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ABSTRACT

HIGHER-ORDER DATA REDUCTION THROUGH CLUSTERING, SUBSPACE
ANALYSIS AND COMPRESSION FOR APPLICATIONS IN FUNCTIONAL

CONNECTIVITY BRAIN NETWORKS

By

Alp Ozdemir

With the recent advances in information technology, collection and storage of higher-order

datasets such as multidimensional data across multiple modalities or variables have become much

easier and cheaper than ever before. Tensors, also known as multiway arrays, provide natural

representations for higher-order datasets and provide a way to analyze them by preserving the

multilinear relations in these large datasets. These higher-order datasets usually contain large

amount of redundant information and summarizing them in a succinct manner is essential for

better inference. However, existing data reduction approaches are limited to vector-type data and

cannot be applied directly to tensors without vectorizing. Developing more advanced approaches

to analyze tensors effectively without corrupting their intrinsic structure is an important challenge

facing Big Data applications.

This thesis addresses the issue of data reduction for tensors with a particular focus on pro-

viding a better understanding of dynamic functional connectivity networks (dFCNs) of the brain.

Functional connectivity describes the relationship between spatially separated neuronal groups and

analysis of dFCNs plays a key role for interpreting complex brain dynamics in different cognitive

and emotional processes. Recently, graph theoretic methods have been used to characterize the

brain functionality where bivariate relationships between neuronal populations are represented as

graphs or networks. In this thesis, the changes in these networks across time and subjects will be

studied through tensor representations.

In Chapter 2, we address a multi-graph clustering problem which can be thought as a tensor



partitioning problem. We introduce a hierarchical consensus spectral clustering approach to iden-

tify the community structure underlying the functional connectivity brain networks across subjects.

New information-theoretic criteria are introduced for selecting the optimal community structure.

Effectiveness of the proposed algorithms are evaluated through a set of simulations comparing with

the existing methods as well as on FCNs across subjects.

In Chapter 3, we address the online tensor data reduction problem through a subspace track-

ing perspective. We introduce a robust low-rank+sparse structure learning algorithm for tensors to

separate the low-rank community structure of connectivity networks from sparse outliers. The pro-

posed framework is used to both identify change points, where the low-rank community structure

changes significantly, and summarize this community structure within each time interval.

Finally, in Chapter 4, we introduce a new multi-scale tensor decomposition technique to effi-

ciently encode nonlinearities due to rotation or translation in tensor type data. In particular, we

develop a multi-scale higher-order singular value decomposition (MS-HoSVD) approach where

a given tensor is first permuted and then partitioned into several sub-tensors each of which can

be represented as a low-rank tensor increasing the efficiency of the representation. We derive a

theoretical error bound for the proposed approach as well as provide analysis of memory cost

and computational complexity. Performance of the proposed approach is evaluated on both data

reduction and classification of various higher-order datasets.
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Chapter 1

Introduction

With the recent advances in information technology, collection and storage of higher-order datasets

such as multidimensional data with multiple aspects have become much easier and cheaper than

ever before. These higher-order datasets bring with themselves the problems of interpreting the

data and extracting useful information. Tensors, also known as multiway arrays, provide natural

representations for higher-order datasets and enable us to analyze them by preserving multilinear

relations among the different modes. Tensor type data appears in many applications including

computer vision where grey level images and image sequences can be represented as two- and

three-dimensional datasets, respectively, neuroimaging where signals such as electroencephalo-

gram (EEG) recordings across multiple subjects, channels and experimental conditions and mul-

timodal images can be represented as high order tensors [1–3], and hyperspectral imaging where

the images or videos obtained through remote sensing can be represented as 3-way and 4-way

tensors [4, 5].

These higher-order tensors are often very high-dimensional and contain large amount of redun-

dant information [6]. Summarizing these huge datasets in a succinct manner is essential for better

inference. Data reduction can be performed in several different ways. Clustering approaches

provide a compact way of summarizing the data which can be processed quickly and interpreted

easily [7]. On the other hand, linear or nonlinear mapping of the high-dimensional data onto
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lower dimensional subspaces or manifolds provides direct reduction of data dimensionality [8].

Approaches such as PCA/SVD for linear low-rank subspace approximation and manifold learning

techniques for nonlinear approximation are well-developed for vector type data. However, these

dimensionality reduction techniques become inadequate when dealing with higher-order tensors.

Applying vector based algorithms to tensors requires vectorization which results in extremely long

vectors and breaks the natural multilinear structure of the data. Analysis of these long vectors also

requires massive computing power. Therefore, there is a need to develop clustering and subspace

projection approaches for dimensionality reduction of tensor data.

1.1 Data Reduction by Clustering

One particular way of performing data reduction is clustering. There are a variety of clustering

algorithms specific to problems from different fields i.e computer science, earth science, life sci-

ence and economics [9–12]. The common objective of all the clustering algorithms is grouping the

samples similar to each other based on a specified proximity measure i.e. Euclidean distance, co-

sine distance or Mahalanobis distance [13]. Clustering algorithms can be simply grouped into two

categories as Hierachical algorithms and partitional algorithms [10]. Hierarchical clustering ap-

proaches construct a hierarchical structure from a distance matrix and make use of dendograms to

visualize the distance. Hierarchical algorithms are commonly implemented through either agglom-

erative or divisive methods. Agglomerative algorithms perform clustering by merging individual

data points while divisive methods start with the entire dataset and successively divide it into

subclusters [14]. In contrast to hierachical approaches, partitional clustering algorithms directly

assign samples into K clusters. Partitional algorithms can be also further divided into square-error

based algorithms, graph-theoretic algorithms and mixture resolving algorithms [10]. Squared-error
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based algorithms such as K-means perform clustering based on specified cost functions which

maximize intercluster distance and intracluster similarity. Mixture resolving approaches evaluate

the probability distributions of each cluster and group the data points based on the distribution’s

parameters that can be iteratively estimated by expectation maximization algorithm [15]. Graph-

theoretic approaches make use of the similarity matrix formed using neighborhood information of

data samples. Spectral properties carried by eigenvectors of the graph Laplacian assist in finding

the optimum cut points of the graph [16].

However, all of these methods are mostly limited to clustering a single data set or unimodal

data. In the case of multiway data it may be important to find a common cluster structure across

one of the modes. Consensus clustering methods address this problem by combining multiple clus-

tering results obtained by applying various algorithms to the same dataset [17,18]. The final result

is obtained by minimizing the total dissimilarity between the target partition and each individual

partition [17]. Similar to consensus clustering, multiview clustering aims to obtain common clus-

tering structure from multiple views of the same data [19]. Multiview clustering can equivalently

be thought as a higher-order data clustering problem and tensor based approaches show superior

performance compared to both single view and the other multiview approaches [20]. More re-

cently, multi-way clustering problem has been defined by the use of N-way similarity measure

instead of pairwise similarity measures [21]. Using N-way similarity measure yields N-way super

symmetric affinity tensor and Shashua et al. [22] showed that applying nonnegative tensor factor-

ization to N-way affinity tensor yields desired partitions. Moreover, He et al. [23] reformulated the

multi-way clustering problem as a PARAFAC problem.
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1.2 Higher-order Data Decomposition

Increased usage of higher-order datasets has prompted researchers to develop new multilinear anal-

ysis tools to better capture the hidden multilinear structures underlying the observed data. Advan-

tages of using multiway analysis over two-way analysis in terms of uniqueness, robustness to

noise and computational complexity have been shown in many studies [24–27]. Two of the most

well-known higher-order decomposition methods are Tucker decomposition and Parallel Factor

Analysis (PARAFAC). PARAFAC, also known as canonical decomposition (CANDECOMP), is an

extension of PCA to tensors and represents the tensor as a sum of rank-1 tensors. PARAFAC yields

a unique decomposition and provides the only possible combination of rank-one tensors [28, 29].

For an N-way tensor X P RI1�I2�... �IN , PARAFAC decomposition of X is:

X �
Ŗ

r�1

λra
p1q
r � a

p2q
r � .... � a

pNq
r (1.1)

where R is a positive integer, λr is the weight of the rth rank-one tensor, apiqr P RIi is the rth

factor of ith mode with unit norm where i P t1, 2, ..., Nu and r P t1, 2, ..., Ru, and ”�” denotes

the outer product of vectors. The main restriction of the PARAFAC model is that the factors

across different modes only interacts factorwise. For example, for a 3-way tensor, the ith factor

corresponding to the first mode only interacts with the ith factors of the second and third modes.

However, this restriction also provides the same number of factors for each mode and yields a

unique solution for PARAFAC model [24, 30].

Tucker decomposition is a natural extension of the SVD to N-way tensors and decomposes the

tensor into a core tensor multiplied by a matrix along each mode [31]. One version of Tucker de-

composition known as HoSVD is obtained by adding an orthogonality constraint to the component
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matrices. HoSVD of N-way tensor X P RI1�I2�... �IN is written as:

X � S �1 U
p1q �2 U

p2q...�N UpNq,

X �
°I1
i1�1 ...

°IN
iN�1 si1,i2,...,iN ci1pU

p1qq � ci2pU
p2qq... � ciN pU

pNqq

(1.2)

where the matrix Upnq contains the left singular vectors of the matrix obtained by unfolding X

along nth mode, cnp�q is the nth column vector and core tensor S is obtained by S � X �1

Up1q,J �2 Up2q,J... �N UpNq,J. In contrast to PARAFAC, Tucker models allow interactions

between the factors obtained across the modes and the core tensor includes the strength of these

interactions. However, the main drawback of Tucker decomposition is that the factors are not

necessarily unique [24]. For example, the effect of rotating one of the mode matrices can be

eliminated by inversely rotating the core tensor.

Both of the PARAFAC and Tucker decompositions can be computed using alternating least

squares (ALS) algorithms [2, 24]. ALS repeatedly estimates the component matrices one at a time

while keeping the others fixed until convergence criteria are satisfied. However, ALS based al-

gorithms do not guarantee convergence to the global optimum and changing the start points for

the algorithm may yield different solutions. To accelerate the convergence of ALS, studies in line

search techniques and gradient based approaches can be integrated in ALS algorithms [32–34].

Similar to PARAFAC, Tucker decomposition can also be performed by ALS algorithms and the

closed form solution is based on computing the left singular vectors of the matrix obtained by un-

folding the tensor along the related mode [2]. To speed up this process, [35] proposed to compute

only the leading singular vectors which yields a truncated version of HoSVD. However, truncated

HoSVD does not provide the optimal solution for the specified rank. [36] proposed an iterative

technique known as higher order orthogonal iteration (HOOI) and showed that the truncated de-
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composition obtained by HOOI provides a better fit to the original tensor.

Recently, alternatives to these major tensor decomposition techniques have also been pro-

posed [30, 37–43]. De Lathauwer [37] proposed block-term decomposition (BTD) which unifies

HoSVD and PARAFAC and defined the essential conditions for uniqueness. Block-term decompo-

sition factorizes the tensor as a sum of several tensors of the same size but with a lower multilinear

rank than the original tensor. BTD is a more generalized version of PARAFAC decomposition and

allows us to model more complex data structures. However, the main challenge with the block-

term decomposition is how to choose the appropriate block rank. When the order of the tensors

increases, computation and storage of the core tensor obtained by Tucker decomposition becomes

more costly. To reduce the memory requirements as well as computational complexity, various

tensor decomposition techniques including hierarchical Tucker decomposition and tensor train de-

composition have been proposed [31, 39, 40]. Hierarchical Tucker Decomposition (H-Tucker) re-

cursively splits the modes based on a hierarchy and applies SVD. Resulting binary tree contains a

subset of the modes at each node [39]. Alternatively, Tensor-Train Decomposition (T-Train) has

been proposed to compress large tensor data into smaller core tensors obtained by a sequence of

QR and SVD decompositions of matrices [40]. Real-valued datasets may exhibit different char-

acteristics such as nonnegativity, sparsity, symmetricity and researchers have proposed various

tensor decomposition techniques by including these constraints. For example, Brachat et al. de-

composes symmetric tensors as the sum of rank-one symmetric tensors [41]. Real data containing

frequency counts, pixel intensities and spectra, are nonnegative, and nonegativity constraint can

also be imposed to tensor factorization [30]. Moreover, Tichavsky et al. [38] extended joint block

diagonalization of nonsymmetric matrices to 3-wayN�N�N tensors by decomposing the tensor

into a block diagonal core tensor multiplied by factor matrices along each mode. More recently,

Allen et al. [42] took sparsity of the tensors into account and proposed sparse tensor decompo-
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sitions (Sparse-HoSVD, Sparse-PARAFAC) where Sparse-PARAFAC regularizes the factors with

an l1-norm penalty and Sparse-HoSVD performs sparse PCA on matricized tensors .

1.3 Tensor Subspace Tracking

High-dimensional datasets often lie near a low dimensional subspace, and there has been a massive

amount of subspace learning algorithms used in data reduction and compression including recon-

structive methods (principal component analysis (PCA), independent component analysis (ICA),

nonnegative matrix factorization (NMF) [44–46]), discriminative approaches (linear discriminant

analysis (LDA), canonical correlation analysis (CCA) [47,48]). To better deal with corrupted data

and missing entries, researchers have focused on more robust subspace estimation techniques and

the problem of separating a sparse matrix and a low-rank matrix from their sum has received a

lot of attention. The final goal usually is to either find the column span of the low-rank matrix or

the support of the sparse one. There has been a large amount of recent work on batch methods

for low-rank + sparse recovery and its various extensions such as Principal Component Pursuit,

Outlier Pursuit and Low-Leverage Decomposition [49–62]. However, the subspace that the dy-

namic signals and streaming datasets lie in tends to evolve in time and these batch algorithms

are inconvenient to capture changing dynamics of the subspace. To address this issue, a consid-

erable number of online subspace learning algorithms have been proposed i.e. SVD based ap-

proaches (incremental SVD, incremental PCA [63, 64]), recursive least squares based approaches

(PAST, PETRELS [65,66]) and robust approaches (GRASTA, REPROCS, online RPCA [67–70]).

However, all of these approaches are appropriate for vector type datasets and applying them to

higher-order datasets requires vectorization. Vectorizing the large datasets yields very long vectors

and makes the optimization of the algorithms highly costly. Vectorizing process also corrupts the
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multi-dimensional couplings that the higher-order data contains.

To better preserve the multilinear structures of dynamic higher-order datasets, recently tensor-

based approaches have been proposed to track dynamic tensor subspaces such as dynamic tensor

analysis, streaming tensor analysis and window based tensor analysis [71, 72]. However, these

approaches provide computationally efficient frameworks for analysis of streaming datasets by

recursively updating subspace information and do not address the robustness of the subspace esti-

mates. Goldfarb and Qin extended robust PCA to tensors (HoRPCA) by solving low-rank + sparse

recovery problem for general higher order tensors [73]. However, this method is highly compu-

tationally expensive and does not update the subspaces online. Li et al. [74] presented a robust

subspace learning algorithm (RTSL) that incrementally updates the tensor subspace. Moreover,

Nion et al. [75] proposed two adaptive approaches to track PARAFAC decompostion of 3-way

tensors. These approaches suggest to update the PARAFAC decomposition at every time point

based on simultaneous diagonalization or minimization of weighted least squares criterion. More

recently, Mardani et al. [76] proposed an online subspace learning method based on nuclear norm

minimization and extended this approach for matrices and higher order datasets. Extension of this

algorithm to tensors takes advantage of parallel factor analysis (PARAFAC) model to minimize

tensor rank and considers temporal information as one of the tensor modes. Similar to [76], OL-

STEC proposed in [77] also tracks the subspace of partially observed higher-order data by making

use of PARAFAC decomposition.

1.4 Tensor Based Approaches in Neuroscience Applications

Undoubtedly, the brain is one of the most complex biological systems in existence which has

motivated researchers to study it through different imaging modalities including EEG, MEG and
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MRI. However, all of these modalities provide either multilinear signals or multidimensional im-

ages which are most naturally represented by tensors. Recently, tensor based approaches have

been widely used for analysis of these datasets [2]. For instance, Morup et al. [1] proposed to

use PARAFAC model to decompose event-related EEG data into channel � frequency � time

components and identified the components corresponding to visual event related potential (ERP)

paradigm. In order to avoid degenerations due to time shifts that occur in EEG and fMRI signals

and to better model the delays occurring in neuro-physiological systems, the shifted PARAFAC

model has been proposed [78]. Tensor decomposition has also been used in BCI applications

[79–84]. Lee et al. [79] presented non-negative tensor factorization by adding nonnegativity con-

straint to PARAFAC decomposition and showed that hidden multiway patterns found by NTF

successfully classify the EEG signals. Similarly, generalized tensor discriminant analysis (GTDA)

[85] provides discriminative multilinear subspace information for single trial EEG classification

[80, 81]. Similarly, slice oriented decomposition (SOD) developed for 3-way tensors decomposes

the tensors as outer product of slice matrices and features extracted by SOD have been employed

in BCI applications [82]. Tucker models and extensions have also been used in BCI studies to ex-

tract features for classification of EEG signals [83,84]. Moreover, brain source localization studies

take advantage of tensor based methods [86–89]. These studies applied PARAFAC decomposi-

tion to time-frequency-electrode tensor constructed from EEG data and showed that some of the

PARAFAC components are related to the artifacts while others are associated with the origins of

epileptic seizure.

More recently, tensor based approaches were used in fMRI studies for several different ap-

plications. For example, Barnathan et al. [90] proposed a hybrid algorithm by combining tensor

decompositions with wavelet transform and then applied it to fMRI to cluster motor tasks. They

also showed that this hybrid method outperforms voxelwise analysis and methods depending only
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on wavelet transform or tensor decompositions in terms of space, time, and accuracy. An extension

of ICA for tensors was proposed in [91] and has been used used to obtain more accurate activation

maps for multi-subject and multi-session fMRI analysis with increased robostness against devia-

tion from model assumptions. In addition, EEG-fMRI fusion applications have taken advantage

of tensor decomposition since multilinear approaches better reflect the intrinsic structure of mul-

timodal multiway neuroimaging data [92, 93]. Tensor based approaches have also been used for

compression of EEG signals and regression analysis of fMRI data [94–96].

In most of the studies mentioned above, the tensors are constructed from either the time-

frequency distribution of the signals across channels or the time series across subjects for multi-

channel EEG recordings or fMRI voxel intensity values. However, there is less work on employing

tensors to represent the multivariate relationships among the different channels or voxels. Func-

tional connectivity is defined as the statistical dependency between spatially remote neurophysio-

logical events and is most commonly represented through the use of graph theoretic tools such as

the adjacency/connectivity matrix. Recently, functional connectivity has been used to understand

coordinated and integrated activity of the human brain [97, 98], and it has been shown that syn-

chronization between different brain regions plays an important role in different cognitive and emo-

tional processes [99, 100] as well as in various neurological and psychiatric disorders [101–104].

More recently, tools from graph theory have been employed to analyze the functional connectiv-

ity of the brain by associating nodes with distinct brain regions and edges with pairwise interac-

tions between them [105,106]. Moreover, it has been shown that functional connectivity networks

change dynamically in short time scales and exhibit task-related patterns [107–111]. Tensors pro-

vide a natural tool to represent these dynamic functional connectivity networks constructed across

subjects, time, frequency and experimental conditions. In recent work, tensor decomposition meth-

ods such as HoSVD have been used to summarize these high order datasets and to identify a small
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number of network states [112, 113].

1.5 Organization of the Dissertation

This thesis makes fundamental contributions to data reduction of tensor type data with a particular

focus on providing a better understanding of dynamic functional connectivity networks. In Chapter

2, we approach the problem of data reduction through clustering. In particular, we focus on obtain-

ing a common community structure across multiple connectivity networks, which can be thought of

partitioning a 3-way tensor. Therefore, unlike classical graph clustering this is a multi-graph clus-

tering problem where the tensor corresponds to functional connectivity brain networks collected

in time across multiple subjects. In order to understand the organization of functional connectivity

networks, it is important to determine the community structure underlying these complex networks.

Moreover, the study of functional networks is confounded by the fact that most neurophysiological

studies consist of data collected from multiple subjects, thus, it is important to identify commu-

nities representative of all subjects. In Chapter 2, we propose a hierarchical consensus spectral

clustering approach to address these problems. Furthermore, new information-theoretic criteria

are introduced for selecting the optimal community structure. The proposed framework is applied

to electroencephalogram (EEG) data collected during a study of error-related negativity (ERN) to

better understand the community structure of functional networks involved in cognitive control.

The approach presented in Chapter 2 reduces the connectivity data across all subjects and

within a given time interval into a single cluster structure. In Chapter 3, we propose an alternative

way to reduce this high dimensional data through linear subspace estimation and update methods.

In this approach, the dynamics of the connectivity networks are taken into account such that the

data reduction is done across subjects for time intervals determined by the subspace tracking ap-
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proach. Recent years have seen a growth of methods for subspace tracking of vector type data. The

main contribution of this chapter is that we introduce a tensor based approach for tracking dynamic

functional connectivity networks. The proposed framework introduces a robust low-rank+sparse

structure learning algorithm for tensors to separate the low-rank community structure of connectiv-

ity networks from sparse outliers. The proposed framework is used to both identify change points,

where the low-rank community structure of the FCN changes significantly, and summarize this

community structure within each time interval. The proposed framework is applied to the study of

cognitive control from electroencephalogram (EEG) data during a Flanker task.

In Chapter 4, we address the issue of data reduction through tensor decomposition. To this aim,

we propose a novel multiscale analysis technique to efficiently encode nonlinearities in tensor type

data. The proposed method constructs data-dependent multiscale dictionaries to better represent

the data and consists of two major steps: 1) Constructing a tree structure by decomposing the

tensor into a collection of permuted subtensors, and 2) Constructing multiscale dictionaries by

applying HoSVD to each subtensor. We introduce different variations of the proposed MS-HoSVD

method including a single scale and multi-scale decomposition along with an adaptive pruning

method. We derive a theoretical error bound for the proposed approach as well as provide analysis

of memory cost and computational complexity. Finally, we apply the proposed algorithm to data

reduction of real datasets to illustrate the improvement in the compression performance compared

to HoSVD, T-Train and H-Tucker deompositions. In addition, we show how the features obtained

from multiscale representation provide advantages over regular HoSVD and T-Train features for

classifying tensors containing nonlinearities such as rotation or translation.
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Chapter 2

Hierarchical Spectral Consensus Graph

Clustering for Group Analysis of Functional

Brain Networks

2.1 Introduction

Functional connectivity is defined as the statistical dependency between spatially remote neuro-

physiological events [97] and is the key to understanding how the coordinated and integrated

activity of the human brain takes place [98]. In recent years, many studies have suggested syn-

chronization of neuronal oscillations as one plausible mechanism in the interaction of spatially dis-

tributed neural populations [114]. Moreover, it has been shown that synchronization between dif-

ferent brain regions plays an important role in different cognitive and emotional processes [99,100]

as well as in various neurological and psychiatric disorders [101–104]. Synchronization refers to

interdependencies among activities of different neuronal assemblies and requires the need to focus

on the temporal dynamics of neural networks in the millisecond range. Therefore, neuroimag-

ing techniques with high temporal resolution, such as electroencephalogram (EEG) [101,115] and
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magnetoencephalogram (MEG) [116], are the most appropriate tools.

Although phase synchrony is successful at quantifying pairwise interactions, it cannot com-

pletely describe the complex relationship between function and organization of the brain. Recently,

research in the area of complex networks, in particular graph theoretic methods, has been used to

characterize the relationship between the topology and the function of the brain [117–120]. The

bivariate relationships between neuronal populations are represented as graphs where the nodes

correspond to the individual sites and the edges to the strength of the interaction quantified by

functional connectivity measures. The conventional approach to functional connectivity graph

analysis extracts topological metrics either on the entire graph, i.e. global metrics, or at each

node, i.e. local metrics. At the large topological scale, the small-world organization, whereby

both integration (relatively high global-efficiency/low path length) and segregation (relatively high

local-efficiency/clustering coefficient) of information between brain regions are supported, has

been investigated thoroughly [121,122]. The small-world model has also been shown to be signifi-

cantly altered in various brain disorders and pathologies such as schizophrenia [123], autism [124],

spinal cord injuries [125] and Alzheimer’s disease [126]. At the local scale, the centrality or the

degree of individual nodes can be computed and used to characterize the brain graph reorganiza-

tion during different tasks and events. Although the global and local indices summarize the key

aspects of the connectivity networks, they do not provide any information about the intermediate

scale of network organization which is more accurately described by the community structure of

the network [127, 128]. A community structure in a graph is defined as a densely connected set

of nodes with sparse connections between communities in the network. It is hypothesized that

the community structure of complex biological networks is indicative of robustness [127] and

contributes to functionality [129] by compartmentalizing specific functions within certain cortical

regions without perturbing the rest of the network [130]. Intra-cluster associations are thought
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to describe the segregation of information processing while the inter-cluster associations testify to

the integration of information processing across distant brain regions [131–133].

