
SMARTPHONE-BASED SENSING SYSTEMS FOR DATA-INTENSIVE
APPLICATIONS

By

Mohammad-Mahdi Moazzami

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2017



ABSTRACT

SMARTPHONE-BASED SENSING SYSTEMS FOR DATA-INTENSIVE APPLICATIONS

By

Mohammad-Mahdi Moazzami

Supported by advanced sensing capabilities, increasing computational resources and the ad-

vances in Artificial Intelligence, smartphones have become our virtual companions in our daily

life. An average modern smartphone is capable of handling a wide range of tasks including navi-

gation, advanced image processing, speech processing, cross app data processing and etc. The key

facet that is common in all of these applications is the data intensive computation.

In this dissertation we have taken steps towards the realization of the vision that makes the

smartphone truly a platform for data intensive computations by proposing frameworks, applica-

tions and algorithmic solutions. We followed a data-driven approach to the system design. To

this end, several challenges must be addressed before smartphones can be used as a system plat-

form for data-intensive applications. The major challenge addressed in this dissertation include

high power consumption, high computation cost in advance machine learning algorithms, lack

of real-time functionalities, lack of embedded programming support, heterogeneity in the apps,

communication interfaces and lack of customized data processing libraries.

The contribution of this dissertation can be summarized as follows. We present the design,

implementation and evaluation of the ORBIT framework, which represents the first system that

combines the design requirements of a machine learning system and sensing system together at

the same time. We ported for the first time off-the-shelf machine learning algorithms for real-

time sensor data processing to smartphone devices. We highlighted how machine learning on

smartphones comes with severe costs that need to be mitigated in order to make smartphones

capable of real-time data-intensive processing.



From application perspective we present SPOT. SPOT aims to address some of the challenges

discovered in mobile-based smart-home systems. These challenges prevent us from achieving the

promises of smart-homes due to heterogeneity in different aspects of smart devices and the under-

lining systems. We face the following major heterogeneities in building smart-homes:: (i) Diverse

appliance control apps (ii) Communication interface, (iii) Programming abstraction. SPOT makes

the heterogeneous characteristics of smart appliances transparent, and by that it minimizes the bur-

den of home automation application developers and the efforts of users who would otherwise have

to deal with appliance-specific apps and control interfaces.

From algorithmic perspective we introduce two systems in the smartphone-based deep learning

area: Deep-Crowd-Label and Deep-Partition. Deep neural models are both computationally and

memory intensive, making them difficult to deploy on mobile applications with limited hardware

resources. On the other hand, they are the most advanced machine learning algorithms suitable

for real-time sensing applications used in the wild. Deep-Partition is an optimization-based par-

titioning meta-algorithm featuring a tiered architecture for smartphone and the back-end cloud.

Deep-Partition provides a profile-based model partitioning allowing it to intelligently execute the

Deep Learning algorithms among the tiers to minimize the smartphone power consumption by

minimizing the deep models feed-forward latency. Deep-Crowd-Label is prototyped for seman-

tically labeling user’s location. It is a crowd-assisted algorithm that uses crowd-sourcing in both

training and inference time. It builds deep convolutional neural models using crowd-sensed images

to detect the context (label) of indoor locations. It features domain adaptation and model extension

via transfer learning to efficiently build deep models for image labeling.

The work presented in this dissertation covers three major facets of data-driven and compute-

intensive smartphone-based systems: platforms, applications and algorithms; and helps to spurs

new areas of research and opens up new directions in mobile computing research.



Dedicated to my beloved parents and family ...

iv



ACKNOWLEDGMENTS

First, I thank my co-authors, more than anyone else they have influenced my view of the research

process, and established in me the importance of aiming to produce quality research with the

potential for impact. I would like to thank my co-advisers Guoliang Xing and Matt Mutka. I value

their candid and honest opinions, their calmness and clarity of advice amid difficult times, and

their patience and understanding over the past several years.

I feel fortunate to have had the opportunity to work closely with Ulrich Herberg, Daisuke

Mashima and Wei-Peng Chen during one year internship at Fujitsu Research Lab. in Sunnyvale,

California. I thoroughly enjoyed the chance to work with not only Ulrich, Daisuke and Wei-Peng

but the many other exceptional researchers and interns at FLA. As a member of the Mobile Sensing

Group and ELANS Lab at Michigan State University I count myself lucky to have been surrounded

by a number of outstanding individuals who, at different stages of my PhD, have been part of the

lab. In particular, I must make special mention of Dennis Philips. Over the years we have shared

many long hours working together in the lab, nights and days. He is not only good colleague, but

a good friend. I am definitely lucky to have had support from another amazing person over these

years. I would especially like to thank Abdol Esfahanian, for being there. Over the last few years

I’ve had so much ups and downs amid the particular family situation. Abdol was the very first and

most of the time the only person I could go to. I apologize to all my family and friends for the

past years. I appreciate your understanding of the unreasonably long delays in my replies to phone

calls and emails. I thank you all for not giving up on me and I plan on keeping in closer contact in

the future. Thank you all for your love and support.

I would like to have a special thank to my wife, then my girl-friend, Samaneh, who was always

with me in all difficulties and was willing to go through them with me, like a true friend. I would

v



like to thank her for her calmness, for her emotional support and for her uncountable kindness. She

is indeed my true friend.

Finally, I can not thank enough my parents, my brothers Manoochehr and Hamidreza, my

sister, Zahra, and my sister-in-law, Azadeh, for being accepting and loving irrespective of the

unpredictable nature of my grad-school life, work schedule and the uncertainty it brings. Living

half way across the world complicates many things for a family and they have always stood by me,

sacrificed for me and showed me there are things above material life.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 ORBIT: A Smartphone-Based Platform for Data-Intensive Sensing Appli-
cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 SPOT: A Smartphone-Based Platform to Tackle Heterogeneity in Smart-
Home Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 On-device Deep-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 ORBIT: A Smartphone-Based Platform for Data-Intensive Sensing Ap-
plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Motivation and System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Measurement-Based Latency and Power Profiling . . . . . . . . . . . . . . . . . . 22

2.5.1 Timing Accuracy and Latency Profiling . . . . . . . . . . . . . . . . . . . 22
2.5.2 Power Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Design And Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 Application Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 Data Processing Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.2.1 Adaptive Delay/Quality Trade-off . . . . . . . . . . . . . . . . . 31
2.6.2.2 Data Partitioning via Multi-threading . . . . . . . . . . . . . . . 32

2.6.3 Task Partitioning and Energy Management . . . . . . . . . . . . . . . . . . 34
2.6.3.1 Power Management Model . . . . . . . . . . . . . . . . . . . . . 34
2.6.3.2 Execution Time Profiler . . . . . . . . . . . . . . . . . . . . . . 35
2.6.3.3 Partitioning with Sequential Execution . . . . . . . . . . . . . . 36
2.6.3.4 Partitioning with Branches . . . . . . . . . . . . . . . . . . . . . 40

2.6.4 Task Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.4.1 Smartphone Task Controller . . . . . . . . . . . . . . . . . . . . 41
2.6.4.2 extBoard and Cloud Task Controllers . . . . . . . . . . . . . . . 42

2.7 Microbenchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8.1 Robotic Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



2.8.2 Event Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8.3 Multi-camera 3D reconstruction . . . . . . . . . . . . . . . . . . . . . . . 57
2.8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 3 SPOT: A Smartphone-Based Platform to Tackle Heterogeneity in Smart-
Home Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Requirements and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 XML Driver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1.1 Driver Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5.1.2 Device Driver Usage . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5.2 Appliance Driver by SPOT JAVA Library . . . . . . . . . . . . . . . . . . 82
3.5.3 Appliance/State Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.4 Appliance discovery and bootstrap . . . . . . . . . . . . . . . . . . . . . . 84
3.5.5 Application Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.1 Application 1: Cross-Device Programming . . . . . . . . . . . . . . . . . 85
3.6.2 Application 2: Residential Automated Demand Response . . . . . . . . . . 86
3.6.3 Application 3: Central Usage Analytics . . . . . . . . . . . . . . . . . . . 87

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 4 On-device Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Architectural Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Layer-wise Profiling of Representative Deep Networks . . . . . . . . . . . . . . . 106
4.6 Evaluation of Model Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7 Application Use-case: Deep-Learning Based Crowd-Assisted Location Labeling

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7.1 Traditional Approaches to Location Labeling . . . . . . . . . . . . . . . . 116
4.7.2 Deep Learning-based Approach . . . . . . . . . . . . . . . . . . . . . . . 117
4.7.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.7.4 Labeling and Aggregation by Crowd-Sourcing . . . . . . . . . . . . . . . . 122
4.7.5 Data Collection and Dataset Preparation . . . . . . . . . . . . . . . . . . . 123
4.7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

viii



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix



LIST OF TABLES

Table 2.1: ORBIT based applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 3.1: Smart appliances tested with SPOT . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 4.1: The breakdown of the model shown in Fig. 4.1. Each layer’s output dimen-
sion and execution time profile on two different smartphones with two different
processors i.e., Exynos 7420, Intel i7-4500. . . . . . . . . . . . . . . . . . . . . 108

Table 4.2: Representative Deep Neural Network Models . . . . . . . . . . . . . . . . . . . 109

Table 4.3: Models built in Deep-Crowd-Label via model adaptation and model extension . 120

Table 4.4: Location labeling results. Each table represents one store with name and grand-
truth type (top row). Top-5 prediction results with confidence values (prediction
probabilities) are presented in each row. Each prediction is the aggregated result
of crowd-sensed images for each store (Sec. 4.7.4). . . . . . . . . . . . . . . . . 126

x



LIST OF FIGURES

Figure 2.1: ORBIT nodes for seismic sensing and robots. . . . . . . . . . . . . . . . . . . 19

Figure 2.2: System Architecture of ORBIT. . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.3: Distribution of the intervals between two interrupts raised by a software timer
of Android. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.4: Distribution of execution time of the SIFT algorithm on 640x480 images on
Nexus S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.5: Execution time of signal processing algorithms (error bar: standard deviation). 24

Figure 2.6: Arduino and Nexus S power consumption profiles. . . . . . . . . . . . . . . . 26

Figure 2.7: An example ORBIT application. The numbers besides the leaf nodes in the
execution tree are the priorities assigned by the application developer; the tag
Sx of a task represents the set it belongs to in the task partitioning solution.) . . 29

Figure 2.8: Pseudo-code for generating an application pipeline . . . . . . . . . . . . . . . 30

Figure 2.9: Power management scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.10: Delay/quality trade-off (r = step size) . . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.11: Smartphone multi-threading reduces processing delay of compute-intensive
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.12: The data-dependant algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 2.13: The results of various partition schemes . . . . . . . . . . . . . . . . . . . . . 48

Figure 2.14: Impact of delay bound setting on the task assignment and total energy con-
sumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 2.15: The block diagram of the seismic event timing application. The white blocks
are pre-processing algorithms; the gray blocks are the earthquake detection
algorithms; the black blocks are the P-phase estimation algorithms. . . . . . . 50

xi



Figure 2.16: Application specification of event timing. The “sampler” is a special task run-
ning on the extBoard. Specific tasks with different parameters are defined. For
example, the parameters “1600” and “1” indicate the number of input and/or
output data samples for different tasks, the parameter “1,6” of the bandpass fil-
ter specifies the two corner frequencies; the parameter “4” of wavelet specifies
the level of transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 2.17: The results of various partition schemes. . . . . . . . . . . . . . . . . . . . . . 52

Figure 2.18: Impact of delay bound setting on the task assignment and total energy con-
sumption. Top: The number of tasks assigned to the extBoard versus delay
bound. Bottom: Total energy consumption versus delay bound. . . . . . . . . 53

Figure 2.19: The measured extBoard processing delay and smartphone energy consumption
versus delay bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 2.20: Projected lifetime vs. extBoard duty cycle. . . . . . . . . . . . . . . . . . . . 55

Figure 2.21: The energy consumption trace of a node. . . . . . . . . . . . . . . . . . . . . 56

Figure 2.22: The block diagram of the Multi-camera 3D reconstruction application. . . . . . 57

Figure 2.23: The results of various partition schemes. . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.1: Heterogeneity in today’s smart-home systems. Each appliance in (c) requires
its own app as shown in (a) that communicates with the appliance using its own
protocol via cloud, a bridge and/or directly as shown in (b). Each appliance in
(c) has different functionality and each smartphone app in (a) does not support
appliances for more than one vendor nor share data with other apps. The user
has to switch between apps to operate different appliances. . . . . . . . . . . . 62

Figure 3.2: Heterogeneity in programming abstraction . . . . . . . . . . . . . . . . . . . 67

Figure 3.3: Examples of heterogeneity in message schema in setting different configurations 69

Figure 3.4: SPOT System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.5: XML driver of the Philips HUE light . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.6: The snippet of the XML schema for the SPOT’s driver model . . . . . . . . . 76

Figure 3.7: The snippet of the common driver unit in the driver model . . . . . . . . . . . 77

Figure 3.8: The snippet of the read action unit in driver model . . . . . . . . . . . . . . . 77

xii



Figure 3.9: The write actions using driver model . . . . . . . . . . . . . . . . . . . . . . 78

Figure 3.10: The snippet of the write action unit in driver model . . . . . . . . . . . . . . . 79

Figure 3.11: JAVA and XML specifications for dynamic GUI generation . . . . . . . . . . . 81

Figure 3.12: An example dynamically generated GUI in SPOT . . . . . . . . . . . . . . . . 82

Figure 3.13: Smart appliances tested with SPOT . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 3.14: The length comparison (LOC) of different kind of drivers . . . . . . . . . . . . 91

Figure 3.15: Latency of dynamically loading the XML drivers (error bars: standard deviation) 92

Figure 3.16: Latency of database query . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 3.17: The effect of polling interval and number of appliances (devices) on smart-
phone’s energy consumption. Shorter polling interval and more number of
devices lead to higher rate in energy consumption of smartphone. . . . . . . . 94

Figure 3.18: SPOT records the state of appliances and maintains appliance/state consistent
in its internal DB with frequent polling. . . . . . . . . . . . . . . . . . . . . . 95

Figure 3.19: The smoothness of displaying GUI: The regular rhythm in SurfaceFlinger pro-
cess indicates the smooth display rendering. The regular rhythm in the CPU
state in the same period of time indicates no interference between the threads
in the app. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.20: Latency of whole-home application runtime . . . . . . . . . . . . . . . . . . . 97

Figure 4.1: The output volume (feature maps) of different layers in a deep neural network . 100

Figure 4.2: Sparsity in feature maps in conv. neural nets: This figure shows a typical-
looking feature map on the first conv. layer of a trained AlexNet while pro-
cessing an image of a cat as the input. Every box shows an activation map
corresponding to a filter. This figure shows how sparse the activations are
(most values are zero and shown in black) [Kaparaty 2016, ] . . . . . . . . . . 104

Figure 4.3: The profiling of the execution time, layer-wise latency and the activation’s
tensor size for the three major representative deep neural models. . . . . . . . 107

Figure 4.4: Partitioning Results and end-to-end model latency for representative models
when Deep-Partition is applied . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 4.5: The impact of communication bit-rate on the partitioning and model latency . . 113

xiii



Figure 4.6: The impact of feature maps sparsity on the partitioning and model latency
(AlexNet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 4.7: An indoor area with semantic labels . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 4.8: Our model adaptation schema and ensemble of adapted deep neural models.
Left/Green: Several deep neural models pre-trained or extended using transfer
learning. Middle/Red: The adaptation layer. Right/Blue: The aggregation layer. 118

Figure 4.9: Predictions on real samples collected from indoor shops. Bars below each
image show the top-5 model predictions using our deep learning method sorted
in ascending order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiv



Chapter 1

Introduction

1.1 Overview

Smartphones are becoming more and more embedded in our daily lives, have changed the way we

interact with our environment, and the way we perform our daily activities. While early smart-

phones were designed to primarily support a better voice communication and basic activities like

surfing web, checking emails and listing to music, technological advances helped to reduce the

gap between what we consider conventional smartphones and advanced computers. As this tech-

nological divide further diminished, a new paradigm is emerging fast: smartphones are beginning

to replace the so called “intelligent” or “smart” aspects of many sensing and embedded applica-

tions. The increasing computational resources offered by smartphones allow us to interface them

with many other legacy and new systems directly and continuously more than ever before. An-

other critical component that makes smartphones a central enabler to new advances across a wide

spectrum of application domains is the embedded sensors in these devices. Multi-modal sensing

capability in smartphones is set to become even more critical to sensing systems as they become

intertwined with existing applications such as global environmental monitoring and new emerging

domains such as smart appliances and smart-home systems, sensor-based augmented and virtual

reality, personal and community health-care and sport systems, and intelligent transportation sys-

tems. As such, the ubiquity of smartphones together with their multi-modal sensing capabilities

1



have enabled ground-breaking ways to build a wide spectrum of mobile sensing applications as

never been possible before. These applications are usually human-centric in that the smartphone

utilizes on-board sensors to sense people and characteristics of their contexts. These advances are

enabled not only by rich and multiple sensing capabilities, but also by a number of other factors

as well, including increased battery capacity, communications and computational resources (CPU,

RAM), and new large-scale application distribution channels [Miluzzo, 2011]. By building innova-

tive smartphone applications and embedding novel data processing algorithms to mine large scale

sensing data on smartphones, it is now possible to perform scientific discoveries using ensemble of

smartphones in a more cost-effective way than before [Eagle and Pentland, 2006,Moazzami et al.,

2015].

Different from the sensing-centric applications, this dissertation considers an emerging class

of smartphone-based compute-centric applications. In contrast to the snesing-centric nature of par-

ticipatory sensing in which the application complexity mainly lies on the sensing algorithms while

complex processing is offloaded to the cloud, smartphones in these applications are embedded into

environments to sense and interact with the physical world autonomously over long periods of time.

Applications on the smartphones are more complex and equiped with advance machine learning

algortihms capable of processing large volume and complex sensor data on-the-go on-device. For

instance, in the Floating Sensor Network project [Amin et al., 2007], smartphone-equipped drifters

are rapidly deployed to collect real-time data about the flow of water through a river. The smart-

phone’s GPS allows the drifter to measure volume and direction of water flow based on its real-time

location and transmit the data back to the server through cellular networks. Smartphones have also

been employed for monitoring earthquakes [Faulkner et al., 2011], volcanoes [VolcanoSRI 2012,

], and even operating miniature satellites [NASA PhoneSat 2013, ]. Another important class of

smartphone-based embedded systems is cloud robots [Guizzo, 2011] [Kehoe et al., 2015]. By in-

2



tegrating smartphones, these robots can leverage a plethora of phone sensors to realize complex

sensing and navigation capabilities and offload compute-intensive cognitive tasks like image and

voice recognition to the cloud.

Compared with the traditional mote-class sensing platforms, smartphones have several salient

advantages that make them promising system platforms for the aforementioned applications. These

features include high-speed multi-core processors that are capable of executing advanced data pro-

cessing algorithms, multiple network interfaces, various integrated sensors, friendly user interfaces

and advanced programming languages. Moreover, the price of smartphones has been dropping sig-

nificantly in the last decade. Many Android phones with reasonable configurations (up to 800 MHz

CPU and 2 GB memory) cost less than US$50 [LG Optimus Net, ].

However, several challenges must be addressed before smartphones can be used as a system

platform for data-intensive applications. We face the following major challenges:

(1) High power consumption: The smartphone power management schemes are designed to adapt

to user activities to extend battery time. However, they are not suitable for untethered embedded

sensing systems. If the smartphone samples sensors continually, its CPU cannot enter a deep

sleep state to save energy. Low-power coprocessors (e.g., M7 in iPhone5s) can handle continuous

sampling, but are available on a few high-end models only.

(2) Lack of real-time functionalities: Many sensing applications have stringent real-time require-

ments, such as constant sampling rate and precise timestamping. However, modern smartphone

OSes are not designed for meeting these real-time requirements. For instance, sensor sampling can

be delayed by high-priority CPU tasks such as Android system services or user interface drawing.

Our measurements show that the software timer provided by Android may be blocked by Android

core system services by up to 110 milliseconds. Moreover, Android programming library does not

3



provide the native interfaces that allow developers to express timing requirements.

(3) Lack of embedded programming support: The programming environment of smartphone is

designed to facilitate the development of networked, human-centric mobile applications. However,

it lacks important embedded programming support such as resource-efficient signal processing

libraries and unified primitives for controlling and communicating with peripheral accessories such

as external sensors.

(4) Heterogeneity in mobile apps, communication interfaces and programming abstractions:

The lack of global standards in communication, control and data management for smartphone and

smart devices results in highly fragmented systems consisting of proprietary solutions provided

by multiple device vendors. Users are required to use different control interfaces to interact with

smart appliances in their homes or are forced to use devices sold by a single vendor to get the

interconnection among the apps. Cross app scenarios also suffer from the heterogeneity in the

programming abstraction owing to the lack of global standard and a dominating architecture.

(5) High computation cost in advance machine learning algorithms: Machine learning algo-

rithms are usually computationally intensive, take considerable amount of time and resources to

train and sometimes the resulting model take up a lot of space on the disk, making them difficult

to deploy on resource-limited embedded systems such as smartphones and smart devices. In ad-

dition, majority of advance machine learning algorithms commonly used in real applications are

supervised algorithms - require labeled data to train - making them difficult to use in large scale

sensing applications.

In this dissertation, we propose a number of platforms, models, algorithms and applications,

that advances our abilities to build smartphone-based data-intensive applications by addressing

these challenges collectively. We first conduct a series of systematic measurement experiments to

4



study the limitations of smartphones and highlight the challenges of developing such applications.

We describe the design and implementation of a generic multi-tier platform called ORBIT [Moaz-

zami et al., 2015] that provide the inference and machine learning algorithms for data intensive

continuous sensing applications deployed on off-the-shelf smartphones. Moreover, we provide

case-studies of multiple different such applications built upon ORBIT and discuss the challenges

addressed by ORBIT as well as opportunities provided. In addition, we describe SPOT, a platform

for a new emerging class of data intensive applications in smart-home context. We describe how

SPOT addresses multiple kinds of heterogeneity while providing an extensible ecosystem toward

truly connected smart-homes. We describe applications built on top of SPOT and discuss how

they benefit from SPOT. Finally, we describe how advance machine learning algorithms, like deep

learning models, can efficiently be integrated into the smartphone applications as the core compu-

tation pipeline, by introducing Deep-Partition and Deep-Crowd-Label. Deep-Partition provides a

systematic approach to analyze the architecture of deep neural networks for efficient deployment.

It minimizes the feed forward execution time of deep models by partitioning them between the

phone and the backend cloud subject to the application requirement, available resources and the

model architecture. While Deep-Partition describes efficiency in inference time for single smart-

phone scenarios, this chapter also offers methods to efficiently build such deep models for sensing

applications, as well as a novel method to improve the inference accuracy by using the power of

crowd at inference time. It proposes these methods with a real use-case, a crowd-sourced indoor

location labeling application, Deep-Crowd-Label.

5



1.2 Thesis Outline

The proposed smartphone sensing platforms, system architectures, algorithms, and applications in

this dissertation are rigorously evaluated using a combination of analysis and experimental studies

in real environments. Experimental research plays a key role in the work presented. We build large

scale experimental data-intensive applications over smartphone that are optionally connected to

different devices and embedded boards such as the Arduino and IOIO boards, or different smart-

appliances. We study the behavior of these applications and apply our findings toward the con-

struction of larger and more scalable smartphone-based data-intensive sensing systems. By imple-

menting sensing systems, algorithms, and applications on off-the-shelf smartphones and leverag-

ing large scale data processing algorithms we discover and highlight the challenges presented by

realistic mobile sensing system deployments and propose solutions to address them.

1.2.1 ORBIT: A Smartphone-Based Platform for Data-Intensive Sensing Ap-

plications

In chapter 2 we present the design, implementation, and evaluation of ORBIT platform and re-

port our experience of building data-intensive application over ORBIT in real scenarios like envi-

ronmental monitoring and robotic sensing applications. ORBIT is a smartphone-based platform

for data-intensive embedded sensing applications and features a tiered architecture, in which a

smartphone can interface to an energy-efficient peripheral board and/or a cloud service. ORBIT

as a platform addresses the shortcomings of current smartphones while utilizing their strengths.

ORBIT provides a profile-based task partitioning allowing it to intelligently dispatch the process-

ing tasks among the tiers to minimize the system power consumption. ORBIT also provides a

data processing library that includes two mechanisms namely adaptive delay/quality trade-off and

6



data partitioning via multi-threading to optimize resource usage. Moreover, ORBIT supplies an

annotation-based programming API for developers that significantly simplifies the application de-

velopment and provides programming flexibility. We conduct a measurement-based profiling of the

latency and power consumption of different Android smartphones and various peripheral boards.

Our results suggest that, time-critical tasks, such as high-rate sensor sampling and lightweight sig-

nal processing, should be executed on the peripheral board, while compute-intensive tasks should

be offloaded to the smartphone or the cloud. By intelligently dispatching the processing tasks

among the smartphone, the board, and the cloud, ORBIT minimizes the system energy consump-

tion subject to upper-bounded processing delays. ORBIT also includes a signal processing library

and a component-based programming environment, which support task partitioning with embed-

ded programming primitives. Extensive microbenchmark evaluation and three case studies includ-

ing seismic sensing, visual tracking using an ORBIT robot, and multi-camera 3D reconstruction,

validate the generic design of ORBIT.

1.2.2 SPOT: A Smartphone-Based Platform to Tackle Heterogeneity in Smart-

Home Systems

In chapter 3 we expand the scope of our study to one of the emerging area of data-intensive sens-

ing applications, smart-homes. In this chapter we look at the recent advancements of smart-home

technologies, including broad penetration of Internet-connected smart appliances such as remotely

controllable LED lights, thermostats, cameras, motion sensors, and door locks. We elaborate how

these technologies have changed the way we interact with the appliances and perform our daily

activities and what the challenges toward a truly connected smart-homes are. In general, the sig-

nificant heterogeneity in the smart appliances has led to isolated smart-home systems in which each

7



single appliance vendor provides proprietary solution for appliance specific connectivity and user

experience. In particular, the heterogeneity exists in different aspects of smart appliances such

as control apps, communication protocol, messaging schema, data structure and variable nam-

ing. To address these challenges, we present SPOT, a user-centric, smartphone-based platform for

multi-vendor heterogeneous smart-home appliances. SPOT consists of several novel mechanisms

including XML and JAVA appliance driver models, annotation-based API, an appliance-adaptive

user interface and appliance/state control. To validate the flexibility and generality of our approach,

we have built a SPOT prototype based on 7 real appliances. Our extensive microbenchmark eval-

uation and case studies show that SPOT tackles different types of heterogeneities in smart appli-

ances, significantly eases the development of cross-device smart-home applications, and improves

user experience while incurring low runtime overhead. We believe SPOT is the promising solution

toward a truly-connected smart-homes.

