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ABSTRACT 

INTEGRATING KEY ECOLOGICAL HEALTH AND SOCIAL DIMENSIONS IN 

SUSTAINABLE WATER RESOURCES MANAGEMENT 

By 

Fariborz Daneshvar 

The dynamics of coupled natural and human systems are complex and vary across time, 

location, and organizational unit. So different social groups may be unequally affected by degraded 

environments, which in many cases do not randomly occur over space. Therefore, the concept of 

environmental justice was introduced to address this issue. One environmental resource that has 

been a focus point for environmental justice is freshwater, and stream health based environmental 

justice studies are the most recent approach used by researchers to describe these phenomena. 

However, many of the previous studies were only performed at the census tract level and no proper 

spatial level was defined for environmental justice studies with respect to stream health. On the 

other hand, due to computational limitations for stream health indices estimation, only a few water 

quantity and quality parameters were used to develop stream health predictive models. Therefore, 

the purpose of this study is to address the following knowledge gaps in the area of stream health 

based environmental justice by: 1) determining the role of spatial level of socioeconomic factors 

on stream health based environmental justice studies and 2) assessing the relative importance of 

parameter estimation in stream health based environmental justice modeling. 

To address the first knowledge gap, three Bayesian Conditional Autoregressive (CAR) 

models (ordinary regression, weighted regression and spatial) were developed for four common 

stream health measures based on 17 socioeconomic and physiographical variables at three census 

levels of county, census tract, and block group in the Saginaw River Basin in Michigan. This 

watershed was an ideal place to perform this study since it was identified as an area of concern in 



 
 

the Great Lakes region while having one of the most diverse populations in the state.  For all stream 

health measures, spatial models had better performance compared to the two non-spatial models 

at the census tract and block group levels. In addition, multilevel Bayesian CAR models were also 

developed to understand the spatial dependency across three levels. Results showed that 

considering level interactions improved the predictive power of the environmental justice models. 

Residual plots also showed that models developed at the block group and census tract (in contrary 

to county level models) were able to capture spatial variations, which is an important aspect of 

environmental justice studies. 

To address the second knowledge gap, first ecologically relevant streamflow and water 

quality indices were used to improve the performance of the stream health predictive models. The 

outputs (fish and macroinvertebrate indices) from newly developed stream predictive models were 

then used to develop similar CAR models. Results showed that incorporating the more accurate 

stream health indices improved the spatial dependencies at the census tract and block group levels 

compared to county level. In addition, the multilevel models had better performance than single 

level models. Finally, the modified stream health indices improved stream health based 

environmental justice models’ performance by reducing redundancies in independent variables.  

This research finding provides a valuable tool to target vulnerable communities with respect to 

access to clean water, which enables water resources policymakers to allocate resources in a way 

that reduces environmental inequality. 
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1. INTRODUCTION 

Anthropogenic activities in many areas resulted in the degradation of natural ecosystems. 

Almost half of land surfaces are transformed and many natural resources are altered by human 

activities that turned the earth to a human-dominated planet (Vitousek et al., 1997). Meanwhile, 

natural and human ecosystems are interconnected and impaired natural ecosystems have negative 

impacts on human ecosystems. In order to address this complex system, the concept of coupled 

natural and human systems was developed to evaluate the mutual impacts of these systems. 

However, these mutual impacts are dynamic and vary across time, location, and administrative 

units. As a result, different communities are impacted in different ways.  Therefore, the concept of 

environmental justice was introduced to provide equal access to healthy environment, and equal 

right of being involved in environmental policy making as a right for all human beings.  

Due to the fact that freshwater is a limited natural resource that is vital for both natural and 

human ecosystems, environmental justice studies with respect to clean water have been an area of 

research for years. For this purpose, both socioeconomic and water resources assessments must be 

conducted. In terms of social dimensions, socioeconomic indicators representing sociological and 

economical aspects of the society are used for environmental justice studies. These indicators are 

developed on top of census data collected by the U.S. Census Bureau at different spatial levels. 

While most environmental justice studies used data collected at the census tract level, studies show 

that socioeconomic data collected at different levels may result in dissimilar conclusions. To the 

best of my knowledge, no proper spatial level has been defined for environmental justice studies 

with respect to stream health. Therefore, one of the goals of this study is to address this knowledge 

gap by assessing the role of spatial levels in environmental justice studies with respect to stream 

health. 
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In terms of evaluating the health of water resources, several techniques have been used that 

mainly rely on water quality to evaluate the health of waterbodies. However, the newly introduced 

method known as bioassessment is considered as a more comprehensive approach since it 

measures the final impact of physical, chemical, and biological activities on aquatic species. 

However, it is almost impossible to sample all waterbodies to perform comprehensive stream 

health assessments. Therefore, many studies used water quantity and water quality parameters to 

evaluate the biological integrity of streams beyond the monitoring points. However, due to the 

complexity of the natural systems, the predictability of stream health models is low in general. 

Therefore, the goal of the second study is to evaluate whether the incorporation of more reliable 

stream health measures (fish and macroinvertebrate indices) can improve the overall performance 

of stream health based environmental justice modeling.   

In the next six chapters (2 to 7), we address the aforementioned goals and provide a 

roadmap for future studies. Chapter 2 synthesizes key aspects of water resources and 

socioeconomic assessment, followed by modeling techniques used for these assessments. In 

chapter 3, we provide a summary of the knowledge gaps that will be addressed in chapters 4 and 

5. In chapter 4, spatial dependencies among socioeconomic indices and water quality measures are 

evaluated at three levels of county, census tract, and block group. Then the role of level change 

and nested effects on their spatial dependencies are evaluated. In chapter 5, the role of water quality 

measures prediction on spatial dependencies are assessed. For this purpose, more recent 

developments in ecosystem modeling are used to develop accurate biological measures and then 

these predictions are used to re-evaluate the objectives defined in study one. The overall 

conclusions of both studies are summarized in chapter 6, followed by recommendations for future 

research in chapter 7.  
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2. LITERATURE REVIEW 

2.1. Coupled Natural and Human Systems 

The dynamic of both natural and human systems are complex and interrelated. For this 

purpose, multidisciplinary researches that integrate biological, physiological and socioeconomic 

sciences are needed (Carpenter et al., 2009; Alberti et al., 2011). The concept of coupled natural 

and human systems was introduced  to address these complex and reciprocal effects at the same 

time (Liu et al., 2007a, b). Assessing impacts of natural systems on human systems and vice versa 

are two key aspects of this concept and have been extensively studied (Ostrom and Nagendra, 

2006; Liu et al., 2007a; Alberti et al., 2011; NSF, 2014; Chen, 2015). 

2.1.1. Impact of Anthropogenic Activities on Natural Systems 

Anthropogenic activities influenced natural ecosystem in many aspects. Population 

increase and high demand for using resources such as land and freshwater have drastically affected 

terrestrial and aquatic ecosystems and made the earth a human dominated planet (Vitousek et al., 

1997; Tilman et al., 2001; Tilman and Lehman, 2001; Halpern et al., 2008). Meanwhile, 

agricultural practices and urbanization have transformed the land as humans continue to modify 

natural system (Sanderson et al., 2002; Foley et al., 2005). As a result, more than half of the Earth’s 

landscapes have been changed (Vitousek et al., 1997). Land transformation for agricultural 

practices are predicted to increase by up to ten million square kilometers by 2050 (Tilman et al., 

2001). All of these changes result in broader impacts beyond transformed lands (Dupouey et al., 

2002; Lambin and Geist, 2008). These alterations include but are not limited to increase in 

greenhouse gasses (GHGs) emission and climate change (Smith and Conen, 2004; Falloon and 

Betts, 2010), urban heat island development (Peng et al., 2011), and deforestation (Henderson-

Sellers and Gornits, 1984). These changes will negatively affect the integrity of natural ecosystems 
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in many ways such as change in abundance and diversity of birds (Jets et al., 2007) mammals 

(Murray and Dickman, 2000; Thuiller et al., 2006), and plants (Thuiller et al., 2008). 

At the same time, increase in freshwater demand for drinking and agricultural uses have 

put water resources at risk (Peters and Meybeck, 2000; Viessman et al., 2009). Although more 

than 70% of Earth’s surface is covered by water, only 2.5% of that is freshwater that can be used 

for drinking, agricultural, industrial and recreational purposes (USGS, 2016). However, up to 90% 

of freshwater are either in the forms of groundwater, ice, or glaciers; and only about 0.007% of 

global water is available in rivers and lakes in form of surface water (Gleick, 1993). Due to the 

high demand for water usage, most rivers and lakes have been regulated while only one-third of 

Earth’s rivers were undisturbed by the end of the twentieth century (Abramovitz, 1996; Vitousek 

et al., 1997). These changes to riverine ecosystems not only affect water quantity and quality, but 

also alter aquatic ecosystems (Kingsford, 2000; Halpern et al., 2008; Wei et al., 2009). Halpern et 

al. (2008) reported that more than 40% of aquatic ecosystems are highly impacted by human 

activities. As an example, excess agricultural nutrients (such as nitrogen and phosphorus) released 

into waterbodies enhanced eutrophication and diminished dissolved oxygen (U.S. EPA, 2017a). 

These degradations resulted in severe environments for aquatic species. Studies showed that by 

2050, most of the existing species might become extinct (Schaaf et al., 2006; Halpern et al., 2008).  

On the other hand, fisheries that mainly target specific types of aquatic species, have modified 

natural predator–prey cycles, ending up with change in abundance and distribution of aquatic 

species (Vitousek et al., 1997; Pauly et al., 2005).   

2.1.2. Impact of Natural Systems Degradation on Human Systems 

Excess use of natural resources and ecosystem degradation caused by anthropogenic 

activities have impacted human systems as well. Water shortages, air pollution, and excess of water 
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borne and respiratory diseases are just some examples of the impacts of natural systems 

degradation on human health (Stikker, 1998; Kampa and Castanas, 2008; U.S. EPA, 2017a).   

Climate change impacts on water resources and high demand for limited freshwater have 

made water shortages and water crises some of the main concerns of the 21st century (Saeijs and 

Berkel, 1995; Stikker, 1998). Almost a billion people around the word do not have access to clean 

drinking water, and more than two billion do not have proper sanitation facilities (WHO/UNICEF, 

2008). Besides that, surges in use of fertilizers and pesticides threaten human health by polluting 

freshwater resources (Novotny, 1999). Stomach cancer in adults and methemoglobinemia in 

infants are just two examples of health problems associated with polluted water from agricultural 

practices (Almasri and Kaluarachchi, 2004). Water contamination also leads to widespread water-

borne diseases caused by pathogenic microorganisms that exist in polluted water (Grabow, 1996). 

Cholera, Diarrhea, Hepatitis, Malaria, and SARS are just some out of many water-borne diseases 

that can be spread by polluted water (Lenntech, 2017). According to the World Health 

Organization (WHO), water-borne diseases kill more than three million (mostly children) every 

year (WHO, 2017). 

Human activities have polluted air as well as water. Excess use of fossil fuels increase 

GHGs that not only cause global warming but also are harmful for human health (Ramanathan and 

Feng, 2009). Carbon monoxide, sulfur dioxide, nitrogen oxides and ozone are just some of the air 

pollutants generated as byproducts of fossil fuels combustion that cause health issues such as 

respiratory irritation, respiratory infection, bronchitis, heart disease and lung cancer (Kampa and 

Castanas, 2008). According to the WHO report, air pollution is the cause of almost 7 million annual 

premature deaths in the world (WHO, 2017).  
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2.1.3. The Concept of Environmental Justice 

The mutual interactions of human and natural systems are dynamic and vary spatially 

among different organizational units (Liu et al., 2007a). In other words, impacts of degraded 

environments are not proportionally distributed among different groups, while some communities 

such as low-income people, minorities and people of color are usually more affected than others, 

which is called environmental inequality (Downey and Liam, 2008). According to the U.S. 

Environmental Protection Agency (U.S. EPA) report, hazardous facilities and industrial wastes are 

mostly located near poor and minority neighborhoods (Massey, 2004). The concern of 

environmental inequality raised movements in 1980s that resulted in the Environmental Justice 

executive order signed by President Clinton in 1994. The U.S. EPA interpreted the Civil Rights 

Act of 1964 to extent to cover the concept of Environmental Justice, which means that fair 

treatment and significant participation of all people regardless of their race, ethnicity, income, or 

national origin with respect to the environmental law, regulations and policies (U.S. EPA, 2017b). 

In other words, it means all people must have equal access to healthy environment (e.g. clean air 

and clean water) and the right of being actively involved in environmental policy making.  

2.2. Water Resources Assessment 

The concept of water resources assessment that includes both water quantity and quality 

evaluates the impact of human activities and excess in freshwater consumption on waterbodies 

integrity (GWP, 2013). Population growth and excess demand for limited available water 

resources raised concerns about water resources management in the late twentieth century. Back 

in 1965, the United Nations Educational, Scientific and Cultural Organization (UNESCO) started 

a worldwide program called the International Hydrological Decade (IHD) in order to raise 

awareness on the importance of the hydrological cycle’s study that enhanced the field of hydrology 
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as a professional research area (Miloradov and Marjanovic, 1998). By the end of IHD in 1975, 

UNESCO started a global educational program called the International Hydrological Program 

(IHP) to address problems associated with excess water resources consumption (Miloradov and 

Marjanovic, 1998). In 1977, the IHP objectives were targeted to address conservation of water 

resources, in which water resources assessment was defined in order to pursue water resources 

management (Miloradov and Marjanovic, 1998). Water resources must be assessed for many 

reasons including water demand analysis, environmental and social impacts, and risk analysis of 

sustainable water resources (SSWM, 2016).  According to the International Glossary of 

Hydrology, water resources assessment is defined as the “determination of the sources, extent, 

dependability and quality of water resources for their utilization and control” (UNESCO/WMO, 

2012). For this purpose, hydrological data including water quantity and water quality and 

physiographical data including topography, river network, land use and soil must be collected. 

Statistical analysis is required to cover missing or out dated data. These data must be transferred 

into information and assessed by decision makers for both short term and long-term water 

resources management and policy making (SSWM, 2016).    

2.2.1. Water Quality Assessment 

Three classes of physical, chemical, and biological characteristics are being used to assess 

waterbodies including rivers, lakes and groundwater (Chapman, 1996). Physical characteristics 

such as stream meandering, depth, and slope affect water movement, while chemical 

characteristics such as acidity, dissolved solids, oxygen and nutrient contents represent water 

pollution status. Finally, biological characteristics such as abundance and integrity of instream 

organisms are being used to evaluate the responses of aquatic ecosystems to water quality. Based 

on these three criteria, water quality assessment is defined as “the overall process of evaluation of 
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the physical, chemical and biological nature of water in relation to natural quality, human effects 

and intended uses, particularly uses which may affect human health and the health of the aquatic 

system itself” (Chapman, 1996). However, more attention was placed on chemical evaluation 

compared to the two other aspects of water quality assessment and early studies have mainly 

focused on chemical evaluation (U.S. EPA, 2006; Abbasi and Abbasi, 2012). 

2.2.1.1. Clean Water Act 

Due to public awareness and concerns raised for waterbodies pollution, the first water 

regulatory amendment called Clean Water Act (CWA) was established in 1972 in order to regulate 

pollution discharge to waterbodies (U.S. EPA, 2016). It is the first environmental law enforcement 

that authorized by the U.S. EPA to implement pollution control programs.  

The National Pollutant Discharge Elimination System (NPDES) is part of the CWA that 

limits point source pollution discharge (such as pollution discharge from pipes or ditches) to the 

nation’s water (U.S. EPA, 2017c). There are ten regional offices established by U.S. EPA around 

the nation that work with local governments to enforce the NPDES program. Under the NPDES 

program, any point source pollutant discharge requires a NPDES permit that limits the amount and 

type of pollutant released and enforces follow up monitoring and reporting to make sure that 

discharged pollutants are not affecting water quality (U.S. EPA, 2017c).   

Under the CWA, the U.S. EPA has also developed water quality standards for states, 

territories and tribes in order to define desired waterbody condition, required protection, and 

planning to reach desired conditions for each water body (U.S. EPA, 2014a). These standards 

empower the U.S. EPA to eliminate pollutant discharge from sources such as industrial sites, sewer 

systems, and water treatment plants to waterbodies, unless four major issues of 1) designated use, 
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2) criteria, 3) antidegradation requirements, and 4) general policies have been addressed (U.S. 

EPA, 2014a).  

1) Designated use: Federal and state agencies should define the purpose and amount of water 

that must be allocated for designated uses such as drinking water supply, recreation, and 

fisheries and wildlife protection.   

2) Criteria: Water quality criteria defined by states, territories, and tribes limit the amount of 

pollutant release to designated waterbodies and must be followed by agencies.  

3) Antidegradation requirements: The framework provided by agencies to protect and 

maintain waterbodies by designated use and defined criteria. 

4) General policies: States, territories and tribes can adopt policies in term of local water 

quality standards. These policies must be approved by the U.S. EPA before 

implementation. 

2.2.1.2. Total Maximum Daily Load 

Under the section 303(d) of the CWA, all states, tribes and territories must monitor 

waterbody status and provide a list of waterbodies that do not meet water quality standards (called 

impaired), or are at risk of being impaired in future (called threatened) (U.S. EPA, 2017d). 

Impaired and threatened waterbodies must be prioritized and the threshold for pollutant discharge 

to them should be defined by agencies. Therefore, the Total Maximum Daily Load (TMDL) is 

defined as the maximum allowed discharge amount of each pollutant to a waterbody on a daily 

basis, while meeting water quality standards with respect to that pollutant (U.S. EPA, 2015a).  

Figure 1 shows how TMDL will be incorporated to reach water quality standards.  
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Figure 1. TMDL implication in the CWA (U.S. EPA, 2017d) 

TMDLs are defined for each waterbody/pollutant combination as sums of waste load 

allocation from point sources (WLA), load allocation from natural background and other non-point 

sources (LA), and margin of safety (MOS) that considers uncertainty of prediction and will be 

calculated as follows (U.S. EPA, 2015a): 

TMDL =  ∑ WLA + ∑ LA + MOS  (1) 

Defined TMDL by agencies must be approved by U.S. EPA before implementation. 

NPDES permits are required to address WLA, while voluntary or statewide projects funded by 

U.S. EPA aim to reduce LA from non-point sources (U.S. EPA, 2015a).  The EPA also enforces 

states to monitor TMDL implementation and monitoring of impaired and threatened waterbodies 

status every two years until they reach desired water quality standards. 

2.2.1.3. National Water Quality Assessment Program 

In order to provide a reliable nationwide baseline for water quality assessment, in 1991 the 

U.S. Geological Survey (USGS) developed the National Water Quality Assessment (NAWQA) 

program. The four major objectives of this program were: 1) evaluating the current health status 

of waterbodies including streams, lakes, and groundwater around the U.S., 2) monitoring long-
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term water quality variation 3) assessing the role of natural stressors and anthropogenic activities 

on waterbodies, and 4) finding the most vulnerable areas in terms of water quality (USGS, 2014). 

The NAWQA program requires durable and comprehensive data collection that can be used for 

initial assessments and further analysis. These data must represent the hydrology and chemistry of 

surface water and groundwater, stream ecology and land use changes over time (USGS, 2014). 

