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ABSTRACT

RESBOS2: PRECISION RESUMMATION FOR THE LHC ERA

By

Joshua Paul Isaacson

With the precision of data at the LHC, it is important to advance theoretical calculations

to match it. Previously, the ResBos code was insufficient to adequately describe the data

at the LHC. This requires an advancement in the ResBos code, and led to the development

of the ResBos2 package. This thesis discusses some of the major improvements that were

implemented into the code to advance it and prepare it for the precision of the LHC.

The resummation for color singlet particles is improved from approximate NNLL+NLO

accuracy to an accuracy of N3LL+NNLO accuracy. The ResBos2 code is validated against

the calculation of the total cross-section for Drell-Yan processes against fixed order calcula-

tions, to ensure that the calculations are performed correctly. This allows for a prediction

of the transverse momentum and φ∗η distributions for the Z boson to be consistent with the

data from ATLAS at a collider energy of
√
s = 8 TeV. Also, the effects of choice of resumma-

tion scheme are investigated for the Collins-Soper-Sterman and Catani-deFlorian-Grazzini

formalisms. It is shown that as long as the calculation of each of these is performed such that

the order of the B coefficient is exactly 1 order higher than that of the C and H coefficients,

then the two formalisms are consistent. Additionally, using the improved theoretical predic-

tion will help to reduce the theoretical uncertainty on the mass of the W boson, by reducing

the uncertainty in extrapolating the dσ

dpWT

distribution from the data for the dσ

dpZT

distribution

by taking the ratio of the theory predictions for the Z and W transverse momentum.

In addition to improving the accuracy of the color singlet final state resummation cal-

culations, the ResBos2 code introduces the resummation of non-color singlet states in the



final state. Here the details for the Higgs plus jet calculation are illustrated as an example

of one such process. It is shown that it is possible to perform this resummation, but the

resummation formalism needs to be modified in order to do so. The major modification that

is made is the inclusion of the jet cone-size dependence in the Sudakov form factor. This

result resolves, analytically, the Sudakov shoulder singularity. The results of the ResBos2

prediction are compared to both the fixed order and parton shower calculations. The calcu-

lations are shown to be consistent for all of the distributions considered up to the theoretical

uncertainty. As the LHC continues to increase their data, and their precision on these ob-

servables, the ability to have analytic resummation calculations for non-color singlet final

states will provide a strong check of perturbative QCD.

Finally, the calculation of the terms needed to match to N3LO are done in this work.

Once the results become sufficiently publicly available for the perturbative calculation, the

ResBos2 code can easily be extended to include these corrections, and be used as a means

to predict the total cross-section at N3LO as well.



Dedicated to: My parents and Laurel DiPucchio.
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Chapter 1

Standard Model

The Standard Model (SM) of Particle Physics is almost a complete description of all of the

phenomena observed in high energy physics, including interactions of the strong and elec-

troweak forces. With the discovery of the Higgs Boson on July 4th, 2012 [30, 31, 32], the

standard model is now complete. Although experimental data appears to agree with the

SM quite precisely, there are certain phenomena that cannot be explained in the framework

of the SM (such as gravity [33], dark matter [34, 35, 36], neutrino masses [37], and the

matter-antimatter asymmetry [38]). Additionally, there are some problems that arise from

a theoretical standpoint, such as the hierarchy problem [39, 40] and the strong CP prob-

lem [41]. Therefore, the SM is anticipated to be an effective theory of some complete higher

energy theory. The precision of agreement between the experimental results and theoretical

predictions forces the discovery of any new physics to either be through searches at high

energies or through the study of small effects on specific observables. To study small effects

on observables requires precise experimental measurements. Observables that can be mea-

sured precisely and that are sensitive to the parameters of the SM are considered precision

observables. One such observable is the g − 2 of the electron, which is currently measured

to a precision of ≈ 10−13 and calculated theoretically to a similar precision. Despite the

success of the SM, there are many unanswered questions pertaining to particle physics, such

as the exact nature of the Higgs Boson, and what new physics can explain dark matter. In
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order to search for new physics, the parameters of the SM must be measured as precisely as

possible and any deviations from the expected value will hint at the presence of new physics.

Calculational accuracy of the SM can be improved in either of two forces: the electroweak

force, which unifies both the weak and electromagnetic forces (details can be found in Sec-

tion 1.1), and the strong force (details can be found in Section 1.3). These predictions are

calculated using Quantum Field Theory (QFT). QFT is a mathematical framework based

on the physically motivated assumptions that the theory incorporates Poincare invariance,

point-particles, local interactions (no actions at a distance), causality, unitarity (the quan-

tum mechanical evolution conserves probability), and is free of divergences (also known as

a renormalizable theory) [42]. These restrictions define the underlying principles of the

standard model.

The standard model is traditionally expressed via the Lagrangian formalism, in which

all physical interactions are encoded into a Lagrangian. The form of the Lagrangian, is

determined by demanding the Lagrangian be invariant under a set of local symmetries.

These symmetry transformations correspond to locally conserved quantities as detailed by

Noether’s Theorem [43]: Noether’s theorem states that for each symmetry of the Lagrangian

there is a corresponding conserved quantity of the form,

∂L
∂q̇α

γα, (1.1)

where L is the Lagrangian density, q̇α is the time derivative of a coordinate, and γα is

some function (note the use of Einstein summation notation). Through Noether’s theorem,

quantities that are experimentally conserved are used to introduce symmetries of the SM

Lagrangian and greatly constrain its form. The SM symmetries are the Poincare symmetry,
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Fermions
Bosons

First Generation Second Generation Third Generation

u c t γ
d s b g
e µ τ W±, Z
νe νµ ντ H

Table 1.1: Standard Model of Particle Physics

SO(3, 1), and the gauge symmetries SU(3)C×SU(2)L×U(1)Y . Generally, a gauge symmetry

is a symmetry that is space-time dependent, or local. Gauge symmetries are responsible for

all of the SM forces and as such can be broken into two groups: the SU(2)L ×U(1)Y gauge

groups generate the electroweak force, while the SU(3) gauge group generates the strong

force.

In addition to the gauge symmetries that define the forces of the standard model, the

fermionic content of the standard model needs to be introduced by hand, but must still obey

the symmetries of the standard model. Therefore, for a particle to interact with the gauge

field it must be in a non-singlet representation of the group, or in other words, has to have

a special transformation property under the group symmetry1. The full particle content of

the standard model can be found in Table 1.1. The details for the electroweak sector can be

found in the following section (Sec. 1.1), and the details of the strong force can be found in

the section on QCD (Sec. 1.3).

The following sections discuss the Electroweak sector and the QCD sector of the SM. Ad-

ditionally, in the Electroweak section the Higgs Boson and spontaneous symmetry breaking

is discussed. The symmetry groups that make up the SM will be discussed, along with the

experimental evidence that supports these observations through the discussion of conserved

1In the SM outside of the gauge fields and the Higgs boson, all other particles are fermions. Details of
the equation of motion for fermions can be found in App. A.
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quantities as described in Noether’s theorem.

1.1 Electroweak

The electroweak force is the unification of the electromagnetic force, and the weak nuclear

force. The quantum description of electromagnetism (QED) arose in the 1920s and 1930s,

through work by Dirac, Pauli, Heisenberg, and Fermi [44, 45, 46, 47]. One of the major ac-

complishments in QED was the calculation of the electron gryomagnetic ratio, known as g−2.

Currently, the most accurate measurement was done by Hanneke et. al. [48], obtaining a

value of g/2 = 1.00115965218073(28). This is consistent with the theoretical prediction given

as: g/2 = 1.00115965218182(6)(4)(2)(78), where the uncertainties in the theoretical predic-

tion, arise from the eighth order QED correction, tenth order QED correction, Hadronic

Electroweak corrections, and the Atomic Physics determination of α, respectively [49].

In 1896, Henri Becquerel discovered β-decay [50], based off of the penetration of the

decays through material. In modern language, β decay is the process in which a proton

turns into a neutron and emits a positron and a neutrino. This phenomenon is unable to be

explained in QED, and thus a new theory was needed to explain it. At first, Fermi developed

the four point interaction to describe β-decays, and introduced a new particle known as the

neutrino, in order to conserve momentum [51]. In the 1970s, Weinberg, Glashow, and Salam

developed a theory that could explain both QED and β decay through a single theory,

the Electroweak theory [52, 53, 54]. In addition, it predicted that β decay is mediated

by a W boson, and further predicted the existence of a massive neutral gauge boson, Z.

The first evidence of the neutral current in this theory was discovered by the Gargamelle

collaboration in 1973 in neutrino scattering [55]. The direct detection of the W and Z
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bosons was first done by the UA1 and UA2 collaborations in 1983 at the Super Proton

Synchrotron [56, 57, 58, 59]. Finally, ’t Hooft and Veltman showed that the Electroweak

theory is renormalizable in 1972 [60]. The discussion that follows explains the theory that

was proposed, along with the definition of renormalizable.

Any fermion can be described by the direction of its spin in relation to the direction of

its momentum. If its spin is parallel to its momentum, then the particle is said to be right-

handed, and if its spin is anti-parallel to its momentum then the particle is left-handed2.

The electroweak (EW) sector of the standard model is described by the gauge symmetries of

SU(2)L×U(1)Y . Experimentally, it was discovered that the weak force (β-decay for example)

only interacts with left-handed particles. Secondly, the U(1)Y gauge group interacts with

a particle’s hypercharge. The SU(2)L group has three gauge mediating bosons, W i where

i = 1, 2, 3, and the U(1)Y group has one gauge mediating boson, B.

To understand how the gauge bosons interact with the fermions, consider how the in-

finitesimal gauge transformations affect the fermions. Namely,

δψL,R =

(
igTiθi(x) + ig′

Y

2
θ(x)

)
ψL,R, (1.2)

where g and g′ are the gauge couplings, Ti and Y are the generators of for SU(2)L and

U(1)Y respectively, and θi(x) and θ(x) are space-time dependent transformation variables.

The commutators for the two groups are given by:

[
Ti, Tj

]
= iεijkTk, (1.3)

[Ti, Y ] = 0 for all i, (1.4)

2For more details on spin and the difference between spin and helicity one can reference Appendix B
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where εijk is the fully anti-symmetric tensor in three dimensions, and Ti = σi/2, where σi

are the two dimensional Pauli matrices. A Lagrangian composed of fermionic fields that

remains invariant under this transformation rule is:

Lf = iψ̄ /Dψ, (1.5)

where ψ is the fermionic field, ψ̄ = ψ†γ0, /D = γµDµ, and D is the covariant derivative which

is defined in such a way to maintain the gauge invariance. The covariant derivative for the

electroweak sector is:

Dµ = ∂µ − igPLTiW i
µ − ig′

Y

2
Bµ. (1.6)

In addition to dynamical fermionic terms, the SM Lagrangian also requires dynamical

bosonic terms. The gauge bosons transform under the adjoint representation of the gauge

groups, according to:

δW i
µ = ∂µθ

i(x)− gεijkθj(x)W k
µ , (1.7)

δBµ = ∂µθ(x). (1.8)

The kinetic term for the gauge bosons (which is invariant under the above transforma-

tions) is given as:

LV = −1

4
BµνBµν −

1

4
W iµνWiµν , (1.9)

6



where Bµν and W iµν are known as the field strength tensors given by:

Bµν = ∂µBν − ∂νBµ, (1.10)

W iµν = ∂µW iν − ∂νW iµ + gεijkW jµW kν . (1.11)

Because SU(2)L is non-Abelian, the W -boson kinetic Lagrangian contains self-interaction

terms. Additionally, the interaction Lagrangian between fermions and these gauge fields is

given by:

Lint = −
g′

2
ψ̄RYR /BψR − ψ̄L

(
g′YL
2

/B +
g

2
~T · ~/W

)
ψL, (1.12)

where ψ̄L/R and ψL/R are the left and right handed fermion wavefunctions, YR/L is the

right- and left-handed hypercharge respectively.

However, these gauge bosons are all massless. Introducing a mass term by hand explicitly

breaks the gauge symmetry. This issue is resolved through the use of the Higgs Mechanism

and spontaneous symmetry breaking.

1.1.1 Higgs Mechanism

The Higgs Mechanism is a means of breaking spontaneously the Electroweak SU(2)L×U(1)Y

gauge symmetry, and through which massless gauge fields and massless Nambu-Goldstone

bosons combine to produce massive bosons [61, 62, 63, 64]. To illustrate this mechanism,

consider a U(1) gauge example.

A symmetry can be spontaneously broken by simply adding a complex scalar field (Φ),
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Im(φ)

Re(φ)

V (φ)

(a) The unbroken vacuum, i.e. µ2 ≥ 0

Im(φ)

Re(φ)

V (φ)

(b) The broken vacuum, i.e. µ2 < 0

Figure 1.1: The two different scenarios for the value of µ2

with a Lagrangian given by:

L = (∂µΦ)
†∂µΦ− µ2|Φ|2 − λ|Φ|4. (1.13)

The physical interpretation of this Lagrangian depends on the sign of µ2. When µ2 > 0, the

symmetry remains unbroken. The classical potential of this case is illustrated in Fig. 1.1a.

The minimum of the vacuum state occurs at the origin and furthermore, the Lagrangian

expanded around small oscillations of the minimum reproduces Eq. 1.13. However, when

µ2 < 0, the minimum of the vacuum is no longer unique as shown in Fig. 1.1b, with a

minimum given by:

〈Φ2〉0 = −µ
2

2λ
eiθ =

ν2

2
eiθ, (1.14)

where θ is any real number, for simplicity θ will be taken to be zero. The U(1) degeneracy

of this minima reflects the U(1) symmetry of the initial Lagrangian. Defining a shifted field:
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Φ′ = Φ− 〈Φ〉0 =
η + iξ√

2
, (1.15)

the Lagrangian takes the form of:

L =
1

2
(∂µη)(∂

µη) +
1

2
(∂µξ)(∂

µξ) + µ2
(
η4

4ν2
+
η3

ν
+
η2ξ2

2ν2
+ η2 +

ηξ2

ν
+

ξ4

4ν2
− ν2

4

)
(1.16)

and looking at small oscillations about the minimum of the potential (keeping terms that

are quadratic in the fields), the following Lagrangian is obtained:

LSO =
1

2
(∂µη∂

µη + 2µ2η2) +
1

2
∂µξ∂

µξ, (1.17)

plus a constant term. There are two particles in the Lagrangian, one of which is mass-

less (ξ), and one which has a mass given by mη = −2µ2 > 0. The ξ particle is called a

Nambu-Goldstone Boson(NGB), and the general outcome is known as the Goldstone phe-

nomenon [62, 65]. In general, there exists one NGB for each broken generator of the original

symmetry group. As such, when applied to the Standard Model, the breaking of symmetry

groups of SU(2)L × U(1)Y to U(1)Q will generate three NGBs.

The appearance of NGBs during the Higgs Mechanism significantly impacts the massless

gauge fields. For simplicity, consider the U(1) example again, but now extend the Lagrangian

with a gauged U(1) symmetry:

L = |DµΦ|2 − µ2|Φ2| − λ|Φ|4 − 1

4
FµνFµν , (1.18)

where Φ =
φ1+iφ2√

2
is a complex scalar field, Dµ is the covariant derivative as defined pre-
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viously, and Fµν is the field strength tensor for a U(1) symmetry as defined in Eqs. 1.9,

1.10. Consider when µ2 < 0. In this case, the absolute minimum corresponds to the vacuum

expectation value given as:

〈|Φ|2〉0 =
−µ2

2λ
eiθ =

ν2

2
eiθ. (1.19)

To produce a viable quantum theory, the complex scalar field must be expanded around this

minimum. By choosing the vacuum expectation value to be real and positive (θ = 0), and

expanding around the minimum, Φ is given by the following formula:

Φ =
ν + φ1 + iφ2√

2
. (1.20)

After plugging this into Eq. 1.18, the Lagrangian becomes:

L =
1

2
(∂µφ1∂µφ1 + 2µ2φ21) +

1

2
∂µφ2∂µφ2 −

1

4
FµνFµν + qνAµ∂

µξ +
q2ν2

2
AµA

ν . (1.21)

In addition to the massive scalar resulting from the Goldstone phenomenon, the ”photon”

gains a mass term. Furthermore, the gauge transformation given by:

Aµ → A′µ = Aµ +
1

qν
∂µξ, (1.22)

Φ→ Φ′ = e−iξ/νΦ =
ν + η√

2
, (1.23)

greatly simplifies the Lagrangian to:

L =
1

2
(∂µη∂

µη + 2µ2η2)− 1

4
FµνFµν +

q2ν2

2
A′µA

′ν , (1.24)
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plus terms that are not of interest to this discussion. Note there are only two fields appearing

in the above equation: a massive scalar field (mη = −2µ2) and a massive ”photon” field

(mA′ = qν). There is no Nambu-Goldstone Boson field. This is colloquially described as

the massless gauge boson “eating” the Nambu-Goldstone Boson in order to become massive.

Details of how this simple example may be extended to an SU(2)× U(1) symmetry can be

found in Appendix C.

The above mechanism resolves the issue of describing massive gauge bosons in the Stan-

dard Model, yet leaves the fermions massless. To resolve this issue, consider a fermionic

mass term:

Lmf
= mf ψ̄RψL + h.c., (1.25)

wheremf is the mass of the fermion, and h.c. is the hermitian conjugate of the previous term.

The mass term mixes left-handed and right-handed fermions. This explicitly breaks the

SU(2)L symmetry because ψ̄RψL does not form an SU(2)L singlet, and thus the Lagrangian

does not respect SU(2)L symmetry. This can be resolved by introducing a Higgs doublet

under transformations of SU(2),

Φ =

 φ+

v+H+iφ0√
2

 , (1.26)

which is already in the appropriate form to expand about a classical vacuum and subsequently

including the following SU(2)L invariant interaction in the SM Lagrangian:

Lint = yψ̄RΦ
†ψL + h.c. (1.27)
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When expanded, the above interaction generates terms that are related to the interaction

of the fermion to the Higgs boson, and the Goldstone bosons associated with the W and

Z bosons, along with a mass term. The interactions with the Goldstone bosons can be

absorbed into the W and Z interactions, and are discussed below. The interaction of the

Higgs boson with the fermion and the fermion’s mass term are given by”

Lint = yuūR
(v +H + iφ0)√

2
uL + h.c. (1.28)

This includes a fermionic mass term (compare the above to Eq. 1.25), where the mass may

be identified as mu = yu
v√
2
.

Therefore, the Higgs Mechanism introduces masses into the Standard Model without

entirely destroying the symmetry structures admitted by gauge symmetries.

1.1.2 Broken Electroweak Sector

After symmetry breaking through the Higgs Mechanism, the gauge bosons now obtain a

mass. Defining the electric charge as:

Q = T3 +
Y

2
, (1.29)

where T3 is the third component of the weak isospin generator, Y is the hypercharge, and Q

is the electric charge of the operator. Applying the isospin, hypercharge, and electric charge

operators to the ground state of the SU (2)L⊗U (1)Y after spontaneous symmetry breaking
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〈φ〉0 =

 0

ν/
√
2

 gives the following results:

T1〈φ〉0 =

0 1

1 0


 0

ν/
√
2

 =

ν/√2
0

 (1.30)

T2〈φ〉0 =

0 −i

i 0


 0

ν/
√
2

 =

−iν/√2
0

 (1.31)

T3〈φ〉0 =

1 0

0 −1


 0

ν/
√
2

 =

 0

−ν/
√
2

 (1.32)

Y 〈φ〉0 = +1〈φ〉0 =

 0

ν/
√
2

 (1.33)

Q〈φ〉0 =

Y + 1 0

0 Y − 1


 0

ν/
√
2

 =

0

0

 . (1.34)

In the above equations, only the combination of the electric charge corresponds to a zero,

implying that this symmetry is unbroken, while the remaining symmetries are broken. In

other words, the original four bosons correspond to broken symmetries, but the linear com-

bination given in Eq. 1.29 is unbroken. This combination can be recognized as the photon,

and remains massless, while the other three gain masses. Furthermore, the W 1 and W 2

bosons can be exchanged for the W+ and W− bosons through the following relationship:

W±µ =
W 1

µ ∓ iW 2
µ√

2
. (1.35)
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This combination is similar to the raising and lowering operators for angular momentum often

seen when discussing the hydrogen atom in introductory quantum mechanics3. Plugging this

transformation back into the Lagrangian results in a mass term of the form:

g2ν2

4

(
|W+

µ |2 + |W−µ |2
)
, (1.36)

and the W mass can be defined as: MW = gν
2 . Additionally, the W 0

µ and Bµ bosons mix

into two experimentally observable bosons using the orthogonal combinations:

Zµ =
−g′Bµ + gW 3

µ√
g2 + g′2

(1.37)

Aµ =
gBµ + g′W 3

µ√
g2 + g′2

, (1.38)

where g is the coupling of the SU (2)L gauge group, and g′ is the coupling of the U (1)Y

gauge group. It is convenient to relate these couplings through the use of a mixing angle,

given by:

g′ ≡ g tan θw. (1.39)

Using the above equation the relationship can be rewritten as:

Zµ = cos θwW
3
µ − sin θwBµ (1.40)

Aµ = sin θwW
3
µ + cos θwBµ, (1.41)

3The angular momentum of the hydrogen atom also has an SU(2) symmetry.
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where θw is the experimentally measured weak mixing angle4. Finally, the interaction Lagra-

gian in Eq. 1.12 can be rewritten into the charge current interaction and the neutral current

interactions. The charged current in the lepton sector is given by:

Lint,W = − g√
2

(
ν̄ /W+PLe+ ē /W−PLν

)
, (1.42)

where ν, e are the neutrino and electron wavefunctions respectively, and PL is the left-handed

projection operators. The left(right)-handed projection operators project the fermion onto

a left(right)-handed state. The projection operators are defined as:

PL =
1− γ5

2
, PR =

1 + γ5
2

, (1.43)

where γ5 = iγ0γ1γ2γ3. The coupling of theW boson can be identified in terms of measurable

observables as
GFM2

W√
2

, where GF is the Fermi constant, and will be discussed in detail later.

The neutral current interaction for the lepton sector is given by:

Lint,neutral =
gg′√
g2 + g′2

ē /Ae

−
√
g2 + g′2

2
ν̄ /ZPLν

+
1√

g2 + g′2

(
−g′2ē /ZPRe+

g2 − g′2

2
ē /ZPLe

)
. (1.44)

Identifying the coupling of the photon with the fundamental electric charge e, gives:

e =
gg′√
g2 + g′2

. (1.45)

4Details of measuring this angle can be found in Sec. 1.1.3.
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It is important to note that this also gives a definitive prediction for the Z boson mass given

by:

M2
Z =

M2
W

cos θw
, (1.46)

which implies that the Z boson mass must be greater than the W boson mass, which is

confirmed experimentally.

Similar to angular momentum in the hydrogen atom, the square of the weak isospin

generator (T 2) and the third component of the isospin generator can be used to distinguish

the compnents of the doublet after symmetry breaking. All of the fermions are in the

fundamental representation of the U(1)Y gauge group, and are each assigned a hypercharge.

Furthermore, the left-handed fermions combine into doublets of SU(2) (i.e. ψT =

(
uL dL

)
for the left-handed up and down quarks), while the right-handed fermions are singlets. The

quantum numbers for the first generation of fermions are summarized in Table 1.2. It is

important to note that while νR is included in Table 1.2, it does not interact with anything,

and is therefore also acceptable to completely drop right-handed neutrinos from the theory.

However, if the neutrinos are to have a Dirac mass term, then right-handed neutrinos need

to be included in the theory. As of the writing of this work, neutrinos are known to have

mass, but the origin of mass is unknown5. The quantum numbers for the first generation

are also the same for the respective members in the second and third generation of fermions.

1.1.3 Electroweak Precision Observables

In the electroweak sector, a set of three measurable quantities known as the S, T , and U

parameters are able to test the nature of the electroweak theory [67]. The parameters are

5For additional details on the status of neutrinos, the reader is referred to [66].
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Fermion Q T3 Y

νeL 0 1
2 -1

eL -1 −1
2 -1

uL
2
3

1
2

1
3

dL −1
3 −1

2
1
3

νeR 0 0 0
eR -1 0 -2

uR
2
3 0 4

3
dR −1

3 0 −2
3

Table 1.2: Electroweak quantum number for the first family of fermions

extracted from the precise data from the LEP experiment and include the recent Higgs

mass measurement by ATLAS and CMS [1]. The parameters are defined using the oblique

(vacuum polarization) corrections to the gauge bosons. Current measurements are consistent

with the Standard Model prediction.

The vacuum polarization functions for the Electroweak bosons can be expanded in terms

of the four momentum transfer, q2. Keeping only up to O
(
q2
)
, the vacuum polarizations

can be expressed as:

Πγγ

(
q2
)
= q2Π′γγ (0) +O

(
q4
)
, (1.47)

ΠZγ

(
q2
)
= q2Π′Zγ (0) +O

(
q4
)
, (1.48)

ΠZZ

(
q2
)
= ΠZZ (0) + q2Π′ZZ (0) +O

(
q4
)
, (1.49)

ΠWW

(
q2
)
= ΠWW (0) + q2Π′WW (0) +O

(
q4
)
, (1.50)

where Π′ represents a derivative of the vacuum polarization with respect to q2. Furthermore,

the constant terms for Πγγ and ΠZγ are zero due to the renormalization conditions of the

Electroweak sector, namely that the photon should have zero mass and that the mass matrix

for the mixing of the photon and Z is diagonal. In the above equations, there are six different
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Variable Value S Correlation T Correlation
S 0.03± 0.10
T 0.05± 0.12 0.89
U 0.03± 0.10 -0.54 -0.83

Table 1.3: The current best fit results for the S, T, U parameters, along with their
uncertainties and correlation coefficients. Reproduced from [1]

quantities, Π′γγ (0), Π
′
Zγ (0), ΠZZ (0), Π′ZZ (0), ΠWW (0), and Π′WW (0). Three of these can

be fixed by input parameters, in this work they are the fine structure constant (α), the Fermi

coupling constant (GF ), and the Z boson mass. This leaves three parameters that can be

measured. These are the S, T, U parameters, and are defined as:

αS = 4s2wc
2
w

(
Π′ZZ (0)− c2w − s2w

swcw
Π′Zγ (0)− Π′γγ (0)

)
, (1.51)

αT =
ΠWW (0)

M2
W

− ΠZZ (0)

M2
Z

, (1.52)

αU = 4s2w

(
Π′WW (0)− c2wΠ′ZZ (0)− 2swcwΠ

′
Zγ (0)− s

2
wΠ
′
γγ (0)

)
, (1.53)

where sw and cw are the sine and cosine of the weak mixing angle respectively. In most

observables, the effect of the U parameter is small, and it also predicted to be small in most

new physics models. Therefore, typically a two parameter space is used with U being set to

zero. The fit to current data for both U non-zero and U zero can be seen in Figure 1.2a and

1.2b, respectively. The current best fit values for S, T, U are given in [1], and reproduced

in Table 1.3. The SM predictions for the S, T, U parameters are all zero, and the data

currently is consistent with the SM.

The W mass is an important observable in constraining these parameters, and the dis-

cussion of how to precisely measure this observable can be found in Chap. 5
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Figure 1.2: The best fit in the TS plane with U free to float on the left and U fixed to zero
on the right. Additionally, mH = 126 GeV and mt = 173 GeV in this fit. Reproduced from

[1]

1.1.4 Electroweak Parameters

While this work focuses on the QCD corrections for given processes, the processes themselves

contain Electroweak couplings. Therefore, it is important to discuss the parameters in the

electroweak sector, the different schemes to set the parameters, and the scheme and values

of input parameters used for the results in this work.

In the electroweak sector, typically, the values of MZ , the fine structure constant α, and

Fermi’s constant GF are used as input parameters. The reason that these three are chosen

is due to the fact that these are the most precisely measured parameters. It is possible to

trade out GF for MW , and other such exchanges. These would result in slightly different

predictions that should only differ by higher order corrections. In this work, the choice of

parameters follows that detailed in Section 3.1 of [68], and are detailed below for simplicity.

The constant width approach is used, and thus the W and Z masses and widths need to be

adjusted from that measured in the s-dependent width approach [69, 70]. This results in the
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inputs for the W and Z boson to be:

MZ = 91.1535GeV, ΓZ = 2.4943GeV (1.54)

MW = 80.358GeV, ΓW = 2.084GeV, (1.55)

where ΓZ,W is the width of the Z and W boson respectively. Additionally, the value of α (0)

is replaced by the effective coupling αGF
=
√
2GFM

2
W

(
1−

M2
W

M2
Z

)
/π. The input value for

GF = 1.1663787 × 10−5 GeV−2. In all numerical results, these input parameters are used

for all the calculations, to ensure that any difference is not due to different choices of input

parameters.

There are three schemes for the measurement of the EW parameters that are discussed

in the literature, the on-shell scheme [71], the MS scheme, and the sin θw scheme. In the

on-shell scheme, the weak mixing angle is fixed to be given by the following equation to all

orders:

sin2 θw = 1−
M2

W

M2
Z

. (1.56)

In the M̄S scheme, all parameters develop a scale dependence and the parameters run as a

function of the hard scale. Finally, the effective angle scheme determines the mixing angle

by using Z pole observables to obtain the Z couplings to fermions, and thus fixing sin θw.

These schemes will have small deviations in the calculated parameters.

1.2 Renormalization and Regularization

In Quantum Field Theories, calculations are usually performed as a series expansion of

a small coupling constant. However, when calculating an observable beyond the leading
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p1

p2

k

p3

Figure 1.3: An example of a loop diagram, p1, p2, and p3 are the momentums of the
external particles, and k is the momentum of the loop.6

term in the expansion, the theory generates infinities. Because the physical observables are

finite, physicists developed a procedure to ensure that predictions are similarly finite. This

procedure consists of regularization and renormalization.

Regularization is a means to isolate the divergences in the theoretical calculation. The

present work focuses on Dimensional Regularization, the most commonly used regularization

scheme [72]. In Dimensional Regularization, field theory equations are calculated in D =

4 − 2ε spacetime dimensions, where ε is eventually taken to 0. The divergences will show

up in the form of ε−n poles, where n is a positive integer. Consider the Feynman Diagram

in Fig. 1.3. From conservation of momentum, the values of p1, p2, and p3 are all related,

but k is left arbitrary. Therefore, all possible values for k need to be considered, resulting

in an integral over the four momentum of k. In general the set of one-loop diagrams can be

expressed in integrals of the form:

∫
dDk

(2π)D
N(k2)

(k2 −∆)n
, (1.57)

where the numerator and denominator must each be constructed exclusively from even pow-

6Drawn using TikZ-Feynman [73]
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ers of k, since any odd powers of k will integrate to zero since it would be an integration

of an odd function over symmetric bounds. If the power of k in the denominator is greater

than that in the numerator by at least 4, then the subsequent integral is divergent in 4

dimensions as the loop momentum goes to infinity. This divergence is known as an ultravio-

let(UV) divergence. In dimensional regularization, this divergence is regulated by moving to

a dimension slightly smaller than 4 and results in simple poles in ε. Similarly, it is possible

that a divergence appears as the loop momentum goes to zero. Such a divergence is called

an infrared(IR) divergence, and is discussed in more detail in Section 1.3.3. For now, note IR

divergences are regulated in dimensions larger than 4. Any poles in the resulting calculation

need to be removed in order to obtain a physical result, this is known as renormalization.

Additionally, Dimensional Regularization causes couplings to gain a mass dimension. How-

ever, this is undesirable, so the coupling is traditionally modified to be dimensionless, and

an additional dimensionful parameter µ is introduced to ensure the proper dimensions in the

Lagrangian (g2 → g2µ4−D). The above discussion can be generalized to higher order loops,

by modifying Eq. 1.57 to: ∫ n∏
i=1

dDki
(2π)D

N(k21, ..., k
2
n)

D(k21, ..., k
2
n)
, (1.58)

where the ki’s are the loop momenta, and N and D are some function of the momenta

squared.

Renormalization modifies the Lagrangian parameters from so-called bare parameters into

renormalized parameters. When redefining these bare parameters into renormalized parame-

ters, the UV divergences are absorbed. Because the renormalized parameters must be able to

absorb a divergent contribution yet obtain a finite result, the bare parameters must also be

divergent. There are many different renormalization schemes. This work utilizes the Modi-
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fied Minimal Subtraction (MS) Scheme [74, 75]. To illustrate the renormalization procedure,

consider the bare QED Lagrangian:

L = −1

4
FµνFµν + iψ̄0/∂ψ0 −m0ψ̄0ψ

0 − e0ψ̄0 /A0ψ0, (1.59)

where m0 is the bare electron mass, e0 is the bare electron charge, ψ0 is the bare electron

field, and A0 is the bare photon field. By defining renormalized quantities, the Lagrangian

can be rewritten in terms of renormalized quantities plus counterterms. To begin, rewrite

the bare electron field according to:

ψR =
1√
Z2
ψ0, (1.60)

where ψR is the renormalized field, and Z2 is some infinite number. Because the calculations

will be performed order by order, it is more convenient to express Z2 as 1 (its tree level value)

plus a counterterm. Thus, Z2 can be written as 1 + δ2, where δ2 is the counterterm, and

is expressed as a Taylor series expansion in the coupling of the theory. Furthermore, the

process can be repeated with the mass, thereby yielding an additional counterterm δm and

a renormalized mass mR. These terms are used to absorb the divergences in the calculation

as well as some finite portion of the calculation. The form of the finite piece absorbed is

determined by the renormalization scheme used. As mentioned above, this work utilizes the

MS scheme, wherein counterterms are chosen to remove the aforementioned poles, along with

constants proportional to ln
(
4πe−γE

)
, arising from any loop calculation performed using

dimensional regularization. The renormalization of the coupling constant will be discussed

in relation to QCD in detail in Subsection 1.3.2, and is discussed in terms of the running of

23



the coupling, in which the coupling gains an energy dependence.

In all of the above discussion, it was assumed all the divergences could be absorbed by a

finite number of counterterms. A QFT for which this is true is said to be a renormalizable

theory. However, it is not guaranteed that any theory can be renormalized using a finite

number of counterterms. To show that a theory is completely renormalizable is quite compli-

cated. t’Hooft [76] showed this is true for spontaneously broken non-Abelian gauge theories,

thus paving the path for the Standard Model. A rough sketch of proving that a theory is

renormalizable is described below. Firstly, it is necessary to show that it is true not only for

one loop calculations, but for all loop orders. Bogoliubov, Parasiuk, Hepp, and Zimmerman

developed a theorem describing the conditions needed for a QFT to be renormalizable to all

orders [77, 78, 79]. The BPHZ Theorem states a theory is renormalizable if all divergences in

the theory can be removed by counterterms corresponding to superficially divergent one-loop

irreducible amplitudes. Therefore, it is sufficient to show that there are only a finite number

of superficially divergent one-loop processes and that the number of superficially divergent

amplitudes does not increase with increasing orders of perturbation theory. Showing there

are a finite number of counterterms at one-loop is a straight forward calculation. Ensuring

no new superficially divergent amplitudes appear at higher perturbative orders is more dif-

ficult, and involves a proof by induction. The details of this proof for the Standard Model

are in Ref. [80].
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1.3 Quantum Chromodynamics

1.3.1 Introduction

The theory of Quantum Chromodynamics was developed in order to study the strong force

that holds hadrons together. As mentioned at the start of this chapter, there are 6 quarks

that interact through the strong force.

