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ABSTRACT

ASSESSMENT OF EQUATION-OF-MOTION COUPLED-CLUSTER METHODS WITH
APPROXIMATE TREATMENTS OF HIGHER-ORDER EXCITATIONS AND

DEVELOPMENT OF NOVEL SCHEMES FOR ACCURATE CALCULATIONS OF
DIRADICAL ELECTRONIC SPECTRA AND BOND BREAKING

By

Adeayo Olayinka Ajala

The development and implementation of electronic structure methods based on the ex-

ponential wave function ansatz of the single-reference coupled-cluster (CC) theory and its

extensions to excited states exploiting the equation-of-motion (EOM) and linear response

frameworks have witnessed great success in a wide range of applications, but there are areas

of chemistry, especially studies of chemical reaction pathways and photochemistry, where

further improvements in the existing CC and EOMCC methodologies are needed. In order

to make progress in this area, it is important to evaluate the quality of the results that the

existing CC/EOMCC methods provide, particularly in applications involving the interpreta-

tion and prediction of photochemical phenomena and electronic excitations spectra involving

closed- and open-shell molecules. Thus, in the first part of this PhD project we use a database

set of 28 organic molecules ranging from linear polyenes, unsaturated cyclic hydrocarbons,

aromatic hydrocarbons, and heterocycles to aldehydes, ketones, amides, and nucleobases

to examine the performance of the completely renormalized (CR) EOMCC approaches for

excited electronic states, in which the relatively inexpensive non-iterative corrections due

to triple excitations are added to the energies obtained with the standard EOMCC ap-

proach with singles and doubles, abbreviated as EOMCCSD. We focus on two variants of

the approximately size-intensive CR-EOMCC methodology with singles, doubles, and non-

iterative triples, abbreviated as δ-CR-EOMCCSD(T), and the analogous two variants of the



newer, rigorously size-intensive, left-eigenstate δ-CR-EOMCC(2,3) approach based on the

biorthogonal formulation of the method of moments of CC equations.

In the second part of this dissertation, we focus on the development of new EOMCC

methods that are particularly well-suited for accurate calculations of diradical electronic

spectra and single bond breaking. They are the cost-effective variants of the doubly electron-

attached (DEA) EOMCC methodologies with up to 3-particle–1-hole (3p-1h) or 4-particle–

2-hole (4p-2h) excitations, abbreviated as DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC

(3p-1h,4p-2h){Nu}, respectively, which utilize the idea of applying a linear electron-attaching

operator to the correlated CC ground state of an (N − 2)-electron closed-shell reference sys-

tem in order to generate the ground and excited states of the N -electron open-shell species of

interest, while using Nu active unoccupied orbitals to select the dominant 3p-1h and 4p-2h

terms. We demonstrate that the relatively inexpensive DEA-EOMCC(3p-1h,4p-2h){Nu}

method greatly reduces the computational costs of the parent active-space DEA-EOMCC

(4p-2h){Nu} and full DEA-EOMCC(4p-2h) approaches, needed to obtain highly accurate re-

sults for open-shell systems having two electrons outside the closed-shell cores, with virtually

no loss in accuracy of the resulting excitation and dissociation energies. We also show that the

active-space DEA-EOMCC(3p-1h){Nu}method accurately reproduces the results of the par-

ent DEA-EOMCC(3p-1h) calculations at the small fraction of the cost. In addition to a series

of benchmark examples that illustrate the performance of the DEA-EOMCC(3p-1h){Nu},

DEA-EOMCC(3p-1h,4p-2h){Nu}, and other DEA-EOMCC approaches with 3p-1h and 4p-2h

excitations, including singlet–triplet gaps in methylene, trimethylenemethane, and several

antiaromatic diradicals and bond breaking in the fluorine molecule, we provide the most

essential details of DEA-EOMCC equations with an active-space treatment of 3p-1h and

4p-2h terms, as implemented in our codes and interfaced with the GAMESS package.
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Chapter 1

Introduction

Quantum chemistry has become an indispensable part of modern molecular science, provid-

ing us with concepts and ideas which play a central role in our understanding of chemical

systems and processes. The development of quantum chemistry has also provided us with

versatile computational tools, whose application in many areas of physical and biological

sciences offer quantitative data and useful insights, helping us to predict, verify, and un-

derstand experimental observations and measurements. Given the plethora of electronic

structure methods, accompanied by the emergence and development of program suites, it is

essential to critically evaluate the performance and accuracy of existing quantum chemistry

approximations and to formulate and implement new and improved ideas. Both of these

aspects are reflected in this dissertation.

One of the most effective approaches to the critical assessment of the existing methods

is by testing these methods on databases that contain larger numbers of well-characterized

molecular species. A few examples of the databases that exist for benchmarking a broad

range of ground-state properties of ab initio and density functional theory (DFT) method-

ologies are the Gaussian Gn test sets [1–6] for atomization energies, ionization potentials,

electron affinities, proton affinities, and enthalpies of formation, the S22 [7], S26 [8], and

S66 [9] training sets for non-covalent interactions, the ATcT [10–12] benchmark set for ther-

mochemical data, the DBH24 [13] test set for barrier heights, the W4 [14] training set for
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total atomization energies, the 3dBE70 [15] benchmark set for average bond energies of 3d

transition-metal-containing compounds, and the “mindless” benchmark set [16], which is a

diversity-oriented collection of randomly generated molecules for main group thermochemical

properties.

Unfortunately, for the corresponding excited-state properties, where theoretical and com-

putational quantum chemistry methods have great potential to make significant contribu-

tions to interpretation and prediction of photochemical phenomena and electronic molecular

spectra, only one such comprehensive test set has been proposed so far [17]. As a result,

fewer methods for excited states have been systematically tested on large datasets. The test

set developed in Ref. [17] consists of 28 organic molecules, 149 singlet vertical excitation

energies, and 72 triplet vertical excitation energies, with the majority of excited states being

dominated by one-electron transitions and some having more substantial two-electron exci-

tation components. In Refs. [17–25], several quantum chemistry approaches, including the

complete-active-space self-consistent field [26, 27] based second-order perturbation theories,

such as CASPT2 [28, 29] and NEVPT2 [30–33], a variety of coupled-cluster (CC) [34–37]

linear-response [38–47] and equation-of-motion (EOM) [48–54] CC methods, time-dependent

DFT [55, 56], and the DFT-based multi-reference configuration interaction (CI) [57] approxi-

mation, have been tested using this set [17–25], providing useful information. We should also

mention the analogous work from Pal and co-workers [58], which highlights a benchmark in-

vestigation of the ionized (IP) EOMCC approach with singles and doubles (IP-EOMCCSD)

[59–62] using the geometries and selected spectroscopic properties of a variety of doublet

radicals, comparing its performance with experiment and other CC approaches.

All of the above examples illustrate that, benchmarking using larger datasets has become

an important procedure in the evaluation and assessment of the quality and validation of
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ab initio electronic structure methods, including the higher-level methods of CC theory and

its extensions to excited and open-shell states. Following on this theme, the first part of

this dissertation will focus on using the comprehensive dataset of Ref. [17] to examine the

performance of new generations of EOMCC methods developed by our group based on the

idea of correcting the excitation energies obtained with EOMCCSD for the effects of triple

excitations, abbreviated as δ-CR-EOMCCSD(T) [63] (see, also, Refs. [64–66]) and δ-CR-

EOMCC(2,3) [67–69]. In doing this, we will rely on our exhaustive study published in Ref.

[70] and the accompanying high-level EOMCC and linear response CC data reported in Refs.

[17, 19, 20, 22, 24, 25].

Our effort to benchmark the non-iterative δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3)

triples corrections to EOMCCSD will show that these approaches are capable of greatly

improving the results of EOMCCSD calculations without the need to go all the way to

prohibitively expensive EOMCC levels, such as EOMCCSDT [71–73], where triple excita-

tions in the cluster and EOM excitation operators are treated fully, but there are situa-

tions, especially the excitation spectra of open-shell species, such as radicals and diradicals,

where it is worth considering alternative approaches. The δ-CR-EOMCCSD(T) and δ-CR-

EOMCC(2,3) methods are cost efficient and capable of handling excited states dominated

by one- as well as two-electron transitions, but like all single-reference particle-conserving

CC/EOMCC schemes implemented using the spin-integrated spin-orbital equations they

break the spin-symmetry of the non-relativistic Hamiltonian in open-shell systems, even

when the reference determinant is of the restricted (e.g, restricted open-shell Hartree–Fock

or ROHF) type. The δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3) methods, being highly

correlated, eliminate much of this problem numerically, offering accurate results for radical

[66, 68] and diradical [74] electronic spectra, even when the excited states of interest have
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a multi-reference character, but the problem of spin contamination in open-shell systems

remains.

Within the EOMCC framework that interests us in this thesis, the cleanest approach to

electronic spectra of open-shell systems, resulting in a rigorously spin-adapted description,

is to consider the electron-attached (EA) [75–81] and IP [59–62, 77, 79–85] EOMCC theories

and their extensions to multiple electron-attachment and multiple ionization cases, such as

the case of doubly electron-attached (DEA) EOMCC framework and its doubly ionized (DIP)

counterpart [53, 86–94]. To appreciate these kinds of mehods, we begin our discussion with

the EA- and IP-EOMCC methodologies. In the EA- and IP-EOMCC theories, the ground

and excited states of an (N ±1)-electron system are generated by applying a linear electron-

attaching or ionizing operator to the correlated CC ground state of the related N -electron

closed-shell core. The basic EA-EOMCCSD [75, 76] and IP-EOMCCSD [59–62] approxima-

tions, in which the electron-attaching and ionizing operators of EOMCC are truncated at the

2-particle–1-hole (2p-1h) and 2-hole–1-particle (2h-1p) terms, respectively, have difficulties

with accurately describing excitation spectra of radicals [75, 79, 80, 95, 96, 96, 97], but, in

analogy to particle-conserving EOMCC schemes, where one needs to go beyond doubles, one

can resolve this inadequacy through the inclusion of 3p-2h/3h-2p [79, 80] and 4p-3h/4h-3p

[85, 96] components of the electron-attaching and ionizing operators of EOMCC. The re-

sulting EA-EOMCCSDT [78], IP-EOMCCSDT [82, 83], EA-EOMCCSD(3p-2h) [79, 80],

IP-EOMCCSD(3h-2p) [79, 80], EA-EOMCCSD(4p-3h) [96], IP-EOMCCSD(4h-3p) [96], EA-

EOMCCSDTQ [85], and IP-EOMCCSDTQ [85] schemes greatly improve the EA-EOMCCSD

and IP-EOMCCSD results even when the excited states of radicals of interest gain a signifi-

cant multi-determinantal character, but computer costs associated with such high-level EA-

and IP-EOMCC methods are quite high. For example, the EA-EOMCCSDT calculations,
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where the cluster operator is truncated at the three-body terms and the EOM electron-

attaching operator at 3p-2h excitations, are characterized by the expensive CPU iterative

steps which scale as n3
on

5
u in the underlying CCSDT computations for the closed-shell core

and n2
on

5
u in the steps related to the diagonalization of the similarity-transformed Hamilto-

nian (no and nu are the numbers of occupied and unoccupied orbitals used in the post-SCF

calculations). These kinds of iterative steps are not computationally affordable for routine

chemical applications for larger molecular problems.

In order to address the issue of large costs of high-order EA- and IP-EOMCC calculations,

the active-space CC [98–109] and EOMCC [71, 72, 110–114] approaches (see Ref. [115] for a

review) have been extended to the EA-EOMCC and IP-EOMCC [79–81, 96] methodologies.

The examples of the active-space EA- and IP-EOMCC methods are EA-EOMCCSDt and

IP-EOMCCSDt [79–81]. The EA-EOMCCSDt and IP-EOMCCSDt methods are obtained

by reducing the numbers of 3p-2h and 3h-2p amplitudes in the parent EA-EOMCCSD(3p-2h)

and IP-EOMCCSD(3h-2p) calculations with the help of active orbitals. As shown in Refs.

[79–81, 96, 116], this offers major savings in the computational effort compared to the EA-

EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) approaches and their EA-EOMCCSDT and

IP-EOMCCSDT counterparts, which treat 3p-2h and 3h-2p terms fully, with virtually no

loss of accuracy in the calculated radical excitation spectra. This is telling us that one

should be able to use the idea of active orbitals to select higher-order terms in the DEA-

and DIP-EOMCC frameworks, which we discuss next.

In the DEA- and DIP-EOMCC approaches [53, 86–94], which are particularly well-suited

to describe systems having two electrons outside the N -electron closed-shell core, such as

diradicals, the ground and excited states of (N + 2)- or (N − 2)-electron species are ob-

tained by applying suitably defined operators that attach two electrons to (the DEA case)
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or remove two electrons from (the DIP case) the N -electron reference system, while relaxing

the remaining electrons. The levels of theory that leads to the desired accuracies in de-

scribing electronic spectra of diradicals (errors in the energy gaps of 1 kcal/mol or smaller)

are DEA-EOMCC(4p-2h) in the DEA case and DIP-EOMCC(4h-2p) in the DIP case. In

the DEA-EOMCC(4p-2h) approach, we truncate the electron-attaching operator of EOMCC

at 4p-2h terms. In the DIP-EOMCC(4h-2p) scheme, the corresponding ionizing operator is

truncated at 4h-2p component. As demonstrated in Refs. [92–94], the incorporation of 4p-2h

and 4h-2p excitations in the DEA- and DIP-EOMCC frameworks greatly improving the ac-

curacy compared to the basic DEA-EOMCC(3p-1h) and DIP-EOMCC(3h-1p) models, where

the EOM operators attaching or removing two electrons from the related closed-shell cores

are truncated at 3p-1h and 3h-1p levels. Unfortunately, as in all CC/EOMCC methods with

higher-than-double excitations, the full implementation of the DEA-EOMCC(4p-2h) and

DIP-EOMCC(4h-2p) approaches that give these high accuracies comes at a high price, re-

sulting in schemes that have very expensive iterative n2
on

6
u (the DEA case) and n4

on
4
u (the DIP

case) steps. One way to incorporate 4p-2h and 4h-2p excitations without running into the

prohibitive costs of the full DEA-EOMCC(4p-2h) and DIP-EOMCC(4h-2p) computations

is to employ the previously discussed active-space ideas to select the dominant higher-rank

excitation amplitudes [92, 93]. This is particularly true in the DEA-EOMCC(4p-2h) case,

where the use of active orbitals to select the dominant 4p-2h components reduces the itera-

tive n2
on

6
u steps of full DEA-EOMCC(4p-2h) to a much more acceptable N2

un
2
on

4
u level, where

Nu (� nu) is the number of active orbitals unoccupied in the N -electron closed-shell refer-

ence system. Similar reduction in the computational effort is observed when one selects the

dominant 4h-2p terms in the DIP-EOMCC(4h-2p) approach using No (< no) active occupied

orbitals. This allows us to replace the original n4
on

4
u scaling of DIP-EOMCC(4h-2p) by much
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less expensive N2
on

2
on

4
u. The results reported in Refs. [92, 93] show that the DEA- and DIP-

EOMCC methods with an active-space treatment of 4p-2h and 4h-2p excitations accurately

reproduce the parent, nearly exact DEA-EOMCC(4p-2h) and DIP-EOMCC(4h-2p) data at

the fraction of the computational cost.

The active-space DEA-EOMCC(4p-2h) and DIP-EOMCC(4h-2p) approaches of Refs.

[92, 93] have been very successful in accurately describing diradical electronic spectra and

single bond breaking, but one issue that prevents such methods from becoming more pop-

ular is the high cost of handling the lower-order 3p-1h terms within the active-space DEA-

EOMCC(4p-2h) framework. Indeed, the cost of computing 3p-1h terms fully scales as itera-

tive non
5
u, making the full treatment of 3p-1h contributions very expensive when basis sets

used in the calculations are larger (so that nu is large). This issue is addressed in this disser-

tation by developing the new form of the DEA-EOMCC approach, in which both 3p-1h and

4p-2h terms are treated with the help of active orbitals, allowing us to reduce the scalings

of the CPU steps associated with the full treatment of these terms from the original and

prohibitively expensive non
5
u and n2

on
6
u levels to Nunon

4
u and N2

un
2
on

4
u, respectively [94]. As

shown in this thesis research and as demonstrated in our recently published studies [94, 117],

the DEA-EOMCC calculations with an active-space treatment of 3p-1h and 4p-2h contri-

butions provide highly accurate results for electronic spectra of diradicals and single bond

breaking, which can compete with those obtained with the parent full DEA-EOMCC(4p-2h)

approach, at the small fraction of the computational cost of the latter method. The byprod-

uct of this work is the implementation of the active-space DEA-EOMCC(3p-1h) scheme,

which is not as accurate as its higher-level DEA-EOMCC(4p-2h) counterpart, but still quite

useful in diradical applications. The active-space DEA-EOMCC(3p-1h) approach, where

4p-2h correlations are neglected, uses active orbitals to select the dominant 3p-1h contri-
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butions, reducing the expensive non
5
u steps of full DEA-EOMCC(3p-1h) to a considerably

more practical Nunon
4
u level. As shown in this dissertation, and as demonstrated in our

recent work [94, 117], the active-space DEA-EOMCC(3p-1h) method allows us to accurately

reproduce the parent DEA-EOMCC(3p-1h) data, where 3p-1h terms are treated fully at the

small fraction of the computational costs of full DEA-EOMCC(3p-1h) calculations.
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Chapter 2

Project Objectives

The main objectives of this dissertation work are

A. Benchmark the δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3) approaches for vertical

excitation energies using a database of 28 small to medium sized organic molecules.

B. Develop and apply reduced-cost DEA-EOMCC(4p-2h) method with an active-space

treatment of 3p-1h as well as 4p-2h excitations and its lower-level counterpart trun-

cated at 3p-1h terms to study the electronic spectra of diradicals and single bond

dissociations.

C. Describe the details of our implementations of the spin- and symmetry-adapted DEA-

EOMCC methods based on the CCSD reference wave function with an active-space

treatment of 3p-1h and 4p-2h contributions and how the DEA-EOMCC equations were

derived, factorized, and translated into FORTRAN code.
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Chapter 3

Benchmarking Completely

Renormalized Equation-of-Motion

Coupled-Cluster Methods with Triple

Excitations

3.1 Background Information and Motivation

As mentioned in the Introduction, the first part of this dissertation focuses on using the

test set introduced in Ref. [17], with additional information and updates provided in Refs.

[19, 21, 24, 25], to examine the performance of the newer generations of the non-iterative

triples corrections to the vertical excitation energies obtained in the EOMCCSD [48–50,

118–121] calculations, abbreviated as δ-CR-EOMCCSD(T) [63] and δ-CR-EOMCC(2,3) [69].

These corrections, resulting from the excited-state extensions [67, 122–124] of the method

of moments of CC equations (MMCC) [65, 68, 122, 125–129], are the approximately size-

intensive [42, 130] (δ-CR-EOMCCSD(T)) or rigorously size-intensive (δ-CR-EOMCC(2,3))

modifications of the CR-EOMCC approaches called CR-EOMCCSD(T) [63, 65, 66] and CR-

EOMCC(2,3) [67, 68]. Herein lies our motivation for benchmarking the δ-CR-EOMCCSD(T)
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and δ-CR-EOMCC(2,3) methods using the test set of Ref. [17].

It is generally thought that the basic EOMCCSD [48–50] and linear-response CCSD

[41, 42] approximations, which construct the desired excited-state information on top of the

conventional CCSD [131–134] ground state, and which are characterized by the relatively

inexpensive iterative CPU steps that scale as n2
on

4
u orN 6, whereN is a measure of the system

size, provide an accurate description of excited states dominated by one-electron transitions.

However, the EOMCCSD method is often not accurate enough to obtain a quantitative

description of such states, especially when larger polyatomic species are examined (cf., e.g.,

Refs. [69, 135–137]; for a thorough evaluation of a number of EOMCC methods, including

EOMCCSD, illustrating the same, see Refs. [17, 19, 20, 22, 24, 25]). It also fails to describe

states with significant two-electron excitation contributions [63–68, 70–72, 74, 122].

One can address these shortcomings by including the effects of connected triple excita-

tions, as is done in full EOMCCSDT [71–73]. While the full treatment of triple excitations

substantially improves the description of excited electronic states, often providing virtually

exact results (see, e.g., Refs. [64, 65, 71–73, 115, 138–141]), it is also accompanied by a steep

increase in the CPU times characterizing the EOMCCSDT computations (the iterative n3
on

5
u

or N 8 steps), limiting its applicability to systems with up to a dozen or so correlated elec-

trons and smaller basis sets. Thus, if one is to make use of the EOMCC methodologies in

accurate calculations of molecular electronic spectra in medium size and larger systems, in-

cluding vertical excitation energies that interest us in this work, EOMCC schemes which can

account for the effects of triples in an approximate, cost effective, and yet reliable manner

need to be employed.

There are several ways of incorporating triple excitations in the EOMCC and linear-

response CC formalisms without running into the prohibitive computational costs of full
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EOMCCSDT. For example, one can select the dominant triply excited components of the

cluster operator T that defines the underlying ground-state CC wave function and three-

body components of the linear excitation operator Rµ in the EOMCC wave function ansatz

through the use of active orbitals, as is done in the active-space EOMCCSDt method [71, 72,

110–112] (see Refs. [115, 129] for reviews; cf., also, Refs. [98–109] for the closely related active-

space CC methods for the ground electronic states). While this allows for full-EOMCCSDT-

quality results at the cost of EOMCCSD times a prefactor proportional to the numbers of

active occupied and active unoccupied orbitals used to select the triples, the approach is no

longer strictly speaking black-box as one has to select the active orbitals.

One can also contemplate approaches for identifying the most important triples contribu-

tions through the many-body perturbation theory or the aforementioned MMCC analysis.

Some examples of these types of non-iterative triples methods are the EOMCC(2)PT(2)

approach [142] and its size-intensive EOMCCSD(2)T modification [143], the linear-response

CCSDR(3) method [46, 47], the EOMCCSD(T) [51], EOMCCSD(T̃) [52], and EOMCCSD(T′)

[52] hierarchy obtained from the perturbative analysis of the EOMCCSDT equations, the

CR-EOMCC family, such as the original CR-EOMCCSD(T) schemes [63, 65, 66], the newer

CR-EOMCC(2,3) approaches [67, 68], and their approximately and rigorously size-intensive

δ-CR-EOMCC counterparts [63, 69], as well as the related N-EOMCCSD(T) scheme [144],

the spin-flip [145–147] extensions of variants A and D of CR-EOMCC(2,3) implemented in

Ref. [148] and abbreviated as EOMCCSD(fT) and EOMCCSD(dT), respectively, and the

iterative EOMCCSDT-n (n = 1, 2, 3) [51, 52] and CC3 [44–47] methodologies. These various

approaches account for the leading triples effects, while replacing the iterative n3
on

5
u (N 8)

CPU steps of full EOMCCSDT by the iterative (EOMCCSDT-n and CC3) or even less

expensive non-iterative (EOMCC(2)PT(2), EOMCCSD(2)T, CCSDR(3), EOMCCSD(T),
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EOMCCSD(T̃), EOMCCSD(T
′
), CR-EOMCCSD(T), N-EOMCCSD(T), CR-EOMCC(2,3))

n3
on

4
u (N 7) CPU costs. This, combined with their black-box character, makes the above

approximate treatment of triple excitations within the EOMCC and linear-response CC

frameworks attractive candidates for routine use in photochemistry and other areas where

accurate excited-state information is called for. Another promising approach in this category

is the similarity-transformed EOMCC (STEOMCC) methodology [24, 53, 54], which incor-

porates higher-than-double excitations into the EOMCC framework through the suitable

transformation of the similarity-transformed Hamiltonian of EOMCCSD.

The performance of many of the above methods is already well established. In par-

ticular, the EOMCCSDT-3 and CC3 approaches and their non-iterative EOMCCSD(T),

EOMCCSD(T̃), and CCSDR(3) counterparts have been thoroughly examined in Refs. [17,

19–22, 24, 25] using the database developed in Ref. [17]. The same applies to the STEOMCC

approaches, which have been tested against the EOMCCSDT-3 and CC3 data that are gen-

erally recognized as accurate, using the singlet and triplet excited states of the 28 molecules

constituting the database of Ref. [17]. Although a number of successful applications of the

CR-EOMCCSD(T), CR-EOMCC(2,3), δ-CR-EOMCCSD(T), and δ-CR-EOMCC(2,3) meth-

ods have been published (see, e.g., Refs. [63–69, 74, 111, 115, 135, 136, 149–186]), showing

considerable promise in applications involving singly and more multi-reference doubly excited

states, none of the CR-EOMCC approaches have been subjected to a comprehensive statis-

tical evaluation of the type used in Refs. [17–25]. This present work addresses this issue by

testing the approximately size-intensive δ-CR-EOMCCSD(T) method and its biorthogonal

and strictly size-intensive δ-CR-EOMCC(2,3) counterpart against the previously published

EOMCCSDT-3, CC3, CASPT2, and theoretical best estimate (TBE) data using the database

of excited states developed in Ref. [17] and the subsequent studies [19–22, 24, 25]. Com-
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parisons with the EOMCCSDT-3 and CC3 results reported in Refs. [17, 19, 21, 22, 24, 25]

are particularly useful, since the δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3) approaches

replace the iterative n3
on

4
u (N 7) CPU steps and ∼ N 6 storage requirements by the much less

expensive iterative n2
on

4
u (N 6) and non-iterative n3

on
4
u (N 7) steps and ∼ N 4 storage require-

ments. Comparisons with the CASPT2 and TBE data are useful too, since δ-CR-EOMCC

methods are computational black boxes and the multi-reference CASPT2 approach is not.

Furthermore, the existing TBE data can presently be regarded as some of the best estimates

of the excitation energies for the molecules comprising the database of Ref. [17], which one

would like to reproduce with a reasonable accuracy.

3.2 Theory

As already alluded to in Section 3.1, in the δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3)

methods of Refs. [63] and [69], we correct the vertical excitation energies obtained in the

EOMCCSD calculations for the leading triples effects extracted from the MMCC considera-

tions. Thus, if ωµ = Eµ−E0 represents the vertical excitation energy from the ground state

|Ψ0〉 to the excited state |Ψµ〉, the δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3) values of

ωµ can be given the following general form:

ωµ = ω
(CCSD)
µ + δµ, (3.1)

where ω
(CCSD)
µ is the EOMCCSD excitation energy obtained by diagonalizing the similarity-

transformed Hamiltonian of CCSD, i.e.,

H̄(CCSD) = e−T1−T2HeT1+T2 , (3.2)
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in the space of singly and doubly excited determinants, |Φai 〉 and |Φabij 〉, respectively, and

δµ is the triples correction to ω
(CCSD)
µ . As usual, T1 and T2 are the singly and doubly

excited components of the cluster operator T obtained by solving the ground-state CCSD

equations and i, j, . . . (a, b, . . . ) are the spin-orbitals which are occupied (unoccupied)

in the reference determinant |Φ〉 (in the case of the δ-CR-EOMCC calculations reported

in this dissertation, the restricted Hartree–Fock (RHF) determinant). Both δ-CR-EOMCC

approaches use the same general expression for δµ, namely,

δµ =
∑
i<j<k
a<b<c

`abcµ,ijk M
ijk
µ,abc, (3.3)

and the only difference between the δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3) methods

is in the explicit formulas for `abcµ,ijk and M
ijk
µ,abc. For a derivation of the formula for δµ, Eq.

(3.3), see Appendix A.

In the δ-CR-EOMCCSD(T) approximation, which is based on the more general CR-

EOMCCSD(T) considerations described in Ref. [63], M
ijk
µ,abc’s are the generalized moments

of the EOMCCSD equations corresponding to projections of these equations on the triply

excited determinants |Φabcijk〉,

M
ijk
µ,abc = 〈Φabcijk |H̄

(CCSD)(Rµ,0 +Rµ,1 +Rµ,2)|Φ〉, (3.4)

where Rµ,0, Rµ,1, and Rµ,2 are the zero-, one-, and two-body components of the linear

excitation operator Rµ defining the EOMCC wave function ansatz |Ψµ〉 = Rµe
T |Φ〉 resulting

from the EOMCCSD calculations, in which T = T1 + T2 and Rµ = Rµ,0 + Rµ,1 + Rµ,2

(Rµ,0 is defined as rµ,01, where rµ,0 provides the weight of the reference determinant in
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the EOMCCSD wave function and 1 is the unit operator). The corresponding amplitudes

`abcµ,ijk that multiply moments M
ijk
µ,abc to produce the δµ correction are calculated using the

expression

`abcµ,ijk = 〈Ψ̃µ|Φabcijk〉/〈Ψ̃µ|Ψ
(CCSD)
µ 〉, (3.5)

where |Ψ(CCSD)
µ 〉 = (Rµ,0 + Rµ,1 + Rµ,2)eT1+T2|Φ〉 is the EOMCCSD wave function of

excited state µ and |Ψ̃µ〉 is defined as

|Ψ̃µ〉 = {Rµ,0 + (Rµ,1 +Rµ,0T1) + [Rµ,2 +Rµ,1T1

+Rµ,0(T2 +
1

2
T 2

1 )] + [R̃µ,3 +Rµ,2T1

+Rµ,1(T2 +
1

2
T 2

1 ) +Rµ,0(T1T2 +
1

6
T 3

1 )]}|Φ〉.

(3.6)

Here, R̃µ,3 represents the approximate form of the three-body component of Rµ given by

R̃µ,3 =
∑
i<j<k
a<b<c

r̃
ijk
µ,abc a

aabacakajai, (3.7)

where

r̃
ijk
µ,abc = M

ijk
µ,abc/D

abc
µ,ijk (3.8)

are the corresponding triple excitation amplitudes and ap (ap) is the creation (annihila-

tion) operator associated with spin-orbital p. In the most complete δ-CR-EOMCCSD(T)

treatment, defining variant ID of it and abbreviated, following the naming convention intro-

duced in Ref. [63], as δ-CR-EOMCCSD(T),ID, the Dabc
µ,ijk denominator entering Eq. (3.8) is

calculated as

Dabc
µ,ijk = ω

(CCSD)
µ −

3∑
n=1

〈Φabcijk |H̄
(CCSD)
n |Φabcijk〉, (3.9)
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where H̄
(CCSD)
n is the n-body component of H̄(CCSD). In the simplified IA version of δ-

CR-EOMCCSD(T), abbreviated as δ-CR-EOMCCSD(T),IA, we replace the Epstein–Nesbet

form of Dabc
µ,ijk, Eq. (3.9), by the Møller–Plesset-style expression

Dabc
µ,ijk = ω

(CCSD)
µ − (εa + εb + εc − εi − εj − εk), (3.10)

where εp’s are the spin-orbital energies (diagonal elements of the Fock matrix).

The δ-CR-EOMCC(2,3) method proposed in Ref. [69], which is a rigorously size-intensive

version of the CR-EOMCC(2,3) methodology of Refs. [67, 68], relies on the same general ex-

pressions for ωµ and δµ as those used in the δ-CR-EOMCCSD(T) considerations, Eqs. (3.1)

and (3.3), respectively, but the explicit formulas for `abcµ,ijk and M
ijk
µ,abc are different. As shown

in Refs. [68, 69], the enforcement of strict size intensivity of the δµ triples correction (ω
(CCSD)
µ

is size intensive [42, 130]) requires that we replace the complete moment M
ijk
µ,abc, Eq. (3.4),

in Eq. (3.3) by its truncated analog ignoring the ground-state rµ,0〈Φabcijk |H̄
(CCSD)|Φ〉 contri-

bution, i.e.,

M
ijk
µ,abc = 〈Φabcijk |H̄

(CCSD)(Rµ,1 +Rµ,2)|Φ〉. (3.11)

At the same time, because of the use of the biorthogonal version of the MMCC formalism in

designing the CR-EOMCC(2,3) schemes, we have to replace Eq. (3.5) for `abcµ,ijk in Eq. (3.3)

by

`abcµ,ijk = 〈Φ|(Lµ,1 + Lµ,2) H̄(CCSD)|Φabcijk〉/D
abc
µ,ijk, (3.12)

where Lµ,1 and Lµ,2 are the one- and two-body components of the linear deexcitation op-

erator Lµ defining the bra counterparts of the EOMCCSD excited states, 〈Ψ(CCSD)
µ | =

〈Φ|(Lµ,1 +Lµ,2)e−T1−T2 (the zero-body component of Lµ, i.e., Lµ,0, vanishes when excited
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states are considered). Again, if the Dabc
µ,ijk denominator entering Eq. (3.12) is given by the

Epstein–Nesbet-type expression, Eq. (3.9), we obtain the more complete variant D of δ-CR-

EOMCC(2,3), abbreviated as δ-CR-EOMCC(2,3),D. If we replace Eq. (3.9) for Dabc
µ,ijk in Eq.

(3.12) by the Møller–Plesset-type expression given by Eq. (3.10), we obtain the simplified A

variant, abbreviated as δ-CR-EOMCC(2,3),A. As explained in Ref. [69] (cf., also, Ref. [68]),

the δ-CR-EOMCC(2,3),A approximation is equivalent to the EOMCCSD(2)T approach of

Ref. [143] and, if we limit ourselves to vertical excitation energies, which is the case in this

work, to the EOMCCSD(T̃) method of Ref. [52].

3.3 Benchmark Molecules and Computational Details

The database set of 28 organic molecules proposed in Ref. [17] is composed of seven unsatu-

rated aliphatic hydrocarbons, eleven aromatic hydrocarbons and heterocycles, six carbonyl

compounds, and four nucleobases, all shown in Fig. 3.1. The main Tables I and II of Ref.

[17] contain a total of 221 electronically excited states, namely, 149 singlet and 72 triplet

excitations. The Supporting Information to Ref. [17] provides data on 22 additional singlet

states, but this study, particularly in its statistical error analysis in Section 3.5, focuses on

the 149 singlet excitations listed in Table I of Ref. [17]. Our EOMCC calculations have

produced 54 additional singlet excited states in the energy range covered by Table I of Ref.

[17], including five states that can be found in the Supporting Information to Ref. [17] and

49 states that have not been considered in the earlier benchmark work [17–25]. We provide

information about these 54 additional singlet excitations in our tables as well, but we do not

include them in our statistical error analyses, since the EOMCCSDT-3 and CC3 reference

data are not available for them.
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Figure 3.1: Benchmark set of molecules considered in this work.
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In determining the corresponding vertical excitation energies, we considered the ground-

state equilibrium geometries taken from Ref. [17], which were optimized at the Møller–Plesset

second-order perturbation theory (MP2) level using the 6-31G∗ [187] basis. In addition,

to examine the effect of geometry on the calculated vertical excitation energies, we also

re-optimized the ground-state geometries of the same set of molecules at the higher CR-

CC(2,3),D level [127, 128], consistent with the δ-CR-EOMCC(2,3),D approximation, using

the TZVP [188] basis, which was used in the vertical excitation energy calculations re-

ported in Refs. [17–20, 22–25] and which is used in the EOMCC computations discussed

in this work. These additional CR-CC(2,3),D geometry optimizations were carried out us-

ing the parallel coarse-grain finite-difference model available in the CIOpt program suite

[189, 190], which we interfaced with the CR-CC(2,3) routines [127, 128, 191] available in the

GAMESS package [192, 193]. All of the δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID,

δ-CR-EOMCC(2,3),A, and δ-CR-EOMCC(2,3),D computations reported in this work and

the underlying EOMCCSD calculations were performed using the CC/EOMCC routines de-

veloped in Refs. [63, 68, 127, 194], available in GAMESS as well. In all of the correlated

calculations reported in this work, core electrons were kept frozen and spherical components

of d basis functions were employed throughout.
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3.4 Results and Discussion

3.4.1 Geometries and their Effect on the Calculated Vertical Ex-

citation Energies

Comparing the MP2/6-31G∗ and CR-CC(2,3),D/TZVP geometries, Tables 3.1 and 3.2, we

see that the corresponding bond lengths and bond angles, which differ by 0.005 Å and 0.2

degrees, respectively, on average, are in excellent agreement with each other. Among the

individual molecules, the largest differences in the bond lengths and angles occur in the

nucleobases, namely, cytosine (0.019 Å) and adenine (0.6 degrees). For the dihedral angles,

the largest difference between the MP2/6-31G∗ and CR-CC(2,3),D/TZVP results, of 0.3

degrees, occurs for cyclopropene.

Using the above two sets of geometries, we computed the 203 vertical excitation ener-

gies for the 28 molecules comprising the database of Ref. [17], which are presented in Table

3.3 for the MP2/6-31G∗ geometries and Table 3.4 for the CR-CC(2,3),D/TZVP geometries.

Comparing the two sets of vertical excitation energies, we can see that they are in very good

agreement for each of the EOMCC approaches employed in this work. For example, if we ex-

amine the correlation plot for the vertical excitation energies corresponding to the 149 singlet

excited states listed in Table I of Ref. [17] and computed at the δ-CR-EOMCC(2,3),D/TZVP

level using the MP2/6-31G∗ and CR-CC(2,3),D/TZVP geometries, shown in Fig. 3.2, we ob-

serve that their correlation coefficient is 0.9994 and maximum energy difference (MaxE) is

0.18 eV. The corresponding mean unsigned error (MUE) and mean signed error (MSE) values

are 0.05 and 0.04 eV, respectively.

This similarity of the δ-CR-EOMCC(2,3),D excitation energies obtained at the MP2/6-
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31G∗ and CR-CC(2,3),D/TZVP geometries remains virtually the same if we include the

entire set of 203 excitations listed in Tables 3.3 and 3.4 in our calculations. Thus, we

can safely rely on the MP2/6-31G∗ geometries in discussing the relative performance of

various EOMCC methods in this work. For this reason, much of our assessment of the

δ-CR-EOMCC approaches examined in this dissertation is based on the results obtained

with the MP2/6-31G∗ geometries collected in Table 3.1. The same geometries were used in

the previous method assessments using the database of Ref. [17], reported in Refs. [17–25],

which helps us in making judgments regarding the performance of the δ-CR-EOMCCSD(T)

and δ-CREOMCC(2,3) methods, particularly when compared with the previously published

EOMCCSDT-3 [22, 24], CC3 [17, 19, 21, 25], and CASPT2 [17, 21] data.
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Table 3.1: Symmetry unique Cartesian coordinates of the ground-state geometries for the
28 molecules comprising the benchmark set resulting from the MP2/6-31G∗ optimizations.

Molecule (symmetry) Atom X Y Z
Ethene (D2h) H 0.000000 0.923274 1.238289

C 0.000000 0.000000 0.668188

E-Butadiene (C2h) H -1.080977 2.558832 0.000000
H -2.103773 1.017723 0.000000
H 0.973565 1.219040 0.000000
C 0.000000 -0.728881 0.000000
C -1.117962 1.474815 0.000000

all-E-Hexatriene (C2h) H -0.953777 1.207691 0.000000
H 2.155816 0.952317 0.000000
H 2.125769 3.402692 0.000000
H 0.275642 3.397162 0.000000
C 0.000000 0.676808 0.000000
C 1.204938 1.485654 0.000000
C 1.203567 2.831663 0.000000

all-E-Octatetraene (C2h) H 0.971328 1.220141 0.000000
H -2.098090 0.984719 0.000000
H -0.146884 3.418505 0.000000
H -2.193473 4.766086 0.000000
H -3.225698 3.230501 0.000000
C 0.000000 0.721498 0.000000
C 1.125020 -1.479523 0.000000
C 1.121077 -2.928812 0.000000
C 2.237388 -3.682282 0.000000

Cyclopropene (C2v) H 0.912650 0.000000 1.457504
H 0.000000 -1.585659 -1.038624
C 0.000000 0.000000 0.859492
C 0.000000 -0.651229 -0.499559

Cyclopentadiene (C2v) H -0.879859 0.000000 1.874608
H 0.000000 2.211693 0.612518
H 0.000000 1.349811 -1.886050
C 0.000000 0.000000 1.215652
C 0.000000 -1.177731 0.285415
C 0.000000 -0.732372 -0.993420

Norbornadiene (C2v) H 0.901419 0.000000 1.967823
H 0.000000 2.156504 0.616597
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Table 3.1 (cont’d).

Molecule (symmetry) Atom X Y Z
H 1.924341 1.340999 -1.022814
C 0.000000 0.000000 1.346369
C 0.000000 1.119526 0.272221
C 1.235500 0.672374 -0.517602

Benzene (D6h) H 2.151390 1.242106 0.000000
C 1.209657 -0.698396 0.000000

Naphthalene (D2h) H 1.240557 2.492735 0.000000
H 3.377213 1.246082 0.000000
C 0.000000 0.716253 0.000000
C 1.241539 1.403577 0.000000
C 2.432418 0.707325 0.000000

Furan (C2v) H 0.000000 2.051058 0.851533
H 0.000000 1.371979 -1.821224
C 0.000000 1.095840 0.348301
C 0.000000 0.714027 -0.963274
O 0.000000 0.000000 1.164881

Pyrrole (C2v) H 0.000000 2.114611 0.770889
H 0.000000 1.358585 -1.850224
H 0.000000 0.000000 2.130670
C 0.000000 1.125828 0.333870
C 0.000000 0.709235 -0.984789
N 0.000000 0.000000 1.119862

Imidazole (Cs) H 0.000000 2.119822 0.714354
H 0.000000 1.202262 -1.904898
H 0.000000 -2.104815 0.663782
H 0.000000 -0.010302 2.116597
C 0.000000 1.120107 0.305897
C 0.000000 0.635508 -0.983749
C 0.000000 -1.091835 0.283881
N 0.000000 -0.741378 -0.994001
N 0.000000 0.000000 1.104571

Pyridine (C2v) H 0.000000 2.061947 1.308539
H 0.000000 2.156804 -1.184054
H 0.000000 0.000000 -2.475074
C 0.000000 1.145417 0.721005
C 0.000000 1.197637 -0.673735
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Table 3.1 (cont’d).

Molecule (symmetry) Atom X Y Z
C 0.000000 0.000000 -1.387901
N 0.000000 0.000000 1.426610

Pyrazine (D2h) H 0.000000 2.068464 1.258236
C 0.000000 1.135920 0.697884
N 0.000000 0.000000 1.417402

Pyrimidine (C2v) H 0.000000 2.156588 1.120200
H 0.000000 0.000000 -2.400385
H 0.000000 0.000000 2.440403
C 0.000000 1.186684 0.626213
C 0.000000 0.000000 -1.312625
C 0.000000 0.000000 1.354949
N 0.000000 1.203523 -0.717781

Pyridazine (C2v) H 0.000000 2.409486 -0.149325
H 0.000000 1.271234 2.102647
C 0.000000 1.325698 -0.063084
C 0.000000 0.693095 1.182948
N 0.000000 0.674211 -1.238929

s-Triazine (D3h) H 0.000000 0.000000 2.386083
H 0.000000 2.066408 -1.193041
C 0.000000 0.000000 1.298345
C 0.000000 1.124400 -0.649173
N 0.000000 0.000000 -1.379450
N 0.000000 1.194639 0.689726

s-Tetrazine (D2h) H 0.000000 0.000000 -2.354794
C 0.000000 0.000000 1.269044
N 0.000000 1.204572 0.670429

Formaldehyde (C2v) H 0.000000 0.934473 -0.588078
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.221104

Acetone (C2v) H 0.000000 2.136732 -0.112445
H -0.881334 1.333733 -1.443842
C 0.000000 0.000000 0.000000
C 0.000000 1.287253 -0.795902
O 0.000000 0.000000 1.227600
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Table 3.1 (cont’d).

Molecule (symmetry) Atom X Y Z
p-Benzoquinone (D2h) H 0.000000 2.182973 1.259286

C 0.000000 0.000000 1.441079
C 0.000000 1.266644 0.674582
O 0.000000 0.000000 2.678518

Formamide (Cs) H -0.927427 -0.600301 0.000000
H 1.070498 -1.782390 0.000000
H 2.024514 -0.325050 0.000000
C 0.000000 0.000000 0.000000
O 0.000000 1.225060 0.000000
N 1.119392 -0.775069 0.000000

Acetamide (Cs) H 1.173209 -1.735763 0.000000
H 2.035841 -0.226201 0.000000
H -2.121189 -0.156089 0.000000
H -1.310647 -1.472742 0.885504
C 0.000000 0.000000 0.000000
C -1.267042 -0.831610 0.000000
O 0.000000 1.229439 0.000000
N 1.158967 -0.727718 0.000000

Propanamide (Cs) H 1.171887 -1.734653 0.000000
H 2.036508 -0.225526 0.000000
H -1.256737 -1.492368 0.877197
H -3.420939 -0.590421 0.000000
H -2.544313 0.678541 -0.880209
C 0.000000 0.000000 0.000000
C -1.272727 -0.833216 0.000000
C -2.523376 0.033790 0.000000
O 0.000000 1.230373 0.000000
N 1.159100 -0.726409 0.000000

Cytosine (Cs) H -2.114860 -1.429678 0.000000
H -0.173973 -2.806186 0.000000
H 2.073228 -1.658021 0.000000
H 3.175240 0.564335 0.000000
H 2.235202 2.033636 0.000000
C -0.060783 -1.726152 0.000000
C 1.144884 -1.099470 0.000000
C 1.107049 0.338190 0.000000
C -1.227573 0.430359 0.000000
O -2.315109 0.998271 0.000000
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Table 3.1 (cont’d).