The first decade of the NAWQA program implementation (from 1991 to 2001) was focused on 

the first objective. For this purpose, water quality assessment was performed for 51 major river 

basins within the U.S. that resulted in baseline development for assessment of drinking water and 

aquatic ecosystem health, and resource management (Hamilton et al., 2008).  The second decade 

of the NAWQA program implementation (from 2001 to 2012) was mostly focused on the second 

and third objectives that aimed to monitor the trend of water quality change over time and evaluate 

the response of waterbodies to natural and human stressors. Assessing responses of aquatic 

ecosystems to agrichemicals, nutrient enrichment and urbanization were some of the major 

concerns that were considered in this period (USGS, 2014). The NAWQA program is currently in 

the process for the third decade (from 2013 to 2023) that aims to maintain the program’s integrity 

and meet stakeholders’ demands while resources are facing degradation (National Research 

Council, 2012).  

2.2.2. Modeling Approaches Used for Water Resources Assessment  

Water resources assessment requires continuous data collection and data validation. For 

this purpose, widespread monitoring sites must be implemented and maintained for the long-term 

that is a costly and challenging endeavor. For instance, study units for NAWQA were reduced 

from 51 to 42 in the program’s second decade (from 2001 to 2012) and one of the main concerns 

of the current program running for the third decade (from 2013 to 2023) is to maintain the program 
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while reducing associated costs (USGS, 2014). It is also impossible to perform monitoring for all 

waterbodies within the current and predict possible future scenarios, which is why modeling has 

been widely used to perform long term and wide-spread assessment of water resources, and to 

predict their response to possible upcoming conditions.  

2.2.2.1. Soil and Water Assessment Tool 

The Soil and Water Assessment Tool (SWAT) is a physically based and semi-distributed 

watershed model developed by U.S. Department of Agriculture (USDA) – Agricultural Research 

Service (ARS) (Gassman et al., 2007). SWAT uses topographic and river network data to divide 

the watershed into smaller sections called subwatersheds. Each subwatershed is then divided into 

unique Hydrological Response Units (HRUs) based on land use, soil, and slope variation within 

the subwatershed; each HRU will be considered as a homogenous cell for further analysis (Neitsch 

et al., 2011). Each subwatershed contains a single reach/stream segment that is connected to the 

tributary channel passing through the watershed and draining into the outlet (Arnold et al., 2012). 

SWAT models are able to: 1) simulate water quantity and water quality parameters for each 

stream segment on a daily or sub-daily basis, 2) route it to the stream network, and 3) deliver it to 

the watershed outlet. SWAT is also able to assess long-term impacts of agricultural management 

practices on surface runoff, sediment, nutrients (nitrogen and phosphorus), pesticides, and bacteria 

yields at the watershed scale (Neitsch et al., 2011). The ArcGIS version of SWAT, called 

ArcSWAT, provides a graphical user interface for SWAT that made it user friendly. SWAT is one 

of the most widely used water resources assessment models and so far has been used in more than 

2000 peer-reviewed articles (SWAT Literature Database, 2017).  
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2.2.2.2. System for Urban Stormwater Treatment and Analysis Integration 

System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) is a 

decision support system developed by U.S. EPA to assess performance of Best Management 

Practices (BMPs) implementation on runoff and pollution regulation (Lee et al., 2012). SUSTAIN 

is able to assess 1) effectiveness of different BMPs for surface runoff and associated pollutants 

mitigation, 2) cost-effectiveness of proposed approaches to achieve desired water quantity and 

water quality standards, and 3) proper size and location of BMPs to meet these goals (U.S. EPA, 

2014b).        

SUSTAIN can simulate various types of BMPs implementation to control either point 

source or non-point source pollutants release that make it suitable for hydrology and water quality 

assessment of both urban and non-urban systems (U.S. EPA, 2014b). Considering both 

environmental and economic aspects of BMPs implementation scenarios, SUSTAIN provides a 

unique tool for water resources policy makers to meet water quality standards and maintain 

sustainable water resources (U.S. EPA, 2014b).  

2.2.2.3. Hydrologic Simulation Program-Fortran  

The Hydrologic Simulation Program-Fortran (HSPF) is an integrated hydrologic model 

developed by U.S. EPA for watershed scale water quantity and water quality assessment (U.S. 

EPA, 2015b). It has been developed on top of three former U.S. EPA models including Hydrocomp 

Simulation Program (HSP), Agricultural Runoff Management (ARM), and the Non-Point Source 

(NPS) pollutant loading that can simulate one-dimensional runoff as well as fate and transport of 

pollutants released from various land uses into streams, lakes, and well-mixed reservoirs (Duda et 

al., 2012). HSPF is able to provide continuous time series of simulated hydrologic cycle 



14 
 

components, temperature, sediment yield and removal, dissolved oxygen, nutrients cycle, and 

pesticide processes (Duda et al., 2012). 

HSPF is a stand-alone program that can be integrated into the BASINS (Better Assessment 

Science Integrating point and Nonpoint Source) platform through a Windows interface called 

WinHSPF (Duda et al., 2001). Integrated HPSF and BASINS provides a unique tool for TMDL 

assessment and water quality criteria development at the watershed level (U.S. EPA, 2015b). 

2.2.2.4. Storm Water Management Model 

The Storm Water Management Model (SWMM) is a coupled hydrology-hydraulic water 

quality model developed by U.S. EPA to simulate stormwater runoff and its routing through urban 

drainage systems (U.S. EPA, 2014c). SWMM is able to simulate long-term continuous storm 

events and the quantity and quality of associated runoff. For this purpose, SWMM divides the 

region or catchment to smaller homogeneous regions called sub-catchments that produce surface 

runoff from precipitation falling within the sub-catchment. Surface runoff and associated pollutant 

loads will be routed through the urban sewage system that includes series of pipes, channels, 

storage and regulatory facilities (Rossman, 2015). SWMM generates time series of runoff quantity 

and quality passing through the drainage system that provides a useful tool for stormwater 

management design and planning (U.S. EPA, 2014c). 

SWMM is able to assess the performance of some Low Impact Development (LID) 

controls such as rain gardens, vegetative swales, and green roofs on urban sewage system 

(Rossman, 2015). It enables water resources decision makers to design drainage systems that are 

suitable for flood control (U.S. EPA, 2014c). SWMM has also been equipped with Climate 

Adjustment Tool (SWMM-CAT) that enables it to simulate storm events under future climate 

scenarios (Rossman, 2014). 
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2.2.2.5. Hydrologic Engineering Center - Hydrologic Modeling System 

The Hydrologic Modeling System developed by Hydrologic Engineering Center of the 

U.S. Army Corp of Engineers (HEC-HMS) is a hydrologic model that simulates precipitation-

runoff process in dendritic watersheds (Scharffenberg, 2016). It is capable of using several 

alternative mathematical models for each part of hydrologic cycle that make it suitable for 

simulation in different topographic conditions ranging from large river basins to small urban 

watersheds (Scharffenberg, 2016). HEC-HMS is a comprehensive hydrologic model that can be 

used for optimization, forecasting, sediment transport and water quality studies (Hydrologic 

Engineering Center, 2016).  

HEC-HMS uses an integrated system that includes database, computations, and reporting 

frameworks. Model outputs will be stored in Data Storage System (HEC-DSS) that make them 

accessible for being used with other software for further studies and comparisons (Hydrologic 

Engineering Center, 2016). 

Table 1 summarizes the five models discussed for water resources management, and 

compares their applicability for different case studies as follows: 
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Table 1. Summary of common modeling tools used for water resources assessment 
Modeling tool Modeling type Application Major Outputs 

SWAT Physically based, 

and semi-

distributed 

watershed model 

Assessing long-term impacts of 

agricultural management practices on 

surface runoff, sediment, nutrients, 

pesticides, and bacteria yields at the 

watershed scale 

Daily and sub-daily 

water quantity and 

water quality 

parameters 

    

SUSTAIN Coupled 

hydrology-

hydraulic water 

quality model 

Decision support system to assess 

performance of BMPs implementation 

on runoff and pollution regulation 

Suitable places for 

BMPs 

implementation 

    

HSPF Integrated 

hydrological 

model 

Assessing the impact of land-use change, 

point and nonpoint source treatments, 

and flow alteration on the water quantity 

and water quality at the watershed scale 

Daily and sub-daily 

streamflow 

hydrographs and 

pollutographs 

    

SWMM Coupled 

hydrology-

hydraulic water 

quality model 

Evaluating performance of LID controls 

on urban sewage systems  

Continuous water 

quantity and water 

quality of storm 

events runoff 

    

HEC-HMS Hydrologic 

model 

Optimization, forecasting, sediment 

transport, and water quality simulation of 

dendritic watersheds 

Precipitation-runoff 

process 

 

2.3. Stream Health and Biological Integrity Assessment 

A healthy stream is defined based on a combination of physical, chemical, and biological 

conditions, while chemical criteria is the most common approach for stream health assessment 

(Karr, 1981; Karr et al., 1986; Herman and Nejadhashemi, 2015). In order to assess the 

effectiveness of chemical criteria for stream health assessment, the U.S. EPA performed a 

nationwide evaluation of biological and recreational status of riverine ecosystems in summer 2008 

to 2009. They performed assessments for almost two thousands streams with accumulative of more 

than a million miles to ensure covering all forms of riverine ecosystems (U.S. EPA, 2015c). They 

found that despite all regulations (such as CWA and TMDL) implemented, almost half of 

monitored streams are still in poor biological condition, while only twenty eight percent of streams 
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were in good condition and the rest were in fair condition (U.S. EPA, 2015c). In other words, 

implemented regulations have not addressed water quality concerns while all physical, chemical, 

and biological conditions must be evaluated in order to perform overall stream health assessment. 

So, the concept of biological integrity assessment was introduced in order to evaluate the final 

impact of the combination of physical, chemical, and biological activities on aquatic ecosystems 

(NSCEP, 2011; U.S. EPA, 2015c). It is also called the gold standard in water quality assessment 

since it measures the response of aquatic species as endpoints in riverine ecosystems to pollutants 

(Karr and Yoder, 2004; Woznicki, 2015). 

2.3.1. Stream Health Indices and Metrics 

Biological metrics are defined to quantify aquatic ecosystem conditions. These metrics 

enable stream ecologists to develop stream health indices that can be used for biological integrity 

assessment (Herman and Nejadhashemi, 2015). Biological metrics quantify 1) species abundance 

and condition, 2) species richness and composition, and 3) species trophic composition (Van Hoey 

et al., 2007; Herman and Nejadhashemi, 2015). 

Species abundance and condition metrics are developed to quantify the number of collected 

species and their status, representing what percentage of collected species are healthy, damaged or 

have diseases (Karr et al., 1986). While species richness and composition metrics are qualitative 

measures of species diversity and distribution in a region (Karr et al., 1986). In general, streams 

with more diverse species have better stream health conditions than streams with limited species 

due to harsh environments that exist in those streams (Wan et al., 2010). The third group of metrics 

called species trophic composition, use the nutrients transfer among different functional feeding 

groups of riverine ecosystems for stream health assessment (Herman and Nejadhashemi, 2015). 

Nutrients level variation directly impacts the food chain of instream species; therefore, assessing 
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distribution of functional feeding groups represents the chemical status of aquatic ecosystem 

(Smith et al., 2007). 

Stream health indices developed based on biological metrics are divided into two major 

groups of 1) biotic, and 2) multi-metric indices (Herman and Nejadhashemi, 2015). Biotic indices 

also called uni-metric indices, only measure one metric for stream health assessment. The major 

application of biotic indices is to evaluate the impact of organic pollutants on instream organisms 

(Hilsenhoff, 1987; Ollis et al., 2006). The calculation of these indices is simple which makes them 

suitable for local stream health assessment. The Hilsenhoff Biotic Index (HBI) is one of the popular 

biotic indices used to evaluate response of macroinvertebrate indices to organic pollutants 

(Hilsenhoff, 1987). However, biotic indices do not consider other forms of instream pollutants 

(such as sediment, nitrogen, and phosphorus). Therefore, multi-metric indices have been 

developed in order to provide more comprehensive assessment of complex riverine ecosystems 

(Herman and Nejadhashemi, 2015).  

Compared to biotic indices, multi-metric indices are able to assess the response of aquatic 

ecosystems to several stressors at the same time; however, their calculation is more complex than 

biotic indices (Fierro et al., 2017). The Index of Biotic Integrity (IBI) and Benthic Index of Biotic 

Integrity (B-IBI) are two major multi-metric indices that are developed from several metrics to 

provide comprehensive assessment of fish and macroinvertebrates communities, respectively 

(Karr, 1981; Kerans and Karr, 1994). The Ephemeroptera, Plecoptera, and Trichoptera (EPT) 

index is another common multi-metric index that evaluates comprehensive responses of three 

macroinvertebrates including Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera 

(caddisflies) to organic pollutants (Lenat, 1988). 
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There is another group of stream health measures called multivariate indices that unlike 

biotic and multi-metric indices, uses modeling approaches instead of metrics for stream health 

assessment. Multivariate indices use physical and chemical characteristic of waterbodies to 

develop predictive models for aquatic ecosystem status (Reynoldson et al., 1995). The Australian 

River Assessment Scheme (AusRivAS), and River Invertebrate Prediction and Classification 

System (RIVPACS) are two common multivariate models developed for stream health assessment 

(Reynoldson et al., 1997; Fierro et al., 2017). Multivariate indices development requires modeling 

processes and model calibration that make them more complicated than metric based indices; 

however, multivariate indices can be easily applied for large scale assessments since they are not 

limited to sampling stations (Herman and Nejadhashemi, 2015). Table 2 summarizes different 

types of stream health indices and their specifications. 

Table 2. Comparison of stream health indices (Fierro et al., 2017) 
 Stream health assessment indices 

 Biotic indices  Multi-metric indices  Multivariate indices 

Advantages easy calculation, good 

for local assessment 

 providing 

comprehensive 

assessment  

 good for large-scale 

assessment beyond 

monitoring sites 

      

Disadvantages limited to organic 

pollutants and cannot 

evaluate response to 

sediment and nutrients 

pollutants  

 requires several metrics 

for index development, 

limited by requirements 

of all used metrics  

 complicated model 

development and 

calibration processes, 

sensitive to model inputs  

      

Commonly used  Hilsenhoff Biotic 

Index (HBI), 

Biological Monitoring 

Working Party Index 

(BMWP) 

 Index of Biotic 

Integrity (IBI), 

Benthic Index of 

Biotic Integrity (B-

IBI) 

 Australian River Assessment 

Scheme (AusRivAS), River 

Invertebrate Prediction and 

Classification System 

(RIVPACS) 

 

2.3.1.1.Fish Indices 

Fish characteristics are representative of water quality status and are widely used for stream 

health assessment (Karr, 1981; Carlisle et al., 2013). Unlike many other instream species, fish 
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exists in many trophic levels (e.g. omnivores, and herbivores) and can be found in the most 

waterbodies (Karr, 1981). Besides that, fish are representative of a wide range of instream stressors 

since their wellbeing is connected to various aquatic species (Karr, 1981; Barbour et al., 1999). 

All these characteristics make fish a suitable representative of stream health status and fish indices 

development (Herman and Nejadhashemi, 2015).  

Fish indices are commonly used for large scale and long-term assessments since fish can 

move through the entire waterbody and will be affected by both spatial and temporal aquatic 

stressors (Barbour et al., 1999; Herman and Nejadhashemi, 2015). Fish indices also represent the 

response of aquatic ecosystems to flow altering structures (e.g. dams) since fish are highly 

sensitive to flow variation (Navarro-Llácer et al., 2010). Several fish indices including biotic 

indices (e.g., fish species biotic index, and fish response curves), multi-metric indices (e.g. index 

of biotic integrity, fish community index, and similarity index), and multivariate indices (e.g. 

stressor gradients) are being used for stream health assessment (Karr, 1981; Paller et al., 1996; 

Jordan et al., 2010; Angradi et al., 2009; Navarro-Llácer et al., 2010; Zorn et al., 2012; Herman 

and Nejadhashemi, 2015). Among those, the IBI (Index of Biotic Integrity) that has been 

developed based on 12 metrics, is the most commonly used fish index for overall stream health 

assessment (Karr, 1981; Herman and Nejadhashemi, 2015). The IBI provides comprehensive fish 

assessment based on species richness, abundance, and trophic composition and reports overall 

stream health scores ranging from zero to 60 (Karr et al., 1981; Hu et al., 2007; Herman and 

Nejadhashemi, 2015). One of the most recent forms of IBI index implementation is the Fish-Based 

Index (FBI) that uses 15 metrics instead of 12 and is suitable for detecting degraded waterbodies 

(Launois et al., 2011). This new index ranges from zero to 100, where 100 represents excellent 

status (Herman and Nejadhashemi, 2015). 
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2.3.1.2. Macroinvertebrate Indices 

Macroinvertebrates are another group of instream species that are used for stream health 

assessment and several indices have been developed that utilize their communities. Unlike fish, 

macroinvertebrates have limited mobility that make them suitable for local assessment (Kerans 

and Karr, 1994). Besides that, macroinvertebrates are highly sensitive to slight instream alterations 

that make them valuable indicators of early stage degradation of water quality (Compin and 

Céréghino, 2003). These unique characteristics require different indices to be developed for 

various stream types. So far, more than 40 macroinvertebrate indices have been developed. Among 

those, three indices including one biotic index (Hilsenhoff Biotic Index (HBI)), and two multi-

metric indices (Benthic Index of Biotic Integrity (B-IBI), and Ephemeroptera, Plecoptera, 

Trichoptera (EPT) Index) are the most commonly used (Herman and Nejadhashemi, 2015). Table 

3 summarizes these indices specifications and measurement criteria. 

Table 3. Commonly used macroinvertebrate indices (Herman and Nejadhashemi, 2015) 
Index 

name 

Score range 

(min – max) 

Measurement Application 

HBI 10 – 0 quantifies dissolved 

oxygen level 

evaluates chemical degradation 

of stream with focus on organic 

pollutants 
    

B-IBI 0 – 65 uses 13 metrics to 

quantify organism 

communities based on 

taxa richness, 

composition, and aquatic 

ecosystem 

assesses industrial degradation to 

riverine ecosystem, measures 

response of aquatic ecosystem to 

watershed management scenarios 

    

EPT 0 – 

maximum* 

quantifies richness and 

abundance of mayflies, 

stoneflies, and caddisflies 

early detection of locally 

impacted regions with organic 

pollutants. Applicable for wide 

range of streams 
* Maximum EPT score is defined based on the study area 
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2.3.1.3. Sampling Survey 

In-stream sampling of fish and macroinvertebrate species is required to develop metrics 

and indices. Depending on the stream size and type (e.g. headwater, or large rivers), different 

species exist and require different techniques and equipment for sampling (Vannote et al., 1980; 

Butcher et al., 2003). The U.S. EPA proposed a classification for aquatic species sampling, which 

divides waterbodies to two major groups: wadeable and non-wadeable (U.S. EPA, 2006).     

Wadeable waterbodies are those that are shallow enough to be sampled by samplers 

walking through them (U.S. EPA, 2006). Almost 90% of nation’s streams fall in this category; that 

makes them the main focus of the U.S. EPA oversight (U.S. EPA, 2006). Regarding 

macroinvertebrate sampling in wadeable waterbodies, methods such as: surbers, hesses, D-frame 

dip nets, rectangular dip nets, and kick nets are proposed that can collect instream species in depths 

less than one meter (Plakfin et al., 1989). Among those, kick nets are the most commonly used 

method. The standard recommended mesh size by the U.S. EPA for macroinvertebrates sampling 

is 500 µ; however, it can vary depending on the sampling site location (U.S. EPA, 2012). The 

major drawback of this method is that it is only able to collect samples from the streambed at 

transects (Blocksom and Flotemersch, 2005). To overcome this issue, several samplings along the 

transects are recommended. Regarding fish, electrofishing is the most common approach in 

wadeable waterbodies (Terra et al., 2013). In this method, an electric current is used to stun fish 

that must be collected (Plakfin et al., 1989). A major limitation of this method is that it does not 

consider seasonal variations in fish populations (Roset et al., 2007). To address this issue, several 

samplings in different times of the year is recommended (Herman and Nejadhashemi, 2015).   

