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ABSTRACT

HIERARCHICAL BAYESIAN MODELS FOR SMALL AREA ESTIMATION OF
BIOPHYSICAL AND SOCIAL FORESTRY VARIABLES

By

Neil Ryan Ver Planck

Forest inventories and surveys, accounting for time and cost constraints, are typically de-

signed to yield accurate and precise estimates of population means and totals over large

spatial domains. In many instances, these inventories and surveys also offer reliable infer-

ence for smaller subpopulations with sufficient sample observations; however, there is growing

demand for valid and precise estimates at levels that have smaller sample sizes based on the

original sample design. One solution to this problem is application of small area estimation

methods. Small area estimation (SAE) is a model-based approach that couples a direct esti-

mate and possible covariates to improve the estimate precision and, in some cases, accuracy.

Unlike a standard linear regression, the SAE framework is comprised of two components: a

sampling model and a linking model. Estimation of the SAE parameter of interest accounts

for and balances between the sampling (i.e., direct estimator) and linking model errors. The

linking model is a linear model with random effects that relate the small areas of interest

with some error. Additional spatial structure might still remain in the linking model after

accounting for possible covariates. Such residual structure can be further modeled using

spatial random effects.

This dissertation presents SAE methods within a hierarchical Bayesian (HB) framework.

This framework is applied to common biophysical forest inventory outcomes of interest (i.e.,

aboveground biomass, basal area, volume, and tree density) at the stand level, and to the

social forestry survey outcomes of private forest landowner populations. Furthermore, an

in depth examination of the direst estimator, in the presence of nonresponse, is assessed

for private forest landowner population size. The primary objectives of this dissertation

are: i) to apply a HB framework to increase the precision of estimates for biophysical forest



variables at the stand level by borrowing strength across all stands through the use of

LiDAR covariates; ii) to apply a conditional autoregressive structure to the stand-level

random effects to assess gains in precision of biophysical forest variables; iii) to evaluate

the current National Woodland Owner Survey estimators of private forest area and private

forest landowner population size for a known population at the state level; iv) to present

an alternative estimator of private forest landowner population size that explicitly accounts

for various nonresponse scenarios; v) to evaluate the impacts of nonresponse biases on each

of these estimators; vi) to produce county-level private forest ownership datasets for two

complete states; vi) to define and assess SAE models to improve county-level inference of

the number of private forest ownerships, and; vii) to develop open source software to fit

proposed SAE models.



This dissertation is dedicated to Liisa.

iv



ACKNOWLEDGMENTS

I would like to sincerely thank my dissertation advisor and mentor Dr. Andrew O. Finley

for all of his guidance and help throughout my graduate studies. I would also like to thank

all of my committee members: Dr. David W. MacFarlane, Dr. Aaron R. Weiskittel, Dr.

Christopher W. Woodall, and Dr. Phoebe L. Zarnetske for all of their time and assistance

with this dissertation and my research program. Many additonal thanks to the following

collaborators: Dr. James C. Finley, Dr. Emily S. Huff, Dr. John A. Kershaw, Jr., and

Dr. Alexander L. Metcalf for providing data and thoughtful feedback regarding my research.

Additional acknowlegments to the editors and anonymous reviewers of this research at the

Canadian Journal of Forest Research, Forest Science, and Remote Sensing of Environment.

Additional thanks to the lab group members, during my tenure, of the Geospatial Lab:

Chad Babcock, Gloria Desanker, Malcolm Itter, Megan Kress, Jason Matney, Daniel Taylor,

Yuzhen Zhou for providing assistance, collaboration, and motivation.

Most importantly, a special thanks to my wife, Liisa, for all of her patience, love, and sup-

port. I would also like to thank my entire family for all of their support and encouragement

throughout my graduate study years.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 HIERARCHICAL BAYESIAN MODELS FOR SMALL AREA ES-
TIMATION OF FOREST VARIABLES USING LIDAR . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.2 Variable radius plot data . . . . . . . . . . . . . . . . . . . . 10
2.2.1.3 LiDAR data . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2.1 Direct estimator and small area models . . . . . . . . . . . . 12

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 3 MULTIVARIATE HIERARCHICAL BAYESIAN MODELS FOR
SMALL AREA ESTIMATION OF FOREST VARIABLES USING
LIDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1.2 Variable radius plot data . . . . . . . . . . . . . . . . . . . . 29
3.2.1.3 LiDAR data . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2.1 Direct estimator and small area models . . . . . . . . . . . . 31

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 4 EVALUATION OF THE NATIONAL WOODLAND OWNER
SURVEY ESTIMATORS FOR PRIVATE FOREST AREA AND
LANDOWNERS: A CASE STUDY OF MONTANA . . . . . . . . . 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 GIS-based Baseline Population Estimate . . . . . . . . . . . . . . . . 50
4.2.2 Sampling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3.1 Private Forest Area . . . . . . . . . . . . . . . . . . . . . . . 53

vi



4.2.3.2 Private Forest Landowner Population Size . . . . . . . . . . 54
4.2.4 Nonresponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Private Forest Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Total Private Forest Landowners . . . . . . . . . . . . . . . . . . . . 61

4.3.2.1 Full Response . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2.2 Nonresponse . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

CHAPTER 5 HIERARCHICAL BAYESIAN MODELS FOR SMALL AREA
ESTIMATION OF COUNTY-LEVEL PRIVATE FOREST
LANDOWNER POPULATION . . . . . . . . . . . . . . . . . . . . 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 True number of private forest ownerships . . . . . . . . . . . . . . . . 71
5.2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2.1 Direct estimator . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2.2 Small area estimation models . . . . . . . . . . . . . . . . . 73

5.2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3.1 County-level covariates . . . . . . . . . . . . . . . . . . . . . 76

5.2.4 Simulation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

CHAPTER 6 RECOMMENDATIONS FOR FUTURE WORK . . . . . . . . . . . 93

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
APPENDIX A HB AND EBLUP PARAMETER ESTIMATES FOR FAY-

HERRIOT MODEL OF ABOVEGROUND BIOMASS . . . . 97
APPENDIX B MODEL SUMMARIES OF PRIVATE FOREST

LANDOWNERS FOR MONTANA AND NEW JER-
SEY BY COUNTY . . . . . . . . . . . . . . . . . . . . . . . 98

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



LIST OF TABLES

Table 2.1: Summary statistics for stand area, number of plots, mean aboveground
biomass, sampling variances, and LiDAR covariates for the Noonan For-
est (m = 226 stands) dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 2.2: The median and 95% credible intervals for Fay-Herriot (FH), FH with
conditional autoregressive (FHCAR), and FHCAR with smoothed sam-
pling variances (FHCAR-SMOOTH) model parameters. . . . . . . . . . . 15

Table 2.3: Mean CV reduction (%) between SAE models by number of neighboring
stands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 3.1: Summary statistics for stand area, number of plots, mean aboveground
biomass, mean basal area, mean volume, mean tree density, sampling
variances, and LiDAR covariates for the Noonan Forest (m = 224 stands)
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.2: The median and 95% credible intervals for the univariate Fay-Herriot
(FH), and FH with conditional autoregressive (FHCAR) model parame-
ters for the four outcomes of interest. . . . . . . . . . . . . . . . . . . . . 35

Table 4.1: Size classes of private forest area. . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.2: Summary of Montana private forest land area (ha) for the GIS-based
baseline (base), the estimate from simple random sampling of the baseline
(Method I), and additional publications. . . . . . . . . . . . . . . . . . . . 59

Table 4.3: Summary of the number of private forest landowners in Montana for the
GIS-based baseline (base), the estimate from two sampling methods, and
additional publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 5.1: The median and 95% credible intervals (in parantheses) for Fay-Herriot
(FH) and FH with conditional autoregressive (FHCAR) models of a sin-
gle iteration for Montana (iteration 750) and New Jersey (iteration 350). . 82

Table 5.2: Summary of bias, root mean squared error (RMSE), empirical coverage
for a 95% nominal coverage rate and average 95% confidence interval
width of the direct estimate and 95% credible interval width of the small
area estimation model estimates for Montana and New Jersey across all
counties and iterations for the direct, Fay-Herriot (FH), and FH with
conditional autoregressive random effects (FHCAR) model estimates. . . . 85

viii



Table A.1: The median and 95% credible intervals for the model parameters of the
Fay-Herriot (FH) with hierarchical Bayesian (HB) inference and the point
estimates with standard errors in parentheses for the FH under empirical
best linear unbiased predictor (EBLUP) were fit via restricted maximum
likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table B.1: Summary of the first 28 Montana counties by identification number (ID)
and name for true population total (Truth), sample size (n), and bias
across all repeated samples for the direct, Fay-Herriot (FH), and FH with
conditional autoregressive random effects (FHCAR) model estimates. . . . 98

Table B.2: Summary of the second set of 28 Montana counties by identification
number (ID) and name for true population total (Truth), sample size
(n), and bias across all repeated samples for the direct, Fay-Herriot (FH),
and FH with conditional autoregressive random effects (FHCAR) model
estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table B.3: Summary of New Jersey counties by identification number (ID) and name
for true population total (Truth), sample size (n), and bias across all re-
peated samples for the direct, Fay-Herriot (FH), and FH with conditional
autoregressive random effects (FHCAR) model estimates. . . . . . . . . . 100

Table B.4: Summary of the first 28 Montana counties by identification number (ID)
for root mean squared error (RMSE), empirical coverage for a 95% nom-
inal coverage rate, and 95% confidence interval width for the direct esti-
mator and 95% credible interval width for the two small area estimation
models across all repeated samples for the direct, Fay-Herriot (FH), and
FH with conditional autoregressive random effects (FHCAR) model es-
timates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table B.5: Summary of the second set of 28 Montana counties by identification
number (ID) for root mean squared error (RMSE), empirical coverage
for a 95% nominal coverage rate, and 95% confidence interval width for
the direct estimator and 95% credible interval width for the two small
area estimation models across all repeated samples for the direct, Fay-
Herriot (FH), and FH with conditional autoregressive random effects
(FHCAR) model estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table B.6: Summary of New Jersey counties by identification number (ID) for root
mean squared error (RMSE), empirical coverage for a 95% nominal cov-
erage rate, and 95% confidence interval width for the direct estimator
and 95% credible interval width for the two small area estimation mod-
els across all repeated samples for the direct, the Fay-Herriot (FH), and
the FH with conditional autoregressive random effects (FHCAR) model
estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



LIST OF FIGURES

Figure 2.1: Noonan Forest stands by (a) number of variable radius plots, (b) stand-
level P25 (m); (c) stand-level P75 (m) LiDAR covariates. . . . . . . . . . 13

Figure 2.2: Posterior mean aboveground biomass (Mg ha−1) for the (a) direct esti-
mate, (b) FH model, (c) FHCAR model; (d) FHCAR-SMOOTH model. . 17

Figure 2.3: Mean aboveground biomass (Mg ha−1) for direct estimates versus pos-
terior means of FH, FHCAR, and FHCAR-SMOOTH models. . . . . . . 18

Figure 2.4: Coefficient of variation of the (a) direct estimate, (b) FH model, (c)
FHCAR model; (d) FHCAR-SMOOTH model. . . . . . . . . . . . . . . . 19

Figure 2.5: Estimates of coefficient of variation (CV) versus stands ordered by in-
creasing CV of direct estimate. . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.6: Percent reduction in coefficient of variation from (a) direct estimate to
FH model, (b) direct estimate to FHCAR model, (c) FH to FHCAR
model; (d) FHCAR to FHCAR-SMOOTH model. . . . . . . . . . . . . . 21

Figure 2.7: 95% credible interval widths of AGB (Mg ha−1) for the (a) FH, (b)
FHCAR; (c) FHCAR-smooth models. . . . . . . . . . . . . . . . . . . . . 23

Figure 3.1: Noonan Research Forest stands by (a) forest type (balsam fir; toler-
ant softwoods; black spruce; white pine; mixed woods dominated by
softwoods; mixed woods dominated by intolerant hardwoods; intolerant
hardwoods), (b) stand-level P25 (m), (c) stand-level P50 (m), and (d)
stand-level dns (%) LiDAR covariates. . . . . . . . . . . . . . . . . . . . 32

Figure 3.2: The posterior means for the outcomes of (a) mean aboveground
biomass (Mg·ha−1), (b) mean basal area (m2·ha−1), (c) mean volume
(m3·ha−1); (d) mean tree density (number of trees·ha−1) for the FHIW
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.3: (a) Mean aboveground biomass (Mg·ha−1), (b) mean basal area
(m2·ha−1), (c) mean volume (m3·ha−1); (d) mean tree density (num-
ber of trees·ha−1) for direct estimates versus posterior means of FH,
FHCAR, and FHIW models. . . . . . . . . . . . . . . . . . . . . . . . . . 38

x



Figure 3.4: Estimates of coefficient of variation (CV) for direct estimates and FH,
FHCAR, FHIW models of (a) mean aboveground biomass (Mg·ha−1),
(b) mean basal area (m2·ha−1), (c) mean volume (m3·ha−1); (d) mean
tree density (number of trees·ha−1) versus stands ordered by increasing
CV of direct estimate. The horizontal dashed line indicates a CV value
of 0.15; and the horizontal dotted line indicates a CV value of 0.25. . . . 40

Figure 3.5: Percent reduction in coefficient of variation from direct estimate to FH
model for (a) mean aboveground biomass (Mg·ha−1), (b) mean basal
area (m2·ha−1), (c) mean volume (m3·ha−1); (d) mean tree density
(number of trees·ha−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.6: Percent reduction in coefficient of variation from FH model to FHIW
model for (a) mean aboveground biomass (Mg·ha−1), (b) mean basal
area (m2·ha−1), (c) mean volume (m3·ha−1); (d) mean tree density
(number of trees·ha−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.1: (a) One realization of the sample distribution of unique private forest
landowners (PFLs) by size class, (b) trends of probabilities of nonre-
sponse by size class for four different scenarios (A-D) with an overall
nonresponse rate of approximately 50%. . . . . . . . . . . . . . . . . . . 58

Figure 4.2: (inset) Location of Montana, highlighted in grey, within the contermi-
nous United States, (a) 10 m x 10 m resolution for all forested lands
across the state of Montana, and (b) 10 m x 10 m resolution for private
forested lands across the state of Montana. . . . . . . . . . . . . . . . . . 60

Figure 4.3: (a) The distribution for proportion of total private forest area of family
forest landowners of Montana (NWOS, Butler et al. 2016b) and the
GIS-based baseline (Base) population of Montana by size class, (b) the
distribution for proportion of private forest landowners (PFLs) by size
class for the Rocky Mountain region (Rockies, Oswalt et al. 2014) and
the Base population of Montana, and (c) the distribution of number of
family forest landowners of Montana (NWOS, Butler et al. 2016b) and
PFLs for the Base population of Montana by size class. . . . . . . . . . . 61

xi



Figure 4.4: Horizontal line indicates the GIS-based baseline of PFL population size.
Horizontal dashed lines represent the nominal probability coverage rate
of 0.95. (a-c) Mean PFL population size, mean 95% confidence interval
width, and 95% actual probability coverage for full response and incre-
mental response rates from 50 to 10% for the two different estimators
(I and II) based upon 1000 simulations, respectively. (d-f) Mean PFL
population size, mean 95% confidence interval width, and 95% actual
probability coverage for four different response scenarios (A-D) with an
overall 50% response rate of Methods I and II based upon 1000 simula-
tions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.1: Montana counties by (a) sample size, (b) true population size with>2 ha
forest, (c) 2010 census population density (PD, number of people·km−2);
(d) total forest area (TFA, 1000s ha). . . . . . . . . . . . . . . . . . . . . 79

Figure 5.2: New Jersey counties by (a) sample size, (b) true population size with
>2 ha forest, (c) 2010 Census population density (PD, number of
people·km−2); (d) total forest area (TFA, 1000s ha). . . . . . . . . . . . 80

Figure 5.3: Distribution of posterior means from all iterations for select SAE model
parameters: (a) the variance parameters of Montana, (b) the FHCAR
model autocorrelation parameter of Montana, (c) the variance param-
eters of New Jersey; (d) the FHCAR model autocorrelation parameter
of New Jersey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.4: Relative mean squared error comparisons for Montana (eq. 5.8): (a)
direct to FH model estimates, (b) direct to FHCAR model estimates;
(c) FH to FHCAR model estimates. . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.5: Relative mean squared error comparisons for New Jersey (eq. 5.8): (a)
direct to FH model estimates, (b) direct to FHCAR model estimates;
(c) FH to FHCAR model estimates. . . . . . . . . . . . . . . . . . . . . . 88

xii



CHAPTER 1

INTRODUCTION

The focus of this dissertation is the development and application of model-based small area

estimation (SAE) models for both biophysical and social forestry variables. The use of the

model-based framework is necessitated in SAE because the sample sizes for the design-based

framework do not provide adequate precision. There is considerable demand and interest

among stakeholders of large-scale forest inventories or surveys, such as the United States

Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA)

program and the associated National Woodland Owner Survey (NWOS), because outcomes

are desired at resolutions smaller than that provided by the original design. Some of the

current forestry-related SAE applications range from the traditional inventory outcomes of

timber volume and biomass (e.g., timber products output) to the assessment of wildland

fires (FIA Stakeholder Science Meeting 2017).

The key to SAE is to borrow strength from related areas to improve estimation for the

outcome and small area of interest. A small area, here, is defined by the sample size for

the outcome of interest rather than by the geographic size, as our interest lies in both forest

stands and larger areas such as counties. Rao and Molina (2015) give an in-depth overview

of SAE and cover many different approaches. Following the definitions of Rao and Molina

(2015), SAE is divided into three classes: i) direct; ii) indirect; and iii) small area model-

based estimation. Direct estimators are generally design-unbiased for the area of interest

and derived directly from the sample. Model-assisted methods, also belonging to this class,

have proven useful for combining covariates with plot observations for biophysical variables

(see, e.g., Opsomer et al. 2007). Indirect estimators are developed based upon an implicit

model that borrows strength from either another domain, time, or both. Several frequently

applied examples of this class are synthetic and composite estimators (Goerndt et al. 2011,

Breidenbach and Astrup 2012, Goerndt et al. 2013). In Chapters 2, 3, and 5, we consider
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the third class of SAE, small area model-based estimation, referred to as small area models.

Small area models differ from the previous two classes by including an explicit model with

random effects that account for variation not explained by covariates in the model mean. In

Chapter 4, we consider the NWOS direct estimators for various unit nonresponse scenarios.

For small area models, the analyst applies either a frequentist or Bayesian mode of in-

ference. The frequentist approach uses empirical best linear unbiased prediction (EBLUP),

and the Bayesian approach uses either empirical Bayes (EB) or hierarchical Bayes (HB).

For forestry applications, EBLUP has been applied most frequently and exclusively to bio-

physical settings (Goerndt et al. 2011, Breidenbach and Astrup 2012, Goerndt et al. 2013,

Magnussen et al. 2014, Mauro et al. 2016). The most common small area model is a lin-

ear mixed effects model, called the Fay-Herriot (FH, Fay and Herriot 1979) model, which

links a direct estimator to covariates via a linear model. Only one of these preceding SAE

biophysical forestry studies examined spatial correlations among the area-level effects (see

Appendix B in Magnussen et al. 2014). EB is considered the Bayesian paradigm equivalent

to EBLUP. Alternatively, HB methods provide access to posterior distributions of the small

area parameters (You and Zhou 2011), and hence parameter inference that does not rely

upon potentially unrealistic asymptotic assumptions (Pfefferman 2013).

The outcomes of interest are most commonly modeled at either the unit-level or the

area-level. For biophysical outcomes, the models generally occur at the smallest resolution

possible, i.e., the unit-level. Light detection and ranging (LiDAR) has become a ubiqui-

tous choice for covariates in extending and improving unit-level estimation of biophysical

variables. Development and application of unit-level regression models for spatially aligned

LiDAR and biophysical inventory measurements are quite common (see, e.g., Babcock et al.

2015; 2016, Finley et al. 2017, Gregoire et al. 2016). These unit-level analyses generally apply

fixed-area plots for measurements due to alignment between the outcomes and covariates.

There are some examples, where variable-radius plots (VRP) have been applied in unit-level

analyses (Hollaus et al. 2007; 2009). Several recent studies (Hayashi et al. 2015, Deo et al.
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2016) have varied LiDAR resolutions to best align with VRP, at the unit-level, without a

consensus across forest types. As an alternative to a unit-level analysis, an area-level analy-

sis can be used when there is spatial misalignment between LiDAR and plot measurements

(Goerndt et al. 2011). In this dissertation, the focus is on application of area-level models

with VRP to estimate biophysical outcomes, with inference at the stand level. For social

forestry outcomes of interest, a unit-level analysis is generally not possible to be combined

with covariates outside of the survey application due to privacy concerns. For our primary

social forestry outcome of interest, private forest landowner population size, an area-level

analysis is the natural choice.

The primary objective of this dissertation is to contribute to the growing body of litera-

ture of SAE applications in the field of forestry. The detailed objectives of this dissertation

are: i) to apply a HB framework to increase the precision of estimates for biophysical for-

est variables at the stand level by borrowing strength across all stands through the use of

LiDAR covariates; ii) to apply a conditional autoregressive structure to the stand-level ran-

dom effects to assess gains in precision of biophysical forest variables; iii) to evaluate the

current NWOS estimators of private forest area and private forest landowner population size

for a known population at the state level; iv) to present an alternative estimator of private

forest landowner population size that explicitly accounts for various nonresponse scenarios;

v) to evaluate the impacts of nonresponse biases on each of these estimators; vi) to pro-

duce county-level private forest ownership datasets for two complete states; vi) to define

and assess SAE models to improve county-level inference of the number of private forest

ownerships, and; vii) to develop open source software to fit proposed SAE models. The

subsequent paragraphs, summarize the main chapters of the dissertation as three distinct

published peer-reviewed articles and one chapter still to be submitted.

