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ABSTRACT

MULTIPACTOR IN THE PRESENCE OF HIGHER-ORDER MODES: 
A NUMERICAL STUDY

By 

Scott Alan Rice

Resonant electromagnetic structures are vitally important in engineering and scientific

applications, ranging from devices as ubiquitous as antennas and microwave ovens, to devices as

demanding as high-power microwave sources and particle accelerator components. As we push

the limits on the design and operation of such structures, one of the physical limitations that we

must contend with is electrical breakdown, which becomes increasingly likely as we increase

field  strength  and  reduce  structure  sizes.  Multipactor  is  a  type  of  breakdown  in  which

electromagnetic  fields  accelerate  free  electrons  into  a  material,  which  then  ejects  secondary

electrons  which  are  re-accelerated  back  into  the  material,  and  which  sustains  or  grows  the

breakdown current over time. 

We are interested in understanding multipactor better because it is one of the common

design constraints for high-power resonant structures around microwave frequencies,  such as

klystrons, couplers, waveguides, and accelerating cavities used in particle accelerators. Besides

being a design constraint, we could also potentially employ the non-linear nature of multipactor

to  intentionally  attenuate  sporadic  harmful  power  levels  which  may  affect  certain  sensitive

equipment, such as for the protection of front-end electronics on radio receivers in space-borne

applications. 

This dissertation details the results of numerical study of two-surface multipactor driven

by time-harmonic fields, with a specific focus upon how secondary electron emission models can

affect the resulting multipactor predictions, and how multipactor susceptibility and trajectories



can be affected by the presence of additional modes within a resonant structure. The primary

focus is on multipactor occurring between the inner and outer conductors of coaxial geometries,

but some parallel plate geometries are also considered. 

The scope of investigation is limited to the multipactor regime in which space charge

effects can be neglected. In practice this means the early-time evolution of multipactor, since it

takes  some  time  before  space  charge  effects  become  significant.  Despite  this  simplifying

assumption  not  being  applicable  to  the  late-time behavior  of  multipactor, this  approach still

allows for much practical benefit in the understanding of multipactor genesis and controllability,

which is frequently the most significant concern of engineering interest. 



Dedicated to the memory of my father.
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CHAPTER 1: Introduction

1.1 Motivation

Over the past approximately 70 years, resonant electromagnetic structures have become

increasingly  important  in  engineering  and  scientific  applications,  ranging  from  devices  as

ubiquitous as antennas and microwave ovens, to devices as demanding as high-power microwave

sources and particle accelerator components. As we push the limits on the design and operation

of  such  structures,  one  of  the  physical  limitations  that  we  must  contend  with  is  electrical

breakdown, which becomes increasingly likely as we increase field strength and reduce structure

sizes. 

Depending on the physical situation, different types of breakdown are possible. Transient

direct-current  breakdown can occur  in  circumstances  where the potential  difference between

surfaces due to static charges becomes sufficiently strong, resulting in a momentary arc as the

surfaces  equilibrate.  Sustained  direct-current  or  alternating-current  breakdown  is  possible  in

circumstances when there is a power source to drive the sustained arcing. Depending on the

circumstances in which breakdown occurs, it can either be desired, benign, problematic, or even

catastrophic.

Multipactor [1][2][36] can be considered as a type of breakdown in which a sustained

current of electrons can impact surfaces and cause the release of secondary electrons, which are

then free to be accelerated by the fields and again impact a surface, carrying on the multipactor.

A pictorial representation is shown in Figure 1 below. Multipactor can in theory occur between

an arbitrary number of surfaces,  but historical  interest  has tended to focus on circumstances

where multipactor is most typically seen in practice, which is either two-point multipactor which
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occurs  between  two  conducting  surfaces,  or  single-point  multipactor  on  a  single  dielectric

surface. Within this dissertation, we exclusively focus on the case of two-surface multipactor

between conducting surfaces. For this case, multipactor can only occur when oscillatory fields of

certain  field  strengths  and frequencies  interact  with  materials  capable  of  emitting  secondary

electrons  with  sufficient  ease;  the  resonant  constraints  upon two-surface  multipactor  will  be

explained with mathematical precision in the body of this dissertation.   

Figure 1: Conceptual diagram of multipactor breakdown. 

 

We are interested in understanding multipactor better because it is one of the common

design constraints for high-power resonant structures around microwave frequencies,  such as

klystrons, couplers, waveguides, and accelerating cavities used in particle accelerators. Within

the context of microwave sources and particle accelerators, multipactor is generally a nuisance at

best, drawing energy out of structures that would ideally be used to produce high fields. It is also

capable  of  detuning  structures  and  causing  changes  in  device  impedance  [12],  which  may

degrade  device  performance  within  a  given  application.   However,  multipactor  can  also  be
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catastrophic  in  other  circumstances,  for  example  the  heat  deposition  from  an  unwanted

multipactor current can push a superconducting cavity out of the superconducting regime [36],

potentially resulting in quenching of the superconductivity and possible damage to the cavity or

surrounding structures. 

In some potential applications, the non-linear response of multipactor as a function of

field strength could also be intentionally employed.  An example would be the protection of

sensitive circuitry on radio receivers which may be subjected to sporadic high-intensity fields,

such as on a satellite outside Earth's protective ionosphere and thus subject to the direct effects of

solar storms. In such a situation, the multipactor could be intentionally used to attenuate excess

field strength before a received signal is introduced to the receiver's front-end electronics. 

1.2 Background

An examination of the technical literature shows multipactor investigations going back to

the 1920's, before multipactor as it is understood today was identified and named as a specific

mechanism within the larger class of radiofrequency breakdown phenomena. In this section we

provide a historical overview of multipactor research, focusing primarily on developments in

multipactor which occurred over the last 30 years, and to a lesser extent over the past 90 years. In

addition to the historical background provided in this section, interested readers are also referred

to review papers by Vaughan [1] and Kishek [2] which provide thorough historical accounts of

multipactor research over the decades, up through the time of their respective publications years

of 1988 and 1998.     

A paper in 1954 by Hatch [3] references early experimental studies of what would later

be  called  multipactor  which  occurred  in  the  1920's,  and  appeared  in  French-  and  German-
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language  publications,  as  well  as  some  later  Swedish-language  publications  from  the  early

1940's.  The  first  conceptual  description  of  multipactor  phenomenon  in  American  technical

literature  was  in  1934  by Farnsworth  [4],  who employed  multipactor  to  design  an  electron

multiplier tube capable of producing enough current (in the form of multipacting electrons) to

drive a fluorescent screen and produce a television image. A paper in 1948 by Gill [5] provided a

theoretical relation between the amplitude, phase, and frequency of the driving field, and the

multipactor  trajectory  length,  with  Hatch  [3]  expressing  the  theory  within  a  more  concise

mathematical  framework  and  providing  comparisons  to  experimental  data.  These  early

theoretical treatments of multipactor assumed very simple secondary electron energy spectra and

negligible  space  charge  effects  in  order  for  the  mathematical  relationships  of  multipactor

resonance to be derived; the theory provided by both [3] and [5] assumes a secondary electron

energy spectrum which is defined via a proportionality to an incident electron's impact energy.

Both [3] and [5] also assume that the driving electric fields only vary in time, and are invariant

with respect to the location between the bounding surfaces, as would be the case for an infinite

parallel plate geometry. 

The theoretical understanding of multipactor advanced in the late 1980's and 1990's with

a series of publications by a number of people. Vaughan [1] and Riyopolous [6][7] addressed the

theory  of  multipactor  from  a  phase  stability  viewpoint,  which  mathematically  showed  the

conditions under which stable multipactor resonances can occur even in the presence of random

fluctuations due to stochastic secondary emission velocities and velocity perturbations due to

space charge effects. Riyapolous' second publication [7] also allowed for delay times between an

electron impacting a boundary and a secondary electron being emitted. 
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Kishek  [8]  and  Valfells  [9]  examined  multipactor  using  a  circuit  model  in  which  a

multipacting device is  represented as a parallel  plate capacitor, and from this they derived a

number  of  useful  theoretical  results  regarding  the  total  current  involved  in  multipacting

electrons,  frequency  response  of  multipactor,  and  the  resulting  quality  factor  of  a  resonator

experiencing  multipactor.  Using  this  circuit  model  in  addition  to  the  behavior  of  typical

secondary electron yield curves, Kishek [10] also explained a previously unrecognized phase-

focusing mechanism influencing multipactor stability, in which multipacting electrons have a

tendency to be pushed towards impact energies which maximize the secondary electron yield

curve, while at the same time space charge effects tend to defocus the multipacting electrons;

space charge saturation occurs when these two competing factors balance and the multipacting

electrons have impact energies near the first unity-crossing location on the secondary electron

yield  curve.  Riyopolous  [11]  provided  further  analytical  and  simulation  work  on  the  phase

focusing and space charge particle debunching phenomenon and how they influence multipactor

saturation. 

Gopinath [12] utilized the particle-in-cell method to simulate parallel plate multipactor

for  fully  stochastic  emission  velocities  of  the  secondary  electrons,  allowing  for  a  study  of

multipactor evolution from early time, when space charge effects are negligible, up through the

late-time steady-state  when space  charge  saturation  occurs,  for  a  circuit  model  allowing for

varying Q values. These numerical results agreed quite well with the earlier theoretical results

which assumed mono-energetic secondary electrons, thus validating for many circumstances the

simplifying assumptions of the prior theoretical analyses.   

Besides  parallel  plate  geometries,  a  second canonical  multipactor  scenario of  interest

occurs in coaxial geometries. A pair of companion papers by Udiljak [13] and Semenov [14]
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respectively  provided  analytical  and  particle-in-cell  treatments  of  multipactor  in  coaxial

geometries driven by electric fields, and neglecting magnetic fields. Because the field strength in

a  coaxial  geometries  is  spatially  inhomogenous,  no  closed-form  solution  to  an  electron's

trajectory is known, and Udiljak makes some simplifying assumptions to arrive at approximate

analytical  solutions  which  are qualitatively  useful  if  not  always quantitatively  accurate.  One

interesting  phenomenon considered  by Udiljak  is  the  existence  of  single-surface  multipactor

supported by the outer radius of a coaxial geometry, which is possible due to the ponderomotive

force arising from the field inhomogeneity inside a coaxial geometry. Subsequent work by Pérez

[15] examined multipactor involving standing, travelling, and mixed transverse electromagnetic

modes within coaxial geometries.

Work by Sorolla  [16]  and Semenov [17]  examined the  frequency spectrum of  fields

caused by multipactor current within a parallel plate geometry. Their results were obtained by

assuming that multipacting electrons can be treated as a filament of charged particles moving

with a periodic velocity; this assumption is not strictly correct because resonance conditions tend

to  cause  multipacting  electrons  to  travel  in  discontinuous  sheets  or  packets,  and  not  in  a

continuous  filament.  Nonetheless,  this  assumption,  along with  image  theory  applied  to  both

conducting  parallel  plates,  allows  for  results  which  agree  quite  well  with  particle-in-cell

simulations applied to the same geometry. 

The effect  upon multipactor  of a perturbative field in  addition to the a primary field

driving parallel plate multipactor was examined by Semenov [18]. His findings showed that for a

perturbative field which is relatively close in frequency to the primary field, multipactor growth

can be  reduced or  eliminated.  However, these results  are  not  a  definitive conclusion on the

matter, due to two main deficiencies which will become more clear in Chapters 3 and 4 of this
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dissertation.  Specifically,  Semenov  used  Vaughan's  SEY model,  which  does  not  adequately

represent  incident  electrons  impacting  the  surfaces  with  low  energies.  Semenov  also  only

examined  electron  trajectory  starting  phases  which  were  near  the  stable  starting  phase  for

unperturbed multipactor trajectories;  he did not examine the entire range of possible starting

phases, some of which could yield stable multipactor trajectories in the presence of a perturbing

mode.     

Phase-shift keying of the driving field was simulated by Semenov [19] for a parallel plate

geometry  and  by  Gonzáles-Iglesias  [20]  for  a  coaxial  geometry.  While  some  changes  were

observed in the field strengths at which multipactor resonance occurs, the overall susceptibility

to multipactor was not significantly affected.  Gonzáles-Iglesias [20] includes comparisons to

measured data, which is in good agreement with the simulated results.   

Papers by Vdovicheva [21] and Anza [22] examined parallel plate multipactor from a

perspective of statistical distributions of electron velocities, which are then modified under the

influence of the driving fields and boundary impacts. From this, they determine how multipactor

current evolves over time in a statistical sense, as opposed to treating the phenomenon from the

perspective as a resonant phenomenon. Anza uses this statistical approach in [23] to provide a

theoretical analysis of multipactor susceptibility in the presence of multicarrier signals, such as a

multi-channel  satellite  antenna.  A subsequent  paper  by  Anza  [24]  compared  his  statistical

analysis  to measured data of multipactor onset within actual microwave components,  and he

showed respectable agreement as to the field strengths which give rise to multipactor.     

In addition to simple canonical geometries, work has been published which extends the

traditional two-point multipactor analyses to more complicated multipactor scenarios. Kryazhev

[25] and Riyopoulos [26] analyzed multipactor in parallel plate geometries and demonstrated that
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under certain conditions it is possible to have stable asymmetric back-and-forth orbits, in which

the time duration of one leg of the trajectory takes a different amount of time than another leg of

the trajectory. Shemelin [27] generalized the phase stability criterion from two-point multipactor

occurring over one radiofrequency period to an arbitrary N-point multipactor occurring over an

arbitrary number of radiofrequency periods. Kishek [28] used analytical theory and the particle-

in-cell  method  to  study  the  stability  of  N-point  multipactor  in  field  conditions  where  the

traditional two-point multipactor theory fails to predict sustainable multipactor.  Semenov [29]

generalized  the  traditional  parallel  plate  analysis  by  providing  a  theoretical  analysis  of

multipactor  within  a  rectangular  waveguide  geometry,  and  showed  that  the  higher-order

multipactor  trajectories  can  be  significantly  affected  by  the  oscillating  magnetic  field;  this

magnetic field usually has a negligible impact on low-order multipactor trajectories because the

multipacting  electrons  are  not  moving  at  relativistic  speeds,  and  the  magnetic  force  is

proportional to v/c, where v is magnitude of the particle velocity and c is the speed of light.  

Two  papers  by  Rasch  [30][31]  examined  two-point  multipactor  between  the  convex

surfaces  of  two conducting  cylinders,  and how the  surface  curvature  affects  the  multipactor

susceptibility.  Semenov  [32]  extended  this  analysis  to  any  two  conducting  surfaces  with

geometries that are defined by curves in a two-dimensional plane, and which are invariant in the

direction normal to the plane. These analyses generalize the traditional parallel plate multipactor

analysis  found in [1],  [3],  and [5].  Surface curvature was included in these analyses by the

introduction of a focusing or defocusing factor for the multipactor trajectories, similar to how ray

optics treats the convergence or divergence of rays reflected from a curved surface, with the

important  distinction  that  ray  optics  is  characterized  by  specular  reflections,  whereas  the

multipactor  trajectories  in  these  analyses  are  assumed  to  emerge  normal  to  the  conducting
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surface.  Such  an  assumption  for  the  emission  trajectories  can  be  justified  if  the  secondary

electron emission velocities are small, but this assumption can still introduce non-trivial errors in

certain cases,  which the authors demonstrate by a comparison with Monte Carlo multipactor

simulations  using  stochastic  emission  velocities.  Despite  an  inability  to  provide  quantitative

multipactor susceptibility predictions in all circumstances, this geometrical analysis can provide

qualitative insight into why certain geometrical structures are more or less prone to two-surface

multipactor than are infinite parallel plates.  

1.3 Description of this dissertation

This dissertation details  the results  of numerical study of multipactor, with a specific

focus  upon  how  secondary  electron  emission  models  can  affect  the  resulting  multipactor

predictions, and how multipactor susceptibility and trajectories can be affected by the presence

of  additional  modes  within  a  resonant  structure.  The  primary  focus  is  2-point  multipactor

occurring between the inner and outer conductors of coaxial geometries, but some parallel plate

geometries are  also considered.  However, there is  nothing in  the underling physics which is

specific to 2-point multipactor, and the results are thus expected to be generalizable to many

n-point multipactor scenarios. 