Molecule (symmetry) Atom X Y Z
N 0.000000 1.058130 0.000000
N -1.201178 -0.989148 0.000000
N 2.278974 1.024187 0.000000

Thymine (Cs) H 0.217481 -2.676720 0.000000
H 2.052694 0.924773 0.000000
H -1.943101 -1.709021 0.000000
H -3.360610 0.309754 0.000000
H -2.616463 1.665008 0.879105
C 1.356951 -0.994496 0.000000
C 0.000000 1.121102 0.000000
C -1.214538 0.306431 0.000000
C -1.085764 -1.041812 0.000000
C -2.529824 1.020445 0.000000
O 2.444132 -1.558490 0.000000
O 0.023681 2.350992 0.000000
N 0.145112 -1.666249 0.000000
N 1.192460 0.382130 0.000000

Uracil (Cs) H -2.025413 -1.517742 0.000000
H -0.021861 1.995767 0.000000
H 2.182391 -1.602586 0.000000
H -0.026659 -2.791719 0.000000
C -1.239290 0.359825 0.000000
C 1.279718 0.392094 0.000000
C 1.243729 -1.064577 0.000000
C 0.055755 -1.709579 0.000000
O -2.308803 0.954763 0.000000
O 2.287387 1.092936 0.000000
N -1.139515 -1.026364 0.000000
N 0.000000 0.978951 0.000000

Adenine (Cs) H 0.974930 -3.075149 0.000000
H 2.134658 2.075802 0.000000
H 3.312010 0.776987 0.000000
H -3.052077 -0.334232 0.000000
H -2.711876 2.203052 0.000000
C 0.662834 -2.032900 0.000000
C 1.359313 0.172553 0.000000
C 0.000000 0.547434 0.000000
C -0.924835 -0.500714 0.000000
C -1.906806 1.478795 0.000000
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Table 3.1 (cont’d).

Molecule (symmetry) Atom X Y Z
N -0.658577 -1.817838 0.000000
N 1.672594 -1.133202 0.000000
N -2.150759 0.128726 0.000000
N -0.616118 1.783396 0.000000
N 2.352763 1.090709 0.000000
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Table 3.2: Symmetry unique Cartesian coordinates of the ground-state geometries of the 28
molecules comprising the benchmark set resulting from the CR-CC(2,3),D/TZVP optimiza-
tions carried out in this work.

Molecule (symmetry) Atom X Y Z
Ethene (D2h) H 0.000000 0.924035 1.236513

C 0.000000 0.000000 0.668881

E-Butadiene (C2h) H -2.733502 0.488401 0.000000
H -1.996346 -1.209626 0.000000
H -0.493204 1.480741 0.000000
C 0.613255 -0.399134 0.000000
C -1.846790 -0.134268 0.000000

all-E-Hexatriene (C2h) H -0.689671 -1.373825 0.000000
H -1.779265 1.550035 0.000000
H -3.983818 0.481440 0.000000
H -3.188581 -1.190249 0.000000
C -0.611506 -0.287351 0.000000
C -1.860731 0.465059 0.000000
C -3.076386 -0.110589 0.000000

all-E-Octatetraene (C2h) H -0.609354 1.435522 0.000000
H -1.864325 -1.371454 0.000000
H -3.082792 1.500066 0.000000
H -5.238862 0.334070 0.000000
H -4.370232 -1.299431 0.000000
C -0.638128 0.346740 0.000000
C 1.835457 0.282916 0.000000
C 3.116293 -0.412631 0.000000
C 4.305668 0.215978 0.000000

Cyclopropene (C2v) H 0.914476 0.000000 1.478608
H 0.000000 -1.579439 -1.022564
C 0.000000 0.000000 0.887272
C 0.000000 -0.650147 -0.480853

Cyclopentadiene (C2v) H -0.884693 0.000000 1.884064
H 0.000000 2.210781 0.627891
H 0.000000 1.348160 -1.876762
C 0.000000 0.000000 1.235311
C 0.000000 -1.181911 0.294218
C 0.000000 -0.737921 -0.982749

Norbornadiene (C2v) H 0.901246 0.000000 1.976906
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Table 3.2 (cont’d).

Molecule (symmetry) Atom X Y Z
H 0.000000 2.156931 0.625501
H 1.933914 1.340614 -1.010326
C 0.000000 0.000000 1.357782
C 0.000000 1.123491 0.279727
C 1.244064 0.671585 -0.512920

Benzene (D6h) H 0.000000 2.482672 0.000000
C 0.000000 1.397828 0.000000

Naphthalene (D2h) H 1.241938 2.490352 0.000000
H 3.377709 1.245631 0.000000
C 0.000000 0.712349 0.000000
C 1.245787 1.404252 0.000000
C 2.434128 0.710577 0.000000

Furan (C2v) H 0.000000 2.050655 0.816080
H 0.000000 1.377422 -1.844443
C 0.000000 1.095512 0.318614
C 0.000000 0.720764 -0.989032
O 0.000000 0.000000 1.138748

Pyrrole (C2v) H 0.000000 2.113533 0.765168
H 0.000000 1.361742 -1.848823
H 0.000000 0.000000 2.129579
C 0.000000 1.126599 0.330605
C 0.000000 0.714934 -0.985073
N 0.000000 0.000000 1.123459

Imidazole (Cs) H -1.619793 1.573819 0.000000
H 1.123222 1.935864 0.000000
H 0.334319 -2.168241 0.000000
H -1.909946 -0.965998 0.000000
C -0.806312 0.867796 0.000000
C 0.557098 1.018433 0.000000
C 0.213535 -1.095313 0.000000
N 1.191626 -0.213966 0.000000
N -1.017600 -0.499248 0.000000

Pyridine (C2v) H 0.000000 2.057742 1.279370
H 0.000000 2.157421 -1.204811
H 0.000000 0.000000 -2.499000
C 0.000000 1.142017 0.696089
C 0.000000 1.198401 -0.699905
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Table 3.2 (cont’d).

Molecule (symmetry) Atom X Y Z
C 0.000000 0.000000 -1.414468
N 0.000000 0.000000 1.403713

Pyrazine (D2h) H 0.000000 2.064971 1.251200
C 0.000000 1.131290 0.698767
N 0.000000 0.000000 1.419992

Pyrimidine (C2v) H 0.000000 2.151421 1.143883
H 0.000000 0.000000 -2.367202
H 0.000000 0.000000 2.465179
C 0.000000 1.185180 0.649436
C 0.000000 0.000000 -1.282724
C 0.000000 0.000000 1.382204
N 0.000000 1.204114 -0.692499

Pyridazine (C2v) H 0.000000 2.402231 -0.101371
H 0.000000 1.274904 2.147804
C 0.000000 1.321686 -0.017415
C 0.000000 0.691188 1.234582
N 0.000000 0.673098 -1.186891

s-Triazine (D3h) H 0.000000 0.000000 2.379949
H 0.000000 -2.061096 -1.189974
C 0.000000 0.000000 1.295214
C 0.000000 1.121689 -0.647607
N 0.000000 0.000000 -1.379413
N 0.000000 1.194607 0.689706

s-Tetrazine (D2h) H 0.000000 0.000000 -2.345244
C 0.000000 0.000000 1.263568
N 0.000000 1.201393 0.665348

Formaldehyde (C2v) H 0.000000 0.936522 -1.194669
C 0.000000 0.000000 -0.611070
O 0.000000 0.000000 0.601026

Acetone (C2v) H 0.000000 2.146422 -0.027075
H -0.882224 1.327228 -1.347775
C 0.000000 0.000000 0.101073
C 0.000000 1.290335 -0.700873
O 0.000000 0.000000 1.318967

p-Benzoquinone (D2h) H 0.000000 2.186299 1.257330
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Table 3.2 (cont’d).

Molecule (symmetry) Atom X Y Z
C 0.000000 0.000000 1.447657
C 0.000000 1.272483 0.672789
O 0.000000 0.000000 2.672016

Formamide (Cs) H -0.035245 -1.510395 0.000000
H 1.985297 -0.387754 0.000000
H 1.220829 1.174175 0.000000
C -0.086417 -0.408385 0.000000
O -1.137024 0.203772 0.000000
N 1.148803 0.169288 0.000000

Acetamide (Cs) H -0.429500 1.963037 0.000000
H -1.825424 0.919709 0.000000
H 1.968854 -0.768041 0.000000
H 1.731392 0.760691 0.885868
C -0.048142 -0.085394 0.000000
C 1.447136 0.186847 0.000000
O -0.530756 -1.207321 0.000000
N -0.826744 1.039291 0.000000

Propanamide (Cs) H -1.718718 1.621719 0.000000
H -2.558968 0.106405 0.000000
H 0.700516 1.446972 0.880124
H 2.8946227 0.629339 0.000000
H 2.0703450 -0.674316 -0.880899
C -0.5133681 -0.079956 0.000000
C 0.7402250 0.793991 0.000000
C 2.0241565 -0.031604 0.000000
O -0.4793028 -1.300110 0.000000
N -1.6935733 0.618024 0.000000

Cytosine (Cs) H 2.103205 1.409422 0.000000
H 0.192912 2.827585 0.000000
H -2.076127 1.733417 0.000000
H -3.230237 -0.441208 0.000000
H -2.342275 -1.940394 0.000000
C 0.057348 1.753262 0.000000
C -1.160876 1.158804 0.000000
C -1.160455 -0.287378 0.000000
C 1.168040 -0.430384 0.000000
O 2.229243 -1.026481 0.000000
N -0.075930 -1.033377 0.000000
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Table 3.2 (cont’d).

Molecule (symmetry) Atom X Y Z
N 1.184394 0.990106 0.000000
N -2.355274 -0.933983 0.000000

Thymine (Cs) H -1.808790 1.976164 0.000000
H -0.960101 -1.978634 0.000000
H 0.472725 2.586214 0.000000
H 2.845328 1.936434 0.000000
H 3.138260 0.420783 0.880445
C -1.629921 -0.052812 0.000000
C 0.757392 -0.836268 0.000000
C 1.185247 0.572789 0.000000
C 0.232776 1.529218 0.000000
C 2.660700 0.859484 0.000000
O -2.818136 -0.308378 0.000000
O 1.510510 -1.794389 0.000000
N -1.122941 1.236814 0.000000
N -0.634602 -1.019928 0.000000

Uracil (Cs) H -2.017408 -1.525923 0.000000
H -0.037071 2.000601 0.000000
H 2.186816 -1.597809 0.000000
H -0.017760 -2.789145 0.000000
C -1.239995 0.355737 0.000000
C 1.277990 0.401032 0.000000
C 1.247659 -1.064625 0.000000
C 0.063207 -1.709410 0.000000
O -2.304131 0.941040 0.000000
O 2.276936 1.095016 0.000000
N -1.138733 -1.030829 0.000000
N -0.005322 0.988101 0.000000

Adenine (Cs) H 2.011864 -2.505708 0.000000
H 1.265984 2.708859 0.000000
H 2.822411 1.913573 0.000000
H -2.721643 -1.389953 0.000000
H -3.312695 1.099409 0.000000
C 1.351251 -1.644974 0.000000
C 1.214246 0.657399 0.000000
C -0.188214 0.522517 0.000000
C -0.677566 -0.781382 0.000000
C -2.302961 0.717203 0.000000
N 0.042556 -1.915431 0.000000

33



Table 3.2 (cont’d).

Molecule (symmetry) Atom X Y Z
N 1.976462 -0.449014 0.000000
N -2.048158 -0.639855 0.000000
N -1.219795 1.457921 0.000000
N 1.817944 1.868950 0.000000
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Figure 3.2: Correlation plot of the δ-CR-EOMCC(2,3),D/TZVP excitation energies (in eV)
computed using the MP2/6-31G∗ and CR-CC(2,3),D/TZVP geometries.
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Table 3.3: Vertical excitation energies (in eV) for singlet states of all molecules in the test
set using the geometries optimized at the MP2/6-31G∗ level.a ,b

Molecule State RELc SDd δ-CR(T),IAe δ-CR(T),IDe δ-CR(2,3),Af δ-CR(2,3),Df CC3g SDT-3h CASPT2i TBE-1i TBE-2i

Ethene 1 1B1u(π → π∗) 1.034 8.51 8.26 8.22 8.25 8.18 8.37 8.40 8.54 7.80 7.80

E-Butadiene 1 1Bu(π → π∗) 1.056 6.73 6.44 6.39 6.37 6.31 6.58 6.61 6.47 6.18 6.18

2 1Ag(π → π∗) 1.219 7.42 6.92 6.78 6.74 6.61 6.77 6.89 6.62 6.55 6.55

all-E-Hexatriene 1 1Bu(π → π∗) 1.064 5.72 5.43 5.38 5.31 5.26 5.58 5.61 5.31 5.10 5.10

2 1Ag(π → π∗) 1.225 6.61 6.03 5.91 5.79 5.67 5.72 5.88 5.42 5.09 5.09

all-E-Octatetraene 2 1Ag(π → π∗) 1.211 5.98 5.41 5.32 5.11 5.01 4.97 5.17 4.64 4.47 4.47

1 1Bu(π → π∗) 1.069 5.08 4.78 4.74 4.63 4.58 4.94 4.97 4.70 4.66 4.66

Cyclopropene 1 1B1(σ → π∗) 1.066 6.97 6.76 6.71 6.72 6.67 6.90 6.92 6.76 6.76 6.67

1 1B2(π → π∗) 1.048 7.25 7.01 6.96 6.97 6.90 7.10 7.14 7.06 7.06 6.68

Cyclopentadiene 1 1B2(π → π∗) 1.055 5.87 5.57 5.52 5.50 5.43 5.73 5.75 5.51 5.55 5.55

2 1A1(π → π∗)j 1.153 7.05 6.70 6.59 6.52 6.42 6.61 6.71 6.31 6.31 6.28

3 1A1(π → π∗)j 1.055 8.96 8.66 8.62 8.60 8.53 8.69 8.76 8.52
1B2(π → π∗)k 1.073 8.94 8.72 8.68 8.64 8.59

Norbornadiene 1 1A2(π → π∗) 1.063 5.80 5.53 5.49 5.41 5.36 5.64 5.68 5.34 5.34 5.37

1 1B2(π → π∗) 1.076 6.69 6.43 6.38 6.29 6.24 6.49 6.55 6.11 6.11 6.21

2 1B2(π → π∗) 1.061 7.85 7.59 7.55 7.48 7.42 7.64 7.68 7.32

2 1A2(π → π∗) 1.067 7.86 7.63 7.58 7.51 7.47 7.71 7.74 7.45
1B1(π → π∗)k 1.079 8.01 7.80 7.76 7.68 7.65

2 1A1(π → π∗/π → σ∗)k 1.062 7.99 7.81 7.79 7.73 7.70 7.97

Benzene 1 1B2u(π → π∗) 1.104 5.19 4.91 4.83 4.76 4.69 5.07 5.10 5.04 5.08 5.08

1 1B1u(π → π∗) 1.053 6.75 6.47 6.42 6.38 6.32 6.68 6.69 6.42 6.54 6.54

1 1E1u(π → π∗) 1.069 7.66 7.38 7.33 7.27 7.22 7.45 7.52 7.13 7.13 7.13

2 1E2g(π → π∗) 1.166 9.21 8.81 8.63 8.48 8.34 8.43 8.60 8.18 8.41 8.15

Naphthalene 1 1B3u(π → π∗) 1.109 4.41 4.10 4.05 3.90 3.85 4.27 4.30 4.24 4.24 4.25

1 1B2u(π → π∗) 1.075 5.22 4.91 4.86 4.71 4.65 5.03 5.09 4.77 4.77 4.82

2 1Ag(π → π∗) 1.117 6.23 5.93 5.87 5.72 5.66 5.98 6.05 5.87 5.87 5.90

1 1B1g(π → π∗) 1.109 6.53 6.19 6.12 5.93 5.86 6.07 6.22 5.99 5.99 5.75

2 1B3u(π → π∗) 1.080 6.55 6.26 6.22 6.07 6.02 6.33 6.41 6.06 6.06 6.11

2 1B1g(π → π∗) 1.077 6.98 6.69 6.64 6.51 6.46 6.79 6.84 6.47 6.47 6.46

2 1B2u(π → π∗) 1.079 6.77 6.49 6.44 6.30 6.25 6.57 6.64 6.33 6.33 6.36

3 1Ag(π → π∗) 1.154 7.77 7.35 7.25 6.98 6.89 6.90 7.14 6.67 6.67 6.49

3 1B2u(π → π∗) 1.084 8.78 8.51 8.46 8.32 8.27 8.44 8.56 8.17

3 1B3u(π → π∗) 1.177 9.03 8.61 8.50 8.23 8.13 8.12 8.33 7.74

Furan 1 1B2(π → π∗) 1.061 6.80 6.43 6.39 6.37 6.29 6.60 6.64 6.39 6.32 6.32

2 1A1(π → π∗) 1.119 6.89 6.58 6.48 6.41 6.33 6.62 6.69 6.50 6.57 6.57

3 1A1(π → π∗) 1.078 8.83 8.51 8.46 8.42 8.35 8.53 8.61 8.17 8.13 8.13

Pyrrole 1A2(π → σ∗)k 1.075 6.30 6.05 6.01 5.98 5.93

2 1A1(π → π∗) 1.108 6.61 6.33 6.24 6.17 6.10 6.40 6.46 6.31 6.37 6.37

1 1B2(π → π∗) 1.068 6.88 6.55 6.51 6.49 6.42 6.71 6.75 6.33 6.57 6.57
1B1(π → σ∗)k 1.077 7.00 6.82 6.78 6.75 6.70
1A2(π → σ∗)k 1.071 7.69 7.47 7.43 7.40 7.36
1B1(π → σ∗)k 1.066 7.80 7.59 7.56 7.53 7.49
1A2(π → σ∗)k 1.072 8.29 8.07 8.03 8.00 7.96

3 1A1(n→ π∗) 1.084 8.44 8.12 8.07 8.05 7.98 8.17 8.24 8.17 7.91 7.91
1B1(π → σ∗)k 1.065 8.34 8.14 8.11 8.08 8.04

Imidazole 1 1A′′(n→ π∗) 1.090 7.01 6.79 6.72 6.63 6.57 6.82 6.89 6.81 6.81 6.65

2 1A′(π → π∗)l 1.094 6.79 6.47 6.39 6.34 6.26 6.58 6.64 6.19 6.19 6.25

3 1A′(π → π∗)m 1.082 7.27 6.96 6.90 6.86 6.79 7.10 7.14 6.93 6.93 6.73

2 1A′′(n→ π∗) 1.085 8.16 7.93 7.86 7.79 7.73 7.93 8.01 7.90

4 1A′(π → π∗) 1.091 8.69 8.41 8.35 8.30 8.23 8.45 8.51 8.16

Pyridine 1 1B2(π → π∗) 1.104 5.27 4.98 4.89 4.81 4.74 5.15 5.18 5.02 4.85 4.85

1 1B1(n→ π∗) 1.090 5.26 5.00 4.94 4.86 4.80 5.05 5.12 5.17 4.59 4.59

2 1A2(n→ π∗) 1.096 5.73 5.54 5.46 5.32 5.27 5.50 5.59 5.51 5.11 5.11

2 1A1(π → π∗) 1.057 6.94 6.65 6.60 6.55 6.49 6.85 6.87 6.39 6.26 6.26

3 1A1(π → π∗) 1.073 7.94 7.64 7.59 7.52 7.46 7.70 7.78 7.46 7.18 7.18

2 1B2(π → π∗) 1.079 7.81 7.52 7.46 7.40 7.33 7.59 7.66 7.27 7.27 7.27
1A2(π → σ∗)k 1.068 8.21 7.99 7.96 7.90 7.86
1A2(n→ π∗)k 1.079 8.49 8.23 8.17 8.10 8.05
1B1(n→ π∗/π → σ∗)k 1.069 8.75 8.54 8.50 8.45 8.41
1B1(n→ π∗/π → σ∗)k 1.084 8.85 8.61 8.55 8.48 8.43
1B1(n→ π∗/π → σ∗)k 1.073 9.07 8.85 8.81 8.75 8.71

4 1A1(π → π∗) 1.140 9.44 9.11 8.98 8.82 8.71 8.68 8.86 8.69

3 1B2(π → π∗) 1.172 9.64 9.20 9.01 8.84 8.69 8.77 8.97 8.60
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Table 3.3 (cont’d).

Molecule State RELc SDd δ-CR(T),IAe δ-CR(T),IDe δ-CR(2,3),Af δ-CR(2,3),Df CC3g SDT-3h CASPT2i TBE-1i TBE-2i

Pyrazine 1 1B3u(n→ π∗) 1.083 4.42 4.14 4.08 4.00 3.95 4.24 4.30 4.12 3.95 4.13

1 1Au(n→ π∗) 1.094 5.30 5.06 4.98 4.86 4.80 5.05 5.13 4.70 4.81 4.98

1 1B2u(π → π∗) 1.102 5.14 4.82 4.73 4.65 4.57 5.02 5.05 4.85 4.64 4.97

1 1B2g(n→ π∗) 1.096 6.03 5.75 5.68 5.59 5.52 5.74 5.83 5.68 5.56 5.65

1 1B1g(n→ π∗) 1.115 7.14 6.92 6.81 6.65 6.56 6.75 6.89 6.41 6.60 6.69

1 1B1u(π → π∗) 1.054 7.18 6.87 6.81 6.77 6.70 7.07 7.09 6.89 6.58 6.83

2 1B1u(π → π∗) 1.075 8.35 8.00 7.94 7.86 7.78 8.06 8.15 7.79 7.72 7.86

2 1B2u(π → π∗) 1.082 8.29 7.99 7.92 7.84 7.76 8.05 8.12 7.66 7.60 7.81

1 1B3g(π → π∗) 1.180 9.74 9.27 9.07 8.88 8.72 8.77 9.00 8.47

2 1Ag(π → π∗) 1.160 9.54 9.09 8.91 8.73 8.60 8.69 8.90 8.61

Pyrimidine 1 1B1(n→ π∗) 1.092 4.70 4.46 4.38 4.28 4.23 4.50 4.57 4.44 4.55 4.43

1 1A2(n→ π∗) 1.094 5.13 4.92 4.84 4.72 4.67 4.93 5.00 4.80 4.91 4.85

1 1B2(π → π∗) 1.105 5.49 5.19 5.10 5.01 4.94 5.36 5.39 5.24 5.44 5.34

2 1A1(π → π∗) 1.062 7.17 6.86 6.81 6.75 6.69 7.06 7.09 6.63 6.95 6.82

2 1B2(π → π∗) 1.078 8.23 7.96 7.90 7.81 7.75 8.01 8.08 7.64 8.01n

3 1A1(π → π∗) 1.086 7.97 7.66 7.60 7.52 7.45 7.74 7.81 7.21 7.65n

Pyridazine 1 1B1(n→ π∗) 1.087 4.12 3.85 3.78 3.68 3.63 3.92 4.00 3.78 3.78 3.85

1 1A2(n→ π∗) 1.100 4.76 4.52 4.44 4.31 4.25 4.49 4.59 4.31 4.31 4.44

2 1A1(π → π∗) 1.109 5.35 5.03 4.94 4.85 4.77 5.22 5.25 5.18 5.18 5.20

2 1A2(n→ π∗) 1.098 6.00 5.73 5.65 5.54 5.48 5.74 5.82 5.77 5.77 5.66

2 1B1(n→ π∗) 1.100 6.70 6.46 6.37 6.25 6.18 6.41 6.51 6.52

1 1B2(π → π∗) 1.063 7.09 6.75 6.68 6.62 6.55 6.93 6.96 6.31

2 1B2(π → π∗) 1.079 7.79 7.48 7.42 7.34 7.28 7.55 7.61 7.29

3 1A1(π → π∗) 1.080 8.11 7.77 7.71 7.64 7.56 7.82 7.91 7.62

s-Triazine 1 1A′′1(n→ π∗) 1.095 4.96 4.78 4.68 4.54 4.49 4.78 4.85 4.60 4.60 4.70

1 1A′′2(n→ π∗) 1.094 4.99 4.72 4.64 4.55 4.49 4.76 4.84 4.66 4.66 4.71

1 1E′′(n→ π∗) 1.094 5.02 4.79 4.70 4.59 4.54 4.81 4.89 4.70 4.70 4.75

1 1A′2(π → π∗) 1.108 5.84 5.53 5.43 5.34 5.26 5.71 5.74 5.79 5.79 5.71

2 1A′1(π → π∗) 1.070 7.51 7.19 7.13 7.07 7.00 7.41 7.44 7.25

2 1E′′(n→ π∗) 1.110 8.21 7.96 7.86 7.74 7.67 7.80 7.95 7.71

1 1E′(π → π∗) 1.084 8.28 7.98 7.91 7.82 7.76 8.04 8.13 7.50
1E′′(n→ π∗)k 1.096 9.57 9.29 9.19 9.07 8.99
1E′(n→ σ∗)k 1.087 9.33 9.24 9.18 9.06 9.03
1A′′2(n→ σ∗)k 1.081 9.52 9.26 9.20 9.13 9.07
1E′′(n→ π∗)k 1.118 10.04 9.73 9.59 9.42 9.31

2 1E′(π → π∗) 1.155 10.28 9.85 9.67 9.49 9.35 9.44 9.64 8.99
1A′′1(n→ π∗)k 1.103 10.02 9.68 9.59 9.50 9.42

s-Tetrazine 1 1B3u(n→ π∗) 1.086 2.72 2.40 2.32 2.22 2.15 2.53 2.60 2.29 2.29 2.46

1 1Au(π → π∗) 1.099 4.08 3.80 3.71 3.58 3.51 3.79 3.90 3.51 3.51 3.78

1 1B1g(n→ π∗) 1.100 5.33 5.01 4.92 4.81 4.73 4.97 5.11 4.73 4.73 4.87

1 1B2u(π → π∗) 1.110 5.27 4.90 4.79 4.68 4.58 5.12 5.16 4.93 4.93 5.08

2 1Ag(n
2 → π∗2)k 1.954 11.47 6.89 5.76 6.34 5.04 4.55

1 1B2g(n→ π∗) 1.110 5.71 5.37 5.27 5.16 5.07 5.34 5.44 5.20 5.20 5.28

2 1Au(n→ π∗) 1.093 5.70 5.38 5.29 5.18 5.11 5.46 5.54 5.50 5.50 5.39

1 1B3g(n
2 → π∗2)o 1.976 13.19 8.46 7.23 7.97 6.59 5.86 5.79 5.76

2 1B2g(n→ π∗) 1.123 6.77 6.49 6.36 6.19 6.10 6.23 6.43 6.06

2 1B1g(n→ π∗) 1.110 7.25 6.99 6.88 6.74 6.65 6.87 7.00 6.45

3 1B1g(n→ π∗) 1.157 8.36 7.89 7.68 7.41 7.23 7.08 7.43 6.73

2 1B3u(n→ π∗) 1.100 7.00 6.72 6.62 6.50 6.43 6.67 6.79 6.77

1 1B1u(π → π∗) 1.061 7.66 7.25 7.18 7.12 7.02 7.45 7.49 6.94
1B3g(n

2 → π∗2)k 1.986 15.10 9.67 8.15 9.06 7.31

2 1B1u(π → π∗) 1.081 8.06 7.68 7.61 7.51 7.43 7.79 7.87 7.42
1B1g(n

2 → π∗2)k 1.936 14.31 9.84 8.70 9.28 7.96
1B1u(n2 → π∗2)k 1.994 15.04 10.09 8.75 9.58 8.07

2 1B2u(π → π∗) 1.083 8.87 8.49 8.41 8.31 8.21 8.51 8.62 8.14
1B3g(n→ π∗) 1.090 8.69 8.51 8.45 8.35 8.30 8.43

2 1B3g(π → π∗) 1.169 9.43 8.90 8.69 8.49 8.32 8.47 8.72 8.34

Formaldehyde 1 1A2(n→ π∗) 1.074 3.97 3.86 3.79 3.77 3.74 3.95 3.96 3.99 3.88 3.88
1B2(n→ σ∗)k 1.078 8.27 8.37 8.29 8.12 8.08

1 1B1(σ → π∗) 1.074 9.26 9.11 9.03 9.00 8.96 9.18 9.20 9.14 9.1 9.04

2 1A1(π → π∗)p 1.086 9.77 9.57 9.50 9.44 9.37 9.29q 9.32 9.3 9.29
1B2(n→ σ∗)k 1.067 9.52 9.60 9.53 9.42 9.40
1A2(π → π∗)k 1.109 10.52 10.23 10.14 10.15 10.06
1A1(n→ π∗)p 1.077 10.54 10.59 10.52 10.36 10.32 10.45 10.49
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Table 3.3 (cont’d).

Molecule State RELc SDd δ-CR(T),IAe δ-CR(T),IDe δ-CR(2,3),Af δ-CR(2,3),Df CC3g SDT-3h CASPT2i TBE-1i TBE-2i

Acetone 1 1A2(n→ π∗) 1.076 4.44 4.29 4.24 4.18 4.15 4.40 4.41 4.44 4.40 4.38
1B2(n→ σ∗)k 1.088 7.54 7.54 7.46 7.30 7.25
1A1(π → π∗/n→ σ∗)k 1.091 9.14 8.99 8.93 8.82 8.77

1 1B1(σ → π∗) 1.073 9.26 9.08 9.02 8.97 8.93 9.17 9.19 9.27 9.1 9.04
1A2(σ → π∗)k 1.083 9.54 9.27 9.21 9.17 9.11
1B2(n→ σ∗)k 1.085 9.59 9.57 9.51 9.34 9.29
1A2(n→ π∗)k 1.092 9.69 9.66 9.57 9.41 9.35

2 1A1(π → π∗) 1.089 9.88 9.76 9.70 9.58 9.53 9.65 9.73 9.31 9.4 8.90r

p-Benzoquinone 1 1Au(n→ π∗) 1.100 3.19 2.94 2.88 2.71 2.65 2.85 2.95 2.77 2.77 2.86

1 1B1g(n→ π∗) 1.097 3.07 2.81 2.75 2.59 2.54 2.75 2.85 2.76 2.76 2.74

1 1B3g(π → π∗) 1.093 4.93 4.49 4.42 4.30 4.21 4.59 4.68 4.26 4.26 4.44

1 1B1u(π → π∗) 1.094 5.90 5.52 5.45 5.30 5.23 5.62 5.69 5.28 5.28 5.47

1 1B3u(n→ π∗) 1.120 6.55 6.34 6.25 5.96 5.88 5.82 6.05 5.64 5.64 5.55

1 1B2g(n→ π∗)k 1.128 6.78 6.58 6.48 6.13 6.03 5.66
1B3u(n, π → π∗2)k 1.932 12.36 8.30 7.47 7.64 6.70
1B2g(n, π → π∗2)k 1.873 12.17 8.49 7.75 7.79 6.92

2 1B2g(n→ π∗)k 1.100 7.56 7.25 7.18 6.99 6.93 6.60

2 1B3g(π → π∗) 1.111 7.63 7.32 7.25 7.08 7.01 7.27 7.37 6.96 6.96 7.16

1 1B2u(π → π∗)k 1.155 8.59 8.10 8.02 7.85 7.75 7.32

2 1B1u(π → π∗) 1.103 8.47 8.08 8.02 7.88 7.80 7.82 7.98 7.92

Formamide 1 1A′′(n→ π∗) 1.074 5.66 5.55 5.48 5.43 5.40 5.65 5.66 5.63 5.63 5.55

2 1A′(π → π∗)s 1.096 7.52 7.31 7.23 7.16 7.09 7.24t 7.39 7.39 7.35
1A′(π → π∗)s 1.092 8.50 8.45 8.36 8.21 8.16 8.27 8.35

3 1A′(π → π∗) 1.100 11.40 11.07 10.99 10.96 10.89 10.93 11.09 10.54

Acetamide 1 1A′′(n→ π∗) 1.075 5.72 5.59 5.54 5.46 5.43 5.69 5.71 5.69 5.69 5.62
1A′′(π → σ∗)k 1.072 7.32 7.18 7.14 7.10 7.06
1A′(π → π∗/n→ σ∗)k 1.098 7.48 7.35 7.28 7.12 7.07

2 1A′(π → π∗/n→ σ∗) 1.090 7.88 7.75 7.68 7.57 7.52 7.67 7.76 7.27 7.27 7.14
1A′′(π → σ∗)k 1.069 8.74 8.60 8.57 8.52 8.49
1A′(n→ σ∗)k 1.097 9.07 9.01 8.95 8.76 8.71
1A′(n→ σ∗)k 1.099 9.49 9.42 9.35 9.15 9.10
1A′′(π → σ∗)k 1.083 9.44 9.31 9.26 9.19 9.15
1A′(n→ σ∗)k 1.085 10.20 10.18 10.12 9.95 9.91
1A′′(n→ π∗)k 1.073 10.32 10.15 10.09 10.02 9.98
1A′′(n→ π∗)k 1.092 10.50 10.45 10.37 10.20 10.16

3 1A′(π → π∗) 1.088 10.78 10.58 10.52 10.43 10.38 10.50 10.60 10.09

Propanamide 1 1A′′(n→ π∗) 1.075 5.74 5.62 5.58 5.48 5.45 5.72 5.73 5.72 5.72 5.65
1A′′(π → σ∗)k 1.072 7.32 7.19 7.16 7.10 7.06

2 1A′(π → π∗) 1.090 7.87 7.76 7.71 7.56 7.51 7.62 7.74 7.20 7.20 7.09
1A′′(π → σ∗)k 1.070 8.70 8.57 8.54 8.48 8.44
1A′′(π → σ∗)k 1.083 9.14 9.01 8.97 8.89 8.84
1A′′(n→ π∗)k 1.080 10.01 9.90 9.85 9.72 9.68

3 1A′(π → π∗) 1.089 10.35 10.18 10.12 10.01 9.96 10.06 10.15 9.94

Cytosine 2 1A′(π → π∗) 1.101 4.98 4.69 4.63 4.47 4.41 4.72 4.67 4.66 4.66

1 1A′′(n→ π∗) 1.095 5.45 5.22 5.17 5.00 4.95 5.16 5.12 4.87 4.87

2 1A′′(n→ π∗) 1.092 6.00 5.81 5.75 5.58 5.53 5.52 5.53 5.26 5.26

3 1A′(π → π∗) 1.110 5.95 5.66 5.60 5.44 5.38 5.61 5.53 5.62 5.62

4 1A′(π → π∗) 1.094 6.81 6.55 6.49 6.37 6.32 6.61 6.40

5 1A′(π → π∗) 1.104 7.24 6.92 6.85 6.70 6.63 6.97

6 1A′(π → π∗) 1.107 8.67 8.45 8.40 8.18 8.12 8.23

Thymine 1 1A′′(n→ π∗) 1.090 5.14 4.97 4.93 4.75 4.71 4.94 4.95 4.82 4.82

2 1A′(π → π∗) 1.087 5.60 5.30 5.25 5.11 5.05 5.34 5.06 5.20 5.20

3 1A′(π → π∗) 1.113 6.78 6.47 6.41 6.21 6.13 6.34 6.15 6.27 6.27

2 1A′′(n→ π∗) 1.081 6.58 6.44 6.40 6.24 6.21 6.59 6.38 6.16 6.16

4 1A′(π → π∗) 1.099 7.05 6.71 6.65 6.49 6.42 6.71 6.53 6.53 6.53

3 1A′′(n→ π∗) 1.118 7.68 7.36 7.27 6.92 6.83 6.85

4 1A′′(n→ π∗) 1.114 7.87 7.62 7.53 7.21 7.13 7.43

5 1A′(π → π∗) 1.101 7.90 7.65 7.59 7.41 7.36 7.43

Uracil 1 1A′′(n→ π∗) 1.092 5.12 4.94 4.89 4.72 4.68 4.90 4.91 4.80 5.00

2 1A′(π → π∗) 1.091 5.70 5.39 5.34 5.22 5.16 5.44 5.23 5.35 5.25

3 1A′(π → π∗) 1.118 6.76 6.43 6.36 6.16 6.08 6.29 6.15 6.26 6.26

2 1A′′(n→ π∗) 1.082 6.50q 6.37 6.31 6.16 6.12 6.32 6.28 6.10 6.10

3 1A′′(n→ π∗) 1.118 7.69q 7.40 7.29 6.97 6.87 6.87 6.98 6.56 6.56

4 1A′(π → π∗) 1.100 7.20 6.84 6.77 6.64 6.56 6.84 6.74 6.70 6.70

4 1A′′(n→ π∗) 1.114 7.74 7.48 7.38 7.07 6.99 7.12 7.28

5 1A′(π → π∗) 1.099 7.82 7.57 7.50 7.35 7.30 7.42
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Table 3.3 (cont’d).

Molecule State RELc SDd δ-CR(T),IAe δ-CR(T),IDe δ-CR(2,3),Af δ-CR(2,3),Df CC3g SDT-3h CASPT2i TBE-1i TBE-2i

Adenine 2 1A′(π → π∗) 1.101 5.37 5.06 5.00 4.84 4.78 5.18 5.20 5.25 5.25

3 1A′(π → π∗) 1.089 5.61 5.29 5.24 5.09 5.03 5.39 5.29 5.25 5.25

1 1A′′(n→ π∗) 1.094 5.58 5.35 5.29 5.11 5.07 5.34 5.19 5.12 5.12

2 1A′′(n→ π∗) 1.091 6.19 5.95 5.89 5.72 5.68 5.96 5.96 5.75 5.75

4 1A′(π → π∗) 1.096 6.84 6.52 6.47 6.31 6.25 6.53 6.34
1A′(π → π∗)k 1.105 7.07 6.69 6.63 6.45 6.38

5 1A′(π → π∗) 1.100 7.17 6.87 6.81 6.63 6.57 6.64

6 1A′(π → π∗) 1.102 7.72 7.38 7.33 7.16 7.10 6.87
1A′(π → π∗)k 1.106 8.10 7.78 7.72 7.51 7.44

7 1A′(π → π∗) 1.117 8.48 8.09 8.02 7.79 7.71 7.56

a MP2/6-31G∗ equilibrium geometries were taken from Ref. [17].
b All excitation energies were computed in this work, unless stated otherwise.
c Reduced excitation level diagnostic; for one-electron transitions REL ≈ 1 and for two-electron transitions

REL ≈ 2.
d EOMCCSD results (recalculated for the previously reported 149 singlet states, new for the additional 54

singlet states found in this work).
e δ-CR-EOMCCSD(T),X (X = IA, ID) results.
f δ-CR-EOMCC(2,3),X (X = A,D) results.
g CC3 results taken from Ref. [17], except for those for the nucleobases which were reported in Ref. [25].
h EOMCCSDT-3 values taken from Ref. [24].
i CASPT2 and TBE-1 excitation energies taken from Ref. [17], with updates from Ref. [21], and TBE-2

values taken from Ref. [21].
j In Ref. [17] these states were reported as having doubly excited character. However, as determined in the

present study, they are predominantly one-electron transitions (REL for 2 1A1(π → π∗) is 1.153 and REL

for 3 1A1(π → π∗) is 1.055) and, thus, double excitations have a small effect on these states.
k Additional excited states not included among the 149 singlet excitations listed in Table I of Ref. [17]. States

in this category that have been characterized in the Supporting Information to Ref. [17] are designated as

n 1X, where X is the irreducible representation and n indicates the state number within symmetry X (n is

underlined to distinguish from the 149 states included in Table I of Ref. [17], which are labeled as n 1X).

States that have not been found in Ref. [17] and other prior benchmark work [18–25] are designated as 1X,

i.e., without the state number in front of the term symbol. In ordering these additional states, we use the

δ-CR-EOMCC(2,3),D values.
l This state is dominated by comparable single excitations from HOMO to LUMO+1 and from HOMO to

LUMO+5. The authors of Ref. [17] stated that it is dominated by a HOMO → LUMO single excitation,

which is not what our EOMCCSD calculations imply.
m This state is largely dominated by a single excitation from HOMO to LUMO+1, with two other significant,

though slightly smaller, contributions from one-electron HOMO-1 → LUMO+1 and HOMO → LUMO+5

transitions. According to Ref. [17], this state is dominated by the HOMO-1 → LUMO and HOMO →
LUMO+1 transitions, but our EOMCC calculations do not confirm this.
n These two TBE-1 values had to be taken from Ref. [195], since Ref. [17] provided no information what the

best estimates for them might be.
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Table 3.3 (cont’d).
o This state is the only almost purely doubly excited state among the 149 singlet excited states included in

Table I of Ref. [17]. Because of the absence of the CC3 and EOMCCSDT-3 reference data and the uncertainty

about the quality of the CASPT2 and TBE values for this state, we have excluded it from the statistical

error analyses discussed in Section 3.5. For example, the NEVPT2 results for this state are 6.30–6.35 eV

[23], in excellent agreement with our best δ-CR-EOMCC(2,3),D value of 6.59 eV.
p The authors of Ref. [17] confused the 2 1A1(π → π∗) and 1A1(n→ π∗) states for formaldehyde shown in

the table. They assigned the 2 1A1(π → π∗) state to the EOMCCSD and CC3 roots at 10.54 and 10.45 eV,

respectively, producing large discrepancies, of more than 1 eV, with the CASPT2 and TBE-1 values reported

in Ref. [17], of 9.31 and 9.3 eV, and the CC3/aug-cc-pVQZ value of 9.29 eV obtained in Ref. [21]. We have

found another EOMCCSD root of the 1A1 symmetry at 9.77 eV, which results in δ-CR-EOMCC values in

the 9.37–9.57 eV range, in very good agreement with the above CASPT2, TBE-1, and CC3/aug-cc-pVQZ

data. Thus, the new EOMCC root that we have found must be the 2 1A1(π → π∗) state, whereas the 1A1
state interpreted in Ref. [17] as the 2 1A1(π → π∗) state is the next state of the 1A1 symmetry, designated

in our table as 1A1(n→ π∗).
q CC3/aug-cc-pVQZ results taken from Ref. [21].
r The CC3/aug-cc-pVTZ result reported in Ref. [21]. Our δ-CR-EOMCC excitation energies for the 2
1A1(π → π∗) state of acetone and the corresponding CC3/TZVP, EOMCCSDT-3/TZVP, and TBE values

reported in Refs. [17, 22, 24] suggest that the CC3/aug-cc-pVTZ root at 8.90 eV found in Ref. [21] does not

represent the 2 1A1(π → π∗) excitation. Based on our δ-CR-EOMCC analysis, the CC3/aug-cc-pVTZ root

at 8.90 eV corresponds, most likely, to the 1A1(π → π∗/n→ σ∗) state that has not been considered in the

previous benchmark studies [17–25]. For this reason, in comparisons of our δ-CR-EOMCC and EOMCCSD

data for the 2 1A1(π → π∗) state of acetone with a TBE-2 result we use the TBE-1 value taken from Ref.