Identification of communities in the functional connectivity graphs has been originally ad-

dressed using methods like Principle Component Analysis (PCA) [134] and Independent Compo-

nent Analysis (ICA) [135] which put non-physiological constraints in the obtained components

such as orthogonality and independence. Recently, methods from spectral graph clustering have

been used to detect communities [136, 137] by mapping the functional connections to a multi-

dimensional subspace defined by a set of eigenvectors. However, these methods require a priori

knowledge about the number of clusters and do not reveal a hierarchical decomposition of the

network. Meunier and others [138–140] argue that most complex networks, including functional

connectivity networks, possess a multi-scale community characteristic, i.e, are hierarchically de-

composable into a finite number of modular levels. Therefore, a hierarchical decomposition of

functional connectivity graphs is a more natural representation than conventional clustering ap-

proaches for community detection in brain networks.

A key challenge in identifying the community structure of brain networks is determining a

common structure across multiple subjects. Current work either focuses on obtaining the commu-

nity structure for the average connectivity network or on analyzing each subject individually and

obtaining a common community structure using consensus clustering techniques [141]. Averaging

neglects the variance across subjects and can be influenced by the outliers. Consensus clustering,

also known as clustering ensembles, yields a stable and robust final clustering that is in agreement

with the individual clusterings through a consensus function [18, 142]. Therefore, in this chapter

we will introduce a hierarchical consensus based approach in which the best community structure

is identified by combining information shared across multiple subjects.

In this chapter, we first quantify functional connectivity using a new time-varying measure
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of phase synchrony and apply it to multichannel EEG data to quantify pairwise synchrony. The

resulting connectivity matrices are treated as weighted undirected graphs representing each subject.

We then introduce a new hierarchical graph partitioning method based on spectral graph theory,

in particular the Fiedler bi-partitioning method [143]. This partitioning method is combined with

two novel information theoretic criteria, homogeneity and completeness, to introduce a non-greedy

consensus based hierarchical algorithm, the Fiedler Consensus Clustering Algorithm (FCCA), that

is designed to reveal multiple levels of community organization common across subjects. Next, an

information-theoretic quality measure is introduced to identify the optimal community structure.

Finally, the proposed approach is applied to EEG data collected during a study of cognitive control

in the brain based on the error-related negativity to test the approach on a known biological signal.

2.2 Background

2.2.1 Time-Varying Measure of Phase Synchrony

Phase synchronization within different frequency bands across the brain has been shown to be a

plausible mechanism explaining neuronal integration [114, 144]. Two commonly used measures

for quantifying time-varying phase synchrony are Hilbert transform and complex wavelet trans-

form [145–147]. It has been observed that the two approaches are similar in their results with

the wavelet based methods giving higher resolution phase synchrony estimates over time and fre-

quency, especially at the low frequency range [145]. Although the wavelet based phase synchrony

estimates address the issue of non-stationarity, they suffer from the resolution tradeoff, i.e. the fre-

quency resolution is high at low frequencies and low at high frequencies. For this reason, there is a

need for high time-frequency resolution phase distributions that can better track dynamic changes

in phase synchrony. In the proposed work, pairwise functional connectivity will be quantified us-
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ing a recently introduced time-frequency phase estimation method based on Reduced Interference

Rihaczek distribution (RID-Rihaczek) [148, 149].

Reduced Interference Rihaczek Distribution (RID-Rihaczek) is given by:

Cpt, ωq �

¼
exp

�
�pθτq2

σ

�
exp

�
j
θτ

2



Apθ, τqe�jpθt�τωqdτdθ, (2.1)

where expp�pθτq2{σq is the Choi-Williams kernel used to filter out the cross-terms, Apθ, τq �³
xpu � τ

2 qx
�pu � τ

2 qe
jθudu is the ambiguity function of the signal and exppjθτ{2q is the kernel

corresponding to the Rihaczek distribution [150]. The phase difference between two signals based

on this complex distribution is computed as

Φ12pt, ωq � arg

�
C1pt, ωqC

�
2pt, ωq

|C1pt, ωq||C2pt, ωq|

�
, (2.2)

where C1pt, ωq and C2pt, ωq refer to the complex energy distributions of the two signals x1ptq

and x2ptq respectively and a synchrony measure quantifying the intertrial variability of the phase

differences, phase locking value (PLV), is defined as

PLV pt, ωq �
1

N

����� Ņ
k�1

exppjΦk12pt, ωqq

����� , (2.3)

where N is the number of trials and Φk12pt, ωq is the time-varying phase estimate between two

signals recorded at different electrodes for the kth trial. If the phase difference varies little across

the trials, PLV is close to 1. Compared to the existing synchrony measures, in our previous work

we have shown that RID-Rihaczek based phase synchrony measure is more robust to noise, has

uniformly better time-frequency resolution with less bias, and perform superior at detecting actual
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synchrony within a group of oscillators [148].

2.2.2 Graph Theory

Recent developments in the quantitative analysis of complex networks, based largely on graph

theory, have been rapidly translated to studies of brain network organization [105, 151]. In this

approach, the different regions of the brain correspond to the nodes in the network and the pair-

wise functional connectivity corresponds to the edges of the network. An undirected, connected,

weighted graph, G � pV,E,Wq, consisting of a finite set of N nodes, V � tvi|i P t1, 2, ..., Nuu,

and a set of edges, E, associated with each node pair and a weighted adjacency matrix W can

be used to represent these functional connectivity networks. For a binary graph, wij P t0, 1u and

for a weighted graph wij P r0, 1s. In an undirected graph, the edge weights are represented by

a symmetric weighted adjacency matrix W � rwijs where i, j P t1, 2, ..., Nu. The sum of all

elements along the ith row of matrix W, di �
°N
j�1wij , is the degree of node vi. When m graphs

representing the same network are available, their adjacency matrices are represented as the set

W � tW ru where r P t1, 2, ...,mu.

2.2.3 Spectral Clustering

A commonly used approach to identifying the community structure within graphs is spectral clus-

tering thanks to its simple implementation and promising performance. Given a weighted and

undirected graph G, the spectrum of the graph is represented by the eigenvalues and eigenvectors

of the graph Laplacian matrix L � D �W, where W is the adjacency matrix and D is the de-

gree matrix containing degrees of nodes along the diagonal [152, 153]. Different versions of the

Laplacian matrix, i.e. the symmetric normalized and the random walk normalized versions, have
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been used leading to different versions of the spectral clustering algorithm. In this study, we use

the symmetric version of the normalized Laplacian matrix defined as L � D�1{2pD�WqD�1{2

which yields more robust clustering solutions [136].

Since the normalized Laplacian matrix is a square, symmetric, and positive semi-definite ma-

trix, its eigenvectors and eigenvalues are described by the equation Lui � λui and the eigenvec-

tors, tu1, u2, ..., uN u are orthonormal and the eigenvalues {λ1, λ2, ..., λN} are positive and real.

Spectral clustering algorithm finds the spectrum of G through the eigendecomposition of its Lapla-

cian matrix and embeds the original vertices in G to a low dimensional spectral domain formed by

the graph spectrum. Typically, a subset of eigenvectors, tu1,u2, ...,uku where k   N , is extracted

and an optimization technique is iteratively applied to cluster centers within the data using algo-

rithms such as k-means, fuzzy k-means [154], generalized synchronization cluster analysis [137],

the Ng-Jordan-Weiss algorithm (NJW) [155], or power iteration clustering (PIC) [156]. This

transformation enhances the intrinsic relationship among the original vertices leading to improved

cluster identification in the new low dimensional space [136, 137, 152, 157].

An alternative to spectral clustering is to evaluate only one eigenvector for the purpose of bi-

partitioning, i.e. identifying a minimal cut of the graph. This eliminates the problem of searching

for the optimal set of eigenvectors. According to Holzrichter et. al. [158], the optimal minimal

cut of a graph is defined by the eigenvector, u2, associated with the second smallest non-zero

eigenvalue, λ2, of the Laplacian matrix. This eigenvector is referred to as the Fiedler vector, uF ,

and defines a set of two clusters tC1, C2u where

vi P

$'&'%
C1 if uF piq ¥ 0

C2 if uF piq   0.

(2.4)

The Fiedler partition can be iteratively applied to each successive partition in order to achieve a
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clustering with k ¡ 2. In this study, the partitioning of a graph using the Fiedler vector will be

referred to as FiedlerPartition(G), which partitions the nodes of graph G into two clusters, G1 and

G2 such thatG1YG2 � V . Partitioning the graph according to the Fiedler vector generates a com-

munity structure in which the intra-cluster nodal relationships are maximally ‘strong’. Repeating

this partitioning process to the subsequent sub clusters reveals a hierarchical configuration of the

network structure.

2.2.4 Consensus Clustering

In many clustering problems, it is common to apply different algorithms to the same data and

then use a consensus method to combine the results [159]. In this chapter, a similar framework

for obtaining a common community structure from multiple graphs is proposed. Three popular

consensus clustering methods are consensus averaging, majority voting and the hypergraph parti-

tioning algorithm (HPGA). The first approach averagesm adjacency matrices to obtain xW � r pwijs
where

pwij � 1

m

m̧

r�1

w
prq
ij . (2.5)

This approach is computationally efficient but loses the inter-subject variability.

The second commonly used approach for obtaining a common community structure across

multiple graphs is to identify the community structure of each individual graph and then combine

the information across the multiple community structures to identify a global community structure.

The combination of community structure across multiple graphs or clustering solutions has been

accomplished through different functions such as majority voting [160], mixture-model approach

[161], and disagreement minimization methods [142].
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Finally, HyperGraph-Partitioning Algorithm (HGPA) is used to extract common clustering

structure [18, 162]. HGPA treats each cluster across all base clusterings as a hyperedge within a

single global graph. The algorithm is a multilevel graph partitioning system which partitions this

graph in three steps: 1) compress the graph by collapsing hyper-edges, 2) partition the compressed

graph using a minimum cut objective function, and 3) decompress the partitions and repeat the

process. HGPA has a computational complexity of OpkNhq where h is the number of hyperedges.

However, its overall complexity is dependent upon the total complexity of the clustering algo-

rithms used to obtain the base clusterings. HGPA has the disadvantage of generating clusters of

approximately equal sizes, even though in real networks, equally sized clusters are unlikely.

2.2.5 Modularity

The most commonly used cluster quality measure, modularity [163], compares a community

structure to the expected community structure of a random graph such that there exists a high

number of edges within clusters and low number of edges between clusters. Modularity for a

weighted graph is defined as

Q �
1

2z

¸
ij

�
wij �

didj
2z

�
σij (2.6)

such that z is the sum of all edge weights in the graph and σij � 1 if vi and vj are in the same

cluster and 0 otherwise. Unfortunately, this definition of modularity does not always result in the

highest value for the true community structure [164] and can reveal a suboptimal structure due to

the simplistic random model computed through
didj
2z in the modularity equation [165].
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2.2.6 Cohen’s Kappa

One of the most commonly used measures to quantify the quality of an observed cluster with

respect to the true structure is Cohen’s Kappa measure. Cohen’s Kappa [166] is a measure of

agreement between two observers and is defined as

κ �
po � pe
1 � pe

, (2.7)

where po is the probability of observed agreement and pe is the probability of expected agreement.

Cohen’s Kappa measure can also be used to quantify the agreement between the ground truth

clustering map (A) and the clustering map (B) obtained from the clustering algorithm as in Table-

2.1. Ai,j is equal to 1 if nodes i and j are assigned to the same cluster and 0 otherwise. Similarly,

Bi,j is equal to 1 if nodes i and j are assigned to the same cluster and 0 otherwise. In Table-2.1,

a is the number of node pairs which are correctly identified as being in the same cluster, b is the

number of node pairs which are falsely identified as being in the same cluster, c is the number of

node pairs which are falsely identified as not being in the same cluster and d is the number of node

pairs which are correctly identified as not being in the same cluster. Based on this observation, p0

and pe can be computed as:

po �
a�d

a�b�c�d ,

pe �
f1�f2�g1�g2

pa�b�c�dq2
.

(2.8)

Standard error of kappa statistic is also known and is defined as [167]:

SEpκq �

d
pop1 � poq

pa� b� c� dqp1 � peq2
. (2.9)
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Table 2.1: Agreement table for the observers used for computing the kappa score

Observer 1
(Ground Truth)

Ai,j � 1 Ai,j � 0

Observer 2 Bi,j � 1 a b f2=a+b
(Measurement) Bi,j � 0 c d g2=c+d

f1=a+c g1=b+d

2.3 Information Theoretic Cluster Quality Measure

One problem with hierarchical clustering algorithms is how to determine the optimal number of

clusters. In this section, we introduce a new measure to quantify the quality of the resulting clusters

in the absence of ’ground truth’ information, i.e. knowledge about the actual cluster structure.

2.3.1 Inter and Intra Edge Distribution

By the definition of a cluster, the pairwise connections within a cluster must be stronger than the

inter-cluster connections. In this study, we propose measures that evaluate the quality of a particu-

lar clustering structure based on the distribution of the inter and intra-edge distributions across m

graphs. These distributions will be defined similar to probability mass functions (pmfs). Prior to

defining the pmfs of intra-cluster and inter-cluster edges, a function that maps the continuous edge

values to a discrete alphabet is defined as f : W
prq
i Ñ S

prq
i where W

prq
i � tw

prq
ij P r0, 1su refers

to the ith row of the rth adjacency matrix, Sprqi � ts
prq
ij P t1, 2, ..., Nuu, and r P t1, 2, ...,mu.

The elements of each row of the connectivity matrix across subjects are mapped to discrete integer

values between 1 and N to eliminate the variation of edge strengths across subjects and extract only

relational information about the pairwise edge strengths. We propose to use the rank function to do

this mapping such that the node pair with the largest edge weight is assigned a 1 and the weakest

node pair is assigned N .
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When a particular cluster set C � tc1, c2, ..., cku is identified, the probability mass function of

intra-cluster ranks for a particular cluster, ct, is defined as

P intract
pβq �

#
F intract

pβq°N
β�1 F

intra
ct

pβq

+
, (2.10)

where

F intract
pβq �

m̧

r�1

Ņ

i,j

δpsrij , βq | vi, vj P ct, (2.11)

t P t1, 2, . . . , ku, β P t1, 2, . . . , Nu, and

δpx, yq �

$'&'%
1 if x � y

0 otherwise.

This function computes the frequency with which node pairs with varying strengths of connectivity

are assigned to the same community.

Similarly, the probability mass function of inter-cluster ranks for cluster ct is defined as

P interct
pβq �

#
F interct

pβq°N
β�1 F

inter
ct

pβq

+
, (2.12)

where

F interct
pβq �

m̧

r�1

Ņ

i,j

δpsrij , βq | vi P ct; vj R ct. (2.13)

This function computes the frequency with which node pairs with varying strengths of connectivity

are assigned to different communities.
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2.3.2 Homogeneity and Completeness

The next step is to quantify homogeneity and completeness, two principal characteristics which

determine the quality of clustering. A homogeneous cluster contains only data points which belong

to the same class while a complete cluster contains all possible data points within the sample space

(Fig. 2.1).

(a) (b)

(c)

Figure 2.1: An illustration of variations in homogeneity and completeness in a group of objects
where the true number of communities is 3; a) High homogeneity and low completeness; b) High
completeness and low homogeneity; c) High homogeneity and completeness.

Similar measures such as F-measure [168] and V-measure [169], have been used in the

literature to quantify the quality of a cluster. Both measures, however, require a priori knowledge

of class labels. In most cases, this ‘ground truth’ is unknown and therefore alternative measures

of cluster accuracy are needed. In this study, we propose new homogeneity and completeness

measures which depend on the edges’ strength and we quantify the quality of a clustering structure

using the harmonic mean of the homogeneity and completeness measures similar to V-measure.

In this study, we use the observation that homogeneity is inversely related to the variance of
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edge ranks within a cluster. If a particular cluster is homogeneous, then we would expect the

pairwise connection strengths among the members of that cluster to be close to each other, thus

implying the ranks of the weights to have small variance. We propose to quantify this variation

through a measure of normalized entropy such that the lowest homogeneity score is obtained for

a cluster containing a uniform distribution of ranks or large variation among the edge weights and

the maximum homogeneity score is obtained for a cluster containing only one rank. Therefore, a

normalized entropy measure of the cluster’s intra-cluster rank distribution would be indicative of

homogeneity. However, as cluster size gets smaller the intra-cluster rank distribution will naturally

become more concentrated thus increasing the homogeneity. To account for this, we introduce

a normalization term in the definition of homogeneity as follows: Hct � αCt

�
1 �

HpPintract
q

log2N

�
where αCt �

|Ct|
N and this measure is always between 0 and 1.

Similarly, we define a metric using relative entropy between the inter-cluster rank and intra-

cluster rank distributions to quantify completeness. Rank distributions for inter-edges and intra-

edges are expected to be different from each other to maximize completeness. The similarity

between two distributions is commonly quantified using divergence measures. In this study, we

propose to use the Jensen-Shannon divergence measure [170] since it is symmetric and bounded.

With respect to completeness, a divergence measure approaching 1 is synonymous with increased

completeness. Completeness of a cluster is therefore defined as Cct � JSpP intract
, P interct

q where

JSpp, qq � 1
2

�°
i ppiqlog2

ppiq
0.5pppiq�qpiqq

�
°
i qpiqlog2

qpiq
0.5pppiq�qpiqq

�
. Average completeness, Ĉ �

1
k

°k
t�1 Cct , and average homogeneity, Ĥ � 1

k

°k
t�1 Hct , are computed across all clusters.

Similar to the balanced F-score, our quality measure U for the final clustering structure is

defined as the harmonic mean of the average completeness and average homogeneity as follows:
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U �
2

Ĉ�1 � Ĥ�1
. (2.14)

2.4 Fiedler Consensus Clustering Approach

Since the literature has consistently demonstrated that the Fiedler vector is highly effective in

partitioning graphs [171, 172], in this study, we use the Fiedler vector for performing consensus

clustering across multiple weighted graphs. The original connectivity matrices are bi-partitioned

into two clusters using the Fiedler partitioning method. This results in a cluster matrix for the rth

subject T r such that

T rpi, jq �

$'&'%
1 if nodes vi, vj are in the same cluster

0 otherwise

and r � t1, 2, ...,mu. In order to find the common community structure across multiple graphs,

we introduce a co-occurence matrix P where P pi, jq �
°m
r�1

Trpi,jq
m and P pi, jq P r0, 1s. P pi, jq

is the probability that a pair of nodes are members of the same cluster across multiple graphs.

The adjacency matrix reflects the strength of a direct relationship between a node pair, whereas P

reflects the likeliness that a pair of nodes are in the same cluster across all subjects.

The Laplacian matrix of P is computed and the Fiedler vector is found to form a bi-partition of

P into a community structure composed of clusters c1 and c�1. Since P represents the probability

that a node pair should be clustered together, the Fiedler partition of P represents the community

structure common to all graphs. The initial partition set, C � tc1, c�1u, contains 2 clusters but if

k ¡ 2 is desired, the process can be repeated by selecting a cluster in C to partition. In this case,

c1 or c�1 is selected based on the ζ values of each cluster. At each step of partitioning, weighted
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Algorithm 2.1 Fiedler Consensus Clustering Algorithm

1: Input: m N � N dimensional graphs, G � tG1, G2, ..., Gmu with vertices V � tv1, v2, .., vNu and
edges Er � twr

ij : vi, vj P V } such that Gr � pV,Erq and r � t1, 2, ...,mu.
2: Input: Number of clusters, k.
3: Output: k clusters C � tc1, c2, ..., cku where cj � V .
4: C � H
5: for t � 2 to k do
6: P 1 � 0|V|�|V|

7: for r � 1 to m do
8: submatrix Ĝr � Gr|Ĝr � pV,Erq
9: pV1, V2q � SubRoutine(Fiedler Partition(Ĝr))

10: P 1pi, jq � P 1pi, jq � T rpi, jq where T rpi, jq �

"
1 if nodes vi, vj P V1 or vi, vj P V2
0 otherwise

11: end for
12: P � P 1

m
13: pV1, V2q � SubRoutine(Fiedler Partition(P ))
14: C � C Y tV1, V2u.
15: if t � k then
16: score � 0t�1

17: for γ � 0 : 0.1 : 1 do
18: Λ � rζ1pγq|ζ2pγq|...|ζtpγqs
19: j � minqtΛpqqu and q P t1, 2, ..., tu
20: scorepjq � scorepjq � 1
21: end for
22: V � ci|i � minqtscorepqqu and q P t1, 2, ..., tu
23: Er � twr

ij : vi, vj P V }
24: C � Cztciu
25: end if
26: end for

sum of homogeneity and completeness is computed to select the cluster to be partitioned at the

next level.

ζCt � ĈCtγ � ĤCtp1 � γq (2.15)

where γ P r0, 1s. For each cluster, a set of ζ values are created by choosing a range of γ P

r0, 1s. The cluster whose ζ values are lower than others’ for a majority of γ values is selected for

partitioning.

Next, sub-matrices are extracted from the original connectivity matrices such that they only
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Algorithm 2.2 Fiedler Partition
1: Input: graph G � pV,Eq.
2: Output: Vertex sets V1 and V2.
3: Compute Normalized Laplacian Matrix, L, of G.
4: Compute |V | eigenvectors, u, and eigenvalues, λ, of L.
5: Order eigenvalues in ascending order: λ1 ¤ λ2 ¤ ... ¤ λ|V |.
6: uF � ui where i � minqtλqu|λq � 0.
7: Sort elements of uF and find uF piq which has maximum gap with ensuing element
8: for j � 1 to |V | do

9: vj P

"
V1 if uF pjq ¤ uF piq
V2 if uF pjq ¡ uF piq

10: end for

contain the nodes of the chosen cluster. These sub-matrices are used to derive the new sub co-

occurence matrix, Py, where y � 1 if cluster c1 was selected and y � �1 if cluster c�1 was

selected. The Fiedler partition will result in two new clusters, cy1 and cy�1. The final cluster set is

C � tc�y, c
y
1, c

y
�1u which is a concatenation of the two new clusters with the original cluster that

was not chosen for bi-partitioning. Algorithm 2.1 describes this process for obtaining community

structures for a given number of clusters.

2.5 Results

In this section, we will evaluate the effectiveness of the proposed Fiedler Consensus Clustering

Algorithm for revealing the hierarchical community structure across multiple graphs. The optimal

community structure will be identified by maximizing the quality measure U which is the harmonic

mean of the homogeneity Ĥ and the completeness scores Ĉ as defined in Section-2.3.

First, we will compare the traditional modularity measure versus the proposed quality measure

in determining the optimal number of clusters for the FCCA. Then, we will compare the FCCA to

other consensus clustering approaches including averaging, voting and HGPA for different types of
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network structure: varying inter-cluster strengths, outliers within a group and overlapping clusters.

Finally, the proposed clustering algorithm and the quality measure will be used to identify the

community structure which best describes the multivariate relationships across multiple subjects

from connectivity graphs obtained from EEG data. For the evaluation of computational complexity,

we note that all data analysis has been performed on a 2.4 GHz Intel Core i5 processor running

Windows 7.

2.5.1 Quality versus Modularity

Simulated networks consisting of 63 nodes and composed of 3 equal sized clusters were generated

100 times to evaluate the performance of the proposed quality measure, U , against modularity

metric for determining the true community structure. The weights of the intra-cluster edges were

selected from a truncated Gaussian distribution in r0, 1swith a mean of µintra � 0.6 and a standard

deviation of σintra � 0.1. Similarly, inter-cluster edge weights were selected from a truncated

Gaussian distribution with a mean of µinter � 0.1 and a standard deviation of σinter � 0.2.