The scope of investigation is limited to the multipactor regime in which space charge

effects can be neglected. In practice this means the early-time evolution of multipactor, since it

takes  some  time  before  space  charge  effects  become  significant.  Despite  this  simplifying

assumption  not  being  applicable  to  the  late-time behavior  of  multipactor, this  approach still

allows for much practical benefit in the understanding of multipactor genesis and controllability,

which is frequently the most significant concern of engineering interest. 
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1.4 Organization of this dissertation

This dissertation is organized into seven chapters, with this introduction being Chapter 1.

Chapter  2  provides  an  overview  of  the  theoretical  and  computational  methodology  that

multipactor  initiation  can  be  studied  in  the  absence  of  space  charge  effects.  The  resonance

conditions  which  give  rise  to  multipactor  are  discussed,  as  well  as  the  relationship between

multipactor and the secondary electron yield (SEY) of surfaces sustaining multipactor. Analytical

and numerical approaches to analyzing multipactor are then discussed. 

Chapter  3  presents  various  secondary  electron  emission  (SEE)  models  which  are

fundamental  to  any  further  study  of  multipactor  initiation  or  sustainability.  The  models  we

consider are not intended to be an exhaustive list of all possible SEE models, but were chosen

either  because  of  their  popularity  within  various  technical  communities,  or  other  attractive

qualities such as conceptual or computational simplicity. These models are loosely presented in

order of least complex to most complex, in terms of both the SEY curves and the secondary

electron emission energy spectra. The exception to this order of presentation is that the final SEE

model, termed the medianized Furman SEE model, is a simplified variant of the most complex

SEE model, the Furman SEE model. This medianized variant is defined in a deterministic way so

as to capture much of the behavior of the more complicated stochastic model without needing to

resort to Monte Carlo simulations. 

Chapter 4 examines to what extent multipactor resonance is affected by the presence of

an additional mode alongside the fundamental mode which is primarily driving the multipactor,

for circumstances in which the space charge effects are negligible. Metrics are introduced to

quantify the multipactor susceptibility over a distributed volume such as a cavity or a length of

waveguide, in order to avoid erroneously concluding that we are able to improve multipactor
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performance based on an examination of only one location within a resonant structure; if we look

at only one location, then we are neglecting how an additional mode may be negatively affecting

multipactor performance at other locations in the structure. 

In  Chapter  5  we generalize the medianized Furman SEE model  by using  cumulative

statistics other than the 50th percentile of the underlying emission distribution, and examine how

well multipactor predictions using this generalized medianized Furman SEE model agree with

the fully stochastic Furman model. These results suggest that different design or analysis goals

for a resonant structure may be best attained by using different cumulative statistics from the

underlying Furman SEE model when reducing the model from a stochastic to a deterministic

model. 

Chapter 6 addresses the question of whether or not the impact points on a surface of

multipacting particles can be controlled via the presence of a higher-order mode. It is shown that

under circumstances in which a higher-order mode has a much stronger magnetic field than the

fundamental  mode,  then  the  multipactor  impact  points  can  be  controlled  under  many

circumstances. Such an ability to steer the location of multipactor points would have a practical

applications, for example deflecting multipactor current away from a sensitive area in a device

and  towards  areas  able  to  tolerate  or  even  suppress  the  multipactor  because  of  geometrical

factors or surface treatments.

Chapter 7 concludes this dissertation with a summary of the results obtained, and possible

directions for future research in this area.
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CHAPTER 2: Approaches Towards Analyzing Multipactor Initiation

2.1 Multipactor review 

Multipactor is a resonant phenomenon in which an electromagnetic field causes a free

electron to impact a surface, resulting in the surface emitting secondary electrons. If the surface

geometry and electromagnetic fields are appropriately arranged, the secondary electrons can then

be  accelerated  and  again  impact  a  surface  in  the  bounding geometry. If  the  net  number  of

secondary electrons participating in multipactor is non-decreasing, then the process can repeat

indefinitely. Expressed concisely, in order to initiate and sustain multipactor, we must satisfy the

following two conditions: (1) The secondary electron yield must be greater than or equal to unity

when averaged over the entire ensemble of multipacting electrons, and (2) the system geometry

and field excitation must result in electrons impacting boundaries at the proper RF phase, such

that secondary electrons emerge to find a field phase which will again accelerate them into a

boundary to create more secondary electrons.  These two conditions have naturally resulted in

approaches to multipactor control which have respectively focused on (1) surface treatments to

modify the  secondary electron yield,  and (2)  geometry  and field  modifications  to  affect  the

multipactor resonance [36].   

When plotted as a function of the kinetic energy of the incident electrons,  secondary

electron yield (SEY) curves typically have shape with a maximal SEY value at an intermediate

incident kinetic energy, and low SEY values for low and high incident kinetic energies, as shown

in Figure 2. For most metals of engineering interest, the first unity-valued point on the SEY

curve (denoted as Emin in Figure 1) is on the order of 100 eV, and the second unity-valued point

on the SEY curve (denoted as Emax in Figure 1) is on the order of 1000 eV [33]. These unity-
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valued points  frequently  are  respectively  called  the  first  and second crossover  points  in  the

literature, and the SEY is also frequently referred to as δ in the literature. Parametric models to

fit this curve have been presented by Vaughan [34] and Furman and Pivi [35]. It is also important

to note that secondary electrons can also be induced not only by incident electrons, but also by

other incident particles such as ions [49]; we limit our consideration only to incident electrons in

this dissertation, which is typical of most analyses of multipactor in the literature.     

Figure 2: SEY Curve. A Secondary Electron Yield (SEY) curve as a function of incident 

electron kinetic energy. Emin and Emax are commonly called the first and second crossover points,

and the SEY is sometimes represented by the Greek letter δ in the literature.

Besides  having  an  SEY that  meets  or  exceeds  unity, the  system geometry  and  field

excitation must  be conducive to sustaining the multipactor. This can perhaps be most easily

conceptualized by considering two parallel conductor plates separated by a distance d, and driven

by an alternating voltage of  V(t) = Vo sin(ω·t+θ) as shown in Figure 3, where  Vo denotes the
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voltage scaling, ω denotes the angular frequency, t denotes time, and θ denotes initial phase. An

electron of charge q and mass me would undergo an acceleration described by:

ẍ=
q⋅V o

me⋅d
sin(ω⋅t+θ) .   (2.1)

For an electron starting at x=0 with no initial velocity, by solving Equation (2.1) subject

to the constraint that the electron arrives at the far plate at x=d at N half periods later for N odd,

we arrive at the gap-frequency constraint for two-point multipacting [1][36]:

d2
⋅ω

2
=
q⋅V o
me

⋅(2 sin(θ) + N π⋅cos (θ)) .    (2.2)

Figure 3: Basic parallel plate geometry

Equation (2.2) was derived under the assumptions that the field is spatially uniform, the

particle can only move in one dimension, the initial velocity of secondary electrons is zero, and

the particle traverses the gap in a half RF period. These assumptions can be violated to varying

degrees in real-world multipacting. See Vaughan [1] for a more general analysis of the geometry
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and phase conditions necessary to sustain parallel plate 2-point multipactor. However, Equation

(2) does allow us to concisely express how frequency, phase, field strength, and geometry are

related to sustain two-point multipacting under the limiting assumptions. 

2.2 Analytical treatment of parallel plate geometries

This section builds upon the work presented by the author in [37].

In this section we consider an analytical treatment of multipactor trajectories with some

approximations  to  make  the  problem analytically  feasible.  Multipactor  in  general  is  a  very

complicated process, with space charge effects resulting in a nonlinear time-varying system, and

the secondary electron emission process ultimately being stochastic due to the effects of quantum

mechanics as asserted in [35], and more frequently due to uncharacterized surface imperfections

and  contamination  in  practice  [36].  Nonetheless,  with  some  modest  approximations  and

assumptions, a mathematical model of multipactor trajectories can be developed for the case of

negligible  space  charge  effects.  Such  a  model  can  provide  good  insight  into  multipactor

initiation, which frequently occurs when space charge density is small or non-existent. 

Consider the parallel plate geometry as shown above in Figure 3, where the plates are

assumed infinite in the y- and z-directions. Assume that the electric field between the plates is

time-varying,  but  not  dependent  upon position.  To allow for  additional  generality  beyond  a

simple parallel plate capacitor analysis, we allow for a nonzero magnetic field that is transverse

and proportional  to  the electric  field.   We can also consider  externally-imposed electric  and

magnetic fields to be present, respectively denoted as Eext and Bext.  Without loss of generality,

the total electric field E and magnetic field B can then be expressed as:   
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E= x̂ E0 cos(ω t+θ) + Eext (2.3)

B= ŷ α
c
E0 sin(ω t+θ) + Bext (2.4)

where  t denotes the time,  θ is  an arbitrary phase,  α is  a unitless scaling factor to allow for

arbitrary magnetic field strength and sign relative to the electric field, c is the speed of light in

free space.  In practice constant (DC) Eext and Bext have been used to modify multipactor [36],

but this is not always possible for a given design constraint; throughout this dissertation we will

assume that  Eext and Bext are zero.  The above choice of magnetic field will allow our parallel

plate fields to be considered as the limiting case of the TEM mode standing waves within a

coaxial cavity, and will therefore provide some insight into not only rectangular geometries, but

to coaxial geometries as well. 

To understand how the field expressions in equations (2.3) and (2.4) are related to coaxial

cavity fields, consider the conducting coaxial geometry as shown in Figure 4, with ends that are

shorted from the inner and outer conductors. For this coaxial geometry, the TEM mode standing

waves in phasor form are:   

Ecoax = r̂
V o

r log(b /a)
sin (β z z) cos (ω t+θ) (2.5)

Bcoax =−ϕ̂
V o

cr log (b/a)
cos(βz z ) sin(ω t+θ) (2.6)
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where  Vo is field scaling factor in units of volts,  r is the radial position as measured from the

central  axis,  z is  the position along the axis,  b is  the outer  conductor  radius,  a is  the inner

conductor radius, βz  is the wavenumber of the TEM mode, ω is the angular frequency of the

temporal mode, θ is the temporal phase, c is the speed of light in free space, and log() denotes the

natural  logarithm.  The  unit  vectors  r̂ and  ϕ̂ respectively  denote  the  radial  and

circumferential directions in the coaxial geometry. 

To see how Equations (2.3) and (2.4) are the limiting cases of Equations (2.5) and (2.6),

let the radial distance between the inner and outer conductor in the coaxial geometry be equal to

a fixed d, such that b = a + d. Then for a→∞, we we have  d << a, and letting r=a+Δr where Δr

≤ d, we have that r·log(b/a) = (a+Δr)·log(1+d/a) → (a+Δr)·(d/a) → d. We then have:

lim
r→∞

Ecoax = r̂
V o

d
sin(β z z ) cos(ω t+θ) (2.7)

lim
r→∞

B coax =−ϕ̂
V o
c d

cos (βz z ) sin (ω t+θ) (2.8)

Finally  by  noting  that  we  can  consider  r̂→ x̂ and  ϕ̂→ ŷ as  a→∞, and  with  appropriate

choices of α and E0, we can express Equations (2.7) and (2.8) in the form of Equations (2.3) and

(2.4).  We have  thus  established  that  the  form of  the  rectangular-coordinate  fields  given  by

Equations (2.3) and (2.4) are in general the large-radius limiting case for coaxial TEM fields at a

fixed longitudinal (z) position along the coaxial cavity. 
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Figure 4: Coaxial cavity geometry. Dimensions are length L, inner radius a, and outer radius b.

Returning back to the parallel  plate geometry, let us now consider the forces that the

electric and magnetic fields will impart to a particle of charge  q. The forces  FE and  FB

respectively due to the electric and magnetic fields are given by: 

FE = qE(t) = x̂ q E (t)   (2.9)

FB = q v × B(t) = q ( x̂ ẋ + ẑ ż )× ŷ B(t) = qB(t ) ( ẑ ẋ− x̂ ż)  (2.10)

where  v denotes the velocity, ẋ and ż respectively denote the time derivatives of the  x

and  z positions of the particle, and the operation × denotes the vector cross product. These
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forces  will  result  in  accelerations  ẍ and  z̈ respectively  along the  x and  z directions  as

follows:

ẍ = q E (t)− ż
q
m
B (t)  (2.11)

z̈ = ẋ
q
m
B(t)  (2.12)

These equations can be expressed more concisely in matrix notation as the following:

[ ẍz̈ ] = [ 0
−q
m
B(t )

q
m
B (t) 0 ][ ẋż ] + [

q
m
E(t)

0 ] = A (t) [ ẋż ] + [
q
m
E( t)

0 ] (2.13)

From linear systems theory [38][39], we know that the homogenous solution for [ ẋ ż ]T in the 

above system can be expressed via an (as yet unknown) state transfer function Φ(t , t o) via:

[ ẋ (t )ż (t) ] = Φ(t ,0)[ ẋ (t=0)
ż (t=0) ]   (2.14)

Since A(t1)A(t2) = A(t2)A(t1), we have [38]: 

Φ(t , t 0) = exp (∫
t0

t

A (τ )d τ)      
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= exp([ 0 −∫
t0

t
q
m
B(τ )d τ

∫
t0

t
q
m
B(τ)d τ 0 ])        (2.15)

We can simplify equation (2.15) by applying the relation

exp([ 0 −γ

γ 0 ]) = [cos (γ) −sin(γ)

sin (γ) cos (γ) ]  (2.16)

which results in:

Φ(t , t 0) = [cos(∫t0
t
q
m
B(τ )d τ) −sin (∫t0

t
q
m
B( τ)d τ)

sin(∫t 0

t
q
m
B(τ)d τ) cos (∫t 0

t
q
m
B (τ)d τ) ] .  (2.17)

The complete non-homogenous solution for [ ẋ ż ]T is then given by: 

[ ẋ (t )ż (t) ] = Φ(t ,0)[ ẋ (t=0)

ż (t=0) ] + ∫
0

t

Φ( t , τ)[
q
m
E (τ)

0 ]d τ      

     

20



     = Φ(t ,0) [ ẋ (t=0)

ż (t=0)] + ∫
0

t [
q
m
E( τ)cos(∫

τ

t
q
m
B(σ)d σ)

q
m
E (τ)sin(∫

τ

t
q
m
B (σ)d σ) ]d τ  (2.18)

The nested integrals in equation (2.18) are not evaluable in closed form for time-harmonic fields,

but  this  analytic  expression  does  provide  a  solution  to  check  numerical  methods  against  in

special circumstances.

2.3 Numerical treatment of multipactor initiation

In practice, analytical treatments of multipactor are rarely used for real-world multipactor

analysis once the geometries and field conditions become more complex. To handle this,  we

resort to numerical methods. 

In general, for a charged particle interacting with a specified electromagnetic field, the

particle state at any given instant in time can be represented as a six-dimensional vector which

contains  the  particle's  three  space  coordinates  and  three  velocity  components.  This  can  be

expressed mathematically as:

   [
ẋ (t)
ẏ (t)
ż( t)
ẍ (t)
ÿ (t)
z̈( t)

] =
q
m [

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 B z(r ,t ) −B y (r , t)
0 0 0 −B z(r , t) 0 B x(r , t)
0 0 0 B y (r , t) −B x(r , t) 0

][
x (t)
y (t )
z (t )
ẋ (t)
ẏ (t )
ż (t )

] +
q
m [

0
0
0

Ex (r , t)
Ey (r ,t)
E z(r ,t )

]   (2.19)

where q is the particle charge, m is the particle mass, r denotes the particle's position (x, y, z),

Bx,y,z denotes the magnetic field components, and Ex,y,z denotes the electric field components. The
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system defined in (2.19) can be solved via a standard differential equation system solver. For the

results presented in this dissertation, Matlab's built-in ode45() function [40][41] was employed to

solve  for  the  particle  trajectories  as  a  function  of  time.  The  ode45()  function  is  an

adaptive-step-size solver which uses the Dormand-Prince method to compute fourth- and fifth-

order  accurate  solutions  to  the  underlying  differential  equation  system,  and  compares  the

difference to estimate the solution error. The Matlab ode45() function also has built-in capability

for defining conditions at which to terminate the system solver; this capability was used to end a

particular  ode45()  instance  when  a  particle's  distance  to  a  boundary  surface  goes  to  zero,

signifying that a boundary strike occurred. 
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CHAPTER 3: Secondary Electron Yield Models 

3.1 Introduction

The formation of multipactor is strongly dependent upon the secondary electron yield

(SEY)  of  a  surface  contributing  to  multipactor,  and  the  emission  velocities  of  the  emitted

electrons. In this chapter, we examine different possible approaches to modeling the SEY and

emission velocities. In order of increasing complexity, we examine the effects of the following

secondary electron emission (SEE) models upon multipactor susceptibility: boxcar (passband)

SEY model with zero emission energy, Vaughan's SEY curve [34] with zero emission energy,

Vaughan's SEY curve with nonzero emission energy, and Furman's SEE model [35]. We also

propose a simplified version of Furman's  model  in  which the stochastic  emission process is

replaced  by  a  deterministic  emission  process  which  achieves  respectable  agreement  with

Furman's fully stochastic model; this is of considerable computational interest because it allows

us  to  avoid  the  more  costly  Monte  Carlo  simulations  required  to  generate  results  from  a

stochastic model. 