Chapter 2 has been published in Remote Sensing of Environment. In this chapter, Ver

Planck et al. (2018) use forest inventory plot measurements and LiDAR covariates to inform

model-based estimators for SAE. There are many examples where such linking models pro-
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vide the desired accuracy and precision of forest parameter estimates for small areas where

paucity of inventory plot observations preclude design-based inference. This work builds

on previous SAE work by linking LiDAR covariates with VRP measurements within a HB

framework. Using this framework, we compare SAE of forest aboveground biomass (AGB)

using: i) FH; ii) FH with conditional autoregressive random effects (FHCAR); and iii) FH-

CAR with smoothed sampling variance (FHCAR-SMOOTH) models. Candidate models

and the direct estimate based on plot measurements alone were compared using coefficient

of variation (CV). On average, the FH model reduced the CV by 52.3% compared to the

direct estimate. Incorporating spatial structure via the FHCAR model reduced the CV by

56.9% and 10.8% relative to the direct and the FH model estimates, respectively. Overall,

these results illustrate the applicability and utility of using a SAE framework for linking

LiDAR with typical forest inventory data.

Chapter 3 extends the work of the previous chapter to include the additional common

forest inventory variables of basal area (BA), volume (VOL), and tree density (DENS) into a

multivariate HB SAE modeling framework. Using this framework, we compare the univariate

case of SAE for the individual biophysical variables using the FH and FHCAR models

to the multivariate FH with inverse-Wishart (FHIW) model. Candidate models and the

direct estimate based on plot measurements alone were compared again via CV. On average,

the FH model reduced the CV by 52.9%, 53.6%, 53.7%, 52.7% for AGB, BA, VOL, and

DENS, respectively, compared to the direct estimate. Incorporating spatial structure via the

FHCAR model reduced the CV for AGB, BA, VOL, and DENS by 58.0%, 57.5%, 58.7%,

54.2% relative to the direct estimates, respectively. On average, the FHCAR reduced the

CV by 12.2%, 9.5%, 12.3%, 3.7% for AGB, BA, VOL, and DENS relative to the FH model

estimates. The incorporation of the correlation among outcomes in the FHIW model reduced

the CV even further relative to the FH model by 30.6%, 22.1%, 9.8% for AGB, BA, and

VOL; however the average reduction was -1.8% for DENS. Overall, these results illustrate

the additional utility of using a multivariate SAE framework for linking LiDAR with multiple
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outcomes of interest in a forest inventory.

The following two chapters transition from biophysical to social outcomes of interest.

Private forest ownerships currently own a plurality of forested land in the US (Oswalt et al.

2014) and will play an increasing role in the management of the forested lands in the US for

the foreseeable future. These two chapters offer methods to increase or better represent pre-

cision in estimates of private forest landowner population size. Chapter 4 has been published

in Forest Science. In this chapter, Ver Planck et al. (2016) examine the current estimator

used by the NWOS for total private forest area and private forest landowner population size

along with one alternative estimator. The NWOS, conducted by the USDA Forest Service,

is the standard for state- and national-level estimates of private forestland and ownerships in

the US. The estimators are evaluated at the minimal resolution used by NWOS, of a state.

Montana is used as a case study by combining freely available cadastral data with remote

sensing in a geographic information system. These data allow us to evaluate the estimators

for a known private forest ownership population. In addition, the impacts of nonresponse

biases are assessed for each of the estimators. The results indicate that the current estima-

tor performs as well as the alternative estimator under conditions of full response; however,

the estimator performance varied under conditions of nonresponse. We offer the alternative

estimator to explicitly account for nonresponse over the implicit nonresponse assumptions

of the current NWOS estimator under the various conditions of nonresponse examined.

Chapter 5 has been published in the Canadian Journal of Forest Research. In this chap-

ter, Ver Planck et al. (2017c) examine the ability to expand statewide estimates similar

to the NWOS to county levels. Due to sample sizes prescribed for inference at the state

level, there are insufficient data to support county-level estimates. However, county-level

estimates of NWOS variables are desired because ownership programs and education initia-

tives often occur at the county level and such information could help tailor these efforts to

better match county-specific needs and demographics. Here, we present and assess meth-

ods to estimate the number of private forest ownerships at the county level for two states,
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Montana and New Jersey. To assess model performance, true population parameters were

derived from cadastral and remote sensing data. Two SAE models, the FH and the FH-

CAR, improved estimated county-level population mean squared error over that achieved

by direct estimates. The proposed SAE models use covariates to improve accuracy and pre-

cision of county-level estimates. Results show total forest area, and 2010 decennial census

population density covariates explained a significant portion of variability in county-level

population size. These and other results suggest that the proposed SAE methods yield a

statistically robust approach to deliver reliable estimates of private ownership population

size and could be extended to additional important NWOS variables at the county level.

Chapter 6 concludes with potential avenues to pursue related to the topics covered in this

dissertation.
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CHAPTER 2

HIERARCHICAL BAYESIAN MODELS FOR SMALL AREA ESTIMATION
OF FOREST VARIABLES USING LIDAR

2.1 Introduction

Forest inventory efforts typically follow a sampling design that aims to cover a potentially

broad range of stand conditions, e.g., capturing species and structural diversity. Generally,

a systematic grid of fixed-area plots (FAP) or variable-radius plots (VRP) are established

across the forest. The choice between FAP or VRP depends on the inventory objectives

(Maltamo et al. 2009). A greater cost efficiency generally results in the establishment of

VRP for operational inventories over FAP research inventories (Rice et al. 2014).

Light detection and ranging (LiDAR) data have become one of the remote sensing tools

of choice for extending and improving ground-based forest inventories and monitoring. There

has been considerable research relating forest attributes with LiDAR covariates (see reviews

by McRoberts et al. 2010, Næsset et al. 2004). In the case of complete LiDAR coverage, a fine

grid is typically imposed on the area of interest and LiDAR covariates are calculated using

the point cloud within each grid pixel. Often there is some effort to matching the pixel size

to that of the inventory plot, especially in the setting where a regression model is developed

to relate the LiDAR covariates to the response forest variables of interest (see, e.g., Finley

et al. 2013, McRoberts et al. 2013). Development of regression models for spatially aligned

LiDAR and inventory plot measurements is often referred to as unit-level analysis and is

quite common (see, e.g., Babcock et al. 2015; 2016, Finley et al. 2017, Gregoire et al. 2016).

These and similar analyses use FAP, opposed to VRP, because the relationship between plot

extent can be directly matched with spatially coinciding LiDAR covariates. Truncated VRP,

which result in a comparable extent to FAP, used in the Finnish National Forest Inventory

have been successfully regressed on spatially aligned LiDAR covariates (Maltamo et al. 2007),
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although this may not generalize to stands with diverse diameters (Scrinzi et al. 2015).

There are examples, where VRP have been used in unit-level analyses (Hollaus et al.

2007; 2009). More recently, Hayashi et al. (2015) and Deo et al. (2016) have applied a

variety of LiDAR resolutions that best match with the basal area factor applied in the VRP

sampling. As an alternative to a unit-level analysis, an area-level analysis can be used when

there is spatial misalignment between LiDAR and plot measurements (Goerndt et al. 2011).

In an area-level regression analysis, observations are at the stand-level, whereas a unit-level

analysis could consider multiple observations within each stand. Working at the area-level

affords some advantages. For example, one can combine the cost efficient VRP with LiDAR

covariates without spatial alignment between the plot data and LiDAR (Goerndt et al. 2011).

In an effort to align VRP measurements and LiDAR data, Kronseder et al. (2012) calculated

LiDAR covariates at a resolution of 1 ha based on the idea that VRP measurements are

expanded to a per ha basis. Additionally, van Aardt et al. (2006) and Hudak et al. (2014)

calculated the LiDAR variables at a segment- or stand-level in which the VRP samples

were established. In this study, our focus is on application of area-level models to estimate

aboveground forest biomass (AGB), with inference at the stand-level. The area-level models

developed here are general and could be applied to other forest variables or transformations

of AGB, e.g., for use in forest carbon accounting projects.

Given time and cost constraints, inventory designs often focus on achieving forest-level

accuracy and precision requirements, which results in a limited number of samples collected

within any given stand. These small sample sizes result in stand-level point estimate uncer-

tainty that is too large for practical use. This limited inference at the stand-level, due to

paucity of samples, is referred to as the small area problem and is commonly tackled using

a small area estimation (SAE) method. We consider a forest stand to be the small area of

interest for the following development; however, this is setting specific and one can of course

consider other small area delineations.

The key of SAE is to borrow strength across related areas to improve estimation at the
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small area of interest. Rao and Molina (2015) give an in-depth overview of SAE and cover

many different approaches. Following the definitions of Rao and Molina (2015), SAE is

divided into three classes: i) direct; ii) indirect; and iii) small area model-based estima-

tion. Direct estimators are generally design-unbiased for the area of interest and derived

directly from the sample. Model-assisted methods, also belonging to this class, have proven

useful for combining remotely sensed data with ground observations for AGB estimation

(see, e.g., Opsomer et al. 2007). Indirect estimators are developed based upon an implicit

model that borrows strength from either another domain, time, or both. Several frequently

applied examples of this class are synthetic and composite estimators (Goerndt et al. 2011,

Breidenbach and Astrup 2012, Goerndt et al. 2013). In this study, we consider the third

class of SAE, small area model-based estimation, referred to as small area models. Small

area models differ from the previous two classes by including an explicit model with random

effects that account for variation not explained by covariates in the model mean.

For small area models, the analyst applies either a frequentist or Bayesian mode of

inference. The frequentist approach uses empirical best linear unbiased prediction (EBLUP),

and the Bayesian approach uses either empirical Bayes (EB) or hierarchical Bayes (HB).

For forestry applications, EBLUP has been applied most frequently (Goerndt et al. 2011,

Breidenbach and Astrup 2012, Goerndt et al. 2013, Magnussen et al. 2014, Mauro et al.

2016). Mauro et al. (2016) emphasized the correct specification of the estimator of mean

squared error (MSE) of EBLUP for different levels of aggregation, from a pixel to an entire

forest. The most common small area model is a linear mixed effects model, called the Fay-

Herriot (FH, Fay and Herriot 1979) model, which links a direct estimator to covariates via a

linear model. Only one of the preceding SAE forestry studies examined spatial correlations

among the area-level effects (see Appendix B in Magnussen et al. 2014). EB is considered

the Bayesian paradigm equivalent to EBLUP. Alternatively, HB methods provide access

to posterior distributions of the small area parameters (You and Zhou 2011), and hence

parameter inference that does not rely upon potentially unrealistic asymptotic assumptions
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(Pfefferman 2013).

The primary objective of this study was to apply a HB framework to increase the precision

of estimates for mean AGB at the stand-level by borrowing strength across all stands through

the use of LiDAR covariates. Additionally, we apply a conditional autoregressive structure

to the stand-level random effects to assess gains in precision of AGB. The remainder of the

manuscript follows with: i) a description of the study area along with relevant data for the

small area models; ii) a description and implementation of the small area models; and iii)

the results and discussion of applying small area models for AGB. All source code and data

are provided to facilitate reproducible research and application of the proposed methods.

2.2 Methods

2.2.1 Data

2.2.1.1 Study area

The area of interest for this study was the Noonan Research Forest (NRF) near Fredericton,

New Brunswick, Canada (N 45◦ 59’12”, W 66◦ 25’15”). The NRF has been managed by the

University of New Brunswick since 1985 and is approximately 1500 ha in size with a total

of 271 stands. The subsequent analysis uses a subset of 226 stands each with a minimum of

two VRP per stand. These stands ranged in size from 0.6 to 47 ha with an average size of

6.6 ha (Table 2.1; Figure 2.1). The forest is composed of hardwood, mixed, and softwood

stands with the major species being aspen (Populus spp.), balsam fir (Abies balsamea L.

(Mill.)), birch (Betula spp.), eastern white pine (Pinus strobus L.), red maple (Acer rubrum

L.), and spruce (Picea spp.), see Hayashi et al. (2015) for more details.

2.2.1.2 Variable radius plot data

In 2010, a 100×100 m grid was laid out across the NRF. At each grid intersection a VRP was

established and trees greater than 6.0 cm diameter at breast height (DBH) were selected into
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the sample using a 2M basal area factor angle gauge. Species, DBH, and height were recorded

for each sample tree. Plot estimates of AGB Mg ha−1 were calculated using Jenkins et al.

(2003) species-group equations. Stand-level estimates were obtained by averaging plot-level

AGB Mg ha−1 estimates. Table 2.1 summarizes these stand-level estimates.

2.2.1.3 LiDAR data

The full waveform LiDAR data were collected on October 21 and 22, 2011 using a Riegl LMS

Q680i laser scanner mounted on an airplane. The sensor had a pulse repetition frequency of

180 kHz with a laser wavelength of 1550 nm and a scan angle < 28.5◦ from nadir. The forest

was covered in overlapping strips to achieve at a minimum of six pulses per m2, footprint of

0.35 m, and up to eight returns per pulse (Hayashi et al. 2015).

Stand-level LiDAR covariates were computed using the lascanopy function in the LAS-

tools software suite (Isenburg 2016). The NRF stand polygons, LAS files, and arguments

to define the vertical extent of the LiDAR profile considered, were passed into the las-

canopy function to generate the desired LiDAR covariates. Here, we consider stand-level

LiDAR signal derived percentiles—height in meters at which some percent of the energy is

returned—labeled P followed by the percentile, as well as signal shape variables, e.g., kurto-

sis and skewness. Exploratory analysis using a backward selection procedure resulted in P25

and P75 having the lowest Akaike information criterion value. Although the two percentile

heights have a high correlation, the variance inflation factor of each was three, which is less

than the general rule of ten for assessing multicollinearity (see Kutner et al. 2004, p.409).

Therefore, P25 and P75 covariates were used for the SAE models.
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Table 2.1: Summary statistics for stand area, number of plots, mean aboveground biomass,
sampling variances, and LiDAR covariates for the Noonan Forest (m = 226 stands) dataset.

Min Max Mean SD
Stand Area (ha) 0.6 47.3 6.1 5.6
No. of plots 2 44 5.9 5.5

Mean AGB (Mg ha−1) 16.9 223.5 117.8 44.8

σ2i 0.158 7948 1698 1432

σ̃2i 36.5 804 411 226
P25 (m) 2.2 8.4 5.2 1.3
P75 (m) 5.1 20.7 11.7 2.8

2.2.2 Models

2.2.2.1 Direct estimator and small area models

The direct estimator applied assumed simple random sampling for point and variance esti-

mates of AGB. Beginning with the SAE FH model for stand i in 1, 2, . . . ,m stands defined

as:

Yi = θi + εi, (2.1)

θi = x′iβ + vi,

where Yi is the direct estimate, the parameter of interest θi is mean AGB, and εi is a nor-

mally distributed error with mean zero and variance σ2i . The additive mean of θi comprises

an intercept and stand-level covariates held in the p × 1 column vector x and associated

p× 1 vector of regression coefficients β. The stand-level random effects term vi is normally

distributed with mean zero and variance σ2v . For comparison with HB inference, the fre-

quentist EBLUP was also applied for the FH model with available R statistical software (see

Appendix A).

It is reasonable to think that environmental variables, e.g., disturbance history and soil

characteristics, could exhibit spatial autocorrelation and affect the observed AGB. In our

setting, if direct estimate values are spatially correlated, i.e., adjacent stands have similar

12



0 1000 m

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

● ●

●●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●● ●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●●

● ●●

●

● ●●

●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ● ●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

● ●

●●

●

●

● ●

●

●

●

● ●

● ●

●

● ●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

● ● ●●

●

●

●

● ●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

● ●

●●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

1

5

10

15

20

25

30

45

(a)

2

3

4

5

6

7

8

9

(b)

5

8

11

14

17

20

23

(c)

Figure 2.1: Noonan Forest stands by (a) number of variable radius plots, (b) stand-level
P25 (m); (c) stand-level P75 (m) LiDAR covariates.

AGB values, then we should exploit this relationship to further improve inference by pooling

information across proximate stands. Hence, we augment model (2.1) by adding a spatially

structured random effect that follows a conditional autoregressive (CAR) prior distribution,

see, e.g., Banerjee et al. (2015) and You and Zhou (2011). This extended model called

FHCAR is defined analogous to FH, with the exception that the unstructured random effects

v = (v1, v2, . . . , vm)′ ∼ N(0, σ2vI) in model (2.1) are replaced with v ∼ N(0,Σ(σ2v , λ)).

13



Here, the m×m covariance matrix Σ(σ2v , λ) = σ2v [λR+ (1− λ)I]−1, where σ2v is the spatial

variance parameter, λ is the autocorrelation parameter, R is the neighborhood matrix with

diagonal elements equal to the number of neighbors and off diagonal elements equal negative

one or zero indicating if a neighbor is present or not, and I is the m ×m identity matrix.

Stands are only considered neighbors with adjoining borders.

The previous models assume the sampling variances are fixed and known, which is a

common assumption for SAE. However, additional smoothing methods are also commonly

applied to the sampling variances to reduce instability in variance estimates of small sample

sizes. Here, the sampling variances were smoothed by stand area ai (similar to Goerndt

et al. 2011); smoothed sampling variances σ̃2i were defined as:

σ̃2i =
Ve
ni

; (2.2)

Ve =

∑m
i=1 aiσ

2
i∑m

i=1 ai
,

where ni is the number of VRP in stand i. These σ̃2i were then used in place of the original

sampling variances in the FHCAR model. This model is referred to as the FHCAR-SMOOTH

model. The development of generalized variance functions (GVF) are also common in the

SAE literature (e.g., Dick 1995); however, we did not find a useful covariate to develop a

GVF.

The Bayesian SAE model specifications are completed by assigning prior distributions to

parameters (Gelman et al. 2014). Each regression coefficient in β was assigned a flat prior

distribution, σ2v was given an inverse-Gamma (IG) prior distribution, and, following You and

Zhou (2011), λ’s prior was uniform with support between zero and one. The IG’s shape hy-

perparameter was set to two, which results in a prior mean equal to the scale hyperparameter

and infinite variance. The IG’s scale hyperparameter was set as
∑m

i=1 σ
2
i /m to give equal

prior weight to the sampling and CAR variances. A Markov chain Monte Carlo (MCMC)

algorithm was used to sample from parameters’ posterior distributions. Specifically, a Gibbs

14



algorithm was developed to sample from θ = (θ1, θ2, . . . , θm), β, and σ2v with full condi-

tional distributions given in You and Zhou (2011), and a Metropolis-Hastings algorithm was

used to sample from λ’s posterior distribution. We completed all analyses using R statistical

software (R Core Team 2015). The data and R code to reproduce this analysis are available

at Mendeley Data (Ver Planck et al. 2017a).

Parameter posterior inference was based on 3,000 post burn-in MCMC samples from each

of L = 3 chains. For the FH and FHCAR models, we thinned the samples to every third

sample to reduce the autocorrelation in samples resulting in K = 3,000 samples. For the

FHCAR-SMOOTH model, thinning of the samples was not necessary based upon examina-

tion of plots of the autocorrelation function resulting in 9,000 samples. Chain mixing and

convergence were diagnosed using a multivariate potential scale reduction factor of less than

1.1 for all parameters considered (Gelman et al. 2014).

2.3 Results

The FH, FHCAR, and FHCAR-SMOOTH model parameter estimates are given in Ta-

ble 2.2. Here, the 95% credible intervals for β1 and β2 do no include zero, which suggests the

associated LiDAR covariates explain a substantial portion of the direct estimate’s variability.

The HB and EBLUP FH model parameter estimates were similar, with the exception of σ2v

(Table A.1). The discrepancy between the HB and EBLUP estimate for σ2v is likely due

Table 2.2: The median and 95% credible intervals for Fay-Herriot (FH), FH with
conditional autoregressive (FHCAR), and FHCAR with smoothed sampling variances
(FHCAR-SMOOTH) model parameters.

Parameter FH FHCAR FHCAR-SMOOTH
β0 -51.99 (-69.15, -34.31) -49.94 (-67.89, -31.02) -41.50 (-54.77, -27.33)

β1, P25 24.24 (18.17, 30.08) 23.35 (16.90, 29.52) 21.48 (16.80, 25.95)

β2, P75 3.66 (0.83, 6.42) 3.82 (1.01, 6.84) 4.08 (2.28, 6.01)

σ2v 284.4 (201.2, 404.8) 471.5 (313.3, 720.8) 365.7 (201.3, 590.0)

λ — 0.61 (0.21, 0.93) 0.61 (0.15, 0.93)
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to the fact that, unlike EBLUP, HB acknowledges uncertainty in this parameter and hence

greater variation around the AGB estimates.

