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ABSTRACT 

 

ASSESSING WATERBIRD HOTSPOTS FOR CONSERVATION 

AND MANAGEMENT IN THE GREAT LAKES 

 

By 

 

Allison L. Sussman 

 

Waterbird species are highly mobile and often aggregate in large groups, leading to difficulties 

assessing their distributions and spatial patterns. Species patterns also vary throughout the year 

due to migration and habitat preference for both breeding and wintering locations. Yet, 

waterbirds are a key study group because they are abundant, easily measured, and reactive, 

making them ideal indicators of environmental change. Identifying persistent areas of high use 

(i.e., hotspots) for waterbird species is both ecologically and economically beneficial. 

For Chapter 1, I selected four commonly used hotspot analysis models to evaluate the 

consistency of approaches for eight species and species groups in the Great Lakes region. 

Although there was some consistency across models, correlation analyses and mapped results 

demonstrated that hotspot analysis approaches can produce conflicting results. For Chapter 2, I 

developed an integrated hotspot modeling approach, in which I combined multiple models to 

produce a single hotspot value per location. I then used this model to estimate hotspot locations 

for the eight species groups in surveyed locations across three Great Lakes. 

The effectiveness of hotspot analyses is dependent upon the quantity and quality of 

available data, the spatial scale at which data are collected, and the scale at which results are 

needed (e.g., for management). My work provides researchers and resource managers with a 

quantitative evaluation of common hotspot analyses techniques. My results also elucidate 

possible waterbird hotspots in the Great Lakes, providing baseline estimates which can be used 

to prioritize sampling locations for future waterbird surveys.  
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INTRODUCTION 

 

Waterbird species are notoriously difficult to study; they exhibit patchy, skewed 

distributions and often flock in high aggregations (Santora and Veit 2013, Zipkin et al. 2015). 

Waterbirds can move across large spatial scales, responding to environmental changes to find 

suitable habitat and prey (Montevecchi et al. 2012; Perry et al. 2005). Monitoring waterbirds is 

challenging because of unpredictable weather conditions, high costs, and difficulty identifying 

individuals to the species level. As such, assessing waterbird populations and identifying spatial 

patterns is challenging. Recent interest in alternative energy sources, increased coastal 

development, improvements in commercial and recreational shipping and fishing, and rapid 

global climate changes pose new and serious threats to many waterbird species (Garthe and 

Huppop 2004, Williamson et al. 2013, Adam et al. 2015). Because waterbird species respond to 

changes in the environment, they are often used as indicators of ecosystem and environmental 

health (Reese and Brodeur 2006, Piatt et al. 2007, Nur et al. 2011, Croxall et al. 2012, Santora 

and Sydeman 2015). By studying their distributions and observing spatial patterns, we can begin 

to predict how waterbirds will respond in the face of potential threats. 

One of the foremost methods in assessing waterbird populations is to identify areas with 

persistent high-use or aggregations, termed ‘hotspots’. By identifying areas with consistently 

high species richness or abundance, researchers and decision makers can protect areas that are 

beneficial to many species (not just waterbirds), thereby decreasing the cost and resources 

associated with conservation and management (Harcourt 1999, Possingham and Wilson 2005). 

The process of delineating hotspots has been used in ecology for nearly thirty years, and has 

evolved such that there is no longer a single definition or scientific consensus to identify such 
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areas (Myers 1988, Briscoe et al. 2015). The different methods to identify hotspots can lead to 

potentially different results, culminating in conflict of delineated hotspots (Prendergast 1993, 

Araujo 2002, Orme 2005, Possingham and Wilson 2005, Hobday and Pecl 2014, Daru et al. 

2015, Harvey et al. 2017). Consequently, researchers are left to arbitrarily select an analysis 

technique with little confidence in the resultant identified hotspots. Comparing several of the 

most commonly used hotspot analysis models for waterbird species will help resolve some of 

these conflicts, providing insights on different techniques that can aid in selecting the most 

appropriate method based on data availability and conservation concerns. 

The following chapters aim to assess waterbird abundances and distributions throughout 

the Great Lakes region to inform decision-making and conservation planning by comparing four 

distinctly different hotspot analysis models and quantifying the consistency across the various 

approaches. The Great Lakes have played an important role throughout human history, and will 

continue to do so into the future (EPA 1995). Not only do they provide freshwater to millions of 

people daily, but the Great Lakes also provide recreational activities (e.g., swimming), 

commercial resources (e.g., shipping), sustenance (through hunting and fishing), and cultural 

services (e.g., birdwatching) to people throughout the year (Gronewold 2013). The lakes also 

provide resources that most people do not consider, such as hydrologic retention, nutrient 

cycling, shoreline protection, and sediment trapping (EPA 1995). It is in our best interest then, to 

ensure the health of the environment in and around the Great Lakes. By monitoring and 

understanding waterbird populations, we will be better equipped to understand and predict 

environmental changes that will affect ecosystem health. 

The goal of this thesis is to increase both consistency and confidence of delineated 

hotspot locations using an integrated modeling approach that combines multiple hotspot models. 
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Products from this research include a single hotspot map for each species or species group, but 

due to the limited data extent (both spatially and temporally) and inconsistent survey methods, 

caution should be taken when interpreting them. Despite data inadequacies, the hotspot maps are 

especially useful in determining areas in need of greater surveying and of interest for possible 

conservation and management.  
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CHAPTER 1 

A comparative analysis of methods to identify waterbird hotspots 

 

ABSTRACT 

Detection of hotspots is a commonly used method in ecology and conservation to identify areas 

of high biodiversity or conservation concern. However, delineating and mapping hotspots is 

subjective and various approaches can lead to different conclusions with regard to the 

classification of particular areas as hotspots, complicating long-term conservation planning and 

implementation efforts. We present the results of a comparative analysis of recent approaches for 

identifying waterbird hotspots. We examined the literature and selected four common measures 

of identifying persistent areas of high use: two non-parametric, spatial approaches (kernel 

density estimation and Getis-Ord Gi*) and two parametric, non-spatial approaches (hotspot 

persistence and hotspots conditional on presence). We applied each of the methods to aerial-

survey waterbird count data collected in the Great Lakes from 2012-2014 using a 5 km2 grid. For 

each approach, we identified areas of high use for seven species/species groups and then 

compared the results across all methods. Our results indicate that formal hotspot analysis 

frameworks do not always lead to the same conclusions. The two spatial methods yielded the 

most similar results across all species analyzed. Yet, we found that the spatial models can differ 

substantially from the non-spatial models, which were not consistently similar to one another. 

The hotspot persistence approach differed most significantly from the other methods, but is the 

only method to explicitly account for temporal variation. We recommend considering the 

ecological question and scale of any conservation or management activities prior to designing 

survey methodologies. Deciding the appropriate definition and scale for analysis is also critical 



 

5 

for interpretation of hotspot analysis results. Combining methods using an integrative approach 

(i.e., inclusion of both spatial and non-spatial methods), either within a single analysis or post-

hoc, could lead to greater consistency in the identification of waterbird hotspots. 

 

INTRODUCTION 

Hotspots are most often defined as small geographic areas (within a predefined larger 

region) that exhibit persistent high concentrations of individuals or species (Harcourt 1999, 

Possingham and Wilson 2005). Yet in the three decades since Myers (1988) first introduced the 

term, the definition of hotspots has expanded and adapted to reflect changes in conservation 

goals (Briscoe et al. 2015). Animal hotspots are generally defined as areas with high levels of at 

least one of the following biological measures: species abundance, richness, or endemism; rare, 

threatened, or endangered species; and taxonomic distinctiveness (Possingham and Wilson 2005, 

Briscoe et al. 2015). Hotspots are typically defined on a case-by-case basis because patterns vary 

by species and location, thus, the threshold to differentiate between hotspots and other locations 

naturally varies as well (Nelson and Boots 2008). For example, common definitions of hotspots 

focus on determining areas with consistent high species abundance (Piatt et al. 2006, Davoren 

2007), richness, or biological activity (Sydeman et al. 2006) or some combination of these (Nur 

et al. 2011). Hotspots have also been defined as locations where some metric exceeds a 

predefined threshold (e.g., top five percent of the data [Harvey et al. (2017); locations within one 

[Suryan et al. (2012) and Santora and Veit (2013)] or three [Zipkin et al. (2015)] standard 

deviations above the mean of a particular region or area sampled). Such definitions attempt to 

quantify hotspots (allowing for direct location comparison) as opposed to identifying hotspots 

using only qualitative criteria, which was common until recently (Mittermeier 2011). The 
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different approaches to identify hotspots have become increasingly complex and may lead to 

dissimilar or inconsistent results (Prendergast 1993, Araujo 2002, Orme 2005, Possingham and 

Wilson 2005, Hobday and Pecl 2014, Daru et al. 2015, Harvey et al. 2017). The consequences of 

applying different metrics to define hotspots is a lack of congruence across measures and, thus, 

hotspot locations, culminating in controversy and conflict over long-term conservation efforts 

(Orme et al. 2005, Possingham and Wilson 2005, Marchese 2015). 

Waterbird species display extreme variability in habitat use over both space and time 

(Certain 2007, Piatt et al. 2007, Votier et al. 2008); they often exhibit large, patchy aggregations 

offshore making it difficult to measure their spatial distributions (Santora and Veit 2013, Zipkin 

et al. 2015). As such, the foremost method to determine patterns of waterbird species is to 

identify locations of persistent aggregation or high use, such as hotspots. Hotspot identification is 

useful in studies of highly mobile organisms, such as waterbirds, because the likelihood that a 

survey event of any given location is representative of the true population size at that location is 

low due to the extreme variability of their distributions (Santora and Veit 2013). There are many 

methods to examine the diversity and abundance patterns of open water populations, but locating 

persistent high-use areas is a frequent first step towards understanding the processes that 

generate spatial patterns of species distributions (Nelson and Boots 2008). 

For waterbird abundance data, hotspot analyses are typically conducted using one of 

three approaches: 1) qualitative analyses (e.g., through mapping abundance); 2) with non-

parametric spatial models; or 3) with parametric generalized linear modeling (GLM) techniques 

(Tremblay et al 2009). Historically, areas of high density or concentration were displayed and 

compared visually, and mapping relative species abundances remains a prevalent conservation 

tool today (Tremblay et al. 2009, Harvey et al. 2017). Yet, qualitative approaches are limited 
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because they do not reflect temporal changes (i.e., they are simply a snapshot in time), cannot 

adequately account for aggregations, and can be misleading based on how data are 

classified/colored (Marchese 2015). As a result, more rigorous quantitative approaches, typically 

in the form of spatial models or GLM-based approaches, were developed. Spatial models use 

data collected in both focal and surrounding locations to derive areas of high use. As their name 

suggests, these techniques account for spatial patterns in the data (Harvey et al. 2017). In 

contrast, non-spatial parametric approaches, which use a GLM framework, consider locations 

independent of one another and require the use of a metric or threshold and statistical 

distributions to describe observed patterns (Oppel et al. 2012, Zipkin et al. 2015, Santora and 

Veit 2013). Waterbirds are highly mobile and tend to aggregate in large groups, resulting in 

highly skewed data with a lot of non-detections (i.e., zeros). As such, selecting an appropriately 

skewed statistical distribution to model waterbird data is fundamental to accurately identifying 

hotspots using parametric approaches (Zipkin et al. 2014). 