3.2 Coaxial cavity geometries used in this dissertation

For  all  of  the  results  presented  in  this  chapter,  and  in  much  of  the  results  in  this

dissertation, we utilize coaxial cavity geometries which are shorted at both ends, as shown in

Figure 5. For such geometries, the TEM mode electric field E(r,z,t) and magnetic field B(r,z,t)

can be expressed as: 

E=r̂
V 0

r⋅log(b /a)
⋅cos(ω t+θ)⋅sin (

nπ z
L

) ,    (3.1)
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B=−ϕ̂
1
c

V 0

r⋅log(b/a)
⋅sin(ω t+θ)⋅cos (

nπ z
L

) ,   (3.2)

where a cylindrical coordinate system (r ,ϕ, z ) is assumed for radial position  r  (meters),

azimuthal  position ϕ (radians),  and axial  position  z  (meters),  V0 denotes a  field scaling

parameter (Volts), t denotes time (seconds), ω represents the angular frequency (radians/second),

θ represents the field temporal phase (radians),  n represents the harmonic number (integer),  L

represents the cavity length along the axial  direction (meters)  such that 0  ≤  z  ≤  L,  a and  b

respectively denote the inner and outer conductor radii (meters),  c is the speed of light in free

space (meters/second), carats (^) over a coordinate denote unit vectors in this cylindrical basis,

and boldface quantities denote vectors. 

Figure 5: Coaxial cavity geometry. Dimensions are length L, inner radius a, and outer radius b.
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We employ two coaxial  geometries  for  most  of  the results  generated  throughout  this

dissertation. Both geometries have a length L=1.86 meters, which corresponds to a fundamental

(n=1) TEM mode resonance at 80.5 MHz; this specific resonant frequency was chosen to match

the design frequency of quarter-wave resonators used in the beamline of the Facility for Rare

Isotope Beams particle accelerator facility [42]. Coaxial geometry #1 has an inner radius a=0.01

meters, and an outer radius b=0.056472 meters; these radii were chosen to yield two-boundary

multipactor  between the inner  and outer  conductors  for  V0 on the order  of  1000 V. Coaxial

geometry #2 has radii that are 3x greater than the first coaxial geometry, specifically an inner

radius a=0.03 meters, and an outer radius b=0.169416 meters. This second geometry was chosen

to provide some diversity of geometry in order to assess how the simulated results change when

the geometry is changed.   

When simulating multipactor trajectories within coaxial cavities, throughout the entire

dissertation, we simulate particles which start at t=0 with zero velocity from r=b-ε (recall that

r=b is the outer wall), where  ε=1 nm is a small radial starting offset so that the code can identify

a boundary crossing if the fields immediately push the particle across the boundary. This same

radial offset ε is used whenever a particle strikes a boundary and results in a secondary electron

being emitted from the boundary; however, in the case of secondary emission, the particle may

have a non-zero starting velocity depending on the secondary emission model used, as discussed

in later sections. Unless specified otherwise, all trajectories in this dissertation start from z=L/2

(halfway between cavity  end caps);  the  exception  to  starting  at  z=L/2  is  when we examine

multipactor  breakdown  over  distributed  volumes  within  coaxial  cavities  and  waveguides

respectively in sections 4.3 and 4.4. Throughout this dissertation, we frequently use the generic

term “particle” interchangeably with electron, since in this dissertation we exclusively simulate
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particles with the same charge-to-mass ratio as an electron,  with one minor difference: Even

though electrons have a negative charge, without loss of generality, we consider particles which

are positively-charged and have the same ratio of mass to absolute charge as an electron. This

results  in  the  particle  acceleration being in  the  same direction  as  the electric  fields  and not

opposite the field direction as would occur for a negatively-charged electron; the resulting effect

in the simulations is that for a negatively-charged electron, we would just need to include a phase

shift of 180º in our field definitions to yield identical results. Also because we only consider

TEM modes, the coaxial fields are rotationally-invariant and do not change with ϕ position.

Finally, even though we typically examine coaxial cavities, the conclusions are expected to be

generalizable for any two-boundary multipactor. 

The specific parameters being varied and their sampling discretizations will be specified

in each chapter, and will vary depending on the purpose of the simulations in that chapter. For

both of the cavity results in this chapter, we allow θ to range from -π/2 to π/2 over 181 points.

Also in this chapter, with cavity #1 we allow V0 to vary from 10 V to 3000 V in steps of  10 V;

with cavity #2 we allow V0 to vary from 50 V to 30000 V in steps of 50 V. 

As a point of comparison, equation (2.2) gave a relationship for two-surface multipactor

resonance  in  parallel  plate  geometries.  If  we  let  d=b-a and  assume  that  equation  (2.2)

approximately holds for the coaxial geometries under consideration, then for a starting phase of

θ=0, equation (2.2) yields the following approximate predicted multipactor resonant voltages:

V o =
d2
⋅ω

2me
q N π

.     (3.1)
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Based on this relation, and recalling that N must be an odd integer corresponding to the number

of half-periods the particle is in transit between the conductors, the approximate voltages V o  for

the first few two-point multipactor resonances in both cavities are as shown below in Table 1.

 

.

Table 1: Approximate peak voltages VO to achieve multipactor resonances.  Shown are the 
first three volage resonance conditions for half periods N={1,3,5}, for cavity #1 and cavity #2, 
based upon the parallel plate resonance condition.  

3.3 Net SEY

For each simulated multipactor trajectory, we are only tracking a single particle, which is

understood  to  have  the  same  absolute  charge-to-mass  ratio  as  an  electron,  but  which  can

represent any fractional number of electrons. The number of electrons that the particle represents

is  equal  to  the  product  of  all  the  SEY values  for  each  boundary  impact  that  the  trajectory

experiences,  and we call  this  product  the  net  SEY. If  the  net  SEY is  greater  than  unity, or

equivalently  if  the  log(net  SEY)  is  greater  than  zero,  then  this  represents  a  net  growth  of

secondary electrons over the simulated multipactor trajectory. This net SEY is used throughout

this dissertation, and frequently is the starting point to understanding multipactor susceptibility. 

Throughout this dissertation, we compute the net SEY as show in Figure 6 below, and

explained as follows: we simulate particle trajectories for 10 cycles, where a cycle is defined to

be one period of the fundamental mode, or one boundary impact, whichever occurs first. The net

SEY is defined as the product of each single-impact SEY, and is understood to be zero if at least

two boundary impacts do not occur over the simulation period. Note that the net SEY is different
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from the multipactor growth rate, because the net SEY does not take into account how long a

trajectory is tracked in order for 10 cycles to complete. The growth rate of multipactor can be

determined by taking the natural logarithm of the net SEY and dividing this value by the time of

final boundary impact, as will be explained in Section 3.9 of this dissertation. 

Note that some SEE models are stochastic, such that after an incident electron strikes a

material, the SEE model may yield a random number of secondary electrons, each with their own

initial velocity. When simulating a multipactor trajectory with such stochastic SEE models, one

of the secondary electrons is chosen at random to continue the multipactor trajectory. With such

stochastic SEE models, a series of Monte Carlo simulations are used to generate a large number

of possible multipactor trajectories and associated net SEY values, which are then considered

using statistical metrics such as the mean or median net SEY. 
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Figure 6: Process for calculating the net SEY. This process must be undertaken for each 

unique field condition. The effect of changing the SEE model (green block) is the focus of the 

succeeding sections in this chapter. 

3.4 Boxcar SEE model with zero emission energy

The first SEE model to be considered is termed the boxcar (passband) SEY, which is

simply unity for electrons with impact energies between 27.32 eV and 3018.5 eV, and is zero

otherwise,  as shown in Figure 7 below. These specific thresholds were chosen to match the

unity-crossing points of the SEY curve in Furman's SEE model [35] for copper. The emitted

29



secondary electrons are defined to have zero emission velocity. This SEE model is based upon a

crude approximation to the SEY curve of most metals of engineering interest, which have an

SEY  greater  than  unity  (and  thus  supporting  multipactor)  for  incidence  energies  within  a

passband similar to this notional boxcar model, and with an emission energy spectrum dominated

by emitted electrons which are much less energetic than the incident electrons. 

Figure 7: Boxcar SEY curve.

The results for the multipactor simulations of coaxial geometries #1 and #2 are shown

respectively in Figures 8 and 9 below. For consistency of presentation, these results are plotted

on the same logarithmic scale as future results with more sophisticated SEE models, despite the

boxcar SEE model only yielding net SEY values of 0 or 1. Both of these results predict regions

of  multipactor  stability,  which  is  consistent  with  the  idea  of  multipactor  being  a  resonant

phenomenon which occurs  only over  certain field strength ranges for  a given geometry and

excitation frequency. Each surface shows bands of multipactor  stability, where the rightmost

band  corresponds  to  one-way transit  times  of  a  single  half-period,  the  next  rightmost  band
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corresponds to  one-way transit  times of  three  half-periods,  and so on.  Coaxial  geometry  #2

shows a more complex resonance structure; this is due to the wider inner-to-outer conductor gap

which allows more opportunities for the particle transit times to be an odd integer multiple of the

electric field period, as well as the ability for a particle starting at a given phase to eventually

phase-lock with the driving fields and impact  the boundaries  at  energies corresponding to  a

nonzero  SEY  for  each  impact.  The  sharp  transitions  in  these  figures  between  multipactor

resonance and non-resonance conditions are due to the discontinuous SEY curve which discards

any trajectories  with an incident electron yielding a  zero SEY value.  When more physically

accurate SEE models are examined in future sections, we will see that these sharp transitions are

smoothed out.
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Figure 8: Net SEY surface for boxcar SEY model and coaxial geometry #1. 
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Figure 9: Net SEY surface for boxcar SEY model and coaxial geometry #2. 

3.5 Vaughan model with zero emission energy

We next examine Vaughan's SEY model [34] , which is a popular SEY model within the

microwave device community. Vaughan's  model  is  relatively simple,  being parameterized by

only about 10 parameters, and if we use Vaughan's suggested values for some of the less critical

parameters,  we are then left  with only 4 parameters to characterize any given material.  One

important feature of Vaughan's model is that the SEY is set to zero below a certain threshold

impact energy. Vaughan proposes a 12.5 eV threshold, which was used in this present research.
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In order to simulate the copper material used throughout this dissertation with Vaughan's model,

and using the same variable names as provided by Vaughan, we use a first crossover incident

energy V1=27.32 eV, a second crossover incident energy V2=3018.5 eV, a peak incident energy

Vmax=277.5  eV, and  a  peak  SEY  δmax=2.0887;  all  of  these  values  are  understood  to  be  for

normal-incidence, and Vaughan's model adjusts them as a function of incidence angle. These

values were chosen so that at zero incidence, the location and peak of the SEY curve matched the

SEY curve for copper as generated for Furman's SEY model, which will be discussed in Section

3.7; plots showing Vaughan's SEY curve and Furman's SEY curve are shown in Figure 14, in

which the thresholding effect of Vaughan's SEY curve is clearly seen in the right plot. Note that

the crossover energies provided by Vaughan are presented in his paper to be the same as the

crossover energies as shown in Figure 2, but an examination of Vaughan's parametric fitting

shows that his SEY curve does not pass through unity at the first crossover point, but rather

balances an approximation to a real SEY curve over an extended interval.   

Vaughan's model only provides a SEY curve, it does not provide the energy and angular

distribution for the emitted electrons. In this section, we examine results using Vaughan's model

with emitted secondary electrons defined to have zero velocity. Since the majority of secondary

electrons  are  emitted  with  a  few  eV of  initial  energy,  this  zero-energy  approximation  will

typically have marginal impact. 

Figures 10 and 11 below respectively show the results for the multipactor simulations of

coaxial geometries #1 and #2. In comparison with the simple boxcar SEY model of the previous

section, we note more complex multipactor susceptibility surfaces characterized by a continuum

of net SEY values,  which the simple boxcar SEY curve could not provide because it can only
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yield a binary 0 or 1 value. As with the boxcar SEY results, coaxial geometry #2 shows a more

complex resonance structure, again due to the wider inner-to-outer conductor gap which allows

more opportunities for the particle transit times to be an odd integer multiple of the electric field

period, as well as the ability for a particle starting at a given phase to eventually phase-lock with

the driving fields and impact the boundaries at energies corresponding to a nonzero SEY for each

impact. The present SEY model again shows sharp transitions between multipactor resonance

and non-resonance conditions,  which are due to (i)  the SEY curve going to zero for impact

energies  less  than  the  12.5  eV  threshold,  and  (ii)  the  emission  energy  being  zero  when  a

secondary  electron  is  emitted.  As  noted  previously  for  the  boxcar  SEE model,  when  more

physically accurate SEE models are examined in future sections, we will see that these sharp

transitions are smoothed out. 
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Figure 10: Net SEY surface for Vaughan SEY curve with zero emission energy, in coaxial 

geometry #1.
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Figure 11: Net SEY surface for Vaughan SEY curve with zero emission energy, in coaxial 

geometry #2. 

3.6 Vaughan model with non-zero emission energy

We next consider Vaughan's SEY curve, but instead of defining the emission energy to be

zero as was done in the previous section, we allow the emitted electrons to have a spectrum of

energies which follow a random process related to the underlying stochastic quantum mechanics.

In this  second approach to handling the emission energy spectrum, we considered secondary

electrons to be selected randomly from a weighted collection of three underlying distributions:

(1) True secondary electrons, which follow a Maxwell-Boltzmann energy distribution with an
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electron temperature of 5 eV, (2) rediffused electrons, also sometimes called scattered electrons,

which follow a uniform energy distribution between the 0 eV and the incidence energy, and (3)

reflected electrons, also sometimes called elastically scattered or backscattered electrons, which

rebound elastically from the surface with the same energy as the incident energy. The choice of a

5 eV electron temperature for the true secondary electrons is somewhat arbitrary, but was chosen

to yield reasonable approximate secondary electron energies for a wide range of incident electron

energies ranging from a few eV up to thousands of eV. All of these emission mechanisms were

assumed  to  have  an  isotropic  distribution  of  emission  angles  within  the  half-space  of  the

boundary containing the incident electron. This classification of three scattering mechanisms and

the angular distribution was chosen to be analogous to how Furman's model [35] categorizes

secondary emission mechanisms as will be described in Section 3.7.

The  specific  secondary  electron  distribution  used  was  chosen  randomly,  with  the

probability  of  each  scattering  mechanism  chosen  to  match  the  (incident  energy  dependent)

probabilities given by Furman's model, in order to best compare the models. For the copper data

used in this present research, at incidence energies near that which maximizes the SEY curve,

true secondary electrons contribute about 90% to the SEY, the rediffused electrons contribute

about 9% to the SEY, and the reflected electrons contribute about 1% to the SEY. 