To compare the robustness of the quality metric with the modularity metric for identifying

unequal size clusters, the number of nodes in the first cluster (c1) was gradually increased from 21

to 49 while the sizes of the other two clusters (c21 and c22) were decreased from 21 to 7. In order to

evaluate the performance of the proposed quality measure and the standard modularity metric, all

four possible partitionings of a 3 cluster network are considered, i.e. the three 2-cluster structures

(c1 and c21 as one single cluster vs. cluster c12, c1 and c22 as one single cluster vs. cluster c21,

and c21 and c22 as one single cluster vs. c1) and the true 3 cluster structure. As seen in Fig. 2.2,

the proposed quality metric always has its highest value for the true community structure, thus

successfully identifying the correct community structure for each test condition while modularity

tends to merge small clusters.
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Figure 2.2: Average of quality metric (U ) and modularity (Q) measure corresponding to defined
clustering structures in a 3 cluster network with respect to the ratio of the number of nodes in
cluster 1 to the number of nodes in the rest of the network over 100 trials.

2.5.2 Evaluation of FCCA for Varying Inter-cluster Strength

100 simulated networks consisting of 64 nodes and composed of 4 communities of equal size were

generated 100 times to evaluate the performance of FCCA for varying inter-cluster edge strength,

i.e. varying noise levels in the community structure. The weights of the intra-cluster edges were

selected from a truncated Gaussian distribution in r0, 1swith a mean of µintra � 0.8 and a standard

deviation of σintra � 0.1. The weights of the inter-cluster edges were selected from a truncated

Gaussian distribution in with a mean of µinter and a standard deviation of σinter � 0.2. In order

to evaluate the algorithms under different inter-cluster connectivity strengths, µinter was increased

gradually from 0.4 to 0.7.

Using the proposed Fiedler Consensus Algorithm, the Averaging method, the Voting method,

and HGPA, the networks were evaluated for 2 ¤ k ¤ 10 communities. The best community struc-

ture was selected using the proposed quality measure, U . The accuracy of the resulting structure

was quantified by Cohen’s Kappa statistic which computes the agreement with the true community

structure. Overall success was determined by computing the average Kappa value over 100 trials.
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As shown in Table-2.2, FCCA and averaging method are more robust than other algorithms for

varying inter-cluster edge strengths. These two algorithms accurately identified almost all clusters

in all cases for µinter ¤ 0.7 . Moreover, FCCA is computationally more efficient than voting and

HGPA approaches.

Table 2.2: Average Cohen’s Kappa and average standard error for identifying community structure
in simulated 4-community-networks with varying inter-cluster strength

Method
µinter

0.4 0.5 0.6 0.7

FCCA
κ

0.9992 1 1 0.9690
�1.4352 � 10�5 �0 �0 �0.0040

time 1.1106 1.2224 1.2709 1.4901
(sec.) �0.1415 �0.2651 �0.1516 �0.4153

Ave.
κ

1 1 1 0.9921
�0 �0 �0 �0.0014

time 0.1763 0.1991 0.2131 0.2100
(sec.) �0.0219 �0.0299 �0.0223 �0.0347

Voting
κ

0.9968 1 0.9905 0.8938
�1.9523 � 10�4 �0 �0.0011 �0.0073

time 9.1640 11.1266 14.3203 41.6633
(sec.) �1.2854 �1.0163 �2.1477 �4.2908

HGPA
κ

0.8385 0. 8576 0.9276 0.8101
�0.0092 �0.0080 �0.0050 �0.0107

time 1.6020 1.2207 1.2711 2.0018
(sec.) �0.3354 �0.1861 �0.1441 �0.4222

2.5.3 Robustness to Outlier Graphs

In a lot of real world settings, the community structure across a population may not always be the

same, i.e. there may be outliers in the group. In this subsection, we generate simulations to evalu-

ate the performance of the different clustering methods in the case of outlier graphs. 100 simulated

networks consisting of 64 nodes were generated 100 times using two different community struc-

tures. The majority of the networks had a 3-cluster structure where nodes 1 to 16 formed the first

cluster, nodes 17 to 48 formed the second cluster and the last 16 formed the third cluster. The ele-

ments of the connectivity matrices ranged between 0 and 1. The weights of the intra-cluster edges
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were selected from a truncated Gaussian distribution with a mean of µintra � 0.6 and a standard

deviation of σintra � 0.1. Similarly, inter-cluster edge weights were selected from a truncated

Gaussian distribution with a mean of µinter � 0.3 and a standard deviation of σinter � 0.2. Out-

lier networks were constructed to have 2 communities in which nodes 1 to 32 formed the first

cluster and nodes 33 to 64 formed the second cluster. The edge weights were selected from a

truncated Gaussian distribution with the intra-cluster edges having a mean of µintra � 0.8 and a

standard deviation of σintra � 0.1 while the inter-cluster edge weights had a mean of µinter � 0.1

and a standard deviation of σinter � 0.2. To evaluate the robustness of the algorithms to outliers,

the ratio of the outlier networks to the whole group was increased gradually from 15% to 30%.

Similar to the previous section, all networks were evaluated for 2 ¤ k ¤ 10 communities and

the best community structure was selected by choosing k which maximizes the quality measure U .

Accuracy of the different clustering algorithms was quantified by computing the average Kappa

value across 100 trials. As shown in Table 2.3, FCCA and the voting approach are more accurate

in identifying the true community structure in the case of outlier graphs. Although the voting

approach is more robust against the outliers, its high computational complexity makes the FCCA

a useful alternative.

2.5.4 Detecting Overlapping Communities

Communities in a network may not always be distinctly separable from each other and may have

an overlapping structure. In order to evaluate the performance of the different clustering algo-

rithms in the case of overlapping communities, 100 simulated networks consisting of 64 nodes and

composed of 4 equal size communities were generated 100 times. The weights of the intra-cluster

edges were selected from a truncated Gaussian distribution with a mean of µintra � 0.8 and a stan-

dard deviation of σintra � 0.1. Similarly, inter-cluster edge weights were selected from a truncated
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Table 2.3: Average Cohen’s Kappa and average standard error for identifying communities in a
group of networks with outliers

Method
Outlier Rate

15% 20% 25% 30%

FCCA
κ

1 1 1 0.7143
�0 �0 �0 �0.0118

time 0.9672 0.9168 0.9429 1.0095
(sec.) �0.1819 �0.1163 �0.1245 �0.1127

Ave.
κ

1 0.7143 0.7143 0.7143
�0 �0.0118 �0.0118 �0.0118

time 0.1716 0.1739 0.1771 0.1627
(sec.) �0.0313 �0.0254 �0.0281 �0.0206

Voting
κ

1 1 1 0.9304
�0 �0 �0 �0.0031

time 9.0646 8.9715 9.0036 10.4778
(sec.) �0.9299 �0.5380 �0.7468 �2.7145

HGPA
κ

0.5177 0.5164 0.4848 0.4554
�0.0149 �0.0150 0.0154 �0.0158

time 1.6271 1.5554 1.2809 1.2043
(sec.) �0.1875 �0.1626 �0.1719 �0.0924

Gaussian distribution with a mean of µinter � 0.1 and a standard deviation of σinter � 0.2. To

provide overlap between communities, a subset of the inter-cluster edges between each pair of

communities was selected from the same distribution as the intra-cluster edges. The number of

strong inter-cluster edges was increased gradually from 75 to 125.

As in previous simulations, all networks were evaluated for 2 ¤ k ¤ 10 communities and

the optimal k was selected based on the maximizing the quality measure. Overall success was

determined by computing the average Kappa value over 100 trials. As seen in Table 2.4, Fiedler

Consensus Clustering Algorithm is more robust to overlapping communities in the network com-

pared to the other methods.

2.5.5 Community Structure of the Brain During Error-Related Negativity

The time-varying phase synchrony measure is applied to a set of EEG data containing the error-

related negativity (ERN) [173, 174]. The ERN is an event-related potential that occurs following
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Table 2.4: Average Cohen’s Kappa and average standard error for identifying overlapping clusters
in simulated networks

Method
# of Inter-Cluster Edges

75 100 125

FCCA
κ

0.9964 0.9887 0.9539
�3.9437 � 10�4 �0.0013 �0.0048

time 1.3631 1.2449 2.5533
(sec.) �0.3329 �0.2767 �1.0191

Ave.
κ

0.9754 0.9424 0.8825
�0.0025 �0.0052 �0.0080

time 0.2186 0.2214 0.3817
(sec.) �0.0560 �0.0577 �0.1246

Voting
κ

0.9938 0.9694 0.9444
�6.1236 � 10�4 �0.0022 �0.0047

time 11.8611 15.0078 26.5411
(sec.) �1.9694 �2.8988 �6.1363

HGPA
κ

0.8682 0.8374 0.7732
�0.0074 �0.0094 �0.0117

time 1.5070 1.5480 1.7893
(sec.) �0.2811 �0.2081 �0.2913

performance errors in a speeded reaction time task. Previously reported EEG data [175] from

63-channels (10/20 system) were utilized. This included 91 undergraduate students (34 male)

from the University of Minnesota (one of the original 92 participants were dropped due to artifacts

rendering computation of the time-frequency phase synchrony (TFPS) values problematic). Full

methodological details of the recording are available in the previous report [175]. The task was

a common speeded-response letter (H/S) flanker, where error and correct response-locked trials

from each subject were utilized. A random subset of correct trials was selected, to equate the

number of error relative to correct trials for each participant. The EEG data are pre-processed

by the spherical spline current source density (CSD) waveforms to sharpen event-related potential

(ERP) scalp topographies and reduce volume conduction [176]. The CSD has fewer assumptions

than many inverse transforms, attenuates volume conduction, and represents independent sources

near the cortical surface [177]. Our previous work indicates that there is increased phase synchrony

associated with ERN for the theta frequency band (4-7 Hz) and ERN time window (25-75 ms) for
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Error responses compared to Correct responses [148]. For each subject and response type, the

pairwise average phase locking value within the ERN time window and theta frequency band was

computed using Equation (4) across trials yielding a 63 � 63 connectivity matrix indicating the

average synchrony between brain regions.

First, the proposed Fiedler consensus clustering approach, averaging and voting methods were

applied to the set of Error and Correct data in order to identify an optimal community structure.

Hierarchical decomposition of the networks were evaluated for 2   k   15 and the optimum

k was selected by maximizing the quality metric U . The clustering results can be seen in Figs.

2.3 (FCCA) and 2.4 (averaging and voting methods, Figs. 4a and 4b, respectively). For FCCA,

Error responses were best represented by a structure composed of 10 communities (Fig. 2.3a), and

Correct responses with 7 communities (Fig. 2.3b), while Averaging and Voting methods identify 9

communities for Error responses and 5 communities for Correct responses (Fig. 2.4). As it can be

seen, the averaging method yields two large clusters for both error and correct conditions unable to

discriminate between error and correct responses and resolve the different subnetworks. Similarly,

the voting method yields a large cluster for both error and correct responses with a couple of small

frontal and lateral subnetworks. The proposed method, on the other hand, provides a more detailed

view of the network separating the medial and lateral clusters from each other.

The obtained clusters from the three consensus clustering approaches are evaluated on each

subject’s network to quantify the agreement between the common cluster structure and each sub-

ject’s connectivity graph. This agreement is quantified through the quality metric, U . As seen in

Table 2.5, the community structure obtained by FCCA is more appropriate for each subject and

yields a statistically significant higher score for both Error and Correct conditions pp   0.025q.

From Fig. 2.3, we can see that the clusters identified by FCCA are more segregated and differ-

entiated for Errors relative to Correct responses. For example, in the Correct condition one large
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Table 2.5: Mean and Standard Deviation of quality metric (U ) computed to quantify the consis-
tency between the group’s community structure and individual subjects’ community structure for
each subject, each response type and the three consensus clustering methods

Method

Averaging Voting FCCA

U
Error 0.0483 � 0.0031 0.0524 � 0.0040 0.0567 � 0.0054

Correct 0.0454 � 0.0050 0.0426 � 0.0054 0.0504 � 0.0042

Table 2.6: Computation time for community structures obtained by the FCCA, Averaging and
Voting methods

Method

Averaging Voting FCCA
time Error 2.7104 198.1623 11.8576
(sec.) Correct 2.3326 212.5764 13.7596

cluster (1) accounts for the majority of prefrontal and motor regions, with a small cluster (5) con-

sistent with separable activity in left-PFC regions. For Errors, on the other hand, separable clusters

are apparent relative to left (1) and right (2) motor areas, and left (4, 8) and right (5) lateral-PFC

regions (consistent with a priori hypotheses). Interestingly, one cluster in the Error condition (6)

and one in the Correct (4) center on medial-frontal sites including FCz and Cz (6), consistent with

the time-domain ERN and correct-related negativity (CRN) component topographies, respectively.

Activity in parietal-occipital regions was characterized with similar clusters for both Correct (2)

and Error conditions (3, 7).

An overall statistical assessment of the inter-modular relationships revealed that the grand mean

was significantly greater for the Error relative to Correct conditions ptp90q � 2.16, p   .033q,

while the same comparison for intra-modular pairs was not ptp90q   .5q. This provides support

for the inference of increased functional connectivity related to error processing relative to correct.

Next, to provide detailed information about these relationships, average intra-modular and inter-

modular synchronies were computed for Correct and Error communities (presented in Fig. 2.5).

These maps illustrate the amount of integration between different clusters. To provide statistical
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(a) Error

(b) Correct

Figure 2.3: Cluster structures obtained by FCCA a) Error (k = 10); b) Correct (k = 7).

assessment of the inter-modular relationships within the Error and Correct conditions, t-tests were

performed for each inter-modular bivariate pair relative to the grand mean of the inter-modular

pairs. Resulting t-values and Bonferroni corrected p-values are presented in Figs. 3 b and c,

respectively. While it was not appropriate to directly compare Error-Correct differences between

individual clusters (as they were derived from separate cluster analyses), several observations about

the individual clusters within Error or Correct conditions provide some interesting information at

this level of analysis. First, motor-related clusters in the Error condition (1, 2) were significantly

more related to each other than the across cluster average. Next, occipital clusters in both the

Error (3, 7) and Correct (2) conditions evidenced decreases relative to the mean, suggesting a
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Figure 2.4: Cluster structures obtained by a) Averaging, Error (k = 9) and Correct (k = 5); b)
Voting, Error (k = 9) and Correct (k = 5).

decrease in connectivity with visual processing areas during the ERN and CRN. For lateral-PFC

regions, the smaller left-laterized clusters (8 and 5, respectively for error and correct conditions)

were significantly associated with significantly increased connectivity with prefrontal areas and

decreased connectivity with parietal occipital areas. Another a priori effect of interest was that

both Error and Correct medial-frontal clusters (6 and 4, respectively) showed significant increases

with left lateral-PFC clusters (4 and 5, respectively).

Fig. 2.6 illustrates the hierarchical structure obtained from FCCA for both response types. For
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the error response, the initial partition yields one large frontal and one parietal cluster. Further

decomposition provides the detailed construction of the frontal cluster. Similarly, for the correct

response, the initial partition yields one frontal and one parietal partition with the subsequent

partitions decomposing the frontal cluster into smaller sub-networks.

2.6 Conclusions

In this chapter, we proposed a new graph theoretic community detection approach to provide a

detailed view of the organizational structure underlying the functional brain connectivity network

through EEG recordings across multiple subjects. The main contributions include the hierarchi-

cal implementation of Fiedler vector based graph clustering, the introduction of an accurate and

computationally efficient consensus clustering approach, the introduction of a new information-

theoretic cluster quality measure, U , and a detailed study of the brain network involved in error

processing.

First, the well-known Fiedler vector based graph bi-partitioning method has been implemented

to obtain a hierarchical decomposition of the functional connectivity networks. This hierarchical

implementation is supported by previous work that suggests a hierarchical structure for functional

connectivity networks [138–140]. Second, the proposed partitioning approach is modified to ac-

count for multiple subjects by first obtaining an initial bipartition of each subject’s connectivity

network and then by iteratively partitioning the co-occurrence matrix across subjects. As shown

through simulations, FCCA is computationally more efficient than voting and is more accurate than

averaging in the case of outliers and overlapping community structures. Moreover, the application

of FCCA to EEG data produced clusters consistent with published work [178,179], whereas voting

and averaging methods failed to partition the frontal cluster into physiologically meaningful lateral
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and medial frontal communities. Finally, a new cluster quality measure U based on optimizing

the tradeoff between maximizing the divergence between clusters and minimizing the entropy of

individual clusters was introduced to select the optimal number of clusters. This measure provides

an alternative to the standard modularity measure which is known to fail for unequal cluster sizes

and weighted networks [180].

Future work will consider exploring single [181] and distributed dipole [182] source solutions

to the inverse problem for extending this approach to the source domain.
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Figure 2.5: (a) Average phase synchrony between clusters for Error response (k = 10), and Correct
response (k = 7). (b) t-values for inter-modular bivariate pair relative to the grand mean of the
inter-modular pairs of ERN and CRN conditions and (c) corresponding p-values.
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(a) (b)

Figure 2.6: Hierarchical structure for obtained by FCCA a) Error; b) Correct responses.
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Chapter 3

Recursive Robust Low-rank + Sparse

Structure Learning for Dynamic Tensors

3.1 Introduction

Advanced functional imaging techniques such as EEG and functional magnetic resonance imaging

(fMRI) have enabled the study of the neuronal mechanisms underlying cognition in detail. These

studies have revealed that transient synchronization, referred to as functional connectivity (FC),

between spatially distributed neural populations is responsible for human cognition, perception

and emotion [114,183,184]. Recently, tools from graph theory have been employed to analyze the

functional connectivity of the brain by associating nodes with distinct brain regions and edges with

pairwise interactions between them [105,106]. Most of the current work on functional connectivity

network analysis focuses on static networks where the networks correspond to average activity

over a time and frequency window of interest. However, recent studies have shown that functional

connectivity networks change dynamically in short time scales and exhibit task-related patterns

[107–111]. This continuous formation and destruction of functional connectivity also controls the

emergence of a unified neural process in cognition, perception and memory [111, 185, 186].

To better understand the brain dynamics, early studies focused on extracting graph theoretic
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measures across time for a time-varying analysis of FC graphs [185, 187, 188]. For example, Va-

lencia et al. [189] showed how the small-world structure of FC networks evolve during a visual

stimulus. Similarly, Fallani et al. [190] presented a graph theoretical approach for FC networks to

identify persistent edges during a motor task. Recently, dynamic FC network (dFCN) tracking ap-

proaches have been combined with network state estimation techniques. Allen et al. [191] assume

that the FC network at each time point is at a distinct network state where the network states are

determined through k-means clustering of dFCNs across time and subjects from resting state fMRI

data. Similarly, Dimitriadis et al. [192] introduced FC microstates inspired by the EEG microstate

literature [193]. In [194], the network states are obtained through clustering and Markov modelling

to identify both FC-states and the transitions between them. Similarly in [195], the network states

are identified by evolutionary clustering applied to FC edge timeseries. An alternative approach

to dFCN analysis assumes that network states are made up of multiple building blocks. Leonardi

et al. [196] propose a principal component analysis (PCA) based approach to reveal the intrinsic

FC patterns named as eigenconnectivities, and describe the FC matrices as weighted sum of eigen-

connectivities. Similarly, different PCA based approaches have been used to identify dynamics of

both resting-state [197] and task-based EEG [198]. More recently, [199] compared clustering and

SVD based approaches to identify task related and resting state FC dynamics and showed that FC

patterns obtained from an SVD based approach better represent the task-based dynamics, while

patterns obtained from a clustering based approach are more suitable to identify resting state FC

dynamics.

In addition to approaches focused on unraveling the network states from dFCNs, recently in-

troduced methods have also focused on detection of change points where the network structure

considerably changes. Cribben et al. [200] presented a data-driven technique which first detects

the temporal change points by a greedy partitioning scheme and then estimates a connectivity
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graph for FC patterns in each temporal partition. Zhang et al. [201], presented dynamic Bayesian

variable partition model which simultaneously identifies the state transitions and learns significant

FC patterns in each state. Similarly, Ou et al. [202] proposed a Bayesian model to detect change

points from functional brain interactions and evaluated the network structure using nonnegative

matrix factorization within each temporal segment. However, all of these approaches make use

of time-series data and are not based on the dFCNs constructed directly from data. Moreover,

these approaches assume a multivariate Gaussian model for the underlying time series data and

require individual analysis of each subject before inferring the group’s network structure. Finally,

these methods are computationally expensive as they rely either on greedy search or probabilistic

metrics.

In this chapter, we propose a tensor based representation of dFCNs for tracking and summa-

rizing the functional connectivity across time and subjects from task-based EEG data. First, we

introduce a tensor subspace analysis method for robust low-rank + sparse structure recovery. This

is motivated by the fact that FCNs are known to have a modular structure which translates to a

low-rank connectivity matrix [151]. In the case of dFCNs, these low-rank structures can be as-

sumed to change slowly in time, similar to EEG microstates [193], which can be described as a

slowly changing subspace. Conventional subspace analysis methods such as PCA and SVD can-

not deal with higher order data and existing tensor decomposition methods such as higher-order

SVD (HoSVD) and parallel factor analysis (PARAFAC) are not robust to sparse outliers or noise

in the data [44, 73, 203, 204]. The proposed recursive framework separates the low-rank part of

the data from sparse noise components by identifying change points and updating the estimates

of low-rank subspaces. Identified change points corresponding to the subspace change along the

connectivity mode of the tensor are used to define time intervals of interest. The low-rank ten-

sor within each time interval is then summarized through a recently introduced multiple network
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clustering approach known as Fiedler Consensus Clustering Approach (FCCA) [205]. Finally, the

proposed framework is applied to dFCNs constructed from EEG data collected during a study of

error-related negativity.

The proposed framework offers three major contributions to both the literature in online tensor

subspace tracking and dFCN analysis. First, unlike most of the current work which focuses on the

dynamics of resting state fMRI networks, we focus on the dynamics of task related networks from

EEG data. As EEG data has high temporal resolution and the data considered in this chapter is

response locked, determining the actual time points where significant changes to network structure

occurs is highly relevant. The proposed framework offers a way to determine time intervals during

which the FCN has a common quasi-stationary pattern across time and subjects, i.e. slowly chang-

ing subspace structure similar to microstates [193]. Second, most of the current work reduces

the high dimensionality of the dFCNs by vectorizing the connectivity matrices into long vectors

before identifying the network states. This approach does not preserve the topological structure

of the network. In the proposed work, we address this problem by keeping the network structure

of FCNs intact by using tensor representations. Through tensor representation, we can capture the

variability common to all subjects across time. Finally, the proposed low-rank plus sparse structure

learning algorithm for tensors offers a novel way of recovering a low-rank subspace estimate along

each mode of the data where the rank is defined through the Tucker rank. This rank definition is

directly related to the modular structure of FCNs . The proposed approach separates the low-rank

part of the data from sparse noise components along time and then summarizes the network within

each time interval through clustering the extracted low-rank networks within the time interval. This

yields better structure information as it is equivalent to denoising the networks.

47



3.2 Background

3.2.1 Robust Principal Component Analysis

High dimensional data mostly lies in a lower dimensional subspace and principal component anal-

ysis (PCA) is the most widely used technique to identify this lower dimensional subspace. Re-

cently, PCA has been used for identifying network states from dynamic functional connectivity

networks [196, 198]. However, it is known that PCA suffers from non-Gaussian corruptions and

may find a completely wrong principal subspace in the presence of even a few outliers. These

drawbacks have forced researchers to develop more robust subspace estimation techniques which

is a significantly more difficult problem than standard PCA [206, 207].

Since the recent work by Candes et al. and Chandrasekharan et al. [208, 209], the general

problem of separating a sparse matrix and a low-rank matrix from their sum has received a lot of

attention. The final goal usually is to either find the column span of the low-rank matrix or the

support of the sparse one. This is now commonly referred to as the ”low-rank + sparse recovery”

problem. There has been a large amount of recent work on batch methods for low-rank + sparse

recovery and its various extensions including Principal Component Pursuit, Outlier Pursuit and

Low-Leverage Decomposition [49–62, 209].

One of the well-known robust PCA methods is principal component pursuit (PCP) which as-

sumes that the data matrix M has a low-rank part L and a sparse noise or outlier S as [208]:

M � L� S. (3.1)

It was shown that L can be efficiently estimated by solving the following optimization problem:
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min ‖ L ‖� �λ ‖ S ‖1

s.t. L� S �M,

(3.2)

where λ is the regularization parameter and ‖ L ‖��
°r
i�1 σipLq denotes the nuclear norm where

σi’s are the first r singular values of the matrix L. This problem has been solved by using convex

optimization approaches, i.e. augmented Lagrange multiplier algorithm [208], accelerated proxi-

mal gradient approach [210].