In this study, we evaluate four methods for identifying hotspots for waterbird populations 

using data collected in the Great Lakes: two non-parametric, spatial models and two parametric 

GLM-based approaches. For the non-parametric models, we selected kernel density estimation 

and the Getis-Ord Gi* hotspot analysis method. Kernel density estimation is perhaps the most 

well-known and widely used spatial statistic method for identifying hotspots. Kernel density 

estimation is an interpolation technique that is used to estimate the probability density function 

of a variable of interest (e.g., abundance) to identify areas of high density (Wilson et al. 2009, 

O’Brien et al. 2012, Suryan et al. 2012, Wong et al. 2014). A less common spatial statistic for 

detecting hotspots is the Getis-Ord Gi* statistic (Gi*), which allows for cluster evaluation within 

a specified distance of a single point (Getis and Ord 1992, Kuletz et al. 2015, Santora et al. 
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2010). Gi* analysis is a spatial tool that identifies spatially explicit areas with values higher in 

magnitude than would be expected due to random chance, independent of the magnitude of 

abundance (Kuletz et al. 2015, Santora et al. 2010). For the parametric models, we adapted two 

GLM-based methods which have been used to identify waterbird hotspot locations. The first 

parametric approach, which we term “hotspot persistence”, defines hotspots for every unique 

sampling event and calculates persistence over time (Suryan et al. 2012, Santora and Veit 2013, 

Johnson et al. 2015). The second parametric approach, which we term “hotspots conditional on 

presence”, combines survey data from all sampling events and defines hotspots as locations with 

a long-term average abundance greater than three times the regional mean, conditional on species 

presence (Zipkin et al. 2015). Our objective was to compare consistency across the four different 

hotspot analysis techniques for several waterbird species and species groups. To do this, we 

applied the four hotspot methods to the species data and then performed pairwise correlations to 

measure the strength and association between the different approaches. This allowed us to 

quantify the degree to which the various hotspot estimators aligned in their assessments of 

hotspots. 

 

METHODS 

Study area & data description 

We conducted systematic aerial transect surveys of waterbirds in portions of Lakes Erie, 

Huron, and Michigan, as well as Lake St. Clair during fall, winter, and spring seasons from late 

September 2012 through early June 2014 (Fig. 1.1a). The transects ranged in length from 3 to 

177 km covering approximately 8,000 km within the entire study area. Most of the transects 

(97%) were surveyed repeatedly with an average number of 10.68 (SD: 3.85) sampling events 
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per transect with approximately 83,000 km flown over the duration of the survey period. 

Transects were spaced 3.2 to 5 km apart and flight altitude ranged from 61 to 100 m above the 

lake’s surface. Two observers, one on either side of the plane, recorded every waterbird flock 

that was detected in the observable portion of the transect (the area not obscured by the plane). 

For each sighting, we recorded the species, number of individuals seen, and latitude and 

longitude (using onboard GPS) on the transect line. For large flocks that covered many square 

kilometers (i.e., up to 30 km), the location recorded is an approximate to the center of the flock. 

Birds were identified to the lowest taxonomic group possible when observers were unable to 

determine species. 

We integrated the data into the open access Midwest Avian Data Center (MWADC), a 

regional node of the Avian Knowledge Network (AKN), hosted by Point Blue Conservation 

Science (http://data.pointblue.org/partners/mwadc/). In some cases, observers did not include 

transect attribution for individual observations (23.4% of records). For these records, we used 

incremental buffering by 1-m to identify the closest transect to each observation record. We used 

data collected on the location of the transect line when available (42.26% of transect lines) and 

GIS to reconstruct the transect lines from observations in instances when that information was 

not recorded. During the survey period, 253 transects were surveyed resulting in 136 unique 

sampling events/surveys.  
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Figure 1.1. (a) Aerial-survey transects flown over selected areas of the Great Lakes during the fall, winter, and spring seasons from 

September 2012 to June 2014. The survey regions (divided by research entity who collected the data) are distinguished by colors.  

(b) Map of the study area showing the number of sampling events (or visits) per 5 km x 5 km grid cell during the entire survey period.  
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Species groups and composition 

We observed 76 bird species at least one time with 41,803 observations including over 

two million individual birds. We focused our analysis on seven species/species groups: long-

tailed duck, common loon [Gavia immer], gulls [Larus spp.], mergansers [Mergus spp. and 

Lophodytes spp.], scaup [Aythya spp.], loons [Gavia spp.], and diving/sea ducks [Aythya spp., 

Bucephala spp., Clangula hyemlais, Melanitta spp., Mergus spp., Oxyura jamaicensis, and 

Somateria spp.]. (Table 1.1). We chose these species and species groups (hereafter referred to as 

species groups) because they were fairly evenly distributed across the study area (i.e., occurred 

in most lakes with data), with observations in at least 200 grid cells, and were encountered at 

least 1000 times during the survey period. The seven species groups used in our analysis 

comprised 33 species (Table 1.1) and nearly 90% of all observed birds, including some 

individuals that could not be identified to species (and were used in analyses with multiple 

species only). Canvasback was the most abundant bird species (i.e., most individuals observed), 

but long-tailed duck was encountered most often (Table 1.1). 

We identified potential hotspots for the seven species groups, and then used the data from 

all species groups to analyze hotspots for an all-species-combined group. Some individual 

species appeared in multiple groups; for example, long-tailed duck was analyzed individually 

and in the diving/sea duck group. In such instances, an individual species was used only once in 

the all-species-combined group (i.e., not double counted).  
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Table 1.1. List of species and species groups, including the total number of encounters and total 

number observed. 

Species/ 

Species Group 

Number of 

Encounters 

Number 

Observed 
Species Included 

Diving/sea ducks 19,183 1,700,311 

bufflehead [Bucephala albeola], canvasback 

[Aythya valisineria], common eider [Somateria 

mollissima], long-tailed duck [Clangula 

hyemalis], redhead [Aythya americana], ring-

necked duck [Aythya collaris], ruddy duck 

[Oxyura jamaicensis], all eiders [Somateria 

spp.], all goldeneye [Bucephala spp.], all 

mergansers [Mergus spp.], all scaup [Aythya 

spp.], all scoters [Melanitta spp.], and all 

unidentified diving ducks [Aythya spp.] 

Gulls 12,233 81,399 

Bonaparte's gull [Chroicocephalus 

Philadelphia], glaucous gull [Larus 

hyperboreus], great black-backed gull [Larus 

marinus], herring gull [Larus smithsonianus], 

Iceland gull [Larus glaucoides], mew gull [Larus 

canus], ring-billed gull [Larus delawarensis], 

and all unidentified gulls [Laridae spp.] 

Long-tailed duck 6,011 149,542 long-tailed duck [Clangula hyemalis] 

Mergansers 4,865 95,702 

common merganser [Mergus merganser], 

hooded merganser [Lophodytes cucullatus], red-

breasted merganser [Mergus serrator], all 

unidentified mergansers [Mergus spp.], and all 

unidentified merganser/goldeneye 

[Mergus/Bucephala spp.] 

Scaup 3,431 383,495 

greater scaup [Aythya marila], lesser scaup 

[Aythya affinis], and all unidentified scaup 

[Aythya spp.] 

Loons 2,111 4,364 

common loon [Gavia immer], red-throated loon 

[Gavia stellata], and all unidentified loons 

[Gavia spp.] 

Common loon 1,688 2,922 common loon [Gavia immer] 
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Data standardization 

We imposed a 5 km x 5 km grid (consisting of 17,746 cells) over the entire Great Lakes 

region and assigned transects to grid cells based on their spatial locations. We chose this scale 

because the maximum distance between survey transects was 5 km. Thus, a smaller grid would 

create a very patchy system of survey effort with many empty cells, whereas a larger size would 

lump together more data, obscuring fine scale aggregations of species. We segmented all 

transects using the grid system so that grid cells contained only the portion of the transect that 

occurred within the cell, such that a cell could contain anywhere from zero to many transect 

segments. Then, we calculated the total length of the transect segments(s) within a grid cell to 

determine the number of kilometers flown for all sampling events within each cell. We included 

in our analysis only those cells which contained a total transect length of at least 1-km. The sum 

of transect lengths within cells ranged from 1 to 16.02 km with an average of 4.69 km (SD: 2.16 

km). A total of 1,699 of the 1,767 grid cells included in our analysis had bird observations on at 

least one sampling occasion. 

We standardized the count data within grid cells (Johnson et al. 2015) because the survey 

effort is unequal and highly variable across cells within the study area (Fig. 1.1b). We divided 

the number of observations of a species for the sampling event-grid cell combination by the 

summed transect length, resulting in a continuous effort-corrected count. We define a sampling 

event as a unique year-month-day (survey date) combination within each region of the Great 

Lakes. Inclement weather and extensive ice coverage necessitated some surveys to be halted 

prematurely or conducted over a short period of time. We thus assumed that instances in which 

an area was surveyed over multiple consecutive days were a single sampling event. The result 

was 136 unique sampling events that we included in our analysis. We used data from all 
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sampling events in our hotspot analyses; however, we limited the method comparisons, 

correlations, and hotspot maps to grid cells that contained at least four sampling events, for a 

total of 1,473 grid cells (83.4% of cells). Using grid cells with at least four sampling events 

allowed for analysis from across the study region, while excluding grid cells that did not have 

sufficient data which could lead to false hotspot identification (Fig. 1.1b; Kuletz et al. 2015, 

Zipkin et al. 2015). 

 

Hotspot analysis 

Spatial non-parametric model: kernel density estimation 

Kernel density estimation is a common method for estimating relative density in animal 

populations that aggregate, and has been used repeatedly to identify waterbird hotspot locations 

and marine areas in need of protection (Wilson et al. 2009, O’Brien et al. 2012, Suryan et al. 

2012, and Wong et al. 2014). Essentially, the modeling approach converts point data (i.e., effort-

corrected counts) into a continuous surface grid reflecting relative densities across all grid cells, 

where the resulting density of each grid cell is weighted according to the distance from the focal 

location/grid cell (Wong et al. 2014). 