1.2.3 On-device Deep-Learning

Chapter 4 presents a novel partitioning framework for deploying deep neural models in mobile

applications more efficiently. This chapter describes the design, implementation and evaluation

of the Deep-Partition, which represents the first system that combines task offloading with archi-

tecture of deep neural network models. We propose a novel model partitioning framework that

enables us to embed deep learning models into mobile applications by decomposing them and as-

signing layers of the model to different tiers based on their time-criticality, compute-intensity, and

heterogeneous latency/memory consumption profiles. To this end we look into the key standard

layers that deep learning frameworks provide to build any deep neural architecture. We benchmark

them to achieve the layer-wise latency for each architecture. In addition, we exploit the neural net-

works architecture further and consider the 3D output volume of each layer and the encoding and

8



sparsity of each output volume. These factors drive the design of Deep-Partition. To validate the

performance of this framework, we build three major representative deep neural models, partition

them with Deep-Partition under several conditions. We show how Deep-Partition minimizes the

end-to-end execution time of embedded deep neural models. In addition, this chapter embodies

an application of deep neural models in a crowd-assisted system for location labeling. Deep-

Crowd-Label uses crowd-sourcing in both training and execution and shows how crowd-sourcing

architecture can be leveraged to decrease the uncertainty in the prediction of sensing pipelines. It

presents novel model adaptation and transfer learning mechanism to build deep neural models for

mobile application more efficiently especially when proper training data is not available. We be-

lieve methods provided by Deep-Partition and Deep-Crowd-Label significantly facilitate building

high performance mobile sensing applications.

1.3 Thesis Contribution

Herein, in this dissertation, we make several broad contributions to the field of smartphone-based

sensing and data-intensive sensing applications, as summarized in the following.

1- The work in this dissertation contributes to spearheading the emerging area of data-intensive

sensing applications and provides generic and universal platforms for such applications. In

Chapter 2 we conduct systematic measurement and modeling to understand the opportuni-

ties as well as the challenges for using smartphones for data-intensive embedded sensing

applications. Our measurement results are also useful for the design of a broad class of

smartphone-based sensing systems. Second, we provide an implementation of several data

processing algorithms as a library as well as several mechanisms that improve the efficiency

of data processing algorithms for smartphones and mechanisms to extend the hardware plat-

9



form by extension-boards like the Arduino board, if needed. To our best knowledge, ORBIT

is the first general-purpose, extensible, application-aware, and end-to-end sensing and pro-

cessing platform for smartphones-based data-intensive embedded applications. Lastly, we

demonstrate the generality and flexibility of ORBIT as a platform by presenting our ex-

perience in prototyping three applications upon ORBIT: seismic sensing, multi-camera 3D

reconstruction and robotic sensing. The flexible task partitioning and dispatching framework

allows ORBIT to adapt to different task structures, application deadlines, and communica-

tion delays.

2- In Chapter 3 we perform a systematic study to understand the characteristics of smart-home

appliances as well the opportunities and challenges for using smartphone as the central gate-

way to control smart-home appliances. The result of our study shows multiple aspects of

heterogeneity in smart appliances. Second, we provide a flexible, extensive and extensible

device driver model that supports a number of smart appliances available on the market. The

driver model addresses multiple types of heterogeneity observed in our study. Third, we

provide the design and implementation of the proposed platform as a smart-home system

that loads the drivers at runtime along with a dynamic user interface adaptive to the features

of each appliance. Lastly, we demonstrate the generality and flexibility of our system by

presenting our experience in prototyping the drivers for several real appliances as well as a

cross-device home application. We also discuss examples of other home applications that

we have prototyped on top of our platform. We believe this work is a crucial solution for

the current highly fragmented smart-home systems and is a major step toward having a truly

connected smart-home.

3- In Chapter 4 we present a collection of methods to address training and execution chal-

10



lenges of mobile sensing pipelines embedding deep neural models, one of the most compute-

intensive data processing methods for mobile application. In this chapter we address both

system and algorithmic challenges in two different yet complementary perspectives: a) build-

ing the the processing pipeline, b) runtime execution of the pipeline. The methods provided

in this chapter enables researchers and developers to build more efficient mobile sensing

applications with built-in more accurate data processing pipelines.

We believe that ORBIT, SPOT, Deep-Partition and Deep-Crowd-Label significantly advance

the understanding of opportunities and challenges in the design of smartphone-based data-intensive

sensing systems. By proposing some early solutions to tackle these challenges, and ways to seize

the opportunities provided, this dissertation opens up new research directions in this emerging area.

11



Chapter 2

ORBIT: A Smartphone-Based Platform for

Data-Intensive Sensing Applications

2.1 Introduction

Owing to the rich processing, multi-modal sensing, and versatile networking capabilities, smart-

phones are increasingly used to build data-intensive embedded sensing applications. However,

various challenges must be systematically addressed before smartphones can be used as a generic

embedded sensing platform, including high power consumption, lack of real-time functionality

and user-friendly embedded programming support.

In this Chapter, we take the first step toward addressing these challenges collectively. We

present ORBIT, a smartphone-based platform for embedded sensing systems. In particular, OR-

BIT leverages off-the-shelf smartphones to meet the energy-efficiency and timeliness requirements

of data-intensive embedded sensing applications. ORBIT is based on a tiered architecture that

comprises up to three tiers: the cloud, the smartphone, and one or more energy-efficient peripheral

boards (referred to as extBoard) that are interfaced with the smartphone. A number of extBoard

platforms are currently available, such as Arduino [Arduino Board, ] and IOIO [IOIO for Android,

]. Therefore, if the built-in sensors on the smartphones are not suitable for sensing applications,

these boards can readily integrate various accessories, such as external sensors, to an Android

12



phone via USB or bluetooth interface. We conduct a measurement study on the latency and power

consumption of Android smartphones and extBoard platforms. Our results show that the two plat-

forms have highly heterogeneous but complementary power/latency profiles: smartphone features

higher energy efficiency due to its faster processing capability while yielding poor timing accuracy

due to the overhead of OS. These results have important implication for efficient task partitioning.

In particular, while the smartphone and cloud should handle long-running compute-intensive tasks,

time-critical functions such as high-rate sensor sampling and precise event timestamping must be

shifted to the extBoard owing to its hardware timers and efficient interrupt handling.

Motivated by the above observations, we propose a task partitioning framework that assigns

tasks to different tiers based on their time-criticality, compute-intensity, and heterogenous laten-

cy/power consumption profiles. Furthermore, to take advantage of the increasing availability of

multiple cores on smartphones, ORBIT implements a data partitioning scheme that decomposes

matrix-based computation into multiple threads. ORBIT also integrates a data processing library

that supports high-level Java annotated application programming. The design of this library facili-

tates the resource management of the embedded applications by promoting a delay/quality trade-off

mechanism. To enable dynamic task dispatch and runtime task profiling, we develop an ORBIT

runtime environment consisting of task controllers running on each tier. These controllers coor-

dinate task execution through a unified messaging protocol. Owing to these features, ORBIT is a

powerful system toolkit to build a wide spectrum of data-intensive embedded sensing applications.

Contributions of our work outlined as follows. First, we conduct systematic measurement and

modeling to understand the opportunities as well as the challenges for using smartphones for data-

intensive embedded sensing applications. Our measurement results are also useful for the design

of a broad class of smartphone-based sensing systems. Second, we provide an implementation

of several data processing algorithms as a library as well as several mechanisms that improve

13



the efficiency of data processing algorithms for both the smartphone and the extension board.

Several components of ORBIT bear some similarity with existing embedded system platforms

[Cuervo et al., 2010a, Girod et al., 2004, Newton et al., 2009, Sorber et al., 2005]. However, to our

best knowledge, ORBIT is the first general-purpose, extensible, application-aware, and end-to-end

sensing and processing platform for smartphones-based data-intensive embedded applications.1

Lastly, we demonstrate the generality and flexibility of ORBIT as a platform by presenting our

experience in prototyping two applications upon ORBIT: seismic sensing and multi-camera 3D

reconstruction. The flexible task partitioning and dispatching framework allows ORBIT to adapt

to different task structures, application deadlines, and communication delays. The experiments

show ORBIT reduces energy consumption by up to 50% compared to baseline approaches.

2.2 Related Work

Mobile sensing based on smartphones has recently received significant interests. Most stud-

ies focus on the issues related to human-centric context, including coordination among multiple

concurrent sensing applications [Kang et al., 2008, Kang et al., 2010, Ju et al., 2012] and sens-

ing algorithms such as context classifiers [Chu et al., 2011]. Recently, smartphones have been

used in a number of embedded sensing applications. In [Faulkner et al., 2011], smartphones are

used to build an earthquake early warning system using an onboard accelerometer. In the Float-

ing Sensor Network project [Floating sensor network project, ], smartphone-equipped drifters are

deployed to monitor waterways and collect real-time volume and direction of water flow based on

the phone’s GPS. The NASA PhoneSat project [NASA PhoneSat 2013, ] has launched low-cost

satellites equipped with Android smartphones. Controlled by a smartphone, such small satellites

1The source code of ORBIT is available at https://github.com/msu-sensing/ORBIT

14



could perform various tasks such as earth observation and space debris tracking. Several recent

efforts focus on building cloud robots [Guizzo, 2011] that integrate smartphones with robots. The

phone’s built-in sensors are used for sensing and navigation, while compute-intensive tasks like

image and voice recognition are offloaded to the cloud.

Various task offloading schemes for smartphones have been developed recently. Spectra [Flinn

et al., 2002] allows programmers to specify task partitioning plans given application-specific ser-

vice requirements. Chroma [Balan et al., 2003] aims to reduce the burden on manually defining

the detailed partitioning plans. Medusa [Ra et al., 2012] features a distributed runtime system to

coordinate the execution of tasks between smartphones and cloud. Turducken [Sorber et al., 2005]

adopts a hierarchical power management architecture, in which a laptop can offload lightweight

tasks to tethered PDAs and sensors. While Turducken provides a tiered hardware architecture for

partitioning, it relies on the application developer to design a partitioned application across the

tiers to achieve energy efficiency.

Different from these task partitioning schemes, ORBIT dispatches the execution of sensing

and processing tasks in a smart-phone-based multi-tier architecture to achieve data-intensive ap-

plications requirements. ORBIT maximizes the battery lifetime subject to the application-specific

latency constraints. Moreover, in order to support fine-grained task partitioning across the tiers,

the developer specifies the application’s task structure as well as real-time requirements via either

Java annotations or an XML-based application model provided by ORBIT. ORBIT also provides

a messaging interface to support unified data passing mechanism between heterogenous tiers and

between different application components. The details of this messaging protocol is described in a

technical report [Moazzami et al., 2013].

The MAUI system [Cuervo et al., 2010a] enables a fine-grained offloading mechanism to pro-

long the smartphone’s battery lifetime. However, MAUI relies on the properties of the Microsoft

15



.NET managed code environment to identify the functions that can be executed remotely. When

a function is executed remotely, MAUI assumes the energy associated with its local execution is

saved. In contrast, ORBIT does not rely on any language specific environment and its measure-

ment-based power profiles account for many realistic power characteristics such as CPU sleep,

wake up and tail time.

The Wishbone system [Newton et al., 2009] also features a task dispatch scheme. Unlike Tur-

ducken, Wishbone uses a profile-based approach to find the optimal partition. It only considers two

tiers: in-network and on-server. Unlike MAUI, Wishbone relies on the timing profile only and does

not account for the power consumption. ORBIT differs from Wishbone in several ways. Wishbone

uses the CPU and network timing profiles only to find the optimal task partition, while ORBIT

considers the measured latency and power consumption, which leads to more energy-efficient task

partitions. Moreover, Wishbone depends on the timing profiles based on sample data under the

assumption that the sample data can represent actual runtime data. However, our measurement

study shows that the signal processing timing profiles can exhibit significantly variations in real

scenarios. To address this, ORBIT measures the statistical timing profiles at runtime, and period-

ically refines the partitioning results. Moreover, Wishbone formulates the partitioning problem as

a 0/1 integer linear programming problem and thus supports two tiers only. In contrast, ORBIT

formulates the problem as a non-linear optimization problem and supports three or more tiers.

RTDroid [Yan et al., 2014] tackles the lack of hard real-time capability of Android system

and addresses the problem by redesigning and replacing several Android components in Dalvik,

e.g., Looper-Handler and Alarm-Manager. In contrast, ORBIT requires no changes to the Android

system. ORBIT accounts for statistical properties of task execution, and finds the best execution

assignment by its task partitioning mechanism. Hence, although RTDroid and ORBIT address

different sets of issues, they are complementary. In fact, ORBIT can run on RTDroid and the

16



ORBIT-based sensing applications can benefit from both.

Similar to ORBIT, EmStar [Girod et al., 2004] provides an environment to implement dis-

tributed embedded systems for sensing applications based on Linux-class Microservers. However

ORBIT takes one major step further and proposes a design based on smartphones for the purpose

they are not originally designed for, which is embedded systems. This difference in underlying

technology leads to totally different design and implementation. Although EmStar and ORBIT

have similar modular designs, unlike ORBIT, EmStar does not have any partitioning mechanism

and it is not strictly tiered. More importantly, ORBIT provides a library of data processing algo-

rithms that are efficient on the resource-constrained smartphone and extension board. This is not a

design goal of EmStar.

2.3 Motivation and System Overview

In this section, we discuss the motivation of using smartphone as a system platform for data-

intensive embedded sensing applications and the design objectives of ORBIT.

2.3.1 Motivation and Challenges

Mote-class sensing platforms such as TelosB have been widely adopted by embedded sensing ap-

plications in the past decade. However, due to the limited processing and storage capabilities, they

are ill-suited for high-sampling-rate sensing applications. Recently, several single-board comput-

ers such as Gumstix [Gumstix, ], SheevaPlug [Marvell Sheevaplug, ], and Raspberry Pi [Raspberry

Pi, ], which are equipped with rich processing and storage capabilities, have been increasingly used

in embedded applications. However, their designs are not particularly optimized for low-power

sensing. Moreover, without on-board sensors and wireless interfaces, they need to be equipped

with various peripherals for different applications.

17



Different from the above platforms, commercial off-the-shelf smartphones offer several salient

advantages that make them a promising system platform for data-intensive embedded sensing ap-

plications. The advantages include rich computation and storage resources, multiple network inter-

faces and sensing modalities, increasing available multi-core architecture and low cost. Moreover,

smartphones come with advanced programming languages and friendly user interfaces, such as

touch screen to enable rich and interactive display, unlike the limited user interfaces of motes and

embedded computers (e.g., LED and buttons).

However, we still face the following major challenges in building an embedded sensing plat-

form based on COTS smartphones:

(1) High power consumption: The smartphone power management schemes are designed to adapt

to user activities to extend battery time. However, they are not suitable for untethered embedded

sensing systems. If the smartphone samples sensors continually, its CPU cannot enter a deep

sleep state to save energy. Low-power coprocessors (e.g., M7 in iPhone5s) can handle continuous

sampling, but are available on a few high-end models only.

(2) Lack of real-time functionalities: Many sensing applications have stringent real-time require-

ments, such as constant sampling rate and precise timestamping. However, modern smartphone

OSes are not designed for meeting these real-time requirements. For instance, sensor sampling can

be delayed by high-priority CPU tasks such as Android system services or user interface drawing.

Our measurements show that the software timer provided by Android may be blocked by Android

core system services by up to 110 milliseconds. Moreover, Android programming library does not

provide the native interfaces that allow developers to express timing requirements.

(3) Lack of embedded programming support: The programming environment of smartphone is

designed to facilitate the development of networked, human-centric mobile applications. However,

18



(a) Seismic ORBIT node (b) Robotic ORBIT node

Figure 2.1: ORBIT nodes for seismic sensing and robots.

it lacks important embedded programming support such as resource-efficient signal processing

libraries and unified primitives for controlling and communicating with peripheral accessories such

as external sensors.

2.4 System Overview

In this paper, we present ORBIT, which is designed to address the above three major challenges.

An ORBIT node comprises an Android smartphone, an extBoard (e.g., IOIO [IOIO for Android,

] and Arduino [Arduino Board, ]), and possibly a runtime system on the cloud. The extBoard is

connected to the smartphone through a USB cable or bluetooth for communication. It is equipped

with a low-power MCU, e.g., ATmega2560 with 16 MHz frequency, 8 KB RAM, and an analog-

to-digital (A/D) convertor that can integrate various analog sensors. Fig. 2.1 shows two ORBIT

19



Figure 2.2: System Architecture of ORBIT.

prototypes, a seismic monitoring node and a robot sensing node that are used in the evaluation (cf.

Section 3.7). Fig. 2.2 shows the overall system architecture of ORBIT.

ORBIT is designed to meet the following three requirements. (1) Energy-efficiency and while

taking into account the timeliness requirements: ORBIT leverages the heterogeneous power/la-

tency characteristics of multiple tiers (e.g., extBoard, smartphone and cloud server) to minimize

the overall energy consumption. It also models the timing latency of the application statistically

and applies these models in task partitioning and execution. We note that ORBIT cannot achieve

hard real-time guarantees. However, the statistical task timing model allows the task deadlines to

be met with higher probability. (2) Programmability: ORBIT provides a component-based pro-

gramming environment that allows developers to build sensing applications without the need to

deal with low-level issues of the system design. (3) Compatibility: ORBIT relies solely on the

out of the box functionality of COTS smartphones, without requiring kernel-level customization or

device rooting. This not only minimizes the burden on the application developers, but also ensures

the compatibility with diverse smartphone models. In the following, the major ORBIT components

are described.

20



ORBIT Library and Application Model: ORBIT provides a library of signal processing al-

gorithms with unified interfaces. They can be easily composed into various advanced sensing

applications. The library provides a programming primitive, referred to as connection, allowing

programmers to specify application composition in an XML file or through Java annotations. In

particular, each algorithm can be executed on any tier, enabling flexible task dispatching.

Task/Data Partitioner and Execution Time Profiler: To meet the deadlines of sensing appli-

cations, time-critical tasks should be executed on the extBoard while the compute-intensive tasks

should be executed on the smartphone and/or the cloud. We formally formulate a task partitioning

problem that aims to minimize the energy usage of the smartphone subject to a processing delay

bound on time-critical tasks. Task Partitioner solves this problem and obtains the optimal task

dispatch plan. A challenge presented by this design is that the signal processing tasks may have

highly variable execution time. We design an online profiler that measures task execution time at

runtime and runs the task partitioner dynamically. Moreover, ORBIT adopts a data partitioning

scheme that decomposes matrix-based computation into multiple threads to take advantage of the

increasing availability of multiple cores on smartphones.

Task Controllers and Unified Messaging Protocol: At runtime, the Task Controllers on different

tiers collaboratively instantiate the tasks and execute them by following the task dispatch plan. The

extBoard runs low-level and real-time functions such as sensor sampling and lightweight signal

processing tasks. The smartphone and cloud run compute-intensive tasks that require data from

a single and multiple ORBIT nodes, respectively. To facilitate such flexible task dispatching and

control, we develop a unified messaging protocol for the communication across different tiers on

top of native communication channels such as USB (between phone and extBoard) and HTTP

(between phone and cloud server). Due to space constraint, the details of the messaging protocol

21



are omitted in this paper and can be found in a technical report [Moazzami et al., 2013].

2.5 Measurement-Based Latency and Power Profiling

To use smartphones as a system platform for data-intensive sensing applications, it is important

to understand the characteristics of their latency and power consumption. This section presents

a measurement study of the latency and power consumption on different smartphones. The mea-

surement study provides insights into the limitations of smartphones and motivates several key

design decisions in ORBIT. For instance, the design of the task partitioner, execution time profiler,

adaptive delay/quality trade off in the library are based on the findings of the measurement study

discussed in this section.

2.5.1 Timing Accuracy and Latency Profiling

Timing accuracy is critical for many sensing applications. For instance, acoustic or seismic source

localization [Liu et al., 2013] typically requires millisecond level precision for the timestamps of

sensor samples. In this section, we measure the accuracy of software timer and event timestamping

of Android smartphones and discuss the impact on the design of ORBIT. First, an event timer

is commonly used to implement constant-rate sensor sampling and its accuracy determines the

sampling rate precision that can be supported. Second, timestamping an external event, which

may be triggered by a GPS receiver or a sensor connected to the smartphone through USB, is

also essential for many embedded applications. Our measurements are conducted using an LG

GT540, a Nexus S, and a Galaxy Nexus, representing three typical low- to medium-end smartphone

models. They run three versions of Android distribution, 2.1, 4.0.4, and 4.2.2. The LG GT540

results discussed here are representative of these phones measured in terms of the level of timing

variability.

22



0

20

40

60

0 20 40 60 80 100 120

P
er

ce
n
ta

g
e

(%
)

Interval between two interrupts (ms)

Figure 2.3: Distribution of the intervals
between two interrupts raised by a software

timer of Android.

 0

 10

 20

 30

 40

 50

 0  1  2  3  4  5  6

P
er

ce
nt

ag
e(

%
)

Execution time (s)

Figure 2.4: Distribution of execution time
of the SIFT algorithm on 640x480 images

on Nexus S.

Software Timer: Fig. 2.3 plots the distribution of the intervals between two interrupts generated

by a software periodic timer with an desired interval of 10 ms, while only Android core system

services are running. Although most intervals are close to 10 ms, the distribution has a long tail

with a maximum interval above 110 ms.

Event timestamping: We then measure the delay between the time instance when a pulse signal

is received by a digital pin of an extBoard (which triggers a USB interrupt to Android) and when

the USB interrupt is received in an Android application. Our measurement shows that this delay is

highly variable and can be up to 5 ms.

Due to the Android’s poor timing accuracy suggested by these results, it is difficult to im-

plement high-constant-rate sensor sampling or precise event timestamping. In contrast, our mea-

surement shows that the timing error of an Arduino extBoard is no greater than 12µs, due to the

availability of hardware timers and efficient interrupt handling.

We then investigate the execution time of the signal processing algorithms. We find that most

algorithms have relatively constant execution times for fixed input sizes. However, the execution

time of a few algorithms depends on the input data. Fig. 2.4 shows the distribution of the exe-

23



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 128  256 400  800  1600

E
xe

cu
tio

n 
tim

e 
(s

)

Input size

variance
regresser

wavelet
sparsity

(a) On Arduino

 0

 0.2

 0.4

 0.6

 0.8

 1

 128  256 400  800  1600

E
xe

cu
tio

n 
tim

e 
(m

s)

Input size

variance
regresser

wavelet
sparsity

(b) On Nexus S

Figure 2.5: Execution time of signal processing algorithms (error bar: standard deviation).

cution time of the scale-invariant feature transform (SIFT) used for detecting features of different

640x480 pixel images on a Nexus S. This example suggests that the statistical properties of the

signal processing delays must be accounted for at runtime to ensure the real-time performance of

the application.

The execution times of the tasks determine their energy consumption and highly affect the real-

time performance of the application. Fig. 2.5 plots the execution times of four signal processing

algorithms on an Arduino extBoard and a Nexus S smartphone versus the length of the input

signal. It can be seen that extBoard’s and smartphone’s latencies are in the order of seconds and

milliseconds, respectively. However, they have comparable power consumption as will be shown

in Section 2.5.2. Therefore, the smartphone can process the signals with less energy and shorter

delays.

24



2.5.2 Power Profiling

As computation is typically the dominant source of power consumption in data-intensive sensing

applications, we focus on profiling the CPU of smartphones. Power consumption of other com-

ponents (e.g., radio) can be easily integrated with the measured CPU power profiles. We measure

the current draw of several Android smartphones using an Agilent 34411A Multimeter. Fig. 2.6a

shows the the power consumption of a Samsung Nexus S and Arduino board in different processing

states. We observed similar CPU state transitions and power consumption characteristics across

multiple smartphone models. Initially, the smartphone is in the sleep state, and hence draws little

current (less than 5 mA). At the 5th second, the extBoard requests the smartphone to execute an

FFT algorithm. Upon receiving the request, the phone first acquires a wake-lock, the Android

mechanism to prevent the phone from going to sleep. At the 25th second, FFT completes and

releases the wake-lock. Before the phone fully wakes up or goes to the sleep state, there is a transi-

tional phase with a few power spikes. Fig. 2.6b shows the expanded view of these two transitional

phases. We refer to them as wake-up and tail phases, lasting approximately 200 ms and 755 ms,

respectively. There are also two spikes in Fig. 2.6a, caused by the communications between the

phone and the extBoard. Since these spikes are very short and have limited current draw, their en-

ergy consumption is negligible. Based on these results, we define four CPU states: sleep, wake-up,

active and tail.

The Arduino extBoard has three states, active, idle, and sleep. Its average current draw in these

states are 90 mA, 66 mA, and near zero, respectively. In contrast to the smartphones, the transi-

tional states for Arduino are very short (in the order of µs) and hence their energy consumption is

negligible.

25



 0

 200

 400

 600

 800

 0  5  10  15  20  25  30Po
we
r 
co
ns
um
pt
io
n 
(m
W)

Time (s)

Nexus S Arduino

(a) Power consumption comparison of Arduino and Nexus S in a 30-second experiment.

 0

 200

 400

 600

 800

 4  4.5  5  5.5  6P
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

Time (s)

 0

 200

 400

 600

 800

 24.8  25  25.2  25.4P
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

Time (s)

(b) Zoomed-in view of the wake-up and tail states of Nexus S.

Figure 2.6: Arduino and Nexus S power consumption profiles.