Unlike wadeable waterbodies, non-wadeable waterbodies cannot be accessed by walking 

sampling and require the use of a boat (U.S. EPA, 2006). Large rivers, lakes, and coastal regions 
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fall in this category (Herman and Nejadhashemi, 2015). Regarding the macroinvertebrates, drift 

nets and multi-plate samplers are commonly used in deep regions, while wadeable methods will 

be used for the edges (Blocksom and Flotemersch, 2005). Regarding the fish, electrofishing 

conducted on boat is a common approach in deep rivers, while trawling nets is recommended for 

deep lakes and coastal regions (Esselman et al., 2013).    

2.3.2. Modeling Used for Biological Integrity Assessment 

It is impossible to exhaustively sample the biological integrity of the entire riverine 

ecosystem. One approach for performing overall assessment is using probability-based (or 

random) sampling in which a few streams will be surveyed in a way that represents the entire 

riverine ecosystem (Larsen, 1997; U.S. EPA, 2006). Modeling is another approach and 

ecohydrological models are developed in order to evaluate aquatic health beyond sampling stations 

(Woznicki et al., 2016a). 

2.3.2.1. Physical Habitat Simulation Model 

The Physical Habitat Simulation Model (PHABSIM) was developed by the USGS in order 

to assess the response of aquatic ecosystems to anthropogenic activities. For this purpose, 

PHABSIM simulates physical microhabitat changes as a function of streamflow variations 

(Milhous et al., 1984). It assumes that flow-dependent microhabitat structures are representative 

of the stream health and any alteration of physical microhabitats directly impacts health status of 

instream species such as fish and macroinvertebrates (Waddle, 2001).   

PHABSIM only uses physical characteristics (e.g. velocity, depth, and bathymetry) and 

does not consider water quality components (e.g. temperature) and energy input (e.g. nutrients) 

(Milhous et al., 1984; Wu et al., 2006). One of the most common parameters calculated by 

PHABSIM is the Weighted Usable Area (WUA) that measures the density of microhabitats in a 
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defined length of stream. WUA is known as well representative of both quantity and quality of 

microhabitats and can be used for further aquatic ecosystems health assessment (Milhous et al., 

1984).  

2.3.2.2. AQUATOX 

AQUATOX is a biophysical model developed by the U.S. EPA to assess the impact of 

nutrients and toxic organic chemicals on aquatic ecosystems and is one of the most comprehensive 

risk assessment models. It can simulate fate of up to twenty organic chemicals processes and their 

impacts on aquatic biota (Park et al., 2008). 

AQUATOX is also able to provide uncertainty analysis and ranges of possible scenarios 

that make it suitable for ecological risk assessment of aquatic ecosystems (U.S. EPA, 2014d). 

Developed models are applicable for streams, lakes, ponds, and reservoirs. AQUATOX models 

can also be linked to SWAT and HSPF in order to perform aquatic risk assessment at the watershed 

level (Park et al., 2008).  

2.3.2.3. Ecological Limits of Hydrologic Alteration 

Anthropogenic activities have altered flow regimes that not only degraded aquatic 

ecosystems, but also impaired human wellbeing (Dyson et al., 2003). The concept of 

Environmental Flow is defined in order to describe the minimum threshold of water quantity and 

timing needed to sustain aquatic ecosystems and human wellbeing at the same time (O Keeffe et 

al., 2012). The traditional approach was assessment of each individual stream in order to meet the 

minimum flow requirement. However, a holistic approach is needed in order to develop large-

scale water resources management and planning (Le Quesne et al., 2010). Ecological Limits of 

Hydrologic Alteration (ELOHA) is a comprehensive framework developed for environmental flow 

assessment at the watershed, and statewide scales (Le Quesne et al., 2010). 
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ELOHA uses existing hydrological and ecological data to develop empirical equations to 

assess aquatic ecosystems response to flow alteration in a defined region (Poff et al., 2010). For 

this purpose, hydrologic models must be developed to predict baseline and current flow patterns 

in each stream segment. Streams classification based on common features is the next step. Then 

flow alteration-ecological response curves will be developed for each stream class based on current 

and baseline flow patterns (Poff et al., 2010). These empirical curves not only provide a guideline 

for water policy makers to find ecologically vulnerable areas, but also aids to minimize the impact 

of future water development projects on aquatic ecosystems (Poff et al., 2010). 

2.3.2.4. Hydrological Index Tool 

The ecological integrity of riverine ecosystems highly relies on physiochemical 

characteristics of streams also called “master variables” (Poff et al., 1997). These characteristics 

are defined based on five major components of flow regime including 1) magnitude, 2) frequency, 

3) duration, 4) timing, and 5) rate of change (Poff et al., 1997). 171 ecologically relevant 

hydrological indices are introduced in order to quantify these five major components for average, 

low, and high flow rates (Olden and Poff, 2003). The Hydrological Index Tool (HIT) was 

developed by the USGS in order to calculate these ecologically relevant hydrological indices based 

on daily and peak flow records (Henriksen et al., 2006).  

HIT was originally designed to calculate ecologically relevant hydrological indices from 

data collected by the USGS National Water Information System (NWIS). However, this has been 

expanded beyond the USGS observation points including observed and simulated daily streamflow 

datasets (Henriksen et al., 2006). 
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2.3.2.5. National Hydrologic Assessment Tool 

Similar to HIT, the National Hydrologic Assessment Tool (NATHAT) was also developed 

to assess ecologically relevant hydrological indices, but it uses ten hydrologic classifications 

defined by Poff (1996) based on data collected from 420 monitoring sites across the United States 

(Cade, 2006). NATHAT can be used for hydrologic baseline (reference time period) development, 

and assessing response of riverine ecosystems to current and proposed future hydrologic 

modifications (Cade, 2006). Both HIT and NATHAT are commonly used by federal, states, and 

nongovernmental agencies that aim to maintain ecological integrity of aquatic ecosystems 

(Henriksen et al., 2006).  

2.4. Socioeconomic Assessment  

Biophysical assessment is the common approach of evaluating the impact of anthropogenic 

activities on the environment including land, air, water, and wildlife (Slootweg et al., 2001). 

However, recent studies revealed the significance of socioeconomic assessment as well as 

biophysical assessment in order to maintain sustainable environment for both human and natural 

ecosystems (Environmentalist, 2014). Socioeconomic assessment is defined as evaluation of 

proposed developments on socioeconomic status of individuals and communities (MVEI, 2007). 

Socioeconomic status is defined based on combination of sociological and economic measures 

such as income, education and social reputation (APA, 2017). These measures are usually 

developed from census data. The U.S. Census Bureau (USCB) is the principal agency in the U.S. 

for collecting and producing sociological and economic data.  

Census data are collected every ten years, while estimations and projections are used for 

years in between. Census data include population, economy, business, education, employment, 

health, housing, income and poverty information that can be used for decision making in resource 
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allocation to schools, hospitals, and transportation infrastructure development (U.S. Census 

Bureau, 2013). These data are collected at the census block level that is the finest level in the 

geographic hierarchy (Figure 2) and are tabulated and reported in coarser geographic levels 

ranging from block group to the national level (U.S. Census Bureau, 2015). 

 
Figure 2. Geographic hierarchy of census data collection (U.S. Census Bureau, 2015) 

The average block group contains 39 census blocks with a population range of 600 to 3,000 

people. Aggregation of block groups result in census tract development with a population range of 

1,200 to 8,000 people. County is the next level in the hierarchy; counties have varying numbers of 

census tracts. Based on the USCB report, 3,144 counties are defined within the 50 states and 
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territories around the nation (U.S. Census Bureau, 2017). Nine divisions are defined on top of the 

states, these divisions are grouped into four main regions of the nation including West, Midwest, 

South, and Northeast (U.S. Census Bureau, 2017). 

2.4.1. Socioeconomic Aspects of Environmental Justice Assessment 

Uneven socioeconomic status has been an area of concern as they are growing around the 

world (Boyce et al., 2007). Socioeconomic status is also known as the measure of social inequality 

since its variation represents unequal distribution of resources and power (Hasenfeld, 1987). 

Typically, three major socioeconomic levels are defined as 1) poor or lower class, 2) middle class, 

and 3) wealthy or upper class, while more detailed classifications are also provided that include up 

to twelve socioeconomic levels (Eichar, 1989; Beegle et al., 2007). However, these classifications 

do not provide useful information on social and environmental inequalities (Sampson et al., 2008). 

Further analysis of socioeconomic data is required in order to find socioeconomic aspects of these 

inequalities. In terms of Environmental Justice, socioeconomic indicators that represent 

distribution of age, race, housing, welfare, employment, and educational status of a society are 

commonly used as predictors (Sampson et al., 2008). These indices are obtained from census data 

collected at different spatial levels such as county, census tract, and block group.  

2.4.2. Statistical Models for Socioeconomic Assessment  

Socioeconomic data collected by the U.S. Census Bureau contains spatial information. 

Therefore, spatial statistical modeling is used to reveal spatial dependencies that may exist among 

collected data.   

2.4.2.1. Structural Equation Modeling 

Structural Equation Modeling (SEM) is a multivariate statistical method that combines 

factor analysis and multiple regression analysis to assess structural relationships (Schumacker and 
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Lomax, 2004). Factor analysis is a statistical approach to find unobserved potential variables called 

factors that can describe variability and correlation among observed data (Thompson, 2004), while 

regression analysis aims to find relationships among observed variables. That makes SEM a useful 

tool for researchers to consider multiple and interrelated dependencies simultaneously (Statistics 

Solutions, 2017).  

SEM helps social science researchers to evaluate theoretical assumptions that are 

developed based on observed data and to assess how they might be affected by unmeasured 

variables (Schumacker and Lomax, 2004). Additionally, SEM is a useful tool for assessing the 

unreliability of conducted measurements by constructing latent variables that were not seen in data 

collection, and also data reduction (Chin, 1998).  

2.4.2.2. Hierarchical Linear Modeling  

Hierarchical Linear Modeling (HLM) is an extension of linear regression modeling that 

considers the hierarchy of nested data (Woltman et al., 2012). It can reveal the complexity of nested 

multilevel data with spatial, temporal, or organizational dependencies while providing a 

framework for data collected at each level (Snijders and Bosker, 2012).  

HLM is useful for social science studies since socioeconomic data are nested in spatial and 

temporal levels (Stevens, 2012). HLM is defined by five groups of multilevel analysis including 

1) one-way analysis of variance with random effects, 2) one-way analysis of covariance with 

random effects, 3) random coefficient regression model, 4) intercepts and slopes as outcome, and 

5) means as outcome (Snijders and Bosker, 2012, Sanchez, 2014). HLM can be also used for either 

multilevel prediction or data reduction.  
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2.4.2.3. Conditional Autoregressive Models 

The Conditional Autoregressive (CAR) models are regression models in which, spatial 

dependencies are taken into account for model development. For this purpose, CAR models 

estimate values conditioned based on neighboring values (de Smith, 2015), which requires 

implementation of a diagonal weighting matrix in regression analysis (Besag, 1974). This feature 

makes CAR models suitable for areal data analysis that are required in many fields such as 

demography, economy, epidemiology, and geography (Arab et al., 2008; Oliveira et al., 2012).  

CAR models can also reveal spatial dependencies among data, quantify spatial variation of 

parameters of interest, and detect hot spots (Oliveira et al., 2012). CAR models typically use 

Bayesian frameworks in which prior distributions of parameters will be used to predict posterior 

distributions (Lee, 2013; Banerjee et al., 2014). 

2.4.2.4. Simultaneous Autoregressive Models 

The Simultaneous Autoregressive (SAR) models are another type of autoregressive models 

developed for areal data analysis (Besag, 1974). While CAR models only consider neighbor’s 

effects (first-order dependency), SAR models use information of neighbors of neighbors (second-

order dependency) in model prediction as well. In other words, CAR models use defined study 

area for neighborhood matrix development that makes them suitable for local spatial analysis, 

while SAR models are more common for global spatial analysis (Baltagi et al., 2016). Depending 

on the data set and type of study, the proper model must be selected, however in some cases both 

SAR and CAR models may produce similar results (Lichstein et al., 2002; Wall, 2004). Finally, a 

summary of statistical models that are commonly used in socioeconomic assessment is presented 

in Table 4. 
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Table 4. Summary of common statistical models used for socioeconomic assessment 
Model name Statistical analysis Major application 

SEM Factor analysis and multiple 

regression analysis 

Assessing irregularity of existing 

measurements by constructing variables that 

are not covered in collected data  

   

HLM Extension of linear regression, with 

hierarchy effect of nested data 

Conducting multilevel analysis of nested data 

with spatial, temporal, or organizational 

dependencies 

  

   

CAR Spatial auto-regression, with first-

order neighbors’ dependency 

Suitable for local spatial analysis, while 

revealing areal dependencies among data 

   

SAR Spatial auto-regression, with second-

order neighbors’ dependency  

Suitable for global spatial analysis, while 

revealing areal dependencies among data 
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3. INTRODUCTION TO METHODOLOGY AND RESULTS 

This dissertation consists of two studies that improve the performance of stream health 

based environmental justice models. The first study focuses on the role of spatial levels on 

environmental justice analysis concerning stream health. The second study builds upon the first 

study by improving stream health prediction and evaluates the significance of the incorporation of 

more accurate stream health scores in environmental justice studies. 

The first study, titled “Evaluating stream health based environmental justice model 

performance at different spatial scales”, focuses on the spatial dependencies among stream health, 

socioeconomic, and physiographic indices used for environmental justice studies. The Saginaw 

River Basin in Michigan is selected as the study area. Four biological indices that quantify the 

response of fish and macroinvertebrates to instream stressors are used for stream health 

assessment. However, these indices are monitored for only a few stations; therefore, stream health 

predictive models are used to evaluate these indices beyond the limited monitoring stations. 

Seventeen socioeconomic and physiographic indices representing concentrated disadvantages are 

used for the environmental justice assessment. These indices are collected at three census levels 

of county, census tract, and block group. For each level of study, the correlation of the indices are 

evaluated, and spatial data analysis are conducted to evaluate spatial dependencies among the 

stream health indices and independent socioeconomic and physiographic indices. Finally, 

multilevel models, in which the nested effect of data collected at different levels is also 

incorporated, are developed and their performances are compared with single level models. 

The second study, titled “Assessing the Relative Importance of Parameter Estimation in 

Stream Health Based Environmental Justice Modeling”, uses the same datasets as are used in the 

first study, while focusing on improvement of stream health prediction impacts on environmental 
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justice studies. For this purpose, ecologically relevant streamflow and water quality parameters 

are used for the development of stream health predictive models, while in earlier studies, the role 

of these parameters was not considered. As a result, more reliable stream health indices are 

estimated within the study area. This information are then used in the development and evaluation 

of the new stream health based environmental justice models. Similar modeling practices as study 

one are adopted in study two in order to make the results of the two studies comparable.    
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4. EVALUATING STREAM HEALTH BASED ENVIRONMENTAL JUSTICE MODEL 

PERFORMANCE AT DIFFERENT SPATIAL SCALES 

4.1. Introduction 

Human and natural ecosystems are interconnected and affect one another. Studies show 

that human activities can substantially alter ecosystems, changing biological diversity, land 

surface, and other resources that often have long-term environmental effects (Skole and Tucker, 

1993; Vitousek et al., 1997, Halpern et al., 2008, Einheuser et al., 2013a). Anthropogenic activities 

have changed more than one-third of land surfaces (Vitousek et al., 1997; Allan 2004). Halpern et 

al. (2008) reported that no marine ecosystem has been left untouched by human activities, while 

more than forty percent of these ecosystems have faced notable changes. Fresh water 

contamination is one of the more apparent impacts of human interventions, which also negatively 

affects human health (Smith et al., 1999; Pomati et al., 2006; Vairavamoorthy et al., 2007) through 

waterborne diseases such as diarrhea, cholera, SARS, and hepatitis (Levine et al., 1990; Wu et al., 

1999; Ashbolt, 2004; Mieiro et al., 2009). Therefore, sustaining healthy streams can be beneficial 

to both human and natural systems.  

A healthy stream is a stream that is sustainable and resilient, while maintaining both 

societal and ecological necessities (Meyer, 1997). In order to evaluate stream health conditions, 

biological indicators are used to quantify the ecological integrity of river systems (Cairns et al., 

1993). In other words, biological indicators represent aquatic communities’ response to human 

and natural disturbances (Barbour et al., 1999; Flinders et al., 2008). Fish and macroinvertebrates 

are commonly used for the development of biological indicators (Meyer, 1997; Hering et al., 2006; 

Wang et al., 2007; Walters et al., 2009; Holguin-Gonzalez et al., 2013; Muñoz-Mas et al., 2014). 

Macroinvertebrates are used for assessing local habitat conditions due to limited mobility, while 
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fish are often used for large-scale stream health assessment because of seasonal migrations within 

stream systems (Karr, 1981; Lenat, 1988; Plafkin et al., 1989; Lammert and Allan, 1999; Young 

et al., 2000; Herman and Nejadhashemi, 2015).  

On the contrary, unhealthy streams negatively affect ecosystem services that ultimately 

influence human well-being, social health, and access to resources (Corvalan et al., 2005). 

However, the level of influences are different between racial or ethnic groups, in particular 

minorities and low-income communities are generally more affected (Pollock and Vittas, 1995; 

Helfand and Peyton, 1999). In order to address these issues, the concept of ‘Environmental Justice’ 

was introduced that deals with the fair distribution of resources to all people regardless of race, 

color, national origin or income (U.S. EPA, 2014e). Therefore, environmental justice by nature 

deals with different elements that vary across space, time and organizational units (Picket et al., 

2005; Liu et al., 2007a; An, 2012). However, using the wrong scale can lead to the wrong decision 

(Wilson et al., 1999; Silver, 2008; Maantay, 2007; Maantay and Maroko, 2009). For example, 

while the census tract is the most commonly used unit in environmental justice studies (Jerret et 

al., 2001; Corburn et al., 2006; Gilbert et al., 2011; Sanchez et al., 2014; Sanchez et al., 2015), 

socioeconomic data are also collected at county, block group, and census block scales (U.S. Census 

Bureau, 2010).  

Zimmerman (1993) reported that using jurisdictional boundaries, such as counties, results 

in different environmental equity results compared to non-jurisdictional boundaries, such as census 

tract (Zimmerman, 1993). Fisher et al. (2006) studied air toxic pollution (point source) in the 

context of environmental justice and across various spatial levels (census tract, block group, and 

census block). They concluded that using census tract data is not a proper scale for a point source 

pollutants study, since it assumes uniform distribution of pollutant and population among census 



36 
 

tracts, regardless of their size or shape (Fisher et al., 2006).  Zou et al. (2014) used socioeconomic 

data at three spatial levels (zip code, census tract and block group) in an environmental justice 

study in the context of sulfur dioxide exposure. Using whites as a reference for racial inequality 

analysis, they showed that not only pollutant source (e.g. industrial or vehicle) but also spatial 

scale (e.g. county or census tract) affect final outcomes. For example, less exposure to pollutants 

was reported at the block group level compared to the zip code and census tract levels in black 

populations. In general, more reliable results were obtained at the smallest spatial scale, which was 

block group (Maantay, 2007). Apart from that, Arcaya et al. (2012) showed that considering 

multilevel dependency between the U.S. life dataset of 1999 at different scales (county, state, and 

region) improved projection of the life expectancy pattern (Arcaya et al., 2012).  