Since this SEY model incorporates a stochastic emission model, Monte Carlo simulations

involving  100  independent  trials  were  undertaken  to  characterize  the  resulting  multipactor

susceptibility. Figures 12 and 13 below respectively show the median results for the multipactor

simulations of coaxial geometries #1 and #2, where each pixel represents the median value of

100 trials at a particular choice of (magnitude, phase). In comparison with the previous SEY

models which used zero emission energies, we note much larger areas within the electric field's
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(magnitude,  phase)  space  where  multipactor  can  occur,  and  we  see  that  the  transitions  are

smoothed out along the field magnitude axis and show more structure overall. This is due to

averaging over the stochastic emission energy trials, where non-zero emission energies permit

some multipactor trajectories to be possible even if they do not strictly satisfy the resonance

conditions that would be required for zero emission energy. 

Figure 12: Median net SEY surface for Vaughan SEY curve with nonzero emission energy, 

in coaxial geometry #1. The median is calculated over 100 Monte Carlo trials. 
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Figure 13: Median net SEY surface for Vaughan SEY curve with nonzero emission energy, 

in coaxial geometry #2. The median is calculated over 100 Monte Carlo trials.

3.7 Furman model

Furman's SEE model [35] is an even more complex model which has enjoyed popularity

within the particle accelerator community. Furman's model contains around 45 parameters, and

unlike Vaughan's model, Furman's model also provides the energy and angular distributions for

the emitted electrons. Furman's model is based around the three secondary electron distributions

that  were  introduced in the  previous  section  to  make Vaughan's  model  more  comparable  to

Furman's model,  namely true secondary, scattered, and reflected electrons, the sum of which
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provide the total SEY. An important feature of Furman's model is that the SEY does not go to

zero as the impact energy goes to zero. Figure 14 shows Vaughan's and Furman's SEY models, as

applied to the copper data from Furman's paper.

Figure 14: SEY vs. incidence energy curves from the Furman and Vaughan models. Results 

shown for normal incidence and 60º from normal. The left plot shows the SEY curve over a wide

range of incident energies (0 eV to 10 keV), and the right plot shows the curve magnified to 

show low-energy features (0 eV to 300 eV).

Figures 15 and 16 respectively show the median net SEY when using Furman's model

with coaxial geometries #1 and #2, where as before we compute the median of 100 Monte Carlo

trials.  We immediately  note  some  key  differences  in  the  resulting  multipactor  susceptibility

surfaces  as  compared  to  Vaughan's  model.  The  first  key  difference  is  that  Furman's  model

predicts much larger regions of non-trivial multipactor susceptibility than does Vaughan's model,

which is due to Vaughan's model defining the SEY to be zero for incident electrons below a 12.5
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eV threshold, effectively discarding multipactor trajectories with any single impact energy below

this threshold. The second major difference is that even in regions of field phase that are not

conducive  to  multipactor  resonance,  such  as  for  starting  phases  outside  of  the  range  of

approximately -90º to +90º,  we see a non-zero net SEY. This is due to Furman's model having an

(incident angle dependent) SEY in the vicinity of 0.6, such that even non-resonant trajectories

can still have a non-zero net SEY after a finite simulation time. The zero net SEY at low field

strengths for starting phases in  the range of approximately -90º to +40º is due to trajectories

which drift  into the  space between the  conductors,  but  do not  obtain  at  least  two boundary

impacts within the simulation time, resulting in the net SEY being set to zero as explained in

Section 3.3.  In the next  section which introduces the medianized Furman SEE model,  some

particle trajectory plots are shown in Figures 19 and 20 which demonstrate these features of the

net SEY surface as seen with the Furman model.     
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Figure 15: Median net SEY surface for Furman SEE model, in coaxial geometry #1. The 

median is calculated over 100 Monte Carlo trials.
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Figure 16: Median net SEY surface for Furman SEE model, in coaxial geometry #2. The 

median is calculated over 100 Monte Carlo trials.

3.8 Furman model with medianized emission energy

The  previous  results  in  this  chapter  suggest  that  multipactor  formation  can  be  very

sensitive to low impact energy electrons, which makes Furman's model particularly appealing.

However,  Furman's  model  is  a  stochastic  model  which  in  practice  requires  Monte  Carlo

simulations  to  determine  multipactor  susceptibility  for  given  geometry  and  field  conditions.

Instead of using Furman's  complete  SEY model,  we propose a variant in which the emitted

electron energies are defined to be the median of the (incident energy and angle dependent)
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emission distribution, and the emission direction is defined to be normal to the boundary. By

using  this  approach,  we  retain  the  multipactor  formation  sensitivity  to  low  impact  energy

electrons,  and we are  also  able  to  obtain  net  SEY results,  which  appear  to  be  qualitatively

accurate without resorting to costly Monte Carlo simulations. 

Figures  17  and  18  respectively  show the  net  SEY when  using  Furman's  medianized

model with coaxial geometries #1 and #2. As compared to the results in the previous section

generated using Furman's full model, these results show less smooth transitions in net SEY along

the  field  magnitude  axis;  this  is  due  to  the  lack  of  the  stochastic  emission  energies  which

previously caused a smoothing effect at multipactor resonance boundaries. However, we observe

that  the  results  retain  much of  the  overall  structure  and predictive  value  for  multipactor,  as

compared to  the  full  Furman model  results  of  the  previous  section.  The errors  between the

medianized Furman model and the full Furman model will be further studied and quantified in

Chapter 5.   

In timing tests done to compare the Furman model and the medianized Furman model,

using both interpreted Matlab code and compiled Matlab code, a single execution of Furman's

fully stochastic model took approximately twice as long as a single execution of the medianized

Furman model. However, the computational savings with the medianized model comes not from

the faster execution of the secondary electron scattering code, but rather from only needing to

track  one  particle  throughout  the  entire  simulation,  instead  of  tracking  numerous  particles

(possibly growing exponentially in time) using Furman's fully stochastic model. Of course the

price to pay for this computational savings is a less faithful simulation of the underlying physics,

and therefore increased errors between simulation and reality. 
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Figure 17: Net SEY surface for medianized Furman SEE model, in coaxial geometry #1.
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Figure 18: Net SEY surface for medianized Furman SEE model, in coaxial geometry #2.

In the previous section, we noted that with Furman's SEE model we see a region of zero

net SEY at low field strength and starting phases in the range of approximately -90º to +40º, and

small but nonzero net SEY for starting phases outside of the range of approximately -90º to +90º.

The zero net SEY at low field strengths for starting phases in the range of approximately -90º to

+40º is due to trajectories which drift into space between the conductors, but do not obtain at

least  two boundary impacts  within the simulation time,  as  shown by some example particle

trajectories in Figure 19. The small but nonzero net SEY for starting phases outside of the range
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of approximately -90º to +90º is due to Furman's model having an (incident angle dependent)

SEY in the vicinity of 0.6, such that even non-resonant trajectories which impact a boundary can

still  have a  vanishing but  non-zero net  SEY after  a finite  simulation time.  Figure 20 shows

examples of such particle trajectories, in which secondary electrons are continually emitted and

then quickly return to the surface which emitted them.  
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Figure 19: Radial position of particle trajectories in cavity #1, plot #1. Radial position of 

particle trajectories in cavity #1 for the medianized Furman SEE model, for varying peak gap 

voltages, and a starting field phase of 0º. Radial boundaries of the gap are shown as the dashed 

green line. At voltages of 10 V and 100 V, the trajectories are seen to drift into the gap without 

obtaining at least two boundary impacts, so their net SEY is defined to be zero. At a voltage of 

100 V, we see a clear phase-locking of the particle trajectory to the driving field. At voltages of 

3,000 V and 10,000 V, we see the particle driven to the opposing boundary, where it repeatedly is

driven into that boundary until the simulation terminates after (# strikes)+(# RF periods)=10. 
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Figure 20: Radial position of particle trajectories in cavity #1, plot #2.  Radial position of 

particle trajectories in cavity #1 for the medianized Furman SEE model, and three trials of the 

stochastic Furman SEE model, for a peak gap voltage of 100 V, and a starting field phase of 

180º. The outer radial boundary of the gap is shown as the dashed green line. For each 

simulation, the particle is repeatedly driven into the outer radial boundary until the simulation 

terminates after 10 boundary impacts. The net SEY for the medianized Furman model is  0.0028 

(geometric average SEY of 0.56 per impact), and the net SEY for the three stochastic Furman 

model trials is 0.0041, 0.0034, and 0.0036 (geometric average SEY of 0.57 or 0.58 per impact); 

these nonzero net SEY values appear as small values on the net SEY surface plots which are 

plotted on a logarithmic scale. 
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3.9 Multipactor growth rates

Throughout  this  dissertation,  we  typically  focus  on  the  net  SEY  when  comparing

different approaches to simulating the initiation of multipactor. In Section 3.3, it was noted that

the net SEY is different from the growth rate of the multipactor current, because the net SEY

does not take into account the length of time over which a multipactor trajectory is simulated

before termination. In this section we relate the growth rate of multipactor current and the net

SEY. 

In the early-time evolution of multipactor when space charge effects are negligible, we

can approximate the multipactor current as growing exponentially: I(t) = I0  ekt, where I(t) is the

total multipactor current,  I0 is the initial current,  e is the base of the natural logarithm, k is the

growth rate, and t is time. k is understood to be negative for an exponential decay of multipactor

current. Within this framework, the net SEY at any instant in time is given by I(t)/I0 , and thus by

taking the natural logarithm of the net SEY, we can calculate the product kt of the growth rate

and time. In order to then determine k, we use the time t = tfinal strike of the final impact within a

simulated trajectory. We thus have: 

k = log(net SEY) / tfinal strike .     (3.2)

The growth rates for coaxial cavity #1 are shown in Figures 21 through 23, and in Figures

24 through 26 for coaxial cavity #2. Within each series of plots we respectively show the median

growth  rates  as  computed  from 100 Monte  Carlo  trials  of  Vaughan's  model  with  stochastic

emission, the median growth as computed from 100 Monte Carlo trials of Furman's model, and

the median growth as computed from the medianized Furman model. 
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Figure 21: Median growth rate for Vaughan SEE model with stochastic emission energy, in 

coaxial geometry #1. The median is calculated over 100 Monte Carlo trials. 
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Figure 22: Median growth rate for Furman SEE model, in coaxial geometry #1. The median

is calculated over 100 Monte Carlo trials. 
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Figure 23: Growth rate for Medianized Furman SEE model, in coaxial geometry #1.
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Figure 24: Median growth rate for Vaughan SEE model with stochastic emission energy, in 

coaxial geometry #2. The median is calculated over 100 Monte Carlo trials. 
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Figure 25: Median growth rate for Furman SEE model, in coaxial geometry #2. The median

is calculated over 100 Monte Carlo trials. 
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Figure 26: Growth rate for Medianized Furman SEE model, in coaxial geometry #2.

When we compare the Vaughan, Furman, and medianized Furman SEE models, we see

similar behavior with the growth rate surfaces as we did with the the previous net SEY surfaces.

Specifically, the Vaughan model significantly under-estimates the growth rate as compared to the

Furman model, due to the fact that the Vaughan model will discard trajectories will a low impact

energy for one or more boundary strikes,  even if  successive boundary strikes are capable of

contributing  significant  growth.  Also  as  before,  the  medianized  Furman  model  can  yield  a

respectable  estimate  of  the  stochastic  Furman  model;  some  errors  are  evident,  but  the

computational costs is much less because Monte Carlo trials are avoided. 
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3.10 Conclusions

For all  of  the  multipactor  results  of  this  chapter,  regardless  of  the  SEE model  used,

regions of multipactor resonances are apparent in the surface plots over the (voltage, starting

phase) spaces examined. No known analytical expression for a multipactor resonance condition

is  available  for  a  coaxial  geometry, but  the  observed  behavior  of  multipactor  resonances  is

qualitatively similar to the discrete multipactor resonance conditions in a parallel plate geometry,

as expressed in equation (2.2) in Chapter 2.  

These  results  demonstrate  the  extreme  sensitivity  of  simulated  multipactor  upon  the

low-impact energy SEY and the secondary emission energies. In Chapter 4 we will investigate

multipactor suppression via secondary cavity modes [43]. The results of this chapter show that it

is essential to take into account non-zero secondary emission energy distributions, and also be

mindful  of  the  extreme  sensitivity  of  multipactor  on  the  low-incident  energy  SEY. It  is

worthwhile to note that others working to simulate electron cloud effects have also reported on

the importance of SEY at low incidence energies [44]. 

The  results  of  this  chapter  also  show that  reasonable  multipactor  predictions  can  be

accomplished  through  the  use  of  a  medianized  version  of  the  fully  stochastic  Furman  SEE

model, which saves computational cost relative to Monte Carlo simulations.  This approach will

be further examined in Chapter 4 by examining different excitation fields, and in Chapter 5 by

examining different cumulative statistics besides the median statistic.  
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CHAPTER 4: Multipactor in the presence of perturbing modes

4.1 Introduction

Because the SEY is dependent upon the impact energy and angle of electrons striking a

barrier, it  seems reasonable to expect that multipactor will be affected by the introduction of

perturbing modes into a resonant structure, in which these additional modes cause the electron

impact energies and angles to either increase or decrease away from the peak in the SEY curve.

One question of practical interest is whether or not additional modes could be used to suppress

multipactor, which is often (but not always) an undesired effect in a resonant system. If the SEY

is less than unity when averaged over the entire ensemble of multipacting electrons, then the

multipactor will decay with time and not be sustainable.

It is worthwhile to note that resonant modes can be excited independently in most typical

resonant structures, and therefore a distinct multipactor-suppressing mode could be introduced

and removed as needed without affecting the primary mode excitation. Since multipactor can

only occur at  certain field strengths because of resonance and SEY considerations, it  is  also

conceivable that multipactor-suppressing modes would only need to be present while a system's

primary mode excitation passes through multipactor-susceptible field strength regions.

As in the previous chapter, we use the notional coaxial geometries #1 and #2 as canonical

geometries to study multipactor. 
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4.2 Multipactor suppression with a 3rd harmonic mode

In order to most significantly affect multipactor, we need perturbing modes with periods

that are relatively close to the fundamental mode's frequency, otherwise the perturbing mode will

simply introduce oscillations  around the  unperturbed multipactor  trajectories,  but  the overall

trajectories of the particles will still be qualitatively similar to those that occur with only the

fundamental  mode.  At  the  center  of  the  coaxial  cavity  halfway  between  the  end  caps,  the

fundamental mode electric field is maximized, and even-order TEM harmonic modes have a null

at this location, resulting in little to no impact on multipactor trajectories. Let us thus consider

the lowest odd-order TEM harmonic, which is the 3rd harmonic.  

By an examination of relative phases of the 3rd harmonic to the fundamental mode, it was

empirically noted that significant multipactor perturbations were achieved when the modes were

exactly out-of-phase,  and the 3rd harmonic had an amplitude 3x as great  as the fundamental

mode. Expressed mathematically, we have the following electric field E(r,z,t) and magnetic field

B(r,z,t): 

E=r̂
V 0

r⋅log(b /a)
⋅(cos (ω t+θ)⋅sin(

π z
L

) − 3cos (3ω t+3θ)⋅sin (
3 π z
L

)) ,     (4.1)

B=−ϕ̂
1
c

V 0

r⋅log(b/a)
⋅(sin(ω t+θ)⋅cos (

π z
L

)− 3sin (3ω t+3θ)⋅cos (
3π z
L

)) ,   (4.2)

where all the parameters are as defined in Chapter 3; specifically a cylindrical coordinate system

(r ,ϕ, z )  is assumed for radial position r  (meters), azimuthal position ϕ  (radians), and

axial  position  z  (meters),  V0 denotes  a  field  scaling  parameter  (Volts),  t denotes  time
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(seconds),  ω represents the radian frequency (radians/second), θ represents the field temporal

phase  (radians),  L represents  the  cavity  length  along  the  axial  direction  (meters)  such  that

0 ≤ z ≤ L, a and b respectively denote the inner and outer conductor radii (meters), c is the speed

of light in free space (meters/second), carats (^) over a coordinate denote unit vectors in this

cylindrical basis, and boldface quantities denote vectors. 