[17] instead.
s The authors of Ref. [17] missed the EOMCCSD root of the 1A′ symmetry at 7.52 eV, which corresponds

to the CC3 root at 7.24 eV found in Ref. [25] and which matches the TBE values reported in Refs. [17, 21]

of about 7.4 eV. As a result, they incorrectly interpreted the higher-energy EOMCCSD and CC3 roots at

8.52 (in our calculations, 8.50) and 8.27 eV, respectively, as the 2 1A′(π → π∗) state. To avoid relabeling of

all 1A′(π → π∗) states, we designate the state at 8.50 (EOMCCSD) and 8.27 (CC3) eV as the 1A′(π → π∗)
excitation and assign the 2 1A′(π → π∗) state to the EOMCCSD root at 7.52 eV and CC3 root found in

Ref. [25] at 7.24 eV, in perfect agreement with the δ-CR-EOMCC values that range from 7.09 to 7.31 eV

when the MP2/6-31G∗ geometry is employed.
t Taken from Ref. [25].
u The EOMCCSD excitation energies for the 2 1A′′(n → π∗) and 3 1A′′(n → π∗) states of uracil are 6.50

and 7.69 eV, respectively, not the other way around, as reported in Ref. [17].
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Table 3.4: Vertical excitation energies (in eV) for singlet states of all molecules in the test
set using, in the case of the EOMCCSD and δ-CR-EOMCC results, the geometries optimized
at the CR-CC(2,3),D/TZVP level.a
Molecule State RELb SDc δ-CR(T),IAd δ-CR(T),IDd δ-CR(2,3),Ae δ-CR(2,3),De CC3f SDT-3g CASPT2h TBE-1h TBE-2h

Ethene 1 1B1u(π → π∗) 1.034 8.50 8.25 8.21 8.24 8.17 8.37 8.40 8.54 7.80 7.80

E-Butadiene 1 1Bu(π → π∗) 1.056 6.74 6.46 6.40 6.39 6.32 6.58 6.61 6.47 6.18 6.18

2 1Ag(π → π∗) 1.218 7.42 6.93 6.79 6.75 6.62 6.77 6.89 6.62 6.55 6.55

all-E-Hexatriene 1 1Bu(π → π∗) 1.064 5.76 5.47 5.42 5.35 5.30 5.58 5.61 5.31 5.10 5.10

2 1Ag(π → π∗) 1.222 6.65 6.08 5.97 5.84 5.72 5.72 5.88 5.42 5.09 5.09

all-E-Octatetraene 2 1Ag(π → π∗) 1.207 6.07 5.50 5.42 5.21 5.11 4.97 5.17 4.64 4.47 4.47

1 1Bu(π → π∗) 1.069 5.14 4.85 4.81 4.69 4.65 4.94 4.97 4.70 4.66 4.66

Cyclopropene 1 1B1(σ → π∗) 1.066 6.49 6.73 6.68 6.69 6.64 6.90 6.92 6.76 6.76 6.67

1 1B2(π → π∗) 1.048 7.30 7.06 7.01 7.02 6.95 7.10 7.14 7.06 7.06 6.68

Cyclopentadiene 1 1B2(π → π∗) 1.055 5.91 5.62 5.57 5.54 5.48 5.73 5.75 5.51 5.55 5.55

2 1A1(π → π∗)i 1.153 7.09 6.74 6.63 6.56 6.46 6.61 6.71 6.31 6.31 6.28

3 1A1(π → π∗)i 1.054 8.98 8.68 8.64 8.62 8.55 8.69 8.76 8.52
1B2(π → π∗)j 1.073 8.99 8.77 8.73 8.69 8.64

Norbornadiene 1 1A2(π → π∗) 1.064 5.87 5.60 5.55 5.48 5.42 5.64 5.68 5.34 5.34 5.37

1 1B2(π → π∗) 1.076 6.72 6.46 6.41 6.32 6.27 6.49 6.55 6.11 6.11 6.21

2 1B2(π → π∗) 1.061 7.87 7.61 7.57 7.50 7.44 7.64 7.68 7.32

2 1A2(π → π∗) 1.067 7.85 7.62 7.57 7.50 7.46 7.71 7.74 7.45
1B1(π → π∗)j 1.079 7.98 7.77 7.73 7.65 7.61

2 1A1(π → σ∗/π → π∗)j 1.062 8.02 7.85 7.82 7.76 7.73 7.97

Benzene 1 1B2u(π → π∗) 1.104 5.18 4.90 4.82 4.75 4.68 5.07 5.10 5.04 5.08 5.08

1 1B1u(π → π∗) 1.053 6.74 6.47 6.42 6.38 6.32 6.68 6.69 6.42 6.54 6.54

1 1E1u(π → π∗) 1.069 7.65 7.37 7.32 7.27 7.21 7.45 7.52 7.13 7.13 7.13

2 1E2g(π → π∗) 1.166 9.20 8.79 8.62 8.46 8.33 8.43 8.60 8.18 8.41 8.15

Naphthalene 1 1B3u(π → π∗) 1.109 4.45 4.14 4.09 3.94 3.89 4.27 4.30 4.24 4.24 4.25

1 1B2u(π → π∗) 1.075 5.28 4.97 4.92 4.77 4.72 5.03 5.09 4.77 4.77 4.82

2 1Ag(π → π∗) 1.117 6.20 5.91 5.85 5.69 5.64 5.98 6.05 5.87 5.87 5.90

1 1B1g(π → π∗) 1.107 6.56 6.22 6.15 5.97 5.90 6.07 6.22 5.99 5.99 5.75

2 1B3u(π → π∗) 1.079 6.57 6.27 6.23 6.09 6.04 6.33 6.41 6.06 6.06 6.11

2 1B1g(π → π∗) 1.078 6.99 6.69 6.65 6.52 6.46 6.79 6.84 6.47 6.47 6.46

2 1B2u(π → π∗) 1.080 6.77 6.48 6.44 6.30 6.25 6.57 6.64 6.33 6.33 6.36

3 1Ag(π → π∗) 1.150 7.80 7.39 7.29 7.03 6.94 6.90 7.14 6.67 6.67 6.49

3 1B2u(π → π∗) 1.084 8.74 8.47 8.42 8.28 8.23 8.44 8.56 8.17

3 1B3u(π → π∗) 1.176 9.04 8.62 8.52 8.24 8.14 8.12 8.33 7.74

Furan 1 1B2(π → π∗) 1.061 6.87 6.50 6.45 6.44 6.36 6.60 6.64 6.39 6.32 6.32

2 1A1(π → π∗) 1.119 6.93 6.61 6.52 6.44 6.37 6.62 6.69 6.50 6.57 6.57

3 1A1(π → π∗) 1.077 8.87 8.54 8.49 8.46 8.38 8.53 8.61 8.17 8.13 8.13

Pyrrole 1A2(π → σ∗)j 1.075 6.34 6.09 6.05 6.02 5.97

2 1A1(π → π∗) 1.108 6.61 6.32 6.23 6.17 6.10 6.40 6.46 6.31 6.37 6.37

1 1B2(π → π∗) 1.067 6.91 6.59 6.54 6.52 6.45 6.71 6.75 6.33 6.57 6.57
1B1(π → σ∗)j 1.077 6.97 6.79 6.74 6.71 6.67
1A2(π → σ∗)j 1.070 7.69 7.47 7.43 7.40 7.36
1B1(π → σ∗)j 1.066 7.84 7.62 7.59 7.56 7.52

3 1A1(n→ π∗) 1.084 8.46 8.14 8.09 8.06 7.99 8.17 8.24 8.17 7.91 7.91
1A2(π → σ∗)j 1.072 8.33 8.11 8.07 8.04 8.00
1B1(π → σ∗)j 1.065 8.34 8.14 8.11 8.08 8.04

Imidazole 1 1A′′(π → π∗) 1.090 7.04 6.82 6.75 6.66 6.60 6.82 6.89 6.81 6.81 6.65

2 1A′(π → π∗)k 1.096 6.85 6.53 6.45 6.39 6.32 6.58 6.64 6.19 6.19 6.25

3 1A′(π → π∗)l 1.081 7.31 7.00 6.94 6.90 6.84 7.10 7.14 6.93 6.93 6.73

2 1A′′(π → π∗) 1.085 8.18 7.95 7.88 7.81 7.75 7.93 8.01 7.90

4 1A′(π → π∗) 1.091 8.69 8.41 8.35 8.30 8.23 8.45 8.51 8.16

Pyridine 1 1B2(π → π∗) 1.104 5.27 4.97 4.89 4.81 4.74 5.15 5.18 5.02 4.85 4.85

1 1B1(n→ π∗) 1.090 5.28 5.03 4.96 4.88 4.83 5.05 5.12 5.17 4.59 4.59

2 1A2(n→ π∗) 1.096 5.75 5.55 5.47 5.34 5.28 5.50 5.59 5.51 5.11 5.11

2 1A1(π → π∗) 1.057 6.94 6.65 6.59 6.55 6.48 6.85 6.87 6.39 6.26 6.26

3 1A1(π → π∗) 1.073 7.94 7.64 7.59 7.52 7.46 7.70 7.78 7.46 7.18 7.18

2 1B2(π → π∗) 1.079 7.81 7.52 7.46 7.39 7.33 7.59 7.66 7.27 7.27 7.27
1A2(π → σ∗)j 1.068 8.21 8.00 7.96 7.90 7.86
1A2(n→ π∗)j 1.079 8.50 8.24 8.18 8.10 8.05
1B1(n→ π∗/π → σ∗)j 1.069 8.76 8.55 8.52 8.46 8.42
1B1(n→ π∗/π → σ∗)j 1.084 8.86 8.62 8.55 8.49 8.44

4 1A1(π → π∗) 1.144 9.46 9.11 8.97 8.81 8.70 8.68 8.86 8.69
1B1(n→ π∗/π → σ∗)j 1.074 9.07 8.85 8.81 8.75 8.71

3 1B2(π → π∗) 1.172 9.63 9.20 9.01 8.83 8.68 8.77 8.97 8.60
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Table 3.4 (cont’d).

Molecule State RELb SDc δ-CR(T),IAd δ-CR(T),IDd δ-CR(2,3),Ae δ-CR(2,3),De CC3f SDT-3g CASPT2h TBE-1h TBE-2h

Pyrazine 1 1B3u(n→ π∗) 1.082 4.44 4.16 4.09 4.02 3.96 4.24 4.30 4.12 3.95 4.13

1 1Au(n→ π∗) 1.094 5.29 5.06 4.97 4.86 4.80 5.05 5.13 4.70 4.81 4.98

1 1B2u(π → π∗) 1.102 5.14 4.82 4.74 4.66 4.58 5.02 5.05 4.85 4.64 4.97

1 1B2g(n→ π∗) 1.096 6.09 5.81 5.73 5.65 5.58 5.74 5.83 5.68 5.56 5.65

1 1B1g(n→ π∗) 1.115 7.18 6.96 6.85 6.69 6.60 6.75 6.89 6.41 6.60 6.69

1 1B1u(π → π∗) 1.054 7.18 6.86 6.81 6.77 6.70 7.07 7.09 6.89 6.58 6.83

2 1B1u(π → π∗) 1.075 8.38 8.03 7.97 7.89 7.82 8.06 8.15 7.79 7.72 7.86

2 1B2u(π → π∗) 1.082 8.32 8.02 7.95 7.87 7.79 8.05 8.12 7.66 7.60 7.81

1 1B3g(π → π∗) 1.181 9.75 9.27 9.06 8.88 8.72 8.77 9.00 8.47

2 1Ag(π → π∗) 1.160 9.58 9.13 8.96 8.78 8.64 8.69 8.90 8.61

Pyrimidine 1 1B1(n→ π∗) 1.092 4.74 4.49 4.42 4.32 4.26 4.50 4.57 4.44 4.55 4.43

1 1A2(n→ π∗) 1.093 5.15 4.95 4.86 4.74 4.69 4.93 5.00 4.80 4.91 4.85

1 1B2(π → π∗) 1.105 5.50 5.20 5.11 5.02 4.95 5.36 5.39 5.24 5.44 5.34

2 1A1(π → π∗) 1.062 7.17 6.86 6.81 6.76 6.69 7.06 7.09 6.63 6.95 6.82

2 1B2(π → π∗) 1.078 8.25 7.97 7.91 7.83 7.76 8.01 8.08 7.64 8.01m

3 1A1(π → π∗) 1.086 7.99 7.68 7.61 7.53 7.47 7.74 7.81 7.21 7.65m

Pyridazine 1 1B1(n→ π∗) 1.088 4.14 3.87 3.80 3.71 3.65 3.92 4.00 3.78 3.78 3.85

1 1A2(n→ π∗) 1.099 4.75 4.51 4.42 4.30 4.24 4.49 4.59 4.31 4.31 4.44

2 1A1(π → π∗) 1.109 5.39 5.07 4.98 4.89 4.81 5.22 5.25 5.18 5.18 5.20

2 1A2(n→ π∗) 1.098 6.03 5.76 5.68 5.57 5.51 5.74 5.82 5.77 5.77 5.66

2 1B1(n→ π∗) 1.099 6.69 6.46 6.37 6.24 6.18 6.41 6.51 6.52

1 1B2(π → π∗) 1.063 7.11 6.77 6.71 6.65 6.58 6.93 6.96 6.31

2 1B2(π → π∗) 1.080 7.81 7.52 7.45 7.37 7.31 7.55 7.61 7.29

3 1A1(π → π∗) 1.080 8.13 7.79 7.73 7.66 7.58 7.82 7.91 7.62

s-Triazine 1 1A′′1(n→ π∗) 1.095 4.99 4.80 4.71 4.57 4.52 4.78 4.85 4.60 4.60 4.70

1 1A′′2(n→ π∗) 1.094 5.02 4.74 4.67 4.58 4.52 4.76 4.84 4.66 4.66 4.71

1 1E′′(n→ π∗) 1.094 5.05 4.82 4.73 4.62 4.56 4.81 4.89 4.70 4.70 4.75

1 1A′2(π → π∗) 1.108 5.86 5.55 5.45 5.36 5.28 5.71 5.74 5.79 5.79 5.71

2 1A′1(π → π∗) 1.070 7.53 7.20 7.14 7.09 7.02 7.41 7.44 7.25

2 1E′′(n→ π∗) 1.110 8.23 7.98 7.88 7.76 7.69 7.80 7.95 7.71

1 1E′(π → π∗) 1.084 8.30 8.00 7.93 7.84 7.78 8.04 8.13 7.50
1E′′(n→ π∗)j 1.094 9.59 9.31 9.21 9.10 9.02
1E′(n→ σ∗)j 1.087 9.35 9.27 9.21 9.09 9.06
1A′′2(n→ σ∗)j 1.080 9.52 9.26 9.20 9.13 9.07
1E′′(n→ π∗)j 1.119 10.06 9.74 9.61 9.43 9.32

2 1E′(π → π∗) 1.154 10.31 9.88 9.70 9.53 9.39 9.44 9.64 8.99
1A′′1(n→ π∗)j 1.102 10.02 9.68 9.58 9.50 9.42

s-Tetrazine 1 1B3u(n→ π∗) 1.085 2.72 2.40 2.32 2.22 2.16 2.53 2.60 2.29 2.29 2.46

1 1Au(π → π∗) 1.098 4.01 3.74 3.65 3.53 3.46 3.79 3.90 3.51 3.51 3.78

1 1B1g(n→ π∗) 1.099 5.34 5.03 4.93 4.83 4.75 4.97 5.11 4.73 4.73 4.87

1 1B2u(π → π∗) 1.109 5.33 4.96 4.86 4.75 4.65 5.12 5.16 4.93 4.93 5.08

2 1Ag(n
2 → π∗2)j 1.957 11.47 6.87 5.73 6.36 5.07 4.55

1 1B2g(n→ π∗) 1.110 5.82 5.48 5.38 5.27 5.20 5.34 5.44 5.20 5.20 5.28

2 1Au(n→ π∗) 1.093 5.78 5.46 5.38 5.27 5.20 5.46 5.54 5.50 5.50 5.39

1 1B3g(n
2 → π∗2)n 1.974 13.18 8.44 7.20 7.94 6.55 5.86 5.79 5.76

2 1B2g(n→ π∗) 1.122 6.72 6.44 6.31 6.15 6.05 6.23 6.43 6.06

2 1B1g(n→ π∗) 1.110 7.30 7.04 6.93 6.79 6.71 6.87 7.00 6.45

3 1B1g(n→ π∗) 1.156 8.38 7.92 7.70 7.44 7.26 7.08 7.43 6.73

2 1B3u(n→ π∗) 1.100 7.02 6.74 6.64 6.52 6.45 6.67 6.79 6.77

1 1B1u(π → π∗) 1.059 7.70 7.31 7.23 7.18 7.09 7.45 7.49 6.94
1B3g(n

2 → π∗2)j 1.986 15.13 9.72 8.21 9.12 7.39

2 1B1u(π → π∗) 1.082 8.15 7.76 7.68 7.59 7.50 7.79 7.87 7.42
1B1g(n

2 → π∗2)j 1.937 14.35 9.88 8.74 9.32 8.01
1B1u(n2 → π∗2)j 1.995 15.09 10.14 8.78 9.63 8.10
1B3g(n→ π∗)j 1.089 8.64 8.46 8.40 8.30 8.26 8.43

2 1B2u(π → π∗) 1.083 8.94 8.55 8.47 8.38 8.28 8.51 8.62 8.14

2 1B3g(π → π∗) 1.164 9.56 9.06 8.86 8.66 8.50 8.47 8.72 8.34

Formaldehyde 1 1A2(n→ π∗) 1.072 4.03 3.92 3.85 3.83 3.80 3.95 3.96 3.99 3.88 3.88
1B2(n→ σ∗)j 1.077 8.27 8.36 8.28 8.12 8.08

1 1B1(σ → π∗) 1.074 9.36 9.21 9.14 9.11 9.06 9.18 9.20 9.14 9.1 9.04

2 1A1(π → π∗)o 1.085 9.86 9.70 9.63 9.54 9.48 9.29p 9.32 9.3 9.29
1B2(n→ σ∗)j 1.065 9.82 9.88 9.81 9.72 9.70
1A2(π → π∗)j 1.109 10.63 10.34 10.25 10.26 10.18
1A1(n→ π∗)o 1.075 10.58 10.60 10.53 10.39 10.35 10.45 10.49
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Table 3.4 (cont’d).

Molecule State RELb SDc δ-CR(T),IAd δ-CR(T),IDd δ-CR(2,3),Ae δ-CR(2,3),De CC3f SDT-3g CASPT2h TBE-1h TBE-2h

Acetone 1 1A2(n→ π∗) 1.074 4.50 4.36 4.30 4.25 4.22 4.40 4.41 4.44 4.40 4.38
1B2(n→ σ∗)j 1.087 7.54 7.53 7.47 7.30 7.25
1A1(π → π∗/n→ σ∗)j 1.090 9.21 9.07 9.02 8.90 8.85

1 1B1(σ → π∗) 1.072 9.38 9.20 9.14 9.09 9.05 9.17 9.19 9.27 9.1 9.04
1A2(σ → π∗)j 1.087 9.61 9.48 9.41 9.30 9.24
1B2(n→ σ∗)j 1.085 9.58 9.56 9.49 9.33 9.28
1A2(n→ π∗)j 1.086 9.70 9.52 9.44 9.36 9.30

2 1A1(π → π∗) 1.087 9.94 9.80 9.74 9.63 9.58 9.65 9.73 9.31 9.4 8.90q

p-Benzoquinone 1 1Au(n→ π∗) 1.098 3.32 3.07 3.01 2.84 2.79 2.85 2.95 2.77 2.77 2.86

1 1B1g(n→ π∗) 1.095 3.15 2.89 2.83 2.68 2.63 2.75 2.85 2.76 2.76 2.74

1 1B3g(π → π∗) 1.091 5.04 4.61 4.54 4.42 4.34 4.59 4.68 4.26 4.26 4.44

1 1B1u(π → π∗) 1.093 6.01 5.63 5.57 5.42 5.35 5.62 5.69 5.28 5.28 5.47

1 1B3u(n→ π∗) 1.117 6.54 6.33 6.24 5.97 5.90 5.82 6.05 5.64 5.64 5.55

1 1B2g(n→ π∗)j 1.127 6.84 6.64 6.54 6.20 6.11 5.66
1B3u(n, π → π∗2) 1.930 12.54 8.52 7.70 7.86 6.93

2 1B2g(n→ π∗)j 1.097 7.74 7.44 7.37 7.19 7.13 6.60

2 1B3g(π → π∗) 1.108 7.75 7.44 7.37 7.21 7.14 7.27 7.37 6.96 6.96 7.16
1B2g(n, π → π∗2)j 1.861 12.30 8.71 7.99 8.01 7.16

1 1B2u(π → π∗)i 1.147 8.67 8.21 8.12 7.97 7.86 7.32

2 1B1u(π → π∗) 1.086 8.55 8.19 8.13 8.02 7.94 7.82 7.98 7.92

Formamide 1 1A′′(n→ π∗) 1.073 5.73 5.62 5.55 5.50 5.47 5.65 5.66 5.63 5.63 5.55

2 1A′(π → π∗)r 1.095 7.58 7.38 7.30 7.22 7.16 7.24s 7.39 7.39 7.35
1A′(π → π∗)r 1.090 8.54 8.49 8.41 8.26 8.22 8.27 8.35

3 1A′(π → π∗) 1.100 11.49 11.17 11.09 11.06 10.99 10.93 11.09 10.54

Acetamide 1 1A′′(n→ π∗) 1.074 5.79 5.66 5.61 5.54 5.51 5.69 5.71 5.69 5.69 5.62
1A′′(π → σ∗)j 1.071 7.34 7.21 7.17 7.13 7.09
1A′(π → π∗/n→ σ∗)j 1.098 7.52 7.40 7.33 7.17 7.12

2 1A′(π → π∗/n→ σ∗) 1.089 7.93 7.78 7.72 7.62 7.57 7.67 7.76 7.27 7.27 7.14
1A′′(π → σ∗)j 1.068 8.76 8.63 8.59 8.55 8.51
1A′(n→ σ∗)j 1.096 9.10 9.04 8.98 8.79 8.75
1A′(n→ σ∗)j 1.098 9.52 9.45 9.38 9.18 9.13
1A′′(π → σ∗)j 1.083 9.50 9.37 9.32 9.26 9.21
1A′(n→ σ∗)j 1.084 10.22 10.19 10.13 9.97 9.93
1A′′(n→ π∗)j 1.074 10.40 10.25 10.19 10.11 10.07
1A′′(n→ π∗)j 1.090 10.51 10.45 10.37 10.22 10.17

3 1A′(π → π∗) 1.088 10.87 10.65 10.59 10.51 10.47 10.50 10.60 10.09

Propanamide 1 1A′′(n→ π∗) 1.075 5.81 5.69 5.65 5.56 5.53 5.72 5.73 5.72 5.72 5.65
1A′′(π → σ∗)j 1.071 7.35 7.23 7.20 7.14 7.11

2 1A′(π → π∗) 1.090 7.91 7.79 7.74 7.60 7.56 7.62 7.74 7.20 7.20 7.09
1A′′(π → σ∗)j 1.069 8.73 8.60 8.57 8.51 8.48
1A′′(π → σ∗)j 1.083 9.22 9.08 9.04 8.96 8.91
1A′′(n→ π∗)j 1.085 10.04 9.96 9.90 9.75 9.71

3 1A′(π → π∗) 1.089 10.44 10.24 10.19 10.10 10.05 10.06 10.15 9.94

Cytosine 2 1A′(π → π∗) 1.100 5.04 4.75 4.68 4.53 4.47 4.72 4.67 4.66 4.66

1 1A′′(n→ π∗) 1.094 5.49 5.26 5.21 5.05 5.00 5.16 5.12 4.87 4.87

2 1A′′(n→ π∗) 1.091 6.05 5.87 5.81 5.64 5.60 5.52 5.53 5.26 5.26

3 1A′(π → π∗) 1.109 6.01 5.72 5.65 5.50 5.44 5.61 5.53 5.62 5.62

4 1A′(π → π∗) 1.093 6.85 6.59 6.53 6.41 6.36 6.61 6.40

5 1A′(π → π∗) 1.104 7.27 6.96 6.89 6.74 6.67 6.97

6 1A′(π → π∗) 1.106 8.73 8.53 8.48 8.26 8.20 8.23

Thymine 1 1A′′(n→ π∗) 1.089 5.23 5.06 5.02 4.84 4.80 4.94 4.95 4.82 4.82

2 1A′(π → π∗) 1.086 5.68 5.38 5.33 5.19 5.13 5.34 5.06 5.20 5.20

3 1A′(π → π∗) 1.112 6.86 6.56 6.50 6.30 6.23 6.34 6.15 6.27 6.27

2 1A′′(n→ π∗) 1.081 6.65 6.52 6.48 6.32 6.29 6.59 6.38 6.16 6.16

4 1A′(π → π∗) 1.099 7.14 6.80 6.74 6.58 6.51 6.71 6.53 6.53 6.53

3 1A′′(n→ π∗) 1.118 7.76 7.44 7.35 7.01 6.92 6.85

4 1A′′(n→ π∗) 1.112 7.95 7.70 7.61 7.31 7.23 7.43

5 1A′(π → π∗) 1.100 7.99 7.73 7.67 7.50 7.48 7.43

Uracil 1 1A′′(n→ π∗) 1.091 5.20 5.03 4.98 4.81 4.77 4.90 4.91 4.80 5.00

2 1A′(π → π∗) 1.090 5.76 5.45 5.40 5.28 5.22 5.44 5.23 5.35 5.25

3 1A′(π → π∗) 1.116 6.84 6.52 6.44 6.25 6.17 6.29 6.15 6.26 6.26

2 1A′′(n→ π∗) 1.082 6.58 6.44 6.39 6.24 6.20 6.32 6.28 6.10 6.10

3 1A′′(n→ π∗) 1.117 7.76 7.47 7.36 7.06 6.96 6.87 6.98 6.56 6.56

4 1A′(π → π∗) 1.099 7.27 6.91 6.84 6.71 6.64 6.84 6.74 6.70 6.70

4 1A′′(n→ π∗) 1.113 7.82 7.56 7.46 7.17 7.08 7.12 7.28

5 1A′(π → π∗) 1.098 7.90 7.65 7.58 7.44 7.38 7.42
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Table 3.4 (cont’d).

Molecule State RELb SDc δ-CR(T),IAd δ-CR(T),IDd δ-CR(2,3),Ae δ-CR(2,3),De CC3f SDT-3g CASPT2h TBE-1h TBE-2h

Adenine 2 1A′(π → π∗) 1.101 5.39 5.08 5.03 4.87 4.81 5.18 5.20 5.25 5.25

3 1A′(π → π∗) 1.089 5.67 5.35 5.31 5.15 5.10 5.39 5.29 5.25 5.25

1 1A′′(n→ π∗) 1.093 5.62 5.39 5.34 5.16 5.11 5.34 5.19 5.12 5.12

2 1A′′(n→ π∗) 1.091 6.21 5.97 5.91 5.74 5.70 5.96 5.96 5.75 5.75

4 1A′(π → π∗) 1.097 6.85 6.54 6.48 6.32 6.26 6.53 6.34
1A′(π → π∗)j 1.101 7.13 6.80 6.74 6.56 6.50

5 1A′(π → π∗) 1.100 7.20 6.87 6.81 6.63 6.57 6.64

6 1A′(π → π∗) 1.102 7.72 7.39 7.33 7.16 7.10 6.87
1A′(π → π∗)j 1.106 8.14 7.81 7.74 7.54 7.47

7 1A′(π → π∗) 1.116 8.49 8.11 8.04 7.82 7.73 7.56

a All excitation energies were computed in this work, unless stated otherwise. The δ-CR-EOMCC vertical
excitation energies were computed using the CR-CC(2,3),D/TZVP optimized geometries, while the CC3,
EOMCCSDT-3, and CASPT2 results were obtained using the MP2/6-31G∗ geometries from Ref. [17].
b Reduced excitation level diagnostic; for one-electron transitions REL ≈ 1 and for two-electron transitions
REL ≈ 2.
c EOMCCSD results.
d δ-CR-EOMCCSD(T),X (X = IA, ID) results.
e δ-CR-EOMCC(2,3),X (X = A,D) results.
f CC3 results taken from Ref. [17], except for those for the nucleobases which were reported in Ref. [25].
g EOMCCSDT-3 values taken from Ref. [24].
h CASPT2 and TBE-1 excitation energies taken from Ref. [17], with updates from Ref. [21], and TBE-2
values taken from Ref. [21].
i In Ref. [17] these states were reported as having doubly excited character. However, as determined in

this work, they are predominantly one-electron transitions (REL for 2 1A1(π → π∗) is 1.153 and REL for 3
1A1(π → π∗) is 1.054) and, thus, double excitations have a small effect on these states.
j Additional excited states not included among the 149 singlet excitations listed in Table I of Ref. [17].
States in this category that have been characterized in the Supporting Information to Ref. [17] are designated

as n 1X, where X is the irreducible representation and n indicates the state number within symmetry X (n

is underlined to distinguish from the 149 states included in Table I of Ref. [17], which are labeled as n 1X).

States that have not been found in Ref. [17] and other prior benchmark work [18–25] are designated as 1X,
i.e., without the state number in front of the term symbol. In ordering these additional states, we use the
δ-CR-EOMCC(2,3),D values.
k This state is dominated by comparable single excitations from HOMO to LUMO+1 and from HOMO to
LUMO+5. The authors of Ref. [17] stated that it is dominated by a HOMO → LUMO single excitation,
which is not what our EOMCC calculations imply.
l This state is largely dominated by a single excitation from HOMO to LUMO+1, with two other significant,
though slightly smaller, contributions from one-electron HOMO-1 → LUMO+1 and HOMO → LUMO+5
transitions. According to Ref. [17], the state is dominated by the HOMO-1 → LUMO and HOMO →
LUMO+1 transitions, but our EOMCC calculations do not confirm this.
m These two TBE-1 values had to be taken from Ref. [195], since Ref. [17] provided no information what
the best estimates for them might be.
n This state is the only almost purely doubly excited state among the 149 singlet excited states included in

Table I of Ref. [17]. The large discrepancies between our δ-CR-EOMCC results, including the most accurate

δ-CR-EOMCC(2,3),D value of 6.55 eV, and the previously reported [17, 21] CASPT2 and TBE data do not

necessarily imply that CASPT2 and TBE results are more accurate. Although we do not know what the

CC3 and EOMCCSDT-3 results for this state might be, our best δ-CR-EOMCC(2,3),D value of 6.55 eV is

in excellent agreement with the NEVPT2 results reported in Ref. [23], which range from 6.30 to 6.35 eV.
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Table 3.4 (cont’d).
o As explained in footnote p to Table 3.3, the authors of Ref. [17] confused the 2 1A1(π → π∗) state

of formaldehyde with the higher-energy 1A1(n → π∗) solution. See footnote p to Table 3.3 for further
information.
p CC3/aug-cc-pVQZ results taken from Ref. [21].
q The CC3/aug-cc-pVTZ result reported in Ref. [21]. Our δ-CR-EOMCC excitation energies for the 2
1A1(π → π∗) state of acetone and the corresponding CC3/TZVP, EOMCCSDT-3/TZVP, and TBE values
reported in Refs. [17, 22, 24] suggest that the CC3/aug-cc-pVTZ root at 8.90 eV found in Ref. [21] does not

represent the 2 1A1(π → π∗) excitation. Based on our δ-CR-EOMCC analysis, the CC3/aug-cc-pVTZ root

at 8.90 eV corresponds, most likely, to the 1A1(π → π∗/n→ σ∗) state that has not been considered in the
previous benchmark studies [17–25]. For this reason, in comparisons of our δ-CR-EOMCC and EOMCCSD

data for the 2 1A1(π → π∗) state of acetone with a TBE-2 result we use the TBE-1 value taken from Ref.
[17] instead.
r As explained in footnote s to Table 3.3, the previous assignment of the 2 1A′(π → π∗) state to the
higher-energy CC3 solution at 8.27 eV (or the corresponding EOMCCSD root at ∼ 8.5 eV), presented in
Ref. [17], is incorrect. See footnote s to Table 3.3 for further information.
s Taken from Ref. [25].
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3.4.2 Remarks on the Calculated Vertical Excitation Spectra for

Molecules in the Database of Ref. [17]

As already mentioned, the 203 singlet excitation energies of the 28 molecules constituting

the benchmark set of Ref. [17] determined in this dissertation are collected in Tables 3.3 and

3.4. We compare the EOMCCSD, δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, δ-CR-

EOMCC(2,3),A, and δ-CR-EOMCC(2,3),D results, obtained in this work using the MP2/6-

31G∗ (Table 3.3) and CR-CC(2,3),D/TZVP (Table 3.4) geometries, with the previously

reported CASPT2 [17, 21], CC3 [17, 19, 21, 25], EOMCCSDT-3 [22, 24], and theoretical best

estimate, TBE-1 [17] and TBE-2 [21], values. In addition to dominant orbital excitations,

the nature of each computed excited state (singly, doubly, or somewhere in-between) is

characterized using the reduced excitation level (REL) diagnostic [66] resulting from the

EOMCCSD calculations (REL ≈ 1 implies a one-electron transition, whereas REL close to 2

indicates a doubly excited state). The main part of the original benchmark set of Ref. [17],

presented in Table I of this reference, contains 149 π → π∗, n→ π∗, and σ → π∗ vertical

singlet excitations, the majority of which have REL values close to 1, with only relatively few

(45 or ∼ 30%) states having non-negligible, though still small, doubles contributions (1.1 <

REL < 1.2). Even fewer (4 or ∼ 3%) states have a more substantial two-electron transition

character (REL ≥ 1.2). Only one state among the 149 singlet excited states included in Table

I of Ref. [17], i.e., the 1 1B3g(n
2 → π∗2) state of s-tetrazine, is a truly multi-reference-type

two-electron transition with REL ≈ 2. Thus, the majority of the singlet excitations found

in Ref. [17] consists of states that have a predominantly one-electron excitation nature. The

doubly excited 1 1B3g(n
2 → π∗2) state of s-tetrazine will be excluded from our statistical

error evaluations discussed in Section 3.5, since we have no access to the corresponding CC3
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and EOMCCSDT-3 reference data, while the existing CASPT2 and TBE values are, in our

view, unreliable (see footnote o to Table 3.3 and the discussion below). In other words, in our

overall statistical error analyses discussed in Section 3.5, we start with the 148 singlet excited

states, taken from Table I of Ref. [17], as described above, and then, in each comparison

of our δ-CR-EOMCC data with another method, we use as many states from this set as

computed with this other method.

In addition to the 149 excited states listed in Table I of Ref. [17], we have found 54 states

which lie below the threshold set for each molecule as the highest of the CC3, EOMCCSDT-

3, and CASPT2 excitation energy values obtained in the previously reported calculations

[17, 21, 22, 24, 25]. Among these 54 additional states, there are five excitations that can be

found in the Supporting Information to Ref. [17], which include the 2 1A1(π → π∗/π → σ∗)

state of norbornadiene, 2 1Ag(n
2 → π∗2) state of s-tetrazine, and 1 1B2g(n → π∗), 2

1B2g(n → π∗), and 1 1B2u(π → π∗) states of p-benzoquinone and which are designated

in Tables 3.3 and 3.4 in this dissertation as 2 1A1(π → π∗/π → σ∗), 2 1Ag(n
2 → π∗2),

and 1 1B2g(n → π∗), 2 1B2g(n → π∗), and 1 1B2u(π → π∗), respectively (underlining the

state numbers to distinguish them from the main set of 149 states listed in Table I of Ref.

[17], where the state numbers are not underlined). The remaining 49 excitations found in

the present study and not considered in the earlier work [17–25], which are designated in

our tables using multiplicity and spatial symmetry without the state number (i.e., as 1X

rather than n 1X, where X is the relevant irreducible representation), consist of six π → π∗,

ten n→ π∗, one σ → π∗, two π → π∗/n→ σ∗, three n→ π∗/π → σ∗, thirteen π → σ∗,

nine n→ σ∗, three n2 → π∗2, and two n, π → π∗2 states. While all of these additional 54

states are made up of mostly one-electron transitions, six of them (four n2 → π∗2 and two

n, π → π∗2) have REL values close to 2. Although we do not include any of these additional
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54 states in the overall statistical error analyses discussed in this work, since the previous

studies containing the reference CC3, EOMCCSDT-3, and TBE data [17, 21, 22, 24, 25]

have not found them, the information about these states, including our new δ-CR-EOMCC

data, may help future work on assessing quantum chemistry methods for excited electronic

states.

Before examining the overall performance of the δ-CR-EOMCCSD(T),IA, δ-CR-

EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A, and δ-CR-EOMCC(2,3),D approaches through

appropriate statistical error analyses involving the 148 singlet excitations from Table I of

Ref. [17] excluding the aforementioned 1 1B3g(n
2 → π∗2) doubly excited state of s-tetrazine,

in the next few paragraphs we highlight some of the key findings of our δ-CR-EOMCC calcu-

lations for the various molecules in the database of Ref. [17] organized in the following seven

subgroups: linear polyenes, unsaturated cyclic hydrocarbons, aromatic hydrocarbons, hete-

rocycles, aldehydes and ketones, amides, and nucleobases. In order to make our comparisons

with the original [17] and subsequent [18–25] benchmark studies straightforward and clear,

we keep the original state labeling and ordering used in Ref. [17], with updates provided in

Ref. [21], as much as possible. All of the additional states found in the present study, beyond

the 149 states from Table I of Ref. [17], are ordered according to the δ-CR-EOMCC(2,3),D

energies, which we regard as generally most accurate among all δ-CR-EOMCC approaches.

In comparing our δ-CR-EOMCC excitation energies with the previously published data [17–

25], we focus on the CC3 [17, 25], EOMCCSDT-3 [22, 24], CASPT2 [17, 21], and TBE-2 [21]

values. We do not discuss comparisons with TBE-1 data, which are the TBE values included

in Ref. [17], since the updated TBE-2 excitation energies from Ref. [21] are generally more

reliable.
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3.4.2.1 Linear Polyenes: Ethene, E-butadiene, all-E-hexatriene, and

all-E-octatetraene

Comparing the δ-CR-EOMCC vertical excitation energies of the seven states of ethene, E-

butadiene, all-E-hexatriene, and all-E-octatetraene, shown in Table 3.3, with their CASPT2

and TBE-2 counterparts from Refs. [17] and [21], the corresponding MUE values are relatively

small, with the δ-CR-EOMCC(2,3) methods yielding smaller deviations from the CASPT2

and TBE-2 data (0.19–0.20 and 0.28–0.34 eV, respectively) than the δ-CR-EOMCCSD(T)

approaches (0.26–0.31 and 0.41–0.49 eV, respectively). Compared to the iterative triples

EOMCCSDT-3 approximation [22, 24], the non-iterative δ-CR-EOMCCSD(T),IX and δ-

CR-EOMCC(2,3),X (X = A, D) schemes have MUEs in the 0.16–0.27 eV range. Compared

to CC3 [17], the δ-CR-EOMCC methods show similar MUE characteristics (∼ 0.2 eV).

The MaxE values characterizing the δ-CR-EOMCC results vs the CC3 and EOMCCSDT-3

reference data for the seven states of linear polyenes discussed here, which range from 0.23 to

0.44 eV, are on the same order. Thus, for the linear polyene molecules in the database of Ref.

[17], all four δ-CR-EOMCC approaches accurately reproduce the results of the considerably

more expensive CC3 and EOMCCSDT-3 calculations. This includes the 2 1Ag(π → π∗)

states of E-butadiene, all-E-hexatriene, and all-E-octatetraene, which have a partially doubly

excited character (REL ≈ 1.2). The differences between the δ-CR-EOMCCSD(T),IA and

δ-CR-EOMCCSD(T),ID excitation energies of the 2 1Ag(π → π∗) states of all-E-hexatriene

and all-E-octatetraene and the corresponding CASPT2 and TBE-2 data, of 0.61–0.77 and

0.94 eV, respectively, in the δ-CR-EOMCCSD(T),IA case and 0.49–0.68 and 0.82–0.85 eV,

respectively, in the δ-CR-EOMCCSD(T),ID case, are larger, but the δ-CR-EOMCC(2,3),A

and δ-CR-EOMCC(2,3),D approaches reduce them to 0.37–0.47 and 0.64–0.70 eV in the δ-
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CR-EOMCC(2,3),A case and 0.25–0.37 and 0.54–0.58 eV in the δ-CR-EOMCC(2,3),D case.

Thus, we can conclude that the δ-CR-EOMCC(2,3) methods produce excitation energies

which are consistent with both the high-level single-reference CC data of the CC3 and

EOMCCSDT-3 type and with the results of the multi-reference CASPT2 calculations, while

improving the δ-CR-EOMCCSD(T) excitation energies and being reasonably close to the

TBE-2 reference values, which carry their own uncertainties.

The authors of Ref. [17] state that the 2 1Ag(π → π∗) states of E-butadiene, all-E-

hexatriene, and all-E-octatetraene have large contributions from two-electron transitions.

As a result, they and other authors [17, 19, 20, 23–25] remove these states from some of

their statistical error evaluations, particularly when CC vs CASPT2 comparisons are made,

but we will not do this in the present work. The REL values of ∼ 1.2 characterizing the 2

1Ag(π → π∗) states of E-butadiene, all-E-hexatriene, and all-E-octatetraene indicate that

these three states are predominantly one-electron transitions, with relatively small contri-

butions from double excitations, which higher and more robust EOMCC levels, such as our

δ-CR-EOMCC(2,3) approaches, should be able to handle quite well.

3.4.2.2 Unsaturated Cyclic Hydrocarbons: Cyclopropene, Cyclopentadiene, and

Norbornadiene

For this group of molecules, the results of our δ-CR-EOMCC calculations for the nine states

included in Table I of Ref. [17] are of a similar quality as the CASPT2 and TBE-2 data

[17, 21], with MaxE and MUE values ranging from 0.16 to 0.42 eV and 0.08 to 0.21 eV,

respectively. Compared to the CC3 [17] and EOMCCSDT-3 [22, 24] calculations, the δ-CR-

EOMCC results for the nine states of unsaturated cyclic hydrocarbons included in Table I

of Ref. [17] are characterized by MaxE values in the 0.16–0.32 eV range and MUEs ranging
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from 0.09 to 0.28 eV.

Among the various excited electronic states in this group of molecules, the 1 1B2(π → π∗)

state of cyclopentadiene is of particular note, as it has been the focus of several the-

oretical studies where the location of this state has been disputed by various high-level

single- and multi-reference quantum chemistry approaches (see Refs. [196, 197] and refer-

ences therein). Our δ-CR-EOMCC vertical excitation energies for this state agree very well

with the CASPT2 and TBE-1 or TBE-2 (both equal to EOMCCSDT in this case [17, 197])

values of 5.51 and 5.55 eV, respectively, with the δ-CR-EOMCC(2,3),D approach yielding

the experimental band maximum, which is, after correcting for vibronic interactions, 5.43

eV [197]. Both the CC3 and EOMCCSDT-3 results place this state ∼ 0.2–0.3 eV higher in

energy compared to our δ-CR-EOMCC values, suggesting that the δ-CR-EOMCC excitation

energies, which almost perfectly match the TBE/EOMCCSDT and experimental data for

this state, may be more accurate.

The authors of Ref. [17] mention that the valence excited states of cyclopentadiene, 2

1A1(π → π∗) and 3 1A1(π → π∗), contain significant contributions from double excitations.

Their argument is based on the ∼0.3–0.4 eV lowering when going from EOMCCSD to CC3.

However, as can be seen in our tables and as shown in several previous studies [69, 135–

137], it is not unusual to observe errors of this magnitude in EOMCCSD calculations for

singly excited states. Indeed, the REL values characterizing the 2 1A1(π → π∗) and 3

1A1(π → π∗) states of cyclopentadiene, of about 1.153 and 1.055, respectively, when the

MP2/6-31G∗ geometry is employed, show that these states are predominantly one-electron

transitions and that double excitations do not significantly contribute to their electronic

wave functions. Thus, in analogy to the 2 1Ag(π → π∗) excitations in linear polyenes, there

is no reason to exclude them from the statistical error analyses of various methods, as has
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been done in some of the earlier benchmark studies [17, 19, 20, 23–25]. The 2 1A1(π → π∗)

and 3 1A1(π → π∗) states of cyclopentadiene are included in our statistical error analyses

discussed in Section 3.5.

In addition to the nine excited states of unsaturated cyclic hydrocarbons included in

Table I of Ref. [17], we found three extra states for cyclopentadiene and norbornadiene

within the prescribed energy range. Two of these states, namely, the 1B2(π → π∗) state of

cyclopentadiene and the 1B1(π → π∗) state of norbornadiene, have not been considered in

the prior benchmark studies [17–25]. The 2 1A1(π → π∗/π → σ∗) state of norbornadiene

has been considered in the Supporting Information of Ref. [17]. All of these additional states

are dominated by one-electron π → π∗ transitions, with the 2 1A1(π → π∗/π → σ∗) state

of norbornadiene being different from the other two excitations in that it has comparable

contributions from π → π∗ and π → σ∗ one-electron transitions. The authors of Ref. [17]

characterize it as having only π → π∗ character, but our wave function analysis indicates a

mixed π → π∗/π → σ∗ nature.

3.4.2.3 Aromatic Hydrocarbons: Benzene and Naphthalene

In analogy to the unsaturated cyclic hydrocarbons, the δ-CR-EOMCC results for the four

excited states of benzene and ten excited states of naphthalene included in Table I of Ref.

[17] are in generally good agreement with the CASPT2 and TBE-2 results of Refs. [17, 21].

This is particularly true for the δ-CR-EOMCC(2,3),D calculations, which are characterized

by the MUE and MaxE values of 0.17 and 0.39 eV, respectively, when compared to CASPT2,

and 0.20 and 0.40 eV, respectively, when compared to TBE-2. The remaining three δ-CR-

EOMCC approaches have very similar MUE values relative to the CASPT2 and TBE-2 data,

of 0.17–0.29 and 0.20–0.27 eV, respectively, but the corresponding MaxE values are somewhat
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higher, especially in the δ-CR-EOMCCSD(T),IA case, where MaxE relative to CASPT2

is 0.87 eV and relative to TBE-2 0.86 eV. Comparing to the iterative triples CC3 and

EOMCCSDT-3 approaches exploited in Refs. [17, 22, 24, 25], we see that the non-iterative

δ-CR-EOMCCSD(T) corrections produce MUEs of 0.18 and 0.16–0.18 eV, respectively. The

δ-CR-EOMCC(2,3) approaches give similar deviations from CC3 and EOMCCSDT-3 (all in

the ∼ 0.2–0.3 eV range).