Gell-Mann and Zweig introduced the quark model to describe the many hadrons being

observed [81, 82]. However, the model possessed a major problem. Consider the ∆++

particle:

∆++ = |u↑u↑u↑〉. (1.61)

Because the up quarks are identical and all spin up, multiple fermions occupy the same

state, and this spin 3/2 particle violates Fermi-Dirac statistics. This problem was solved

by introducing what is now called “color charge”. Using this new idea, the ∆++ can be

expressed with a completely anti-symmetric expression by including three different colors of

quarks, and requiring the new object to be colorless:

∆++ =
1√
6

∑
ijk

εijk|u
↑
i u
↑
ju
↑
k〉. (1.62)

Motivated by the color theory of optical light, colorless refers to the fact that the ∆++

contains one of each color (named red, green, and blue). Another way to create a colorless

object is to have one color and the same anti-color (e.g. red and anti-red). Quarks are
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defined in a color triplet as follows:

|q〉 =


|qr〉

|qg〉

|qb〉

 . (1.63)

It is important to note that experimentally, observables must depend on the complete triplet

e.g.,

O ∼ 〈q|O|q〉 ∼
(
||qr〉|2 + ||qg〉|2 + ||qb〉|2

)
. (1.64)

The above equation is invariant under the transformation q → q′ = Uq, where U is an

unitarity 3 x 3 matrix (U†U = 1). This matrix includes Abelian transformations that do

not mix qr, qg, and qb. These transformations are not desired (this type of transformation

is included in QED). To single out the transformations between qr, qg, and qb the matrix is

required to be special (det(U) = 1).

These transformations form the group of special unitary transformations of degree 3,

labeled SU(3). For a group SU(N), the number of generators are given by N2−1. Therefore,

SU(3) has 8 generators resulting in 8 different force mediators (gluons). Let us define the

Gell-Mann matrices7 λa, and the T matrices, T a = λa

2 .

The properties that follow here are general to SU(N):

1. The T a are traceless and hermitian:

Tr(T a) = 0 (T a)† = T a (1.65)

7A representation for the Gell-Mann matrices can be found in Appendix D.
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2. Lie-Algebra of SU(N):

[T a, T b] = ifabcT
c [λa, λb] = 2ifabcλ

c (1.66)

3. Structure Constants:

fabc = −2iTr
(
[T a, T b]T c

)
(1.67)

4. Traces:

Tr
(
T aT b

)
=

1

2
δab Tr

(
λaλb

)
= 2δab (1.68)

5. Fierz Identity:

T a
ijT

a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
(1.69)

The covariant derivative for quarks under the strong force is given by:

Dµ = ∂µ − igsTaGa
µ, (1.70)

where gs is the strong coupling constant and Ga is the gluonic field. The introduction of

the gluonic field is needed to ensure that a local SU(3) transformation of the quark fields

remains invariant. Under the gauge transformation, the gluonic fields transform as:

Ga
µ → Ga

µ + ∂µθ
a (x)− gsfabcθb (x)Gc

µ. (1.71)

The kinetic term in the Lagrangian for the gluon fields is given by:

LG = −1

4
Ga
µνG

µν
a , (1.72)
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where the field strength tensor is given by:

Ga
µν = ∂µG

a
ν − ∂νGb

µ + gsf
abcGb

µG
c
ν . (1.73)

Since SU(3) is a non-Abelian group, the gluons are allowed to self-interact. The La-

grangian for the cubic and quartic coupling are given by:

Lc = −
1

2
gs

[
fabc (∂

µAa,ν)Ab
µA

c
ν − fabc (∂νAa,µ)Ab

µA
c
ν

]
, (1.74)

Lq = g2sfabcfab′c′A
µ,bAν,cAb′

µA
c′
ν , (1.75)

respectively. The fact that the gluons self-interact leads to many interesting properties of

QCD. These properties are asymptotic freedom and confinement, which are discussed in the

following section.8

1.3.2 Asymptotic Freedom and Confinement

In Quantum Field Theories, the coupling in the theory is dependent upon the energy scale

at which the theory is being calculated. In this section, the low energy and high energy

properties of Quantum Chromodynamics are discussed.

Asymptotic freedom is the phenomenon that occurs in QCD at high energies, while

confinement is the phenomenon that occurs in QCD at very low energies. Both of these

phenomena are the result of the running of the strong coupling constant. As mentioned in

Subsection 1.2, the couplings in the gauge theory gain an energy dependence when performing

loop corrections to the coupling (an example diagram for corrections to a coupling is shown

8Details on the derivation of the QCD Feynman Rules can be found in App. E.
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Figure 1.4: The first order correction to the strong coupling constant can be calculated
from this vertex correction diagram.

in Figure 1.4). The bare coupling should be independent of the scale of the calculation,

which leads to the following equation:

dαbare
dµ

= 0→ ∂α(µ2)

∂ ln
(
µ2
) = β (α) , (1.76)

where α = g2

4π , with g being the coupling of the theory, and β is given by:

β (α) = −αα
π
β0 − α

(α
π

)2
β1 +O

(
αα2

)
. (1.77)

For QED, the leading term in the β-function is given by:

β
QED
0 = −2

3
. (1.78)

With this running of coupling constant, at low energy scales the coupling is small, but as the

energy is taken to be larger and larger, the coupling grows. At a certain point the coupling

divergences, this is referred to as the Landau pole [83], and occurs around 10286 eV for QED.
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For QCD, the leading term in the β-function is given by:

β
QCD
0 =

11CA − 2nf
12

, (1.79)

where CA is the number of colors in the theory, and nf is the number of active flavors.

The number of active flavors is determined by the scale at which the calculation is being

performed. For example, if µ2 < m2
c then nf = 3, and if m2

b < µ2 < m2
t then nf = 5.

Furthermore, it is interesting to note that if nf is less than 6, than the value of β0 is greater

than zero. In QCD, this condition is satisfied, which leads to a running of the coupling

which is the opposite of QED. So while the QED coupling grows as a function of energy,

the QCD coupling decreases as a function of energy. This leads to a running coupling

that asymptotically approaches zero at high energies, and therefore QCD asymptotically

approaches a free theory [84, 85]. On the other hand, the coupling grows for small energy

scales and eventually becomes non-perturbative (αs > 4π), and it is no longer reasonable

to describe QCD using quarks and gluons, but rather using hadrons. Calculations in this

regime are done either using Chiral Perturbation Theory [86] or Lattice QCD [87].9 Since

the coupling becomes so strong the quarks and gluons become confined into the hadrons

that are used to describe the theory, this describes the phenomena of confinement found in

QCD.

It is possible to analytically solve the running of the coupling at the lowest order, the

9Both ChPT and Lattice QCD are beyond the scope of this work. For additional information, the reader
is referred to [86, 88, 89] for ChPT and to [87, 90, 91, 92, 93] for Lattice QCD.
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result given in terms of β0 is:

α (µ) =
α (µ0)

1 +
α(µ0)
π β0 ln

µ2

µ20

, (1.80)

where µ is the scale the coupling is being evaluated, and µ0 is the input scale at which the

coupling was measured at. While β1 and β2
10 have been calculated [94], it is not possible to

solve the running of the coupling analytically, and is traditionally done numerically.

Given the value of the coupling at a given scale, it is possible to predict the coupling at

any other scale. For QCD, the experimental measurements of the coupling are shown to be

consistent with the theoretical predictions as seen in Fig. 1.5. Typically, the starting scale

is chosen to be the mass of the Z boson, and is given as αs (MZ) = 0.118 ± 0.0011 [6]. As

mentioned previously, the value of nf is dependent upon the scale that one is evaluating the

coupling at, and thus leads to the need to create a matching procedure in order to ensure that

the coupling is a continuous function. This results in choosing αs
(
mq − ε

)
= αs

(
mq + ε

)
at the scale of mq.

When using the renormalization group equation (Eq. 1.76) to obtain the running of the

coupling, the large logarithmic terms that appear at all orders are resummed in order to

improve the theoretical prediction of this quantity. Later in this work, there will be a large

focus on the methodology of resummation in the case of the transverse momentum of a given

system.

10The expressions for β1 and β2 can be found in App. E.
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Figure 1.5: The comparison between the theoretical calculation of the strong coupling
compared to experimental data. The plot is reproduced from Ref. [6]

1.3.3 Soft and Collinear QCD

As mentioned in the previous section, all physical results must be finite. However, during

the calculations there can be an IR divergence that is the result of two particles being

emitted collinear to each other, or in the case of a massless particle, the momentum can

be very small, which is referred to as a soft divergence. To see these divergences from a

mathematical standpoint consider the denominator of a massless and massive propagator

given as:

1

(p+ k)2
=

1

2p · k
, (1.81)

and

1

(p+ k)2 −m2
=

1

2p · k + p2 + k2 −m2
, (1.82)

respectively. In the massless case, in the limit that kµ → 0 or kµ → apµ, where a is some

scaling constant, the propagator diverges. However, when considering the second equation,
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Figure 1.6: Electron scattering off of a proton with an energy of 188 MeV. Results show
data is inconsistent with a point-like proton. Reproduced from [7].

only the limit that kµ → apµ results in a divergence. This is a result of having a momentum

cutoff due to the mass of the particle.

1.3.4 Factorization

The QCD cross-sections can be broken into a long distance piece and a short distance piece.

While the short distance piece is the major discussion of the rest of this work, here the long

distance physics needed in order to compare a theoretical calculation with data is briefly

discussed. The two major long distance physics phenomena that will be discussed here are

the parton distribution functions (PDFs), and hadronization along with jet algorithms.

The parton model (Richard Feynman, 1969) [95] is the idea that a proton is composed

of many smaller pieces, that are essentially free point-like particles. This was supported by

data showing that indeed the proton was not a point particle and the validation of Bjorken
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Figure 1.7: Depiction of the F2 proton structure function, showing Bjorken scaling. This
was the motivation for the parton model proposed by Richard Feynman. Plot is

reproduced from [8].
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Scaling [96] (See Fig. 1.7). If the proton was a point particle, then proton electron collisions

should follow the predictions made by Mott Scattering [97]. However, as seen from the results

of [7] and reproduced in Fig. 1.6, it is clear that electron-proton scattering does not follow

the prediction for Mott Scattering. To resolve this issue, proton structure functions are

introduced. For further simplicity the calculations are performed in the ”infinite momentum

frame,” where pµ ≈ (E, 0, 0, E) with E � Mp, where Mp is the mass of the proton. It is

then possible to write the scattering as the following cross-section:

d2σ

dxdQ2
=

4πα2

Q4

[(
1 + (1− y)2

)
F1(x,Q

2) +
1− y
x

(
F2(x,Q

2)− 2xF1(x,Q
2)
)]

, (1.83)

where Q2 is the energy transferred by the photon being exchanged, y = 1 − E′
E , with E′

the outgoing energy of the electron, and E the incoming energy of the electron. Also,

x = Q2

2Mp(E−E′)
, and F1 and F2 are the two structure functions that appear. Furthermore,

there exists the Callan-Gross relation [98], that states for a spin-12 particle, F2 = 2xF1. This

can be tested experimentally, and the results can be seen in Fig. 1.8. It is clear that the

results are close to zero and thus the proton is made of spin-1/2 particles. However, this is

not the complete story, and at higher energies there is a deviation away from zero as a result

of higher order QCD corrections, and interactions with the gluon.

From these results, the picture of the proton becomes one of a set of valence quarks, sea

quarks, and gluons. When calculating a theoretical prediction, it is necessary to know the

probability of removing a given parton from the proton at a set energy. These distributions

are known as Parton Distribution Functions (PDFs) and a detailed discussion follows in the

subsequent section. However, because these distributions are related to the proton composi-

tion at low energies, it is non-perturbative. Therefore, to obtain a calculation, factorization
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Figure 1.8: Test of the Callan-Gross relation, with K0 = F2/(2xF1)− 1. Results are
consistent with spin-1/2 predictions. Reproduced from [9].

was introduced. The idea behind factorization is that one can introduce an arbitrary scale

to separate the non-perturbative contributions from the perturbative contributions. Because

the scale is arbitrary, the final result should be independent of scale, if the calculation can

be performed to all orders. However, this is not the case and therefore a scale dependence

is introduced, which is used for estimating theoretical uncertainties, referred to as the fac-

torization scale (µF ).

The factorization of the long distance physics from the short distance physics is given

schematically for deep inelastic scattering (e+ p→ e+X) as:

σ =

∫
f(x)σ̂dx, (1.84)

where σ is the total measured cross-section, f(x) is the PDF, and σ̂ is the calculation of

a quark interacting with an electron. A similar technique is used to describe final state

quarks. In this case, since only hadrons are physically observed, there needs to be a function

that takes quarks into hadrons. This is known as the fragmentation function, and is again

defined using an arbitrary scale. Additional details for fragmentation functions can be found
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Figure 1.9: The splitting kernels that occur at αs. Note that to obtain the missing kernels,
take fermions to anti-fermions and vice-versa.

in [99, 100]. However, if the details of the hadrons in the final state are unimportant, a jet

algorithm can be used to create theoretically manipulable objects. Details on jets and jet

algorithms are provided below.

Parton Distribution Functions

In order to perform calculations at a hadron collider, it is necessary to use Parton Distribution

Functions. However, it is possible to extend the basic purely non-perturbative picture of the

PDFs to include the improved parton model. In the improved parton model, it is possible

to calculate the energy dependence of the PDFs. In order to calculate these effects, consider

diagrams of the forms found in Fig. 1.9. The results of these calculations can be represented
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by the following equations at leading order:

Pqq(z) = CF

(
1 + z2

(1− z)+
+

3

2
δ(1− z)

)
, (1.85)

Pqg(z) = CF

(
1 + (1− z)2

z

)
, (1.86)

Pgq(z) =
1

2

(
z2 + (1− z)2

)
, (1.87)

Pgg(z) = 2CA

(
z

(1− z)+
+

1− z
z

)
+ β0δ(1− z), (1.88)

where Pij is the splitting kernel from j to i. Also, the 1
(1−z)+

is the plus-distribution and

is discussed in detail in Appendix F. Similar to the summation that was performed for the

running of the coupling, it is possible to define bare PDFs which are independent of scale.

This results in a set of 2Nf+1 coupled differential equations, known as the full form DGLAP

evolution equations [101, 102, 103], given by:

∂

∂ lnµ2

q(x, µ2)
g(x, µ2)

 =
αs(µ

2)

2π

∫ 1

z

dz

z

Pqq(z) Pqg(z)

Pgq(z) Pgg(z)


q(xz , µ2)
g(xz , µ

2)

 , (1.89)

up to O (αs). To solve these equations, it is convenient to define a new set of PDFs, defined

using the valence quark, singlet, non-singlet, and gluon contributions. There are Nf valence

quark contributions, Nf −1 non-singlet contributions, and one of both the singlet and gluon

contributions. The valence quark distribution is

qVi = qi − q̄i, (1.90)
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the non-singlet distribution is

qFi =
i−1∑
n=1

(qn + q̄n − qi − q̄i), (1.91)

and the singlet distribution is

qS =

Nf∑
n=1

(qn + q̄n). (1.92)

This change of variables leads to a set of 2Nf − 1 decoupled and two coupled differential

equations given up to O (αs) as:

∂qVi
∂ lnµ2

=
αs(µ

2)

2π
Pqq ⊗ qVi (1.93)

∂qFi
∂ lnµ2

=
αs(µ

2)

2π
Pqq ⊗ qFi (1.94)

∂qS

∂ lnµ2
=
αs(µ

2)

2π

(
Pqq ⊗ qS + 2NfPqg ⊗ g

)
(1.95)

∂g

∂ lnµ2
=
αs(µ

2)

2π

(
Pgq ⊗ qS + Pgg ⊗ g

)
(1.96)

Additionally, there are constraints on the solutions implemented by sum rules. The momen-

tum sum rule forces that the total momentum of the partons to be the momentum of the

hadron, ∑
q,q̄,g

∫ 1

0
xf(x) = 1. (1.97)
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(a) (b)

Figure 1.10: Plots of the CT14 NNLO Parton Distributions at 2 GeV (left) and 100 GeV
(right). The plots are reproduced from Ref. [10]

The other sum rule is the valence quark sum rule, which for a proton is given by:

∫ 1

0
(fu − fū) = 2, (1.98)∫ 1

0
(fd − fd̄) = 1, (1.99)∫ 1

0
(fq − fq̄) = 0, for q 6= u, d. (1.100)

The DGLAP equations can be extended order by order in QCD, and currently have been

calculated to NNLO [104, 105]. An example of a PDF can be found in Figure 1.10, where

the energy dependence can be seen between the two subfigures.
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Jet Algorithms

A true observable must be an infrared safe observable which means the observable is un-

changed by the addition of a soft or collinear contribution. If this is not the true, then the

result will suffer from IR divergences and is known as an IR unsafe observable. In the case of

final state partons, an infrared safe observable is constructed by collecting the partons into

jets. The method of combining the final state partons into jets is known as a Jet Algorithm,

and must satisfy the following two conditions:

1. If two particles become collinear then the observable must not change:

On(p1, p2, ..., pn)→ On−1(p1 + p2, ..., pn) (1.101)

2. If one particle is soft then the observable must not change:

On(p1, p2, ..., pn)→ On−1(p2, ..., pn) (1.102)

Currently, there is one major class of jet algorithms used to ensure the final state is infrared

safe. This class of algorithms is known as sequential recombination algorithms, which con-

tains anti-kt, kt, and Cambridge-Aachen algorithms [106, 107, 108, 11]. For this class of

algorithms, the methodology of forming jets is the same, but the measure to determine when

to combine two subjets together varies from one to the other. The steps of the algorithm is

as follows:

1. Calculate the distance between all sets of two partons (dij) and between all partons

and the beam (diB)
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2. Find the smallest distance. If dij is the smallest, combine i and j into a subjet, else if

diB is smallest remove subjet i from the list and mark as a jet

3. Repeat until all particles are clustered into a set of jets

The definition of the distance varies from one algorithm to another, but can be represented

in general by:

dij = min
(
k
2p
ti , k

2p
tj

) Rij

R

diB = k
2p
ti , (1.103)

where, kti is the transverse momentum of the ith particle, p is the power factor that depends

on the scheme (-1 for anti-kt, 1 for kt, and 0 for Cambridge-Aachen), Rij is the distance

between the two particles given by R2
ij = (yi− yj)2 + (φi− φj)2, and R is a parameter that

determines the radius of a typical jet. The anti-kT , kT , and Cambridge-Aachen algorithms

can be compared by looking at how they cluster the same event as shown in Figure 1.11. It

is interesting to note that the anti-kT algorithm tends to have the most cone like jets. In

recent years, there has been work to begin delving into the sub-structure of jets to obtain

more information about them. While that discussion is beyond the scope of this work, the

reader is referred to [109, 110, 111, 112, 113, 114] for some of the recent advancements.
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(a) (b)

(c)

Figure 1.11: (a) Anti-kt algorithm. (b) kt Algorithm. (c) Cambridge-Aachen algorithm.
Reproduced from Ref. [11]
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Chapter 2

Experimental Measurements

Since the true test of any theory is how it compares to experimental data, it is important to

understand how the data is collected and analyzed. The purpose of this chapter is to discuss

the most important pieces needed to understand the data used in future chapters, and how

it was obtained. The main focus will be only on applications to hadron colliders, however,

some of the topics are general to all colliders. In this chapter, the needed concepts that are

general to all hadron colliders will first be introduced, along with the details that are unique

to both the ATLAS and CMS detectors at the LHC.

2.1 Basic Concepts

There are many experimental concepts and methods that are general to all hadron colliders.

These include the types of data that are collected, the variables that are used to describe

the momenta of the particles, and methods of determining particle identities.

Firstly, data is collected in terms of events. An event is an interesting collision between

the two incoming hadrons that gets recorded for further analysis. To compare the events

that are collected by the experiments, it is necessary to convert either the experimentally

measured events into cross-sections, or take the theoretically calculated cross-sections and

convert that to the number of expected events. In either case, there is a conversion factor
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Cross Section Process

1 b cross section of heavy nuclei

30 mb proton size (πr2, where r = 1 fm)
50 mb proton-proton inelastic cross-section at the LHC
50 nb W and Z boson production at the LHC
20 pb inclusive Higgs boson production at the LHC: pp→ H + anything
100 fb inclusive ttH production at the LHC: pp→ tt̄H + anything

Table 2.1: Representative cross section scales (cross sections are not exact). Reproduced
from Ref. [2]

that is used, defined as the luminosity. The instantaneous luminosity is a quantity that

measures the intensity, density, and thickness of the beams. The integrated luminosity is

simply the integral of the luminosity over a given period of time. The conversion between

events and cross-section is given by:

σ = N × Lint, (2.1)

where σ is the cross-section, N is the number of events, and Lint is the integrated luminosity.

This however is not the complete picture. This assumes that for every single bunch crossing

all of the data is recorded. Since the detector does not cover the full 4π region of the collisions

an additional factor, called the efficiency (ε), needs to be included in Eq. 2.1. The efficiency of

the gaps in the detector is modeled through programs such as GEANT4 [115]. Additionally,

due to the large number of collisions that occur at these colliders, it is impossible to record

every collision. Therefore, there are minimum cuts placed on the momenta of the final state

particles, to ensure that the recorded events are of physical interest. This reduces the cross-

section and needs to be included in the efficiency factor. In order to understand the need

for the momentum cuts, some examples of cross-sections are listed in Table 2.1.
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Figure 2.1: Depiction of particles traveling through the CMS Detector. Reproduced from
Ref. [12]

2.2 Detecting Particles

When recording events, only certain particles can actually be recorded by the detector.

These particles are relatively stable, with lifetimes that allow the particle to make it from

the collision point to the detector. This reduces the number of particles that can be detected

to a list of only seven particles. These include: electrons, muons, photons, pions, kaons,

protons, and neutrons. The remaining particles that are produced in the hard interaction

either cannot be detected (neutrinos), or decay before they hit the detector (top quarks, b

hadrons). A depiction of a cross-section of the CMS detector at the LHC is shown in Fig. 2.1

to show which pieces of the detector each of the particles interact with. In the previously

mentioned figure, the curved tracks are due to charged particles traveling through a toroidal

magnetic field. The direction of the curvature is used to determine whether the particle

is positively or negatively charged. Additionally, the curvature of the tracks allows the
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momentum of the particle to be calculated, recalling from classical Electromagnetism:

r =
p

qB
, (2.2)

where r is the radius, p and q are the momentum and charge of the particle respectively, and

B is the strength of the magnetic field.

Another handle on the energy and momentum of the particles is through the use of

calorimeters. The calorimeters are classified into two classes, electromagnetic and hadronic.

These two classes focus on two different mechanisms to stop the particles. The electromag-

netic calorimeter focuses on stopping lighter particles (electrons and photons) through the

use of electromagnetic interactions. The hadronic calorimeter is used to stop hadrons, as the

name implies, through the use of nuclear interactions. The typical property to define the

material used in a calorimeter is the radiation length (X0) and nuclear interaction length

(λI) for the electromagnetic and hadronic calorimeters respectively. The typical size of an

electromagnetic calorimeter is 15-30 X0, and for an hadronic calorimeter 5-8 λI [6]. These

detectors tend to be segmented in both azimuthal and rapidity segments in order to obtain

direction information and improve reconstruction. The details of how each calorimeter works

can be found in Sections 2.2.2, 2.2.3.

2.2.1 Trackers

The inner most layer of the detector is known as the tracking system. This layer is used to

obtain track paths of charged particles and aid in vertex reconstruction. Furthermore, the

tracker is helpful in determining the momentum of charged particles as previously mentioned.

The curvature of the path allows for momentum and charge information to be collected. How-
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ever, the momentum and charge determined becomes inaccurate at very high momentum,

due to the radius becoming too large to detect. The ability to reconstruct the vertex allows

the ability to distinguish between particles that come from the hard process versus some

background event (underlying event) or from a secondary decay. The beams consist of large

bunches of protons, and many may collide in each crossing. An underlying event is another

interaction that occurred in the crossing, but is not related to the hard interaction being

studied. A secondary decay results in a displaced vertex, and usually arises from events

containing b or t quarks. Experimentalists have developed techniques to determine massive

particles such as b and t quarks from these displaced vertices called ”tagging”. Details on

tagging can be found in Section 2.3.1.1.

At ATLAS, the tracking system is formed from three sub-systems. The first layer is the

pixel detector [116], which is made up of 92 million silicon pixels covering a rapidity range

of |η| < 2.5. As particles pass through the pixels, ionization occurs by creating electron/hole

pairs. The resolution of the tracks formed by this system are 10µm in the r − φ plane and

115µm along the z-axis. The next layer is the semiconductor tracker [117, 118], which covers

the same rapidity region. However, this system is formed by strips of silicon instead of

pixels. This system provides position resolution of 17µm in the r−φ plane and 580µm along

the z-axis. Finally, the last sub-system is the transition radiation tracker [119, 120, 121],

which covers a rapidity range of |η| < 2. The transition radiation tracker contains a gaseous

medium used for producing ionizing radiation needed to obtain tracking information. The

resolution of this system is approximately 170µm in the r − φ plane, but does not provide

information about the particles position along the z-axis. Through the use of vertex finding

algorithms and the tracking data, the resolution of the location of the vertex is about 10µm

in the r − φ plane, and between 36-40µm in the z-axis [122].
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At CMS, the tracking system also consists of multiple sub-systems [123, 124]. The first

layer is again a silicon pixel detector containing 66 million pixels with a resolution of the

tracks at the 10-15µm level in the r− φ plane, and a resolution of 150µm in the z-direction,

covering the rapidity range of |η| < 2.5. The second layer is a silicon strip tracker, consisting

of 70 m2 silicon micro-strips. The strip tracker also covers the same rapidity range as the

pixel detector, and has a resolution on position of approximately 20µm in the r − φ plane,

and a resolution of about 500µm in the z-axis. The CMS collaboration decided to not use a

gas system for position measurements in order to have their tracking system all of the same

material. The combination of all of these systems, along with the algorithms implemented

to determine track information results in a vertex resolution of 10-12µm in all three spacial

directions [125].

2.2.2 Electromagnetic Calorimeters

The method of stopping particles in electromagnetic calorimeters is through electromagnetic

showers. The primary method of energy loss is through ionization, but Møller scattering,

Bhabha scattering, and annihilation also play a role, as seen in Fig. 2.2 for lead [6]. The

energy resolution of an electromagnetic calorimeter (σ/E) can be parameterized as:

σ

E
=

a√
E
⊕ b⊕ c

E
, (2.3)

where E is the energy of the particle in GeV, and ⊕ means that the terms are added in

quadrature. For the LHC, the electromagnetic calorimeter resolution is: 2.8%/
√
E⊕0.3%⊕

12%/E for CMS [126] and 10%/
√
E ⊕ 0.7% ⊕ 0.170/E for ATLAS [127]. The response

of electromagnetic calorimeters is well understood, and is simulated accurately in both the

49



Figure 2.2: Fractional energy loss per radiation length in lead as a function of electron or
positron energy. Reproduced from Ref. [6]

EGS4 [128] and GEANT [115] Monte Carlo detector simulators.

2.2.3 Hadronic Calorimeters

Unlike electromagnetic calorimeters, hadronic calorimeters are more difficult. The size of the

calorimeter needs to be approximately 30 times larger than the electromagnetic calorimeter

in order to absorb the same fraction of the particle’s energy. Additional complications in

measuring energy deposits arise from large fluctuations in neutron production, undetectable

energy loss to nuclear disassociation, and other effects [6]. At both the ATLAS and CMS

detector, the hadronic calorimeters are behind the electromagnetic calorimeters. The type

of calorimeters used at the LHC are known as sampling calorimeters. This means that the

calorimeter is made up of alternating layers of dense absorbers and plastic scintillators.

The absorber layers allow for the hadrons to interact, creating secondary particles. These
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particles form a hadronic shower. When the particles pass through the scintillators, light is

created and then through the use of wavelength-shifting fibers are transmitted to electronic

readout equipment [6].

Furthermore, the resolution of hadronic calorimeters are lower than the resolution of

electromagnetic calorimeters, due to the fact that the hadronic showers are broader than

electromagnetic showers. The energy response of hadronic calorimeters tend not to be linear

since the enegy deposited arises from both hadronic and electromagnetic showers. This

further adds to the complexity of measuring final state jets. The energy resolution at CMS

is given by a stochastic term, a = 84.7%, and a constant term, b = 7.4% [129]. The energy

resolution at ATLAS is given by a stochastic term, a = 41.9%, a constant term, b = 1.8%,

and with c = 1.8 [130].

2.2.4 Muon Spectrometers

As mentioned in Sec. 1, muons are second generation leptons. Muons have a lifetime of

2.2µs, and are about 200 times heavier than an electron. Due to these properties, muons

escape from the colliders with minimal energy loss as it transitions through the trackers

and calorimeters. Therefore, it is necessary to have additional detectors outside of these

systems to gain additional information on the muons in order to accurately determine their

momentum.

The momentum and charge of a muon is determined by the sagitta of the tracks formed

in magnetic fields. A sagitta is the distance from the center of a circular arc to the center of

the base. The measurement of the sagitta in the inner tracker is combined with that from

the muon spectrometer in order to improve the precision of the measurement.

In the ATLAS detector, the muon spectrometer is made up of four main sub-systems.
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These systems consist of the Monitored Drift Tube (MDT) chambers, the Cathode Strip

Chambers (CSC), the Resistive Plate Chambers (RPC), and the Thin Gap Chambers (TGC) [131].

These sub-systems can be divided into two sub-groups. The first group, consisting of the

MDT chambers and the CSC, is responsible for high precision tracking and momenta mea-

surements. The second group, consisting of the RPC and the TGC, is used as inputs for

the trigger system. The goal of the precision tracking components are to be able to measure

the momentum of a 1 TeV muon to an accuracy of 10%, resulting in a requirement on the

accuracy of the sagitta to be measured to a resolution of approximately 50µm. The MDT

chambers cover the rapidity region |η| < 2.7, and are used to obtain the z component of the

position, while the CSC is responsible for the R component in the range of 2.0 < |η| < 2.7

for muon rapidity. The need for the CSC is to measure the high flux of muons in the for-

ward direction, which is unable to be handled by the MDT chambers. Finally, the RPC

and TGC do not have very accurate position determination, but are optimized instead for

fast response times in order to interface with the muon trigger electronics. This allows for

accurate bunch-crossing identifications in order to properly reconstruct events. However,

this means that these systems need to provide coverage over |η| < 2.4 and over the entire φ

range.

In the CMS detector, the muon spectrometer is made up of three main sub-systems.

These systems consist of a RPC, a CSC, and a Drift Tube Chambers (DT) [132]. The

RPCs are used in both the barrel and the endcap solely for the purpose of being used

for the trigger system. The response time is approximately 1.3ns, guaranteeing a precise

identification of the bunch crossing. The endcaps use the CSC to provide precise time and

position measurements, and are able to handle the high flux and complex magnetic field.

This system is able to obtain a spatial resolution by approximately 100 − 240µm. Finally,
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the DT chambers are used in the barrel region to obtain precise position measurements, and

from a single hit is able to obtain a precision of approximately 190µm. Combining these

systems into many stations, CMS is able to obtain a resolution on the momentum between

5− 13% for momentums of 1 TeV if the inner tracker information is also used.

2.3 Physics Objects

Experimentally, all that is measured are energy deposits. Therefore, it is important to

separate these contributions into the fundamental particles that lead to the energy deposits,

in order to study the underlying physics. The major objects that these deposits or lack of

a deposit can be grouped into: jets, leptons, and missing energy. It is also possible to use

tracks to measure particles with a short but non-negligible lifetime through the use of offset

vertices from the major interaction point, this is known as tagging.

2.3.1 Jets

The definition of jets for experimentalists, is a collimated spray of hadrons that fall within a

given cone. Typically, the reconstruction of jets at the LHC is through the use of the anti-kt

algorithm, see Section 1.3.4 for details. The dominant uncertainties arise from the absolute

energy scale and the jet energy resolution, or in other words, the relationship between jets

formed in simulations and from those actually reconstructed in the detector [2]. To help

validate this, a comparison between dijet events, and photon plus jet events are compared.

In addition to understanding the jets as a complete object, it is important at the LHC to

begin to probe into the substructure of jets. Some of these techniques are described below.
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2.3.1.1 B-Tagging

There are a few different algorithms that are implemented in tagging the decay of b hadrons.

These include techniques that range from looking at signed significance of the decay length

to ones that use both secondary vertex and impact parameters [133]. These are combined

using multivariate methods to obtain the best discrimination possible.

One class of algorithms are known as lifetime-based tagging, which is based on the fact

that a b hadron with a pT ≈ 50 GeV will travel approximately 3mm before decaying [133].

This will leave behind a displaced vertex inside the tracker from which the charge particles

produced from the decay of the b hadron lead back to. The algorithms in this class try

to identify this topology in the events, and are broken into two sub-categories: impact

parameter algorithms, and vertex algorithms.

Impact parameter algorithms compute the impact parameters with respect to the primary

vertex. The transverse impact parameter is assigned to separate the tracks from the decay

from the hard interaction tracks. The sign of the momentum is positive if the secondary

vertex is in front of the primary vertex, and negative otherwise. An implementation of this

algorithm is known as JetProp [134], which was used at LEP and the Tevatron.

The vertex algorithm uses a three dimensional reconstruction of the vertex formed by

the decay products of the b hadron. The invariant mass of the charged tracks are used to

help reject vertices due to decays of Ks and Λ particles, along with photon conversions [133].

An example implementation of an algorithm which uses the secondary vertex to tag b-jets is

known as JetFitter [135].

Another class of algorithms that are used to tag b-jets is muon-based algorithms. Muons

are produced from the decay of the b hadrons either directly, or indirectly through the decay
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Figure 2.3: Performance curves obtained for different b-tagging algorithms using simulated
data. (Left) The mis-identification for light jets. (Right) The mis-identification for c jets.

Plots are reproduced from Ref. [13]

of the subsequent c hadrons. The efficiency of these types of algorithms tend to be lower

than that of lifetime-based algorithms, due to the fact that the branching ratio to muons is

only about 20%. However, the Soft Muon Tagger used by ATLAS does not use any lifetime

information, therefore making it a complementary method [133]. This method looks for

muons that are within ∆R(jet, µ) < 0.5 and other additional selection criteria.

These sets of algorithms are then combined using multivariate techniques as previously

mentioned. The results for the combined tagging efficiency to mis-identified jets and tagging

efficiency to mis-tagging c jets at CMS can be found in Fig. 2.3.

2.3.2 Leptons

When measuring leptons, there are a few sup-groups that are used in order to classify them

more throughly. This list consists of prompt, non-prompt, tight, loose, and fake leptons.

Prompt leptons are those that come from the decays of a W , Z, γ, top, Higgs, or some

new physics and not associated with a jet. A lepton that is associated with a jet is the result

of the decay of a short lived hadron and is known as a non-prompt lepton.
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The identification of tight and loose leptons refer to the set of selection criteria that are

applied to an experimental object during reconstruction. Tight criteria are used to help

ensure that the object is more likely to be a prompt lepton, and therefore prompt leptons

should pass tight selection criteria with a very high efficiency and non-prompt should not.

Loose selection criteria would be able to reconstruct both prompt and non-prompt leptons,

but also have the chance to identify an object that is not a lepton as a lepton. This leads to

the last identity, fake leptons. Since the tight selection criteria will not guarantee that the

object is a prompt lepton let alone an electron at all, a fake lepton is used to describe such

objects. Experimentally, there is not much that can be done to handle fake leptons. The

best method is to estimate the probability of fake leptons passing the tight lepton criteria

and to remove the contributions from the final result on average. However, removing fake

leptons is impossible on an event-by-event basis.