2.5.3 Summary

The above profiling results show the significant heterogeneity in the power and latency profiles

of different tiers (extBoard and smartphone). Although similar measurement studies have been

reported in literature [Newton et al., 2009, Cuervo et al., 2010a], we collectively report our mea-

26



surement results and show how these findings provide important implications for both challenges

and opportunities in the design of ORBIT. First, as the Android system has poor timing accuracy,

time-critical functions such as high-rate sensor sampling and precise sensor event timestamping

must be shifted to the extBoard owing to its hardware timers and efficient interrupt handling. Sec-

ond, signal processing algorithms may have dynamic execution times, which need online profiling

to ensure that the critical time deadlines of the application are met. Third, smartphones have much

lower latency and higher energy efficiency than the extBoard. However, if the extBoard must stay

active to continually sample sensors, it is desirable to utilize its spare time to process signals, such

that the smartphone can sleep to save energy. Lastly, the transitional phases (wake-up and tail) and

the data transfers among the tiers incur non-negligible overhead in both energy consumption and

latencies. When dispatching signal processing tasks to different tiers, these important characteris-

tics must be carefully considered in order to minimize the total system energy consumption while

meeting application latency constraints.

27



2.6 Design And Implementation

This section presents the design of ORBIT to achieve the objectives discussed in Section 2.3.1.

2.6.1 Application Pipeline

An ORBIT application pipeline can be represented by a graph, where the nodes are the processing

tasks and the edges are the data flows. The application pipeline, which defines the sequence of

executing the tasks, is used by the component-based programming model and task partitioning

module of ORBIT. Each task implements an elementary sensing or processing operation, such as

computing mean, FFT or converting an image to grayscale. For example, an application pipeline

can be:

sample the sensor (camera)→ low pass filter→ face recognition→ write into file.

Each task itself can be made of a few smaller tasks. Such an application model offers two

benefits. First, by the notion of task, we can build the latency profile of each task (as explained in

section 2.5.1) and use it for task partitioning (as described in the next section). Second, ORBIT

application model can significantly simplify the application development and reduce the user effort

to create an application, especially for those who are not familiar with embedded system design. In

particular, ORBIT presents application developers with a single programming abstraction without

burdening them with low-level details such as where and how the tasks are executed and how they

communicate across different tiers.

ORBIT supports two methods for specifying an application. An application developer can

either write Java code using the ORBIT API or write an XML file. In either way the application

pipeline specifies what tasks are used, what parameters for each task are set, and how the task are

connected to form the pipeline. From this point forward, we will use a running example, shown

28



T1

T2

T3

T4

T5

T6

T7

T8

T9

T10
1

2

3

4

5

6

S1

S2S1

S1

S2
S4

S3

S5

S5

S6

T11

S5

T12

S6

data connection

sequential execution

connection

branching execution

connection

Figure 2.7: An example ORBIT application. The numbers besides the leaf nodes in the execution
tree are the priorities assigned by the application developer; the tag Sx of a task represents the set

it belongs to in the task partitioning solution.)

in Fig. 2.7, to illustrate how tasks are connected to build an application, as well as the automatic

execution optimization and manipulation in later sections. The sample application has 12 tasks

(i.e., T1 to T12).

The major way to define an application is to use the ORBIT API. ORBIT provides the ap-

plication developer an API, using Java annotations [Oracle, ]. By using this API, an application

developer implements the application pipeline as a Java class specifying each task in the pipeline

as a field and uses ORBIT-provided annotations to annotate each task. By annotations, the de-

veloper indicates which task is connected to another task(s) as well as which outputs data pins

in the source task are connected to which input data pins in the destination task. For instance, a

Java class generating the application pipeline in Fig. 2.7 can simply be implemented as shown in

Fig.. 2.8, where Taski is an algorithm in the ORBIT library, the paramis specify the input and

output parameters for each task including the input, output data and data sizes (number of sam-

ples) and other algorithms’ specific parameters, e.g., threshold, window size and etc. The @Next

annotation is defined by ORBIT API and used by application developer to connect the tasks and

form the pipeline. The annotations @source and @sink are used to indicate the source and sink

29



/** import ORBIT API **/

public class Sample_application_pipeline extends ORBIT_pipeline_model {

@Source

@Next{T_2, T_3}

private Task T_1 = new Task_1(param_1,param_2,...,param_N);

@Next{T_4, T_5{2}, T_6{1}}

private Task T_2 = new Task_2(param_1,param_2, ...,param_N);

@Next{T_7,T_8}

private Task T_3 = new Task_3(param_1,param_2,...,param_N);

. . .

@Sink

private Task T_10 = new Task_10(param_1,param_2,...,param_N);

}

Figure 2.8: Pseudo-code for generating an application pipeline

tasks in the pipeline.

A key advantage of the annotation-based ORBIT programming model is that the developers

use the advanced features of Java supported by Android and take advantage of the ease of use of

Java language to set up the application pipeline without being burdened with error-prone embedded

programming using low-level languages.

2.6.2 Data Processing Library

ORBIT provides a library of data processing algorithms ranging from common learning algorithms

and utilities (e.g., classification, regression, clustering, filtering, and dimensionality reduction),

to primitives like gradient decent optimizations. Using these well tested functions and provided

APIs, developers can quickly construct sensing applications by simply connecting different build-

ing blocks via the ORBIT application pipeline model. This library has two main design objectives.

Firstly, it is extensible so that developers can easily add more algorithms or port legacy signal pro-

30



cessing libraries. Secondly, it is designed to be resource-friendly with smartphone and extBoard (if

utilized by the application). Several algorithms are implemented in Java while others are written in

C++ and connected with the rest of ORBIT components via a Java Native Interface (JNI) bridge.

A key challenge in the design of ORBIT programming library is that many ORBIT applica-

tions have stringent requirements on timing/overhead. ORBIT library includes two mechanisms to

optimize resource usage while providing programming flexibility at the same time, namely adap-

tive delay/quality trade-off and data partitioning via multi-threading. These mechanisms allow

programmers to develop resource-friendly applications on the smartphone platforms.

2.6.2.1 Adaptive Delay/Quality Trade-off

The goal of this feature is to shorten the execution time of many tasks without substantially imped-

ing the quality of their output. ORBIT achieves this by taking advantage of a property common

to many algorithms. That is, many algorithms are iterative and based on an optimization function.

The most commonly used methods to solve optimization problems, including the gradient descent

method and Newton’s method, are implemented as low-level primitives in the ORBIT library. Gra-

dient descent is an iterative process moving in the direction of the negative derivative in each step

(or iteration) to decrease the loss. Once the loss is less than a threshold, the algorithm stops. Sim-

ilarly, Newton’s method uses the second derivative to take a better route. Thus, a task that goes

through more iterations to find the optimum solution for an objective function experiences a longer

execution time, consequently causing the application to consume more energy on the smartphone.

One way to shorten this latency and thus decrease the energy consumption is to simply stop the

algorithm earlier, e.g., when the solution at step t is satisfactory. This approach is motivated by

the principles of anytime algorithms [Zilberstein, 1996]. This early-stopping mechanism for these

iterative-optimization tasks in ORBIT is controlled by three parameters: stepSize, numOfItera-

31



tions, samplingFraction, where samplingFraction is the fraction of the total data sampled in each

iteration to compute the gradient direction. In the ORBIT library, these parameters are used as

input parameters to the quality controller for each task while still satisfying the quality level of the

entire application pipeline.

2.6.2.2 Data Partitioning via Multi-threading

One of the key advantages of the smartphone, in comparison to the mote-class platforms, is the

availability of high-speed multi-core processors. Many smartphones today have two or more cores.

For instance, Moto G costs less than $110 and has 4 cores. However, in spite of the availability

of multi-core CPUs, multi-thread programming remains challenging. ORBIT can automatically

partition long-running and compute-intensive tasks into different threads and run them on different

cores. This allows users to focus on the domain specific aspects when designing the task structure

for their sensing applications.

There are two different approaches to transforming an application into multiple threads. First,

we can schedule different tasks of the application to execute on a pool of worker threads. In

particular, ORBIT can parse the task structure and schedule tasks to different threads accordingly.

However, many embedded applications contain a small number of "bottleneck" tasks in the signal

processing pipeline, whose execution time dominates the total latency. As a result, such a task-

level multi-threading strategy would not significantly reduce the end-to-end latency. ORBIT adopts

a data-driven multi-threading approach to partition these tasks. We now use the matrix-vector

multiplication operation as an example to illustrate this approach.

Many signal processing algorithms (e.g., various transforms and compressive sampling) are

based on matrix multiplication. The output y is the matrix multiplication expressed as y = Ax,

where A ∈ Zm×l is the computation to be applied on the input x ∈ Zl×1. Suppose matrix A

32



is evenly split into sub matrices, i.e., A = [A1,A2, . . . ,AK ], where Ak ∈ Zm/k×l. The kth

sub-task computes yk = Akx, and the final result is y = [y1,y2, . . . ,yk]. The kth sub-task

also performs matrix-vector multiplication. ORBIT picks the value of k based on the number of

cores available on the phone (which can be queried through an Android API). ORBIT creates the

computation threads on-the-fly and assigns the maximum priority to them to ensure they will not

compete for resources with other threads running on the device. In this manner, ORBIT splits all

matrix-based signal processing tasks assigned to the smartphone.

A number of signal processing algorithms based on matrix operations can benefit from OR-

BIT’s data partitioning scheme. Examples include Singular Value Decomposition (SVD), Eigen-

value Decomposition, Principal Component Analysis (PCA), mean and average. These fundamen-

tal algorithms are often used in the design of other more advanced algorithms. Since extBoard

does not support multi-threading, these versions are implemented in C++ without the use of any

matrix libraries.

A key design consideration of multi-threading is to minimize the overhead of inter-thread com-

munication. In ORBIT, the matrices are passed to the threads by reference and each thread com-

putes the partial and non-overlapping (disjoint) part of the result. In other words, different threads

access the same data structure but disjoint parts of it. For example, thread k computes yk = Akx,

and sub-matrices yk are not overlapping. Matrix y = [y1,y2, . . .yk] is also accessed by the main

thread similarly without conflicts or memory copy between threads. The avoidance of inter-thread

communication in ORBIT is important for data-intensive tasks that deal with large matrices.

33



2.6.3 Task Partitioning and Energy Management

A key design objective of ORBIT is to provide an energy efficient smartphone-based platform. For

this purpose, ORBIT adopts a task partitioning framework that exploits the heterogeneity in power

consumption and latency profiles of different tiers. The task partitioning algorithm minimizes

system energy consumption while meeting the processing deadlines of sensing applications. In

addition, to reduce application delays, ORBIT implements a data partitioning scheme that decom-

poses matrix-based computation into multiple threads which are scheduled to execute on different

CPU cores.

2.6.3.1 Power Management Model

From the key observations obtained from the measurement-based study in Section 2.5, ORBIT em-

ploys different power management strategies for different tiers. Specifically, the extBoard operates

in a duty cycle where it remains active for Ta seconds and sleeps for Ts seconds in a cycle. During

the active period, the extBoard samples the sensors at constant rates. The time duration for sam-

pling a signal segment is referred to as sampling duration, and denoted as Td. The active period

contains multiple sampling periods. A signal segment collected during the current sampling period

will be processed by the ORBIT application (e.g., the one shown in Fig. 2.7) in the next sampling

period. The values of Ta, Ts, and Td are determined based on the expected system lifetime and

timeliness requirements of the sensing application. Moreover, the sampling and processing on the

extBoard are often subjected to stringent delay bounds. Modern microprocessors also offer low

power sleep states with wake on interrupt which can be utilized to further reduce the extBoard

power consumption during the sampling period. Different from extBoard, the smartphone adopts

an on-demand sleep strategy in which it remains asleep unless activated by extBoard or by the

34



extBoard

phone state

time

Ta Ts

...
Td

activation

Figure 2.9: Power management scheme.

cloud messages. Fig. 2.9 illustrates the extBoard’s duty cycle and the smartphone on-demand

sleep schedule.

2.6.3.2 Execution Time Profiler

The extBoard and smartphone power profiles are unlikely to substantially change during the life-

time of the application. However, the latency profile of a task may contain errors and be subject to

change after deployment, as shown in the Fig. 2.4 example. To address this issue, ORBIT contin-

uously measures the latency of each task at runtime and periodically re-runs the task partitioner to

update the task partitioning scheme. Specifically, we designed an Execution Time Profiler that can

build the statistical latency models for all tasks based on the run-time measurements. It measures

the execution time of each task by using the system time before and after execution of the task. It

also maintains a Gaussian distribution model for each task’s execution time, Ti ∼ N (µi, σ
2
i ). The

parameters of this distribution are updated by each new measurement t as : µ′i = µi + 1
n .(t − µi)

and σ
′2
i = 1

n((n−1)σ2
i +(t−µi)(t−µ′i)). Based on these models, the percentiles with a high rank

are used to set the execution times (i.e., tpi , tbi , and tci ). Under this approach, ORBIT can achieve

optimal partitioning solution while meeting the timing requirements statistically.

35



2.6.3.3 Partitioning with Sequential Execution

As discussed in Section 2.6.3.1, the extBoard has a fixed duty cycle and hence consumes relatively

constant energy. Therefore, ORBIT aims to minimize the total energy consumption of smart-

phone, subject to the processing delay upper bound for each tier. Consider a sensing application

consisting of n tasks (denoted by T1, . . . , Tn), with an execution pipeline expressed as a sequen-

tial set of tasks: T = T1 → T2 → . . . → Tn. Let Ii denote the execution tier of Ti, where:

Ii ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} represent the extBoard, smartphone, and cloud, respectively. Let

τb, τp, τc, τA denote the execution times of the extBoard, smartphone, cloud, and the end-to-end

delay of the whole application (or the delay-critical portion of the application), respectively, in a

sampling period. We now formulate the task partitioning problem for sequential execution. The

case of branching execution is discussed in a technical report [Moazzami et al., 2013].

Task Partitioning Problem. For the sequential execution T = T1 → T2 → . . . → Tn, the

Task Partitioner finds an execution assignment set S = {I1, I2, . . . , In} to minimize the total

smartphone energy consumption in a sampling duration (denoted by E) subject to τb ≤ Db, τp ≤

Dp, τc ≤ Dc, and τA ≤ DA.

The processing delay upper bounds Db, Dp, Dc, and DA are typically set according to the

timeliness requirements of the application, e.g., the constant rate of sensor sampling, the time pe-

riod to detect a moving object before it moves away, etc. As the sensor sampling and timestamping

introduce little overhead (cf. Section 2.6.4.2), it is safe to set Db to a value that is slightly smaller

than the sampling period. It is shown in [Newton et al., 2009] and [Cuervo et al., 2010b] that

this partitioning problem is modeled as an integer linear program (ILP) that minimizes a linear

combination of network bandwidth and CPU consumption subject to the upper bounds for these

resources. It is important to note that under the conventional ILP partitioning, the model only takes

36



the execution time latency (i.e., CPU consumption) and data copy latency between tiers (e.g., net-

work bandwidth) into account. In contrast, ORBIT extends this model by adding two additional

terms to the partitioning model. These terms are wake-up and tail time of smartphone and the

(instant) power consumption of each tier. Also, with the help of the execution time profiler, OR-

BIT considers one more factor, the uncertainty of execution times. Thus, ORBIT provides a more

realistic partitioning model.

We now deriveE and the delays (τA, τb, τc, and τp). We first define the following notation. The

execution times of task Ti on the extBoard, smartphone and cloud are denoted by tpi , tbi and tci , re-

spectively. Let P denote the power consumption, where the superscripts ‘p’, ‘b’, and ‘c’ represent

smartphone, extBoard, and cloud; and the subscripts ‘a’ and ‘s’ represent active power and sleep

power of the smartphone and the extBoard. Denote tb↔p the latency of downloading/uploading

a data unit from/to the phone to/from the extBoard, tp↔c the latency of downloading/uploading a

data unit from/to the phone to/from the cloud, Ji the number of input pins of Ti, and li,j the signal

length of the jth input pin of Ti.

We now analyze the energy consumption and processing delay of an application in a sampling

period. Note that we only need to analyze the energy consumption of the smartphone. The reasons

are twofold. First, the cloud’s energy consumption does not fall into the system’s total energy

consumption. Second, as the extBoard keeps active to continually sample sensors or activate the

smartphone, its power consumption is fixed.

37



(1) Processing energy consumption and delay: Let E1 and τ1 denote the smartphone energy and

delay in processing the signal collected during a sampling duration. Analysis shows

E1 =
n∑
i=1

Ii ·


(Pb

a + P
p
s )tbi

(Pb
s + P

p
a )t

p
i

(Pb
s + P

p
s )tci

 + d(Ii, Ii−1) · Ew+ET
2

,

τ1 =
n∑
i=1

Ii ·


tbi

t
p
i

tci

 + d(Ii, Ii−1) · Tw+TT
2

,

where Ew, Tw, ET and TW are the energy consumed and the time spent during the tail and wake-

up phases respectfully. The function d(Ii, Ii−1) accounts for the data-copy overhead between the

tiers by indicating the distance between the positions of ‘1’ in Ii and Ii−1. For instance, when

Ii = Ii−1 = (1, 0, 0), d(Ii, Ii−1) = 0; when Ii = (1, 0, 0) and Ii−1 = (0, 1, 0), d(Ii, Ii−1) = 1.

Since the number of tiers are three, the maximum distance is two dmax(Ii, Ii−1) = 2 and that is

when a task is assigned to the cloud (e.g., Ii = (0, 0, 1)) while its previous task is assigned to the

extBoard (e.g., Ii−1 = (1, 0, 0)), or vice-versa. In this case, the data has to be transferred between

these two tiers through smartphone (there is not direct communication between extBoard and the

cloud server). Moreover, we obtain the execution times of the extBoard, smartphone and the cloud

portion of application as following:

τb =

n∑
i=1

Ii ·


tbi

0

0

 , τp =

n∑
i=1

Ii ·


0

tci

0

 , τc =

n∑
i=1

Ii ·


0

0

tci



38



(2) Overhead of phone state transitions and cross-tier data copy: Let E2 and τ2 denote the

energy consumption and the delay for copying data. We define a function s(i, j) based on the

application pipeline which returns the ID of the source task connected with the Ti’s jth input

parameter. If the tasks Ti and Ts(i,j) are executed at different tiers, the jth input data parameter

of Ti needs to be copied between the consecutive tiers causing smartphone energy consumption of

P
p
a tcli,j and extBoard processing delay of tcli,j . Thus,

E2=
n∑
i=1

Ji∑
j=1

d(Ii, Is(i,j))P
p
a tcli,j

τ2=
n∑
i=1

Ji∑
j=1

d(Ii, Is(i,j))tcli,j .

Therefore, the total smartphone energy consumption and the delay for processing the sensor

data collected in a sampling period are E = E1 + E2 and τA = τ1 + τ2. Note that E does not

include the sleep energy consumption of the smartphone from the end of the current execution cycle

to the beginning of the next cycle when the new sensor data become available. However, as the

Task Partitioner will fully utilize the allowed processing time D to reduce the smartphone energy

consumption, the time duration of an execution cycle will be close to the sampling period if D is

close to the sampling period. Therefore, the sleep energy consumption of the smartphone during

the gap is negligible. Based on the above delay and energy models, the task partitioning problem

is a constrained non-linear optimization problem. The nonlinearity comes from the formula of E

and τ . ORBIT uses brute-force search to solve the problem. As the number of tasks in a sensing

application is typically small, our measurements in Section 3.7 show that the brute-force search

introduces little overhead even if the Task Partitioner is executed periodically by the smartphone

39



(c.f., Section 2.6.3.4). For instance, its execution time is less than 10 ms on a Galaxy Nexus for up

to 20 tasks.

2.6.3.4 Partitioning with Branches

While we focus on sequential execution in the last section, real applications can contain branches

in their execution flow. To discuss our approach to partitioning tasks containing branches, we

continue to use the running example shown in Fig. 2.7. Different from sequential tasks, a key

challenge is a task partitioning solution that is optimal for all branches may not exist. As an

example, consider the part of Fig. 2.7, which includes T1, T2, and T3 only. Suppose we run the task

partitioning algorithm for the two execution paths, i.e., T1 → T2 and T1 → T3. These two solutions

can be conflicting because T1 may be assigned to different tiers (smartphone and extBoard) in

each solution. ORBIT adopts a priority-based approach to resolve the potential conflicts. In the

execution tree of Fig. 2.7, there are six paths from the root node to all leaf nodes. We assign

an integer priority to each path, where a smaller number means a higher priority. As each leaf

node is associated with a unique path from the root node, the priorities can also be associated with

the leaf nodes. A higher priority means that the corresponding path will be executed with higher

probability. The priorities can be assigned by the developer or randomly set by default. In our

approach, we run the task partitioning algorithm discussed in Section 2.6.3.3 for each path, in the

order of increasing integer priority. For instance, we run the task partitioning algorithm over the

path with the highest priority (i.e., T1 → T2 → T6), yielding solution S1. We then choose the path

with the second highest priority (i.e., T1 → T2 → T5 → T9). As T1 and T2 have been included

in S1, we run the task partitioning algorithm for the residual path (i.e., T5 → T9) only with the

assignment of T2 in S1. We apply this procedure to all other paths. At run time, the Task Controller

executes the tasks according to the assignment set. For instance, in Fig. 2.7, if it decides to execute

40



T5 according to the result of T2, it will dispatch T2 according to S2.

2.6.4 Task Controllers

Task Controllers (TCs) on the smartphone, the extBoard, and the cloud execute the entire sensing

application according to the assignment computed by the Task Partitioner. Fig. 2.2 shows the

interaction of the TCs with other components in ORBIT.

2.6.4.1 Smartphone Task Controller

The smartphone TC is designed as an Android background service, which manipulates the execu-

tion of the tasks and communicates with the extBoard and the cloud. When the ORBIT application

is launched, the smartphone TC creates the instances of the tasks in T, and allocates the buffers for

all inputs and outputs. After this initialization phase, the TC checks the partitioning assignments

and begins execution of the first task. When the smartphone is not executing a task, it switches

to the sleep state to conserve energy. When task execution needs to return to the smartphone,

a notification message is sent waking the smartphone and activating its TC to execute the next

tasks assigned to it. The smartphone TC also continuously updates the task meta information (e.g.,

execution times) as well as branch priorities.

Our measurement study shows that the smartphone consumes considerable energy during wake-

up and tail phases (cf. Section 2.5.2). We optimize the design of TC to start a task as soon as the

smartphone wakes up or to let the smartphone sleep as soon as no more tasks need to run. After

the TC executes a task T on the smartphone, it checks if there is any task assigned to the other two

tiers that takes T ’s output as input. If there are, TC will send T ’s output data to the other tier using

ORBIT’s messaging protocol [Moazzami et al., 2013]). This allows the other tiers to run the tasks

with input data from smartphone without re-activating it, avoiding extra wake-up and tail energy

41



consumption. However, a side effect of this design is that, if the application has branches the data

transmitted to another tier may not be used. However, typical signal processing pipelines likely

contain a limited number of branches.

2.6.4.2 extBoard and Cloud Task Controllers

The extBoard TC continually checks for the arrival of messages from the smartphone. When it

receives a start task execution message from the smartphone, it begins executing the first task in its

assignment. In the case of starting a sampling task, the extBoard creates a periodic timer to control

the sampling. The timer interrupt handling routine reads a sensor sample from the ADC, time-

stamps it, and then inserts it into a circular buffer. This process involves only a few instructions,

and is optimized to reduce the interrupt handling delay. Once the sampling task has obtained the

number of samples specified in its input parameter, task execution continues with the task following

the sampling task according to the execution tree T.

The cloud TC is implemented as a Linux daemon that checks for the arrival messages from

one or multiple smartphones. There are two types of tasks running on the cloud; tasks that are

computationally intensive that are assigned by the Task Partitioner and the tasks that take input

data from multiple ORBIT nodes. Upon the completion of task T in the cloud, the cloud TC sends

T ’s output to all the smartphones that require the output. If any of the smartphones are in the sleep

mode, they wake up when a cloud message is received. The cloud TC, like the smartphone TC,

continuously updates the task meta information (e.g., execution times) as well as branch priorities.

This ensures fresh meta information is used for the task partitioning.

42



2.7 Microbenchmark

In this section, we evaluate overall memory and CPU usage of ORBIT as well as the overhead

introduced by online task partitioning. We also evaluate the effect of multi-threading on reducing

the task processing delays.

CPU and memory footprint on smartphone: We measure the CPU and memory footprints of

ORBIT. We use the Android utility application, System Monitor, to measure the CPU and memory

usages. We select different applications that run with ORBIT. ORBIT runs as an app and its CPU

utilization may vary based on the smartphone hardware, Android version and other apps running

on the smartphone. We measure the CPU footprint of ORBIT by the increased CPU utilization

when it runs tasks. Our measurements show that ORBIT’s CPU footprint ranges from 10% up to

15%. The memory usage is about 22.5 MB during silence, but reaching 33.8 MB for a sensing

application as heap space is dynamically allocated for the processing tasks. The total size of the

ORBIT binary is only 2.84 MB.

Delay/quality trade-off: In section 2.6.2.1 we discussed how algorithms are tuned for desirable

trade-offs between quality and delay. Fig. 2.10 shows the convergence of the Gradient Descent

algorithm for different step sizes r and number of iterations. As it is expected and is illustrated in

the figure the gradient value decreases as the number of iterations increases until finally converges

to the solution. Larger step sizes result in the gradient converging faster. However the rate of

decrease slows after a certain iteration for each step size, meaning the task does not benefit from

more iterations. Thus, gradient descent can often find a good enough solution in fewer iterations

than the number of iterations provided as an input parameter, allowing ORBIT to stop it earlier

without loosing a significant accuracy. Examples of algorithms that can benefit from this feature

are SVM, linear regression and K-mean clustering. This feature not only provides insights for

43



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0  500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500
 5000

G
ra

di
en

t V
al

ue

Iteration

0.0001 < r < 0.01

r = 0.01

r = 0.0001

Figure 2.10: Delay/quality trade-off (r = step size)

choosing better parameter values for each task in the application pipeline, but also gives ORBIT

the power and a systematic mechanism to terminate the tasks while still maintaining the results

within an expected accuracy range.

Effect of data partitioning and multi-threading: As discussed in Section 2.6.2.2, smartphone

TC can partition compute-intensive tasks into multiple threads to reduce the processing delays.