The goal of this study is to evaluate the effects of spatial data resolution on environmental 

justice analysis with respect to stream health integrity. We hypothesis that the environmental 

justice analysis using socioeconomic data at the block group level is the most reliable and will 

capture more spatial dependency between socioeconomic and environmental (stream health) 

parameters compare to census tract and county levels. We also hypothesis that considering 

multilevel dependency between socioeconomic data may improve the predictably of the 

environmental justice models. This study is unique since to the best of knowledge no study has 

considered both the effects of socioeconomic spatial resolutions and multilevel interactions in the 

context of stream health. The specific objectives are to: a) measure the degree of dependency 

between stream health indicators and control parameters across the three spatial scales (county, 

census tract, and block group); b) understand the spatial dependency at the three levels and among 

stream health indicators and control parameters using regression analysis; and c) evaluate the 

importance of multilevel analysis in improving the environmental justice model predictability. 
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4.2. Methodology 

4.2.1. Study Area 

The study area is the Saginaw River Basin, the largest six-digit hydrologic unit located in 

Michigan. Each hydrologic unit is identified by a unique hydrologic unit code (HUC). The HUC 

for the Saginaw River Basin is 040802. The study area contains six hydrologic units  Tittabawassee 

(04080201), Pine (04080202), Shiawassee (04080203), Flint (04080204), Cass (04080205) and 

Saginaw (04080206), which drains to the Lake Huron (Figure 3). The size of study area is 16,120 

square kilometers. Approximately, half of the study area is agricultural land, mostly covered by 

corn and soybean, 25% is forestlands, while developed areas, wetlands, rangeland, and surface 

water cover the rest.  

 
Figure 3. Saginaw River Basin 

Increase in soil erosion, contaminated sediment, and nutrients, has degraded aquatic life 

and recreational values in the study area to the extent that the U.S. Environmental Protection 
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Agency (EPA) has identified the Saginaw River as an area of concern in the Great Lakes basin 

(U.S. EPA, 2015d). 

4.2.2. Stream Health Indicators 

In order to evaluate stream health, four biological indicators, which represent 

macroinvertebrates and fish abundance, were used in this study (Karr, 1981; Lenat, 1988; 

Hilsenhoff, 1987; Lyons 1992; Kerans and Karr, 1994; Sponseller et al., 2001; Infante et al., 2008; 

Einheuser et al., 2012; Einheuser et al., 2013b). The first indicator is the Index of Biotic Integrity 

(IBI); it describes a series of fish measures such as species richness and composition, trophic 

composition, abundance and condition that are evaluated by a numeric score that ranges from 0 to 

100 (Karr, 1981; Kerans and Karr, 1994, Herman and Nejadhashemi, 2015). The lower scores 

represent high level of stream disturbance and vice versa. The Hilsenhoff Biotic Index (HBI) is a 

common macroinvertebrate indicator, which represents tolerance values of organic pollution 

within different species. It is varied from 0 to 10, where 10 suggests very poor water quality and 

0 represents an excellent water quality in terms of organic pollution (Hilsenhoff, 1987). The next 

macroinvertebrate indicator is the Family-level Index of Biological Integrity (FIBI), which relates 

the composition of species in a family taxonomic resolution to pollution tolerance, ranging from 0 

to 45 (Woznicki et al., 2015). For this index, higher values represent better stream health 

conditions. Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), also 

known as EPT taxa, are orders that are sensitive to degradation and commonly used in 

bioassessment. EPT scores below three will be considered as very poor stream health conditions 

and scores above 10 will be classified as excellent (Woznicki et al., 2015). 

Fish monitoring was performed in 193 monitoring sites from 1982 to 2007, while 

macroinvertebrate were monitored between 1996 to 2003 for 262 sites within the study area 
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(MDEQ 1997; Seelbach and Wiley, 1997). Electrofishing techniques such as backpack, tow-barge 

and boom units were used for fish sampling in the field (Seelbach and Wiley, 1997). While 

sampling methods such as hand picking and dip nets were used to obtain about 300±60 organism 

within the minimum 20 min for each site for macroinvertebrates (Einheuser et al., 2012). The 

ranges of the four indices recorded within the study area are summarized in Table 5. 

Table 5. Summary of stream health measures in Saginaw River Basin 
Variable Min Max 

IBI 0 100 

HBI 3.61 7.89 

FIBI 0 36 

EPT 0 17 

 

Using the Soil and Water Assessment Tool (SWAT) and Adaptive Neuro Fuzzy Inference 

System (ANFIS) a predictive model was developed to calculate stream health indicators 

throughout the study area (Einheuser et al., 2012; Einheuser et al., 2013a). The current stream 

health conditions based on the four biological indicators for the 13,831 stream segments are 

presented in Figure 4. 
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Figure 4. Stream health condition across Saginaw River Basin: (a) IBI, (b) HBI, (c) FIBI, and 

(d) EPT (adapted from Einheuser et al., 2012; 2013a). 

 

4.2.3. Socioeconomic and Physiographic Indicators 

From numerous reported socioeconomic measures, 16 indicators were selected in this study 

(Table 6). These indicators were selected since they have been widely used in many environmental 

justice researches and represent concentrated disadvantage (Bowen et al., 1995; Bowen, 2002, 

Taquino et al., 2002, Brulle and Pellow, 2006, Bullard et al., 2008, Sampson et. al. 2008; Lin and 

Morefield, 2011, Malley et al., 2012). Selected indicators represent population (S2 and S3), 

household composition (S4, S5, S8, S9), racial composition of household (S6), female-headed 

households (S7), housing (S10, S11), educational disadvantage (S12), economic disadvantage 

(poverty) (S13, S14, S15), welfare receipt (S16) and unemployment (S17). These indicators were 
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obtained from the U.S. Census Bureau for three census levels of county, census tract, and block 

groups (U.S. Census Bureau, 2010).  

Table 6. List of the socioeconomic/physiographic indicators (Census bureau, 2010) 
ID Socioeconomic/physiographic indicators 

S1 Drainage density  

S2 Population density (per sq. mile) 

S3 Percentage of land area 

S4 Percentage of population under 18 years 

S5 Percentage of population age 65 and over 

S6 Percentage of black or African American population:  

S7 Percentage of family households: Female householder, no husband present 

S8 Percentage of households: Nonfamily households: Householder living alone 

S9 Average household size 

S10 Housing units 

S11 Percentage of occupied housing units 

S12 Percentage of population 25 years and over: Less than high school education level 

S13 Percentage of families: Income in 2010 below poverty level 

S14 Average household income (In 2010 inflation adjusted dollars) 

S15 Aggregate household income (In 2010 inflation adjusted dollars) 

S16 Percentage of households: With public assistance income 

S17 Percentage of unemployed civilian population 16 years and over 

 

The Saginaw River Basin was covered by 21 counties (Figure 5a), 393 census tracts (Figure 

5b), and 1,076 block groups (Figure 5c). According to U.S. Census Bureau (2010), more than 1.5 

million people are living in the study area. 71.6% of the population are living in urban and 28.6% 

in rural area. The race distribution is: 83.1% white, 10.6% black or African American, 2.8% Asian 

and 3.5% others.  

In addition to socioeconomic indicators, a watershed physiographical indicator called 

drainage density was used to account for the accessibility of people to water bodies. In this study, 

the drainage density was defined as the ratio of the total length of all rivers divided by the 

socioeconomic area of interest (counties boundary, census tract, and block group). Scale 

adjustment was also performed to match socioeconomic and stream health measures, because 

stream health was calculated in much finer resolution (13,831 stream segments) than the 
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socioeconomic data. This was accomplished by calculating the weighted average of stream health 

scores by length for the different census levels. 

 
Figure 5. Boundary maps: (a) counties, (b) census tracts, and (c) block groups across 

Saginaw River Basin. 

 

4.2.4. Data Analysis and Modeling 

Scatterplot matrices including histograms of each individual variable distribution (the four 

stream health indicators, drainage density, and sixteen socioeconomic indicators) and pairwise 

correlation coefficients at three census levels were calculated based on the Spearman’s rank 

correlation coefficient, a non-parametric measure of statistical dependence between two 

variables (Lehmann and D'Abrera 1998). However, to better understand the spatial dependency 
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among control parameters and stream health indicators, regression analysis was performed using 

spatial Conditional Autoregressive (CAR) models (Banerjee et al., 2014).  

First, assume counties are represented by 𝑖 = 1,2, … , 𝐼, census tracts are represented by 𝑗 =

1,2, … , 𝐽, and block groups are represented by 𝑘 = 1,2, … , 𝐾. Since the three levels are nested, 

𝐾 = ∑ 𝐾𝑗
𝐽
𝑗=1  where 𝐾𝑗 is the number of block groups in the 𝑗th census tract, and 𝐽 = ∑ 𝐽𝑖

𝐼
𝑖=1  where 

𝐽𝑖 is the number of census tracts in the 𝑖th county. Therefore, the total observation for each block 

group at the finest resolution is 𝐾 = ∑ 𝐾𝑗
𝐽
𝑗=1 = ∑ ∑ 𝐾𝑗

𝐽𝑖
𝑗=1

𝐼
𝑖=1 .  

For each resolution level of data presentation, the spatial CAR model is presented as 

follows: 

a) County level data: Assume  𝑌𝑖 represents the steam health indicator, 𝑋𝑖 includes the 

corresponding 𝑝 socioeconomic indicators plus an intercept to account for the mean level 

of the response, i.e. 𝑋𝑖 = (1, 𝑆𝑖1, … , 𝑆𝑖𝑝) for the 𝑖th sample. We consider: 

1) Spatial CAR model (Model [1]): 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖,     𝜺 ~ 𝑁(0, 𝜏𝐼
2(𝑀𝐼 − 𝛾𝐼𝑊𝐼)−1)         (2) 

where, 𝑊𝐼 denotes the spatial neighborhood matrix for the 𝐼 counties and 𝑀𝐼 represents 

the diagonal matrix with the number of total neighbors as the diagonal entries. In this 

model, 𝜏𝐼
2 measures the variation and 𝛾𝐼 measures the spatial dependence. The vector 

𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝) includes the regression coefficients, hence 𝑋𝑖𝛽 = 𝛽0 + ∑ 𝑆𝑖𝑡𝛽𝑡
𝑝
𝑡=1  

in (1). 

To evaluate the importance of modeling spatial dependence, two partial 

implementations were considered:  

i) the weighted regression model (Model [2]): 
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𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖,     𝜺 ~ 𝑁(0, 𝜏𝐼
2𝑀𝐼

−1),     𝑖 = 1,2, … , 𝐼     (3) 

where, 𝛾𝐼 = 0 is fixed, i.e., no spatial dependence but the residual variance is 

weighted by the number of neighbors; and  

ii) the ordinary regression model (Model [3]): 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖,     𝜺 ~ 𝑁(0, 𝜏𝐼
2𝐼𝐼),     𝑖 = 1,2, … , 𝐼       (4) 

where, 𝑀𝐼 = 𝐼𝐼 the identity matrix. In this model, no spatial information is 

included; therefore, it becomes the ordinary regression model.  

In the following context whenever a CAR structure is incorporated, the full and the two 

partial implementations (weighted least squares and ordinary least squares) were 

considered. 

b) Census tract level data:  

2) Spatial CAR model with no random effect (single level): 

𝑌𝑗 = 𝑋𝑗𝛽 + 𝜀𝑗 ,     𝜺 ~ 𝑁(0, 𝜏𝐽
2𝐷𝐽(𝛾𝐽)),     𝑗 = 1,2, … , 𝐽      (5) 

with a total of three submodels and double index for [county, census tract], 

𝐷𝐽(𝛾𝐽) =  (𝑀𝐽 − 𝛾𝐽𝑊𝐽)−1 as full implementation (Model [0.1])  that accounts for the 

spatial dependence, and two partial implementations 𝐷𝐽(𝛾𝐽) = 𝑀𝐽
−1 (Model [0.2]) that 

considers spatial heterogeneity using the number of surrounding regions as weights, 

and 𝐷𝐽(𝛾𝐽) = 𝐼𝐽 (Model [0.3]) that is just simple multiple regression without 

considering any spatial information.  

3) Spatial CAR model with random effect on county (multilevel): 

𝑌𝑖𝑗 = 𝑋𝑖𝑗𝛽 + 𝑢𝑖 + 𝜀𝑖𝑗 ,     𝜺 ~ 𝑁(0, 𝜏𝐽
2𝐷(𝛾𝐽)), 𝒖 ~ 𝑁(0, 𝜏𝐼

2𝐷(𝛾𝐼))       (6) 

 𝑗 = 1,2, … , 𝐽𝑖, 𝑖 = 1,2, … , 𝐼 



45 
 

with a total of 3 × 3 = 9 submodels while considering the full implementation and two 

partial implementations on both levels, indexed from Model [1.1] to Model [3.3].  

c) Block group level data: 

4) Spatial CAR model with no random effect (single level) 

𝑌𝑘 = 𝑋𝑘𝛽 + 𝜀𝑘 ,     𝜺 ~ 𝑁(0, 𝜏𝐾
2 𝐷𝐾(𝛾𝐾)),     𝑘 = 1,2, … , 𝐾      (7) 

with a total of three submodels and triple index for [county, census tract, block group], 

𝐷𝐾(𝛾𝐾) =  (𝑀𝐾 − 𝛾𝐾𝑊𝐾)−1 as full implementation (Model [0.0.1]), and two partial 

implementations 𝐷𝐾(𝛾𝐾) = 𝑀𝐾
−1 (Model [0.0.2]) and 𝐷𝐾(𝛾𝐾) = 𝐼𝐾 (Model [0.0.3]).  

5) Spatial CAR model with nested random effects on county and census tract 

(multilevel): 

𝑌𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘𝛽 + 𝑢𝑖 + 𝑣𝑖𝑗 + 𝜀𝑖𝑗𝑘,             (8) 

𝜺 ~ 𝑁(0, 𝜏𝐾
2 𝐷(𝛾𝐾)), 𝒖 ~ 𝑁(0, 𝜏𝐼

2𝐷(𝛾𝐼)), 𝒗 ~ 𝑁(0, 𝜏𝐽
2𝐷(𝛾𝐽))  

𝑘 = 1,2, … 𝐾𝑗 , 𝑗 = 1,2, … , 𝐽𝑖 , 𝑖 = 1,2, … , 𝐼 

with the total of 3 × 4 × 4 − 3 = 45 submodels by considering the full implementation 

and two partial implementations on all three levels, and with either 𝒖 or 𝒗 fixed at 0 

(but not both), indexed from Model [0.1.1] to Model [3.3.3] with the triple index for 

[county, census tract, block group].  

In total, 63 models (3 + 12 + 48)  were fitted to the data at different resolution level and 

by considering the interactions between levels and spatial dependence structure. The model fit is 

carried out by running six Markov chain Monte Carlo (MCMC) per model with distinct starting 

values and a total of 6,000 iterations. After convergence, the last 1,000 samples for each chain is 

stacked as posterior samples for inference. 
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4.2.5. Markov Chain Monte Carlo Implementation Details 

Equation 7 is considered as the full spatial CAR model with nested random effects on 

county and census tract for the block group data. Other models are either nested or reduced at 

simpler levels but having similar format. Equation (7) can be rewritten in format of the mixed-

effect model as follows: 

𝒀 = 𝑿𝛽 +  𝑍𝑢𝒖 + 𝑍𝑣𝒗 + 𝜺           (9) 

𝜺 ~ 𝑁(0, 𝜏𝐾
2 𝐷(𝛾𝐾)), 𝒖 ~ 𝑁(0, 𝜏𝐼

2𝐷(𝛾𝐼)), 𝒗 ~ 𝑁(0, 𝜏𝐽
2𝐷(𝛾𝐽)) 

The associated model parameters were estimated through the full Bayesian framework by 

eliciting prior assumptions. A flat prior on the regression coefficient 𝛽 but a conjugate prior for 

the variation parameters 𝜏𝐼
2, 𝜏𝐽

2, and 𝜏𝐾
2  were assumed. This is an inverse-gamma distribution with 

shape 𝑎 and scale 𝑏. One option is to assume 𝑎 = 2 and 𝑏 = 0.01 that yields a rather dispersed 

prior distribution when there is a lack of strong prior knowledge. In addition, uniform prior 

distributions were considered on 𝛾𝐼 , 𝛾𝐽 and 𝛾𝐾 over their required ranges to guarantee the 

corresponding matrices𝐷(𝛾𝐼), 𝐷(𝛾𝐽) and 𝐷(𝛾𝐾) would be valid covariance matrices for CAR 

model. In the next step, posterior samples of the parameters were drawn by combing the selected 

diffused prior distributions and data likelihood via the MCMC technique. More specifically, the 

Gibbs sampler was used, which involves updating a set of parameters given the data and the 

remaining parameters, from their full conditional densities at each iteration of the MCMC runs. 

Due to the conjugate prior choice, the full conditional distribution of 𝛽 is 𝑁(𝜇𝛽 , 𝛴𝛽) was adopted 

where;  

{
𝛴𝛽 =  𝜏𝐾

2 (𝑿′(𝑀𝐾 − 𝛾𝐾𝑊𝐾)𝑿)−1

  𝜇𝛽 = 𝛴𝛽𝑿′(𝑀𝐾 − 𝛾𝐾𝑊𝐾)(𝒀 − 𝑍𝑢𝒖 − 𝑍𝑣𝒗)
      (10) 
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and at each Gibbs circle a sample of 𝛽 from the full conditional distribution above was first 

simulated. Similarly, the full conditional distribution of county random effect 𝒖 is 𝑁(𝜇𝑢, 𝛴𝑢) 

where; 

{
𝛴𝑢 =  𝜏𝐾

2 (𝑍𝑢
′(𝑀𝐾 − 𝛾𝐾𝑊𝐾)𝑍𝑢 +  (𝑀𝐼 − 𝛾𝐼𝑊𝐼)

𝜏𝐾
2

𝜏𝐼
2)

−1

  𝜇𝑢 = 𝛴𝑢𝑍𝑢′(𝑀𝐾 − 𝛾𝐾𝑊𝐾)(𝒀 − 𝑿𝛽 − 𝑍𝑣𝒗)/𝜏𝐾
2

       (11) 

The full conditional distribution of census tract random effect 𝒗 is 𝑁(𝜇𝑣, 𝛴𝑣) where; 

{
𝛴𝑣 =  𝜏𝐾

2 (𝑍𝑣
′(𝑀𝐾 − 𝛾𝐾𝑊𝐾)𝑍𝑣 +  (𝑀𝐽 − 𝛾𝐽𝑊𝐽)

𝜏𝐾
2

𝜏𝐽
2)

−1

  𝜇𝑣 = 𝛴𝑣𝑍𝑣′(𝑀𝐾 − 𝛾𝐾𝑊𝐾)(𝒀 − 𝑿𝛽 − 𝑍𝑢𝒖)/𝜏𝐾
2

       (12) 

The full conditional distribution of 𝜏𝐼
2 is inverse-gamma with shape 𝑎𝐼 and scale 𝑏𝐼, 

where;  

{
𝑎𝐼 = 𝑎 + 𝐼/2

  𝑏𝐼 = 𝑏 +  𝒖′(𝑀𝐼 − 𝛾𝐼𝑊𝐼)𝒖/2
           (13) 

The full conditional distribution of 𝜏𝐽
2 is inverse-gamma with shape 𝑎𝐽 and scale 𝑏𝐽, 

where;  

{
𝑎𝐽 = 𝑎 + 𝐽/2

  𝑏𝐽 = 𝑏 +  𝒗′(𝑀𝐽 − 𝛾𝐽𝑊𝐽)𝒗/2
           (14) 

The full conditional distribution of 𝜏𝐾
2  is inverse-gamma with shape 𝑎𝐾 and scale 𝑏𝐾, 

where;  

{

𝑎𝐾 = 𝑎 + 𝐾/2

𝑏𝐾 = 𝑏 +
𝒆′(𝑀𝐾−𝛾𝐾𝑊𝐾)𝒆

2

 𝑤𝑖𝑡ℎ 𝒆 =  𝒀 − 𝑿𝛽 − 𝑍𝑢𝒖 − 𝑍𝑣𝒗

          (15) 

 𝛾𝐼 was also sampled from its full conditional distribution with density proportional to 

|𝑀𝐼 − 𝛾𝐼𝑊𝐼|1/2exp {𝛾𝐼𝒖′𝑊𝐼𝒖/(2𝜏𝐼
2)}          (16) 
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Similar sampling was performed for 𝛾𝐽 and 𝛾𝐾. Updating all parameters completes one 

Gibbs circle, and this procedure is repeated over a large number of iterations in order to obtain 

posterior samples for inferential stage after convergence of multiple MCMC runs. Finally, 

Deviance Information Criterion (DIC4) was used for mixed-effect model evaluation (Celeux et al 

2006). 