In order to reduce the computational complexity and to achieve online subspace tracking, var-

ious approaches have also been proposed to solve the RPCA problem, i.e. GRASTA, PETRELS

and REPROCS [63,66,67,70,204,211–214]. These approaches first identify the subspace that the

low rank data lies in, then recovers incoming low-rank measurement vectors from missing entries

by considering this subspace information.

A recently introduced algorithm REPROCS recursively separates the low-rank part from sparse

noise as follows. Let Mt P Rn�1 be a time-series of measurement vectors written as Mt �

Lt � St where Lt is the low-rank part which lies in a subspace spanned by Pt and St is the

sparse noise vector. Let P̂t be an accurate estimate of the r-dimensional basis Pt at time t and

P̂t,K be the orthogonal complement of P̂t. Let αt :� P̂1
tLt be the projection of Lt onto P̂t

and βt :� pP̂t,Kq
1Lt be a projection of Lt onto P̂t,K. Then, Mt can be rewritten as Mt �

P̂tαt� P̂t,Kβt�St. REPROCS first projects the measurement vector onto P̂t,K to approximately

nullify the low-rank part Lt. As yt :� pP̂1
t,KqMt, where yt can be rewritten as yt � pP̂1

t,KqSt�βt,

and the dimension of the projected data vector reduces to n � r. Since projecting Mt onto P̂1
t,K

nullifies the contribution of Lt, βt can be interpreted as small noise. Therefore, solving for n-

dimensional St from pn� rq-dimensional yt becomes a traditional sparse recovery problem. Once

Ŝt is recovered, Lt can be estimated as L̂t � Mt � Ŝt. Performance of this algorithm highly
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depends on the correctness of the estimated low-rank subspace and the slowly changing subspace

assumption [67, 204, 213, 214]. However, this method is limited to vector type measurements, and

cannot be applied directly to higher order datasets such as tensors. In this chapter, we will present

an extension of REPROCS to tensor type data.

Recently, tensor-based approaches have been proposed to track dynamic tensor subspaces such

as dynamic tensor analysis, streaming tensor analysis and window based tensor analysis [71, 72].

However, these approaches provide computationally efficient frameworks for analysis of streaming

datasets by recursively updating subspace information and do not address the robustness of the sub-

space estimates. Goldfarb and Qin extended robust PCA to tensors (HoRPCA) by solving low-rank

+ sparse recovery problem for general higher order tensors [73]. However, this method is highly

computationally expensive and does not update the subspaces online, i.e. would not be useful for

tracking subspace changes across time. Li et al. [74] presented a robust subspace learning algo-

rithm (RTSL) that incrementally updates the tensor subspace. Moreover, Nion et al. [75] proposed

two adaptive approaches to track PARAFAC decompostion of 3-way tensors. These approaches

suggest to update the PARAFAC decomposition at every time point based on simultaneous diago-

nalization or minimization of weighted least squares criterion. More recently, Mardani et al. [76]

proposed an online subspace learning method based on nuclear norm minimization and extended

this approach for matrices and higher order datasets. Extension of this algorithm to tensors takes

advantage of PARAFAC model to minimize tensor rank and considers temporal information as

one of the tensor modes. Similar to [76], OLSTEC proposed in [77] also tracks the subspace of

partially observed higher-order data using PARAFAC decomposition.
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3.2.2 Tensor Algebra & Tensor Decompositions

An order N tensor is denoted as X P RI1�I2�...�IN where xi1, i2,... iN corresponds to the

pi1, i2, ..., iN qth element of the tensor X . Vectors obtained by fixing all indices of the tensor

except the one that corresponds to nth mode are called mode-n fibers.

Mode-n product The mode-n product of a tensor X P RI1�...In�...�IN and a matrix U P RJ�In

is denoted as Y � X �n U � pYqi1,i2,...,in�1,j,in�1,...,iN
�
°In
in�1 xi1,...,in,...,iN uj,in and is of

size I1 � ...� In�1 � J � In�1 � ...� IN .

Tensor matricization Process of reordering the elements of the tensor into a matrix is known as

matricization or unfolding. The mode-n matricization of tensor Y P RI1�...In�...�IN is denoted

as Ypnq P RIn�
±
iPt1,...,Nu{tnu Ii and is obtained by arranging mode-n fibers to be the columns

of the resulting matrix. Unfolding the tensor Y � X �1 U1 �2 U2... �N UN along mode-n is

equivalent to Ypnq � UnXpnqpUNb...Un�1bUn�1...bU1q
J, whereb is the matrix Kronecker

product.

The n-Rank Let X P RI1�I2�...�IN be an N-way tensor, the n-rank of X is the collection of rank

of mode matrices Xpnq and is denoted as:

ranknpX q �
!
rankpXp1qq, rankpXp2qq, ..., pXpnqq

)
, (3.3)

where n � 1, 2, ..., N .

Tucker decomposition Tucker decomposition is a form of higher order SVD. Any tensor X P

RI1�I2�...�IN can be decomposed as mode products of a core tensor S P RI1�I2�...�IN and N
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mode matrices Upnq P RIn�In [215] [35].

X � S �1 Up1q �2 Up2q...�N UpNq,

X �
°I1
i1�1 ...

°IN
iN�1 si1,i2,...,iN ci1pUp1qq � ... � ciN pUpNqq,

(3.4)

where the matrix Upnq contains the left singular vectors of Xpnq and cnp�q is nth column vector

and S is obtained by S � X �1 U
J
p1q

�2 U
J
p2q
...�N UJ

pNq
.

3.2.3 Time-Varying Measure of Phase Synchrony

In this chapter, pairwise functional connectivity will be quantified using a recently introduced time-

frequency phase estimation method based on Reduced Interference Rihaczek distribution (RID-

Rihaczek) [148,149]. Phase synchronization within different frequency bands across the brain has

been shown to be a plausible mechanism explaining neuronal integration [114, 144].

Reduced Interference Rihaczek Distribution (RID-Rihaczek) is given by:

Cpt, ωq �

¼
exp

�
�pθτq2

σ

�
exp

�
j
θτ

2



Apθ, τqe�jpθt�τωqdτdθ, (3.5)

where expp�pθτq2{σq is the Choi-Williams kernel used to filter out the cross-terms, Apθ, τq �³
xpu� τ

2 qx
�pu� τ

2 qe
jθudu is the ambiguity function of the signal xptq and exppjθτ{2q is the kernel

corresponding to the Rihaczek distribution [150]. The phase difference between two signals, xi

and xj , based on this complex distribution is computed as

Φijpt, ωq � arg

�
Cipt, ωqC

�
j pt, ωq

|Cipt, ωq||Cjpt, ωq|

�
, (3.6)
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where Cipt, ωq and Cjpt, ωq refer to the complex energy distributions of the two signals xiptq

and xjptq respectively. A synchrony measure quantifying the intertrial variability of the phase

differences, phase locking value (PLV), is defined as

PLVi,jpt, ωq �
1

κ

����� κ̧
k�1

exppjΦkijpt, ωqq

����� , (3.7)

where κ is the number of trials and Φkijpt, ωq is the time-varying phase estimate between two

signals recorded at electrodes i and j for the kth trial. If the phase difference varies little across the

trials, PLV is close to 1. Compared to the existing synchrony measures, RID-Rihaczek based phase

synchrony measure is more robust to noise, and has uniformly high time-frequency resolution with

less bias [148].

In this chapter, we construct the functional connectivity matrices at each time point and for

each subject as:

Gi,jptq �
1

ωb � ωa

ωb̧

ω�ωa

PLVi,jpt, ωq, (3.8)

where the entries of the connectivity networks are computed as the average synchrony between

pairs of nodes at time t averaged over a frequency band of interest which is the theta band. Once

the individual connectivity matrices are constructed, a three-way tensor Xt P RN�N�S is formed

at each time point across all subjects as:

Xtpi, j, sq � Gsi,jptq (3.9)

where i, j P t1, 2, .., Nu correspond to the nodes or brain regions in the network and s P

t1, 2, .., Su is the subject.
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3.2.4 Consensus Clustering and Fiedler Consensus Clustering Approach

In neuroscience problems, it is desirable to find a common network structure across subjects per-

forming the same task or in the same population [216, 217]. Recently, we have introduced Fiedler

Consensus Clustering Algorithm (FCCA) to address this issue to obtain a common community

structure across multiple weighted graphs, where the graphs correspond to individual functional

connectivity networks discussed in Section 3.2.3. [205]. One of the most common ways to partition

a graph is spectral clustering. Spectral clustering generally uses the eigenvectors of the Laplacian

matrix computed as L � D � A, where A is the adjacency matrix of the graph and D is the

degree matrix containing degrees of nodes along the diagonal with Dpi, iq �
°N
j�1, j�iApi, jq.

The eigenvector corresponding to the second smallest non-zero eigenvalue of the Laplacian ma-

trix provides the optimal minimal cut of a graph and this eigenvector is referred to as the Fiedler

vector [158].

In FCCA, the original connectivity matrices are bi-partitioned into two clusters using the

Fiedler partitioning method. This results in a cluster matrix for the rth network Tr such that

Trpi, jq �

$'&'%
1 if nodes vi, vj are in the same cluster

0 otherwise
(3.10)

and r � t1, 2, ...,mu where m is the number of networks. In order to find the common commu-

nity structure across multiple graphs, we introduce a co-occurence matrix W where W pi, jq �°m
r�1

Trpi,jq
m and W pi, jq P r0, 1s. W pi, jq is the probability that a pair of nodes are members

of the same cluster across multiple graphs. The adjacency matrix reflects the strength of a direct

relationship between a node pair, whereas W reflects the likeliness that a pair of nodes are in the

same cluster across all subjects.
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The Laplacian matrix of W is computed and the Fiedler vector is found to form a bi-partition

of W into a community structure composed of clusters c1 and c�1. Since W represents the

probability that a node pair should be clustered together, the Fiedler partition of W represents

the community structure common to all graphs. The initial partition set, C � tc1, c�1u, contains 2

clusters but if k ¡ 2 is desired, the process can be repeated by selecting a cluster in C to partition.

In this case, c1 or c�1 is selected based on the quality score of each cluster (see [205] for more

details on the particular quality score used in FCCA).

Next, sub-matrices are extracted from the original connectivity matrices such that they only

contain the nodes of the chosen cluster. These sub-matrices are used to derive the new sub co-

occurence matrix, Wy, where y � 1 if cluster c1 was selected and y � �1 if cluster c�1 was

selected. The Fiedler partitioning is performed on the selected cluster to obtain two new clusters,

c
y
1 and cy�1. The final cluster set C � tc�y, c

y
1, c

y
�1u is a concatenation of the two new clusters

with the original cluster that was not chosen for bi-partitioning. This method can be iterated until

an optimal quality score or a desired number of clusters is achieved.

3.3 Higher-order Recursive Low-Rank + Sparse Structure Learn-

ing (Ho-RLSL)

3.3.1 Problem Statement

In this chapter, we will represent dynamic functional connectivity networks across subjects as a

three-way dynamic tensor Mt P RN1�N2�N3 . We will assume that this tensor has a low-rank

structure Lt with rankpLpiqt q ! minpNi,
±3
k�1,k�iNkq along the connectivity and subject modes
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corresponding to the modular network structure plus some sparse outlier connections St as:

Mt � Lt � St. (3.11)

Our goal is to separate the low-rank tensor Lt from its noisy versionMt. This goal leads to the

following optimization problem where the Tucker rank of Lt is minimized while simultaneously

minimizing the l1-norm of the noise part, St [73]:

minLt, St ‖ Lt ‖� �λ ‖ St ‖1

s.t. Lt � St �Mt,

(3.12)

where ‖ Lt ‖� is the nuclear norm of the low-rank tensor.

Since minimizing the nuclear norm is an NP hard problem, HoRPCA presented in [73] replaces

it by its convex surrogate which is the sum of the nuclear norms of the mode-i unfoldings:
°3
i�1 ‖

L
piq
t ‖�. One way to solve this optimization problem and obtain the low-rank and sparse parts of

Mt is to use HoRPCA presented in [31]. However, there are two main drawbacks of applying

HoRPCA for streaming or time-varying tensor data. First, it is very time consuming to compute

HoRPCA in batch mode since all of the high dimensional data needs to be stored and processed.

Second, HoRPCA yields different low-rank subspace information at each time point and subspace

tracking as desired in this chapter requires additional metrics to compare the subspaces across

time. To improve the computation efficiency and to better capture the evolving dynamics of the

data, we propose to adapt and extend the projection based subspace update approach outlined in

REPROCS. Thus, the optimization problem in equation (3.12) is solved in two steps. First, instead

of determining the low-rank subspace at each time point, we propose to update the subspace across

time by minimizing the Tucker norm, or the nuclear norm of each unfolding. As [208] has shown,
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the minimizer of the nuclear norm can be obtained through singular value thresholding (SVT). As

Algorithm 1 will show, we will use this approach to determine the low-rank subspace. In step 2, we

project the observed tensor,Mt, to a subspace orthogonal to the estimated low-rank subspace and

transform equation (3.11) to a sparse recovery in noise problem as will be illustrated in equations

(3.14) and (3.15) to obtain St.

3.3.2 Algorithm Description

Suppose that we have a sequence of training tensors defined asMtrain which do not contain any

sparse information and are used for the initial estimate of the subspace in which each mode of Lt

lies in. In the case of dynamic FCNs constructed from task-based EEG, this may correspond to the

pre-stimulus activity. Mtrain P RN1�N2�N3�ttrain can be considered as a 4-way tensor where

the time information constitutes the 4th mode and its full Tucker decomposition is

Mtrain � C �1 P
p1q
0 �2 P

p2q
0 �3 P

p3q
0 �4 P

p4q
0 (3.13)

where Pp1q
0 , Pp2q

0 , Pp3q
0 and P

p4q
0 are the basis matrices along each mode with P

piq
0 P RNi�Ni . Let

P̂
piq
0 s be the truncated version of Ppiq

0 obtained by keeping the columns with the singular values

greater than σmin. P̂piq
0 P RNi�r

piq
0 s where i P t1, 2, 3u give the initial subspace information for

Lt and rpiq0 is the rank of P̂piq
0 . The goal is to estimate Lt and St for each t ¡ ttrain by recursively

updating its corresponding basis Ppiq
t s. TheLt’s are assumed to satisfy a slowly changing low-rank

subspace model which will be detailed in section 3.3.3.

Let Pt be the set of projection matrices which form the basis for the subspaces in which each

mode of Lt lies in Pt � tP
p1q
t ,P

p2q
t ,P

p3q
t u. Assume Pt has been accurately predicted using past

estimates of Lt such that the projection of the new basis at time t to the orthogonal complement
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of the past estimates
�������I� P̂

piq
t�1pP̂

piq
t�1q

J
	
P
piq
t

������
2

is small. Then Mt is projected to the space

orthogonal to P̂
piq
t�1s defined through the projection operators φφφpiqt � I � P̂

piq
t�1pP̂

piq
t�1q

J to obtain

Yt as Yt �Mt �1 φφφ
p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t , which can be rewritten as:

Yt � pLt � Stq �1 φφφ
p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t ,

Yt � βt � St �1 φφφ
p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t ,

(3.14)

where βt � Lt �1 φφφ
p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t . Since ‖ φφφpiqt P

piq
t ‖2 is small, the projection of Lt to φφφpiqt s

will yield small ‖ βt ‖F (see Appendix). Notice that, although the projection matrices φφφpiqt ’s are of

size Ni�Ni, they have rank Ni�rankpP̂
piq
t q. Therefore, obtaining St from Yt can be represented

as sparse recovery problem in small noise. Since P̂piq
t ’s are dense and restricted isometry constants

(RIC) of measurement matrices (φφφpiqt ) are small [214], we can accurately recover St from Yt by

solving following problem:

Ŝt � argmin ‖ St ‖1,

s.t. ‖ Yt � St �1 φφφ
p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t ‖F¤ ε.

(3.15)

To recover St from Yt, we apply serial recovery procedure for compressed tensors, known

as generalized tensor compressive sensing - serial (GTCS-S) presented in [218]. This algorithm

repeatedly unfolds the compressed tensor along one of the modes and applies l1 optimization to

recover its columns. Once Ŝt is recovered, Lt can be estimated as L̂t �Mt � Ŝt.
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Algorithm 3.1 Higher-order Recursive Low-Rank + Sparse Structure Learning

1: Input:Mt, P̂
piq
0 s

2: Output: L̂t, Ŝt, tj
3: for t ¡ 0 do
4: for i=1:3 do
5: φφφ

piq
t � I� P̂

piq
t�1pP̂

piq
t�1q

J

6: end for
7: Yt �Mt �1 φφφ

p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t

8: Recover Ŝt from Yt by using GTCS-S algorithm [218].
9: Estimate L̂t ÐMt � Ŝt

10: if modpt� tj � 1, αq � 0 then
11: for i=1:3 do
12: Dpiq �

�
L̂
piq
tj�pk�1qα

� � � L̂
piq
tj�kα�1

�
13: P̂

piq
ptq

� deleteDirectionpD, P̂
piq
pt�1q

q

14: P̂
piq
ptq

� addDirectionpD, P̂
piq
ptq
q

15: end for
16: if P̂

p1q
ptq

� P̂
p1q
pt�1q

or P̂p2q
ptq

� P̂
p2q
pt�1q

or P̂p3q
ptq

� P̂
p3q
pt�1q

then
17: j Ð j � 1, tj Ð t

18: P̂
p1q
pjq

Ð P̂
p1q
ptq

, P̂p2q
pjq

Ð P̂
p2q
ptq

,P̂p3q
pjq

Ð P̂
p3q
ptq

19: end if
20: else
21: P̂

p1q
ptq

Ð P̂
p1q
pt�1q

, P̂p2q
ptq

Ð P̂
p2q
pt�1q

, P̂p3q
ptq

Ð P̂
p3q
pt�1q

22: end if
23: end for
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3.3.3 Slowly Changing Subspace & Change Points

The following assumptions are made to define slowly changing subspace along each mode of the

tensor:

1. Let tj denote the change points of the low-dimensional subspaces that Lpiqt s are in. Note

that the subspaces along each mode can vary independently from the others and as such tjs

are the collection of all change points across modes. Assume that for τ large enough, any τ

length subsequence of Lpiqt s lies in low-dimensional subspaces, i.e. maxtrankp
�
L
piq
t�τ�1...L

piq
t

�
!

minpτ,Ni,
±3
k�1,k�iNkq.

2. Lt lies in a low dimensional subspace that changes slowly along each mode i.e. Lt � At �1

P
p1q
t �2P

p2q
t �3P

p3q
t with P

piq
t � P

piq
j for all tj ¤ t ¤ tj�1, j � 1, 2, ...J where J is the maximum

number of change points. Ppiq
j is an Ni � r

piq
j basis matrix where rpiqj ! minpNi,

±3
k�1,k�iNkq.

3. At the change points, tj , at least one of the P
piq
j ’s changes as Ppiq

j �
�
P
piq
j�1P

piq
j,add

�
, Ppiq

j ��
P
piq
j�1zP

piq
j,del

�
or Ppiq

j �
�
pP

piq
j�1zP

piq
j,delq,P

piq
j,add

�
where P

piq
j,add is a Ni � c

piq
j,add basis matrix

with pPpiq
j,addq

JP
piq
j�1 � 0, i.e., the new directions added to the projection matrix are orthogonal to

the previous directions and P
piq
j,del is a Ni � c

piq
j,del matrix of deleted basis columns.

4. There exists constants cpiqmax such that 0 ¤ c
piq
j,add ¤ c

piq
max   r

piq
0 . 0 ¤

°j
i�1pci,add �

ci,delq ¤ c
piq
dif is required to imply rpiqt ¤ r

piq
0 � c

piq
dif :� r

piq
max. The number of change points

J ! mini

�
pNi � r

piq
0 � c

piq
dif q{c

piq
max

	
, so rpiqmax�Jc

piq
max ! Ni. Moreover, p

±2
k�i,k�1Nkqptj�1�

tjq " r
piq
0 � c

piq
dif helps to ensure maxtrankp

�
L
piq
t�τ�1...L

piq
t

�
! minpτ,Ni,

±3
k�1,k�iNkq.

5. The projection ofLt along the new added directions,At,add � Lt�1P
J,p1q
j,add�2P

J,p2q
j,add�3P

J,p3q
j,add

is initially small, i.e maxtj¤t¤tj�α ‖ At,add ‖8¤ γadd and γadd ! minp‖ Lt ‖F , ‖ St ‖F q, but

can increase gradually.

In order to enable a more efficient online implementation, the low-rank subspaces P
piq
t s are
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estimated and updated every α samples, where α is selected empirically. Similar to the projection

PCA (p-PCA) procedure used in [67], mode-i unfoldings L̂piqt ’s of the last α L̂t’s are concatenated

as Dpiq �

�
L̂
piq
tj�pk�1qα

� � � L̂
piq
tj�kα�1

�
with k P t1, 2, ..., Ku where K is the maximum number

of length α windows and Dpiqs are projected onto subspaces which are orthogonal to P̂
piq
pj�1q

s as

follows: Dpiq
proj � pI � P̂

piq
pj�1q

pP̂
piq
pj�1q

qJqDpiq. Then PCA is applied to find the subspace which

spans D
piq
proj . Let Ppiq

j,add be the truncated basis that spans this subspace obtained by keeping the

eigenvectors with eigenvalues greater than σmin. P
piq
j,add and previous subspace estimate P̂

piq
pj�1q

together yield the new subspace estimate as: P̂
piq
pjq

� rP̂
piq
pj�1q

P
piq
j,adds. During the update step,

some of the existing directions can also be deleted from the projection matrix by finding the ones

with eigenvalues lower than σmin (see Algorithms 3.2 and 3.3). If there are any added or deleted

directions, it means that there is a change point. It is also important to note that, the tensor subspace

estimation implemented in this study finds subspaces along each mode individually without taking

other modes into account. Thus, the proposed method is not optimized like higher-order orthogonal

iteration (HOOI) [36] but offers a computationally efficient way of estimating subspaces along each

mode.

Algorithm 3.2 Delete Direction
1: Input: D: data, P: input basis matrix
2: Output: Q: output basis matrix

3: λ �
1

w
diagppP1DpP1DqJqq where w is the number of columns of D.

4: i= find(λ   σmin)
5: Q � rPzPpi, :qs
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Algorithm 3.3 Add Direction
1: Input: D: data, P: input basis matrix
2: Output: Q: output basis matrix
3: Projection: compute Dproj Ð pI�PP1qD

4: PCA: compute 1
wDprojD

1
proj � UλU1 where w is the number of columns in D.

5: i= find(diagpλq ¡ σmin)
6: Q � rP Upi, :qs

3.3.4 Computational Complexity

In this section, we offer a comparison of the computational complexity of the proposed approach

with respect to REPROCS applied to our data in vectorized form. Let the 3-way tensor be of size

N � N � N . For the time points which do not require subspace update, computational complex-

ity of the proposed approach is equivalent to the complexity of l1 regularization OpN3q multi-

plied by the total number of fibers to recover for each mode to obtain the sparse component and

is equal to 3N2OpN3q. However, if we use REPROCS after vectorizing the data, complexity

for the same operations become OppN3q3q � OpN9q. For the time points which require basis

update, there is an additional cost of covariance matrix computation and eigenvalue decomposi-

tion. For our approach, covariance matrix computations for the three modes have a complexity of

3OppαNq�N4q � 3OpαN5q operations whereas eigenvalue decompositions cost 3OpN3q. How-

ever, REPROCS requires OpαpN3q2q � OpαN6q operations for covariance matrix computation

and OppN3q3q � OpN9q operations for eigenvalue decomposition.
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3.4 Results

3.4.1 Simulated Networks

The proposed framework is first applied to three simulated dynamic tensors Xt P R64�64�60 for

t P t1, 2, ..., 80u. For each network type, 20 simulations of the tensors are generated where each

frontal slice Xtp:, :, iq corresponds to a weighted and undirected network. In our experiments, to

generate the networks, we used three well-known network models known as the modular small-

world network, hierarchical modular small-world network and overlapped modular networks 3.1.

Distinct regions in the brain which are strongly connected within themselves are specialized for

different processes in the brain and, this phenomenon is known as functional segregation. Pres-

ence of these specialized neuronal groups appear as different modules in brain networks. More-

over, some of the nodes in a module may have more specialized function which yields hiearchical

structure in a network while some of the nodes belong to multiple clusters resulting in overlapping

modules [219]. All of these network structures are illustrated in Fig. 3.1.