Fig. 2.11 shows the performance gain of a matrix vector multiplication task, y = Ax, on two

different smartphones, Moto-G with a quad-core processor and Galaxy Nexus with a dual-core

processor. In this example, vector x ∈ Zl×1 is the input signal and matrix A ∈ Zm×l is the

computation matrix. l has a fixed value of 2000 data samples and m varies for different operations

(the horizontal axis in the figure). Larger values of m indicate more data-intense computation. The

results show that the computation delay reduces by 44.7%, on average, for Mote-G and reduces by

36.2% for Galaxy Nexus when the task is partitioned into 2 threads. It also reduces by 56.1% for

Mote-G when the computation is partitioned into 4 threads.

As we can see from the figure, multi-threading reduces the computation delay more for larger

matrices (more data-intensive computation) that agrees with our design objectives. Another impor-

tant result from this figure is that 4 threads in Moto-G does not provide significant improvement

over 2 threads. This is because, once the computation is partitioned into 2 threads the problem

44



 0

 50

 100

 150

 200

 200  800  1200 1600 2000 2400

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Matrix size

Only main thread
2 threads
4 threads

(a) Moto-G (4 cores)

 0

 20

 40

 60

 80

 100

 120

 140

 200  800  1200 1600 2000 2400

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Matrix size

Only main thread
2 threads

(b) Galaxy Nexus (2 cores)

Figure 2.11: Smartphone multi-threading reduces processing delay of compute-intensive tasks.

size is reduced by half. Consequently when each thread is further split into 2 new threads, it only

affects a smaller problem and thus the reduction in computation delay is smaller. This agrees with

the intuition that multi-threading provides less improvement for smaller problems.

Effect of data dependency: A salient feature of ORBIT is that it takes input data size and input

data content into account in modeling the task energy consumption and partitioning. In contrast,

in conventional task modeling and partitioning schemes, the time latency is measured offline and

the average value is often assumed as the time latency without considering the observed variance

in the execution time. However, our measurement study shows that the execution time can vary

significantly for a data-dependant algorithm with different input sizes and input content. We now

use several examples to illustrate the effect of data dependency on the system energy consumption.

Fig. 2.12a shows the distribution of the execution time for the SIFT algorithm for input images with

different dimensions and number of SIFT features. Fig. 2.12b shows the difference between the

energy consumption estimation of SIFT algorithm under the Wishbone approach and the approach

adopted by ORBIT. Since Wishbone does not consider the differences between input data, the

45



 0

 20

 40

 60

 80

 100

 4  6  8  10  12  14  16  18

P
er

ce
nt

ag
e 

(%
)

Execution time (s)

average
animal

ET

kermit
house

chair

(a) Execution time distribution of SIFT

 0

 1

 2

 3

 4

 5

 6

Wishbone     ORBIT

E
n

e
rg

y 
(J

)

same
animal

kermit
ET

chair
House

(b) Energy consumption of SIFT for different images

Figure 2.12: The data-dependant algorithms.

average value of offline measurements will be used as the execution time. Therefore, when the

execution time of SIFT for an image is close to the average value, e.g., for the house image, the

energy estimated by both approaches are similar. However when the execution time of the image

is less than the average, e.g., for the ET, kermit and the animal images, the estimated energy

by ORBIT outperforms Wishbone. On the other hand, if the execution time is longer than the

average execution time, e.g., the chair image, although the energy estimated by ORBIT is larger

than Wishbone, ORBIT provides a closer estimation to the true value. Thus, ORBIT provides a

more realistic approach to model the execution times and the energy consumption of data-intensive

algorithms.

2.8 Case Studies

To demonstrate the expressivity of ORBIT application scripting as well as the generality and flex-

ibility of ORBIT as a platform, we have prototyped three different embedded sensing yet data-

intensive applications. (cf. Table 2.1). Each application demonstrates different facets of ORBIT

varying the number of tasks in the task-structure, the use of different sensors, the number of tiers

46



the application is partitioned between, and the data fidelity requirement of the application. Our

goal is to demonstrate the capabilities and effectiveness of the platform rather than present novel

applications.

Table 2.1: ORBIT based applications.

Application← Robotic Sensing Event Timing Multi-Camera 3D Reconstruction

Script Length 35 27 20

Number of Tasks 11 7 10

Sensors IR, Camera, Ultrasound GPS, Geophone Camera, GPS

Tiers extBoard, smartphone extBoard, smartphone extBoard, smartphone, cloud

Data Fidelity 5fps 100Hz 640*480px

2.8.1 Robotic Sensing

We choose a robotic sensing application for our first case study. In this case study the application

estimates the presence, the distance and the direction of an object approaching using an IR and

a Sonar sensor attached to the robot as well as the smartphone’s built-in camera (cf. Fig. 2.1b).

Once an object is detected by IR sensor, its distance is estimated using the sonar sensor. If within

a specified range, the extBoard sends a command to the smartphone, waking up the smartphone,

and activating the camera.

Once the system captures the image, it converts the image to grayscale and the computes the

threshold to separate the background and the foreground. Next, the system detects the objects

and computes its bounding rectangle. As the object moves, its bounding rectangle changes. The

direction and the velocity of this movement is determined by computing changes in the bounding

rectangles. This information is then used to move the robot to track the object. We used a portion

of the code from an open source soccer robot project [Object Tracking Robot, ].

47



 0

 50

 100

 150

 200

ArduinoGT540 Galaxy Nexus

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

extBoard-only
phone-only

ORBIT

(a) Total energy consumption

 0

 100

 200

 300

 400

 500

 600

ArduinoGT540 Galaxy Nexus

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
) extBoard-only

phone-only
ORBIT

(b) Total execution time

Figure 2.13: The results of various partition schemes

Compared to the event timing application, this application involves actuators in addition to the

sensors. A few tasks are not allowed to be partitioned since they are directly sampling the sensors

or actuating robot servos. Other processing tasks can be partitioned between tiers. The processing

delay determines the maximum image capture frame rate which in turn determines the maximum

speed of a moving object that can be tracked.

Effectiveness of Task Partitioner: We first evaluate the effectiveness of the task partitioning al-

gorithm by comparing with the baselines. For this case study, our baselines are extBoard-only

and smartphone-only. Fig. 2.13 shows the energy consumption and the application execution time

when the delay bound D is set to 0.4 s. Fig. 2.13a and Fig. 2.13b plot the estimated total energy

consumption and total execution time (i.e., smartphone + extBoard) of a ORBIT node in one execu-

tion cycle. As the extBoard is slow and power-inefficient for intensive computation, it cannot meet

the delay bound and consumes the most energy. Our partitioning approach in ORBIT achieves the

lowest energy consumption across different smartphones.

Impact of delay bound: We then evaluate the impact of the delay boundD on the task assignment

48



 0

 0.5

 1

 1.5

 2

 0.2  0.4  0.6  0.8  1

E
n

e
rg

y
 (

J
)

Delay bound D (s)

GT540
Galaxy
Nexus

Figure 2.14: Impact of delay bound setting on the task assignment and total energy consumption.

and smartphone energy consumption. Assume at least n frames are required to detect the object

and track its trajectory; the smartphone camera’s angle of view is θ; and the object’s distance to

the robot is d. Also, let v indicates the speed of the object. Therefore, the time the objects takes to

move away out of the camera’s view is t = 2.d tan θ
v . Thus, the system has to process n frames in t

seconds. As a result, the upper bound D for processing one frame is D =
t
n = 2.d tan θ

n.v . This shows

how the delay bound is inversely related to the object’s velocity. For example, if the camera’s

angle of view is 18 degrees, the object’s distance to the robot is 3 m, and 5 frames are required to

detect and estimate an object’s moving direction, for an object moving at 5 km/h the system must

to process each frame in less than 0.28 seconds.

Fig. 2.14 shows the smartphone energy consumption versusD. We can see that the total energy

consumption decreases with D. This is because with higher delay bound more tasks are assigned

to the extBoard allowing smartphone sleep for a longer time. This is consistent with our analysis.

In this case the smartphone only wakes up when an image must be captured. It then preprocesses

the image and sends the results to the extBoard to detect the object.

49



sampler
compute

mean

remove

mean
queue

extract

featureFFT
compute

energy
truncator

Bayesian

detector

bandpass
fine-grained

picker

noise model

updater

priority=1

priority=2

Figure 2.15: The block diagram of the seismic event timing application. The white blocks are
pre-processing algorithms; the gray blocks are the earthquake detection algorithms; the black

blocks are the P-phase estimation algorithms.

2.8.2 Event Timing

This application estimates the arrival time of an acoustic/seismic event. This is an building block of

many acoustic/seismic monitoring applications such as distributed event timing [Liu et al., 2013]

and source localization. Seismic event source localization requires events timed to sub millisecond

precision and time synchronization between nodes to be within a few microseconds. Fig. 2.16

shows the application specification of this case study. The incoming signal is first pre-processed

by mean removal and bandpass filtering. Wavelet transform is then applied to the filtered signal.

Signal sparsity and coarse arrival time are computed based on the wavelet coefficients. This ap-

plication requires a sampling rate of 100 Hz. In the context of early earthquake detection, the

system must have a response time in the order of a few seconds. The following section presents

the evaluation results.

Effectiveness of Task Partitioner: We first evaluate the effectiveness of the task partitioning algo-

rithm presented in Section 2.6.3.3, by comparing the following partitioning approaches: extBoard

only, phone-only, and greedy. The greedy approach assigns as many processing tasks to the

50



package com.my_sensing_app.pipeline;

import ORBIT.pipeline_model.*;

import ORBIT.io.*;

import ORBIT.generic_task;

import java.util.Vector;

...

public class Event_timing extends ORBIT_pipeline_model {

@Source

@fixed{"extBoard"}

@Next{T_1, T_2{0}}

private Task T_0 = new sampler("extBoard",1600);

@Next{T_2{1}}

private Task T_1 = new compute_mean(1600,1);

@Next{T_3}

private Task T_2 = new remove_mean(1600,1,1600);

@Next{T_4}

private Task T_3 = new filter("band_pass",1600,1600,1,6);

@Next{T_5, T_6}

private Task T_4 = new wavelet("haar",1600,1600,4);

@Next{T_7}

private Task T_5 = new compute_sparsity(1600,1);

@Next{T_7}

private Task T_6 = new coarse_picker(1600,1);

@Sink

private Task T_7 = new write_into_file("results.txt");

}

Figure 2.16: Application specification of event timing. The “sampler” is a special task running on
the extBoard. Specific tasks with different parameters are defined. For example, the parameters
“1600” and “1” indicate the number of input and/or output data samples for different tasks, the
parameter “1,6” of the bandpass filter specifies the two corner frequencies; the parameter “4” of

wavelet specifies the level of transform.

51



 0

 1

 2

 3

 4

 5

 6

Arduino GT540 Galaxy Nexus

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

extBoard-only
phone-only

ORBIT

(a) Total energy consumption

 0

 1

 2

 3

 4

 5

 6

 7

Arduino GT540 Galaxy Nexus

E
xe

cu
tio

n 
tim

e 
(s

)

extBoard-only
phone-only

ORBIT

(b) Total execution time

Figure 2.17: The results of various partition schemes.

extBoard as can be supported by the delay bound. Fig. 2.17 shows the task partitioning results

of the partitioning approaches using a delay bound D of 1.8 s. The extBoard processing delay

meets this bound except for the extBoard-only approach. Fig. 2.17a and Fig. 2.17b plot the es-

timated total energy consumption and total execution time (i.e., phone + extBoard) of a ORBIT

node in one execution cycle under different partition approaches. As the extBoard is slow and

power-inefficient for intensive computation, it cannot meet the delay bound and consumes the

most energy. Our partitioning approach (“ORBIT”) achieves the lowest energy consumption on

the smartphones tested.

The impact of the delay bound D on the task assignment and smartphone energy consump-

tion was next evaluated. The top portion of Fig. 2.18 shows the number of tasks assigned to

the extBoard versus D. We can see that the Task Partitioner generally assigns more tasks to the

extBoard for larger D. This is consistent with our analysis in Section 2.6.3.3. However, we can

see a number of drops in the top portion of Fig. 2.18. For instance, when D increases from 1.37 s

to 1.38 s, the number of extBoard tasks drops from 4 to 1. This is due to a compute-intensive

task replacing the previous four lightweight tasks to increase the CPU utilization of extBoard and

52



0

2

4

6

# 
of

 ta
sk

s
GT540
Galaxy
Nexus

0
1
2
3

 0.5  1  1.5  2  2.5  3  3.5  4  4.5

E
ne

rg
y 

(J
)

Delay bound D (s)

GT540
Galaxy
Nexus

Figure 2.18: Impact of delay bound setting on the task assignment and total energy consumption.
Top: The number of tasks assigned to the extBoard versus delay bound. Bottom: Total energy

consumption versus delay bound.

reduce the smartphone energy consumption. The bottom portion of Fig. 2.18 shows the total en-

ergy consumption versus D. This shows the total energy consumption decreases with D, which is

consistent with our analysis.

Measured execution time and energy consumption: Based on the obtained task partitioning

results, we use a Nexus ORBIT node to run the application over real-time sensor readings. Fig.

2.19 plots the measured extBoard processing delay and the smartphone energy consumption versus

the specified delay bound. Note the smartphone processing delay is less than 5 ms for all settings

of delay bound. Therefore, the extBoard processing delay dominates. From Fig. 2.19a we can

see that the specified delay bound is always met. Moreover, the extBoard processing delay in-

creases with the delay bound, proving the effective utilization of the allowed extBoard CPU time.

From Fig. 2.19b, the smartphone energy consumption decreases with the delay bound, which is

consistent with our analysis.

53



 0

 0.5

 1

 1.5

 2

 2.5

 0.1  1  1.7  2

ex
tB

oa
rd

 d
el

ay
 (s

)

Delay bound D (s)

(a) extBoard processing delay

 0

 5

 10

 15

 20

 25

 30

 0.1  1  1.7  2

P
ho

ne
 e

ne
rg

y 
(m

J)

Delay bound D (s)

(b) Phone energy consumption

Figure 2.19: The measured extBoard processing delay and smartphone energy consumption
versus delay bound.

Duty cycle of extBoard and lifetime: Based on the measured energy consumption, we calculate

the projected node lifetime over four D-cell batteries (capacity: 1.2× 104 mAh) versus duty cycle

of extBoard under various settings of delay bound. The results are plotted in Fig. 2.20. When

the duty cycle is 100%, the projected lifetime is 5.8 days and when the duty cycle is 20%, the

node can live for up to 2 months. As shown in Fig. 2.19b, the smartphone energy consumption

is tens of millijoules, while the extBoard energy consumption is about one joule when duty cycle

is 100%. Since the active powers of extBoard and smartphone are comparable (cf. Section 2.5),

the extBoard energy consumption dominates when its duty cycle is large. In such cases, the major

role of the smartphone is to help meet the tight delay bound, and the node lifetimes are similar for

different delay bounds. However, when duty cycle is 20%, the lifetime can be extended by 18.4%

if the delay bound increases from 0.1 s to 2.0 s. Nevertheless, with the help of the smartphone,

the ORBIT node can meet tight delay bounds, which is critical to the success of many sensing

applications that requires continuous sensor sampling.

54



 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60 70 80 90 100

N
o

d
e

 l
if
e

ti
m

e
 (

d
a

y
s
)

extBoard duty cycle (%)

D=0.1 sec
D=1.0 sec
D=1.7 sec
D=2.0 sec

Figure 2.20: Projected lifetime vs. extBoard duty cycle.

Effect of branches: To evaluate the effect of branches, we integrate the event timing application

in [Moazzami et al., 2013] with an event detection approach [Tan et al., 2010]. Fig. 2.15 shows the

block diagram of the application. The sampling rate is 2.5 kHz, and the sampling duration is 40

milliseconds. In each cycle, the ORBIT node inserts the most recent 100 seismic samples into a

queue with size of 1600. Next, the truncator task copies 100 samples at the middle of the queue to

its output. A Bayesian event detection approach [Tan et al., 2010], which consists of multiple tasks,

is applied to the output of the truncator. If the detector makes a positive decision, the node will

run a primary-wave arrival time (i.e., P-phase) estimation algorithm [Sleeman and van Eck, 1999]

based on all samples in the queue; otherwise, the node will use the input to the Bayesian detector

to update the noise model used by the detector. Suppose the application is monitoring rare events

(e.g., earthquakes), the execution path that branches to the noise model updater is assigned with

higher priority since it occurs most frequently. In this case all tasks except the compute-intensive

bandpass and fine-grained picker are assigned to the extBoard. Fig. 2.21 plots the trace of energy

consumption of a tested ORBIT node in each sampling duration over time. In the first 7 seconds,

the detector makes negative decisions and the node executes the branch to the noise model updater.

From the 7th second, the detectors makes positive decisions for about 0.5 seconds and the extBoard

55



 0.6
 1

 1.4
 1.8
 2.2
 2.6

 0  2  4  6  8  10

E
ne

rg
y 

(J
)

Time (s)

priority-based
extBoard-only (estimated)

Figure 2.21: The energy consumption trace of a node.

activates the phone to execute the bandpass and fine-grained picker. Hence, we observe increased

energy consumption. We compare our approach with the extBoard-only approach. Under this

approach, the delay bound cannot be met when the detector makes positive decisions. Therefore,

we can not directly run this approach on the node. Instead, we estimate the energy consumption

based on the extBoard power model and task meta records. From Fig. 2.21, it can be seen that,

when a seismic event occurs, the energy consumption of extBoard-only is significantly higher than

our approach, primarily due to the long execution time of fine-grained picker on the extBoard.

56



Figure 2.22: The block diagram of the Multi-camera 3D reconstruction application.

2.8.3 Multi-camera 3D reconstruction

The final case study is inspired by Phototourism [Snavely et al., 2006] and involves opportunis-

tic sensing wherein smartphone-equipped robots capture location-based images to collaboratively

reconstruct a 3D structure. Compared to previous two case studies, this application is partitioned

cross over three tiers. The captured image is partially processed on the phone and the remainder

of the processing as well as the distributed tasks are offloaded to the cloud server. Once an image

has been processed, the robot is directed to move to a new spot to capture a new image. In addition

to CPU, we also account for radio power consumption in this case study. Fig. 2.22 shows the task

structure of this application. The cloud server is emulated by a Sun Ultra 20 workstation.

Effectiveness of Task Partitioner: For this case study, with the addition of the cloud tier and more

complex input data to the sensing application, the communication delay between the smartphone

and the cloud server and the complexity of input data impact the partitioning result. We evaluate

the effectiveness of the task partitioning algorithm by comparing ORBIT with the phone-only

and cloud-only baselines. In Fig. 2.23a and Fig. 2.23b two cases with different input images are

compared: a) house image: a bigger image (in terms of number of pixels) with less complexity (in

terms of number of SIFT features), and b) kermit image: a smaller image with higher complexity.

57



 0

 1

 2

 3

 4

 5

 6

 7

 8

Cloud Galaxy Nexus

E
ne

rg
y 

(J
)

cloud-only (4G)
cloud-only (WiFi)

phone-only
ORBIT (4G)

ORBIT (WiFi)

(a) House image (1280x722px)

 0

 1

 2

 3

 4

 5

 6

 7

 8

Cloud Galaxy Nexus

E
ne

rg
y 

(J
)

cloud-only (4G)
cloud-only (WiFi)

phone-only
ORBIT (4G)

ORBIT (WiFi)

(b) kermit image (640x480px)

Figure 2.23: The results of various partition schemes.

The difference between the partitioning assignments between these two cases is the assignment of

the SIFT task. For the house image the results show that it is more energy efficient to run SIFT

on the phone, because: 1) the image is less complex and thus SIFT runs faster and consequently

causes the application to consume less energy, and 2) it would consume more energy to transmit the

large image to the cloud for the SIFT processing. For the kermit image, it is more energy efficient

to run SIFT in the cloud because it is a smaller image with more SIFT features. Thus, in both cases

ORBIT comes up with the most energy efficient partition. In addition, this result demonstrates

that ORBIT considers the execution time of data processing tasks not only as a function of input

size but also as a function of input content. Existing task partitioning approaches [Newton et al.,

2009, Cuervo et al., 2010a] often do not address the two affecting factors.

58



2.8.4 Discussion

These case studies demonstrate the generality of ORBIT’s design. In particular, the three example

applications differ significantly in the task structure, computation intensity of tasks, delay require-

ments, input data and the tiers involved in task partitioning. Overall, ORBIT can achieve energy

saving of up to 50% compared to baseline approaches.

An interesting observation from case studies 1 and 2 is the system power consumption is highly

probabilistic. For instance, whether the power-hungry image processing is needed in case study

1 depends on the decision of the first-stage IR/Sonar sensing which is subject to false alarms and

misses. However, such runtime dynamics are unknown to ORBIT at the design time. As a result,

ORBIT partitions the tasks according to the worst-case scenario in which a target is assumed to

be present. A possible improvement would be to provide ORBIT runtime feedback such as the

detection history and estimation of system detection performance. This would allow ORBIT to

optimize the wiring of tasks and priorities of tasks to reduce power consumption. Such runtime

adaptation is supported by ORBIT due to its flexible task partition and dispatch framework.

Case study 3 suggests the input data play important roles in the partitioning result. For example,

when the input data is not too complex the tasks may not be offloaded to the cloud. However, the

same image processing task may be offloaded to the cloud if it receives a complex input image.

Making this decision at runtime, shows ORBITS intelligent flexibility.

59



2.9 Summary

This Chapter presented ORBIT, a smartphone-based platform for data-intensive, embedded sensing

applications. ORBIT features a tiered architecture, in which a smartphone is optionally interfaced

with an energy efficient peripheral board, and a cloud server. By fully exploiting the heterogeneity

in the power/latency characteristics of multiple tiers, ORBIT minimizes the system energy con-

sumption, subject to upper bounded processing delays. ORBIT also integrates a data processing

library that supports high-level Java annotated application programming. The design of this library

facilitates the resource management of the embedded applications and provides programming flex-

ibility through adaptive delay/quality trade-off and multi-threaded data partitioning mechanisms.

ORBIT is evaluated through several benchmarks and three case studies: seismic sensing, multi-

camera 3D reconstruction and visual tracking using an ORBIT robot. This extensive evaluation

demonstrates the generality of ORBIT’s design. Moreover, our results show that ORBIT can save

up to 50% energy consumption compared to baseline approaches.

60



Chapter 3

SPOT: A Smartphone-Based Platform to

Tackle Heterogeneity in Smart-Home

Systems

3.1 Introduction

The vision of smart, connected homes has been around for decades. In this vision, users easily

perform tasks involving diverse sets of devices in their home without the need for painstaking

configuration and custom programming. For example, imagine a home with remotely controllable

lights, air-conditioning systems, cameras, windows, and door locks. It should be easy to set up this

home to automatically adjust windows and lights based on the outside temperature and lighting

or to remotely view who is at the front door and then open the door. While modern homes have

many network-capable devices, applications that coordinate them for cross-device tasks have yet

to appear in any significant numbers.

Smart-homes differ in terms of appliances used there and how these appliances are connected

and operated by users. The lack of global standards for smart appliances communication, control

and data management results in highly fragmented systems consisting of proprietary solutions

provided by each device vendor. Thus, users are required to use different control interfaces, e.g.,

61



ZigBee REST 

REST 

REST 

SOAP STUN 

(a) mobile apps (b) communication (c) appliances

Figure 3.1: Heterogeneity in today’s smart-home systems. Each appliance in (c) requires its own
app as shown in (a) that communicates with the appliance using its own protocol via cloud, a

bridge and/or directly as shown in (b). Each appliance in (c) has different functionality and each
smartphone app in (a) does not support appliances for more than one vendor nor share data with

other apps. The user has to switch between apps to operate different appliances.

mobile apps, to interact with smart appliances in their homes or are forced to use devices sold

by a single vendor. For instance, a user needs to separately operate Philips HUE [Phi, ] app and

WeMo [wem, ] app to control lighting and smart power plug in the same room. Recently a cloud-

based solution for multi-vendor IoT interaction, such as IFTTT [IFT, ], has appeared, but user’s

flexibility is still limited to what the service provider offers. Moreover, third-party involvement

might raise privacy concerns. Therefore, a user-centric platform that enables users to manage,

monitor, and control heterogeneous smart appliances without relying on external parties is highly

desired.

In this Chapter, we expand the scope of our study to smart-home systems as another emerging

class of data-intensive sensing applications. We propose and demonstrate a platform built on a

dynamic device driver abstraction model that tackles different aspects of heterogeneity in smart

62



appliances and smart-home systems. The device-control capability can be defined and expanded

by means of “device driver” that are composed using XML or annotation-based JAVA APIs. The

specification of the driver will be made public so that device vendors, open source community, or

users themselves can create or modify the drivers. Besides communication with smart devices, our

device driver framework implements automated generation of appropriate graphical user interface

based on the driver definition of each device, which can minimize the developer’s implementa-

tion efforts and improves the user experience by means of consistent look-and-feel throughout the

system. Moreover, our framework provides a unified abstraction of the data structure in different

smart devices that helps application developers to build “whole-home” applications that involve a

diverse set of appliances.

In addition to providing a single point of control over multiple smart devices, our platform

enables centralized collection of data about smart appliances used in the entire household, such

as historical data of device statuses (e.g., on/off and set point) and control operations, as well as

analytics and utilization of such data for energy efficiency, home automation, automated demand

response, and so forth. We believe a generic platform like this is an important step toward a

smart-home ecosystem from which smart appliance vendors, application developers, and users can

benefit.

In summary, we makes the following contributions. First, we conduct a systematic study to

understand the characteristics of smart-home appliances as well the opportunity and challenges

for using smartphone as the central gateway to control smart-home appliances. The result of our

study shows multiple aspects of heterogeneity in smart appliances. Second, we provide a flexible,

extensive and extensible device driver model that supports a number of smart appliances available

on the market. The driver model addresses multiple types of heterogeneity observed in our study.

Third, we provide the design and implementation of the proposed platform as a smart-home system

63



that loads the drivers at runtime along with a dynamic user interface adaptive to the features of each

appliance. Lastly, we demonstrate the generality and flexibility of our system by presenting our

experience in prototyping the drivers for several real appliances as well as a cross-device home

application. We also discuss examples of other home applications that we have prototyped on top

of our platform.