We examine the results for each of the five different SEE models that were introduced in

the previous chapter: boxcar model with zero emission energy, Vaughan's SEY curve with zero

emission energy, Vaughan's SEY curve with stochastic emission energy, Furman's SEE model,

and  the  medianized  Furman  SEE  model.  For  the  results  in  this  section,  we  use  the  same

parameter sampling as was done in the previous chapter: with cavity #1 we allow V0 to vary from

10 V to 3000 V in steps of 10 V; with cavity #2 we allow V0 to vary from 50 V to 30000 V in

steps of 50 V. For both of the cavity results in this chapter, we allow θ to range from -π/2 to π/2

in 181 steps. 

Figures 27 and 28 respectively show the multipactor  susceptibility  results  for coaxial

geometry #1 and coaxial  geometry #2,  when the boxcar  SEY model  is  employed;  since the

boxcar SEY can only have values of 0 or 1, the net SEY can only yield values of 0 or 1. These

results show that the phase space area where multipactor resonances can occur is much less than

for the baseline case examined in the previous chapter. Figures 29 and Figure 30 show the same

respective net SEY results for Vaughan's SEY curve with zero emission energy, and we again see

the phase space area where multipactor resonances can occur is much less than for the baseline

case examined in the previous chapter. 
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Figure 27: Net SEY in coaxial geometry #1 using the boxcar SEE model, with both the 

fundamental and 3rd harmonic TEM modes present. Conductor-to-conductor potential 

corresponds to field strength of the fundamental mode.
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Figure 28: Net SEY in coaxial geometry #2 using the boxcar SEE model, with both the 

fundamental and 3rd harmonic TEM modes present. Conductor-to-conductor potential 

corresponds to field strength of the fundamental mode.
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Figure 29: Net SEY in coaxial geometry #1 using Vaughan's SEY curve with zero emission 

energy, with both the fundamental and 3rd harmonic TEM modes present. 

Conductor-to-conductor potential corresponds to field strength of the fundamental mode.
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Figure 30: Net SEY in coaxial geometry #2 using Vaughan's SEY curve with zero emission 

energy, with both the fundamental and 3rd harmonic TEM modes present. 

Conductor-to-conductor potential corresponds to field strength of the fundamental mode.

Despite the results for simple SEE models appearing promising in terms of the possibility

to suppress multipactor with the 3rd harmonic mode, the more complex SEE models present more

humble results. Figures 31 and 32 respectively show the net SEY results for coaxial geometry #1

and coaxial geometry #2, when Vaughan's SEY curve with nonzero emission energy is used.

Despite the locations of multipactor susceptibility being displaced in the field (magnitude, phase)
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space  as  compared  to  the  baseline  case,  the  total  area  of  multipactor  susceptibility  is

approximately the same as for the baseline case. 

Figures 33 and 34 respectively show the net SEY results for coaxial geometry #1 and

coaxial geometry #2, when Furman's SEE model is used. As with the Vaughan SEY curve with

nonzero emission energy, these results  show the locations of multipactor susceptibility being

displaced, but no significant reduction in multipactor susceptibility as judged by the total area

where  multipactor  resonances  can  occur.  The  medianized  Furman  model  results  for  coaxial

geometries #1 and #2 are respectively shown in figure 35 and 36, and agree fairly well with the

full  Furman model,  demonstrating the utility of the medianized Furman model for obtaining

rapid results in lieu of numerous Monte Carlo trials as was done with the full Furman model. 
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Figure 31: Median net SEY in coaxial geometry #1 using Vaughan's SEY curve with 

nonzero emission energy, with both the fundamental and 3rd harmonic TEM mode present. 

Conductor-to-conductor potential corresponds to field strength of the fundamental mode. The 

median is calculated over 100 Monte Carlo trials. 
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Figure 32: Median net SEY in coaxial geometry #2 using Vaughan's SEY curve with 

nonzero emission energy, with both the fundamental and 3rd harmonic TEM modes present.

Conductor-to-conductor potential corresponds to field strength of the fundamental mode. The 

median is calculated over 100 Monte Carlo trials. 
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Figure 33: Median net SEY in coaxial geometry #1 using Furman's SEE model, with both 

the fundamental and 3rd harmonic TEM modes present. Conductor-to-conductor potential 

corresponds to field strength of the fundamental mode. The median is calculated over 100 Monte

Carlo trials. 
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Figure 34: Median net SEY in coaxial geometry #2 using Furman's SEE model, with both 

the fundamental and 3rd harmonic TEM modes present.  Conductor-to-conductor potential 

corresponds to field strength of the fundamental mode. The median is calculated over 100 Monte

Carlo trials. 
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Figure 35: Net SEY in coaxial geometry #1 using the medianized Furman's SEE model, 

with both the fundamental and 3rd harmonic TEM modes present.  Conductor-to-conductor 

potential corresponds to field strength of the fundamental mode. 
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Figure 36: Net SEY in coaxial geometry #2 using the medianized Furman's SEE model, 

with both the fundamental and 3rd harmonic TEM modes present. Conductor-to-conductor 

potential corresponds to field strength of the fundamental mode. 

As explained in Section 3.9, the net SEY can be related to the growth rates of multipactor

current. Figures 37 and 38 show the median growth rates respectively for cavity #1 and #2 as

computed using Furman's SEE model, where the median was calculated over 100 Monte Carlo

trials at each (magnitude, phase) point. Figures 39 and 40 show the growth rates respectively for

cavity #1 and cavity #2 as computed using the medianized Furman SEE model. Consistent with

the  previous  net  SEY and  growth  rate  results,  the  medianized  Furman  model  can  yield  a
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respectable estimate of the stochastic Furman model results. The computational costs is much

less because Monte Carlo trials are avoided, at the cost of introducing some errors relative to the

fully stochastic Furman SEE model. 

 

Figure 37: Median growth rate in coaxial geometry #1 using Furman's SEE model, with 

both the fundamental and 3rd harmonic TEM modes present. Conductor-to-conductor 

potential corresponds to field strength of the fundamental mode. The median is calculated over 

100 Monte Carlo trials.  
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Figure 38: Median growth rate in coaxial geometry #2 using Furman's SEE model, with 

both the fundamental and 3rd harmonic TEM modes present. Conductor-to-conductor 

potential corresponds to field strength of the fundamental mode. The median is calculated over 

100 Monte Carlo trials.  
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Figure 39: Growth rate in coaxial geometry #1 using the medianized Furman's SEE model, 

with both the fundamental and 3rd harmonic TEM modes present. Conductor-to-conductor 

potential corresponds to field strength of the fundamental mode. 
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Figure 40: Median growth rate in coaxial geometry #2 using medianized Furman's SEE 

model, with both the fundamental and 3rd harmonic TEM modes present. 

Conductor-to-conductor potential corresponds to field strength of the fundamental mode. 
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4.3 Total-cavity Multipactor Susceptibility with 2nd, 3rd, and 4th TEM Harmonics

This section closely follows the work presented by the author in [45].

In the previous section, we focused on the effects of a perturbative 3 rd harmonic mode

upon multipactor susceptibility. That analysis was limited in scope in that we only examined a

single z-location midway through the cavity, ie. z=L/2 for a cavity to range from z=0 to z=L, and

only one relative amplitude and one relative phase of the 3rd harmonic mode in reference to the

fundamental mode. This limited scope was due to the requirement of new Monte Carlo trials

needing to be run for the stochastic SEY models with every change in the system parameters.

However, the medianized Furman model is reasonably accurate and completely deterministic,

permitting us to avoid new Monte Carlo trials with each change in simulation parameters. In this

section we use the medianized Furman model to expand our analysis to examine 2nd, 3rd, and 4th

TEM harmonics of varying amplitudes and phases relative to the fundamental TEM mode, and to

include other z-positions besides z=L/2. Because of the large parameter space to be examined, we

restrict our analysis in this section to only coaxial geometry #1. 

In the previous sections, our analysis of multipactor susceptibility consisted of generating

susceptibility surfaces as functions of the fundamental mode field amplitude and the starting

phase of the multipacting particles. This approach becomes impractical to analyze hundreds of

combinations consisting not simply of the fundamental mode field amplitude and particle starting

phase, but also the particle initial  z-position, and the relative amplitude, phase, and harmonic

order of a higher-order TEM mode. We seek to define metrics which quantify the multipactor

susceptibility in some meaningful way.  
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With an arbitrary higher-order TEM mode present, the electric field E(r,z,t) and magnetic

field B(r,z,t) field inside the cavity can be expressed as: 

E=r̂
V 0

r⋅log(b /a)
⋅(cos (ω t+θ)⋅sin(

π z
L

) + β⋅cos (nω t+nθ+ζ)⋅sin(
n π z
L

)) ,     (4.3)

B=−ϕ̂
1
c

V 0

r⋅log(b/a)
⋅(sin(ω t+θ)⋅cos (

π z
L

) + β⋅sin(nω t+nθ+ζ)⋅cos (
nπ z
L

)) ,     (4.4)

where  β is  the relative amplitude,  ζ is  the  relative  phase,  n is  the order  of  the perturbative

higher-order TEM mode, and all the other parameters are as defined in equations 4.1 and 4.2. 

Let us consider for a moment a single relative amplitude β and single relative phase ζ of a

perturbative higher-order mode order  n, and allow the fundamental mode field amplitude V0,

particle starting phase θ, and particle starting z-position to vary over given search ranges. If we

define a metric for the resulting multipactor susceptibility over this 3-dimensional search space,

we can then examine how this multipactor susceptibility metric changes as a function of the

higher-order mode's parameters (β,ζ,n). We propose two possible metrics for this purpose: Metric

#1  is  termed  the  multipactor  fraction,  defined  to  be  the  fraction  of  the  3-dimensional

(V0, θ, starting z) search space in which the net SEY is greater than unity. Metric #2 is termed the

exponential  growth  rate  of  multipactor  current,  defined  as  the  maximum  value  within  the

3-dimensional  (V0,  θ, starting  z)  search space of  log(net  SEY)/(final  recorded impact  time),

where log(.) denotes the natural logarithm. This is the same exponential growth rate as defined in

Section 3.9. 
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We  compute  these  metrics  for  (β,ζ,n)  parameters  sampled  as  follows:

We allow the relative amplitude β to range from 0.5 to 5 in steps of 0.5, we allow the relative

phase ζ to range from 0 to 2π in steps of π/4, and we examine harmonic orders n = {2, 3, 4}. For

each  combination  of  these  perturbative  mode  parameters,  we  compute  the  metrics  on  a

(V0,  θ, starting  z)  space  discretized  as  follows:  V0 ranges  from  30  V  to  10  kV  in  101

logarithmically-spaced points, θ spans the unit circle in 45 equally spaced samples starting from

θ=0, and the starting z ranges from 0.1L to 0.5L in steps of 0.1L; note that the electric field is

zero at z=0, and that due to symmetry the fields at locations of z>0.5L do not offer any different

multipactor conditions than for  z<0.5L, and thus we do not need to simulate these additional

cases. As a point of reference, when the fundamental mode is present without any perturbative

modes,  metric #1 (multipactor fraction) yields 10.2%, and metric #2 (exponential growth rate)

yields 107.91 sec-1 when computed over the above-defined (V0, θ, starting z) space. 

Figures 41, 42, and 43 respectively show the multipactor severity metrics for harmonic

orders  2,  3,  and  4.  The  results  show  that  lower-amplitude  secondary  modes  either  slightly

mitigate  or  have  no  effect  on  the  global  metrics  of  multipactor  severity.  These  results

demonstrate that while relatively modest changes in multipactor susceptibility can be caused by

the  introduction  of  these  selected  TEM secondary  modes,  no  major  changes  in  multipactor

susceptibility are noted: multipactor may be reduced in one location of (V0, θ, starting z) space,

but increased in another location. However, it is worth noting that the perturbative modes may

still  have  some  ability  to  increase  or  suppress  multipactor  at  a  particular  location  within  a

resonant structure, depending on what our goals may be, such as avoiding damage to a sensitive

location, or intentionally attenuating field strength in a non-linear way. 
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Figure 41: Multipactor susceptibility metrics for a 2nd harmonic TEM mode in addition to 

the fundamental TEM mode.

Figure 42: Multipactor susceptibility metrics for a 3rd harmonic TEM mode in addition to 

the fundamental TEM mode.
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Figure 43:  Multipactor susceptibility metrics for a 4th harmonic TEM mode in addition to 

the fundamental TEM mode.
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4.4 Coaxial Waveguide Multipactor Susceptibility with Non-integer TEM Harmonics

In the previous section, we examined how multipactor susceptibility was affected within

coaxial cavity geometry #1. Because we were examining a bounded cavity, we were restricted to

standing wave harmonics that were integer multiples of the frequency of the fundamental mode.

However, in unbounded structures such as a waveguide, a continuum of frequencies are possible.

In  this  section,  we  examine  multipactor  susceptibility  in  the  presence  of  traveling  wave

perturbations, which are both integer and non-integer multiples of the fundamental frequency. In

order to maintain the analysis as consistent as possible to the bounded geometry case, we use the

same coaxial inner and outer radii as was used for coaxial cavity geometry #1, but in this case

have an unbounded z-dimension. 

In order to keep this analysis computationally tractable, we only examine the case of the

fundamental TEM mode and a single perturbative TEM mode at a different frequency, where

both modes propagate in the negative z-direction. For this unbounded geometry with two TEM

modes,  the  electric  field  E(r,z,t) and  magnetic  field  B(r,z,t)  inside  the  waveguide  can  be

expressed as: 

E=r̂
V 0

r⋅log(b /a)
⋅(cos (ω⋅( t+z /c )+θ ) + β⋅cos (nω⋅( t+z /c )+nθ+ζ ) ) ,         (4.5)

B=−ϕ̂
1
c

V 0

r⋅log(b/a)
⋅(cos (ω⋅(t+ z /c)+θ) + β⋅cos (nω⋅(t+ z /c)+nθ+ζ ) ) ,                   (4.6)
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where  n represents  the  frequency  ratio  of  the  perturbative  mode  to  the  fundamental  mode

(positive real number), c denotes the speed of light in vacuum, and all other parameters are as

defined in equations (4.1) through (4.4). 

We consider perturbative modes with frequency ratios n = {0.5, 0.75, 1.5, 2, 2.5, 3, 3.5,

4}. For each perturbative mode, we consider relative magnitude  β ranging from 0 to 4 in 13

equally-spaced samples, and relative phase shift ζ sampled at 15 equally-spaced samples around

the unit circle, starting at ζ=0. For each perturbative mode defined by given choice of (β,ζ,n), we

compute a net SEY surface as  V0 ranges from 30 V to 10 kV over 41 logarithmically-spaced

samples, and θ spans the unit circle in 30 equally-spaced samples around the unit circle, starting

at θ=0. The starting z values range from 0 to λ/2 in steps of λ/10, where λ is the wavelength of

the fundamental mode; note that this covers all possible multipactor scenarios, since multipactor

simulations at other z values map to the range of 0 to λ/2 by an appropriate choice of field phases

which are already being sampled. 

For each sample point, we compute the net SEY as has been consistently done throughout

this dissertation as described in Section 3.3: we simulate particle trajectories for 10 cycles, where

a cycle is defined to be one period of the fundamental mode, or one boundary impact, whichever

occurs first. The net SEY is defined as the product of each single-impact SEY, and is understood

to be zero if at least two boundary impacts do not occur over the simulation period.  

For each perturbative mode defined by given choice of (β,ζ,n), we assess the multipactor

susceptibility using two metrics. The first metric is the multipactor fraction, which is defined to

be the fraction of (V0, θ, starting z) samples which have a net SEY greater than unity. The second

metric  is  the  maximum geometric  average  δAVG  of the SEY within the (V0,  θ)  search space,
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defined as  δAVG = (Net SEY)1/(# Impacts); the geometric average gives a measure of how quickly

the multipactor grows per  unit  impact.  As a  baseline for comparison, without a perturbative

higher-order mode present, the multipactor fraction is approximately 10.7%, and the maximum

per-impact delta is approximately 2.0. 

The  results  of  the  two  susceptibility  metrics  are  shown  in  Figures  44  through  51

respectively for perturbative modes with frequency ratios n = {0.5, 0.75, 1.5, 2, 2.5, 3, 3.5, 4}.