For the experiments including modular small world network model, initially, the networks

contain 2 equal size modules. After t � 20, both of the modules are slowly divided into two

smaller modules of size 16 nodes each. After t � 60, the network structure evolves back to the

initial structure. For the second set of experiments with the hierarchical modular small world

network model, the networks contain 2 equal size modules at the beginning. After t � 20, both of

the modules are slowly divided into two smaller modules of size 16 nodes each while establishing

hierarchical structure. After t � 60, the network structure evolves back to the initial structure.

For the third set of experiments with overlapping modules, the networks contain 2 equal size non-

overlapping modules at the beginning. After t � 20, 25% of the nodes start to belong to both

modules. After t � 60, network structure evolves back to the initial non-overlapping structure.
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Figure 3.1: Illustration of network structures: (a) Modular network (b) Hierarchical modular net-
work, (c) Overlapping modules.

For all of the experiments, intra-cluster edge values were selected from Np0.6, 0.1q and trun-

cated to the interval r0, 1s while the inter-cluster edge values were selected from Np0.1, 0.1q.

Moreover, these networks were corrupted by a sparse noise matrix Et whose sparsity varies from

10% to 40% and ei,j � betap4, 2q. Proposed algorithm is applied with α � 5 and σmin is deter-

mined as 10% of highest singular value obtained from the initial subspace estimate along that mode

using the first 5 time points. The proposed algorithm is compared to an implementation without

the sparse recovery step similar to performing standard HoSVD at each time point. Mean squared

error which quantifies the error between estimated and original low-rank components for all of the

network models are computed for both algorithms as

MSE �
1

Tend � Tstart � 1

Tenḑ

t�Tstart

‖ Lt � L̂t ‖2F±3
i�1Ni

, (3.16)

where Tstart and Tend are the start and end points of the detected time interval and Ni is the size
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of the tensor along ith mode.

Tables 3.1, 3.2 and 3.3 show that Ho-RLSL is more robust than HoSVD for sparse outliers with

smaller MSE values. As the sparsity level of the noise increases, the difference in performance

between the two algorithms also increases. Complexity of the network structure, i.e. modular

vs. hierarchically modular, also affects the accuracy of the algorithms and increased structural

complexity results in increased error as seen in Tables 3.1, 3.2 and 3.3.

Table 3.1: Average MSE over time computed for low-rank components during detected time inter-
vals obtained by Ho-RLSL and HoSVD for modular network structure under varying noise sparsity
levels.

Noise Method Interval-1 Interval-2 Interval-3Level

10% Ho-RLSL 0.0046 0.0094 0.0045
HoSVD 0.0097 0.0144 0.0095

20% Ho-RLSL 0.0085 0.0167 0.0084
HoSVD 0.0233 0.0302 0.0229

30% Ho-RLSL 0.0136 0.0260 0.0137
HoSVD 0.0409 0.0496 0.0405

40% Ho-RLSL 0.0215 0.0387 0.0216
HoSVD 0.0613 0.0713 0.0607

Table 3.2: Average MSE over time computed for low-rank components during detected time inter-
vals obtained by Ho-RLSL and HoSVD for hierarchical modular network structure under varying
noise sparsity levels.

Noise Method Interval-1 Interval-2 Interval-3Level

10% Ho-RLSL 0.0149 0.0265 0.0137
HoSVD 0.0202 0.0319 0.0189

20% Ho-RLSL 0.0184 0.0333 0.0171
HoSVD 0.0335 0.0465 0.0322

30% Ho-RLSL 0.0240 0.0377 0.0225
HoSVD 0.0511 0.0663 0.0497

40% Ho-RLSL 0.0346 0.0521 0.0326
HoSVD 0.0712 0.0875 0.0699
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Table 3.3: Average MSE over time computed for low-rank components during detected time in-
tervals obtained by Ho-RLSL and HoSVD for network structure with overlapping modules under
varying noise sparsity levels.

Noise Method Interval-1 Interval-2 Interval-3Level

10% Ho-RLSL 0.0043 0.0088 0.0045
HoSVD 0.0091 0.0107 0.0094

20% Ho-RLSL 0.0080 0.0195 0.0083
HoSVD 0.0225 0.0250 0.0228

30% Ho-RLSL 0.0131 0.0336 0.0135
HoSVD 0.0399 0.0435 0.0404

40% Ho-RLSL 0.0209 0.0509 0.0215
HoSVD 0.0602 0.0640 0.0606

3.4.2 Effect of Network Size on Computation Time and Performance

The proposed framework is applied to two simulated dynamic tensors Xt P R64�64�60 and Xt P

R128�128�60 for t P t1, 2, ..., 80u to see the effect of network size on the computation time and

performance of the algorithm. 10 simulations of the tensors are generated where each frontal slice

Xtp:, :, iq corresponds to a weighted and undirected network and the third mode corresponds to the

number of subjects. In these experiments, to generate the networks, we used modular small-world

networks. For the experiments, initially, the networks contain 2 equal size modules. After t � 20,

both of the modules are slowly divided into two smaller modules of equal size. After t � 60, the

network structure evolves back to the initial structure.

For the experiments, intra-cluster edge values were selected from Np0.6, 0.1q and truncated to

the interval r0, 1s while the inter-cluster edge values were selected from Np0.1, 0.1q. Moreover,

these networks were corrupted by a sparse noise matrix Et whose sparsity is 10% and ei,j �

betap4, 2q. Proposed algorithm is applied with α � 5 and σmin is determined as 10% of highest

singular value obtained from the initial subspace estimate along that mode using the first 5 time

points. Mean squared error which quantifies the error between estimated and original low-rank

components for both network sizes are computed for both algorithms as described in Section 3.4.1.
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All of the simulations were run on a computer with Intel(R) Core(TM) i5-2500T CPU and

4.00 GB memory. Table 3.4 shows that doubling the number of nodes in the network increases

the computation time almost three times. Moreover, increased network size yields better low-rank

estimation for the complex network structures. As seen in Table 3.4, MSE computed for the second

time interval where the networks contain more modules significantly decreases with the increased

network size. This is due to the fact that with more modules in the network the number of nodes in

a module decreases making the subspace estimation more challenging. When the number of nodes

in the network increases, the subspace estimation becomes more accurate.

Table 3.4: Average computation time for Ho-RLSL for dynamic tensors containing 64 � 64 and
128 � 128 networks with average MSE over time computed for low-rank components during de-
tected time intervals.

Tensor Time (sec) Interval-1 Interval-2 Interval-3Size
64 � 64 � 60 2.3916 � 104 0.0046 0.0090 0.0045

128 � 128 � 60 6.3397 � 104 0.0045 0.0065 0.0046

3.4.3 EEG Data

The proposed tensor tracking approach is applied to a set of connectivity graphs constructed from

EEG data containing the error-related negativity (ERN) and correct-related negativity (CRN). The

ERN is a brain potential response that occurs following performance errors in a speeded reaction

time task usually 25-75 ms after the response [220]. Previous work [221] indicates that there is

increased coordination between the lateral prefrontal cortex (lPFC) and medial prefrontal cortex

(mPFC) within the theta frequency band (4-8 Hz) and ERN time window. EEG data from 63-

channels was collected in accordance with the 10/20 system on a Neuroscan Synamps2 system

(Neuroscan, Inc.) sampled at 128 Hz from 91 subjects. Full methodological details of the record-

ing are available in the previous report [220]. The task was a common speeded-response letter
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(H/S) flanker, where error and correct response-locked trials from each subject were utilized. A

random subset of correct trials was selected, to equate the number of error relative to correct tri-

als for each participant. The EEG data are pre-processed by the spherical spline current source

density (CSD) waveforms to sharpen event-related potential (ERP) scalp topographies and reduce

volume conduction [222]. The CSD has fewer assumptions than many inverse transforms, at-

tenuates volume conduction, and represents independent sources near the cortical surface [177].

For each subject and response type, the pairwise phase locking value in the theta frequency band

was computed as described in eqn. 3.8 [148]. We constructed 3-way tensors at each time point

Xt P R63�63�91 for both ERN and CRN data separately where the first and second mode represent

the adjacency matrix of the connectivity graphs while the third mode corresponds to the subjects

for t P t1, 2, ..., 256u.

In this section, the method described in Section 3.3 is applied to tensors constructed from the

connectivity networks as described in Section 3.2.3. The connectivity networks corresponding to

the first 10 time points t P t1, 2, ..., 10u and all subjects was used in the training step to obtain

initial subspace information of the low-rank component Lt. This training data is used to obtain

an initial subspace estimate and 10 time points approximately correspond to 78 ms of data. It

is assumed that during this time period the connectivity networks are almost stationary and the

low-rank structure does not change significantly. Then the proposed approach was applied to the

remaining time points with α � 8 and σmin � 0.11. Since the connectivity networks constructed

by the phase synchrony measure are symmetric, the basis matrices Pp1q
t and P

p2q
t corresponding to

the first two modes are identical to each other as Pp1q
t � P

p2q
t for each time point t. This is due to

the fact that the unfolding of the 3-mode tensor along modes 1 and 2 yield identical matrices with

identical subspaces and does not change the general algorithm introduced in Section 3.3.

In Fig. 3.2, change points corresponding to the connectivity mode L
p1q
t are given. It can be
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seen that for ERN networks there is an interval (-109, 141) ms corresponding to the response time

and the ERN response. There is also a longer interval (141, 766) ms corresponding to the Pe,

the error-related positivity which usually occurs 200-500ms after making an incorrect response,

following the error negativity (ERN). Similar time intervals are obtained for CRN, with the biggest

difference being a longer time interval around the response time as the physiological response for

CRN is not as pronounced as the one for ERN.

(a)

(b)

Figure 3.2: Average of (a) ERN and (b) CRN waveforms and the detected change points corre-
sponding to the connectivity mode.

In order to better interpret the network structure corresponding to different time intervals,

FCCA reviewed in Section 3.2.4 was applied to the sets of 63�63 networks obtained from low-rank

tensors L̂t P R63�63�91 within each time interval (pre-ERN, ERN, post-ERN, pre-CRN, CRN,

post-CRN) where p# of input adjacency matricesq � p# of subjectsq�p# time points in the intervalq.

As seen in Fig. 3.3, the network structure in pre-ERN interval is similar to the network structure of

the post-ERN interval, while the identified modules are more segregated in the ERN interval rela-

tive to the pre and post-ERN. This is in line with previous results indicating that separable clusters
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are apparent relative to left and right motor areas, and left and right lateral-PFC regions during

ERN [205]. For the CRN clusters, we observed that segregation of the lateral and central areas

is quite limited with one large fronto-central cluster present during all CRN intervals. The excep-

tion are small frontal- and central clusters during the CRN (a similar two were observed during

the ERN). This is consistent with the idea that medial frontal regions are activated during correct

trials, but to a smaller extent than during errors.
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Figure 3.3: Network structures for the low-rank components of ERN networks obtained by Ho-
RLSL: (a) pre-ERN, (b) ERN, (c) post-ERN.

To show the denoising performance of the proposed method compared to HoSVD, we applied

HoSVD to the EEG networks with the same α and σmin values used in Ho-RLSL. First, HoSVD

detected pre-ERN, ERN and post-ERN intervals very similar to the ones obtained from Ho-RLSL
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Figure 3.4: Network structures for the low-rank components of CRN networks determined ob-
tained by Ho-RLSL: (a) pre-CRN, (b) CRN, (c) post-CRN.

(see Table 3.5). The change point at the end of the pre-ERN interval was shifted by α time points.

We then used FCCA to identify the common network structure for each interval (Fig. 3.5). As seen

in Figs. 3.3 and 3.5, both HoSVD and Ho-RLSL yield the same network structure for the ERN

interval, while HoSVD yields more noisy networks for pre- and post-ERN intervals. When the

physiological response is strong such as during the ERN, the network is less noisy yielding the ex-

act cluster structure both for Ho-RLSL and HoSVD. However, when the networks are noisier such

as for the pre-ERN interval, our algorithm provides a cleaner low-rank approximation which yields

more distinct cluster structures. For CRN networks, Ho-RLSL and HoSVD detected very differ-

ent pre-CRN, CRN and post-CRN intervals (see Table 3.5), and we cannot compare the network
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structures obtained from both algorithms. In particular, HoSVD detects a very long pre-CRN time

interval and very short CRN and post-CRN intervals. The CRN and post-CRN intervals detected

by Ho-RLSL align better with well-known ERPs such as P300.

Table 3.5: Detected ERN and CRN intervals by Ho-RLSL and HoSVD

Interval Ho-RLSL HoSVD
Pre-ERN -0.484ms to -0.109ms -0.484ms to -0.047ms

ERN -0.109ms to 0.141ms -0.047ms to 0.141 ms
Post-ERN 0.141ms to 0.766ms 0.141ms to 0.766ms
Pre-CRN -0.422ms to -0.047ms -0.734ms to -0.109ms

CRN -0.047ms to 0.391ms -0.109ms to 0.141 ms
Post-CRN 0.391ms to 0.641ms 0.141ms to 0.391ms

3.5 Conclusions

In this chapter, we introduced a new recursive low-rank + sparse structure learning algorithm

for tensor type data to track dynamic modular structure of functional connectivity networks con-

structed from EEG recordings across multiple subjects. To this aim, a recent subspace tracking

approach, REPROCS, was adapted and extended to tensor type data. This extension offers sev-

eral novelties with respect to the original algorithm. In original REPROCS, the measurements at

each time point are vectors and the algorithm uses the fact that each measurement vector is com-

ing from a low-rank subspace. However, in our case, low-rank corresponds to a low Tucker rank,

i.e. the matricized version of the tensor along each mode is a low-rank matrix implying it can

be reconstructed through the outer product of a small number of eigenvectors. This is particu-

larly suitable for dealing with data that has a modular structure such as FCNs. Using REPROCS

to analyze this type of dataset would require vectorization which breaks the intrinsic low-rank

structure of each measurement along with increased computational complexity. The proposed ap-

proach yields robust estimation of the low-rank component of a dynamic 3-way tensor at each time
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Figure 3.5: Network structures for the low-rank components of ERN networks obtained by
HoSVD: (a) pre-ERN, (b) ERN, (c) post-ERN.

point and provides a recursive way to update the subspace information. This approach identifies

the time points where the low-rank subspaces change and recursively updates these subspaces to

improve the low-rank approximation to data. The proposed approach is first applied to a set of

simulated networks for performance evaluation, and is then used to separate low-rank and sparse

parts of dFCNs across multiple subjects. Low-rank component of dFCNs obtained for the detected

time intervals are summarized by using a recently introduced multiple graph clustering approach,

FCCA. The low-rank subspace approximation to each time interval provides a denoised version

of the original network, thus improving the quality of the clustering results. The results indicate

a clear change in the community structure before and after the physiological response. Moreover,
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the detected community structures are in line with previous hypothesis regarding the networks

involved in cognitive control [221].

One main concern about the proposed algorithm is the selection of parameters α and σmin.

Both α and σmin are data-dependent parameters and their selection requires some a priori infor-

mation. First, α should be smaller than the time interval between two consecutive change points in

order to identify each one of them. For example, in our simulations change points appear at t � 40

and t � 60 and there are 20 time points between consecutive change points. We selected α as 5 in

our simulations and we identified the change points correctly. When we apply our algorithm with

α � 10 we can still identify the change points. However, if we select α � 30, we identify the first

change point at t � 60 which corresponds to the beginning of the third interval. Therefore, the

subspace estimate is based on the information from the second time interval and cannot do a good

job of representing the third time interval and the algorithm fails. Moreover, if we keep α very

small, then the algorithm will be more susceptible to instantaneous noise and we will have a lot of

incorrect change points or false positives. For the real dataset, since we know something about the

dynamics of EEG, we selected α to be at least as long as the duration of ERNs (50-75 ms) with

α � 8. Selection of σmin is also dependent on the datasets. For example, in our simulations, we

selected σmin as 10% of the maximum eigenvalue. If we select it too small, the algorithm includes

many basis vectors which correspond to noise and both the low-rank assumption and the algorithm

fail. If we select σmin too high, then the algorithm does not update the low-rank subspace for

the slow changes and the algorithm again fails. Selecting σmin for real dataset is more difficult,

because gaps between eigenvalues may not be very clear. For example, for our EEG datasets, the

first eigenvalue was much larger than the others and using a threshold around 10% of the maximum

eigenvalue did not work. In this case, we chose σmin � 0.11 empirically. If we select it lower,

the algorithm includes many basis vectors at every time window which cause the algorithm to fail.
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When we increased σmin, we lost a lot of the change points.

Future work will consider extending the proposed approach to higher order tensors by includ-

ing various experimental conditions, different frequency bands and multiple modalities. Future

work will also consider extensions of linear low-rank subspace models to unions of subspaces or

manifolds. Modifications to the Ho-RLSL algorithm such as predicting support of the sparse com-

ponent [204] or using partial subspace knowledge for the low-rank component [223] will further

improve the performance of Ho-RLSL.
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Chapter 4

Multiscale Analysis for Higher-order

Tensors

4.1 Introduction

Data in the form of multidimensional arrays, also referred to as tensors, arise in a variety of ap-

plications including chemometrics, hyperspectral imaging, high resolution videos, neuroimaging,

biometrics and social network analysis [4, 5, 224]. These applications produce massive amounts

of data collected in various forms with multiple aspects and high dimensionality. Tensors, which

are multi-dimensional generalizations of matrices, provide a useful representation for such data. A

crucial step in many applications involving higher-orders tensors is multiway reduction of the data

to ensure that the reduced representation of the tensor retains certain characteristics. Early multi-

way data analysis approaches reformatted the tensor data as a matrix and resorted to methods de-

veloped for classical two-way analysis. However, one cannot discover hidden components within

multiway data using conventional matrix decomposition methods as matrix based representations

cannot capture multiway couplings focusing on standard pairwise interactions. To this end, many

different types of tensor decomposition methods have been proposed in literature [37,40,225–227].

In contrast to the matrix case, where data reduction is often accomplished via low-rank repre-
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sentations such as singular value decomposition (SVD), the notion of rank for higher order tensors

is not uniquely defined. CANDECOMP/PARAFAC (CP) decomposition and Tucker decomposi-

tion are two of the most widely used tensor decomposition methods for data reduction [30,35]. For

CP, the goal is to approximate the given tensor as a weighted sum of Rank-1 tensors, where rank-1

tensor refers to the outer product of n vectors, with n being equal to the order of the tensor. Tucker

model allows for interactions between the factors from the different modes resulting in a typically

dense but small core tensor. This model also introduces the notion of Tucker rank or n-rank, which

refers to the n-tuple of ranks corresponding to the tensor unfoldings along each mode. Therefore,

low rank approximation with the Tucker model can be obtained by projections onto low-rank fac-

tor matrices. Unlike CP decomposition, Tucker decomposition is in general non-unique. To obtain

meaningful and unique representation by the Tucker decomposition, orthogonality, sparsity and

non-negativity constraints are often imposed on the factors yielding Non-Negative Tensor Factor-

ization (NTF) and Sparse Non-Negative Tucker Decomposition [228–230]. Tucker decomposition

with orthogonality constraints on the factors, is known as Higher-Order Singular Value Decompo-

sition (HoSVD) or Multilinear SVD [35]. HoSVD can simply be computed by flattening the tensor

in each mode and calculating the n-mode singular vectors corresponding to that mode.

With the emergence of multidimensional big data, classical tensor representation and decom-

position methods have become inadequate since the size of these tensors exceeds available working

memory and the processing time is very long. In order to address the problem of large-scale tensor

decomposition, several block-wise tensor decomposition methods have been proposed [37]. The

basic idea is to partition a big data tensor into smaller blocks and perform tensor related operations

block-wise using suitable tensor format. Preliminary approaches relied on a hierarchical tree struc-

ture and reduced the storage of d-dimensional arrays to the storage of auxiliary three-dimensional

ones such as the tensor-train decomposition (T-Train), also known as the matrix product state
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(MPS) decomposition, [40] and Hierarchical Tucker Decomposition (H-Tucker) [39]. In partic-

ular, in the area of large volumetric data visualization, tensor based multiresolution hierarchical

methods such as TAMRESH have attracted attention [231]. However, all of these methods are

interested in fitting a low-rank model to data which lies near a linear subspace, thus being limited

to learning linear structure.

Similar to the research efforts in tensor reduction, low-dimensional subspace and manifold

learning methods have also been extended for higher order data clustering and classification ap-

plications. In early work in the area, Vasilescu and Terzopoulos [232] extended the eigenface

concept to the tensorface by using higher order SVD and taking different modes such as expres-

sion, illumination and pose into account. Similarly, 2D-PCA for matrices has been used for feature

extraction from face images without converting the images into vectors [233]. He et al. [234]

extended locality preserving projections [235] to second order tensors for face recognition. Dai

and Yeung [236] presented generalized tensor embedding methods such as the extensions of lo-

cal discriminant embedding methods [237], neighborhood preserving embedding methods [238],

and locality preserving projection methods [235] to tensors. Li et al. [239] proposed a supervised

manifold learning method for vector type data which preserves local structures in each class of

samples, and then extended the algorithm to tensors to provide improved performance for face

and gait recognition. Similar to vector-type manifold learning algorithms, the aim of these meth-

ods is to find an optimal linear transformation for the tensor-type training data samples without

vectorizing them and mapping these samples to a low dimensional subspace while preserving the

neighborhood information.

In this chapter, we propose a novel multi-scale analysis technique to efficiently approximate

tensor type data using locally linear low-rank approximations. The proposed method constructs

data-dependent multiscale dictionaries to better represent the data. The proposed algorithm con-
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sists of two major steps: 1) Constructing a tree structure by partitioning the tensor into a collection

of permuted subtensors, and 2) Constructing multiscale dictionaries by applying HoSVD to each

subtensor. The major contributions of the proposed framework are three fold. First, we introduce

a multi-scale tensor approximation method which allows the user to approximate a given tensor

for given memory and processing power constraints allowing flexibility in the decomposition. The

computational complexity and memory requirements of the proposed method are given in compar-

ison to conventional HoSVD. Second, the proposed tensor partitioning method clusters the tensor

data across each mode to obtain subtensors that are composed of similar entries. In this manner, we

show through a theoretical error analysis that the resulting subtensors can approximate the locally

linear structure more efficiently. Finally, we introduce different variations of the method for adap-

tively pruning the tree obtaining a better trade-off between compression rate and reconstruction

error. The proposed method is evaluated for two common signal processing applications: data re-

duction and classification. The efficiency and accuracy of the proposed method for data reduction

and classification is evaluated for different tensor type data and compared to state-of-the-art tensor

decomposition methods including HoSVD, T-Train and H-Tucker decompositions.

Although this chapter focuses on the integration of a single existing tensor factorization tech-

nique (i.e., the HoSVD) into a clustering-enhanced multiscale approximation framework, we would

like to emphasize that the ideas presented herein are significantly more general. In principal, for

example, there is nothing impeding the development of multiscale variants of other tensor factor-

ization approaches (e.g., CP, T-Train, H-Tucker, etc.) in essentially the same way. In this chapter,

it is demonstrated that the use of the HoSVD as part of a multiscale approximation approach leads

to improved compression and classification performance over standard HoSVD approaches. How-

ever, this chapter should additionally be considered as evidence that similar improvements are also

likely possible for other tensor factorization-based compression and classification schemes, as well
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as for other related applications.

4.2 Background

4.2.1 Tensor Notation and Algebra

A multidimensional array with N modes X P RI1�I2�...�IN is called a tensor, where xi1,i2,..iN

denotes the pi1, i2, ..iN qth element of the tensor X . The vectors in RIn obtained by fixing all of

the indices of such a tensor X except for the one that corresponds to its nth mode are called its

mode-n fibers. Let rN s :� t1, . . . , Nu for all N P N. Basic tensor operations are reviewed below

(see, e.g., [30], [240], [241]).

Tensor addition and multiplication by a scalar: Two tensors X ,Y P RI1�I2�...�IN can be

added using component-wise tensor addition. The resulting tensor X � Y P RI1�I2�...�IN has

its entries given by pX � Yqi1,i2,..iN � xi1,i2,..iN � yi1,i2,..iN . Similarly, given a scalar α P R

and a tensor X P RI1�I2�...�IN the rescaled tensor αX P RI1�I2�...�IN has its entries given by

pαX qi1,i2,..iN � α xi1,i2,..iN .