3.2 Related Work

While we draw on many strands of existing work, we are unaware of a system similar to SPOT

that provides a unified solution for heterogeneity problem that smart-home systems suffer. We

categorize related work into the following groups:

Mobile apps for smart-home appliances: Many commercial off-the-shelf smart appliances are

shipped with mobile apps that allows users to remotely control them, such as Nest Thermostat

and Smoke detector [Nes, ], Philips [Phi, ], and GE Brillion [GE, ]. However, these apps only

support only their own devices. Such a vendor-centric solution requires users to use multiple apps.

In contrast to these systems, SPOT provides a device/vendor-independent, user-centric system

that dynamically supports multiple devices of different types (e.g., thermostats, lighting, home

security), from different vendors.

Solutions based on hubs and central controllers: There are some solutions using hub devices

for enabling centralized control and management of multiple appliances, such as Wink [win, ] and

SmartThings [sma, ]. However, appliances still have to be designed and developed according to

the proprietary specification provided by such solutions. Moreover, each hub-based system uti-

lizes different communication protocols, making any interoperability highly challenging. Previous

works also advocates using a central controller to simplify integration [Escoffier et al., 2008,Rosen

64



et al., 2004, Dixon et al., 2010]. These works have different scopes than SPOT. For instance,

Rosen et al. [Rosen et al., 2004] focus on providing context such as user location to applications.

Other systems have employed services in the home environment. iCrafter is a system for UI pro-

grammability [Ponnekanti et al., 2001]. ubiHome [Ha et al., 2007] aims to program ubiquitous

computing devices inside the home using Web services. However, these systems only focus on the

programmability of smart appliances and do not reduce the burden of users in terms of controlling

diverse appliances in a home.

Multi-appliance platforms: Many commercial home automation and security systems integrate

multiple devices in the homes. For instance, HomeOS [Dixon et al., 2010] provides a PC-like

abstraction for digital devices to users and developers. But such system only supports devices with

existing drivers and does not provide any dynamic driver loading mechanism. Control4 [Con, ]

only offers support for its own devices (and a limited set of ZigBee devices); a limited form of pro-

gramming between devices. Furthermore, the technical complexity of installing and configuring

Control4 and other systems alike (e.g., HomeSeer [Hom, ], Elk M1 [ELK, ]) can be handled only

by professionals. EasyLiving [Krumm et al., 2000] is a monolithic system with a fixed set of appli-

cations geared for an specific domain (visual tracking via multiple cameras). Similarly, IFTTT.com

offers the ability to define or download several predefined “recipes” in terms of “if this then that”,

allowing users to have access to shared configurations for devices. However, IFTTT.com only

supports a certain number of devices, called channels, and does not scale based on user preferred

devices unless new channels. In addition, reliance on a third party may cause privacy concerns

given the sensitivity of data collected by the devices in the home. In contrast to such systems, we

focus on building a device-independent system that can be extended easily with new devices and

applications by non-experts.

65



3.3 Requirements and Challenges

Recent years, we can find a growing number of smart appliances on the market. However, these

appliances exhibit significant heterogeneity in terms of communication protocols and architec-

ture, device functionalities, programming abstraction and etc., owing to the lack of dominating

standards in smart-home technologies. In this section, we will highlight different kinds of hetero-

geneity among smart appliances that brings challenges for different groups including users, home

application developers and appliance vendors. We also discuss requirements to address each kind

of heterogeneity based on our investigation of commodity smart appliances available on the mar-

ket. We face the following major heterogeneities in building smart-homes:

Diverse appliance control apps: Currently each modern smart appliance comes with its own

smartphone app. These smartphone apps do not provide similarity in user interface nor any inter-

action with other apps. Consequently users have to switch between multiple apps when they want

to operate different devices which deteriorates the user experiences. Users need to learn specific

apps functionalities in addition to appliance functionalities. Such diversity in appliance control

apps presents barriers for adoption of smart appliances.

Communication interface: The communication interface for smart appliances varies a lot in pro-

tocol and architecture. Although most of smart appliances allow remote control via HTTP (or

HTTPS) over WiFi, messages conveying control commands for each device differ. Many devices

implement RESTful APIs with JSON messaging formats, while a few others, such as WeMo de-

vices [wem, ], only support SOAP messaging that exchanges XML messages. Another aspect

of heterogeneity is communication architecture. As depicted by Fig.3.1, there are roughly three

different communication architectures: appliances are accessible directly via local IP address in

the home network; appliances require a dedicated “hub” to communicate with; and appliances are

66



device
thermostat 1

identifier
name
thermostatRev
settings

mode
reminder
...

...
thermostat 2

...

(a) Ecobee thermostat

device
device_id
can_heat
target_temp_f
temp_scale
fan_timer_active
...
...
...
...
...
...

(b) Nest appliances

device
Status

on
bri
...

type
name
...
...
...
...
...

(c) Philips light

Figure 3.2: Heterogeneity in programming abstraction

controlled via vendors provided cloud service. For example, thermostats from Venstar [Ven, ] and

Radio Thermostat [Rad, ] are controlled from devices in the same WiFi network using local IP

address. Similarly, Wink [win, ], SmartThings [sma, ] Philips HUE light [Phi, ] using local IP

address but provide a gateway hub that implements WiFi interface for remote control. On the other

hand, Nest’s thermostat/smoke detector and Ecobee’s thermostats [eco, ] are controlled remotely

(even from outside of a user’s premise) via their own cloud services. Other aspects of heterogeneity

observed in communication lie in security and user authentication mechanisms. Nest and Ecobee

thermostats require users to use OAuth2 authorization token [Hammer-Lahav and Hardt, ] while

Philips HUE light simply relies on username/password only. We also found diversity in appliances

initial setup. Many appliances require a simple configuration and use a static server port to accept

control commands. Thus, the external system controlling such appliances need to be configured

with the devices’ IP addresses and port numbers, reconfiguration is rarely necessary unless IP ad-

dress of devices changes. However, there are appliances like WeMo power plug [wem, ] in which

the port number is randomly selected among non-privileged ports and changes upon device restart

etc. In this case the app provided by Belkin uses UPnP service discovery to identify the WeMo

67



device’s IP address and port number. Besides WeMo devices, Philips HUE also adopts a device

discovery service.

The heterogeneity in communication architecture and protocol presents serious hurdles for

developers to develop genetic applications that suits multiple appliances from different vendors.

From the developer’s point of view it is highly desirable to standardize communication interface

and messaging schema which are essential for building extensible applications. Moreover, lack

of services like device discovery in majority of smart appliances requires users to perform the

entire setup process for most of appliances they use, which is not necessarily a trivial process for

non-expert users. This brings barriers in adoption of smart-home appliances and diminishes users

ease-of-use.

Programming abstraction: Even among devices using same protocol to communicate e.g., REST-

ful with JSON messages, variable names and the structure that forms the control command are

not standardized. For example, to access set-point configuration, which is the most common

variable in setting a thermostat target temperature, Nest thermostat uses a variable named tar-

get_temperature_f or target_temperature_c depending on what unit is used, while Radio thermostat

uses either t_heat or t_cool, and Venstar thermostat uses either heattemp and cooltemp depending

on the thermostat’s operation mode. This means not only different appliances adopt different nam-

ing for the same setting, but also the structures of control messages are different. Fig. 3.2 and 3.3

illustrate different variable naming for different appliances. In addition, several appliances confine

their settings by defining dependencies between the values of different variables. For instance, in

Venstar thermostat all control messages with mode must include heattemp and cooltemp variables

or when setting mode to Auto, cooltemp must be greater than heattemp, while in Nest thermo-

stat the variables are set independently. Smart appliances also vary in terms of their internal data

68



Ecobee thermostat: "thermostat": {"settings":{"heatRangeHigh" : "72", "hvacMode" : "on"}}

Radio thermostat: {"tmode" : 1,"t_heat" : 72}

PhilipsHUE light: {"on" : true, "sat" : 255, "bri" : 255, "hue" : 1000}

Venstar thermostat: {’mode’: 3, ’fan’: 0, ’heattemp’: 75, ’cooltemp’: 78}

Figure 3.3: Examples of heterogeneity in message schema in setting different configurations

structure. Most commonly, the appliances utilize a hierarchical data structure for their variables.

Fig. 3.2 illustrates the data structure of three common smart appliances i.e., Nest and Ecobee ther-

mostats, and PhilipsHUE light. As depicted in the figure the grouping of variables as well the

relationship in the hierarchy are different. From Fig. 3.2 and 3.3, we see depending on the data

structure designed for the appliance the control messages are crafted differently. Fig. 3.3 depicts

different messaging schema for different appliances. Unlike Radio thermostat and PhilipsHUE

light that support a flat message structure, Ecobee thermostats adopts a “nested” structure. The

difference in the data structure together with differences in the messaging schema and variables

naming, makes it challenging for developers to design a common data management system for

multiple appliances.

The above heterogeneities in control apps, communication interface and programming abstrac-

tion bring significant challenges in designing smart-home systems. These challenges motivate

us to develop a platform that is universal to different appliances and yet flexible and extensible.

Commercial off-the-shelf (COTS) smartphones offer several salient advantages that make them a

promising system platform for smart-home applications. The advantages include rich computa-

tion and storage resources, multiple network interfaces and sensing modalities, highly increasing

availability in each home and low cost. Moreover, smartphones come with advanced program-

ming languages and friendly user interfaces, such as touch screen to enable rich and interactive

display, unlike the limited user interfaces of existing smart-home hubs. Modern smartphones have

69



(a) Zoomed-in
view of SPOT’s
driver manager
with dynamic
driver loading
mechanism

(b) SPOT components on the smartphone (yellow area) (c) appliances

Figure 3.4: SPOT System Architecture

powerful multi-core processors which makes it possible to run analytical applications to provide

better privacy guarantee to the users sine personal information does not need to be transmitted to

the cloud. Another key advantage to use smartphones to control modern appliances is the fact that

smartphones are personal devices and users are more comfortable in using it rather than learning

to operate new appliances directly or to learn other interfaces e.g., hubs, to control appliances.

Moreover, by providing a central unified smartphone app it is possible to log appliance usage data

in one place and provide further analytical processing. It also enables the developers to develop

whole-home applications that involves multiple appliances.

3.4 System Overview

In this section we present SPOT, which is designed to address the above major challenges. The

key design principle of SPOT is to leverage the availability of smartphones in any house to sup-

port multiple heterogenous smart appliances and to facilitate the transition of current homes to

smart-homes. Moreover, SPOT relies only on the out of the box functionalities of commercial-off-

70



the-shelf (COTS) smartphones, without requiring kernel level customization or rooting the device.

This not only minimizes the burden on the application developers, but also ensures the compatibil-

ity with the diverse smartphone models. SPOT is designed as a mobile app that can be optionally

backed by a cloud server as illustrated in Fig. 3.1 and 3.4. It enables the efficient collaboration be-

tween the smart appliances and smartphone to accomplish connected smart-homes, including smart

appliances control, home energy management and automation, and centralized usage analytics. In

the following, the major components of SPOT are described.

Appliance driver model and dynamic driver loading: SPOT provides a generic model to define

the smart appliance properties and communication interfaces in a unified structure referred to as

driver. A driver defines each variable and configuration setting as well as the detail of commu-

nication protocol and access control for each variable, the way the variables appear in the user-

interface, and the range of accepted values for each variable. There are two types of appliance

drivers: XML driver or Java driver using SPOT API. SPOT implements mechanisms to load the

drivers dynamically at runtime. Fig. 3.4a depicts dynamic driver loading mechanism.

Dynamic user interface (GUI): In order to enable users to control smart appliances SPOT gen-

erates a specific GUI for each appliance based on specific appliance variables and configuration

settings. The information about how the GUI is generated at runtime for each appliance and what

variables are shown in GUI as well as the access control information are defined in the XML driver.

By dynamically generating the GUI at runtime, SPOT enables access to any smart appliances with-

out requiring to change the app.

Appliance discovery and status consistency: SPOT requires users to add smart appliances in the

setting to be able to access to them. To facilitate this process, we implement a service discovery

protocol based on UPnP that finds the smart appliances available in the home network and maps

71



the discovered appliances with the associated device driver. Moreover, SPOT adopts a monitoring

scheme that polls the status of smart appliances periodically and keeps the usage information in

an internal database. This enables application developers to implement data analytics about the

appliances usage and extract information like daily pattern of user’s appliance usage. SPOT can

report this information e.g., on/off status, setpoint value of the thermostats to the cloud server for

further data processing, if desired.

The SPOT design has several key advantages. First, it benefits users by providing one single

gateway to their smart-home appliances and applications. It eases device setup and management

and provides a central place for users to trace their activities e.g., track their energy usage. More-

over, users can benefit from accelerated device support as the open XML-based device driver

framework is expected to encourage contribution from open-source developer community. In ad-

dition, the dynamic, adaptive user interface provided by SPOT improves the users experience and

decreases their learning curve. Second, it benefits home appliance vendors by supporting the fea-

tures and intelligence common in many appliances in one smartphone-based platform. Therefore,

vendors do not need to provide all of these features in their appliances leading to simpler design

and reduced product price. Vendors only need to provide a device driver according to our XML

schema to enable the platform to leverage the device capabilities. Third, SPOT benefits appli-

cation developers by enabling them to build applications that support multiple appliances from

different vendors. SPOT also addresses each kind of heterogeneity outlined in Section 3.3 and

brings a data abstraction and a unified data structure across heterogeneous appliances. This conse-

quently reduces the burden on the application developer to deal with appliance specific interfaces

and data structures. Lastly, as a gateway to the smart-homes that operates multiple diverse appli-

ances, SPOT allows third party service providers i.e., utility companies, to access the user’s data

and provide services in a unified fashion.

72



3.5 Design and Implementation

The core component of SPOT is the appliance driver layer that abstracts the access to heteroge-

neous devices. In this section, we elaborate the design and implementation of such driver mech-

anism. SPOT supports two types of driver implementation, namely XML based and Java library

based. However, the discussion primarily focuses on the former owing to the space limitation.

3.5.1 XML Driver Model

We designed a simple XML-based driver model for SPOT. This driver model defines multiple

driver units, where each unit indicates an elementary appliance data unit referred to as variable, or

an elementary appliance function, such as the details of protocol to communicate with the appli-

ance to retrieve data or change a setting by sending a command. An appliance driver is composed

of a number of driver units specifying the sequence of actions and list of variables based on the

appliance’s specific design and functionality. Such a driver model offers several benefits. First,

by having a generic driver model, we can achieve extensible and universal mobile based appliance

control without requiring the knowledge of the whole app or the source code of the app or the

design detail of smart appliances. Second, the system can dynamically load the device driver into

the app during runtime without the need to change the app structure or even downloading a new

version of the app. More specifically, the XML drivers can be installed from the cloud via http or a

smartphone’s local storage and then parsed by the app according to the standardized XML schema.

Third, by having the notion of driver units, we can build a unified system by addressing different

heterogeneity related to different driver units. Fourth, the driver model can significantly simplify

the application development and saves the efforts of users, especially for those who are not famil-

iar with embedded system design and app programming. Users or application developers can thus

73



implement cross device applications using the same abstraction provided by the driver model with-

out dealing with appliances specific programming APIs. In particular, SPOT presents application

developers a single programming abstraction without burdening them with low-level details such

as the data structure for each appliance or how each appliance’s specific communication protocol

works. The high-level view of the XML driver is shown in Fig. 3.5.

The key component of SPOT’s driver model is multiple kinds of units. Specifically, a driver

unit can be either a data unit or an action unit. The data units are classified into common data

or variables and the action units are classified into three groups: read actions, write actions and

authentication actions. To capture the fundamental role of each driver unit we explain each of

them as following.

3.5.1.1 Driver Units

Variables: The variables driver unit is the most important unit in the SPOT driver model. This

driver unit contains the list of variables and the detail information about each variable. A variable

is referred to any elementary configuration setting or data element that can be read or set from/to

a smart appliance. The XML schema snippet illustrated in Fig. 3.6 details the data structure in

the driver model. Most of the elements are self-explanatory. canonicalName is enumeration, such

as “Status”, “SetPoint”, “CurrentTemperature”, etc. for thermostats, and tells the app the meaning

of the variable. Such semantic mapping is needed to address heterogeneity in variable names and

allows the app to process each variable in an appropriate way. parent is used for defining hierar-

chical relationship among variables to address the heterogeneity in the data structure demonstrated

in Section 3.3. The uiType, uiHelperText, uiCaption are used in dynamic GUI creation.

Common data: The common data unit defines common data types about all kinds of appliances.

74



<?xml version="1.0" encoding="UTF-8" ?>

<drivers>

<driver>

<!-- common action unit-->

<driverName>Philips HUE</driverName>

<deviceType>Light</deviceType>

<driverVendor>Philips</driverVendor>

<!-- read action unit-->

<read>

...

</read>

<!-- write action unit-->

<write>

...

</write>

<!-- variables data unit-->

<variablesList>

<variable>

...

</variable>

<variable>

...

</variable>

...

</variablesList>

...

</driver>

</drivers>

Figure 3.5: XML driver of the Philips HUE light

Currently this data unit is simple and includes the driver name, appliance type e.g., HVAC, lighting,

and the appliance vendor information. The common data is used in SPOT to categorize the devices

into its data structure for group management and data analytics. The XML schema for the common

driver unit is simply implemented as:

75



<!-- variables data unit-->

<xs:element name="variablesList">

<xs:complexType>

<xs:sequence>

<xs:element name="variable"

maxOccurs="unbounded" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element

type="xs:string" name="name" max="value" min="value"/>

<xs:element

type="xs:string" name="canonicalName"/>

<xs:element

type="xs:string" name="parent"/>

<xs:element

type="xs:string" name="type"/>

<xs:element

type="xs:boolean" name="writePermission"

minOccurs="0"/>

<xs:element

type="xs:boolean" name="showOnUi"/>

<xs:element

type="xs:string" name="uiType"/>

<xs:element

type="xs:string" name="uiHelperText"/>

<xs:element

type="xs:string" name="uiCaption"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 3.6: The snippet of the XML schema for the SPOT’s driver model

76



<!-- common data unit-->

<xs:element type="xs:string" name="driverName"/>

<xs:element type="xs:string" name="deviceType"/>

<xs:element type="xs:string" name="driverVendor"/>

...

Figure 3.7: The snippet of the common driver unit in the driver model

Read action: A read action unit specifies the detail of the communication protocol and its settings

for reading the device data variables. As it is shown in the following XML schema snippet, this

driver unit specifies the http method e.g., get, post that needs to be used to request the variable

values from the appliances. It also specifies the base URL that the read request has to use and any

extension to the base URL to create to access each variable. The read action unit also indicates

the pattern of the read response, e.g., JSON, XML or MIME (responsePattern). Thus, the read

action driver unit provide all the required information for SPOT to establish a success communi-

cation to each appliance and retrieve its data. uriExtensionPattern can be used to attach additional

information as part of URL, e.g., query string in http GET requests.

<!-- read action unit-->

<xs:element name="read">

<xs:complexType>

<xs:sequence>

<xs:element type="xs:string" name="httpMethod"/>

<xs:element type="xs:anyURI" name="baseUri"/>

<xs:element type="xs:string"

name="uriExtentionPattern"/>

<xs:element type="xs:string" name="responsePattern"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 3.8: The snippet of the read action unit in driver model

77



Figure 3.9: The write actions using driver model

Write action: The write action unit in the driver describes the communication method to set or

change the current value of any variable (with the write permission) in each appliance. It indicates

whether the new value and the variable name have to be set in the URL extension or in the body of

the http message. It also describes the pattern of the body of the message (bodyPattern) if the write

command has to be defined in the body part of the message. Currently the SPOT driver model

support several body patterns including json, xml, mime and url-encoding. The snippet of write

action unit is shown in Fig. 3.10

Authentication action: As discussed in section 3.3, one of the aspects of the heterogeneity of

smart appliances is their authentication and user management mechanisms. Therefore, it is clear

that one of the essential parts of the driver model needs to define the authentication mechanism

78



<!-- write action unit-->

<xs:element name="write">

<xs:complexType>

<xs:sequence>

<xs:element type="xs:string" name="httpMethod"/>

<xs:element type="xs:anyURI" name="baseUri"/>

<xs:element type="xs:string" name="bodyType"/>

<xs:element type="xs:string" name="bodyPattern"/>

<xs:element name="httpHeaderFields">

<xs:complexType>

<xs:sequence>

<xs:element type="xs:string" name="headerField"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 3.10: The snippet of the write action unit in driver model

for each appliance. Our extensive exploration in several smart appliances suggest there are two

major authentication mechanisms are adapted by the vendors namely as OAuth2 e.g., Nest and

WeMo and simple username/password authentication e.g., Philips HUE light. SPOT supports both

authentication mechanisms. At the high level, the former can be addressed by defining optional

auth element, which stores token expiration time, URL for token refreshment, etc., while the latter

can be done by including username/password as part of baseUri or uriExtentionPattern.

3.5.1.2 Device Driver Usage

Reading values from the appliance: SPOT can read/fetch variable values from the appliances

via a network connection, using RESTful/SOAP protocols. SPOT initiates an HTTP request to an

appliance, querying for list of variables listed in the XML driver, possibly using additional headers,

using HTTP GET/POST methods as indicated, and possibly with a body as defined in the driver.

79



Upon receiving the HTTP response from the appliance, the payload of the response message is

pattern-matched to the format indicated in the XML driver e.g., different JSON or XML formats.

After pattern matcher verifies the message is well-formed the driver manager extracts the variable

values and if some variables are indicated to be shown in the UI, it passes them to the user-interface

component. The user-interface then presents the variables and their values based on the defined

format using the indicated UI component e.g., as a text or as a value of the progressbar. Finally, if

necessary, variables are stored in the SPOT internal database or processed based on canonicalName

definition.

Setting/Updating the values on the device: In order to set values on the appliance (update the

appliance configuration), SPOT sends the HTTP request to one or multiple fields possibly using

additional headers, using POST/PUT as indicated, and possibly with a body message. If the new

values for the variables are set by user from the user-interface, similar to the read action, SPOT

maps the variable values to the accepted format and range defined for each variable in the XML

driver. It then creates the message according to the settings defined in the write action unit and

sends to the associated appliance. If necessary, the value of the variable is updated in the database

upon receiving a ack from the target appliance. Also, the value of the variable is updated in the UI

after a successful write action. Fig. 3.9 illustrates this process.

Dynamic UI Creation: A salient feature of SPOT is the Dynamic UI creation. In section 3.5.1 we

describe how device drivers are abstracted and how one can easily craft an XML driver for a new

appliance using our defined XML structure. The system then utilizes the XML-formatted driver

and extracts the fields, access controls, and message formats to communicate with the device.

Similarly, upon receiving the XML-formatted driver, the system reads the appropriate XML tags

indicating what type of GUI components has to be generated and appear in the associated section

80



(a) JAVA specification (b) XML specification

Figure 3.11: JAVA and XML specifications for dynamic GUI generation

in the mobile app for any device that user wants to control. This information are obtained from the

user-interface (UI) related tags, uiType, uiHelperTex, uiCaption, defined in the variable driver unit.

The GUI components in the Android are all sub-classes of a parent class called View e.g., Button,

TextView, ProgressBar, and by intelligently implementing the system the user-interface renders

at runtime. This feature not only enables the users to control different variables from different

appliances without requiring to design a separate app, but also provides the appliance vendors the

ability to indicate what variables and how they want users to have access to (access control). By

changing the values in UI-related fields in the XML driver, the GUI changes accordingly in the

next run of the app without any need to change in the design of the app.

81



Figure 3.12: An example dynamically generated GUI in SPOT

3.5.2 Appliance Driver by SPOT JAVA Library

Besides the XML-based device driver framework, SPOT provides the application developer an

API, using Java annotations. By using this API a driver developer implements the device driver as a

Java class specifying the device variable as a field in the class and uses SPOT-provided annotations

to annotate each variable. By annotations the developer indicates what information the system

can fetch from the device and how they are structured e.g., RESTful URI. Moreover, by using

the annotations, the developer can set what variables appear in the UI, what access level user can

have e.g., read-only, read/write, and what kind of UI component should be used by SPOT for each

variable. Also, more meta data like the default, maximum, minimum values for each variable can

be specified. In addition, the driver can indicate the variables that have to be kept persistent in

the database using the appropriate annotation tag. More importantly, the driver specifies the URI

to access in read and write scenarios as well as the message patterns e.g., JSON/XML format, for

82



send and response messages to/from the device. Using SPOT annotation APIs, writing such a class

is very simple. For example, only the variables and meta data for variables need to be defined, and

no method has to be implemented. For instance, a snippet of a Java class generating a driver for

the Nest Thermostat can simply be implemented as shown in Fig. 3.11a.

The java classes then must be packed as jar files and after submitting to SPOT, the system

verifies the jar file and then creates a DEX module [DEX, ] from the legitimate jar files. The DEX

module is dynamically loaded to the system and become functional right after. The SPOT API

provides a compact and efficient way to implement the appliance drivers, however it requires the

programming knowledge and learning the API, and thus is a suitable method for the developers

rather than the users, while this is not the case for the XML-based method.

3.5.3 Appliance/State Consistency

To effectively manage smart-homes, having up-to-date status of each smart appliance is mandatory.

However, since the state of the smart devices can change via other mobile apps e.g., vendor specific

apps or physically by changing their settings e.g., turning off the light via a wall switch, it’s highly

possible the devices states become inconsistent with the stored state in the SPOT database. In order

to address this issue SPOT periodically synchronizes its database by polling the devices, using the

mechanisms described in Section 3.5.1.2. However, these changes may not happen frequently

and the state of different devices may not change with same frequency (e.g., one may change the

setpoint of a thermostat more often than turning on/off a light in the bedroom). Thus in order to

have a more efficient device/state persistency and to prevent draining the smartphones battery by

unnecessary polls, SPOT can have an adaptive polling mechanism. Intelligent adaptive polling

mechanism is left for our future work.