4.3. Results and Discussions 

4.3.1. Variables Distribution and Pairwise Correlations 

Figures 6, A1, and A2 show the correlation matrixes for the three census levels of county, 

census tract, and block group, respectively. Histograms of each individual variable distribution are 

shown on the diagonal of each matrix. The upper and lower parts of the matrices are spearman 

rank correlation coefficients and scatter plots of each pair of variables, respectively. 

4.3.1.1. Variables Distribution  

Understanding the variable distribution is important for selecting appropriate analysis 

techniques or examining the underlying assumption about a set of variables. Among the four 

stream health indicators at the three levels (county, census tract, and block group), the HBI and 

IBI had the most bell-shaped histograms, especially at the census tract and block group levels, 

while a little skewness to the right can be seen in both indices at the county level. This shows that 

the level of study has an effect on variable distribution as the aforementioned indices have normal 

distributions at the census tract and block group levels but skewed at the county level. Besides 

that, these two indices are less sensitive to aggregation at the county level compared to the FIBI 

and EPT. The FIBI and EPT were right-skewed at the census tract and block group level meaning 

that most of the units (census tracts or block groups) have low scores, which is consistent with low 

stream health scores reported at the reach level (Figure 4 (c) and (d)).  
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Figure 6. Spearman rank correlation matrix between dependent and independent variables at 

the county level. Boldfaced value indicates significance at the 0.05 level and correlation less 

than 0.7, Boldfaced value in red indicates significance at the 0.05 level and strongly positive 

correlation equal or above 0.7, and value in blue indicates significance at the 0.05 level and 

strongly negative correlation equal or below -0.7 

 

However, their distributions were the opposite at the county level and showed left-skewness, 

meaning that most of units have high FIBI and EPT scores. These results show how using coarse 

census resolutions can be misleading in stream health data analysis, especially for FIBI and EPT, 

which were more sensitive to the level change. Considering stream health scores at the reach level 

(Figure 4) also suggests that census tract and block group levels can better represent stream health 

data distribution compared to the county level. 

Regarding the socioeconomic data, most of them had consistent distributions at the census 

tract and block group levels, and in general, were less affected at the county level than the stream 
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health measures. This means that these indices are less sensitive to aggregation than the stream 

health measures. Among the 16 socioeconomic parameters, only S17 (percentage of unemployed 

population of 16 years old and above) had normal distributions at all three levels. The S3 

(percentage of land area), S9 (average house size) and S11 (percentage of housing units occupied) 

parameters were left-skewed. The left skewness of S3 means that the majority of census units (at 

each level) have few water bodies and are mostly covered by land. While the distributions for S9 

and S11 show that the majority of house units in the study area are larger than average and most 

of them are occupied. The rest of the parameters were right-skewed. The right skewness of S2 and 

S10 showed that many of the census units have low population densities (S2) and few housing 

units (S10), which correlates with the house size (S9) distribution mentioned above. The same 

pattern was seen for S6 (percentage of black or African American population), meaning that only 

a few census units have the majority of the population as black or African American. The S7 

(percentage of households with female householder) and S8 (percentage of householders living 

alone) distributions, also showed that few units of study have a high percentage of households with 

a female householder or householders living alone. Poverty and welfare receipt indicators also 

showed that only a few census units are dominated by people with low incomes (S14 and S15), 

incomes below poverty level (S13), or receive public assistance (S16). These distributions can help 

decision makers to select areas, which have higher priorities for environmental justice practices. 

4.3.1.2. Stream Health Indicators Correlations at Three Levels 

Considering the census tract and block group levels, the IBI, FIBI and EPT were positively 

correlated with each other and all were negatively correlated with HBI, which is consistent with 

their definitions where high values for the IBI, FIBI and EPT indicate better stream health 

conditions, while for the HBI lower values indicate better stream health conditions. However, this 



51 
 

consistency is lost at the county level, where the IBI had a reversed correlation with 

macroinvertebrate indices. This means that streams, which had better conditions for 

macroinvertebrates (having high FIB, high EPT and low HBI scores), had worse conditions for 

fish (low IBI scores). Furthermore, significant correlations between the IBI and FIBI and EPT 

indices at the census tract and block group levels were also lost at the county level. Overall, 

correlations among stream health measures show how sensitive they are to census data resolution 

and how their aggregation at the county level can be misleading conclusions compared to the 

census tract and block group levels. These changes in data interpretation among different census 

levels also matches with their histograms comparison. 

4.3.1.3. Socioeconomic/Physiographic Indicators Correlations at Three Levels 

Almost all of the socioeconomic/physiographic indicators had significant correlations with 

each other at the county level with thirty-one absolute correlation coefficients above 0.7  (shown 

in red) and three correlation coefficients above 0.9 among S2 (population density) and S10 

(housing units), S2 and S15 (aggregate household income). However, moving from county to 

census tract level, these correlation values drastically dropped with only three absolute values 

above 0.7 among S8 (householders living alone) and S9 (average household size), S12 (population 

above 25 years old and education less than high school) and S14 (average household income), and 

S13 (families with income below poverty level) and S14. However, none of them were significant. 

Like the census tract level, only three absolute correlation values were above 0.7, for S8 and S9, 

S13 and S14, and S14 and S15 at the block group level. Overall, correlation values were even less 

at block group level. For example, correlation coefficients between S13 and S14 dropped from -

0.83 to -0.71 at the block group compared to the census tract level. In addition, the correlation 

coefficients of S12 and S14 dropped from -0.75 at the census tract to -0.58 at the block group, 
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while correlation coefficients for S14 and S15 increased from 0.65 to 0.73 when the block group 

level is compared to the census tract level. These examples show how correlations found between 

different indicators can vary among census levels and can lead to different interpretations. In 

general, socioeconomic/physiographic data showed high correlations among each other at course 

resolutions (e.g. county level) while these correlations were lost at finer census levels (e.g. census 

tract and block groups), which are more detailed and can better represent spatial distribution.  

4.3.1.4. Interaction of Stream Health Measures and Socioeconomic/Physiographic Indicators 

at Three Levels 

Like the interactions of the socioeconomic/physiographic indicators with each other, the 

highest correlation coefficients with the four stream health measures were also found at the county 

level, followed by the census tract and block group levels. In addition, more variables are 

significantly correlated at the county level. However, the values reported for these correlations 

were much lower than the numbers found among the socioeconomic/physiographic indicators. For 

example, the highest correlation of EPT with a socioeconomic/physiographic indicator at the 

county level was 0.43 with S13 (families with income below poverty level), which is much smaller 

than the correlations reported in the previous section (e.g. three correlation coefficients were above 

0.9). Furthermore, significantly correlated socioeconomic/physiographic indicators for each 

stream health measure vary across the census levels. For example, at the county level the HBI had 

significant correlations with three household composition indicators (S5, S8, and S9). However, 

of these three only S8 continued to be significant at the census tract level. S9 was replaced with 

another household indicator (S7: Female-headed households). Besides that, a racial composition 

indicator (S6) and one population indicator (S3: percentage of land area) became significant at this 
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level. While at the block group level, one more population indicator (S2: population density) was 

also added to this list.  

In general, all stream health measures had higher correlation coefficients at the county 

level, compared to the census tract and block group levels. Furthermore, the significant 

socioeconomic/physiographic indicators were not the same at all three levels, which again shows 

the role of census level resolution in data interpretation for each stream health measure. 

4.3.2. Understand the Spatial Dependency Between Stream Health Indicators and 

Control Parameters Using Regression Analysis  

In this stage, regression analysis was developed using spatial CAR models to discover 

spatial dependency among control parameters and stream health indicators with and without 

random effect as follows: 

4.3.2.1. Spatial CAR Models with No Random Effect (Single Level) 

Considering each stream health indicator, three models (spatial, weighted regression, and 

ordinary regression) were developed. These models were applied for each census level, so 36 

models (4 response variables, 3 levels, and 3 models) were developed at this stage (Tables 7-10 

and A1 to A8). In these tables, DIC, which is a measure of relative quality of a statistical model, 

was used to identify the best model at each level. However, this value should not be used to 

compare the models’ performances from multiple levels (e.g. county versus census tract) due to 

differences in sample sizes. In addition to DIC, 𝛾 was reported to present spatial dependence in 

which 0  means no spatial effect while 1 mean full spatially dependency. Finally, each dependent 

parameter that its regression coefficient (β1- β17) that does not contain zero in the range of their 

upper and lower bands can be considered as a significant parameter and are bolded for each model. 
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Table 7. Regression models for FIBI at county level (boldfaced values indicates a significant 

parameter at the 0.05 level) 

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 14.68 14.15 15.22 14.69 14.29 15.09 14.64 14.18 15.09 

β1 0.09 -0.63 0.78 0.08 -0.63 0.84 0.05 -0.82 0.90 

β2 -18.32 -26.10 -10.70 -18.39 -26.17 -10.72 -18.26 -27.05 -9.66 

β3 2.18 0.87 3.54 2.21 0.78 3.54 2.26 0.77 3.72 

β4 -0.79 -2.38 0.77 -0.82 -2.35 0.75 -0.78 -2.63 1.018 

β5 1.81 -0.36 4.03 1.83 -0.45 4.06 1.79 -1.11 4.65 

β6 -3.25 -5.45 -1.03 -3.22 -5.39 -1.00 -3.10 -5.54 -0.72 

β7 0.98 -1.10 3.11 0.96 -1.23 3.09 0.82 -1.53 3.26 

β8 -0.38 -4.88 4.17 -0.36 -5.04 4.27 -0.57 -5.73 4.68 

β9 -0.51 -6.18 5.13 -0.47 -6.40 5.23 -0.77 -7.21 5.84 

β10 47.36 29.04 66.21 47.39 28.51 66.04 47.69 27.80 67.81 

β11 -0.38 -2.07 1.36 -0.37 -2.16 1.42 -0.20 -2.25 1.81 

β12 -0.98 -3.47 1.62 -0.94 -3.67 1.58 -0.88 -3.77 1.98 

β13 -1.33 -3.20 0.57 -1.35 -3.25 0.58 -1.26 -3.12 0.66 

β14 -1.41 -4.44 1.61 -1.40 -4.51 1.50 -1.52 -4.86 1.72 

β15 -28.88 -41.66 -16.28 -28.89 -41.93 -15.89 -29.28 -43.40 -15.06 

β16 0.06 -1.36 1.39 0.07 -1.33 1.52 -0.02 -1.74 1.69 

β17 -3.91 -6.15 -1.54 -3.94 -6.33 -1.58 -4.03 -6.70 -1.28 

𝜏2 3.2 1.0 8.5 3.5 1.1 10.34 1.1 0.3 3.4 

𝛾 -0.12 -0.97 0.93 0 0 0 0 0 0 

DIC 71.55 71.47 75.60 

 

At the county level (Tables 7 to 10) none of the models (spatial, weighted regression, and 

ordinary regression) had significant spatial dependency (all four 𝛾 ranges had zero).  For each 

stream health measure, the exact same significant parameters were highlighted among the three 

developed models. Besides that, the comparison of the three DICs showed only slight differences 

meaning that there is no major difference between spatial, weighted regression, and ordinary 

regression models at the county level and all of them have the same patterns. Regarding the lowest 

DIC, a weighted regression model for EPT, and ordinary regression models for FIBI, HBI and IBI 

were identified to be the best predictive models.  
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Table 8. Regression models for EPT at county level (boldfaced values indicates a significant 

parameter at the 0.05 level)  

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 5.16 4.86 5.46 5.16 4.94 5.37 5.15 4.95 5.35 

β1 -0.42 -0.81 -0.02 -0.42 -0.81 -0.03 -0.44 -0.83 -0.07 

β2 -3.03 -7.20 1.05 -3.03 -7.01 0.96 -3.03 -7.26 0.86 

β3 1.56 0.81 2.28 1.56 0.83 2.29 1.50 0.85 2.13 

β4 -0.79 -1.62 0.01 -0.79 -1.61 0.02 -0.76 -1.57 0.04 

β5 1.63 0.42 2.81 1.61 0.41 2.79 1.56 0.28 2.82 

β6 -0.56 -1.69 0.61 -0.54 -1.69 0.64 -0.51 -1.58 0.58 

β7 -0.56 -1.69 0.61 -0.59 -1.69 0.49 -0.63 -1.76 0.51 

β8 3.19 0.74 5.63 3.23 0.77 5.84 3.28 0.72 5.55 

β9 3.37 0.28 6.37 3.40 0.39 6.54 3.47 0.42 6.26 

β10 8.96 -1.01 18.87 8.94 -0.75 18.89 8.73 -0.30 18.09 

β11 0.86 -0.08 1.79 0.87 -0.04 1.81 0.85 -0.07 1.75 

β12 0.28 -1.13 1.63 0.29 -1.02 1.68 0.19 -1.07 1.38 

β13 -0.30 -1.31 0.71 -0.30 -1.36 0.70 -0.25 -1.13 0.61 

β14 0.69 -0.96 2.25 0.70 -0.92 2.35 0.75 -0.78 2.29 

β15 -6.94 -13.89 -0.06 -6.94 -13.95 -0.21 -6.75 -13.35 -0.38 

β16 0.30 -0.44 1.06 0.31 -0.46 1.04 0.33 -0.41 1.11 

β17 -0.82 -2.06 0.41 -0.80 -2.05 0.46 -0.71 -1.89 0.51 

𝜏2 1.0 0.3 2.8 1.0 0.3 3.1 0.2 0.1 0.6 

𝛾 -0.04 -0.96 0.93 0 0 0 0 0 0 

DIC 44.79 43.89 42.80 

 

However, within in census tract level (Tables A1 to A4), more variations were seen among 

spatial, weighted regression and ordinary regression models. In contrast to the county level, 

significant parameters for all three models and for all four stream health measures were not the 

same. In general, spatial models gave better prediction (lower DICs), meaning that the use of the 

census tract level can capture more spatial patterns, while these variations were lost at the low 

detailed county level. Besides that, fewer dependent parameters showed significant correlations 

with each of the stream health measures at the census tract compared to the county level. For 

example, the IBI at the county level had significant correlations with nine out of seventeen 

indicators including one physiographic (S1), one population (S3), one household (S7), one housing 

(S11), one educational disadvantages (S12), three poverty/welfare receipt (S13, S14, S16), and 

one unemployment (S17). However, at the census tract level, only one welfare receipt 
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Table 9. Regression models for HBI at county level (boldfaced values indicates a significant 

parameter at the 0.05 level) 

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 4.85 4.70 5.01 4.85 4.75 4.95 4.85 4.76 4.95 

β1 0.14 -0.04 0.32 0.14 -0.05 0.32 0.13 -0.06 0.31 

β2 3.44 1.60 5.32 3.47 1.62 5.28 3.27 1.39 5.16 

β3 -0.67 -1.01 -0.35 -0.67 -1.01 -0.33 -0.66 -0.98 -0.32 

β4 0.35 -0.01 0.72 0.35 -0.03 0.73 0.32 -0.07 0.72 

β5 -1.00 -1.54 -0.46 -1.00 -1.53 -0.46 -1.01 -1.62 -0.39 

β6 0.43 -0.09 0.96 0.43 -0.11 0.96 0.38 -0.14 0.89 

β7 -0.46 -0.97 0.06 -0.45 -0.95 0.06 -0.38 -0.92 0.15 

β8 -0.62 -1.75 0.52 -0.61 -1.78 0.53 -0.66 -1.83 0.53 

β9 -0.66 -2.01 0.72 -0.65 -2.10 0.76 -0.70 -2.19 0.76 

β10 -6.15 -10.67 -1.60 -6.21 -10.72 -1.67 -5.88 -10.45 -1.43 

β11 0.13 -0.30 0.54 0.13 -0.31 0.55 0.13 -0.33 0.58 

β12 0.31 -0.31 0.93 0.32 -0.30 0.93 0.35 -0.26 0.96 

β13 0.56 0.10 1.0 0.57 0.11 1.04 0.56 0.11 0.99 

β14 0.36 -0.37 1.11 0.37 -0.40 1.13 0.41 -0.32 1.14 

β15 3.12 -0.06 6.24 3.14 -0.03 6.28 3.01 -0.18 6.28 

β16 -0.30 -0.64 0.04 -0.31 -0.65 0.03 -0.29 -0.66 0.07 

β17 1.38 0.82 1.93 1.38 0.83 1.94 1.32 0.73 1.92 

𝜏2 0.19 0.06 0.54 0.21 0.07 0.62 0.05 0.02 0.15 

𝛾 0.06 -0.94 0.96 0 0 0 0 0 0 

DIC 12.82 11.68 12.50 

 

indicator (S16) showed significant correlation with the IBI index. Other stream health measures 

also had fewer significant correlations with socioeconomic/physiographic indicators at the census 

tract level, compared to the county level. This indicates that using more detailed census data 

reveals more distinctions among dependent variables and as a result reduces the number of 

parameters required to predict stream health measures; while, some of these variables became 

correlated at the county level due to the aggregation at this course level. Similar reductions in the 

number of significant parameters were seen in the comparison of pairwise correlations at the two 

levels (Figures 6 and A1) for all other stream health measures.  