Mode-n products: The mode-n product of a tensor X P RI1�...In�...�IN and a matrix U P

RJ�In is denoted as Y � X �n U, pYqi1,i2,...,in�1,j,in�1,...,iN
�
°In
in�1 xi1,...,in,...,iN uj,in . It

is of size I1 � ... � In�1 � J � In�1 � ... � IN . The following facts about mode-n products are

useful (see, e.g., [30], [241]).

Lemma 1. Let X ,Y P RI1�I2�...�IN , α, β P R, and Upnq,Vpnq P CJn�In for all n P rN s. The

following are true:

(a) pαX � βYq �n Upnq � α
�
X �n Upnq

	
� β

�
Y �n Upnq

	
.

(b) X �n

�
αUpnq � βVpnq

	
� α

�
X �n Upnq

	
� β

�
X �n Vpnq

	
.
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(c) If n � m then X �n Upnq �m Vpmq �
�
X �n Upnq

	
�m Vpmq �

�
X �m Vpmq

	
�n

Upnq � X �m Vpmq �n Upnq .

(d) If W P CP�Jn then X �n Upnq �n W �
�
X �n Upnq

	
�n W � X �n

�
WUpnq

	
�

X �n WUpnq.

Tensor matricization: Process of reordering the elements of the tensor into a matrix is known as

matricization or unfolding. The mode-n matricization of a tensor Y P RI1�I2�...�IN is denoted

as Ypnq P RIn�
±
m�n Im and is obtained by arranging Y’s mode-n fibers to be the columns of

the resulting matrix. Unfolding the tensor Y � X �1 Up1q �2 Up2q... �N UpNq �: X
N¡
n�1

Upnq

along mode-n is equivalent to

Ypnq � UpnqXpnqpU
pNq b ...Upn�1q bUpn�1q...bUp1qqJ, (4.1)

where b is the matrix Kronecker product. In particular, (4.1) implies that the matricization�
X �n Upnq

	
pnq

� UpnqXpnq.
1

It is worth noting that trivial inner product preserving isomorphisms exist between a tensor

space RI1�I2�...�IN and any of its matricized versions (i.e., mode-n matricization can be viewed

as an isomorphism between the original tensor vector space RI1�I2�...�IN and its mode-n ma-

tricized target vector space RIn�
±
m�n Im). In particular, the process of matricizing tensors is

linear. If, for example, X ,Y P RI1�I2�...�IN then one can see that the mode-n matricization of

X � Y P RI1�I2�...�IN is pX � Yqpnq � Xpnq �Ypnq for all modes n P rN s.

Tensor Rank: Unlike matrices, which have a unique definition of rank, there are multiple rank def-

initions for tensors including tensor rank and tensor n-rank. The rank of a tensor X P RI1�...�IN

1Simply set Upmq � I (the identity) for all m � n in (4.1). This fact also easily follows directly from the
definition of the mode-n product.
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is the smallest number of rank-one tensors that form X as their sum. The n-rank of X is the

collection of ranks of unfoldings Xpnq and is denoted as:

n-rankpX q �
�

rankpXp1qq, rankpXp2qq, ..., rankpXpNqq
	
. (4.2)

Tensor inner product: The inner product of two same sized tensors X ,Y P RI1�I2�...�IN is the

sum of the products of their elements.

xX ,Yy �
I1̧

i1�1

I2̧

i2�1

...

IŅ

iN�1

xi1,i2,...,iN yi1,i2,...,iN . (4.3)

It is not too difficult to see that matricization preserves Hilbert-Schmidt/Frobenius matrix inner

products. That is, that xX ,Yy �
A
Xpnq,Ypnq

E
F
� Trace

�
XJ
pnq

Ypnq

	
holds for all n P rN s. If

xX ,Yy � 0, X and Y are orthogonal.

Tensor norm: Norm of a tensor X P RI1�I2�...�IN is the square root of the sum of the squares

of all its elements.

‖ X ‖�
a
xX ,X y �

gfffe I1̧

i1�1

I2̧

i2�1

...

IŅ

iN�1

x2
i1,i2,...,iN

. (4.4)

The fact that matricization preserves Frobenius matrix inner products also means that it preserves

Frobenius matrix norms. As a result we have that }X } �
���Xpnq

���
F

holds for all n P rN s. If X and

Y are orthogonal and also have unit norm (i.e., have }X } � }Y} � 1) we will say that they are an

orthonormal pair.
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4.2.2 Some Useful Facts Concerning Mode-n Products and Orthogonality

Let I P RIn�In be the identity matrix. Given a (low rank) orthogonal projection matrix P P

RIn�In one can decompose any given tensor X P RI1�I2�...�IN into two orthogonal tensors

using Lemma 1 (b)

X � X �n I � X �n ppI�Pq �Pq � X �n pI�Pq � X �n P.

To check that the last two summands are orthogonal one can use (4.1) to compute that

xX �n pI�Pq,X �n Py �
A
pI�PqXpnq,PXpnq

E
F
� Trace

�
XJ
pnqpI�PqPXpnq

	
� 0.

As a result one can also verify that the Pythagorean theorem holds, i.e., that }X }2 � }X �nP}
2�

}X �n pI�Pq}2.

If we now regard X �n P as a low rank approximation to X then we can see that its approxi-

mation error

X � X �n P � X �n pI�Pq

is orthogonal to the low rank approximation X �nP, as one would expect. Furthermore, the norm

of its approximation error satisfies }X �n pI�Pq}2 � }X }2 � }X �n P}2. By continuing to use

similar ideas in combination with lemma 1 for all modes one can prove the following more general

Pythagorean result (see, e.g., theorem 5.1 in [241]).
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Lemma 2. Let X P RI1�I2�...�IN and Upnq P RIn�In be an orthogonal projection matrix for

all n P rN s. Then,

���X � X �1 U
p1q �2 U

p2q...�N UpNq
���2 �:

���X � X
�N

n�1 U
pnq
���2

�
°N
n�1

���X�n�1
h�1 U

phq �n

�
I�Upnq

	���2 .

4.2.3 Higher Order Singular Value Decomposition (HoSVD)

Any tensor X P RI1�I2�...�IN can be decomposed as mode products of a core tensor C P

RI1�I2�...�IN with N orthogonal matrices Upnq P RIn�In each of which is composed of the

left singular vectors of Xpnq [35]:

X � C �1 U
p1q �2 U

p2q...�N UpNq � C
N¡
n�1

Upnq (4.5)

where C is computed as

C � X �1

�
Up1q

	J
�2

�
Up2q

	J
...�N

�
UpNq

	J
. (4.6)

Let Cin�α be a subtensor of C obtained by fixing the nth index to α. This subtensor satisfies

the following properties:

• all-orthogonality: Cin�α and Cin�β are orthogonal for all possible values of n, α and β

subject to α � β.

xCin�α, Cin�βy � 0 when α � β. (4.7)
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• ordering:

‖ Cin�1 ‖¥‖ Cin�2 ‖¥ ... ¥‖ Cin�In ‖¥ 0 (4.8)

for all possible values of n.

4.3 Multiscale Analysis of Higher-order Datasets

In this section, we present a new tensor decomposition method named Multiscale HoSVD (MS-

HoSVD) for an N th order tensor, X P RI1�I2�...�IN . The proposed method recursively applies

the following two-step approach: (i) Low-rank tensor approximation, followed by (ii) Decompos-

ing the residual (original minus low-rank) tensor into subtensors.

A tensor X is decomposed using HoSVD as follows:

X � C �1 U
p1q �2 U

p2q...�N UpNq, (4.9)

where the Upnq’s are the left singular vectors of the unfoldings Xpnq. The low-rank approximation

of X is obtained by

X̂0 � C0 �1 Û
p1q �2 Û

p2q...�N ÛpNq (4.10)

where Ûpnq P RIn�rns are the truncated matrices obtained by keeping the first rn columns of Upnq

and C0 � X �1

�
Ûp1q

	J
�2

�
Ûp2q

	J
...�N

�
ÛpNq

	J
. The multilinear-rank of X̂0, tr1, ..., rN u,

can either be given a priori, or an energy criterion can be used to determine the minimum number

of singular values to keep along each mode as:

rn � arg min
i

i̧

l�1

σ
pnq
l s.t.

°i
l�1 σ

pnq
l°In

l�1 σ
pnq
l

¡ τ, (4.11)

85



where σpnql is the lth singular value of the matrix obtained from the SVD of the unfolding Xpnq,

and τ is an energy threshold. Once X̂0 is obtained, the tensor X can be written as

X � X̂0 �W0, (4.12)

whereW0 is the residual tensor.

For the first scale analysis, to better encode the details of X , we adapted an idea similar to the

one presented in [242, 243]. The 0th scale residual tensor,W0 is first decomposed into subtensors

as follows. W0 P RI1�I2�...�IN is unfolded across each mode yielding W0,pnq P RIn�
±
j�n Ij

whose columns are the mode-n fibers ofW0. For each mode, rows of W0,pnq are partitioned into cn

non-overlapping clusters using a clustering algorithm such as local subspace analysis (LSA) [244]

in order to encourage the formation of new subtensors which are intrinsically lower rank, and

therefore better approximated via a smaller HoSVD at the next scale. The Cartesian product of the

partitioning labels coming from the N modes yields K �
±N
i�1 ci disjoint subtensors X1,k where

k P rKs.

Let Jn0 be the index set corresponding to the nth mode of W0 with Jn0 � rIns, and let Jn1,k

be the index set of the subtensor X1,k for the nth mode, where Jn1,k � Jn0 for all k P rKs and

n P rN s. Index sets of subtensors for the nth mode satisfy
�K
k�1 J

n
1,k � Jn0 for all n P rN s. For

example, the index set of the first subtensor X1,1 can be written as J1
1,1 � J2

1,1 � ...� J
N
1,1 and the

kth subtensor X1,k P R
���J1

1,k

�������J2
1,k

�����������JN1,k
���

is obtained by

X1,kpi1, i2, ..., iN q �W0pJ
1
1,kpi1q, J

2
1,kpi2q, ..., J

N
1,kpiN qq,

X1,k �W0pJ
1
1,k � J2

1,k � ...� JN1,kq,

(4.13)
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where in P
����Jn1,k����. Low-rank approximation for each subtensor is obtained by applying HoSVD

as:

X̂1,k � C1,k �1 Û
p1q
1,k �2 Û

p2q
1,k...�N Û

pNq
1,k , (4.14)

where C1,k and Û
pnq
1,k P R

|Jn1,k|�r
pnq
1,k s correspond to the core tensor and low-rank projection basis

matrices of X1,k, respectively. We can then define X̂1 as the 1st scale approximation of X formed

by mapping all of the subtensors onto X̂1,k as follows:

X̂1pJ
1
1,k � J2

1,k � ...� Jn1,kq � X̂1,k. (4.15)

Similarly, 1st scale residual tensor is obtained by

W1pJ
1
1,k � J2

1,k � ...� Jn1,kq �W1,k, (4.16)

whereW1,k � X1,k � X̂1,k. Therefore, X can be rewritten as:

X � X̂0 �W0 � X̂0 � X̂1 �W1. (4.17)

Continuing in this fashion the jth scale approximation ofX is obtained by partitioningWj�1,ks

into subtensors Xj,ks and fitting a low-rank model to each one of them in a similar fashion. Finally,

the jth scale decomposition of X can be written as:

X �

j̧

i�0

X̂i �Wj . (4.18)

Algorithm 4.1 describes the pseudo code for this approach.
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Algorithm 4.1 Multiscale HoSVD
1: Input: X : tensor , C � pc1, c2, ..., cN q: the desired number of clusters for each mode, sH : the highest

scale of MS-HoSVD.
2: Output: T : Tree structure containing the MS-HoSVD decomposition of X̂ .
3: Create an empty tree T
4: Create an empty list L
5: Add the node containing X �: X0,1 to L with Parentp0, 1q � H (i.e., this is the root of the the tree).
6: while L is not empty. do
7: Pop a node corresponding to Xs,t (the tth subtensor from sth scale) from the list L where s P

t0, ..., sHu and t P t1, ...,Ksu.
8: Cs,t,

!
Û

pnq
s,t

)
Ð truncatedHOSVD(Xs,t).

9: Add the node containing Cs,t,
!
Û

pnq
s,t

)
to T as a child of Parentps, tq.

10: if s   sH then
11: ComputeWs,t � Xs,t � X̂s,t.
12: Create K subtensors Xs�1,Kpt�1q�k with Jn

s�1,Kpt�1q�k fromWs,t where k P t1, 2, ..., Ku and
n P t1, 2, ..., Nu.

13: AddK nodes containing Xs�1,Kpt�1q�k and
!
Jn
s�1,Kpt�1q�k

)
to L with Parentps�1,Kpt�1q�

kq � ps, tq.
14: end if
15: end while

4.3.1 Memory Cost of the First Scale Decomposition

Let X P RI1�I2�....�IN be an N th order tensor. To simplify the notation, assume that the dimen-

sion of each mode is the same, i.e. I1 � I2 � .... � IN � I . Assume X is approximated by

HoSVD as:

X̂ � CH �1 U
p1q
H �2 U

p2q
H ...�N U

pNq
H , (4.19)

by fixing the rank of each mode matrix as rankpUpiq
H q � rH for i P t1, 2, ..., Nu. Let Fp�q be

a function that quantifies the memory cost, then the storage cost of X decomposed by HoSVD is

FpCHq �
°N
i�1pFpU

piq
H qq � rNH �NIrH .

For multiscale analysis at scale 1, X̂ � X̂0 � X̂1. The cost of storing X̂0 is FpC0q �°N
i�1pFpÛpiqqq � rN0 � NIr0 where the rank of each mode matrix is fixed at rankpUpiqq � r0
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for i P t1, 2, ..., Nu. The cost of storing X̂1 is the sum of the storage costs for each of

the K �
±N
i�1 cpiq subtensors X̂1,k. Assume cpiq � c for all i P t1, 2, ..., Nu yielding

cN equally sized subtensors, and that each X̂1,k is decomposed using the HoSVD as X̂1,k �

C1,k �1 Û
p1q
1,k �2 Û

p2q
1,k...�N Û

pNq
1,k . Let the rank of each mode matrix be fixed as rankpÛpiq

1,kq � r1

for all i P t1, 2, ..., Nu and k P t1, 2, ..., Ku. Then, the memory cost for the first scale is°K
k�1

�
FpC1,kq �

°N
i�1 FpÛ

piq
1,kq

	
� cN

�
rN1 �

NIr1
c



. Choosing r1 À

r0

cpN�1q
ensures that

the storage cost does not grow exponentially so that FpX̂1q   FpX̂0q since the total cost becomes

approximately equal to rN0

�
1 �

1

cN
2�2N



� 2NIr0. Thus, picking r0 � rH{2 can now provide

lower storage cost for the first scale analysis than for HoSVD.

4.3.2 Computational Complexity

The computational complexity of MS-HoSVD at the first scale is equal to the sum of computational

complexity of computing HoSVD at the parent node, partitioning into subtensors and computing

HoSVD for each one of the subtensors. Computational complexity of HoSVD of an N-way tensor

X P RI1�I2�...�IN where I1 � I2 � ... � IN � I isO
�
NIpN�1q

	
[245]. By assuming that the

partitioning is performed using K-means (via Lloyd’s algorithm) with ci � c along each mode, the

complexity partitioning along each mode is O
�
NIN ci

	
, where i is the number of iterations used

in Lloyd’s algorithm. Finally, the total complexity of applying the HoSVD to cN equally sized

subtensors is O
�
cNNpI{cqpN�1q

	
. Therefore, first scale MS-HoSVD has a total computational

complexity of O
�
NIpN�1q �NIN ci� cNNpI{cqpN�1q

	
. Note that this complexity is similar

to that of the HoSVD whenever ci is small compared to I . The runtime complexity of these

multiscale methods can be reduced even further by computing the HoSVDs for different subtensors

in parallel whenever possible, as well as by utilizing distributed and parallel SVD algorithms such

as [246] when computing all the required HoSVD decompositions.

89



4.3.3 A Linear Algebraic Representation of the Proposed Multiscale HoSVD

Approach

Definitions: Though the tree-based representation of the proposed MS-HoSVD approach used

above in Algorithm 4.1 is useful for algorithmic development, it is somewhat less useful for the-

oretical error analysis. In this subsection we will develop formulas for the proposed MS-HoSVD

approach which are more amenable to error analysis. In the process we will also formulate a crite-

rion which, when satisfied, guarantees that the proposed fist scale MS-HoSVD approach produces

an accurate multiscale approximation to a given tensor.

We can construct full size first scale subtensors of the residual tensorW0 P RI1�I2�...IN from

(4.12), X |k P RI1�I2�...IN for all k P rKs, using the index sets Jn1,k from (4.13) along with

diagonal restriction matrices. Let Rpnq
k P t0, 1uIn�In be the diagonal matrix with entries given

by

R
pnq
k pi, jq �

$'''&'''%
1, if i � j, and j P Jn1,k

0, otherwise

(4.20)

for all k P rKs, and n P rN s. We then define

X |k :�W0

N¡
n�1

R
pnq
k �W0 �1 R

p1q
k �2 R

p2q
k ...�N R

pNq
k . (4.21)

Thus, the kth subtensor X |k will only have nonzero entries, given byW0pJ
1
1,k � ...� JN1,kq, in the

locations indexed by the sets Jn1,k from above. The properties of the index sets Jn1,k furthermore

guarantee that these subtensors all have disjoint support. As a result both

W0 �
Ķ

k�1

X |k (4.22)
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and @
X |k,X |j

D
� 0 for all j, k P rKs with j � k

will always hold.

Recall that we want to compute the HoSVD of the subtensors we form at each scale in order

to create low-rank projection basis matrices along the lines of those in (4.14). Toward this end

we compute the top rpnqk ¤ rankpR
pnq
k q � |Jn1,k| left singular vectors of the mode-n matriciza-

tion of each X |k, X|kpnq P RIn�
±
m�n Im , for all n P rN s. Note that X|kpnq � R

pnq
k X|kpnq

always holds for these matricizations since R
pnq
k is a projection matrix.2 Thus, the top r

pnq
k

left singular vectors of X|kpnq will only have nonzero entries in locations indexed by Jn1,k. Let

Û
pnq
k P RIn�r

pnq
k be the matrix whose columns are these top singular vectors. As a result of the

preceding discussion we can see that Ûpnq
k � R

pnq
k Û

pnq
k will hold for all n P rN s and k P rKs.

Our low rank projection matrices Q
pnq
k P RIn�In used to produce low rank approximations of

each subtensor X |k can now be defined as

Q
pnq
k :� Û

pnq
k

�
Û
pnq
k

	J
. (4.23)

As a consequence of Ûpnq
k � R

pnq
k Û

pnq
k holding, combined with the fact that

�
R
pnq
k

	J
� R

pnq
k

since each R
pnq
k matrix is diagonal, we have that

Q
pnq
k :� Û

pnq
k

�
Û
pnq
k

	J
� R

pnq
k Û

pnq
k

�
R
pnq
k Û

pnq
k

	J
� R

pnq
k Û

pnq
k

�
Û
pnq
k

	J �
R
pnq
k

	J
� R

pnq
k Q

pnq
k R

pnq
k

(4.24)

holds for all n P rN s and k P rKs. Using (4.24) combined with the fact that Rpnq
k is a projection

2Here we are implicitly using (4.1).
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matrix we can further see that

R
pnq
k Q

pnq
k � R

pnq
k

�
R
pnq
k Q

pnq
k R

pnq
k

	
� R

pnq
k Q

pnq
k R

pnq
k � Q

pnq
k � R

pnq
k Q

pnq
k R

pnq
k

�
�
R
pnq
k Q

pnq
k R

pnq
k

	
R
pnq
k � Q

pnq
k R

pnq
k

(4.25)

also holds for all n P rN s and k P rKs.

1-scale Analysis of MS-HoSVD: Using this linear algebraic formulation we are now able to re-

express the the 1st scale approximation of X P RI1�I2�...IN , X̂1 P RI1�I2�...IN , as well as the

1st scale residual tensor tensor,W1 P RI1�I2�...IN , as follows (see (4.15) – (4.17)). We have that

X̂1 �
Ķ

k�1

�
X |k

N¡
n�1

Q
pnq
k

�
�

Ķ

k�1

�
W0

N¡
n�1

Q
pnq
k R

pnq
k

�
pUsing Lemma 1 and (4.21)q

�
Ķ

k�1

�
W0

N¡
n�1

Q
pnq
k

�
pUsing the properties in (4.25)q

�
Ķ

k�1

��
X � X̂0

	 N¡
n�1

Q
pnq
k

�
pUsing (4.12)q

(4.26)

holds. Thus, we see that the residual errorW1 from (4.17) satisfies

X � X̂0 �
Ķ

k�1

��
X � X̂0

	 N¡
n�1

Q
pnq
k

�
�W1. (4.27)

Having derived (4.27) it behooves us to consider when using such a first scale approximation

of X is actually better than, e.g., just using a standard HoSVD-based 0th scale approximation of

X along the lines of (4.12). As one might expect, this depends entirely on piq how well the 1st

scale partitions (i.e., the restriction matrices utilized (4.20)) are chosen, as well as on piiq how
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well restriction matrices of the type used in (4.20) interact with the projection matrices used to

create the standard HoSVD-based approximation in question. Toward understanding these two

conditions better, recall that X̂0 P RI1�I2�...IN in (4.27) is defined as

X̂0 � X
N¡
n�1

Ppnq � X �1 P
p1q �2 P

p2q � � � �N PpNq (4.28)

where the orthogonal projection matrices Ppnq P RIn�In are given by Ppnq � Ûpnq
�
Ûpnq

	J
for the matrices Ûpnq P RIn�rn used in (4.10). For simplicity let the ranks of the Ppnq pro-

jection matrices momentarily satisfy r1 � r2 � � � � � rN �: r0 (i.e., let them all be rank

r0   maxntrankpXpnqqu). Similarly, let all the ranks, rpnqk , of the 1st scale projection matrices

Q
pnq
k in (4.23) be r1 for the time being.

Motivated by, e.g., the memory cost analysis of Section 4.3.1 above, one can now ask when the

multiscale approximation error, }W1}, resulting from (4.27) will be less than a standard HoSVD-

based approximation error, }X � X̄0}, where

X̄0 :� X
N¡
n�1

P̄pnq � X �1 P̄
p1q �2 P̄

p2q � � � �N P̄pNq, (4.29)

and each orthogonal projection matrix P̄pnq is of rank r̄n � rH ¥ 2r0 ¥ r0 � cN�1r1
�
i.e.,

where each P̄pnq projects onto the top rH left singular vectors of Xpnq

�
. In this situation having

both }W1}   }X � X̄0} and rH ¥ 2r0 ¥ r0 � cN�1r1 hold at the same time would imply

that one could achieve smaller approximation error using MS-HoSVD than using HoSVD while

simultaneously achieving better compression (recall Section 4.3.1). In order to help facilitate such

analysis we prove error bounds in Appendix that are implied by the choice of a good partitioning

scheme for the residual tensorW0 in (4.20) – (4.22).
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In particular, with respect to the question concerning how well the 1st-scale approximation

error, }W1}, from (4.27) might compare to the HoSVD-based approximation error }X � X̄0}

we can use the following notion of an effective partition of W0. The partition of W0 formed

by the restriction matrices R
pnq
k in (4.20) – (4.22) will be called effective if there exists another

pessimistic partitioning ofW0 via (potentially different) restriction matrices
!
R̃
pnq
k

)K
k�1

together

with a bijection f : rKs Ñ rKs such that

Ņ

n�1

���X |k �n �I�Q
pnq
k

	���2 ¤ Ņ

n�1

�����W0 �n R̃
pnq
fpkq

�
I� P̃pnq

	 N¡
h�n

R̃
phq
fpkq

�����
2

(4.30)

holds for each k P rKs. In (4.30) the
!
P̃pnq

)
are the orthogonal projection matrices obtained from

the HoSVD of W0 with ranks r̃n � rH
�
i.e., where each P̃pnq projects onto the top r̃n � rH

left singular vectors of the matricization W0,pnq

�
. In Appendix, we show that (4.30) holding for

W0 implies that the error }W1} resulting from our 1st-scale approximation in (4.27) is less than an

upper bound of the type often used for HoSVD-based approximation errors of the form }X � X̄0}

(see, e.g., [241]). In particular, we prove the following result.