83



3.5.4 Appliance discovery and bootstrap

To minimize users’ efforts to register new smart appliances on the system, SPOT supports device

discovery mechanism using UPnP. By using cybergarage-upnp library [upn, ], SPOT listens SSDP

NOTIFY messages broadcasted by UPnP-capable smart appliances in the network. Through this

message, the SPOT identifies IP address and port number of the appliance to which read/write

commands are to be sent. Moreover, when the default device name is included in the message, the

app automatically finds an appropriate device driver. If it is not found, the app can download it

from the cloud. Further utilization of UPnP is part of our future work.

3.5.5 Application Manager

SPOT enables home-wide application execution by Application Manager component. Developers

or hobbyists can use SPOT API to write home-wide applications and submit to the SPOT. SPOT

checks the legitimacy of each application and dynamically loads them into the system (with the

same technique to dynamically load annotation-based JAVA drivers). SPOT persists each appli-

cation into the database and pass its handler to the Application Manager component. Application

Manager is implemented as a background process and periodically checks for the active applica-

tions in the system, if the execution requirement of each application is satisfied then it executes the

application. Since home applications involve one or more smart appliances and each appliance can

be associated with one or more application, the application manager service ensures the persistency

of device states and their configuration changes with the requirements of associated applications.

This is performed by the interaction with device management and underline database management

services.

84



3.6 Application Scenarios

To demonstrate the extensibility and universality of SPOT driver model and data abstraction, and

the generality and flexibility of SPOT as a platform, we have prototyped three different smart-home

applications. Each application demonstrates the advantages of having SPOT as a central platform

for home automation systems and the opportunities it provides for application developers. Our

goal is to demonstrate the capabilities and effectiveness of the platform and show the opportunities

provided by SPOT rather than present novel applications.

3.6.1 Application 1: Cross-Device Programming

Unlike other contexts (e.g., enterprise or ISP networks), the intended administrators for the home

networks are non-expert users.The management challenge is particularly noteworthy when it comes

to inter-device control and applications that involve the entire smart-home or part of it but requires

more than one device. SPOT provide a platform for the cross-device applications. For this pur-

pose SPOT provides an application layer to enable the users and developers to design custom

applications that operate home-wide. SPOT supplies application management service to execute

the defined applications along with “trigger-target” application. The idea of this application is in-

spired by the IFTTT system [IFT, ].“Trigger-target” application is defined by “trigger-target” rules.

In trigger-target programming, end users specify the behavior of a system as an event (trigger) and

corresponding action (target) to be taken whenever that trigger occurs. Both the trigger and the

target can contain parameters that customize their behavior.

Each trigger and its target involve one device (trigger device and target device). Trigger also

defines the circumstances that lead to its occurrence. For that a user selects a variable from the

trigger appliance and the condition and a triggering threshold when he defines the trigger. User

85



also selects the target device, chooses one of its variables as target variable along with the target

value for that variable when it defines the target. Once the trigger and target are defined a trigger-

target rule is programmed and it becomes active immediately. Application Manager of SPOT

then takes the rule and places it in the application pools to execute when the trigger occurs. For

example, if target temperature set in Nest thermostat is equal to 70 then turn off the Philips HUE

light. Without using SPOT, users can only program simple inter-device applications using third

party cloud-based systems like IFTTT. However, involvement of third party systems might rise

some privacy concerns for the users. Moreover, systems like IFTTT only provide interfaces to a

limited set of appliances that are integrated with the implemented interfaces.

3.6.2 Application 2: Residential Automated Demand Response

Demand Response (DR) is a technology to enable balancing of electricity supply and demand.

In DR, utility companies send signals to electricity customers to request their electricity demand

curtailment, in order to handle the situation where significant demand peak is expected or when

electricity price is high. By participating in DR, customers can gain monetary incentive or incur

lower electricity cost. SPOT can benefit users (i.e., electricity customers) by facilitating DR par-

ticipation by means of home automation. Specifically, SPOT works as a home gateway, which

interacts with electricity utility company’s DR server and controls smart appliances in a household

according to the signal from the server. For instance, in the case of DLC (direct load control),

which is probably the most popular DR program, SPOT can automatically change the operation

state of the targeted appliance (e.g., turning off lighting and /or changing set point of an air condi-

tioning system). Dynamic pricing, which encourages voluntary demand curtailment by adjusting

electricity price during peak hours, also has gained popularity. In this case, SPOT interprets pricing

information from a DR server and automatically reduces or shifts appliance usage. While tradition-

86



ally DR participation required manual control of individual appliances, which deterred penetration

into residential sectors, SPOT is expected to significantly reduce the user’s efforts and hence lower

the barrier of participation.

We have implemented a prototype DLC app that implements OpenADR 2.0b protocol [Ope, ],

the globally-recognized standard for automated demand response, as well as SPOT for automated

appliance control. Functionality to report appliance status (e.g., on/off and setpoint) is also imple-

mented using SPOT so that the DR server can use such data to validate DR participation. Moreover,

although all of the smart devices discussed in this work (listed in Table 3.1) are not OpenADR-

compliant as of April, 2015, SPOT immediately allows integration of them into automated demand

response systems.

3.6.3 Application 3: Central Usage Analytics

As explained in Section 3.5.1, SPOT provides a way for collecting status of all smart appliances in

a household. In other words, a smartphone app can access the rich historical data regarding when

each appliance was active. Such centralized data collection enables a variety of data analytics that

is useful for users. Combined with the user’s energy usage data, which can be obtained via services

like Green Button Download My Data or Connect My Data [Gre, ], the app can accurately label the

energy consumption trace with activeness of operation status of each appliance, without requiring

users’ effort. Such labeled traces can be used, for example, for electricity load disaggregation,

which is takes a whole-home energy signal and separates it into component appliances, and pro-

vides the user with fine-grained understanding of her own energy usage. Namely, the app can tell

how much electricity is consumed by each appliance and how much electricity cost is attributed to

it. Furthermore, other types of supervised data analytics can also be made possible.

87



Table 3.1: Smart appliances tested with SPOT

Appliance Name Vendor Type Protocol Architecture Upnp Auth. Msg. schema driver

Philips HUE light [Phi, ] Philips light RESTful HUB X user/pass JSON alla

Nest smart thermostat [Nes, ] Nest thermostat RESTful Cloud x OAuth2.0 JSON all

WeMo Switch [wem, ] WeMo plug SOAP Local IP Add. X x XML XML

Venstar thermostat [Ven, ] Venstar thermostat RESTful Local IP Add. x x JSON all

UFO Smart Plug [ufo, ] UFO plug RESTful Local IP Add. x x JSON all

Radio Thermostat [Rad, ] Radio Therm. thermostat RESTful Local IP Add. x x JSON XML

Ecobee Thermostat [eco, ] Ecobee thermostat RESTful Local IP Add. x OAuth2.0 JSON XML

a: all means all three types of drivers (XML, Pure Java, SPOT annotation-based Java API) are implemented

for this appliance.

3.7 Evaluation

To demonstrate the usability of SPOT as a platform, we conducted extensive analysis to evaluate

SPOT performance in detail. Our goal is to achieve the latency that is low enough to handle

application scenarios discussed in Section 3.6 and to offer scalability and throughput that can

handle large, complex smart-homes. In this section, we report our system evaluation in different

criteria from memory and CPU usage of SPOT as a smartphone app and the latency of appliance

control command invocation to the overhead introduced by dynamic driver loading, appliance

status polling, and so forth. We also look at the scalability of system to managed multiple smart

appliances in smart-homes.

In order to show the universality of our driver model and SPOT app, we prototyped device

drivers for multiple appliances on the market from major home appliance vendors. Fig. 3.1 show

the appliances that are currently tested using our driver model and the app. As elaborated in

Section 3.3, appliances vary in several different aspects including communication protocol and ar-

88



Figure 3.13: Smart appliances tested with SPOT

chitecture, messaging schema and data structure, authentication mechanism, and support of device

discovery.

Comparison of XML-based and JAVA-based drivers: As discussed in Section 3.5, there are

basically three ways of implementing an appliance driver: a) conventional driver, which is to

implement each driver without using SPOT driver model e.g., a proprietary Java class for each

appliance and implement all the functionalities and variables independently, b) using SPOT Java

API (cf. Section 3.5.2) and c) XML-based driver (cf. Section 3.5.1). We compare the ease of pro-

gramming a driver in terms of line-of-code(LOC) for each kind of driver for multiple appliances.

Fig. 3.14 shows that the implementation code of the drivers using SPOT driver model (XML-based

and API-based) is significantly shorter than the conventional driver. This benefit is regardless of

the other benefits of using SPOT driver model such as dynamic UI generation and automatic DB

connection. In addition, we note that implementing drivers using SPOT API is even shorter than

using XML models. This is because in the XML model, as illustrated in Section 3.5.1, in order to

define the driver units e.g., variables and action units, it requires to provide a few lines of XML

code for each. However, using SPOT API one can define all the meta information about each

driver unit in a compact line using SPOT API annotations (cf. Fig.3.11a). Moreover, the Java

89



drivers implemented by SPOT API do not require to implement the action units as opposed to the

conventional driver. This is because the driver manager in SPOT provides actions e.g., read, write,

authentications for each driver according to the driver model. It is important to note that although

SPOT API provides a compact and efficient way to implement the appliance drivers, it is a suitable

method only for the application developers rather than the users since it requires the programming

knowledge and learning the SPOT API, while this is not the case for the XML-based method.

CPU and memory footprint on smartphone: We measure the CPU and memory footprints of

SPOT. We select different features that SPOT provides. We use the utility application, System

Monitor, to measure the CPU and memory usages. The CPU usage of SPOT is almost 0.0%. The

memory usage is about 49 MB during silence, but reaching 108 MB when visualizing the reports.

This is due to the dynamic increase of the heap space when data being loaded for visualization.

The total size of the SPOT binary is only 9.69 MB.

Latency of appliance control command invocation: We also measure the latency of an operation

invocation with different number of variables to set under two different situations: a) when the

smartphone and a smart appliance communicate directly on the local WiFi, e.g., Philips HUE light

and Venstar thermostat, or b) when the smartphone and the smart device communicate via the

smart device’s (or a third party) cloud e.g., Nest Thermostat. Our measurements show it takes less

than 150 ms when the command is invoked over local WiFi and and it takes around 395 ms when

it is invoked via Internet (device cloud). The low latency makes SPOT a suitable platform for

applications with specific timing requirements. For example there are demand response services,

(cf. in Section 3.6.2), such as Fast DR [fas, ] that require the operations to the targeted appliances

to finish within 4 seconds. Our results show that the command invocation time on SPOT is short

enough to support this use case.

90



Figure 3.14: The length comparison (LOC) of different kind of drivers

Latency of dynamically loading drivers: Although loading and processing the device drivers

into the system does not happen frequently, it must not interfere with user’s experience as well as

time-critical operations. We measure the time it takes to load and process the XML driver with 10

different variables. Our measurements on Galaxy Nexus, Nexus 5, Nexus 7 show that the drivers

are loaded less than 25 ms. SPOT processes the XML drivers in a background thread and thus it

does not interrupt the user’s experience. Fig. 3.15 shows the latency of dynamically loading an

XML driver versus the number of fields defined for the smart appliance.

In Section 3.5.2 we discussed that an alternative to XML-based drivers is to draft the appli-

ance drivers as minimal Java class using the annotation-based SPOT API. These driver classes are

packaged as DEX files and are loaded dynamically. We measure the time it takes SPOT driver

manager to load the DEX drivers and process the annotations to extract the driver specific infor-

91



 0

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30

D
y
n

a
m

ic
 l
o

a
d

in
g

 t
im

e
 (

m
s
)

Number of variables

Nexus 7
Nexus 5

Galaxy Nexus

Figure 3.15: Latency of dynamically loading the XML drivers (error bars: standard deviation)

mation. Similar to Fig. 3.15, our measurement is done for drivers with 10 different variables on

different smartphones. Our measurements shows the DEX drivers are loaded and processed in less

than 20 ms. This process is an I/O process and it is executed in the background to prevent any user

interruption or any interruption with the main thread.

DB query delay when fetching smart appliance state: In Section 3.5.3 we explained how SPOT

stores the device states in a lightweight DB to provide appliance state consistency. We measure

how long it takes to persist the appliance information and to retrieve its state from the database.

Fig. 3.16 shows the latency of database query on various smartphones versus the number of appli-

ance records in the database. We can see querying the DB when there are a few records of smart

devices are stored takes less than 4 ms. Although this delay is very short, it can vary based on the

number of records. To achieve a design that is scalable in terms of number of appliances and to

have an smooth transition between different components of the system including the user-interface

components, this I/O task, similar to other I/O and network tasks, is done in a background thread.

92



 0

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  6  8  10  12  14

L
a

te
n

c
y
 o

f 
D

B
 q

u
e

rr
y
 (

m
s
)

Number of devices

Nexus 7
Moto g

Galaxy Nexus

Figure 3.16: Latency of database query

The effect of polling appliances state: In addition to the latency of the DB query, another im-

portant factor related to the appliance state consistency is the frequency for polling the appliances.

Polling too often could drain the smartphones battery quickly. In this section, we measure how

polling affects the battery level when SPOT runs on Nexus 6. Fig. 3.17 shows the trend of battery

level drop for different number of appliances and different polling intervals. For experiments with

3 devices, we used Radio Thermostat, UFO Smart Plug, and Philips HUE. For 6-device experi-

ments, we additionally used Ecobee, WeMo Switch, and Venstar. Note that the separation between

the lines for different experiment is made for better readability, and is not related to battery level

differences. Intuitively it is expected the longer polling interval leads to a slower energy consump-

tion while polling more appliances cause a faster energy consumption. As can be seen, even in the

most aggressive case (polling 6 appliances every 1 minute), the battery level drops at most only

about 1 percent per hour. This result suggests that frequency of this level is practical. Moreover,

we can see by choosing a longer polling interval the rate of the smartphone’s energy consumption

decreases that agrees with our hypothesis. In addition we see when SPOT polls 6 appliances rather

93



 96

 97

 98

 99

 100

 20  40  60  80  100  120

B
a

tt
e

ry
 P

e
rc

e
n

ta
g

e
(%

)

Running time(minutes)

no pulling (baseline)
3 dev. - 1 min

3 dev. - 10 min
6 dev. - 1 min

6 dev. - 10 min

Figure 3.17: The effect of polling interval and number of appliances (devices) on smartphone’s
energy consumption. Shorter polling interval and more number of devices lead to higher rate in

energy consumption of smartphone.

than 3 the drop rate in battery level increases as expected, but the increase in energy consumption

rate is moderate (a few minutes). These results suggest, in this context, the polling interval plays

a more important role than the number of appliances. Based on our experiments using 5 real de-

vices (ufo, venstar, wemo, radio, hue), we confirmed that SPOT can handle over 800 device state

pollings per minute. Therefore not only the polling mechanism is practical but also it is scalable to

more appliances.

Fig. 3.18 is the screenshot of the page in SPOT that shows a part of appliance status stored in the

SPOT internal DB. We can see multiple appliances and their defined type as well as their current

status including on/off state, current setpoint, current temp (if any). By providing this central and

consistent information about the smart appliances at home, SPOT facilitates the development of

different kinds of whole-home applications. For instance, maintaining the consistent information

about the appliances status not only is useful for home automation and is essential for users to

control appliances, but also is crucial for applications like data analytics and demand response.

94



Figure 3.18: SPOT records the state of appliances and maintains appliance/state consistent in its
internal DB with frequent polling.

Latency of dynamically generating GUI: A salient feature of SPOT is its capability to dynam-

ically create the appropriate graphical user interface (GUI) for controlling smart appliances. The

components used in the GUI are indicated by designated tags in the XML driver or appointed Java

annotation in the JAVA-API drivers. The components are specified for each field in the driver and

has to be selected from the supported components available in the Android library. Moreover, dif-

ferent appliances can have different number of fields accessible in the UI. As a result the UI load

time can vary for different number of UI components. Our measurements show the user interface

load time is around 5ms and changes at most by 1ms when the number of components in the UI

are up seven components. It should be noted that maintaining small variation in loading the user

interface is essential for achieving good user experience.

The smoothness of displaying dynamic GUI: As an mobile app that provides a dynamic user

interface for the users, drawing screen frames with a regular rhythm is essential for good perfor-

mance and use experience. We analyze this by using an Android system tools, Systrace [sys, ],

which is particularly useful in analyzing application display slowness or pauses in rendering the

95



UI components. Typically the analysis of display components (UI threads) by Systrace is reported

under SurfaceFlinger process as shown in Fig. 3.19. Having a regular rhythm for display ensures

that UI components are smoothly appearing on the screen [sys, ]. Fig. 3.19 illustrates the exe-

cution pattern of display component in SPOT. The regularity of SurfaceFlinger process suggests

a smooth GUI rendering in the app. Moreover, the regular pattern in the CPU state in the upper

panel of Fig.3.19 indicates that there is no other threads in the app, e.g., network communication,

disk operation for DB access or loading the UI components like images, which may interrupt the

rendering of the user-interface. This validates the efficient architecture of SPOT that achieves the

smoothness in displaying the UI.

Latency of cross-device application runtime: A salient feature of SPOT is that it enables de-

velopers to create whole-home applications that involve and connect multiple smart appliances.

In order to show the performance of such applications, we use the Application 1 discussed in

Section 3.6.1. Fig. 3.20 shows the running time of this application for different number of smart

appliances used. Note that this execution time only presents the application runtime delay and does

not include the delay of command invocation to the appliances as the appliances response time can

significantly vary owing to the diversity in their communication architecture. In this figure we

can see having an smart-home application running on top of SPOT (cf. Section 3.6) will add at

most 13 ms to the execution time when handling the information of 14 appliances. This shows the

practicality of build whole-home applications.

96



Figure 3.19: The smoothness of displaying GUI: The regular rhythm in SurfaceFlinger process
indicates the smooth display rendering. The regular rhythm in the CPU state in the same period of

time indicates no interference between the threads in the app.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2  4  6  8  10  12  14

C
ro

s
s
-d

e
v
ic

e
 a

p
p

lic
a

ti
o

n
 L

o
a

d
 t

im
e

 (
m

s
)

Number of devices

Galaxy Nexus
Moto g

Nexus 7

Figure 3.20: Latency of whole-home application runtime

97



3.8 Summary

In this Chapter we presented SPOT, a smartphone-based platform for home automation systems.

SPOT addresses the extreme heterogeneity and diversity between different smart appliances in

smart-home context. SPOT features a driver abstraction, in which the smart appliances are mod-

eled by an XML-based or JAVA-based driver structure that specifies data and actions supported by

appliances. By making the heterogeneous characteristics of smart appliances transparent, SPOT

minimizes the burden of home automation application developers and the efforts of users who

would otherwise have to deal with appliance-specific apps and control interfaces. SPOT is evalu-

ated through several benchmarks and three case studies: cross-device programming, central usage

analytics and residential energy management via demand response commands. Our evaluation

demonstrates the generality of SPOT’s design and its driver model.

Although our prototype and experiments focus on RESTful and SOAP-based appliances, it

should be noted that the driver model and the way SPOT tackles the appliance heterogeneity are

not limited to these appliances.

98



Chapter 4

On-device Deep Learning

4.1 Introduction

Applications of deep learning have seen a great leap in inference accuracies in a number of fields.

Neural networks, the algorithmic core of deep learning, have become ubiquitous in several appli-

cations including speech recognition [Deng et al., 2013], computer vision [Moazzami et al., 2017]

and natural language processing [Collobert et al., 2011]. In sensory systems, deep learning has

revolutionized the way sensor measurements are processed and interpreted. However, significant

requirements of memory and computational latency have been the main bottlenecks in wide adop-

tion of these novel computational techniques on resource constrained smartphones and embedded

platforms.

Deep learning models are both computationally intensive and take up a lot of srorage space,

making them difficult to deploy on resource-limited embedded systems such as smartphones. For

example original AlexNet [Krizhevsky et al., 2012] and R-CNN [Girshick et al., 2014] are more

than 200 MB or VGGNet [Simonyan and Zisserman, 2014] is more than 520 MB. Almost all

of that size is taken up with the weights for the neural connections that are trained through the

training process. There are many millions of these connection in a single model. For example,

VGGNet consists of more than 135 million weights in its structure [Kaparaty 2016, ]. In 1998,

Lecun et al. [LeCun et al., ] classified handwritten digits with less than 1M parameters, while in

99



Figure 4.1: The output volume (feature maps) of different layers in a deep neural network

2012 Krizhevsky et al. [Krizhevsky et al., 2012] won the ImageNet competition with a network

with 60M parameters. Deepface [Taigman et al., 2014] classified human faces with a network with

120M parameters.

These parameters are arranged in large layers; in which each layer takes input from the previous

layer and after applying specific processing on the data passes its output to the next layer. Fig. 4.1

illustrates this hierarchy of layers and the input and output of each layer in a sample network ar-

chitecture. The shear complexity and associated heavy computation, memory and energy demands

of the deep learning models cause the majority of mobile sensor-based apps to rely on simpler

methods with lower resource overhead (e.g., decision trees, Gaussian Mixture Models (GMM))

resulting in lower accuracy and robustness in real-time inference in mobile sensing applications.

However, it is critical to gain the inference accuracy and robustness provided by deep models in

the future generations of mobile applications.

Motivated by the above observations, in this chapter we make important strides towards adopt-

ing deep learning models by applications in mobile and embedded devices. We propose a novel

model partitioning framework that enables us to embed deep learning models into mobile applica-

tions by decomposing them into their layers, and assigning each layer of the model to different tier

based on the layer’s time-criticality, compute-intensity, and heterogeneous latency/memory con-

100



sumption profiles. This is a inter-layer partitioning in which a neural network is partitioned in two

sub-networks that are deployed on the smartphone and the cloud.

4.2 Related Work

On-device deployment by model compression: There have been various proposals to compress

deep models by removing the redundancy in the weight values: Vanhoucke et al. [Gupta et al.,

] explored a fixed-point implementation with 8-bit integer (vs 32-bit floating point) activations.

Hwang & Sung [Shin et al., 2016] proposed an optimization method for the fixed-point network

with ternary weights and 3-bit activations. Authors in [Denton et al., 2014] exploited the linear

structure of the neural network by finding an appropriate low-rank approximation of the param-

eter and keeping the accuracy within 1% of the original model. Much work has been focused

on binning the network parameters into buckets, and only the values in the buckets need to be

stored. HashedNets [Chen et al., ] reduces model sizes by using a hash function to randomly group

connection weights, so that all connections within the same hash bucket share a single parameter

value. In their method, the weight binning is pre-determined by the hash function, instead of being

learned through training.

Partitioning and task offloading: Various task offloading schemes for smartphones have been

developed recently. Spectra [Flinn et al., 2002] allows programmers to specify task partitioning

plans given application-specific service requirements. Chroma [Balan et al., 2003] aims to reduce

the burden on manually defining the detailed partitioning plans. Medusa [Ra et al., 2012] features

a distributed runtime system to coordinate the execution of tasks between smartphones and cloud.

Turducken [Sorber et al., 2005] adopts a hierarchical power management architecture, in which

a laptop can offload lightweight tasks to tethered PDAs and sensors. While Turducken provides

101



a tiered hardware architecture for partitioning, it relies on the application developer to design a

partitioned application across the tiers to achieve energy efficiency. ORBIT [Moazzami et al.,

2015] dispatches the execution of sensing and processing tasks in a smartphone-based multi-tier

architecture to achieve data-intensive applications requirements. ORBIT maximizes the battery

lifetime subject to the application-specific latency constraints. Wishbone [Newton et al., 2009]

also features a task dispatch scheme and unlike Turducken uses a profile-based approach to find

the optimal partition. It only considers two tiers: in-network and on-server. In this chapter, we take

a different approach. We show how we efficiently embed deep models in mobile applications with

partitioning by exploiting the model architecture and layers properties.

4.3 Architectural Observations

The layered architecture of deep models: Deep Neural Models are sequences of layers, in which

each layer takes input from the previous layer and after applying specific processing on the data

passes its output to the next layer. We use three main types of layers to build ConvNet architectures:

Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular Neural

Networks). We will stack these layers to form a full deep model architecture. A deep neural model

can have as many of any of these kinds of layer as needed. Fig. 4.1 illustrates a typical deep neural

network with several layers.

The volumetric but sparse output of each layer: Except the very first layer of a deep neural

network that take advantage of kind of sensory data (e.g., sound, image, etc), the architecture

of deep neural models are typically constrained in a particular way. Specifically in convolutional

neural networks, the layers have neurons (a.k.a nodes) arranged in three dimensions: width, height,

depth. The depth here refers to the third dimension of an activation volume or output of each layer.

102



In a well-trained neural network each neuron in each layer is responsible to extract certain feature

from input data as a feature map which normally is a 2D matrix. As illustrated in Fig. 4.1 a 3D

feature map of a layer is generated by concatenating the feature maps from all neurons in that layer.

For example, CIFAR-10 model [Krizhevsky, 2009] is a deep neural model for detecting objects

in tiny images. In this model the input data is image and the volume of activations has 32x32x3

dimensions (width, height, depth respectively). Obviously not all the features are available in

all input data meaning many of the neurons are not activated when processing a certain input at

inference time. This results in a highly sparse feature map as the output of each layer. For instance,

Fig. 4.2 shows a typical-looking feature map on the first conv. layer of a trained AlexNet when it

processes an image of a cat as the input. In this figure values in zero are shown in black. As we

can see, the feature maps are extremely sparse since most of the activation values in the feature

maps are zero. Moreover, as the data goes through the network the output volume changes. The

final output layer for CIFAR-10 has dimensions of 1x1x10, because by the end of the architecture,

the model reduces the input into a single vector of class scores.

Smartphone’s architecture Smartphones have several salient advantages that make them promis-

ing system platforms to execute the applications with embedded deep learning models. These

features include high-speed multi-core processors that are capable of executing advanced data pro-

cessing algorithms, various integrated sensor modalities and multiple network interfaces.

Motivated by these observation we propose a novel partitioning mechanism that exploits the

above properties in deep learning models and smartphone architecture to achieve the best embed-

ded schema for embedding deep models in smartphone sensory apps.

103



Figure 4.2: Sparsity in feature maps in conv. neural nets: This figure shows a typical-looking
feature map on the first conv. layer of a trained AlexNet while processing an image of a cat as the
input. Every box shows an activation map corresponding to a filter. This figure shows how sparse

the activations are (most values are zero and shown in black) [Kaparaty 2016, ]

4.4 Partitioning

This section describes our model partitioning framework, Deep-Partition. Deep-Partition aims to

minimize the end-to-end delay of feed-forward execution of deep neural network on the smart-

phone and embedded devices. Deep-Partition employs a novel model partitioning framework that

processes the deep neural architecture as a computation graph and finds the optimal graph cut for

each model.