2.3.3 Missing Transverse Energy

As mentioned above, there are means to detect charged particles, photons, and neutral

hadrons. However, particles that are neutral and have lifetimes that are long enough to

escape from the detector before decaying are not detected at all. In the SM, the only such

particle is the neutrino, but there may exist additional particles that also have these proper-

ties. It is still possible to interpret the energy in the transverse direction that these particles

had, and to know its azimuthal angle, but not its rapidity. The transverse components

are simply obtained through the use of conservation of momentum, since the beams only

have momentum along the beam axis, the total transverse momentum must sum to zero.

Complications arise for this measurement due to gaps in the detector, and imperfect en-

ergy resolution. The accuracy on the missing transverse energy at ATLAS has a stochastic
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behavior with a = 0.55 [136] and CMS has a stochastic behavior with a = 0.63 [137].

The particles that are inferred from the missing transverse energy measurement are neu-

trinos, dark matter candidates, and other exotic particles that may or may not exist. In

this work, the missing transverse energy will be solely used for neutrinos in determining the

W boson mass (Chap. 5). The W boson mass is an important measurement that strongly

depends on both resummation and an ability to accurately measure the missing transverse

energy.
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Chapter 3

Resummation

When performing fixed-order calculations, the calculation is organized by the power of αs.

fixed-order calculations make sense when each term in the series is smaller than the previous

term. However, there are certain phase space points that result in each subsequent term

being larger than the previous one, causing the breakdown of the fixed-order calculation.

To resolve this, resummation is introduced. Resummation reorganizes that calculation by

noticing that there are certain terms that appear at every order in αs [138]. These terms

that appear in a specific form at each order are logarithms of two scales, e.g. log

(
Q2

q2T

)
. The

number of logarithmic terms included in the calculation is denoted by leading log for having

only the leading term, and adding next-to for each additional log term included. Table 3.1

shows the difference between the organization of a fixed-order calculation and a resummed

calculation.

LL NLL NNLL NNNLL ... NkLL
LO 1

NLO αs log
2 αs log αs

NNLO α2s log
4 α2s log

3 α2s log α2s
...

...
...

...
...

. . .

NkLO αks log
2k αks log

2k−1 αks log
2k−2 αks log

2k−3 ... αks

Table 3.1: The organization of fixed-order and resummed calculations. Going across a row
is the fixed-order calculation included at a given order of αs, while going down the columns

is the resummed calculation up the the given power of the logs included.
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This chapter introduces the Collins-Soper frame, which resummation is typically per-

formed in, followed by the calculation of Drell-Yan to next-to-leading order as an example

of a fixed-order calculation. Additionally, it will be shown how the fixed-order calculation

breaks down at each order in perturbation theory for the transverse momentum of the vector

boson. This will then lead into the derivation of the resummation formalism, a discussion of

the resummation scheme, and the non-perturbative function. Reproducing the fixed-order

calculation from the resummed calculation is an important cross-check of the resummation

formalism, and also the asymptotic piece needs to be obtained to allow the resummed piece

to properly match to the fixed-order result at high transverse momentum. Finally, the scale

dependence of the resummation formalism is calculated.

3.1 Collins-Soper Frame

The Collins-Soper (CS) Frame is a special reference frame in which qT resummation is

typically performed [139]. Here the details of the Lorentz transformations between lab and

CS frame are given for completeness. The lab frame is the the center of mass frame of the

colliding hadrons. In this frame, the momentum of the two colliding hadrons are given by:

p
µ
h1,h2

=

√
S

2
(1, 0, 0,±1) , (3.1)

where h1, h2 are the two incoming hadrons and
√
S is the center of mass energy of the

collider. The Collins-Soper frame is a special rest frame of the vector boson. In this frame,

the z-axis is defined to bisect the angle between the hadron momentum ph1 , and the negative

of the hadron momentum ph2 in the CS frame, shown in Fig. 3.1.

59



Figure 3.1: Depiction of the Collins-Soper Frame. Reproduced from [14].

Define the Lorentz transformation between the lab and CS frames as Λ
µ
ν :

p
µ
CS = Λ

µ
νp

ν
lab. (3.2)

Since the amplitude is independent of the φ angle in the lab frame, without loss of

generality, the φ angle will be taken to be zero. The transformation can be performed in

two-steps. First, the lab frame is boosted to the rest frame of the vector boson. Secondly,

the frame is then rotated such that the z-axis bisects the angle formed by the momentum

p
µ
h1

and −pµh2 .

The boost factor from the lab frame to the rest frame is defined by ~β = ~q
q0
, where ~q is

the 3 momentum, and q0 is the energy of the vector boson in the lab frame. Boosting by ~β

brings any four vector from the lab frame to the rest frame of the vector boson. The explicit

Lorentz transformation matrix in terms of the momentum of the vector boson in the lab
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frame, is given by:

Λ
µ
ν =

1

Q



q0 −qT 0 −q3

−qT Q+
q2T

q0+Q
0

qT q3

q0+Q

0 0 Q 0

−q3 qT q3

q0+Q
0 Q+

(
q3
)2

q0+Q


, (3.3)

where Q =
√(

q0
)2 − q2T − (q3)2 is the invariant mass of the vector boson, q3 is the mo-

mentum along the z-axis, and qt is the transverse momentum of the vector boson in the lab

frame.

After the boost, a rotation is applied to ensure that the z-axis bisects the angle formed

between ph1 and −ph2 . Once the boost given in Eq. 3.3 is performed, the momentum of the

incoming hadrons are given by:

p
µ
h1,h2

=

√
S

2

(
q0 ∓ q3

Q
,−qT

Q

q0 +Q∓ q3

q0 +Q
, 0,

(
±Q− q3

) (
q0 +Q

)
±
(
q3
)2

Q
(
q0 +Q

) )
. (3.4)

In the case that qT is zero, there is no needed rotation. However, in general qT 6= 0, and

an additional rotation is needed. To keep the hadronic momentum in the x − z plane, the

rotation should be made around the y-axis. The angle for the rotation is given by:

α = arccos
[
Q
(
q0 +MT

)
/
(
MT

(
q0 +Q

))]
, (3.5)

where MT is the transverse mass given by MT =
√
Q2 + q2T .

Combining the two transformations given in Eqs. 3.3 and 3.5 into a single Lorentz

transform gives the full transformation from the CS to the lab frame, which is given by the
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Lorentz matrix:

Λ
µ
ν (CS → lab) =

(
Λ
µ
ν (lab→ CS)

)−1
=

1

QMT



q0MT q0qT 0 q3Q

qTMT M2
T 0 0

0 0 QMT 0

q3MT q3qT 0 q0Q


. (3.6)

The kinematics of the leptons from the decay of the vector boson are completely deter-

mined by two angles (polar and azimuthal) defined in the Collins-Soper frame. Taking the

lepton momentum in the CS frame, and using the transformation given in Eq. 3.6, gives the

lepton momentum in the lab frame. The momentum for the fermion and the anti-fermion

in the lab frame are given by:

pµ =
Q

2

(
qµ

Q
+ sin θ cosφXµ + sin θ sinφY µ + cos θZµ

)
, p̄µ = qµ − pµ,

where pµ(p̄µ) is the (anti-)fermion momentum, qµ is the vector boson momentum in the

lab frame, X, Y , and Z are the axes in the CS frame given by the lab frame momenutm.

The anti-fermion momentum is simply obtained by conservation of momentum. The vector

boson momentum and axes in the lab frame are defined as:

qµ = (Mt cosh y, qt cosφV , qt sinφV ,Mt sinh y) ,

Xµ = − Q

qtMt

(
q+n

µ + q−n̄µ −
M2

t

Q2
qµ

)
,

Zµ =
1

M2
t

(q+n
µ − q−n̄µ) ,

Y µ = εµναβ
qν
Q
ZαXβ , (3.7)

62



where, q± = 1√
2

(
q0 ± q3

)
, y = ln (q+/q−), nν = 1√

2
(1, 0, 0, 1), n̄ν = 1√

2
(1, 0, 0,−1),

and εµναβ is the completely anti-symmetric Levi-Civita tensor. With the derivation of the

Collins-Soper frame, the act of resummation can now be performed. Next the motivation

for resummation will be discussed, followed by the means to perform resummation.

3.2 Fixed-Order Calculations

In Quantum Field Theory, calculations are performed order by order in perturbation theory.

Calculating the first term in the series is referred to as leading order (LO). Adding an

additional term is referred to as next-to-leading order (NLO), etc. The Drell-Yan process

(pp → e+e−) is calculated to NLO below in order to illustrate the steps of a fixed-order

calculation.

The Feynman diagrams that represent this calculation are shown in Fig. 3.2. Feynman

diagrams are a means to pictorially represent the calculation of the scattering matrix element.

To simplify the calculation, the hadronic matrix element is separated from the leptonic matrix

element. The leptonic matrix element is the same for both the leading order calculation and

the next-to-leading order calculation, and the diagram is represented by the right half of

each diagram of Fig. 3.2. The result for the leptonic martix element is given by:

Lµν = 4
[
2
(
f2L + f2R

) (
l1µl2ν + l2µl1ν − gµν (l1 · l2)

)
+
(
f2L − f

2
R

)
iεµνρσq

ρlσ12

]
, (3.8)

where qµ = l1µ+ l2µ, l12µ = l1µ− l2µ, l1µ/l2µ is the momentum of the lepton and anti-lepton

respectively, and fL/R are the left and right handed couplings respectively.
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(a)

(b) (c)

(d) (e)

Figure 3.2: The diagrams that contribute to the αs correction to Drell-Yan. (a) is the born
diagram. (b) is the virtual coupling correction. (c) is the wave function correction. (d) and

(e) are the real corrections
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The leading order calculation for the hadronic matrix element is done in d-dimensions,

with d = 4 − 2ε, since this dependence will be needed to obtain the correct result after

calculating the virtual correction. The hadronic matrix element is given by:

Hµν = 4
[
2
(
g2L + g2R

) (
p
µ
1p

ν
2 + pν1p

µ
2 − g

µνp1 · p2
)

+
(
g2L − g

2
R

)
iεµναβp2αp1β

]
, (3.9)

where gL/R are the left and right handed coupling of the quarks to the vector boson, p1 is

the momentum of the incoming quark, and p2 is the momentum of the incoming anti-quark.

At next-to-leading order, both the virtual corrections and real corrections are required.

The virtual corrections contain a virtual gluon connecting the two initial state partons (ver-

tex correction, Fig. 3.2b), as well as a virtual gluon connecting one initial parton to itself

(self-energy, Fig. 3.2c). However, in Dimensional Regularization the self-energy diagrams do

not contribute if the quark is massless, which is the case here. The real correction contains

a real gluon being radiated off of one of the external legs, and also a gluon splitting into

a quark anti-quark pair, as seen in Figs. 3.2d, and 3.2e respectively. Both of these con-

tributions are required in order to ensure that the soft divergences cancel according to the

KLN theorem [140, 141]. The KLN theorem states that in the SM that all IR divergences

that arise from loop integrals (virtual corrections), must be canceled by phase space correc-

tions. In addition to these two contributions, the renormalization of the Parton Distribution

Function needs to be included to ensure that the final result is completely IR finite.
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3.2.1 Real Corrections

In performing the calculations of the born contribution, the virtual contribution, and the

real contribution, it is possible to separate the leptonic piece of the matrix element from

the hadronic piece of the matrix element. First, consider the vector boson gluon final state

hadronic matrix element. The matrix element is the sum of the left hand sides of the diagrams

in Figs. 3.2d, and 3.2e. Defining the Mandelstam variables as: t = (k − q)2, u = (q − l)2,

and s = (k + l)2, the hadronic matrix element is expressed by:

Hµν =
8

ut

(
g2L + g2R

) [(
p
µ
2p

ν
2 + p

µ
1p

ν
1

) (
−4g2

)
(1− ε)

+4sqµqνε− gµν
((

q2 − u
)2

+
(
q2 − t

)2)
(1− ε)

−gµν
(
2q2s− 2tu

)
ε+

(
p
µ
1q

ν + qµpν1
) (

2
(
q2 − t

)
(1− ε) + 2

(
−q2 + u

)
ε
)

+
(
p
µ
2q

ν + qµpν2
) (

2
(
q2 − u

)
(1− ε) + 2

(
−q2 + t

)
ε
)
+
(
p
µ
1p

ν
2 + p

µ
2p

ν
1

) (
4q2ε

)]
+

8

ut
i
(
g2L − g

2
R

) [
εµναβp1αqβ (2 (s+ u)) + εµναβp2αqβ (−2 (s+ t))

]
. (3.10)

The hadronic matrix element can be separated into a symmetric and anti-symmetric piece

under the change of p1 → −p1, p2 → −p2. The symmetric piece is thus:

H [S]µν =
8

ut

(
g2L + g2R

) [
(lµlν + kµkν)

(
−4g2

)
(1− ε)

+4sqµqνε− gµν
((

q2 − u
)2

+
(
q2 − t

)2)
(1− ε) (3.11)

−gµν
(
2q2s− 2tu

)
ε+ (kµqν + qµkν)

(
2
(
q2 − t

)
(1− ε) + 2

(
−q2 + u

)
ε
)

+(lµqν + qµlν)
(
2
(
q2 − u

)
(1− ε) + 2

(
−q2 + t

)
ε
)
+ (kµlν + lµkν)

(
4q2ε

)]
,
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and the anti-symmetric piece is:

H [A]µν =
8

ut
i
(
g2L − g

2
R

) [
εµναβkαqβ (2 (s+ u)) + εµναβlαqβ (−2 (s+ t))

]
(3.12)

With both the leptonic and hadronic matrix element, the amplitude squared is:

|M |2qq̄ = HµνLµν =
64

ut

Q2

2[(
g2L + g2R

)(
f2L + f2R

)(
a

((
t−Q2

)2
+
(
u−Q2

)2)
+ 4

(
(k · l12)2 + (l · l12)2

)
ε
(
−a (t+ u)2 − 4 (k · l12 + l · l12)2

))
+
(
g2L − g

2
R

)(
f2L − f

2
R

)(
4
(
t−Q2

)
(k · l12)− 4

(
u−Q2

)
(l · l12)

)]
, (3.13)

where a = 1 in 4-dimensions, and a = 1− ε in d-dimensions. Finally, the color average factor

(13 ×
1
3) and the spin average factor (12 ×

1
2), in addition to a sum over the initial state colors

(3) needs to be included in the final result.

To obtain the calculation for quark-gluon initial states, crossing symmetry can be used,

which is defined by the following transformation for this process:

p1 → p2, q → q, p1 → q − p1 − p2, − (p1 + p2 − q)→ p1, (3.14)

u→ s, s→ t, t→ u. (3.15)

Additionally, the color and spin factors need to be modified since there is now a gluon in

the initial state. In d-dimensions, the spin factor goes from 1
2 ×

1
2 →

1
2(1−ε) ×

1
2 , and the

color factor is 1
3 ×

1
3 →

1
8 ×

1
3 . Finally, since there is an exchange of an outgoing particle

with an incoming anti-particle, the final result needs to be multiplied by (−1). This gives
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the amplitude squared as:

|M |2gq = 64
1

su

Q2

2

((
g2L + g2R

)(
f2L + f2R

)(
a

(
−
(
u−Q2

)2
−
(
s−Q2

)2)
−4
(
(k · l12 + l · l12)2 + (l · l12)2

)
+ ε
(
a (u+ s)2 + 4 (k · l12)2

))
+
(
g2L − g

2
R

)(
f2L − f

2
R

)(
−4
(
u−Q2

)
(l · l12)− 4

(
s−Q2

)
(k · l12 + l · l12)

))
.

(3.16)

Similarly, for the anti-quark-gluon initial states, again crossing symmetry can be taken

advantage of to obtain the same result as Eq. 3.16, but with a change of sign for the anti-

symmetric piece. With the real corrections calculated, the virtual corrections are needed to

complete the NLO correction to the Drell-Yan process.

3.2.2 Virtual Correction

Finally, to obtain the complete NLO correction to the total cross-section to the Drell-Yan

process, the virtual corrections need to be calculated. The diagram that contributes a

non-zero result up to one-loop in the strong coupling are given in Fig. 3.2b. When using

dimensional regularization to calculate the loop contributions, the loops on massless external

legs lead to a contribution of zero, since the loop integral obtained is a scaleless integral, and

thus must be zero. From a physics standpoint, this can be seen by the fact that the UV-

divergences exactly cancel the IR-divergences in dimensional regularization (εUV = −εIR).

Therefore, only one diagram remains to be calculated. Additionally, when performing the

calculation, only the terms proportional to αs need to be considered. From this, the virtual

matrix element squared does not contribute, but the interference of the one-loop diagram
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with the tree-level diagram does. The hadronic matrix element is given by:

H
µν
virtual = 4 (1 + 2f (ε))

(
2
(
g2L + g2R

)
(kµlν + kν lµ − gµν (k · l))

−2i
(
g2L − g

2
R

)
εµναβlαkβ

)
, (3.17)

where

f (ε) =
αs
4π
CF

(
4πµ2

Q2

)ε
1

Γ (1− ε)

(
− 2

ε2
− 3

ε
− 8 + π2

)
. (3.18)

Details of obtaining f (ε) can be found in App. F. The one-loop matrix element squared is

thus:

|M |2vitrual = 16 (1 + 2f (ε))Q4((
g2L + g2R

)(
f2L + f2R

)(
2a− 1 + cos2 (θ)

)
+
(
g2L − g

2
R

)(
f2L − f

2
R

)
2 cos (θ)

)
.

(3.19)

Eventually, the limit of ε to zero will be taken and the divergences in f (ε) will cancel with

those in the real correction once the additional radiation is integrated out and also with the

corrections to the PDF.

3.3 NLO DY Total Cross-Section

It is convenient to express the matrix elements in terms of angular functions in the Collins-

Soper Frame. At this order, the matrix element can be expressed using the following angular
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functions:

L = 1 + cos2 θ, (3.20)

A0 =
1

2

(
1− cos2 θ

)
, (3.21)

A1 = sin 2θ cosφ, (3.22)

A2 =
1

2
sin2 θ cos 2φ, (3.23)

A3 = cos θ, (3.24)

A4 = sin θ cosφ. (3.25)

Rewriting the real matrix elements in terms of these angular functions gives the following

for the qq̄ channel:

|M |2qq̄ = 64

(
Q2 − t

)2
+
(
Q2 − u

)2
ut

Q2

2((
g2L + g2R

)(
f2L + f2R

)(
H1 − H̃1ε

)
+
(
g2L − g

2
R

)(
f2L − f

2
R

)
H2

)
, (3.26)

where the H functions are given by:

H1 = L+
q2T

Q2 + q2T
(A0 +A2) +

(
Q2 − u

)2 − (Q2 − t
)2(

Q2 − u
)2

+
(
Q2 − t

)2 qTQ

Q2 + q2T
A1 (3.27)

H̃1 = L (t+ u)2(
Q2 − u

)2
+
(
Q2 − t

)2 +

(
Q2 + s

)2(
Q2 − u

)2
+
(
Q2 − t

)2 q2T
Q2 + q2T

(A0 +A2) (3.28)

H2 =
2Q√
Q2 + q2T

A3 +

(
Q2 − u

)2 − (Q2 − t
)2(

Q2 − u
)2

+
(
Q2 − t

)2 2qT√
Q2 + q2T

A4. (3.29)

There is a similar set of relations for the quark-gluon and anti-quark-gluon initial state

processes, see App. F. It is important to note that the coefficient of A0 and A2 is identical at
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NLO. This is known as the Lam-Tung relation [142, 143, 144]. A more detailed discussion of

the angular functions for Drell-Yan, the breaking of the Lam-Tung relation, and a comparison

of the ResBos2 code to LHC data can be found in Sec. 4.3.

In the real diagram, the divergences come from when the gluon becomes soft or collinear

to an initial parton. In other words when the transverse momentum of the vector boson goes

to zero. In the limit qT → 0, the terms proportional to 1
q2T

for the qq̄ channel are:

|M |2singular = 64
Q2

2

((
g2L + g2R

)(
f2L + f2R

)
K1L+

(
g2L − g

2
R

)(
f2L − f

2
R

)
2K2A3

)
, (3.30)

with

K1 =
1

q2T
δ (1− zA) δ (1− zB)

(
ln

(
Q2

q2T

)
− 3

2

)

+
1

q2T

((
1 + z2A
1− zA

)
+

δ (1− zB)

)

− ε

q2T
((1− zA) δ (1− zB)) + zA ↔ zB , (3.31)

K2 =
2

q2T
δ (1− zA) δ (1− zB)

(
ln

(
Q2

q2T

)
− 3

2

)

+
1

q2T

((
1 + z2A
1− zA

)
+

δ (1− zB) + zA ↔ zB

)
, (3.32)

where zA/B is the partonic momentum fraction of the parton from hadron A/B respectively,

and 1
(1−z)+

is the plus-function and its properties can be found in App. F. There are similar

expressions for the quark-gluon and anti-quark-gluon initial states (App. F). The most im-

portant difference between the quark-anti-quark and (anti-)quark-gluon expressions is that

there are no terms proportional to δ(1 − zA)δ(1 − zB) for those with gluons in the initial
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state. Integrating out the transverse momentum of the vector boson results in the poles that

are needed to cancel the double poles in the virtual correction. In order to obtain a full can-

cellation of the poles, the parton distribution functions need to be renormalized. Once the

poles for the PDF renormalization are included, then all of the poles will be canceled, and a

finite result will remain. To obtain the singularities from the real correction, an integral over

the phase space is needed. Details on d-dimensional phase space integrals can be found in

App. F. The results of the phase space integration are shown below for the singular terms.

dσRqq̄

dQ2
= σ0CF

αs
π

(
4πµ2

−Q2

)ε
1

Γ (1− ε)

(
2

ε2
δ (1− z)− 2

ε

(1 + z)2

(1− z)+

+4
(
1 + z2

)( ln (1− z)
1− z

)
+
− 2

(
1 + z2

1− z

)
ln z

)
. (3.33)

Similarly, performing the phase space integration over the virtual result gives the following

results:

dσVqq̄

dQ2
= σ0CF

αs
π

(
4πµ2

−Q2

)ε
1

Γ (1− ε)

(
− 2

ε2
− 3

ε
− 8 + π2

)
δ (1− z) . (3.34)

Comparing Eqs. 3.33 and 3.34 the terms proportional to 1/ε2 cancel, as required by the

KLN theorem. However, there remains a divergence which is canceled by the definition of

the parton distribution functions. The singularities of the PDFs are:

2

ε
CF

αs
π

(
(1 + z)2

(1− z)+
+

3

2
δ (1− z)

)
, (3.35)

which exactly cancels the remaining poles. Combining the real and virtual correction results

in the total cross-section for Drell-Yan at NLO. At this order, the result is completely UV
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Figure 3.3: Plot showing fixed-order versus resummed predictions. The dashed curves
correspond to fixed-order calculations, and the solid curves correspond to resummed

predictions. The plot is reproduced from Ref. [15]

finite. At higher corrections in αs this is no longer true, and requires the strong coupling to

be renormalized as discussed in Section 1.3.2. Details on the calculations to NNLO can be

found in [145], and parts of the calculations to N3LO can be found in [146, 147, 148].

3.3.1 Breakdown of Fixed-Order

When using fixed-order calculations, certain distributions contain integrable singularities,

resulting in nonsense theoretical predictions in certain kinematical regions. For example, the

transverse momentum distribution of the vector boson in Drell-Yan displays such properties.

This is seen in the qT distribution at NLO and NNLO for Drell-Yan in Fig. 3.3.

As the calculation is performed at higher and higher orders the small qT region will
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oscillate, as seen in Fig. 3.3 comparing the red dashed (NLO) and blue dashed (NNLO)

predictions. As the orders increase, the result continues to oscillate, but will never reach a

stable result until all orders of the calculation are included. The solution to this problem is

the introduction of the resummation formalism, which sums up the large logarithmns that

appear at each order in the fixed-order calculation.

3.4 Resummation Formalisms

The dynamics of multiple soft-gluon radiation in scattering processes is treated through the

use of the resummation formalism [149, 150, 151, 152, 153]. There are many applications

of resummation at modern colliders. In this work, the focus will be on the treatment of

transverse momentum resummation. The formalism was originally shown to be possible for

all the large logarithms (leading and subleading) to all orders by Collins, Soper, and Ster-

man [138]. The formalism developed in their work will be referred to as the CSS Formalism.

A more recent formalism was developed by Catani, de Florian, and Grazzini, which is known

as the CFG Formalism [154]. The details of the two formalisms are explained in Sec. 3.4.1

and Sec. 3.4.2 respectively. The differences between the two formalisms are highlighted in

Sec. 3.4.3. The remainder of this section will focus on the general outline of qT resummation.

Firstly, resummation is a means to relate the different scales of a multi-scale process to

a single scale, which also removes the large logarithms that result from the large difference

between the scales. Therefore, the first step is to factorize the cross-section calculation into

the different scale regions that are involved in the calculation. The regions that are important

to this work are known as the hard factor, the soft factor, and the collinear or jet factors. A

diagrammatic representation of each piece for the Drell-Yan process can be seen in Fig. 3.4,
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C

C

S H

Figure 3.4: A diagrammatic representation of the factorized cross-section for Drell-Yan,
broken into a soft, collinear, and hard factor. The soft factor is labeled by the S, the

collinear factors are labeled by the C’s, and the hard factor is labeled by the H

and can be expressed as:

dσ

dQ2dydq2T
∝ H(µ)S(µ, µR)C1(µ, µF )C2(µ, µF )J(µ,Rµ

′), (3.36)

where H is the hard factor, S is the soft factor, C1 and C2 are the collinear factors for each

incoming hadron, and J is the jet factor. The remainder of the section is to discuss the

calculation of the soft factor, and derive the well known Sudakov factor. Starting from the

fixed-order calculation up to the nth order in αs, the result can be split into a singular piece,

and a regular piece. The singular piece are terms that are proportional to 1
q2T

logm
(

Q2

q2T

)
(m = 0, 1, ..., 2n−1) and δ(qT ), and the regular terms are less singular than those previously

mentioned. As detailed in Sec. 3.3.1, this calculation breaks down when αns
1
q2T

logm
(

Q2

q2T

)
becomes large.

To resolve this issue, the logarithms need to be summed to all orders to obtain a finite

result in the limit qT → 0, and remove all large logarithms from the final result. In order to

perform the resummation correctly, the cross-section needs to be Fourier transformed into
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impact parameter (b) space. In impact parameter space, the total transverse momentum is

explicitly conserved [155]. After the Fourier transform, the cross section can be expressed

as:

dσ

dQ2dq2T dy
=

1

(2π)2

∫
d2bei~qT ·

~bW̃ (b,Q, x1, x2) + Y (qT , Q, x1, x2), (3.37)

where W̃ contains the resummation of the singular pieces of the cross section, and Y contains

the regular pieces of the cross section defined by taking the fixed-order calculation and

subtracting the asymptotic piece. The asymptotic piece contains the terms that are at least

as singular as 1
q2T

in the fixed-order calculation in the limit qT → 0. The calculation of the

asymptotic piece up to α3s can be found in Secs. 3.5.1- 3.5.2.

By studying the form of the singular piece, the x1 and x2 dependence in W̃ can be

factorized into:

W̃ (b,Q, x1, x2) =
∑
j

Cj (b,Q, x1)Cj (b,Q, x2) W̃ (b,Q) , (3.38)

where Cj is a convolution of the PDFs with a collinear Wilson coefficient, with the convolu-

tion defined as:

Cj =
∑
a

∫ 1

x

dz

z
Cja

(x
z
, b, µ,Q

)
fa (z, µ) , (3.39)

where Cja is the Wilson coefficient, fa is the PDF, the sum a runs over all incoming par-

tons, and j represents the parton that enters into the hard cross section calculation. These

functions are the collinear factors as previously mentioned. The remaining term contains

the hard factor, and the soft factors.
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W̃ is determined by solving the evolution equation [156]:

∂

∂ logQ2
W̃ (Q, b) = [K (bµ, gs (µ)) +G (Q/µ, gs (µ))] W̃ (Q, b) , (3.40)

whereK (bµ, gs (µ)) and G (Q/µ, gs (µ)) satisfy the renormalization group equations (RGEs),

d

d log µ
K (bµ, gs (µ)) = −γK (gs (µ)) , (3.41)

d

d log µ
G (b/µ, gs (µ)) = γK (gs (µ)) , (3.42)

where γK is the anomalous dimension, calculated from the singular terms of the cross sec-

tion []. Through the RGE equations, K (bµ, gs (µ)) and G (b/µ, gs (µ)) can be evolved inde-

pendently to scales of order 1/b and Q respectively, removing all large logarithms from the

calculation. After solving these equations, the A and B functions can be defined such that

Eq. 3.40 can be rewritten as:

∂

∂ logQ2
W̃ (Q, b) = −

(∫ C2
2Q

2

C2
1/b

2

dµ2

µ2

(
A (gs (µ) , C1) log

C2
2Q

2

µ2
+B (µ) , C1, C2

))
W̃ (Q, b) ,

(3.43)

where C1 and C2 are arbitrary constants of integration arising from solving the RGEs. It

is possible to calculate the values for the A and B functions order by order in perturbation

theory.

Finally, to obtain a result that can be used to make predicitons of the cross section, the

evolution equation of W̃ needs to be solved. The solution can be written as

W̃ (Q, b) = e−S(Q,b)W̃

(
C1

C2b
, b

)
, (3.44)
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where S is known as the Sudakov factor, and is given by

S (Q, b) =
∫ C2

2Q
2

C2
1/b

2

dµ2

µ2

(
A (gs (µ) , C1) log

C2
2Q

2

µ2
+B (µ) , C1, C2

)
. (3.45)

Putting all of the results above together, the resummed cross section can by written as:

dσ

dQ2dq2T dy
=

H

(2π)2

∫
d2bei~qT ·

~be−S(Q,b)
∑
j

Cj

(
C1

C2b
,Q, x1

)
Cj

(
C1

C2b
,Q, x2

)
+Y (qT , Q, x1, x2).

(3.46)

This is the general form for transverse momentum resummation. However, this form is not

the final form used in calculations, due the fact that when the impact parameter becomes

large, the scale of resummation goes below ΛQCD. Therefore the calculation becomes non-

perturbative. To prevent using a scale below ΛQCD, the b∗ prescription is introduced, where:

b∗ =
b√

1 + b2

b2max

, (3.47)

where bmax is chosen such that 1/bmax is of order ΛQCD. The lower bound of the Sudakov

integral is then modified from C2
1/b

2 to C2
1/b

2
∗. This functional form prevents b∗ from ever

being large than bmax, preventing scales below ΛQCD. However, this causes the prediction

to be inaccurate at low qT , since a piece is removed by the b∗ prescription. To resolve this,

a non-perturbative function needs to be introduced.

There are many different proposals for the form of the non-perturbative function [157,

158, 159, 160]. In this section, the general concepts of the non-perturbative function will be

covered. The method of obtaining this function is through fits to data. It is believed that

the non-perturbative function should be universal, and only depend on the color structure
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of the initial states. Details on a specific proposed non-perturbative function can be found

in Section 3.4.4. This then gives the final form of the resummation formalism in a scheme

independent way as:

dσ

dQ2dq2T dy
=
∑
i,j

H

(2π)2

∫
d2bei ~qT ·

~be−Sperte−SNPC ⊗ fiC ⊗ fj , (3.48)

where Spert is the Sudakov factor, while SNP is the non-perturbative Sudakov factor. Finally,

up to this point the integration coefficients (C1, C2, and C3) were left to be arbitrary. The

canonical choice for these scales are given by C1 = b0, C2 = 1, and C3 = b0, where b0 =

2e−γE . In Section 3.6, the relationship between the canonical scale choice and any arbitrary

choice is calculated. The theory uncertainty due to the missing higher order corrections can

be estimated by modifying the values of C1, C2, and C3 as discussed later in this chapter.

3.4.1 Collins-Soper-Sterman Formalism

So far, the resummation formalism has been developed in a resummation scheme independent

way. Here, the Collins-Soper-Sterman Formalism is introduced [138]. In this formalism, the

hard matrix element, H, is taken to be 1, with no corrections as a function of αs, and the B

and C coefficients become process dependent. The A, B, and C coefficients can be expanded

as a series in αs as:

A =
∑
n

(αs
π

)n
A(n), (3.49)

B =
∑
n

(αs
π

)n
B(n), (3.50)

Cij = δij +
∑
n

(αs
π

)n
C
(n)
ij . (3.51)
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For Drell-Yan, the coefficients for A up to α3s, B up to α2s and C up to αs are given with

the canonical scale choice as [161, 162, 163, 164, 165, 166]:

A(1) = CF , (3.52)

A(2) =
1

2
CF

((
67

18
− π2

6

)
CA −

5

9
Nf

)
, (3.53)

A(3) = CF

(
CFNf

2

(
ζ3 −

55

48

)
−
N2
f

108
+ C2

A

(
11ζ3
24

+
11π4

720
− 67π2

216
+

245

96

)
+CANf

(
−7ζ3
12

+
5π2

108
− 209

432

))
, (3.54)

B(1) = −3

2
CF , (3.55)

B(2) = C2
F

(
π2

4
− 3

16
− 3ζ3

)
+ CFCA

(
11

36
π2 − 193

48
+

3

2
ζ3

)
+ CFNf

(
17

24
− π2

18

)
, (3.56)

C
(1)
qq (z) =

1

2
CF (1− z) + δ(1− z)1

4
CF

(
π2 − 8

)
, (3.57)

C
(1)
qg (z) =

1

2
z(1− z), (3.58)

C
(1)
qq̄ (z) = C

(1)

qq′ (z) = C
(1)

qq̄′ (z) = 0, (3.59)

where CF = 4/3, CA = 3, and Nf is the number of active quarks. The results for B(3) can

be found in Ref. [167], and for C(2) can be found in Ref. [168].1

3.4.2 Catani-deFlorian-Grazzini Formalism

Catani, deFlorian, and Grazzini realized that the behavior of soft gluons is independent of

the hard process, and developed a resummation formalism in which the hard factor which is

process dependent can be pulled out of the Fourier Transform [169]. This then leads to the

1The results for B(3) and C(2) can be found in App. F.
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calculation in impact parameter space only depending on the initial state partons, and not

the hard factor. Like in CSS, the A, B, and C functions can be expanded as a series in αs.

However, in addition to these three, the hard factor H is not fixed to one, but can also be

expanded as a series in αs. In the CFG formalism, the A, B, and C coefficients are given

by:

A(1) = CF , (3.60)

A(2) =
1

2
CF

((
67

18
− π2

6

)
CA −

5

9
Nf

)
, (3.61)

A(3) = CF

(
CFNf

2

(
ζ3 −

55

48

)
−
N2
f

108
+ C2

A

(
11ζ3
24

+
11π4

720
− 67π2

216
+

245

96

)
+CANf

(
−7ζ3
12

+
5π2

108
− 209

432

))
, (3.62)

B(1) = −3

2
CF , (3.63)

B(2) =

(
(−3 + 24ζ2 − 48ζ3)C

2
F +

(
−17
3
− 88

3
ζ2 + 24ζ3

)
CFCA

+

(
2

3
+

16

3
ζ2

)
CFNf

)
/16 + CFβ0ζ2, (3.64)

C
(1)
qq (z) =

1

2
CF (1− z), (3.65)

C
(1)
gq (z) =

1

2
CF z, (3.66)

C
(1)
qg (z) =

1

2
z(1− z), (3.67)

C
(1)
qq̄ (z) = C

(1)

qq′ (z) = C
(1)

qq̄′ (z) = 0. (3.68)

The relationship for obtaining the A, B, and C coefficients in the CFG formalism from

the coefficients in the CSS formalism can be found in Sec. 3.4.3. The hard factor is process
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dependent, and for Drell-Yan are given as:

HDY (1) = CF

(π
2
− 4
)
, (3.69)

HDY (2) = CFCA

(
59ζ3
18
− 1535

192
+

215π2

216
− π4

240

)
+

1

4
C2
F

(
−15ζ3 +

511

16
− 67π2

12
+

17π4

45

)
+

1

864
CFNf

(
192ζ3 + 1143− 152π2

)
, (3.70)

up to O
(
α2s
)

[154].