To implement the kernel density method, we calculated the midpoint of each grid cell and 

assigned all observations of the species group (across all sampling events) to the midpoint of the 

grid cell to which they occurred. We accounted for uneven sampling effort (grid cells were 

surveyed from one to thirty times) by dividing the summed observations in a grid cell by the total 

number of sampling events for the grid cell. We used the kernel density tool in the Spatial 

Analyst extension of ArcGIS 10.3.1 (ESRI 2015) to estimate bird density, inputting values for 

both bandwidth and cell size. The bandwidth, or size of the neighborhood over which the density 
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is averaged is the amount of smoothing applied to each kernel (Nelson and Boots 2008). Small 

bandwidth values may result in undersmoothed small-scale kernels, leading to underestimation 

of hotspots, whereas large values result in oversmoothed general kernels, overestimating 

hotspots (Wong et al. 2014). We selected a 5-km bandwidth for kernel smoothing based on both 

the geographic extent of the data and the distance between survey transects (Suryan et al. 2012). 

Kernel density estimation results in a raster, which is a matrix of pixels where each pixel 

contains a value representing information (e.g., bird abundance; ESRI 2015). The cell size for the 

output raster can also affect the interpretation of the kernel estimate: large cell sizes may result in 

a blocky raster that is a poor approximation of a continuous surface, and small cell sizes may 

result in a raster of many cells that takes too long to calculate (Beyer 2014). We selected a cell 

size of 1 km x 1 km for the output raster. For each species group, we extracted the mean 

expected count from the resulting kernel density raster back to the 5 km2 grid for comparison 

with the other methods. 

 

Spatial non-parametric model: Getis-Ord Gi* 

The Getis-Ord Gi* (Gi*) statistic detects waterbird hotspots while also indicating the 

statistical significance of those hotspots (Santora et al. 2010, Kuletz et al. 2015). The Gi* 

technique identifies grid cells whose data points cluster spatially by examining each grid cell 

within the context of the neighboring cells (Getis and Ord 1992). Gi* differs from kernel density 

estimation because it incorporates the value of each feature in the context of its neighbors, 

whereas kernel density estimates the neighbors based on the focal feature. Gi* is less subjective 

than kernel density estimation because kernel estimation is based on user-specified values 

(bandwidth and cell size; Kuletz et al. 2015). 
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To implement the Gi* statistic, we again calculated the midpoint of each grid cell and 

assigned all observations of the species group across all sampling events to the midpoint of the 

cell into which they occurred. We again accounted for uneven sampling effort by dividing the 

summed effort-corrected grid cell observations by the total number of sampling events for that 

cell. We built a neighbor list for all grid cells using rook’s case contiguity (i.e., grid cells that 

share a border), and then used the neighbor list to calculate a row-standardized spatial weights 

matrix (spdep package in R; Bivand et al. 2013, Bivand and Piras 2015). The matrix informs 

every grid cell’s relationship to all other cells in the neighborhood (Kuletz et al. 2015). We used 

the effort-corrected counts and the spatial weights matrix to calculate the Gi* for each grid cell 

(spdep package in R; Bivand et al. 2013, Bivand and Piras 2015). Gi* produces a z-score for 

each grid cell, where high positive values are statistically significant and indicate the possibility 

of a local cluster of high species abundance (i.e., a hotspot) that is unlikely due to random 

chance. 

 

Parametric model: hotspot persistence 

The hotspot persistence method quantifies the persistence of species counts within 

individual grid cells (Suryan et al. 2012, Santora and Veit 2013, Johnson et al. 2015). To 

implement this method, we first fit a gamma distribution to the effort-corrected continuous 

species group count data, summed within grid cells, for each unique sampling event (fitdistrplus 

package in R; Delignette-Muller and Dutang 2015). We selected the two-parameter gamma 

distribution (shape and scale) because it can fit a variety of continuous right-skewed data (Dennis 

and Patil 1983, Bolker 2008) and because it has been used before with this hotspot analysis 

technique (Johnson et al. 2015). We then assigned a probability to each grid cell based on the fit 
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of the data within the cumulative distribution curve for that sampling event. This allowed us to 

identify grid cells (for each unique sampling event) with high abundance of the target species 

group relative to other cells. Within a unique sampling event, we identified grid cells as hotspots 

if the value of the cumulative distribution for the cell, based on the fit of the gamma distribution, 

was above the 75th percentile for that sampling event. After identifying which grid cells were 

categorized as hotspots for every unique sampling event, we calculated the proportion of 

sampling events in which a grid cell was identified as a hotspot to examine persistence. The final 

output was the proportion of sampling events, ranging from zero to one, in which a grid cell was 

considered a hotspot for the target species group. Proportions at zero indicate the grid cell was 

never a hotspot. The higher the proportion, the more frequently the grid cell was considered a 

hotspot, with a proportion of one indicating the grid cell was a hotspot for all sampling events. 

 

Parametric model: hotspots conditional on species presence 

The hotspots conditional on presence method calculates the long-term probability that a 

grid cell is a hotspot for a particular species given observed abundances over time (Kinlan et al. 

2012, Zipkin et al. 2015). To implement this method, we fit the effort-corrected nonzero count 

data using a lognormal distribution, which does not contain zero in its support (fitdistrplus 

package in R; Delignette-Muller and Dutang 2015). The lognormal is a two parameter (mean and 

standard deviation), positive, continuous probability distribution characterized by a heavy tail 

and has been shown to fit waterbird data well because of its flexible shape and ability to fit 

heavily skewed data (Zipkin et al. 2014, Zipkin et al. 2015). We then estimated prevalence in the 

reference region as the proportion of blocks with occurrences for the target species group (at 

least one individual observed within the cell over all sampling events) relative to the total 
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number of blocks surveyed. We defined the reference region as the entire area sampled across 

the Great Lakes. Using the estimated mean and standard deviation from the lognormal 

distribution (as our count component) and the prevalence estimate (as our Bernoulli component), 

we simulated data with a Monte Carlo approach to calculate hotspot locations (Kinlan et al. 

2012, Zipkin et al. 2015). We defined a hotspot as a grid cell in which the long-term average 

effort-corrected count conditional on presence (with a 𝛼 = 0.05 threshold), was at least three 

times the mean of the reference region, also conditional on presence (Kinlan et al. 2012). The 

resulting values, ranging from zero to one, represent the proportion of simulated sample means 

that are greater than three times the average count. Values close to zero indicate the grid cell is 

not a hotspot. Values close to one indicate a high probability that the long-term average 

abundance in the grid cell is greater than three times the mean of the reference region. 

 

Comparative analysis of the methods 

Our objective was to determine the degree of congruence among the four methods across 

species groups and for all-species-combined. To quantify the consistency among the four 

approaches in their ability to detect hotspots, we performed a Pearson’s product-moment 

correlation to evaluate the pairwise associations of the four approaches with a Bonferroni 

adjustment and an alpha level of 0.05 (psych package Revelle 2015). We analyzed the correlation 

coefficients (ranging from zero to one) to determine associations among the different 

approaches: the higher the value, the higher the correlation between two methods. 

We produced maps for all species groups to visually compare the results of the four 

hotspot analysis approaches. For the first set of maps, we plotted the values produced for each 

grid cell using each hotspot analysis technique. Direct visual comparison among the hotspot 
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methods can be difficult because the scale of the results for each method varies (i.e., hotspot 

persistence and hotspots conditional on presence range between zero to one, kernel density 

produces unbounded positive values, while Gi* produces both positive and negative values). To 

resolve this issue, we created a second set of maps for each species group in which we 

considered a hotspot as any grid cell with a value above the 75th percentile (of all values for that 

method) and plotted those according to their percentiles. Values below the 75th percentile were 

not considered hotspots. 

 

RESULTS 

The highest correlation between methods for all species groups occurred between the two 

spatial techniques, kernel density estimation and Gi*, with a correlation ≥0.80 for all species 

groups except mergansers (Table 1.2). For mergansers, the correlation between the two spatial 

methods was 0.67 and nearly identical to the correlation between Gi* and the hotspots 

conditional on presence method. For the other species groups, including all-species-combined, 

there was much higher congruency between the spatial methods than any other combination of 

pairwise comparisons (Table 1.2). For example, for all-species-combined there was 94% overlap 

in identification of hot and non-hot grid cells between kernel density estimation and Gi* (Fig. 

1.2). In general, the parametric approaches were no more similar to one another than to either of 

the spatial methods and the highest correlations for each of the parametric models varied by 

species (Table 1.2). Kernel density estimation and hotspot persistence showed the lowest 

correlations (0.03-0.56) for the species groups that we examined. For the all-species-combined 

group, we found that the four methods identified the same 63% of grid cells as non-hot locations 

(below the 75th percentile), while approximately 8% of grid cells were identified as hotspot 
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locations under all four methods (above the 75th percentile). The remaining 29% of the cells were 

identified as hotspots by one, two, or three of the methods. 

The hotspot persistence approach differed most significantly from the other three 

methods and had the lowest correlations overall with other methods (Table 1.2; Fig. 1.2-1.3). 

Unlike the other methods, the hotspot persistence approach calculates hotspots relative to the 

survey region, rather than the entire study area (i.e., Fig. 1.1a, Fig. 1.2c upper panel), and also 

explicitly incorporates temporal variability. For example, in the analysis of the scaup species 

group, we found that many grid cells in Lake St. Clair were identified as hotspots by all methods 

except for hotspot persistence (Fig. 1.3). The counts for scaup were generally quite high in Lake 

St. Clair relative to other surveyed locations. However, the hotspot persistence method revealed 

that individual grid cells did not often have high counts on repeated occasions (as evidenced with 

zeros and other low values in grid cells within Lake St. Clair; Fig. 1.3c). The all-species-

combined analysis produced similar results, with 9% of grid cells identified as hotspots by the 

persistence approach but not by the other three methods (Fig. 1.2). 