 At the block group level, spatial models showed even better performance (lower DICs) 

compared to weighted regressions and ordinary regression models (Tables A5 to A8). However, 

comparison of 𝛾 values between spatial census tract (Tables A1 to A4) and block group models 
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Table 10. Regression models for IBI at county level (boldfaced values indicates a significant 

parameter at the 0.05 level) 

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 50.02 49.56 50.47 50.02 49.70 50.34 50.04 49.73 50.35 

β1 0.61 0.01 1.17 0.61 0.01 1.22 0.69 0.07 1.30 

β2 4.16 -1.78 10.19 4.11 -1.78 10.12 4.50 -1.56 10.67 

β3 -2.34 -3.41 -1.23 -2.36 -3.52 -1.28 -2.34 -3.39 -1.29 

β4 -0.21 -1.43 1.02 -0.21 -1.37 1.01 -0.20 -1.49 1.11 

β5 -0.44 -2.17 1.30 -0.45 -2.25 1.33 -0.29 -2.30 1.67 

β6 -1.61 -3.34 0.13 -1.63 -3.31 0.12 -1.65 -3.36 0.05 

β7 2.20 0.57 3.85 2.21 0.48 3.95 2.24 0.59 3.95 

β8 -1.97 -5.72 1.71 -2.01 -5.52 1.63 -1.89 -5.68 1.87 

β9 -2.88 -7.36 1.45 -2.93 -7.44 1.47 -2.74 -7.55 2.12 

β10 -9.62 -24.83 5.43 -9.45 -24.09 4.84 -10.20 -24.81 4.04 

β11 3.27 1.91 4.63 3.29 1.89 4.70 3.19 1.72 4.59 

β12 2.42 0.37 4.42 2.40 0.33 4.51 2.38 0.34 4.42 

β13 2.88 1.35 4.34 2.87 1.40 4.41 2.79 1.40 4.12 

β14 3.98 1.56 6.31 3.99 1.66 6.42 3.87 1.41 6.32 

β15 4.95 -5.75 15.45 4.85 -5.05 15.04 5.28 -4.96 15.74 

β16 -1.43 -2.52 -0.28 -1.42 -2.50 -0.28 -1.45 -2.68 -0.26 

β17 2.23 0.34 4.06 2.25 0.43 4.22 2.25 0.37 4.15 

𝜏2 2.03 0.62 6.09 2.24 0.68 6.95 0.53 0.17 1.55 

𝛾 -0.03 -0.96 0.95 0 0 0 0 0 0 

DIC 61.34 61.13 62.56 

 

(Tables A5 to A8) showed that higher spatial dependency exists for the three macroinvertebrates 

models at the block group level than at the census tract (higher 𝛾 values and/or narrower range of 

𝛾 variations). While for the IBI, higher spatial dependency was seen at the census tract level than 

at the block group level. This can be explained, since macroinvertebrates are better representatives 

of local habitat conditions, while fish are representative of large-level stream health due to their 

mobility. Therefore, at the block group level, which is the finest level, macroinvertebrate indices 

have more spatial dependency on socioeconomic/physiographic parameters, while the IBI has 

higher spatial dependency at the census tract, which is a larger scale than the block group. 

Like the census tract level models, significant parameters were not the same for the spatial, 

weighted regression, and ordinary regression models, which again shows that, unlike the county 

level, these models differ from each other at the block group level. In addition, the significant 
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parameters were also different for each stream health measure at different census levels. For IBI 

spatial models for example, only S16 (percentage of households receiving public assistance) was 

highlighted as significant parameter at the census tract level, while at the block group level, S2 

(population density) and S7 (percentage of households with female householder) were also found 

to be significant. 

4.3.2.2. Spatial CAR Models with Random Effects (Multilevel)   

Using three (spatial, weighted regression and ordinary regression) models for each census 

level interacting with its courser resolutions (random effects) resulted in 63 models for each stream 

health measure. Table 11 presents the DICs for all of these models. The best models at each census 

level (lowest DIC) are bolded for each stream health measure. It is important to note that  the 

single-level models in subsection 4.3.2.1 can be viewed as special cases of the multi-level 

modeling where we fix some of the random effects on other levels to be exactly 0.  

The county level is the coarsest resolution with no higher-level interactions (no random 

effect), so the first three rows in Table 11, represent the spatial, weighted regression, and ordinary 

regression models the exist at this level. Like the single level (no random effect) results (Tables 7 

to 10), all three models have very close DICs meaning that their performances are likely to be the 

same. Here also the weighted regression and ordinary regression models had slightly lower DICs 

compared to spatial models.  
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Table 11. DICs for multilevel models with random effects (boldfaced values represent best 

models at each census level)* 
Model Level FIBI EPT HBI IBI County Census 

Tract 

Block 

Group 

County 72.06 43.93 12.74 61.42 S - - 

70.02 43.44 12.28 61.67 WR - - 

76.23 41.38 12.16 61.14 OR - - 

Census 

Tract 1943.57 1606.15 1062.99 2146.48 - S - 

 2011.43 1743.71 1124.47 2216.50 - WR - 

 2030.39 1774.0 1150.45 2246.78 - OR - 

 1866.06 1531.67 989.11 2071.61 S S - 

 1938.10 1717.27 1096.36 2141.15 S WR - 

 1956.05 1800.30 1123.93 2174.01 S OR - 

 1867.88 1531.13 985.37 2070.07 WR S - 

 1939.19 1736.73 1096.97 2139.39 WR WR - 

 1957.50 1765.388 1124.67 2173.79 WR OR - 

 1897.97 1558.115 1016.58 2100.25 OR S - 

 1974.39 1758.908 1093.39 2179.20 OR WR - 

 1986.60 1795.37 1121.14 2208.49 OR OR - 

Block 

Group 4369.31 3505.23 2305.20 5120.27 - - S 

 3175.85 2292.42 968.30 3885 - S S 

 3166.25 2173.78 1228.27 3793.52 - WR S 

 3614.55 2845.55 1615.11 4367.52 - OR S 

 4297.06 3428.30 2228.81 5046.62 S - S 

 3044.48 2224.19 928.11 3730.10 S S S 

 3072.51 2127.33 822.83 3740.65 S WR S 

 3506.49 2777.09 1413.94 4298.93 S OR S 

 4296.65 3431.07 2228.07 5044.30 WR - S 

 3154.50 2145.78 1011.15 3757.87 WR S S 

 2988.34 2145.87 876.93 3860.37 WR WR S 

 3602.88 2780.58 1442.18 4531.91 WR OR S 

 4322.78 3458.86 2258.74 5072.66 OR - S 

 3155.93 2374.83 959.11 3915.40 OR S S 

 2981.18 2117.40 980.45 3778.31 OR WR S 

 3531.47 2716.33 1508.92 4326.08 OR OR S 

 4622.22 3843.96 2528.03 5215.88 - - WR 

 5782.70 4656.31 2804.94 4928.61 - S WR 

 5172.72 4140.10 3002.87 4124.09 - WR WR 

 5970.25 4894.86 2981.39 5341.34 - OR WR 

 4640.88 3770.08 2484.65 5143.59 S - WR 

 4902.58 4579.76 2724.49 5771.39 S S WR 

 5043.04 4078.78 2914.90 3865.1 S WR WR 

 5894.27 4857.45 2551.23 6696.03 S OR WR 

 4640.55 3769.05 2483.71 5140.31 WR - WR 

 5701.90 4582.33 2726.72 4867.69 WR S WR 

 3350.02 4844.90 2915.35 3899.55 WR WR WR 

 5923.63 4821.54 2869.64 5153.44 WR OR WR 

 4636.55 3846.81 2479.80 5208.41 OR - WR 
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Table 11. (cont’d) 
 5736.15 4609.32 2752.76 4850.89 OR S WR 

 4229.44 2653.88 2910.95 3888.06 OR WR WR 

 5969.41 4896.13 2843.53 4471.86 OR OR WR 

 4744.05 3956.18 2651.11 5275.56 - - OR 

 5114.78 4770.84 2966.77 4863.84 - S OR 

 4364.45 4264.09 3157.07 5061.88 - WR OR 

 6137.42 5076.35 3178.44 6144.27 - OR OR 

 4756.91 3967.19 2608.60 5276.87 S - OR 

 5046.17 4696.45 2889.99 3924.74 S S OR 

 5194.36 4199.25 3097.25 4035.92 S WR OR 

 6075.38 5069.57 3119.79 6843.7 S OR OR 

 4756.48 3966.91 2608.91 5197.52 WR - OR 

 5083.31 4692.98 2888.83 3978.51 WR S OR 

 5254.76 4966.44 3098.74 3879.62 WR WR OR 

 6124.29 5070.39 3119.43 6065.81 WR OR OR 

 4751.88 3963.71 2605.37 5298.28 OR - OR 

 5075.60 4719.87 2917.87 4002.86 OR S OR 

 5221.79 5039.66 3094.77 5040.38 OR WR OR 

 6135.05 5063.93 3113.07 6086.95 OR OR OR 

* S: spatial, WR: weighted regression, OR: ordinary regression, -: no random effect 

 

Regarding the census tract level, interactions with the county level (random effects) were 

also considered, so twelve models (rows 4 to 15) were developed at this level. Like tables A1 to 

A4, the spatial models had lower DICs compared to the weighted regression and ordinary 

regression models. Adding county level data improved model predictions; however, it is important 

to note that adding county level random effect had a lower impact on the overall DIC than the 

models used at the census level. This is also in agreement with Tables 7 to 10, which showed that 

the three models had very close values at the county level. Considering the interactions of the two 

levels (random effects), the FIBI combined spatial models at both the census tract and county 

levels resulting in a lower DIC; while for EPT, HBI and IBI, coupled spatial models at the census 

tract and weighted regression models at the county level had lower DICs, indicating better 

predictions.   

The next 48 rows in Table 11 belong to models developed for the block group level 

interacting with the census tract and county levels (nested random effects). In general, models that 
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considered the spatial effect for the block groups had lower DICs compared to non-spatial ones. 

Compared to single level (no random effect) models, inputting census tract and county levels also 

had a positive impact on the models’ predictions. The lowest DIC for the IBI was achieved through 

the combination of spatial models at all three (county, census tract and block group) levels. While 

for the three macroinvertebrate stream health indicators, the combination of spatial models at the 

block group level, weighted regression models at the census tract level, and spatial (for HBI) and 

ordinary regression (for FIBI and EPT) models at county levels produced the lowest DICs. Since 

the IBI is based on fish, the selection of all spatial models resulting in the lowest DIC makes sense 

due to the large mobility of fish throughout a river network (Allan et al. 1997; Flinders et al. 2008). 

Spatial models selected for macroinvertebrates at the block group level is also in agreement with 

tables A5 to A8. However, considering the interactions of data at the census tract and block group 

levels (nested random effects) suggests that weighted regression models work better with census 

tract data. That can be due to the macroinvertebrate behavior of limited movement within the river 

systems. Meanwhile, for county level data used in the block group level study (nested random 

effect) ordinary regression models worked better for the FIBI and EPT, while weighted regression 

models worked better for HBI. These variations among models is also in agreement with previous 

results that all three (spatial, weighted regression and ordinary regression) models performances 

were very close at county level and each of them can be selected as the best.   

Overall, spatial models at the finest levels (in this case, block group) have better 

performance than the two non-spatial forms. Meanwhile combining the nested effect of data 

collected in upper levels improves their predictive power.   

Table 12 presents the dependent parameters that were significant in the best models at each 

level. Except for ETP taxa at the block group level, all stream health indicators at each level (both 
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for single level or no random effect models and models across different levels having random 

effects) have the same significant parameters. In other words, while DIC values can differ and the 

model performances can be improved with the addition of interactions among the different levels 

(random effects), the significant parameters are not affected. However, these significant 

parameters may be lost by changing the resolution level and some new parameters may show 

significant effects, revealing potentially misleading results that arise from selecting an inaccurate 

level or scale.  

Table 12. Significant parameters among all selected best models 
Levels FIBI EPT HBI IBI 

Block group multilevel 

model (with nested 

random effects) 

S2, S5, S6, S7 S17 S1, S16 S2, S7, S16 

Block group single level 

model (no nested random 

effects) 

S2, S5, S6, S7 - S1, S16 S2, S7, S16 

     

Census tract multilevel 

model (with random 

effects) 

S2, S10 S4, S5, S7, S9 S3 S16 

Census tract single level 

model(no random effects) 

S2, S10 S4, S5, S7, S9 S3 S16 

     

County level S2, S3, S6, S10, 

S15, S17 

S1, S3, S5, 

S8, S9, S15 

S2, S3, S5, 

S10, S13, 

S17 

S1, S3, S7, 

S11, S12, S13, 

S14, S16, S17 

 

4.3.2.3.Residual Plots 

Figures 5 and A3 through A6 show the residual plots for the selected models at both 

multilevel (with random effects) and single level (no random effect) cases (Tables 7 to 11 and A1 

to A8). As mentioned before, county level data is not likely to be a good predictor and may cause 

misinterpretations. This is further reinforced by Figure 5, which shows that the models developed 

at this level have little to no variation across the study area. This lack in variation shows that these 

models are unable to uncover the complexities of relations among the variables. As an important 
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contrast, for the more detailed levels (census tract and block group), shown in Figures A3 through 

A6, more variations are captured.  

 

 
Figure 7. model prediction residuals at county level for a) EPT, b) FIBI, c) HBI, d) IBI 

 

EPT and HBI show very low residuals in the study area and values ranging from -5 to +5 

are reported for the majority of the study area in both census tract and block group models 

developed for these indices (Figures A3 and A4). It means that developed models for these two 

stream health measures have acceptable performances in this region. In contrast, the FIBI and IBI 

have some significant residuals in the study area (Figures A5 and A6). Most of the high residual 

areas are located in highly populated areas and close to the watershed outlet, which means model 
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predictions for the FIBI and IBI at the given areas have less accuracy, compared to the rest of the 

study area. 

 

4.4. Conclusions  

The goal of this study was to evaluate the effects of spatial data resolution on environmental 

justice analysis with respect to stream health integrity. Seventeen socioeconomic/physiographic 

indicators representing population, household composition, racial composition of household, 

female headed households, housing, educational disadvantage, economic disadvantage, welfare 

receipt, and unemployment in addition to four stream health measures (including one fish and three 

macroinvertebrate indices) were used.  

Data distributions and pairwise correlations at all three levels showed that stream health 

data is highly sensitive to census level resolution. In addition, some variables had opposite 

skewness and/or even correlation sign at the county level compared to two finer resolutions (census 

tract and block group levels).  Meanwhile, socioeconomic/physiographic data distributions were 

less sensitive to census level change and most of them had similar distributions among all three 

levels. Many significant correlation coefficients were found at the county level, while moving to 

the census tract and block group levels, the number of significant correlations and correlation 

coefficients drastically dropped. This showed that the use of the county level data can be 

misleading due to aggregation.  

For each stream health measure, three regression models including spatial, weighted 

regression and ordinary regression were developed at each level. County level models for each 

stream health measure had similar significant parameters. Besides that, each set of three models 

had similar predictions with no spatial dependency. However, at the census tract and block group 
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levels, spatial models had better predictions with fewer number of significant parameters, meaning 

that the census tract and block group levels were able to capture spatial variations, which were 

aggregated in county level. Furthermore, using multilevel models (with random effects) also 

improved model prediction compared to single level models (with no random effects); however, 

did not affect significant parameters. The difference between spatial models and weighted 

regression and ordinary regression models was even more pronounced at the block group level, 

compared to the census tract level. The IBI had higher spatial dependency at the census tract level, 

while the three macroinvertebrate indices had higher spatial dependency on dependent variables 

at the block group level. This matched the movement patterns of fish and macroinvertebrates 

within river systems.  

Residual plots also proved that the county level models are not able to capture spatial 

patterns while the census tract and block group levels do. This confirmed that the block group level 

models performed better than both the county and census level models. Residual plots also showed 

that for the best developed IBI and FIBI models prediction in densely populated areas and close to 

the watershed outlet was less accurate compared to other places, while the best models for EPT 

and HBI worked well for the whole region.     

To better understand the interactions between socioeconomic variable and stream health, 

it is recommended that additional studies will be performed in larger regions and different 

timeframes. This provides additional information to examine the importance of spatial and 

temporal variations in the context of environmental justices.    
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5. ASSESSING THE RELATIVE IMPORTANCE OF PARAMETER ESTIMATION IN 

STREAM HEALTH BASED ENVIRONMENTAL JUSTICE MODELING 

5.1. Introduction 

Anthropogenic activities have degraded natural resources which in turn also threatens 

human ecosystems due to the interwoven nature of natural and human system interactions (Liu et 

al., 2007a; Carpenter et al., 2009; Alberti et al., 2011). However, degraded environments do not 

equally affect various groups in society and some communities such as low income and people of 

color are more vulnerable to environmental hazards than other groups (Massey, 2004; Downey 

and Liam, 2008). Therefore, the concept of Environmental Justice was introduced to provide fair 

treatment and involvement of all social groups in implementation and enforcement of 

environmental laws and regulations (U.S. EPA, 2014e). In other words, the aim of environmental 

justice is providing equal access to healthy environments as right for all people.  

Water is one of the environmental resources that is considered in the environmental justice 

studies. In the U.S., the traditional approach for water resources assessment was mainly focused 

on water quality and physical characteristics of the water bodies. However, a nationwide 

assessment of riverine ecosystems that was performed by the U.S. Environmental Protection 

Agency found that despite all implemented water quality regulations, still more than 40% of 

nation’s streams were in poor biological condition (U.S. EPA, 2015c). Therefore, a new criterion 

called Biological Integrity Assessment was introduced in which the physical, chemical, and 

biological characteristics of streams should be simultaneously considered to improve the overall 

assessment of water resources (NSCEP, 2011; U.S. EPA, 2015c; Woznicki, 2015). In order to 

consider biological characteristic in to overall water resources assessment, stream health indices 
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were introduced, which quantify the response of aquatic species to instream stressors (Herman and 

Nejadhashemi, 2015; Van Metre et al., 2017).  

Regarding the stream health indices, predictive models have been developed to evaluate 

these indices beyond limited monitoring sites (Woznicki et al., 2016a). The general inputs to these 

models are landscape features and in instream water quantity and water quality parameters 

(Miserendino et al., 2011; Einheuser et al., 2012). Traditionally, linear regression (Frimpong et al., 

2005; Pont et al., 2009; Moya et al., 2011), and multivariate techniques (Simpson and Norris, 2009; 

Aguiar, 2011) were used for stream health model development. While recent studies showed that 

nonlinear techniques such as Fuzzy Logic (Adriaenssens et al., 2006; Marchini et al., 2009), 

Artificial Neural Network (ANN) (Lencioni et al., 2007; Mathon et al., 2013), and Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS) (Einheuser et al., 2012; 2013a) provide more reliable 

prediction of complex ecological systems than linear techniques. Poff and Zimmerman (2010) 

reported that ecological response is very dependent to flow alteration. In particular, the magnitude, 

frequency, duration, timing, and rate of change of flow are master variables that affect aquatic 

species (Poff et al., 1997; Olden and Poff, 2003; Poff and Zimmerman, 2010). Therefore, several 

tools such as Hydrological Index Tool (HIT) (USGS, 2017), EflowStats (EflowStats, 2015), 

MATLAB Hydrological Index Tool (MHIT) (Abouali et al., 2016a) were developed to assess 

ecologically relevant hydrological parameters. Studies showed that incorporating these parameters 

significantly improved the accuracy of stream health predictive models (Herman et al., 2015; 

Herman et al., 2016; Wozniski et al., 2016b). However, due to the complexity of naturals systems, 

the predictive power of stream health models are moderate. For example, a recent study by 

Wozniski et al. (2015) using both HIT tool and the ANFIS technique resulted in development of 

twenty stream health models in which the range of models’ performance (R2) varies between 0.41 
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to 0.74 for macroinvertebrate indices while for a fish index, the R2 can be as low as 0.37 to as high 

as 0.99 for different stream size and temperature (Woznicki et al, 2015).  

These new stream health models have recently been introduced in environmental justice 

studies in which fish and macroinvertebrate indices were used. Sanchez et al. (2014) used spatial 

regression models and bivariate mapping to find vulnerable social communities. They used four 

common stream health indices (for fish and macroinvertebrates), and nine socioeconomic indices 

(representing education, housing, income, population, and race) collected at the census tract level. 

The results were promising and showed high correlations between regions with the lowest stream 

health status and vulnerable social communities (Sanchez et al., 2014). Sanchez et al. (2015) also 

found that spatial clustering improved spatial regression models prediction. Daneshvar et al. 