3.4.3 Comparison of CSS to CFG

The conversion between the CSS and CFG Formalisms can be given using the all orders

relations [169]:

CF
ab(z) =

[
HF
a

]1
2 Cab(z), (3.71)

BF
c = Bc − β

d lnHF
c

d lnαs
, (3.72)

where the F superscript is used to indicate which pieces are process dependent, and β is

the function that describes the running of αs
2. This can be expanded order by order to

give a conversion between explicit CSS and CFG coefficients. It is important to note that

the A coefficients are always universal, and B(1) is also universal (only depends on the color

2See Section 1.3.2 for a detailed discussion of the β function.
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structure of the initial state). The conversions up to N3LL resummation are listed below:

C
(1)F
ab (z) = C

(1)
ab (z) + δabδ(1− z)

1

2
H

(1)F
a , (3.73)

C
(2)F
ab (z) = C

(2)
ab (z) +

1

2
H

(1)F
a C

(1)
ab (z) + δabδ(1− z)

1

2

(
H

(2)F
a − 1

4

(
H

(1)F
a

)2)
, (3.74)

B
(2)F
c = B

(2)
c + β0H

(1)F
c , (3.75)

B
(3)F
c = B

(3)
c + β1H

(1)F
c + 2β0

(
H

(2)F
a − 1

2

(
H

(1)F
a

)2)
, (3.76)

with β0 =
11CA−2Nf

12 and β1 =
17C2

A−5CANf−3CFNf
24 .

Comparisons between the numerical results, and how each compare to data can be found

in Section 4.1 and 4.2.

3.4.4 Non-Perturbative Contribution

As mentioned above, the resummation formalism needs to be cut-off at large values of impact

parameter. Originally, the functional form was taken to be solely for the calculation of Drell-

Yan. However, recent work in the transverse-momentum dependent PDF community (TMD)

propose that the functional form should be universal.

The most successful form for the non-perturbative function is the Brock-Landry-Nadolsky-

Yuan (BLNY) fit to the transverse momentum dependent Drell-Yan lepton pair production

in hadronic collisions [157, 170]. The BLNY fit parameterizes the non-perturbative form

factors as (g1 + g2 ln(Q/2Q0) + g1g3 ln(100x1x2)))b
2 in the impact parameter space with x1

and x2 being the longitudinal momentum fractions of the incoming nucleons carried by the

initial state quark and antiquark. These parameters are constrained from the combined

fit to the low transverse momentum distributions of Drell-Yan lepton pair production with
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4GeV < Q < 12GeV in fixed target experiments and W/Z production (Q ∼ 90GeV) at

the Tevatron. However, this parameterization does not apply to the semi-inclusive deep in-

elastic scattering (SIDIS) processes measured by HERMES and COMPASS collaborations:

extrapolating the above parameterization down to the typical HERMES kinematics where

Q2 is around 3GeV2, the transverse momentum distribution of hadron production in the

experiments cannot be described [171, 172].

A parametrization form that can consistently describe the Drell-Yan data and SIDIS

data in the CSS resummation formalism with a universal non-perturbative TMD function is

proposed below. In order to describe the SIDIS data, it is necessary to modify the original

BLNY parameterization. In the original BLNY parameterization, there is a strong corre-

lation between the x-dependence and the Q2-dependence [157, 170], since x1x2 = Q2/S

where S is the center of mass energy squared of the incoming hadrons. Therefore, the x-

dependence will be separated out, and assumed to follow a power law behavior: (x0/x)
λ.

These two parameterizations (logarithmic and power law) differ strongly in the intermediate

x range. Secondly, the lnQ term in the non-perturbative form factor is modified by following

the observation of Ref. [171, 172], which has shown that a direct integral of the evolution

kernel can describe the SIDIS and Drell-Yan data of Q2 range from a few to hundreds of

GeV2. Direct integration of the evolution kernel leads to a functional form proportional to

ln(b/b∗) ln(Q), instead of b2 ln(Q2). Therefore, the experimental data will be fit with the

proposed non-perturbative function defined as:

g1b
2 + g2 ln(b/b∗) ln(Q/Q0) + g3b

2
(
(x0/x1)

λ + (x0/x2)
λ
)
, (3.77)

where Q2
0 = 2.4GeV 2, x0 = 0.01 and λ = 0.2, and are fixed in the fit. This new non-
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perturbative function will be referred to as the Sun-Isaacson-Yuan-Yuan (SIYY) non-perturbative

function. The x-dependence is motivated by a saturation picture for parton distributions at

small-x. This functional form also has mild dependence on x in the intermediate x-range as

compared to the original BLNY parameterization.

After obtaining the TMD non-perturbative function from the fit to the Drell-Yan data,

the fit is applied to the transverse momentum distributions in SIDIS processes from HERMES

and COMPASS.

In the BLNY parameterization, the g2 term is responsible for the Q2 dependence, which is

modified in order to describe the Drell-Yan and SIDIS processes simultaneously. At small-b,

the above function reduces to b2 behavior, which is consistent to the power counting analysis

in Ref. [160]. However, at large b, the logarithmic behavior will lead to different predictions

from BLNY.

To constrain the values of g1, g2, and g3 a global fit is performed on the Drell-Yan data.

The data that is included in the fit is listed below:

• Drell-Yan lepton pair production from fixed target hadronic collisions, including R209,

E288 and E605 [16, 18, 17].

• Z boson production in hadronic collisions from Tevatron Run I and Run II [19, 20, 21,

22].

In total, 7 Drell-Yan data sets from 3 fixed target experiments and 4 Tevatron experiments

are included. While the LHC data was not included in the fit, the fit is compared to data

from the LHC afterwards, and is shown to be in good agreement. In total, there are 140

experimental data points, and g1, g2, and g3 as free parameters in the global fit, with

bmax = 1.5GeV −1. In the numerical calculations, the CT10-NLO parton distributions at
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Parameter SIYY1 fit SIYY2 fit

g1 0.200 0.18084
g2 0.810 0.16741
g3 0.0204 0.00323

E288 Nfit = 0.82 Nfit = 0.757

(28 points) (Norm Err = 0.25) χ2 = 52.6 χ2 = 38

E605 Nfit = 0.86 Nfit = 0.824

(35 points) (Norm Err = 0.15) χ2 = 63.5 χ2 = 61

R209 Nfit = 1.02 Nfit = 0.956

(10 points) (Norm Err = 0.1) χ2 = 3 χ2 = 5
CDF Run I Nfit = 1.06 Nfit = 1.048

(20 points) (Norm Err = 0.04) χ2 = 10 χ2 = 9.3
D0 Run I Nfit = 0.93 Nfit = 0.94

(10 points) (Norm Err = 0.04) χ2 = 7 χ2 = 6.3
CDF Run II Nfit = 0.990 Nfit = 0.992

(29 points) (Norm Err = 0.04) χ2 = 30 χ2 = 26.2
D0 Run II Nfit = 0.94 Nfit = 0.939

(8 points) (Norm Err = 0.04) χ2 = 3.7 χ2 = 3.6

χ2 169 150

χ2/DOF 1.21 1.07

Table 3.2: The non-perturbative functions parameters fitting results. Here, Nfit is the
fitted normalization factor for each experiment.

the scale µ = b0/b∗ are used [173]. An additional fitting parameter (Nfit) is assigned for

each experiment to account for the luminosity uncertainties.

In Figs. 3.5, 3.6, 3.7, 3.8, and 3.9, the best fits to the Drell-Yan data from E288, E605,

and R209 Collaborations, and Z boson production from the CDF and D0 Collaborations at

the Tevatron Run I and II are shown. The fitting results and χ2 distributions are listed in

Table 3.2. The plots and the table show that the SIYY non-perturbative function provides

a reasonable fit to all 7 experimental data with 3 non-perturbative parameters g1,2,3 and 7

independent normalization factors.

In the above fit, SIYY2 is an update fit to the BLNY fit, with the choice of bmax = 1.5

instead of the traditional value of 0.5. This fit is updated as well to estimate the uncertainty
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Figure 3.5: Fit to the differential cross section for Drell-Yan lepton pair production in
hadronic collisions from E288 Collaboration [16].

in the non-perturbative fit due to the parameterization of the non-perturbative function.

Among these parameters, the most important one, relevant to the LHC W and Z boson

physics, is g2 which controls the Q2 dependence in the non-perturbative form factors. From

the χ2 distribution in scanning the g2 parameter as shown in the left panel of Fig. 3.11, its

uncertainty is given as:

g2 = 0.81± 0.06 (at 90% C.L.) . (3.78)

In order to demonstrate the sensitivity of g2 on different experiments, in the right panel of

Fig. 3.11, the ∆χ2 distributions are plotted as functions of g2 from separate data sets: one

from the Drell-Yan experiment E288, the combined contribution from all other Drell-Yan

experiments, and one from Tevatron Z-boson experiments. From this figure, it is clear that

the strongest constraints come from the precise Drell-Yan data at fixed target experiments,
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Figure 3.6: Fit to the Drell-Yan data from the E605 Collaboration [17].
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Figure 3.7: Fit to the Drell-Yan data from the R209 Collaboration [18].
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Figure 3.8: Fit to the Tevatron Run I data from the CDF and D0 Collaborations [19, 20].

The fits include only the A(1,2), B(1,2), and C(1) contributions.
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Figure 3.9: Fit to the Tevatron Run II data from the CDF and D0 Collaborations [21, 22].
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Figure 3.11: ∆χ2 distribution scanning g2 parameter in SIYY1 fit (left), and ∆χ2

distribution scanning g2 parameter in SIYY2 fit (right).

i.e., the E288 experiment. It is also interesting to note that, although the Tevatron data for

Z-boson production is the most precise data, it does not pose a strong constraint on the g2

parameter. This can be understood as a result of the dominance of the perturbative contri-

bution to the transverse momentum distribution of W/Z boson productions at these collider

energies. A similar observation was made in Ref. [174, 159] with a different prescription to

introduce the non-perturbative form factors. However, in the original BLNY fit, the Gaus-

sian form of the g2 term (g2b
2 lnQ) leads to a stronger effect on the W/Z boson production

as shown in Ref. [158]. The comparison of this non-perturbative fit to the SIDIS data can

be found in App. F. As seen in the figures, the updated Gaussian fit is also consistent with

the data, and the two fits give a good estimate of the uncertainty due to the form of the

non-perturbative function.

3.5 The Asymptotic Piece and Obtaining Fixed-Order

Cross-Sections from Resummed Results

The asymptotic piece contains the terms that are at least as singular as 1
q2T

, and can be

obtained in two manners. One way to obtain the asymptotic piece is to take the limit of

90



qT goes to zero of the real correction. However, this explicitly involves integrating out all

the kinematic variables of the additional radiations, with the requirement that the boson

qT is the desired value, i.e. adding in a δ(2)( ~qT −
∑

i ~pT i), where i is over all additional

radiations. The other method of obtaining the asymptotic piece is to perform an expansion

of the resummation formalism to a fixed-order in αs. The expansion of the resummation

formalism reproduces all of the divergences that exist in the real correction, and thus the

two should cancel as qT goes to zero. The second method is detailed below up to α3s.

An important cross check of the calculations, is to ensure that when the appropriate

expansions are made, the fixed-order total cross section is reproduced. In order to calculate

the fixed-order total cross section three pieces are needed, the singular piece below pcutT , the

real correction for qT > pcutT , and the regular piece below pcutT . The regular piece is the

difference between the real correction and the asymptotic piece. The contribution to the

total cross-section from the regular piece is small if pcutT is taken to be small. Throughout

this work, pcutT will be chosen to be small such that the regular piece provides a negligible

contribution and will therefore be ignored. For the leading order calculation, obtaining

the fixed-order calculation from the resummed result is trivial, and therefore the first order

discussed will be NLO. Throughout the following calculation, without loss of generality, the

choices for the resummation constants (C1, C2, and C3) will be chosen to be the canonical

values for simplicity (C1 = C3 = b0, C2 = 1). As will be discussed in the following section

(Sec. 3.6), all C1, C2, and C3 dependence should cancel in the expansion of the resummation

formalism to some fixed-order in αs. Therefore, the asymptotic, singular, and real piece do

not depend on the choice of resummation constants.

The asymptotic piece consists of terms that are at least as singular as q−2T . The singular

piece consists of terms that are at least as singular as q−2T plus it also includes the δ(qT ) terms.
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The expansion of the A, B, C, and H coefficients to O (αns ) can be explicitly found up to

O
(
α3s
)
in Section 3.4.1, Section 3.4.2, and Appendix F for the CSS and CFG formalisms. The

expansion of both the CSS and CFG formalism result in the same singular and asymptotic

piece, so it is sufficient to only consider the CSS formalism. The lepton variables and angle

between~b and ~qT are integrated out to simplify the discussion, but do not modify the results.

After these simplifications, the resummation formalism becomes:

lim
qT→0

dσ

dQ2dydq2T
∝ 1

2πq2T

∫ ∞
0

dηηJ0 (η) e
−S
(
η/qT ,Q

)

× C ⊗ fj
(
x1, q

2
T /η

2
)
C ⊗ fk̄

(
x2, q

2
T /η

2
)
+ j ↔ k̄, (3.79)

where terms that are not of importance in the derivation have been dropped, and terms that

are less singular than 1
q2T

or δ(qT ) have also been dropped. The asymptotic piece is obtained

by integrating over η = bqT . This can be performed by using the following integration by

parts identity: ∫ ∞
0

dηηJ0 (η)F (η) = −
∫ ∞
0

dηηJ1 (η)
dF (η)

dη
, (3.80)

which is true given that the boundary term vanishes,
(
ηJ1 (η)F (η)∞η=0 = 0

)
. Additionally,

the following integral results will be important in obtaining both the asymptotic and singular
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piece up to O
(
α3s
)
:

∫ ∞
0

dηJ1 (η) ln
m

(
η2Q2

b20q
2
T

)
=



1, if m = 0

ln Q2

q2T

, if m = 1

ln2 Q2

q2T

, if m = 2

ln3 Q2

q2T

− 4ζ(3), if m = 3

ln4 Q2

q2T

− 16ζ(3) ln Q2

q2T

, if m = 4

ln5 Q2

q2T

− 40ζ(3) ln2 Q2

q2T

− 48ζ(5), if m = 5,

ln6 Q2

q2T

− 80ζ(3) ln3 Q2

q2T

− 288ζ(5) ln Q2

q2T

+ 160ζ(3)2, if m = 6,

(3.81)

where b0 = e−γE , and γE is the Euler constant. Up through m = 2 is needed for the O (αs)

calculations, through m = 4 is needed for the O
(
α2s
)
calculations, and all of the above will

be needed for the O
(
α3s
)
calculations.

Secondly, the singular piece is obtained by taking the integral of qT for the O (αns )

corrections from 0 to pcutT , and is calculated in a manner similar to the asymptotic piece,

with one key modification. Instead of using the integration by parts identity, the order of

integration between qT and b is interchanged, giving us the following relationship:

1

(2π)2

∫ (pcutT

)2
0

dq2T

∫
d2bei~qT ·

~bF (b) =
1

2π

∫ ∞
0

dbpcutT J1

(
bpcutT

)
F (b) . (3.82)

Finally, the calculation of the real corrections is needed. The additional jets then need

to be integrated out, and the singularities need to be canceled in order to obtain a finite

prediction. For NLO this is straightforward, and there is an analytic form. However, at
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NNLO this is not possible, and an external code with the parameters tuned to match that

of the ResBos2 code will be used to obtain this contribution. Additionally, to ensure the

external code is tuned correctly, it will be validated against the total cross-section at NLO.

Once the functional form for C(3) is calculated, the ResBos2 code along with the Z plus jet

to NNLO calculation will be able to predict the N3LO total cross-section.

3.5.1 O (αs) Singular, Asymptotic Piece, and NLO Result

In this subsection, the computational details of obtaining the singular and asymptotic piece

needed for the NLO calculation are shown. Firstly, to obtain the asymptotic piece the

Sudakov factor is expanded to O (αs), S(b,Q) = S(1)(b,Q) +O
(
α2s
)
, with S(1) given as:

S(1)(b,Q) =
αs
(
Q2
)

π

[
1

2
A(1) ln2

Q2b2

b20
+B(1) ln

Q2b2

b20

]
. (3.83)

Also, the convolution of the PDF with the C function needs to be expanded to O (αs).

At O (αs), the C function does not appear in the asymptotic piece at this order, but will

appear at higher orders. For the asymptotic piece, at this order it is sufficient to use the

PDF evolution equation given as:

dfj(x, µ
2)

d lnµ2
=
αs(µ

2)

2π

(
P
(1)
j←a ⊗ fa

)(
x, µ2

)
+O

(
α2s

)
. (3.84)

Using the integration by parts identity in Eq. 3.80, requires the derivatives with respect to

η of the Sudakov factor and the PDF, given as:

d

dη
e−S(η/qT ,Q) =

−2
η

αs(Q
2)

π

[
A(1) ln

Q2η2

b20q
2
T

+B(1)

]
+O

(
α2s

)
, (3.85)
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and

d

dη
fj

(
x, b20q

2
T /η

2
)
=
−2
η

αs(Q
2)

2π

(
P
(1)
j←a ⊗ fa

)(
x, µ2

)
+O

(
α2s

)
. (3.86)

Combining these results with those from Eq. 3.81, the final results for the asymptotic piece

is given as:

lim
qT→0

dσ

dQ2dydq2T
=
σ0
S

1

2πq2T

αs(Q
2)

π

{[
fj

(
x1, Q

2
) (
Pk̄←b ⊗ fb

) (
x2, Q

2
)

+ fk̄

(
x2, Q

2
) (
Pj←a ⊗ fa

) (
x1, Q

2
)]

(3.87)

+ 2

[
A(1) ln

Q2

q2T
+B(1)

]
fj

(
x1, Q

2
)
fk̄

(
x2, Q

2
)
+ j ↔ k̄

}
+O

(
α2s

)
.

For simplicity, it is useful to introduce the following definition,

dσ

dQ2dydq2T
=
σ0
S

1

2πq2T

∑
i,j

∞∑
n=1

2n−1∑
m=0

(
αs(µ

2)

π

)n

nC
(i,j)
m lnm

(
Q2

q2T

)
, (3.88)

which becomes very useful for organization beyond O (αs). The definition above differs from

that found in Ref. [175] by expanding in factors of αs
π instead of αs

2π , and the overall factor

for the 1
q2T

term is 1
2π instead of 1

π . Using these definitions the above results are given as:

1C
(i,j)
1 = 2A(1)fifj ,

1C
(i,j)
0 = 2B(1)fifj +

[
fj (Pi←b ⊗ fb) fi

(
Pj←a ⊗ fa

)]
.

Secondly, calculating the singular piece begins by expanding the Sudakov factor in the

same manner. However, instead of using the evolution of the PDF as a shortcut to obtain
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the derivative with respect to η, the PDF is directly expanded to O (αs) as:

fj

(
x, µ2

)
= fj

(
x,Q2

)
+
αs
(
Q2
)

2π
ln

(
µ2

Q2

)(
Pj→a⊗fa

) (
x,Q2

)
+O

(
α2s

)
, (3.89)

where µ2 is the factorization scale3. It will be convenient to again introduce the following

definition:

∫ (pcutT

)2
0

dq2T
dσ

dQ2dydq2T
=
σ0
S

∑
i,j

∞∑
n=0

2n∑
m=0

(
αs(µ

2)

π

)n

nV
(i,j)
m lnm

(
Q2

q2T

)
(3.90)

Combining this with Eq. 3.82 we obtain the following results using the above definition of

nV
(i,j)
m :

0V
(i,j)
0 = fifj ,

1V
(i,j)
2 = −1

2
A(1)fifj ,

1V
(i,j)
1 = −B(1)fifj −

1

2

[
fj (Pi←b ⊗ fb) + fi

(
Pj←a ⊗ fa

)]
,

1V
(i,j)
0 = fj

(
C
(1)
i←b ⊗ fb

)
+ fi

(
C
(1)
j←a ⊗ fa

)
.

Finally, the regular terms and real corrections can be found in Ref. [176] in Section 2.2.5.

By combining these pieces, the NLO prediction can be calculated, and is implemented into

the ResBos2 code. As mentioned above, there is a pcutT that is artificially introduced to

separate the singular region from the regular region. The numerical result at NLO is for the

total cross section for Drell-Yan in the invariant mass region of 66 GeV < Mll < 116 GeV

at a collider energy of
√
S = 8 TeV. Furthermore, comparisons to other publicly available

codes tuned to have the same Electroweak parameters as defined in Ref. [68], and mentioned

3The higher order expansion for the PDF is detailed in App. F
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NLO Calculation Cross-Section

ResBos2 (qcutT = 0.1GeV) 1113.3 pb
ResBos2 (qcutT = 3GeV) 1115.1 pb

MCFM 1112.6 pb
FEWZ 1113.2 pb

Table 3.3: Total inclusive NLO Drell-Yan Cross-sections for 66 GeV < Mll < 116 GeV.
MCFM calculation using version 8.0 [3]. FEWZ calculation using version 3.1 rc [4]

in Sec. 1.1.4, and using the CT14nnlo PDF [10], can be seen in Table 3.3.

3.5.2 O
(
α2
s

)
Singular, Asymptotic, and the NNLO Total Cross-

Section

At NNLO, the procedure above is extended to the next order in αs. The most important

difference from NLO is that the expansion of αs(µ
2) needs to be considered. This expansion

is given by the following to O
(
α3s
)
:

αs(µ
2)

π
=
αs(µ

2
R)

π
−

(
αs(µ

2
R)

π

)2

β0 ln
µ2

µ2R
+

(
αs(µ

2
R)

π

)3(
β20 log

2 µ
2

µ2R
− β1 log

µ2

µ2R

)
+O

(
α4s

)
,

(3.91)

where β0 and β1 are defined in App. E, and µR is the renormalization scale4. The Sudakov

factor then can be expressed as S = S(1) + S(2) +O
(
α3s
)
with:

S(2)(b,Q) =
α2s
(
Q2
)

π2

[
1

2
A(2) ln2

Q2b2

b20
+B(2) ln

Q2b2

b20

]
, (3.92)

4The complete derivation of the result can be found in Appendix F
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and after expanding αs, the Sudakov factor is

S =
αs
π

(
1

2
A(1) ln2

Q2b2

b20
+B(1) ln

Q2b2

b20

)

+
(αs
π

)2(1

4
A(1)β0 ln

2 Q
2b2

b20
ln
µ2R
Q2

+
1

6
A(1)β0 ln

3 Q
2b2

b20
+

1

2
A(2) ln2

Q2b2

b20

+
1

2
B(1)β0 ln

Q2b2

b20
ln
µ2R
Q2

+
1

4
B(1)β0 ln

2 Q
2b2

b20
+B(2) ln

Q2b2

b20

)
+O

(
α3s

)
. (3.93)

A similar expansion as above is carried out for the convolution of the C function with

the PDF. The results can then be expressed as:

C ⊗ f = f +
αs
π

(
C(1) ⊗ f − 1

2
P (1) ⊗ f

(
ln
Q2b2

b20
+ ln

µ2F
Q2

))

+
1

8

(αs
π

)2(
4β0C

(1) ⊗ f

(
ln
Q2b2

b20
+ ln

µ2F
Q2

)

− 2β0P
(1) ⊗ f

(
ln
Q2b2

b20
+ ln

µ2F
Q2

)(
ln
Q2b2

b20
+ ln

µ2R
Q2

)
+ β0P

(1) ⊗ f

(
ln
Q2b2

b20
+ ln

µ2F
Q2

)2

+ 4C(1) ⊗ P (1) ⊗ f

(
ln
Q2b2

b20
+ ln

µ2F
Q2

)
+ 8C(2) ⊗ f

+ P (1) ⊗ P (1) ⊗ f

(
ln
Q2b2

b20
+ ln

µ2F
Q2

)2

+ 2P (2) ⊗ f

(
ln
Q2b2

b20
+ ln

µ2F
Q2

)+O
(
α3s

)
,

(3.94)

where µF is the factorization scale.
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Following the procedure used at NLO, the nCm’s for the asymptotic piece, are given as:

2C
(i,j)
3 = −2

(
A(1)

)2
fifj ,

2C
(i,j)
2 =

(
−6A(1)B(1) + 2A(1)β0

)
fifj − 3A(1) (fj (Pi←b ⊗ fb) fi

(
Pj←a ⊗ fa

))
,

2C
(i,j)
1 =

(
A(1)β0 ln

µ2R
Q2

+ 2A(2) − 2
(
B(1)

)2
+B(1)β0

)
fifj + 4A(1)

(
C(1) ⊗ fi

)
fj

− 2A(1)
(
P (1) ⊗ fi

)
fj ln

µ2F
Q2
− 4B(1)

(
P (1) ⊗ fi

)
fj

+ β0

(
P (1) ⊗ fi

)
fj −

(
P (1) ⊗ P (1) ⊗ fi

)
fj −

(
P (1) ⊗ fi

)(
P (1) ⊗ fj

)
+ i↔ j,

2C
(i,j)
0 =

(
4
(
A(1)

)2
ζ(3) +B(1)β0 ln

µ2R
Q2

+ 2B(2)

)
fifj

+B(1)

(
4
(
C(1) ⊗ fi

)
fj − 2

(
P (1) ⊗ fi

)
fj ln

µ2F
Q2

)

− β0

(
4
(
C(1) ⊗ fi

)
fj − 2

(
P (1) ⊗ fi

)
fj ln

µ2R
Q2

)

+ 2
(
C(1) ⊗ P (1) ⊗ fi

)
fj + 2

(
C(1) ⊗ fi

)(
P (1)⊗ fj

)
−
(
P (1) ⊗ P (1) ⊗ fi

)
fj ln

µ2F
Q2

+
(
P (1) ⊗ fi

)(
P (1) ⊗ fj

)
ln
µ2F
Q2

+
(
P (2) ⊗ fi

)
fj + i↔ j,

where the i ↔ j corresponds to the same terms with i and j interchanged. These results

above are consistent with the results of [177]. Also, using the expansions above, the singular
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piece is given by

2V
(i,j)
4 =

1

8

(
A(1)

)2
fifj ,

2V
(i,j)
3 =

(
1

2
A(1)B(1) − 1

6
A(1)β0

)
fifj +

1

4
A(1)

((
P (1) ⊗ fi

)
fj +

(
P (1) ⊗ fj

)
fi

)
,

2V
(i,j)
2 =

−1

8
β0A

(1) ln

(
µ2R
Q2

)
+

(
B(1)

)2
4

− β0B
(1)

8
− A(2)

4

 fifj

+

(
1

4
A(1) ln

(
µ2F
Q2

)
+
B(1)

2
− β0

8

)
fj

(
P (1) ⊗ fi

)
+

1

8

(
P (1) ⊗ P (1) ⊗ fi

)
fj

− 1

2
A(1)

(
C(1) ⊗ fi

)
fj +

1

8

(
P (1) ⊗ fi

)(
P (1) ⊗ fj

)
+ i↔ j,

2V
(i,j)
1 =

(
−ζ(3)

(
A(1)

)2
− 1

4
β0B

(1) ln

(
µ2R
Q2

)
− B(2)

2

)
fifj −B(1)
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NNLO Calculation Cross-Section

ResBos2 (qcutT = 1.5GeV) 1111.0 pb
ResBos2 (qcutT = 4.5GeV) 1115.6 pb

MCFM 1116.6 pb
FEWZ 1111.0 pb

Table 3.4: Total inclusive NNLO Drell-Yan Cross-sections for 66 GeV < Mll < 116 GeV.
MCFM calculation using version 8.0 [3]. FEWZ calculation using version 3.1 rc [4]

Similar to the NLO calculation, the results can be compared to that from other publicly

available tools. Everything in the comparison is the same as it was in the NLO calculation,

with the exception that the real correction is obtained from SHERPA [178]. The results are

shown in Tab. 3.4.

The results for the O
(
α3s
)
calculation can be found in the App. F.

3.6 Scale Dependence

In the resummation formalism, there exists three constants that are a result of solving the

renormalization group equations. These constants are arbitrary, and should therefore not

appear in the expansion of the resummation formalism to a fixed-order in αs. This implies

that the resummation coefficients, A,B, C, and H should depend on these parameters. Here

the calculation is done in the CSS scheme, but the CFG scale dependence can be obtained

using Eq. 3.73.

To obtain the coefficients, the resummation formalism is expanded for arbitrary scales

and is compared to the canonical choice, (C1 = C3 = b0, and C2 = 1). In other words:

W (b,Q,C1, C2, C3) |O(αns ) = W (b,Q,C1 = b0, C2 = 1, C3 = b0) |O(αns ), (3.95)
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where the definitions of C1, C2, and C3 can be found in the scale dependent resummation

formalism given as:

W = exp

(
−
∫ C2

2Q
2

C2
1/b

2

dµ2

µ2
A(µ;C1) log

(
C2
2Q

2

µ2

)
+B(µ;C1, C2)

)

C ⊗ fa
(
x1,

C1

C2
,
C3

b

)
C ⊗ fb

(
x2,

C1

C2
,
C3

b

)
. (3.96)

performing the series expansion of the previous equation, and using Eq. 3.95, to O
(
α3s
)
, the

scale dependence is given by:

A(1) = A(1,c) (3.97)

A(2) = A(2,c) − β0A(1,c) log

(
b20
C2
1

)
(3.98)

A(3) = A(3,c) + 4β20A
(1,c) log2

(
b0
C1

)
− 2 log

(
b0
C1

)(
β1A

(1,c) + 2β0A
(2,c)

)
(3.99)

B(1) = B(1,c) − A(1,c) log

(
b20C

2
2

C2
1

)
(3.100)

B(2) = B(2,c) − A(2,c) log

(
b20C

2
2

C2
1

)

+ β0

(
2A(1,c) log2

(
b0
C1

)
− 2A(1,c) log2 (C2) + 2B(1,c) log (C2)

)
(3.101)

B(3) = B(3,c) − A(3,c) log

(
b20C

2
2

C2
1

)

+ 2β1

(
A(1,c) log2

(
b0
C1

)
+ log (C2)

(
B(1,c) − A(1,c) log (C2)

))
− 4

3
β20

(
2A(1,c) log3

(
b0
C1

)
+ log2 (C2)

(
2A(1,c) log (C2)− 3B(1,c)

))
+ 4β0

(
A(2,c) log2

(
b0
C1

)
+ log (C2)

(
B(2,c) − A(2,c) log (C2)

))
(3.102)
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C(1) = C
(1,c)
ja (ξ) + δjaδ(1− ξ)

(
−1

4
A(1,c) log2

(
b20C

2
2

C2
1

)
+

1

2
B(1,c) log

(
b20C

2
2

C2
1

))

− 1

2
P
(1)
ja log

C2
3

b20
(3.103)

C(2) = C
(2,c)
ja (ξ) + δjaδ(1− ξ)

(
−1

4
β0A

(1,c) log2

(
b20C

2
2

C2
1

)
log

(
b2µ2F
b20

)

+
1

2
β0B

(1,c) log

(
b20C

2
2

C2
1

)
log

(
b2µ2F
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)
+

1

32

(
A(1,c)

)2
log4

(
b20C

2
2

C2
1

)

− 1

12
β0A

(1,c) log3

(
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2
2

C2
1

)
− 1

8
A(1,c)B(1,c) log3

(
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2
2

C2
1

)
+

1

2
B(2,c) log

(
b20C

2
2

C2
1

)

−1

4
A(2,c) log2

(
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2
2
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1
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+

1

8

(
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log2
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1
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+
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1
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1
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ja log
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2
2

C2
1

)
− 1

4
A(1,c)C

(1,c)
ja log2

(
b20C

2
2

C2
1

)

+

(
β0C

(1,c)
ja − 1

2
C
(1,c)
jb ⊗ P (1)

ba −
1

4
P
(2)
ja

)
log

C2
3

b20

+
1

8
A(1,c)P

(1)
jb ⊗ P

(1)
ba log2

C2
3

b20
− 1

4
B(1,c)P

(1)
ja log

(
b20C

2
2

C2
1

)
log

C2
3

b20

+
1

8
A(1,c)P

(1)
ja log2

(
b20C

2
2

C2
1

)
log

C2
3

b20
− β0

4
P
(1)
ja log2

C2
3

b20
, (3.104)

Comparing these results to that from Ref. [179], it is important to note the differences in

the definition of β0 and β1. In Ref. [179], the β functions are β0 = (11CA − 2nf )/6 and

β1 = (17C2
A − 5CAnf − 3CFnf )/6, while here β0 = (11CA − 2nf )/12 and β1 = (17C2

A −

5CAnf − 3CFnf )/24. Note that this result is consistent with Ref. [179], except for the scale

dependence in C(2). Additionally, the calculation is extended to include A(3) and B(3). The

maximum uncertainty for the Sudakov factor arises for the choice C1 = b0/2 and C2 = 2

and C1 = 2b0 and C2 = 1/2, which can be understood from the fact that this has the largest

impact on the value of the Sudakov integral. The dependence of C3 for the uncertainty is

more complicated, because it deals with the complex energy and x-dependence of the PDFs.
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With the these scale dependence calculations, and the calculations of the previous sections

for the asymptotic piece, the comparison of the ResBos2 code to the LHC data for W and Z

physics is possible to a higher precision then previously. The comparison to the LHC data

can be found in Chap. 4 and 5, for the Z and W results respectively.
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Chapter 4

Z Boson Resummed Predictions

At the LHC, one of the most important precision Standard Model processes to study is Drell-

Yan, specifically, with a focus on the Z boson mass peak. The precision of the data at the

LHC is at the sub-percent precision for the normalized distributions, and a few percent for

unnormalized distributions due to the luminosity uncertainty at the Z-peak. The transverse

momentum distribution is important for the study of soft gluon resummation. However, a

new observable was recently proposed at the Tevatron which has been shown to be more

accurate, known as φ∗η [180, 25] and is discussed in Sec. 4.2.

4.1 Z pT Distribution

As mentioned in Chapter 3, the transverse momentum of the Z boson requires resummation

to describe the small pT region. With the precision of the LHC data, the current ResBos

code is insufficient, and the order of resummation needs to be increased, from NNLL to

N3LL. A comparison of the calculation using NNLL resummation to the data at ATLAS at

√
s = 8 TeV can be seen in Fig. 4.1. Clearly, there is a disagreement between the theory

and the data. There are two regions of disagreement between the theory prediction and

the data. These two regions can be categorized as: the intermediate transverse momentum

region, between about 10 GeV and 100 GeV, and the high transverse momentum region,
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Figure 4.1: Comparison of pllT data from ATLAS compared to ResBos predictions,
reproduced from Ref. [23]

above 100 GeV. The resolution to each of these disagreements arises for different physics

reasons.