The fourteen excited states of benzene and naphthalene considered in this work are

predominantly one-electron transitions. In particular, the four states of naphthalene, namely,

2 1Ag(π → π∗), 1 1B1g(π → π∗), 3 1Ag(π → π∗), and 3 1B3u(π → π∗), in contrast

to their characterization in Ref. [17] as having strong contributions from doubly excited

configurations, are shown to be predominantly one-electron transitions, with REL values

ranging from 1.109 to 1.177. Therefore, unlike in the earlier ab initio benchmark studies

[17, 19, 20, 23–25], we do not exclude them from the statistical error analyses in Section 3.5,

as there are no reasons to do so.

3.4.2.4 Heterocycles: Furan, Pyrrole, Imidazole, Pyridine, Pyrazine, Pyrimi-

dine, Pyridazine, s-Triazine, and s-Tetrazine

This group of molecules is the largest subgroup among the 28 molecules in the database of

Ref. [17]. As shown in Tables 3.3 and 3.4, our δ-CR-EOMCC calculations have identified a

total of 87 excited states for the molecules in this group. Among them are 66 states listed

in Table I of Ref. [17], the 2 1Ag(n
2 → π∗2) state of s-tetrazine that can be found in the

Supporting Information to Ref. [17], and 20 other additional states found in this work, but

not considered in the prior benchmark studies [17–25]. As already alluded to above and as

further elaborated on below, one of the states of s-tetrazine, namely, 1 1B3g(n
2 → π∗2),
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included in Table I of Ref. [17], is an almost pure two-electron transition, which is excluded

from our statistical analyses due to the absence of sufficiently many reliable data for it. If

we compare the results of our δ-CR-EOMCC calculations for the remaining 65 states of the

heterocycles considered here and listed in Table I of Ref. [17], for which the CASPT2, CC3,

and EOMCCSDT-3 reference data are available [17, 22, 24, 25] and which are of predom-

inantly single excitation nature, we can see a great deal of consistency among the various

theoretical values. Indeed, the MUEs characterizing the δ-CR-EOMCC calculations for these

states relative to the corresponding CASPT2, CC3, and EOMCCSDT-3 excitation energies

are 0.17–0.24, 0.14–0.27, and 0.15–0.36 eV, respectively. Not surprising, the corresponding

MaxE values are larger, particularly when one compares the δ-CR-EOMCCSD(T),IA and

CASPT2 results, where MaxE is 1.16 eV, but the δ-CR-EOMCC(2,3) approaches, especially

variant D, are very effective in reducing them to an acceptable level. The largest deviation

between the δ-CR-EOMCC(2,3),D and CASPT2/CC3/EOMCCSDT-3 excitation energies of

the 65 states of heterocycles included in Table I of Ref. [17], other than the 1 1B3g(n
2 → π∗2)

doubly excited state excluded from our statistics, is 0.58 eV. Similar remarks apply to a com-

parison of our δ-CR-EOMCC excitation energies with the TBE-2 data reported in Ref. [21].

The MUE and MaxE values characterizing the differences between the δ-CR-EOMCC and

TBE-2 excitation energies of the 65 states of heterocycles included in Table I of Ref. [17],

other than the two-electron 1 1B3g(n
2 → π∗2) transition in s-tetrazine, are 0.13–0.20 and

0.40–0.50 eV, respectively. In other words, if we limit ourselves to excited states of het-

erocycles dominated by one-electron transitions, the δ-CR-EOMCC approaches, especially

the triples corrections defining the δ-CR-EOMCC(2,3) approximations, are capable of pro-

viding CC3/EOMCCSDT-3-quality data, while matching the results of the multi-reference

CASPT2 calculations and TBE-2 values. An interesting question arises if the above obser-
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vations apply to the aforementioned doubly excited 1 1B3g(n
2 → π∗2) state of s-tetrazine

excluded from the above error analysis and disregarded in all of the previously published

CC/EOMCC work [17, 19–25].

According to Refs. [17, 21], the CASPT2/TZVP calculation places the 1 1B3g(n
2 → π∗2)

state of s-tetrazine at 5.79 or 5.86 eV. The TBE value for this state reported in Table I of

Ref. [17] (TBE-1 data in Ref. [21]) is 5.79 eV. The TBE-2 result recommended by the

authors of Ref. [21], which utilizes the CASPT2/aug-cc-pVTZ data, is 5.76 eV. None of

these results agree too well with our EOMCC computations. In the case of EOMCCSD, the

excitation energy of the 1 1B3g(n
2 → π∗2) state of s-tetrazine is placed at 13.19 eV, which is

not surprising, since EOMCCSD fails when strongly multi-reference doubly excited states are

considered. However, the discrepancy between the δ-CR-EOMCC and CASPT2/TBE results

needs additional comments, since the δ-CR-EOMCC triples corrections, especially δ-CR-

EOMCCSD(T),ID and δ-CR-EOMCC(2,3),D, have a successful track record in accurately

describing excited states dominated by two-electron transitions (cf. Refs. [63–68, 74, 111,

149, 152, 155, 162, 179, 182] for examples). According to Table 3.3, the triples corrections

of the δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A, and δ-CR-

EOMCC(2,3),D approaches lower the EOMCCSD excitation energy of the 1 1B3g(n
2 →

π∗2) state, of 13.19 eV, to 8.46, 7.23, 7.97, and 6.59 eV, respectively. The fact that the

δ-CR-EOMCCSD(T),IA and δ-CR-EOMCC(2,3),A values are too high compared to the

CASPT2 and TBE data is not surprising, since by relying on the Møller–Plesset rather

than Epstein–Nesbet denominators in defining the corresponding triples corrections, as in

Eq. (3.10), these methods tend to overestimate excitation energies for doubly excited states

[63, 68]. A question arises though why there is a relatively large, ∼ 0.7–0.8 eV, discrepancy

between the CASPT2/TBE and δ-CR-EOMCC(2,3),D data, given the excellent performance
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of the δ-CR-EOMCC(2,3),D approach, which uses the more robust Epstein–Nesbet-type

denominator, Eq. (3.9), in past applications involving doubly excited states [67, 68, 74, 179,

182]. We believe that our δ-CR-EOMCC(2,3),D result for the vertical excitation energy of

the 1 1B3g(n
2 → π∗2) state, of 6.59 eV, when the MP2/6-31G∗ geometry of s-tetrazine is

employed, or 6.55 eV, when the CR-CC(2,3),D/TZVP geometry is adopted, is more reliable

than the previously reported CASPT2 and TBE values that range between 5.76 and 5.86 eV

[17, 21]. Indeed, as pointed out in footnote o to Table 3.3 (cf., also, footnote n to Table 3.4),

our δ-CR-EOMCC(2,3),D excitation energies, of 6.55 eV or 6.59 eV, agree very well with the

more recent second-order multi-reference perturbation theory calculations of the NEVPT2

type, which give 6.30–6.35 eV [23]. It is also well known that CASPT2 often underestimates

the excitation energies and the ∼ 0.5 − 1 eV underestimation is not unheard of. For all

these reasons, we do not include the 1 1B3g(n
2 → π∗2) state in our statistical error analyses,

since we do not have access to the high-level EOMCC results with an accurate treatment

of triple excitations other than our own δ-CR-EOMCC(2,3),D values and we cannot rely

on the CASPT2 or TBE excitation energies reported in Refs. [17, 21], which seem to be

inaccurate. It would be desirable to perform full EOMCCSDT or active-space EOMCCSDt

calculations for the 1 1B3g(n
2 → π∗2) state of s-tetrazine, along with the corresponding

CC3, EOMCCSDT-3, and multi-reference CI computations, to determine the accuracy of

our δ-CR-EOMCC(2,3),D results.

Among the 21 additional states of the heterocycles considered in this work, six π → σ∗

excitations in pyrrole, five states of pyridine representing n → π∗, π → σ∗, and n →

π∗/π → σ∗ excitations, five states of s-triazine of the n → σ∗ and n → π∗ types, and one

n→ π∗ excitation in s-tetrazine are predominantly one-electron transitions, as demonstrated

by their REL values being close to 1. As a result, all triples corrections to EOMCCSD are
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quite small (∼ 0.1–0.4 eV) and all δ-CR-EOMCC approaches provide similar values. This

is especially true when we compare the δ-CR-EOMCC(2,3),A and δ-CR-EOMCC(2,3),D

data, which agree to within 0.1 eV. Based on our experience, such an agreement typically

implies that the δ-CR-EOMCC(2,3) excitation energies are reasonably well converged. Thus,

in the absence of other high-level CC/EOMCC data for the 21 additional states of the

heterocycles considered in the present work, we can treat our δ-CR-EOMCC(2,3) values for

the 17 singly excited states among them as reference data for future benchmark studies.

Among all the heterocycles listed in Tables 3.3 and 3.4, s-tetrazine is the only molecule

that has doubly excited states in the prescribed energy range, which are characterized by

REL close to 2. One of them is the 1 1B3g(n
2 → π∗2) excitation, which we have already

discussed above. The remaining doubly excited states of s-tetrazine, which we have found,

are the 2 1Ag(n
2 → π∗2) state, which was also found by the authors of Ref. [17] (cf. the

Supporting Information to Ref. [17]), and the n2 → π∗2 excitations of the 1B3g,
1B1g,

and 1B1u symmetries that have not been considered before. As in the previously discussed

1 1B3g(n
2 → π∗2) state, the excitation energies for all of these doubly excited states lie

quite high in the EOMCCSD spectrum. However, when triples are properly accounted for,

using, for example, our δ-CR-EOMCC(2,3),D approach, we see a significant lowering of the

EOMCCSD excitation energies. For example, for the 2 1Ag(n
2 → π∗2) state found by the

authors of Ref. [17], the more robust triples correction of the δ-CR-EOMCC(2,3),D type

lowers the EOMCCSD energy of 11.47 eV to 5.04 eV. This result is in reasonable agreement

with the CASPT2 excitation energy of 4.55 eV reported in the Supporting Information

to Ref. [17], to which our aforementioned comments on the underestimation of excitation

energies by CASPT2 still apply. For the 1B3g(n
2 → π∗2) two-electron transition that has

not been considered before, the EOMCCSD excitation energy of 15.10 eV is lowered by
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almost 8 eV when the δ-CR-EOMCC(2,3),D method is employed, resulting in 7.31 eV,

and for the remaining two doubly excited states of s-tetrazine, namely, 1B1g(n
2 → π∗2)

and 1B1u(n2 → π∗2), the δ-CR-EOMCC(2,3),D corrections to the EOMCCSD values of

14.31 and 15.04 eV, respectively, result in the final excitation energies of 7.96 and 8.07 eV,

respectively. As discussed above, the δ-CR-EOMCC(2,3),D method has been demonstrated

to provide an accurate description of the challenging electronically excited states dominated

by two-electron transitions. Thus, we expect our δ-CR-EOMCC(2,3),D estimates for all five

doubly excited states of s-tetrazine considered in this work to be reasonable, possibly serving

as reference data in future benchmark studies.

3.4.2.5 Aldehydes and Ketones: Formaldehyde, Acetone, and

p-Benzoquinone

While this subgroup is much smaller than the previous one, with only three molecules and

thirteen one-electron excitations reported in Table I of Ref. [17], it is of interest, as we

have found several additional excited states for it in the prescribed energy range, including

three states of p-benzoquinone characterized in the Supporting Information to Ref. [17]

(the 1 1B2g(n → π∗), 2 1B2g(n → π∗), and 1 1B2u(π → π∗) states) and eleven other

states that have not been considered before. Among the other states, two are dominated

by n, π → π∗2 two-electron transitions, which we elaborate on below. Comparing to the

high-level iterative CC3 and EOMCCSDT-3 methods, we can see that the results of our δ-

CR-EOMCC calculations for this group of molecules are in good agreement with the available

CC3 [17] and EOMCCSDT-3 [22, 24] data. The MUE values characterizing the deviations of

the δ-CR-EOMCC excitation energies from the CC3 and EOMCCSDT-3 results are in the

0.11 to 0.29 eV range. The corresponding MaxE values range from 0.32 to 0.52 eV, when the
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δ-CR-EOMCC energies are compared to CC3, and from 0.26 to 0.47 eV, when we replace CC3

by EOMCCSDT-3. Similar remarks apply to comparisons of the δ-CR-EOMCC excitation

energies characterizing the thirteen states of formaldehyde, acetone, and p-benzoquinone

listed in Table I of Ref. [17] with their CASPT2 and TBE-2 counterparts reported in Refs.

[17, 21]. In this case, the MUE values characterizing the differences between the δ-CR-

EOMCC and CASPT2 data are 0.16–0.24 eV. For the differences between the δ-CR-EOMCC

and TBE-2 excitation energies, we obtain 0.14–0.18 eV. Once again, the corresponding MaxE

values are somewhat higher, but the δ-CR-EOMCC(2,3),D approach reduces them to an

acceptable level, especially when compared with CASPT2, where we obtain 0.34 eV. In

comparing the δ-CR-EOMCC and TBE-2 excitation energies for formaldehyde, acetone, and

p-benzoquinone, we treat one of the twelve states for which such comparison can be made,

namely, the 2 1A1(π → π∗) state of acetone, differently than the remaining states. As

explained in footnote r to Table 3.3 (cf., also, footnote q to Table 3.4), the TBE-2 value for

the 2 1A1(π → π∗) state of acetone reported in Ref. [21] is a result of an incorrect assignment

of the CC3/aug-cc-pVTZ root at 8.90 eV. Based on our δ-CR-EOMCC results for acetone,

we think that the CC3/aug-cc-pVTZ root at 8.90 eV found in Ref. [21] corresponds to the

1A1(π → π∗/n → σ∗) state of acetone, which has not been considered in the previous

benchmark studies [17–25], not to the 2 1A1(π → π∗) excitation. Indeed, we observe a

virtually perfect agreement between our δ-CR-EOMCC excitation energies for the 1A1(π →

π∗/n → σ∗) state of acetone, which range from 8.77 to 8.99 eV when the MP2/6-31G∗

geometry is employed, and the CC3/aug-cc-pVTZ value of 8.90 eV reported in Ref. [21].

We now move to the fourteen additional states of formaldehyde, acetone, and

p-benzoquinone, which are not included in Table I of Ref. [17] and which we have found

in our calculations. As already alluded to above, three of these additional states are the
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1 1B2g(n → π∗), 2 1B2g(n → π∗), and 1 1B2u(π → π∗) excitations in p-benzoquinone

described in the Supporting Information to Ref. [17], where the authors characterized them

using the CASPT2 approach. As shown in Table I, our best δ-CR-EOMCC(2,3),D results

for these three predominantly singly excited states agree with the corresponding CASPT2

data reported in the Supporting Information to Ref. [17] to within ∼ 0.3–0.4 eV. We can

view this as a good agreement given the fact that CASPT2 tends to underestimate excitation

energies.

For the remaining eleven states that have not been considered before, we have to make the

following two comments. The first one deals with the confusion regarding the 2 1A1(π → π∗)

and 1A1(n→ π∗) states of formaldehyde (see footnotes p and q in Table 3.3). The authors of

Ref. [17] have interpreted the EOMCCSD and CC3 roots at 10.54 and 10.45 eV, respectively,

as the 2 1A1(π → π∗) state, producing large discrepancies, of more than 1 eV, with the

CASPT2 and TBE values reported in Ref. [17], of 9.31 and 9.3 eV, respectively, and the

CC3/aug-cc-pVQZ value of 9.29 eV obtained in Ref. [21]. It is hard to understand such

a discrepancy given the fact that all excited states of formaldehyde considered in Ref. [17]

are almost pure single excitations. After thorough examination of the problem, we have

found another EOMCCSD root of the 1A1 symmetry at 9.77 eV, which results in the δ-

CR-EOMCC values that range from 9.37 in the δ-CR-EOMCC(2,3),D case to 9.57 eV when

the δ-CR-EOMCCSD(T),IA approach is employed, in very good agreement with the above

CASPT2, TBE, and CC3 values, particularly when our best δ-CR-EOMCC(2,3),D result of

9.37 eV is considered. Thus, the new EOMCC root that we have found in this work must be

the 2 1A1(π → π∗) state, whereas the 1A1 state at 10.54 eV in the EOMCCSD calculations

and at 10.45 eV in the CC3 calculations, interpreted in Ref. [17] as the 2 1A1(π → π∗)

excitation, is the next state of the 1A1 symmetry, designated in our Tables 3.3 and 3.4 as
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1A1(n→ π∗).

Our second comment regarding the additional states of aldehydes and ketones found in

this work deals with the 1B3u(n, π → π∗2) and 1B2g(n, π → π∗2) doubly excited states

of p-benzoquinone. In analogy to the previously discussed two-electron transitions in s-

tetrazine, these two challenging multi-reference states cannot be properly characterized by

EOMCCSD. When our best δ-CR-EOMCC(2,3),D approach is used, we see the excitation

energies of the 1B3u(n, π → π∗2) and 1B2g(n, π → π∗2) states of p-benzoquinone lower by

about 5 eV compared to EOMCCSD, giving 6.70 and 6.92 eV, respectively. The energy

lowering provided by the remaining three δ-CR-EOMCC approaches, particularly in the δ-

CR-EOMCCSD(T),IA case, is not as large, but this is consistent with our earlier experiences

with the δ-CR-EOMCC methods. It would be desirable to perform the full EOMCCSDT

or active space EOMCCSDt calculations for p-benzoquinone to verify if our best δ-CR-

EOMCC(2,3),D estimates of the vertical excitation energies of the 1B3u(n, π → π∗2) and

1B2g(n, π → π∗2) doubly excited states of p-benzoquinone are accurate.

3.4.2.6 Amides: Formamide, Acetamide, and Propanamide

Unlike in the previous group of aldehydes and ketones, all of the excited states of the three

amides considered in this work, including nine states listed in Table I of Ref. [17] and four-

teen additional states found in our calculations, but not considered in the prior benchmark

studies [17–25], are dominated by one-electron transitions. As a result, there is a very

good agreement between our δ-CR-EOMCC excitation energies and the previously pub-

lished [17, 21, 22, 24] CASPT2, CC3, EOMCCSDT-3, and TBE-2 values for the subsets

of nine (CASPT2, CC3), eight (EOMCCSDT-3), and six (TBE-2) states of formamide, ac-

etamide, and propanamide, for which the latter data are available. Indeed, the MUE values

61



characterizing the deviations of the δ-CR-EOMCC excitation energies for the nine states

of the three amides included in Table I of Ref. [17] from the corresponding CASPT2 data,

reported in Ref. [17] as well, range from 0.25 to 0.30 eV, with the largest deviation (MaxE) of

0.56 eV observed when the δ-CR-EOMCCSD(T),IA and CASPT2 results are compared with

each other. As in the case of the other molecular groups examined in this work, the δ-CR-

EOMCC(2,3),D approach improves the agreement with CASPT2, reducing the above MaxE

value of 0.56 eV to 0.35 eV. Similar remarks apply to a comparison of the δ-CR-EOMCC

results with the available TBE-2 values [21]. In this case, the MUE values characterizing the

differences between the δ-CR-EOMCC and TBE-2 data are 0.23–0.27 eV and, once again, the

δ-CR-EOMCC(2,3),D approach produces the smallest MaxE value of 0.42 eV. The agreement

between our δ-CR-EOMCC excitation energies for formamide, acetamide, and propanamide

and the previously published reference values improves even further when the results of the

δ-CR-EOMCC calculations are compared with the CC3 and EOMCCSDT-3 data reported

in Refs. [17, 22, 24]. The MUE and MaxE values characterizing the differences between

our δ-CR-EOMCC results and their CC3 counterparts reported in Ref. [17] are 0.08–0.16

and 0.14–0.27 eV, respectively. They are 0.05–0.24 and 0.12–0.28 eV, respectively, when

the excitation energies obtained in the δ-CR-EOMCC and EOMCCSDT-3 calculations are

compared with each other.

As has been the case with the other subgroups of molecules examined in this work, we

have found several additional excited states of formamide, acetamide, and propanamide that

have not been considered in the previous benchmark studies [17–25], with acetamide having

the richest variation of the excitation types. Of the fourteen additional excited states we

have found in the prescribed energy range, there are one π → π∗ excitation in formamide

(which we will further comment on below), two n → π∗, three n → σ∗, three π → σ∗,
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and one π → π∗/n → σ∗ excitations in acetamide, and one n → π∗ and three π → σ∗

excitations in propanamide. As already mentioned, all of these additional excited states

are predominantly one-electron transitions. Thus, as in the case of the previously discussed

nine states of formamide, acetamide, and propanamide considered in the prior benchmark

studies [17–25], the triples corrections to the EOMCCSD excitation energies resulting from

our δ-CR-EOMCC calculations for the fourteen additional states of the three amides found

in this work are rather small (∼ 0.1–0.3 eV). Our best δ-CR-EOMCC(2,3),A and δ-CR-

EOMCC(2,3),D values, in analogy to the aldehydes and ketones, agree almost perfectly,

differing by ∼ 0.05 eV. Thus, in the absence of other high-level CC/EOMCC results for the

fourteen additional excited states of formamide, acetamide, and propanamide found in the

present work, our δ-CR-EOMCC(2,3) excitation energies can be used as accurate reference

data in future benchmark calculations or applications involving these three molecules.

The 2 1A′(π → π∗) state of formamide considered in the previous benchmark work [17–

23, 25] and the extra 1A′(π → π∗) state of the same molecule found in the present study

require an additional comment. As explained in footnote s to Table 3.3, the authors of Ref.

[17] have incorrectly assigned the EOMCCSD and CC3 roots at 8.52 (8.50 in our calculations)

and 8.27 eV, respectively, to the 2 1A′(π → π∗) transition, where the corresponding CASPT2,

TBE-1, and TBE-2 values are 7.39, 7.39, and 7.35 eV, respectively. The 2 1A′(π → π∗) state

of formamide is an almost pure one-electron transition (REL = 1.096 when the MP2/6-31G∗

geometry is employed) and so differences between the CASPT2 and CC3 results on the

order of 1 eV are unlikely. Our EOMCCSD calculations show that there is another root of

the 1A′ symmetry and dominated by π → π∗ excitations, designated in Tables 3.3 and 3.4

as 1A′(π → π∗) and located at 7.52 eV, which has the δ-CR-EOMCC excitation energies

ranging from 7.09 to 7.31 eV, in excellent agreement with the above CASPT2 and TBE
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values. We have, thus, reassigned the previously reported [17] EOMCCSD and CC3 roots at

8.52 (in our calculations, 8.50) and 8.27 eV, respectively, to the higher energy 1A′(π → π∗)

state, while interpreting the EOMCCSD root at 7.52 eV as the 2 1A′(π → π∗) state. The

authors of Ref. [25] have found a CC3 root of formamide of 1A′ symmetry and π → π∗

character at 7.24 eV, lending support to the above state reassignment.

3.4.2.7 Nucleobases: Cytosine, Uracil, Thymine, and Adenine

For this final group of molecules included in the database of Ref. [17], there are a total of

31 excited states listed in Table I of Ref. [17]. Our δ-CR-EOMCC calculations have also

found two additional states in the prescribed energy range that have not been considered

before (two π → π∗ excitations in adenine). As shown in Tables 3.3 and 3.4, all of these

states are dominated by one-electron transitions. The 31 states included in Table I of Ref.

[17] have been characterized by CASPT2 and nineteen of them have been assigned the TBE

values of the corresponding excitation energies [17, 21]. Due to prohibitive computational

costs of the high-level iterative triples CC3 and EOMCCSDT-3 calculations, none of the

initial benchmark studies [17–24] using the database of Ref. [17] have provided the CC3 and

EOMCCSDT-3 data for nucleobases. The CC3 reference data for 22 of the 31 excitations of

nucleobases listed in Table I of Ref. [17] have finally become available in Ref. [25]. All of this

means that in assessing the performance of the δ-CR-EOMCC approaches in calculations

for nucleobases, we are somewhat limited, although comparisons with the available CASPT2

[17], CC3 [25], and TBE [17, 21] data allow us to make some useful observations. Compared

with the CASPT2 excitation energies for all 31 states included in Table I of Ref. [17], our

δ-CR-EOMCC results are characterized by MUE values of 0.12–0.19 eV. As one might ex-

pect, the corresponding MaxE values are somewhat larger, but our best δ-CR-EOMCC(2,3)
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calculations bring them down to a ∼ 0.4 eV level. Similar remarks apply to comparisons of

δ-CR-EOMCC excitation energies with the available TBE-2 values, where the corresponding

MUEs range from 0.14 to 0.22 eV and MaxEs from about 0.4 eV in the case of the δ-CR-

EOMCC(2,3) calculations to ∼ 0.7–0.8 eV in the case of the δ-CR-EOMCCSD(T) data.

For the 22 excitation energies of nucleobases computed at the CC3 level of theory [25], the

MUE and MaxE values characterizing the differences between the δ-CR-EOMCC and CC3

data are 0.10–0.24 and 0.35–0.53 eV, respectively, with the smallest MaxE values provided

by δ-CR-EOMCC(2,3) calculations. As in the case of the remaining 24 molecules included

in the benchmark set of Ref. [17], it is encouraging to observe the very good agreement be-

tween our best δ-CR-EOMCC(2,3) calculations and the considerably more demanding CC3

computations.

3.5 Statistical Error Analysis for the Entire Bench-

mark Set

We now turn to the examination of the overall quality of the δ-CR-EOMCCSD(T),IA, δ-

CR-EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A, and δ-CR-EOMCC(2,3),D excitation energies

obtained in this work, as compared to the previously published CASPT2 [17, 21], TBE-2

[21], CC3 [17, 25], and EOMCCSDT-3 [22, 24] data and the underlying EOMCCSD results,

using a larger set of 148 singlet excited states of 28 molecules considered in this work,

taken from Table I of Ref. [17], as a starting point for the corresponding statistical error

evaluations. As explained in the beginning of Section 3.4.2, the list of 148 singlet excited

states used to initiate the statistical error analyses discussed in this section has been obtained

by excluding the doubly excited 1 1B3g(n
2 → π∗2) state of s-tetrazine, for which the CC3 and
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EOMCCSDT-3 reference data are unavailable and the existing CASPT2 and TBE excitation

energies reported in Refs. [17, 21] unreliable, from the 149 singlet excitations collected in

Table I of Ref. [17]. As a result, the vast majority of states entering the statistical error

analysis presented in this section are dominated by one-electron transitions, with only 45

out of the above 148 states having 1.1 < REL < 1.2, three states having REL ≥ 1.2,

and no state having REL greater than 1.225. As pointed out in Section 3.4.2, we have

identified several additional states with significant contributions from double excitations,

including, in addition to the above 1 1B3g(n
2 → π∗2) state of s-tetrazine, six other states

with REL close to 2 that can be found among the 54 extra roots outside the set of 149

states listed in Table I of Ref. [17] obtained in our EOMCC calculations, but none of these

additional states can be considered in the overall error evaluation, since we do not have access

to the appropriate high-level reference data which would allow us to assess performance

of the δ-CR-EOMCC approaches in this case. On the basis of our past experiences with

the δ-CR-EOMCC calculations [63–68, 74, 111, 149, 179, 182] and the previously discussed

comparison of the δ-CR-EOMCC(2,3),D and NEVPT2 [23] results for the doubly excited 1

1B3g(n
2 → π∗2) state of s-tetrazine (cf. footnotes o and n to Tables 3.3 and 3.4, respectively),

we may expect the results of our overall best δ-CR-EOMCC(2,3),D calculations for the

excited states with REL close to 2 identified in this work to be accurate to within ∼ 0.2−0.3

eV, but we would need to perform additional high-level EOMCCSDT/EOMCCSDt or multi-

reference CI calculations, which are beyond the scope of the present study, to verify such a

statement.

The results of our statistical error analyses involving various ab initio methods considered

in this work and the 148 singlet excited states of 28 molecules taken from Table I of Ref. [17],

as described above, or their appropriate subsets for which the relevant data are available,
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as further elaborated on below, are summarized in Tables 3.5–3.8. Table 3.5 compares the

MUE, MSE, and MaxE values characterizing the differences between the excitation energies

obtained in our EOMCCSD and δ-CR-EOMCC calculations, the CC3 calculations reported

in Refs. [17, 25], and the EOMCCSDT-3 calculations reported in Refs. [22, 24] from the

corresponding CASPT2 data given in Ref. [17], with updates provided in Ref. [21]. Table 3.6

does the same for comparisons of the EOMCCSD, δ-CR-EOMCC, CC3, and EOMCCSDT-3

data with their TBE-2 counterparts taken from Ref. [21]. Tables 3.7 and 3.8 compare the

MUE, MSE, and MaxE values characterizing the differences between the excitation energies

resulting from our EOMCCSD and δ-CR-EOMCC calculations with the CC3 (Table 3.7)

and EOMCCSDT-3 (Table 3.8) data reported in Refs. [17, 22, 24, 25]. To make sure

that our statistical analyses of errors are as systematic and as fair as possible, we focus

on the δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A, and δ-CR-

EOMCC(2,3),D excitation energies, and their EOMCCSD counterparts summarized in Table

3.3, i.e., those obtained using the TZVP basis set and the MP2/6-31G∗ geometries, since the

reference CASPT2, CC3, and EOMCCSDT-3 results reported in Refs. [17, 21, 24, 25] and

collected in Table 3.3 as well have been obtained using the TZVP basis and the geometries

resulting from the MP2/6-31G∗ optimizations.
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Table 3.5: Statistical error analyses of the various CC/EOMCC data, including EOM-
CCSD, δ-CR-EOMCCSD(T),IA (δ-CR(T),IA), δ-CR-EOMCCSD(T),ID (δ-CR(T),ID),
δ-CR-EOMCC(2,3),A (δ-CR(2,3),A), δ-CR-EOMCC(2,3),D (δ-CR(2,3),D), CC3, and
EOMCCSDT-3, from their CASPT2 counterparts.

SD δ-CR(T),IA δ-CR(T),ID δ-CR(2,3),A δ-CR(2,3),D CC3 SDT-3
Counta 148 148 148 148 148 139 115

MSEb 0.49 0.20 0.12 0.00 -0.06 0.18 0.28

MUEb 0.50 0.24 0.21 0.17 0.18 0.20 0.29

MaxEb 1.63 1.16 0.95 0.68 0.53 0.62 0.70

a Total number of states considered.
b Mean signed error (MSE), mean unsigned error (MUE), and maximum energy difference
(MaxE) with respect to CASPT2 (in eV).

Table 3.6: Statistical error analyses of the various CC/EOMCC data, including EOM-
CCSD, δ-CR-EOMCCSD(T),IA (δ-CR(T),IA), δ-CR-EOMCCSD(T),ID (δ-CR(T),ID),
δ-CR-EOMCC(2,3),A (δ-CR(2,3),A), δ-CR-EOMCC(2,3),D (δ-CR(2,3),D), CC3, and
EOMCCSDT-3, from their TBE-2 counterparts.

SD δ-CR(T),IA δ-CR(T),ID δ-CR(2,3),A δ-CR(2,3),D CC3 SDT-3
Counta 102 102 102 102 102 102 82

MSEb 0.45 0.18 0.11 0.00 -0.07 0.19 0.27

MUEb 0.45 0.22 0.19 0.19 0.19 0.20 0.27

MaxEb 1.52 0.94 0.85 0.70 0.58 0.63 0.79

a Total number of states considered.
b Mean signed error (MSE), mean unsigned error (MUE), and maximum energy difference
(MaxE) with respect to TBE-2 (in eV).
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Table 3.7: Statistical error analyses of the EOMCCSD, δ-CR-EOMCCSD(T),IA (δ-
CR(T),IA), δ-CR-EOMCCSD(T),ID (δ-CR(T),ID), δ-CR-EOMCC(2,3),A (δ-CR(2,3),A),
and δ-CR-EOMCC(2,3),D (δ-CR(2,3),D) data from their CC3 counterparts.

SD δ-CR(T),IA δ-CR(T),ID δ-CR(2,3),A δ-CR(2,3),D
Counta 139 139 139 139 139

MSEb 0.30 0.01 -0.06 -0.17 -0.24

MUEb 0.30 0.13 0.15 0.19 0.25

MaxEb 1.28 0.81 0.60 0.44 0.54

a Total number of states considered.
b Mean signed error (MSE), mean unsigned error (MUE), and maximum energy difference
(MaxE) with respect to CC3 (in eV).

Table 3.8: Statistical error analyses of the EOMCCSD, δ-CR-EOMCCSD(T),IA (δ-
CR(T),IA), δ-CR-EOMCCSD(T),ID (δ-CR(T),ID), δ-CR-EOMCC(2,3),A (δ-CR(2,3),A),
and δ-CR-EOMCC(2,3),D (δ-CR(2,3),D) data from their EOMCCSDT-3 counterparts.

SD δ-CR(T),IA δ-CR(T),ID δ-CR(2,3),A δ-CR(2,3),D
Counta 115 115 115 115 115

MSEb 0.22 -0.08 -0.15 -0.26 -0.33

MUEb 0.22 0.14 0.18 0.26 0.33

MaxEb 0.93 0.46 0.37 0.48 0.58

a Total number of states considered.
b Mean signed error (MSE), mean unsigned error (MUE), and maximum energy difference
(MaxE) with respect to EOMCCSDT-3 (in eV).
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Clearly, our δ-CR-EOMCC excitation energies would change somewhat if we used basis

sets larger than TZVP, but comparing the results obtained with various methods where dif-

ferent calculations use different basis sets would make our comparisons less systematic. The

same applies to comparisons of vertical excitation energies using different ground-state ge-

ometries in different excited-state calculations, although comparing vertical excitation spec-

tra at the ground-state geometries obtained with the same method as used in excited-state

calculations for each of the ab initio approaches analyzed in this study would be interesting.

As explained in Section 3.4.1 and as implied by Fig. 3.2 (or by a comparison of the results

shown in Tables 3.3 and 3.4), the effect of ground-state geometries on the vertical excitation

spectra resulting from the δ-CR-EOMCC calculations is generally very small and unlikely to

have an effect on our main conclusions regarding performance of the δ-CR-EOMCC methods

relative to other approaches, but the topic of nuclear geometries used in the various com-

putations for the 28 molecules comprising the benchmark set of Ref. [17] is worth further

exploration. The effect of the basis set on the δ-CR-EOMCC calculations summarized in

Tables 3.3 and 3.4 is interesting too and we plan to examine it in the future work. We

should also point out that while in the original benchmark set presented in Table I of Ref.

[17] there are a total of 149 excited states, including the aforementioned 148 excitations that

provide the basis for the statistical error analyses discussed in this section, we do not have

access to all 148 vertical excitation energies for every approach providing the reference data

for judging the δ-CR-EOMCC methods. Thus, in making comparisons of the δ-CR-EOMCC

and CC3 results, we have to limit ourselves to the subset of 139 excited states, for which the

CC3 results are available [17, 25]. When comparing the δ-CR-EOMCC and EOMCCSDT-3

excitation energies, we have to limit ourselves to the subset of 115 states, for which the

EOMCCSDT-3 results are available [22, 24]. Comparisons of our δ-CR-EOMCC excitation
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energies with the corresponding TBE-2 values are limited to the subset of 102 states, for

which the latter values are available [21]. The only comparison that can utilize all 148 excited

states, obtained by excluding the 1 1B3g(n
2 → π∗2) state of s-tetrazine from the 149 states

listed in Table I of Ref. [17], in determining the corresponding MUE, MSE, and MaxE values

is that involving the δ-CR-EOMCC and CASPT2 approaches, where the relevant CASPT2

data can be found in Ref. [17], with updates provided in Ref. [21]. Information about the

numbers of excited states included in the statistical error analyses involving various methods

considered in this work can be found in Tables 3.5–3.8.

In addition to tables that summarize the overall MUE, MSE, and MaxE values charac-

terizing the differences between the results of the various calculations, we present com-

parisons of the EOMCCSD and δ-CR-EOMCC excitation energies with their CASPT2,

TBE-2, CC3, and EOMCCSDT-3 counterparts in the form of the correlation and error

distribution plots shown in Figs. 3.3–3.26. The correlation plots shown in Figs. 3.3–3.7

compare the vertical excitation energies of the 148 singlet excited states of 28 molecules

listed in Table I of Ref. [17], i.e., all excitations listed in Table I of Ref. [17] other than

the doubly excited 1 1B3g(n
2 → π∗2) state of s-tetrazine, which had to be excluded from

our statistical error analyses, obtained in the EOMCCSD, δ-CR-EOMCCSD(T),IA, δ-CR-

EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A, and δ-CR-EOMCC(2,3),D calculations using the

TZVP basis set and MP2/6-31G∗ geometries with the corresponding CASPT2 values taken

from Ref. [17], with updates provided in Ref. [21]. The analogous plots presented in Figs.

3.8–3.12 compare the EOMCCSD/TZVP and δ-CR-EOMCC/TZVP excitation energies cal-

culated at MP2/6-31G∗ geometries with the TBE-2 data for the subset of 102 states reported

in Ref. [21]. Figures 3.13–3.17 compare the EOMCCSD/TZVP//MP2/6-31G∗ and δ-CR-

EOMCC/TZVP//MP2/6-31G∗ excitation energies with the corresponding CC3/TZVP//
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MP2/6-31G∗ results for the subset of 139 states that can be found in Refs. [17, 25]. The

correlation plots shown in Figs. 3.18–3.22 compare the EOMCCSD and δ-CR-EOMCC ex-

citation energies with the results of the EOMCCSDT-3 calculations, all using the TZVP

basis set and MP2/6-31G∗ geometries, for the subset of 115 states reported in Refs. [22, 24].

In addition to the excitation energies and their scatter along the diagonal representing per-

fect agreement, each of the correlation plots shown in Figs. 3.3–3.22 provides information

about the MUE, MSE, and MaxE values characterizing the pair of methods under consid-

eration, the corresponding R2 correlation coefficient, and the list of outlier states for which

the absolute values of the differences between the excitation energies obtained in the two

calculations compared in the plot exceed a particular threshold value. For the comparisons

of the EOMCCSD and δ-CR-EOMCC excitation energies with their CASPT2 and TBE-

2 counterparts, shown in Figs. 3.3–3.12, we have chosen a cutoff threshold of 0.75 eV to

show the corresponding outlier states. When comparing the EOMCCSD and δ-CR-EOMCC

excitation energies with the results of the CC3 and EOMCCSDT-3 calculations in Figs.

3.13–3.22, we have chosen a somewhat smaller cutoff threshold of 0.50 eV to display the

outliers. The remaining Figs. 3.23–3.26 present the error distribution curves characteriz-

ing the deviations of the δ-CR-EOMCCSD(T),IA (Fig. 3.23), δ-CR-EOMCCSD(T),ID (Fig.

3.24), δ-CR-EOMCC(2,3),A (Fig. 3.25), and δ-CR-EOMCC(2,3),D (Fig. 3.26) excitation en-

ergies, calculated using the TZVP basis set and MP2/6-31G∗ geometries, from the available

CASPT2/TZVP, CC3/TZVP, EOMCCSDT-3/TZVP, and TBE-2 data reported in Refs.

[17, 21, 22, 24, 25].

Examining the error values in Tables 3.5–3.8 and the correlation plots shown in Figs.

3.3–3.22, we can immediately see that all four δ-CR-EOMCC approaches considered in this

work provide significant improvements in the EOMCCSD excitation energies relative to the
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CASPT2, TBE-2, CC3, and EOMCCSDT-3 data. In the case of comparisons with CASPT2

and TBE-2 (Tables 3.5 and 3.6 and Figs. 3.3–3.12), we see steady error decreases when

going from EOMCCSD, through δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, and δ-

CR-EOMCC(2,3),A, to δ-CR-EOMCC(2,3),D, with the δ-CR-EOMCC(2,3),D approach pro-

viding the most accurate description which seems better than that provided by CC3 and

EOMCCSDT-3, whereas comparisons with CC3 and EOMCCSDT-3 (Tables 3.7 and 3.8 and

Figs. 3.13–3.22) indicate a more uniform performance of all four δ-CR-EOMCC methods,

although, as further elaborated on below, one may also argue that the overall agreement with

the CC3 and EOMCCSDT-3 data continues to be best in the case of the δ-CR-EOMCC(2,3)

triples corrections. Let us discuss these observations some more, starting with comparisons

of the various CC/EOMCC approaches with the CASPT2 and TBE-2 data.

As shown in Table 3.5, the MUE, MSE, and MaxE values relative to CASPT2 decrease

from 0.50, 0.49, and 1.63 eV, respectively, when the EOMCCSD results are considered, to

0.18, −0.06, and 0.53 eV, when the EOMCCSD excitation energies are corrected for triples

using the δ-CR-EOMCC(2,3),D approach. Variant A of the δ-CR-EOMCC(2,3) method,

which is characterized by the MUE, MSE, and MaxE values relative to CASPT2 of 0.17,

0.00, and 0.68 eV, respectively, is essentially equally accurate from the point of view of

these three error measures, but the triples corrections of δ-CR-EOMCCSD(T),IA and δ-CR-

EOMCCSD(T),ID, although offering significant improvements in the EOMCCSD results, are

not as effective as their biorthogonal δ-CR-EOMCC(2,3) counterparts. This becomes partic-

ularly evident when the MSE and MaxE values relative to CASPT2 characterizing the various

δ-CR-EOMCC approaches in Table 3.5 are examined. Similar improvements in the accu-

racy of the calculated excitation energies relative to CASPT2, when going from EOMCCSD,

through δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A, to
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δ-CR-EOMCC(2,3),D, can be seen when analyzing the correlation plots in Figs. 3.3–3.7. In-

deed, we observe a systematic decrease in the number of the outlier states whose energies dif-

fer from the CASPT2 data by more than 0.75 eV, from 21 in the EOMCCSD case, to 5 and 2

in the case of the δ-CR-EOMCCSD(T),IA and δ-CR-EOMCCSD(T),ID calculations, respec-

tively, and to the absence of such outlier states when the δ-CR-EOMCC(2,3),A and δ-CR-

EOMCC(2,3),D approaches are considered. At the same time, one can see a steady increase

in the R2 correlation factor when going from EOMCCSD, through δ-CR-EOMCCSD(T),IA,

δ-CR-EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A, to δ-CR-EOMCC(2,3),D, from 0.9783

when the EOMCCSD and CASPT2 excitation energies are compared to 0.9869 when we com-

pare the δ-CR-EOMCC(2,3),D and CASPT2 data. The improvements in the EOMCCSD

results offered by the non-iterative triples δ-CR-EOMCC(2,3),D correction are so substantial

that one can regard them as competitive with the considerably more expensive iterative CC3

and EOMCCSDT-3 calculations. Indeed, as shown in Table 3.5, the MUE, MSE, and MaxE

values relative to CASPT2 characterizing the δ-CR-EOMCC(2,3),D excitation energies are

smaller than those characterizing the CC3 and EOMCCSDT-3 computations. This is espe-

cially true in the latter case, suggesting that the linear-response CC3 approach is somewhat

more accurate than its EOMCC-based EOMCCSDT-3 analog, when both are compared to

CASPT2, and that our δ-CR-EOMCC(2,3),D calculations are even more accurate. We would

not be surprised by such a statement if our statistical error evaluation involved doubly ex-

cited states, since the MMCC-based CR-EOMCC approaches are generally more robust than

the perturbative CC3 and EOMCCSDT-3 approximations in applications involving quasi-

degenerate excited states (cf., e.g., Refs. [63–67, 122]), but it is interesting to see that similar

might be true when the excited states of interest are of a predominantly single excitation

character.
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One might, of course, argue that the CASPT2 approach itself is not accurate enough

to make definitive claims regarding the relative accuracy of the CC3 and EOMCCSDT-3

vs δ-CR-EOMCC(2,3),D calculations. We can, however, compare the CC3, EOMCCSDT-3,

and δ-CR-EOMCC(2,3),D results, and their EOMCCSD, δ-CR-EOMCCSD(T),IA, δ-CR-

EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A counterparts with other sources of information

about the electronic spectra of the 28 molecules constituting the database of Ref. [17], such

as the TBE-2 data reported in Ref. [21]. As shown in Table 3.6, the MUE, MSE, and MaxE

values relative to TBE-2 characterizing the δ-CR-EOMCC(2,3),D excitation energies, of 0.19,

−0.07, and 0.58 eV, respectively, are once again smaller than those characterizing the CC3

and EOMCCSDT-3 calculations, especially in the latter case. At the same time, the MUE,

MSE, and MaxE values relative to TBE-2 characterizing the δ-CR-EOMCC(2,3),D results

are similar to those obtained with the δ-CR-EOMCC(2,3),A approach and smaller than their

δ-CR-EOMCCSD(T),IA and δ-CR-EOMCCSD(T),ID counterparts, although all four δ-CR-

EOMCC methods considered in this work offer significant improvements in the EOMCCSD

results when compared to the TBE-2 data. Once again, similar improvements in the accu-

racy of the calculated excitation energies relative to their TBE-2 values reported in Ref. [21],

when going from EOMCCSD, through δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID,

and δ-CR-EOMCC(2,3),A, to δ-CR-EOMCC(2,3),D, are observed when Figs. 3.8–3.12 are

examined. In analogy to Figs. 3.3–3.7, the number of the outlier states whose energies differ

from the TBE-2 data by more than 0.75 eV reduces from 11 in the EOMCCSD case to 5

and 3, respectively, in the case of the δ-CR-EOMCCSD(T),IA and δ-CR-EOMCCSD(T),ID

calculations, and to none when the δ-CR-EOMCC(2,3),A and δ-CR-EOMCC(2,3),D meth-

ods are considered. We also observe a systematic increase in the R2 correlation factor

when going from EOMCCSD, through δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID,
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and δ-CR-EOMCC(2,3),A, to δ-CR-EOMCC(2,3),D, from 0.9721 when one compares the

EOMCCSD and TBE-2 excitation energies to 0.9797 when the δ-CR-EOMCC(2,3),D and

TBE-2 data are compared.

