examining the pressure drop of a turbulent air flow through curved pipes, computed 

results are obtained from different near-wall treatments based on the k-ε model and the RSM; all 

results are close to experimental measurements provided that the mesh meets the y
+
 requirement 

for the wall treatment selected except the local pressure at the outer and inner pipe of the U-bend. 

For a flow with a high mass loading, the dispersed phase affects the pressure drop significantly. 

The pressure drop is proportional to the volume fraction of a dispersed phase. Comparison 

between the numerical results and the empirical models shows the pressure drop estimated by the 

model agree well with Paliwoda’s work.  Since the deviation of the pressure drop predicted by 

different empirical models is large, it is uncertain whether the mixture model is accurate. But it 

can be concluded that the model predicts results in a reasonable range. 

To increase particle deposition, using one-way coupling flow simulations through curved 

pipes, it was found that one can either decrease the curvature ratio, increase the residence time, 

or decrease the duct diameter, holding the other two parameters constant. The grade efficiency 

for this flow is well predicted by the one-way coupling DPM provided that RSM, EWT, and the 

stochastic model are used. The grade efficiency is found to be related to the particle St number, 
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the bend angle θ, and the bend curvature ratio δ and can be estimated through the empirical 

model (Eq. (2.15)) developed in this work. For flows with a high mass loading, the liquid film 

formed by droplet deposition could be predicted by the mixture model. The film is usually 

stratified along the outer bend but it can be inversed to the inner bend of a horizontal pipe when 

the flow is with a very small volume fraction αp<0.0037. Both the one-way DPM and the 

mixture model are capable of predicting particles moving across streamlines due to high inertia 

of a large particle. 

As regards DNS of flow interacting with rigid structures, the IB method based on the 

MacComack scheme appears to be promising. The elastic forcing method is able to capture 

important physical phenomena qualitatively. In addition, the hydrodynamic force generated by 

two approaching bodies can be automatically taken care by this method without using a collision 

scheme. Nevertheless, approximation used in this method of treating a rigid body as a slightly 

deformable structure may lead to numerical viscosity and instability. The accuracy and the 

stability of the IB method are improved by using the fictitious domain method. The results 

accurately match Jeffery’s solution in predicting the motion of an ellipsoid in Stokes flow and 

agree well with the observation in experiment for particle migration in a unidirectional flow. 

Finally, it can be concluded from the comparison between the DNS method and the mixture 

model that the latter is not able to correctly predict the concentration distribution of neutrally 

buoyant particles in a uniform unidirectional flow. To capture the phenomenon, the closure for 

the slip velocity should be modified to include the effect of the lateral force caused by fluid 

inertia. 
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6.2 Recommendations for future work 

In the present study, the fictitious domain method with the MacCormack scheme was used to 

simulate particulate-laden flow and used to validate the mixture model in FLUENT. Suggestions 

are listed in the following for potential extensions of the present study.  

1. To avoid collision of two approaching particles, Glowinski’s collision scheme is used to 

provide a repulsive force. The method is designed for rigid spherical bodies. Using an 

equivalent diameter, one can apply the method to an ellipsoid. This is a good 

approximation for ellipsoids with a small aspect ratio. However, for ellipsoids with a 

large aspect ratio or rigid bodies in an arbitrary shape, the method can cause problems, 

such as particles superposition, and incorrect particle behavior. To deal with particles of 

arbitrary shape, a more sophisticated collision strategy such as a lubrication model by 

Maury (1997) is needed. 

2. To predict particle migrating across streamlines in a unidirectional flow using the mixture 

model in FLUENT, the constitutive equation for the slip velocity has to be modified to 

include the lateral force caused by fluid inertia. Rubinow & Keller (1961) suggested to 

compute this force from 

3
c cL pF (d / 2) ω u   

         
(6.1) 

The parameters in the above equation are all known except the angular velocity cω . This 

unknown quantity can be modeled using the DNS data obtained from the numerical 

method studied in this work.  

3. Code implemented in this work is applied to 2-D cases. There is a possibility to extend 

the code to 3-D application in the turbulent regime which would be more valuable to 

validate the mixture model in FLUENT. 
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4. To increase the computational efficiency, parallel computing technique is necessary. One 

can use the parallel computing strategy developed by Wang et al. (2008) to implement 

immersed boundary method discussed in this work to simulate particulate-laden flows. 
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APPENDICES 

 

A. Realizable k-ε equation for two-phase flows 

 

The modified transport equation for k is given as  
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The modified transport equation for ε is presented as 
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where τ
l
 is the Lagrangian time-scale, given as 

l

k
0.3 

            
(A-3) 

The turbulent viscosity for the air phase is defined as 

2

T
k

C 


           

(A-4) 

To ensure the realizability (that is positivity of normal stresses in the flow domain), the turbulent 

coefficient Cμ is computed as follows:  
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The k and ε transport equations for two-phase flows are similar to those for single-phase flows 

except two extra two terms due to existence of the water droplets and the external field such as 

gravity.  
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B. Analysis of force acting on a particle 

 

p c c p cf f
S

V d ( )Vu τ n g



              (B-1) 

c c cf
S

I ( ) ( )dω X x τ n



              (B-2) 

where where ρf and ρp are the fluid density and the interior structure density, respectively; Ic is 

the moment of inertia of the object; Vc is the volume of the rigid body; τ is the shear stress tensor 

and n denotes the outward normal vector of the rigid structure. According to the divergence 

theorem, the surface integral on the right hand size of Eq. (B-1) and Eq. (B-2) are  
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d d d
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τ n F x u x



                (B-3) 

c c c
S S S

d
( ) ( )d ( ) d ( ) d

dt
X x τ n X x F x X x u x



                 (B-4) 

The first term on the right hand size of Eq. (B-3) and Eq. (B-4) are simply obtained by summing 

up the force F (Xk) and the torque (Xk-xc)×Fk for all the Lagrangian points. According to 

Uhlmann (2003), the second term of Eq. (5.8) is the rate-of-change term which satisfies a rigid-

body motion on the structure surface, obtained 

c c
S

d
d V

dt
u x u           (B-5) 

The second term of Eq. (B-5) is the angular momentum changed due to non-rigid motion of fluid 

inside the object domain, dΩ. Under the assumption of rigid-body motion inside the object 

domain, this term is approximated to 
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