Firstly, in the high transverse momentum region, the ResBos code used the invariant

mass of the lepton pair for the factorization and renormalization scale. However, when the

transverse momentum is above the mass of the Z boson, the major contribution comes from

the process of a Z boson with one hard jet. In this process, the hard jet will have an energy

close to that of the Z boson, and the scale that appears in the calculation is the transverse

mass of the Z boson, defined as:

µ2 =M2
ll + p2T , (4.1)

whereMll is the invariant mass of the lepton pair, and pT is the transverse momentum of the

lepton pair. Changing the scale to the transverse mass results in better agreement between

the theory prediction and the data as seen in Fig. 4.2.

However, in the intermediate transverse momentum region simply changing the scale
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Figure 4.2: Comparison of the ResBos2 calculation with a scale choice of µ2 =M2
ll + p2T to

the ATLAS data given in Ref. [23], focusing on the high transverse momentum region

to the transverse mass does not resolve the problem. Therefore, the precision of the theory

calculation needs to be improved. The order of the resummation calculation needs to be done

to N3LL, which means that the A coefficient is done to O
(
α3s
)
, the B coefficient is done to

O
(
α3s
)
, and the C coefficient is done to O

(
α2s
)
. The order of B needs to be one order higher

than that of the C coefficient in order to have good agreement between the CSS and CFG

prediction as seen in Fig. 4.3. In the previously mentioned figure, only theW -piece is included

to focus solely on the difference between the two schemes (the Y -piece is the same in both

schemes). The fixed order calculation for Z+jet at NLO is obtained from the Sherpa [178]

program to correctly predict the angular distributions which is discussed in Section 4.3.

Since the fixed order calculation contains a jet, the transverse momentum of the Z boson

is required to be greater than 2 GeV to remove the singularity at pT = 0. Additionally, it

has been shown that at this order the fixed order and asymptotic calculations cancel to a

sub-percent accuracy for pT ≈ 2 GeV, as shown in Fig. 4.4. Finally, the matching of the

resummed prediction to the fixed order prediction needs to be performed at high transverse

momentum. In the ResBos2 code, matching occurs when the asymptotic expansion cancels

with the resummed calculation, i.e. W − A = 0. As seen in Fig. 4.5, there are multiple
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Figure 4.4: Comparison of the fixed order piece up to O
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α2s
)
to the asymptotic piece up to

O
(
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)
. The cutoff on the transverse momentum of both calculations is set to 2 GeV.

crossing points, and the first crossing past the peak is used as the matching condition.

Above the matching point, the prediction is set to be only the fixed order prediction. In

this matching scheme, the crossing occurs approximately around 20 GeV for the invariant

mass of the lepton pair near the Z peak, and in the central rapidity region, for a resummed

order of N3LL and an asymptotic order of O
(
α3s
)
. With the resummation calculation to

N3LL, asymptotic piece to O
(
α2s
)
, the fixed order to NNLO, and the matching procedure

as described above, the ResBos2 code can be compared to the data.

The comparison of the ResBos2 code for both the CSS and CFG schemes to the ATLAS
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uncertainty, and the darker error band is the combination of the scale and PDF uncertainty.

109



data [23] can be found in Fig. 4.6. In the figure, both the scale and PDF uncertainties

are shown. As mentioned previously, the high transverse momentum region is resolved

by switching the scale of the calculation, and this is supported by the results shown in

the previously mentioned figure. Additionally, by increasing the order to N3LL accuracy,

the intermediate transverse momentum is improved. There exists a calculation for Z+jet

up to NNLO [24], however, their results are not public enough yet to perform a detailed

comparison to the asymptotic piece up to O
(
α3s
)
. However, in their calculation, the k-

factor is approximately flat above the matching region, in which the fixed order is the only

calculation. To approximate these corrections at high transverse momentum, this k-factor is

included. One step for the future of the ResBos2 calculation, is to perform a matching to the

NNLO Z+jet calculation, when the results are public enough to check that the asymptotic

piece cancels exactly in the limit of the transverse momentum going to zero. The results from

the NNLO Z+jet calculation for the same data set as compared to above can be found in

Fig. 4.7, and shows improvement in the intermediate transverse momentum region over the

NLO result. Therefore, the matching to this prediction would further improve the prediction

of the ResBos2 code.

4.2 Z φ∗η Distribution

The φ∗η observable is a new observable proposed at the Tevatron [180, 25] that only de-

pends on the angular distribution of the final state leptons, but directly correlates with the

transverse momentum of the Z boson. The definition of this observable is given as:

φ∗η = tan

(
π −∆φ

2

)
sin
(
θ∗η
)
, (4.2)
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Figure 4.7: Comparison of the fixed order calculation of Z+jet to NNLO compared to the
ATLAS data. Reproduced from [24].

Figure 4.8: The frame definition for φ∗η, reproduced from [25].

where ∆φ is the azimuthal separation of the two leptons and θ∗η is the measurement of the

scattering angle with respect to the proton beam direction in the rest frame of the Z boson.

θ∗η is given in terms of lab observables as cos
(
θ∗η
)
= tanh

(
η−−η+

2

)
, where η− and η+ are

the pseudorapidities of the negatively and positively charged lepton respectively, see Fig. 4.8

for a depiction of the frame. Taking the limit of the transverse momentum to zero, the φ∗η

prediction can be approximated by:

φ∗η ≈
qT
Mll

sinφCS , (4.3)
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Figure 4.9: Comparison of φ∗η data from ATLAS compared to ResBos predictions,
reproduced from Ref. [23]

where φCS is the φ angle in the Collins-Soper Frame, qT is the transverse momentum of the

Z boson, and Mll is the invariant mass of the lepton pair. Using the equation above, the

correspondence between the φ∗η distribution and the transverse momentum distribution may

be approximated, e.g. for Mll ≈ MZ , the range of 10−3 ≤ φ∗η ≤ 0.1 radians corresponds to

a transverse momentum from 0.1 GeV to 10 GeV. From Eq. 4.3, the features can be mapped

to Fig. 4.9, and therefore can be explained in the same manner as before. Looking first at

the high φ∗η region, the disagreement is again resolved by a change of scale, from Mll to

MT . For the intermediate φ∗η region (0.1 ≤ φ∗η ≤ 1), the calculation needs to be improved

as detailed above. Again Sherpa is used to obtain the perturbative prediction for Z+jet at

NLO for the transverse momentum above 2 GeV. The matching is done in the same way

as mentioned above, again matching in the transverse momentum distribution. Since the

results are fully differentiable, the φ∗η distribution can be calculated from the lepton and

anti-lepton momentums.

Similar to the discussion above for the transverse momentum distribution of the Z boson,
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Figure 4.10: Comparison of both the CSS(left) and CFG(right) prediction to data. The
PDF and scale uncertainty is given by the error bands. The lighter error band is the PDF
uncertainty, and the darker error band is the combination of the scale and PDF uncertainty.

the improvement from the ResBos2 code is again noticeable. The PDF and scale uncertainties

for the ResBos2 prediciton of φ∗η can be found in Fig. 4.10. The improvement in the large

φ∗η region is again due to using the correct scale for the calculation. Also, the improvement

in the intermediate region is due to the increased accuracy of the ResBos2 code over the

ResBos code. Finally, the Z+jet to NNLO fixed order calculation [24] compared to the data

can be found in Fig. 4.11. The matching cannot yet be completed to this order, until the

results of the group become more public. However, once the matching can be performed,

the ResBos2 prediction should be even further improved.

4.3 Angular Functions

In Drell-Yan, the angular distributions of the charged lepton pairs allow for an additional

handle on precision QCD studies. The fully differential cross-section describing the kinemat-

ics of the leptons can be decomposed into nine harmonic polynomials in the Collins-Soper

Frame [181, 182, 183, 184]. It is convenient to factor out the unpolarized cross-section, and

write the differential cross-section as a function of the harmonic polynomials and dimension-
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Figure 4.11: Comparison of the fixed order calculation of Z+jet to NNLO compared to the
ATLAS data. Reproduced from [24].
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less angular coefficients, A0−7 as:

dσ

dpT dydQ
2d cos θdφ

=
dσ

dpT dydQ
2[(

1 + cos2 θ
)
+

1

2
A0

(
1− 3 cos2 θ

)
+ A1 sin 2θ cosφ (4.4)

+
1

2
A2 sin

2 θ cos 2φ+ A3 sin θ cosφ+ A4 cos θ

A5 sin
2 θ sin 2φ+ A6 sin 2θ sinφ+ A7 sin θ sinφ

]
.

It is important to note that only A4 is non-zero in the limit of pT goes to zero. There

is a well established relationship that states that A0 − A2 = 0, known as the Lam-Tung

relation [142, 143, 144], and is expected to hold up to O (αs), but is known to break down at

O
(
α2s
)
as will be shown later. The coefficients A5,6,7 are zero at NLO, and small at NNLO,

and thus will not be included in the comparisons to data. The coefficients A3 and A4 depend

on the relationship between the vector and axial couplings and are therefore sensitive to the

weak mixing angle (sin2 θW ).

To obtain the theory predictions for each of the angular coefficients, the moments of each

coefficient are calculated by:

〈Pi (cos θ, φ)〉 =
∫
Pi (cos θ, φ) dσd cos θdφ∫

dσd cos θdφ
, (4.5)

where the Pi’s are the angular functions associated with each Ai respectively. There is a
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Figure 4.12: The predictions for A2 − A0 for the DYNNLO code [26], at NLO and NNLO.
Reproduced from [27].

direct relationship between each moment and the angular coefficient given by:

〈P0 (cos θ, φ)〉 = 〈
1

2

(
1− 3 cos2 θ

)
〉 = 3

20

(
A0 −

2

3

)
,

〈P1 (cos θ, φ)〉 = 〈sin 2θ cosφ〉 =
1

5
A1,

〈P2 (cos θ, φ)〉 = 〈sin2 θ cos 2φ〉 =
1

10
A2,

〈P3 (cos θ, φ)〉 = 〈sin θ cosφ〉 =
1

4
A3, (4.6)

〈P4 (cos θ, φ)〉 = 〈cos θ〉 =
1

4
A4,

〈P5 (cos θ, φ)〉 = 〈sin2 θ sin 2φ〉 =
1

5
A5,

〈P6 (cos θ, φ)〉 = 〈sin 2θ sinφ〉 =
1

5
A6,

〈P7 (cos θ, φ)〉 = 〈sin θ sinφ〉 =
1

4
A7.

The precision of the LHC shows the breaking of the Lam-Tung relation at large transverse

momentum [27], as predicted by the NNLO calculation by DYNNLO [26] of the angular
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Figure 4.13: Theoretical prediction from the ResBos2 program for the angular coefficients
of A0, A2, A4, and the breaking of the Lam-Tung Relationship for the CSS Scheme. The
lighter error band is the PDF uncertainty, and the darker error band is the combination of

the scale and PDF uncertainty.

functions in Drell-Yan, see Fig. 4.12. The original ResBos code is unable to appropriately

predict the angular coefficients to the precision required by the LHC, due to the fact that the

k-factor obtained using the calculation by Arnold and Kauffman [177] can only be applied

to the symmetric and anti-symmetric leading order angular functions (L0 and A4), but not

to the other angular distributions. To include these corrections in the ResBos2 code, the

fixed order prediction is obtained by using the Z+jet prediction at NLO from the Sherpa

code [178], which includes the full angular dependence.

From the prediction in Figs. 4.13 and 4.14, the ResBos2 prediction shows the Lam-

Tung relationship breaking down, as expected at this order. Additionally, A4 is non-zero as

expected. There is some disagrement with the data, but it should improve with the inclusion

of higher order corrections.
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Figure 4.14: Theoretical prediction from the ResBos2 program for the angular coefficients
of A0, A2, A4, and the breaking of the Lam-Tung Relationship for the CFG Scheme. The
lighter error band is the PDF uncertainty, and the darker error band is the combination of

the scale and PDF uncertainty.
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Chapter 5

W Mass

One of the most interesting places to look for new physics signals is in theW mass. The preci-

sion of the Standard Model prediction of the mass is at the 0.01% level, and the experimental

measurement is of similar precision. In order to improve the experimental measurement of

the W boson, it is important to understand the transverse momentum of the W boson,

and its relationship with the Z boson transverse momentum. Currently, the dominate un-

certainty in the direct measurement of the W mass at the LHC arises from the theoretical

predictions of the transverse mass of the W boson, or the transverse momentum of the lep-

ton. In this chapter, the Standard Model prediction from Electroweak precision tests will be

discussed, followed by a discussion of the experimental measurements at the Tevatron and

the LHC. Finally, the improvements to the ResBos2 calculation for theW mass measurement

are introduced.

5.1 SM EW Precision Fit

Using the Electroweak input scheme defined by on MZ , Gµ, and α, the W boson mass is a

predicted parameter. The Standard Model calculation is detailed in Ref. [185], and is given

by:

M2
W

(
1−

M2
W

M2
Z

)
=

πα√
2Gµ

(1 + ∆r) , (5.1)
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with the loop corrections contained in ∆r. At the one-loop order, the calculation of ∆r is

given as:

∆r = ∆α−
c2W
s2W

∆ρ+∆rrem (MH) , (5.2)

where c2W =
M2
W

M2
Z

, s2W = 1 − c2W , and sW is the Weinberg angle defined in Chap. 1 as the

rotation angle needed to diagonalize the neutral boson sector of the Standard Model. The

correction to α, given by ∆α is due to light fermions and is proportional to the logarithm of

their masses. Additionally, there is a modification to the ρ parameter as defined in Sec. 1.1.3.

Finally, the last term contains all the dependence of the Higgs boson mass.

The calculation of ∆r has been done to two-loops in the Electroweak coupling, contains

the fermionic contributions [186, 187, 188] and the bosonic contributions [189, 190, 191,

192]. As for the QCD corrections to ∆r, they are known to O
(
αα2s

)
[193, 194, 195, 196].

Furthermore, ∆ρ has been calculated to O
(
αα3s

)
[197, 198, 199]. The fit to all of the

Electroweak observables was done at NNLO in Ref. [5], and a summary of the results can be

found reproduced in Table 5.1. The precision obtained by the global fit on the mass of the

W boson sets the goal for the LHC. It is possible to break down the uncertainty of the fit to

the W mass measurement into the contributions from the top mass, the theory uncertainty

of the top mass, the Z mass, ∆αhad, αs, the Higgs mass, and the theory uncertainty of the

W mass. These contributions are broken down in Table 5.2. The largest uncertainties on

the indirect determination of the W mass come from both the experimental and theoretical

determination of the top quark mass, followed by the theory uncertainty on theW mass, and

then the experimental measurement of the mass of the Z boson. The LHC should provide an

improvement on the experimental measurement of the top quark mass, and should improve

significantly at a future electron-positron collider. There is not going to be any improvement
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Parameter Input Value Fit Result w/o exp. input
w/o exp. input
or theory unc.

MH [GeV] a 125.14± 0.24 125.14± 0.24 93+25
−21 93+24

−20
MW [GeV] 80.385± 0.015 80.364± 0.007 80.358± 0.008 80.358± 0.006

ΓW [GeV] 2.085± 0.042 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 91.1880± 0.0021 91.200± 0.011 91.200± 0.010

ΓZ [GeV] 2.4952± 0.0023 2.4950± 0.0014 2.4946± 0.0016 2.4945± 0.0016

mt [GeV] 173.34± 0.76 173.81± 0.85 170.0+2.3
−2.4

b 177.0± 2.3 b

a Average of the ATLAS [200] and CMS [201] measurements, ignoring any correlation
between systematic uncertainties

b The theoretical top-mass uncertainty is excluded.

Table 5.1: Electroweak fit. The fourth column gives the fit results without using any
experimental or phenomenological estimate for the parameter when performing the fit. The
fifth column is the same as the fourth, but ignores all theory uncertainties. The table is

reproduced from Ref. [5].

Source Value
mt 0.0046
δtheorymt 0.0030
MZ 0.0026
∆αhad 0.0018
αs 0.0020
MH 0.0001
δtheoryMW 0.0040

Table 5.2: The values are reported in GeV, and taken from Ref. [5]

on the experimental measurement of the Z boson at the LHC or at a future electron-positron

collider, due to the fact that the LEP measurements are very precise [202]. Finally, the

experimental measurement of the W mass ideally should be close to the current uncertainty

of the indirect measurement by the end of the LHC running [203, 204]. The details of the

experimental goals and the limits that are expected are discussed in the following section.
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5.2 Experimental Measurement

The experimental measurement of the W mass is one of the most important measurements

at a hadron collider. The most precise channel to study the W mass at the LHC comes from

the process, pp→ eν +X. However, the fact that there is a neutrino in the final state leads

to the inability to directly reconstruct the invariant mass of the lepton-neutrino system.

Therefore, two different observables are proposed to study the mass of the W boson. The

first observable is the transverse mass of the W boson defined as:

M2
T = 2pTl

/ET (1− cos θ) , (5.3)

where pTl
is the transverse momentum of the final state lepton, /ET is the missing transverse

momentum (attributed to the neutrino), and θ is the angle between the lepton and missing

transverse momentum. The other observable is the transverse momentum of the lepton.

Both of these observables are not accurately predicted by a fixed order calculation due to

the dependence on the transverse momentum of the W boson, which requires resummation.

In measuring the W mass, an appropriate prediction of the Jacobian peak region for

the lepton is important to obtain the correct mass. One of the most important features in

determining the W mass is the tail of the distribution, and the Jacobian peak. Having an

accurate theoretical prediction is required to match the shape of the data.

The traditional method of obtaining the W mass is through the use of a template fit

technique. To estimate the uncertainty that arises from the PDF, the following 4 step

method is used [205]1:

1For real data, a similar procedure is used to estimate the central value, but replacing the pseudodata
with the actual data.
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Figure 5.1: Results of the EW Fit, reproduced from Ref. [5]
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1. Generate the observable to be used for the fitting for fixed W mass for each PDF error

set of interest. Treat the generated observable as pseudodata.

2. Generate the mass templates for the distributions used to fit the pseudodata as a

function of the W boson mass using the central prediction for the PDF.

3. Given the PDF set i, and the mass template j, calculate the χ2 for each combination

of i and j, given by:

χ2i,j =
1

Nbins

Nbins∑
k=1

(
O
j
k −O

i
k

)2
(
σik
)2

+
(
σ
j
k

)2 , (5.4)

where Ok and σk are the value of the observable and the standard deviation of it in a

given bin (k), respectively.

4. The minimum of the χ2i,j distribution for each PDF set i gives the mass j that the

PDF best fits. The difference from the central value is the shift in the mass induced

by PDF i. Combining all of the PDF sets, using the method to obtain the uncertainty

as defined for the given PDF set, the allowed mass range is obtained.

This procedure will be demonstrated below for the CT14nnlo PDF set [10] for the lepton

transverse momentum. Similar results are obtained if the transverse mass of the W boson

is used. The CTEQ PDFs are based off of the Hessian method. Therefore, each eigenvector

does not give the full uncertainty, and the uncertainty needs to be calculated by using the
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master equation as given in [206] and below:

∆X+ =

√√√√ n∑
i

(
max

(
X+
i −X0, X

−
i −X0, 0

))2
, (5.5)

∆X− =

√√√√ n∑
i

(
max

(
X0 −X+

i , X0 −X−i , 0
))2

, (5.6)

where i goes over each eigenvector, and the ± refers to whether the shift is along the positive

or negative direction respectively.

5.3 ResBos2 Results

One important prediction to make is the ratio of the transverse momentum of the Z boson

to the transverse momentum of the W boson. With an accurate prediction of this ratio, the

experimentalists can use data driven methods to obtain the transverse momentum predictions

of the W boson through:

dσ

dp
(W )
T

=


dσ

dp
(W )
T th
dσ

dp
(Z)
T th

 dσ

dp
(Z)
T data

, (5.7)

where dσ

dp
(W )
T

is the data driven prediction for theW boson transverse momentum, dσ

dp
(W )
T th

is

the theory prediction for theW boson transverse momentum, dσ

dp
(Z)
T th

is the theory prediction

for the Z boson, and dσ

dp
(Z)
T data

is the Z boson transverse momentum data. An accurate

prediction of this ratio allows to attempt to apply a transverse momentum cut on the W

boson. This cut reduces the theoretical uncertainty arising from the PDFs greatly [205].

The normalized ratio (RW/Z) is shown in Fig. 5.2 for the ResBos2 prediction.
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Figure 5.2: The ratio of the normalized transverse momentum distributions of the W boson
to the Z boson.

The ResBos code can be used to calculated the theoretical uncertainty of the PDFs, as

described in the section above. An example of the χ2 distribution for one error set can be

found in Fig. 5.3. After calculating the shift for all of the eigenvectors, and using the Hessian

master equation as given in Eq. 5.5, the CT14nnlo PDF uncertainty can be calculated. For

a collider center of mass energy of
√
13 TeV, the W mass uncertainty is given as δ+ = 37

MeV and δ− = 34 MeV.
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Figure 5.3: An example of the χ2 distribution for an error set, others are similar to this.
The central input mass was MW = 80.358 GeV. The minimum here occurs around 80.372,

a shift of 14 MeV.
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Chapter 6

Color Singlet Boson Plus Jet

Resummation at Hadron Colliders

Soft gluon resummation for the class of color singlet boson plus jet processes has its own

interest in perturbative QCD. To deal with the divergence in low transverse momentum hard

processes, the transverse momentum resummation formalism is employed [138]. However, the

qT resummation formalism has been mainly applied to color-neutral particle production, such

as inclusive vector bosonW/Z and Higgs boson productions. Extensions to jet production in

the final state has been limited, not only because of the technical issues associated with the

jets in the final state, but also because jets carry color. Therefore, the soft gluon interactions

are more complicated than those for color neutral particle production. Nevertheless, there

has been progress made in the last few years on the qT resummation for dijet production in

hadronic collisions [207, 208, 209]. Here the details of expanding the calculation to single

jets plus a color singlet boson are examined.

The resummation formula for V + j resummation can be summarized as

d5σ

dyV dyjdP
2
T d

2q⊥
=
∑
ab

σ0

[∫
d2~b⊥
(2π)2

e−i~q⊥·
~b⊥Wab→cd(x1, x2, b⊥) + Yab→cd

]
, (6.1)

where yV and yj are rapidities for the boson and the jet, respectively, PT is the jet transverse
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momentum, and ~q⊥ = ~PV⊥+ ~PJ is the total transverse momentum of the boson and the jet.

The first term W contains the all order resummation, the second term Y comes from the

difference between the fixed order corrections and the asymptotic piece, and σ0 represents

the normalization of the differential cross section. Higgs plus jet qT resummation will be

used as an example of the procedure for calculating the resummation results for this class of

processes.

6.1 Higgs Plus Jet Resummation

The effective Lagrangian in the heavy top quark mass limit is used to describe the coupling

between the Higgs boson and gluon given by:

Leff = − αs
12πv

F a
µνF

aµνH, (6.2)

where v is the vacuum expectation value, H the Higgs field, Fµν the gluon field strength

tensor, and a the color index.

To begin, the W term can be written as:

Wgg→Hg (x1, x2, b) = Hgg→Hg(Q)x1fg(x1, µ)x2fg(x2, µ)e
−S(Q2,b⊥), (6.3)

Wgq→Hq (x1, x2, b) = Hgq→Hq(Q)x1fg(x1, µ)x2fq(x2, µ)e
−S(Q2,b⊥) + x1 ↔ x2, (6.4)

Wqq̄→Hg (x1, x2, b) = Hqq̄→Hg(Q)x1fq(x1, µ)x2fq(x2, µ)e
−S(Q2,b⊥) + x1 ↔ x2, (6.5)

at the next-to-leading logarithmic (NLL) accuracy. Here Q2 = s = x1x2S and represents

the hard momentum scale, b0 = 2e−γE , with γE being the Euler constant, fa,b(x, µ) are the

parton distributions for the incoming partons a and b, and x1,2 are momentum fractions of
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the incoming hadrons carried by the partons. Beyond the NLL, a C function associated with

the parton distribution functions will also need to be included.

The Sudakov form factor can be written as

SSud(Q
2, b⊥) =

∫ C2
2Q

2

C2
1/b

2
⊥

dµ2

µ2

[
ln

(
Q2

µ2

)
A+B +D ln

1

R2

]
, (6.6)

where R represents the cone size of the jet. Here the parameters A, B, D can be ex-

panded perturbatively in αs, for example in the gg → Hg channel, A = CA
αs
π , B =

−2CAβ0
αs
π , and D = CA

αs
2π . The hard coefficient H can be calculated order by or-

der, from the leading Born diagrams. For example, the gluon-gluon channel is given by:

H(0) =
(
s4 + t4 + u4 +m8

h

)
/(stu) [210, 211], where s = Q2, t and u are the Mandelstam

variables for the partonic 2→ 2 process.

6.1.1 Virtual Corrections

Firstly,W (b) needs to be calculated at the one-loop order and shown that it can be factorized

into the parton distribution, jet, soft, and hard factors. The virtual corrections have been

calculated in the literature, see for example Refs. [210, 212]. For convenience, the results are

summarized below to demonstrate the resummation of the Higgs plus jet system. Since the

virtual diagrams are proportional to δ(qT ), the b-space result can be expressed as

W
(1)v
ab (bT ) = x1f (x1, µ)x2f (x2, µ) Γ

v
ab, (6.7)

where f1 and f2 are the PDFs, x1 and x2 are the momentum fractions of the partons from

each hadron, and the expressions for Γvab can be extracted from the calculations in the
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references mentioned above. For the gluon-gluon channel,

Γvgg = H
(0)
gg

αsCA

2π

[
− 3

ε2
+

1

ε

(
2 ln

Q2

µ2
+ ln

P 2
J

µ2

)

+
1

2

(
ln
P 2
J

µ2

)2

− 2 ln
Q2

µ2
ln
P 2
J

µ2
− 2 ln

Q2

−t
ln
Q2

−u
+

11

6
π2

+ 2Li2

(
1− M2

Q2

)
+ 2Li2

(
t

M2

)
+ 2Li2

( u

M2

)
+

(
ln

t̃

M2

)2

−
(
ln

t̃

−t

)2

+

(
ln

ũ

M2

)2

−
(
ln

ũ

−u

)2
]

+ δH
(1)
gg , (6.8)

where ũ, t̃ = M2 − u, t respectively, and δH
(1)
gg is the finite term not proportional to H

(0)
gg

and is given by:

δH
(1)
gg = (N − nf )

1

3
N(N2 − 1)

M2

stu

[
stu+M2 (st+ su+ tu)

]
. (6.9)

For the quark-gluon channel,

Γvqg = H
(0)
qg

αs
2π

{
4CAβ0

(
2

ε
+ ln

−u
µ2
− 10

3

)
+ CA

[
−2
ε2
− 2

ε

(
ln
−u
µ2
− ln

−t
µ2
− ln

s

µ2

)
+2 ln

s

µ2
ln
u

t
+ ln2

−u
µ2
− ln2

−t
µ2
− ln2

s

µ2
− 2 ln2

ũ

−u
+ 2 ln2

ũ

M2

+4Li2

( u

M2

)
+ 18ζ (2)− π2

3
+

14

3

]
+CF

[
−4
ε2
− 2

ε

(
−2 ln −u

µ2
+ 3

)
− 2 ln2

−u
µ2

+ 2 ln2
s

t
+ 6 ln

−u
µ2

+4Li2

(
1− M2

s

)
+ 4Li2

(
t

M2

)
− 2 ln2

t̃

−t
+ 2 ln2

t̃

M2
+ 4ζ (2)− 2π2

3
− 16

]}
+ δH

(1)
qg , (6.10)
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again with δH
(1)
qg analogous to δH

(1)
gg above, given by:

δH
(1)
qg = (CA − CF )CACF (s+ t) . (6.11)

Finally, for the quark-anti-quark channel,

Γvqq̄ = H
(0)
qq̄

αs
2π

{
4CAβ0

(
2

ε
− 2 ln

s

µ2
+

10

3

)
+ CA

[
−2
ε2
− 2

ε
ln
sµ2

ut

ln2
ut

sµ2
+ 2 ln2

s

µ2
− 2 ln2

−t
µ2
− 2 ln2

−u
µ2

+ 4Li2

(
1− M2

s

)
−14ζ (2)− π2

3
− 8

]
+CF

[
−4
ε2
− 2

ε

(
−2 ln s

µ2
+ 3

)
−18 ln −t

µ2
ln
−u
µ2

+ 6 ln
s

µ2
+ 2 ln2

ut

µ2s
+ 4 ln

s

µ2
ln

ut

sµ2
+ 4Li2

(
t

M2

)
+ 4Li2

( u

M2

)
−2 ln2 t̃

−t
− 2 ln2

ũ

−u
+ 2 ln2

t̃

M2
+ 2 ln2

ũ

M2
+ 36ζ (2)− 2

3
π2 − 16

]}
+ δH

(1)
qq̄ , (6.12)

with δH
(1)
qq̄ given as:

δH
(1)
qq̄ = (CA − CF )CACF (−t− u) . (6.13)

It is important to note the 1
ε2

and 1
ε divergences that appear in the above equations. These

will be canceled by the divergences in the remaining terms.

At NLO, the strong coupling needs to be renormalized, yielding the following contribu-

tion:

αsCA

2π

(
Q2

µ2

)−ε(
−3

ε

)
2β0 . (6.14)

Here, the renormalization scale is set to Q2 to simplify the final expression.
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6.1.2 Jet Corrections

Next, since this process contains a final state jet, the jet function needs to be applied in

order to cancel out the collinear divergences from the final state. In order to perform this

calculation, the Narrow Jet Approximation (NJA) is applied as derived in the calculation of

inclusive jet production [213]. This approximation allows an analytic result for the jet pro-

duction cross section to be obtained. For completeness, the quark and gluon jet contributions

are listed below:

J g =
αsCA

2π

[
1

ε2
+

1

ε

(
2β0 − ln

P 2
JR

2

µ2

)
+ Ig

]
,

J q =
αsCF

2π

[
1

ε2
+

1

ε

(
3

2
− ln

P 2
JR

2

µ2

)
+ Iq

]
, (6.15)

where Ig,q depends on the jet algorithm used. For the kt-family of jet algorithms the values

of Iq and Ig are,

Ig =
1

2

(
ln
P 2
JR

2

µ2

)2

− 2β0 ln
P 2
JR

2

µ2
+

67

9
− 3

4
π2 − 23

54
Nf , (6.16)

Iq =
1

2

(
ln
P 2
JR

2

µ2

)2

− 3

2
ln
P 2
JR

2

µ2
+

13

2
− 3

4
π2 . (6.17)

Their contributions to W (b⊥) can be included in the following manner,

W
(1)J
gg (b⊥) = x1fg(x1, µ)x2fg(x2, µ)Jg , (6.18)

W
(1)J
qg (b⊥) = x1fq(x1, µ)x2fg(x2, µ)Jq , (6.19)

W
(1)J
qq̄ (b⊥) = x1fq(x1, µ)x2fq̄(x2, µ)Jg . (6.20)
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Again, there are divergences proportional to 1
ε as expected for a collinear jet function, which

will be canceled with similar contributions from the soft corrections, see Sec. 6.1.4.

6.1.3 Collinear Corrections

Thirdly, the collinear radiation associated with the incoming partons needs to be calculated.

These contributions can be written in terms of parton splitting functions:

Pqq =
αs
2π2

1

q2⊥
CF

∫
dx′

x′
x′fq(x′, µ)

ξ(1 + ξ2)

(1− ξ)+
, (6.21)

Pgq =
αs
2π2

1

q2⊥
CF

∫
dx′

x′
x′fq(x′, µ)

(
1 + (1− ξ)2

)
, (6.22)

Pgg =
αs
2π2

1

q2⊥
CA

∫
dx′

x′
x′fg(x′, µ)ξ

(
2ξ

(1− ξ)+
+

2(1− ξ)
ξ

+ 2ξ(1− ξ)
)
, (6.23)

Pqg =
αs
2π2

1

q2⊥

1

2

∫
dx′

x′
x′fg(x′, µ)

(
ξ2 + (1− ξ)2

)
. (6.24)

where ξ = x/x′. Here the ξ 6= 1 contributions are taken into consideration, whereas the

ξ = 1 part will be evaluated together with the soft gluon radiation contribution. These

terms introduce divergences of the form 1
εPab into Wab (b).

6.1.4 Soft Corrections

For soft gluon radiations, the leading power expansion can be applied to derive the dominant

contribution by the Eikonal approximation, as discussed in Sec. F. This analysis has been

applied in Ref. [214] to obtain the leading double logarithmic contributions to dijet produc-

tion. For outgoing quark, antiquark, and gluon lines, the Eikonal approximation gives the
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Figure 6.1: Feynman diagrams for the gluon-gluon scattering channel to a Higgs Boson.

following Feynman rules:

2k
µ
i

2ki · kg + iε
g , −

2k
µ
i

2ki · kg + iε
g ,

2k
µ
i

2ki · kg + iε
g , (6.25)

respectively, where ki represents the momentum of the outgoing particles. Similarly, for

incoming quark, antiquark, and gluon lines, the rules are:

2p
µ
1

2p1 · kg + iε
g , −

2p
µ
1

2p1 · kg + iε
g ,

2p
µ
1

2p1 · kg − iε
g (6.26)

respectively, where p1 represents the momentum for the incoming particle, g is the strong

coupling constant, and kg is the momentum of the soft gluon.

In the gluon-gluon scattering channel, the relevant Feynman diagrams can be found in
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Fig. 6.1, from which the following contributions for soft gluon radiation can be calculated,

g2
∫

d3kg

(2π)32Ekg

δ(2)(q⊥ − kg⊥)
CA

2

[
Sg(p1, p2) + Sg(k1, p1) + Sg(k1, p2)

]
(6.27)

where Sg(p, q) is a short-handed notation for

Sg(p, q) =
2p · q

p · kgq · kg
. (6.28)

In order to evaluate the contributions from soft gluon radiation, the phase space of the

gluon with restriction that gluon transverse momentum leads to the imbalance between the

Higgs-jet system needs to be integrated out, i.e.,

g2
∫

d3kg

(2π)32Ekg

δ(2)(q⊥ − kg⊥)Sg(p1, p2) . (6.29)

The derivation of the above term is straightforward, by noticing that the lower limit in the

longitudinal momentum fraction integral, is given by:

∫ 1

xmin

dx

x

1

k2g⊥
, (6.30)

where x is the momentum fraction of p1 carried by the soft gluon. Because of momentum

conservation, the lower limit for the x-integral is given by: xmin =
k2g⊥
Q2 . Therefore, the

above integral leads to the following leading contribution,

1

q2⊥
ln
Q2

q2⊥
. (6.31)
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Substituting the above equation into Eq. (6.29) results in,

g2
∫

d3kg

(2π)32Ekg

δ(2)(q⊥ − kg⊥)Sg(p1, p2) =
αs
2π2

1

q2⊥

(
2 ln

Q2

q2⊥

)
. (6.32)

The other terms are not as straightforward to calculate, because the simple phase space

integral will contain jet contributions which have already been taken into account by the

jet functions above (Sec. 6.1.2). Therefore, the jet contributions need to be subtracted in

order to avoid double counting. That means the phase space integral has to exclude the jet

region, noting that this exclusion does not depend on the jet algorithm at this order. This

is because, this contribution arises from the soft gluon radiation, whereas the jet algorithm

focuses on the collinear gluons associated with the jet.

As a general discussion, take the example of one term, given by:

∫
d3kg
2Ekg

δ(2)(q⊥ − kg⊥)Sg(k1, p1) =
∫
d2kg⊥δ

(2)(q⊥ − kg⊥)
∫
dξ1
ξ1

2

(kg⊥ − ξ1k1⊥)2
, (6.33)

where k1⊥ represents the transverse momentum for the final state jet, and ξ1 = kg ·p1/k1 ·p1.