For most frequency ratios, the results for both metrics do not show a significant improvement;

this means that if we reduce multipactor susceptibility in one location in the waveguide, then we

are increasing the susceptibility in another location in the waveguide, either in terms of the total

fraction  of  the  search  space  capable  of  supporting  multipactor,  or  by  focusing  multipactor

resonances in such a way as to increase the per-impact delta and the corresponding multipactor

growth rate within the search space. 

However, the results in Figure 44 for the half-harmonic n=0.5 do show an interesting

behavior: for a harmonic relative phase around ζ=270º and relative amplitudes β in the vicinity of

1  to  2.5,  both  the  multipactor  fraction  and  the  max  per-impact-delta  are  both  reduced.  The

multipactor fraction reduces to approximately 1%, and the maximum per-impact delta reduces

down to approximately 1.5. Note that there is nothing special about the half-harmonic  n=0.5,

other than that it happens to work well for this particular geometry and fundamental frequency.

These results suggest that with at least some perturbing mode conditions in coaxial waveguide

geometries, further examination is warranted for multipactor reduction at a target TEM mode by

using a perturbing TEM mode.
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Figure 44: Coaxial waveguide multipactor susceptibility metrics with a TEM0.5 

perturbation.

Figure 45: Coaxial waveguide multipactor susceptibility metrics with a TEM0.75 

perturbation.
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Figure 46: Coaxial waveguide multipactor susceptibility metrics with a TEM1.5 

perturbation.

Figure 47: Coaxial waveguide multipactor susceptibility metrics with a TEM2 

perturbation.

86



Figure 48: Coaxial waveguide multipactor susceptibility metrics with a TEM2.5 

perturbation.

Figure 49: Coaxial waveguide multipactor susceptibility metrics with a TEM3 

perturbation.
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Figure 50: Coaxial waveguide multipactor susceptibility metrics with a TEM3.5 

perturbation.

Figure 51: Coaxial waveguide multipactor susceptibility metrics with a TEM4 

perturbation.

4.5 Conclusions

In  this  chapter  we have  examined  the  effect  that  perturbative  modes  can  have  upon

multipactor  which is  primarily  driven by a  different  mode.  We first  compared the  predicted
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multipactor results using the same SEE models as were introduced in Chapter 3, with the specific

test  case of a particular TEM3 mode present in the cavity alongside the fundamental TEM1

mode. We then generalized this analysis by using the medianized Furman SEE model to look

over a wide range of perturbing mode parameters in notional cavity #1, and a coaxial waveguide

sharing the  same inner  and outer  radii  dimensions.  In  most  cases,  the total  susceptibility  to

multipactor when considered over the entire volume was not observed to significantly change,

but the perturbative modes may still have some ability to increase or suppress multipactor at a

particular location within a resonant structure. We also noted that for the particular case of the

coaxial waveguide being perturbed by a half-harmonic TEM mode, the multipactor susceptibility

over  the  entire  volume  was  non-trivially  reduced,  which  suggests  that  with  at  least  some

perturbing mode conditions in coaxial waveguide geometries, further examination is warranted

for multipactor reduction at a target TEM mode by using a perturbing TEM mode.

89



CHAPTER 5: Refinement of the medianized Furman SEE model 

This chapter is an expansion of the early work presented by the author in [46] and [47].

5.1 Introduction

Furman's medianized SEY model is a reasonable approach to defining a deterministic

SEY model which can provide reasonably accurate multipactor simulations without resorting to

Monte Carlo trials. In defining that model, one of the unaddressed tradeoffs is whether or not the

median  is  the  best  cumulative  statistic  to  use  when  characterizing  the  emission  energies  of

Furman's  SEE model.  We now turn our attention to examining the effects of using different

cumulative  statistics,  which  is  a  generalization  of  the  medianized  variant  of  Furman's  SEE

model. We refer to this collection of SEE models as reduced-order Furman SEE models. 

This  class  of  reduced-order  Furman  SEE  models  can  be  used  to  quickly  perform

multipactor  simulations  when  simulation  speed  is  more  important  than  fully  characterizing

multipactor behavior, for example when carrying out swept-parameter simulations over a large

space of possible designs for a given application. Once the design parameters are approximately

determined, Furman's full model could be used to fine-tune and optimize the final design. In

order to evaluate the performance of the reduced-order Furman SEE models, we consider three

different error metrics, which may be more or less applicable depending on a given end-user

design goal. 
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5.2 Error metrics

Let us begin by considering the cavity #1 geometry (defined in Section 3.1) which is

excited solely by a TEM1 mode, as given by Equations (3.1) and (3.2) with n=1. We allow V0 to

vary from 10 V to 3000 V in steps of 10 V, and we allow θ to range from -π/2 to π/2 over 181

points. For each (voltage, starting phase) point in our simulation space, we run 100 Monte Carlo

trials  using Furman's  SEE model  for copper, and  the net  SEY for each Monte Carlo trial  is

calculated  as  has  been  consistently  done  throughout  this  dissertation:  we  simulate  particle

trajectories for 10 cycles, where a cycle is defined to be one period of the fundamental mode, or

one boundary impact, whichever occurs first.  The net SEY is defined as the product of each

single-impact SEY, and is understood to be zero if at least two boundary impacts do not occur

over the simulation period. 

For each point in our simulation space, we calculate the mean and median of the net SEY

of the Monte Carlo trials, which is plotted in Figure 52 below. We note that in many places the

mean net SEY exceeds the median net SEY. This is due to a small number of trials in which the

stochastic emission energies and directions happen to yield a very large net SEY, which affects

the mean statistic but not the median statistic. 
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Figure 52: Mean (left) and median (right) results of the net SEY as computed from 100 

Monte Carlo trials using Furman's SEE model on cavity #1 with only TEM1 excitation. 

Furman's SEY model, while accurate, necessitates computationally costly Monte Carlo

simulations  to  characterize  multipactor  susceptibility.  In  Section  3.8,  in  order  to  save

computational cost,  we proposed the use of the median values of the stochastic  variables in

Furman's model. This results in a deterministic (but still impact energy-dependent and angle-

dependent) emission energy and emission angle. Such a deterministic SEE model will clearly not

explore the entire phase space, but previous results suggest that it can do well in approximating

the results of the full Furman model. As a generalization, consider using other percentiles instead

of just the 50th percentile (median) values from the stochastic variable cumulative distributions.

Figure 53 shows the resulting net SEY surfaces when we use the default median (50 th percentile)

emission energy, as well as the 25th and 75th percentiles of the emission energies from Furman's

stochastic model.
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Figure 53: Net SEY using reduced-order Furman SEE model with 25th, 50th, and 75th 

percentile statistics, respectively shown from left to right, for cavity #1.

Let us now consider how we can quantify the error of the resulting net SEY surfaces

when  the  cumulative  statistic  of  Furman's  stochastic  variables  is  varied.  One  approach  to

quantify the level of agreement is by computing the root mean square error (RMSE) between the

net SEY as computed via the full Furman model and the reduced-order Furman models. Figure

54 shows the RMS error between the reduced-order approximation and full Furman model as a

function of the cumulative percentile statistic used. The RMSE varies between approximately 10

and 100 which correspond to values of 1 to 2 on the logarithmic plot scale, which may appear

overwhelming, but it is important to note that slight changes in the SEY for each impact can

yield significant changes to the net SEY after multiple bounces. 
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Figure 54: Root mean square error (RMSE) for the net SEY of the reduced-order Furman 

model, as a function of cumulative percentile used. The errors are shown for the reduced-order

model as compared to both the median and mean results of 100 Monte Carlo trials using 

Furman's fully stochastic model within cavity #1. 

A second approach  to  quantifying  the  error  between the  full  Furman model  and  the

reduced-order  variants  is  to  compute  the  geometric  average  δAVG of  the  net  SEY over  the

individual surface impacts, where  δAVG = (Net SEY)1/(# Impacts), with the understanding that if

there are less than two impacts then we set the geometric average for that trial to zero, since the

net SEY is zero as explained in Section 3.3. Figure 55 shows both the mean and the median of

δAVG as generated from 100 Monte Carlo trials of Furman's model, and in Figure 56, we show the

geometric average SEY as computed from a reduced-order model based upon the 25th, 50th, and

75th percentiles  of  the emission energies  of  Furman's  stochastic  model.  Figure 57 shows the
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resulting  RMSE  of  the  geometric  averaged  reduced-order  Furman  results  for  cumulative

probabilities ranging from 0 to 100th percentiles, as compared to both the mean and median of

δAVG determined from 100 trials of the full Furman model. 

Note that  the RMSE for  the geometric  average SEY provides  a  better  intuitive error

metric  for  the similarity  of the SEY predictions between the reduced-order  Furman and full

Furman SEE models.  For  example,  with  this  metric,  a  value  of  0.1 means that  the  error  in

secondary electron yield predictions between Furman's full model and the reduced-order models

are  on the  order  of  0.1,  where  for  comparison the  secondary  electron  yield  of  most  metals

typically ranges between 0 and approximately 2 depending upon impact energy and angle. 

Figure 55: Results of the geometric averaged SEY for 100 Monte Carlo trials using 

Furman's SEE model on coaxial cavity #1 with only TEM1 excitation. Shown are mean (left)

and median (right). 

95



Figure 56: Geometric averaged SEY for reduced-order Furman models with 25th, 50th, and 

75th percentile statistics, respectively shown from left to right, for coaxial cavity #1.

Figure 57: Root mean square error (RMSE) of the geometric averaged SEY for the 

reduced-order Furman model, as a function of cumulative percentile used. The errors are 

shown for the reduced-order model as compared to both the median and mean results of 100 

Monte Carlo trials using Furman's fully stochastic model within coaxial cavity #1. 
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In  addition  to  quantifying  the  error  in  net  SEY prediction  between  a  reduced-order

Furman  model  and  the  fully-stochastic  Furman  model,  in  many  situations  we are  primarily

concerned with knowing whether or not multipactor can occur, without concern for accurately

knowing the net SEY. In order to handle such a situation, we define the growth-decay error

(GDE)  as  follows:  For  each  (voltage,  phase)  point,  if  both  the  full  Furman  model  and  the

reduced-order Furman model agree as to whether or not multipactor is possible, then assign a

value of 0; if there is disagreement, then assign a value of 1. The GDE is then calculated to be

the  fraction  of  non-zero  values  over  the  entire  search  space.  It  can  range  from  0  (perfect

agreement)  to  1 (no agreement).  This  error  gives  a  measure  of  how well  the  reduced-order

Furman model predicts the presence or absence of multipactor, as compared to Furman's full

model. The growth-decay error between the full Furman model and the reduced-order Furman

model, as a function of cumulative percentile used, is shown in Figure 58.
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Figure 58: Growth-decay error (GDE) of the reduced-order Furman model, as a function of

cumulative percentile used. The error is shown for the reduced-order model as compared to 

both the median and mean results of 100 Monte Carlo trials using Furman's fully stochastic 

model within coaxial cavity #1. 

We have now defined three error metrics which we will use to examine how well the

reduced-order Furman models agree with the fully stochastic Furman model. Before proceeding

to do this in the next section, let us succinctly summarize what each metric tells us: The RMSE

metric tells us how well the net SEY surfaces are in agreement after multiple surface impacts; the

RMSE for geometrically-averaged SEY tells  us how well  the underlying SEY models are in

agreement  for  a  single  surface  impact;  and the  GDE tells  us  how well  we  can  predict  the

presence or absence of multipactor. 
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5.3 Error performance for different geometries and excitations

With the three error metrics defined in the previous section, we now are in a position to

examine how well the reduced-order Furman models can approximate the full Furman model in

both coaxial cavities #1 and #2, and with just a TEM1 mode present as defined in equations (3.1)

and (3.2), or with both TEM1 and TEM3 modes present as defined in equations (4.1) and (4.2).

The net  SEY surfaces  for  cavity #1 with  TEM1 excitation were shown in figure 5.1 in  the

previous section. For completeness, we show the corresponding net SEY surfaces for cavity #1

with both the TEM1 and TEM3 mode present in Figure 59, for cavity #2 with a TEM1 mode

present in Figure 60, and for cavity #2 with a TEM1 and TEM3 mode present in Figure 61. For

all the results in this chapter, with cavity #1 we allow V0 to vary from 10 V to 3000 V in steps of

10 V; with cavity #2 we allow V0 to vary from 50 V to 30000 V in steps of 50 V. For both of the

cavity results in this chapter, we allow θ to range from -π/2 to π/2 in 180 steps. 
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Figure 59: Results of the net SEY as computed from 100 Monte Carlo trials using 

Furman's SEE model on cavity #1 with both TEM1 and TEM3 modes present. Shown are 

mean (left) and median (right).

Figure 60: Results of the net SEY as computed from 100 Monte Carlo trials using 

Furman's SEE model on cavity #2 with only TEM1 excitation. Shown are mean (left) and 

median (right).
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Figure 61: Net SEY as computed from 100 Monte Carlo trials using Furman's SEE model 

on cavity #2 with both TEM1 and TEM3 modes present. Shown are mean (left) and median 

(right). 

The RMSE for the reduced-order Furman model net SEY is shown in Figure 62 for all

four  test  cases.  The  error  performance  is  not  uniformly  better  or  worse  as  the  cumulative

probability  parameter  of  the  reduced-order  Furman  model  is  changed,  but  it  appears  that

choosing a cumulative probability in the range of approximately 0.2 to 0.4 will yield the best

performance on average. 
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Figure 62: Net SEY RMSE for cavities #1 and #2, showing results with only a TEM1 mode 

present, and results with both a TEM1 and TEM3 mode present. RMSE is computed against 

the mean of 100 Furman trials on the left, and against the median of 100 Furman trials on the 

right.

The RMSE for the reduced-order Furman model geometric averaged SEY is shown in

Figure  63  for  all  four  test  cases.  The  error  performance  for  all  cases  shows  nearly  equal

performance for a cumulative probability parameter of the reduced-order Furman model in the

range  of  approximately  0.2  to  0.7,  as  compared  to  cumulative  probabilities  outside  of  this

intermediate  range.  A shallow  error  minimum  is  observed  in  the  vicinity  of  a  cumulative

probability of 0.3.
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Figure 63: Geometric averaged SEY RMSE for cavities #1 and #2, showing results with 

only a TEM1 mode present, and results with both a TEM1 and TEM3 mode present. RMSE

is computed against the mean of 100 Furman trials on the left, and against the median of 100 

Furman trials on the right.

We next  consider  the  GDE for  the  reduced-order  Furman model,  which is  shown in

Figure  64  for  all  four  test  cases.  The  error  performance  for  each  individual  case  shows  a

minimum at some place between 0.25 and 0.7, depending on the specific case considered and

whether we are comparing the mean or median of the Monte Carlo results of the full Furman

model. A cumulative probability parameter of the reduced-order Furman model in the range of

approximately 0.4 to 0.6 is a good choice to achieve respectable results for all the cases, even

though  some  specific  cases  may  have  a  lower  GDE  at  a  different  cumulative  probability

parameter. 
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Figure 64: GDE for cavities #1 and #2, showing results with only a TEM1 mode present, 

and results with both a TEM1 and TEM3 mode present. GDE is computed against the mean 

of 100 Furman trials on the left, and against the median of 100 Furman trials on the right.

Based upon the error performance shown above, we can provide a few key guidelines for

the  use  of  reduced-order  Furman models.  For  a  general  guideline,  a  suitable  choice  for  the

cumulative  probability  parameter  of  the  reduced-order  Furman model  is  0.4.  Different  error

minima may be achieved for specific cases, but a value of 0.4 does a good job of balancing all

the errors across all of the test cases examined. If we are particularly interested in accurately

characterizing  the  geometric  averaged  SEY  for  a  system,  then  a  cumulative  probability

parameters of 0.3 is probably more suitable, based upon the minimum error locations in Figure

63. Likewise, if we are particularly interested in simply knowing whether or not multipactor will

occur as measured by the GDE, then a cumulative probability parameter of 0.6 is probably more

suitable, based upon the minimum error locations in Figure 64. 
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5.4 Conclusions

In this chapter we generalized Furman's medianized SEE model to what we call Furman's

reduced-order SEE model, in which the stochastic emission velocity is replaced by a cumulative

statistic of the underlying distribution. The medianized Furman SEE model is a special case of

this family of  reduced-order models, with the cumulative probability chosen to be 0.5. In order

to  compare  the  reduced-order  Furman  SEE  model  performance  against  the  fully  stochastic

Furman SEE model, three different error metrics were introduced, which may be of greater or

lesser interest for a particular application. In the absence of any particular application dictating

which error metric to minimize, a favorable choice for the cumulative probability parameter of

the reduced-order Furman model was noted to be 0.4 in the geometries examined. 
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CHAPTER  6: Controlling multipactor impact points using a higher-order mode 

This chapter builds upon the work presented by the author in [48].