Theorem 1. Suppose that (4.30) holds. Then, the first scale approximation error given by MS-

HoSVD in (4.27) is bounded by

}W1}
2 �

���X � X̂0 � X̂1

���2 ¤ Ņ

n�1

���X �n

�
I� P̄pnq

	���2 ,
where

!
P̄pnq

)
are low-rank projection matrices of rank r̄n � r̃n � rH obtained from the truncated

HoSVD of X as per (4.29).

Proof. See Appendix.

Theorem 1 implies that }W1} may be less than }X � X̄0} when (4.30) holds. It does not,
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however, actually prove that }W1} ¤ }X � X̄0} holds whenever (4.30) does. In fact, directly

proving that }W1} ¤ }X � X̄0} whenever (4.30) holds does not appear to be easy. It also does not

appear to be easy to prove the error bound in theorem 1 without an assumption along the lines of

(4.30) which simultaneously controls both piq how well the restriction matrices utilized to partition

W0 in (4.21) are chosen, as well as piiq how poorly (worst case) restriction matrices interact with

the projection matrices used to create standard HoSVD-based approximations of W0 and/or X .

The development of simpler and/or weaker conditions than (4.30) which still yield meaningful

error guarantees along the lines of theorem 1 is left as future work.

Considering condition (4.30) above, we note that experiments show that it is regularly satisfied

on real datasets when piq the effective restriction matrices
!
R
pnq
k

)K
k�1

in (4.20) – (4.22) are first

formed by clustering the rows of each unfolding ofW0 using, e.g., local subspace analysis (LSA),

after which piiq pessimistic restriction matrices
!
R̃
pnq
k

)K
k�1

are randomly generated in order to

create another (random) partition ofW0 into K different disjoint subtensors for comparison. The

bijection f can then be created by, e.g., piq sorting the left-hand side errors in (4.30) for each

k P rks, piiq sorting the right-hand side errors in (4.30) for each k P rKs, and then piiiq matching

the largest left-hand and right-hand errors for comparision, the second largest left-hand and right-

hand errors for comparision, etc.. When checked in this way the sorted right-hand side errors

often dominate (entrywise) the sorted left-hand side errors for various reasonable ranks r̄n � r̃n �

rH � r0 � cN�1r1 (as a function of r0 and r1 with, e.g., c � 2) on every dataset considered in

Section 4.4 below, thereby verifying that (4.30) does indeed regularly hold.

We refer the reader to the strong empirical performance of MS-HoSVD in Section 4.4 for

additional evidence supporting the utility of (4.27) as a means of improving the compression per-

formance of standard HoSVD-based compression techniques. In addition, we further refer the

reader to Section 4.5 where it is empirically demonstrated that MS-HoSVD is also capable of se-
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lecting more informative features than HoSVD-based methods for the purposes of classification.

These two facts together provide strong evidence that combining the use of clustering-enhanced

multiscale approximation with existing tensor factorization techniques can lead to improved per-

formance in multiple application domains.

4.3.4 Adaptive Pruning in Multiscale HoSVD for Improved Performance

In order to better capture the local structure of the tensor, it is important to look at higher scale

decompositions. However, as the scale increases, the storage cost and computational complexity

will increase making any gain in reconstruction error potentially not worth the additional memory

cost. For this reason, it is important to carefully select the subtensors adaptively at higher scales.

To help avoid the redundancy in decomposition structure we propose an adaptive pruning method

across scales.

In adaptive pruning, the tree is pruned by minimizing the following cost function H � Error�

λ�Compression similar to the rate-distortion criterion commonly used by compression algorithms

where λ is the trade-off parameter [247]. To minimize this function we employ a greedy procedure

similar to sequential forward selection [248]. First, the root node which stores X̂0 is created and

scale-1 subtensors X̂1,k are obtained from the 0th order residual tensor Ŵ0 as discussed in Section

4.3. These subtensors are stored in a list and the subtensor which decreases the cost function the

most is then added to the tree structure under its parent node. Next, scale-2 subtensors belonging

to the added node are created and added to the list. All of the scale-1 and scale-2 subtensors in

the list are again evaluated to find the subtensor that minimizes the cost function. This procedure

is repeated until the cost function H converges or the decrease is minimal. A pseudocode of the

algorithm is given in Algorithm 4.2. It is important to note that this algorithm is suboptimal similar

to other greedy search methods.
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Algorithm 4.2 Multiscale HoSVD with Adaptive Pruning
1: Input: X : tensor , C � pc1, c2, ..., cN q: the desired number of clusters for each modes, sH : the

highest scale of MS-HoSVD.
2: Output: T : Tree structure containing the MS-HoSVD decomposition of X̂ .
3: Create an empty tree T .
4: Create an empty list L.
5: Add node containing X to L.
6: while There is a node in L that decreases the cost function HpT q. do
7: Find the node corresponding to Xs,t (the tth subtensor from sth scale) in the list L that decreases H

the most where s P t0, ..., sHu and t P t1, ...,Ksu.
8: Cs,t,

!
Û

pnq
s,t

)
Ð truncatedHOSVD(Xs,t).

9: Add the node containing Cs,t,
!
Û

pnq
s,t

)
to T .

10: if s   sH then
11: ComputeWs,t � Xs,t � X̂s,t.
12: Create K subtensors Xs�1,Kpt�1q�k with Jn

s�1,Kpt�1q�k fromWs,t where k P t1, 2, ..., Ku and
n P t1, 2, ..., Nu.

13: Add K nodes containing Xs�1,Kpt�1q�k and
!
Jn
s�1,Kpt�1q�k

)
to L.

14: end if
15: end while

4.4 Data Reduction

In this section, we demonstrate the performance of MS-HoSVD for tensor type data representation

on 3-mode and 4-mode real datasets compared with three other tensor decompositions: HoSVD,

H-Tucker and T-Train. The performance of tensor decomposition methods are evaluated in terms

of reconstruction error and compression rate. In the tables and figures below the error rate refers

to the normalized tensor approximation error }X�X̂ }F
}X }F

and the compression rate is computed as

# total bits to store X̂
# total bits to store X . Moreover, we show the performance of the proposed adaptive tree prunning

strategy for data reduction.
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4.4.1 Datasets

4.4.1.1 PIE dataset

A 3-mode tensor X P R244�320�138 is created from PIE dataset [249]. The tensor contains 138

images from 6 different yaw angles and varying illumination conditions collected from a subject

where each image is converted to gray scale. Fig. 4.1 illustrates the images from different frames

of the PIE dataset.
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50

100

150

200

Figure 4.1: Sample frames from PIE dataset corresponding to the 30th (left) and 80th (right)
frames.

4.4.1.2 COIL-100 dataset

The COIL-100 database contains 7200 images collected from 100 objects where the images of

each object were taken at pose intervals of 5�. A 4-mode tensor X P R128�128�72�100 is created

from COIL-100 dataset [250]. The constructed 4-mode tensor contains 72 images of size 128�128

from 100 objects where each image is converted to gray scale. In Fig. 4.2, sample images of four

objects taken from different angles can be seen.
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Figure 4.2: Image samples of four different objects from COIL-100 dataset from varying pose
angles (from 0� to 240� with 60� increments).

4.4.1.3 The Cambridge Hand Gesture Dataset

The Cambridge hand gesture database consists of 900 image sequences of nine gesture classes

of three primitive hand shapes and three primitive motions where each class contains 100 image

sequences (5 different illuminations � 10 arbitrary motions � 2 subjects). In Fig. 4.3, sample

image sequences collected for nine hand gestures can be seen. The created 4-mode tensor X P

R60�80�30�900 contains 900 image sequences of size 60�80�30 where each image is converted

to gray scale.

Figure 4.3: Illustration of nine different classes in Cambridge Hand Gesture Dataset.

4.4.2 Data Reduction Experiments

In this section, we evaluate the performance of MS-HoSVD for 1 and 2-scale decompositions

compared to HoSVD, H-Tucker and T-Train decompositions. In the following experiments, tensor
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partitioning is performed by LSA and the cluster number along each mode is chosen as ci � 2.

The rank used in HoSVD is selected adaptively using the energy criterion as described in Section

4.3. In our experiments, we performed MS-HoSVD with τ � 0.7 and τ � 0.75 and we kept τ the

same for each scale. For the same compression rates as the MS-HoSVD, the reconstruction error

of HoSVD, H-Tucker and T-Train models are computed.

Fig. 4.4 explores the interplay between compression rate and approximation error for MS-

HoSVD in comparison to HoSVD, H-Tucker and T-Train for PIE, COIL-100 and hand gesture

datasets. Starting from the left on Figs. 4.4(a), 4.4(b) and 4.4(c), the first two compression rates

correspond to 1-scale MS-HoSVD with τ � 0.7 and τ � 0.75, respectively while the last two are

obtained from 2-scale approximation with τ � 0.7 and τ � 0.75, respectively. As seen in Fig.

4.4, MS-HoSVD outperforms other approaches with respect to reducing PIE, COIL-100 and hand

gesture tensors at varying compression rates. Moreover, adding 2nd scale increases the storage

requirements while decreasing the error of MS-HoSVD. Fig. 4.5 illustrates the influence of scale

on the visual quality of the reconstructed images. As expected, introducing additional finer scales

into a multiscale approximation of video data improves image detail in each frame. Morevoer, data

reduction performance of T-Train seen better than H-Tucker in most of the experiments.
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Figure 4.4: Compression rate versus Normalized Reconstruction Error for MS-HoSVD (dark blue),
HoSVD (light blue), H-Tucker (green) and T-Train (yellow) for a) PIE, b) COIL-100 and c) Hand
Gesture datasets. Starting from the left for all (a), (b) and (c), the first two compression rates
correspond to 1-scale MS-HoSVD with τ � 0.7 and τ � 0.75 while the last two are obtained from
2-scale approximation with τ � 0.7 and τ � 0.75, respectively. MS-HoSVD provides lower error
than HoSVD, H-Tucker and T-Train.
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Figure 4.5: A single frame of the PIE dataset showing increasing accuracy with scale.

4.4.3 Data Reduction with Adaptive Tree Prunning

In this section, we evaluate the performance of adaptive tree pruning multiscale decompositions.

In the pruning experiments, clustering is performed by LSA and the cluster number along each

mode is chosen as ci � 2. The rank used in HoSVD is selected adaptively based on the energy

threshold which is 0.7. A pruned version of MS-HoSVD with 2-scale analysis that minimizes the

cost function H � Error � λ � Compression for 2-scale analysis is implemented for PIE, COIL-

100 and Hand Gesture datasets with varying λ values as reported in Tables 4.1, 4.2 and 4.3. As

λ increases, reducing the compression rate becomes more important and the algorithm prunes the

leaf nodes more. For example, a choice of λ � 0.75 prunes all of the nodes corresponding to the

second scale subtensors for PIE data (see Table 4.1).

As it can be seen from Tables 4.1, 4.2 and 4.3, the optimal tradeoff between reconstruction

error and compression rate are achieved at different λ values for different data. For example, for
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PIE data, increasing λ value does not provide much change in reconstruction error while increasing

the compression accuracy. On the other hand, for COIL-100, λ � 0.75 provides a good tradeoff

between reconstruction error and compression rate. On the other hand, small changes on λ yield

significant effects on pruning the subtensors of 2-scale decomposition of hand gesture data. Fig.

4.6 illustrates the performance of the pruning algorithm on PIE dataset. Applying pruning with

λ � 0.25 increases the reconstruction error from 0.0276 to 0.0506 while reducing the compression

rate by 4 (Table 4.1). As seen in Fig. 4.6, the 2nd scale approximation obtained by adaptive

pruning algorithm preserves most of the facial details in the image.

Table 4.1: Reconstruction error and compression rate computed for pruned tree structure obtained
by applying MS-HoSVD with 2-scales to PIE data.

λ 0 0.22 0.25 0.30 0.75
Normalized error 0.0276 0.0395 0.0506 0.0530 0.0540

Compression 0.1241 0.0809 0.0377 0.0284 0.0261
Scales of subtensors 0+1+2 0+1+2 0+1+2 0+1+2 0+1

Table 4.2: Reconstruction error and compression rate computed for pruned tree structure obtained
by applying MS-HoSVD with 2-scales to COIL-100 dataset.

λ 0 0.25 0.50 0.75 0.80
Normalized error 0.0857 0.0867 0.0913 0.1060 0.1207

Compression 0.0863 0.0840 0.0734 0.0526 0.0347
Scales of subtensors 0+1+2 0+1+2 0+1+2 0+1+2 0+1+2

Table 4.3: Reconstruction error and compression rate computed for pruned tree structure obtained
by applying MS-HoSVD with 2-scales to Hand Gesture dataset.

λ 0 0.25 0.26 0.27 0.28
Normalized error 0.0691 0.0869 0.0913 0.0946 0.0999

Compression 0.1694 0.1056 0.0827 0.0698 0.0514
Scales of subtensors 0+1+2 0+1+2 0+1+2 0+1+2 0+1
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Figure 4.6: Reconstruction error and compression rate computed for pruned tree structure obtained
by applying MS-HoSVD with 2-scales to PIE dataset. Top-left and right image is the sample frame
by reconstructing the tensor using only 0th scale and recontruction by using 0th and 1st scales
respectively. Bottom-left image is a sample frame for reconstructed using 2-scale approximation
with all the subtensors and the bottom-right image is the reconstruction of 2 scale analysis with
pruning approach where λ � 0.25.

Performance of the pruning algorithm reported in Tables 4.1, 4.2 and 4.3 is also compared with

HoSVD, H-Tucker and T-Train decompositions in Fig. 4.7. As seen in Fig. 4.7 (b) and (c), MS-

HoSVD outperforms other approaches for compressing COIL-100 and Hand Gesture datasets at

varying compression rates. However, for PIE data, the performance of MS-HoSVD and HoSVD

are very close to each other while both approaches outperform H-Tucker and T-Train, as can be

seen in Fig. 4.7 (a). In Fig. 4.8, sample frames of PIE data reconstructed by T-Train (top-left),

H-Tucker (top-right), HoSVD (bottom-left) and pruned MS-HoSVD with 2-scales (bottom-right)

are shown. It can be easily seen that the reconstructed images by H-Tucker and T-Train are more

blurred than the ones obtained by HoSVD and MS-HoSVD. One can also see the facial details

captured by MS-HoSVD are clearer than HoSVD although the performances of both algorithms
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are very similar to each other. The reason for capturing facial details better by MS-HoSVD is that

the higher scale subtensors encode facial details.
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Figure 4.7: Compression rate versus Normalized Reconstruction Error for MS-HoSVD with adap-
tive pruning (dark blue), HoSVD (light blue), H-Tucker (green) and T-Train (yellow) for a) PIE, b)
COIL-100 and c) Hand Gesture datasets. 2-scale MS-HoSVD tensor approximations are obtained
using τ � 0.7 for each scale and varying pruning trade-off parameter λ.
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Figure 4.8: Reconstructed frame samples from PIE data compressed by T-Train (top-left), H-
Tucker (top-right), HoSVD (bottom-left) and pruned MS-HoSVD with 2-scales (bottom-right).
2-scale MS-HoSVD tensor approximation is obtained using τ � 0.7 for each scale and λ � 0.25.

4.5 Feature Extraction and Classification

In this section, we evaluate the features extracted from MS-HoSVD for classification of 2-mode

and 3-mode tensors containing object images and hand gesture videos. Discrimination power and

classification accuracy of MS-HoSVD features are compared to the features extracted by HoSVD

and T-Train.

4.5.1 COIL-100 Image Dataset

For computational efficiency, each image was downsampled to a gray-scale image of 32 � 32

pixels. Number of images per object used for training data was gradually increased from 18 to 54

and selected randomly. A 3-mode tensor X tr P R32�32�Itr is constructed from training images
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where Itr P 100 � t18, 36, 54u and the rest of the images are used to create the testing tensor

X te P R32�32�Ite where Ite � 7200 � Itr.

4.5.2 The Cambridge Hand Gesture Dataset

For computational efficiency, each image was downsampled to a gray-scale image of 30�40 pixels.

Number of image sequences used for training data gradually increased from 25 to 75 per gesture

and selected randomly. A 4-mode tensor X tr P R30�40�30�Itr is constructed from training image

sequences where Itr P 9� t25, 50, 75u and the rest of the image sequences are used to create the

testing tensor X te P R30�40�30�Ite where Ite � 900 � Itr.

4.5.3 Classification Experiments

4.5.3.1 Training

For MS-HoSVD, the training tensor X tr is decomposed using 1-scale MS-HoSVD as follows.

Tensor partitioning is performed by LSA and the cluster number along each mode is chosen as c �

t2, 3, 1u yielding 6 subtensors for COIL-100 dataset and c � t2, 2, 3, 1u yielding 12 subtensors

for hand gesture dataset. We did not partition the tensor along the last mode that corresponds to

the classes to make the comparison with other methods fair. The rank used in 0th scale is selected

adaptively depending on the energy criterion with τ � 0.7, while full rank decomposition is used

for the 1st scale. Decomposing training data X tr by MS-HoSVD as

X trj,k � C
tr
j,k �1 Û

tr,p1q
j,k �2 Û

tr,p2q
j,k ...�N Û

tr,pNq
j,k , (4.31)
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provides core tensors Ctrj,k and factor matrices U
tr,piq
j,k for jth scale and kth subtensor. Feature

tensor Strj,k for the training data is then created by projecting X trj,ks onto the first N � 1 factor

matrices Utr,piq
j,k as:

Strj,k � X
tr
j,k �1

�
Û
tr,p1q
j,k

	J
�2

�
Û
tr,p2q
j,k

	J
...�N�1

�
Û
tr,pN�1q
j,k

	J
. (4.32)

Unfolding the feature tensors Strj,k along the sample mode N and concatenating them to each

other yields a high dimensional feature vectors for the training samples. From these vectors, Nf

features with the highest Fisher Score [251] are selected to form the lower-dimensional feature

vectors xtr P RNf�1 for each training sample where the number of features (Nf ) is determined

by maximizing the discrimination score. For HoSVD and T-Train, full rank decompositions are

computed and feature vectors are created by selecting Nf features with the highest Fisher Score

from the core tensors as described above.

4.5.3.2 Testing

To create feature vectors from the testing samples, first, the testing tensor Xte is projected onto

U
tr,piq
j,k where i P rN � 1s as:

Stej,k � X
te
j,k �1

�
Û
tr,p1q
j,k

	J
�2

�
Û
tr,p2q
j,k

	J
...�N�1

�
Û
tr,pN�1q
j,k

	J
. (4.33)

Similar to the training step, unfolding the feature tensors Stej,k along the sample mode N and

concatenating them with each other yields high dimensional feature vectors for the testing samples.

The features corresponding to the features selected from the training step are used to form the

feature vectors for testing samples xte P RNf�1. Once the feature vectors are obtained, 1-NN
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is used to classify the test samples using the Euclidean distance. A similar two-step procedure

is used to create feature vectors for HoSVD and T-Train for testing data. First, the testing tensor

is projected onto factor matrices obtained from training data, then, Nf number of features are

selected to create feature vectors.

As seen in Tables 4.4 and 4.5, features obtained from MS-HoSVD have greater Fisher score

on average and classify the images better than both HoSVD and T-Train. It is also seen that

the performance of HoSVD, T-Train and MS-HoSVD become close to each other as the size of

the training dataset increases as expected. The reason behind the improved performance of MS-

HoSVD is that MS-HoSVD captures the variations and nonlinearities across the modes such as

rotation or translation better than the other methods. In both of the datasets used in this section,

the images are rotated across the different frames. Since these nonlinearities are encoded in the

higher scale (1st scale) features while the average characteristics , which are the same as HoSVD,

are captured by the lower scale (0th scale) MS-HoSVD features the classification performance of

the MS-HoSVD is slightly better than HoSVD. However, MS-HoSVD features, have much higher

Fisher score than HoSVD features on average which indicates that classification using 1-NN with

Euclidean distance may not be able to capture this difference in discrimination power since it treats

all of the features obtained from 0th and 1st scales equally. It is also seen that T-Train features are

not as good as MS-HoSVD and HoSVD features for capturing rotations and translations in the data

and requires larger training set to reach the performance of MS-HoSVD and HoSVD.
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Table 4.4: 1NN classification results for COIL-100 dataset over 20 trials with Nf � 100.

Training Size Method Accuracy FS (103)
mean � std. mean � std.

25%
MS-HoSVD 93.71 � 1.28 1.11 � 0.38

HoSVD 93.07 � 1.33 0.25 � 0.03
T-Train 92.29 � 2.23 0.26 � 0.02

50%
MS-HoSVD 97.41 � 0.69 1.01 � 0.38

HoSVD 97.10 � 0.83 0.24 � 0.02
T-Train 96.99 � 1.09 0.24 � 0.02

75%
MS-HoSVD 98.38 � 0.65 0.97 � 0.34

HoSVD 98.16 � 0.72 0.26 � 0.01
T-Train 98.25 � 0.41 0.25 � 0.01

Table 4.5: 1NN classification results for hand gesture dataset over 20 trials with Nf � 200.

Training Size Method Accuracy FS (103)
mean � std. mean � std.

25%
MS-HoSVD 75.40 � 3.87 6.37 � 1.35

HoSVD 75.01 � 3.99 5.51 � 0.50
T-Train 69.20 � 2.63 7.55 � 0.32

50%
MS-HoSVD 83.86 � 3.12 6.04 � 1.68

HoSVD 83.15 � 2.90 4.01 � 0.21
T-Train 78.97 � 2.25 5.64 � 0.36

75%
MS-HoSVD 87.47 � 2.07 5.14 � 1.57

HoSVD 86.93 � 2.31 3.68 � 0.17
T-Train 85.64 � 2.57 4.59 � 0.21
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4.6 Applications on fMRI

Advances in information technology are making it possible to collect increasingly massive amounts

of multidimensional, multi-modal neuroimaging data such as functional magnetic resonance imag-

ing (fMRI). Current fMRI datasets involve multiple variables including multiple subjects, as well

as both temporal and spatial data. These high dimensional datasets pose a challenge to the sig-

nal processing community to develop data reduction methods that can exploit their rich structure

and extract meaningful summarizations. In this section, we demonstrate the performance of MS-

HoSVD for compressing 4-way tensor containing fMRI volume sequences compared with HoSVD

and 4D-Wavelet transform.

4.6.1 Data Description and Preprocessing

The data used in this section is obtained from 1000 Functional Connectomes Project [252] which

has aggregated previously collected test-retest imaging datasets from more than 36 labs around the

world. The data acquired from above url is referred to as Bangor which contains open-eye resting

state fMRI scans of 20 male participants aged between 19-38 (Magnet: 3T, TR = 2, 34 slices, 265

time points).

The data were pre-processed using CONN functional connectivity toolbox [253]. First, struc-

tural images were co-registered to the mean functional image for each subject and normalized to

MNI space. Then, slice timing correction and motion correction were performed for each func-

tional images. The functional images were warped to Talairach Daemon atlas [254] provided by

CONN toolbox and smoothed with an 4-mm FWHM Gaussian kernel. Confounds such as mo-

tion parameters obtained from reallignment and bold signals obtained from white matter and CSF

masks were regressed out and band-pass (0.008-0.09 Hz) temporal filtering was applied to func-
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tional images of each subject. After pre-processing, the fMRI dataset can be represented as a

4-mode tensor Xm P R109�91�91�265 for each subject m P t1, 2, ..., 20u where the first three

modes correspond to the preprocessed volume data and the fourth mode to time.

4.6.2 Results

In this section, we evaluated the performance of the MS-HoSVD in comparison to HoSVD and 4-D

Wavelet for both compression and error rate on fMRI data. Xms obtained from preprocessing are

decomposed by using MS-HoSVD yielding X̂mMS , HoSVD X̂mHO and wavelet X̂mW , respectively.

In the following experiments, clustering is performed by by local subspace analysis (LSA) [244]

and the number of clusters along each mode is chosen as ci � 4. The rank used in truncated

HoSVD is selected adaptively depending on the energy criterion. Energy criterion determines

the minimum number of singular values kept during the SVD of the unfolded tensors along each

mode such that the cumulative energy is above a certain threshold. For MS-HoSVD, the energy

thresholds are selected as 0.7 and 0.95 for the SVDs computed for 0th and 1st scales, respectively.