(2016) evaluated the role of spatial level in stream health based environmental justice models’ 

performance. They used sixteen commonly used socioeconomic parameters for environmental 

justice studies, collected at three census levels of county, census tract, and block group, and the 

same four stream health indices used by Sanchez et al. (2014; 2015) to identify significant 

parameters for stream health based environmental justice models at each level (Daneshvar et al., 

2016). They also reported that more spatial dependencies were found at the block group level 

compared to other levels, and that the nested effect of data collected in upper levels improved 

model’s prediction (Daneshvar et al., 2016).  

As described earlier, the variability in the stream health model performance can introduce 

a large level of errors on stream health based environmental justice models. However, new 

developments in stream health modeling, such a two-phase approach (Abouali et al., 2016b), has 

resulted in significant improvement in the overall predictability for both fish and 

macroinvertebrate based stream health models. Therefore, the goal of this study is to assess the 
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relative importance of parameter estimation in stream health based environmental justice models 

by comparing the results against previous studies. Our hypothesis was that more accurate stream 

health predictions would result in the development of more robust environmental justice models 

in which spatial dependencies among biological and socioeconomic characteristics at different 

spatial levels would be revealed. 

5.2. Materials and Methods 

5.2.1. Study Area 

The Saginaw River Basin, which is located in the state of Michigan, U.S.A. was selected as 

the study area (Figure 8). With the total drainage area of more than 16,000 km2, it is the largest 

watershed in Michigan and drains to the Lake Huron. Agricultural lands are the dominant landuse 

(36.2%), followed by forest (24.8%), wetland/lake (14.3%), pasture (12.4%) and urban (12.3%) 

lands. The U.S. Environmental Protection Agency identified the Saginaw River and Bay as an area 

of concern due to degraded fisheries, sediment pollution, and loss of recreational values (U.S. 

EPA, 2015d). Agricultural and urban runoff, industrial discharges, and sewer overflows are some 

major sources of pollution in this region (U.S. EPA, 2015d).  With more than 7,000 miles of 

streams, the Saginaw River Basin provides a wide range of habitats for fish and other species 

(WIN, 2017). It also addresses the needs for drinking water, electrical power generation, and 

industrial consumption in this region (WIN, 2017). According to the U.S. Census Bureau (2010), 

the Saginaw River Basin is home of almost 1.5 million people, where 49% are men and 51% are 

women. The majority of residents are young and more than 52% of them are in the range of 25 to 

65 years old, 34% are under 25 years old, while only 14% are senior (above 65 years old). More 

than 85% of population is white, followed by African American (10%), while other races are less 

than 5%. The Saginaw River is also a key shipping transit in Mid-Michigan that connects two 
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cities, Saginaw and Bay City. Flint is another big city in this region that has faced water 

contamination problems (U.S. EPA, 2013). 

 
Figure 8. The locations of biological monitoring sites at the Saginaw River Basin 

 

5.2.2. Stream Health Indices 

Four common stream health indices including: (1) the Index of Biotic Integrity (IBI) for 

fish, and (2) the Hilsenhoff Biotic Intex (HBI), (3) Family Index of Biotic Integrity (FIBI), and (4) 

Ephemeroptera, Plecoptera, Trichoptera (EPT) index for macroinvertebrates were used in order to 

assess the biological integrity of riverine ecosystems. The IBI evaluates the species richness, 

abundance and trophic composition of fish communities and ranges from zero (lowest score) to 

100 (highest score) (Karr, 1981; Kerans and Karr, 1994; Herman and Nejadhashemi, 2015). 

Meanwhile, the HBI quantifies the response of macroinvertebrates species to organic pollutants 

and ranges from zero to 10, where higher values mean more degradation by organic pollutants 

(Hilsenhoff, 1987). The FIBI is the third index used in this study and measures the response of 
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macroinvertebrates communities to industrial pollutants by quantifying species’ composition in 

family taxonomic groups with scores ranging from zero (lowest score) to 45 (highest score) 

(Woznicki et al., 2015). The sensitivity of the three macroinvertebrate orders of Ephemeroptera 

(mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), known as EPT taxa, to local 

instream degradations are evaluated by positive EPT scores where zero scores represent the highest 

degradation (Lenat, 1988; Woznicki et al., 2015).  

The Michigan Department of Environmental Quality (MDEQ) has quantified the fish index 

(IBI) and the three macroinvertebrate indices (HBI, FIBI, and EPT) for 193 and 262 monitoring 

sites within the Saginaw River Basin, respectively (MDEQ, 1997; Seelbach and Wiley, 1997). 

These monitoring sites are shown in Figure 8. However, since there are 13,831 stream segments 

in the Basin, stream health models need to be developed for both fish and macroinvertebrate 

indices to estimate the overall biological conditions of streams beyond the monitoring sites. 

5.2.3. Socioeconomic/Physiographic Indices 

Socioeconomic indices representing concentrated disadvantages are commonly used for 

environmental justice assessments (Sampson et al., 2008). In this study, sixteen frequently used 

indices for population, age, race, housing, education, and income disadvantages assessment are 

taken into account and are listed in Table 13 (Brulle and Pelow, 2006; Bullard et al., 2008; 

Sampson et al., 2008; Lin and Morefield; 2011).  
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Table 13. Socioeconomic/Physiographic indices 
ID Category Type of 

aggregation 

Indicator description Average values 

County Census 

tract 

Block 

group 

S1 Water 

access 

Ratio Drainage density (m-1) 4.76×10-4 8.257×10-4 9.85×10-4 

S2 Population Ratio Population density 

(people/mi2) 

75.31 368.57 350.57 

S3  Percentage Land area (%) 88.93 97.12 97.07 

S4 Age Percentage Population under 18 years 

old (%) 22.16 23.65 23.46 

S5  Percentage Population of or over 65 

years old (%) 16.76 14.36 14.98 

S6 Race Percentage African American 

population (%) 3.56 8.62 6.88 

S7 Household Percentage Households with female 

householder (no husband 

present) (%) 10.48 12.65 11.79 

S8  Percentage Households with living 

alone householder (%) 26.53 25.25 24.93 

S9  Average Household size 

(people/household) 2.44 2.51 2.52 

S10  Count Household units (No.) 61.77×103 1632.00 592.44 

S11  Percentage Occupied housing units (%) 78.98 87.612 88.52 

S12 Education Percentage Population of or over 25 

years old with less than 

high school education (%) 13.35 12.01 11.57 

S13 Income Percentage Families with income 

below poverty level (%) 11.50 12.30 11.53 

S14  Average Household income ($ 

adjusted with 2010 

inflation) 55.06×103 59.52×103 60.02×103 

S15  Aggregate Household income ($ 

adjusted with 2010 

inflation) 38.23×108 86.10×106 31.78×106 

S16  Percentage Households with public 

assistance income (%) 3.46 3.88 3.55 

S17  Percentage Unemployed population of 

and over 16 years old (%) 50.08 48.36 47.77 

 

These indices are obtained from the U.S. Census Bureau for three census levels of county, 

census tract and block group (U.S. Census Bureau, 2010). The Saginaw River Basin overlaps with 

21, 393, and 1076 census units of counties (Figure 9 (a)), census tracts (Figure 9(b)), and block 

groups (Figure 9(c)) respectively. In addition to sixteen socioeconomic indices, one physiographic 

index called drainage density was also used to quantify the relative distance of population under 
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study to waterbodies. Drainage density was calculated as the ratio of the total length of streams in 

a census unit (of county, census tract, or block group) to the unit area. 

 
Figure 9. Census units of (a) counties, (b) census tracts, and (c) block groups overlapping 

with the Saginaw River Basin 

 

5.2.4. Modeling Process 

Figure 10 illustrates the modeling process used to predict the stream health indices beyond 

the monitoring sites and the analysis conducted for the stream health based environmental justice 

assessments. A hydrologic/water quality model was initially setup, calibrated, and validated for 

the study area to estimate streamflow and water quality parameters (including sediment, total 

nitrogen, and total phosphorus loads) for each stream segment on a daily time- step. The estimated 

flow and water quality parameters were used as inputs to the MATLAB Hydrological Index Tool 

(MHIT) that calculates ecologically relevant water quality and water quantity parameters (Abouali 

et al., 2016a). These parameters quantify the magnitude, frequency, duration, timing, and rate of 

change in flow and water quality parameters that can affect aquatic ecosystems (Poff et al., 1997; 

Henriksen et al., 2006). MHIT outputs were then used to develop stream health predictive models. 

For this purpose, a two-phase approach (Abouali et al., 2016b) was implemented, in which (1) 

Partial Least Square Regression (PLSR) was used to predict the initial stream health indices and 
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their associated errors, and then (2) a fuzzy logic approach (e.g. ANFIS) was used to estimate the 

modified stream health indices based on the initial estimations and associated errors. Having the 

four predicted stream health measures along with 17 socioeconomic and physiographic indices at 

three census levels of county, census tract and block group, the individual correlations among 

indices were evaluated and the stream health based environmental justice models were developed. 

Since these two datasets are in different spatial units (one at the stream level, and one at the census 

levels), scale adjustment was conducted first, in which weighted average scores based on stream 

lengths falling in each census unit were used as their associated stream health scores.   

 
Figure 10. The overall modeling processes 
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5.2.4.1. Hydrological/Water Quality Modeling 

The Soil and Water Assessment Tool (SWAT) was used to develop a hydrologic/water 

quality model for the study area. SWAT is a physically based and semi-distributed watershed and 

water quality model developed by U.S. Department of Agriculture-Agricultural Research Service 

(USDA-ARS) in order to evaluate the impact of land management practices on water quantity and 

water quality (Arnold et al., 1998). SWAT delineates a watershed into subwatersheds with unique 

stream segments passing through them, while each subwatershed can be divided into several 

Hydrologic Response Units (HRUs) based on similarity in landuse, soil, and slope variations 

within the region (Neitsch et al., 2011). In this study, a pre-delineated watershed developed by 

Michigan Institute of Fisheries Research was used in which the study area was divided  into 13,831 

subwatersheds with unique HRUs. The developed SWAT model was then calibrated based on 

three statistical criteria including 1) Nash-Sutcliffe efficiency (NSE), 2) Percent bias (PBIAS), and 

3) root mean square error-observations standard deviation ratio (RSR) (Moriasi et al., 2007). NSE 

ranges from one (optimum value) to minus infinity, PBIAS ranges from minus infinity to infinity 

(with optimum value of zero), and RSR ranges from zero (optimum value) to infinity (Moriasi et 

al., 2007). For both streamflow and water quality components, NSE above 0.5, and RSR below 

0.7 are called satisfactory. While satisfactory range of PBIAS varies based on variable, where 

absolute PBIASs below 25, 55, and 70 are called satisfactory for streamflow, sediment, and 

nutrients respectively (Moriasi et al., 2007). Streamflow was calibrated and validated based on 

daily streamflow data collected by the U.S. Geological Survey (USGS) for nine monitoring 

stations within the region, while water quality (including sediment, total nitrogen, and total 

phosphorus) loads were calibrated and validated based on monthly observations provided by the 

U.S. EPA (Daneshvar et al., 2017). All three statistical criteria were met for streamflow (NSEs 
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ranging from 0.54 to 0.80, PBIASs ranging from 16.34 to -1.53, and RSRs ranging from 0.68 to 

0.45) and water quality (NSEs ranging from 0.57 to 0.75, PBIASs ranging from 35.52 to 10.00, 

and RSRs ranging from 0.65 to 0.50), components calibration and validation (Daneshvar et al., 

2017). The calibrated SWAT model was then used to evaluate streamflow, sediment, total 

nitrogen, and total phosphorus loads for all stream segments on a daily basis.  

5.2.4.2. Stream Health Model Development 

5.2.4.2.1. One-Phase Approach 

Fuzzy Logic and ANFIS models developed by Einheuser et al. (2012; 2013a) were used in 

former stream health based environmental justice studies by Sanchez et al. (2014; 2015), and 

Daneshvar et al. (2016). These techniques are commonly used for ecological modeling (Woznicki 

et al., 2016a), however their inputs are limited due to computational resources and finite ecological 

observations (Hamaamin et al., 2013). Therefore, parameter selection must be conducted first to 

limit models’ inputs (Woznicki et al., 2015). Einheuser et al. (2012; 2013a) used Spearman’s rank 

correlation to find the most significant water quantity and water quality parameters with respect to 

stream health measures, which reduced the number of inputs to four for each macroinvertebrates 

index (Einheuser et al., 2012), and five for the fish index (Einheuser et al., 2013a). Selected input 

parameters for this approach are listed in Table B1. 

5.2.4.2.2. Two-Phase Approach 

To address the drawback of limited input parameters, a two-phase approach (Abouali et 

al., 2016b) was used in this study, where during the first phase, all input parameters will be used 

to estimate the stream health index and associated error, while during the second phase, ANFIS 

will use these two predictions as inputs to estimate the final stream health score. 
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PLSR was used for the first phase to project both the inputs and outputs into a mutually 

orthogonal coordinate system. PLSR is able to use all input parameters and unlike regular linear 

regressions, it is not affected by multicollinearity that may exist among input parameters. 

Therefore, all 171 ecologically relevant hydrologically indices introduced by Poff et al. (1997) in 

addition to the 78 water quality parameters representing annual and seasonal averages and 

coefficients of variations were used as input parameters for the first phase. These PLSR predictions 

of stream health indices and their associated errors were used as inputs for the ANFIS models in 

the second phase. Table B1 summarizes the two-phase input parameters.   

During the second phase, two different sets of stream health predictive models were 

developed, one set for all streams and then another set for different stream groups. Based on the 

river continuum concept (Vannote et al., 1980), instream species characteristics vary across 

different stream sizes that can be classified into three major groups of headwater (stream orders 1-

3), medium (stream orders 4-7), and large (stream orders 7-10) streams. The maximum stream 

order within the Saginaw River Basin is 7 (Figure 8), therefore two stream groups of headwater 

streams (orders 1-3), and medium and large streams (orders 4-7) were defined and different stream 

health predictive models were developed for each group. Then the set of stream health predictive 

models with a better performance was used to calculate the four stream health measures for all 

13,831 stream segments.  

5.2.5. Data Analysis 

Scatter plot matrices were developed for each census level in which histograms, pairwise 

distributions, and pairwise correlation coefficients were evaluated for all indices including the four 

stream health measures and the seventeen socioeconomic/physiographic indicators. Spearman’s 

ranking was used for pairwise correlation coefficients evaluation (Lehmann and D’Abrera, 1998). 



78 
 

Bivariate maps were also developed to identify area of high priority concerning environmental 

justice. In the case of stream health, the area was divided into three classes of high, medium, and 

low quality using the four biological factors. However, for the socioeconomic indicators, the Jenks 

natural break method (Jenks, 1967) was used first and then summed to identify the overall area of 

concern. These two maps were overlapped to identify communities that are vulnerable regarding 

the environmental justice issue. 

To evaluate spatial dependencies among stream health measures and 

socioeconomic/physiographic indices, the spatial Conditional Autoregressive (CAR) technique 

(Banerjee et al., 2014) was used to develop stream health based environmental justice models. 

Equation (17) represent the general form of CAR model used in this study 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖,     𝜺 ~ 𝑁(0, 𝜏𝐼
2(𝑀𝐼 − 𝛾𝐼𝑊𝐼)−1)    ;    𝑖 = 1,2, … , 𝐼 census units  (17) 

in which, 𝑌𝑖 and 𝑋𝑖 represent the stream health measure and the corresponding 𝑝 covariates vector 

for the 𝑖th census unit (e.g. county, census tract, or block group). Spatial neighborhood 

dependencies for the 𝐼 census units are represented by 𝑊𝐼, and the number of neighbors are listed 

as diagonal entries of the 𝑀𝐼 matrix. Variation and spatial dependency are also measured by 𝜏𝐼
2 

and 𝛾𝐼 respectively.  

In order to assess the significance of spatial dependency, two simplified forms of the spatial 

CAR model were also developed as follows:  

(i) Assuming 𝛾𝐼 = 0, means no spatial dependence while the residual variance is 

weighted by the number of neighbors. This simplifies the spatial model to a 

weighted regression model as shown in Equation (18): 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖,     𝜺 ~ 𝑁(0, 𝜏𝐼
2𝑀𝐼

−1)    ;     𝑖 = 1,2, … , 𝐼 census units  (18) 



79 
 

(ii) While setting 𝛾𝐼 = 0 and 𝑀𝐼 = 𝐼𝐼, the identity matrix, means no spatial information 

is implemented and the spatial model will be simplified to an ordinary regression 

model as shown in Equation (19): 

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖,     𝜺 ~ 𝑁(0, 𝜏𝐼
2𝐼𝐼)    ;     𝑖 = 1,2, … , 𝐼 census units   (19) 

These three forms of spatial, weighted regression, and ordinary regression were used to 

develop single level (with no random effect) and multilevel (with random effect) models at three 

census levels of county, census tract, and block group. 

5.2.5.1.Single Level (With no Random Effect) Models 

Assuming = 1,2, … , 𝐼 , 𝑗 = 1,2, … , 𝐽 , and 𝑘 = 1,2, … , 𝐾 represents the number of counties, 

census tracts, and block groups respectively. The single level (with no random effect) CAR models 

at the three census levels are presented as follow:   

𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖,     𝜺 ~ 𝑁(0, 𝜏𝐼
2𝐷𝐼(𝛾𝐼)),     𝑖 = 1,2, … , 𝐼  (20-1) 

𝑌𝑗 = 𝑋𝑗𝛽 + 𝜀𝑗 ,     𝜺 ~ 𝑁(0, 𝜏𝐽
2𝐷𝐽(𝛾𝐽)),     𝑗 = 1,2, … , 𝐽   (20-2) 

𝑌𝑘 = 𝑋𝑘𝛽 + 𝜀𝑘,     𝜺 ~ 𝑁(0, 𝜏𝐾
2 𝐷𝐾(𝛾𝐾)),     𝑘 = 1,2, … , 𝐾   (20-3) 

Where using full forms of 𝐷𝐼(𝛾𝐼) =  (𝑀𝐼 − 𝛾𝐼𝑊𝐼)−1, 𝐷𝐽(𝛾𝐽) =  (𝑀𝐽 − 𝛾𝐽𝑊𝐽)−1, and 𝐷𝐾(𝛾𝐾) =

 (𝑀𝐾 − 𝛾𝐾𝑊𝐾)−1 resulted in spatial models development while 𝐷𝐼(𝛾𝐼) = 𝑀𝐼
−1, 𝐷𝐽(𝛾𝐽) = 𝑀𝐽

−1, 

and 𝐷𝐾(𝛾𝐾) = 𝑀𝐾
−1 implementations resulted in weighted regression models at three census levels 

of county, census tract, and block group respectively. Ordinary regression models are also 

developed by setting 𝐷𝐼(𝛾𝐼) = 𝐼𝐼, 𝐷𝐽(𝛾𝐽) = 𝐼𝐽, and 𝐷𝐾(𝛾𝐾) = 𝐼𝐾 for the three levels of county, 

census tract, and block group respectively. 