It is encouraging to observe the improvements in the overall accuracy of the EOMCCSD,

CC3, and EOMCCSDT-3 calculations offered by the δ-CR-EOMCC(2,3),D approach, when

compared to the CASPT2 and TBE-2 excitation energies, and the improvements in the

accuracy of the EOMCCSD results by all four δ-CR-EOMCC methods examined in this

dissertation, but one would also like to know how accurate the various non-iterative triples

δ-CR-EOMCC corrections are when compared with their iterative CC3 and EOMCCSDT-3

counterparts. This is examined in Tables 3.7 and 3.8 and Figs. 3.13–3.26. The MUE and MSE

values shown in Table 3.7 and the MUE, MSE, and MaxE values shown in Tables 3.8 may cre-

ate an impression that the δ-CR-EOMCCSD(T),IA and δ-CR-EOMCCSD(T),ID approaches

are somewhat more accurate, when compared to the CC3 and EOMCCSDT-3 results, than

their biorthogonal δ-CR-EOMCC(2,3),A and δ-CR-EOMCC(2,3),D counterparts, but given

the fact that the MUE and MSE values characterizing the average differences between the

δ-CR-EOMCC and CC3/EOMCCSDT-3 excitation energies are all very small this might be

a somewhat misleading conclusion. Indeed, when we look at the correlation plots in Figs.

3.13–3.17 we can see a fairly systematic decrease in the number of the outlier states whose

energies differ from the CC3 data by more than 0.50 eV when going from EOMCCSD,

through the δ-CR-EOMCCSD(T) approximations, to the δ-CR-EOMCC(2,3) approaches,

from 18 in the EOMCCSD case, to 3 and 1 in the case of the δ-CR-EOMCCSD(T),IA and

δ-CR-EOMCCSD(T),ID calculations, to none and 1 when the δ-CR-EOMCC(2,3),A and δ-

CR-EOMCC(2,3),D excitation energies are considered. From the point of view of the outlier

states, or, as shown in Table 3.7, the MaxE values obtained in the various δ-CR-EOMCC cal-
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culations, the δ-CR-EOMCC(2,3),A approach seems to reproduce the CC3 data most effec-

tively, with variants ID and D of δ-CR-EOMCCSD(T) and δ-CR-EOMCC(2,3), respectively,

falling slightly behind, but this is not necessarily the case when the R2 correlation factors in

Figs. 3.13–3.17 and the error distribution curves shown in Figs. 3.23–3.26 are inspected. In-

deed, we observe a steady increase in the R2 correlation factor when going from EOMCCSD,

through δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A, to

δ-CR-EOMCC(2,3),D, from 0.9835 when the EOMCCSD and CC3 excitation energies are

compared to 0.9866, 0.9879, 0.9902, and 0.9906 when the CC3 data are compared with

their δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A, and δ-CR-

EOMCC(2,3),D counterparts, respectively.

We can see the same systematic pattern when examining the error distribution curves

shown in Figs. 3.23–3.26; the error distribution relative to the CC3 data becomes increasingly

narrower as we go from EOMCCSD, through δ-CR-EOMCCSD(T),IA, δ-CR-

EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A, to δ-CR-EOMCC(2,3),D. One might always

argue that MUE and MSE values characterizing the overall deviations of the δ-CR-

EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A excitation energies

from their CC3 counterparts, particularly those obtained in the δ-CR-EOMCCSD(T),IA and

δ-CR-EOMCCSD(T),ID calculations, are smaller than the MUE and MSE values character-

izing the δ-CR-EOMCC(2,3),D approach, but knowing that the error distribution relative to

the CC3 data is narrowest in the δ-CR-EOMCC(2,3),D case and keeping in mind that the

CC3 approach is not necessarily more accurate than the δ-CR-EOMCC(2,3),D method, es-

pecially when the excited states in question have some contributions from double excitations,

makes us believe that the overall best approach among the four types of triples corrections

to EOMCCSD excitation energies considered in this study is δ-CR-EOMCC(2,3),D, with
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State CASPT2 EOMCCSD REL 

 Butadiene          2 1Ag( !  *) 6.62 7.42 1.22 

 Hexatriene         2 1Ag( !  *) 5.42 6.61 1.23 

 Octatetraene      2 1Ag( !  *) 4.64 5.98 1.21 

 Benzene             2 1E2g( !  *) 8.18 9.21 1.17 

 Naphthalene      3 1Ag( !  *) 6.67 7.77 1.15 

 Naphthalene      3 1B3u( !  *) 7.74 9.03 1.18 

 Pyridine             3 1B2( !  *) 8.60 9.64 1.17 

 Pyrazine            1 1B3g( !  *) 8.47 9.74 1.18 

 Pyrazine            2 1Ag( !  *) 8.61 9.54 1.16 

 Pyrimidine        3 1A1( !  *) 7.21 7.97 1.09 

 Pyridazine         1 1B2( !  *) 6.31 7.09 1.06 

 Triazine             1 1E (!" !*) 7.50 8.28 1.08 

 Triazine             2 1E (!" !*) 8.99 10.28 1.16 

 Tetrazine           2 1B1g(n  !*) 6.45 7.25 1.11 

 Tetrazine           3 1B1g(n  !*) 6.73 8.36 1.16 

 Tetrazine           2 1B3g( !  *) 8.34 9.43 1.17 

 Benzoquinone   1 1B3u(n  !*) 5.64 6.55 1.12 

 Formamide        3 1A ( !  *) 10.54 11.40 1.10 

 Thymine            3 1A (n! "*) 6.85 7.68 1.12 

 Adenine             6 1 A (!"!*) 6.87 7.72 1.10 

 Adenine             7 1A (!" !*) 7.56 8.48 1.12 

MaxE MSE MUE

1.63 0.49 0.50

Outliers > 0.75 eV 

R2 = 0.9783 

Figure 3.3: Correlation plot for the calculated singlet excited states: EOMCCSD/TZVP vs
CASPT2/TZVP vertical excitation energies (in eV) at MP2/6-31G∗ geometries. The table
on the right hand side shows the list of outliers, marked with open circles in the plot.
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State CASPT2  -CR-(T),IA REL 

 Octatetraene     2 1Ag( !  *) 4.64 5.41 1.21 

 Naphthalene     3 1B3u( !  *) 7.74 8.61 1.18 

 Pyrazine            1 1B3g( !  *) 8.47 9.27 1.18 

 Triazine             2 1E (!" !*) 8.99 9.85 1.16 

 Tetrazine           3 1B1g(n  !*) 6.73 7.89 1.16 

Figure 3.4: Correlation plot for the calculated singlet excited states: δ-CR-
EOMCCSD(T),IA/TZVP (δ-CR-(T),IA) vs CASPT2/TZVP vertical excitation energies (in
eV) at MP2/6-31G∗ geometries. The table on the right hand side shows the list of outliers,
marked with open circles in the plot.
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 Naphthalene     3 1B3u( !  *) 7.74 8.50 1.18 

 Tetrazine           3 1B1g(n  !*) 6.73 7.68 1.16 
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Figure 3.5: Correlation plot for the calculated singlet excited states: δ-CR-
EOMCCSD(T),ID/TZVP (δ-CR-(T),ID) vs CASPT2/TZVP vertical excitation energies (in
eV) at MP2/6-31G∗ geometries. The table on the right hand side shows the list of outliers,
marked with open circles in the plot.
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Figure 3.6: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),A/TZVP (δ-CR-(2,3),A) vs CASPT2/TZVP vertical excitation energies (in eV) at
MP2/6-31G∗ geometries. The absence of the table on the right hand side indicates that
there are no outliers.

81



0

2

4

6

8

10

12

0 2 4 6 8 10 12

 
-C

R
-(

2
,3

),
D

 (
e

V
) 

CASPT2 (eV) 

MaxE MSE MUE

0.53 -0.06 0.18

Outliers > 0.75 eV 

R2 = 0.9869 

Figure 3.7: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),D/TZVP (δ-CR-(2,3),D) vs CASPT2/TZVP vertical excitation energies (in eV) at
MP2/6-31G∗ geometries. The absence of the table on the right hand side indicates that
there are no outliers.
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 Butadiene            2 1Ag( !  *) 6.55 7.42 1.22 

 Hexatriene           2 1Ag( !  *) 5.09 6.61 1.23 

 Octatetraene        2 1Ag( !  *) 4.47 5.98 1.21 

 Cyclopentadiene 2 1A1( !  *) 6.28 7.05 1.15 

 Benzene              2 1E2g( !  *) 8.15 9.21 1.17 

 Naphthalene       1 1B1g( !  *) 5.75 6.53 1.11 

 Naphthalene       3 1Ag( !  *) 6.49 7.77 1.15 

 Pyridine              3 1A1( !  *) 7.18 7.94 1.07 

 Benzoquinone    1 1B3u(n  !*) 5.55 6.55 1.12 

 Propanamide      2 1A ( !  *) 7.09 7.87 1.09 

 Uracil                 3 1A (n! "*) 6.56 7.69 1.12 

Figure 3.8: Correlation plot for the calculated singlet excited states: EOMCCSD/TZVP
vertical excitation energies (in eV) at MP2/6-31G∗ geometries vs TBE-2 data. The table on
the right hand side shows the list of outliers, marked with open circles in the plot.
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State TBE-2  -CR-(T),IA REL 

 Hexatriene          2 1Ag( !  *) 5.09 6.03 1.23 

 Octatetraene       2 1Ag( !  *) 4.47 5.41 1.21 

 Naphthalene       3 1Ag( !  *) 6.49 7.35 1.15 

 Benzoquinone    1 1B3u(n  !*) 5.55 6.34 1.12 

 Uracil                 3 1A (n! "*) 6.56 7.40 1.12 

Figure 3.9: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CCSD(T),IA/TZVP vertical excitation energies (in eV) at MP2/6-31G∗ geometries (δ-CR-
(T),IA) vs TBE-2 data. The table on the right hand side shows the list of outliers, marked
with open circles in the plot.
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 Hexatriene          2 1Ag( !  *) 5.09 5.91 1.23 

 Octatetraene       2 1Ag( !  *) 4.47 5.32 1.21 

 Naphthalene       3 1Ag( !  *) 6.49 7.25 1.15 

Figure 3.10: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CCSD(T),ID/TZVP vertical excitation energies (in eV) at MP2/6-31G∗ geometries (δ-CR-
(T),ID) vs TBE-2 data. The table on the right hand side shows the list of outliers, marked
with open circles in the plot.
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Figure 3.11: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),A/TZVP vertical excitation energies (in eV) at MP2/6-31G∗ geometries (δ-CR-
(2,3),A) vs TBE-2 data. The absence of the table on the right hand side indicates that there
are no outliers.
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Figure 3.12: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),D/TZVP vertical excitation energies (in eV) at MP2/6-31G∗ geometries (δ-CR-
(2,3),D) vs TBE-2 data. The absence of the table on the right hand side indicates that there
are no outliers.
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State CC3 EOMCCSD REL 

 Butadiene             2 1Ag( !  *) 6.77 7.42 1.22 

 Hexatriene            2 1Ag( !  *) 5.72 6.61 1.23 

 Octatetraene         2 1Ag( !  *) 4.97 5.98 1.21 

 Benzene               2 1E2g( !  *) 8.43 9.21 1.17 

 Naphthalene        3 1Ag( !  *) 6.90 7.77 1.15 

 Naphthalene        3 1B3u( !  *) 8.12 9.03 1.18 

 Pyridine               4 1A1( !  *) 8.68 9.44 1.14 

 Pyridine               3 1B2( !  *) 8.77 9.64 1.17 

 Pyrazine              1 1B3g( !  *) 8.77 9.74 1.18 

 Pyrazine              2 1Ag( !  *) 8.69 9.54 1.16 

 Triazine               2 1E (!" !*) 9.44 10.28 1.16 

 Tetrazine             2 1B2g(n  !*) 6.23 6.77 1.12 

 Tetrazine             3 1B1g(n  !*) 7.08 8.36 1.16 

 Tetrazine             2 1B3g( !  *) 8.47 9.43 1.17 

 Benzoquinone    1 1B3u(n  !*) 5.82 6.55 1.12 

 Benzoquinone    2 1B1u ( !  *) 7.82 8.47 1.10 

 Uracil                  3 1A  (n! "*) 6.87 7.69 1.12 

 Uracil                  4 1A  (n! "*) 7.12 7.74 1.11 

Figure 3.13: Correlation plot for the calculated singlet excited states: EOMCCSD/TZVP
vs CC3/TZVP vertical excitation energies (in eV) at MP2/6-31G∗ geometries. The table on
the right hand side shows the list of outliers, marked with open circles in the plot.
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 Tetrazine           3 1B1g(n  !*) 7.08 7.89 1.16 

 Benzoquinone   1 1B3u(n  !*) 5.82 6.34 1.12 

 Uracil                3 1A  (n! "*) 6.87 7.40 1.12 

Figure 3.14: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CCSD(T),IA/TZVP (δ-CR-(T),IA) vs CC3/TZVP vertical excitation energies (in eV) at
MP2/6-31G∗ geometries. The table on the right hand side shows the list of outliers, marked
with open circles in the plot.
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 Tetrazine           3 1B1g(n  !*) 7.08 7.68 1.16 

Figure 3.15: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CCSD(T),ID/TZVP (δ-CR-(T),ID) vs CC3/TZVP vertical excitation energies (in eV) at
MP2/6-31G∗ geometries. The table on the right hand side shows the list of outliers, marked
with open circles in the plot.
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Figure 3.16: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),A/TZVP (δ-CR-(2,3),A) vs CC3/TZVP vertical excitation energies (in eV) at
MP2/6-31G∗ geometries. The absence of the table on the right hand side indicates that
there are no outliers.
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 Tetrazine 1 1B2u( !  *) 5.12 4.58 1.11 

Figure 3.17: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),D/TZVP (δ-CR-(2,3),D) vs CC3/TZVP vertical excitation energies (in eV) at
MP2/6-31G∗ geometries. The table on the right hand side shows the list of outliers, marked
with open circles in the plot.

92



0

2

4

6

8

10

12

0 2 4 6 8 10 12

E
O

M
C

C
S

D
 (

e
V

) 

EOMCCSDT-3 (eV) 

MaxE MSE MUE

0.93 0.22 0.22

Outliers > 0.50 eV 

R2 = 0.9860 

State EOMCCSDT-3 EOMCCSD REL 

 Butadiene        2 1Ag( !  *) 6.89 7.42 1.22 

 Hexatriene       2 1Ag( !  *) 5.88 6.61 1.23 

 Octatetraene    2 1Ag( !  *) 5.17 5.98 1.21 

 Benzene           2 1E2g( !  *) 8.60 9.21 1.17 

 Naphthalene    3 1Ag( !  *) 7.14 7.77 1.15 

 Naphthalene    3 1B3u( !  *) 8.33 9.03 1.18 

 Pyridine           4 1A1( !  *) 8.86 9.44 1.14 

 Pyridine           3 1B2( !  *) 8.97 9.64 1.17 

 Pyrazine          1 1B3g( !  *) 9.00 9.74 1.18 

 Pyrazine          2 1Ag( !  *) 8.90 9.54 1.16 

 Triazine           2 1E (!" !*) 9.64 10.28 1.16 

 Tetrazine          3 1B1g(n  !*) 7.43 8.36 1.16 

 Tetrazine          2 1B3g( !  *) 8.72 9.43 1.17 

Figure 3.18: Correlation plot for the calculated singlet excited states: EOMCCSD/TZVP vs
EOMCCSDT-3/TZVP vertical excitation energies (in eV) at MP2/6-31G∗ geometries. The
table on the right hand side shows the list of outliers, marked with open circles in the plot.
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Figure 3.19: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CCSD(T),IA/TZVP (δ-CR-(T),IA) vs EOMCCSDT-3/TZVP vertical excitation energies (in
eV) at MP2/6-31G∗ geometries. The absence of the table on the right hand side indicates
that there are no outliers.
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Figure 3.20: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CCSD(T),ID/TZVP (δ-CR-(T),ID) vs EOMCCSDT-3/TZVP vertical excitation energies (in
eV) at MP2/6-31G∗ geometries. The absence of the table on the right hand side indicates
that there are no outliers.
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Figure 3.21: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),A/TZVP (δ-CR-(2,3),A) vs EOMCCSDT-3/TZVP vertical excitation energies (in
eV) at MP2/6-31G∗ geometries. The absence of the table on the right hand side indicates
that there are no outliers.
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Figure 3.22: Correlation plot for the calculated singlet excited states: δ-CR-EOM
CC(2,3),D/TZVP (δ-CR-(2,3),D) vs EOMCCSDT-3/TZVP vertical excitation energies (in
eV) at MP2/6-31G∗ geometries. The table on the right hand side shows the list of outliers,
marked with open circles in the plot.
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variant A of δ-CR-EOMCC(2,3) offering a similar performance as long as the excited states

of interest are not dominated by two-electron transitions, which is the case here. As already

alluded to above, using the 1 1B3g(n
2 → π∗2) state of s-tetrazine as an example, and as

shown in our past work [67, 68], variants D of the CR-EOMCC(2,3) and δ-CR-EOMCC(2,3)

methodologies are generally more robust than other CR-EOMCC/δ-CR-EOMCC corrections

when the doubly excited states are considered.

Most of the above remarks related to statistical comparisons of the δ-CR-EOMCC and

CC3 excitation energies apply to the analogous comparisons of the δ-CR-EOMCC and

EOMCCSDT-3 data. With the cutoff threshold of 0.50 eV used in the examination of

the EOMCCSD and δ-CR-EOMCC vs CC3 and EOMCCSDT-3 results, we cannot say as

much about the relative performance of the various non-iterative triples δ-CR-EOMCC

corrections relative to EOMCCSDT-3 as in the case of the analogous comparisons with

CC3, since all four corrections work equally well, producing no outliers, but we continue

to observe a steady increase in the R2 correlation factor when going from EOMCCSD,

through δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A, to δ-

CR-EOMCC(2,3),D, from 0.9860 when the EOMCCSD and EOMCCSDT-3 excitation ener-

gies are compared to 0.9885, 0.9893, 0.9904, and 0.9904 when we compare the EOMCCSDT-

3 data with their δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A,

and δ-CR-EOMCC(2,3),D counterparts, respectively. This is reflected in the error distri-

bution curves shown in Figs. 3.23–3.26, where we can see that the error distribution rela-

tive to the EOMCCSDT-3 data becomes increasingly narrower as we go from EOMCCSD,

through δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, and δ-CR-EOMCC(2,3),A, to

δ-CR-EOMCC(2,3),D. Once again, based on the MUE and MSE values collected in Table

3.8, one might argue that δ-CR-EOMCCSD(T),IA and δ-CR-EOMCCSD(T),ID approaches
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are more effective in reproducing the EOMCCSDT-3 results than their biorthogonal δ-CR-

EOMCC(2,3),A and δ-CR-EOMCC(2,3),D counterparts, but knowing that the error dis-

tribution relative to the excitation energies obtained in the EOMCCSDT-3 calculations is

narrowest in the δ-CR-EOMCC(2,3),D case and keeping in mind that the EOMCCSDT-3

method is not necessarily more accurate than the δ-CR-EOMCC(2,3),D approach, particu-

larly when the excited states in question have some contributions from double excitations,

reinforces our belief that the overall best approach among the four types of triples corrections

to EOMCCSD excitation energies investigated in this work is δ-CR-EOMCC(2,3),D, with

δ-CR-EOMCC(2,3),A offering similar accuracies as long as the excited states of interest are

not dominated by two-electron transitions.
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Figure 3.23: Normal distribution curves for the deviation of the δ-CR-EOMCCSD(T),IA ex-
citation energies at MP2/6-31G∗ geometries from the CASPT2/TZVP (green), CC3/TZVP
(black), EOMCCSDT-3/TZVP (red) and TBE-2 (blue) results.
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Figure 3.24: Normal distribution curves for the deviation of the δ-CR-EOMCCSD(T),ID ex-
citation energies at MP2/6-31G∗ geometries from the CASPT2/TZVP (green), CC3/TZVP
(black), EOMCCSDT-3/TZVP (red) and TBE-2 (blue) results.
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Figure 3.25: Normal distribution curves for the deviation of the δ-CR-EOMCC(2,3),A ex-
citation energies at MP2/6-31G∗ geometries from the CASPT2/TZVP (green), CC3/TZVP
(black), EOMCCSDT-3/TZVP (red) and TBE-2 (blue) results.
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Figure 3.26: Normal distribution curves for the deviation of δ-CR-EOMCC(2,3),D excitation
energies at MP2/6-31G∗ geometries from the CASPT2/TZVP (green), CC3/TZVP (black),
EOMCCSDT-3/TZVP (red) and TBE-2 (blue) results.
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3.6 Conclusions

We have used a comprehensive test set of 148 singlet excited states of 28 medium-size organic

molecules taken from Ref. [17] to benchmark two variants of the approximately size-intensive

CR-EOMCC method with singles, doubles, and non-iterative triples, abbreviated as δ-CR-

EOMCCSD(T),IA and δ-CR-EOMCCSD(T),ID [63], derived from the MMCC formalism

[65, 68, 122, 125–129], and the analogous two variants of the rigorously size-intensive δ-CR-

EOMCC(2,3) approach, designated as δ-CR-EOMCC(2,3),A and δ-CR-EOMCC(2,3),D, re-

spectively [69], based on the generalization of the biorthogonal MMCC formalism [127–129]

to excited states [67, 122–124], against the previously published CASPT2 [17, 21], TBE

[17, 21] (especially, TBE-2 [21]), CC3 [17, 25] and EOMCCSDT-3 [22, 24] results. The list

of 148 singlet excited states used to initiate the various statistical error analyses reported

in this study has been obtained by excluding the doubly excited 1 1B3g(n
2 → π∗2) state

of s-tetrazine, for which the CC3 and EOMCCSDT-3 reference data are unavailable and

the existing CASPT2 and TBE excitation energies reported in Refs. [17, 21] unreliable,

from the 149 singlet excitations collected in Table I of Ref. [17]. We have, however, de-

termined the δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, δ-CR-EOMCC(2,3),A, and

δ-CR-EOMCC(2,3),D vertical excitation energies, as well as their EOMCCSD counterparts,

for all 149 excited states listed in Table I of Ref. [17], along with the 54 additional excitations.

All of the δ-CR-EOMCC calculations performed in this work and the underlying EOMCCSD

computations were performed using the TZVP basis set used in the previous studies [17–

20, 22–25] and two sets of the ground-state nuclear geometries, including the MP2/6-31G∗

geometries taken from Ref. [17] and the CR-CC(2,3),D geometries obtained in this work,

were used to determine the EOMCCSD, δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID,
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δ-CR-EOMCC(2,3),A, and δ-CR-EOMCC(2,3),D vertical excitation spectra.

By comparing our δ-CR-EOMCCSD(T),IA, δ-CR-EOMCCSD(T),ID, δ-CR-

EOMCC(2,3),A, and δ-CR-EOMCC(2,3),D excitation energies for the 148 excited states

of 28 molecules taken from Table I of Ref. [17], as described above, or their appropriate sub-

sets for which the relevant reference CASPT2, TBE-2, CC3, and EOMCCSDT-3 data are

available, we have shown that the non-iterative triples corrections to the EOMCCSD excita-

tion energies defining the relatively inexpensive, single-reference, black-box δ-CR-EOMCC

approaches provide significant improvements in the EOMCCSD data, while closely match-

ing the results of the iterative and considerably more expensive CC3 and EOMCCSDT-3

calculations and their CASPT2 and TBE counterparts, typically to within ∼ 0.1 − 0.2 eV,

i.e., to within intrinsic errors of the CC3, EOMCCSDT-3, CASPT2, and TBE estimates.

We have also demonstrated that the δ-CR-EOMCC methods, especially the most robust

δ-CR-EOMCC(2,3),D approach that works well for singly as well as doubly excited states,

are capable of bringing the results of the CC3 and EOMCCSDT-3 calculations to a closer

agreement with the CASPT2 and TBE data, demonstrating the utility of the cost effective

δ-CR-EOMCC methods in applications involving molecular electronic spectra. This has

allowed us to conclude that the overall best balanced approach among the four types of

triples corrections to EOMCCSD excitation energies investigated in this work is δ-CR-

EOMCC(2,3),D, with δ-CR-EOMCC(2,3),A offering similar accuracies as long as the excited

states of interest are not dominated by two-electron transitions. We have reached these con-

clusions by performing a variety of full and partial statistical error analyses and examining

the suitably designed correlation and error distribution plots.

We have also used the four δ-CR-EOMCC approaches considered in this study to identify

and accurately characterize 54 additional singlet excited states in the energy range covered by
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Table I of Ref. [17], including five states that can be found in the Supporting Information to

Ref. [17] and 49 states that have not been considered in the earlier benchmark work [17–25],

which can be used in future benchmark studies. The aforementioned 1 1B3g(n
2 → π∗2) state

of s-tetrazine, listed in Table I of Ref. [17], which could not be used in our overall statistical

error analyses due to the absence of the reliable benchmark data to judge our δ-CR-EOMCC

results, and six other states among the 54 states outside the set of 149 states listed in Table I

of Ref. [17] are almost pure two-electron transitions, which many quantum chemistry methods

have problems with, but we have provided arguments, based on the successful track record

involving various CR-EOMCC or δ-CR-EOMCC calculations, including quasi-degenerate

excited states dominated by double excitations [63–68, 74, 111, 149, 152, 155, 162, 179, 182]

and the comparison of our best δ-CR-EOMCC(2,3),D excitation energies for the 1 1B3g(n
2 →

π∗2) state of s-tetrazine with the recently published NEVPT2 data [23], that our δ-CR-

EOMCC calculations for the doubly excited states found in this work and other additional

states that have not been considered in the prior work [17–25] are accurate to within ∼

0.2 − 0.3 eV. We have suggested full EOMCCSDT, active-space EOMCCSDt, or accurate

multi-reference CI calculations for all of the additional excited states found in our calculations

to verify if our assessment of the accuracy of the δ-CR-EOMCC calculations for these extra

states is correct.

In summary, we have identified the δ-CR-EOMCC(2,3) methodology, especially its δ-

CR-EOMCC(2,3),D variant, as a useful and, at the same time, rigorously size-intensive

approach for the routine and highly accurate calculations of molecular electronic spectra,

even when the excited states of interest have more substantial two-electron contributions,

with the δ-CR-EOMCC(2,3),A approximation offering an equally good description as long

as the excited states of interest are dominated by one-electron transitions.
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Chapter 4

Economical Doubly Electron-Attached

Equation-of-Motion

Coupled-Cluster Methods with an

Active-Space Treatment of

3-particle–1-hole and 4-particle–2-hole

Excitations

The second part of this dissertation is concerned with the development and application

of economical DEA-EOMCC approximations that have emerged following our group’s ini-

tial implementation of the full DEA-EOMCC(3p-1h) and DEA-EOMCC(4p-2h) methods

and the active-space DEA-EOMCC(4p-2h) approach, in which 4p-2h terms are treated us-

ing active orbitals [92, 93]. We begin by reviewing fundamental elements of the DEA-

EOMCC theory defining the existing full DEA-EOMCC(3p-1h) and full and active-space

DEA-EOMCC(4p-2h) approaches introduced prior to my method development work [92, 93].

Then, we discuss the new generation of DEA-EOMCC approaches truncated at either 4p-2h
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or 3p-1h excitations, where both 3p-1h and 4p-2h terms are treated using active orbitals,

resulting in major savings in the computational effort compared to their all-orbital coun-

terparts. In addition to the discussion of the key equations, details of computer codes,

and examples of CPU timings, we present the results of the various DEA-EOMCC calcu-

lations, including methods developed in this thesis project, focusing on the determination

of electronic spectra of diradicals, especially their singlet–triplet gaps, and one example of

single bond breaking where the DEA-EOMCC approaches can be useful too. Much of our

discussion is tied up to our original work published in Refs. [94] and [117].

4.1 Background Information and Motivation

Quantum chemistry methods based on the exponential wave function ansatz [198, 199]

of single-reference CC theory [34–37, 200, 201] and their extensions to excited states and

properties other than energy exploiting the EOM [48–50, 118, 119] and linear response

[38–42, 120, 121, 202] frameworks have witnessed considerable success in a wide range of

molecular applications (cf., e.g., Refs. [203] and [204] for selected reviews). As pointed

out in the Introduction, this includes extensions of the EOMCC formalism to open-shell

systems obtained by adding electron(s) to or removing electron(s) from the corresponding

closed-shell cores via the EA [75–81] or IP [59–62, 77, 79–85] methodologies, their linear

response [205] and SAC-CI [96, 206–208] counterparts, and their multiply attached/ionized

generalizations, such as the DEA- and DIP-EOMCC schemes [53, 86–94] or the EOMCC ap-

proach to triple electron attachment [209]. There is growing interest in the EA/IP-EOMCC,

DEA/DIP-EOMCC, and similar approaches, as a way to handle ground and excited states

of open-shell species around closed shells, such as radicals and diradicals, since they offer
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several advantages over the conventional particle-conserving CC/EOMCC treatments that

rely on the spin-integrated, but not spin-adapted, spin-orbital formulation employing the

unrestricted or restricted open-shell references. The EA- and IP-EOMCC methods and

their multiply electron-attached and multiply ionized extensions, in which one diagonalizes

the similarity-transformed Hamiltonian of the CC theory obtained in the calculations for the

reference closed-shell system in the appropriate sector of the Fock space corresponding to the

open-shell species of interest, provide a rigorously spin-adapted description, while offering a

potential of being very accurate when suitable approximations, including those developed in

this work are applied.

Recently, our group has developed high-level variants of the DEA- and DIP-EOMCC

approaches with up to 4p-2h and 4h-2p excitations, abbreviated as DEA-EOMCC(4p-2h)

and DIP-EOMCC(4h-2p), respectively, and their less expensive active-space counterparts,

designated as DEA-EOMCC(4p-2h){Nu} and DIP-EOMCC(4h-2p){No}, where Nu and No

indicate the numbers of active unoccupied and active occupied orbitals used to select the

corresponding 4p-2h and 4h-2p contributions, as promising new ways to describe multi-

reference systems having two electrons outside the corresponding closed-shell cores [92, 93].

The active-space DEA-EOMCC(4p-2h){Nu} and DIP-EOMCC(4h-2p){No} approaches of

Refs. [92] and [93] have been shown to be highly successful in challenging test cases involving

single bond breaking in closed-shell molecules leading to doublet dissociation fragments and

electronic spectra of diradicals, producing excellent results when compared to full CI or exper-

iment, independent of the type of molecular orbitals (MOs) employed in the calculations, and

almost perfectly reproducing the parent full DEA-EOMCC(4p-2h) and DIP-EOMCC(4h-2p)

data at the fraction of the computer cost. Unfortunately, even with the help of active or-

bitals to select the dominant 4p-2h excitations, calculations at the DEA-EOMCC(4p-2h)
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level remain quite expensive, especially when larger basis sets have to be employed. This has

prompted our interest in investigating new types of approximations to the existing active-

space DEA-EOMCC(4p-2h){Nu} and full DEA-EOMCC(4p-2h) methods [92, 93], with the

goal of developing more economical and cost-effective approaches [94] that can reduce the

computer effort further without sacrificing high accuracy the DEA-EOMCC(4p-2h)-level

theories offer. This work reports my contributions to this area.

To appreciate the new DEA-EOMCC methods proposed and tested in this work, and

the advantages they offer compared to the existing schemes in this category, we first ex-

amine the computer costs of the high-level DEA-EOMCC(4p-2h) calculations. The most

expensive CPU steps of the DEA-EOMCC(4p-2h) computations with a full treatment of

3p-1h and 4p-2h contributions scale as n2
on

6
u or N 8 (see Refs. [92] and [93]). As a re-

sult, the DEA-EOMCC(4p-2h) approach, although highly accurate in applications involv-

ing single bond breaking in closed-shell molecules and diradical electronic spectra [92, 93],

is usually prohibitively expensive (for the examples of timings, see Section II.B of Ref.

[92]). The active-space analog of the DEA-EOMCC(4p-2h) method, designated as DEA-

EOMCC(4p-2h){Nu}, which uses a subset of Nu unoccupied orbitals to select the dominant

4p-2h excitations, developed in Refs. [92] and [93] reduces the most expensive n2
on

6
u steps

of the full DEA-EOMCC(4p-2h) approach to a considerably more manageable N2
un

2
on

4
u or

∼ N 6 level, which is equivalent to costs of the standard EOMCCSD calculations or costs

of the ground-state CCSD computations times a relatively small prefactor if Nu � nu,

but does not solve the problem in its entirety. Indeed, although the resulting active-

space DEA-EOMCC(4p-2h){Nu} approach offers substantial savings in the computer ef-

fort compared to its full DEA-EOMCC(4p-2h) parent without loss of accuracy [92, 93], the

DEA-EOMCC(4p-2h){Nu} calculations remain expensive when larger basis sets are em-
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ployed. This is due to the fact that in the existing implementation of the active-space

DEA-EOMCC(4p-2h){Nu} method described in Refs. [92] and [93] the lower-rank 3p-1h

components are still treated fully using all orbitals in the basis set, and this becomes a

serious problem in applications using larger bases, since computer costs associated with

3p-1h contributions can be high too. Indeed, the full treatment of 3p-1h excitations within

the DEA-EOMCC framework requires CPU steps that scale as non
5
u, which can be as de-

manding as or, in some cases, more time consuming than the N2
un

2
on

4
u steps of the DEA-

EOMCC(4p-2h){Nu} method associated with 4p-2h terms, especially when nu becomes

larger, since typical values of Nu and no are much smaller than nu. Clearly, the same

analysis applies to the lower-level DEA-EOMCC(3p-1h) approach [53, 86, 88, 89, 92, 93], in

which the electron-attaching operator of the DEA-EOMCC formalism is truncated at 3p-1h

component. The DEA-EOMCC(3p-1h) calculations, in which 4p-2h contributions are ne-

glected, can be quite expensive too due to the non
5
u steps resulting from a full treatment of

3p-1h excitations.

There clearly is a need to address the above concerns if we want the DEA-EOMCC

methodology, especially its presently highest DEA-EOMCC(4p-2h) level, to be more widely

exploited in molecular applications. It is, therefore, essential that the expensive CPU steps of

the non
5
u and n2

on
6
u types, which originate from the presence of 3p-1h and 4p-2h components

in the DEA-EOMCC wave function expansions, are replaced by steps that are considerably

more manageable. The previous DEA-EOMCC(4p-2h){Nu} method described in Refs. [92]

and [93] addresses this issue, but only partly, since it focuses on 4p-2h excitations without

doing anything about their 3p-1h counterparts, which lead to high costs too if treated fully.

In this dissertation, we present a solution to the above problems. Thus, we propose

and test a new class of computationally affordable variants of the DEA-EOMCC approach,
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abbreviated as DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu}. In anal-

ogy to the DEA-EOMCC(4p-2h){Nu} and DIP-EOMCC(4h-2p){No} methods of Refs. [92]

and [93] and their active-space CC [98–109], EOMCC [71, 72, 110–112, 114], and EA/IP-

EOMCC [79–81, 96] predecessors (see Ref. [115] for a review), the DEA-EOMCC(3p-1h){Nu}

and DEA-EOMCC(3p-1h,4p-2h){Nu} schemes developed in this work are based on the idea

of employing active orbitals to capture dominant excitation (in this case, electron attach-

ing) amplitudes. Thus, the DEA-EOMCC(3p-1h){Nu} approach uses Nu active unoccu-

pied orbitals to select a small subset of the dominant 3p-1h amplitudes within the stan-

dard DEA-EOMCC(3p-1h) framework, in which the operator attaching two electrons to

the corresponding closed-shell core is truncated at 3p-1h component. Similarly, the DEA-

EOMCC(3p-1h,4p-2h){Nu} method uses Nu active unoccupied orbitals to select the dom-

inant 3p-1h and 4p-2h amplitudes within the higher-level DEA-EOMCC(4p-2h) scheme.

In other words, the DEA-EOMCC(3p-1h){Nu} approach is a natural approximation to its

DEA-EOMCC(3p-1h) parent, which becomes full DEA-EOMCC(3p-1h) when all unoccu-

pied orbitals in the basis set are active (i.e., Nu = nu). Similarly, the DEA-EOMCC

(3p-1h,4p-2h){Nu} approach is a natural approximation to its DEA-EOMCC(4p-2h) par-

ent or to the previously developed DEA-EOMCC(4p-2h){Nu} method of Refs. [92] and

[93], becoming full DEA-EOMCC(4p-2h) when Nu = nu. The DEA-EOMCC(3p-1h){Nu}

and DEA-EOMCC(3p-1h,4p-2h){Nu} approaches proposed in this work offer significant

savings in the computer effort compared to their full DEA-EOMCC(3p-1h) and DEA-

EOMCC(4p-2h) counterparts by reducing the expensive N 6-like non
5
u steps associated with

3p-1h excitations to a N 5-like Nunon
4
u level, which for larger systems is less expensive than

costs of the underlying CCSD calculations. As in the case of the previously proposed DEA-

EOMCC(4p-2h){Nu} approximation [92, 93], the DEA-EOMCC(3p-1h,4p-2h){Nu} method
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replaces the N 8-like n2
on

6
u steps associated with 4p-2h contributions by the much more af-

fordable, CCSD-type, N2
un

2
on

4
u steps, in addition to using the relatively inexpensive, N 5-like,

Nunon
4
u steps in handling the lower-order 3p-1h terms.

In order to test the performance of the DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC

(3p-1h,4p-2h){Nu} approaches developed in this work, especially when compared to the

previously examined [92, 93] DEA-EOMCC(3p-1h), DEA-EOMCC(4p-2h){Nu}, and full

DEA-EOMCC(4p-2h) methods, we investigate adiabatic excitation energies characterizing

low-lying states of methylene, singlet–triplet gaps in trimethylenemethane (TMM), a series of

cyclobutadiene and its derivatives and cyclopentadienyl cation, and bond breaking in the F2

molecule. We show that the new DEA-EOMCC(3p-1h,4p-2h){Nu} approach with the active-

space treatment of 3p-1h and 4p-2h excitations and its lower-level DEA-EOMCC(3p-1h){Nu}

counterpart ignoring 4p-2h contributions, while using active orbitals to select the dominant

3p-1h components, accurately reproduce the results obtained with the considerably more

expensive parent DEA-EOMCC methods with a full treatment of 3p-1h and full or active-

space treatment of 4p-2h excitations at the small fraction of the computer effort. This

is particularly valuable when the higher-level DEA-EOMCC(3p-1h,4p-2h){Nu} approach is

employed, since the explicit inclusion of 4p-2h excitations in the DEA-EOMCC wave function

expansions leads to a robust and highly accurate description of the electronic structure and

spectra of diradicals and single bond breaking in closed shells leading to doublet dissociation

fragments, independent of the MO basis exploited in such calculations [92–94].
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4.2 Theory and Algorithmic Details

4.2.1 Basic Elements of the DEA-EOMCC Formalism and the

Previously Developed DEA-EOMCC(3p-1h), DEA-

EOMCC(4p-2h), and DEA-EOMCC(4p-2h){Nu} Approxima-

tions

In the DEA-EOMCC formalism exploited in this work, one represents the ground (µ = 0)

and excited (µ > 0) states |Ψ(N)
µ 〉 of the N -electron system obtained by adding two electrons

to the closed-shell core using the following wave function ansatz [53, 86, 88, 89, 92–94]:

|Ψ(N)
µ 〉 = R

(+2)
µ |Ψ(N−2)

0 〉, (4.1)

where

|Ψ(N−2)
0 〉 = eT |Φ(N−2)〉 (4.2)

is the CC ground state of the (N−2)-electron closed-shell species, with |Φ(N−2)〉 designating

the corresponding reference determinant that serves as the Fermi vacuum. The operator T

entering Eq. (4.2) is the usual particle-conserving cluster operator, obtained in the ground-

state CC calculations for the (N − 2)-electron reference system, and

R
(+2)
µ =

MR∑
n=2

Rµ,np-(n−2)h, (4.3)

where MR = N in the exact case and MR < N in approximate schemes, is the EOM

operator attaching two electrons to the corresponding (N − 2)-electron closed-shell core,
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while allowing excitations of the remaining electrons via the Rµ,np-(n−2)h components with

n > 2. Once we decide on specific truncations in the many-body expansions representing

the T and R
(+2)
µ operators (assuming that the highest many-body rank in T (abbreviated

as MT ) is, as explained in Refs. [92] and [93], at least (MR − 2)) and once the relevant

components of T are determined by solving the ground-state CC equations for the (N − 2)-

electron reference system, we obtain the Rµ,np-(n−2)h components of the R
(+2)
µ operator and

the corresponding vertical electron-attachment energies

ω
(N)
µ = E

(N)
µ − E(N−2)

0 , (4.4)

where E
(N)
µ is the energy of the N -electron state |Ψ(N)

µ 〉 and E
(N−2)
0 is the ground-state

CC energy of the (N − 2)-electron reference system, by solving the following non-Hermitian

eigenvalue problem [92–94]:

(H̄N,openR
(+2)
µ )C |Φ(N−2)〉 = ω

(N)
µ R

(+2)
µ |Φ(N−2)〉 (4.5)

in the space of N -electron determinants corresponding to the Rµ,np-(n−2)h components in-

cluded in R
(+2)
µ . Here, H̄N,open is the open part of the similarity-transformed form of the

HamiltonianH, written in the normal-ordered representationHN = H−〈Φ(N−2)|H|Φ(N−2)〉,

i.e., the open part of the

H̄N = e−THNe
T = (HNe

T )C (4.6)

operator obtained in the underlying CC calculations for the (N−2)-electron reference system,

and subscript C designates the connected operator product. Thus, H̄N,open is this part of

H̄N , Eq. (4.6), which corresponds to diagrams of (HNe
T )C that have external fermion lines.
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It is easy to show that H̄N,open is equivalent to H̄ − E(N−2)
0 1, where H̄ = e−THeT is the

similarity-transformed form of H and 1 is the unit operator. the aforementioned condition

MR − 2 6 MT has to be satisfied to obtain the connected form of the eigenvalue problem

represented by Eq. (4.5), which is, in turn, key to retaining the desired property of size

intensivity of the resulting electron-attachment energies ω
(N)
µ .

Different truncations in the cluster and electron attaching operators, T and R
(+2)
µ , respec-

tively, which enter the above equations and which satisfy the condition MR − 2 6MT , lead

to various DEA-EOMCC schemes. In particular, in the full DEA-EOMCC(4p-2h) method

developed in Refs. [92] and [93], which presently is the highest implemented level of the

DEA-EOMCC theory, we truncate the cluster operator T at double excitations, i.e., we

use the standard CCSD approach to determine the (N − 2)-electron reference ground state

|Ψ(N−2)
0 〉, and set MR in Eq. (4.3) at 4, obtaining

R
(+2)
µ = Rµ,2p +Rµ,3p-1h +Rµ,4p-2h, (4.7)

where

Rµ,2p =
∑
a<b

rab(µ) aaab, (4.8)

Rµ,3p-1h =
∑

k,a<b<c

r k
abc(µ) aaabacak, (4.9)

and

Rµ,4p-2h =
∑

k>l,a<b<c<d

r kl
abcd (µ) aaabacadalak (4.10)

are the relevant 2p, 3p-1h, and 4p-2h components of the electron-attaching operator R
(+2)
µ .