For HoSVD, the energy threshold increased gradually from 0.990 to 0.999 with a step size of

0.0005 to compare the reconstruction error at similar compression ratios (experiment-1) and the

compression rate for the similar error rates (experiment-2). For the 4-D Wavelet compression, 2-

scale 1-D temporal Wavelet transform followed by a 2-scale 3-D spatial Wavelet transform with

Db3 wavelet functions were applied. Significant wavelet coefficients were selected to have similar

compression ratio close to MS-HoSVD. In Table 4.6 the error rate refers to the normalized tensor

approximation error }X�X̂ }F
}X }F

and the compression ratio is computed as # total bits to store X
# total bits to store X̂

. As

seen in Table, 4.6, MS-HoSVD provides reduced error (experiment-1) and better compression

than HoSVD (experiment-2) for 20 subjects. MS-HoSVD also provides smaller reconstruction

error than 4-D Wavelet (Table 4.6).
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Table 4.6: Average compression ratio (mean�st.dev) and reconstruction error (mean�st.dev) ob-
tained by MS-HoSVD, HoSVD and 4-D Wavelet over 20 subjects.

MS-HoSVD HoSVD HoSVD 4D-Wavelet
(Exp-1) (Exp-2)

Compression 10.3275 10.3736 8.3068 10.3456
Ratio �0.6287 �0.5955 �0.6427 �0.1605

Reconstruction 0.0231 0.0404 0.0228 0.0493
Error �0.0018 �0.0061 �0.0040 �0.0026

Once low-rank approximations are obtained, mean ROI signals Ym P R88�265, Ym
MS P

R88�265, Ym
HO P R88�265 and Ym

W P R88�265 corresponding to Xm, X̂mMS , X̂mHO and X̂mW

are computed for each subject using Talairach Daemon atlas. Connectivity networks for each sub-

ject m are denoted as Am P R88�88, Am
MS P R88�88, Am

HO P R88�88 , Am
W P R88�88, and are

constructed by computing the correlation coefficient between all ROIs in Ym, Ym
MS , Ym

HO and

Ym
W , respectively. Significant connections (p ¤ 0.01, Bonferroni corrected) for each method were

determined by performing t-tests for each edge of connectivity matrices over subjects. Table 4.7

shows the miss and false alarm rates for the connectivity networks constructed using MS-HoSVD,

HoSVD and 4-D Wavelet in comparison to the original network. As it can be seen from Table

2, we obtain lower error rates for MS-HoSVD compared to HoSVD and Wavelet for all of the

experiments.

Table 4.7: Comparisons of probability of miss (PMiss) and probability of false alarm (PFA) ob-
tained by MS-HoSVD, HoSVD and 4-D Wavelet.

MS-HoSVD HoSVD HoSVD 4D-Wavelet
(Exp-1) (Exp-2)

PMiss 0.0020 0.0033 0.0031 0.0023
PFA 0 0.0006 0 0
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4.7 Conclusions

In this chapter, we proposed a new multi-scale tensor decomposition technique for better approx-

imating the local nonlinearities in generic tensor data. The proposed approach constructs a tree

structure by considering similarities along different fibers of the tensor and decomposes the tensor

into lower dimensional subtensors hierarchically. A low-rank approximation of each subtensor is

then obtained by HoSVD. We also introduced a pruning strategy to find the optimum tree structure

by keeping the important nodes and eliminating redundancy in the data. The proposed approach is

applied to a set of 3-way and 4-way tensors to evaluate its performance on both data reduction and

classification applications.

Future work will consider automatic selection of parameters such as the number of clusters

and the appropriate rank along each mode.The computational efficiency of the proposed method

can be improved through parallelization of the algorithm such as parallel construction of subten-

sors and parallel implementation of HoSVD [255]. This efficient implementation will enable the

implementation of finer scale decompositions for higher order and higher dimensional tensors.

Proposed algorithm currently constructs the tree structure based on decomposing the tensor using

HoSVD. The proposed tensor decomposition structure can also be implemented using other tensor

decomposition methods such as PARAFAC and tensor-train decompositions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis makes fundamental contributions to data reduction of tensor type data with a particular

focus on providing a better understanding of dynamic functional connectivity brain networks. In

Chapter 2, we discuss the problem of tensor data reduction through clustering where the tensor

contains functional connectivity brain networks collected in time across multiple subjects, and we

approach the problem as a multi-graph clustering problem. To determine the common community

structure underlying the functional connectivity networks of all subjects, we propose a hierarchical

consensus spectral clustering approach, FCCA. To obtain a hierarchical decomposition, Fiedler

vector based graph bi-partitioning method is applied first to the data and later to its partitionins

repeatedly. Multiple subjects are taken into account by first obtaining an initial bipartition of each

subject’s connectivity network and then by iteratively partitioning the co-occurrence matrix across

subjects. Furthermore, new information-theoretic cluster quality measures are introduced for se-

lecting the optimal community structure as an alternative to the standard modularity measure. This

measure depends on optimizing the tradeoff between maximizing the divergence between clusters

and minimizing the entropy of individual clusters. It is also shown that FCCA is computationally

more efficient than standard consensus clustering approaches such as voting and is more accurate
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than averaging in the case of outliers and overlapping community structures. Moreover, the appli-

cation of the proposed algorithm to functional connectivity networks constructed from EEG data

during a study of ERN produced clusters consistent with published work [178,179] whereas voting

and averaging methods failed to identify meaningful lateral and medial frontal communities.

In Chapter 3, we proposed an alternative way to reduce this high dimensional data through

linear subspace estimation and update methods. In this approach, the dynamics of the connectiv-

ity networks are taken into account such that the data reduction is done across subjects for time

intervals determined by the subspace tracking approach. For this purpose, we introduced a new

recursive low-rank + sparse structure learning algorithm for tensor type data in order to track the

modular structure of functional connectivity networks through EEG recordings across multiple

subjects. This approach yields robust estimation of the low-rank component of a dynamic 3-way

tensor at each time point and provides a recursive way to update the subspace information. The

proposed approach, Ho-RLSL, identifies the time points where the low-rank subspaces change and

recursively updates these subspaces to improve the low-rank approximation of data. The proposed

approach is used to separate low-rank and sparse parts of dFCNs across multiple subjects. Low-

rank component of dFCNs obtained for the detected time intervals are summarized using FCCA.

The low-rank subspace approximation to each time interval provides a denoised version of the

original network, thus improving the quality of the clustering results. The results indicate a clear

change in the community structure before and after the physiological response. Moreover, the de-

tected community structures are in line with previous hypothesis regarding the networks involved

in cognitive control [221].

In Chapter 4, we proposed a new tensor decomposition technique which better approximates

the underlying nonlinear structure of tensors compared to HoSVD. The proposed method con-

structs data-dependent multiscale dictionaries to better represent the data. The multiscale structure
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of the proposed decomposition is obtained by constructing a tree structure depending on the local

similarities in the tensor. Based on these local similarities, the proposed method decomposes the

tensor into lower dimensionsional subtensors hierarchically. Low-rank structure of each subtensor

obtained by HoSVD provides finer linear approximation for the points in the region of interest.

Moreover, a pruning strategy which keeps important nodes in the tree is introduced to find sub-

optimal tree structure. The proposed approach is applied to 3-way and 4-way tensors containing

simulated and real datasets to illustrate the improvement in the compression performance compared

to HoSVD and Wavelet transform. In addition, it is shown that features obtained from multiscale

representation provide better classification performance than using HoSVD features for tensors

containing nonlinearities such as rotation or translation.

5.2 Future Work

There are still remaining challenges involving data reduction of high-dimensional and higher-order

tensors. Some of these challenges and possible solutions include:

• Unsupervised model selection: Tensor based approaches have been widely used in a vari-

ety of fields e.g. computer vision, data science and biomedical imaging and, identifying

the most appropriate model such as Tucker, PARAFAC or Tensor-Train to exploit the mul-

tilinear structure of the data is one of the most important challenges. Bro et al. [256] has

already addressed this issue and proposed an approach known as Core consistency diagnos-

tics (CORCONDIA) to select Tucker versus CP model. Core consistency metric provides a

larger value if the Tucker core is close to super diagonal tensor indicating that the CP model

is more appropriate. However, this metric is limited to Tucker and CP models. Therefore,

there is a need to develop new metrics appropriate for other models including Tensor-Train
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and Hierarchical Tucker. Using such a metric may also enable us to select appropriate model

to use in proposed multiscale tensor decomposition structure and may improve compression

performance.

• Robust rank selection: Finding the appropriate rank for the selected model is another cru-

cial problem for tensor based approaches and robust rank selection algorithms improve the

compression performance of the selected models directly. Several different approaches have

been already proposed to identify rank for both CP and Tucker decomposition [257–264].

For CP rank, Papalexakis et al. [259] proposed fast and exact algorithm for CORCONDIA

which scales with tensor size while [262] and [260] used Bayesian approaches. To identify

Tucker rank, Timmerman et al. [263] introduced difference in fit (DIFFIT) procedure which

finds the combination of dimensions that gives the best-fit by assigning different ranks to

each mode. Similar to CP, Bayesian approaches have been also used to identify Tucker

rank [262]. Adapting these methods to Ho-RLSL to estimate low-rank subspace dimension

in a robust way may enhance the denoising performance of the proposed algorithm. More-

over, robust rank selection may also improve the compression performance of MS-HoSVD.

• Efficient algorithms: In order to overcome the curse of dimensionality emerging from higher-

order data, developing scalable tools for tensor decomposition has become inevitable. Re-

cently, many approaches have been developed to compute Tucker and CP decompositions

efficiently [255, 265–269]. Tsourakakis [265] showed that an accurate low-rank Tucker ap-

proximation of the tensor can be computed much faster from a sparsified version of the

tensor. Similarly, Papalexakis et al. [267] proposed a fast and parallelizable method us-

ing random sampling techniques for speeding up CP decomposition which produces sparse

outer product approximations for sparse tensors. Scalable and distributed implementations
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of tensor mode-N product and singular value decomposition, which are essential to both CP

and Tucker decompositions have also been developed [246, 266]. More recently, Austin et

al. [269] proposed the first distributed memory implementation of a parallel algorithm for

computing a Tucker decomposition. Adapting these techniques to the implementation of

proposed Ho-RLSL and MS-HoSVD will surely reduce the time complexity.
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Proofs for Chapter 3

βt Is Small

In this section, we will prove that βt is small and that eqn (3.14) can be treated as a sparse recovery

in noise problem. Define the subspace estimation error for ith mode as

SEpPpiq, P̂piqq :�‖ pI � P̂piqP̂J,piqqPpiq ‖F� εi, (1)

where Ppiq and P̂piq are true and estimated basis matrices of the ith mode, respectively. P
piq
j ��

P
piq
j�1P

piq
j,new

�
where P

piq
j,new is a ni � c

piq
j,new basis matrix with pP

piq
j,newq

JP
piq
j�1 � 0. Since

the low-rank tensor at time t, Lt, has components Ams with m P t1, 2, ..., 8u which are the

projections of Lt in both the previous subspace P
piq
j�1s and P

piq
j,news. Therefore, Lt can be written

as the sum of these components:

Lt � A1 �1 P
p1q
j�1 �2 P

p2q
j�1 �3 P

p3q
j�1

�A2 �1 P
p1q
j,new �2 P

p2q
j�1 �3 P

p3q
j�1

�A3 �1 P
p1q
j�1 �2 P

p2q
j,new �3 P

p3q
j�1

�A4 �1 P
p1q
j�1 �2 P

p2q
j�1 �3 P

p3q
j,new

�A5 �1 P
p1q
j,new �2 P

p2q
j,new �3 P

p3q
j�1

�A6 �1 P
p1q
j,new �2 P

p2q
j�1 �3 P

p3q
j,new

�A7 �1 P
p1q
j�1 �2 P

p2q
j,new �3 P

p3q
j,new

�A8 �1 P
p1q
j,new �2 P

p2q
j,new �3 P

p3q
j,new

(2)
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where we redefine the old and new parts of the projection as

At,� � A1 � Lt �1 P
J,p1q
j�1 �2 P

J,p2q
j�1 �3 P

J,p3q
j�1

A2 � Lt �1 P
J,p1q
j,new �2 P

J,p2q
j�1 �3 P

J,p3q
j�1

A3 � Lt �1 P
J,p1q
j�1 �2 P

J,p2q
j,new �3 P

J,p3q
j�1

A4 � Lt �1 P
J,p1q
j�1 �2 P

J,p2q
j�1 �3 P

J,p3q
j,new

A5 � Lt �1 P
J,p1q
j,new �2 P

J,p2q
j,new �3 P

J,p3q
j�1

A6 � Lt �1 P
J,p1q
j,new �2 P

J,p2q
j�1 �3 P

J,p3q
j,new

A7 � Lt �1 P
J,p1q
j�1 �2 P

J,p2q
j,new �3 P

J,p3q
j,new

At,new � A8 � Lt �1 P
J,p1q
j,new �2 P

J,p2q
j,new �3 P

J,p3q
j,new.

(3)

Assumptions:

1. Assume that subspace estimation error is εi �‖ pI � P̂piqP̂J,piqqPpiq ‖F¤ r
piq
0 ζ for ζ ! 1.

2. Let lpkqi be the ith column of Lt,pkq and assume that ‖ l
pkq
i ‖F¤ γ�,k, γ�,k ¤

1c
ζr
pkq
J

and

γnew,k    γ�,k.

3. Define γ� � minkPt1, 2, 3upγ�,k

b±3
i�1,i�kNiq and assume that ‖ Lt ‖F¤ γ�.

4. Define γnew � minkPt1, 2, 3upγnew,k

b±3
i�1,i�kNiq and assume that γnew ! γ�.

βt is defined as βt � Lt�1 φφφ
p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t where φφφpiqt � I� P̂

piq
t�1pP̂

piq
t�1q

J and its norm

is:
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‖ βt ‖F� ‖ Lt �1 φφφ
p1q
t �2 φφφ

p2q
t �3 φφφ

p3q
t ‖F

¤ ε1ε2ε3||At,�||F � ε2ε3||A2||F

�ε1ε3||A3||F � ε1ε2||A4||F

�ε3||A5||F � ε2||A6||F

�ε1||A7||F � ||At,new||F

(4)

From section 5.2:

‖ A2 ‖F¤ γ�

b
rankpPp1q

j,newqrankpPp2q
j�1qrankpPp3q

j�1q

...

‖ A7 ‖F¤ γ�

b
rankpPp1q

j�1qrankpPp2q
j,newqrankpPp3q

j,newq

(5)

Let N̄ � maxipNiq, r̄J � maxipr
piq
J q and γ̄� � maxkpγ�,kq � N̄ where γ̄� ¡ γ�. Define

γ̄new � maxkpγnew,kq and assume that γ̄new ! γ̄�.

Note that;

• First term:

ε1ε2ε3||At,�||F ¤ pr̄j�1ζq
3 � N̄ � γ̄�

¤ pr̄j�1ζq
3 � N̄ �

1a
ζr̄J

¤ N̄ � ζ5{2 � pr̄j�1q
2.

(6)

• Last term:

||At,new||F ¤ N̄ � γ̄new,1. (7)
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• Cross terms:

ε2ε3||A2||F ¤ pr̄j�1ζq
2 � γ̄�

a
r̄j,newr̄j�1r̄j�1

¤ N̄ � pr̄j�1ζq
2 �

1a
ζr̄J

r̄j�1
a
r̄j,new

¤ N̄ � ζ3{2 � pr̄j�1q
2 � pr̄j,newq

1{2.

(8)

ε3||A5||F ¤ pr̄j�1ζq � γ̄�
a
r̄j,newr̄j,newr̄j�1

¤ N̄ � pr̄j�1ζq �
1a
ζr̄J

r̄j,new
a
r̄j�1

¤ N̄ � ζ1{2 � pr̄j�1q
1{2 � r̄j,new.

(9)

Therefore;

‖ βt ‖F¤ N̄ � ζ5{2 � pr̄j�1q
2 � 3 � N̄ � ζ3{2 � pr̄j�1q

2 � pr̄j,newq
1{2

�3 � N̄ � ζ1{2 � pr̄j�1q
1{2 � r̄j,new � N̄ � γ̄new.

‖ βt ‖F¤ N̄ � ζ1{2 � γ̄
p�4q
� � 3 � N̄ � ζ1{2 � pr̄j�1q

1 � γ̄
p�2q
� � pr̄j,newq

1{2

�3 � N̄ � γ̄
p�1q
� � r̄j,new � N̄ � γ̄new.

(10)

Since ζ is small and γ̄� is large, the last term is dominant in the upper bound. Thus, βt can be

considered as a noise by the slow subspace change assumption ‖ γnew ‖F!‖ St ‖F .
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Upper bound for Frobenious Norm of Cross Terms

Upper bound for the norm of the cross terms is derived as follows:

‖ At,2 ‖F� ‖ Lt �1 P
J,p1q
j,new �2 P

J,p2q
j�1 �3 P

J,p3q
j�1 ‖F

¤ ‖ PJ,p1q
j,newLt,p1q ‖F � ‖ Pp3q

j�1 bP
p2q
j�1 ‖F

¤
b
r
p1q
j,new � γ� �

c
tr
�
pP

J,p3q
j�1 bP

J,p2q
j�1 qpP

p3q
j�1 bP

p2q
j�1q

�
�

b
r
p1q
j,new � γ� �

c
tr
�
pP

J,p3q
j�1 P

p3q
j�1q

J b pP
J,p2q
j�1 P

p2q
j�1q

�
�

b
r
p1q
j,new � γ� �

c
tr
�
pP

J,p3q
j�1 P

p3q
j�1q

J
�
� tr
�
pP

J,p2q
j�1 P

p2q
j�1q

�
� γ�

b
r
p1q
j,newr

p2q
j�1r

p3q
j�1.

(11)

Proofs for Chapter 4

In order to facilitate error analysis for the 1-scale MS-HoSVD that is similar to the types of error

analysis available for various HoSVD-based low-rank approximation strategies (see, e.g., [241]),

we will engage in a more in depth discussion of condition (4.30) herein. Recall that the partition

ofW0 formed by the restriction matrices Rpnq
k in (4.20) – (4.22) is called effective if there exists

another pessimistic partitioning ofW0 via restriction matrices
!
R̃
pnq
k

)K
k�1

together with a bijection

f : rKs Ñ rKs such that

Ņ

n�1

���X |k �n �I�Q
pnq
k

	���2 ¤ Ņ

n�1

�����W0 �n R̃
pnq
fpkq

�
I� P̃pnq

	 N¡
h�n

R̃
phq
fpkq

�����
2

(12)

holds for each k P rKs. In (12) the
!
P̃pnq

)
are the orthogonal projection matrices obtained

from the HoSVD of W0 with ranks r̃n ¥ r̄n ¥ rn
�
i.e., where each P̃pnq projects onto the top

r̃n left singular vectors of the matricization W0,pnq

�
. Below we will show that (12) holding for

W0 implies that the error }W1} resulting from our 1st-scale approximation in (4.27) is less than
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an upper bound of the type given for a high-rank standard HoSVD-based approximation (4.29)

in [241].

Here we will begin with a lemma that shows our subtensor-based approximation of W0 is

accurate whenever (12) is satisfied.

Lemma 3. LetW0 � X � X̂0 P RI1�I2�...IN . Suppose that
!
R
pnq
k

)
is a collection of effective

restriction matrices that form an effective partition of W0 with respect to a pessimistic partition

formed via pessimistic restriction matrices
!
R̃
pnq
k

)
as per (12) above. Similarly, let P̃pnq be the

rank r̃n ¥ r̄n @n orthogonal projection matrices from (12) obtained via the truncated HoSVD of

W0 as above. Then,

���W0 � X̂1

���2 �
����X � X̂0

	
�
°K
k�1

��
X � X̂0

	�N
n�1 Q

pnq
k

	���2
¤
°N
n�1

����X � X̂0

	
�n

�
I� P̃pnq

	���2 .

Proof. We have that

���W0 � X̂1

���2 � �����W0 �
Ķ

k�1

W0

N¡
n�1

Q
pnq
k

�����
2

Use (4.12) and (4.26)

�

����� Ķ
k�1

W0

N¡
n�1

R
pnq
k �

Ķ

k�1

W0

N¡
n�1

Q
pnq
k R

pnq
k

�����
2

Use (4.21), (4.22), and (4.25)

�

����� Ķ
k�1

W0

N¡
n�1

�
R
pnq
k �Q

pnq
k R

pnq
k

	�����
2

Use Lemma 1

�
Ķ

k�1

�����X |k N¡
n�1

�
I�Q

pnq
k

	�����
2

. Use Lemma 1, (4.21), and (4.25)

(13)
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Applying lemmas 1 and 2 to (13) we can now see that

���W0 � X̂1

���2 � Ķ

k�1

Ņ

n�1

�����X |k n�1¡
h�1

Q
phq
k �n

�
I�Q

pnq
k

	�����
2

¤
Ķ

k�1

Ņ

n�1

���X |k �n �I�Q
pnq
k

	���2

since the Q
pnq
k matrices are orthogonal projections. Using assumption (12) we now get that

���W0 � X̂1

���2 ¤ Ķ

k�1

Ņ

n�1

�����W0 �n R̃
pnq
k

�
I� P̃pnq

	 N¡
h�n

R̃
phq
k

�����
2

�
Ņ

n�1

���W0 �n

�
I� P̃pnq

	���2

where we have used the fact that the pessimistic restriction matrices R̃pnq
k partitionW0 in the last

line.

Lemma 3 indicates that the error in approximating W0 via low-rank approximations of its

effective subtensors is potentially smaller than the error obtained by approximatingW0 via (higher

rank) truncated HoSVDs whenever (12) holds.1 The following theorem shows that this good error

behavior extends to the entire 1st scale approximation provided by (4.27) whenever (12) holds.

Theorem 2 (Restatement of Theorem 1). Let X P RI1�I2...�IN . Suppose that (12) holds. Then,

the first scale approximation error given by MS-HoSVD (4.27) is bounded by

}W1}
2 �

���X � X̂0 � X̂1

���2 ¤ Ņ

n�1

���X �n

�
I� P̄pnq

	���2
1That is, the upper bound on the error provided by Lemma 3 is less than or equal to the upper bound on the error

for truncated HoSVDs provided by, e.g., [241] when/if (12) holds.
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where
!
P̄pnq

)
are low-rank projection matrices of rank r̄n ¥ rn obtained from the truncated

HoSVD of X as per (4.29).

Proof. Using (4.12) and (4.17) together with lemma 3 we can see that

}W1}
2 �

���X � X̂0 � X̂1

���2 � ���W0 � X̂1

���2 ¤ Ņ

n�1

����X � X̂0

	
�n

�
I� P̃pnq

	���2
¤

Ņ

n�1

����X � X̂0

	
�n

�
I� Q̄pnq

	���2 (14)

where Q̄pnq P RIn�In is the orthogonal projection matrix of rank r̃n which projects onto the

subspace spanned by the top r̃n left singular vectors of Xpnq. Here (14) holds because the orthog-

onal projection matrices P̃pnq are chosen in (12) so that P̃pnqW0,pnq is a best possible rank r̃n

approximation to W0,pnq. As a result, we have that

����X � X̂0

	
�n

�
I� P̃pnq

	���2 �
����I� P̃pnq

	
W0,pnq

���2
F

¤
����I� Q̄pnq

	
W0,pnq

���2
F

�
����X � X̂0

	
�n

�
I� Q̄pnq

	���2
(15)

must hold for each n P rN s.

Continuing from (14) we can use the definition of X̂0 in (4.28) to see that

}W1}
2 ¤

Ņ

n�1

�����
�
X � X

N¡
h�1

Pphq

�
�n

�
I� Q̄pnq

	�����
2

�
Ņ

n�1

�����X �n

�
I� Q̄pnq

	
� X

N¡
h�1

Pphq �n

�
I� Q̄pnq

	�����
2

(16)

by lemma 1. Due to the definition of Q̄pnq together with the fact that its rank is r̃n ¥ rn we

can see that
�
I� Q̄pnq

	
Ppnq � 0. As a consequence, lemma 1 implies that X

�N
h�1 P

phq �n
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�
I� Q̄pnq

	
� 0 for all n P rN s. Continuing from (16) we now have that

}W1}
2 ¤

Ņ

n�1

���X �n

�
I� Q̄pnq

	���2 . (17)

Again appealing to the definition of both Q̄pnq and P̄pnq in (4.29), combined with the fact that

r̃n ¥ r̄n, finally yields the desired result.
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