The stand-level point estimates of AGB for the FH model ranged between 18.0 and 208.7

Mg ha−1 with a mean of 117.1 Mg ha−1. The ranges of the FHCAR and FHCAR-SMOOTH

models were 18.2 – 210.1 Mg ha−1 and 21.3 – 215.0 Mg ha−1 with means of 116.2 and 118.4

Mg ha−1, respectively. Figure 2.2 maps the direct and posterior means of AGB for FH,

FHCAR, and FHCAR-SMOOTH model estimates for the individual stands. A scatter plot

of these direct and posterior SAE model estimates does not reveal any regions of deviation

(Fig. 2.3). Following the methods of Brown et al. (2001) and You and Zhou (2011), bias

due to model misspecification was assessed through fitting linear models between the direct,

assumed to be design-unbiased, and the posterior means of the SAE model estimates. The

slopes of the individual linear models were 1.003, 1.002, and 1.063 for FH, FHCAR, and

FHCAR-SMOOTH posterior means, respectively, which suggests there is not a systematic

bias across the range of AGB values. The R2 for each was 0.843, 0.838, and 0.890 for the

FH, FHCAR, and FHCAR-SMOOTH posterior means.
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Figure 2.2: Posterior mean aboveground biomass (Mg ha−1) for the (a) direct estimate, (b)
FH model, (c) FHCAR model; (d) FHCAR-SMOOTH model.

The coefficient of variation (CV), defined as the square root of the posterior variance

divided by the posterior mean, was used as the measure of precision among the direct, FH,

FHCAR, and FHCAR-SMOOTH model estimates with a smaller value indicating better

precision. For the direct estimates CV ranged between 0.004 and 1.156 with a mean of

0.363. The ranges for the FH, FHCAR, and FHCAR-SMOOTH models were 0.004 – 0.510,

0.004 – 0.398, 0.037 – 0.363 with means of 0.148, 0.133, and 0.106, respectively. Using a
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Figure 2.3: Mean aboveground biomass (Mg ha−1) for direct estimates versus posterior
means of FH, FHCAR, and FHCAR-SMOOTH models.

common CV threshold of 0.15 for stand-level estimates (Mauro et al. 2016), 29 of the 226

stands were at or below this threshold for the direct and 161 for the FH model estimates.

The FHCAR and FHCAR-SMOOTH models had 168 and 195 stands, respectively, at or

below the threshold. Figure 2.4 maps the CV of the individual stands with the lightest

shaded stands meeting or exceeding the CV threshold. Figure 2.5 shows the CV of the

direct and three model estimates against the stands ordered from smallest to largest CV

of the direct estimator. Reductions in CV are observed between the direct estimator and

the FH model for all but two stands, and even greater reductions are observed between the

direct estimator and the FHCAR model. Further reductions in CV are observed between

the FH and FHCAR model for 186 stands. The smoothing of the sampling variance for the

FHCAR-SMOOTH model shows larger estimates of CV than even the direct estimator at

the low end of the CV direct estimator. A total of 17 stands had a CV for the FHCAR-

SMOOTH model greater than the direct estimator. These stands were generally stands with

four or fewer variable radius plots that had low variation among the plots. The remaining
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Figure 2.4: Coefficient of variation of the (a) direct estimate, (b) FH model, (c) FHCAR
model; (d) FHCAR-SMOOTH model.

stands’ CV values showed a similar pattern to the FHCAR model.

The percent reductions in CV from the direct estimator to the FH model ranged from

-0.9% to 88.0% with a mean of 52.3%. A wider range in percent reduction of -0.7% – 90.7%

was observed from the direct estimator to the FHCAR model and a mean of 56.9%. Gains

were also observed in percent CV reduction from the FH to the FHCAR model with a range

of -34.6% – 36.0% and mean of 10.8%. The largest range in percent reduction was seen for
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Figure 2.5: Estimates of coefficient of variation (CV) versus stands ordered by increasing
CV of direct estimate.

the FHCAR to the FHCAR-SMOOTH model of -2220% – 56.9% and a mean of -1.2%. The

average percent change across stands between the FHCAR and FHCAR-SMOOTH models

was negative mainly due to large percent changes (< -1000%) in a few of the stands as

depicted in Figure 2.6. Excluding these two stands, the mean percent change in CV between

the FHCAR and FHCAR-SMOOTH models was 13.9%.

Table 2.3 shows the mean percent reduction in CV for FH to FHCAR models and FHCAR

to FHCAR-SMOOTH models by number of neighboring stands. For the FH to FHCAR mod-

els, a general increasing trend was observed in percent CV reduction with increasing number

of neighbors (ranging from -25.2% to 36.0%) with a slight drop moving from ten to eleven

neighbors. A similar pattern was observed for the FHCAR to FHCAR-SMOOTH models.

The smaller number of neighbors (i.e., 1–3 and 5) had a negative value indicating reduction

from FHCAR-SMOOTH to FHCAR (ranging from -35.1% to -21.8%), and the remaining

number of neighbors showed reduction from FHCAR to FHCAR-SMOOTH (ranging from

20.3% to 43.9%).
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Figure 2.6: Percent reduction in coefficient of variation from (a) direct estimate to FH
model, (b) direct estimate to FHCAR model, (c) FH to FHCAR model; (d) FHCAR to
FHCAR-SMOOTH model.

The precision of the SAE models was also assessed by the width of the credible intervals,

where narrower intervals indicate less uncertainty. The 95% credible interval widths of mean

AGB are shown in Figure 2.7 for the FH, FHCAR, and FHCAR-SMOOTH models. The

credible interval widths for the FH model ranged from 1.6 to 70.8 Mg ha−1 with a mean

width of 57.2 Mg ha−1. For the FHCAR model, the range of the credible interval widths

were slightly wider, ranging from 1.5 to 87.3 Mg ha−1, and the mean width was also smaller
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Table 2.3: Mean CV reduction (%) between SAE models by number of neighboring stands.

Number of FH to FHCAR to
Neighbors FHCAR FHCAR-SMOOTH
1 -25.2 -33.4
2 -7.3 -35.1
3 1.5 -21.8
4 9.3 21.6
5 15.3 -32.8
6 20.1 21.9
7 23.6 32.7
8 27.6 24.6
9 30.4 29.1
10 34.2 20.3
11 28.1 39.3
13 36.0 43.9

at 50.3 Mg ha−1. The range for the FHCAR-SMOOTH model was smaller than the previous

two models from 20.3 to 66.3 Mg ha−1; however, the minimum credible interval width was

much larger than both the FH and FHCAR models. The mean of the credible interval width

of the FHCAR-SMOOTH model was 41.5 Mg ha−1, which was slightly smaller than the

FHCAR model.

2.4 Discussion

In this study, we found P25 and P75 to be the LiDAR covariates that explained the

greatest variation in stand-level AGB. Hayashi et al. (2015) using the same data from NRF

found the height of P45 to be most significant in explaining AGB estimates. One possible

explanation for this difference is the LiDAR covariates used in this study were summaries

at the area-level (stand-level), while Hayashi et al. (2015) examined relationships between

AGB and LiDAR covariates at the unit-level (plot-level). Goerndt et al. (2011) also found

LiDAR covariates to differ in their final regression model for stand-level versus plot-level

relationships. Many studies (e.g., Lefsky et al. 2002) have also found P95, generally regarded

as canopy height, to be a common explanatory variable; however, this was not the case in

our final linear model. We could have explored more LiDAR covariates; however, the focus
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Figure 2.7: 95% credible interval widths of AGB (Mg ha−1) for the (a) FH, (b) FHCAR;
(c) FHCAR-smooth models.

of this paper was on applying the HB SAE framework and not to finding the best linking

model.

Recently, Breidenbach et al. (2016) and Mauro et al. (2016) examined estimation of

variance associated with model-based SAE from a frequentist perspective. In this study,

we offered the hierarchical Bayesian method as an alternative that provided access to the

full posterior distributions of the variables of interest and simplified interpretation of model
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parameter inference. For the FH model, the EBLUP had smaller σ2v compared with HB. We

see this as a strength of the HB model, in that the HB mode of inference provides a more

realistic accounting of uncertainty associated with estimating AGB. As a contribution, we

have supplied the necessary functions to reproduce this research that could be applied to

datasets with similar applications. This study also highlights the suitability of applying VRP

for gains in sampling efficiency when coupled with LiDAR covariates that are summarized

at the stand-level.

Large reductions in CV were seen in the application of either the FHCAR or FHCAR-

SMOOTH model to the NRF stands due to strong area effects. Magnussen et al. (2014) also

examined small area applications accounting for spatial autocorrelation with improvements

for Swiss forest districts. Additionally, Breidenbach et al. (2016) found large improvements

in coverage probability when incorporating spatial autocorrelation into the variance estimate

for the confidence intervals. These examples show that, when present, accounting for spatial

autocorrelation can better represent the uncertainty in the variables of interest.

Smoothing of sampling variances (Eq. 2.2) in the FHCAR-SMOOTH model decreased

credible interval widths compared to the FHCAR model; whereas, for stands with fewer

neighboring stands and smaller sample sizes the FHCAR model had smaller credible interval

widths. However, this may be a result of increasing the sampling variance for the smaller

stands by applying smoothing and may be more reflective of the instability of variance with

these small sample sizes. The method of smoothing based on stand area may not be reflective

of increased variation in smaller stands due to the practice of delineating stands based on

their similarities in management history, species composition, and age.

One potential drawback of applying SAE at the area-level is the inability to assess within

stand variation, as can be done when aligning LiDAR and plot data at the unit-level (e.g.,

Hayashi et al. 2016, Woods et al. 2011). However, as seen in Hayashi et al. (2016) a de-

termination of prediction unit size influences inference at the stand- and forest-level. For

area-level analyses, the size of the areas can be adjusted to meet the application of interest

24



with the requirement of at least two ground samples within each area for estimating the

sampling variance.

A potential practical application of this research would be to extend AGB to carbon

estimates for forest carbon accounting projects. SAE models could be cost effective in

reducing uncertainty where paucity of field plots makes direct estimates unreliable for the

project.

Additionally, future work will be to extend this study to the multivariate setting similar

to the work of Porter et al. (2015). In this extension, cross-correlations in the multivariate

setting could improve AGB estimates along with other common forest inventory variables,

e.g., basal area, tree density, or volume. The HB SAE framework demonstrates the utility

of applying common ground inventory techniques, i.e., sampling with VRP, with available

remotely sensed data for reducing uncertainty at the area-level.
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CHAPTER 3

MULTIVARIATE HIERARCHICAL BAYESIAN MODELS FOR SMALL
AREA ESTIMATION OF FOREST VARIABLES USING LIDAR

3.1 Introduction

Forest inventory efforts typically follow a sampling design to meet multiple objectives.

The inventories are often designed to collect information for a range of outcomes of interest.

Some of the most common forest inventory outcomes of interest related to forest management

are aboveground biomass (Mg·ha−1), basal area (m2·ha−1), cubic volume (m3·ha−1), and

tree density (no. trees·ha−1); these are the outcomes of interest in this study. A multivariate,

rather than a univariate approach, to modeling these four outcomes may be beneficial for

increasing the precision of outcomes that are more difficult to model from remote sensing,

i.e., tree density (Finley et al. 2013).

Generally, the data are collected through the establishment of a systematic grid of fixed-

area plots (FAP) or variable-radius plots (VRP) across the region of interest. The perma-

nence of the plots and inventory objectives will determine the type of plots to be utilized

(Maltamo et al. 2009). A greater cost efficiency generally results from the establishment of

VRP for operational inventories over FAP research inventories (Rice et al. 2014). Another

solution for reducing the number of plots established and increasing sampling efficiency is

the collection of remote sensing covariates, e.g., light detection and ranging (LiDAR), that

cover the full range of natural variability. Numerous studies have been conducted to relate

these four outcomes of interest with LiDAR covariates (see reviews by McRoberts et al.

2010, Næsset et al. 2004). Often the LiDAR covariates are extracted at a footprint that

aligns with ground-based sample plots, especially when models are developed for analysis at

the plot level, also referred to as the unit level (see, e.g., Babcock et al. 2015; 2016, Finley

et al. 2017, Gregoire et al. 2016). FAP are commonly the plot type of choice for unit-level
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analysis; however there have been several studies that have examined the proper resolution

for combining LiDAR with VRP (see, e.g., Deo et al. 2016, Hayashi et al. 2015).

The alternative choice to a unit-level analysis is an area-level analysis for which the

inventory plots and remote sensing data may be misaligned (Goerndt et al. 2011). The

most common area of interest in an area-level analysis is the forest stand. Here, we will

use the efficiency of VRPs in combination with LiDAR data to determine stand-level per

ha values for aboveground biomass, basal area, cubic volume, and tree density. Besides

the choice between a unit- and area-level analysis, the cost and time to establish plots are

determining factors to the number of plots that are established. Generally, the inventory is

designed to meet forest-level accuracy and precision, and thus may result in small sample

sizes for certain stands. This problem is most often ameliorated through a model-based

solution known as small area estimation (SAE). SAE borrows strength across related areas

to improve estimation for the small area of interest, i.e., an individual stand. For more

in-depth details on SAE, see Rao and Molina (2015). The small area models are defined by

the inclusion of an explicit model with random effects that account for variation that was

unable to be explained by the covariates in the model mean.

In SAE forestry applications, the frequentist approach using empirical best linear unbi-

ased prediction (EBLUP) has been most commonly employed for univariate outcomes (Go-

erndt et al. 2011, Breidenbach and Astrup 2012, Goerndt et al. 2013, Magnussen et al. 2014,

Mauro et al. 2016). One recent forestry application has examined a multivariate approach to

EBLUP for the outcomes of basal area and volume (Mauro et al. 2015). Here, we employ the

hierarchical Bayesian (HB) mode of inference that has been recently applied to the univariate

case of aboveground biomass by Ver Planck et al. (2018). We then expand these univariate

HB SAE models to the multivariate case to increase precision in each outcome by taking

advantage of potential strong correlations among our four outcomes of interest. A unit-level

multivariate approach has been demonstrated by Finley et al. (2013) to increase precision

in outcomes that are more difficult to model from remote sensing, e.g., tree density. The
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HB method provides access to posterior distributions for the small area outcomes of interest

and is flexible for adding complex covariance structures (Porter et al. 2015), and parameter

inference does not rely upon asymptotic assumptions (Pfefferman 2013).

The primary objective of this study was to apply a multivariate HB framework to increase

the precision of estimates for mean aboveground biomass, mean basal area, mean volume,

and mean tree density at the stand level by borrowing strength across all stands through the

use of LiDAR covariates and through the correlation among outcomes. Here, we consider the

relationship among outcomes with the same number of observations for each outcome, where

the information from other outcomes can improve the estimation for an individual outcome

of interest. A potential extension of the multivariate framework could be to the case where

differences in sample size exist among the outcomes for an area of interest; however, only

the first case is examined in the current study. Additionally, we apply the univariate HB

framework for each of the outcomes for comparison to the multivariate case. Furthermore, we

add a separable conditional autoregressive structure to the stand-level random effects of the

multivariate model to assess potential gains in precision for the four outcomes. The remainder

of the study follows with: i) a description of the study area along with relevant data for the

univariate and multivariate small area models; ii) a description and implementation of the

small area models; and iii) the results and discussion of applying small area models for these

four common forest inventory outcomes.

3.2 Methods

3.2.1 Data

3.2.1.1 Study area

The area of interest for this study was the Noonan Research Forest (NRF) near Fredericton,

New Brunswick, Canada (N 45◦ 59’12”, W 66◦ 25’15”). The NRF has been managed by the

University of New Brunswick since 1985 and is approximately 1500 ha in size including 115 ha

28



of nonforested wetlands with a total of 271 stands. The subsequent analysis uses a subset of

224 stands each with a minimum of two VRP per stand and sampling variation greater than

zero for each outcome. These stands ranged in size from 0.6 to 47 ha with an average size of

6.6 ha (Table 3.1). The forest is composed of hardwood, mixed, and softwood stands with

the major species being aspen (Populus spp.), balsam fir (Abies balsamea L. (Mill.)), birch

(Betula spp.), eastern white pine (Pinus strobus L.), red maple (Acer rubrum L.), and spruce

(Picea spp.). Figure 3.1a shows the stands by forest type with 24 intolerant hardwood stands,

89 mixed woods dominated by intolerant hardwoods stands, 54 mixed woods dominated by

softwoods stands, 1 white pine stand, 11 black spruce stands, 38 tolerant softwoods stands,

and 7 balsam fir stands.

3.2.1.2 Variable radius plot data

In 2010, a 100×100 m grid was laid out across the NRF. At each grid intersection a VRP

was established with proper boundary corrections and trees greater than 6.0 cm diameter

at breast height (DBH) were selected into the sample using a 2M basal area factor (BAF)

angle gauge. Species and DBH were recorded for each sample tree. A larger, 27M BAF,

angle gauge was used to select a subset of trees for height measurements. Tree height

was then modeled for the trees without height measurements, see Hayashi et al. (2016) for

more details. For the first outcome of interest (aboveground biomass), plot estimates in

Mg·ha−1 were calculated using Jenkins et al. (2003) species-group equations. The second

and fourth outcomes of basal area (m2·ha−1) and tree density (trees·ha−1) were estimated

directly from the size and number of sample trees. For the third outcome of interest (cubic

volume), plot estimates in m3·ha−1 were derived from individual tree volumes estimated with

local species-specific volume equations (Honer 1967). Stand-level estimates were obtained

by averaging plot-level estimates for each of the outcomes. Table 3.1 summarizes these

stand-level estimates.
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3.2.1.3 LiDAR data

The full waveform LiDAR data were collected on October 21 and 22, 2011 using a Riegl LMS

Q680i laser scanner mounted on an airplane. The sensor had a pulse repetition frequency of

180 kHz with a laser wavelength of 1550 nm and a scan angle < 28.5◦ from nadir. The forest

was covered in overlapping strips to achieve at a minimum of six pulses per m2, footprint of

0.35 m, and up to eight returns per pulse (Hayashi et al. 2015).

Stand-level LiDAR covariates were computed using the lascanopy function in the LAS-

tools software suite (Isenburg 2016). The NRF stand polygons, LAS files, and arguments

to define the vertical extent of the LiDAR profile considered, were passed into the las-

canopy function to generate the desired LiDAR covariates. Here, we consider stand-level

LiDAR signal derived percentiles—height in meters at which some percent of the energy is

returned—labeled P followed by the percentile, as well as coverage and signal shape vari-

ables, e.g., density (dns) of cover, kurtosis and skewness. The density covariate, expressed

as a percentage, is defined as the number of LiDAR returns above 2 meters divided by the

total number of returns. Exploratory analysis using a backward selection procedure resulted

in various combinations of percentile heights, dns, and kurtosis having the lowest Akaike

information criterion value for the individual outcomes under consideration. The variance

inflation factor, where values less than the general rule of ten for assessing multicollinearity

(see Kutner et al. 2004, p.409) are acceptable, was also calculated to reduce the number

of covariates for each of the outcomes. The final selected covariates for the SAE models

were P25 for the aboveground biomass and basal area outcomes, P50 for the cubic volume

outcome, and dns for the tree density outcome.
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Table 3.1: Summary statistics for stand area, number of plots, mean aboveground biomass,
mean basal area, mean volume, mean tree density, sampling variances, and LiDAR
covariates for the Noonan Forest (m = 224 stands) dataset.

Min Max Mean SD
Stand Area (ha) 0.6 47.3 6.2 5.6

Number of plots 2 44 6.0 5.5

Mean aboveground biomass (Mg·ha−1) 16.9 223.5 117.8 44.9

Mean basal area (m2·ha−1) 4.20 43.5 25.1 8.45

Mean volume (m3·ha−1) 23.8 313 153 60.9

Mean tree density (trees·ha−1) 117 3628 1392 531

σ2i1 0.158 7948 1711 1431

σ2i2 1.33 393 75.7 61.5

σ2i3 0.019 16378 3253 2806

σ̃2i4 0.001 3.92 0.373 0.407

P25 (m) 2.18 8.35 5.20 1.29

P50 (m) 3.40 14.9 8.39 2.16

dns (%) 31.2 92.6 76.5 11.0

3.2.2 Models

3.2.2.1 Direct estimator and small area models

The direct estimator applied assumed simple random sampling for point and variance es-

timates for the four outcomes: aboveground biomass, basal area, cubic volume, and tree

density. The direct estimator for tree density was subsequently log transformed to meet

the SAE model normality assumption, whereas the other outcomes remained untransformed

into the small area models. The associated sampling variance for tree density was also trans-

formed via the delta method (Casella and Berger 2002). We begin by fitting the univariate

SAE models of Ver Planck et al. (2018) for the Fay-Herriot (FH) and FH with conditional

autoregressive random effects (FHCAR) models for the individual outcomes. Then, we ex-

panded the univariate FH model to the multivariate case, similar to Porter et al. (2015), for

stand i in 1, 2, . . . ,m stands and outcome j in 1, 2, . . . , n defined as:
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Figure 3.1: Noonan Research Forest stands by (a) forest type (balsam fir; tolerant
softwoods; black spruce; white pine; mixed woods dominated by softwoods; mixed woods
dominated by intolerant hardwoods; intolerant hardwoods), (b) stand-level P25 (m), (c)
stand-level P50 (m), and (d) stand-level dns (%) LiDAR covariates.

Yij = θij + εij , (3.1)

θij = x′ijβj + vij ,
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where Yij is the direct estimate, the parameter of interest θij is mean aboveground biomass

(j = 1), basal area (j = 2), cubic volume (j = 3), or log tree density (j = 4), and εij is a

normally distributed error with mean zero and variance σ2ij for aboveground biomass, basal

area, and cubic volume. For log tree density, the variance is σ̃2i4 = σ2i4/Y
2
i4. The sampling

error terms are assumed to be known and independent between locations and combined

into ε ∼ N(0,Σ), where Σ is an nm×nm matrix containing the sampling errors stacked by

outcome within location along the diagonal. The additive mean of θij comprises an intercept

and stand-level covariates held in the pj × 1 column vector x and associated pj × 1 vector of

regression coefficients βj . The total number of covariates p is the
∑n

j=1 pj and gathered into

the nm×p matrixX stacked by location. The stand-level random effects term vij is normally

distributed with mean zero and variance σ2vj . Similar to the sampling variances, we gather

the stand-level error terms in Σv, an nm× nm matrix stacked by outcome within location.