We determine these components of R
(+2)
µ , or the amplitudes rab(µ), r k

abc(µ), and r kl
abcd (µ)
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that represent them, along with the corresponding vertical electron-attachment energies

ω
(N)
µ , Eq. (4.4), by diagonalizing the similarity-transformed Hamiltonian of CCSD ob-

tained in the calculations for the (N − 2)-electron reference system, given by Eq. (4.6)

in which T is truncated at two-body clusters, in the space spanned by the N -electron

|Φab〉 = aaab|Φ(N−2)〉, |Φabck〉 = aaabacak|Φ(N−2)〉, and |Φabcdkl 〉 = aaabacadalak|Φ(N−2)〉

determinants. The older and simpler DEA-EOMCC(3p-1h) approximation [53, 86, 88, 89],

which we implemented in Refs. [92] and [93] as well, is obtained by neglecting the 4p-2h

component of R
(+2)
µ , Rµ,4p-2h, in Eq. (4.7), i.e., by setting MR in Eq. (4.3) at 3. In this

case, we diagonalize the similarity-transformed Hamiltonian of CCSD in the space spanned

by the |Φab〉 and |Φabck〉 determinants. We use the conventional notation in which i, j, k, l, . . .

(a, b, c, d, . . .) indices are the spin-orbitals occupied (unoccupied) in the reference determi-

nant |Φ(N−2)〉 and and ap (ap) are the creation (annihilation) operators associated with the

spin-orbital basis {|p〉}.

As shown in Refs. [92] and [93], the full DEA-EOMCC(4p-2h) approach provides a virtu-

ally exact description of diradical electronic spectra, improving the results of the lower-level

DEA-EOMCC(3p-1h) calculations, but, as already alluded to above, this comes at a very

high price of iterative n2
on

6
u CPU steps and the need to store a large number of ∼ n2

on
4
u 4p-2h

amplitudes r kl
abcd (µ). It is, therefore, important to seek approximate treatments of 4p-2h

contributions. One such treatment is offered by the active-space DEA-EOMCC(4p-2h){Nu}

approach, examined in Refs. [92] and [93] as well. This approach selects the dominant 4p-2h

excitations with the help of Nu active unoccupied orbitals by replacing the Rµ,4p-2h compo-

nent in the many-body expansion of the DEA-EOMCC(4p-2h) electron-attaching operator
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R
(+2)
µ , Eq. (4.7), by its active-space counterpart rµ,4p-2h given by

rµ,4p-2h =
∑

k>l,A<B<c<d

r kl
ABcd(µ) aAaBacadalak, (4.11)

where the capital-case bold symbols A and B in Eq. (4.11) designate the active spin-orbitals

unoccupied in the (N − 2)-electron reference determinant |Φ(N−2)〉 (formally, any subset of

unoccupied spin-orbitals, which we hope to be small in practical DEA-EOMCC(4p-2h){Nu}

calculations). The resulting R
(+2)
µ {Nu} operator defining the DEA-EOMCC(4p-2h){Nu}

method is given by

R
(+2)
µ {Nu} = Rµ,2p +Rµ,3p-1h + rµ,4p-2h, (4.12)

where Rµ,2p, Rµ,3p-1h, and rµ,4p-2h are defined by Eqs. (4.8, 4.9, and 4.11), respectively. We

obtain the relevant rab(µ), r k
abc(µ), and r kl

ABcd(µ) amplitudes entering Eq. (4.12) by diago-

nalizing the similarity-transformed Hamiltonian H̄N,open obtained in the CCSD calculations

for the (N − 2)-electron reference system in the subspace of the N -electron Hilbert space

spanned by the |Φab〉, |Φabck〉, and |ΦABcd
kl 〉 determinants. If the number of active unoc-

cupied spin-orbitals, Nu, is small compared to the number of all unoccupied spin-orbitals

(nu), the number of 4p-2h amplitudes to be determined in DEA-EOMCC(4p-2h){Nu} cal-

culations, which equals the number of double excitations times a prefactor on the order

of N2
u , is much smaller than the number of all r kl

abcd (µ) amplitudes, which scales as n2
on

4
u.

This is precisely the source of savings in the computer effort offered by the active-space

DEA-EOMCC(4p-2h){Nu} approach, when compared to full DEA-EOMCC(4p-2h), which

we have elaborated on earlier.
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4.2.2 The Active-Space DEA-EOMCC(3p-1h){Nu} and DEA-

EOMCC(3p-1h,4p-2h){Nu}Approaches Developed in this The-

sis Project

The active-space DEA-EOMCC(4p-2h){Nu} method described in Section 4.2.1 offers ma-

jor savings in the computer effort compared to its full DEA-EOMCC(4p-2h) parent, re-

placing the prohibitively expensive n2
on

6
u steps of the latter approach by steps that scale

as N2
un

2
on

4
u, but, as explained earlier, the CPU time associated with 3p-1h component

Rµ,3p-1h, which scales as non
5
u, can be significant too, especially when larger basis sets

are employed. In order to respond to this problem, in this work we develop and test a

new, more economical variant of the active-space DEA-EOMCC(4p-2h) approach, desig-

nated DEA-EOMCC(3p-1h,4p-2h){Nu}, in which both 3p-1h and 4p-2h components of the

electron attaching operator R
(+2)
µ , Eq. (4.7), are treated using active orbitals. This is done

by replacing the Rµ,3p-1h and Rµ,4p-2h components of R
(+2)
µ by their active-space coun-

terparts, rµ,3p-1h and rµ,4p-2h, respectively, to obtain a new form of the R
(+2)
µ operator,

designated R̃
(+2)
µ {Nu}, which is defined as

R̃
(+2)
µ {Nu} = Rµ,2p + rµ,3p-1h + rµ,4p-2h, (4.13)

where rµ,4p-2h is given by Eq. (4.11) and

rµ,3p-1h =
∑

k,A<b<c

r k
Abc(µ) aAabacak. (4.14)

In analogy to Eq. (4.11), the capital-case bold index A in Eq. (4.14) runs over active

spin-orbitals unoccupied in |Φ(N−2)〉. If we want to limit ourselves to the simpler DEA-
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EOMCC(3p-1h) level and reduce costs of the DEA-EOMCC(3p-1h) calculations further as

well, we can consider the active-space variant of the DEA-EOMCC(3p-1h) approach, desig-

nated in this work as DEA-EOMCC(3p-1h){Nu}, which is obtained by neglecting rµ,4p-2h

in Eq. (4.13).

In defining the above rµ,3p-1h component, we adopt the general philosophy of all active-

space CC and EOMCC theories [71, 72, 79–81, 92, 93, 96, 98–112, 114, 115], especially

the previously formulated [92, 93] DEA-EOMCC(4p-2h){Nu} method. Indeed, let us recall

that the definition of the higher-rank rµ,4p-2h component, Eq. (4.11), entering the DEA-

EOMCC(4p-2h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} expressions, reflects on the in-

tuitive picture of the formation of the N -electron diradical system from the related (N − 2)-

electron closed-shell species, which is certainly valid when the low-lying electronic states of

the diradical are considered. In this picture, the N -electron diradical is viewed as a sys-

tem obtained, at least in the zeroth-order description, by attaching two electrons to the

lowest-energy unoccupied orbitals of the related closed-shell species, followed by the relax-

ation of the remaining electrons [92]. Assuming that the relaxation of the (N − 2) electrons

in the closed-shell core is characterized by substantial 2p-2h correlations (i.e., doubles) and

assuming that the lowest-energy unoccupied orbitals are the most important orbitals for the

electron attachment process of interest, we can replace the full form of 4p-2h component

of R
(+2)
µ , Eq. (4.10), by its active-space rµ,4p-2h analog defined by Eq. (4.11). Following a

similar reasoning, if the relaxation of the (N − 2) electrons in the closed-shell core is char-

acterized by larger 1p-1h correlations (i.e., singles) and assuming, once again, the dominant

role of the lowest-energy unoccupied orbitals in the electron attachment process of interest

that leads to the formation of the N -electron diradical species, we can replace the full form

of 3p-1h component of R
(+2)
µ , Eq. (4.9), by its active-space rµ,3p-1h counterparts defined by
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Eq. (4.14).

In analogy to the previously discussed full and active-space DEA-EOMCC(4p-2h) ap-

proaches [92, 93], in the DEA-EOMCC(3p-1h,4p-2h){Nu} calculations we determine the

Rµ,2p, rµ,3p-1h, and rµ,4p-2h components of the electron attaching operator R̃
(+2)
µ {Nu}, Eq.

(4.13), by diagonalizing the similarity-transformed Hamiltonian H̄N,open obtained in the

CCSD calculations for the (N − 2)-electron reference system, but now the diagonalization

subspace is much smaller if Nu � nu. Indeed, in the DEA-EOMCC(3p-1h,4p-2h){Nu}

method, we diagonalize H̄N,open in the subspace spanned by the |Φab〉, |ΦAbc
k 〉, and |ΦABcd

kl 〉

determinants that correspond to the definition of R̃
(+2)
µ {Nu}, Eq. (4.13). Thus, instead of

having to deal with ∼ non
3
u 3p-1h and ∼ n2

on
4
u 4p-2h amplitudes and determinants defining

the eigenvalue problem of DEA-EOMCC(4p-2h), we consider ∼ Nunon
2
u amplitudes and de-

terminants of the 3p-1h type and ∼ N2
un

2
on

2
u amplitudes and determinants of the 4p-2h type,

which reflect on the content of R̃
(+2)
µ {Nu}. This results in enormous savings in the computer

effort compared to full DEA-EOMCC(4p-2h) calculations by reducing the expensive non
5
u

steps associated with 3p-1h excitations and even more expensive n2
on

6
u steps associated with

4p-2h contributions to the much more affordable Nunon
4
u and N2

un
2
on

4
u levels. As shown

in Section 4.2.4, the active-space DEA-EOMCC(3p-1h,4p-2h){Nu} approach proposed in

this work is also substantially less expensive than its previously proposed [92, 93] DEA-

EOMCC(4p-2h){Nu} counterpart, which reduces the n2
on

6
u steps associated with 4p-2h exci-

tations to the N2
un

2
on

4
u level, but treats 3p-1h contributions fully using expensive CPU steps

that scale as non
5
u. Similar remarks apply to the active-space DEA-EOMCC(3p-1h){Nu}

method, where we diagonalize H̄N,open in the small subspace spanned by |Φab〉 and |ΦAbc
k 〉

determinants, so that instead of having to deal with ∼ non
3
u 3p-1h amplitudes and determi-

nants defining the full DEA-EOMCC(3p-1h) eigenvalue problem, we consider a much smaller
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number of such amplitudes and determinants that scales as ∼ Nunon
2
u. As illustrated in

Section 4.2.4, this leads to significant reductions in the CPU time needed to perform the

DEA-EOMCC(3p-1h)-level calculations, since the CPU steps of DEA-EOMCC(3p-1h) that

normally scale as non
5
u are reduced to a relatively inexpensive Nunon

4
u level.

4.2.3 Key Details of the Efficient Computer Implementation of the

Active-Space DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC

(3p-1h,4p-2h){Nu} Methods

In this section we discuss our efficient implementations of the active-space DEA-EOMCC

(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} schemes discussed in Section 4.2.2. In

analogy to the previously developed DEA-EOMCC(3p-1h), DEA-EOMCC(4p-2h), and DEA-

EOMCC(4p-2h){Nu} codes and their DIP counterparts described and tested in Refs. [92] and

[93], our present computer implementation of the active-space DEA-EOMCC

(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} approaches proposed in this work has

been interfaced with the atomic integral, RHF as well as restricted open-shell Hartree–Fock

(ROHF), and integral transformation routines available in the GAMESS software package

[192, 193]. We have benefited from the previously developed spin-free CCSD GAMESS

routines [194], to obtain the singly and doubly excited cluster amplitudes, tia and t
ij
ab, respec-

tively. The (N − 2)-electron CCSD calculations prior to the DEA-EOMCC diagonalization

steps can be run using any set of orbitals, as long as the underlying reference determi-

nant |Φ(N−2)〉 is of the closed-shell type. In this work, we have taken advantage of the

algebraic expressions and routines that were used in some of our earlier EOMCC studies

[63, 66, 68], where we utilize converged tia and t
ij
ab amplitudes and one- and two-electron
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integrals, f
q
p , f

q
p = 〈p|f |q〉 (f is the Fock operator) and vrspq = 〈pq|v|rs〉 − 〈pq|v|sr〉 (v is

the electron-electron interaction), respectively, defining the normal-ordered Hamiltonian to

construct the one- and two-body matrix elements of the similarity-transformed Hamiltonian

of CCSD H̄
(CCSD)
N,open , h̄

q
p and h̄rspq, respectively, defining the one- and two-body components of

H̄
(CCSD)
N,open within the second quantized formalism,

H̄
(CCSD)
1 = h̄

q
pa
paq, (4.15)

and

H̄
(CCSD)
2 =

1

4
h̄rspqN [apaqasar], (4.16)

respectively, where N [. . .] is the normal product of the operators between the brackets (we

use Einstein’s summation convention over repeated upper and lower indices). The com-

pact DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} equations shown be-

low are expressed in terms of h̄
q
p and h̄rspq matrix elements, which have been derived in Refs.

[50, 66, 68, 119, 210] and can also be found in Table 4.1.

In programming the active-space DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC

(3p-1h,4p-2h){Nu} approaches developed in this work, we have taken advantage of the

explicit, computationally efficient, equations defining the DEA-EOMCC(3p-1h) and DEA-

EOMCC(4p-2h) eigenvalue problems in terms of one- and two-body matrix elements of the

similarity-transformed Hamiltonian of CCSD and other recursively generated intermediates,

reported in the appendix of Ref. [92], imposing suitable active-space logic on these equations

with the help of our home-grown automated derivation and implementation software, which

was previously exploited in coding the DEA-EOMCC(4p-2h){Nu} approach and its DIP

counterpart [92] and a number of other CC/EOMCC methods that rely on similar logic,
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Table 4.1: Explicit algebraic expressions for the one- and two-body matrix elements of

H̄
(CCSD)
N,open (h̄

q
p and h̄rspq, respectively) taken from [66, 68].

Intermediate Expressiona

h̄ai fai + vaeimt
m
e

h̄
j
i f

j
i + v

je
imt

m
e + 1

2v
ef
mit

mj
ef + h̄ei t

j
e

h̄ba Iba − h̄bmtma
h̄bcai vbcai − v

bc
mit

m
a

h̄kaij vkaij + veaij t
k
e

h̄cdab vcdab + 1
2v
cd
mnt

mn
ab − h̄

cd
amt

m
b + vcdbmt

m
a

h̄klij vklij + 1
2v
ef
ij t

kl
ef − h̄

le
ijt
k
e + vkeij t

l
e

h̄
jb
ia I

′jb
ia − v

eb
imt

jm
ea − h̄jbimt

m
a

h̄icab vicab + vecabt
i
e − h̄icmbt

m
a + I

′ic
mat

m
b − h̄

c
mt

im
ab +

h̄cebmt
im
ae − vceamtimbe + 1

2 h̄
ic
nmt

nm
ab

h̄
jk
ia v

jk
ia + h̄

jk
mit

m
a − vkeia t

j
e + A jkh̄

je
imt

km
ae

+h̄ei t
jk
ea + I

′je
ia t

k
e − 1

2v
ef
ai t

jk
ef

I
′b
a fba + vbeamt

m
e

Iba I
′b
a − 1

2v
eb
mnt

mn
ea

I
′jb
ia v

jb
ia + vebiat

j
e

a Summation over repeated upper and lower indices is assumed. f
q
p = 〈p|f |q〉 and vrspq =

〈pq|v|rs〉 − 〈pq|v|sr〉 are the one- and two-body matrix elements of the Hamiltonian in the

normal-ordered form (one- and two-electron integrals), and the tia and t
ij
ab are the singly

and doubly excited cluster amplitudes defining the ground-state CCSD wave function of the
(N−2)-electron reference system. The antisymmetrizer is defined by A jk = 1− (jk), where
(jk) is the transposition of indices j and k.
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including those developed in Refs. [129, 211, 212].

Following our earlier EOMCC programming work [63, 66–68, 71, 72, 79, 81, 92, 110–

112, 123, 124, 182], including the DEA-EOMCC(3p-1h), DEA-EOMCC(4p-2h), and DEA-

EOMCC(4p-2h){Nu} codes and their DIP counterparts described and tested in Refs. [92]

and [93], in solving the DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu}

equations for the amplitudes defining the corresponding R
(+2)
µ operators we have adopted

the Hirao-Nakatsuji generalization [213] of the Davidson diagonalization algorithm [214]

to non-Hermitian eigenvalue problems. Since we are interested in capturing challenging

electronic states of diradicals that may have a substantial multi-reference character, which

manifests itself via the presence of larger 3p-1h components, in addition to the simplest 2p

initial guesses for the R
(+2)
µ vectors, in which one diagonalizes the Hamiltonian in the small

subspace spanned by 2p determinants only, we have also implemented the more sophisticated

ones, where one performs simplified DEA-EOMCC(3p-1h) calculations in which the three-

body matrix elements of the similarity-transformed Hamiltonian of CCSD are ignored and

the 3p-1h amplitudes are limited to the purely active excitations of the r K
ABC(µ) type. Such

simplified DEA-EOMCC(3p-1h) calculations rely only on one- and two-body matrix elements

of H̄N,open, which one can easily determine after the CCSD equations are converged, and are

characterized by the relatively small dimensions of the resulting eigenvalue problems that

make them trivially solvable with the standard library diagonalization routines exploited in

the initial guess work. We used this strategy in our earlier DEA-EOMCC work [92, 93],

finding it quite helpful in situations where 3p-1h amplitudes are larger, so we use it here as

well.

In order to derive the DEA-EOMCC(3p-1h,4p-2h){Nu} equations, we begin with the

working equations defining the parent DEA-EOMCC(4p-2h) approximations, which are pre-
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sented in Appendix B. Generally, the DEA-EOMCC(3p-1h,4p-2h){Nu} equations are ob-

tained by imposing the active-space constraint on the spin-orbital indices defining the |Φabck〉

and |Φabcdkl 〉 determinants and on the indices defining the corresponding r k
abc ≡ r k

abc(µ) and

r kl
abcd ≡ r kl

abcd (µ) amplitudes to each term in DEA-EOMCC(3p-1h,4p-2h){Nu} equations (to

make our expressions more compact, we will drop the state index µ from the EOM r am-

plitudes). In order to appreciate the inner workings of this procedure, we will demonstrate

the underlying logic by deriving few terms which enter these set of equations based on the

appendix in Ref. [92]. We begin by analyzing the following contribution to Eq. (B.2) in

Appendix B, corresponding to the projection on |Φabck〉, which we label as Dabc
k(1):

Dabc
k(1) = −1

3
h̄kmr

m
abc +

1

3
h̄emr

km
abce , (4.17)

where in analogy to all other expressions shown in this section and Appendix B, we use

Einstein’s summation convention over repeated upper and lower indices. In the DEA-

EOMCC(3p-1h){Nu} approach, we only consider 3p-1h projections of the type |ΦAbc
k 〉, and

so we must restrict the indices in Eq. (4.17) as follows:

DAbc
k (1) = −1

3
h̄kmr

m
Abc +

1

3
h̄emr

km
Abce . (4.18)

As we can see, we have replaced the generic unoccupied label a in Eq. (4.17) that corresponds

to the projection on |Φabck〉 by the active index A. Since the r k
Abc and r km

Abce amplitudes which

enter Eq. (4.18) contain an active unoccupied index, conforming to the proper form dictated

by Eq. (4.14), we do not require further restrictions to the indices defining the Dabc
k(1),

thus, completing the derivation of the final formula for this particular contribution to the
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DEA-EOMCC(3p-1h){Nu} equations. However, most of the terms which enter the active-

space DEA-EOMCC equations are not so easily obtained, and so it is useful to examine

more difficult cases. For example, let us consider the following contribution to Eq. (B.2) in

Appendix B, which we label as Dabc
k(2):

Dabc
k(2) = −1

2
h̄
ef
abr

k
cef . (4.19)

If we employ the same approach as used in the previous case, we obtain the following ex-

pression:

DAbc
k (2) = −1

2
h̄
ef
Abr

k
cef . (4.20)

Again, we have replaced the generic unoccupied label a in Eq. (4.19) by the active index

A defining the |ΦAbc
k 〉 determinant. However, unlike in the previous example, the r k

cef

amplitudes that enter the above equation do not have at least one active unoccupied index,

and so it is not automatically of the form required by Eq. (4.14). Furthermore, whether or

not these amplitudes satisfy the active-space restrictions depends on whether the unoccupied

indices b and c belong to active or inactive virtual spin-orbitals. Hence, instead of the generic

projection |ΦAbc
k 〉, that converts Eq. (4.19) into Eq. (4.20), we must consider four more

distinct types of the restricted 3p-1h projections that belong to the general |ΦAbc
k 〉 class,

given in Table 4.2 below.

Applying the 3p-1h projection of type 1 in Table 4.2 to the term given in Eq. (4.19), that

is, the projection on the |ΦABC
k 〉 determinant, one obtains

DABC
k (2) = −1

2
h̄
ef
ABr

k
Cef . (4.21)
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Table 4.2: The various classes of restricted projections that must be considered
when generating the computationally efficient form of the equations defining the DEA-
EOMCC(3p-1h, 4p-2h){Nu} eigenvalue problem.

DEA-EOMCC(3p-1h, 4p-2h){Nu}
Projection Type 2p 3p-1h 4p-2h

1 |ΦAB〉 |ΦABC
k 〉 |ΦABCD

kl 〉
2 |ΦAb〉 |ΦABc

k 〉 |ΦABCd
kl 〉

3 |ΦaB〉 |ΦAbC
k 〉 |ΦABcD

kl 〉
4 |Φab〉 |ΦAbc

k 〉 |ΦABcd
kl 〉

Since the 3p-1h amplitude r k
Cef has at least one active unoccupied index, it satisfies the

active-space demands of Eq. (4.14), and so requires no additional restrictions on the spin-

orbital indices. Continuing on the same logic, if we consider the projection on |ΦAbC
k 〉 (type

3 projection in Table 4.2, with lower-case index representing inactive virtual orbitals), one

obtains

DAbC
k (2) = −1

2
h̄
ef
Abr

k
Cef , (4.22)

which also requires no further constraints on the spin-orbital indices, since 3p-1h amplitude

r k
Cef has at least one active unoccupied indices. The main difference between Eqs. (4.21)

and (4.22) is in the restriction on the label b, which is restricted to active unoccupied spin-

orbital set in Eq. (4.21) and to inactive virtual spin-orbitals in Eq. (4.22). This barefaced

relationship between Eqs. (4.21) and (4.22) allows us to recombine these two contributions

into one, somewhat more general expression of the form

DAbC
k (2) = −1

2
h̄
ef
Abr

k
Cef . (4.23)

where the unoccupied index b can be active or inactive. We now consider the projection on
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|ΦAbc
k 〉 (projection type 2 in Table 4.2). The resulting expression for this contribution is

DABc
k(2) = −1

2
h̄
ef
ABr

k
cef , (4.24)

where, unlike in the previous cases the r k
cef amplitude which enters this equation does not

automatically have at least one unoccupied index constrained to active unoccupied spin-

orbitals. In order to necessarily impose such a condition, we must restrict the summation

over all particle spin-orbitals e in Eq. (4.24) to active spin-orbital labels only since c is an

inactive index. The resulting expression is given by

D̃ABc
k(2) = −1

2
h̄
Ef
ABr

k
cEf , (4.25)

where the overtilde denotes the fact that we applied restrictions on the summations appearing

in DABc
k(2). Finally, we consider the projection on |ΦAbc

k 〉 (projection type 4 in Table 4.2).

The resulting expression for this contribution is

DAbc
k (2) = −1

2
h̄
ef
Abr

k
cef . (4.26)

Again, the r k
cef amplitude which enters this term does not automatically have at least one

unoccupied index constrained to active unoccupied spin-orbitals. As a result, we restrict the

summation over all particle spin-orbitals e in Eq. (4.26) to active spin-orbital labels only

since b and c are virtual (i.e., inactive) indices. The resulting expression is given by

D̃Abc
k (2) = −1

2
h̄
Ef
Abr

k
cEf . (4.27)
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Furthermore, comparing Eqs. (4.25) and (4.27) reveals that the only difference between

these two terms is in the restriction on the index b, which in Eq. (4.25) is restricted to

active unoccupied spin-orbitals and in Eq. (4.27) to inactive virtual spin-orbitals. Like in the

previous examples of projection types considered earlier, we combine these two contributions

into one general term of the following form:

D̃Abc
k(2) = −1

2
h̄
Ef
Abr

k
cEf . (4.28)

where the unoccupied index b can be active or inactive. Equations (4.23) and (4.28) represent

all contributions to the active-space DEA-EOMCC working equations stemming from one of

the terms in the DEA-EOMCC(3p-1h){Nu} equations projected on 3p-1h excited determi-

nants given by Eq. (4.19). With this kind of analysis in view, we are now at a pole position

to apply the above procedure to each term that enters the explicit form of the equations

defining the DEA-EOMCC(3p-1h, 4p-2h){Nu} approximation (Eqs. (B.1), (B.2), and (B.3)

in appendix B), with the help of the projection types in Table 4.2. After collecting all of these

contributions together, one obtains the final form of the fully factorized, computationally effi-

cient DEA-EOMCC(3p-1h, 4p-2h){Nu} equations, which are systematically presented below.

The factorized equations defining the projections of the DEA-EOMCC(3p-1h, 4p-2h){Nu}

eigenvalue problem on the 2p determinants |Φab〉 are

〈Φab|(H̄(CCSD)
N,open R

(+2)
µ )C |Φ〉 = AabTab = ω

(N)
µ rab, (4.29)

where

TAb = χAb + αAb −
∑
E<f

(h̄
Ef
Amr

m
Efb −

1

4
v
Ef
mnr

mn
AbEf ), (4.30)
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TaB = ∆aB − αBa, (4.31)

and

Tab = ∆ab, (4.32)

with

χab = −h̄earbe +
1

4
h̄
ef
abref , (4.33)

αAb =
1

2
h̄emr

m
Abe , (4.34)

∆aB = χaB −
1

2
h̄
ef
amr

m
Bef +

1

4

∑
E<f

v
Ef
mnr

mn
aBEf , (4.35)

and

∆ab = χab +
1

2
h̄Emr

m
Eab −

∑
E<f

h̄
Ef
amr

m
bEf +

1

8
v EF
mn r

mn
abEF . (4.36)

The DEA-EOMCC(3p-1h, 4p-2h){Nu} equations on the selected 3p-1h determinants

|ΦAbc
k〉 have the following computationally efficient form:

〈ΦAbc
k |(H̄

(CCSD)
N,open R

(+2)
µ )C |Φ〉 = AbcT

k
Abc = ω

(N)
µ r k

Abc , (4.37)

where

T k
ABc = χ k

ABc + ∆ k
ABc, (4.38)

T k
AbC = ∆ k

AbC, (4.39)

and

T k
Abc = ∆ k

Abc, (4.40)
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with

χ k
Abc = −h̄keAbrce −

1

3
h̄kmr

m
Abc +

1

2
IAmt

km
bc

+
1

3
h̄Emr

km
AbcE −

1

3
h̄Emr

km
AbcE ,

(4.41)

∆ k
Abc = h̄EAr

k
bcE + h̄kEAmr

m
bcE +

∑
E<f

h̄
Ef
Abr

k
Efc +

1

2
h̄EF
Amr

km
bcEF , (4.42)

∆ k
AbC = χ k

AbC +
1

2
h̄
ef
Abr

k
Cef +

∑
E<f

h̄
Ef
Amr

km
bCEf , (4.43)

and

∆ k
Abc = χ k

Abc + h̄EAr
k

Ebc + h̄kEAmr
m

Ebc

+
∑
E<f

h̄
Ef
Abr

k
Efc +

1

2
h̄EF
Amr

km
bcEF .

(4.44)

Finally, the DEA-EOMCC(3p-1h, 4p-2h){Nu} equations defining the projections on the

selected 4p-2h determinants |ΦABcd
kl 〉 have the following form:

〈ΦABcd
kl |(H̄

(CCSD)
N,open R

(+2)
µ )C |Φ〉 = AABAcdA

klT k
ABcd = ω

(N)
µ r kl

ABcd , (4.45)

where

T kl
ABCd = χ kl

ABCd + ∆ kl
ABCd , (4.46)

T kl
ABcD = −β kl

DBcA −∆ kl
ADcB, (4.47)

and

T kl
ABcd = ∆ kl

ABcd, (4.48)
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with

χ kl
ABcd = −1

6
h̄ klAmr

m
Bcd + I k

ABmt
lm
cd +

1

2
I e
ABct

kl
de

+
1

12
h̄kmr

lm
ABcd +

1

48
h̄klmnr

mn
ABcd ,

(4.49)

β kl
ABcD =

1

2
h̄ ke
DBr

l
cAe, (4.50)

∆ kl
ABCd =

1

2
h̄ keABr

l
Cde −

1

6
h̄eAr

kl
BCde +

1

3
h̄ keAmr

lm
BCde

+
1

4

∑
E<f

h̄
Ef
ABr

kl
CdEf ,

(4.51)

∆ kl
DBcA = χ kl

DBcA −
1

6
h̄eAr

kl
BcDe +

1

3
h̄ keAmr

lm
BcDe

+
1

4

∑
E<f

h
Ef
ABr

kl
cDEf

(4.52)

and

∆ kl
ABcd = χ kl

ABcd +
1

2
h̄kEABr

l
cdE −

1

6
h̄EAr

kl
BcdE

+
1

3
h̄kEAmr

lm
BcdE +

1

8
hEF
ABr

kl
cdEF

(4.53)

In addition, the above equations for DEA-EOMCC(3p-1h){Nu} approximation make use

several recursively generated intermediates which are as follows:

IAm = ĨAm + v
ef
mnr

n
Aef (4.54)

and

Iam = Ĩam + 2
∑
E<f

v
Ef
mnr

n
aEf , (4.55)

where

Ĩam = h̄
ef
amref , (4.56)
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and

I k
Abm = Ĩ k

Abm +
1

2
h̄kemnr

n
Abe −

∑
E<f

h̄
Ef
Amr

k
bEf

+
1

2

∑
E<f

v
Ef
mnr

kn
AbEf , (4.57)

I k
aBm = Ĩ k

aBm +
1

2
h̄kemnr

n
aBe −

1

2
h̄
ef
amr

k
Bef

+
1

2

∑
E<f

v
Ef
mnr

kn
aBEf , (4.58)

and

I k
abm = Ĩ k

abm +
1

2
h̄kEmnr

n
abE −

1

2

∑
E<f

h̄
Ef
amr

k
bEf

+
1

4
vEF
mnr

kn
abEF, (4.59)

where

I k
abm = h̄keamrbe +

1

8
Imnt

kn
ab , (4.60)

and

I e
Abc = h̄

ef
Abrcf − h̄

eF
Amr

m
bcF +

1

3

∑
e>F

veFmnr
mn

AbcF, (4.61)

I e
aBc = h̄

ef
aBrcf − h̄

ef
amr

m
Bcf +

1

3

∑
e>F

veFmnr
mn

aBcF, (4.62)

I e
abC = h̄

ef
abrCf − h̄

ef
amr

m
bCf +

1

3

∑
e>F

veFmnr
mn

abCF, (4.63)
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and

I e
abc = h̄

ef
abrcf . (4.64)

The antisymmetrizer Apq = A pq, which enters the above equations is defined as

Apq ≡ A pq = 1− (pq), (4.65)

with (pq) representing the transposition of indices p and q.

Next, we consider some key components of the efficient computer implementation of the

DEA-EOMCC(3p-1h,4p-2h){Nu} eigenvalue equations, namely, Eqs. (4.29) - (4.64). Figure

(4.1) gives the important details of the algorithm that is used to compute the projection of

the DEA-EOMCC eigenvalue problem on the selected 3p-1h determinants. The algorithm

for calculating the remaining 2p and 4p-2h projections is similar but we do not discuss it in

this dissertation.

One important element of our algorithm is that the explicit loops that are used to con-

struct the DEA-EOMCC(3p-1h,4p-2h){Nu} equations projected on |ΦAbc
k〉, Eq. 4.37, range

over active indices represented by the use of bold, uppercase letters for variables in the loop.

Within these loops, we have utilized a high degree of vectorization while exploiting efficient

matrix multiplication routines from the BLAS library to perform essential computations.

In doing so, we have maintained the Einstein summation convention throughout and also

imposed the traditional summation symbol
∑

in instances where at least one unoccupied

free index belongs to the active set of orbitals.
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Calculate Ĩam for all values of e, f Eq. (4.56)

Set Iam = Ĩam for all values of a,m

LOOP OVER D

Calculate IDm = IDm + vefmnr
n

Def for all values of m, Eq. (4.54)

Calculate Iam = Iam + 2
∑
n

∑
f(>D)

vDfmnr
n

aDf for all values of a,m, Eq. (4.55)

END OF LOOP OVER D

LOOP OVER A

Calculate χ k
Abc and ∆ k

Abc for all values b, c, k, Eqs. (4.41) and (4.42)

Set ∆ k
Abc = χ k

Abc for all values of b, c, k

LOOP OVER E

Calculate ∆ k
Abc = ∆ k

Abc + h̄EAr
k

Ebc + h̄kEAmr
m

Ebc +
∑
E<f

h̄EfAbr
k

Efc +
1

2
h̄EF
Amr

km
bcEF for

all values of b, c, k, Eq. (4.44)

Calculate ∆ k
AbC = ∆ k

AbC +
1

2
h̄efAbr

k
Cef +

∑
E<f

h̄EfAmr
km

bCEf for all values of b,C, k,

Eq. (4.43)

END OF LOOP OVER E

Set T k
Abc = ∆ k

Abc, Eq. (4.40)

END OF LOOP OVER A

LOOP OVER A

LOOP OVER D

Calculate T k
ADc for all values of c, k, Eq. (4.38)

Calculate T k
AbD for all values of b, k, Eq. (4.39)

END OF LOOP OVER D Calculate 〈ΦAbc
k |(H̄

(CCSD)
N,open R

(+2)
µ )C |Φ〉 by antisymmetrizing

T k
Abc, Eq. (4.37)

END OF LOOP OVER A

Figure 4.1: The key elements of the algorithm used to compute

〈ΦAbc
k |(H̄

(CCSD)
N,open R

(+2)
µ )C |Φ〉, Eq. (4.37), in the efficient implementation of the DEA-

EOMCC(3p-1h,4p-2h){Nu} method.
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4.2.4 The Remaining Algorithmic Details and Illustrative Timings

of DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC

(3p-1h, 4p-2h){Nu} Calculations

As already alluded to above and as illustrated through examples of timings in Ref. [92], the

active-space DEA-EOMCC(4p-2h){Nu}method offers a massive reduction in computer effort

compared to its DEA-EOMCC(4p-2h) parent with virtually no loss of accuracy. Indeed, as

demonstrated in Ref. [92], it is not unusual for the CPU timings of DEA-EOMCC(4p-2h){Nu}

calculations to be hundreds of times smaller than the timings of the corresponding full DEA-

EOMCC(4p-2h) computations. This is a consequence of the fact that it is sufficient to use

small numbers of active unoccupied orbitals in the DEA-EOMCC(4p-2h){Nu} calculations,

which represent a tiny fraction of the total number of unoccupied orbitals in the MO basis, to

obtain reasonably converged results. The DEA-EOMCC(3p-1h,4p-2h){Nu} approach devel-

oped in this study, which treats both 3p-1h and 4p-2h components of the R
(+2)
µ operator, not

just the 4p-2h components, using active orbitals is even more economical. This is illustrated

in Table 4.3, where we compare the CPU times per iteration characterizing the DEA-EOMCC

diagonalization steps required by the full and active-space DEA-EOMCC(3p-1h) and active-

space DEA-EOMCC(3p-1h,4p-2h){Nu} and DEA-EOMCC(4p-2h){Nu} calculations for the

X 3A2 state of the TMM molecule, as described by the cc-pVDZ and cc-pVTZ basis sets

[215].

We recall that our group used the various DEA- and DIP-EOMCC methods to study the

TMM system in Refs. [92] and [93]. As explained in Refs. [92] and [93], the TMM molecule

is large enough to make the full DEA-EOMCC(4p-2h) calculations using the cc-pVDZ and

cc-pVTZ basis sets prohibitively expensive, so the highest DEA-EOMCC level included in
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Table 4.3: A comparison of CPU times required by the various DEA-EOMCC calculations
characterizing the X 3A2 state of TMM, as described by the cc-pVDZ and, in parenthe-
ses, cc-pVTZ basis sets, along with the formal scalings of the most expensive steps in the
diagonalization of H̄N,open with no, nu, and Nu.a

Method CPU Time Scaling CPU Time/Iteration (min)b

DEA-EOMCC(3p-1h){Nu} Nunon
4
u 0.05 (1.5)

DEA-EOMCC(3p-1h) non
5
u 0.43 (43.5)

DEA-EOMCC(3p-1h,4p-2h){Nu} N2
un

2
on

4
u +Nunon

4
u 2.75 (65.0)

DEA-EOMCC(4p-2h){Nu} N2
un

2
on

4
u + non

5
u 4.43 (136.0)

a The TMM2+ reference system used in the DEA-EOMCC calculations was obtained by vacating the doubly

degenerate valence 1e′′ orbitals of the TMM’s π system (using the D3h symmetry of the X 3A′2 state). The

lowest-energy core orbitals correlating with the 1s shells of the carbon atoms were frozen in the post-SCF

calculations and the spherical components of the d and f orbitals were employed throughout. The active

space used to select 3p-1h and 4p-2h components consisted of the doubly degenerate 1e′′ and non-degenerate

2a′′2 orbitals, which are the three lowest-energy unoccupied MOs in the TMM2+ reference system, so Nu

was set at 3.
b The CPU time per iteration characterizing the DEA-EOMCC diagonalization step obtained on a single

core of the PowerEdge R910 system from Dell using 8-core Intel Xeon X7560 2.26GHz processor boards.

Table 4.3 is DEA-EOMCC(4p-2h){Nu}. This is sufficient for the analysis presented here,

since the CPU time savings offered by the active-space DEA-EOMCC(4p-2h){Nu} approach

vs. its full DEA-EOMCC(4p-2h) counterpart have already been discussed in Refs. [92] and

[93], whereas the main objective of this dissertation is to show additional savings in the com-

puter effort offered by the DEA-EOMCC(3p-1h,4p-2h){Nu} and DEA-EOMCC(3p-1h){Nu}

approximations developed in the present work. As one can see in Table 4.3, the DEA-

EOMCC(3p-1h,4p-2h){Nu} calculations for the X 3A2 state of TMM, which use three active

orbitals to select the dominant 3p-1h and 4p-2h amplitudes, are about twice as fast as the

corresponding DEA-EOMCC(4p-2h){Nu} computations, in which 3p-1h contributions are

treated fully. At the same time, as shown in Section 4.3.3, there is virtually no loss of accuracy

when the singlet–triplet gaps in TMM resulting from the DEA-EOMCC(3p-1h,4p-2h){3} and

DEA-EOMCC(4p-2h){3} calculations are compared with each other and with experiment.

Interestingly, as shown in Table 4.3 as well, the CPU timings of the higher-level DEA-
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EOMCC(3p-1h,4p-2h){3} calculations for the system, which include 3p-1h and 4p-2h con-

tributions, are on the same order as the timings characterizing the corresponding lower-

level DEA-EOMCC(3p-1h) computations, which neglect 4p-2h effects altogether. This is

especially true when the larger cc-pVTZ basis set is employed. We observe the same

when other molecular systems are examined. Thus, with the development of the DEA-

EOMCC(3p-1h,4p-2h){Nu} method in this work, we have gained the ability to perform rou-

tine electronic structure calculations at the very high DEA-EOMCC(4p-2h) level, at least for

medium-sized molecular systems, which, as shown in the next section and our earlier work

[92, 93], provide chemical (∼ 1 kcal/mol) or better accuracy in describing low-lying states

of diradicals and single bond breaking in closed-shell species, improving the results of the

corresponding DEA-EOMCC(3p-1h) calculations. At the same time, through the develop-

ment of the active-space DEA-EOMCC(3p-1h){Nu} approach in this work, we have made

the DEA-EOMCC(3p-1h) calculations a lot more practical. For example, as shown in Table

4.3, the DEA-EOMCC(3p-1h){3} calculations for TMM are about 30 times faster than the

corresponding full DEA-EOMCC(3p-1h) computations, when the cc-pVTZ basis set is em-

ployed, and, as demonstrated in Section 4.3.3, there is virtually no loss of accuracy in the

description of the singlet–triplet gap in TMM when full DEA-EOMCC(3p-1h) is replaced

by its active-space DEA-EOMCC(3p-1h){Nu} counterpart. Similar observations apply to

other molecular systems. A few representative examples comparing the accuracy of the

full DEA-EOMCC(3p-1h) and active-space DEA-EOMCC(3p-1h){Nu}, active-space DEA-

EOMCC(3p-1h,4p-2h){Nu} and DEA-EOMCC(4p-2h){Nu}, and full DEA-EOMCC(4p-2h)

approaches are discussed next.
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4.3 Numerical Examples

In order to assess the performance of the active-space DEA-EOMCC(3p-1h){Nu} and DEA-

EOMCC(3p-1h,4p-2h){Nu} methods developed in this work, we have carried out several

benchmark calculations that are representative of the types of problems such methods may

be useful for, which are low-lying singlet and triplet states of diradical species and single

bond breaking in closed-shell molecules leading to doublet radical fragments. Because of the

methodological nature of this work, where our main goal is to compare the results obtained in

the relatively inexpensive DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu}

calculations, in which 3p-1h or 3p-1h and 4p-2h components of the respective R
(+2)
µ op-

erators are treated using active orbitals, with the parent full DEA-EOMCC(3p-1h) and

DEA-EOMCC(4p-2h) data and the results of the DEA-EOMCC(4p-2h){Nu} computations,

in which 4p-2h amplitudes are selected using active orbitals, but 3p-1h contributions are

treated fully, in the analysis presented in this dissertation we focus on smaller and medium

size molecular systems with up six non-hydrogen (second row) atoms. Some of the benchmark

systems discussed are small enough to allow for the exact, full CI, and nearly exact, full DEA-

EOMCC(4p-2h) calculations, and all of them can be treated with the DEA-EOMCC(3p-1h)

and DEA-EOMCC(4p-2h){Nu} approaches that provide important reference data for their

less expensive DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} counter-

parts developed in this work. Most of the test cases considered here have been included

in our recent DEA-EOMCC studies [92–94, 117] and some are new in this context.

In the discussion below, we examine the following molecular problems: (i) the adiabatic

energy gaps between the triplet ground state (X 3B1) and the three low-lying singlet excited

states (A 1A1, B 1B1, and C 1A1) of methylene, as described by the [5s3p/3s] triple zeta
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basis set of Dunning [216] augmented with two sets of polarization functions, abbreviated as

TZ2P, for which the exact, full CI, results have been reported in Ref. [217] (see Table 4.4), (ii)

the singlet–triplet gaps of methylene obtained by the DEA-EOMCC approaches with larger,

up to quintuple, zeta basis sets, extrapolated to the complete basis set (CBS) limit (see

Table 4.5), (iii) the adiabatic separation between the D3h-symmetric X 3A′2 ground state,

which has a largely single-reference nature, and the C2v-symmetric B 1A1 excited state,

which has a multi-reference, diradical, character, in TMM, as described by the cc-pVDZ

and cc-pVTZ basis sets, which has accurately been determined in Ref. [147] by subtracting

the theoretical zero-point vibrational energy corrections (∆ZPVE) resulting from spin-flip

density-functional-theory (SF-DFT/6-31G(d)) calculations [147] from the experimental val-

ues of the B 1A1 − X 3A′2 gap obtained in photoelectron spectroscopy measurements in

Ref. [218] (see Table 4.6; cf. Table 4.3 for the corresponding CPU timings), (iv) the vertical

singlet–triplet gaps in the antiaromatic cyclobutadiene and its derivatives and cyclopentadi-

enyl cation diradicals, as described by the cc-pVDZ and maug-cc-pVTZ basis sets, for which

geometries of the triplet states have been optimized in Ref. [219] (see Tables 4.7 and 4.8),

and (v) the F–F bond dissociation in the F2 molecule, as described by the double zeta (DZ)

basis set [220], for which the exact, full CI, results can be found in Ref. [221] (see Table 4.9).

One of the important aspects of any DEA-EOMCC work is the choice of orbitals used

to construct the corresponding wave function expansions. As explained in Refs. [92–94], one

typically has a choice between the symmetry-adapted RHF or ROHF orbitals obtained in

the calculations for the singlet (RHF) and triplet (ROHF) states of the N -electron target

system or the RHF MOs optimized for the corresponding (N − 2)-electron closed-shell core.