Clearly, there is a collinear divergence associated with the jet, if the gluon radiation is within

the jet cone a collinear divergence will be generated. In order to regulate this collinear jet

divergence, the phase space integral can be limited to require that the gluon radiation be

outside of the jet cone. Under this restriction, there will be no divergence associated with

the jet, instead, the jet size R will be introduced to regulate the collinear divergence from

the jet.

There are different ways to regulate the above integral. The central point is to identify

the jet cone requirement. In the above example, a divergence exists when kg is parallel to
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k1, which means the invariant mass of k1 + kg is small. The out of cone radiation requires

that the invariant mass has a minimum,

(k1 + kg)
2 > Λ2 . (6.34)

Clearly, Λ depends on the jet size, if (k1 + kg)
2 is smaller than Λ2, its contribution needs

to be excluded, because it belongs to the jet contribution calculated in the previous section.

Following a similar analysis as for the jet contribution, the size of Λ can be worked out. For

example, if the kinematics of k1 and kg are substituted into the above equation, the results

are:

(k1 + kg)
2 ≈ k1⊥kg⊥

(
ey1−yg + eyg−y1

)
− 2k1⊥kg⊥ cos(φ1 − φg) ≈ k1⊥kg⊥R

2
1g , (6.35)

where y1 and yg are rapidities for k1 and kg, φ1 and φg are the azimuthal angles, for

the jet and additional gluon respectively, and R1g represents the seperation of k1 and kg

(R1g =
√

(y1 − yg)2 + (φ1 − φg)2). In other words, if R1g is smaller than R, the gluon

radiation will be considered inside the jet cone and vice versa. Therefore, in the phase

space integral of Eq. (6.33), the following kinematic restriction is imposed: Θ(2k1 · kg −Λ2)

with Λ2 = k1⊥kg⊥R
2. Equivalently, a slight off-shell-ness for the jet momentum k1 can

be adopted to regulate the divergence: k21 = m2
1 = k21⊥R

2. By doing so there is no need

to impose any kinematic constraints, and the phase space integral can be carried out in a

straightforward manner. The choice of m2
1 is made to ensure (k1+kg)

2 is always larger than
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Λ2, shown by,

(k1 + kg)
2 =

√
k21⊥ +m2

1kg⊥
(
ey1−yg + eyg−y1

)
− 2k1⊥kg⊥ cos(φ1 − φg) (6.36)

≈
√
k21⊥ +m2

1kg⊥(∆y)
2 + k1⊥kg⊥(∆φ)

2 + 2kg⊥

(√
k21⊥ +m2

1 − k1⊥
)
.

By choosing m2
1 = k21⊥R

2, (k1 + kg)
2 is guaranteed to be larger than Λ2 for any values of

∆y and ∆φ. In addition,the narrow jet approximation, i.e., R → 0 limit, is taken. In this

limit, the phase space cut-off technique results in the same leading contributions in terms of

ln(1/R), as the introduction of a mass term.

After adding an off-shell-ness to the jet momentum, the above integral can be written as

∫
dξ1
ξ1

2

ξ21k
2
1⊥(1 +R2) + k2g⊥ − 2ξ1k1⊥ · kg⊥

. (6.37)

To further integrate, the azimuthal angle of the jet is averaged over but the azimuthal angle

is fixed for kg⊥, giving:

∫
dξ1
ξ1

∫ π

0

dφ

π

2

ξ21k
2
1⊥(1 +R2) + k2g⊥ − 2ξ1k1⊥kg⊥ cos(φ)

,

=

∫
dξ1
ξ1

1√(
ξ21k

2
1⊥(1 +R2) + k2g⊥

)2
− 4ξ21k

2
1⊥k

2
g⊥

. (6.38)

Again, the integration over ξ1 has a lower limit, and taking the limit of q⊥ � Q and R→ 0,

the leading power contribution is:

1

q2⊥

1

2

[
ln
Q2

q2⊥
+ ln

(
t

u

)
+ ln

1

R2

]
. (6.39)
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Therefore, the final result for the Sg(k1, p1) term can be written as

g2
∫

d3kg

(2π)32Ekg

δ(2)(q⊥ − kg⊥)Sg(k1, p1) =
αs
2π2

1

q2⊥

[
ln
Q2

q2⊥
+ ln

1

R2
1

+ ln

(
t

u

)]
. (6.40)

Evaluation of the other terms follow the same procedure, and the results are summarized

below:

Sg(p1, p2) ⇒
αs
2π2

1

q2⊥

(
2 ln

Q2

q2⊥

)
, (6.41)

Sg(k1, p1) ⇒
αs
2π2

1

q2⊥

[
ln
Q2

q2⊥
+ ln

1

R2
1

+ ln

(
t

u

)
+ ε

(
1

2
ln2

1

R2
1

+
π2

6

)]
, (6.42)

Sg(k1, p2) ⇒
αs
2π2

1

q2⊥

[
ln
Q2

q2⊥
+ ln

1

R2
1

+ ln
(u
t

)
+ ε

(
1

2
ln2

1

R2
1

+
π2

6

)]
, (6.43)

where the ε terms are kept since they contribute to the finite piece after Fourier transforming

into b⊥-space
1.

6.1.5 Total Real Correction

Combining the soft and collinear gluon radiation together, the asymptotic behavior at small

qT can be obtained. The gluon channel is given by:

αs
2π2

H
(0)
gg

q2T

∫
dz1dz2
z1z2

z1fg (z1) z2fg (z2)
((
δ (ξ2 − 1) ξ1P

(1) (ξ1) + ξ1 ↔ ξ2

)
+ δ (ξ1 − 1) δ (ξ2 − 1)CA

(
2 ln

Q2

q2T
− 4β0 + ln

1

R2
+ ε

(
1

2
ln2

1

R2
+
π2

6

)))
, (6.44)

1Details on Fourier transforming into b-space can be found in App. F
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where ξi = xi/zi, xi is the momentum fraction of the gluon from the proton, and H
(0)
gg is the

tree level contribution. Similar equations exist for the gluon-quark and the quark-anti-quark

channel. Combining the three channels gives:

αs
2π2

1

q2T

∫
dz1dz2
z1z2

z1fa (z1) z2fb (z2)
{(
δ (ξ2 − 1) ξ1P

(1) (ξ1) + ξ1 ↔ ξ2

)
+ δ (ξ1 − 1) δ (ξ2 − 1)

[
H

(0)
gg CA

(
2 ln

Q2

q2T
− 4β0 + ln

1

R2

)

+H
(0)
qg

(
(CA + CF ) ln

Q2

q2T
− 2β0 −

3

2
CF + (CA − CF ) ln

u

t
+ CF ln

1

R2

)

+H
(0)
gq

(
(CA + CF ) ln

Q2

q2T
− 2β0 −

3

2
CF + (CA − CF ) ln

u

t
+ CF ln

1

R2

)

+H
(0)
qq̄

(
2CF ln

Q2

q2T
− 3CF + CA ln

1

R2

)]}
. (6.45)

This will be compared to the fixed order calculation in the limit qT goes to zero in Sec. 6.1.7.

Now that the complete asymptotic piece is calculated, the Fourier Transform into b-space

is performed. After the Fourier Transform, the poles from all of the different pieces cancel.

The gluon-gluon channel is shown below, but similar results exist for the other channels, and

can be found in App. G. The poles for the virtual correction are given by:

H(0)αsCA

2π

(
− 3

ε2
+

1

ε

(
2 ln

Q2

µ2
+ ln

P 2
J

µ2

))
, (6.46)

the coupling renormalization is given in Eq. 6.14, and needs to be multiplied by the tree

level matrix element (H(0)). The poles for the jet, collinear, PDF renormalization, and soft
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corrections are given by:

H(0)αsCA

2π

(
1

ε2
+

1

ε

(
2β0 − ln

P 2
JR

2

µ2

))
, (6.47)

−H(0)αsCA

2π

1

ε

(
δ (ξ2 − 1) ξ1Pgg (ξ1) + ξ1 ↔ ξ2

)
, (6.48)

H(0)αsCA

2π

1

ε

(
δ (ξ2 − 1)

(
ξ1Pgg (ξ1) + 2β0δ (1− ξ1)

)
+ ξ1 ↔ ξ2

)
, (6.49)

H(0)αsCA

2π

(
2

ε2
+

2

ε
ln
µ2

Q2
− 1

ε
ln

1

R2

)
, (6.50)

respectively. All the terms above are proportional to δ(ξ1 − 1)δ(ξ2 − 1) unless otherwise

noted. Combining Eqs. 6.46, 6.14, and 6.50, it is clear that all of the poles cancel, and the

remaining result is finite as required.

6.1.6 Resummation Calculation

After Fourier Transforming into b-space, the finite contribution at the one-loop order for the

gluon-gluon channel is given as:

W
(1)
gg→Hg(b) = H

(0)
gg

αsCA

2π

{
ln

b20
b2µ̄2

[
δ(ξ2 − 1)ξ1P

(1)
gg (ξ1) + (ξ1 ↔ ξ2)

]
+ δ(ξ1 − 1)δ(ξ2 − 1)

×

−(ln Q2b2⊥
b20

)2

+

(
4β0 − ln

1

R2

)
ln
Q2b2⊥
b20

+H
(1)
gg δ(ξ1 − 1)δ(ξ2 − 1),

(6.51)

where the integral over the parton distributions is implicit, and similar results exist for the

gluon-quark and quark-anti-quark channels. The hard coefficient, H(1) for the gluon-gluon
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channel is:

H
(1)
gg = H

(0)
gg

αsCA

2π

[
ln2

(
Q2

P 2
T

)
+ 2β0 ln

Q2

P 2
TR

2
+ ln

1

R2
ln
Q2

P 2
T

− 2 ln
−t
s

ln
−u
s

+ ln2

(
t̃

m2
h

)
− ln2

(
t̃

−t

)
+ ln2

(
ũ

m2
h

)
− ln2

(
ũ

−u

)
+ 2Li2

(
1−

m2
h

Q2

)

+2Li2

(
t

m2
h

)
+ 2Li2

(
u

m2
h

)
+

67

9
+
π2

2
− 23

54
Nf

]
+ δH

(1)
gg , (6.52)

where t̃ = m2
H − t, ũ = m2

H − u, and δH
(1)
gg can be found in Sec. 6.1.1. performing the

calculation for the gluon-quark channel results in:

H
(1)
gq = H

(0)
gq

αs
2π

{
CA

[
1

2
ln2

(
µ̂2

P 2
J⊥

)
+ ln

(
P 2
J⊥
µ̂2

)
ln
(u
t

)
+ ln

(
P 2
J⊥
µ̂2

)
ln

(
s

µ̂2

)

−2 ln −t
µ̂2

ln
−u
µ̂2
− 4β0 ln

−u
µ̂2
− 6β0 ln

µ̂2

µ̃2
+ 2Li2

(
u

m2
h

)
− ln2

ũ

−u
+ ln2

ũ

m2
h

+
7

3
+

4π2

3

]

+ CF

[
1

2
ln2

(
µ̂2

P 2
J⊥

)
+

3

2
ln

µ̂2

P 2
J⊥R

2
+ ln

1

R2
ln

µ̂2

P 2
J⊥
− ln

P 2
J⊥
µ̂2

ln
u

t
− ln

P 2
J⊥
µ̂2

ln
s

µ̂2

+3 ln
−u
µ̂2

+ 2Li2

(
1−

m2
h

s

)
+ 2Li2

(
t

m2
h

)
− ln2

(
t̃

−t

)
+ ln2

(
t̃

m2
h

)
− 3

2

−5π2

6

]
+ 20β0

}
+ δH

(1)
gq , (6.53)
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where δH
(1)
qg can again be found in Sec. 6.1.1. Finally, the quark-anti-quark channel is given

by:

H
(1)
qq̄ = H

(0)
qq̄

αs
2π

{
CA

[
1

2
ln2

(
µ̂2

P 2
J⊥

)
+ ln

(
P 2
J⊥
µ̂2

)
ln
(u
t

)
+ ln

(
P 2
J⊥
µ̂2

)
ln

(
s

µ̂2

)

−2 ln −t
µ̂2

ln
−u
µ̂2
− 4β0 ln

−u
µ̂2
− 6β0 ln

µ̂2

µ̃2
+ 2Li2

(
u

m2
h

)

− ln2
ũ

−u
+ ln2

ũ

m2
h

+
7

3
+

4π2

3

]

+CF

[
1

2
ln2

(
µ̂2

P 2
J⊥

)
+

3

2
ln

µ̂2

P 2
J⊥R

2
+ ln

1

R2
ln

µ̂2

P 2
J⊥
− ln

P 2
J⊥
µ̂2

ln
u

t
− ln

P 2
J⊥
µ̂2

ln
s

µ̂2

+3 ln
−u
µ̂2

+ 2Li2

(
1−

m2
h

s

)
+ 2Li2

(
t

m2
h

)
− ln2

(
t̃

−t

)
+ ln2

(
t̃

m2
h

)
− 3

2
− 5π2

6

]

+20β0}+ δH
(1)
gq , (6.54)

where δH
(1)
qq̄ is given in Sec. 6.1.1. With the above results, it is possible to calculate the

resummation result in the CFG formalism by solving the evolution equations as discussed

in Sec. 3.4. This results in a similar Sudakov factor to that for color singlet final states.

however, the cone size needs to be introduced. This gives the following form:

S(b) =

∫ ˆ
µ2

b20/b
2

dµ2

µ2

(
A ln

s

µ2
+B +D ln

1

R2

)
, (6.55)

where R is the cone size for the jet. The coefficients for A, B, and D depend on the process,

and can be expanded order by order in perturbation theory. For the gluon-gluon channel,

A(1) = CA, B
(1) = −2β0, and D = CA. For the gluon-quark channel, A(1) = 1

2(CA + CF ),

B(1) = −β0 − 3
4CF − 1

2(CA − CF ) ln
u
t , and D = CF . Finally, for the quark-anti-quark

channel, A(1) = CF , B
(1) = −3

2CF , and D = CA.
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The dependence of ln 1
R2 in the Sudakov factor can be understood by looking at the

soft radiation, which is what is contained in the Sudakov factor. As mentioned during the

calculation of the soft factors (Sec. 6.1.4), the phase space needed to be separated to ensure

that the soft gluons inside the jet were not double counted. This can also be understood by

considering the contribution of the soft gluons inside the jet cone to the transverse momentum

of the Higgs plus jet system. If the gluon falls within the jet cone, then the momentum of

the gluon contributes to the jet, and does not contribute to the imbalance of transverse

momentum between the jet and the Higgs boson. Instead, if it falls outside the cone it does

contribute to the imbalance in transverse momentum.

It is interesting to note that many of the logarithms in H(1) can be eliminated if the

resummation scale µ̂ is chosen to be PJ⊥. To illustrate this point, the ratio of H(1)/H(0)

is plotted as functions of the Higg’s rapidity (yH) as shown in Fig. 6.2 with the jet rapidity

fixed at yj = 0. This result shows that H(1) is much larger than H(0) in the large yH

region if µ̂2 = s. In contrast, the ratio of H(1)/H(0) becomes less sensitive to yH with

µ̂2 = P 2
J⊥. This is because when the difference of yH and yJ becomes large, the invariant

mass Q2 of the Higgs boson and the leading jet can become much larger than the transverse

momentum of the jet. Hence, the scale of the results will be taken to be µ̂ = PJ⊥ in order

to resum the large logarithms in the perturbative contributions. In the following, this scale

choice is adopted in the theory predictions for comparison to fixed order and parton showers.

However, results with µ̂2 = s will be shown for the sake of comparison, and to support the

choice of µ̂2 = P 2
J⊥.
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Figure 6.2: Rapidity dependence of the hard factor for Higgs+Jet for different scale choices

6.1.7 Results

The above resummation formula to compute the differential and total cross sections of the

Higgs boson plus jet will be used to compare to both fixed order and parton shower results.

While data exists for this process, it is currently not at an accuracy that will be able to

discriminate against different predictions. In the numerical calculations shown, only the

gluon-gluon and the gluon-quark channel are used. This is a valid approximation because

the contribution for the quark-anti-quark channel is less than 1%, while the gluon-gluon and

gluon-quark channels make up 71% and 29% respectively. The anti-kT algorithm is used in

defining the jet with a cone size of R = 0.5.

Firstly, before the results are given, a cross check of the total cross-section is performed.

This cross check is done in a manner similar to that described in Sec. 3.5. In this cross check,
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it is evident that using the narrow jet approximation results in a 2% discrepancy between the

fixed order result from MCFM, and the result from the calculation described here. This dis-

crepancy varies as a function of R supporting the fact that it is due to the narrow jet approxi-

mation. Therefore, the correction is modeled by an additional R-dependent function inside of

H(1). The correction is obtained by fitting the difference in cross section to a quadratic in R,

giving a correction of H(0)αs
2π

(
CAR− 1.1R + 23.3R2

)
and H(0)αs

2π

(
CF − 0.8 ∗R + 22.3R2

)
for final state gluon and quark jets respectively. Additionally, for the resummation to be

valid, the qT needs to be smaller than PJ⊥, since the qT is defined as the vector sum of the

transverse momentum of the Higgs boson and the leading jet. If qT is greater than PJ⊥ it

is not clear what the leading jet is, and the fixed order calculation needs to be used in this

region. Finally, since A(2) is global and only depends on the color factor in the initial state,

this is also included into the calculation.

6.1.7.1 Comparison to Fixed Order

In Fig. 6.3, the comparison of the Higgs plus jet system at the LHC is shown for the total

transverse momentum and the transverse momentum of the Higgs. The fixed order calcu-

lation is given by MCFM, while the resummation calculation is shown for the two scales

discussed above.

For the total transverse momentum distribution, the leading order (LO) MCFM pre-

diction is from the first non-zero prediction of the transverse momentum of the Higgs plus

jet system, and the NLO result is the one-loop correction to that. In other words, the LO

prediction is given by Higgs plus two jets, while the NLO prediction is given by Higgs plus

two jets at NLO. The MCFM NLO prediction is cut-off at 20 GeV due to the numerical diffi-

culties of obtaining an accurate prediction below this value. Comparing the total transverse
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Figure 6.3: The differential cross sections of Higgs boson plus one jet production at the
LHC as functions of the total transverse momentum q⊥ (left) and the Higgs boson
transverse momentum PH⊥ (right). The resummation predictions (resum) with

resummation scale set to be PJ⊥ (black line) and Q (green line) respectively are compared
to the LO result from MCFM (pink line) with non-zero q⊥, and the NLO result from

MCFM (red line) which is the production rate of Higgs boson plus two separate jets up to
one-loop in QCD.
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momentum distribution of the resummed and fixed order calculation, it is seen that the fixed

order fails to describe the small qT region. Additionally, it is clear that the scale choice of

µ̂ = Q results in a calculation that is too hard (too large of a cross-section for large qT ), and

can never be matched to fixed order. On the other hand, the scale choice of µ̂ = PJ⊥ gives

a much more reasonable prediction.

For the transverse momentum of the Higgs boson, only the NLO prediction from MCFM

is shown. This prediction is given by the αs corrections to the Higgs plus jet result. Again,

the resummation calculation is given for the two different scale choices. The choice for

µ̂ = Q is too hard in the high transverse momentum region as also seen in the total transverse

momentum distribution. Here, there is a discontinuity at the value of pH⊥ = pJcut, known as

the Sudakov shoulder singularity. This is due to a integrable singularity that arises when the

leading jet is close to back to back to the Higgs boson, or in other words, when qT approaches

zero. This is resolved in the resummation calculation, by appropriately resumming the

logarithms to all orders that result in the divergence to give a finite result.

6.1.7.2 Comparison to Parton Showers

Similar to the fixed order calculation, the comparison of the resummation result can be

compared to that from parton shower predictions. In this study, the Higgs boson was set to

125 GeV and left undecayed, the MMHT2014nlo68clas118 PDF set was used [215]. Finally,

the theoretical uncertainties were estimated by varying the scales by factors of 1
2 and 2

around the central scale, but left the renormalization scale (µ̂) fixed to PJ⊥ as discussed

above. The setup and details of the other predictions used in this comparison can be found

in [28]. The jets for this calculation are taken to have a cone size of R = 0.4, with pJ⊥ > 30

GeV and |yJ | < 4.4. The codes that are used in this comparison are: SHERPA [178] plus
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GOSAM [216, 217], MINLO [218], BFGLP [219], HEJ [220, 221, 222, 223, 224], Herwig 7.1 [225],

Madgraph5 aMC@NLO [226], POWHEG-BOX [227], STWZ [228], and SHERPA NNLOPS [229, 230].

Exact details of the setups for each of the individual codes can be found in [28].

Firstly, the total rates for the jet multiplicities are compared across all of the codes,

shown in Fig. 6.4. The ResBos2 code is able to predict both the total inclusive rate for Higgs

along with the inclusive rate for Higgs plus 1 jet. Comparing across all of the codes, it is

clear that the ResBos2 prediction is consistent with the others as expected from the fixed

order comparison above.

The differential distributions that are compared are the transverse momentum of the

Higgs, the leading jet, the Higgs plus leading jet system, and the rapidity of the leading jet.

Here the transverse momentum of the Higgs requires the presence of at least one hard jet.

The comparison of the transverse momentum of the Higgs boson in the presence of an

additional jet can be seen in Fig. 6.5. The fixed order calculations again show the Sudakov

shoulder singularity, but the all orders calculations do not have this singularity. In the ratio

plot, at the high transverse momentum, there is a deviation of the resummation calculation

from that of POWHEG due to a different choice of scales. In the RESBOS2 calculation, the

central scale is µ0 = 1
2mh as mentioned above, but the scale choice for POWHEG is µ0 =

1
2

√
m2

h + p2T . This scale choice softens the high transverse momentum tail as discussed in

detail in Sec. 4.1.

Next, the comparison of the leading jet transverse momentum and rapidity distributions

can be found in Fig. 6.6 and Fig. 6.7, respectively. Both of these distributions do not contain

any large Sudakov effects, and therefore all the calculations should be close to that of the fixed

order calculation. This is clearly seen in the aforementioned figures, with all the calculations

falling within each others uncertainty bands. Additionally, the size of the uncertainty bands
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Figure 6.4: The central predictions(left panel) and with theoretical uncertainties (right
panel) for the inclusive jet multiplicities as predicted by fixed-order calculations, resummed
calculations, NNLO and NLO Monte Carlos. The bottom panel is divided up into three
subplots all showing the ratios with respect to the POWHEG NNLOPS prediction. The upper
of these plots contains the HEJ and SHERPA NNLOPS ratios, while the middle one includes
all NLO merged predictions (Madgraph5 aMC@NLO, Herwig 7.1 and SHERPA) and the lower
one shows all those listed in the bottom left legend of the main panel. Reproduced from

[28].

are consistent with each other and are of the order of 20%. Again the difference in the

high transverse momentum tail between the POWHEG and RESBOS2 calculations arise from

the difference in scale choices. For the rapidity, the calculation is consistent throughout

the rapidity range, and the offset between the POWHEG and RESBOS2 calculations is due to
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Figure 6.5: The Higgs boson transverse momentum in the presence of at least one jet
central predictions(left) with uncertainty bands(right). The ratio plot panel is divided into
six parts where the upper four exhibit the ratios to the POWHEG NNLOPS result while the

lower two show them to the NLO calculation for h+ 1 jet as provided by GOSAM+SHERPA.
Reproduced from [28].
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Figure 6.6: The leading jet transverse momentum distribution for h+≥1-jet production,
to the right (left) shown with (without) the uncertainty bands provided by the various

calculations. The part below the main plot contains four ratio plots taken wrt. the NNLO
result of the BFGLP group following the same strategy for grouping the predictions as
before (NNLOPS versus NLO ME+PS versus fixed-order and resummation results).

Reproduced from [28].

the fact that the total cross-sections differ by about 5%, which is within the theoretical

uncertainty at this order, as seen when the uncertainty bands are overlaid.
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Figure 6.7: The rapidity distribution for the leading jet in h+≥1-jet production, shown
without (left) and with (right) theoretical uncertainties. Ratio plots are displayed in the

lower part of the plot using the POWHEG NNLOPS result for Higgs boson production as their
reference. Predictions are grouped, from top to bottom, according to the categories

NNLOPS, ME+PS at NLO and NLO fixed order as well as resummation. Reproduced from
[28].

Finally, the transverse momentum of the Higgs plus jet system is examined. The com-

parison between the different results can be found in Fig. 6.8. Here comparing the RESBOS2

calculation to POWHEG has some interesting features that need to be discussed. In the high

transverse momentum region, there is a discrepancy between the two calculations which arise

from the fact that in the tail of the distribution, the RESBOS2 calculation only is matched to
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the LO prediction for this observable as described in Sec. 6.1.7, and the agreement should be

improved if the matching is done to a higher order prediction. Additionally, in the RESBOS2

calculation the logarithms dealing with the jet cone size are resummed as mentioned in

Sec. 6.1.6. This results in a broader Sudakov peak than the other parton shower predic-

tions, and an upward shift in the Sudakov peak value. When the LHC data becomes precise

enough, this difference will be a strong test of the resummation formalism versus the parton

shower model.

Overall, the parton shower predictions and the resummed predictions are consistent with

each other. This was expected, since the formal accuracy of the two predictions for all

observables with the exception of the transverse momentum of the Higgs plus jet system

are of the same order. The major difference arises in the prediction of the Higgs plus jet

system transverse momentum, due to the dependency of the jet cone size in the RESBOS2

prediction. Once the LHC data becomes precise enough, these codes and their differences

can be tested against data.

6.1.8 Future of Higgs Plus Jet Resummation

In this section, some brief future steps are discussed. Firstly, there has been some work to

begin to extend this calculation from Higgs plus one jet to Higgs plus two jets [29]. Addi-

tionally, at higher order calculations for the Higgs plus one jet system non-global logarithms

are introduced into the calculation.

The calculation of the Higgs plus two jets system is an important calculation to separate

the vector boson fusion (VBF) production of the Higgs boson from the gluon fusion produc-

tion of the Higgs boson. As shown in [29], the peak of the transverse momentum of the

system peaks at drastically different values. This can be used to apply an additional cut
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Figure 6.8: The transverse momentum of the Higgs-boson-leading-jet system in the
presence of at least one jet. For better visibility, results are shown without (left) and with
(right) theoretical uncertainties. The plot layout exactly corresponds to that of Figure 6.7,

except for the extended ŷ-axis range in the ratio plots. Reproduced from [28].

on the Higgs production events to increase the purity of the VBF signal. The normalized

distributions for this observable can be seen in Fig. 6.9.

Finally, the goal is to extend the Higgs plus one jet calculation to NNLL accuracy.

However, going beyond NLL accuracy introduces what are known as non-global logarithms.

Non-global logarithms are logarithms that may not appear at each order in the calculation,

and do not have a specific form to predict the higher order coefficients of them. Therefore,
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Figure 6.9: Noramlized distributions of the vector boson fusion and gluon-fusion
contributions to the Higgs boson plus two jets production in the typical kinematics at the

LHC with
√
S = 13TeV , where the jet transverse momenta k1⊥ = k2⊥ = 30GeV ,

yj1 = −yj2 = 2 and yh = 0: as functions of the total transverse momentum q⊥ (left); the
total rate as function of the upper limit of q⊥ (right). Reproduced from [29].

it is not possible to resum these logarithms to all orders [231, 232, 11, 233]. This results in

additional complications that need to be considered.
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Chapter 7

Conclusion

The improvement of the ResBos code from the precision used for the Tevatron, to that of

the new ResBos2 code, will allow for precision resummation calculations at the LHC. These

improvements come from many different improved predictions, as mentioned above. Below

a review of the improvements to the predictions, along with the experimental comparisons

are summarized for the reader.

First, the improvements to color singlet resummation will be reviewed. In this section,

the difference between schemes will again be pointed out. Also, the predictions for both the

Z and W boson at the LHC will be reviewed. Finally, the future steps for this project will

be outlined.

Afterwards, the addition of non-color singlet resummation calculation will be reviewed.

In this section, the calculation for the Higgs plus jet system will be reviewed, along with

some mentions of other works using these ideas. Finally, the future prospects for this new

type of qT resummation will be emphasized.
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7.1 Color Singlet Resummation

7.1.1 Resummation Schemes

Two main schemes in qT resummation are again the Collins-Soper-Sterman and the Catani-

de-Florian-Grazzini schemes. The differences between these schemes have both an order by

order, and an all orders relationship, to map from one scheme to the other. It was shown that

as long as the calculation is preformed such that the orders of the B, C, and H coefficient

are such that the order of B is one higher than C and H, then the two calculations are in

very good agreement. This is supported by the conversion between the two schemes as seen

in Eq. 3.73, and the results of Fig. 4.3.

7.1.2 Z Boson Predictions

Previously at the LHC, the prediction of the ResBos code was unable to reproduce the

data. The resolution to this issue took many different steps as outlined above. These steps,

included the improvement of the precision of the calculation, and the change of the scale of

the fixed order calculation.

The improvement in the precision of the calculation, was from NNLL to N3LL, and the

fixed order was improved from approximate NNLO to NNLO, with a k-factor included in

the high transverse momentum region to match the NNLO Z plus jet calculation. One

improvement that will be made to the ResBos2 code is the matching fully with the NNLO Z

plus jet calculation. This will be included once the results of the NNLO Z plus jet calculation

become sufficiently available.

The other improvement was the change of the fixed order scale from the invariant mass

of the lepton pair to the transverse mass of the lepton pair, defined in the text above. This
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choice of scale makes more sense for the high transverse momentum region due to the fact

that at high transverse momentum, the energy of the jet is comparable to the invariant mass

of the lepton pair.

Upon using these improvements to the ResBos prediction, the agreement between the

theory prediction and the data is greatly improved. Further improvements will arise with

the matching to the higher order fixed order calculation. However, this improvement will

only help in the intermediate region.

One more improvement that can be made to the ResBos code, is to further improve the

non-perturbative piece. Currently, the non-perturbative piece is fixed as a function of the

resummation scales. This has recently been believed to give too conservative an estimate of

the uncertainty of the prediction at small transverse momentum. Therefore, another future

improvement is to include the resummation scale variations into the non-perturbative fit,

allowing the non-perturbative function to depend on these scales, as makes physical sense.

7.1.3 W Boson Predictions

The ResBos2 predictions for the W -transverse momentum, and the ability to use the code

to help predict the W mass at the LHC will be helpful in understanding the EW sector of

the SM. As mentioned in the text above, the indirect measurement is much smaller than

the direct measurement of the W mass. It has been proposed to use resummation tools to

improve the direct measurement, by predicting the ratio of the W transverse momentum to

the Z transverse momentum. With these, the experimentalists will be able to reduce the

uncertainties in the W mass measurement. These reductions will allow the measurement to

be competitive with the indirect measurement.

Additionally, the ResBos2 prediction allows for a template fit of the experimental mea-
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surements of the transverse momentum of the leptons to the theoretical prediction. This

will allow for a precise determination of the W mass.

Some future improvements that could be included into the ResBos2 prediction are again

similar to that of the Z boson, from the matching to the higher order fixed order calculation,

and improving the non-perturbative piece. While these may not have a large effect on the

determination of the W boson mass, there are not any improvements that can be made in

the theoretical prediction in the near future. The major improvements that would help,

included calculations to much higher orders, which are not feasible at the writing of this

thesis.

7.2 Non-Color Singlet Resummation

Recently, there has been work done to allow for non-color singlet qT resummation in QCD.

The first of these being the dijet calculation, and another related to the work of this thesis

being the Higgs plus jet resummation as mentioned previously. With these calculations

completed, a new set of processes are now able to be calculated that previously were thought

not possible.

As mentioned above, the Higgs plus jet calculation was an important step in under-

standing QCD, and an important contribution towards obtaining the Higgs plus two jet

resummation calculation. The Higgs plus two jet calculation is important in the study of

the Higgs boson, in allowing one to separate the gluon-gluon fusion production mechanism

of the Higgs boson from the EW production of the Higgs boson. Additionally, it is shown

that the current prediction for the qT resummed prediction for the Higgs plus jet system is

consistent with the parton shower results. However, there is the one major difference in that
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the analytic resummation knows about the cone size of the jet, resulting in a shape that

differs from the parton shower codes. When the data becomes more precise, a great test of

this method would be to see if the data can distinguish whether the paron shower method,

or the analytic resummed method is correct.

7.3 Final Remarks

In conclusion, the improvement of the qT resummation calculations in QCD are included

in the ResBos2 code. With these improvements, the calculations are now at a level that is

sufficient for the precision required at the LHC. In the future, the ResBos2 will continue to

improve building off of the work of this thesis, and the ideas that have formed as a result of

this work.
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APPENDIX A

The Dirac Equation and γ Matrices

The Dirac equation is the equation of motion to describe fermions, and is given by:

ψ̄
(
i∂µγµ +m

)
ψ = 0, (A.1)

where ψ is the wavefunction of a fermion, m is the mass of that fermion, and γµ
1 are the

Dirac matrices defined by their anti-commutation relation:

{γµ, γν} = 2gµν , (A.2)

where gµν is the metric tensor defined using the mostly negative choice, gµν = diag(1,−1,−1,−1),

such that squares of time-like four momenta result in positive results.

The γ or Dirac matrices are used for infinitesimal transformations of spinors under spatial

rotations and Lorentz boosts. There are many representations for these matrices. The Weyl

representation is given by:

γ0 =

0 1

1 0

 , γi =

 0 σi

−σi 0

 , (A.3)

1In Eq. A.1, it is common to rewrite ∂µγµ as /∂. This slashed notation will be used through the rest of
this work. Also, additional details on the γ matrices, along with one representation of them can be found in
App. A
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where σi are the Pauli matrices, and 1 is the 2 × 2 Identity matrix. Additionally, a fifth γ

matrix can be defined as:

γ5 = iγ0γ1γ2γ3 =

−1 0

0 1

 . (A.4)

Important relationships of γ matrices are:

1. γµγµ = 414,

2. γµγνγµ = −2γν ,

3. γµγνγργµ = 4gνρ14,

4. γµγνγργσγµ = −2γσγργν ,

5. trace of any odd product of γ matrices excluding γ5 is zero,

6. trace of any odd product of γ matrices times γ5 is also zero,

7. Tr (γµγν) = 4gµν ,

8. Tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ),

9. Tr
(
γ5
)
= Tr

(
γµγνγ5

)
= 0,

10. Tr (γµγνγργσ) = −4iεµνρσ,

11. Tr (γµ1 · · · γµn) = Tr (γµn · · · γµ1),

where 14 is the 4 × 4 unit matrix and εµνρσ is the completely anti-symmetric Levi-Civita

Tensor. When moving beyond 4 dimensions, the contraction identities are modified as fol-

lows:
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1. γµγµ = d1d,

2. γµγνγµ = −(d− 2)γν ,

3. γµγνγργµ = 4gνρ − (4− d)γνγρ,

4. γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ.

The trace identities not involving γ5 are not modified since they are independent of dimen-

sionality. There are many complications of dealing with γ5 in dimensions not equal to 4.

There have been many discussions on the appropriate way to handle this situation. The

reader is referred to [234, 235] for detailed discussions on this topic.
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APPENDIX B

Spin, Helicity, and Chirality

Spin

Spin is the eigenvalue of ~S. For a fermion, ~S =
~sigma
2 . For a single particle, the spin

and the angular momentum operators are the same. The scalar spin s is the eigenvalue in

~S2 = s(s+ 1). When saying a particle is spin-1/2 refers to the value of s.

Helicity

Helicity is the projection of the spin on the direction of momentum. Helicity eigenstates are

given by the operator H =
~S·~p
|~p| , and exist for any spin particle.