The spatial methods are inherently different from the parametric, GLM-based 

approaches, which is evident in both the correlations and maps (Table 1.2). The parametric 

approaches tended to select single grid cells as hotspots, whereas the two spatial methods 

selected small clusters of grid cells as hotspots (Fig. 1.4). In many cases, grid cells that were 

highly ranked with the hotspots conditional on presence approach, were also highly ranked with 

the spatial methods. However, the surrounding grid cells tended to also be ranked with the spatial 

approaches (Fig. 1.4). Gi* had higher correlations (than kernel density estimation) with both 

parametric approaches for gulls, mergansers, loons, and common loon. For diving/sea ducks, 

long-tailed duck, and scaup, Gi* produced more similar results to hotspot persistence while 
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kernel density estimation was more consistent with hotspots conditional on presence. All-

species-combined showed a similar pattern to the diving/sea ducks. The two parametric 

approaches, hotspot persistence and hotspots conditional on presence, had relatively low 

correlations, ranging from 0.33-0.67 across the species groups examined (Table 1.2). Hotspot 

persistence correlation ranged from 0.03 (common loon) to 0.67 (scaup) and showed the highest 

correlation with hotspots conditional on presence for all species groups and all-species-combined 

(0.33-0.67). Hotspots conditional on presence showed the most consistency with kernel density 

estimation for all-species-combined (0.44) and diving/sea ducks (0.47), with Gi* for gulls (0.46) 

and mergansers (0.67), and with hotspot persistence for long-tailed duck (0.58), scaup (0.69), 

loons (0.45), and common loon (0.60). Scaup showed the highest agreement between any two 

methods (0.88 correlation between the two spatial methods), whereas common loon had the 

lowest correlation among the methods (0.03 correlation between kernel density estimation and 

hotspot persistence). 

Species-specific hotspots for common loon and long-tailed duck occurred in areas 

identified as hotspots for the corresponding species group. Common loon observations 

comprised 67% of the loon group observations. Interestingly, a reanalysis of the loons group 

without common loons only substantially altered the correlations between the parametric 

approaches, which had a correlation nearly as high as the two spatial approaches (Appendix 1, 

Table S1.1). Additionally, both parametric models performed better with Gi* than they did with 

kernel density estimation. This reanalysis suggests that common loon heavily influences the loon 

species group. When long-tailed duck data were removed from the diving/sea duck group (9% of 

the data), Gi* showed a higher correlation than kernel density estimation with hotspots 

conditional on presence (although the two spatial methods were still highly correlated with one 
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another; Appendix 1, Table S1.1), suggesting that long-tailed ducks may be disproportionately 

influencing the results of the hotspot analyses for the diving/sea duck group.  
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Table 1.2. Pearson correlation matrix of pairwise comparisons between the four hotspot analysis 

approaches (kernel density estimation, Getis-Ord Gi*, hotspot persistence, and hotspots 

conditional on presence) with a Bonferroni adjustment and an alpha level of 0.05. Light gray 

values show copies (i.e., values above and below of the diagonals are mirror images). 

 Kernel 

density 

estimation  

Getis-Ord Gi* 
Hotspot 

persistence 

Hotspots 

conditional 

on presence 

All species/groups     

Kernel density estimation  1.000 0.870 0.121 0.441 

Getis-Ord Gi* 0.870 1.000 0.125 0.435 

Hotspot persistence 0.121 0.125 1.000 0.332 

Hotspots conditional on presence 0.441 0.435 0.332 1.000 

Diving/sea ducks     

Kernel density estimation  1.000 0.874 0.160 0.467 

Getis-Ord Gi* 0.874 1.000 0.167 0.458 

Hotspot persistence 0.160 0.167 1.000 0.364 

Hotspots conditional on presence 0.467 0.458 0.364 1.000 

Gulls     

Kernel density estimation  1.000 0.808 0.318 0.457 

Getis-Ord Gi* 0.808 1.000 0.325 0.459 

Hotspot persistence 0.318 0.325 1.000 0.446 

Hotspots conditional on presence 0.457 0.459 0.446 1.000 

Long-tailed duck (LTDU)     

Kernel density estimation  1.000 0.804 0.406 0.475 

Getis-Ord Gi* 0.804 1.000 0.451 0.432 

Hotspot persistence 0.406 0.451 1.000 0.582 

Hotspots conditional on presence 0.475 0.432 0.582 1.000 

Mergansers     

Kernel density estimation  1.000 0.672 0.433 0.600 

Getis-Ord Gi* 0.672 1.000 0.547 0.669 

Hotspot persistence 0.433 0.547 1.000 0.575 

Hotspots conditional on presence 0.600 0.669 0.575 1.000 
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Table 1.2 (cont’d). 

 Kernel 

density 

estimation  

Getis-Ord Gi* 
Hotspot 

persistence 

Hotspots 

conditional 

on presence 

Scaup     

Kernel density estimation  1.000 0.878 0.562 0.661 

Getis-Ord Gi* 0.878 1.000 0.586 0.623 

Hotspot persistence 0.562 0.586 1.000 0.686 

Hotspots conditional on presence 0.661 0.623 0.686 1.000 

Loons     

Kernel density estimation  1.000 0.808 0.047 0.210 

Getis-Ord Gi* 0.808 1.000 0.063 0.258 

Hotspot persistence 0.047 0.063 1.000 0.454 

Hotspots conditional on presence 0.210 0.258 0.454 1.000 

Common loon (COLO)     

Kernel density estimation  1.000 0.800 0.027 0.049 

Getis-Ord Gi* 0.800 1.000 0.032 0.075 

Hotspot persistence 0.027 0.032 1.000 0.606 

Hotspots conditional on presence 0.049 0.075 0.606 1.000 
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Figure 1.2. Potential hotspots (values above the 75% percentile) across all sampled locations for the all-species-combined group  
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Figure 1.2 (cont’d). 

(includes: diving/sea ducks, gulls, loons, mergansers, and scaup) as estimated with each of the 

four hotspot analysis approaches: (a) kernel density estimation, (b) Getis-Ord Gi*, (c) hotspot 

persistence, and (d) hotspots conditional on presence. Grid cells sampled less than four times 

were excluded from the analysis and are shaded in gray. Note the survey regions are delineated 

for the hotspot persistence approach (c) because hotspots in this method are calculated relative to 

other grid cells within these specific regions.
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Figure 1.3. Hotspot maps for the scaup species group (example pictured in a; upper panel) in western Lake Erie, including (a; lower 

panel) mean effort-corrected counts. The hotspot values are shown on the raw scales for each of the four methods: (b) non-parametric  
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Figure 1.3 (cont’d). 

spatial approaches: (upper panel) kernel density estimation and (lower panel) Getis-Ord Gi*; (c) 

parametric GLM-based approaches: (upper panel) hotspot persistence and (lower panel) hotspots 

conditional on presence.
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Figure 1.4. Potential hotspots (values above the 75% quantile) in a portion of Lake Michigan for the diving/sea duck species group, 

highlighting (a) single cell selection in hotspots conditional on presence method (a parametric, non-spatial approach) and (b) clustered 

cell selection in kernel density estimation (a non-parametric, spatial approach).  
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DISCUSSION 

Despite the frequent use of hotspot analyses in management and conservation, we found 

that the various hotspot approaches resulted in the identification of different hotspots within our 

Great Lakes waterbird dataset. If conservation and management decisions are based on hotspot 

analyses, then it is important to understand the advantages, limitations, and potential biases in the 

various approaches to facilitate selection of the most appropriate method to answer the 

question(s) of interest. Our analyses reveal that methods to estimate hotspots using spatial 

approaches, specifically kernel density and G*, produce highly correlated results and can likely 

be used as surrogates for one another. However, the non-spatial, GLM-based methods that we 

examined produce less consistent results with each other and the spatial methods, the degree to 

which varies by species. The hotspot persistence approach differed the most from the other 

methods. Unlike the three other techniques, hotspot persistence estimates hotspots based on 

unique sampling events within survey regions and then identifies whether those areas persist as 

hotspots over time. The other three approaches focus on average abundance over the entire 

survey period and may not be comparable to the hotspot persistence approach. The hotspot 

persistence approach (as with the other approaches) may perform best with many more sampling 

events rather than our minimum of four surveys (Kinlan et al. 2012, Zipkin et al. 2015). 

Our analyses cannot determine which method most appropriately estimates species 

hotspots. The best method for any given analysis will depend on the question and study region. 

The spatial methods are useful in assessing large areas where waterbirds have been present (with 

high densities) on at least one occasion. However, the spatial methods do not explicitly 

incorporate sampling effort and many applications to waterbird data ignore this issue (although 

we accounted for varying sampling intensity by dividing the observations in a grid cell by the 
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number of sampling events). Furthermore, the spatial methods can have difficulty identifying 

individual grid cells as hotspots, especially at small spatial scales and with heavily skewed data 

(Songchitruska and Zeng 2010, Harris et al. 2017). The parametric hotspot models are likely to 

be relatively more conservative in identifying hotspots (e.g., Fig. 1.4), which may be desirable 

depending on conservation and management priorities. The hotspots conditional on presence 

method calculates species hotspots using the estimated expected count in grid cells based on all 

sampling events over the entire study area. Locations are hotspots when expected abundance is 

high (in this case, three standard deviations above the mean) compared to the mean count of the 

target species in the entire reference region. The hotspot persistence method classifies a location 

as a hotspot if that location has high density or abundance consistently over time relative to the 

rest of the grid cells that were surveyed at the same time. Thus, if the goal is to identify areas of 

long-term high concentration for species protection within a smaller region, the hotspot 

persistence method (or a similar metric) may be most appropriate. 

There is subjectivity in all methods to identify hotspots because arbitrary thresholds are 

selected to delineate hotspot locations and can be changed (Harvey et al. 2017). Thus, there is a 

tradeoff in the rate of Type I and Type II errors in selecting a threshold level (Kinlan et al. 2012). 

A high threshold will constrain the number of hotspots and the likelihood that an area is falsely 

categorized as a hotspot decreases. A low threshold will increase the number of hotspots, 

possibly including locations that should not be considered hotspots. For the spatial techniques, a 

number of user-determined decisions are incorporated: the bandwidth and cell size must be 

specified in kernel density estimation and the number and direction of neighboring values must 

be decided in the Gi* method, both of which can easily be changed to suit the user (Canadas et 

al. 2014, Marchese 2015). For the parametric GLM-based approaches, the user must decide the 
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level that constitutes a hotspot (i.e., top 25% of cells in the hotspot persistence approach; three 

times in the mean in hotspots conditional on presence method; Canadas et al 2014, Zipkin et al. 

2015). The production of hotspot maps is also subjective (Carolan 2009). We choose to classify 

and color hotspots as the top 25% of grid cell values for the four methods (Fig. 1.2). However, a 

different threshold could produce maps that appear more or less similar (particularly when 

evaluating methods on their original scales; e.g., Fig 1.3) and possibly lead to different 

conclusions on the congruency of the four approaches. A combination of methods using an 

integrative approach that synthesizes results, either within a single analysis or post-hoc, could 

lead to greater consistency (Marchese 2015). Nur et al. (2011) found that the use of multiple 

criteria (when defining a hotspot within a single method) prevents misidentifying an area that 

may be overlooked when using only a single criterion. Future analyses could not only combine 

methods, but also incorporate multiple criteria to define hotspots. 