Both strategies are considered in this work. In doing so, one has to be aware of the fact

that the singlet RHF orbitals of the target N -electron system may lift orbital degeneracies
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when the N -electron species of interest has a non-Abelian symmetry, resulting in undesir-

able symmetry-broken DEA-EOMCC wave function expansions [92–94]. As explained in

Ref. [93] and as further elaborated on below, this would, for example, happen if we tried

to exploit the RHF MOs optimized for the B 1A1 singlet state of TMM in the calculations

for the corresponding D3h-symmetric X 3A′2 triplet state. In cases like this, one can either

use the high-spin ROHF orbitals of the N -electron target system or the dicationic RHF

orbitals corresponding to the (N − 2)-electron closed-shell core, which allow us to maintain

the relevant spatial symmetries throughout the DEA-EOMCC calculations (adaptation to

spin symmetry is automatic as long as restricted orbitals are employed). This is what we do

in this work, i.e., all of the DEA-EOMCC calculations discussed in this dissertation provide

spin- and symmetry-adapted results. One of the main findings of our group’s previous stud-

ies, especially those reported in Ref. [93], has been the observation that the results of the

DEA-EOMCC computations including 4p-2h contributions are practically insensitive to the

choice of the underlying MO basis, whereas their lower-order DEA-EOMCC(3p-1h) counter-

parts may display a significant dependence on the type of orbitals used in the calculations.

A similar behavior is observed in this work, i.e., the results obtained with the active-space

DEA-EOMCC(3p-1h,4p-2h){Nu} approach are not only in very good agreement with the

corresponding DEA-EOMCC(4p-2h){Nu} and DEA-EOMCC(4p-2h) data, especially if we

take into account the relatively low costs of the DEA-EOMCC(3p-1h,4p-2h){Nu} calcula-

tions, but they are also less sensitive to the choice of the underlying MO basis than the

corresponding DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h) results. At the same

time, the results of the active-space DEA-EOMCC(3p-1h){Nu} calculations display a similar

type of dependence on the underlying MO basis as their parent full DEA-EOMCC(3p-1h)

counterparts. This reemphasizes the point that the active-space treatment of 3p-1h contri-
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butions advocated in this study is sufficient to capture the bulk of 3p-1h effects.

4.3.1 Adiabatic Energy Gaps Involving Low-Lying Singlet and

Triplet States of Methylene

We begin our discussion with the various DEA-EOMCC results for the X 3B1, A 1A1,

B 1B1, and C 1A1 electronic states of methylene, as described by the TZ2P basis set used

in Ref. [217], where the authors performed the corresponding full CI calculations, optimizing

the geometry of each of the four states at the full CI level as well. In performing the

DEA-EOMCC calculations with the full and active-space treatments of 3p-1h and 4p-2h

excitations, summarized in Table 4.4, we adopted the full CI/TZ2P geometries of the X 3B1,

A 1A1, B 1B1, and C 1A1 states reported in Ref. [217]. In our discussion, we focus on the

adiabatic energy gaps between the triplet ground state and the three lowest-energy singlet

excited states.

A few decades ago methylene was the subject of serious controversies between theory

and experiment concerning the geometry of its triplet ground state and the small energy

gap between the X 3B1 and A 1A1 states, where theory turned out to be crucial for pro-

viding correct answers (cf. Refs. [222–227] for selected historical accounts). Because of its

small size, which allows for all kinds of electronic structure calculations, including the afore-

mentioned full CI/TZ2P study [217] and the previously published DEA-EOMCC(3p-1h),

DEA-EOMCC(4p-2h), and DEA-EOMCC(4p-2h){Nu} data obtained with the TZ2P basis

set as well, which are used in this work to test the DEA-EOMCC(3p-1h){Nu} and DEA-

EOMCC(3p-1h,4p-2h){Nu} approaches, and because of its complicated electronic spectrum,

which consists of excited states that are difficult to describe in an accurate and balanced
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manner, methylene has become an important benchmark system for testing quantum chem-

istry methods (cf. Refs. [92] and [93], and the long list of references cited therein for some

of the most representative examples of the past ab initio computations for the ground and

excited states of CH2). We also recall that while the ground and second excited states,

X 3B1 and B 1B1, respectively, can be characterized as having a single-reference charac-

ter, which is well represented by the high-spin triplet and open-shell singlet configurations

of the (1a1)2(2a1)2(1b2)2(3a1)1(1b1)1 type, the first excited A 1A1 state and the third ex-

cited C 1A1 state have a manifestly multi-reference nature that originates from mixing the

(1a1)2(2a1)2(1b2)2(3a1)2 and (1a1)2(2a1)2(1b2)2(1b1)2 configurations, which is particularly

severe in the case of the strongly diradical C 1A1 state. Thus, in order to obtain accurate

results for the adiabatic energy gaps between the X 3B1 ground state and the A 1A1, B 1B1,

and C 1A1 excited states, one has to use methods that can provide a well-balanced treat-

ment of the dynamical and non-dynamical electron correlation effects. This makes methy-

lene a valuable benchmark system for testing the active-space DEA-EOMCC(3p-1h){Nu}

and DEA-EOMCC(3p-1h,4p-2h){Nu} methods developed in this work.

In all of the DEA-EOMCC calculations summarized in Table 4.4, the (N − 2)-electron

CH2+
2 reference system was obtained by vacating the highest occupied MO (HOMO), 3a1,

of CH2. In order to examine the dependence of the various DEA-EOMCC results on the

type of orbitals that are used to define the corresponding wave function expansions, we

used both the ground-state RHF orbitals of the CH2+
2 reference dication and the RHF

or ROHF MOs optimized for the CH2 target system. In the latter case, we followed

Refs. [92] and [93] and adopted three different strategies. In the first strategy, we con-

structed the DEA-EOMCC wave function expansions for all the calculated states using

the ROHF orbitals obtained for the X 3B1 state of methylene. In the second strategy,
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Table 4.4: A comparison of the full CI and various DEA-EOMCC adiabatic excitation ener-
gies, along with the corresponding MaxUE and NPE values relative to full CI, characterizing
the low-lying states of methylene, as described by the TZ2P basis set.a

Orbitals Method A 1A1 −X 3B1 B 1B1 −X 3B1 C 1A1 −X 3B1 MaxUE NPE

(N − 2)-electron RHFb DEA-EOMCC(3p-1h){2}c 1.30 -0.82 -1.00 1.30 2.30
DEA-EOMCC(3p-1h) -0.11 -1.89 -3.64 3.64 3.53
DEA-EOMCC(3p-1h,4p-2h){2}c 1.67 0.82 2.28 2.28 1.46
DEA-EOMCC(4p-2h){2}c 0.13 -0.35 -0.54 0.54 0.67
DEA-EOMCC(4p-2h) 0.38 -0.02 0.21 0.38 0.40

N -electron ROHFd DEA-EOMCC(3p-1h){2}c 1.47 0.63 1.42 1.47 0.84
DEA-EOMCC(3p-1h) 0.64 0.10 0.45 0.64 0.54
DEA-EOMCC(3p-1h,4p-2h){2}c 0.63 0.48 0.58 0.63 0.16
DEA-EOMCC(4p-2h){2}c -0.22 -0.05 -0.29 0.29 0.24
DEA-EOMCC(4p-2h) 0.19 0.08 0.37 0.37 0.29

N -electron RHFe DEA-EOMCC(3p-1h){2}c -0.11 -0.50 0.17 0.50 0.67
DEA-EOMCC(3p-1h) 0.29 -0.15 -0.31 0.31 0.60
DEA-EOMCC(3p-1h,4p-2h){2}c 0.16 -0.42 -0.01 0.42 0.60
DEA-EOMCC(4p-2h){2}c 0.66 -0.02 -0.28 0.66 0.94
DEA-EOMCC(4p-2h) 0.14 0.09 0.38 0.38 0.29

N -electron ROHF/RHFf DEA-EOMCC(3p-1h){2}c 2.19 1.79 2.46 2.46 0.67
DEA-EOMCC(3p-1h) 1.53 1.09 0.93 1.53 0.60
DEA-EOMCC(3p-1h,4p-2h){2}c 0.76 0.18 0.59 0.76 0.58
DEA-EOMCC(4p-2h){2}c 0.12 -0.56 -0.82 0.82 0.94
DEA-EOMCC(4p-2h) 0.19 0.14 0.43 0.43 0.29
Full CIa 11.14 35.59 61.67

a The basis set, geometries, and full CI energies were taken from Ref. [217]. The full CI values are the
adiabatic excitation energies, in kcal/mol, whereas the remaining values are errors relative to full CI, also in

kcal/mol. The CH2+
2 reference system used in the DEA-EOMCC calculations was created by vacating the

3a1 HOMO of CH2. As in Ref. [217], the lowest occupied orbital and the highest unoccupied orbital were
frozen in the post-SCF calculations and the spherical components of the carbon d orbital were employed
throughout.
b The RHF orbitals obtained for the singlet ground state of CH2+

2 were employed.
c The active space consisted of the HOMO and LUMO of CH2, 3a1 and 1b1, respectively, which are

unoccupied in the CH2+
2 reference system used in the DEA-EOMCC calculations.

d The ROHF orbitals obtained for the X 3B1 state of CH2 were employed.
e The RHF orbitals obtained for the A 1A1 state of CH2 were employed.
f The ROHF orbitals of CH2 for the X 3B1 state and the A 1A1 RHF orbitals of CH2 for the remaining

three states were employed.
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we utilized the RHF orbitals optimized for the A 1A1 state. In the third strategy, we

used the X 3B1 ROHF orbitals in the DEA-EOMCC calculations for the triplet ground

state and the A 1A1 RHF orbitals for the remaining three singlet states. For each choice

of the MO basis, the active orbitals employed in the DEA-EOMCC(3p-1h){Nu}, DEA-

EOMCC(3p-1h,4p-2h){Nu}, and DEA-EOMCC(4p-2h){Nu} calculations were the HOMO

orbital 3a1 and the lowest unoccupied MO (LUMO) 1b1 of methylene, which are unoccu-

pied in the CH2+
2 dication that serves as a reference system for the DEA-EOMCC consid-

erations. In other words, the number of active unoccupied orbitals, Nu, used to define

3p-1h component in the DEA-EOMCC(3p-1h){Nu} calculations, 3p-1h and 4p-2h com-

ponents in the DEA-EOMCC(3p-1h,4p-2h){Nu} computations, and 4p-2h component in

the DEA-EOMCC(4p-2h){Nu} calculations was set at 2, making the resulting diagonal-

izations of the similarity-transformed Hamiltonian only a few times more expensive than

the conventional closed-shell CCSD calculations in the DEA-EOMCC(3p-1h,4p-2h){Nu}

and DEA-EOMCC(4p-2h){Nu} cases and less expensive than CCSD in the case of DEA-

EOMCC(3p-1h){Nu}. As shown in Ref. [92], the DEA-EOMCC(4p-2h){2} calculations for

the TZ2P model of methylene considered here are about 400 times faster than the corre-

sponding full DEA-EOMCC(4p-2h) computations and only 4 times slower than the DEA-

EOMCC(3p-1h) calculations. The DEA-EOMCC(3p-1h,4p-2h){2} computations are even

faster.

The adiabatic A 1A1−X 3B1, B 1B1−X 3B1, and C 1A1−X 3B1 excitation energies col-

lected in Table 4.4 and the corresponding maximum unsigned error (MaxUE) and NPE values

demonstrate that there is a generally good agreement between the results of the inexpen-

sive active-space DEA-EOMCC(3p-1h){2} calculations and their full DEA-EOMCC(3p-1h)

counterparts and among the results of the active-space DEA-EOMCC(3p-1h,4p-2h){2} and
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DEA-EOMCC(4p-2h){2} and full DEA-EOMCC(4p-2h) computations. As opposed to the

DIP-EOMCC approach truncated at 3h-1p excitations, which we examined in our previous

studies [92, 93] and which in the case of the TZ2P model of methylene may produce errors

as large as 10.94 kcal/mol, none of the DEA-EOMCC methods examined in the present

work fails, i.e., the DEA-EOMCC calculations truncated at 3p-1h terms are capable of pro-

viding reasonable gap values, especially when one uses MOs optimized for the target CH2

system. Nevertheless, the inclusion of 4p-2h correlations through the relatively inexpensive

DEA-EOMCC(3p-1h,4p-2h){2} calculations, which describe 3p-1h and 4p-2h effects using

active orbitals, is helpful and worth analyzing here. As shown in Sections 4.2.1 and 4.2.2,

4p-2h contributions become larger when other diradical systems considered in this study are

examined, but we begin our discussion with methylene, since we have access to the largest

amount of numerical data in this case.

We first observe that the differences between the DEA-EOMCC(3p-1h){2} and DEA-

EOMCC(3p-1h) gap values are almost identical to the analogous differences between the

gaps obtained in the DEA-EOMCC(3p-1h,4p-2h){2} and DEA-EOMCC(4p-2h){2} calcu-

lations. Indeed, if we, for example, examine the A 1A1 − X 3B1 energy separations cal-

culated using the RHF MOs of the CH2+
2 reference system, the ROHF MOs optimized

for the triplet ground state of CH2, the RHF MOs optimized for the A 1A1 state of

CH2, and the ROHF MOs of CH2 for the X 3B1 state combined with the RHF MOs

of CH2 for the singlet states, the differences between the DEA-EOMCC(3p-1h){2} and

DEA-EOMCC(3p-1h) results, of 1.41, 0.83, 0.40, and 0.66 kcal/mol, respectively, are al-

most identical to the analogous differences between the DEA-EOMCC(3p-1h,4p-2h){2} and

DEA-EOMCC(4p-2h){2} data, which are 1.54, 0.85, 0.50, and 0.64 kcal/mol. This is not sur-

prising, since the DEA-EOMCC(3p-1h){2} and DEA-EOMCC(3p-1h) calculations and the
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DEA-EOMCC(3p-1h,4p-2h){2} and DEA-EOMCC(4p-2h){2} calculations differ in exactly

the same manner, namely, DEA-EOMCC(3p-1h){2} and DEA-EOMCC(3p-1h,4p-2h){2}

treat 3p-1h terms using active orbitals, whereas DEA-EOMCC(3p-1h) and DEA-

EOMCC(4p-2h){2} treat them fully. Because of the approximate treatment of 3p-1h con-

tributions in the DEA-EOMCC(3p-1h,4p-2h){2} calculations, the agreement between the

DEA-EOMCC(3p-1h,4p-2h){2} and full DEA-EOMCC(4p-2h) data is not as good as in

the case of DEA-EOMCC(4p-2h){2}, which uses active orbitals to select only the higher-

rank 4p-2h excitations, while treating 3p-1h contributions fully, but the relatively inexpen-

sive DEA-EOMCC(3p-1h,4p-2h){2} calculations, which capture the dominant 3p-1h and

4p-2h correlations, improve the DEA-EOMCC(3p-1h){2} and DEA-EOMCC(3p-1h) results

that neglect 4p-2h physics altogether. For example, if we look at the largest unsigned

errors relative to full CI obtained in the calculations of the adiabatic A 1A1 − X 3B1,

B 1B1 − X 3B1, and C 1A1 − X 3B1 energy gaps, represented in Table 4.4 by the

MaxUE values, and focus on the DEA-EOMCC results obtained using the ROHF MOs

of CH2 for the triplet ground state and the RHF MOs of CH2 for the remaining three sin-

glet states, we can see significant improvement when going from DEA-EOMCC(3p-1h){2}

and DEA-EOMCC(3p-1h), which give MaxUEs of 2.46 and 1.53 kcal/mol, respectively, to

DEA-EOMCC(3p-1h,4p-2h){2}, which gives MaxUE of 0.76 kcal/mol. In fact, the MaxUE

value characterizing the DEA-EOMCC(3p-1h,4p-2h){2} calculations is virtually identical to

that obtained with the more expensive DEA-EOMCC(4p-2h){2} approach, which gives 0.82

kcal/mol, and not much worse than the MaxUE of 0.43 kcal/mol characterizing the corre-

sponding full DEA-EOMCC(4p-2h) computations. When the ROHF MOs of CH2 are used

in the calculations for all four states, the largest errors obtained with the active-space DEA-

EOMCC(3p-1h,4p-2h){2} and full DEA-EOMCC(3p-1h) approaches are virtually identical,
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but the NPE characterizing the DEA-EOMCC(3p-1h,4p-2h){2} calculations, of 0.16 kcal/-

mol, is more than three times smaller than the NPE characterizing the corresponding DEA-

EOMCC(3p-1h) data (0.54 kcal/mol). The use of ionic MOs obtained in the RHF calcula-

tions for the CH2+
2 dication worsens the DEA-EOMCC(3p-1h,4p-2h){2} results somewhat,

but they are still better than the results of the corresponding DEA-EOMCC(3p-1h) compu-

tations, reducing the MaxUE and NPE values characterizing the adiabatic A 1A1 −X 3B1,

B 1B1 −X 3B1, and C 1A1 −X 3B1 separations by 1.36 and 2.07 kcal/mol, respectively.

In agreement with Ref. [93], where it was demonstrated that the DEA-EOMCC calcu-

lations including 4p-2h contributions are less sensitive to the choice of the underlying MO

basis than the DEA-EOMCC computations truncated at 3p-1h excitations, we observe a

smaller dependence of the A 1A1 −X 3B1, B 1B1 −X 3B1, and C 1A1 −X 3B1 gap val-

ues obtained with the DEA-EOMCC(3p-1h,4p-2h){2}, DEA-EOMCC(4p-2h){2}, and DEA-

EOMCC(4p-2h) approaches on the orbitals used in the calculations than that observed when

the lower-order DEA-EOMCC(3p-1h){2} and DEA-EOMCC(3p-1h) methods are employed.

Indeed, if we look at the numerical data listed in Table 4.4, we can see that the ranges

of the NPE values characterizing the DEA-EOMCC(3p-1h){2} and DEA-EOMCC(3p-1h)

results, when all types of MOs are included in the analysis, are 0.67–2.30 and 0.54–3.53

kcal/mol, respectively. The DEA-EOMCC(3p-1h,4p-2h){2}, DEA-EOMCC(4p-2h){2}, and

DEA-EOMCC(4p-2h) calculations reduce these ranges to 0.16–1.46, 0.24–0.94, and 0.29-0.40

kcal/mol, respectively. Clearly, the DEA-EOMCC(3p-1h,4p-2h){2} calculations, in which

both 3p-1h and 4p-2h components are treated approximately using a small number of active

MOs, have a larger sensitivity to the underlying MO basis than the DEA-EOMCC(4p-2h){2}

and DEA-EOMCC(4p-2h) computations, but the variation in the NPE values characterizing

the DEA-EOMCC(3p-1h,4p-2h){2} results, of 0.16–1.46 kcal/mol, is relatively small and
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acceptable in many applications. In fact, the variation in the NPE values characterizing

the DEA-EOMCC(3p-1h,4p-2h){2} calculations becomes even smaller when we exclude the

results obtained with the ionic MOs optimized for the CH2+
2 dication, i.e., when we only

consider the various types of orbitals optimized for CH2 in our analysis. When we do this,

the range of the NPE values characterizing the DEA-EOMCC(3p-1h,4p-2h){2} results re-

duces to 0.16–0.60 kcal/mol; a similarly small error range, of 0.42–0.76 kcal/mol, is obtained

in this case, when we examine the corresponding MaxUE data. When the data obtained

with the ionic MOs are ignored, the active-space DEA-EOMCC(3p-1h,4p-2h){2} approach

becomes competitive with its more expensive DEA-EOMCC(4p-2h){2} counterpart, which

produces the NPE and MaxUE ranges of 0.24–0.94 and 0.29–0.82 kcal/mol, respectively.

The methylene/TZ2P example is certainly instructive, and it is encouraging to observe

good performance of the DEA-EOMCC(3p-1h,4p-2h){Nu} method in this case. It is, there-

fore, interesting to examine if the DEA-EOMCC(3p-1h, 4p-2h){Nu} approach remains accu-

rate when larger basis sets and the CBS limit are investigated.

4.3.2 The Complete Basis Set Limit Investigation of Singlet and

Triplet States of Methylene

In order to further explore methylene, we performed a sequence of all-electron calculations

using the aug-cc-pCVxZ (x = T, Q, and 5) basis sets [215, 228, 229], abbreviated as ACxZ,

with x representing the cardinal number, and the CBS limit extrapolations [230, 231], sim-

ilar to what was done in one of the previous studies in our group using the CR-EOMCC

methodology [74]. In order to an appropriate assessment of the data produced by a vari-

ety of our DEA-EOMCC approaches, we have included the previous Quantum Monte Carlo
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(QMC) [232–234] study of the ground and three low-lying excited states of methylene by

Zimmerman et al. [235] and the available results from experiment. Experimental data for

the A 1A1 − X 3B1 and B 1B1 − X 3B1 energy gaps are provided. In the case of the

A 1A1 −X 3B1 energy separation, the experimental estimate of the non-relativistic, purely

electronic, adiabatic excitation energy corresponding to the X 3B1 → A 1A1 transition,

of 0.406 eV, was obtained after subtracting the relativistic and Born-Oppenheimer diago-

nal corrections from the vibrationless adiabatic excitation energy (see Ref. [74] for further

details). In the case of B 1B1 − X 3B1 energy separation, the experimental value of the

purely electronic adiabatic excitation energy corresponding to the X 3B1 → B 1B1 transi-

tion, of 1.415 eV, was obtained using the information about the relevant B 1B1 − A 1A1

and B 1B1−X 3B1 gaps from which the zero-point vibrational energies obtained in the full

CI/TZ2P calculations were subtracted (see Ref. [74]). In order to compensate for the missing

experimental C 1A1 − X 3B1 energy gap value and to have a complete evaluation of our

DEA-EOMCC results, we have included the QMC calculations performed by Zimmerman

et al. [235], particularly two different variants of QMC, namely, variational Monte Carlo

(VMC) and diffusion Monte Carlo (DMC), where three different active spaces were used

to generate complete active space trial functions for the QMC calculations reported in Ref.

[235], namely, the (2,2), (4,4), and (6,6) active spaces, with (n,m) denoting an active space

of n electrons and m orbitals. For the purpose of our assessment of DEA-EOMCC results,

we adopted the highest-level QMC calculations, namely, DMC(6,6) and VMC(6,6). In both

the DEA-EOMCC calculations reported in this dissertation and the QMC calculations of

Ref. [235], the geometries for each state were taken from Ref. [217], generated using the full

CI calculations with the [5s3p/2s] augmented with TZ2P basis set of Dunning [216].

The strategy is similar to our discussion in Section 4.3.1. It should be noted that be-
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cause our DEA-EOMCC codes are interfaced with the GAMESS package, the h-functions

of the AC5Z basis set were omitted in our calculations. As already mentioned, all elec-

trons were correlated. The spherical components of the d, f , and g orbitals were em-

ployed throughout. In the calculations employing the ACxZ basis sets with x = T and

Q, we were able to use all of the DEA-EOMCC methods, including the highest DEA-

EOMCC(3p-1h, 4p-2h){Nu} and DEA-EOMCC(4p-2h){Nu} levels, in which both 3p-1h and

4p-2h components of R
(+2)
µ are taken into account. In the case of the largest AC5Z basis

set, we could only afford the DEA-EOMCC(3p-1h){Nu} calculations, in which 4p-2h terms

are neglected. The DEA-EOMCC(3p-1h)/AC5Z, DEA-EOMCC(3p-1h, 4p-2h){Nu}/AC5Z,

and DEA-EOMCC(4p-2h){Nu}/AC5Z calculations using our present codes turned out to

be quite expensive, so in order to estimate the DEA-EOMCC(3p-1h)/AC5Z, DEA-EOMCC

(3p-1h, 4p-2h){Nu}/AC5Z, and DEA-EOMCC(4p-2h){Nu}/AC5Z results we adopted a sim-

ple extrapolation scheme that accounts for both 3p-1h and 4p-2h correlations, and calculated

the final total energies as follows:

E(3p-1h)/AC5Z = E(3p-1h)/ACQZ + E(3p-1h){2}/AC5Z− E(3p-1h){2}/ACQZ, (4.66)

E(3p-1h, 4p-2h){2}/AC5Z = E(3p-1h, 4p-2h){2}/ACQZ + E(3p-1h){2}/AC5Z

− E(3p-1h){2}/ACQZ,

(4.67)

and

E(4p-2h){2}/AC5Z = E(4p-2h){2}/ACQZ + E(3p-1h){2}/AC5Z

− E(3p-1h){2}/ACQZ.

(4.68)

The first terms on the right-hand sides of Eqs. (4.66–4.68) are the DEA-EOMCC(3p-1h)/ACQZ,

DEA-EOMCC(3p-1h, 4p-2h){Nu}/ACQZ, and DEA-EOMCC(4p-2h){Nu}/ACQZ energies.
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The effect of going from the ACQZ to the AC5Z basis set is estimated by forming the

difference of energies obtained in the less expensive DEA-EOMCC(3p-1h){Nu}/AC5Z and

DEA-EOMCC(3p-1h){Nu}/ACQZ calculations. We are confident of these extrapolation for-

mulas since the results of DEA-EOMCC(3p-1h){Nu} calculations using the ACTZ, ACQZ,

and AC5Z basis sets, which we could calculate for all states, indicate that the effect of the

basis set on the singlet–triplet gaps characterizing the low-lying states of methylene exam-

ined in this work is small (see Table 4.5). We also provide CBS limits for the DEA-EOMCC

calculations. The CBS total energy of each state of interest is directly extrapolated using

the formula [228]

E(x) = E∞ +Be−(x−1) + Ce−(x−1)2 . (4.69)

The x-variable number entering Eq. (4.69) represents the cardinal number of the ACxZ basis

set (x = 3 for ACTZ, x = 4 for ACQZ, and x = 5 for AC5Z). E(x) is the total DEA-EOMCC

energy computed with the ACxZ basis set, and E∞ is the desired CBS limit of the total

DEA-EOMCC energy for a given electronic state of the (N + 2)-electron species.

The results of our large basis set of methylene calculations are shown in Table 4.5. We

focus on only one type of MOs, namely, the (N−2)-electron orbitals obtained in RHF calcu-

lations for the CH2+
2 reference dication. We begin by analyzing the basis set effects among

the DEA-EOMCC computations. We observe that the A 1A1 − X 3B1, B 1B1 − X 3B1,

and C 1A1 − X 3B1 gaps do not change much, when one goes from ACTZ to the ACT5Z

basis sets. In Table 4.5, we also observe that it is sufficient to use active orbitals to select

dominant 3p-1h excitations, since the active-space DEA-EOMCC(3p-1h) data accurately re-

produce the results of the expensive Monte Carlo methods to within 1 kcal/mol. Accounting

for the effects of 4p-2h correlations through the DEA-EOMCC(3p-1h, 4p-2h){Nu} approach
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or the DEA-EOMCC(4p-2h){Nu} method do not significantly alter the values for these gaps.

Methylene is an interesting case, but, as already pointed out above, the lower-level DEA-

EOMCC(3p-1h) calculations and their active-space counterparts are capable of providing

reasonable results without the presence of 4p-2h terms. Our next examples demonstrate the

utility of the DEA-EOMCC(3p-1h, 4p-2h){Nu} approach in situations where 4p-2h contri-

butions are significant (sometimes, quite large).

4.3.3 Adiabatic Singlet–Triplet Gap in Trimethylenemethane

We now turn to the TMM molecule, a non-Kekulé hydrocarbon characterized by the delo-

calization of four π electrons over four closely spaced π-type orbitals (see, e.g., Refs. [147]

and [241–243] for the relevant information). The four valence MOs of TMM’s π network

include the non-degenerate 1a′′2 , the doubly degenerate 1e′′, and the non-degenerate 2a′′2 or-

bitals, when D3h symmetry of the triplet ground state is used, or the 1b1, 1a2, 2b1, and 3b1

orbitals, when C2v symmetry relevant to the low-lying singlet states is adopted. Because of

its fascinating and challenging electronic structure, the TMM molecule has attracted a lot

of attention over the years among many theoretical and experimental groups (cf. Refs. [92]

and [93], and references cited therein for the historical account and further information). In

particular, a lot of effort has been devoted to an accurate determination of the relatively

small energy gaps between the low-lying singlet and triplet states. As implied by Hund’s

rule and the EPR data [244], TMM has a D3h-symmetric triplet ground state, X 3A′2, dom-

inated by the |{core}(1a′′2)2(1e′′1)1(1e′′2)1| configuration (which in a C2v description becomes

the X 3B2 state dominated by the |{core}(1b1)2(1a2)1(2b1)1| configuration). The next two

states in TMM’s electronic spectrum are the nearly degenerate singlets stabilized by the

Jahn-Teller distortion that lifts their exact degeneracy in a D3h description, which have a
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Table 4.5: Comparison of the adiabatic excitation energies (in eV) for the low-lying states
of CH2, as obtained with various DEA-EOMCC approaches using the ACxZ (x=T, Q, and
5) basis sets and (N − 2)-electron RHF orbitals, and extrapolating to the CBS limit, with
the corresponding QMC results and experiment.a

Adiabatic Excitation Energy (eV)

Method Basis Set A 1A1 −X 3B1 B 1B1 −X 3B1 C 1A1 −X 3B1

DEA-EOMCC(3p-1h){2}b x=T 0.474 1.463 2.520
x=Q 0.469 1.449 2.498
x=5 0.470 1.449 2.495
CBS 0.471 1.450 2.494

DEA-EOMCC(3p-1h) x=T 0.408 1.408 2.391
x=Q 0.400 1.391 2.365
x=5 0.401 1.392 2.362
CBS 0.402 1.393 2.361

DEA-EOMCC(3p-1h,4p-2h){2}b x=T 0.488 1.512 2.661
x=Q 0.482 1.496 2.639
x=5 0.483 1.497 2.636
CBS 0.483 1.498 2.635

DEA-EOMCC(4p-2h){2}b x=T 0.415 1.452 2.523
x=Q 0.406 1.434 2.496
x=5 0.408 1.435 2.494
CBS 0.407 1.436 2.493

DMC: CAS(6,6) 0.406(4) 1.416(4) 2.524(4)
VMC: CAS(6,6) 0.430(8) 1.460(8) 2.550(8)

Experiment 0.406c 1.415d

a The geometries were taken from Ref. [217] and were generated using full CI with the TZ2P basis set. In

all DEA-EOMCC calculations, all electrons were correlated and the spherical components of the d, f , and g

basis functions were employed throughout. Since the integral routines in CC package used in the underlying

(N − 2)-electron CCSD calculations are currently restricted to g functions, the h functions of the AC5Z

basis set were neglected. The CH2+
2 reference system used in the DEA-EOMCC calculations was created

by vacating the 3a1 HOMO of CH2.
b The active space consisted of the HOMO and LUMO of CH2, 3a1 and 1b1, respectively, which are unoc-

cupied in the CH2+
2 reference system used in the DEA-EOMCC calculations.

c Obtained by correcting the experimentally derived value of the vibrationless adiabatic A 1A1 − X 3B1
energy gap reported in Ref. [236] for the relativistic and non-adiabatic (Born-Oppenheimer diagonal correc-

tion) effects calculated in Refs. [237] and [238], respectively (as described in Ref. [239]).
d Obtained by correcting the adiabatic separation between the v = 0 vibronic levels of the B 1B1 and

X 3B1 states, based on the information about the B 1B1 − A 1A1 and A 1A1 − X 3B1 gaps provided

in Refs. [240] and [236], respectively, for the zero-point vibrational energies obtained in the full CI/TZ2P

calculations in Ref. [217] (as described in Ref. [235]).
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multi-reference, diradical, character. The lower of the two singlets is an open-shell singlet

state characterized by a Cs minimum, which can be approximated by a twisted C2v struc-

ture, so this state is usually labeled as the A 1B1 state. The second singlet, abbreviated

B 1A1, is a C2v-symmetric state dominated by the closed-shell |{core}(1b1)2(1a2)2| and

|{core}(1b1)2(2b1)2| determinants (see, e.g., Refs. [147], [241], and [242] for more informa-

tion).

The highest ab initio levels of electronic structure theory applied to TMM to date repro-

duce the adiabatic, purely electronic, energy gap between the D3h-symmetric X 3A′2 ground

state and the C2v-symmetric B 1A1 excited state, which is estimated at 18.1 kcal/mol [147],

to within 1–6 kcal/mol, i.e., some high-level approaches work well, but some struggle (cf.

Table 6 in Ref. [212] for a compilation of representative examples). The most accurate pre-

viously published [92, 93] full and active-space DIP-EOMCC calculations truncated at 4h-2p

excitations and the corresponding active-space DEA-EOMCC computations truncated at

4p-2h excitations using the cc-pVDZ basis set place the adiabatic B 1A1 − X 3A′2 gap in

TMM within 1 kcal/mol from the recommended value of 18.1 kcal/mol, independent of the

type of MOs used to define the corresponding wave function expansions. The DIP-EOMCC

method truncated at 3h-1p excitations and its DEA-EOMCC counterpart truncated at 3p-1h

terms worsen these results, producing values that are very sensitive to the type of MOs used

in the calculations, which can be as good as 18.3 kcal/mol and as bad as 23.9 kcal/mol if

3h-1p and 3p-1h components are treated fully (see Refs. [92] and [93] and Table 4.6). As

shown in Table 4.6, the use of the larger cc-pVTZ basis set does not significantly alter these

conclusions, i.e., the highest-level affordable DEA-EOMCC/cc-pVTZ calculations with a full

treatment of 3p-1h contributions and an active-space treatment of 4p-2h terms (as already

mentioned, the corresponding full DEA-EOMCC(4p-2h) calculations are prohibitively ex-
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pensive for us at this time) produce the adiabatic gaps between the B 1A1 and X 3A′2

states in the narrow 18.4–18.7 kcal/mol range, which is in excellent agreement with the rec-

ommended value of 18.1 kcal/mol, whereas the DEA-EOMCC approach truncated at 3p-1h

excitations treated fully gives generally less accurate values that vary from 21.1 to 23.5 kcal/-

mol. Our main objective here is to examine if we can reproduce the high-accuracy results

provided by the DEA-EOMCC method with a full treatment of 3p-1h and an active-space

treatment of 4p-2h terms, summarized in Table 4.6, with the considerably less expensive

DEA-EOMCC(3p-1h,4p-2h){Nu} approach (cf. Table 4.3), which approximates 3p-1h and

4p-2h components using active orbitals. We also want to investigate if it is sufficient to

handle 3p-1h excitations within the DEA-EOMCC schemes truncated at 3p-1h or 4p-2h

components, which in Refs. [92] and [93] were treated fully, using a small subset of active

orbitals. As explained in the beginning of this section, the adiabatic B 1A1 − X 3A′2 gap

value of 18.1 kcal/mol reported in Ref. [147], which serves as a key reference value for our

DEA-EOMCC calculations, was determined by subtracting the SF-DFT/6-31G(d) ∆ZPVE

corrections from the vibronic separation between the X 3A′2 and B 1A1 states extracted from

the photoelectron spectroscopy measurements discussed in Ref. [218]. The other low-energy

singlet state, A 1B1, which we mentioned above and which is nearly degenerate with the

B 1A1 state, was not observed in the photoelectron spectrum reported in Ref. [218] due to

unfavorable Franck-Condon factors, so we do not discuss it in this dissertation. Following

our earlier work [92, 93], in performing the DEA-EOMCC calculations with the full and

active-space treatments of 3p-1h excitations and the active-space treatment of 4p-2h contri-

butions, we adopted the geometries of the X 3A′2 and B 1A1 states of TMM optimized at

the SF-DFT/6-31G(d) level in Ref. [147].

In all of the DEA-EOMCC calculations for TMM reported in this study, the (N − 2)-
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Table 4.6: The selected DEA-EOMCC results for the adiabatic singlet–triplet separation,
∆ES−T = E(B 1A1)−E(X 3A′2), in kcal/mol, in trimethylenemethane (TMM), as described
by the cc-pVDZ and, in parentheses, cc-pVTZ basis sets, calculated using the SF-DFT/6-
31G(d) geometries.a

Orbitals

Method (N − 2)-electron RHFb N -electron ROHFc N -electron ROHF/RHFd

DEA-EOMCC(3p-1h){3}e 24.2 (24.0) 19.6 (22.3) 21.5 (22.3)
DEA-EOMCC(3p-1h) 23.9 (23.5) 19.4 (21.1) 20.9 (21.1)
DEA-EOMCC(3p-1h,4p-2h){3}e 19.3 (18.9) 18.7 (19.9) 19.4 (19.9)
DEA-EOMCC(4p-2h){3}e 19.0 (18.4) 18.6 (18.7) 18.9 (18.7)

Expt.f 16.1± 0.1
Expt.−∆ZPVEg 18.1

a The TMM2+ reference system used in the DEA-EOMCC calculations was created by vacating the

doubly degenerate valence 1e′′ (the D3h-symmetric X 3A′2 state) or non-degenerate 1a2 and 2b1 (the C2v-

symmetric B 1A1 state) orbitals of the TMM’s π system. The lowest-energy core orbitals correlating with
the 1s shells of the carbon atoms were frozen in the post-SCF calculations and the spherical components of
the d and f orbitals were employed throughout.
b The RHF orbitals of the singlet ground state of TMM2+ were employed.
c The ROHF orbitals obtained for the triplet ground state of TMM were employed.
d The ROHF orbitals of TMM for the X 3A′2 state and the RHF orbitals of TMM for the B 1A1 state
were employed.
d The ROHF orbitals of TMM for the X 3A′2 state and the RHF orbitals of TMM for the B 1A1 state
were employed.
e The active space consisted of the doubly degenerate 1e′′ and non-degenerate 2a′′2 orbitals (using the D3h
symmetry of the X 3A′2 state) or the 1a2, 2b1, and 3b1 orbitals (using the C2v symmetry of the B 1A1
state), which are the three lowest-energy unoccupied MOs in the TMM2+ reference system.
f Ref. [218]. g The estimate of the purely electronic ∆ES−T gap obtained by subtracting the zero-point

vibrational energy corrections, ∆ZPVE, resulting from the SF-DFT/6-31G(d) calculations reported in Ref.
[147] from the experimental singlet–triplet separation determined in Ref. [218].
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electron closed-shell TMM2+ reference system was obtained by vacating the doubly degen-

erate 1e′′ shell (the D3h-symmetric X 3A′2 state) or the non-degenerate 1a2 and 2b1 orbitals

(the C2v-symmetric B 1A1 state) of the TMM’s valence π network. In analogy to the previ-

ously discussed methylene example and following our earlier study [93], in order to examine

the dependence of the various DEA-EOMCC results on the type of MO basis that defines the

corresponding wave function expansions, we used both the ground-state RHF orbitals of the

TMM2+ reference dication and the RHF or ROHF orbitals optimized for the TMM target

species. When utilizing the orbitals optimized for TMM, we followed Refs. [92] and [93] and

adopted two different strategies. In the first strategy in this category, we relied on only one

type of orbitals, namely, the high-spin ROHF MOs optimized for the triplet ground state,

which we used to perform the DEA-EOMCC calculations for both electronic states of TMM

that are examined here. In the second strategy, we used two different sets of MOs, namely,

the ROHF orbitals optimized for the X 3A′2 state in the DEA-EOMCC calculations for this

D3h-symmetric triplet ground state and the RHF orbitals obtained for the B 1A1 state in the

DEA-EOMCC calculations for the C2v-symmetric B 1A1 state. In analogy to Ref. [93] and

as already alluded to above, the third possibility of exploiting the RHF MOs optimized for

the B 1A1 state in the DEA-EOMCC calculations for both states of TMM that interest us

here was not pursued, since such orbitals break the degeneracy of the valence 1e′′ shell at the

D3h geometry of the triplet ground state, resulting in a symmetry-broken description of the

X 3A′2 state. The high-spin ROHF MOs optimized for theX 3A′2 state of TMM and the RHF

orbitals optimized for the singlet ground state of TMM2+ guarantee a symmetry-adapted

description of the triplet ground state of TMM at its optimum D3h geometry, when the DEA-

EOMCC calculations are performed. The RHF MOs optimized for the C2v-symmetric B 1A1

state are also acceptable as long as we do not use them to determine the D3h-symmetric
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X 3A′2 state, i.e., the strategy combining the use of the ROHF orbitals optimized for the

X 3A′2 state in the DEA-EOMCC calculations for the X 3A′2 state and the RHF orbitals of

the B 1A1 state in the DEA-EOMCC calculations for the B 1A1 state is fine. Consistent

with the structure of the valence shells of TMM, for each choice of the MO basis, the active

orbitals employed in the DEA-EOMCC(3p-1h){Nu}, DEA-EOMCC(3p-1h,4p-2h){Nu}, and

DEA-EOMCC(4p-2h){Nu} calculations were the doubly degenerate 1e′′ and non-degenerate

2a′′2 MOs in the case of the D3h-symmetric X 3A′2 state and the 1a2, 2b1, and 3b1 or-

bitals for the C2v-symmetric B 1A1 state. In other words, the number of active unoccupied

orbitals, Nu, used to define 3p-1h component in the DEA-EOMCC(3p-1h){Nu} calcula-

tions, 3p-1h and 4p-2h components in the DEA-EOMCC(3p-1h,4p-2h){Nu} computations,

and 4p-2h component in the DEA-EOMCC(4p-2h){Nu} calculations was set at 3, mak-

ing all of these calculations affordable, even when the cc-pVTZ basis set is employed. As

shown in Table 4.3 and as discussed in Section 4.2.4, this is particularly true in the case

of the DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} methods, which

are substantially less expensive than the corresponding DEA-EOMCC(3p-1h) and DEA-

EOMCC(4p-2h){Nu} approaches, not to mention full DEA-EOMCC(4p-2h), which becomes

prohibitively expensive when the TMM molecule is examined.

It is apparent from Table 4.6 that the agreement between the adiabatic B 1A1 −X 3A′2

gap values obtained in the inexpensive DEA-EOMCC(3p-1h){3} calculations, which use only

three active unoccupied orbitals to select the dominant 3p-1h excitations, and their coun-

terparts obtained with the considerably more demanding DEA-EOMCC(3p-1h) approach,

where 3p-1h excitations are treated fully, is generally very good. Independent of the basis

set and independent of the type of MOs used to construct the corresponding wave func-

tion expansions, the differences between the active-space DEA-EOMCC(3p-1h){3} and full
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DEA-EOMCC(3p-1h) data do not exceed 1.2 kcal/mol, and they are, in most cases, consid-

erably smaller, on the order of 0.2–0.6 kcal/mol. The same is observed when we compare the

higher-level DEA-EOMCC(3p-1h,4p-2h){3} and DEA-EOMCC(4p-2h){3} methods, which

use active orbitals to select the dominant 4p-2h contributions, but differ in the treatment

of 3p-1h component of the electron attaching operator R
(+2)
µ . The differences between the

B 1A1 −X 3A′2 gap values obtained in the DEA-EOMCC(4p-2h){3} computations, where

the 3p-1h component is treated fully, with their counterparts obtained with the considerably

less expensive DEA-EOMCC(3p-1h,4p-2h){3} approach vary between 0.1 and 1.2 kcal/mol,

with the majority of these differences falling into the 0.1–0.5 kcal/mol range. As men-

tioned earlier, on the basis of the comparison of the full DEA-EOMCC(3p-1h), active-space

DEA-EOMCC(4p-2h){3}, and experimentally derived data for the adiabatic separation be-

tween the X 3A′2 and B 1A1 states in TMM, 4p-2h effects are important if we are to

obtain a fully quantitative description. The DEA-EOMCC(3p-1h,4p-2h){3} calculations re-

flect on this in a proper manner by improving the results of the DEA-EOMCC(3p-1h){3}

and DEA-EOMCC(3p-1h) calculations by about 1–5 kcal/mol, with the largest error reduc-

tions observed when the ionic orbitals, obtained in the RHF calculations for the TMM2+

reference system, are employed. Indeed, when one uses the RHF MOs optimized for the

TMM2+ dication, the DEA-EOMCC(3p-1h,4p-2h){3} approach brings the results of the

DEA-EOMCC(3p-1h){3} and DEA-EOMCC(3p-1h) calculations, which neglect 4p-2h cor-

relations, closer to the recommended B 1A1 − X 3A′2 gap value of 18.1 kcal/mol by 4.9

and 4.6 kcal/mol, respectively, when the cc-pVDZ basis set is employed, and 5.1 and 4.6

kcal/mol, when the cc-pVTZ basis set is used. As a result, the adiabatic gaps between the

X 3A′2 and B 1A1 states obtained in the DEA-EOMCC(3p-1h,4p-2h){3} calculations, which

range from 18.7 and 19.4 kcal/mol, when the cc-pVDZ basis set is used, and 18.9 and 19.9
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kcal/mol, when one uses the cc-pVTZ basis, are in generally very good agreement with the

experimentally derived value of 18.1 kcal/mol. They are only slightly worse than the corre-

sponding DEA-EOMCC(4p-2h){3} results, which range from 18.6 and 19.0 kcal/mol in the

cc-pVDZ case and 18.4 and 18.7 kcal/mol when the cc-pVTZ basis is employed.