Chirality

Chirality is a concept that only exists for fermionic particles. A particle is chiral if it is

not symmetric under a mirror symmetry. This leads to the definition of left-/right-handed

particles. The projection of the fermionic wavefunction to the left-/right-handed components

is given by:

PL =
1 + γ5

2
, PR =

1− γ5

2
. (B.1)
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In the Weyl representation, the spinors can be represented by

ψL
ψR

. In the massless limit

chirality and helicity are the same.
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APPENDIX C

Standard Model Higgs Boson and

Higgs Mechanism

As discussed in Chapter 1, the Higgs Mechanism is used to introduce masses for vector

bosons, in a manner that preserves the gauge theory. There, the calculation was demon-

strated for a Higgs boson added to QED. The full details for adding a Higgs boson into

SU(2)L × U(1)Y is detailed below.

First, the addition of a scalar doublet is required to be added to the Standard Model,

given by:

φ =
1√
2

φ1 + iφ2

φ3 + iφ4

 , (C.1)

which is a multiplet of SU(2)L timesU(1)Y . The hypercharge of the above doublet is chosen

to be Y = 1.

The potential for the scalar doublet that is responsible for the spontaneous breaking of

the symmetry is the generalized form from that in Chapter 1, and is given as:

V (φ) = µ2
(
φ†φ
)
+ λ

(
φ†φ
)2
, (C.2)
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where µ2 < 0. With a Lagrangian given as:

L = (Dµφ)†
(
Dµφ

)
− V (φ) , (C.3)

where Dµ is the covariant derivative given as:

Dµ = ∂µ + ig
1

2
~τ · ~Wµ + ig′

1

2
Y Bµ. (C.4)

The vacuum state (φ0) is given by:

φ0 =
1√
2

0

v

 , (C.5)

where v is known as the vacuum expectation value. With this choice of the vacuum, SU(2)L×

U(1)Y is broken, but since the vacuum has charge Q = I3+
1
2Y = 0, there remains a U(1)EM

symmetry as required.

The Lagrangian above can be rewritten into terms of the physical gauge bosons (W+,W−, Z, γ).

The W± boson can be related to W 1 and W 2, by the following relationship:

W± =
1√
2

(
W 1 ∓ iW2

)
. (C.6)

Additionally, the Z and γ can be rewritten in terms of the W 3 and B bosons as given by:

A =
1√

g2 + g′2

(
g′W 3 + gB

)
, (C.7)

Z =
1√

g2 + g′2

(
gW 3 − g′B

)
. (C.8)
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Combining these relationships, the Lagrangian for the scalar can be rewritten as:

(Dµφ)†
(
Dµφ

)
=

1

8
v2
(
g2
(
W+)2 + g2

(
W−

)2
+
(
g2 + g′2

)
Z2 + 0 · A2

)
, (C.9)

plus terms that involve the Higgs boson. The rest of the results follow as discussed in

Chapter 1.
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APPENDIX D

Structure of SU(3)

A given representation of the Gell-Mann matrices is given by the following 8 matrices:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (D.1)

The structure functions are completely anti-symmetric in the choices of a, b, and c, and

are a generalization of the Levi-Cevita Tensor from SU(2) to SU(3). They are defined as:

f123 = 1, f147 = f165 = f246 = f257 = f345 = f376 =
1

2
, f458 = f678 =

√
3

2
, (D.2)

and in general they are zero, unless they contain an odd number from the set of {2, 5, 7}.
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APPENDIX E

QCD Feynman Rules

Fermion Lagrangian

To find the interaction terms for the fermions, we start from the free Lagrangian. For all of

this, we will assume that the fermions are massless. It is easy for one to extend the following

to include fermion masses.

Lf = ψ̄i/∂ψ (E.1)

We will now require that the Lagrangian remain invariant under a SU(3) transformation.

To begin, a local SU(3) transformation can be written as:

X = e−iT
aρa(x) (E.2)

Where ρa(x) are all real. We can then act this transformation on the above Lagrangian:

ψ → Xψ ∂µψ → X∂µψ +
(
∂µX

)
ψ (E.3)

To bring back the desired SU(3) invariance, we introduce the covariant derivative which

is defined such that:

Dµψ → XDµψ (E.4)
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Working through the equations above to find the definition of the covariant derivative,

one finds that the form the covariant derivative must take is given by:

Dµ = ∂µ + igsT
aAa

µ (E.5)

Where in the above equation, gs is the strong coupling constant, and Aa
µ are the vector

boson fields for the strong force, known as gluons.

Therefore, the SU(3) invariant Lagrangian for fermions is defined as:

Lf = ψ̄
(
i/∂ − gsT a /A

a)
ψ (E.6)

Looking at this equation, one can see where the interaction between the quarks and the

gluons arises. Details on the interaction and the Feynman rules for QCD will be calculated

in later sections.

Vector Boson Lagrangian

The vector bosons, or gluons, are in the adjoint representation of SU(3). Therefore, under a

SU(3) transformation the fields transform as:

A′aµ = Aa
µ − ∂µρa(x) + gsfabcρ

b(x)Ac
µ (E.7)

We can also define the field strength tensor for QCD in an anologous way to that of QED,
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but we have to include additional terms since unlike QED, QCD is non-Abelian.

F a
µν = ∂µA

a
ν − ∂νAa

µ + gsf
abcAµ,bAν,c (E.8)

Also, similar to QED, the kinetic part of the Lagrangian is formed from a Lorentz invari-

ant using two field strength tensors.

Lkin = −1

4
Fµν,aF a

µν (E.9)

To simplify the expressions, we can define: Aµ ≡ −iT aAa
µ and

Fµν ≡ −iT aF a
µν . Using these definitions, we can rewrite the kinetic part of the Lagrangian

by using the following relations:

Fµν = ∂µAν − ∂νAµ + gs[Aµ,Aν ] =
1

gs
[Dµ, Dν ] (E.10)

Where Dµ is the covariant derivative from Eq. E.5. Using the trace property of the T a’s,

one can rewrite the Lagrangian as:

Lkin = −1

2
Tr(FµνFµν) (E.11)

Putting the fermion Lagrangian E.6 together with the kinetic term for the boson La-

grangian E.9, one obtains the complete Lagrangian for QCD.

LQCD = −1

4
Fµν,aF a

µν + ψ̄
(
i /D −m

)
ψ (E.12)
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QCD Feynman Rules

In order to find the Feynman Rules for QCD, we first need to expand the kinetic term of

the QCD Lagrangian in order to find the quartic, cubic, and quadratic terms for the vector

bosons in the Lagrangian.

Fµν,aF a
µν =

(
∂µAν,a − ∂νAµ,a + gsf

abcA
µ
bA

ν
c

)(
∂µA

a
ν − ∂νAa

µ + gsf
ab′c′Aµ,b′Aν,c′

)
= ∂µAν,a∂µA

a
ν − ∂µAν,a∂νA

a
µ + gsf

ab′c′∂µAν,aAµ,b′Aν,c′

− ∂νAµ,a∂µA
a
ν + ∂νAµ,a∂νA

a
µ

− gsfab
′c′∂νAµ,aAµ,b′Aν,c′ + gsf

abcA
µ
bA

ν
c∂µA

a
ν − gsfabcA

µ
bA

ν
b∂νA

a
µ

+ g2sf
abcfab

′c′Aµ
bA

ν
cAµ,b′Aν,c′ (E.13)

The equation above can be further simplified by noting:

∂µAν,a∂µA
a
ν = ∂νAµ,a∂νA

a
µ and ∂µAν,a∂νA

a
µ = ∂νAµ,a∂µA

a
ν

We can also interchange the A-fields since we represented them in terms of group com-

ponents instead of matrices. Reorganizing the above equation and simplifying, one obtains:

Fµν,aF a
µν = 2

[
∂µAν,a∂µA

a
ν − ∂µAν,a∂νA

a
µ

]
+ 2gs

[
fabc (∂

µAν,a)Ab
µA

c
ν − fabc (∂νAµ,a)Ab

µA
c
ν

]
+ g2sfabcfab′c′A

µ,bAν,cAb′
µA

c′
ν

(E.14)
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Putting this back into Eq. E.12, the Lagrangian can be written as:

LQCD = −1

2

[
∂µAν,a∂µA

a
ν − ∂µAν,a∂νA

a
µ

]
− 1

2
gs

[
fabc (∂

µAν,a)Ab
µA

c
ν − fabc (∂νAµ,a)Ab

µA
c
ν

]
− 1

4
g2sfabcfab′c′A

µ,bAν,cAb′
µA

c′
ν

+ ψ̄
(
i/∂ −m

)
ψ − gsT aAa

µψ̄γ
µψ

(E.15)

Now that we have the Lagrangian in this form, we can begin calculating the Feynman

Rules for QCD. We will calculate the Feynamn Rules for:

1. Gluon propagator

2. Triple gluon coupling

3. Quartic gluon coupling

4. Fermion propagator

5. Fermion-gluon vertex

Gluon Propagator

To find the gluon propagator Feynman Rule, one must first find all the quadratic terms in

Aa
µ. These terms are as follows:

−1

2

[
∂µAν,a∂µA

a
ν − ∂µAν,a∂νA

a
µ

]
=− 1

2
Aµ,a

[
∂2gµνδab + ∂µ∂νδab

]
Aν,b

(E.16)

However, to find the propagator one needs to find the inverse of this operator, but due

to gauge invariance this operator does not have an inverse. Therefore, in order to obtain the
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gluon propagator we must first break the gauge invariance of the Lagrangian. To do this,

we will insert a new term by hand, known as the gague fixing term. Here we will use the

following gauge breaking term:

Lgf = − 1

2α

(
∂µA

µ,a)2 = − 1

2α
Aa
µ (−∂µ∂νδab)Ab

ν (E.17)

Combining these two equations, we are able to find an operator that is invertible. The

new term that we need to invert is given by:

−1

2
Aµ,a

[
∂2gµνδab + (1− 1

α
)∂µ∂νδab

]
Aν,b (E.18)

The propagator is found by taking two derivatives with respect to the Fourier transform

of the Lagarangian.

P−1 = −i ∂
2F(L)

∂Ac
α∂A

d
β

= −i
(
−k2gαβδcd + (1− 1

α
)kαkβδcd

)
(E.19)

By observation, it is easy to see that the form that the inverse of this equation must take

the form of:

P = i

(
Agµν +B

kµkν

k2

)
δab (E.20)

One can solve the equations for A and B to obtain the result for the propagator.

PP−1 = 1 = g
µ
σδab
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=

(
k2gνσ − (1− 1

α
)kνkσ

)(
Agµν +B

kµkν

k2

)
δab

⇒− Ak2gµσ −Bkµkσ + A

(
1− 1

α

)
kµkσ +B

(
1− 1

α

)
kµkσ = g

µ
σ

⇒− Ak2 = 1 −B + A

(
1− 1

α

)
+B

(
1− 1

α

)
= 0

⇒A = − 1

k2
B = (1− α) 1

k2

(E.21)

Plugging the solutions to A and B back into Eq. E.20, we obtain the Feynman Rule for

the gluon propagator.

= i
δab
k2

[
−gµν +

(1− α) kµkν
k2

]
(E.22)

Triple Gluon Coupling

To find the triple gluon coupling, first we need to find all the terms that are cubic in the

gauge fields. We will also be using the all incoming momentum convention when calculating

the Feynman Rules. These terms are as follows:

L3 = −1

2
gsfabc [∂

µAν,a − ∂νAµ,a]Ab
µA

c
ν (E.23)

We then follow a similar procedure to that used for the propagator. We need to find:

Γ(3) =
−i∂3F(L3)
∂Al

α∂A
m
β ∂A

n
γ

(E.24)

The array of (l,m, n) has 3! = 6 permutations, but due to fabc being antisymmetric,

we can reduce the number of terms that need to be consider 3!
2 = 3 cases. In deriving the

Feynman rule, we will go through each of the three cases to determine it. Also, the gluons
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will have the momenta p, k, and q, as seen in the diagram of the vertex below.

1. Consider (l,m, n)→ (a, b, c):

The Fourier transform brings down the momentum associated with the gluon that has

the derivative acting on it. So in this case we get factors of (ip).

−i
2
gsfabcδmbg

βµδncg
γν [δalgαν (ipµ)− gµαδal (ipν)] = −i2 gsflmn

[(
ipβ
)
gαγ −

(
ipγ
)
gαβ
]

2. Consider (l,m, n)→ (b, c, a):

Similar to above, but here the momentum factor is (ik).

−i
2
gsfabcδlbg

αµδmcg
βν [δangγν (ikµ)− gµγδan (ikν)] = −i

2
gsfnlm

[
(ikα) gβγ −

(
ikβ
)
gαγ
]

Note: fnlm = −flnm = flmn

3. Consider (l,m, n)→ (c, a, b):

Here the momentum factor is (iq)

−i
2
gsfabcδnbg

γµδlcg
αν [δangβν (iqµ)− gµβδan (iqν)] = −i2 gsfmnl

[(
iqγ
)
gαβ − (ipα) gγβ

]

Putting the three terms together along with manipulating the structure constants to

match, one obtains the Feynman rule for the 3 point function as:

= gsflmn

[
(q − k)α δβγ + (k − p)β δγα + (p− q)γ δαβ

]
(E.25)
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Quartic Gluon Coupling

The last piece that includes on the gauge field are terms that contain quartic terms in the

fields. There is one such term shown below:

L4 = −1

4
g2sfabcfadeA

µ,bAν,cAd
µA

e
ν (E.26)

Therefore, following the same approach in the sections above, we will need to calculate

the following term in order to get the Feynman rule:

Γ(4) =
i∂4F(L4)

∂Ak
α∂A

l
β∂A

m
γ ∂A

n
σ

(E.27)

Here we can see that there will be 4! = 24 different permutations that can occur for the

indices (k, l,m, n). Again, due to the properties of the structure function we are able to

relate (k, l,m, n) to (k, l, n,m), (k,m, l, n), and (k, n,m, l).

However, to illustrate the relationship, we will still show the work for all 24 permutations.

1. • Consider (k, l,m, n)→ (b, c, d, e)

− i
4
g2sfabcfadeδbkg

µαδclg
νβδdmgµγδengνσ = − i

4
g2sfaklfamngαγgβσ

• Consider (k, l,m, n)→ (b, c, d, e)

− i
4
g2sfabcfadeδbkg

µαδclg
νβδdngµσδemgνγ = − i

4
g2sfaklfanmgασgβγ
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• Consider (k,m, l, n)→ (b, c, d, e)

− i
4
g2sfabcfadeδbkg

µαδcmg
νγδdlgµβδengνσ = − i

4
g2sfakmfalngαβgγσ

• Consider (k,m, n, l)→ (b, c, d, e)

− i
4
g2sfabcfadeδbkg

µαδcmg
νγδdngµσδelgνβ = − i

4
g2sfakmfalngασgβγ

• Consider (k, n,m, l)→ (b, c, d, e)

− i
4
g2sfabcfadeδbkg

µαδcng
νσδdmgµγδelgνβ = − i

4
g2sfaknfamlgαγgβσ

• Consider (k, n, l,m)→ (b, c, d, e)

− i
4
g2sfabcfadeδbkg

µαδcng
νσδdlgµβδemgνγ = − i

4
g2sfaknfalmgαβgγσ

2. From here out, we will just write the result for each term. This can be done by

recognizing the pattern of the terms above.

• Consider (l,m, n, k)→ (b, c, d, e)

− i
4
g2sfalmfankgβσgγα

• Consider (l,m, k, n)→ (b, c, d, e)

− i
4
g2sfalmfakngαβgγσ
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• Consider (l, n,m, k)→ (b, c, d, e)

− i
4
g2sfalnfamkgβγgασ

• Consider (l, k, n,m)→ (b, c, d, e)

− i
4
g2sfalkfanmgβσgαγ

• Consider (l, n, k,m)→ (b, c, d, e)

− i
4
g2sfalnfakmgαβgγσ

• Consider (l, k,m, n)→ (b, c, d, e)

− i
4
g2sfalkfamngβγgασ

3. • Consider (m,n, k, l)→ (b, c, d, e)

− i
4
g2sfamnfaklgαγgβσ

• Consider (m,n, l, k)→ (b, c, d, e)

− i
4
g2sfamnfalkgβγgασ
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• Consider (m, k, n, l)→ (b, c, d, e)

− i
4
g2sfamkfanlgγσgαβ

• Consider (m, l, k, n)→ (b, c, d, e)

− i
4
g2sfamlfakngαγgβσ

• Consider (m, k, l, n)→ (b, c, d, e)

− i
4
g2sfamkfalngβγgασ

• Consider (m, l, n, k)→ (b, c, d, e)

− i
4
g2sfamlfankgγσgαβ

4. • Consider (n, k, l,m)→ (b, c, d, e)

− i
4
g2sfankfalmgβσgαγ

• Consider (n, k,m, l)→ (b, c, d, e)

− i
4
g2sfankfamlgγσgαβ
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• Consider (n, l, k,m)→ (b, c, d, e)

− i
4
g2sfanlfakmgασgβγ

• Consider (n,m, l, k)→ (b, c, d, e)

− i
4
g2sfanmfalkgαγgβσ

• Consider (n, l,m, k)→ (b, c, d, e)

− i
4
g2sfanlfamkgγσgαβ

• Consider (n,m, k, l)→ (b, c, d, e)

− i
4
g2sfanmfaklgασgβγ

Combining the above 24 terms together, and simplifing the expressions, we get the fol-

lowing for the Feynman Rule:

=

−ig2s [faklfamn
(
gαγgβσ − gασgβγ

)
+fakmfaln

(
gαβgσγ − gασgβγ

)
+faknfalm

(
gαβgσγ − gασgβγ

)
]

(E.28)
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Fermion Propagator

Now we will consider terms in the Lagrangian containing fermions. The first term that we

will calculate is the fermion propagator. Unlike the gluon propagator, the fermion propagator

does not have the issue of being zero due to gague invariance. It is therefore, a straight-

forward calculation. The term needed in the Lagrangian is:

Lf = ψ̄
(
i/∂ −m

)
ψ (E.29)

The propagator is found by the same method as above. In other words, we need to

calculate:

P =

(
−i
∂2F

(
Lf
)

∂ψ̄∂ψ

)−1
(E.30)

Preforming this calculation, one obtains:

P = i
(
/p−m

)−1
=

i

/p−m
=
i(/p+m)

p2 −m2
(E.31)

Where to get to the last equation, we multiplied the top and the bottom by /p + m to

bring it to the typical form. Thus, the Feynman rule for the Fermion propagator is given by:

=
i(/p+m)

p2 −m2
(E.32)
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Fermion-Gluon Vertex

The remaining term that has not been accounted for in the Lagrangian thus far is the

interaction term between gluons and fermions. This term is given by:

Lint = gsT
aAa

µψ̄γ
µψ = gsA

a
µψ̄iγ

µ (T a)ij ψj (E.33)

Where in the second equation we wrote in the indices corresponding to the color of the

fermions. The index a goes from 1 to 8, where the indicies i, j can be 1,2, or 3. Again, we

preform the same procedure as before:

Γint =
i∂3F(Lint)
∂ψ̄∂ψ∂Aa

µ
(E.34)

This gives us the Feynman rule, which is shown below:

= igsγµ(T
a)ij (E.35)

Note: The order of (ij) is important because T a is not a symmetric matrix.

Fadeev-Popov Ghost Fields

Arising from an artifact of insiting on Lorentz invariance and unitarity for massless spin-1

particles are unphysical particles known as Fadeev-Popov ghosts. These also arise in QED,

but since the theory is Abelian, they do not couple to the photon. Here in the non-Abelian

theory they do couple to the gluon, but only appear at higher orders, since they are non-
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physical. There are ways to derive the Feynman rules to not have any ghost fields knwon as

Axial gauges and a discussion on these can be found in [236].

The gauge fixing term can be expressed as:

Lgf = − 1

2α
(ca)2 (E.36)

The ghost Lagrangian is defined as:

LFP = χ̄aMabχ
b (E.37)

where Mab = δca

δΛb
. We can see that there will be one ghost and one anti-ghost for each of

the gluons. Therefore, there will be 8 ghost fields and 8 anti-ghost fields. Let us examine

how the ca fields change under a local gauge transformation.

ca = ∂µAa
µ → ∂µ(Aa

µ + δAa
µ) = ca + δca (E.38)

To find the equation forMab we will need to calculate the δCa term in the above equation.

The derivation is shown in the equations below.

δCa =∂µ(δAa
µ) = ∂µ(−∂µΛa + gsfabcΛ

bAc
µ)

=− ∂2Λa + gsfabc∂
µ(ΛbAc

µ)

=
[
−∂2δab + gsfabc

(
Ac
µ∂

µ + ∂µAc
µ

)]
Λb

(E.39)

⇒Mab =
δca

δΛb
= −∂2δab + gsfabc

(
Ac
µ∂

µ + ∂µAc
µ

)
(E.40)
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Plugging the above result into Eq. E.37, we get the resulting ghost Lagrangain.

LFP =χ̄a
[
−∂2δab + gsfabc

(
Ac
µ∂

µ + ∂µAc
µ

)]
χb

=
(
∂µχ̄

a) (∂µχa)− gsfabc (∂µχ̄a)Ac
µχ

b

(E.41)

Now we will begin to calculate the Feynman rules for the ghost fields. We begin with the

calculation of the propagator.

P =

(
−i∂2F(−χ̄a∂2δabχb)

∂χ̄a∂χb

)−1
(E.42)

= −i 1
k2
δab (E.43)

The only remaining Feynman rule for QCD to calculate is the ghost-gluon interaction

term. This term is given by the same procedure as above, giving:

= gsfabcpµ (E.44)

It is important to note that the anti-ghost fields are not the anti-particles of the ghost

fields.
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QCD β Functions

The β functions in QCD arise from the calculation of the renormalization of the strong

coupling constant. They have been calculated up to four-loops [237, 238]. The results up to

that order are listed below:

β0 =
11

3
CA −

4

3
TFnF , (E.45)

β1 =
34

3
C2
A −

20

3
CATFnF − 4CFTFnF , (E.46)

β2 =
2857

54
C3
A −

1415

27
C2
ATFnF +

158

27
CAT

2
Fn

2
F +

44

9
CFT

2
Fn

2
F

− 205

9
CACFTFnF + 2C2

FTFnF , (E.47)

β3 =CACFT
2
Fn

2
F

(
17152

243
+

448

9
ζ3

)
+ CAC

2
FTFnF

(
−4204

27
+

352

9
ζ3

)
+

424

243
CAT

3
Fn

3
F

+ C2
ACFTFnF

(
7073

243
− 656

9
ζ3

)
+ C2

AT
2
Fn

2
F

(
7930

81
+

224

9
ζ3

)
+

1232

243
CFT

3
Fn

3
F

C3
ATFnF

(
−39143

81
+

136

3
ζ3

)
+ C4

A

(
150653

486
− 44

9
ζ3

)
+ C2

FT
2
Fn

2
F

(
1352

27
− 704

9
ζ3

)
+ 46C3

FTFnF + nF
dabcdF dabcdA

NA

(
512

9
− 1664

3
ζ3

)
+ n2F

dabcdF dabcdF

NA

(
−704

9
+

512

3
ζ3

)
+
dabcdA dabcdA

NA

(
−80

9
+

704

3
ζ3

)
, (E.48)

where the coefficients in the β equations can be expressed in the specific values for an SU(N)

group are:

TF =
1

2
, CF =

N2 − 1

2N
, CA = N,

dabcdF dabcdF

NA
=
N4 − 6N2 + 18

96N2
,

dabcdF dabcdA

NA
=
N(N2 + 6)

48
,

dabcdA dabcdA

NA
=
N2(N2 + 36)

24
, NA = N2 − 1. (E.49)
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APPENDIX F

Calculation Details

Plus Functions

The Plus function is a distribution to handle singularities of functions that occur for x = 1.

Given the function F (x) which is singular for x = 1, the plus function is defined as:

F (x)+ ≡ lim
β→0

(
F (x)Θ(1− x− β)− δ(1− x− β)

∫ 1−β

0
dyF (y)

)
. (F.1)

When a plus function is convoluted with a test function, the final result is well defined. For

example, given a test function G(x), the convolution is given by:

∫ 1

0
dxF (x)+G(x) =

∫ 1

0
dxF (x) (G(x)−G(1)) . (F.2)

Additionally, a property of the plus function is:

∫ 1

0
dxF (x)+ = 0, (F.3)
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which can be easily derived with a choice of G(x) = 1. Finally, it is possible to obtain the

result for a lower bound that is non-zero by:

∫ 1

a
dxF (x)+G(x) =

∫ 1

a
dxF (x) (G(x)−G(1)) +G(1)

∫ a

0
F (x). (F.4)

NLO Real Corrections to Drell-Yan

Similar to the quark-anti-quark channel, the singular terms for the (anti-)quark-gluon chan-

nel are given by:

(
|M |2gq

)
sing

= 64

(
Q2

2

)((
g2L + g2R

)(
f2L + f2R

)
K3L0 −

(
g2L − g

2
R

)(
f2L − f

2
R

)
K4 (2A4)

)
,

(F.5)

with

K3 =
1

q2T

(
z2A + (1− zA)2

)
δ (1− zB)

− ε 1

q2T
δ (1− zB) zA (1− ZA) + zA ↔ zB , (F.6)

K4 =
1

q2T

(
z2A + (1− zA)2

)
δ (1− zB) + zA ↔ zB . (F.7)

Loop Integrals

Here a brief discuss of loop integrals is given, along with the calculation of the loop integral

involved in calculating the NLO correction to Drell-Yan. For additional discussions of loop

integrals, and the more modern approach that has been developed to tackle the calculations

of higher number of loops can be found in [239, 240, 241].
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p1

p1 + k

p2 − k
p2

q

k

q

q

γ

Figure F.1: The hadronic virtual correction Feynman Diagram to Drell-Yan at NLO.

For Drell-Yan at NLO accuracy, there is only one virtual diagram to calculate if di-

mensional regularization is used. The hadronic component of the calculation is given the

following Feynman diagram in Fig. F.1. Since this diagram is O (αs), the matrix element

squared will be of O
(
α2s
)
. Since this is a higher order correction, only the cross term of the

virtual diagram and the tree level diagram are used up to NLO. The result is obtained from

2Re
(
MbornM

†
virt

)
. Using the Feynman rules, the virtual correction is given as:

2Re
(
MbornM

†
virt

)
=

∫
ddk

(2π)d
Tr
(
/p2γ

α
(
/p2 − /k

)
γµ
(
/p1 + /k

)
γβ/p1γ

ν
)

CF
igαβ

k2
i

(p2 − k)2
i

(p1 + k)2
gµν (2π) g

2
sQ

2e2, (F.8)

where CF is the color factor, gs is the strong coupling constant, Q is the charge of the quark,

and e is the electric charge. Consider the integral:

∫
ddk

(2π)d

Tr
(
/p2γ

α
(
/p2 − /k

)
γµ
(
/p1 + /k

)
γβ/p1γ

ν
)

k2 (p2 − k)2 (p1 + k)2
. (F.9)
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Using the Feynman parameter trick1, gives:

I =

∫
dxdy

ddk

(2π)d

Tr
(
/p2γ

α
(
/p2 − /k

)
γµ
(
/p1 + /k

)
γβ/p1γ

ν
)

k2(1− x− y) + (p2 − k)2 x+ (p1 + k)2 y
. (F.10)

The denominator of the above equation can be simplified, using the substitution: lµ =

kµ − pµ2x+ p
µ
1y, and the definition q2 = 2p1 · p2, giving:

D = l2 + q2xy. (F.11)

Now consider the numerator of Eq. F.10, the numerator can be simplified, using the substi-

tution for l given above, to:

N = −4q4
[
(1− y − x) (1− ε) + xy − 2ε2xy

]
+ 8

1− 2ε

2 (2− ε)
q2l2 − 8ε (1− ε) q2l2. (F.12)

Combining the numerator and the denominator and putting the integrals back, gives three

unique integrals to calculate. The first integral is:

I1 =

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddl

(2π)d
1− y − x(
l2 + q2xy

)3
=

−i
16π2q2

(
4π

−q2

)ε 1

2

1

Γ (1− ε)

(
1

ε2
+

2

ε
+ 4 +O (ε)

)
, (F.13)

1Details on the Feynman parameter trick can be found in Appendix A.4 of [42]
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the second is:

I2 =

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddl

(2π)d
l2(

l2 + q2xy
)3

=
−i
16π2

2− ε
2

(
4π

−q2

)ε 1

Γ (1− ε)

(
1

2ε
+

3

2
+

7ε

2
+O

(
ε2
))

, (F.14)

and finally, the third is:

I3 =

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddl

(2π)d
xy(

l2 + q2xy
)3

=
−i

16π2q2
1

2

(
4π

−q2

)ε(1

2
+

3ε

2
+O

(
ε2
))

. (F.15)

Plugging all of the results back into Eq. F.10, gives:

I =
iq2

16π2

(
4π

q2

)ε 1

Γ (1− ε)

(
−2
ε2
− 3

ε
− 8 + π2 +O (ε)

)
. (F.16)

Finally, substituting the result of the integral back into Eq. F.8, gives the desired result

found in Eq. 3.18.

Phase Space In D-Dimensions

When working outside of d = 4−2ε dimensions, the integrals over the phase space need to be

modified. The major calculation that is needed, is the area of a unit sphere in d dimensions.
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This can be calculated by using the following trick:

(√
π
)d

=

(∫
dxe−x

2
)d

=

∫
ddx exp

− d∑
i=1

x2i


=

∫
dΣd

∫ ∞
0

dxxd−1e−x
2
=

(∫
dΣd

)
1

2
Γ

(
d

2

)
.

Solving for
∫
dΣd gives: ∫

dΣd =
2πd/2

Γ (d/2)
. (F.17)

Using Eq. F.17 reproduces the expected results for the familiar integer dimensions as seen

in Table F.1.

d Γ (d/2)
∫
dΣd

1
√
π 2

2 1 2π
3
√
π/2 4π

4 1 2π2

Table F.1: Table of the results of calculating the area of a d-Sphere

Resummation Coefficients to N3LL

The coefficients up to NNLL can be found in Section 3.4.1 and 3.4.2 for the CSS and CFG

formalisms respectively. For the additional terms that appear at N3LL, they can be found

in [167, 168], and are reproduced here for ease.

The B anomalous dimension in CSS at O
(
α3s
)
is given as:

BDY
3 = γDY

2 − γr2 + β1c
DY
1 + 2β0

(
cDY
2 − 1

2

(
cDY
1

)2)
, (F.18)
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substituting the numbers into the equation above, the numerical result is given as:

BDY
3 = 114.98− 11.27nf + 0.32n2f , (F.19)

where nf is the number of active flavors. Note the above equation differs from that in [167],

since the expansion in [167] is for αs
4π , while this work uses αs

π .

The hard-collinear coefficient at the NNLO for vector boson production is given by five

different initial states: qq̄, qq̄′, qq, qq′, and qg. These coefficients are given as:

2C
(2)
qq̄ (z) + δ (1− z)

[
H

DY (2)
q − 3

4

(
H

DY (1)
q

)2
+
CF

4

(
π2 − 8

)
H

DY (1)
q

]
+

1

2
CFH

DY (1)
q (1− z)

= HDY (2)
qq̄←qq̄ (z)−

C2
F

4

[
δ (1− z)

(
π2 − 8

)2
4

+
(
π2 − 10

)
(1− z)− (1 + z) ln z

]
,

(F.20)

C
(2)
qg (z) +

1

4
H

DY (1)
q z (1− z) = HDY (2)

qq̄←qg (z)

− CF

4

[
z ln z +

1

2

(
1− z2

)
+

(
π2

4
− 4

)
z (1− z)

]
, (F.21)

C
(2)
qq (z) = HDY (2)

qq̄←qq (z) , (F.22)

C
(2)

qq′ (z) = H
DY (2)

qq̄←qq′ (z) , (F.23)

C
(2)

qq̄′ (z) = Hqq̄←qq̄′ , (F.24)
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where the H coefficients are given by:

HDY (2)
qq̄←qq̄(z) = CACF

{(
7ζ3
2
− 101

27

)(
1

1− z

)
+
+

(
59ζ3
18
− 1535

192
+

215π2

216
− π4

240

)
δ(1− z)

+
1 + z2

1− z

(
− Li3(1− z)

2
+ Li3(z)−

Li2(z) log(z)

2
− 1

2
Li2(z) log(1− z)

− 1

24
log3(z)− 1

2
log2(1− z) log(z) + 1

12
π2 log(1− z)− π2

8

)
+

1

1− z

(
− 1

4

(
11− 3z2

)
ζ3 −

1

48

(
−z2 + 12z + 11

)
log2(z)

− 1

36

(
83z2 − 36z + 29

)
log(z) +

π2z

4

)
+ (1− z)

(
Li2(z)

2
+

1

2
log(1− z) log(z)

)
+
z + 100

27
+

1

4
z log(1− z)

}
+ CFnF

{
14

27

(
1

1− z

)
+
+

1

864

(
192ζ3 + 1143− 152π2

)
δ(1− z)

+

(
1 + z2

)
72(1− z)

log(z)(3 log(z) + 10) +
1

108
(−19z − 37)

}
+ C2

F

{
1

4

(
−15ζ3 +

511

16
− 67π2

12
+

17π4

45

)
δ(1− z)

+
1 + z2

1− z

(
Li3(1− z)

2
− 5Li3(z)

2
+

1

2
Li2(z) log(1− z) +

3Li2(z) log(z)

2

+
3

4
log(z) log2(1− z) + 1

4
log2(z) log(1− z)− 1

12
π2 log(1− z) + 5ζ3

2

)
+ (1− z)

(
−Li2(z)−

3

2
log(1− z) log(z) + 2π2

3
− 29

4

)
+

1

24
(1 + z) log3(z)

+
1

1− z

(
1

8

(
−2z2 + 2z + 3

)
log2(z) +

1

4

(
17z2 − 13z + 4

)
log(z)

)
− z

4
log(1− z)

}
+ CF

{
1

z
(1− z)

(
2z2 − z + 2

)(Li2(z)

6
+

1

6
log(1− z) log(z)− π2

36

)
+

1

216z
(1− z)

(
136z2 − 143z + 172

)
− 1

48

(
8z2 + 3z + 3

)
log2(z)

+
1

36

(
32z2 − 30z + 21

)
log(z) +

1

24
(1 + z) log3(z)

}
, (F.25)
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HDY (2)

qq̄←qq̄′(z) = CF

{
1

12z
(1− z)

(
2z2 − z + 2

)(
Li2(z) + log(1− z) log(z)− π2

6

)
+

1

432z
(1− z)

(
136z2 − 143z + 172

)
+

1

48
(1 + z) log3(z)

− 1

96

(
8z2 + 3z + 3

)
log2(z) +

1

72

(
32z2 − 30z + 21

)
log(z)

}
, (F.26)

HDY (2)
qq̄←qq(z) = CF

(
CF −

1

2
CA

){
1 + z2

1 + z

(
3Li3(−z)

2
+ Li3(z) + Li3

(
1

1 + z

)
− Li2(−z) log(z)

2

− Li2(z) log(z)

2
− 1

24
log3(z)− 1

6
log3(1 + z) +

1

4
log(1 + z) log2(z)

+
π2

12
log(1 + z)− 3ζ3

4

)
+ (1− z)

(
Li2(z)

2
+

1

2
log(1− z) log(z) + 15

8

)
− 1

2
(1 + z)

(
Li2(−z) + log(z) log(1 + z)

)
+
π2

24
(z − 3) +

1

8
(11z + 3) log(z)

}
+ CF

{
1

12z
(1− z)

(
2z2 − z + 2

)(
Li2(z) + log(1− z) log(z)− π2

6

)
+

1

432z
(1− z)

(
136z2 − 143z + 172

)
− 1

96

(
8z2 + 3z + 3

)
log2(z)

+
1

72

(
32z2 − 30z + 21

)
log(z) +

1

48
(1 + z) log3(z)

}
, (F.27)

HDY (2)

qq̄←qq′(z) = H
DY (2)

qq̄←qq̄′(z) , (F.28)
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HDY (2)
qq̄←qg(z) = CA

{
− 1

12z
(1− z)

(
11z2 − z + 2

)
Li2(1− z)

+
(
2z2 − 2z + 1

)(Li3(1− z)
8

− 1

8
Li2(1− z) log(1− z) +

1

48
log3(1− z)

)

+
(
2z2 + 2z + 1

)(3Li3(−z)
8

+
Li3

(
1

1+z

)
4

− Li2(−z) log(z)
8

− 1

24
log3(1 + z)

+
1

16
log2(z) log(1 + z) +

1

48
π2 log(1 + z)

)
+

1

4
z(1 + z)Li2(−z) + zLi3(z)

− 1

2
zLi2(1− z) log(z)− zLi2(z) log(z)−

3

8

(
2z2 + 1

)
ζ3 −

149z2

216

− 1

96

(
44z2 − 12z + 3

)
log2(z) +

1

72

(
68z2 + 6π2z − 30z + 21

)
log(z)

+
π2z

24
+

43z

48
+

43

108z
+

1

48
(2z + 1) log3(z)− 1

2
z log(1− z) log2(z)

− 1

8
(1− z)z log2(1− z) + 1

4
z(1 + z) log(1 + z) log(z)

+
1

16
(3− 4z)z log(1− z)− 35

48

}
+ CF

{(
2z2 − 2z + 1

)(
ζ3 −

Li3(1− z)
8

− Li3(z)

8
+

1

8
Li2(1− z) log(1− z)

+
Li2(z) log(z)

8
− 1

48
log3(1− z) + 1

16
log(z) log2(1− z)

+
1

16
log2(z) log(1− z)

)
− 3z2

8
− 1

96

(
4z2 − 2z + 1

)
log3(z) +

1

64

(
−8z2 + 12z + 1

)
log2(z)

+
1

32

(
−8z2 + 23z + 8

)
log(z) +

5

24
π2(1− z)z + 11z

32
+

1

8
(1− z)z log2(1− z)

− 1

4
(1− z)z log(1− z) log(z)− 1

16
(3− 4z)z log(1− z)− 9

32

}
, (F.29)

HDY (2)
qq̄←gg(z) = −

z

2

(
1− z + 1

2
(1 + z) log(z)

)
, (F.30)
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where Lik(z) (k = 2, 3) are the polylogarithm functions,

Li2(z) = −
∫ z

0

dt

t
ln(1− t) , Li3(z) =

∫ 1

0

dt

t
ln(t) ln(1− zt) , (F.31)

and the H factors are the scheme dependent resummation factors. For CSS, H is 1 to all

orders, while for CFG, H has αs dependence.