We parameterize Σv, similar to Porter et al. (2015), by Σv = Im ⊗ Σo with ⊗ defined as

the Kronecker product and Σo is the n× n covariance matrix between the outcomes that is

given an inverse-Wishart (IW) prior distribution. We refer to this multivariate SAE model

as the FHIW model.

As in the univariate case, it is reasonable to think that unobserved environmental vari-

ables could exhibit spatial autocorrelation and affect the observed outcomes. For this, we

consider a separable covariance structure that uses a single conditional autoregressive (CAR)

model along with the multivariate dependence in outcomes through the Kronecker product.

We refer to this model as the FHSEP model by replacing the Σv in the FHIW model with

Σv = Σs⊗Σo, where Σo has the same inverse-Wishart prior for the outcomes in the FHIW

model. The Σs denotes the shared spatial CAR dependence for all of the outcomes as

Σs = (D− ρW )−1, where D is a m×m matrix with the number of neighbors of the stands

along the diagonal. Here, stands are considered neighbors with adjoining borders. The

m×m matrix W has the value of 1 in off diagonal locations for stands that are neighbors

with zeros elsewhere, and ρ is the spatial dependence parameter.
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The Bayesian SAE model specifications are completed by assigning prior distributions to

parameters (Gelman et al. 2014). The same prior distributions of Ver Planck et al. (2018)

for AGB were applied for the FH and FHCAR models for the three other outcomes of

interest. For the FHIW and FHSEP models, each regression coefficient in β was assigned

a flat prior distribution, Σo was given an IW prior distribution, ρ’s prior was uniform with

support between zero and one. The IW’s shape hyperparameter was set to one plus the

number of outcomes. The IW’s scale hyperparameter was set to the identity matrix with

dimension of the number of outcomes. A Markov chain Monte Carlo (MCMC) algorithm was

used to sample from parameters’ posterior distributions. Specifically, a Gibbs algorithm was

developed to sample from θ = (θ11, θ21, . . . , θmn), β, and Σo, and a Metropolis-Hastings

algorithm was used to sample from ρ’s posterior distribution. We completed all analyses

using R statistical software (R Core Team 2015). For all of the SAE models, parameter

posterior inference was based on 3,000 post burn-in MCMC samples from each of L = 3

chains. Chain mixing and convergence were diagnosed using a multivariate potential scale

reduction factor of less than 1.1 for all parameters considered (Gelman et al. 2014).

3.3 Results

The univariate FH and FHCAR model parameter estimates are given in Table 3.2. Here,

the 95% credible intervals for all of the βij do not include zero, which suggests the associated

LiDAR covariates explain a substantial portion for each of the direct estimate’s variability.

The credible intervals for the λ values of the FHCAR models also do not include zero indicat-

ing that there is potential spatial structure in the random area effects; and the overlapping

credible intervals among outcomes suggest a single CAR model could be used for these out-

comes in a multivariate setting, such as the proposed FHSEP model. However, the extension

of the FHIW model to the FHSEP model considered had posterior estimates of ρ near zero;

and therefore was not considered further.

For the first outcome of interest, the stand-level point estimates of aboveground biomass
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Table 3.2: The median and 95% credible intervals for the univariate Fay-Herriot (FH), and
FH with conditional autoregressive (FHCAR) model parameters for the four outcomes of
interest.

Parameter FH FHCAR
β01 116.5 (111.9, 120.9) 115.7 (108.0, 123.3)

β11, P25 40.22 (36.20, 44.34) 39.82 (35.80, 43.90)

β02, 25.0 (24.03, 25.94) 24.92 (23.58, 26.25)

β12 P25 7.56 (6.69, 8.46) 7.60 (6.70, 8.50)

β03, 152.2 (145.9, 158.3) 151.2 (142.2, 160.1)

β13, P50 54.04 (48.42, 59.79) 53.12 (47.48, 58.85)

β04, 7.17 (7.11, 7.24) 7.17 (7.07, 7.26)

β14, dns 0.135 (0.063, 0.210) 0.134 (0.056, 0.213)

σ2v1 284.1 (201.3, 403.3) 468.7 (309.6, 711.6)

σ2v2 12.49 (8.80, 17.96) 20.39 (12.86, 31.89)

σ2v3 504.5 (346.9, 737.1) 794.2 (499.9, 1258)

σ2v4 0.060 (0.039, 0.088) 0.109 (0.060, 0.179)

λ1 — 0.681 (0.286, 0.960)

λ2 — 0.514 (0.113, 0.893)

λ3 — 0.589 (0.164, 0.899)

λ4 — 0.465 (0.049, 0.891)

for the FH model ranged between 18.8 – 215.2 Mg·ha−1 with a mean of 116.5 Mg·ha−1.

The range of the FHCAR model was nearly identical, 18.3 – 218.1 Mg·ha−1, with a mean

of 115.6 Mg·ha−1. The FH and FHCAR models for basal area ranged between 5.37 – 43.4

m2·ha−1 and 5.66 – 43.8 m2·ha−1 with means of 25.0 and 24.9 m2·ha−1, respectively. Cubic

volume ranged between 24.69 – 313.6 m3·ha−1 with a mean of 152.3 m3·ha−1 for the FH

model; and for the FHCAR model, the cubic volume had a range of 22.13 – 310.9 m3·ha−1

with a mean of 151.2 m3·ha−1. The final outcome of interest, tree density, had ranges of

501 – 2328 trees·ha−1 and 529 – 2488 trees·ha−1 with means of 1326 and 1323 trees·ha−1

for the FH and FHCAR models, respectively.

For the multivariate FHIW model, Figure 3.2 maps the posterior means for the esti-
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mates of the four outcomes of interest for the individual NRF stands. The ranges of the

estimates were: 23.0 – 206 Mg·ha−1, 6.55 – 42.4 m2·ha−1, 10.36 – 308.7 m3·ha−1, and 484

– 2390 trees·ha−1 for aboveground biomass, basal area, cubic volume, and tree density, re-

spectively. The mean estimates were 114.9 Mg·ha−1 for aboveground biomass, 24.8 m2·ha−1

for basal area, 154.9 m3·ha−1 for cubic volume, and 1315 trees·ha−1 for tree density. These

multivariate estimates are comparable to those of the univariate models.

A scatter plot of these direct and posterior SAE model estimates does not reveal any

regions of deviation for the outcomes of aboveground biomass, basal area, and cubic volume

(Fig. 3.3a-c). However, tree density does show some larger deviations from the one-to-one

line for direct estimates of 2000 trees·ha−1 or greater for all of the SAE models examined

(Fig. 3.3d). Following the methods of Brown et al. (2001) and You and Zhou (2011), bias

due to model misspecification was assessed through fitting linear models between the direct,

assumed to be design-unbiased, and the posterior means of the SAE model estimates. The

slopes of the individual linear models were 1.636, 1.447, and 1.554 for FH, FHCAR, and

FHIW posterior means of tree density, respectively, which suggests there may be a systematic

bias across the range of tree density values. The R2 for each were also low at 0.498, 0.481, and

0.525 for the FH, FHCAR, and FHIW posterior means. The slopes for the other outcomes

had individual linear models ranging from 0.976 – 1.085 and R2 ranging between 0.809

– 0.878, which suggests no systematic bias for these outcomes across the range of values

examined.
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Figure 3.2: The posterior means for the outcomes of (a) mean aboveground biomass
(Mg·ha−1), (b) mean basal area (m2·ha−1), (c) mean volume (m3·ha−1); (d) mean tree
density (number of trees·ha−1) for the FHIW model.

The coefficient of variation (CV), defined as the square root of the posterior variance

divided by the posterior mean, was used as the measure of precision among the direct,

FH, FHCAR, and FHIW model estimates with a smaller value indicating better precision.

Figure 3.4 shows the CV of the direct and three SAE model estimates against the stands

ordered from smallest to largest CV of the direct estimator. For the direct estimates CV

ranges were 0.004 – 1.156, 0.034 – 1.273, 0.001 – 1.121, and 0.027 – 1.979 for aboveground
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Figure 3.3: (a) Mean aboveground biomass (Mg·ha−1), (b) mean basal area (m2·ha−1), (c)
mean volume (m3·ha−1); (d) mean tree density (number of trees·ha−1) for direct estimates
versus posterior means of FH, FHCAR, and FHIW models.

biomass, basal area, cubic volume, and tree density, respectively. The means of these direct

estimate CVs were 0.365, 0.358, 0.379, and 0.549 for the four outcomes. For aboveground

biomass, the ranges for FH, FHCAR, and FHIW models were all narrower than the direct

estimates (0.004 – 0.470, 0.004 – 0.429, 0.004–0.293) with means of 0.148, 0.130, and 0.100,
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respectively. In the case of basal area, the ranges for the FH and FHCAR were 0.034 –

0.391 and 0.0343 – 0.360, while the FHIW was narrower with 0.019 – 0.269. The means of

the three SAE models were 0.140, 0.127, and 0.107. Cubic volume had ranges of 0.001 –

0.522, 0.001 – 0.463, and 0.001 – 0.754 for the FH, FHCAR, and FHIW models. Of the SAE

models for cubic volume, FHIW had the largest maximum value of 0.754 which is associated

with a regenerating forest stand and the lowest cubic volume direct estimate of all the NRF

stands. The means for these CVs were 0.153 and 0.141 for the FH and FHIW models. For

this outcome, FHCAR had the lowest mean value of 0.135. The CV for the FH model of

tree density ranged between 0.026 – 0.283 with a mean value of 0.219. The FHCAR model

for this outcome ranged between 0.026 – 0.337 with a mean of 0.210; and the FHIW model

ranged between 0.027 – 0.304 with a mean of 0.223.

Using a common CV threshold of 0.15 for stand-level estimates (Mauro et al. 2016), 27

of the 224 stands were at or below this threshold for the direct and 157 stands for the FH

model estimates of aboveground biomass. The FHCAR and FHIW models had 167 and 193

stands, respectively, at or below the threshold. For basal area, the direct and FH model

estimates had 33 and 164 stands that met this threshold, respectively. The FHCAR and

FHIW had slightly more stands that met the threshold with 167 and 192 stands, respectively.

In the case of cubic volume, the direct, FH, and FHIW model estimates had 22, 156, and

160 stands that met the threshold; the FHCAR model had the most stands with 166 stands.

Tree density had fewer than 12 stands that met the CV threshold for the direct and SAE

model estimates; so that, the CV threshold was increased to 0.25 for this outcome. The

direct, FH, FHCAR, and FHIW models had 20, 211, 190, and 186 stands, respectively, for

tree density that met this increased threshold.

Reductions in CV are observed between the direct estimator and the FH model for

all outcomes except one stand for cubic volume (Fig. 3.5), and even greater reductions

are observed between the direct estimator and the FHCAR and FHIW models. Directly

comparing the benefit of the multivariate FHIW model versus the univariate FH model, 223
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Figure 3.4: Estimates of coefficient of variation (CV) for direct estimates and FH, FHCAR,
FHIW models of (a) mean aboveground biomass (Mg·ha−1), (b) mean basal area
(m2·ha−1), (c) mean volume (m3·ha−1); (d) mean tree density (number of trees·ha−1)
versus stands ordered by increasing CV of direct estimate. The horizontal dashed line
indicates a CV value of 0.15; and the horizontal dotted line indicates a CV value of 0.25.

stands, 224 stands, 192 stands, and 55 stands had further reductions in CV for the outcomes

of aboveground biomass, basal area, cubic volume, tree density, respectively. The percent

reductions in CV for aboveground biomass from the direct estimator to the FH model ranged
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from 0.4% to 88.1% with a mean of 52.9% (Fig. 3.5a). For basal area, percent reductions in

CV from the direct estimator to the FH model ranged from 1.4% to 87.5% with a mean of

53.6% (Fig. 3.5b). Figure 3.5c shows the percent reductions in CV for cubic volume from

the direct estimator to the FH model ranged from -1.3% to 85.7% with a mean of 53.7%

for the NRF stands. For tree density, percent reductions in CV from the direct estimator

to the FH model ranged from 1.6% to 86.5% with a mean of 52.7% (Fig. 3.5d). Gains were

also observed in percent CV reduction from the FH to the FHIW model for aboveground

biomass with a range of -0.4% – 86.2% and mean of 30.6%, for basal area with a range of

5.4% – 78.4% and mean of 22.1%; and for cubic volume with a range of -76.5% – 74.6% and

mean of 9.8% (Fig. 3.6a-c). Gains in percent CV reduction were not as prevalent between

the FH and FHIW models for tree density with a range of -8.5% – 5.8% and mean of -1.8%

(Fig. 3.6d).
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Figure 3.5: Percent reduction in coefficient of variation from direct estimate to FH model
for (a) mean aboveground biomass (Mg·ha−1), (b) mean basal area (m2·ha−1), (c) mean
volume (m3·ha−1); (d) mean tree density (number of trees·ha−1).

The precision of the SAE models was also assessed by the width of the credible intervals,

where narrower intervals indicate less uncertainty. The 95% credible interval widths of mean

aboveground biomass for the FH and FHCAR models ranged between 1.54 – 69.1 Mg·ha−1

and 1.55 – 88.3 Mg·ha−1 with mean widths of 57.0 Mg·ha−1 and 49.2 Mg·ha−1, respectively.

The FHIW model for aboveground biomass had a narrower range than the other two SAE

models (1.54 – 51.4 Mg·ha−1) and a smaller mean width of 39.7 Mg·ha−1. Similar to the
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Figure 3.6: Percent reduction in coefficient of variation from FH model to FHIW model for
(a) mean aboveground biomass (Mg·ha−1), (b) mean basal area (m2·ha−1), (c) mean
volume (m3·ha−1); (d) mean tree density (number of trees·ha−1).

pattern of aboveground biomass SAE models, basal area had credible interval widths for

the FH and FHCAR models ranging from 4.35 m2·ha−1 – 14.5 m2·ha−1 and 4.22 m2·ha−1

– 18.3 m2·ha−1 with mean widths of 12.1 m2·ha−1 and 10.8 m2·ha−1; whereas, the FHIW

model had widths ranging from 2.19 m2·ha−1 – 12.2 m2·ha−1 with a mean width of 9.46

m2·ha−1. In the case of cubic volume, the three SAE model credible interval widths ranged

between 0.54 m3·ha−1 – 114 m3·ha−1 with mean widths of 76.7, 66.2, and 70.3 m3·ha−1
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for the FH, FHCAR, and FHIW models. For the SAE models of tree density, the credible

interval widths ranged between 227 – 1948 trees·ha−1 with mean widths of 1149, 1097, and

1162 trees·ha−1. Based upon mean credible interval widths, the FHIW model had the best

precision for the outcomes of aboveground biomass and basal area; whereas the FHCAR

model performed best for cubic volume and tree density.

3.4 Discussion

To our knowledge, all of the current SAE literature related to forestry applications (e.g.,

Goerndt et al. 2011; 2013, Magnussen et al. 2014) has examined univariate outcomes with a

single proceedings paper by Mauro et al. (2015), which examined the multivariate outcomes

of basal area and volume at the area level from a frequentist perspective. The multivariate

FHIW model reduced, on average, the CV for the outcomes of aboveground biomass and

basal area more so than both the FH and FHCAR models indicating modeling multiple

outcomes may be more informative to increasing precision than applying separate univariate

models. However, the gains were not as substantial for cubic volume and actually did not

improve precision for tree density. The issues with poorer performance for tree density

in the SAE models considered here may be a result of a pattern of underestimating the

outcome for more dense stands with greater than 2000 trees·ha−1. Goerndt et al. (2011)

found similar issues with the EBLUP SAE model for tree density, although with a pattern

of overestimation for high density stands and underestimation for low density stands. Due

to this potential model misspecification for tree density, a different metric for precision other

than CV may need to be considered, such as mean squared error, to account for additional

bias induced by the model. The model may have failed for tree density for multiple reasons.

Two potential causes are: i) the occlusion of trees in the variable-radius plot sampling, or

ii) the inability of LiDAR to penetrate the canopy for measuring subcanopy trees. Here,

large reductions in CV were seen in the application of the FHCAR model relative to direct

estimates and more modest gains compared to the FH model due to strong area effects in
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the NRF. Magnussen et al. (2014) and Breidenbach et al. (2016) also found improvements

for small area applications in forestry that account for spatial autocorrelation.

In this study, we found P25 to be the LiDAR covariate that explained the greatest vari-

ation in stand-level aboveground biomass and basal area, P50 for stand-level cubic volume,

and dns for stand-level tree density. Hayashi et al. (2015) using the same data from NRF

found the height of P45 to be most significant in explaining aboveground biomass estimates;

Hayashi et al. (2016) found a combination of the 45th quantile of LiDAR height, maximum

canopy height, and LiDAR height where maximum point density occurs were best in mod-

eling plot-level volume estimates. Neither of these studies considered the outcomes of basal

area or tree density. A possible explanation for this difference is the LiDAR covariates used

in this study were a much smaller subset relative to the other two studies; and our LiDAR

covariates were summaries at the area-level (stand-level), while Hayashi et al. (2015) and

Hayashi et al. (2016) examined relationships between the outcomes of aboveground biomass

and volume with LiDAR covariates at the unit-level (plot-level). Also at the unit-level, Go-

erndt et al. (2010) examined univariate models for the outcomes of basal area and tree density

with LiDAR covariates in western Oregon. For basal area, Goerndt et al. (2010) found P5,

percentage of first returns greater than 3 m above the ground, and the interquartile distance

in the distribution of first returns as the best model. As for tree density, they found the

minimum value for the distribution of all first returns above 3 m, P10, and percentage of

first returns above 15 m and 21 m as the best model. Each of these models had relatively

high levels of variation explained of 0.823 and 0.877, respectively; whereas, our exploratory

analyses had values of 0.709 and 0.131 for these outcomes. These differences are not sur-

prising as our LiDAR covariates are summaries at the area-level rather than the unit-level.

Goerndt et al. (2011) also found LiDAR covariates to differ in their final regression model for

area-level versus unit-level relationships with particularly low value of variation explained,

0.209, for tree density. Many studies (e.g., Lefsky et al. 2002) have also found P95, generally

regarded as canopy height, to be a common explanatory variable; however, this was not the
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case in any of our final linear models. The fairly low percent of variation explained by dns

for the tree density outcome also indicates the need for identifying better LiDAR covariates

from those explored here.

One potential drawback of applying SAE at the area-level is the inability to assess within

stand variation, as can be done when aligning LiDAR and plot data at the unit-level (e.g.,

Hayashi et al. 2016, Woods et al. 2011). As recommendations in the literature improve

for aligning VRP with LiDAR covariates, the multivariate model presented here could be

adapted to the unit-level. Additionally, the extension of the FHIW model to the FHSEP

model did not improve the precision due to the posterior of the correlation parameter being

near zero. However, this may not be true for other applications so continued consideration

for the FHSEP model may be warranted. Another possible solution may be to move from the

CAR model for the random effects to incorporate a spatial structure similar to the current

work of Datta et al. (2017). The precision in outcomes of interest may also benefit from

the incorporation of temporal and spatio-temporal models when areas have been inventoried

across repeated time periods.
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CHAPTER 4

EVALUATION OF THE NATIONAL WOODLAND OWNER SURVEY
ESTIMATORS FOR PRIVATE FOREST AREA AND LANDOWNERS: A

CASE STUDY OF MONTANA

4.1 Introduction

Quantifying private forestland and understanding private landowner behavior at the state

level in the United States has been an interest of researchers for more than 40 years (Kingsley

and Finley 1975). Accurate and precise estimates inform outreach and assistance programs

to private forest landowners (PFLs) to achieve management and stewardship objectives. In

addition, researchers have been interested in understanding landowner behavior, objectives,

and values reflected in ownership and management decisions. According to Oswalt et al.

(2014), private forestland comprises more than 58% of all forest land in the United States

with larger proportions privately held in the North and South (74 and 87%, respectively) and

smaller proportions in the Rocky Mountains and Pacific Coast (26 and 39%, respectively)

regions. In part because of these large regional differences, many studies of private forest

ownership have been conducted at the state (Butler et al. 2005) and regional (Kaetzel et al.

2012) levels.

The US Department of Agriculture (USDA) Forest Service and Forest Inventory and

Analysis (FIA) program administer the National Woodland Owner Survey (NWOS) to pro-

vide the standard for state- and national-level estimates of private forest land area and

number of private landowners. Along with these estimates, additional related variables of

landowner attributes and behavior are collected. The FIA divides undifferentiated private

landowners into five ownership groups: i) corporate, including Native Corporations in Alaska

and private universities, ii) non-governmental conservation and natural resources organiza-

tions, iii) unincorporated local partnership, association, or club, iv) Native American, and

v) individual and family, including trusts, estates and family partnerships (O’Connell et al.
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2015). In the past, Smith et al. (2004) designated private ownerships into just two groups:

industrial and non-industrial private forest (NIPF) landowners. More recently, Smith et al.

(2009) and Oswalt et al. (2014) have moved to new private designations of corporate (group

i) and non-corporate (groups ii - v). Whereas, the NWOS private ownership classifications

designate group i as corporate, groups ii - iv as other private, and group v as family forest.