In analogy to the DEA-EOMCC(4p-2h){3} approach, the improvements offered by its less

expensive DEA-EOMCC(3p-1h,4p-2h){3} counterpart over the DEA-EOMCC calculations

truncated at 3p-1h excitations can also be seen when we compare the sensitivity of the various

DEA-EOMCC calculations to the type of orbitals used to construct the corresponding wave

function expansions. Indeed, when we probe the (N −2)-electron MOs obtained in the RHF

calculations for the TMM2+ reference dication and the N -electron ROHF or ROHF and RHF

orbitals optimized for the TMM target system, as described above, the variation in the DEA-

EOMCC(3p-1h){3} and DEA-EOMCC(3p-1h) results for the adiabaticB 1A1−X 3A′2 gap in

TMM is 4.6 and 4.5 kcal/mol, respectively, when the cc-pVDZ basis set is employed, and 1.7

and 2.4 kcal/mol, when one uses cc-pVTZ. The DEA-EOMCC(4p-2h){3} calculations reduce

these variations to the impressively small 0.3–0.4 kcal/mol level, but it is encouraging to

observe that the considerably less expensive DEA-EOMCC(3p-1h,4p-2h){3} computations,

in which the resulting gap values vary by 0.7 kcal/mol in the cc-pVDZ case and 1.0 kcal/mol

in the case of cc-pVTZ, remain rather insensitive to the type of MOs used to construct the

corresponding wave functions. The above discussion shows that the relatively inexpensive

DEA-EOMCC calculations with an active-space treatment of 3p-1h and 4p-2h excitations

are not only accurate in describing singlet–triplet gaps in diradical systems, but are also

quite robust, enabling one to use different types of orbitals without risking that the results

dramatically change, as is often the case when DEA-EOMCC computations truncated at

3p-1h excitations are performed.
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4.3.4 Vertical Singlet–Triplet Gaps in Antiaromatic Diradicals

We also applied the DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu}

approaches and their more expensive full DEA-EOMCC(3p-1h) and active-space DEA-

EOMCC(4p-2h){Nu} counterparts to the vertical energy gaps between the lowest singlet

and triplet states of the following antiaromatic diradical systems: D4h-symmetric form of

cyclobutadiene (1), D5h-symmetric cyclopentadienyl cation (2), and five cyclobutadiene

derivatives with polar substituents, including aminocyclobutadiene (3), formylcyclobuta-

diene (4), 1-amino-2-formyl-cyclobutadiene (5), 1,2-bis(methylene)cyclobutadiene (6), and

1,3-bis(methylene)cyclobutadiene (7), all shown in Figure 4.2. In doing so, we followed the

computational strategy of Ref. [219]. Thus, we adopted the D4h point group for system

1, the D5h point group for system 2, and the C1 point group for systems 3–7. In each

case, the closed-shell (N − 2)-electron reference system used to set up the DEA-EOMCC

calculations was obtained by vacating the two valence partly occupied orbitals that define

the singlet and triplet states of interest, which are exactly degenerate in systems 1 and 2

and nearly degenerate in systems 3–7. For example, the (N − 2)-electron reference dication

used in the DEA-EOMCC calculations for system 1 was obtained by vacating the two va-

lence singly occupied MOs of eg symmetry. For system 2, we vacated the degenerate valence

e
′′
1 shell, etc. Consistent with the structure of the valence π shells in systems 1–7, which

consist of one doubly occupied, two partly occupied, and one unoccupied MOs in systems

1, 3, and 4 and one doubly occupied, two partly occupied, and two unoccupied MOs in

systems 2 and 5–7, the active spaces needed to perform the DEA-EOMCC(3p-1h){Nu},

DEA-EOMCC(3p-1h,4p-2h){Nu}, and DEA-EOMCC(4p-2h){Nu} calculations were defined

in the following manner. For systems 1, 3, and 4, we used the Nu = 3 MOs, which are

163



Figure 4.2: Diradical systems considered in this work. 1: C4H4, 2: [C5H5]+, 3: C4H3NH2,
4: C4H3CHO, 5: C4H2NH2CHO, 6: C4H2-1, 2-(CH2)2, and 7: C4H2-1, 3-(CH2)2.

164



the three lowest-energy unoccupied orbitals in the respective 12+, 32+, and 42+ reference

dications. For systems 2, 5, 6, and 7, we used the Nu = 4 orbitals, which are the four

lowest-energy unoccupied MOs in the respective (N − 2)-electron 22+, 52+, 62+, and 72+

species. We verified the appropriateness of the above active orbital choices by comparing

the full DEA-EOMCC(3p-1h) and active-space DEA-EOMCC(3p-1h){Nu} data obtained

using the cc-pVDZ basis set, abbreviated below as VDZ. In order to examine the depen-

dence of our results on the basis set, we used a larger maug-cc-pVTZ basis [245], abbre-

viated as mATZ. For some of the systems considered in this work, namely systems 3–7,

the DEA-EOMCC(4p-2h){Nu}/mATZ calculations turned out to be quite expensive, so

to estimate the highest level DEA-EOMCC(4p-2h){Nu}/mATZ-level data, abbreviated as

DEA-EOMCC[4p-2h], which we could not obtain in direct calculations, we adopted a simple

extrapolation scheme defined as follows:

E[4p-2h] = E(4p-2h){Nu}/VDZ + E(3p-1h){Nu}/mATZ− E(3p-1h){Nu}/VDZ. (4.70)

The first term on the right-hand side of Eq. (4.70) is the DEA-EOMCC(4p-2h){Nu}/VDZ

energy. The effect of going from the VDZ basis set to mATZ is estimated by forming

the difference of energies obtained in the less expensive DEA-EOMCC(3p-1h){Nu}/mATZ

and DEA-EOMCC(3p-1h){Nu}/VDZ calculations. In addition to the calculations using the

DEA-EOMCC methods entering Eq. (4.70), we performed the full DEA-EOMCC(3p-1h) and

active-space DEA-EOMCC(3p-1h,4p-2h){Nu} computations using the VDZ basis set (all

seven systems) and the DEA-EOMCC(3p-1h,4p-2h){Nu}/mATZ calculations for the small-

est system 1. We carried out these extra computations to validate the basis set extrapolation

scheme based on Eq. (4.70), especially the usefulness of the DEA-EOMCC(3p-1h){Nu} ap-
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proach in estimating the effect of going from the VDZ basis set to the mATZ basis. Following

Refs. [92–94], in all of the DEA-EOMCC calculations performed in this work, the ground

states of the underlying (N − 2)-electron closed-shell cores were obtained using CCSD.

Table 4.7: The DEA-EOMCC results for the vertical singlet–triplet gaps, ∆ES−T = E(S)−
E(T), in kcal/mol, in systems 1–7, as described by the VDZ and mATZ basis sets.

System
Method 1 2 3 4 5 6 7

VDZ
DEA-EOMCC(3p-1h){Nu} -1.37 16.38 0.44 -1.24 -6.90 -81.63 18.26
DEA-EOMCC(3p-1h) -1.42 16.06 0.34 -1.32 -7.46 -81.84 17.95
DEA-EOMCC(3p-1h,4p-2h){Nu} -4.98 14.25 -3.22 -4.32 -4.82 -78.42 20.03
DEA-EOMCC(4p-2h){Nu} -5.04 13.91 -3.30 -4.40 -5.49 -78.75 19.76

mATZ
DEA-EOMCC(3p-1h){Nu} -0.53 16.35 1.09 -0.48 -7.09 -80.56 16.98

DEA-EOMCC[4p-2h]a -4.20b 13.88 -2.65 -3.65 -5.68 -77.68 18.49
Nu 3 4 3 3 4 4 4

a Best estimate defined by the extrapolation formula given by Eq. (4.70).
b The DEA-EOMCC(3p-1h,4p-2h){Nu}/mATZ calculation gives -4.08 kcal/mol.

All of the DEA-EOMCC calculations and the underlying CCSD computations were per-

formed using the RHF MOs corresponding to the (N − 2)-electron closed-shell cores. In this

way, we could maintain all of the relevant symmetries throughout the calculations. We could

accomplish the same goal by using other types of orbitals, such as the N -electron ROHF

orbitals obtained in the calculations for the triplet states of diradicals examined in this work,

but the resulting singlet–triplet gaps turned out to be virtually independent of the type of

MOs exploited in the calculations, in agreement with our earlier findings reported in Refs.

[92–94]. As in Ref. [219], in all of the post-HF calculations the core orbitals correlating with

the 1s shells of the C, N , and O atoms were kept frozen and the spherical components of d

and f basis functions were employed throughout.

The results of our various DEA-EOMCC calculations for the singlet–triplet gaps in
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systems 1–7 are summarized in Table 4.7. Our highest-level calculated DEA-EOMCC

(4p-2h){Nu}/VDZ data and their extrapolation to the larger mATZ basis set using Eq.

(4.70), abbreviated as DEA-EOMCC[4p-2h], which we treat in this work as best estimates

of the ∆ES−T values of interest, indicate that systems 1 and 3–6 have singlet ground

states, whereas the ground states of systems 2 and 7 are triplets. As shown in Table

4.8, where we compare our extrapolated DEA-EOMCC[4p-2h] values with the singlet–triplet

gaps resulting from the symmetry-broken, UHF-based, calculations using the single-reference

CCSD(T) (UCCSD(T)) approach and its Brueckner-orbital UBD(T) analog [246], and the

multi-reference MkCCSD computations using the ROHF and CASSCF orbitals, our DEA-

EOMCC(4p-2h)-level results agree in this regard with the findings of Saito et al [219].

Before making further comparisons between the results of our DEA-EOMCC calcula-

tions and the ∆ES−T values reported in Ref. [219], we comment on the extrapolation

procedure defined by Eq. (4.70). We begin with the choice of active orbitals used to se-

lect the dominant 3p-1h and 4p-2h contributions in the DEA-EOMCC(3p-1h){Nu} and

DEA-EOMCC(4p-2h){Nu} computations. A comparison of the results of the full DEA-

EOMCC(3p-1h) and active-space DEA-EOMCC(3p-1h){Nu} calculations using the VDZ

basis set demonstrates that our choice of active orbitals, which allow us to select the domi-

nant higher-than-2p contributions in the DEA-EOMCC wave function ansatz is appropriate.

Indeed, as shown in Table 4.7, the differences between the singlet–triplet gaps resulting from

the DEA-EOMCC(3p-1h)/VDZ and DEA-EOMCC(3p-1h){Nu}/VDZ calculations are very

small, ranging from 0.05 kcal/mol for system 1 to 0.56 kcal/mol for system 5, where the

DEA-EOMCC(3p-1h)/VDZ gap value is -7.46 kcal/mol. In fact, one observes similarly small

differences when comparing the results of the higher-level DEA-EOMCC(4p-2h){Nu}/VDZ

calculations, in which 4p-2h terms are treated using active orbitals, but 3p-1h terms are
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treated fully, with the results obtained with the DEA-EOMCC(3p-1h,4p-2h){Nu} approach,

in which both types of terms are treated using active orbitals. We can certainly conclude

that the use of the active-space DEA-EOMCC(3p-1h){Nu} approach in Eq. (4.70), as a sub-

stitute for the considerably more expensive full DEA-EOMCC(3p-1h) parent in estimating

the effect of going from the VDZ basis set to the mATZ one, is an appropriate procedure.

Equation (4.70) is also justified by the fact that the effect of going from the smaller

VDZ basis to the larger mATZ basis set on the calculated ∆ES−T values is generally rather

small, implying that it is safe to estimate it using the lower-level DEA-EOMCC(3p-1h){Nu}

method, as opposed to the significantly more expensive DEA-EOMCC(4p-2h){Nu} ap-

proach. Indeed, as shown in Table 4.7, the differences between the singlet–triplet gaps

resulting from the DEA-EOMCC(3p-1h){Nu}/VDZ and DEA-EOMCC(3p-1h){Nu}/mATZ

calculations range from 0.03 kcal/mol for system 2 to 1.28 kcal/mol for system 7, where the

DEA-EOMCC(3p-1h)/VDZ gap value is 18.26 kcal/mol, for an average of 0.69 kcal/mol. Our

extrapolation of the DEA-EOMCC(4p-2h)/mATZ-level result based on Eq. (4.70) gives -4.20

kcal/mol, in virtually perfect agreement with the DEA-EOMCC(3p-1h,4p-2h){3}/mATZ

calculation. This means that Eq. (4.70) works well, allowing us to capture the effect of

high-order 4p-2h correlations and the effect of going from the VDZ basis set to mATZ in an

accurate and computationally manageable manner.

Having established the validity of Eq. (4.70), which, given the above analysis and pre-

vious extensive studies of the DEA-EOMCC approaches with up to 4p-2h excitations [92–

94], is expected to produce singlet–triplet gap values in systems 1–7 to within 1 kcal/mol

or better, we comment on our best DEA-EOMCC[4p-2h] (and the corresponding DEA-

EOMCC(4p-2h){Nu}/VDZ) ∆ES−T values. First, it is important to note that although bulk

of the correlation effects is captured at the DEA-EOMCC(3p-1h) level, the high-order 4p-2h
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effects can be quite substantial. When we compare the extrapolated DEA-EOMCC[4p-2h]

and calculated DEA-EOMCC(3p-1h){Nu}/mATZ gap values, or, equivalently, the DEA-

EOMCC(4p-2h){Nu}/VDZ and DEA-EOMCC(3p-1h){Nu}/VDZ data, the 4p-2h effects

range, in absolute value, from 1.4 kcal/mol in system 5 to 3.7 kcal/mol in systems 1 and

3. Although they typically reduce the total electronic energies of the individual states, their

net effect on the calculated singlet–triplet gaps can go either way. Indeed, we may encounter

lowering of the signed ∆ES−T values due to 4p-2h correlations, as in systems 1–4, or we

can find cases where the signed singlet–triplet gaps increase, as in systems 5–7. In some

cases, the 4p-2h effects can change a tiny singlet–triplet gap near zero to a considerably

larger absolute value, as in systems 1 and 4, but there also are situations, such as system 3,

where 4p-2h correlations change the state ordering and, thus, the sign of ∆ES−T. It is quite

clear from the results shown in Table 4.7 that one has to account for the high-order 4p-2h

effects within the DEA-EOMCC framework to obtain reasonably converged values of the

singlet–triplet gaps in diradicals. This is consistent with our earlier DEA-EOMCC studies

reported in Refs. [92–94].

The high accuracy of our extrapolated DEA-EOMCC[4p-2h] data and the underlying

DEA-EOMCC(4p-2h){Nu}/VDZ calculations, which include sophisticated 4p-2h terms, in

addition to their lower-rank 2p and 3p-1h counterparts, on top of CCSD, implies that we

should be able to judge other methods. We now comment on the singlet–triplet gaps resulting

from the symmetry-broken, UHF-based, computations using the single-reference CCSD(T)

(UCCSD(T)) approach and its Brueckner-orbital analog, abbreviated as UBD(T) [246], and

the ROHF- and CASSCF-based state-specific multi-reference CCSD approach of Mukherjee

(MkCCSD) [247] calculations reported by Saito et al. [219]. We observe that all of these

methods agree in predicting the correct state ordering. Unfortunately, as shown in Table 4.8,
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they disagree, sometimes rather significantly, in quantitative predictions. In the case of sys-

tems 1–4, there is a great deal of consistency among the singlet–triplet gap values provided

by UCCSD(T) and UBD(T) and those obtained in our DEA-EOMCC(4p-2h){Nu}/VDZ

and DEA-EOMCC[4p-2h] calculations, which agree to within ∼ 1 kcal/mol, but one can-

not say the same about the MkCCSD data, which seem to be in rather large error, on

the order of 3–4 kcal/mol, displaying a significant dependence of the resulting ∆ES−T val-

ues on the type of orbitals used in the calculations in the case of system 2. The poor

performance of MkCCSD for system 1 is reinforced by the results of the multi-reference

averaged quadratic CC calculations [248], reported in Ref. [219] as well, which give ∆ES−T

of -5.5 kcal/mol, in good agreement with our highest-level DEA-EOMCC[4p-2h] and DEA-

EOMCC(4p-2h){Nu}/VDZ calculations and the UCCSD(T) and UBD(T) data, but in sharp

disagreement with the ROHF- and CASSCF-based MkCCSD values. Based on the results

for systems 1–4 and the MUE values relative to DEA-EOMCC[4p-2h] reported in Table

4.8, one might recommend the use of the symmetry-broken UCCSD(T) and UBD(T) meth-

ods in the calculations of singlet–triplet gaps in diradicals, but the results for system 5,

where errors relative to DEA-EOMCC(4p-2h){Nu}/VDZ and DEA-EOMCC[4p-2h] in the

UCCSD(T) and UBD(T) ∆ES−T values are on the order of 5 kcal/mol, show that this

would be misleading. The agreement among the UCCSD(T), UBD(T), ROHF-MkCCSD,

and CASSCF-MkCCSD ∆ES−T values improves when systems 6 and 7 are examined, but

one still observes substantial differences among the results obtained with these four meth-

ods, on the order of 4-5 kcal/mol. Our extrapolated DEA-EOMCC[4p-2h] data and the

underlying DEA-EOMCC(4p-2h){Nu}/VDZ calculations are considerably more reliable in

this regard. They do set up a new high-level dataset for benchmarking other methods, such

as the CASPT2 and RASPT2 approaches considered in our recent collaboration with the
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Table 4.8: A comparison of the ∆ES−T values (in kcal/mol) characterizing systems 1–7 ob-
tained with the DEA-EOMCC[4p-2h] extrapolation in the DEA-EOMCC(4p-2h){Nu}/VDZ
calculations with the UCCSD(T), UBD(T), ROHF-MkCCSD, and CASSCF-MkCCSD re-
sults reported by Saito et al.

Molecule DEA-EOMCC Saito et al.
[4p-2h]/(4p-2h){Nu} UCCSD(T) UBD(T) ROHF-MkCCSD CASSCF-MkCCSD

1 -4.2/-5.0 -4.8 -5.1 -8.6 -8.1
2 13.9/13.9 14.8 14.0 13.5 9.4
3 -2.7/-3.3 -3.2 -3.6 -6.5 -7.3
4 -3.6/-4.4 -4.5 -4.5 7.1 -6.9
5 -5.7/-5.5 -0.6 -0.9 -2.7 -4.5
6 -77.7/-78.8 -82.7 -79.8 -82.7 -84.2
7 18.5/19.8 15.0 17.1 20.0 19.5
MUEa 0.0/0.7 2.4 1.6 3.1 3.6

b Mean unsigned errors relative to the extrapolated DEA-EOMCC[4p-2h] results.

groups of Professors Laura Gagliardi and Donald Truhlar, which resulted in Ref. [117].

4.3.5 F–F Bond Dissociation in the Fluorine Molecule

Our final example is the potential energy curve of the challenging F2 molecule, as described by

the DZ basis set, for which the results of the exact, full CI calculations were reported in Ref.

[221] and which was examined by us earlier, using the full DEA-EOMCC(3p-1h) and DEA-

EOMCC(4p-2h) and active-space DEA-EOMCC(4p-2h){Nu} approaches, and their DIP

counterparts, in Ref. [92]. As in the case of other molecular examples discussed in this work,

our discussion concentrates on a comparison of the active-space DEA-EOMCC(3p-1h){Nu}

approach with its full DEA-EOMCC(3p-1h) parent and on the ability of the DEA-EOMCC

(3p-1h,4p-2h){Nu} method, in which the dominant 3p-1h and 4p-2h amplitudes are se-

lected with the help of active orbitals, to reproduce the results of the corresponding DEA-

EOMCC(4p-2h) and DEA-EOMCC(4p-2h){Nu} calculations, in which 3p-1h components

are treated fully. Following Refs. [92] and [221], all of the DEA-EOMCC calculations for F2
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Table 4.9: A comparison of the full CI and various DEA-EOMCC ground-state energies of
F2 at the equilibrium (Re = 2.66816 bohr) and a few other F–F distances, along with the
corresponding MUE and NPE values relative to full CI, obtained with the DZ basis set.a

Method Re 1.1Re 1.2Re 1.5Re 2Re 3Re 4Re MUE NPE

DEA-EOMCC(3p-1h){2}b -3.538 -2.808 -2.210 1.585 1.860 1.360 1.279 3.538 5.398
DEA-EOMCC(3p-1h) -3.947 -3.181 -2.563 1.305 1.485 1.015 0.935 3.947 5.432

DEA-EOMCC(3p-1h,4p-2h){2}b 3.807 3.508 3.193 1.665 1.895 1.656 1.601 3.807 2.206

DEA-EOMCC(4p-2h){2}b 3.437 3.161 2.855 1.371 1.505 1.298 1.244 3.437 2.193
DEA-EOMCC(4p-2h) 2.314 2.195 2.061 0.628 0.807 0.762 0.720 2.314 1.686
Full CIa 0.968128 0.976458 0.972125 0.952558 0.945201 0.944819 0.944831
a The full CI values are total energies, E, taken from Ref. [221], reported as −(E + 198) hartree. The

remaining energies are errors relative to full CI, in millihartree. The F2+
2 reference system used in the

DEA-EOMCC calculations was created by vacating the valence σg orbital of F2. Following Ref. [221], the
RHF orbitals of F2 were employed throughout and the two lowest-energy core orbitals and the corresponding
two highest-energy unoccupied orbitals were frozen in the post-SCF calculations.
b The active space consisted of the valence σg and σu orbitals, which are unoccupied in the F2+

2 reference

system utilized in the DEA-EOMCC calculations.

reported in this work use the RHF orbitals of the target species. The corresponding closed-

shell reference F2+
2 system, needed to set up the various DEA-EOMCC calculations summa-

rized in Table 4.9, was obtained by vacating the valence σg orbital, which is doubly occupied

in the RHF determinant for F2. The active orbitals used in the DEA-EOMCC(3p-1h){Nu},

DEA-EOMCC(3p-1h,4p-2h){Nu}, and DEA-EOMCC(4p-2h){Nu} computations consisted

of the valence σg and σu MOs involved in the dissociation of the fluorine molecule, which

are empty in reference F2+
2 system, as defined above. In other words, the value of Nu was

set at 2.

As established in the earlier study from our group [92] and as shown in Table 4.9, 4p-2h

excitations, treated fully or with active orbitals, play a substantial role in improving the re-

sults of the DEA-EOMCC calculations, offering a considerably more accurate description of

bond breaking in F2 than that provided by the DEA-EOMCC(3p-1h) approach. Indeed, the

full DEA-EOMCC(4p-2h) and active-space DEA-EOMCC(4p-2h){2} approaches reduce the

relatively large NPE value relative to full CI characterizing the DEA-EOMCC(3p-1h) poten-

tial energy curve of F2, of 5.432 millihartree, to as little as 1.686 and 2.193 millihartree, re-
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spectively. The considerably less expensive DEA-EOMCC(3p-1h,4p-2h){2} calculations are

capable of maintaining these high accuracies, providing the NPE of 2.206 millihartree, which

is in excellent agreement with the NPEs provided by the parent DEA-EOMCC(4p-2h){2}

and DEA-EOMCC(4p-2h) calculations. The largest errors relative to full CI, represented in

Table 4.9 by the MUE values, do not change much when going from the DEA-EOMCC(3p-1h)

to the DEA-EOMCC(3p-1h,4p-2h){2}, DEA-EOMCC(4p-2h){2}, and DEA-EOMCC(4p-2h)

levels, but the potential energy curves obtained with the latter three approaches are much

more parallel to the full CI curve than the curve obtained in the DEA-EOMCC(3p-1h)

calculations. As a result, if we define the energy difference De ≡ E(4Re)−E(Re) as a mea-

sure of the dissociation energy characterizing the F2 molecule, where Re is the equilibrium

geometry, we can see an excellent agreement between the DEA-EOMCC(3p-1h,4p-2h){2},

DEA-EOMCC(4p-2h){2}, and DEA-EOMCC(4p-2h) De values, which are 13.23, 13.24, and

13.62 kcal/mol, respectively, among themselves and a very good agreement between the

active-space DEA-EOMCC(3p-1h,4p-2h){2} and DEA-EOMCC(4p-2h){2} and full DEA-

EOMCC(4p-2h) data and the full CI calculations, which give De = 14.62 kcal/mol. Given

its relatively low computer cost compared to the remaining two DEA-EOMCC approaches

including 4p-2h excitations considered in this study, the good performance of the DEA-

EOMCC(3p-1h,4p-2h){2} method with an active-space treatment of both 3p-1h and 4p-2h

components is most encouraging.

The DEA-EOMCC(3p-1h) result for De, as defined above, of 17.68 kcal/mol, is sub-

stantially worse, largely because of the increase in the corresponding NPE value, from a

2 millihartree level in the DEA-EOMCC(3p-1h,4p-2h){2}, DEA-EOMCC(4p-2h){2}, and

DEA-EOMCC(4p-2h) calculations to 5.432 millihartree in the DEA-EOMCC(3p-1h) case,

but the good news is that the active-space DEA-EOMCC(3p-1h){2} approach provides the
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virtually identical energetics at the small fraction of the cost of the full DEA-EOMCC(3p-1h)

computations. Indeed, the DEA-EOMCC(3p-1h){2} values of NPE and De, which are 5.398

millihartree and 17.64 kcal/mol, respectively, are in perfect agreement with their full DEA-

EOMCC(3p-1h) counterparts. The inexpensive active-space treatment of 3p-1h excitations,

which we advocate in this study, is clearly sufficient to capture the relevant 3p-1h corre-

lation effects. Combined with the active-space treatment of 4p-2h contributions, as in the

DEA-EOMCC(3p-1h,4p-2h){Nu} methodology developed in this work, it allows us to study

multi-reference situations created by single bond breaking in closed-shell species and diradi-

cals in a formally appealing, spin- and symmetry-adapted manner, while being accurate and

computationally efficient at the same time.

4.4 Conclusions

We have demonstrated that the previously developed DEA-EOMCC approaches with full and

active-space treatments of 4p-2h excitations, abbreviated as DEA-EOMCC(4p-2h) and DEA-

EOMCC(4p-2h){Nu}, respectively, which represent state-of-the-art methodologies within

the DEA-EOMCC framework and which are particularly well-suited to describe electronic

structure and spectra of diradical systems and single bond breaking in closed-shell molecules

leading to doublet radical fragments, can be made considerably more economical if the

corresponding 3p-1h contributions are treated using active orbitals. The resulting DEA-

EOMCC(3p-1h,4p-2h){Nu} approach, developed and implemented in this thesis project, re-

places the expensive N 6-like non
5
u steps associated with 3p-1h excitations by the much less

time consuming N 5-like Nunon
4
u operations, where Nu is the number of active unoccupied

orbitals in the underlying (N − 2)-electron closed-shell core, in addition to downscaling the
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prohibitively expensive N 8-like n2
on

6
u steps associated with 4p-2h contributions to a manage-

able N 6-like N2
un

2
on

4
u level. By examining the low-lying singlet and triplet states of methy-

lene, trimethylenemethane, cyclobutadiene and its derivatives, and cyclopentadienyl cation

and bond breaking in F2, we have demonstrated that the DEA-EOMCC(3p-1h,4p-2h){Nu}

method is practically as accurate as its parent DEA-EOMCC(4p-2h){Nu} and DEA-EOMCC

(4p-2h) models at the fraction of the computational cost involved in the DEA-EOMCC

(4p-2h){Nu} and DEA-EOMCC(4p-2h) calculations, while preserving all other features of

the DEA-EOMCC methodology, such as rigorous spin and symmetry adaptation, which are

difficult to achieve within the standard particle-conserving CC/EOMCC framework. We

have also demonstrated that the DEA-EOMCC(3p-1h,4p-2h){Nu} scheme is almost as in-

sensitive to the choice of the underlying MO basis used in the calculations as the considerably

more expensive DEA-EOMCC(4p-2h){Nu} and DEA-EOMCC(4p-2h) approaches.

The methodological advances reported in this dissertation have also benefited the lower-

level DEA-EOMCC approach truncated at 3p-1h excitations, which can be useful in appli-

cations involving diradicals too, by replacing the non
5
u steps associated with a full treat-

ment of 3p-1h contributions by the much less demanding Nunon
4
u steps of the active-space

DEA-EOMCC(3p-1h){Nu} approach, implemented in this work as well. Just like its DEA-

EOMCC(3p-1h) parent, the DEA-EOMCC(3p-1h){Nu} model with an active-space treat-

ment of 3p-1h excitations, which ignores 4p-2h correlation effects, is less accurate than the

DEA-EOMCC(3p-1h,4p-2h){Nu}, DEA-EOMCC(4p-2h){Nu}, and DEA-EOMCC(4p-2h)

methods, but it faithfully reproduces the results of DEA-EOMCC(3p-1h) calculations at the

small fraction of the computer cost, offering a useful alternative to the DEA-EOMCC(3p-1h)

approximation, where 3p-1h terms are treated fully.
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Chapter 5

Summary and Future Outlook

In this dissertation, we have employed a comprehensive test set of about 150 singlet ex-

cited states of 28 medium-size organic molecules to benchmark two variants of the approx-

imately size-intensive CR-EOMCC method with singles, doubles, and non-iterative triples,

abbreviated as δ-CR-EOMCCSD(T),IA and δ-CR-EOMCCSD(T),ID [63], derived from the

MMCC formalism [65, 68, 122, 125–129], and the analogous two variants of the rigorously

size-intensive δ-CR-EOMCC(2,3) approach, designated as δ-CR-EOMCC(2,3),A and δ-CR-

EOMCC(2,3),D, respectively [69], based on the generalization of the biorthogonal MMCC

formalism [127–129] to excited states [67, 122–124]. By doing so, we have identified the

δ-CR-EOMCC(2,3) methodology, especially its δ-CR-EOMCC(2,3),D variant, as a useful

approach for the routine and highly accurate calculations of molecular electronic spectra,

with the δ-CR-EOMCC(2,3),A approximation offering a similarly good description. It will

be interesting to verify if our conclusions change when basis sets other than TZVP, which

was used in this study, are employed and when one examines non-singlet excitations, in-

cluding, for example, the triplet excited states of the 28 molecules considered in the present

work. It will also be interesting to examine if our conclusions change if our δ-CR-EOMCC

calculations are compared to the results of EOMCC calculations with a full or active-space

treatment of triple excitations, as substitutes for the CC3, EOMCCSDT-3, and TBE values

employed in this dissertation to benchmark the δ-CR-EOMCC approaches.
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In the second part of this dissertation, we have demonstrated that the previously devel-

oped DEA-EOMCC approaches with full and active-space treatments of 4p-2h excitations,

abbreviated as DEA-EOMCC(4p-2h) and DEA-EOMCC(4p-2h){Nu}, respectively, [92, 93]

which represent state-of-the-art methodologies within the DEA-EOMCC framework and

which are particularly well-suited to describe the electronic structure and spectra of dirad-

ical systems and single bond breaking in closed-shell molecules leading to doublet radical

fragments, can be made considerably more economical when the corresponding 3p-1h con-

tributions are treated using active orbitals. The resulting DEA-EOMCC(3p-1h,4p-2h){Nu}

approach, developed and implemented in this work, replaces the expensive N 6-like non
5
u

steps associated with 3p-1h excitations by the much less time consuming N 5-like Nunon
4
u

operations, where Nu is the number of active unoccupied orbitals in the underlying (N − 2)-

electron closed-shell core, in addition to downscaling the prohibitively expensive N 8-like

n2
on

6
u steps associated with 4p-2h contributions to a manageable N 6-like N2

un
2
on

4
u level.

The performance of the DEA-EOMCC(3p-1h,4p-2h){Nu} scheme and its lower-order

DEA-EOMCC(3p-1h){Nu} counterpart examined through benchmark calculations for the

low-lying singlet and triplet states of methylene, trimethylenemethane, cyclobutadiene and

its derivatives, and cyclopentadienyl cation and bond breaking in F2. We have demon-

strated that the DEA-EOMCC(3p-1h,4p-2h){Nu} method is practically as accurate as its

parent DEA-EOMCC(4p-2h){Nu} and DEA-EOMCC(4p-2h) models at the fraction of their

computational cost involved in the DEA-EOMCC(4p-2h){Nu} and DEA-EOMCC(4p-2h)

calculations, while preserving all other features of the DEA-EOMCC methodology, such as

rigorous spin and symmetry adaptation, which are difficult to achieve within the standard

particle-conserving CC/EOMCC framework. We have also demonstrated that the DEA-

EOMCC(3p-1h,4p-2h){Nu} scheme is almost as insensitive to the choice of the underlying
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MO basis used in the calculations as the considerably more expensive DEA-EOMCC

(4p-2h){Nu} and DEA-EOMCC(4p-2h) approaches.

In addition to the above work and more testing, an important development that would

be useful in the context of the active-space DEA-EOMCC methodologies discussed in this

dissertation would be an extension of the recently proposed CC(P ;Q) formalism of Refs.

[129, 211, 212, 249], which enables one to correct the results of the active-space CC and

EOMCC calculations for the missing correlation effects of interest (e.g., CC/EOMCC calcu-

lations with singles, doubles, and active-space triples for the remaining triple excitations), to

the DEA-EOMCC case. We could, for example, contemplate the enhanced and still econom-

ical DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} models, where one

would use the CC(P ;Q) framework to design the inexpensive non-iterative corrections to the

DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} energies that capture the

missing 3p-1h or 3p-1h and 4p-2h correlation effects outside those that are already included in

the active-space DEA-EOMCC(3p-1h){Nu} and DEA-EOMCC(3p-1h,4p-2h){Nu} approxi-

mations. As in the past [108, 109, 111, 115, 129], it might also be interesting to examine

various other ways of selecting 3p-1h and 4p-2h excitations to further reduce computer costs

by using more active spin-orbital indices in the definitions of 3p-1h and 4p-2h amplitudes.

Considering active-space DEA-EOMCC schemes and their DIP-EOMCC counterparts with

higher–than–4p-2h/4h-2p excitations would be useful too. Finally, it would be very inter-

esting to extend the active-space DEA-EOMCC methods developed in this thesis project to

other multiply electron-attached and multiply ionized EOMCC methods, such as the higher-

level variants of the recently examined triply electron-attached theories [209] and their triply

ionized counterparts, which can be used to describe open-shell species with three electrons

outside the corresponding closed-shell cores. In this case, we would use active orbitals to se-
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lect 4p-1h/4h-1p and 5p-2h/5h-2p components of the relevant electron attaching or ionizing

R
(±3)
µ operators.
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APPENDIX A

Derivation of the Non-Iterative

Energy Correction Defining the

Biorthogonal MMCC Theory

In this appendix, we present the derivation of the biorthogonal MMCC formula [128] for

the non-iterative energy correction δ
(A)
µ that when added to the CC/EOMCC energy E

(A)
µ

generates the full CI energy Eµ. We begin the derivation by replacing the generic function

Ψ given by the expression

Λ[Ψ] =
〈Ψ|HR(A)

µ eT
(A) |Φ〉

〈Ψ|R(A)
µ eT

(A) |Φ〉
. (A.1)

with the exact full CI wave function Ψµ, which gives rise to the following expression for the

full CI energy Eµ:

Eµ =
〈Ψµ|HR

(A)
µ eT

(A)|Φ〉

〈Ψµ|R
(A)
µ eT

(A) |Φ〉
. (A.2)

We should recall that T (A) and R
(A)
µ are the cluster and linear excitation operators that

define the wave function in the truncated CC/EOMCC method A. We replace the exact bra

state 〈Ψµ| in Eq. (A.2) by the ansatz given by

〈Ψµ| = 〈Φ|Lµ e
−T (A)

, (A.3)

181



where

Lµ =
N∑
n=0

Lµ,n, Lµ,n =

(
1

n!

)2

`
a1...an
µ,i1...in

ai1 · · · ainaan · · · aa1 , (A.4)

where N represents the number of correlated electrons. The Lµ,n are the n-body components

of the deexcitation operator Lµ while `
a1...an
µ,i1...in

are the corresponding amplitudes. Using the

fact that T (A) and R
(A)
µ commute, we obtain,

Eµ =
〈Φ|Lµ H̄

(A)R
(A)
µ |Φ〉

〈Φ|LµR
(A)
µ |Φ〉

, (A.5)

where H̄(A) is the similarity-transformed Hamiltonian of CC method A defined by

H̄open = (HeT )C,open = e−THeT − (HeT )C,closed. (A.6)

By imposing the normalization condition given by

〈Φ|LµR
(A)
µ |Φ〉 = 1, (A.7)

the denominator in Eq. (A.5) goes to one, leaving the following expression for the full CI

energy of state µ:

Eµ = 〈Φ|Lµ H̄
(A)R

(A)
µ |Φ〉. (A.8)

At this point, we insert the resolution of the identity in the N -electron Hilbert space,

P +Q(A) +Q(R) = 1, (A.9)

182



where

P = |Φ〉〈Φ|, (A.10)

Q(A) =

mA∑
n=1

∑
i1<···<in
a1<···<an

|Φa1...an
i1...in

〉〈Φa1...an
i1...in

|, (A.11)

and

Q(R) =
N∑

n=mA+1

∑
i1<···<in
a1<···<an

|Φa1...an
i1...in

〉〈Φa1...an
i1...in

|, (A.12)

in between Lµ and H̄(A), and use the decomposition of Lµ defined by

Lµ = L
(A)
µ + δL

(A)
µ , (A.13)

where

L
(A)
µ =

mA∑
n=0

Lµ,n, (A.14)

and

δL
(A)
µ =

N∑
n=mA+1

Lµ,n, (A.15)

while utilizing the property that 〈Φ|L (A)
µ Q(R) = 0. This gives

Eµ = 〈Φ|L (A)
µ (P +Q(A))H̄(A)R

(A)
µ |Φ〉+ 〈Φ|δL (A)

µ Q(R)H̄(A)R
(A)
µ |Φ〉. (A.16)

183



Since the EOMCC eigenvalue problem [48–50],

〈Φa1...an
i1...in

|(H̄(A)
openR

(A)
µ,open)C |Φ〉 = ω

(A)
µ r

i1...in
µ,a1...an

, (A.17)

with

rµ,0 = 〈Φ|(H̄(A)
openR

(A)
µ,open)C |Φ〉/ω

(A)
µ , (A.18)

can be written as

(P +Q(A))H̄(A)R
(A)
µ |Φ〉 = E

(A)
µ R

(A)
µ |Φ〉, (A.19)

we can simplify Eq. (A.16) to

Eµ = E
(A)
µ 〈Φ|L

(A)
µ R

(A)
µ |Φ〉+ 〈Φ|δL (A)

µ Q(R)H̄(A)R
(A)
µ |Φ〉. (A.20)

Substituting the normalization condition given by Eq. (A.7) and the explicit form of Q(R)

given by Eq. (A.12) into Eq. (A.20) yields

Eµ = E
(A)
µ +

N∑
n=mA+1

∑
i1<···<in
a1<···<an

〈Φ|δL (A)
µ |Φa1...an

i1...in
〉〈Φa1...an

i1...in
|H̄(A)R

(A)
µ |Φ〉. (A.21)

We know that the 〈Φ|δL (A)
µ |Φa1...an

i1...in
〉 term that enters Eq. (A.21) simply represents the

amplitudes defining the Lµ deexcitation operator, `
a1...an
µ,i1...in

, with n > mA. Furthermore,

comparison of Eq. (A.21) with Eq. (3.4) reveals the presence of the generalized moments of

the CC/EOMCC equations M
i1...in
µ,a1...an

(mA) = 〈Φa1...an
i1...in

|H̄(A)R
(A)
µ |Φ〉. It should be noted

that for a given CC/EOMCC method A, not all of the moments M
i1...in
µ,a1...an

(mA) with n > mA

are non-zero. Indeed, for a given approximation, there is generally a value of n above which
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all moments M
i1...in
µ,a1...an

(mA) are zero. For instance, in the case of CCSD (the mA = 2

case), only the triply, quadruply, pentuply, and hextuply excited moments, i.e. moments

with n = 3− 6, are nonzero when the Hamiltonian contains pairwise interactions only, and

thus N0,A = 6 (the CCSD equations are solved by zeroing the singly and doubly excited

moments, Mi
0,a(2) and M

ij
0,ab(2), respectively, hence the triply excited moments are the first

to be nonzero). Similarly, in the EOMCCSD case with µ > 0, Nµ,A = 8. Taking advantage

of these observations, along with the fact that the moments are zero for n > Nµ,A, Eq.

(A.21) can be rewritten as

δ
(A)
µ ≡ Eµ − E

(A)
µ =

Nµ,A∑
n=mA+1

∑
i1<···<in
a1<···<an

`
a1...an
µ,i1...in

M
i1...in
µ,a1...an

(mA) (A.22)

which completes the derivation.
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APPENDIX B

Factorized Form of the

DEA-EOMCC(4p-2h) Equations Based

on CCSD Reference Wave Functions

In this appendix, we present the fully factorized form of the equations defining the DEA-

EOMCC(4p-2h) eigenvalue problems, exploited in this study, in terms of the one- and two-

electron molecular integrals, f
q
p = 〈p|f |q〉 (f is the Fock operator) and vrspq = 〈pq|v|rs〉 −

〈pq|v|sr〉, respectively, defining the Hamiltonian, T1 and T2 cluster amplitudes defining the

underlying (N − 2)-electron ground-state CCSD problem, and the Rµ,2p, Rµ,3p-1h, and

Rµ,4p-2h amplitudes defining the electron attaching operator, R
(+2)
µ . In presenting these

equations, we use the Einstein summation over repeated upper and lower indices, and symbol

µ at the relevant r
k1...kn

abc1...cn
(µ) amplitudes defining R

(+2)
µ is dropped.

The DEA-EOMCC(4p-2h) equations can be given the following form:

〈Φab|(H̄(CCSD)
N,open R

(+2)
µ )C |Φ〉 = Aab[−h̄earbe +

1

4
h̄
ef
abref

+
1

2
h̄emr

m
abe −

1

2
h̄
ef
amr

m
bef +

1

8
v
ef
mnr

mn
abef ]

= ω
(N)
µ rab, (B.1)
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〈Φabck|(H̄
(CCSD)
N,open R

(+2)
µ )C |Φ〉 = Aa/bc[−h̄

ke
abrce −

1

3
h̄kmr

m
abc

+h̄ear
k

bce + h̄keamr
m

bce +
1

2
h̄
ef
abr

k
cef +

1

2
Iamt

km
bc

+
1

3
h̄emr

km
abce −

1

6
h̄kemnr

mn
abce +

1

2
h̄
ef
amr

km
bcef ]

= ω
(N)
µ r k

abc, (B.2)

〈Φabcdkl |(H̄
(CCSD)
N,open R

(+2)
µ )C |Φ〉 = Aa/bcdAb/cdA

kl

[−1

6
h̄klamr

m
bcd +

1

2
h̄keabr

l
cde + I k

abmt
lm
cd +

1

2
I e
abct

kl
de

+
1

12
h̄kmr

lm
abcd −

1

6
h̄ear

kl
bcde +

1

48
h̄klmnr

mn
abcd

+
1

3
h̄keamr

lm
bcde +

1

8
h̄
ef
abr

kl
cdef ]

= ω
(N)
µ r kl

abcd , (B.3)

where, in addition to one- and two-body matrix elements of the similarity-transformed Hamil-

tonian H̄
(CCSD)
N,open of the CCSD approach, h̄

q
p and h̄rspq, respectively, which can be found else-

where (cf., e.g., Refs. [66, 68]), we define the following intermediates:

Iam = h̄
ef
amref + v

ef
mnr

n
aef , (B.4)

I k
abm = h̄keamrbe +

1

8
Imnt

kn
ab +

1

2
h̄kemnr

n
abe −

1

2
h̄
ef
amr

k
bef

+
1

4
v
ef
mnr

kn
abef , (B.5)

I e
abc = h̄

ef
abrcf − h̄

ef
amr

m
bcf +

1

6
v
ef
mnr

mn
abcf , (B.6)
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Imn = v
ef
mnref . (B.7)

The antisymmetrizers Ap/qrs ≡ A p/qrs, Ap/qr ≡ A p/qr, and Apq ≡ A pq, which enter Eqs.

(B.1)–(B.3), are defined in the usual way as

Ap/qrs ≡ A p/qrs = 1− (pq)− (pr)− (ps), (B.8)

Ap/qr ≡ A p/qr = 1− (pq)− (pr), (B.9)

and

Apq ≡ A pq = 1− (pq), (B.10)

respectively, with (pq) representing a transposition of two indices. The corresponding DEA-

EOMCC(4p-2h){Nu} equations can be obtained by constraining the spin-orbital indices

defining the projections on the |Φabcdkl 〉 (the DEA-EOMCC(4p-2h){Nu}) determinants and

the indices defining the corresponding 4p-2h amplitudes, r kl
abcd (µ) which enter the above

DEA-EOMCC(4p-2h) equations, to the active-space logic of the rµ,4p-2h operators, Eqs.

(4.11).
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