Variation in hotspot identification across the methods may be due in part to scale. Scale is 

important to several aspects of hotspot identification: 1) the scale at which the data are collected, 

2) the spatial scale at which the data are analyzed, and 3) the scale at which management 

decisions will be made. It is important to account for potential discrepancies in the geographic 

scale of population-level processes and the resolution of different datasets when deciding the 

spatial scale for analyses. The 5 km2 grid we used is a fine-scale resolution to identify and map 

hotspots and may result in less consistency across methods than a larger, coarser grid (Daru et al. 

2015). The distance between and design of transect surveys can directly affect the outcome of 

hotspot analyses, therefore we recommend simultaneous and thorough consideration of survey 

design and analysis prior to data collection. Spatial methods explicitly incorporate 

autocorrelation and tend to identify large areas (i.e., multiple grid cells) as hotspots whereas the 
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non-spatial, GLM-based methods typically identify small, patchy areas (i.e., individual grid cells; 

Harvey et al. 2017). Thus, geographic scale and resolution (i.e., how finely the planning areas are 

divided into planning units/grid cells) is critical for developing effective management plans that 

recognize both ecological and social processes. 

The data used in our analyses were both spatially and temporally limited. The data come 

from the Great Lakes region, though only covered portions of three Great Lakes: Erie, Huron, 

and Michigan, as well as Lake St. Clair. To better assess hotspots in the entire Great Lakes 

region, sampling should be conducted in the remaining two lakes, as well as in other regions of 

the three sampled lakes. Our data spanned three seasons over two years with some areas sampled 

only once and others up to thirty times. The inconsistency in sampling required us to exclude 

data from areas that were sampled only a small number of times (less than four), although it is 

possible that even areas included in our analyses were not sampled enough for accurate hotspot 

detection (Hazen et al. 2014, Zipkin et al. 2015). The data used in this study were collected by 

five different research institutions, highlighting the importance of coordinated survey efforts, 

proper data descriptions, and open data sharing, especially for large-scale analyses such as those 

presented here. We attempted to break down the data to identify species-specific and species 

group hotspots; however, because the data are temporally constrained, we were limited to 

analyzing only a handful of possible species groups. Grouping species also allowed us to 

incorporate individuals that could not be identified to the species-level (21% of all observations), 

increasing sample sizes. Despite the constraints on the data, our results will help inform areas in 

need of greater sampling effort for future survey work (GLFWRA 2006). 

Resources for conservation and wildlife management are limited, requiring prioritization 

of conservation objectives (Araujo 2002). Hotspot analysis is a first step in understanding species 
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distribution patterns but it is equally or more important to determine why certain areas contain 

persistent aggregations of waterbirds. We did not include environmental variables (e.g., 

bathymetry, surface temperature, ice coverage, etc.) or season in our hotspot analyses, although 

they most certainly play an important role in the distribution and abundance patterns of 

waterbirds (Nur et al. 2011, Suryan et al. 2012). Environmental variables, such as habitat 

suitability and food availability, are critical to discerning species behaviors and patterns 

(Hyrenbach et al. 2000, Shirkey 2012, Briscoe et al. 2015). However, challenges arise with 

environmental variables that are constantly changing (e.g., ice cover, temperature), making 

identification of static hotspot locations relative to environmental variables difficult (Briscoe et 

al. 2015, Marchese 2015) and perhaps less useful for certain management related questions. 

Seasonal variability in waterbird species across the Great Lakes is an important factor that we 

did not consider in our analyses; abundances can fluctuate during migration or at overwintering 

locations and shifts in distributions may occur within seasons (Suryan et al. 2016). Human 

disturbance can also affect species distributions; for example, diving ducks may forage at night 

in different areas than during the day to avoid disturbance, such that diurnal distributions may 

not represent the spatial distribution of all important areas used (Shirkey 2012). 

Survey methods and modeling techniques have improved over time, but waterbird species 

are highly mobile, making the identification of priority areas difficult (Arcos et al. 2012, Harvey 

et al. 2017, Marchese 2015). Through our study, we demonstrate that delineating hotspots is 

often subjective, as different thresholds can produce varying results. Regardless of their 

drawbacks, hotspot analyses are likely to remain an important tool for conservation because of 

their relative ease to implement. Yet, researchers should clearly identify conservation and 

management goals to select the most appropriate analysis method(s). This will allow hotspot 
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analyses to be both useful and meaningful. Although individual methods may lead to incongruent 

hotspot identification, incorporating multiple techniques, especially those that combine spatial 

and non-spatial approaches, could increase insights and improve ability to identify true areas of 

high use.  



 

36 

APPENDIX  
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Table S1.1. Diving/sea ducks and loons reanalyzed without long-tailed duck and common loon, 

respectively. Pearson correlation matrix of pairwise comparisons between the four hotspot 

analysis approaches (kernel density estimation, Getis-Ord Gi*, hotspot persistence, and hotspots 

conditional on presence) with a Bonferroni adjustment and an alpha level of 0.05. Light gray 

values show copies (i.e., values above and below of the diagonals are mirror images). 

 Kernel 

density 

estimation  

Getis-Ord Gi* 
Hotspot 

persistence 

Hotspots 

conditional  

on presence 

Diving/sea ducks without long-tailed duck 

Kernel density estimation  1.000 0.876 0.179 0.492 

Getis-Ord Gi* 0.876 1.000 0.193 0.507 

Hotspot persistence 0.179 0.193 1.000 0.420 

Hotspots conditional on presence 0.492 0.507 0.420 1.000 

Loons without common loon     

Kernel density estimation  1.000 0.813 0.111 0.119 

Getis-Ord Gi* 0.813 1.000 0.126 0.127 

Hotspot persistence 0.111 0.126 1.000 0.806 

Hotspots conditional on presence 0.119 0.127 0.806 1.000 
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CHAPTER 2 

Combining models to identify waterbird hotspots in the Great Lakes 

 

ABSTRACT 

Waterbird species play an important role in ecosystems and are known indicators of ecosystem 

health. Most waterbird species exhibit patchy distributions with high aggregations that vary 

throughout the year, making it difficult to identify spatial patterns; however, waterbirds rapidly 

react to changes in the environment providing beneficial information about aquatic ecosystems 

and species. Detecting hotspots is an effective way to identify species-specific patterns and 

simultaneously inform decisions regarding habitat and ecosystem protection. The Great Lakes, 

and surrounding areas, offer many resources for both humans and wildlife. The region provides 

unparalleled habitat for many wildlife species, including many waterbirds throughout the year 

during migration, wintering, and breeding seasons. There are several methods to identify 

hotspots, many of which are arbitrary in selecting metrics or thresholds and may thus provide 

incongruent results. One solution is to combine methods, which may result in more accurate 

hotspot estimates than with any single analysis framework. We selected and combined two 

hotspot models commonly used for waterbird hotspot analyses to identify species-specific 

hotspots in the Great Lakes: one spatial method, Getis-Ord Gi*, and one non-spatial parametric 

method, hotspots conditional on presence. Our objective was to delineate a single hotspot value 

per location (i.e., 5 x 5 km grid cell), using a post-hoc integrated hotspot modeling approach, for 

each of the selected species and species groups. Our combined model showed Lake St. Clair and 

western Lake Erie had more hotspots than expected for half the species analyzed, which is likely 

due to the shallow depths of these two lakes. Lakes Michigan and Huron exhibited a higher 
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proportion of hotspots than expected for long-tailed duck. The difference in pattern between the 

diving/sea duck group and long-tailed duck suggests that diving and sea ducks exhibit very 

different distributional patterns and should (given sufficient data) be split out and analyzed 

separately. Uneven sampling across the Great Lakes region affects confidence that locations are 

or are not true hotspots, but using a combined hotspot approach can help alleviate some concerns 

associated with limited data availability. Our integrated modeling approach increases the 

consistency of hotspot detection, increasing accuracy in assessments of waterbird spatial 

patterns. 

 

INTRODUCTION 

Waterbird species have evolved in highly variable conditions (e.g., changes in 

temperature or ice cover), but rapid global changes within the last several decades pose new 

challenges (Montevecchi et al. 2012; Perry et al. 2005). One primary threat to waterbird viability 

and diversity is habitat loss due to human activities, such as energy development (e.g., gas, oil, 

and wind), commercial and recreational fishing, open water shipping, and coastal development 

(Garthe and Huppop 2004, Williamson et al. 2013, Adam et al. 2015, Kuletz et al. 2015). 

Another serious threat is increasing climate variability as open waterbird species respond to both 

small- and large-scale changes in weather conditions (e.g., daily to decadal temperature 

fluctuations). As such, waterbirds can serve as indicators of aquatic ecosystem health and habitat 

quality (Reese and Brodeur 2006, Piatt et al. 2007, Nur et al. 2011, Croxall et al. 2012, Santora 

and Sydeman 2015). They also provide regulatory (e.g., pest control, disease surveillance, 

regime shifts), cultural (e.g., recreational hunting, birdwatching, art), and provisionary services 

(e.g., meat, feathers for clothing, grease for waterproofing; Green et al. 2014). Because 
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waterbirds play important roles in ecosystems, their distributions and abundance patterns provide 

valuable information that can be used to make coordinated decisions for effective and sustainable 

resource allocation. 

Waterbird populations exhibit temporal and spatial variability in their abundances and 

distributions (Virkkala 2016). Their habitat use is often spatially and temporally unpredictable; 

however, individuals do move regularly and respond to dynamic climate conditions (Certain 

2007, Piatt et al. 2007, Votier et al. 2008). These patchy aggregations make it difficult to assess 

waterbird spatial distributions (Santora and Veit 2013, Zipkin et al. 2015). Waterbird species 

patterns also vary throughout the year, based on habitat preference for breeding, overwintering, 

and migration locations. In open water ecosystems where both the environment and species 

distributions are highly dynamic, the probability that a single survey event is representative of 

the true population size at a particular location is low (Santora and Veit 2013, Marchese 2015). 

For these reasons, surveying waterbird populations is extremely difficult (Zipkin et al. 2015), and 

often results in data gaps. 