Family forest is the primary population of interest in the NWOS (Butler 2008, Butler et al.

2016b). Here, our population of interest is the group of PFLs as defined by Finley et al.

(2001) and Metcalf et al. (2012). PFLs are defined as all NIPF owners except for tribal

owners. Tribal ownerships are treated as a group independent from PFLs because of their

unique and complex governance structures (Nettheim et al. 2002) that do not align with any

existing definition of PFLs. Although this definition differs from the NWOS classifications,

the main objective of this research is to evaluate the estimators for a known population.

Legal ownership boundaries have been used in the past to assess PFL populations through

acquisition of local property tax records in either hard copy or digital form (e.g., Kittredge

et al. 2008, Kilgore et al. 2013). The advent of geographic information systems (GIS) and

remote sensing and the increasing availability of digitized and regularly updated cadastral

data sets has increased the accessibility and affordability of these data. Although availability

is increasing, the development and administration of these data often lies at the local or

county levels of government; few states have complete and freely available data sets. The

state of Montana is one of several states currently known to have polygon-based parcel data

that allow the determination of a known population. We used these data to establish a known

population of PFLs and evaluate the current estimators of the NWOS with full response for

total private forest area and PFL population size. Further impetus for this current research

comes from previous studies (e.g., Metcalf 2010, Metcalf et al. 2012) identifying shortcomings

with the NWOS estimators for analyses conducted at the county level. Statewide testing of

the estimators had so far been impossible because of lack of data. Recent clarifications and

improvements to the descriptions of the NWOS estimators have been provided by Dickinson

48



and Butler (2013) and Metcalf et al. (2014).

Using Montana as a case study, our objective was to also evaluate the behavior of the

current estimators of the NWOS under a variety of nonresponse scenarios. Non-response

bias is an issue affecting human dimensions research, especially quantitative survey research,

and can significantly affect estimates of population parameters (Vaske 2008). Dickinson and

Butler (2013), in their presentation of the NWOS estimators, acknowledge the need for better

methods to handle nonresponse in the NWOS. Recently, Dickinson et al. (in press) outlined

some potential methods for handling nonresponse in the NWOS. Landholding size is a key

indicator of landowner decisions and behavior (e.g., Zhang et al. 2005) and is especially

important in the estimator as landholding size is used directly to determine the proper

weights for estimation of PFL population size. Thus, different trends in landholding size

in relation to response rates can affect the performance of the estimators. Others have

identified nonresponse as an important influence on biophysical estimates when stratifying

between private and public ownerships in the US National Forest Inventory (McRoberts

2003, Patterson et al. 2012, Domke et al. 2014).

In survey sampling, there are two types of nonresponse: unit and item (Särndal et al.

1992, Lohr 2010). Here, our focus is exclusively on unit nonresponse related to the NWOS.

Little and Rubin (2014) describe the mechanisms of unit nonresponse as consisting of three

types: missing completely at random (MCAR); missing at random (MAR); and not missing

at random (NMAR). MCAR is defined by the mechanism of nonresponse being independent

of the data. In the past and present, the NWOS estimators have implicitly assumed a

nonresponse mechanism of MCAR and treated the survey respondents as representative of

the population (Butler et al. 2005, Dickinson and Butler 2013, Dickinson et al. in press). On

the other hand, MAR is defined as the mechanism of nonresponse depending only on the

components of responding data, and NMAR is defined by the distribution of nonresponse

depending upon the missing data values of nonresponse. Various modeling and weighting

methods can be used to deal with MAR and NMAR response mechanisms (Särndal et al.
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1992, Lohr 2010) with our proposed estimator focusing on an individual weighting method.

The three primary contributions of this manuscript are as follows: the evaluation of cur-

rent NWOS estimators of private forest area and PFL population size for a known PFL

population at the state level; the presentation of an alternative estimator of PFL population

size that explicitly accounts for various nonresponse scenarios; and the evaluation of the

impacts of nonresponse biases on each of these estimators. The remainder of the article is

organized as follows. First, we provide a description of the steps for defining a GIS-based

baseline population of PFLs. Second, we describe the sampling frame and procedure for

simulation. Third, we outline the current estimator used in the NWOS for estimating pri-

vate forest area and PFL population size along with an alternative estimator. Fourth, we

evaluate the impacts of different nonresponse scenarios through simulation on these estima-

tors. Finally, we present the results of the estimators under different scenarios followed by

discussion.

4.2 Methods

4.2.1 GIS-based Baseline Population Estimate

To allow an objective assessment of estimator functionality, we combined Montana cadastral

data with remotely sensed land cover data to create a spatially explicit, statewide database

of Montana PFLs. We began by determining forested land cover types (i.e., deciduous, ever-

green, mixed forests, and woody wetlands) from the National Land Cover Dataset (NLCD,

Jin et al. 2013) at a 30-m resolution and clipped to the extent of Montana. We then created

a separate raster layer indicating the presence of census water, as defined by Bechtold and

Patterson (2005), from the NLCD. To better align the raster and vector data, we resampled

the raster data to a 10-m resolution. After reclassifying the NLCD to include only those

pixels with forest cover types (the NLCD defines these pixels as at least 20% tree cover), we

considered a patch as forested when the total number of pixels in a patch was greater than 41

(for a 10-m resolution, an approximate area of 0.41 ha). The use of twenty percent tree cover
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may underestimate the true amount of forest area across the state by an unknown amount.

Pixels with a common edge within a patch were considered neighbors. Forest patches were

then converted from raster to polygons for subsequent intersection with ownership parcels.

These characteristics of forest were chosen to align as closely as possible to the FIA definition

of forest which stipulates that forest must be at least 10% cover of trees, at least 0.41 ha in

area, and 36.6 m wide (O’Connell et al. 2015). Of the three characteristics, only the width

of the derived forest patches was slightly less than the FIA definition.

Ownership of the forested areas was determined by combining shapefiles for all state-

wide parcels from the Montana cadastral website (Base Map Service Center Montana State

Library 2015). We processed parcel data at the county level and then aggregated to the

state level. To begin processing parcels at the county level, we identified ownerships in

the data set without a given owner name. Additional shapefiles of county, public lands,

and reservation boundaries from the Montana Cadastral website (Base Map Service Center

Montana State Library 2015) were used to expedite and aid in classifying these ownerships.

Parcels for which ownership was unknown that fell within the public lands boundaries were

assumed public, and those parcels that fell within the reservation boundaries were assumed

tribal. The remainder of unknown parcels were given a unique identifier and treated as unique

ownerships. In addition, due to misalignment between some parcel and public lands or parcel

and tribal boundaries, we examined ownership names of all parcels that fell completely or

partially within public lands or tribal boundaries to confirm public or private ownership.

Only parcels clearly attributed as private were retained as potential PFLs.

Parcels are not a corollary for owners as individual owners may control multiple parcels

(Kittredge et al. 2008). We dissolved all parcels by ownership name and address so parcels

with the same owner were treated as singular ownerships. To account for potential different

spellings of the same landowner, an additional dissolve of the remaining parcels was done

by ownership address only. We then intersected those dissolved parcels with forest patch

polygons greater than 0.41 ha to calculate forest land on each ownership. We visually checked
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the owner names of these parcels containing forest land (> 0.41 ha) to identify forest industry;

we expedited this process by using keywords such as “timber,” “lumber,” “forest,” “tree,”

and others. Simultaneously during visual inspection, tribal ownerships were identified by

owner name. Private parcels containing forest land > 0.41 ha and not forest industry nor

tribal were considered PFLs. The NWOS (Butler et al. 2016b) and Oswalt et al. (2014)

classify tribal lands as private non-corporate ownerships. We aggregated county-level PFL

databases into a statewide layer and ran a final dissolve command to combine parcels owned

by the same owner in multiple counties. The final product was a statewide, spatially explicit

database of all unique PFLs. We completed all analyses using a combination of QGIS (QGIS

Development Team 2014) and R statistical software (R Core Team 2015).

4.2.2 Sampling Procedure

The FIA uses regionally based remote sensing techniques to establish phase 1 plots to stratify

the region of interest, at a minimum, into strata of forest, non-forest, and census water to

increase precision of estimation by stratified random sampling (Bechtold and Patterson 2005).

The NWOS primary sampling units of PFLs are tied to the plot location of FIA phase 2 plots

(Butler 2008, Butler et al. 2016b) within the FIA sampling design (Bechtold and Patterson

2005). PFLs are sent the NWOS at least one year after an FIA field crew has measured the

biophysical attributes of the plot and the landowner met the designation of a PFL. The FIA

use a tessellated hexagonal grid across the entire United States to randomly establish these

phase 2 plot locations within an individual hexagon. The actual hexagonal grid size for FIA

is reported as having equal areas of 2403 ha (Bechtold and Patterson 2005, Dickinson and

Butler 2013).

We generated a tessellated hexagonal grid, with equal hexagonal areas of 2407 ha, across

the state of Montana using DGGRID by Sahr (2011). This grid served to simulate the hexag-

onal grid that spatially distributes sampling plots used by the FIA and the NWOS. We then

located at random 1000 points in each hexagon, each point representing a unique, simulated
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sample of the underlying population. Estimates of private forest area were calculated at each

iteration using the subsequently described estimators. For PFL population size, estimates

were also calculated at each iteration using two different estimators, subsequently referred

to as Methods I and II. For each of the two methods to be described, the means of the

distributions of the 1000 simulated estimates of total, N̂hd, and variance, v̂ar(N̂hd), were

computed.

4.2.3 Estimators

4.2.3.1 Private Forest Area

The first estimator to be evaluated was total private forest area (in ha) for Montana. The

current NWOS estimator of forest area relies upon the FIA estimate, which uses stratified

random sampling, of private forest area (Dickinson et al. in press). Because we did not

stratify Montana as in the phase 1 plot procedures of FIA, we cannot apply the estimators

of stratified random sampling. Instead, we based our FIA estimator of total private forest

area on the assumption of equal probability sampling, in that each acre of forest is equally

likely to be sampled. The estimator and respective variance are similar to those presented

by Dickinson and Butler (2013):

ÂFIA =
Ah

nh

nh∑
i=1

dhi = Ahp̂hd; (4.1)

v̂ar(ÂFIA) = A2
h
p̂hd(1− p̂hd)

nh − 1
, (4.2)

where ÂFIA is our FIA estimator of total private forest area across the stratum, Ah is the

total land area of the stratum, nh is the sample size in stratum h, dhi is an indicator variable

with value 1 if ownership i is within the stratum and private domain, and p̂hd is the ratio

between samples that fall on private forest land and the total sample size. Throughout this
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study, the stratum is the state of Montana; the domain is privately held forest. The current

NWOS estimator for total private forest area is presented in Dickinson et al. (in press) as:

Âhd =
ÂFIA

nhr

nhr∑
i=1

dhi = ÂFIAz̄; (4.3)

v̂ar(Âhd) = Â2
FIAv̂ar(z̄) + z̄2v̂ar(ÂFIA), (4.4)

where Âhd is the total forest area in stratum h and domain d, ÂFIA in this case is from

equation 4.1, nhr is the number of respondents to the NWOS within the domain of interest

with replacement and assuming an MCAR mechanism of nonresponse, z̄ is the mean of

respondents within the domain of interest, and v̂ar(z̄) is the sample variance of z̄. Because

our domain of interest lies only in total private forest area, the estimates of equations 4.3

and 4.4 are equal to estimates of equations 4.1 and 4.2. We subsequently refer to these

estimators as Method I for private forest area estimation.

4.2.3.2 Private Forest Landowner Population Size

Using the GIS-based baseline PFL population size, we evaluated the current NWOS estima-

tor and an alternative. We began with the current NWOS estimator for ownership total and

corresponding variance by Dickinson et al. (in press):

N̂hd =
ÂFIA

nhr

nhr∑
i=1

dhi
ahi

= ÂFIAx̄; (4.5)

v̂ar(N̂hd) = Â2
FIAv̂ar(x̄) + x̄2v̂ar(ÂFIA), (4.6)

where N̂hd is the total number of owners in stratum h and domain d, ÂFIA is from equation

4.1, nhr is the number of respondents to the NWOS within the domain of interest with

replacement and assuming an MCAR mechanism of nonresponse, ahi is the forest area (in

ha) of the ownership in the stratum, x̄ is the mean of respondents within the domain of
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interest weighted by the inverse of forest area owned, v̂ar(x̄) is the sample variance of x̄, and

v̂ar(ÂFIA) is from equation 4.2. We subsequently refer to these estimators as Method I for

PFL population size estimation.

The alternative estimator for PFL population size begins with the previous NWOS esti-

mators for ownership total and corresponding variance published by Dickinson and Butler

(2013):

N̂hd =
1

nh

nh∑
i=1

dhi
phi

=
Ah

nh

nh∑
i=1

dhi
ahi

; (4.7)

V̂ ar(N̂hd) =
1

nh(nh − 1)

nh∑
i=1

(
dhi
phi
− N̂hd

)2

, (4.8)

where N̂hd is the total number of owners in stratum h and domain d, Ah is the total land area

of the stratum, nh is all samples that fall on land in stratum h with replacement, dhi is an

indicator variable with value 1 if ownership i is in the stratum and domain, ahi is the forest

area (in ha) of the ownership in the stratum, and phi (
ahi
Ah

) is the selection probability of the

ownership in the stratum. In their current form, these estimators also implicitly assume an

MCAR mechanism of nonresponse.

In an attempt to correct the estimators of equations 4.7 and 4.8 for PFL population size

with nonresponse, we used a weighting method under the assumption of MAR across all

ten size classes, subsequently described, at different levels of response rates. The weighting

method was applied only to Equations 4.7 and 4.8 and accounts for the joint probability of

selection and response by:

P (selection, response) = P (selection)P (response|selection) = phiqhi, (4.9)

where qhi is the probability of landowner response to the survey given selection in stratum

h of landowner i. By replacing phi (
ahi
Ah

) in Equations 4.7 and 4.8 with Equation 4.9, we
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developed the alternative estimators, subsequently referred to as Method II, as:

N̂hd =
Ah

rh

rh∑
i=1

dhi
ahiqhi

; (4.10)

V̂ ar(N̂hd) =
1

rh(rh − 1)

rh∑
i=1

(
dhi
phiqhi

− N̂hd

)2

, (4.11)

where rh is the sample size of responding PFLs with replacement plus all other plots that

fall on land within the stratum.

4.2.4 Nonresponse

We also generated estimates for each of the 1000 iterative samples under various nonresponse

scenarios for Methods I and II for PFL population size estimation. We began to evaluate

the effect of nonresponse on the estimators with an average response rate of 50% uniformly

distributed across 10 landholder size classes (referred to as Scenario A; see Table 4.1 for size

classifications). The size classifications were made to mimic size classes used in reporting by

Butler (2008) and Oswalt et al. (2014). Fifty percent was considered the starting point for

nonresponse based upon the results of Butler (2008). For total NIPF owners across the state

of Montana, they found a response, or cooperation, rate of 44.1% ( 49
193−82) based on sending

193 surveys (82 undeliverable and 49 total responses) to landowners. More recently, Butler

et al. (2016b) report a slightly better response rate of 48.2% based on sending 421 surveys

(21 undeliverable and 193 total respondents). We then decreased response incrementally

by 10%, equally distributed across all size classes, down to a low of 10%. Each of these

incremental response levels can be considered an MCAR mechanism of nonresponse. The

estimates of PFL population size from each of the two methods were then recalculated by

removing nonrespondents from the sample.

Our first evaluation of the two estimators assumed no pattern between landowner re-

sponse and size class of properties, although in reality a trend may be present. Three

additional scenarios of nonresponse were examined, each with a unique relationship between
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Table 4.1: Size classes of private forest area.

Size class Forest area (ha)
1 [0.41 — 4.05)
2 [4.05 — 8.09)
3 [8.09 — 20.2)
4 [20.2 — 40.5)
5 [40.5 — 80.9)
6 [80.9 — 202.3)
7 [202.3 — 404.7)
8 [404.7 — 2023.4)
9 [2023.4 — 4046.9)
10 4046.9 +

response rate and property size classes and corresponding to an NMAR mechanism. Across

all of these scenarios, we maintained an overall sample response rate of 50% (Figure 4.1b).

These scenarios were chosen to represent a range of possible trends that may be observed

when the survey is administered. The probabilities of nonresponse in each size class were

dependent on the sample size in each size class to maintain the overall sample response rate

of 50% per scenario (Figure 4.1b). Figure 4.1a shows an example of the sample distribution

of unique landowners by size class for a single realization with full response. Scenario B

had an extreme trend with few respondents in the smallest size class and progressively less

probability of nonresponse as size class increased. Scenario C was similar to Scenario B with

an opposite trend. The final scenario, referred to as D, was symmetric about the middle two

size classes (i.e., classes 5 and 6), each sharing the highest probability of nonresponse. The

mechanism of NMAR is clear in these scenarios: because of deliberate simulation of trends

in response based on landholding size, the evaluation of the estimators for the two methods

was once again based on removing the nonrespondents from the sample. We were only able

to apply Method II to the scenarios with a trend because we knew a priori the probabilities

of response based on the simulated data.

All estimator evaluations were assessed at the spatial extent of the state. The extent of the

entire state was chosen because it is the minimum resolution for reporting of estimates by the

NWOS. Throughout this article, the performance of each of the two methods was compared

57



0

50

100

150

1 2 3 4 5 6 7 8 9 10
Size Class

N
um

be
r 

of
 U

ni
qu

e 
P

riv
at

e 
F

or
es

t L
an

do
w

ne
rs

● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Size Class

P
ro

ba
bi

lit
y 

of
 N

on
−

re
sp

on
se

Scenario

● A

B

C

D

Figure 4.1: (a) One realization of the sample distribution of unique private forest
landowners (PFLs) by size class, (b) trends of probabilities of nonresponse by size class for
four different scenarios (A-D) with an overall nonresponse rate of approximately 50%.

based upon design-based inference (Gregoire 1998) with the average 95% confidence interval

width and the actual 95% probability coverage of 1000 simulations. The actual probability

coverage is the fraction of the number of simulations of the 1000 that include the GIS-based

baseline within the confidence interval of each simulation; the nominal probability coverage

is chosen to be 95%.

4.3 Results

4.3.1 Private Forest Area

From the procedures used to determine PFLs across the state of Montana, the GIS-based

baseline total private forest land area was 1,743,229 ha (Table 4.2). Table 4.2 also shows the

estimate of 1,727,868 ha along with a sampling error of 3.65% based on applying Equations

4.1 and 4.2 for 1000 simulations. The estimate of private forest area was 0.88% less than
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the baseline private forest area and included the baseline estimate in the 95% confidence

interval. The estimates of private (i.e., nonindustrial and noncorporate) forest area for

Montana from the literature (Butler 2008, Oswalt et al. 2014, Butler et al. 2016b) ranged

from 11.4 to 26.1% greater than the baseline of the derived population. Only the estimates

of Butler et al. (2016b) from the literature contain the baseline private forest area within the

95% confidence interval. The majority of all forestland in Montana was concentrated in the

western half of the state (Figure 4.2a), whereas concentrations of private forestland in the

state were not as clearly distributed due, in part, to large areas of public forest compared to

private forest. The private forestland covered approximately 27% of all forest land (Figure

4.2b). The largest proportion of forest area was in ownership sizes between 404.7 and 2023.4

ha (i.e, size class 8) for both the baseline population and the current NWOS (Butler et al.

2016b) estimate (Figure 4.3a). Some differences existed in the proportions in each size class,

but the overall shape of the distribution appeared similar for both the baseline population

and the NWOS estimate.

Table 4.2: Summary of Montana private forest land area (ha) for the GIS-based baseline
(base), the estimate from simple random sampling of the baseline (Method I), and
additional publications.

Forest %
Area Sampling Change 95% CI

Owner Estimate Error from includes

Source Groupa (ha)b (%) base base
Baseline PFL 1,743,229 — — —
Method I PFL 1,727,868 3.65 -0.88 Yes
Butler (2008) NIPF 2,197,446 5.8 26.1 No
Oswalt et al. (2014) Noncorporate 1,941,685 0.72 11.4 No
Butler et al. (2016b) Noncorporate 1,978,106 7.98 13.5 Yes
a PFL, private forest landowners. Ownership classifications were redefined during reporting years from industrial
and nonindustrial private forest land (NIPF) to new classifications of corporate and noncorporate.
b Forest area estimates include ownerships >0.41 ha.
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Figure 4.2: (inset) Location of Montana, highlighted in grey, within the conterminous
United States, (a) 10 m x 10 m resolution for all forested lands across the state of Montana,
and (b) 10 m x 10 m resolution for private forested lands across the state of Montana.
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Figure 4.3: (a) The distribution for proportion of total private forest area of family forest
landowners of Montana (NWOS, Butler et al. 2016b) and the GIS-based baseline (Base)
population of Montana by size class, (b) the distribution for proportion of private forest
landowners (PFLs) by size class for the Rocky Mountain region (Rockies, Oswalt et al.
2014) and the Base population of Montana, and (c) the distribution of number of family
forest landowners of Montana (NWOS, Butler et al. 2016b) and PFLs for the Base
population of Montana by size class.

4.3.2 Total Private Forest Landowners

The GIS-based baseline population totaled 66,316 unique landowners (Table 4.3). The pro-

portion of PFLs among the 10 size classes for the baseline population was concentrated in

the lowest three size classes (< 20.2 ha) with the largest proportion owning less than 4.05

ha (Figure 4.3b). The baseline population had 36,822 landowners owning less than 4.05 ha

with the remaining 29,494 landowners in size classes 2 through 10 (Figure 4.3c).