6.1 Introduction

The  ability  to  control  the  specific  impact  points  of  multipacting  electrons  within  a

structure may be of interest to RF system operators. This capability could be employed for such

tasks as cleaning a given location in a structure to reduce further susceptibility to multipactor, or

for directing multipacting electrons to a specific location in the geometry which is more or less

susceptible to sustaining multipactor, depending on the desired objective. 

This  chapter  examines  how  multipactor  impact  points  change  when  a  perturbative

harmonic mode is added to the fundamental mode which is primarily driving the multipactor. for

most of this chapter we depart from the coaxial geometry and use a parallel plate geometry for

conceptual  simplicity,  but  the  results  are  expected  to  be  generalizable  to  coaxial  and  more

complicated  geometries.  Some  comparisons  between  results  for  parallel  plate  and  coaxial

geometries are presented in Section 6.5. 

6.2 Simulation scenario

Consider  a  parallel  plate  geometry  as  shown in  Figure  65,  which  is  bounded in  the

x-dimension  and  infinite  in  the  y-  and  z-dimensions.  Within  this  geometry,  we  apply

time-harmonic fundamental and harmonic electric and magnetic fields as follows:
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Ex = E0·cos(ωt + θ) + β·E0·cos(n·(ωt + θ) + ζ)       (6.1)

By = (α1·E0/c)·sin(ωt + θ) + (αn·β·E0/c)·sin(n·(ωt + θ) + ζ)                     (6.2)

(These field phases represent standing waves along the z-direction.)

where  E0 is the peak electric field strength (V/m),  ω is the radian frequency (rad/s),  t is the

time (s), θ is the field starting phase (rad), β is the field strength of the harmonic mode relative to

the fundamental mode (unitless),  n is an integer greater than one which specifies the harmonic

number,  ζ is  the  relative  phase  of  the  harmonic  mode  (rad),  α1  and  αn are  unitless  scaling

parameters which respectively scale the magnetic fields in the fundamental and  nth harmonic

modes, and  c is the speed of light in free space (m/s). The  α1  and  αn parameters allow us to

examine what happens when the ratios of electric to magnetic field strengths change, as can

occur if standing waves are present in geometries that are bounded in the z-direction in addition

to the x-direction, as shown in Figure 66. 
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Figure 65: Parallel plate Geometry

Figure 66: Field profiles for standing waves.  Example field magnitudes (top) and field ratios 

(bottom) for standing waves within a geometry that is electrically shorted at both z boundaries.

108



In addition to standing waves inside a geometry bounded in z, we are also interested in

examining the case of fields being represented by travelling waves in a geometry unbounded in z.

For such a field structure, the time quadrature of the magnetic field matches that of the electric

field:  

Ex = E0·cos(ωt + θ) + β·E0·cos(n·(ωt + θ) + ζ)       (6.3)

By = (α1·E0/c)·cos(ωt + θ) + (αn·β·E0/c)·cos(n·(ωt + θ) + ζ)                 (6.4)

(These field phases represent travelling waves along the z-direction.)

Note that  for  travelling  waves  in  vacuum,  the characteristic  impedance  of  free space would

dictate  the ratio of the electric to magnetic fields,  and thus  α1 and  αn would both be unity.

However,  in  the  analysis  that  follows,  we  allow  for  non-unity  α1 and  αn to  evaluate  the

sensitivity of solutions, and to provide some insight into potential results when the fields are a

combination of both travelling and standing waves, such as could occur in a waveguide coupling

energy into another device, in which some energy is transmitted and some is reflected. 

For  all  the  results  in  this  chapter,  we  used  a  gap  distance  of  d=4.6472  cm,  and  a

fundamental  mode  frequency  of  ω=2π(80.5  MHz).  These  specific  numerical  values  are

somewhat arbitrary; the frequency was chosen to match the quarter-wave resonant cavities being

designed for the Facility for Rare Isotope Beams particle accelerator facility [42], and the choice

of  gap distance  was chosen to  yield  a  strong multipactor  response  for  a  peak plate-to-plate

potential  around  E0·d≈1000V.  The  qualitative  results  are  expected  to  generalize  to  other

multipacting systems. 
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By  assuming  that  we  are  in  the  early-time  of  multipactor  before  space  charge  is

significant,  the  multipactor  is  simulated  by  starting  a  particle  with  zero  velocity  from

(x,y,z) = (0,0,0), and tracking the single particle's trajectory for a default time of 30 periods of the

fundamental mode using the numerical differential equation solver as described in Section 2.3. If

during this simulation period a boundary strike occurs at x=0 or x=d, then the (incident energy-

and angle-dependent) secondary electron yield (SEY) is computed using Furman's medianized

SEE model  introduced in Chapter  3.  This  deterministic  secondary electron yield  model  was

chosen in order to keep this investigation computationally feasible.   

For every computed trajectory, the net SEY is computed as the product of all the SEY

values of the individual impacts. A somewhat arbitrary threshold of 0.001 was defined such that

if the net SEY is below this threshold, then the trajectory is discarded, and the corresponding

parameters are considered to not support multipactor. Otherwise the trajectory is retained as a

possible trajectory of particles supporting multipactor. In testing to evaluate the sensitivity of the

later results to the net SEY threshold, thresholds of 0.01 and 0.0001 were also examined for two

test cases, and no significant changes in the results were noted;  the results of this test with

different thresholds are provided in the Appendix of this dissertation.  

6.3 Control of z-drift

The multipacting particles are subject to two forces: electric forces which accelerate the

particles along the electric fields, and magnetic forces which accelerate the particles transverse to

the  magnetic  fields.  In  the  parallel  plate  geometry  under  consideration,  this  transverse  drift

would manifest as a deflection in the positive or negative z-direction. Since particle trajectories

can drift,  an interesting question is whether we can control this  drift  through an appropriate
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choice of the magnitude and phase of the two modes present. We are particularly interested in

controlling multipactor z-drift via the higher-order mode when given the field parameters of the

fundamental mode, because in many practical situations the fundamental mode conditions are

pre-defined design or operational conditions in a system. 

We begin to answer the above question by noting that for a given fundamental mode

specified  by  (ω,  E0,  θ,  α1),  if  we  introduce  a  higher-order  mode  specified  by  parameters

(n, β, ζ, αn), then we can change the resulting particle trajectory migrations along z: we can

increase the migration rate, decrease the migration rate, and in some circumstances even change

the direction of migration. 

 We can demonstrate this change in z-migration through a representative example: Using

the default frequency ω and gap distance d given in Section 6.2, and for the travelling wave field

configuration as defined in equations (6.3) and (6.4), let us specify a fundamental mode field

configuration by setting E0·d=1000V (or equivalently, E0=21.52 kV/m), α1=1, and three different

cases for the field phases θ={0, -π/9, π/9}. For an example additive harmonic mode excitation,

we set  n=3,  β=0.8,  α3=-10, and allow  ζ to range around the unit circle in 30 equally spaced

samples starting at ζ=0; ζ is allowed to independently change for each field phase φ examined.

For all of these cases we then calculate the z drifts vs. time over 30 periods of the fundamental

mode, and we record the maximum and minimum possible z drifts obtained as we varied ζ. The

results are shown in Figure 67 below.
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Figure 67: Extremal transverse (z) drift trajectories vs. time. Plots are shown for θ = 0 (blue),

θ = -π/9 (red), and θ = π/9 (green). Field parameters are defined in the preceding text. Two 

trajectories are shown for each phase: the minimum and maximum achieved transverse drift as ζ 

is allowed to independently vary for each phase φ, as explained in text. 

We note that in Figure 67, for the cases of the fundamental mode phase θ being 0 or π/9,

we are able to cause the z drift to be either positive or negative by an appropriate choice of ζ.

When this is possible, we refer to a given multipactor condition as being steerable-to-zero. In

general, this is not always possible, and we are interested in understanding when it is possible.

In  order  to  determine  which  multipacting  field  configurations  allow  for

steerability-to-zero along the transverse drift direction, we must first specify the field parameters

(ω, E0, θ, α1, n, αn). Note that in most multipacting circumstances, we are significantly limited in

our ability to change these parameters: ω and E0 are operating constraints for a given system, θ is

the field phase when a random multipacting trajectory is initiated, and the magnetic-to-electric

field scaling factors α1 and αn are dependent upon the specific mode and system geometry. If we

wish to control the  z-migration, we thus in practice would have control only over the higher

order mode number n, relative strength β, and relative phase ζ. 
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For the default ω and gap distance d given in Section 6.2, we search over the following

ranges of parameters: E0·d={700, 800, 900, 1000, 1100, 1200, 1300, 1400} V, φ={-π to π radians

in 60 equally-spaced samples}, α1={.1, .316, 1, 3.16, 10}, n={2,3,4}, αn=±{.1, .316, 1, 3.16, 10},

ζ={0  to  2π  in  30  equally-spaced  samples},  and  β={0.01  to  2  in  41  logarithmically-spaced

samples}. Note that even though we need both positive and negative values for αn, we only need

to include positive α1 values because a steerable-to-zero condition for a negative α1 value would

also yield a steerable-to-zero condition if we make the following parameter changes:  α1→-α1,

αn → -αn. Thus, without loss of generality we can reduce our search space by considering only

positive α1 values.

For each (ω, E0, θ,α1, n, αn) parameter value permutation, we step through β in order of

increasing value, simulate multipactor trajectories for each possible ζ value, and search for two

conditions: (i) Does at least one of the ζ samples yield a positive z-deflection at the end of the

simulation interval? (ii) Does at least one of the ζ samples yield a negative z-deflection at the end

of the simulation interval? Once both of these conditions have been satisfied for a value of  β

equal  to  or  less  than  the  present  selected  β,  we declare  that  the  multipactor  z-deflection  is

steerable-to-zero for the given (ω, E0, θ,  α1, n, αn) parameter value permutation. Note that the

above conditions (i) and (ii) need not be satisfied by the same value of β; for example a value of

β(+) may be needed to effect a positive z-deflection, and a value of β(-) may be needed to effect a

negative z-deflection. In such a case, we record β to be the larger of β(+) and β(-), such that positive

and negative  z-deflection can be achieved at or below the reported  β value. This definition of
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steerability-to-zero would translate into a laboratory RF source in which we could independently

control the magnitude and phase of the higher-order mode. 

For each (α1,  αn) combination, we tabulate the minimum β needed that can allow for a

steerable-to-zero condition, as a function of plate peak voltage (E0·d) and field starting phase φ.

Figure 68 shows such a surface for the parameter choices  α1  = 0.1 and  α3  = 10, and for the

travelling wave field configuration as defined in equations (6.3) and (6.4). 

Figure 68: Surface plot showing regions of multipactor steerability-to-zero for travelling 

waves with α1 = 0.1 and α3 = 10. The same axes and colormap ranges are used for all surface 

plots. 
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6.4 Controllability results

Figures 69, 70, and 71 respectively show for standing waves the minimum-β surfaces for

multipactor steerability-to-zero via the presence of a 2nd, 3rd, or 4th harmonic mode, in addition

to the fundamental mode; Figures 72, 73, and 74 respectively show the same cases for travelling

waves. Some general conclusions can be drawn from an examination of these results.

The first general conclusion that we notice is that to a good approximation it is only the

ratio of magnetic field strengths αn/α1 which determines the steerability-to-zero surfaces. This is

evident when steerability-to-zero surfaces are compared along diagonals from the upper-left to

the  lower-right  in  Figures  69  through  74,  and  show  remarkable  similarity  with  diagonally-

adjacent  results.  This  is  explained  by  noting  that  the  z-deflection  due  to  a  given  mode  is

proportional to magnetic field strength of that mode, and thus if two opposing magnetic fields are

present and are both scaled by the same factor, then the net deflection direction experienced by a

particle will be the same. 

The second general trend that we notice is that steerability-to-zero is more common with

the standing wave modes than with the travelling wave modes. This is due to the relative phase

(sine vs. cosine) of the magnetic fields for the same electric fields, as noticed by examining

equations  (6.1)  through  (6.4).  If  we  consider  the  electric  field  as  primarily  driving  the

multipactor along the ±x-direction in Figure 6.1, and the magnetic fields as primarily steering the

multipactor along the ±z-direction in Figure 6.1, then we notice that with standing waves, the

magnetic  field  direction  changes  sign  halfway  through  the  time  that  the  electric  field  is

accelerating  a  particle  in  a  single  direction.  We also  recall  that  due  to  phase-locking  for

multipactor resonance to occur, the electric field tends to change direction near the time that

particles impact the far boundary. Thus, if we consider a particle travelling from one boundary to
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the  other  in  one-half  period  of  the  driving  frequency  (ie.  N=1  in  equation  (3.1)),  then the

magnetic field introduces less deflection if it changes direction approximately halfway through

the transit (the standing wave case), than it does if it points in the same direction over most of the

transit (the travelling wave case). Thus, if the fundamental mode is a travelling wave, then the

field is  already deflecting the particles more significantly than if  the fundamental mode is  a

standing wave. This is the baseline condition for the trajectories before introducing perturbing

modes, and thus  it is intrinsically harder to control the  z-drift in the travelling mode case, in

which the particles already have a more significant z-drift.      

We observe that for both standing wave and travelling wave results, the 4 th harmonic

perturbation tends to do worse than the 2nd or 3rd harmonic perturbation. We also note that for

standing waves, the 3rd harmonic perturbation results in the greatest steerable-to-zero areas in the

parameter spaces examined; for travelling waves, the 2nd harmonic perturbation results in the

greatest steerable-to-zero areas in the parameter spaces examined. 

 In the travelling wave case, for all of the harmonics examined, with a few exceptions to

be discussed momentarily, steerability-to-zero is  most achievable in regions with a relatively

weak fundamental mode B-field (small α1) and a relatively strong harmonic mode B-field (large

|α2|, |α3|, and |α4|). This is understandable by considering two opposing factors. The first factor is

that the fundamental mode B-field tends to result in the particles migrating in the  z-direction,

transverse to both the x-velocity and the B-field. The x-velocity and the B-field tend to change

signs at approximately the same time due to period-locking of the multipactor to the driving

fields; this results in a net deflection along the same direction during each half of the multipactor

period. The second factor is that the stronger the harmonic mode, the more this mode's B-field is
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able to affect the particle's  z-deflection, and thus counteract the intrinsic deflection due to the

presence of the fundamental mode. The combination of these two opposing factors results in a

weak fundamental mode B-field and a strong harmonic mode B-field being conducive to steering

the z-deflection.

The possible exception in the travelling wave case to this general trend of steerability-to-

zero being linked with strong harmonic fields is observed for the case of the 2nd harmonic and

α2  < 0, in which the largest regions of steerability are observed when the magnetic fields of the

fundamental and harmonic mode are approximately equal, which corresponds to the surface plots

along the main diagonal in the bottom pane of Figure 72. However, these increased regions of

steerability  are  achieved  at  a  tradeoff,  in  that  they  require  a  stronger  harmonic  mode  field

strength (higher β value) as compared to the steerable-to-zero conditions involving a small α1 and

large |α2| in Figure 72. 

For the standing wave case, for the 2nd and 3rd harmonic cases, the steerability-to-zero

tends to be more possible in regions with a relatively strong fundamental mode B-field (large α1)

and a relatively weak harmonic mode B-field (small  |α2|  and |α3|).  This weak magnetic field

condition for the perturbing mode, opposite to the behavior observed for the travelling wave

case, is not yet well-understood and deserves future study beyond the scope of this dissertation,

especially in regard to what is the optimal ratio of fundamental-to-harmonic magnetic fields for

optimum controllability.   