Understanding the dynamics and ecology of waterbird populations is essential to making 

informed conservation decisions. One of the leading methods to determining patterns of 

waterbird species is to identify hotspots, or locations of persistent aggregation. Conservation of 

hotspot locations is an effective way to protect many species simultaneously, while minimizing 

cost and resources. Hotspots can be identified at any geographic scale and are frequently 

representative of broader conservation priorities (Nur et al. 2011, Marchese 2015). By applying 

hotspot models, we can overcome many challenges (e.g., high cost) associated with limited 

datasets and identify important locations for both habitat and species conservation. 
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The Great Lakes play a unique and important role in the development of North America’s 

natural resources (EPA 1995), containing the second largest accumulation of fresh water on earth 

and more than 16,000 km of shoreline in eight U.S. states and one Canadian province (Prince et 

al. 1992, Gronewold 2013). The Great Lakes provide agriculture and drinking water to both the 

United States and Canada, allows for the transport of goods within North America, and are 

economically important as they connect the rich agricultural and mining regions in the west with 

the great industrial areas and large cities in the east (EPA 1995, Gronewold 2013). Apart from 

these economic services, the Great Lakes are also vitally important for wildlife, and birds in 

particular. More than 350 bird species (including many waterbird species) migrate through the 

Mississippi Flyway in the spring and fall, and rely upon habitat in and around the Great Lakes to 

provide essential resources throughout their journey (GLRI 2010). An array of habitats (e.g., 

open water, mudflats, and marshes) in the Great Lakes region produce food, provide cover and 

roosting areas, and therefore attract a variety of species journeying both north and south during 

migration (Rodewald and Ewert 2008). Coastal wetlands serve as critical migratory, breeding, 

and foraging habitat for many species (Riffell et al. 2003). Both nearshore (i.e., water 0-80 m 

deep) and offshore (i.e., water deeper than 80m) areas provide essential foraging habitat, ice-free 

open water, and vital roosting sites (Kreitinger et al. 2013). In addition to affecting waterbird 

species, increasing climate variability also impacts the Great Lakes. The effects of climate 

change on the Great Lakes are reflected directly through increases in both air and water 

temperatures and indirectly through changes in precipitation and reduction in lake water levels 

(Mortsch and Quinn 1996, Lofgren et al. 2011). These changes have the potential to a) affect the 

quality of aquatic habitats; b) alter species composition and dynamics; and c) cause 

socioeconomic problems through navigational challenges and the loss of hydropower and 
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shipping resources (Mortsch and Quinn 1996, Angel and Kunkel 2009). The Great Lakes are 

both economically and culturally important and as waterbird species are useful bioindicators, 

understanding their patterns and movement can be ecologically and economically beneficial to 

the Great Lakes basin. 

In this study, we combine two hotspot analysis methods, Getis-Ord Gi* (Gi*; a spatial 

model) and “hotspots conditional on presence” (a parametric GLM-based model), to identify 

hotspots for waterbird species in the Great Lakes (Sussman et al. in review). Spatial models 

identify clusters of grid cells as hotspots, which may be beneficial for highly mobile organisms 

such as waterbirds that move constantly in response to climate variability and food availability 

(Marchese 2015, Harvey et al. 2017). In contrast, non-spatial models typically identify individual 

grid cells as hotspots, and often incorporate environmental variables into the analysis. In 

ecology, non-spatial hotspot delineation methods are more common than spatial methods, but use 

arbitrary thresholds or metrics to delineate hotspots (Harvey et al. 2017). Yet, non-spatial 

approaches most often identify comparatively smaller locations as hotspots, which may be 

beneficial for conservation and management, and are less likely to overestimate hotspot locations 

(Harvey et al. 2017). Typically, these models are used in isolation; researchers usually use a 

singular approach to identify hotspots. Combining the two model types can provide a balance 

between the often more conservative GLM-based and less conservative spatial modeling 

techniques (Sussman et al. in review).  
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METHODS 

Study area & data description 

The data come from five different survey entities: (Biodiversity Research Institute (BRI), 

Michigan Department of Natural Resources, Michigan Natural Features Inventory [Michigan 

State University Extension], U.S. Geological Survey, and Western Great Lakes Bird and Bat 

Observatory) and are publicly available in the Midwest Avian Data Center (MWADC), a 

regional node of the Avian Knowledge Network (AKN) hosted by Point Blue Conservation 

Science (http://data.pointblue.org/partners/mwadc/). The raw data consist of aerial visual 

observations along survey transects (Fig. 2.1); observers recorded species, number of individuals 

seen, and latitude and longitude (using onboard GPS). Observers identified birds to the species 

level, or the lowest taxonomic group possible. As waterbirds tend to aggregate, many large 

flocks, covering large areas (i.e., up to 30 square kilometers) were recorded. For such flocks, the 

recorded location is an approximation to the center of the flock. The data were collected from 

late September 2012 through early June 2014 during fall, winter, and spring seasons (Table 2.1). 

The research entities conducted anywhere from one to twenty-nine distinct surveys, culminating 

in uneven sampling across the study region. Additionally, BRI conducted surveys only in the 

final year of data collection. In cases where the entity did not include transect attribution for 

individual observations, we used incremental buffering by 1-m to identify the closest transect to 

each observation record. We used data collected on the location of the transect line when 

available and GIS to reconstruct the transect lines from observations in instances when that 

information was not recorded.  
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Figure 2.1. Great Lakes study area, with aerial-survey transects flown over selected areas of the 

region during the fall, winter, and spring seasons from September 2012 to June 2014. Survey 

regions are colored according to the research entity who collected the data. 

 

Table 2.1. Temporal distribution of unique aerial-surveys conducted from September 2012 to 

June 2014 and summed across all research entities. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

2012 0 0 0 0 0 0 0 0 1 3 8 5 17 

2013 2 5 11 10 3 0 0 0 1 7 12 6 57 

2014 3 3 4 11 6 1 0 0 0 0 0 0 28 

Total 5 8 15 21 9 1 0 0 2 10 20 11 102 

  

Lake 

Huron 

Research Entity

Biodiversity Research Institute

Michigan Department of Natural Resources

Michigan Natural Features Inventory

United States Geological Survey

Western Great Lakes Bird & Bat Observatory

   Green 

Bay 

Lake 

Michigan 

Lake 

Erie 

Lake 

Ontario 

Lake  

St. Clair 
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Species groups & data standardization 

We selected seven species and species groups (long-tailed duck, common loon [Gavia 

immer], gulls [Larus spp.], mergansers [Mergus spp. and Lophodytes spp.], scaup [Aythya spp.], 

loons [Gavia spp.], and diving/sea ducks [Aythya spp., Bucephala spp., Clangula hyemlais, 

Melanitta spp., Mergus spp., Oxyura jamaicensis, and Somateria spp.]) to analyze. We chose 

these species and species groups (hereafter referred to as species groups) because they exhibited 

a relatively even distribution across the study area and were identified by regional managers and 

stakeholders as species of interest. We also combined the data from all seven species groups to 

identify potential hotspots for an all-species-combined group. Individual species that appeared in 

multiple groups were only used once in the combined analysis (i.e., not double counted). 

We standardized the data using a 5-km2 grid that was superimposed over the entire Great 

Lakes region. We segmented the transects by the grid cell layer, so that all grid cells contained 

only the portion of each transect that occurred within the cell. We calculated the total length of 

the transect segment(s) within a grid cell (in kilometers) for each unique sampling event (i.e., 

survey) and included only those cells that contained a total transect length of at least 1-km. To 

account for unequal sampling effort across survey blocks, we divided the number of observations 

of a species group for the sampling event-grid cell combination by the summed transect length, 

resulting in a continuous effort-corrected count. We used data from all sampling events and grid 

cells surveyed in our analysis, though we limited the hotspot maps to grid cells that contained at 

least four sampling events to limit potential identification of false hotspots (Sussman et al. in 

review).  
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Hotspot analysis 

We selected two fundamentally different hotspot analysis models for our integrative 

approach: one spatial non-parametric and one non-spatial GLM-based model. Spatial models use 

data from a target location and its surrounding areas to detect patterns and derive areas of high 

density (Harvey et al. 2017). We chose Getis-Ord Gi* (Gi*; Getis and Ord 1992) for the spatial 

component of our combined model because it can identify spatially explicit hotspot locations and 

is becoming a widely-used spatial analysis tool in ecology (Kuletz et al. 2015). Given a set of 

weighted data points, Gi* identifies clusters of points with values higher in magnitude than 

expected by random chance (ESRI 2015, Kuletz et al. 2015). Gi* identifies hotspots based on the 

spatial relationship between a focal point (i.e., a grid cell) with its neighboring data points (or 

grid cells; Getis and Ord 1992, Santora et al. 2010, Kuletz et al. 2015). For this method, we 

assigned all observations to the midpoint of the grid cell within which the observation fell. We 

accounted for uneven sampling effort across the different research entities by dividing the 

summed effort-corrected count for a grid cell by the total number of unique sampling events for 

that grid cell. Because the model relies on a set of weighted points, we created a neighbor list, 

which identifies the relationship of each grid cell relative to its surrounding grid cells. There are 

different types of neighbor lists that can be built; we used a standard rook’s case contiguity 

neighbor list which identifies neighbors as those grid cells that share a border with the focal grid 

cell (spdep package in R; Bivand et al. 2013, Bivand and Piras 2015). Using the neighbor list, we 

calculated a row-standardized spatial weights matrix as our set of weighted data points, which 

informs every grid cell’s relationship to all other cells within the neighborhood (spdep package 

in R; Bivand et al. 2013, Bivand and Piras 2015, Kuletz et al. 2015). The spatial analysis resulted 
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in a z-score for every grid cell that represents the statistical significance of clustering, where high 

positive values are more likely to be considered hotspots than low values. 

Non-spatial hotspot models typically use statistical distributions to describe a population, 

with a defined metric or a threshold to identify patterns at independent locations (Oppel et al. 

2012, Zipkin et al. 2015, Santora and Veit 2013). We used a GLM-based parametric model 

termed “hotspots conditional on presence” (Kinlan et al. 2012, Zipkin et al. 2015, Sussman et al. 

in review). This non-spatial approach combines count data from all sampling events and 

identifies individual grid cells as hotspots if the long-term average abundance is at least three 

times greater than the regional mean (Zipkin et al. 2015). To implement this hotspots approach, 

we first estimated the prevalence of the species group as the proportion of grid cells with 

occurrences relative to the total number of grid cells surveyed. We then fit the non-zero effort-

corrected counts using a lognormal distribution (fitdistrplus package in R; Delignette-Muller and 

Dutang 2015). We chose the lognormal over other distributions because it is a positive (does not 

support zeros), continuous probability distribution which is well established to fit heavily right-

skewed waterbird data (Zipkin et al. 2014). We simulated data using a Monte Carlo approach to 

calculate the probability that a particular grid cell with an observed mean count was a hotspot 

(Kinlan et al. 2012, Zipkin et al. 2015). The Monte Carlo simulation has two components: the 

first is a count component, for which we used the estimated mean and standard deviation from 

the lognormal distribution, and the second is a Bernoulli component, for which we used the 

prevalence estimate. A grid cell was considered a hotspot when the long-term average effort-

corrected count (conditional on presence) was at least three times the mean of the reference 

region (also conditional on presence). The parametric model resulted in a value from zero to one 

for every grid cell which represents the proportion of simulated sample means that are greater 
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than three times the average count, where high values close to one are more likely to be hotspots 

than low values near zero. 