The distribution for the proportions of PFLs closely followed the Rocky Mountain re-

gional estimates of Oswalt et al. (2014) (Figure 4.3b). As with the regional estimates, the

61



distribution of the baseline PFL population closely followed the current NWOS (Butler et al.

2016b) (Figure 4.3c). The NWOS estimated slightly more landowners in the first size class

with 41,409 owners compared with the baseline population. The remaining size classes for

the current NWOS have an additional 29,000 PFLs across the state for a total population

estimate of 70,409 (Table 4.3).

Table 4.3: Summary of the number of private forest landowners in Montana for the
GIS-based baseline (base), the estimate from two sampling methods, and additional
publications.

Owner No. of Sampling % change 95% CI

Source groupa ownersb error (%) from base includes base
Baseline PFL 66316 — — —
Method I PFL 68838 14.3 3.80 Yes
Method II PFL 68811 14.3 3.76 Yes
Butler (2008) NIPF 40000 22.9 -39.7 No
Butler et al. (2016b) FAMILY 70409 22.8 6.17 Yes
a PFL, private forest landowners; NIPF, nonindustrial private forest land owners; FAMILY, private owners classified
as family.
b Number of private owners includes ownerships >0.41 ha.

4.3.2.1 Full Response

For 1000 simulations of Method I with full response, the average estimate of the PFL popula-

tion size was 68,838 (Table 4.3). Method II, with full response, had a slightly lower estimate

of 68,811. The sampling error of the two methods was approximately 14% and included the

baseline population in the 95% confidence interval. Methods I and II each had an increase

in percentage from the baseline population of less than four percent.

For Method I, the actual 95% probability coverage was 0.948 with an average 95% confi-

dence interval width of 38,064 PFLs. Method II had a nearly identical actual 95% probability

coverage of 0.947 with a confidence interval width of 37,965 PFLs (Figure 4.4a-c).
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Figure 4.4: Horizontal line indicates the GIS-based baseline of PFL population size.
Horizontal dashed lines represent the nominal probability coverage rate of 0.95. (a-c) Mean
PFL population size, mean 95% confidence interval width, and 95% actual probability
coverage for full response and incremental response rates from 50 to 10% for the two
different estimators (I and II) based upon 1000 simulations, respectively. (d-f) Mean PFL
population size, mean 95% confidence interval width, and 95% actual probability coverage
for four different response scenarios (A-D) with an overall 50% response rate of Methods I
and II based upon 1000 simulations, respectively.
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4.3.2.2 Nonresponse

For Method I with an overall sample response rate of 50% (i.e., Scenario A), the average

estimate of PFL population size remained relatively the same as full response with a mean

estimate of 68,889 PFLs. The average confidence interval width increased from full response

to 52,493 PFLs. The actual 95% probability coverage remained relatively constant at 0.962

(Figure 4.4a-c). Method II, with 50% response rates, increased from full response with a

mean estimate of 70,475 PFLs. Method II had a wider average 95% confidence interval width

of 54,452 PFLs with an actual 95% probability coverage of 0.973. As response rates continued

to decrease, the estimates of PFL population size generated by Method I remained relatively

stable. However, both the mean confidence interval width and probability coverage showed

an increasing trend. Meanwhile, the estimates generated by Methods II showed a slight

increasing trend with decreasing response rate, and the confidence interval widths showed a

large pattern of increase. This resulted in inflated probability coverages for Methods I and

II of up to 0.976 and 0.989, respectively.

Figure 4.4d shows the results of PFL population size estimates generated by Methods I

and II for the four different scenarios of nonresponse examined with an overall 50% response

rate. The most inaccurate and imprecise estimates of Method I are seen in Scenario B, in

which small landowners had a high probability of nonresponse, with the probability coverage

dropping to zero. In contrast, Method II provided stable estimates of PFL population size

with an inflated probability coverage for Scenario B. Confidence interval widths of Method

I dropped considerably, whereas those of Method II drastically increased.

For Scenarios C and D, PFL population size estimates of Method I increased well above

the values of Scenario A. Method I had a large overestimate in Scenario C (high nonresponse

probability of large landowners) with an estimate of 118,533 PFLs, a confidence interval

width of 70,402 and a probability coverage rate of 0.063. Scenario D of Method I had a

slightly lower over estimate of 89,913 PFLs, a confidence interval width of 63,444, and a

probability coverage rate of 0.800. Method II remained stable with estimates of 70,446 and
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70,266 for Scenarios C and D, respectively. The confidence interval width and probability

coverage for Scenarios C and D also remained relatively constant at 40,977, 43,881, 0.954 and

0.970, respectively. All of these metrics gave better results for Method II than for Method

I across all four scenarios. However, the confidence interval widths of Scenario C, which

occurred due to very low response rates in the smallest size class, are still concerning.

4.4 Discussion

The estimator for forest area was both accurate and precise for estimating the GIS-

based baseline private forest area for the state of Montana. However, the GIS-derived forest

area estimation showed large discrepancies from other published estimates because of the

exclusion of tribal lands considered in our definition of PFL, whereas tribal lands are included

as private in the other published definitions. By rerunning our outlined procedure for tribal

lands only, the derived total tribal forest area is 220,646 ha. Adding this to our baseline

estimate of private forest area gives a total forest area of 1,963,875 ha, which results in the

forest area estimate of Butler et al. (2016b) being 0.725% larger. We consider this difference

to be negligible. Although the derived tribal land would comprise approximately 11% of the

new total forest land, the additional number of landowners amounts to less than 0.2 percent.

The inclusion or exclusion of tribal lands did not affect the performance of the estimators

for private forest area or PFL population size.

Estimates of PFL population size generated by Methods I and II performed relatively

equally for full response. Either one of these estimators could reliably be used for PFL

population size estimation with full response. The assumption of a fixed and known total

land area is one advantage of Method II, whereas Method I must incorporate the FIA estimate

of total and variance for private forest area, respectively. Dickinson and Butler (2013) cite

this as a primary reason in their discussion for proposing that the NWOS switch to estimators

similar to Method II. For both Methods I and II, the PFL population size was on average

overestimated based on our simulations, and a corresponding decrease in sample size from
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reduced response rates caused a decrease in precision. The reason for this overestimate on

average is unknown to the authors. As for the reduced precision, according to Lohr (2010),

the best way to reduce this impact is to invest in reducing the rate of nonresponse through

prevention.

Butler (2008) estimates the NIPF population size of 40,000 landowners in Montana gen-

erated by methodology corresponding to our Method I. At first this estimate seemed too low

because the 95% confidence interval did not include the GIS-based baseline estimate, but it

may be a reasonable estimate dependent on the sample actually drawn and the nearly 10-year

difference between our study and the completion of their survey. Based on our simulations,

the estimate of PFL population size could be as low as 42,787 for both Methods I and II.

However, Butler et al. (2016b) estimate the family population size (including ownerships >

0.41 ha in size) to be considerably larger than that of Butler (2008) with 70,409 landowners

in Montana, which includes the GIS-based baseline estimate in the 95% confidence interval.

The sample size and number of respondents between these two survey periods were 49 and

193, respectively. The larger sample size is related to the current NWOS reporting estimates

at the unit of an individual state with minimum sample size requirements to meet targets of

precision (Butler et al. 2016b). The increased sample size should only impact the precision

and not the estimate as long as nonresponse follows a MCAR mechanism. This increase

of 30,409 landowners could be an actual trend since both surveys used Method I and the

assumption of a MCAR nonresponse mechanism is valid for both survey periods in Montana.

Method I showed stable estimates of PFL population size in our simulations in which the

assumption of MCAR holds for decreasing response rates. However, if a MAR or NMAR

nonresponse mechanisms exist then Method I may drastically underestimate or overestimate

PFL population size dependent on a trend in nonresponse related to landholding size being

present. In the case of a MAR or NMAR mechanism, Method II would be the preferred

estimator for consistent estimates of PFL population size. For longitudinal studies of PFL

population size, this may highlight the need for continually assessing the nonresponse mech-

66



anism when the PFL population size is determined. One possible solution around issues

of nonresponse is to abandon the survey methods for population totals and adopt methods

similar to this study using cadastral data.

Nonresponse clearly has a large impact on both estimators across all rates and trends

considered. Most of all, our Method II would fail considerably without the weighting cor-

rection for decreasing response rates when nonrespondents are removed because the sample

size includes all plots that fall on land, and the nonrespondents on private land comprise a

very small proportion of the total number of plots that fall on land. This was not the case

for Method I, in which only respondents are considered, because the decrease in the sample

size of forested plots was proportionally offset by the terms in the summation of Equation

4.5. Here, we present an estimator of PFL population size that is an alternative to the cur-

rent NWOS estimator for nonresponse. The new Method II performed best in all scenarios

with the trends considered. Although the confidence interval width increased for decreasing

response rates, this performance is no different from that of the currently used estimation

methods (i.e., Method I). The new method can easily be applied if no nonresponse trend is

found proportional to landholding size. If a trend is determined, the probability of response

for each size class must be estimated independently.

One common approach to assessing nonresponse in surveys is through follow-ups with

nonrespondents to determine any differences from respondents based on some characteris-

tics, such as landholding size. The results of these follow-up surveys could then be used for

applying Method II to determine probability of response given selection by size class, if nec-

essary. Dickinson et al. (in press) also propose logistic regression for assessing probabilities

of response with additional covariates that are available from the survey data. GIS-based

methods with cadastral data offer one alternative to follow-up surveys in determining differ-

ences in response rates according to landholding size by knowing an approximate estimate

for the amount of forestland owned before conduction of the survey. One possible drawback

of this method for implementation in the NWOS is that only 9 of 50 states currently have
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freely available cadastral data. However, cadastral data for assessing landholding size are

available at the county level in many parts of the United States.

Our methodology of combining remote sensing and freely available cadastral data into a

GIS for determining PFL population size may obviate the need for sampling to determine

totals of private forest area and PFL population size. In addition, this methodology may

allow future researchers to employ novel sampling strategies or increase sample size and

corresponding precision of landowner attitude and behavior estimates. Sampling strategies

could use stratification techniques to increase proportions of “small” landowners into the

sample, exploring issues relevant to more parcelized areas or at the wildland urban interface.

For example, the current NWOS for Montana bases its results on only eight landowners

owning less than 4.05 ha and has a total sample size of 193 respondents. The potential for

statewide estimation based on this methodology, previously mentioned by others (McRoberts

2003, Kittredge et al. 2008, Metcalf 2010, Metcalf et al. 2012), may now be readily available

for researchers and others exploring private forest ownership dynamics.
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CHAPTER 5

HIERARCHICAL BAYESIAN MODELS FOR SMALL AREA ESTIMATION
OF COUNTY-LEVEL PRIVATE FOREST LANDOWNER POPULATION

5.1 Introduction

There are approximately 192 million ha of private forest land in the United States (US)

owned by corporations, families, individuals, nongovernmental organizations, and tribal en-

tities (Butler et al. 2016c). This forested land provides many social and ecosystem benefits,

but is managed by millions of owners with potentially disparate goals and objectives (But-

ler et al. 2016a). Therefore, a deeper understanding of the demographics, attitudes, and

management behaviors of private forest landowners is paramount to designing effective in-

centives, outreach programs, and support mechanisms that enable these owners to engage

in sustainable forest management activities. The USDA Forest Service Forest Inventory and

Analysis (FIA) National Woodland Owner Survey (NWOS) is the primary source of infor-

mation about national-, regional-, and state-level private forest characteristics and owners’

demographics, attitudes, and behaviors. NWOS results can be summarized by ownership

type, e.g., corporate, family, other private, and tribal and is currently implemented every

five years (Butler et al. 2016c).

Given limited resources to conduct the NWOS and low to moderate response rates, which

are common in social surveys, the small sample size restricts reliable inference to state-

level estimates. Although state-level estimates are informative, county-level estimates might

be more appropriate and effective when designing and delivering education and outreach

to private forest owners. Furthermore, from a management and conservation standpoint,

county-level estimates are more useful for tracking trends in private forest land parcellation,

fragmentation, composition, and ownership demographics and characteristics (see, e.g., Kit-

tredge et al. 2008, Pan et al. 2009, Poudyal and Hodges 2009). Results from these, and
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similar, studies underscore the value of ownership information at fine spatial scales to en-

courage sustainable forest management and curb loss of ecosystem services. To this end,

we present and assess methods to estimate the number of private forest ownerships at the

county-level using the current NWOS sampling design.

The NWOS’s target sample size is 250 respondents per state (Butler et al. 2016a) and a

minimum of 100 respondents is required to generate state survey summaries (Butler et al.

2016b). Again, such small state-level sample sizes effectively preclude robust inference at

county-levels, particularly when reporting results by ownership type. Small sample sizes can

result in undesirably low precision of parameter estimates within a design-based framework

(e.g., the NWOS design). Here, we refer to parameter estimates obtained using design-

based estimators as direct estimates. These direct estimates are the current standard used in

operational settings that employ design-based estimators; therefore, the direct estimates will

be used for benchmarking against model-based approaches. Small area estimation (SAE) is a

model-based approach that couples a direct estimate and possible covariates to improve the

estimate precision and, in some cases, accuracy. Rao and Molina (2015) provide an excellent

review of available SAE methods. Unlike a standard linear regression, the SAE framework is

comprised of two component models: a sampling model and a linking model (You and Zhou

2011). Estimation of the SAE parameter of interest accounts for and balances between the

sampling (i.e., direct estimator) and linking model errors. The linking model is a linear model

with random effects that relate the small areas of interest with some error. Additional spatial

structure may still remain in the linking model after accounting for possible covariates. Such

residual structure can be further modeled using spatial random effects.

SAE is also of great interest to users of the core FIA biophysical variables with the

small area being dependent on the application. The modeling framework applied here for

private forest ownerships could easily be adapted to these biophysical variables. In the

case of biophysical variables, several recent forestry studies, e.g., Goerndt et al. (2013) and

Magnussen et al. (2014), use SAE to improve inference at county- and municipal-levels. A

70



thorough literature review yielded no application of SAE to private forest landowners or

related studies.

The primary contributions of this work are i) producing county-level private forest owner-

ship datasets for Montana and New Jersey, ii) defining and assessing SAE models to improve

county-level inference of the number of private forest ownerships, and iii) developing open

source software to fit proposed SAE models.

The remainder of the manuscript is organized as follows. In section 5.2, we detail the

steps followed to create a spatially explicit private forest ownership dataset for Montana and

New Jersey. Then we define the direct estimator for the number of county-level private forest

ownerships along with two SAE models. We then describe our approach for comparing the

proposed SAE models. Results are given in section 5.3 followed by discussion and future

directions in section 5.4.

5.2 Materials and methods

5.2.1 True number of private forest ownerships

Recently, several states, including Montana and New Jersey, made cadastral data freely

available for determining property ownership. Using these 2015 cadastral data and the ge-

ographic information system (GIS) based analysis defined in Ver Planck et al. (2016), we

created a GIS layer that delineates our working definition of private forest. Here, “private

forest” comprises NWOS ownership categories of corporate, family, and other private (ex-

cluding tribal lands) (Butler et al. 2016c). The number of ownerships with forest property

area greater than two ha within each county is the parameter of interest in the subsequent

analysis. The derived GIS layers provide the true parameter value within each county, de-

noted YTi , with subscript Ti noting the true number of private forest ownerships in county

i.

Developing the private forest ownership GIS layers began by downloading freely available

county-level cadastral data from the respective state repositories, Base Map Service Center
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Montana State Library (2015) for Montana and New Jersey Office of Information Technology,

Office of GIS (2015) for New Jersey. These cadastral data were combined with remotely

sensed forest land cover data from the National Landcover Dataset (NLCD; Jin et al. 2013)

to determine forest ownerships greater than two ha. Based on the NLCD specifications

available, forested areas were defined to be at least 20% tree cover, at least 0.41 ha in area,

and 30 m wide.

To begin processing county-level properties, we identified ownerships in the dataset with

unknown names. Parcels for which ownership was unknown that fell within the boundaries

of public lands were assumed to be public. Additionally, the Protected Areas Database

of the US (US Geological Survey 2016) was used to identify nongovernmental conservation

organizations, e.g., the Nature Conservancy, listed as unknown in the cadastral dataset. All

other unknown properties were assigned a unique identifier and treated as unique private

ownerships. Remaining properties with known private ownership names were combined by

owner(s) name and street address so that multiple properties within a given county were

treated as a single ownership. Ownerships with forest industry or tribal affiliations were

omitted from the final county-level private forest ownership GIS layers to be consistent

with the private forest landowner definition used in Ver Planck et al. (2016) for Montana.

This portion of the analysis was completed using a combination of QGIS software (QGIS

Development Team 2014) and R statistical software (R Core Team 2015).

5.2.2 Models

5.2.2.1 Direct estimator

The direct estimator used for private forest ownership population at the state-level (Butler

et al. 2016a, Dickinson and Butler 2013) was applied to individual counties (note that the

notation was modified slightly for consistency with SAE models presented in section 5.2.2.2).

The direct estimator and associated variance are based on probability proportional to size
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sampling (Hansen and Hurwitz 1943):

Yi =
Ai

ni

ni∑
j=1

dij
aij

; (5.1)

σ2i =
1

ni(ni − 1)

ni∑
j=1

(
dij
pij
− Yi

)2

, (5.2)

where i indexes county, Yi is population total, Ai is total private forest area, ni is number

of samples with replacement, dij is an indicator variable that is one if sample j fell in

private forest and zero otherwise, aij is the forest area (ha) of the sampled ownership, and

pij = aij/Ai is the ownership selection probability. The steps for drawing the ownership

samples are described in section 5.2.3. The total county-level private forest area, Ai, was

fixed to equal the true private forest area derived from the GIS layer in section 5.2.1.

5.2.2.2 Small area estimation models

The direct estimator, Section 5.2.2.1, was log transformed to meet the SAE model normality

assumption. This transformation was also desirable because it ensures SAE model popula-

tion estimates have the correct support, i.e., positive, following back transformation. Taking

the log of the direct estimator necessitates transformation of the associated variance, accom-

plished here via the delta method (Casella and Berger 2002). The Fay-Herriot (FH) SAE

model (Fay and Herriot 1979) for county i in 1, 2, . . . ,m counties is defined:

Ỹi = θ̃i + εi, (5.3)

θ̃i = x′iβ + vi,

where Ỹi is the log-transformed direct estimator, θ̃i is the log population total, and εi is a

normally distributed error with mean zero and variance σ̃2i = σ2i /Y
2
i . The additive mean of

θ̃i comprises an intercept and county-level covariates held in the p× 1 column vector x and
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associated p× 1 vector of regression coefficients β. The county-level random effects term vi

is normally distributed with mean zero and variance σ2v .

It is reasonable to think that forest and ownership patterns, e.g., property size and owner’s

socioeconomic or demographic characteristics, could exhibit spatial autocorrelation. In our

setting, if direct estimate values are spatially correlated, i.e., adjacent counties have simi-

lar population values, then we should exploit this relationship to further improve inference

by pooling information across proximate counties. Counties could be represented as either

point locations (i.e., their centroid) or as areal units for defining this spatial structure. Rep-

resenting counties by their centroid may misrepresent distances among neighboring counties

due to irregularly shaped counties; therefore, the areal approach is implemented as it main-

tains the desired neighborhood structure of the county lattice. Hence, we augment model

(5.3) by adding a spatially structured random effect that follows a conditional autoregressive

(CAR) prior distribution, see, e.g., Banerjee et al. (2015) and You and Zhou (2011). This

extended model called FHCAR is defined analogous to FH, with the exception that the un-

structured random effects v = (v1, v2, . . . , vm)′ ∼ N(0, σ2vI) in model (5.3) are replaced with

v ∼ N(0,Σ(σ2v , λ)). Here, the m ×m covariance matrix Σ(σ2v , λ) = σ2v [λR+ (1− λ)I]−1,

where σ2v is the spatial variance parameter, λ is the autocorrelation parameter, R is the

neighborhood matrix with diagonal elements equal to the number of neighbors and off diag-

onal elements equal to negative one or zero indicating if a neighbor is present or not, and I is

the m×m identity matrix. Counties are only considered neighbors with adjoining borders.

The FH and FHCAR Bayesian model specifications are completed by assigning prior

distributions to parameters (Gelman et al. 2014). We selected non-informative priors for all

model parameters. Each regression coefficient in β was assigned a flat prior distribution, σ2v

was given an inverse-Gamma (IG) prior distribution, and, following You and Zhou (2011),

λ’s prior was uniform with support between zero and one. The IG’s shape hyperparameter

was set to two, which results in a prior mean equal to the scale hyperparameter and infinite

variance. The IG’s scale hyperparameter was set as
∑m

i=1 σ̃
2
i /m to give equal prior weight
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to the sampling and CAR variances. A Markov chain Monte Carlo (MCMC) algorithm was

used to sample from parameters’ posterior distributions. Specifically, a Gibbs algorithm was

developed to sample from θ̃ = (θ̃1, θ̃2, . . . , θ̃m), β, and σ2v with full conditional distributions

given in You and Zhou (2011), and a Metropolis-Hastings algorithm was used to sample from

λ’s posterior distribution. The data and associated code are available in (Ver Planck et al.

2017b).