Fit to SIDIS Data

The universality of the parton distribution is a powerful prediction from QCD factoriza-

tion. According to the TMD factorization, the universality of the TMD parton distributions

should exist between SIDIS and Drell-Yan processes as well. Therefore, the non-perturbative

functions determined for the TMD parton distributions from the Drell-Yan type of processes

shall apply to that in the SIDIS. Of course, the transverse momentum distribution of hadron

production in DIS processes also depends on the final state TMD fragmentation functions,

which need to be determined by fitting to existing experimental data. Following the univer-

sality arguments, the following parameterizations for the non-perturbative form factors for

SIDIS process can be assumed, in contrast to Eq. 3.77 for Drell-Yan process,

S
(DIS)
NP =

g1
2
b2 + g2 ln (b/b∗) ln(Q/Q0) + g3b

2(x0/xB)
λ +

gh
z2h
b2 . (F.32)

In the above parameterization, g1 and g2 have been determined from the experimental data of

Drell-Yan lepton pair production. The factor of 1/2 in front of the g1 term is due the fact that

there is only one incoming hadron in the SIDIS process, while there are two incoming hadrons

in the Drell-Yan process. Although there has been evidence from recent studies [242, 243] that
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gh could be different for the so-called favored and dis-favored fragmentation functions, them

will be taken to be the same in this study for simplicity. When more precise data become

available, a global analysis with two separate gh parameters may need to be preformed.

In principle, g1, g2, and gh may be fitted to both Drell-Yan and SIDIS data simultane-

ously. However, the SIDIS data from HERMES and COMPASS mainly focus in the relative

low Q2 range. Because of that, the theoretical uncertainty of the CSS prediction is not well

under control, particularly, from the Y -term contribution. There have been several successful

phenomenological studies to describe the experimental data from HERMES and COMPASS

experiments, using the leading order TMD formalism [242, 244]. The goal of this paper

is to check if the non-perturbative form factors determined in the Drell-Yan process can be

applied to the SIDIS processes. As shown in Ref. [171], fitting both is not possible with

the original BLNY or KN fit, where it was found that the extrapolation of these fits to

the kinematic region of HERMES and COMPASS is in conflict with the experimental data.

However, it will be shown that the SIYY form will be able to extend to SIDIS experiments

from HERMES and COMPASS Collaborations.

Therefore, in the following, the parameters (g1,2) are set to the fitted values from the

Drell-Yan data and compared to the SIDIS data for consistency. In Fig. F.2, the comparisons

between the theory predictions with gh = 0.042 and the SIDIS data from HERMES is

given, with a total χ2 around 180. This parameter is consistent with previous analysis

when the leading order TMD formalism is considered [242, 244]. It is also consistent with

the TMD formalism with truncated evolution effects in Ref. [171]. The differential cross

section for the SIDIS process depends on the hadron fragmentation functions, for which

the parameterization from the new DSS fit [245, 246] is used here. A normalization factor

about 2.0 in the calculation of the multiplicity distributions shown in Fig. F.2 is used, which

202



 (GeV)
t

p
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
u
lt
ip

lic
it
y

2

3

4

5

6

7

8

9

 < 0.3 
h

0.2 < z

 2=3.14GeV2Q

+X)+
πHERMES (e+p ­>

 (GeV)
t

p
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
u
lt
ip

lic
it
y

1

1.5

2

2.5

3

3.5

4

4.5

 < 0.4 
h

0.3 < z

 2=3.14GeV2Q

+X)+
πHERMES (e+p ­>

 (GeV)
t

p
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
u
lt
ip

lic
it
y

0.6

0.8

1

1.2

1.4

1.6

 < 0.6  
h

0.4 < z

 2=3.14GeV2Q

+X)+
πHERMES (e+p ­>

 (GeV)
t

p
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
u
lt
ip

lic
it
y

2

3

4

5

6

7

 < 0.3 
h

0.2 < z

 2=3.14GeV2Q

+X)­
πHERMES (e+p ­>

 (GeV)
t

p
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
u
lt
ip

lic
it
y

1

1.5

2

2.5

3

 < 0.4 
h

0.3 < z

 2=3.14GeV2Q

+X)­
πHERMES (e+p ­>

 (GeV)
t

p
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
u
lt
ip

lic
it
y

0.2

0.4

0.6

0.8

1

1.2

 < 0.6  
h

0.4 < z

 2=3.14GeV2Q

+X)­
πHERMES (e+p ­>

Figure F.2: Multiplicity distribution as function of transverse momentum in semi-inclusive
hadron production in deep inelastic scattering compared to the experimental data from

HERMES Collaboration at Q2 = 3.14GeV2.
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accounts for theoretical uncertainties from higher order corrections for both differential and

inclusive cross sections 2. Here, the Y -term contribution is not included, for the reasons

mentioned above.

The figures in Sec. 3.4.4 and Fig.F.2 clearly illustrate that the SIYY non-perturbative

function is a universal non-perturbative TMD function which can be used to describe both

Drell-Yan lepton pair production and semi-inclusive hadron production in DIS processes in

the CSS resummation framework. Also, note that that the new functional form for the

non-perturbative function is crucial to achieve this conclusion as given in Eqs. (3.77) and

(F.32).

αs Expansion

The Taylor series expansion of αs around some fixed scale µ0 is given by:

αs (µ)

π
=
αs (µ0)

π
+
∂
αs(µ)
π

∂ log µ2

∣∣∣∣
µ=µ0

log
µ2

µ20
+

1

2

∂2
αs(µ)
π

∂
(
log µ2

)2
∣∣∣∣
µ=µ0

log2
µ2

µ20
+O

(
α3s

)
. (F.33)

To obtain the final result, we need to calculate the derivatives. However, the first derivative

is exactly related to the β function for the running of the coupling,

∂
αs(µ)
π

∂ log µ2
= β (αs (µ)) , (F.34)

2Compared to the leading order TMD fit of Ref. [244] where there is no normalization factor, the C(1)

coefficient is large and negative in the CSS resummation application to the SIDIS. Phenomenologically, that
is the reason to include a factor of 2 in the comparison to the SIDIS data. This could be improved if the
differential cross section (instead of multiplicity distributions) are measured in the future.
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with

β (αs (µ)) = −
∞∑
k=1

(
αs (µ)

π

)k+1

βk−1. (F.35)

For the second derivative,

∂2
αs(µ)
π

∂
(
log µ2

)2 =
∂β (αs (µ))

∂
αs(µ)
π

β (αs (µ)) = −β (αs (µ))
∞∑
k=1

(k + 1)

(
αs (µ)

π

)k

βk−1. (F.36)

Inputing these results into Eq. F.33, and keeping terms only up to O
(
α3s
)
, the expansion of

αs is:

αs (µ)

π
=
αs (µ0)

π

(
1− αs (µ0)

π
β0 log

µ2

µ20
+

(
αs (µ0)

π

)2
(
β20 log

2 µ
2

µ20
− β1 log

µ2

µ20

)
+O

(
α3s

))
.

(F.37)

PDF Expansion

The Taylor series expansion of the parton distribution function around some fixed scale µF

is given by:

fi (x, µ) = fi (x, µF ) +
∂fi (x, µ)

∂ log µ2

∣∣∣∣
µ=µF

log
µ2

µ20

+
1

2

∂2fi (x, µ)

∂
(
log µ2

)2
∣∣∣∣
µ=µF

log2
µ2

µ2F
+

1

6

∂3fi (x, µ)

∂
(
log µ2

)3
∣∣∣∣
µ=µF

log3
µ2

µ2F
+O

(
α4s

)
. (F.38)
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To obtain the final result, the derivatives need to be calculated. However, the first derivative

is exactly related to the DGLAP evolution equations,

∂fi (x, µ)

∂ log µ2
=
αs (µ)

2π
P (1) ⊗ fi (x, µ)

+

(
αs (µ)

2π

)2

P (2) ⊗ fi (x, µ) +
(
αs (µ)

2π

)3

P (3) ⊗ fi (x, µ) +O
(
α4s

)
, (F.39)

When calculating the second derivative, it is also necessary to expand αs (µ) around µR

as shown in the previous section. Only up to O
(
α3s
)
will be keep to keep the equations

short. The second derivative is given as,

∂2fi (x, µ)

∂
(
log µ2

)2 =
(αs
π

)2(1

4
P (1) ⊗ P (1) ⊗ f (µ)− 1

2
β0P

(1) ⊗ f (µ)
)

+
(αs
π

)3(1

8
P (1) ⊗ P (2) ⊗ f (µ) + 1

8
P (2) ⊗ P (1) ⊗ f (µ) + β20 ln

µ2

µ2R
P (1) ⊗ f (µ)

−1

2
β0 ln

µ2

µ2R
P (1) ⊗ P (1) ⊗ f (µ)− 1

2
β1P

(1) ⊗ f (µ)− 1

2
β0P

(2) ⊗ f (µ)

)
+O

(
α4s

)
,

(F.40)

and the third derivative is given as,

∂3fi (x, µ)

∂
(
log µ2

)3 =
(αs
π

)3(
β20P

(1) ⊗ f (µ)− 3

4
β0P

(1) ⊗ P (1) ⊗ f (µ)

+
1

8
P (1) ⊗ P (1) ⊗ P (1) ⊗ f (µ)

)
+O

(
α4s

)
. (F.41)

Inputing these results into Eq. F.38, and keeping terms only up to O
(
α3s
)
, the expansion of

206



the PDF is:

f (µ) = f (µF ) +
1

2

αs (µR)

π
ln
µ2

µ2F
P (1) ⊗ f (µF )

+

(
αs (µR)

π

)2
(
−1

2
β0 ln

µ2

µ2F
ln
µ2F
µ2R

P (1) ⊗ f (µF )−
1

4
β0 ln

2 µ
2

µ2F
P (1) ⊗ f (µF )

+
1

8
ln2

µ2

µ2F
P (1) ⊗ P (1) ⊗ f (µF ) +

1

4
ln
µ2

µ2F
P (2) ⊗ f (µF )

)

+

(
αs (µR)

π

)3
(

1

16
ln2

µ2

µ2F
P (1) ⊗ P (2) ⊗ f (µF ) +

1

16
ln2

µ2

µ2F
P (2) ⊗ P (1) ⊗ f (µF )

+
1

2
β20 ln

2 µ
2

µ2F
ln
µ2F
µ2R

P (1) ⊗ f
(
µf
)
+

1

2
β20 ln

µ2

µ2F
ln2

µ2F
µ2R

P (1) ⊗ f (µF )

−1

4
β0 ln

2 µ
2

µ2F
ln
µ2F
µ2R

P (1) ⊗ P (1) ⊗ f (µF )−
1

2
β1 ln

µ2

µ2F
ln
µ2F
µ2R

P (1) ⊗ f (µF )

+
1

6
β20 ln

3 µ
2

µ2F
P (1) ⊗ f (µF )−

1

8
β0 ln

3 µ
2

µ2F
P (1) ⊗ P (1) ⊗ f (µF )−

1

4
β1 ln

2 µ
2

µ2F
P (1) ⊗ f (µF )

+
1

48
ln3

µ2

µ2F
P (1) ⊗ P (1) ⊗ P (1) ⊗ f (µF )−

1

2
β0 ln

µ2

µ2F
ln
µ2F
µ2R

P (2) ⊗ f (µF )

−1

4
β0 ln

2 µ
2

µ2F
P (2) ⊗ f (µF ) +

1

8
ln
µ2

µ2F
P (3) ⊗ f (µF )

)
+O

(
α4s

)
. (F.42)
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O
(
α3
s

)
Asymptotic Piece

Continuing on to O
(
α3s
)
, the calculations become extremely complex. The asymptotic piece

can be given by:

3C
(i,j)
5 =

1

4

(
A(1)

)3
fifj ,

3C
(i,j)
4 =

(
A(1)

)2(5

4
B(1)fifj −

5

3
β0fifj +

5

8
fiP

(1) ⊗ fj +
5

8
A2(1)fjP

(1) ⊗ fi
)
,

3C
(i,j)
3 = A(1)

(((
B(1)

)2
− 7

3
β0B

(1) − A(2) + β20

)
fifj + 2B(1)fjP

(1) ⊗ fi −
7

3
β0fjP

(1) ⊗ fi

+
1

2
P (1) ⊗ fiP (1) ⊗ fj +

1

2
fjP

(1) ⊗ P (1) ⊗ fi
)

−
(
A(1)

)2(
fjC

(1) ⊗ fi −
1

2
fjP

(1) ⊗ fi log

(
Q2

µ2F

)
− β0fifj log

(
Q2

µ2R

))
+ i↔ j,

3C
(i,j)
2 =

(
2β0A

(2) +B(1)
(
β20 −

3

2
A(2)

)
+ A(1)

(
−3

2
B(2) + β1 − 2β20 log

(
Q2

µ2R

)

+3β0B
(1) log

(
Q2

µ2R
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−5
(
A(1)

)3
ζ3 +

1

2

(
B(1)

)3
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2
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(
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3
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+ A(1)

(
5β0fjC
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(
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2
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(
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3
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− 3
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)
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+
3
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1
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)
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+B(1)
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−2C(1) ⊗ fiP (1) ⊗ fj − P (1) ⊗ fiP (1) ⊗ fj log
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µ2F
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+β0fjP
(1) ⊗ fi log
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)

+4β0fjP
(1) ⊗ fi log

(
Q2

µ2R

)
− fjP (2) ⊗ fi − 2fjC

(1) ⊗ P (1) ⊗ fi

−fjP (1) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)

+6β0fjC
(1) ⊗ fi + β0fjP

(1) ⊗ fi

(
log

(
Q2

µ2F

)
+ 4 log

(
Q2

µ2R

)))

+ A(1)

(
1

4
P (1) ⊗ fiP (1) ⊗ fj log2

(
Q2

µ2F

)
+

1

4
fjP

(1) ⊗ P (1) ⊗ fi log2
(
Q2

µ2F

)

+
1

2
β0fjP

(1) ⊗ fi log2
(
Q2

µ2F

)
+ C(1) ⊗ fiP (1) ⊗ fj log

(
Q2

µ2F

)

+
1

2
fjP

(2) ⊗ fi log

(
Q2

µ2F

)

+fjC
(1) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)
− 2β0fjP

(1) ⊗ fi log

(
Q2

µ2F

)
log

(
Q2

µ2R

)

+C(1) ⊗ fiC(1) ⊗ fj + 2fjC
(2) ⊗ fi − 4β0fjC

(1) ⊗ fi log

(
Q2

µ2R

))

+ β1fjP
(1) ⊗ fi − 10

(
A(1)

)2
ζ3fjP

(1) ⊗ fi

+ i↔ j,

3C
(i,j)
0 = 2C(1) ⊗ fjfiB(2) + P (1) ⊗ fj log

(
Q2

µ2F

)
fiB

(2) + 2C(1) ⊗ fifjB(2)

+ P (1) ⊗ fi log

(
Q2

µ2F

)
fjB

(2) +
3

8
P (1) ⊗ fjP (1) ⊗ P (1) ⊗ fi log2

(
Q2

µ2F

)

+
3

8
P (1) ⊗ fiP (1) ⊗ P (1) ⊗ fj log2

(
Q2

µ2F

)
+ P (1) ⊗ fj log2

(
Q2

µ2R

)
fiβ

2
0

+ 4C(1) ⊗ fj log

(
Q2

µ2R

)
fiβ

2
0 + P (1) ⊗ fi log2

(
Q2

µ2R

)
fjβ

2
0
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+ 4C(1) ⊗ fi log

(
Q2

µ2R

)
fjβ

2
0 + C(2) ⊗ fjP (1) ⊗ fi + C(2) ⊗ fiP (1) ⊗ fj

+
1

2
C(1) ⊗ fjP (2) ⊗ fi +

1

2
C(1) ⊗ fiP (2) ⊗ fj

+ C(1) ⊗ fjC(1) ⊗ P (1) ⊗ fi + C(1) ⊗ fiC(1) ⊗ P (1) ⊗ fj

+
1

2
P (1) ⊗ fjP (2) ⊗ fi log

(
Q2

µ2F

)
+

1

2
P (1) ⊗ fiP (2) ⊗ fj log

(
Q2

µ2F

)

+ P (1) ⊗ fjC(1) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)
+ P (1) ⊗ fiC(1) ⊗ P (1) ⊗ fj log

(
Q2

µ2F

)

+
1

2
C(1) ⊗ fjP (1) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)
+

1

2
C(1) ⊗ fiP (1) ⊗ P (1) ⊗ fj log

(
Q2

µ2F

)

+
1

8
P (1) ⊗ P (1) ⊗ P (1) ⊗ fj log2

(
Q2

µ2F

)
fi − 2β1C

(1) ⊗ fjfi

+
1

4
P (3) ⊗ fjfi +

1

2
C(1) ⊗ P (2) ⊗ fjfi + C(2) ⊗ P (1) ⊗ fjfi

+
1

4
P (1) ⊗ P (2) ⊗ fj log

(
Q2

µ2F

)
fi +

1

4
P (2) ⊗ P (1) ⊗ fj log

(
Q2

µ2F

)
fi

+
1

2
C(1) ⊗ P (1) ⊗ P (1) ⊗ fj log

(
Q2

µ2F

)
fi − β1P (1) ⊗ fj log

(
Q2

µ2R

)
fi

+
1

8
P (1) ⊗ P (1) ⊗ P (1) ⊗ fi log2

(
Q2

µ2F

)
fj − 2β1C

(1) ⊗ fifj

+
1

4
P (3) ⊗ fifj +

1

2
C(1) ⊗ P (2) ⊗ fifj

+ C(2) ⊗ P (1) ⊗ fifj +
1

4
P (1) ⊗ P (2) ⊗ fi log

(
Q2

µ2F

)
fj +

1

4
P (2) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)
fj

+
1

2
C(1) ⊗ P (1) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)
fj − β1P (1) ⊗ fi log

(
Q2

µ2R

)
fj

+
1

2
P (1) ⊗ fiP (1) ⊗ fj log2

(
Q2

µ2F

)
β0 − 4C(1) ⊗ fiC(1) ⊗ fjβ0

− C(1) ⊗ fjP (1) ⊗ fi log

(
Q2

µ2F

)
β0 − C(1) ⊗ fiP (1) ⊗ fj log

(
Q2

µ2F

)
β0

− 2C(1) ⊗ fjP (1) ⊗ fi log

(
Q2

µ2R

)
β0 − 2C(1) ⊗ fiP (1) ⊗ fj log

(
Q2

µ2R

)
β0
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− 2P (1) ⊗ fiP (1) ⊗ fj log

(
Q2

µ2F

)
log

(
Q2

µ2R

)
β0

+
1

4
P (1) ⊗ P (1) ⊗ fj log2

(
Q2

µ2F

)
fiβ0 − 4C(2) ⊗ fjfiβ0 − C(1) ⊗ P (1) ⊗ fj log

(
Q2

µ2F

)
fiβ0

− P (2) ⊗ fj log

(
Q2

µ2R

)
fiβ0 − 2C(1) ⊗ P (1) ⊗ fj log

(
Q2

µ2R

)
fiβ0

− P (1) ⊗ P (1) ⊗ fj log

(
Q2

µ2F

)
log

(
Q2

µ2R

)
fiβ0 +

1

4
P (1) ⊗ P (1) ⊗ fi log2

(
Q2

µ2F

)
fjβ0

− 4C(2) ⊗ fifjβ0 − C(1) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)
fjβ0 − P (2) ⊗ fi log

(
Q2

µ2R

)
fjβ0

− 2C(1) ⊗ P (1) ⊗ fi log

(
Q2

µ2R

)
fjβ0 − P (1) ⊗ P (1) ⊗ fi log

(
Q2

µ2F

)
log

(
Q2

µ2R

)
fjβ0

+
(
B(1)

)(1

2
P (1) ⊗ fiP (1) ⊗ fj log2

(
Q2

µ2F

)
+

1

4
P (1) ⊗ P (1) ⊗ fjfi log2

(
Q2

µ2F

)

+
1

4
P (1) ⊗ P (1) ⊗ fifj log2

(
Q2

µ2F

)
+

1

2
P (1) ⊗ fjfiβ0 log2

(
Q2

µ2F

)

+
1

2
P (1) ⊗ fifjβ0 log2

(
Q2

µ2F

)
+

1

2
P (2) ⊗ fjfi log

(
Q2

µ2F

)

+C(1) ⊗ fjP (1) ⊗ fi log

(
Q2

µ2F

)
+ C(1) ⊗ fiP (1) ⊗ fj log

(
Q2

µ2F

)

+C(1) ⊗ P (1) ⊗ fjfi log

(
Q2

µ2F

)
+ C(1) ⊗ P (1) ⊗ fifj log

(
Q2

µ2F

)

+
1

2
P (2) ⊗ fifj log

(
Q2

µ2F

)
+ 2C(1) ⊗ fiC(1) ⊗ fj

−2P (1) ⊗ fj log

(
Q2

µ2R

)
fiβ0 log

(
Q2

µ2F

)
− 2P (1) ⊗ fi log

(
Q2

µ2R

)
fjβ0 log

(
Q2

µ2F

)

+2C(2) ⊗ fjfi + 2C(2) ⊗ fifj − 4C(1) ⊗ fj log

(
Q2

µ2R

)
fiβ0 − 4C(1) ⊗ fi log

(
Q2

µ2R

)
fjβ0

)

+
(
A(1)

)2(
4C(1) ⊗ fjζ(3)fi + 2P (1) ⊗ fj log

(
Q2

µ2F

)
ζ(3)fi + 4C(1) ⊗ fifjζ(3)

+2P (1) ⊗ fi log

(
Q2

µ2F

)
fjζ(3)

)
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+
(
A(1)

)(
−4P (1) ⊗ fiζ(3)P (1) ⊗ fj +

28

3
fiβ0ζ(3)P

(1) ⊗ fj

+
(
B(1)

)(
−8P (1) ⊗ fjζ(3)fi − 8P (1) ⊗ fifjζ(3)

)
− 2P (1) ⊗ P (1) ⊗ fjfiζ(3)

−2P (1) ⊗ P (1) ⊗ fifjζ(3) +
28

3
P (1) ⊗ fifjβ0ζ(3)

)
+ fifj

(
−4 log

(
Q2

µ2R

)
β0B

(2) + 2B(3)

+
(
B(1)

)(
2 log2

(
Q2

µ2R

)
β20 − 2β1 log

(
Q2

µ2R

))
+
(
A(1)

)(
−8ζ(3)

(
B(1)

)2
+
56

3
β0ζ(3)

(
B(1)

)
− 8β20ζ(3)

)
− 12

(
A(1)

)3
ζ(5) + 8A(1)+(2)ζ(3)

−8
(
A(1)

)2
log

(
Q2

µ2R

)
β0ζ(3)

)
,

Similarly, the singular piece to O
(
α3s
)
can be calculated in a similar method. However,

C(3) has not yet been calculated, and involves a complex three-loop calculation. Therefore,

it is not possible to obtain the α3s cross-section at this point, and there is no need for the

singular piece to be calculated.

Eikonal Approximation

Eikonalization in the Collinear Limit

Given a collinear gluon of momentum l connecting two fermions of momentum p1 and p2,

as shown in Fig. F.3, the matrix element can be given as:

M = v̄ (p1) γα

(
/p1 − /l

)
(p1 − l)2

· · ·

(
/p2 − /l

)
(p2 − l)2

γαu (p2) , (F.43)
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p1 (p1 − l) (p2 − l) p2

l

Figure F.3: Connection of a soft/collinear gluon between two colored particles.

where the dots represent any allowed processes between the two fermions. If l is collinear to

p2, then (
/p2 − /l

)
γαu (p2) = (p2 − l)+ γ−γαu (p2) , (F.44)

where the coordinate system being used is the light-cone coordinates, and the +/− refers to

the plus or minus component of the momentum defined as: p± = E ± pz. Consider the γ

matrices in the above equation. If α = −, then γ−u (p2) = 0 from the on-shell condition. If

α = T , then γ−γT = −γT γ− from the anti-commutation relations, and therefore also gives

zero. Hence, the only non-vanishing term is for α = +, giving:

M = v̄ (p1)
γ−
(
/p1 − /l

)
(p1 − l)2

· · · (p2 − l)
+ γ−γ+

(p2 − l)2
u (p2) . (F.45)

Using the on-shell condition and commutation relation, the part before the dots can be

simplified to:

v̄ (p1)
2p−1

(p1 − l)2
, (F.46)

and furthermore, if p2 =
(
p+, 0, 0

)
, and pα1 = p+1 n̄

α + p−1 nα + pT1 n
T , where n̄µ = (1, 0, 0),

nµ = (0, 1, 0), and nT = (0, 0, 1), then the equation can be shown to factorize, giving:

v̄ (p1)
nα

(−n · l) + iε
. (F.47)
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Eikonalization in the Soft Limit

Similar to the collinear limit, the process can be factorized if the gluon connecting the

particles is soft. Again, starting from Eq. F.43, taking the limit l← 0, gives:

(
/p2 − /l

)
(p2 − l)2

γαu (p2)→
[

pα2
(−p2 · l) + iε

]
. (F.48)

Which can be calculated by using the on-shell condition, and properties of the γ matrices. It

is important to note, that in calculations the sign of the ε term is important to keep straight,

and must always be positive when using this approach. Again, the final result factorizes the

left-hand side of Fig. F.3 from the right-hand side.

Fourier Transform Details

The Fourier Transform in d − 2 dimensions from transverse momentum space to impact

parameter space is given by:

∫
ei
~kT ·b

(k2T )
α
d2−2εkT =

(
b2

4π

)ε+α−1
πα

Γ (1− ε− α)
Γ (α)

. (F.49)

To obtain the Fourier Transform for functions of the form 1
k2T

logn k2T , derivatives with respect

to α are taken of the previous equation, and then α is taken to one. The derivation of the

above equation can be found below, and requires the use of the following identity:

(k2T )
−α =

1

Γ (α)

∫ ∞
0

xα−1e−xk
2
T dx, (F.50)

215



using this identity, the first equation is derived as follows:

∫
ei
~kT ·~b

(k2T )
α
d2−2εkT =

1

Γ (α)

∫
ei
~kT ·bd2−2εkT

∫ ∞
0

xα−1e−xk
2
T dx

=
1

Γ (α)

∫ ∞
0

xα−1dx
∫
dΩ

∫ ∞
0

k2−2ε−1T e
ikT b cos(θ)−xk2T dkT

=
1

Γ (α)

∫ ∞
0

xα−1dx
∫ ∞
0

k2−2ε−1T dkT

∫
dΩ2−2ε sin

−2ε θeikT b cos(θ)−xk2T

=
1

Γ (α)

∫ ∞
0

xα−1dx
∫ ∞
0

k2−2ε−1T dkT
2π1−ε

Γ (1− ε)0
F1

(
1− ε;−1

4
b2k2T

)
e
−xk2T

=

(
b2

4π

)ε+α−1
πα

Γ (1− ε− α)
Γ (α)

,

where 0F1

(
1− ε;−1

4b
2k2T

)
is the confluent hypergeometric function. Using this relationship,

we can easily derive the Fourier Transform of all the terms needed to check the asymptotic

contribution up through O
(
α3s
)
. Here are a list of the results for completeness:

I(0) = π

(
b2

4π

)ε

Γ (−ε) (F.51)

I(1) = −π
(
b2

4π

)ε

Γ (−ε)
(
γE + log

b2

4
− ψ0 (−ε)

)
(F.52)

I(2) = π

(
b2

4π

)ε

Γ (−ε)

((
γE + log

b2

4
− ψ0 (−ε)

)2

− π2

6
+ ψ1 (−ε)

)
(F.53)

I(3) = −π
(
b2

4π

)ε

Γ (−ε)

((
γE + log

b2

4
− ψ0 (−ε)

)3

− π2

2

(
γE + log

b2

4
− ψ0 (−ε)

)
+3ψ1 (−ε)

(
γE + log

b2

4
− ψ0 (−ε)

)
− 2 (ψ2 (1) + ψ2 (−ε))

)
(F.54)
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I(4) = π

(
b2

4π

)ε

Γ (−ε)

((
γE + log

b2

4
− ψ0 (−ε)

)4

− π2
(
γE + log

b2

4
− ψ0 (−ε)

)2

−π2ψ1 (−ε) + 6ψ1 (−ε)
(
γE + log

b2

4
− ψ0 (−ε)

)2

+
π4

60
+ ψ3 (−ε)

−4 (ψ2 (1) + ψ2 (−ε))
(
γE + log

b2

4
− ψ0 (−ε)

))
(F.55)

I(5) = π

(
b2

4π

)ε

Γ (−ε)

((
γE + log

b2

4
− ψ0 (−ε)

)5

− 5π2

3

(
γE + log

b2

4
− ψ0 (−ε)

)3

+10ψ1 (−ε)
(
γE + log

b2

4
− ψ0 (−ε)

)3

− 10π2
(
γE + log

b2

4
− ψ0 (−ε)

)
ψ1 (−ε)

−10 (ψ2 (1) + ψ2 (−ε))

((
γE + log

b2

4
− ψ0 (−ε)

)2

+ ψ1 (−ε)−
π2

6

)

+15

(
π2

6
+ ψ1 (−ε)

)2(
γE + log

b2

4
− ψ0 (−ε)

)
−30ζ (4)

(
γE + log

b2

4
− ψ0 (−ε)

)
+ 5

(
γE + log

b2

4
− ψ0 (−ε)

)
ψ3 (−ε)

−
(
ψ4 (1) + ψ4 (−ε)

) )
(F.56)

where I(n) =
∫ d2−2εqt

q2t
logn

(
q2t
)
e−i~qt·

~b, and ψn is the nth polygamma function defined as:

ψn(z) =
dn+1

dzn+1
log (Γ (z)) (F.57)
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APPENDIX G

Higgs Plus Jet Resummation

Calculation Details

The poles for the quark-gluon channel are given for the virtual, renormalization, jet, collinear,

PDF renormalization, and soft corrections as:

H(0)αs
2π

(
24

ε
β0 + CA

(
−2
ε2
− 2

ε

(
ln
−u
µ2
− ln

−t
µ2
− ln

s

µ2

))
+CF

(
− 4

ε2
− 2

ε

(
−2 ln −u

µ2
+ 3

)))
, (G.1)

−H(0)αs
2π

18

ε
2β0, (G.2)

H(0)αsCF

2π

(
2

ε2
+

2

ε

(
3

2
− ln

P 2
JR

2

µ2

))
, (G.3)

H(0)αs
2π

−2
ε

(
CF δ (ξ2 − 1) ξ1Pqq (ξ1) + CAδ (ξ1 − 1) ξ2Pgg (ξ2)

)
, (G.4)

H(0)αs
2π

(
2CF

ε

(
Pqq (ξ1) +

3

2
δ (xi1 − 1)

)
+

2CA

ε

(
Pgg (ξ2) + 2β0δ (xi2 − 1)

))
, (G.5)

H(0)αs
2π

(
2 (CA + CF )

(
1

ε2
+

1

ε
ln
µ2

s

)
− 2

ε

(
(CA − CF ) ln

t

u
+ CF ln

1

R2

))
, (G.6)
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‘respectively. Similarly, for the quark-anti-quark channel, the poles are in the same order as

above, and are given as:

H(0)αs
2π

(
24β0

1

ε
+ CA

(
−2
ε2
− 2

ε
ln
sµ2

ut

)
+ CF

(
−4
ε2
− 2

ε

(
−2 ln s

µ2
+ 3

)))
, (G.7)

H(0)αs
2π

(
−6CA

ε
2β0

)
, (G.8)

H(0)αs
2π

2CA

(
1

ε2
+

1

ε

(
2β0 − ln

P 2
T

µ2
+ ln

1

R2

))
, (G.9)

H(0)αs
2π

−2
ε
CF
(
δ (ξ2 − 1) ξ1Pqq (x) + ξ1 ↔ ξ2

)
, (G.10)

H(0)αs
2π

2CF

ε

(
Pqq (ξ1) ξ1 +

3

2
δ (ξ1 − 1) + ξ1 ↔ ξ2

)
, (G.11)

H(0)αs
2π

2

(
CF

(
2

ε2
+

2

ε
ln
µ2

s

)
− 1

ε
CA ln

1

R2

)
. (G.12)

In both of the above set of equations, all the terms are proportional to δ(ξ1 − 1)δ(ξ2 − 1)

unless otherwise noted. Looking at the above equations, all of the poles cancel, leaving a

finite result, and validating the results of the calculations.
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