 

Combining hotspot models 

Our goal was to combine the results from the two different hotspot methods to assign a 

single hotspot value per grid cell. To do this, we ordered each method’s set of resulting values 

(i.e., range: (-∞, ∞) for Gi* and (0, 1) for hotspots conditional on presence for each grid cell) for 

all surveyed cells from smallest to largest. We then ranked each grid cell from 1 to 1767 (the 

total number of grid cells surveyed) based on its value from each model (i.e., two rankings, one 

for each analysis method). Grid cells whose values were the same were considered tied and were 

assigned the lowest rank (i.e., the minimum rank of the tied values) among those cells. Once all 

grid cells were ranked, we calculated the corresponding percentile by dividing the rank by the 

total number of grid cells surveyed. After calculating percentiles for each grid cell with each 

method, we calculated the average percentile of the two methods for all grid cells, resulting in a 

value from zero to one where high values closer to one are more likely to be hotspots than low 

values closer to zero. We produced a single hotspot map for each species group to highlight 

potential hotspot locations. We binned the percentiles for mapping purposes and consider a 

species hotspot as any grid cell with an average value above the 75th percentile (Sussman et al. in 

review). 

 

RESULTS 

Five out of eight species groups (diving/sea ducks, gulls, mergansers, scaup, and the all-

species-combined group; Table 2.2) had a higher percentage of hotspots (≥ 75th percentile) than 
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expected relative to the number of grid cells surveyed within Lake St. Clair (4.24%) and western 

Lake Erie (2.38%). The diving/sea duck group exhibited the highest proportion of grid cells 

considered hotspots in both Lake St. Clair and western Lake Erie (16.97% and 8.37%, 

respectively; Table 2.2). All-species-combined had the same proportion of grid cells considered 

hotspots as diving/sea ducks (16.95%) in Lake St. Clair, and the second highest proportion in 

western Lake Erie (8.14%; Table 2.2). Of the total number of blocks that were surveyed, 5.43% 

were in eastern Lake Erie. Half of the species groups analyzed exhibited a greater number of 

hotspots in eastern Lake Erie than expected by chance, including gulls (13.57%), mergansers 

(13.57%), loons (15.99%), and common loon (17.87%). Conversely, long-tailed ducks had no 

hotspots in the entirety of Lake Erie or Lake St. Clair. Instead, long-tailed ducks had a higher 

proportion of hotspots than was expected in Lakes Huron (18.33%), and Lake Michigan 

(81.67%; Table 2.2). Long-tailed ducks were the only species analyzed to have a higher 

proportion of hotspots than expected by chance in Lakes Huron and Michigan, although all-

species-combined group also had a large proportion of hotspots in both of these lakes, likely due 

to the large number of long-tailed ducks in the data. 

In Lake St. Clair and western Lake Erie, the combined model results showed hotspots 

both nearshore and offshore for all-species-combined, whereas in Lake Michigan and eastern 

Lake Erie more hotspots were found along the coastline (Fig. 2.2). Diving/sea ducks exhibited a 

similar pattern, which was expected as they make up 70% of all observations (Fig. 2.3). Both 

diving/sea ducks and all-species-combined demonstrated low proportions (6.78% and 4.3%, 

respectively; Table 2.2) of hotspots in Lake Huron relative to the number of grid cells surveyed 

(8.83%), with almost all hotspots falling within the 75-90th percentile (Figs. 2.2-2.3). The 

combined hotspot model identified clusters of grid cells as gull hotspots along the coastline in all 
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lakes except Lake Huron as well as offshore locations in Lake Erie and northern Lake Michigan 

(Fig. 2.4). Gull species had the second lowest percentage of hotspots in Lake Huron (1.58%) 

relative to the total number of grid cells surveyed within the lake (8.83%). Gulls and mergansers 

are the only two species groups to have a higher proportion of hotspots than expected due to 

random chance, in both surveyed areas of Lake Erie (western and eastern; Table 2.2). Long-

tailed ducks exhibited hotspots throughout the lakes in which they were found in, rather than 

strictly in near or offshore locations, like the other species groups (Fig. 2.5). Mergansers had the 

lowest proportion of hotspots relative to grid cells surveyed within Lake Huron (1.13%, Table 

2.2, Fig. 2.6). 

In all lakes except St. Clair, more hotspots along the coastline than in offshore areas were 

identified for scaup species (Fig. 2.7). Every grid cell surveyed in Lake St. Clair was a hotspot 

for scaup, with the highest proportion of hotspots above the 90th percentile for all species 

analyzed (Fig. 2.7). Loons and common loon are the only group/species to have a higher 

proportion of hotspots (relative to the surveyed grid cells) in eastern Lake Erie (Table 2.2). They 

also had the second (79.05%) and third (78.51%) highest percentage of hotspots relative to all 

grid cells surveyed in Lake Michigan (79.12%; Table 2.2). No hotspots were identified for all 

loon species and common loons in Lake St. Clair or in western Lake Erie (Figs. 2.8-2.9). 

However, both species groups exhibited hotspots in the near and offshore, in eastern Lake Erie 

and in portions of northern and southern Lake Michigan (Figs. 2.8-2.9). There were no hotspots 

above the 90th percentile in the area surveyed in the middle of Lake Michigan; scaup, loons, and 

common loons had few hotspots (75-90th percentile) on the outermost grid cells of this region 

(Figs. 2.2-2.9).  
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Table 2.2. Percent hotspots within each lake for each species/group and the all-species-combined 

group. The top row of the graph shows the percent of all grid cells surveyed (out of 1767) within 

each lake. When comparing across the lakes, it is important to note percentages are relative to the 

number of grid cells surveyed within each lake. Bold font indicates that the percent values are 

greater than the proportion surveyed in that lake, and indicate more hotspots than would be 

expected by chance for a particular species group in a particular lake. 

Species 
Lake 

Huron 

Lake 

Michigan 

Eastern 

Lake Erie 

Western 

Lake Erie 

Lake 

St. Clair 

Percent of all cells 8.83% 79.12% 5.43% 2.38% 4.24% 

All-species-combined 4.30% 65.38% 5.20% 8.14% 16.97% 

Diving/Sea Ducks 6.79% 64.25% 3.62% 8.37% 16.97% 

Gulls 1.58% 69.91% 13.57% 7.24% 7.69% 

Long-tailed Duck 18.33% 81.67% 0.00% 0.00% 0.00% 

Mergansers 1.13% 62.67% 13.57% 7.69% 14.93% 

Scaup 7.22% 66.30% 4.81% 7.78% 13.89% 

Loons 4.73% 79.05% 15.99% 0.23% 0.00% 

Common Loon 3.39% 78.51% 17.87% 0.23% 0.00% 
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Figure 2.2. Potential hotspots (values above the 75% percentile) across all sampled locations for all-species-combined (includes: all 

diving/sea ducks, gulls, loons, mergansers, and scaup) as defined by the integrated hotspot modeling approach. Grid cells sampled less 

than four times were excluded from the analysis and are shaded in gray.   
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Figure 2.3. Potential hotspots (values above the 75% percentile) across all sampled locations for diving/sea ducks (includes: 

bufflehead, canvasback, common eider, long-tailed duck, redhead, ring-necked duck, ruddy duck, all eiders, all goldeneye, all 

mergansers, all scaup, all scoters, all unidentified diving ducks) as defined by the integrated hotspot modeling approach. Grid cells 

sampled less than four times were excluded from the analysis and are shaded in gray.  
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Figure 2.4. Potential hotspots (values above the 75% percentile) across all sampled locations for gulls (includes: Bonaparte's gull, 

glaucous gull, great black-backed gull, herring gull, Iceland gull, mew gull, ring-billed gull, all unidentified gulls) as defined by the 

integrated hotspot modeling approach. Grid cells sampled less than four times were excluded from the analysis and are shaded in gray.  
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Figure 2.5. Potential hotspots (values above the 75% percentile) across all sampled locations for long-tailed duck [Clangula hyemalis] 

as defined by the integrated hotspot modeling approach. Grid cells sampled less than four times were excluded from the analysis and 

are shaded in gray.  
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Figure 2.6. Potential hotspots (values above the 75% percentile) across all sampled locations for mergansers (includes: common 

merganser, hooded merganser, red-breasted merganser, all unidentified mergansers, all unidentified merganser/goldeneye) as defined 

by the integrated hotspot modeling approach. Grid cells sampled less than four times were excluded from the analysis and are shaded 

in gray.  
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Figure 2.7. Potential hotspots (values above the 75% percentile) across all sampled locations for scaup (includes: greater scaup, lesser 

scaup, all unidentified scaup) as defined by the integrated hotspot modeling approach. Grid cells sampled less than four times were 

excluded from the analysis and are shaded in gray.  
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Figure 2.8. Potential hotspots (values above the 75% percentile) across all sampled locations for loons (includes: common loon, red-

throated loon, all unidentified loons) as defined by the integrated hotspot modeling approach. Grid cells sampled less than four times 

were excluded from the analysis and are shaded in gray.  
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Figure 2.9. Potential hotspots (values above the 75% percentile) across all sampled locations for common loon [Gavia immer] as 

defined by the integrated hotspot modeling approach. Grid cells sampled less than four times were excluded from the analysis and are 

shaded in gray.
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DISCUSSION 

Our combined hotspot model shows that Lake St. Clair and western Lake Erie have more 

hotspots than expected relative to the number of grid cells surveyed in these two lakes. Within 

the context of this study, these areas are important for many waterbird species and should 

continue to be monitored, especially when considering future conservation objectives. On 

average, these two lakes are the shallowest, even at their maximum depth, of all lakes in the 

Great Lakes region (Bolsenga and Herdendorf 1993, EPA 1995). The shallow water depths of 

these lakes provide vital food and habitat resources for nesting colonial birds, migrating 

waterfowl and other waterbirds (Riffell et al. 2001, Monfils and Gehring 2012). For example, 

during the breeding season, female gulls have been shown to forage in nearshore and intertidal 

areas where prey species aggregate, resulting in less time spent traveling to and from the 

foraging area (Fox et al. 1990). By doing so, they are able to make more trips, and return to their 

young faster leaving them unprotected less often than if they foraged further offshore. Our 

results indicate that gulls are not the only species group to aggregate along the coastline more 

than offshore. In Lake Michigan and eastern Lake Erie in particular, diving/sea ducks, long-

tailed ducks, mergansers, and scaup showed more hotspots near the coast rather than offshore. 