Parameter posterior inference was based on 3000 post burn-in MCMC samples from each

of L = 3 chains resulting in K = 9000 samples. Chain mixing and convergence were diag-

nosed using a multivariate potential scale reduction factor of less than 1.1 for all parameters

considered (Gelman et al. 2014). For our parameter of interest θ̂i (posterior mean of the

population total), the K posterior samples of θ̃ were exponentiated back to the original

units.

5.2.3 Simulation study

For the NWOS and similar efforts, SAE models are viable from a statistical perspective if

they improve county-level estimate precision without inducing substantial bias. Given the

actual private forest ownerships for Montana and New Jersey, section 5.2.1, we examine

SAE model inference against truth using a simulation study. One iteration in the simulation

study produces a set of county-level direct and SAE model estimates by i) drawing a random

probability proportional to size sample from the private forest ownership list sample frame,

ii) computing direct estimates (section 5.2.2.1), iii) estimating FH and FHCAR models

(section 5.2.2.2), and iv) evaluating differences between SAE model population estimates

and truth. Summarizing results from step iv for a large number of iterations allows us to

assess precision and bias in SAE model population estimates.

A county-specific sample size, ni, is needed to conduct step i. Here too, we want the

sample size to approximate that achieved by the NWOS design. To determine the sample

size in each county, we randomly located 1000 points within each hexagon of a tessellated
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hexagonal grid laid over the states of Montana and New Jersey using DGGRID developed

by Sahr (2011). Each of the 1000 points represented a unique sample iteration across an

individual state. The area of each hexagon was 2407 ha. This grid roughly approximates

the one used to spatially distribute FIA and NWOS samples (Bechtold and Patterson 2005,

Dickinson and Butler 2013). From each set of hexagons sampled within a county, we calcu-

lated the mean number of points that fell within private forest ownerships across the 1000

sample iterations. This mean value was rounded up and used as ni. Given fixed ni, to reduce

variation among repeated samples, we repeated the simulation study steps i-iii N = 4000

times for Montana and New Jersey. These large numbers of repeated simulations should

empirically show unbiased estimates of truth for the direct estimator.

5.2.3.1 County-level covariates

Exploratory analysis using linear regression models showed that population density (PD;

number of people·km−2) from the 2010 decennial census (US Census Bureau 2016), and

NLCD total forest area (TFA; ha) explain significant variability in log-transformed direct

estimates. For Montana, the linear regressions of the simulation runs explained 45% of the

variation on average with a range from 27% to 65%. For New Jersey, the explained variation

was higher with a mean of 76% and a range from 50% to 95%. Therefore, PD and TFA

covariates were used for the simulation study.

5.2.4 Simulation summary

The N iterations for the direct and SAE model estimates were evaluated for bias, relative

bias, mean squared error (MSE), root mean squared error (RMSE), percent coverage for a

95% nominal rate, and 95% confidence interval width for direct estimates and 95% credible

interval width for the SAE models. Each of these metrics were calculated in two ways: i)

for an individual county (i.e., eqs. 5.4 and 5.6) and ii) for an individual state (i.e., eqs. 5.5

and 5.7).
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Using the following two equations, bias was calculated as the average difference between

the posterior mean of the population total, θ̂ij of county i and iteration j, and the truth YTi :

Biasi =
1

N

N∑
j=1

θ̂ij − YTi ; (5.4)

Bias =
1

m

m∑
i=1

Biasi. (5.5)

Additionally, relative bias, RBi, is defined as the bias relative to the truth for each county

(RBi = Biasi / YTi) and summed across all counties for a state (RB = 1
m

∑m
i=1RBi).

A trade-off between bias and precision is present when applying a SAE model. MSE was

calculated as the average squared deviations of the posterior mean of the population total

from the true population, and RMSE was the square root of these deviations:

MSEi =
1

N

N∑
j=1

(θ̂ij − YTi)2; (5.6)

MSE =
1

m

m∑
i=1

MSEi. (5.7)

Percent coverage was defined as the average number of times that the 95% SAE credible

interval for θij , or the direct estimate 95% confidence interval, included truth for each county.

The average 95% confidence interval width for the direct estimate was computed by a t

distribution with ni-1 degrees of freedom; whereas, the average 95% credible interval width

was determined from the 0.025 and 0.975 quantiles of the posterior distributions of θij . Both

percent coverage and average confidence interval width were also calculated at the state level.

A final relative MSE comparison among the direct and SAE model estimates was made

at the county level based on MSE (eq. 5.6) by

MSE1 −MSE2
1
2MSE1 + 1

2MSE2
(5.8)

where MSE1 indicates the direct or the first SAE model estimate to be compared with

MSE2, the second SAE model estimate (Porter et al. 2015).
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5.3 Results

Summing the sample sizes across all counties for a single iteration, Montana had a

statewide sample size of 751. Individual counties ranged from a minimum of two samples to

a maximum of 44 samples in Fergus County. The average sample size per county in Montana

was 13. Figure 5.1a maps the sample sizes across all of the counties for Montana. The true

population of Montana is 42625 ownerships. Liberty County, with 58 ownerships, had the

minimum population, and Flathead County, with 5209 ownerships, had the maximum (Fig.

5.1b). Montana is one of the least densely populated states in the US ranging from 0.097 to

21.6 people·km−2 for an individual county with an average of 2.7 people·km−2 (Fig. 5.1c).

Montana’s forest area is primarily concentrated in the western portion of the state, with a

range of 1077 ha (Sheridan County in the east) to 919800 ha (Flathead County in the west)

and a mean 151200 ha per county (Fig. 5.1d).

New Jersey had a statewide sample size of 191 for each iteration. Individual counties

ranged from a minimum of two samples to a maximum of 20 samples in Burlington County.

The average sample size per county in New Jersey was nine. Figure 5.2a maps the sample

sizes across all of the counties for New Jersey. The true population of New Jersey is 35462

ownerships. Hudson County, with 33 ownerships, had the minimum population, and Atlantic

County, with 3842 ownerships, had the maximum (Fig. 5.2b). New Jersey is one of the most

densely populated states in the US, ranging from 73.4 to 4753 people·km−2, with an average

of 806.6 people·km−2 in a single county (Fig. 5.2c). New Jersey’s forest area is primarily

concentrated in the northwestern and southeastern portions of the state, with a range of 562

ha (Hudson County) to 121500 ha (Burlington County) and a mean of 41210 ha per county

(Fig. 5.2d).
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Figure 5.1: Montana counties by (a) sample size, (b) true population size with >2 ha
forest, (c) 2010 census population density (PD, number of people·km−2); (d) total forest
area (TFA, 1000s ha).
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Figure 5.2: New Jersey counties by (a) sample size, (b) true population size with >2 ha
forest, (c) 2010 Census population density (PD, number of people·km−2); (d) total forest
area (TFA, 1000s ha).

In logarithmic form, the regression coefficients were significant for the intercept, PD, and

TFA for the majority of the iterations. Averaged across all iterations for the Montana FH

model, the mean point estimate for the intercept was 5.01, the PD regression coefficient was
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0.0733, and the TFA regression coefficient was 4.10x10−6. For the FHCAR model, the point

estimates were 5.04, 0.0676, and 4.01x10−6 for the intercept, PD, and TFA, respectively.

None of the 95% credible intervals for the intercept or the TFA regression coefficient included

zero for the N iterations of either SAE model. For the PD regression coefficient, 3032 and

2914 iterations did not include zero in the credible interval of the FH and FHCAR models,

respectively.

In the case of the New Jersey FH model, the point estimates were 7.26, -9.35x10−4,

and 1.04x10−5 for the intercept, PD, and TFA regression coefficients, respectively. For the

FHCAR model, the point estimates were 7.25, -9.22x10−4, and 1.08x10−5 for the intercept,

PD, and TFA regression coefficients, respectively. None of the 95% credible intervals for

the intercept included zero for any of the iterations of either model. None of the credible

intervals for the PD regression coefficient included zero for any iterations of the FH model

and 3996 iterations of the FHCAR model did not include zero. For the TFA regression

coefficient, 1735 and 2321 iterations did not include zero in the credible intervals of the FH

and FHCAR models, respectively.

SAE model parameter estimates for a randomly selected iteration are given in Table 5.1.

All of the regression coefficients were significant with the exception of TFA in New Jersey.

For Montana, the mean of the sampling variances was much smaller than the random effect

variance for both the FH and FHCAR models, whereas New Jersey had roughly equal mean

sampling and random effect variances. The autocorrelation parameter in both states was

fairly low with a much wider credible interval in New Jersey than Montana. Figure 5.3a

confirms that the posterior means of the sampling variances of all iterations in Montana were

lower than the random effect variances of the FH and FHCAR models; however, for New

Jersey, the FH and FHCAR random effect variances were smaller than the mean sampling

variances (Fig. 5.3c). The posterior mean of all iterations for the FHCAR autocorrelation

parameter was also fairly low in Montana and slightly greater in New Jersey (Figs. 5.3b and

d).
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Table 5.1: The median and 95% credible intervals (in parantheses) for Fay-Herriot (FH) and FH with conditional
autoregressive (FHCAR) models of a single iteration for Montana (iteration 750) and New Jersey (iteration 350).

Montana New Jersey

Parameter FH FHCAR FH FHCAR
β0 4.92 (4.50, 5.34) 4.91 (4.38, 5.46) 7.42 (6.65, 8.13) 7.41 (6.59, 8.14)

β1, PD 0.078 (0.001, 0.146) 0.072 (0.007, 0.135) -1.11x10−3 -1.09x10−3

(-1.48x10−3, -7.42x10−4) (-1.45x10−3, -7.00x10−4)

β2, TFA 4.40x10−6 4.52x10−6 1.12x10−5 1.16x10−5

(2.70x10−6, 6.08x10−6) (2.72x10−6, 6.35x10−6) (-3.56x10−7, 2.27x10−5) (1.14x10−6, 2.23x10−5)

E(σ̃2i ) 0.16 (0.02, 0.67) 0.16 (0.02, 0.67) 0.23 (0.09, 0.75) 0.23 (0.09, 0.75)

σ2v 1.14 (0.76, 1.77) 1.71 (0.95, 3.73) 0.21 (0.07, 0.68) 0.22 (0.07, 0.93)

λ — 0.14 (0.007, 0.62) — 0.29 (0.01,0.92)

Note: PD, number of people·km−2; TFA, total forest area (ha).
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Figure 5.3: Distribution of posterior means from all iterations for select SAE model
parameters: (a) the variance parameters of Montana, (b) the FHCAR model
autocorrelation parameter of Montana, (c) the variance parameters of New Jersey; (d) the
FHCAR model autocorrelation parameter of New Jersey.

Table 5.2 shows the simulation summaries for the individual states. As an aside and not

surprisingly, this simulation study can empirically show that the direct estimator is nearly

unbiased (see Appendix, Tables B.1 – B.3). For Montana, the biases of the direct, FH,

and FHCAR model estimates were -3, -25, and -28 ownerships, respectively. A negative

value indicates an underestimate of the true population and a positive value indicates an
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overestimate of the true population. In terms of relative bias, these statewide estimates

represent less than negative one-tenth of a percent. The RMSE was largest for the direct

estimates with a value of 467. Both the FH and FHCAR models had similar RMSE values

of 407 and 405. The empirical coverage rates were low for the direct, FH, and FHCAR

model estimates with values of 75.0%, 75.3%, and 75.3%. The 95% confidence or credible

interval widths, ordered widest to narrowest, were 1663, 1109 and 1097 for the direct, FH

and FHCAR model estimates, respectively. Overall, the MSE is reduced by 24.0% from the

direct to the FH model, by 24.8% from the direct to the FHCAR model, and by 1.0% from

the FH to the FHCAR model.

For New Jersey, the bias of the direct estimates was one ownership, the FH model was

49 ownerships, and the FHCAR model was 40 ownerships. In terms of relative bias, these

statewide estimates represent less than two-tenths of a percent. The RMSE was largest

for the direct estimates with a value of 633. The FH model had the lowest RMSE of 545,

whereas the FHCAR model was between the direct estimates and the FH model with a

value of 564. The empirical coverage rate was highest for the direct estimates followed by

the FH and FHCAR models with values of 93.7%, 90.7%, and 89.2%, respectively. The direct

estimates had the widest 95% confidence interval width of 3979 followed by 95% credible

interval widths of 2207 for the FH model and 2050 for the FHCAR model. Overall, the

MSE is reduced by 25.9% from the direct to the FH model, by 20.6% from the direct to the

FHCAR model, and by 6.6% from the FHCAR to the FH model.

For individual counties of Montana, the bias (Eq. 5.4) of the direct estimates ranged

from -29 (for Lincoln County) to 12 (for Lewis and Clark County) ownerships (Appendix B,

Tables B.1 and B.2). Eight of the counties were unbiased for the direct estimates. In

terms of relative bias, the direct estimates ranged from -3% to 5%. The FH model had a

bias ranging from -289 ownerships (for Stillwater County) to 444 ownerships (for Flathead

County). Treasure County was the lone unbiased county for the FH model. The relative

bias ranged from -26% to 41%, with a mean of -3%. The FHCAR model had a bias ranging
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Table 5.2: Summary of bias, root mean squared error (RMSE), empirical coverage for a
95% nominal coverage rate and average 95% confidence interval width of the direct
estimate and 95% credible interval width of the small area estimation model estimates for
Montana and New Jersey across all counties and iterations for the direct, Fay-Herriot
(FH), and FH with conditional autoregressive random effects (FHCAR) model estimates.

Montana New Jersey

Metric Direct FH FHCAR Direct FH FHCAR
Bias -3 -25 -28 1 49 40

RMSE 467 407 405 633 545 564

Percent coverage 75.0 75.3 75.3 93.7 90.7 89.2

Confidence / credible 1663 1109 1097 3979 2207 2050
interval width

from -288 ownerships (for Musselshell County) to 498 ownerships (for Flathead County).

Daniels County was the only unbiased county for the FHCAR model. The relative bias

ranged from -25% to 30%, with a mean of -4%. These biases can be explained by the trade-

off of increasing precision with an associated increasing bias. Based on the relative MSE

comparison of Eq. 5.8, 49 of 56 counties showed improvement from the direct to the FH

model estimates, and 52 counties showed improvement from the direct to the FHCAR model

estimates. Thirty counties showed improvement from the FH to the FHCAR model (Fig.

5.4). Both the FH and FHCAR models had 38 counties with greater percent coverage than

the direct estimates. The credible interval widths were narrower in all but Flathead County

for both the SAE models compared with the direct estimate confidence interval widths.

These estimates for individual counties can be seen in Appendix B (Table B.6).

For individual counties of New Jersey, the bias of the direct estimates ranged from -27

ownerships (for Cumberland County) to 18 ownerships (for Burlington County) (Appendix B,

Table B.3). Four of the counties were unbiased for the direct estimates. In terms of relative

bias, the direct estimates ranged from -1% to 1%. The FH model had a bias ranging from

-477 ownerships (for Hunterdon County) to 673 ownerships (for Ocean County). No county

was unbiased for either the FH or FHCAR model. The relative bias ranged from -15% to

372% (for Union County). Removing Union County, which has a small true ownership size of
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46, the maximum becomes 55% (for Cape May County) and the mean is 9%. The FHCAR

model had a bias ranging from -572 ownerships (for Hunterdon County) to 764 ownerships

(for Ocean County). The relative bias ranged from -17% to 420% (for Union County).

Removing Union County again, the maximum becomes 60% (for Cape May County) and the

mean 9%. Sixteen of 21 counties showed improvement based on relative MSE (eq. 5.8) from

the direct to the FH model and to the FHCAR model. Ten counties showed improvement

from the FH to the FHCAR model (Fig. 5.5). The FH and FHCAR models had 16 and 14

counties, respectively, with greater percent coverage than the direct estimates. The credible

interval widths were narrower in all counties for both of the SAE models compared with the

direct estimate confidence interval widths. These estimates for individual counties can be

seen in Appendix B (Tables B.4 and B.5).
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Figure 5.4: Relative mean squared error comparisons for Montana (eq. 5.8): (a) direct to
FH model estimates, (b) direct to FHCAR model estimates; (c) FH to FHCAR model
estimates.
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Figure 5.5: Relative mean squared error comparisons for New Jersey (eq. 5.8): (a) direct to
FH model estimates, (b) direct to FHCAR model estimates; (c) FH to FHCAR model
estimates.

5.4 Discussion

Recent publications for the NWOS have focused on private ownerships 4.05 ha or greater

in size (e.g., Butler et al. 2016c). Our original objective in this study was to include private

forest ownerships of at least 0.41 ha, the minimum forest area considered by the FIA. These

smallest ownerships were to be included as they comprise a large proportion of ownerships

in states like New Jersey relative to Montana. However, preliminary analyses showed large

positive biases in the direct estimator so we adjusted the minimum area threshold to two ha

to attain empirically unbiased direct estimates rather than increasing the threshold to 4.05

ha as the two ha threshold still accounted for a large proportion of these smallest ownerships.

The unbiased direct estimates were desirable for benchmarking against the SAE models, and

the potential bias induced by these smallest ownerships may require further investigation.

We found population density and total forest area to be significant SAE model covariates

in the majority of the iterations for both Montana and New Jersey. However, population
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density had a positive relationship with number of private ownerships for Montana and a

negative association for New Jersey counties. A possible explanation for the differing rela-

tionships could be the very low population densities of Montana counties having not reached

a critical threshold in the forested landscape, whereas New Jersey is the most densely pop-

ulated state in the US, causing a corresponding loss of forested land. Kittredge et al. (2008)

found that population densities greater than 96.5–193 people·km−2 (250–500 people·mile−2)

for towns in Massachusetts increased the number of forested parcels less than eight ha and

secondarily reduced the proportion of the landbase in forest due to land use change. Poudyal

and Hodges (2009) also found a negative relationship between population density and wood-

land ownership population size for Texas. In studying all private forest landowners, Pan et al.

(2009) found population density to decrease the mean forest landholding size in Alabama,

which in turn could relate to a larger number of ownerships due to parcellation. The average

county population density of Alabama was reported as 29 people·km−2 (76 people·mile−2),

slightly higher than the highest density found in Montana, so at these densities a positive

relationship with number of ownerships is plausible. The positive relationship between num-

ber of ownerships and total forest area in both states is not surprising as a county must have

a forested landbase for private forest ownerships to be present. Poudyal and Hodges (2009)

have also demonstrated the need for total private forest area at the county-level in modeling

private forest owner population size.

Development of a true ownership population at the county-level is not novel; however,

the methods here are a substantial contribution with complete coverage of two states. Other

studies have used similar approaches to develop forestland ownerships for a single county

with interest at the individual parcel-level (e.g., Cho and Newman 2005, King and Butler

2005). Cho and Newman (2005) were interested in the probability of land use conversion from

forest to developed land; King and Butler (2005) were interested in modeling landholding size

for individual parcels. Each of these response variables is important to county-level forest

management options available to an individual landowner. In each of these studies, the
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distance to the nearest road from the parcel was the most important independent variable.

At the county level, road density may be another important covariate for future exploration;

however, the inclusion of road density may be collinear with population density currently

accounted for in the SAE models. Mehmood and Zhang (2001) found a decline in state-

level average forest landholding size, which relates to an increase in the number of private

forest ownerships for the period of 1978 to 1994. The five factors associated with this

decrease in landholding size were death, urbanization, income, regulatory uncertainty, and

financial assistance. A key objective of the current study was assessing the feasibility of

applying SAE models to county-level ownerships and hence we did not exhaustively explore

the full suite of potentially useful covariates, such as those identified in Mehmood and Zhang

(2001). Next steps in developing this line of work will identify potential transformations to

existing covariates, e.g., percentage of county forested, and an expanded set of useful SAE

model covariates that explain variability in an expanded set of ownership characteristics and

increase county-level estimate precision.

One interpretation of the conditional autoregressive (CAR) random effect in FHCAR

model is to capture unobserved covariates that are spatially structured. For example, neigh-

boring counties may have similar regulations or demographics that impact the number of

ownerships. However, including a CAR random effect did not yield substantial gains in

RMSE in Montana and actually increased RMSE for New Jersey. This, combined with the

relatively small CAR correlation parameter estimates, suggests that there is little local resid-

ual spatial structure and that the FH model with unstructured random effects is adequate.

The FH model was overall more successful than the direct estimates in terms of MSE and

RMSE for each state and the majority of the individual counties of the two states in this

study. Alternate covariates may be needed for applying SAE models to other responses of

the NWOS, such as socioeconomic variables of Poudyal and Hodges (2009).

For simplicity, our simulation study considered only iterations with at least two samples

per county. This was done to ensure that the direct estimator yielded estimates of θ and
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σ2 for each county. In practice, however, when the statewide sample size is small, we would

expect zero samples in many counties. In such settings, a SAE model can still be applied

by imputing the “missing” θ and σ2 estimates (ideally with uncertainty quantification).

This can be viewed as a missing data problem that is easily handled within a Bayesian

paradigm (Banerjee et al. 2015, Gelman et al. 2014). Here, given county-level observed

covariates, prediction of missing θs follow directly from the posited model, i.e., second line

in model (5.3). The missing σ2s can be predicted using a log-normal regression comprising

available covariates and spatially structured random effects, or other generalized variance

function (GVF) approaches common in SAE literature Dick (see, e.g., 1995). Our future

work will explore the efficacy of such SAE missing data problems for county-level ownership

characteristics.