Consider a deep neural network model, N, consisting of n layers (denoted by L1, . . . , Ln),

with a feed-forward execution pipeline expressed as a sequential set of layers: N := L1 → L2 →

. . . → Ln. Let Ii denote the execution tier of Li, where: Ii ∈ {(1, 0), (0, 1)} represent the

smartphone and cloud, respectively. Let τp, τc and τA denote the feed-forward execution time on

the smartphone, on the cloud, and model’s end-to-end, respectively. Fig. 4.1 illustrates a typical

104



deep learning model (a deep convolutional neural network) with hierarchy of layers and the tensor

sizes for each layers output a.k.a layers activations.

We now formulate the model partitioning problem for a feed- forward execution.

Model Partitioning Problem. For the feed-forward execution N = L1 → L2 → . . . → Ln,

the Model Partitioner finds a graph cut defined by the set S = {I1, I2, . . . , In} to minimize the

total execution time in a feed-forward execution denoted by T subject to the processing constraints

specific to each model.

The execution times of layer Li on the smartphone and cloud are denoted by tpi and tci , respec-

tively, where the superscripts ‘p’ and ‘c’ represent smartphone and cloud.Denote tp↔c the latency

of downloading/uploading a data unit (a layer’s output feature-map as a tensor with dimensions

wi, hi, ci) from/to the phone to/from the cloud. As we will see later in the evaluation section,

unlike other partitioning schema, this parameter is very critical in defining the optimal partition

due to 3D volume output of each layer as described in Section 4.3. Thus, let κi denote the size

of output tensor of layer Li, as si = wi × hi × ci. In addition, let Ki indicate the size of this

tensor considering the coding schema. For example, if the tensors are stored like images in the

format of RGBA-8888 each pixel/item in the tensor is stored/computed as a 32 bit float number.

Therefore Ki = 32 × κi. In order to keep the generality let b denote the coding bit rate (e.g., 32

for RGBA-8888) and thus Ki = b× κi for the tensor output of layer Li.

We now analyze the processing delay of a deep model in a feed-forward period.

Processing execution delay: Let T denote the end-to-end delay in processing the input data.

Analysis shows

T =
n∑
i=1

Ii · t
p
i + (1− Ii) · tci + d(Ii, Ii−1) · 1

λ
Ki−1, (4.1)

105



where, similar to what we have in Chapter 2 , the function d(Ii, Ii−1) accounts for the data-copy

overhead between the tiers (i.e., upload the tensor output of layer Li to the cloud) by indicating the

distance between the positions of ‘1’ in Ii and Ii−1. Note that unlike Ch.2 we only consider two

tiers here (smartphone and cloud) the function d(., .) can simply be defined as the XOR value of

the assignments of two consecutive layers, d(Ii, Ii−1) = Ii ⊕ Ii−1, therefore it can be either 0 or

1 depending on whether the partitioning happen between layers Li−1 and Li.

As we see under this analysis, the actual model execution time (and thus the partitioning result)

not only depends on each layers computation time but also depends on the layers output volume.

Parameter λ is the network’s upstream bit-rate.

4.5 Layer-wise Profiling of Representative Deep Networks

For an efficient partitioning, it is important to understand the characteristics of the execution la-

tency in deep learning models and their internal volumetric outputs. This section presents a mea-

surement study of the layer-wise output volume and the latency of a few of the most common

representative deep models on different smartphones. The measurement study provides insights

into the computational intensity of deep neural models, their layer-wise delay and output size;

and motivates the key design decision in our model partitioning schema. We investigate the la-

tency of each layer for three of the representative and commonly used deep neural models, namely

AlexNet, GoogleNet and VGGNet, when running on a Galaxy S7 smartphone. Fig. 4.3a, 4.3c and

4.3e summarize these results. Moreover, Table 4.1 shows the breakdown of the output volume and

execution delay for the sample neural network shown in Fig. 4.1. In addition, table 4.2 summarizes

the end-to-end feed-forward execution time for these architectures.

106



(a) AlexNet execution time (b) AlexNet tensor size

(c) GoogleNet execution time (d) GoogleNet tensor size

(e) VGGNet execution time (f) VGGNet tensor size

Figure 4.3: The profiling of the execution time, layer-wise latency and the activation’s tensor size
for the three major representative deep neural models.

107



Table 4.1: The breakdown of the model shown in Fig. 4.1. Each layer’s output dimension and
execution time profile on two different smartphones with two different processors i.e., Exynos

7420, Intel i7-4500.

dimensions(pixel)d size execution time (ms)

layer name w h c pixels:w*h*c bitsβ 1.5GHzc1 1.8GHzc2

input image 32 32 3 3072 98304 NA NA

conv1 28 28 10 7840 250880 45.56 9.39

pool1 14 14 19 3724 119168 30.66 30.49

conv2 10 10 25 2500 80000 80.86 35.29

pool2 5 5 25 625 20000 71.46 20.54

conv3 2 2 100 400 12800 50.07 21.2

pool3 1 1 100 100 3200 42.34 17.55

output 1 1 10 10 NA NA NA

d: w, h, c: indicate width, height and number of channels of the associated tensor, respectively.

β : Based on 32-bit RGBA-8888 coding.

c1: Exynos 7420, c2 : Intel i7-4500

4.6 Evaluation of Model Partitioning

To demonstrate the expressivity of Deep-Partition and its generality and flexibility, we consider

three representative Deep Convolutional Neural Networks (ConvNet) from the above list. As we

discussed earlier (cf. 4.3), each ConvNet consists of different layering architecture with different

intermediate feature volumes. Our goal is to demonstrate the capabilities and effectiveness of

Deep-Partition rather than comparing the performance of these ConvNets.

We evaluate the effectiveness of the model partitioning algorithm presented in Section 4.4,

108



Table 4.2: Representative Deep Neural Network Models

Representative

Architectureα

End-to-end latency(ms)

Deep Neural Smartphone Server

Network 1-thread 2-threads CPU-only CPU+GPU

AlexNet 5(CV) 3(FC) 1000(O) 450 350 100 15

GoogleNet 5(CV) 3(FC) 1000(O) 500 300 150 12

VGGNet 5(CV) 3(FC) 4(PL) 1000(O) 400 220 50 10

α: FC: Fully-connected Layer, CV: Convolution Layer, PL: Pooling Layer, O: Output (number of classes)

by comparing the following partitioning baselines: a) smartphone-only, when the entire model

is deployed and running on the device, and b) server-only, when the model is running on the

backend server. For the execution on the smartphone we consider two cases: a) when each layers

computation is performed with single thread b) when the layers computations are with two threads.

Similarly, for the execution on the server side two cases are considered: a) when the computation

happens on on the CPU, b) when computation happens on the GPU.

Fig. 4.3a, 4.3e and 4.3c plot the measured execution time of AlexNet, VGGNet and GoogleNet

models respectively. These figures show the execution time of these models on different platforms

and different configuration for each platform. Moreover, Fig. 4.3b, 4.3f and 4.3d show the out-

put/activation volume of each layer for these models. We can see in these figures that how the

model architecture and in particular the layers parameters impact the run-time performance of the

models. As discussed in section 4.4 the objective of Deep-Partition is to minimize the model’s

latency (feed-forward execution time). On the other hand, Fig. 4.4a, 4.4e and 4.4c show the par-

titioning results of these models respectively. As we can see Deep-Partition suggests different

partitioning layer for different models corresponding to the lowest execution time for each model.

109



In particular, Deep-Partition suggests partitioning AlexNet at layer pool5 and offload the layers fc6

onward and partitioning VGGNet at layer pool3 and offload the execution of layers conv4_1 to the

cloud while it suggest partitioning GoogleNet at layer pool13x3_s2 and continue the execution of

the network from layer pool13x3_s2 on the cloud.

Therefore, there are three major factors that impact the partitioning results. First, the execution

time of each layer on each platform as shown in the layer-wise breakdowns in Fig. 4.3a. Second,

the communication delay between the smartphone and the cloud server. For example whether it is a

broadband 4G communication a WiFi connection what the upstream bit-rate of the communication

is. Third, the output volume of the layer’s in the model. The two latter together indicate the time it

takes to upload the tensor output at the edge of partition. It’s easy to see that smaller tensor volume

and the higher bit-rate leads to faster uploading and thus a better partitioning. As we can see

the partitioning algorithm in Deep-Partition finds the minimum execution time for all the models

subject to the above three factors.

In order to see the end-to-end execution time of the models that is the total execution time on

the smartphone and the cloud including the latency due to uploading we plot Fig. 4.4b, 4.4d and

4.4f . The figures show the total execution time of these models versus the partitioning layer for

four different configuration platforms. As we can see in these figures, Deep-Partition suggests

minimum execution time for all the models.

An important and interesting observation from the measurement and the results shown in fig-

ures 4.3 and 4.4 is that a few of the output tensors especially for the convolutional layer are very

volumetric. This is critical for Deep-Partition partitioning decision because larger tensors faces

longer delays to upload. As we cab see in Fig. 4.4 the upload time (green bars) are the dominating

factor in the latency. This changes the decision of Deep-Partition in favor of layers with smaller

output tensor sizes, i.e., pooling layers or fully connected layers toward the end of the network re-

110



(a) AlexNet (b) AlexNet

(c) GoogleNet (d) GoogleNet

(e) VGGNet (VGG16) (f) VGGNet (VGG16)

Figure 4.4: Partitioning Results and end-to-end model latency for representative models when
Deep-Partition is applied

111



sulting most of the the layers assigned to the phone and thus a larger execution time on the phone.

Therefore, in order to optimize the situation we consider two major factors:

The Impact of , λ, the cloud-phone communication bit-rate: Although uploading the volumetric

tensors generated by the intermediate hidden layers in deep models takes longer time relatively

when compared with the layers computation delay, higher communication rate can decrease this

time and decrease the dominating factor of the outputs tensor sizes. Therefore, we evaluate the

communication data rate (up-stream) and the impact of it on the decision made by the Deep-

Partition. Fig. 4.5 shows model end-to-end latency when partitions at each layer for different

communication data rates, R, for AlexNet model (without loss of generality and because of the

space limitation we only show this result for AlexNet ). As we see, by increasing the data rate

not only the total execution time decreases (obviously), but also we see at R = 25Mbps the

partitioning results changes from layer fc6 to pool1.

The Impact of, ||K||0, layer’s output sparsity: Another important observations about deep neu-

ral models is that the intermediate features (feature maps) generated by hidden layers are pretty

sparse. Higher sparsity means the layers output is subjects to higher compression. Similar to the

communication bitrate, higher compression in the layers output decrease the dominating factor of

the outputs tensor sizes in the partitioning results. Fig. 4.6 illustrates how the partition layer shifts

back to the norm1/pool1 from the norm2/pool2 in the AlexNet architecture.

112



Figure 4.5: The impact of communication bit-rate on the partitioning and model latency

4.7 Application Use-case: Deep-Learning Based Crowd-Assisted

Location Labeling System

In this section we take a mobile crowd-sourced based application that we prototyped as a usecase

application of deep learning in mobile sensing applications. We describe Deep-Crowd-Label, a

deep-learning based crowd-assisted location labeling system. Deep-Crowd-Label is motivated by

the idea that a vast majority of location-based applications desire the semantic labeling i.e., coffee

shop. Past work in location-based systems has mostly focused on achieving localization accuracy,

while assuming that the translation of physical location to semantic labels will be done manually.

In this section, we explore an opportunity for automatic labeling of user’s location. We propose a

113



Figure 4.6: The impact of feature maps sparsity on the partitioning and model latency (AlexNet)

system called Deep-Crowd-Label that uses crowd-sensing to obtain data and build a powerful and

scalable prediction model using deep neural networks. It applies convolutional neural models to

predict the semantic label for the user’s location. Deep-Crowd-Label also uses the power of the

crowd to aggregate the prediction of the model on the data samples associated to the each location.

Prior work has shown how places can be discovered from temporal streams of user location

coordinates [Chon et al., 2012]. However, if we can automatically characterize places by link-

ing them with attributes, such as place categories (e.g., clothing store, restaurant), we can realize

powerful location- and context-based scenarios [Pei et al., 2013]. Indoor maps and semantic un-

derstanding of a place are equally crucial pieces of the bigger localization puzzle, but only recently

researchers began to focus on these aspects. Deep-Crowd-Label aims for semantically labeling

114



the user’s location. Despite the generality of our approach we focus on the processing of indoor

locations, in which the people spend a big portion of their time. In our approach we focus on the

location-tagged visual data i.e., images and videos, and use deep neural networks as the core of our

processing pipeline. Note that the choice of deep neural networks is due to the promising perfor-

mance of the recent methods developed in this area that outperform the other data mining and ma-

chine learning methods as mentioned earlier in this chapter. Example methods include the recent

algorithms developed for object detection [Zhou et al., 2014, Sharif Razavian et al., 2014, Johnson

et al., 2015] or for processing of sequential information [Kelly and Knottenbelt, 2015,Pichotta and

Mooney, 2016]. On the other hand, the advantages of crowd-sourcing architecture in this work is

two folded. First, the training data used to train the deep models are crowd-sourced data (crowd-

sensing). Second, not only in the training time, but also in our method the final label of the user’s

location in the inference time is aggregated over the predictions resulted from the processing of

several data samples obtained by the crowd (crowd-prediction). In particular, Deep-Crowd-Label

leverages the crowd-sensed data to build a big dataset suitable for training deep neural network,

and proposes novel techniques based on model adaptation and model extension via transfer learn-

ing to exploit the pre-trained models to build several robust and accurate prediction models for

semantically labeling the user’s location. Since training deep neural networks require a lot of

data to prevent over-fitting [Bishop, 2001], Deep-Crowd-Label retrofits the pre-trained models via

novel transfer learning techniques and builds ensemble of models to cope the over-fitting problem.

Moreover, Deep-Crowd-Label uses the power of crowd to aggregate the individual predictions to

generate the final location label.

115



Figure 4.7: An indoor area with semantic labels

4.7.1 Traditional Approaches to Location Labeling

The notion of semantic localization is not new. Works like SurroundSense [Azizyan et al., 2009]

and SenseLock [Kim et al., 2010] utilize sensor data from smartphones to characterize the am-

biance and translate them into a semantic information about the user’s location. Authors in [Sapiezyn-

ski et al., 2015] and [Wind et al., 2016] attempt to categorize places by training a model on WiFi,

GSM and sensor data collected from frequently visited places. These approaches are based on the

assumption of availability of labeled ambiance data. Several other works attempt automatic place

identification (e.g., home, office, gym) based on the analysis of user trajectories, frequency and

timing of visits [Krumm and Rouhana, 2013, Liu et al., 2006]. Work by [Chon et al., 2013] tries

to connect the text in the crowd-sensed pictures with the posts in social networks to infer business

names. AutoLabel [Meng et al., 2015] aims to automatically identify the name of the store by cor-

relating the words inside the store’s WiFi-tagged pictures with the keywords found in the store’s

website to produce a WiFi AP to StoreName table. Perhaps more closer to our approach is work

by [Zamir et al., 2013] that attempts to identify the stores that appear in a photo by matching it

against the images of the exteriors of the nearby stores extracted from the web. This approach relies

116



on the conventional computer vision techniques and are neither scalable nor robust. In contrast,

on the one hand, Deep-Crowd-Label does not rely on the conventional computer vision techniques

and uses deep neural networks that has recently driven remarkable performance in computer vi-

sion and machine learning. On the other hand, Deep-Crowd-Label relies on crowd-sourcing on

both training and inference phases that increases the generality and robustness of the system.

4.7.2 Deep Learning-based Approach

Many shortcomings of traditional sensor data processing in modeling the context data can be over-

come through the use of deep learning; and have been successfully applied, e.g., image caption-

ing [Johnson et al., 2015] or time series data [Kelly and Knottenbelt, 2015]. Such deep algorithms

(e.g., CNN, RNN) learn a number of hierarchical layers of dense feature representations and has

two important benefits. First, deep neural networks do not need hand-crafted features which al-

lows us to deploy the models in real applications [LeCun et al., 2015]. Second, the deep features

learned by deep neural networks are more generic and extremely robust which allows us to use

the learned features in one domain (the source domain) to build the models in another domain (the

target domain), e.g., object detection to scene understanding. In this section we present our deep

learning approach and the design of our processing pipeline.

Domain Adaptation with Pre-Trained Models

Domain adaptation aims at training a classifier in one problem space and applying it to a related but

not identical problem [Zhang et al., 2015]. We adopt existing practice in DNN modeling, called

pre-trained models [Jia et al., 2014], and apply them to our location labeling problem. Our “domain

adaptation" in this case is limited to the “label space adaptation", that is adopting the output of the

117



Pre-trained models Model adaptation layer

Ensemble
output

Figure 4.8: Our model adaptation schema and ensemble of adapted deep neural models.
Left/Green: Several deep neural models pre-trained or extended using transfer learning.

Middle/Red: The adaptation layer. Right/Blue: The aggregation layer.

final layer without tuning the learned parameters (weights) or the internal network structure. In this

approach, the pre-trained models trained with arbitrary number of class labels used in the task of

classifying the images that cover only a subset of classes identifying the location context i.e., store

types. Table 4.3 summarizes the pre-trained models used in our domain adaptation mechanism.

The final layer of these DNNs commonly use the SoftMax classifier [Bishop, 2001]. For this layer

we have:

P (y = j|Xi) =
e
wjX

T
i∑n

k=1 e
(wkX

T
i )

(4.2)

whereXi is the feature vector extracted by the deep neural network for the input sample i (captured

single image). wi is the weight learned by the neural network. y is the predicted class label in j ∈ N

the set of all the class labels a pre-trained model is trained on (the source domain). For example the

size of label space, |N|, for original AlexNet [Krizhevsky et al., 2012] trained for ImageNet [Deng

et al., 2009] is 1000 labels. In order to adapt such a pre-trained model for the task of interest (the

118



target domain), we follow the Bayesian chain rule [Bishop, 2001] and apply the prior knowledge

specific to the space to the model prediction and thus we have:

Ps(y = j|Xi) =
1(y ∈ L) · P (y = j|Xi)∑
L

1(y ∈ L) · P (y = j|Xi)
(4.3)

where 1(.) is the identity function and L is the label-set of the application the pre-trained model

is adopted for (the target domain). The denominator is the normalization factor and thus Ps(y =

j|Xi) indicates the probability of class(label) given the feature vector Xi for application specific

labels j ∈ L . Therefore, given a pre-trained model M with the label space N in the source domain,

and the loss function as shown in equation 4.2, our domain adaptation approach adapts the model

M for the target application with label space L ⊂ N using the equation 4.3. Fig. 4.8 illustrates the

layouts of our pipeline. The adaptation layer in this figure implements equation 4.3.

Model Extension with Transfer Learning

In practice, very few people train an entire deep neural network from scratch, because it is relatively

rare to have a dataset of sufficient size. Instead, it is common to pre-train a deep neural net. on a

very large standard dataset i.e. ImageNet, which contains 1.2 million images with 1000 categories

or Places dataset [también SCHUM, ]] with 500K images with 205 categories and then use the the

resulting model (the pre-trained model) either as an initialization or a fixed feature extractor for

the task of interest i.e. location-context/scene understanding. In the previous section, we described

how this models are adapted to our application without further training. This approach works

perfect for the cases that the target labels are a subset of original labels, L ⊂ N. However, we

found out, in our problem, none of the original models include the entire label space. Therefore,

we have two case: a) There are class labels in L that do not have any high level representation

119



Table 4.3: Models built in Deep-Crowd-Label via model adaptation and model extension

DNN Model Architectureα Dataset ( # of classes/ total size ) MM

imagenet-alexnet 5(CV), 3(FC), 1000(O) ImageNet(1000/1.2M) MA

places-alexnet 5(CV), 3(FC), 205(O) Places (205/2.5M) MA

places-hybrid 5(CV), 3(FC), 1183(O) ImageNet (978) + Places(205) MA

places-googleNet 59(CV), 5(FC),205(O) Places (205/2.5M) MA

shops-alexnet 5(CV), 3(FC), 26(O) Places205 =⇒ shops from places

+ SUN3971 dataset (205/2.5M) ME

indoor67-alexnet 5(CV), 3(FC), 67(O) Indoor 672 (67/15.6K) MA

indoorshops-alexnet 5(CV), 3(FC), 26(O) ImageNet =⇒ indoor shops from

SUN + places =⇒ data collected by

ourselves (15/1.5k) ME

imagenet-stores-alexnet 5(CV), 3(FC), 9(O) ImageNet=⇒ indoor shops from

ImageNet (9/10k) ME

α: FC: Fully-connected Layer, CV: Convolution Layer, O: Output (number of classes)

=⇒: indicates the direction of transfer learning: base model =⇒ new model.

MM(Method) : MA: Model Adaptation (Sec. 4.7.2), ME: Model Extension (Sec. 4.7.2).

in the pre-trained models label space N e.g., computer store is missing in the ImageNet label

space. b) There are class labels in L that match with more than one class label in N e.g., shoe-

shop has multiple corresponding categories in AlexNet-ImageNet model (shoe, loafer shoe or sport

shoe). To address this issue we propose a“Transfer Learning" [Pan and Yang, 2010] approach. In

this approach we keep the feature extractor layers3 in the pre-trained model frozen by setting the

3convolutional layers

120



learning rate for these layers to zero. The last fully connected layer instead is initiated with random

weights and is trained with the data collected and labeled by us. This allows us to use the features

extractors trained in the pre-trained models and use the our collected data to train the final fully

connected layers to cover the entire label space L. This enables us to train a deep model with

limited amount of training data with no over-fitting.

Model Ensemble

To further improve the accuracy and increase the robustness of our final label prediction model

(for single image) we use an ensemble of models as illustrated in Fig. 4.8. Our ensemble model

is simply the weighted average of prediction probabilities of the individual models that are either

adapted or extended by the methods explained earlier (cf. Sec.4.7.2 4.7.2). Fig.4.8 illustrates this

approach and Table 4.3 summarizes these models.

4.7.3 Training

We train our network with a combination of available public datasets and our collected data using

video frames and still images. The training is done when the Model Extension (ME) approach

(cf. Sec. 4.7.2) is used. Each model in this approach is trained independently regardless of what

kind of pre-trained model is chosen as the base model. In the training process, the convolutional

layers are taken from the convolutional layers in the base model e.g., [Jia et al., 2014, Krizhevsky

et al., 2012]. We pass the output of these convolutional layers (i.e. the pool5 features) into a single

feature vector. This vector is the input to the fully connected layers taken from the base model

and trained on our dataset. Finally, we re-define the last layer (i.e., softmax layer) to have outputs

equal to the number of classes in our label space. During the training procedure the learning rate is

set to zero for the convolutional layers. This is because we do not have enough data to train these

121



layers and thus by freezing these layers (learning rate = 0) it will prevent our model to over-fit

to the training data and at the same time taking advantages of the pre-trained model as a feature

extractor. The learning rate for the fully connected layers are taken from the default for the base

layers while the learning rate for the output layer is set to 10 times of the maximum of learning

rates of the fully connected layers. This is because the last layer defined specifically for this layer,

unlike other fully connected layers there is no corresponding layer in the base model and thus the

weights are initialized randomly. Therefore this requires us to have the layer trained faster than

other fully connected layers. Beside the learning rate and the structure of the output layer, the

other network hyper-parameters are taken from the base models. In our model we use ReLU [Nair

and Hinton, 2010] as the activation function in each fully-connected and dropout [Srivastava et al.,

2014] after each one, as in the base models. Our neural network is trained using Caffe [Jia et al.,

2014].

4.7.4 Labeling and Aggregation by Crowd-Sourcing

The last stage of our location-labeling pipeline is to aggregate the prediction results of individual

images associated to one location, k. We do not need to perform this step at the training time

but only at the inference time, that is when the trained model is used to label the collection of

images from a location. Let PI(y = j|Xi) be the prediction probability of classifying an image

feature vector Xi using our ensemble of deep neural network models (cf. Sections 4.7.2), and let

Γk indicate the set of images collected for location k . Therefore we have:

PΓ(y = i|Γk) =
1

|Γk|
∑
xi∈Γk

PI(y = j|Xi)

where PΓ(y = i|Γk) is the aggregated predication for each location k. The system labels each

122



location by picking the label with the maximum prediction probability, in other words we have:

labelk = max
l
PΓ(y|Γl) (4.4)

4.7.5 Data Collection and Dataset Preparation

Data Collection: We have collected data from 26 different indoor locations, mostly shops in the

malls and supermarkets. The data is collected using smart-watch and smart-phone in the form of

videos and still images. The videos are converted to the frames. It is important to remove the

very similar frames in the training data to prevent bias in the model. Therefore we only extract

the key-frames from the video using FFMPEG. Moreover, the 80% data is left for training and the

20% of is used for inference (labeling). Since having a balanced dataset is crucial in the training

phase, the number of images per class is kept balanced in the training set. This is not necessary in

the inference phase.

Automatic Rotation and Noise Reduction: During data collection we observed that the camera

API on each device rotates the captured image arbitrary. Since our deep neural network models are

not rotation-invariant, we use the camera information in the images Exif meta-data, to rotate the

images to the right orientation automatically. In addition, we apply standard denoising method to

improve the quality of collected images. Images that the measure of blurriness is above a certain

threshold are not used in the training data.

Data Augmentation: Deep neural networks require a lot of data to train. The easiest and the

most common method to cope with data scarcity is to artificially enlarge the dataset a.k.a as data

augmentation. Following the technique in [Krizhevsky et al., 2012], we augment our dataset by

extracting random 224× 224 patches (and their horizontal reflections) from the 256× 256 images

123



and training our network on these extracted patches. This increases the size of our training set

by a factor of 2048, though the resulting training examples are, of course, highly interdependent

[Krizhevsky et al., 2012]. Without this scheme, our network suffers from substantial over-fitting

even with transfer learning (cf. Sec. 4.7.2).