Coastal wetlands have experienced increased degradation due to construction and development, 

destroying valuable habitat for wildlife, particularly waterfowl (EPA 1995). Despite the 

urbanization along the coasts, many waterbird species are aggregating in areas with remaining 

suitable habitat. Shallow areas nearshore provide more foraging opportunities and easier access 

to prey items than deeper offshore waters. Identifying locations of high-use along the coastline 

can help determine areas in need of protection from future development. 
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We chose to combine two of the four models, one spatial (Gi*) and one non-spatial 

parametric (hotspots conditional on presence) model, examined by Sussman et al. (in review). 

We selected these two models because although they demonstrated low to moderate correlation 

(0.075-0.670), they were more similar to one another more often than with other spatial and 

parametric methods (i.e., kernel density estimation and “hotspot persistence”; Sussman et al. in 

review) in identifying hotspots. We chose the hotspots conditional on presence approach for the 

parametric, non-spatial component of the combined model because simulating data using the 

Monte Carlo approach works well with sparse data. We selected the Getis-Ord Gi* approach as 

the spatial component because it indicates the statistical significance of identified hotspots and is 

less likely to identify false hotspots than other spatial modeling techniques (Santora et al. 2010, 

Kuletz et al. 2015). However, combinations of other model types could lead to different results. 

For example, although Sussman et al. (in review) found a high correlation between the two 

spatial models tested (kernel density estimation and Gi*), there is no evidence that one may be 

more accurate than the other. To test the robustness of our results, we reran our combined models 

in two ways: 1) using kernel density estimation instead of G*; and 2) by averaging kernel density 

and Gi* models. We found no discernable differences in the results. Kernel density estimation 

and Gi* are inherently similar; however, Gi* is slightly more conservative than kernel density 

estimation. Kernel density estimation requires more user-based input than Gi* and can therefore 

be influenced to produce more appealing or desirable results (Kuletz et al. 2015). Both spatial 

methods identify clusters of individual grid cells as hotspots, but Gi* is less influenced by 

surrounding grid cells that are farther away than kernel density estimation, resulting in greater 

confidence in central (to the cluster) locations being true hotspots. Likewise, there are other non-

spatial models and techniques that have been used to identify hotspots. Typically, non-spatial 
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methods differ by threshold or metric used to define a hotspot. For example, the more commonly 

used species-based metric models focus on species richness, number of species within a region, 

or number of endemic, rare, or threatened species (Marchese 2015). Other non-spatial models 

focus on phylogenetic diversity and the diversity of ecological traits (Marchese 2015). These 

metrics are often arbitrary; choosing a different threshold can result in a different outcome. 

Ideally, hotspots should be identified for each species group by season, as distributions 

vary throughout the year. However, the quantity of data available can prevent the identification 

of seasonal hotspot patterns. Although our data span three seasons (fall, winter, and spring) over 

two years, there were not enough unique sampling events to break down the data into seasons. 

Zipkin et al. (2015) found that at least 40 sampling events are necessary to have adequate 

statistical power (>0.6) to detect species-specific seasonal hotspots for the most prevalent 

species, and greater than 100 sampling events for less common species. The sampling scheme in 

our analysis was quite uneven across the study region, ranging from one to twenty-nine sampling 

events. Yet, even the areas with the most surveys do not reach the minimum suggested number 

of sampling events. In our analysis, we chose to include all surveyed grid cells, regardless of the 

number of sampling events. However, in presenting hotspot maps, we only display hotspots for 

grid cells surveyed at least four times. This threshold allowed us to incorporate data from all 

survey entities into our analysis, increasing the geographic range; but may be misleading by 

identifying hotspot locations in cases in which grid cells were only sampled a limited number of 

times. The likelihood of detecting false hotspots (or failing to detect hotspots when they are 

actually present, type II error) decreases as the number of sampling events increases (Kinlan et 

al. 2012). Our results indicate where hotspots may be located but data were limited; therefore, 

more data would help identify hotspot locations with greater accuracy. 
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Slightly greater than 20% of all observations were not identified to the species-level. To 

utilize all available data, we grouped species at higher taxonomic levels and conducted species 

group rather than species-specific analyses. Our results for species groups are useful, but for 

species-specific concerns and conservation and management decisions, our group level analysis 

may not be ideal. The combined hotspot model demonstrates that long-tailed ducks do not 

exhibit the same pattern of aggregation as the diving/sea ducks within the Great Lakes region. 

Therefore, it is reasonable to believe that some species groups (e.g., diving and sea ducks) should 

probably be further split and analyzed separately as they exhibit different distributions (D. 

Luukkonen and M. Monfils, personal communication, 2017). Splitting the diving (tribe Aythyini) 

and sea (tribe Mergini) ducks into two different species groups may result in drastically different 

patterns across the Great Lakes. In an effort to discern hotspots for diving and sea ducks, we 

analyzed diving and sea ducks separately. Our combined hotspot model showed that diving and 

sea ducks do exhibit different distributions (Appendix 2, Figs. S2.1-S2.2). Diving ducks 

exhibited a higher proportion of hotspots than expected by chance in Lakes Erie and St. Clair. 

However, sea ducks showed a higher proportion of hotspots than expected by chance in Lakes 

Huron and Michigan, which is consistent with the pattern showed by long-tailed duck (Appendix 

2, Table S.1). Although this supplemental analysis demonstrates that diving and sea ducks have 

different patterns in the Great Lakes, and should be split out for analyses, caution should be 

taken as there were not enough data to be confident in the detected hotspots. 

 The inconsistency in sampling across research entities demonstrates that although data 

collected by many different groups can be incorporated into a single analysis, it is necessary to 

consider how different protocols and survey methods may affect results. There are likely 

temporal biases in our data as some research entities selected survey periods to coincide with 
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seasonal patterns and migration, focusing surveys around peaks of abundance for specific 

species. Such a sampling scheme can increase targeted species’ abundances while decreasing 

abundances of non-targeted species. Targeted species sampling may also introduce observer bias, 

as observers may disregard species they are not specifically interested in surveying or only 

identify non-targeted species to family or genus level rather than to the lowest possible 

taxonomic rank (i.e., species). These inconsistencies demonstrate the need for standardized 

survey methods. Standardized methods are important, particularly when multiple agencies or 

organizations are collecting data, and will reduce many potential biases. The data used in this 

study are also limited spatially. This is apparent in the distribution of sampling effort, where 

large areas of each lake were not surveyed. Had we surveyed in other portions of the lakes or 

included data collected outside the temporal scope of the study, we would perhaps have seen 

different patterns for some species groups. It is unrealistic to think we will ever be able to survey 

the entirety of the Great Lakes, but increasing the spatial coverage in future survey efforts, and 

thereby increasing the amount of data, will possibly allow us to predict where hotspots may 

occur in those areas not sampled. 

Future hotspot models should consider incorporating biotic and abiotic environmental 

predictors (e.g., ice cover, bathymetry, distance to shoreline), which have the potential to 

improve estimates of hotspot locations. The hotspot concept works extremely well within a static 

environment (e.g., coral reefs), but in a pelagic environment where the physical and chemical 

conditions of marine ecosystems are constantly changing, hotspot models can be difficult to 

apply (Marchese 2015). Hotspots may be a function of biophysical aggregation, where 

environmental factors lead to increased nutrient levels and prey availability for waterbird species 

(Hazen et al. 2013). Incorporating environmental variables into analyses can lead to more 
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accurate hotspot identification as well as predicting species responses to highly dynamic physical 

processes. 

Human activities such as alternative energy exploration (e.g., offshore wind), shipping, 

fishing, and coastal development may lead to habitat loss and degradation resulting in negative 

impacts on waterbird populations. Decisions on where to implement such activities should be 

carefully considered to minimize loss of both habitat and species. Combining multiple hotspot 

analysis methods in an integrated modeling approach can increase consistency in the 

identification of waterbird hotspots (Daru et al. 2015, Marchese 2015, Sussman et al. in review). 

Additionally, a combined approach may prevent false hotspot identification or ‘true’ hotspots 

being overlooked (Nur et al. 2011). Future studies can incorporate different models and metrics 

into a single hotspot analysis tool, thereby improving the ability to delineate hotspots and 

identify waterbird spatial patterns. 

With over 16,000 km of coastline, the Great Lakes will continue to provide drinking 

water, commercial transport, and recreational opportunities to the more than 30 million people in 

the United States and Canada within the basin (EPA 1995). Continued urbanization and 

development will impact the natural habitat along the lakes thereby limiting the availability of 

suitable habitat for waterbird species. Therefore, identifying waterbird hotspot locations will help 

to inform conservation and management decisions regarding the preservation of the Great Lakes 

ecosystem for future generations.  
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APPENDIX  
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Analysis of diving/sea ducks split into two distinct groups. Results should be interpreted with 

caution due to limited data availability. Diving ducks (tribe Aythyini) include canvasback, 

redhead, ring-necked duck, ruddy duck, and all scaup species. Sea ducks (tribe Mergini) include 

bufflehead, common eider, long-tailed duck, all goldeneye species, all merganser species, and all 

scoter species. 

 

Table S2.1. Percent hotspots within each lake for diving and sea duck species groups. The top 

row of the graph shows the percent of all grid cells surveyed (out of 1767) within each lake. 

When comparing across the lakes, it is important to note percentages are relative to the number 

of grid cells surveyed within each lake. Bold font indicates that the percent values are greater 

than the proportion surveyed in that lake, and indicate more hotspots than would be expected by 

chance for a particular species group in a particular lake. 

species 
Lake 

Huron 

Lake 

Michigan 

Eastern 

Lake Erie 

Western 

Lake Erie 

Lake        

St. Clair 

Percent of all blocks 8.83% 79.12% 5.43% 2.38% 4.24% 

Diving Ducks 1.13% 63.57% 8.82% 9.50% 16.97% 

Sea Ducks 10.18% 79.86% 2.71% 1.58% 5.66% 
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Figure S2.1. Potential hotspots (values above the 75% percentile) across all sampled locations for diving ducks (includes: canvasback, 

redhead, ring-necked duck, ruddy duck, and all scaup) as defined by the integrated hotspot modeling approach. Grid cells sampled less 

than four times were excluded from the analysis and are shaded in gray. 
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Figure S2.2. Potential hotspots (values above the 75% percentile) across all sampled locations for sea ducks (includes: bufflehead, 

common eider, long-tailed duck, all goldeneye, all mergansers, and all scoters) as defined by the integrated hotspot modeling 

approach. Grid cells sampled less than four times were excluded from the analysis and are shaded in gray.   
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