With any survey implementation and sampling strategy, there is a trade-off between

sample size (e.g., number of contacts, determined by expected response rate) and resources

(e.g., time and money). Given limited resources, the number of contacts is typically con-

strained, and therefore, sample size is heavily dependent on survey response rates. Although

ownerships contacted in the NWOS respond at higher rates than many other mail-based

surveys, the potential lack of sufficient responses at the county level limits the usefulness of

the data at scales at which such data can enhance landowner outreach, incentive programs,

and information campaigns. For statewide surveys with county-level coverage and possibly

small county-level sample sizes, the FH model presented in this paper improves the ability of

researchers and forest management practitioners to use the NWOS data, by adding simple

and widely available covariates for population density and forest area. These covariates have

been shown to relate to forest management (Zhang et al. 2005), as well, making their utility

in SAE models applicable to more variables other than number of ownerships. Further re-

search will assess SAE models use for county-level inference about other important response

variables from the NWOS, e.g., ownerships with management plans. Such models will con-

sider jointly modeling multiple response variables and those variables with non-Gaussian
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distributions, e.g., binary, count, and multinomial survey items.
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CHAPTER 6

RECOMMENDATIONS FOR FUTURE WORK

The movement towards model-based small area estimation (SAE) models for both biophysi-

cal and social forestry variables is sure to continue as demand for reliable estimates at various

resolutions increases. The use of the model-based framework is necessitated in SAE because

the sample sizes for the design-based framework do not provide adequate precision. The

large-scale forest inventories and surveys of the United States Department of Agriculture

(USDA) Forest Service Forest Inventory and Analysis (FIA) program and the associated

National Woodland Owner Survey (NWOS) will continue to be a primary source for infor-

mation on US forest resources. In combining this primary data source with other disparate

data sources, the application of the hierarchical Bayesian (HB) SAE framework offers the

primary advantage of fully propagating uncertainty to the final outcomes of interest.

The primary objective of this dissertation was to contribute to the growing body of liter-

ature for biophysical forestry-related SAE applications and introduce SAE to social forestry

applications. The detailed objectives of the four main chapters were to: i) apply a HB

framework to increase the precision of estimates for biophysical forest variables at the stand

level by borrowing strength across all stands through the use of LiDAR covariates; ii) apply

a conditional autoregressive structure to the stand-level random effects to assess gains in pre-

cision of biophysical forest variables; iii) evaluate the current NWOS estimators of private

forest area and private forest landowner population size for a known population at the state

level, iv) present an alternative estimator of private forest landowner population size that

explicitly accounts for various nonresponse scenarios; v) evaluate the impacts of nonresponse

biases on each of these estimators; vi) produce county-level private forest ownership datasets

for two complete states; vi) define and assess SAE models to improve county-level inference

of the number of private forest ownerships, and; vii) develop open source software to fit the

proposed SAE models.
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This dissertation presented SAE within a HB framework; and additionally added spatial

random effects that had often been ignored in prior forestry-related SAE applications. The

research also offered open source software methods to fit the proposed SAE models, so that

this can no longer be a deterrent to applying a Bayesian framework for SAE in forestry.

There are several avenues related to this dissertation for further investigation. First, the

SAE models for aboveground biomass, basal area, and volume demonstrated an increase in

precision over the standard design-based estimates; however, tree density did not demon-

strate the same results and could be improved through the discovery of more informative

covariates. Second, the biophysical variables also showed additional increases in precision

when a conditional autoregressive structure was added for the area-level random effects; but

these too could be improved as the credible intervals on these parameters were fairly broad.

Further exploration is also warranted for applying alternate neighborhood structures, e.g.,

by stand type rather than adjacency, for the conditional autoregressive structure. Appli-

cation of newer spatial random effects models from the statistical literature (e.g., Porter

et al. 2015, Datta et al. 2017) may be incorporated into forestry-related SAE to improve

precision. Third, as stronger recommendations are made for combining variable-radius plots

with LiDAR covariates, we may prefer to employ the finer resolution unit-level SAE models.

Within the social forestry applications demonstrated in the last two chapters, the most

obvious avenues to pursue are to test for nonresponse at the state level and apply the

SAE models to actual NWOS data. The first of these avenues is currently being explored

by the Family Forest Research Center for the state of Wisconsin using modifications to the

current NWOS estimator, which are similar to the weighting methods described in Chapter 4.

The two statewide datasets developed here for Montana and New Jersey may be useful for

comparison to the outcomes for the state of Wisconsin, as nonresponse mechanisms may

differ by state. As for the SAE models, the county-level methods for expanding NWOS may

not be feasible due to the requirement of knowing the size of surveyed ownerships at the

county level, and this current level of detail seems to be too burdensome for respondents
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to the previous iterations of the NWOS. However, the SAE models could easily be adapted

for the state-level NWOS data where desired precision of certain outcomes, e.g., the number

of ownerships in the 1–9 acreage, are not being met. The application of the multivariate

methods of Chapter 3 may be useful for increasing precision in estimating the 1–9 acre

ownership group with another correlated outcome of interest. Additionally, the SAE models

could be adapted for other NWOS variables with non-Gaussian distributions, e.g., binary,

count, and multinomial survey items.

Finally, there is still much research to be done that can more directly link the social

forestry responses of the NWOS to the core biophysical forest variables of the USDA Forest

Service FIA program. The linkage between the two into a single modeling framework may

offer better understanding and more precise estimation of outcomes related to the largest

ownership group and future of the US forest resource. As these forest inventories and owner-

ships surveys will continue into the future, additional improvement in precision for outcomes

of interest may benefit from applying temporal and spatio-temporal SAE models.
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APPENDIX A

HB AND EBLUP PARAMETER ESTIMATES FOR FAY-HERRIOT MODEL
OF ABOVEGROUND BIOMASS

The empirical best linear unbiased prediction (EBLUP) for the Fay-Herriot model was fit via

restricted maximum likelihood using the hbsae R package (Boonstra 2012) for aboveground

biomass. The comparison in parameter estimates between the EBLUP and HB inference are

given in Table A.1.

Table A.1: The median and 95% credible intervals for the model parameters of the
Fay-Herriot (FH) with hierarchical Bayesian (HB) inference and the point estimates with
standard errors in parentheses for the FH under empirical best linear unbiased predictor
(EBLUP) were fit via restricted maximum likelihood.

Parameter FH HB FH EBLUP
β0 -51.99 (-69.15, -34.31) -52.57 (8.52)

β1, P25 24.24 (18.17, 30.08) 24.27 (2.95)

β2, P75 3.66 (0.83, 6.42) 3.69 (1.39)

σ2v 284.4 (201.2, 404.8) 241.1
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APPENDIX B

MODEL SUMMARIES OF PRIVATE FOREST LANDOWNERS FOR
MONTANA AND NEW JERSEY BY COUNTY

Table B.1: Summary of the first 28 Montana counties by identification number (ID) and
name for true population total (Truth), sample size (n), and bias across all repeated
samples for the direct, Fay-Herriot (FH), and FH with conditional autoregressive random
effects (FHCAR) model estimates.

Bias

County ID Name Truth n Direct FH FHCAR
1 Silver Bow 439 7 -6 144 131
2 Cascade 1309 23 -12 -130 -160
3 Yellowstone 1062 12 4 54 97
4 Missoula 2782 27 -15 218 216
5 Lewis & Clark 1941 38 12 17 -35
6 Gallatin 1804 29 -9 17 17
7 Flathead 5209 30 -16 444 498
8 Fergus 1239 44 6 -173 -224
9 Powder River 344 18 -1 -22 -14
10 Carbon 868 9 3 -185 -142
11 Phillips 304 5 0 -36 -27
12 Hill 209 5 -5 -17 -22
13 Ravalli 1743 13 -8 -64 -103
14 Custer 461 18 -11 -101 -114
15 Lake 1589 10 9 -206 -190
16 Dawson 467 8 -10 -90 -97
17 Roosevelt 264 2 1 -27 -33
18 Beaverhead 411 9 -3 119 119
19 Chouteau 354 8 -4 -60 -85
20 Valley 505 7 -2 -90 -105
21 Toole 72 2 0 27 16
22 Big Horn 618 30 -9 -68 -56
23 Musselshell 1247 31 -13 -285 -288
24 Blaine 321 9 -6 -40 -32
25 Madison 838 21 0 -81 -87
26 Pondera 125 3 2 22 4
27 Richland 489 5 -2 -86 -91
28 Powell 825 30 1 1 -3
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Table B.2: Summary of the second set of 28 Montana counties by identification number
(ID) and name for true population total (Truth), sample size (n), and bias across all
repeated samples for the direct, Fay-Herriot (FH), and FH with conditional autoregressive
random effects (FHCAR) model estimates.

Bias

County ID Name Truth n Direct FH FHCAR
29 Rosebud 448 32 6 -31 -34
30 Deer Lodge 454 7 1 -17 -30
31 Teton 296 7 -9 -35 -42
32 Stillwater 1133 14 -11 -289 -278
33 Treasure 175 14 -1 0 7
34 Sheridan 79 2 0 26 23
35 Sanders 1816 16 -12 -37 -59
36 Judith Basin 412 8 2 -35 -28
37 Daniels 154 2 0 -1 0
38 Glacier 310 6 -7 -10 -30
39 Fallon 223 3 2 -18 -20
40 Sweet Grass 477 16 -1 -62 -58
41 McCone 156 2 1 -4 -1
42 Carter 296 9 -4 -34 -27
43 Broadwater 310 10 -8 -33 -21
44 Wheatland 180 8 0 -7 -2
45 Prairie 153 3 0 -2 -6
46 Granite 754 17 -6 -35 -27
47 Meagher 388 30 1 6 12
48 Liberty 58 2 0 24 17
49 Park 1032 26 -4 -92 -53
50 Garfield 256 8 -3 -31 -38
51 Jefferson 1385 16 2 -192 -254
52 Wibaux 148 4 3 -3 1
53 Golden Valley 153 7 8 6 27
54 Mineral 520 4 9 -2 18
55 Petroleum 163 6 -2 1 14
56 Lincoln 2857 19 -29 183 144
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Table B.3: Summary of New Jersey counties by identification number (ID) and name for
true population total (Truth), sample size (n), and bias across all repeated samples for the
direct, Fay-Herriot (FH), and FH with conditional autoregressive random effects (FHCAR)
model estimates.

Bias

County ID Name Truth n Direct FH FHCAR
1 Atlantic 3842 18 17 -214 -489
2 Bergen 350 2 5 113 102
3 Burlington 3210 20 18 491 649
4 Camden 627 3 0 157 178
5 Cape May 874 5 -9 483 524
6 Cumberland 2591 13 -27 -47 -93
7 Essex 132 2 0 49 49
8 Gloucester 2092 9 -2 -202 -266
9 Hudson 33 2 0 -5 -5
10 Hunterdon 3785 16 -2 -477 -572
11 Mercer 1001 6 2 63 103
12 Middlesex 917 5 8 -68 -75
13 Monmouth 2139 10 8 -249 -363
14 Morris 2762 14 9 -193 -313
15 Ocean 1507 12 1 673 764
16 Passaic 522 3 2 192 201
17 Salem 1831 9 4 54 90
18 Somerset 1629 8 -4 -60 -47
19 Sussex 3013 18 -4 224 284
20 Union 46 2 0 171 193
21 Warren 2739 14 -13 -123 -77
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Table B.4: Summary of the first 28 Montana counties by identification number (ID) for
root mean squared error (RMSE), empirical coverage for a 95% nominal coverage rate, and
95% confidence interval width for the direct estimator and 95% credible interval width for
the two small area estimation models across all repeated samples for the direct, Fay-Herriot
(FH), and FH with conditional autoregressive random effects (FHCAR) model estimates.

Confidence or
RMSE Percent coverage credible interval width

County ID Direct FH FHCAR Direct FH FHCAR Direct FH FHCAR
1 341 418 405 70.2 78.9 79.0 1236 1195 1165
2 678 543 536 81.6 84.2 83.5 2513 1960 1894
3 571 536 556 80.3 84.0 84.5 2283 2001 2054
4 990 965 942 88.9 93.1 93.3 3964 3928 3862
5 867 742 703 85.6 90.3 90.4 3203 2881 2738
6 813 701 695 85.9 91.3 91.5 3117 2813 2791
7 1220 1304 1323 93.6 94.7 94.6 5252 5401 5426
8 531 414 410 79.7 79.2 77.2 1828 1399 1301
9 224 151 159 72.4 75.5 76.1 625 469 483
10 495 382 381 79.1 76.1 78.2 2018 1176 1260
11 264 174 175 70.0 72.5 73.5 1031 526 534
12 223 152 153 59.5 62.5 61.7 749 391 391
13 780 643 643 87.6 90.5 89.8 3327 2646 2585
14 384 245 235 56.5 59.0 58.2 1089 663 620
15 710 586 594 88.0 87.4 87.6 3269 2215 2272
16 319 213 214 72.7 72.4 71.6 1116 647 636
17 244 165 161 87.9 64.1 63.8 4181 441 421
18 314 365 367 66.7 76.1 75.6 1061 1007 1011
19 295 187 173 65.9 67.8 66.1 962 551 479
20 314 215 214 76.6 73.0 71.6 1159 662 631
21 73 78 70 84.8 68.9 69.6 1196 204 187
22 372 269 270 73.5 77.2 78.1 1223 918 929
23 570 488 486 82.2 77.2 76.8 2072 1427 1410
24 251 164 169 69.6 73.0 73.6 795 505 520
25 531 394 395 74.9 78.8 78.5 1823 1349 1343
26 163 126 107 68.2 70.7 69.5 818 330 282
27 308 217 219 80.8 77.0 76.3 1391 691 685
28 465 382 369 77.1 82.1 82.5 1564 1339 1301
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Table B.5: Summary of the second set of 28 Montana counties by identification number
(ID) for root mean squared error (RMSE), empirical coverage for a 95% nominal coverage
rate, and 95% confidence interval width for the direct estimator and 95% credible interval
width for the two small area estimation models across all repeated samples for the direct,
Fay-Herriot (FH), and FH with conditional autoregressive random effects (FHCAR) model
estimates.

Confidence or
RMSE Percent coverage credible interval width

County ID Direct FH FHCAR Direct FH FHCAR Direct FH FHCAR
29 302 204 190 75.0 80.7 81.3 870 665 630
30 352 253 240 77.9 80.9 81.1 1377 889 837
31 292 193 187 61.7 67.8 67.4 952 552 530
32 599 499 491 81.8 76.6 77.6 2292 1401 1406
33 151 104 116 69.0 77.5 77.5 402 305 327
34 51 63 62 96.0 76.6 75.9 1139 199 202
35 671 586 572 87.8 89.8 89.8 2749 2343 2290
36 295 210 211 72.7 75.4 75.9 1057 679 683
37 166 118 122 84.8 64.0 63.7 2474 292 304
38 270 195 188 65.5 70.9 68.3 902 557 532
39 212 138 137 76.5 68.8 68.5 1147 384 381
40 352 232 230 71.0 74.8 75.4 1066 723 721
41 185 142 140 75.2 52.1 53.6 2854 315 307
42 212 140 149 68.3 69.9 70.2 650 417 439
43 301 198 209 59.6 65.7 66.8 864 551 581
44 194 122 125 62.2 67.9 68.7 509 323 327
45 172 117 109 70.2 66.5 67.0 842 297 279
46 462 356 362 75.5 81.2 81.3 1603 1252 1270
47 306 245 237 60.8 67.2 68.6 892 727 696
48 74 82 73 71.2 57.0 58.1 1111 184 167
49 570 441 449 77.8 81.0 82.0 2037 1574 1628
50 247 159 147 57.2 64.2 64.5 737 436 400
51 632 519 520 86.3 85.8 83.2 2509 1810 1678
52 196 122 127 59.4 60.7 61.0 674 306 316
53 191 121 137 63.4 73.3 76.5 532 332 363
54 382 300 328 72.5 70.3 69.8 1860 944 1026
55 153 105 117 71.9 78.5 79.5 487 307 329
56 893 896 886 88.9 91.8 91.6 3701 3589 3562
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Table B.6: Summary of New Jersey counties by identification number (ID) for root mean
squared error (RMSE), empirical coverage for a 95% nominal coverage rate, and 95%
confidence interval width for the direct estimator and 95% credible interval width for the
two small area estimation models across all repeated samples for the direct, the Fay-Herriot
(FH), and the FH with conditional autoregressive random effects (FHCAR) model
estimates.

Confidence or
RMSE Percent coverage credible interval width

County ID Direct FH FHCAR Direct FH FHCAR Direct FH FHCAR
1 942 732 790 97.3 98.5 96.4 5254 3947 3359
2 247 162 157 95.7 98.4 98.6 12481 939 843
3 975 1041 1131 93.1 95.6 95.2 4499 4439 4471
4 354 276 288 91.4 93.8 93.8 3925 1302 1265
5 417 637 682 90.2 89.2 86.5 2668 2058 2095
6 842 578 528 93.1 96.7 97.0 4114 2978 2712
7 75 78 78 98.9 96.2 93.5 2933 347 293
8 644 473 472 94.9 96.0 95.2 3839 2362 2125
9 18 17 17 96.2 67.8 66.7 448 54 52
10 906 832 864 96.1 94.3 92.0 4898 3437 3190
11 457 292 284 91.4 96.0 96.7 2803 1587 1449
12 451 270 248 89.8 92.3 92.9 2777 1251 1125
13 621 454 499 97.2 97.9 96.2 4080 2425 2124
14 779 522 510 97.8 99.2 98.8 5137 3368 2761
15 701 874 937 88.4 93.9 90.0 3413 3215 3074
16 359 323 320 85.2 89.0 87.6 3480 1179 1061
17 617 484 494 90.8 93.3 93.7 3000 2177 2192
18 550 324 295 96.4 98.8 99.1 3972 2279 2015
19 912 767 776 92.0 96.2 96.2 4310 3660 3610
20 30 186 207 100.0 26.9 13.6 1521 448 401
21 847 616 588 91.6 93.8 94.6 4009 2898 2833
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K. Kronseder, U. Ballhorn, V. Böhm, and F. Siegert. Above ground biomass estimation
across forest types at different degradation levels in Central Kalimantan using LiDAR
data. Int J Appl Earth Obs, 18:37–48, 2012.

M. H. Kutner, C. J. Nachtsheim, and J. Neter. Applied linear regression models. McGraw-
Hill/Irwin, New York, New York, 4 edition, 2004. 701 p.

M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding. LiDAR remote sensing for
ecosystem studies. Bioscience, 52(1):19–30, 2002.

R. J. A. Little and D. B. Rubin. Statistical analysis with missing data. John Wiley & Sons,
Inc, Hoboken, New Jersey, 2 edition, 2014. 381 p.

S. L. Lohr. Sampling: design and analysis. Duxbury Press, Pacific Grove, California, 2
edition, 2010. 608 p.

108

http://rapidlasso.com/LAStools


S. Magnussen, D. Mandallaz, J. Breidenbach, A. Lanz, and C. Ginzler. National forest
inventories in the service of small area estimation of stem volume. Can J For Res, 44(9):
1079–1090, 2014. doi: 10.1139/cjfr-2013-0448.

M. Maltamo, K. T. Korhonen, P. Packalén, L. Mehtätalo, and A. Suvanto. A test on the
usability of truncated angle count sample plots as ground truth in airborne laser scanning
based forest inventory. Forestry, 80:73–81, 2007.

M. Maltamo, P. Packalén, A. Suvanto, K. T. Korhonen, L. Mehtätalo, and P. Hyvönen.
Combining ALS and NFI training data for forest management planning: a case study in
Kuortane, Western Finland. Eur J For Res, 128:305–317, 2009.

F. Mauro, V. J. Monleon, and H. Temesgen. Using small area estimation and lidar-derived
variables for multivariate prediction of forest attributes. In S. M. Stanton and G. A.
Christensen, editors, Gen. Tech. Rep. PNW-GTR-931, pages 73–77. U.S. Department of
Agriculture, Forest Service, Pacific Northwest Research Station. 384 p., December 8–10
2015.

F. Mauro, I. Molina, A. Garćıa-Abril, R. Valbuena, and E. Ayuga-Téllez. Remote sensing
estimates and measures of uncertainty for forest variables at different aggregation levels.
Environmetrics, 27(4):225–238, 2016.

R. E. McRoberts. Compensating for missing plot observations in forest inventory estimation.
Can J For Res, 33(10):1990–1997, 2003.

R. E. McRoberts, W. B. Cohen, E. Næsset, S. V. Stehman, and E. O. Tomppo. Using
remotely sensed data to construct and assess forest attribute maps and related spatial
products. Scand J Forest Res, 25(4):340–367, 2010.

R. E. McRoberts, E. Næsset, and T. Gobakken. Inference for lidar-assisted estimation of
forest growing stock volume. Remote Sens Environ, 128:268–275, 2013.

S. R. Mehmood and D. Zhang. Forest parcelization in the United States: A study of con-
tributing factors. J Forest, 99(4):30–34, 2001.

A. L. Metcalf. Human dimensions of private forestland ownership: sampling, estimation, de-
cision making processes, and implications. PhD thesis, The Pennsylvania State University,
2010. 264 p.

A. L. Metcalf, J. C. Finley, A. E. Luloff, D. Shumway, and R. C. Stedman. Private forest
landowners: Estimating population parameters. J Forest, 110(7):362–370, 2012.

A. L. Metcalf, J. C. Finley, A. E. Luloff, R. C. Stedman, and D. Shumway. Progress in
private forest landowner estimation. J Forest, 112(3):312–315, 2014.

E. Næsset, T. Gobakken, J. Holmgren, H. Hyyppä, J. Hyyppä, M. Maltamo, M. Nilsson,
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