4.7.6 Evaluation

Our proposed method is applied to the real data collected from 26 stores. Fig. 4.9 shows the

prediction results of our pipeline when it labels a single image. The figure shows top-5 prediction

results for each image with confidence values in the bar chart in increasing order. Moreover,

Tables 4.4 -a:f show the results of the aggregated predictions for 6 different indoor locations (5

different kinds of stores and 1 food court) in a shopping mall. For each location the grand-truth

label is mentioned on the top-right cell and the top-5 prediction results are reported in descending

order of confidence values. Although the confidence values are different, the results show the

difference between the top-1 prediction the other 4 verifying the applicability and generality of our

method in predicting the right label for each location. Moreover, as we can see in Fig. 4.9 there

are several examples that even the top-1 prediction is not correct (false positive) while this is not

the case when the results are aggregated by crowd-sourcing as it is shown in Tables 4.4 a-f. This

results show the expressivity of our method in aggregating with crowd-sensing (crowd-prediction)

to improve the prediction accuracy.

124



Figure 4.9: Predictions on real samples collected from indoor shops. Bars below each image
show the top-5 model predictions using our deep learning method sorted in ascending order.

4.8 Summary

Deep neural models are both computationally and memory intensive, making them difficult to

deploy on mobile application with limited hardware resources. In this chapter we presents Deep-

Partition, an optimization based partitioning pipeline featuring a tiered architecture for smartphone

and the back-end cloud to deploy and execute deep neural models more efficiently. Deep-Partition

provides a profile-based model partitioning allowing it to intelligently dispatch the processing tasks

among the tiers to minimize the smartphone power consumption and the deep models feed-forward

latency. Extensive microbenchmark evaluation and three case studies on representative deep neural

125



Table 4.4: Location labeling results. Each table represents one store with name and grand-truth
type (top row). Top-5 prediction results with confidence values (prediction probabilities) are

presented in each row. Each prediction is the aggregated result of crowd-sensed images for each
store (Sec. 4.7.4).

(a)

Safeway supermarket

68.52% supermarket

6.31% cottage-garden

5.06% crevasse

4.89% valley

4.81% mountain

(b)

Macy’s clothing-store

35.71% clothing-store

5.75% gift-shop

3.99% staircase

3.81% shoe-shop

3.13% beauty-salon

(c)

Disney Store gift-shop

52.60% gift-shop

11.97% candy-store

5.18% market

3.06% game-room

2.42% supermarket

(d)

Apple Store computer store

16.47% computer store

6.42% food-court

6.38% art-gallery

5.49% cafeteria

5.26% art-studio

(e)

Zara clothing-store

40.40% clothing-store

5.20% garbage-dump

3.98% slum

2.91% excavation

2.83% railroad-track

(f)

DSW shoe-shop

19.15% bookstore

11.39% airport-terminal

7.32% shoe-shop

6.32% supermarket

4.86% clothing-store

models validate the performance gain by Deep-Partition.

In addition, this chapter presents Deep-Crowd-Label, a novel system to semantically label

user’s location. Deep-Crowd-Label is a crowd-assisted system that uses crowd-sourcing in both

training and inference time. It builds deep convolutional neural models using crowd-sensed images

to infer the context (label) of indoor locations. It features domain adaptation and model extension

via transfer learning to efficiently build deep models for image labeling. By fully exploiting the pre-

126



trained models and available datasets, Deep-Crowd-Label builds ensemble of models to increase

the robustness and improve the accuracy of prediction. Moreover, Deep-Crowd-Label aggregates

the several individual predictions of images obtained from the same location to infer the contex-

tual label of a location. We also provide the layer-wise benchmark our deep models and apply

novel compression techniques on the trained models to facilitate the deployment of the deep neural

network on smartphones. The prototyped system and the preliminary experiments on 26 different

stores show the high accuracy of the model and demonstrates the generality and robustness of the

underlying approach. Future plans include extending the model to more diverse types of locations

as well as improving the on-device performance.In addition we plan to merge our ensemble of

models into one unified deep neural network by exploiting the shared part of the models.

127



Chapter 5

Conclusion

Supported by advanced sensing capabilities, increasing computational resources and the advances

in Artificial Intelligence, smartphones have become our virtual companions in our daily life. An

average modern smartphone is capable of handling a wide range of tasks including navigation,

advanced image processing, speech processing, cross app data processing and etc. The key facet

that is common in all of these applications is the data intensive computation.

In this dissertation we have taken steps towards the realization of the vision that makes the

smartphone truly a platform for data intensive computations by proposing frameworks, application

and algorithmic solutions. We followed a data-driven approach to the system design. To this end,

several challenges must be addressed before smartphones can be used as a system platform for

data-intensive applications. The major challenge addressed in this dissertation include high power

consumption, high computation cost in advance machine learning algorithms, lack of real-time

functionalities, lack of embedded programming support, heterogeneity in the apps, communication

interfaces and programming abstractions and lack of customized data processing libraries.

The contribution of this dissertation can be summarized as follows. We presented the design,

implementation and evaluation of the ORBIT framework, which represents the first system that

combines the design requirements of a machine learning system and sensing system together at

the same time. We ported for the first time off-the-shelf machine learning algorithms for real-time

sensor data processing to smartphone devices. In this process we considered the power and mem-

128



ory limitation of smartphone, and for each algorithm we provided two versions: the light and the

heavy version. This is a leap forward from previous approaches, which relied on custom-designed

sensing and computing platforms. We highlighted how machine learning on smartphones comes

with severe costs that need to be mitigated in order to make smartphone capable of real-time

data-intensive processing. Some of the costs can be managed with an adapting re-design of the

off-the-shelf processing pipeline with additional real-time hyper-parameter control parameters to

control the precision and computation cost of the pipeline respect to available resource smartphone

in terms of battery duration. We showed that some of the limitations imposed by a mobile sensing

application can be overcome by having a multi-tier framework allowing us to split the computation

pipeline between the smartphone and two other tiers namely extension-board and cloud, by iden-

tifying the bottlenecks in the computation graph. We showed that computation blocks can be can

be adopted at execution time leading to further improvement in the resource consumption while

maintaining the algorithm accuracy and yet shortening the computation time. We reported on our

experience deploying ORBIT at scale with a few case studies as well as multiple deployments on

active volcanos in Ecuador and Chile.

We extended the scope of our work from platforms to application and presented SPOT. SPOT

aims to address some of the challenges discovered in mobile-based smart-home systems. These

challenges prevent us from achieving the promises of smart-homes due to heterogeneity in different

aspects of smart devices and the underlining systems. This owes to lack of dominating standards in

smart-home technologies, leading to the fragmented digital homes rather than truly smart homes.

We face the following major heterogeneities in building smart-homes:: (i) Diverse appliance con-

trol apps (ii) Communication interface, (iii) Programming abstraction. SPOT is an enabling tech-

nology for smart-homes system that allows the integration of hetrogenious smart-device seemless

by proposing a novel dynamic draver loading schema. SPOT introduces two driver models namely

129



XML-based and library-based allowing the integration and manipulation of smart devices easy

for both programmers and users. SPOT makes the heterogeneous characteristics of smart appli-

ances transparent, and by that minimizes the burden of home automation application developers

and the efforts of users who would otherwise have to deal with appliance-specific apps and control

interfaces. SPOT is evaluated through several benchmarks and three case studies: cross-device

programming, central usage analytics and residential energy management via demand response

commands. Our evaluation demonstrates the generality of SPOTâĂŹs design and its driver model.

After discussing two aspects of this dissertation namely the framework and the application,

we finally presented the algorithmic aspect of the dissertation by introducing two systems in

smartphone-based deep learning area: Deep-Crowd-Label and Deep-Partition. Deep neural mod-

els are both computationally and memory intensive, making them difficult to deploy on mobile

applications with limited hardware resources. On the other hand, they are the most advanced

machine learning algorithms suitable for real-time sensing applications used in the wild. Deep-

Partition is an optimization based partitioning meta-algorithm featuring a tiered architecture for

smartphone and the back-end cloud, which helps to deploy and execute deep neural models more

efficiently. Deep-Partition provides a profile-based model partitioning allowing it to intelligently

execute the Deep Learning algorithms among the tiers to minimize the smartphone power con-

sumption by minimizing the deep models feed-forward latency. Extensive microbenchmark eval-

uation and three case studies on representative deep neural models validate the performance gain

by Deep-Partition. In addition, we presented Deep-Crowd-Label, a novel algorithm designed for

distributed collaborative smartphone systems for crowd-sourcing applications. Deep-Crowd-Label

is prototyped for semantically labeling userâĂŹs location. Deep-Crowd-Label is a crowd-assisted

algorithm that uses crowd-sourcing in both training and inference time. It builds deep convolu-

tional neural models using crowd-sensed images to detect the context (label) of indoor locations.

130



It features domain adaptation and model extension via transfer learning to efficiently build deep

models for image labeling. By fully exploiting the pre-trained models and available datasets, Deep-

Crowd- Label builds ensemble of models to increase the robustness and improve the accuracy of

prediction. Moreover, Deep-Crowd-Label aggregates several individual predictions of images ob-

tained from the same location to infer the contextual label of a location. The prototyped system

and the preliminary experiments on 26 different in-door locations show the high accuracy of the

model and demonstrates the generality and robustness of the underlying approach.

The work presented in this dissertation covers three major facets of data-driven and computein-

tensive smartphone-based systems, platforms, applications and algorithms; and helps to spurs a

new area of research on smartphone sensing and opens up new directions in mobile computing

research.

131



BIBLIOGRAPHY

132



BIBLIOGRAPHY

[Hom, ] Control your home. http://www.homeseer.com/. [Online; accessed 2-Nov-2014].

[DEX, ] Dalvik executable format. https://source.android.com/devices/tech/dalvik/dex-format.
html. [Online; accessed 03-Apr-2015].

[sys, ] Display and performance analysis in android apps. http://developer.android.com/tools/
debugging/systrace.html. [Online; accessed 06-Apr-2015].

[ELK, ] Elk products. http://www.elkproducts.com/security-automation-connection. [Online; ac-
cessed 2-Nov-2014].

[fas, ] Fast demand response (white paper). https://www.parc.com/content/attachments/energy_
fastdemandresponse_wp_parc.pdf. [Online; accessed 06-Apr-2015].

[GE, ] Ge brillion appliances. http://www.geappliances.com/connected-home-smart-appliances/.
[Online; accessed 2-Nov-2014].

[Gre, ] Green button data. http://www.greenbuttondata.org/. [Online; accessed 4-Nov-2014].

[Con, ] Home automation and control. http://www.control4.com. [Online; accessed 2-Nov-2014].

[IFT, ] If this, then that. https://ifttt.com/. [Online; accessed 03-Apr-2015].

[Nes, ] Nest thermostat and smoke detector. https://nest.com/. [Online; accessed 2-Nov-2014].

[upn, ] Open source frameworks for upnp. http://www.cybergarage.org/do/view/Main/
UPnPFramework. [Online; accessed 06-Apr-2015].

[Ope, ] Openadr alliance, openadr 2.0 profile specification. http://www.openadr.org/specification.
[Online; accessed 3-July-2014].

[Phi, ] Philips hue light. www.lighting.philips.com. [Online; accessed 2-Nov-2014].

[Rad, ] Radio thermostat. http://www.radiothermostat.com/. [Online; accessed 2-Nov-2014].

[sma, ] Smart-things. http://www.smartthings.com/. [Online; accessed 2-Nov-2014].

[eco, ] Smart wifi thermostats by ecobee. http://www.ecobee.com/. [Online; accessed 2-Nov-
2014].

133



[ufo, ] Ufo power center. http://www.energyufo.com/. [Online; accessed 06-Apr-2015].

[Ven, ] Venstar thermostat. http://www.venstar.com/Thermostats/. [Online; accessed 2-Nov-
2014].

[wem, ] Wemo that – home automation made easy. http://www.wemothat.com/. [Online; accessed
29-Mar-2015].

[win, ] Wink home automation system. http://www.wink.com/products/. [Online; accessed 2-
Nov-2014].

[Amin et al., 2007] Amin, S., Bayen, A. M., El Ghaoui, L., and Sastry, S. (2007). Robust feasi-
bility for control of water flow in a reservoir-canal system. In Decision and Control, 2007 46th
IEEE Conference on, pages 1571–1577. IEEE. http://float.berkeley.edu.

[Arduino Board, ] Arduino Board. Arduino board. http://www.arduino.cc.

[Azizyan et al., 2009] Azizyan, M., Constandache, I., and Roy Choudhury, R. (2009). Surround-
sense: mobile phone localization via ambience fingerprinting. In Proceedings of the 15th annual
international conference on Mobile computing and networking, pages 261–272. ACM.

[Balan et al., 2003] Balan, R. K., Satyanarayanan, M., Park, S. Y., and Okoshi, T. (2003). Tactics-
based remote execution for mobile computing. In MobiSys.

[Bishop, 2001] Bishop, C. (2001). Bishop pattern recognition and machine learning.

[Chen et al., ] Chen, W., Wilson, J. T., Tyree, S., Weinberger, K. Q., and Chen, Y. Compressing
neural networks with the hashing trick.

[Chon et al., 2013] Chon, Y., Kim, Y., and Cha, H. (2013). Autonomous place naming system us-
ing opportunistic crowdsensing and knowledge from crowdsourcing. In Information Processing
in Sensor Networks (IPSN), 2013 ACM/IEEE International Conference on. IEEE.

[Chon et al., 2012] Chon, Y., Lane, N. D., Li, F., Cha, H., and Zhao, F. (2012). Automatically
characterizing places with opportunistic crowdsensing using smartphones. In Proceedings of
the 2012 ACM Conference on Ubiquitous Computing. ACM.

[Chu et al., 2011] Chu, D., Lane, N. D., Lai, T. T.-T., Pang, C., Meng, X., Guo, Q., Li, F., and
Zhao, F. (2011). Balancing energy, latency and accuracy for mobile sensor data classification.
In SenSys.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and
Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537.

134



[Cuervo et al., 2010a] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S.,
Chandra, R., and Bahl, P. (2010a). Maui: making smartphones last longer with code offload. In
MobiSys.

[Cuervo et al., 2010b] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S.,
Chandra, R., and Bahl, P. (2010b). Maui: Making smartphones last longer with code off-
load. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’10, pages 49–62, New York, NY, USA. ACM.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Ima-
genet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and
Pattern Recognition.

[Deng et al., 2013] Deng, L., Li, J., Huang, J. T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig,
G., He, X., Williams, J., Gong, Y., and Acero, A. (2013). Recent advances in deep learning for
speech research at microsoft. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing.

[Denton et al., 2014] Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. (2014).
Exploiting linear structure within convolutional networks for efficient evaluation. In Advances
in Neural Information Processing Systems, pages 1269–1277.

[Dixon et al., 2010] Dixon, C., Mahajan, R., Agarwal, S., Brush, A. J., Lee, B., Saroiu, S., and
Bahl, V. (2010). The home needs an operating system (and an app store). In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, pages 18:1–18:6, New
York, NY, USA. ACM.

[Eagle and Pentland, 2006] Eagle, N. and Pentland, A. (2006). Reality mining: sensing complex
social systems. Personal and ubiquitous computing, 10(4):255–268.

[Escoffier et al., 2008] Escoffier, C., Bourcier, J., Lalanda, P., and Yu, J. (2008). Towards a home
application server. In Consumer Communications and Networking Conference, 2008. CCNC
2008. 5th IEEE, pages 321–325. IEEE.

[Faulkner et al., 2011] Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy, K. M., and
Krause, A. (2011). The next big one: Detecting earthquakes and other rare events from
community-based sensors. In IPSN.

[Flinn et al., 2002] Flinn, J., Park, S., and Satyanarayanan, M. (2002). Balancing performance,
energy, and quality in pervasive computing. In ICDCS.

[Floating sensor network project, ] Floating sensor network project. Floating sensor network.
http://float.berkeley.edu.

135



[Girod et al., 2004] Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., and Estrin,
D. (2004). Emstar: A software environment for developing and deploying wireless sensor
networks. In USENIX Annual Technical Conference.

[Girshick et al., 2014] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature
hierarchies for accurate object detection and semantic segmentation. In Computer Vision and
Pattern Recognition.

[Guizzo, 2011] Guizzo, E. (2011). Robots with their heads in the clouds. IEEE Spectrum,
48(3):16–18.

[Gumstix, ] Gumstix. Gumstix. https://www.gumstix.com.

[Gupta et al., ] Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. Deep learning with
limited numerical precision.

[Ha et al., 2007] Ha, Y.-G., Sohn, J.-C., and Cho, Y.-J. (2007). ubihome: An infrastructure for
ubiquitous home network services. In Consumer Electronics, 2007. ISCE 2007. IEEE Interna-
tional Symposium on, pages 1–6. IEEE.

[Hammer-Lahav and Hardt, ] Hammer-Lahav, D. and Hardt, D. The oauth2. 0 authorization pro-
tocol. 2011. Technical report, IETF Internet Draft.

[IOIO for Android, ] IOIO for Android. IOIO for Android. www.sparkfun.com.

[Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding.
In Proceedings of the 22nd ACM international conference on Multimedia. ACM.

[Johnson et al., 2015] Johnson, J., Karpathy, A., and Fei-Fei, L. (2015). Densecap: Fully convo-
lutional localization networks for dense captioning. arXiv preprint arXiv:1511.07571.

[Ju et al., 2012] Ju, Y., Lee, Y., Yu, J., Min, C., Shin, I., and Song, J. (2012). Symphoney: a coor-
dinated sensing flow execution engine for concurrent mobile sensing applications. In SenSys.

[Kang et al., 2008] Kang, S., Lee, J., Jang, H., Lee, H., Lee, Y., Park, S., Park, T., and Song, J.
(2008). Seemon: scalable and energy-efficient context monitoring framework for sensor-rich
mobile environments. In MobiSys.

[Kang et al., 2010] Kang, S., Lee, Y., Min, C., Ju, Y., Park, T., Lee, J., Rhee, Y., and Song, J.
(2010). Orchestrator: An active resource orchestration framework for mobile context monitor-
ing in sensor-rich mobile environments. In PerCom.

[Kaparaty 2016, ] Kaparaty 2016. Conv net break down. http://cs231n.github.io/
convolutional-networks.

136



[Kehoe et al., 2015] Kehoe, B., Patil, S., Abbeel, P., and Goldberg, K. (2015). A survey of research
on cloud robotics and automation. IEEE Transactions on automation science and engineering,
12(2):398–409.

[Kelly and Knottenbelt, 2015] Kelly, J. and Knottenbelt, W. (2015). Neural nilm: Deep neural
networks applied to energy disaggregation. In Proceedings of the 2nd ACM International Con-
ference on Embedded Systems for Energy-Efficient Built Environments. ACM.

[Kim et al., 2010] Kim, D. H., Kim, Y., Estrin, D., and Srivastava, M. B. (2010). Sensloc: sensing
everyday places and paths using less energy. In Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems, pages 43–56. ACM.

[Krizhevsky, 2009] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural information processing
systems.

[Krumm et al., 2000] Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., and Shafer, S.
(2000). Multi-camera multi-person tracking for easyliving. In Visual Surveillance, 2000. Pro-
ceedings. Third IEEE International Workshop on, pages 3–10.

[Krumm and Rouhana, 2013] Krumm, J. and Rouhana, D. (2013). Placer: semantic place labels
from diary data. In Proceedings of the 2013 ACM international joint conference on Pervasive
and ubiquitous computing. ACM.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature.

[LeCun et al., ] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. Backpropagation applied to handwritten zip code recognition. Neural
computation.

[LG Optimus Net, ] LG Optimus Net. LG Optimus Net. http://www.gsmarena.com/lg_optimus_
net-4043.php.

[Liu et al., 2013] Liu, G., Tan, R., Zhou, R., Xing, G., Song, W.-Z., and Lees, J. M. (2013). Vol-
canic earthquake timing using wireless sensor networks. In IPSN.

[Liu et al., 2006] Liu, J., Wolfson, O., and Yin, H. (2006). Extracting semantic location from
outdoor positioning systems. In MDM. Citeseer.

[Marvell Sheevaplug, ] Marvell Sheevaplug. Marvell sheevaplug. www.plugcomputer.org.

[Meng et al., 2015] Meng, R., Shen, S., Roy Choudhury, R., and Nelakuditi, S. (2015). Matching
physical sites with web sites for semantic localization. In The 2nd workshop on Workshop on
Physical Analytics. ACM.

137



[Miluzzo, 2011] Miluzzo, E. (2011). Smartphone Sensing. PhD thesis, Dartmouth College.

[Moazzami et al., 2015] Moazzami, M., Phillips, D. E., Tan, R., and Xing, G. (2015). ORBIT: a
smartphone-based platform for data-intensive embedded sensing applications. In Proceedings of
the 14th International Conference on Information Processing in Sensor Networks, IPSN 2015,
Seattle, WA, USA, April 14-16, 2015, pages 83–94.

[Moazzami et al., 2013] Moazzami, M.-M., Phillips, D. E., Tan, R., and Xing, G. (2013). A
smartphone-based system platform for embedded sensing applications. Technical Report MSU-
CSE-13-11, Dept. CSE, Michigan State University. http://www.cse.msu.edu/publications/tech/
TR/MSU-CSE-13-11.pdf.

[Moazzami et al., 2017] Moazzami, M.-M., Singh, J., Srinivasan, V., and Xing, G. (2017). Deep-
crowd-label: A deep-learning based crowd-assisted system for location labeling. In 4th Interna-
tional Workshop on Crowd Assisted Sensing, Pervasive Systems and Communications (CASPer
2017).

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th International Conference on Machine
Learning.

[NASA PhoneSat 2013, ] NASA PhoneSat 2013. Nasa phonesat project. http://open.nasa.gov/
plan/phonesat/.

[Newton et al., 2009] Newton, R., Toledo, S., Girod, L., Balakrishnan, H., and Madden, S. (2009).
Wishbone: Profile-based partitioning for sensornet applications. In NSDI.

[Object Tracking Robot, ] Object Tracking Robot. Soccer robot project. https://code.google.com/
p/android-object-tracking/.

[Oracle, ] Oracle. Java annotations. http://docs.oracle.com/javase/tutorial/java/annotations/.

[Pan and Yang, 2010] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Trans-
actions on knowledge and data engineering.

[Pei et al., 2013] Pei, L., Guinness, R., Chen, R., Liu, J., Kuusniemi, H., Chen, Y., Chen, L.,
and Kaistinen, J. (2013). Human behavior cognition using smartphone sensors. Sensors,
13(2):1402–1424.

[Pichotta and Mooney, 2016] Pichotta, K. and Mooney, R. J. (2016). Using sentence-level lstm
language models for script inference. arXiv preprint arXiv:1604.02993.

[Ponnekanti et al., 2001] Ponnekanti, S. R., Lee, B., Fox, A., Hanrahan, P., and Winograd, T.
(2001). Icrafter: A service framework for ubiquitous computing environments. In Ubicomp
2001: Ubiquitous Computing, pages 56–75. Springer.

138



[Quattoni and Torralba, 2009] Quattoni, A. and Torralba, A. (2009). Recognizing indoor scenes.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.

[Ra et al., 2012] Ra, M.-R., Liu, B., La Porta, T. F., and Govindan, R. (2012). Medusa: a pro-
gramming framework for crowd-sensing applications. In MobiSys.

[Raspberry Pi, ] Raspberry Pi. Raspberry pi. http://www.raspberrypi.org.

[Rosen et al., 2004] Rosen, N., Sattar, R., Lindeman, R. W., Simha, R., and Narahari, B. (2004).
Homeos: Context-aware home connectivity. In International Conference on Wireless Networks,
pages 739–744.

[Sapiezynski et al., 2015] Sapiezynski, P., Stopczynski, A., Gatej, R., and Lehmann, S. (2015).
Tracking human mobility using wifi signals. PloS one.

[Sharif Razavian et al., 2014] Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S.
(2014). Cnn features off-the-shelf: an astounding baseline for recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[Shin et al., 2016] Shin, S., Hwang, K., and Sung, W. (2016). Quantized neural network design
under weight capacity constraint. arXiv preprint arXiv:1611.06342.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep convolu-
tional networks for large-scale image recognition. CoRR, abs/1409.1556.

[Sleeman and van Eck, 1999] Sleeman, R. and van Eck, T. (1999). Robust automatic p-phase pick-
ing: an on-line implementation in the analysis of broadband seismogram recordings. Physics of
the earth and planetary interiors, 113.

[Snavely et al., 2006] Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: Exploring
photo collections in 3d. In ACM SIGGRAPH.

[Sorber et al., 2005] Sorber, J., Banerjee, N., Corner, M. D., and Rollins, S. (2005). Turducken:
Hierarchical power management for mobile devices. In MobiSys.

[Srivastava et al., 2014] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

[Taigman et al., 2014] Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Clos-
ing the gap to human-level performance in face verification. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1701–1708.

139



[también SCHUM, ] también SCHUM, V. The evidential foundations of probabilistic reasoning.

[Tan et al., 2010] Tan, R., Xing, G., Chen, J., Song, W., and Huang, R. (2010). Quality-driven
volcanic earthquake detection using wireless sensor networks. In RTSS.

[VolcanoSRI 2012, ] VolcanoSRI 2012. Innovative monitoring systems help researchers look in-
side volcanos. www.cse.msu.edu/About/Notable.php?Nid=423.

[Wind et al., 2016] Wind, D. K., Sapiezynski, P., Furman, M. A., and Lehmann, S. (2016). Infer-
ring stop-locations from wifi. PloS one.

[Yan et al., 2014] Yan, Y., Cosgrove, S., Anand, V., Kulkarni, A., Konduri, S. H., Ko, S. Y., and
Ziarek, L. (2014). Real-time android with rtdroid. In MobiSys.

[Zamir et al., 2013] Zamir, A. R., Dehghan, A., and Shah, M. (2013). Visual business recognition:
a multimodal approach. In ACM Multimedia. Citeseer.

[Zhang et al., 2015] Zhang, X., Yu, F. X., Chang, S.-F., and Wang, S. (2015). Deep transfer net-
work: Unsupervised domain adaptation. arXiv preprint arXiv:1503.00591.

[Zhou et al., 2014] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning
deep features for scene recognition using places database. In Advances in neural information
processing systems.

[Zilberstein, 1996] Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI
magazine, 17(3):73.

140