We also observe in the travelling wave case that steerability-to-zero is most achievable

for αn being the opposite sign of α1. This condition represents a situation in which the harmonic

mode's magnetic-to-electric field orientation (+y vs. -y for the B-field when E-field is directed
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along +x) has the opposite parity as the fundamental mode, as can be seen from an examination

of Equations (6.3) and (6.4). This effect is not observed in the standing wave case, as expected,

because the magnetic-to-electric field orientations change at different times than do the electric

fields.  
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Figure 69: Standing wave steerable-to-zero conditions for 2nd harmonic perturbative mode, 

for various values of α1 and α2. Unlabelled axes are shown as in Figure 68. (top) Results for α2 

> 0. (bottom) Results for α2 < 0. 
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Figure 70: Standing wave steerable-to-zero conditions for 3rd harmonic perturbative mode, 

for various values of α1 and α3. Unlabelled axes are shown as in Figure 68. (top) Results for α3 

> 0. (bottom) Results for α3 < 0. 
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Figure 71: Standing wave steerable-to-zero conditions for 4th harmonic perturbative mode, 

for various values of α1 and α4. Unlabelled axes are shown as in Figure 68. (top) Results for α4 

> 0. (bottom) Results for α4 < 0. 
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Figure 72: Travelling wave steerable-to-zero conditions for 2nd harmonic perturbative 

mode, for various values of α1 and α2. Unlabelled axes are shown as in Figure 68. (top) Results 

for α2 > 0. (bottom) Results for α2 < 0. 
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Figure 73: Travelling wave steerable-to-zero conditions for 3rd harmonic perturbative 

mode, for various values of α1 and α3. Unlabelled axes are shown as in Figure 68. (top) Results 

for α3 > 0. (bottom) Results for α3 < 0. 
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Figure 74: Travelling wave steerable-to-zero conditions for 4th harmonic perturbative 

mode, for various values of α1 and α4. Unlabelled axes are shown as in Figure 68. (top) Results 

for α4 > 0. (bottom) Results for α4 < 0. 
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6.5 Comparison to selected coaxial geometries

In this  section  we examine the  present  approach to  controlling  z-drift  within  coaxial

cavities, which have field profiles which vary along the z-direction. We focus our attention on the

case of a 3rd harmonic perturbative mode. For ease of reference,  we pictorially represent the

coaxial  cavity  (described  in  Chapter  3)  in  Figure  75  below, in  which  the  inner  and  outer

conductors are shorted at both ends. 

Figure 75: Coaxial cavity geometry. Dimensions are length L, inner radius a, and outer     

radius b.

As  described in  Chapter  3,  we use  a  length  L=1.86 meters,  which  corresponds  to  a

fundamental (n=1) TEM mode resonance at 80.5 MHz. We consider three different inner radii:  a

= {0.01, 0.1, 1} meters. The gap distance  b-a = 0.046472 meters for all cases, in order to be

consistent with the parallel plate analysis in the previous section. 
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With perturbing  3rd harmonic TEM mode present, the electric field E(r,z,t) and magnetic

field B(r,z,t) field inside the cavity can be expressed as: 

E=−r̂
V 0

r⋅log(b /a)
⋅(cos (ω t+θ)⋅sin(

π z
L

) + β⋅cos (3ω t+3θ+ξ)⋅sin(
3π z
L

)) ,     (6.5)

B=ϕ̂
1
c

V 0

r⋅log(b /a)
⋅(sin(ω t+θ)⋅cos (

π z
L

) + β⋅sin(3ωt+3θ+ξ)⋅cos(
3π z
L

)) ,       (6.6)

where  V0 is  the  peak  conductor-to-conductor  voltage,  r is  the  radial  location,  and all  other

parameters are as defined in equations 6.1 and 6.2. Note that the fields given by equations (6.5)

and (6.6) have a negative sign, as compared to the coaxial fields defined in previous chapters.

This was done so that the field phase θ would have the same meaning as for the parallel plate

case, to allow for easier comparison to the parallel-plate  results.   

Since the field profiles change as a function of z-position as previously shown in Figure

66, we choose six starting locations along z as shown in Table 2; recall that z=0 and z=L bound

the  cavity.  Figures  76  through  81  respectively  show  the  results  for  starting  z-positions

corresponding to ratios of α3 /α1 = {1/10, -1/10, -1/3, -3, -10, 10}, for the cavities with the three

different inner radii a, as well as the closest parallel plate result for each case. The plot axes in

these figures correspond to the same scales as shown in Figure 68. Specifically, the plot x-axes

correspond to the electric field starting phase, the plot  y-axes correspond to the fundamental

mode's peak voltage between the outer and inner conductor at the particle starting  z-position
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(note that the field strengths will  be different at  other  z-positions within the cavity), and the

colormap denotes the same scale as in the previous results.

.

Table 2: z-locations within a coaxial cavity to yield desired α3 /α1 ratios. 

The results demonstrate that steerable-to-zero conditions are achievable in this coaxial

cavity, in which the fields are changing with  z-position. As expected, we also notice that the

coaxial results tend towards the parallel plate results as the gap distance becomes small relative

to the conductor radii.   
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z

0.14536 L 2.0354 0.2036 1/10

0.18292 L 1.1544 -0.1544  -1/10

0.20978 L 1.2910 -0.4303  -1/3

0.29021 L 0.7746 -2.2325 -3

0.31707 L 0.6476 -2.2325 -10

0.35465 L 0.4913 4.9103 10

α1 α3 α3 
/
 
α1



Figure 76: Coaxial cavity steerable-to-zero conditions for a 3rd harmonic perturbative 

mode, and  α3 / α1 = 1/10. This corresponds to a starting z position of z=0.14536L. As the inner 

radius a increases while gap distance remains the same, the results approach the parallel plate 

standing wave results shown in the lower right pane. Unlabelled axes are as shown in Figure 68.  
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Figure 77: Coaxial cavity steerable-to-zero conditions for a 3rd harmonic perturbative 

mode, and  α3 / α1 = -1/10. This corresponds to a starting z position of z=0.18292L. As the inner 

radius a increases while gap distance remains the same, the results approach the parallel plate 

standing wave results shown in the lower right pane. Unlabelled axes are as shown in Figure 68.  
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Figure 78: Coaxial cavity steerable-to-zero conditions for a 3rd harmonic perturbative 

mode, and  α3 / α1 = -1/3. This corresponds to a starting z position of z=0.20978L. As the inner 

radius a increases while gap distance remains the same, the results approximately approach the 

parallel plate standing wave results shown in the lower right pane, which was generated using a 

comparable  α3 / α1 ratio  of -1/3.16. Unlabelled axes are as shown in Figure 68.         
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Figure 79: Coaxial cavity steerable-to-zero conditions for a 3rd harmonic perturbative 

mode, and  α3 / α1 = -3. This corresponds to a starting z position of z=0.29021L. As the inner 

radius a increases while gap distance remains the same, the results approximately approach the 

parallel plate standing wave results shown in the lower right pane, which was generated using a 

comparable  α3 / α1 ratio  of -3.16. Unlabelled axes are as shown in Figure 68.  
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Figure 80: Coaxial cavity steerable-to-zero conditions for a 3rd harmonic perturbative 

mode, and  α3 / α1 = -10. This corresponds to a starting z position of z=0.31707L. As the inner 

radius a increases while gap distance remains the same, the results approach the parallel plate 

standing wave results shown in the lower right pane. Unlabelled axes are as shown in Figure 68.  
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Figure 81: Coaxial cavity steerable-to-zero conditions for a 3rd harmonic perturbative 

mode, and α3 / α1 = 10. This corresponds to a starting z position of z=0.35465L. As the inner 

radius a increases while gap distance remains the same, the results approach the parallel plate 

standing wave results shown in the lower right pane. Unlabelled axes are as shown in Figure 68.  

6.6 Conclusions

We have examined the feasibility of employing a harmonic mode to control the transverse

deflection present in a multipactor current, within the context of a parallel plate geometry and

with the assumption that space charge effects are negligible. For the parallel plate geometry, we

have allowed for generalized ratios of electric to magnetic fields, where arbitrary ratios can occur

within  a  cavity  containing  standing  waves;  the  limiting  assumption  to  this  approach  is  that

multipactor trajectories do not deflect sufficiently far in the transverse direction that the electric
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and magnetic field ratios change. In addition to just considering standing waves inside a cavity,

we  also  investigated  the  results  with  relative  phases  of  the  electric  and  magnetic  fields

corresponding  to  travelling  waves,  as  would  occur  in  an  infinitely-long  waveguide.  The

controllability results showed significantly different behavior between the two cases. We also

examined a few cases involving standing waves within a coaxial geometry, with results that were

in general agreement with the parallel plate results as the gap distance became small relative to

the coaxial conductor radii.  

For standing waves,  the results show that for the 2nd, 3rd, and 4th harmonics examined,

steerability-to-zero is possible under many circumstances for the 2nd and 3rd harmonic cases, and

not very often for the 4th harmonic case. For travelling waves, the results show that for the 2nd,

3rd, and 4th harmonic cases, steerability-to-zero is possible under some circumstances, typically

when the harmonic mode magnetic field is much stronger than the fundamental mode magnetic

field.  However,  steerability-to-zero  is  a  harder  problem with  travelling  waves  than  it  is  for

standing waves.  

Future work can examine the steerability-to-zero results when multiple harmonics are

present  at  the  same  time  in  the  geometry,  as  well  as  the  possibility  of  more  complicated

waveforms  such  as  square  wave,  triangle,  and  sawtooth  waveforms  in  addition  to  the

fundamental  sinusoidal  waveform.  Determination  of  the  optimum  ratios  of

fundamental-to-harmonic magnetic fields for the standing wave case would also be useful, since

for the 2nd and 3rd harmonic cases, it appears that the optimum ratio does not lie within the range

of  parameters  examined,  with  improved  controllability  results  observed  as  the  perturbing

magnetic  field  becomes  weaker  and  the  fundamental  magnetic  mode  becomes  stronger.  An

examination of other scales of gap distances and excitation frequencies would also be useful to
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evaluate this technique for higher orders of multipactor with multipacting periods lasting more

than one field period. A study involving random secondary emission velocities would also be

important  to  fully  characterize  the  steerability-to-zero  conditions,  since  it  is  possible  that

additional  randomness  in  the  particle  trajectories  could  increase  or  decrease  the

steerability-to-zero in an average sense for given field conditions. 
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CHAPTER 7: Conclusions

In this dissertation, we have used computational methods to examine multipactor during

the early-time of multipactor evolution when space charge effects are negligible. We have mainly

focused on two broad areas in particular: the relative accuracy of different secondary electron

emission (SEE) models when simulating multipactor, and the effects that perturbing modes can

have upon multipactor being primarily driven by a different mode. 

The results of chapters 3 and 5 showed the importance of wisely choosing an appropriate

SEE model when simulating multipactor. The first key finding of these chapters was that SEE

models which have zero secondary electron yield (SEY) below a given impact energy threshold

are insufficient to accurately simulate multipactor, due to the fact that some electrons which can

result in multipactor will strike a boundary at low impact energies. The SEY of this single impact

may be rather small, but we cannot discard it because if the net SEY after multiple impacts is

greater than unity, then multipactor can still be sustained. 

The second key finding of chapters 3 and 5 is that despite multipactor being a stochastic

process  due  to  the  underlying  stochastic  (quantum mechanical)  secondary  electron  emission

mechanisms,  deterministic  models  based  upon  Furman's  stochastic  SEE  model  can  yield

simulation results that agree reasonably well with the average results from Monte Carlo trials

using  Furman's  model.  Such  a  multipactor  simulation  approach  would  allow  for  rapid

multipactor  simulation over a  wide parameter search space,  for example to  identify possible

solutions for a given design goal. Once solutions are found with the approximated non-stochastic

model, Monte Carlo simulations using a high-fidelity stochastic model such as Furman's SEE

model could be used to optimize the final design.  
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Chapter 4 examined the effect that perturbing modes can have upon multipactor which is

primarily being driven by a different mode. The main takeaway is that even if multipactor is able

to be suppressed or enhanced in one location within a cavity or waveguide, the perturbing modes

will  tend to  have  the  opposite  effect  for  other  locations  within  the  geometry. Thus,  for  the

purposes of multipactor suppression, in most cases we likely would not be able to rely solely on

a  perturbing  mode  to  achieve  the  results  that  we  want.  However,  perturbing  modes  in

conjunction  with  other  engineering  modifications,  such as  surface  treatments  or  geometrical

adjustments, could be considered as a part of an overall multipactor suppression strategy. One

exception to perturbing modes not uniformly changing multipactor susceptibility was observed

for the case of a coaxial waveguide, in which a TEM perturbing mode was introduced at half of

the  TEM  primary  mode's  frequency;  future  investigation  into  multipactor  suppression  via

lower-frequency modes is warranted.   

In addition to the effects of perturbative modes upon multipactor susceptibility, in chapter

6 we examined how perturbative modes may change the impact points of multipacting electrons.

We catalogued the conditions under which selected harmonic modes could be used to actively

control the migration direction of multipacting electrons. Future work could investigate the use

of such higher-order modes to steer and contain multipacting electrons to desired points within a

resonant structure. Such points may be engineered to tolerate, suppress, or even intentionally

sustain  multipactor. For  the  case  of  multipactor  suppression,  such an  approach would allow

engineers to focus on reducing multipactor in isolated locations where the perturbing modes

direct  the  multipactor,  which  would  likely  be  less  expensive  than  attempting  to  reduce

multipactor susceptibility over an entire cavity. 
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In addition to the future possible research directions noted above, work could also be

done to improve simulation capabilities by including space charge effects, which would allow

more of the multipactor evolution to be studied beyond the early-time when space charge is

negligible.  Including space charge effects  could be done in  two different  manners:  The first

approach would be to incorporate a self-consistent electromagnetics solver which dynamically

solves for the fields within the resonant structure as the multipactor current grows and eventually

reaches  saturation.  Such an  approach would  be rigorous  but  would  need to  track  numerous

particles  at  once,  and  potentially  be  computationally  costly,  especially  for  Monte  Carlo

simulations. A second approach would be to incorporate an approximate space charge effect by

assuming a sheet or slab of multipacting electrons, as was done by Vaughan [1], Riyopolous [6],

and Kishek [10], among others. This second approach would lack the rigor and fidelity of a self-

consistent field model, but could be done at much less computational cost. Such an approach

would likely not accurately capture multipactor behavior at full saturation when a multitude of

independent particles are present, but would likely extend the applicability of the single particle

approach used in this dissertation. 
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APPENDIX
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Choice of Net SEY Threshold for Drift Controllability Study

In Section 6.2 it was noted that a somewhat arbitrary threshold of 0.001 was used for the

net SEY in order to decide if a multipactor trajectory was present or not, and this threshold was

used for all of the later simulations used to generate the results in Sections 6.4 and 6.5 which

showed under which conditions multipactor impact points can be controlled. In order to assess

the sensitivity of the controllability results to this net SEY threshold, two controllability cases

were examined with thresholds of 0.01 and 0.0001 in addition to the default 0.001. The case of a

travelling wave steerable-to-zero conditions for a 3th harmonic perturbative mode, with α1 = 0.1

and  α3  = -10,  is  shown in  Figure 82 below;  the  case  of  a  travelling  wave steerable-to-zero

conditions for a 3th harmonic perturbative mode, with  α1  = 0.316 and  α3  = -3.16, is shown in

Figure 83 below. In both cases, the steerability-to-zero results look identical as the threshold was

varied, thus suggesting an insensitivity to whatever reasonably-chosen threshold value is used.   
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Figure 82: Varying threshold test #1. Travelling wave steerable-to-zero conditions for 3rd 

harmonic perturbative mode, for α1 = 0.1 and α3 = -10, for three different Net SEY thresholds to 

use when deciding if multipactor is present. 

Figure 83: Varying threshold test #2. Travelling wave steerable-to-zero conditions for 3rd 

harmonic perturbative mode, for  α1 = 0.316 and α3 = -3.16, for three different Net SEY 

thresholds to use when deciding if multipactor is present. 
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