5.2.5.2.Multilevel (With Random Effect) Models 

Since the three census levels of county, census tract, and block group are nested, the total 

number of census tracts is 𝐽 = ∑ 𝐽𝑖
𝐼
𝑖=1  where 𝐽𝑖 is the number of census tracts in the 𝑖th county, and 
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the total number of block groups is 𝐾 = ∑ 𝐾𝑗
𝐽
𝑗=1 = ∑ ∑ 𝐾𝑗

𝐽𝑖
𝑗=1

𝐼
𝑖=1  where, 𝐾𝑗 is the number of block 

groups in the 𝑗th census tract. To assess the nested effect of aggregated data at different spatial 

levels, multilevel (with random effect) models were also developed for the census tract and block 

group levels as follows: 

(1) Multilevel (with random effect) models at the census tract level 

Implementation of the random effects of data collected at the census tract and county levels 

resulted in the following form of the spatial CAR model at the census tract level: 

𝑌𝑖𝑗 = 𝑋𝑖𝑗𝛽 + 𝑢𝑖 + 𝜀𝑖𝑗,     𝜺 ~ 𝑁(0, 𝜏𝐽
2𝐷(𝛾𝐽)), 𝒖 ~ 𝑁(0, 𝜏𝐼

2𝐷(𝛾𝐼))       

 𝑗 = 1,2, … , 𝐽𝑖, 𝑖 = 1,2, … , 𝐼 

(21) 

where, 𝑢 and 𝜀 represent the residual terms at two levels of county and census tract, 

respectively. 𝐷(𝛾𝐼) and 𝐷(𝛾𝐽) can be either be in spatial, weighted regression, or ordinary 

regression form and their combination will result in 3×3=9 different multilevel (with random 

effect) models.   

(2) Multilevel (with random effect) models at the block group level 

Implementation of the random effects of data collected at the block group, census tract, and 

county levels resulted in the development of the following form of the spatial CAR model at 

the block group level: 

𝑌𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘𝛽 + 𝑢𝑖 + 𝑣𝑖𝑗 + 𝜀𝑖𝑗𝑘,         

𝜺 ~ 𝑁(0, 𝜏𝐾
2 𝐷(𝛾𝐾)), 𝒗 ~ 𝑁 (0, 𝜏𝐽

2𝐷(𝛾𝐽)) , 𝒖 ~ 𝑁(0, 𝜏𝐼
2𝐷(𝛾𝐼)),    

𝑘 = 1,2, … 𝐾𝑗 ,                    𝑗 = 1,2, … , 𝐽𝑖,                      𝑖 = 1,2, … , 𝐼 

(22) 

where, 𝑢, 𝑣, and 𝜀 represent the residual terms at the three levels of county, census tract, and 

block group, respectively. Combinations of the three forms of spatial, weighted regression, and 

ordinary regression implementation of 𝐷(𝛾𝐼), 𝐷(𝛾𝐽), and 𝐷(𝛾𝐾) will result in the development 
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of 3×4×4-3=45 multilevel (with random effect) models, while only one of 𝐷(𝛾𝐼) or 𝐷(𝛾𝐽) can 

be zero (not both) at the same time.  

For both the single level (with no random effect) and multilevel (with random effect) 

analysis, Markov chain Monte Carlo (MCMC) was used to estimate parameters. Six chains with 

different initial values were used for each model and were run for 6,000 iterations. The last 1,000 

samples after convergence for each chain were then used as posterior samples. Deviance 

Information Criterion (DIC4) was used for model comparison (Celeux et al., 2006), which 

measures both model simplicity and model fit at the same time and models with lower DICs are 

preferred.  

5.3. Results and Discussion 

5.3.1. Stream Health Indices  

Tables 14 and B2 present the coefficient of determination (R2) and root-mean-square error 

(RMSE) of current (two-phase approach) and former (one-phase approach) developed stream 

health predictive models. Comparison of the stream health model performances when all streams 

were used for development of the predictive model reveals that the two-phase approach, used in 

this study, has outperformed the former predictive models for all four stream health measures 

within all streams. The Fish index (IBI) has the highest improvement compared to previous 

approach where a R2 of 0.89 and RMSE of 7.56 are achieved compared to the former R2 of 0.48 

and RMSE of 16.37. This shows that incorporating larger sets of ecologically relevant water 

quantity and water quality parameters (249), and combining the two methods of PLSR and ANFIS 

resulted in more accurate predictions of stream health measures rather than just using the one-

phase fuzzy logic model with a few water quantity and water quality parameters (4 to 5), especially 
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for fish that are highly sensitive to ecologically relevant flow parameters (Poff and Zimmerman, 

2010).  

The next two columns of Tables 14 and B2 summarize the performance of the stream health 

predictive models developed for two stream classes of “Headwater streams” and “Medium and 

large streams”. Results show that for all stream health indices, models developed for the two 

classes have better performances (with R2 values ranging from 0.90 to 0.97) than models developed 

for all streams combined (with R2 values ranging from 0.70 to 0.89). For instance, R2 values of 

0.97 and 0.91 were achieved for the EPT predictive models for the two stream classes instead of 

the 0.72 obtained for the EPT predictive model for all streams combined. This is due to the fact 

that species are often found in specific stream classes and have different responses to stressors 

(McManamay et al., 2014; Herman et al., 2015). So distinct models for different stream classes 

are preferred to models that are developed for all streams especially for macroinvertebrate indices 

(HBI, FIBI, and EPT) that are more sensitive to local impairment than fish (Kerans and Karr, 

1994).  

Table 14. Comparison of coefficient of determination of developed stream health predictive 

models  
Stream 

health 

measures 

One-phase 

approach 

  Two-phase approach   

All streams  All streams Headwater streams  Medium and large streams 

IBI 0.48*  0.89**** 0.90****  0.96**** 

HBI 0.57**  0.83*** 0.91***  0.97*** 

FIBI 0.50**  0.70*** 0.94***  0.94*** 

EPT 0.54**  0.72*** 0.97***  0.91*** 
* This data was obtained from Einheuser et al. (2013a) 
** This data was obtained from Einheuser et al. (2012) 
*** This data was obtained from Daneshvar et al. (2017) 
**** Results obtained from this study 

 

The new developed stream health predictive models for two stream classes were then used 

to simulate the four stream health indices beyond the sampling points (Figure B1) and their 

predictions are compared with the one-phase approach by calculating the absolute percent of 
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change in prediction (Nejadhashemi et al., 2011) as shown in Table 15. Results show that HBI 

scores have the lowest deviation from the results obtained in the one-phase approach where 71.2% 

of headwater streams and 91.1% of medium and large streams have less than a 25% change in 

scores. Meanwhile, the highest changes are found in the IBI prediction for headwater streams 

where 38.8% of streams in this class have more than a 75% change in score prediction. High 

changes in the IBI scores prediction reveals the high dependency of the fish index on ecologically 

relevant water quantity and water quality parameters (Poff and Zimmerman, 2010). While the HBI 

is less sensitive to these parameters due to the fact that it measures the response of aquatic species 

to organic pollutants (Hilsenhoff, 1987).  

Table 15. Absolute percent of change in the stream health measures prediction between one- 

and two-phase approaches 
Stream health 

measure 
Stream classes 

Absolute percent of change 

< 25%  25% - 50%  50% - 75%  > 75%  

IBI Headwater streams 31.3% 17.0% 12.9% 38.8% 

 Medium and large streams 58.0% 24.0% 6.7% 11.2% 

HBI Headwater streams 71.2% 22.6% 4.4% 1.8% 

 Medium and large streams 91.1% 7.8% 0.6% 0.5% 

FIBI Headwater streams 42.4% 18.9% 14.5% 24.2% 

 Medium and large streams 54.6% 19.3% 12.4% 13.6% 

EPT Headwater streams 44.5% 12.3% 11.0% 32.2% 

 Medium and large streams 40.7% 27.1% 15.8% 16.4% 

 

5.3.2. Variables Distribution and Pairwise Correlations 

Figures 11, B2, and B3 present the correlation matrices for all indices including the four 

stream health measures (IBI, HBI, FIBI, and EPT), and the seventeen socioeconomic and 

physiographic variables (S1 to S17) at three levels of county, census tract, and block group 

respectively. The diagonals of the matrices represent the indices distribution, while upper and 

lower parts represent pairwise correlation coefficients and scatterplots respectively. Modified 

stream health indices prediction has changed their distribution, correlation with each other and 

correlation with independent variables (S1 to S17).  
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Figure 11. Correlation matrix of indices at the county level. The diagonal represents the 

scatterplots, while lower level and upper levels represent pairwise distributions and 

correlation coefficients, respectively. Boldfaced numbers represent significant correlation 

coefficients at the 0.05 level. Red and blue values represent positive and negative significant 

correlation coefficients with absolute value above 0.7 at 0.05 level 

 

Compared to the previous study (Daneshvar et al., 2016) that used one-phase stream health 

modeling approach to construct the environmental justice models, stream health indices 

distribution are more consistent among three levels of county, census tract and block group, while 

there was inconsistency among stream health scores distribution at county level compared to 

census tract and block group levels in the previous study. For example, using the results from the 

one-phase approach, EPT had right skewness at the county level, and left skewness at the census 

tract and block group levels, while using the results from the two-phase approach, EPT scores have 

close to normal distributions with slight skewness to the left among all three census levels (Figures 
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11, B2, and B3). This means that the new developed stream health scores are less sensitive to 

stream health score aggregation and more consistent at the different census levels.  

The same consistency among the three levels exists in pairwise correlations, where 

correlation coefficients have the same sign at all three levels, while in the previous study 

correlation coefficients at the county level showed opposite correlations compared to the census 

tract and block group levels (Tables 16-18). For the new developed stream health scores, HBI had 

negative correlations with IBI, FIBI, and EPT at all three levels, while these three had positive 

correlations with each other. This is also in agreement with their definitions, where higher values 

of IBI, FIBI, and EPT represent better stream health condition, while for HBI it is reversed 

(Woznicki et al., 2016b). Besides that, pairwise correlation coefficients for each pair are almost 

the same at all three census levels, which again reveals that the new developed stream health scores 

are not as sensitive to aggregation at different spatial levels.   

Table 16. Comparison of pairwise correlations among stream health indices at the county 

level. (Blue upper right values represent correlations among the new developed stream health 

indices using a two-phase approach, while red lower left values are correlations reported by 

Daneshvar et al. (2016) using a one-phase approach) 
IBI -0.69 0.46 0.59 

0.042 HBI -0.28 -0.36 

-0.33 -0.34 FIBI 0.78 

-0.23 -0.29 0.12 EPT 

 

Table 17. Comparison of pairwise correlations among stream health indices at the census 

tract level. (Blue upper right values represent correlations among the new developed stream 

health indices using a two-phase approach, while red lower left values are correlations 

reported by Daneshvar et al. (2016) using a one-phase approach) 
IBI -0.40 0.27 0.48 

-0.31 HBI -0.42 -0.50 

0.21 -0.40 FIBI 0.38 

0.32 -0.29 0.24 EPT 

 

 

 



86 
 

Table 18. Comparison of pairwise correlations among stream health indices at the block 

group level. (Blue upper right values represent correlations among the new developed stream 

health indices using a two-phase approach, while red lower left values are correlations 

reported by Daneshvar et al. (2016) using a one-phase approach) 
IBI -0.37 0.30 0.41 

-0.23 HBI -0.40 -0.45 

0.16 -0.40 FIBI 0.40 

0.20 -0.18 0.14 EPT 

 

5.3.3. Identifying High Priority Area 

Figure 12 shows the area of concern for stream health and socioeconomic aspects using bivariate 

maps at three census levels of county, census tract, and block group. Overall, the highest spatial 

variations are found at the block group (Figure 12-c), while aggregations in upper levels (census 

and county) smoothed these variations, especially at the county level (Figure 12-a). Considering 

spatial variations at the block group level, northern regions of the watershed that are mainly 

dominated by forests and less affected by human activities have the best conditions for both stream 

health and socioeconomic indicators. Moving to the watershed outlet, both stream health, and 

socioeconomic measures are declined. In general, the central region has been identified as the most 

vulnerable area. This highly populated area (Bay city and Flint) suffers from low water quality 

condition and dense concentration of vulnerable communities. Such analysis for other regions 

enables policymakers to identify areas that have higher priority for resources allocation.  
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Figure 12. Bivariate map of overall stream measures and their predictors across Saginaw 

River Basin at (a) county, (b) census tract, and (c) block group levels  

 

5.3.4. Single Level (with No Random Effect) Stream Health Based Environmental 

Justice Regression Models 

Tables B3 to B14 summarize the outputs of the three single level (with no random effect) 

regression models (including spatial, weighted regression, and ordinary regression) developed for 

the four stream health measures of IBI, HBI, FIBI, and EPT at three levels of county, census tract 

and block group. DICs of the developed models are also shown in Table 19 and lower DICs 

(representing better performances) for each of the four stream health measures at all three census 

levels are boldfaced.  



88 
 

Table 19. DICs of single level (with no random effect) regression models (Boldfaced values 

indicate best selected models with lower DICs) 
Stream 

health 

index 

County  Census tract  Block group 

S WR OR  S WR OR  S WR OR 

IBI 156.50 158.74 156.65  2623.42 2786.37 2767.44  5964.52 6454.62 6403.28 

HBI 22.47 22.08 21.72  452.75 577.96 567.20  1139.18 1488.91 1463.87 

FIBI 102.85 105.09 102.42  1984.03 2090.95 2081.21  4491.20 4865.83 4836.51 

EPT 91.50 94.33 91.56  1378.87 1501.52 1503.99  3301.39 3602.18 3589.46 

S: Spatial; WR: Weighted Regression; OR: Ordinary regression 

 

Similar to the previous study using one-phase approach (Daneshvar et al., 2016), spatial 

models had better performances (with lower DICs) than the two non-spatial models at the census 

tract and block group levels, while at the county level, the DICs of the three models are close and 

in some cases (e.g. HBI), non-spatial models had slightly lower DICs than the spatial model. In 

other words, spatial models are preferred at the census tract and block group levels, while at the 

county level there is no major preference.  

Comparison of significant parameters selected for each model also resulted in the same 

conclusion. For each regression model (Tables B3 to B14), significant parameters, meaning that 

their range does not cover zero, are boldfaced. Table 20 summarizes all significant parameters for 

the three regression models developed for each of the four stream health measures.  

Like the previous study (Table B15), all three models of spatial, weighted regression, and 

ordinary regression had similar significant parameters at the county level, while moving to census 

tract and block group, fewer and different parameters were identified as significant for the spatial 

models than the two non-spatial models. For instance, three independent variables of S2 

(population density), S16 (households with public assistance income), and S17 (unemployed 

population over 16 years old), were significant for EPT prediction by all three regression models 

at the county level. Meanwhile, at the census tract, S1 (drainage density) and S11 (percentage of 
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occupied housing units), and at the block group only S1 were significant for spatial models. 

Meanwhile for the two non-spatial models, significant parameters were S6 (percentage of African 

American population) and S11 at the census tract, and S1, S5 (percentage of population of or over 

65 years old), S6, and S11 at the block group levels. This is also in agreement with the former 

study (Daneshvar et al., 2016), showing that spatial dependencies are lost at the county level, while 

census tract and block group levels can capture spatial dependencies among variables. In summary, 

three models of spatial, weighted regression, and ordinary regression had similar performance at 

the county level. While spatial models are preferred to the two non-spatial forms at the census tract 

and block group levels with fewer number of significant parameters.  

Table 20. Significant parameters of new developed single level (with no random effect) 

regression models 
Index Census 

level 

 
Spatial  Weighted regression  Ordinary regression 

IBI County  S1, S3  S1, S3  S1, S3 

 Census tract  S5, S9, S11  S1, S3, S5, S11  S1, S3, S5, S11 

 Block group  S6, S8, S10, S17  S2, S3, S5, S6, S11, 

S12 

 S1, S3, S5, S6, S11, 

S12 

        

HBI County  S1  S1  S1 

 Census tract  -  S1, S6, S11, S13  S6, S11, S13 

 Block group  -  S2, S8, S10, S11  S2, S4, S6, S10, S11 

        

FIBI County  S2, S7, S16, S17  S2, S7, S16, S17  S2, S7, S16, S17 

 Census tract  S1, S11, S16  S1, S3, S5, S11, S12  S1, S3, S5, S11, S12 

 Block group  S1, S2, S6  S1, S2, S3, S5, S6, S11   S1, S2, S3, S5, S6, 

S11 

        

EPT County  S2, S16, S17  S2, S16, S17  S2, S16, S17 

 Census tract  S1, S11  S6, S11  S6, S11 

 Block group  S1  S1, S5, S6, S11  S1, S5, S6, S11 

 

However, comparison of current significant parameters (Table 20) with those from the 

previous study (Table B15) reveals that modified stream health scores used the two-phase 

approach resulted in much fewer and somehow different significant parameters for the same 
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regression model. Overall, 115 significant parameters are identified for all regression modes 

(Tables B3 to B14), while this number was 171 in the former study (Daneshvar et al., 2016). 

Especially at the county level, the number of significant parameters have drastically dropped 

compared to the previous study. For instance, nine independent parameters (S1, S3, S7, S11, S12, 

S13, S14, S16, and S17) identified by all regression models developed for the IBI at the county level 

has reduced to only two parameters (S1, S3). This shows that using the two-phase approach 

modified the regression models and removed redundancies that existed before, especially at the 

county level. This is also in agreement with the pairwise correlation results that showed that the 

new developed stream health scores improved the correlations at the county level while in the 

former study using the one-phase approach, aggregated stream health scores at the county level 

showed opposite correlations compared to the census tract and block group levels. 

5.3.5. Multilevel (with Random Effect) Stream Health Based Environmental Justice 

Regression Models 

The combination of the three residual forms of spatial, weighted regression, and ordinary 

regression for data collected at the three census levels (county, census tract, and block group) 

resulted in 48 multilevel (with random effect) models among the three levels. Table B16 

summarizes the DICs of these models and the lowest DICs are boldfaced. The county level is the 

coarsest level used in this study with no nested upper level, so only three regression models 

(spatial, weighted regression, and ordinary regression) are developed for each stream health 

measure at this level. Similar to the single level analysis, there is no major preference among the 

three models developed for each stream health measure at the county level, and the three DICs are 

very close (<2%). Meanwhile, at the census tract and block group levels considering the nested 

effect of data collected at upper levels, the models’ predictability outperformed the single level 
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analysis. For both census tract and block group analysis, combinations of spatial models at the 

finest resolution and a mix of spatial and non-spatial models for nested upper levels resulted in 

lower DICs compared to the single level models.  

Table 21 summarizes the DICs of best selected single level and multilevel models 

developed for the four stream health based environmental justice analysis. Multilevel models have 

much lower DICs compared to the single level models at the same level, especially in the block 

group level where much lower DICs are achieved for the multilevel models compared to the single 

level models (ranging from 23% to 120% decrease in DICs). This is also in agreement with 

Daneshvar et al (2016) results showing that multilevel models had better performance than single 

level models.  

Table 21. DICs of the best selected regression models for the census tract and block group 

levels    
Stream health 

index 

Census tract  Block group 

Single level Multilevel  Single level Multilevel 

IBI 2623.42 2545.98  5964.52 4575.22 

HBI 452.75 374.58  1139.18 -232.51 

FIBI 1984.03 1907.28  4491.20 3012.60 

EPT 1378.87 1302.31  3301.39 1951.01 

 

Meanwhile, the significant parameters of the best selected models are different from the 

former study using a single-phase approach. Table 22 summarizes the significant parameters of 

the best selected models for each of the four stream health measures at all three census levels.  

Similar to the previous study, both single level and multilevel models had the same 

significant parameters. This shows that considering the nested effect of data collected in upper 

levels does not change the significant parameters, while at the same time considering the nested 

effect of aggregated data at different levels will improve the model prediction. However, a totally 

different trend in significant parameters selected was observed in this study. Table 22 shows that 

for the fish index (IBI), only two significant parameters (S1, and S3) are selected at the county 
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level, while moving to the census tract and block group levels resulted in a change in significant 

parameters selected as well as an increase in the total number of parameters selected to three (S5, 

S9, and S11), and four (S6, S8, S10, and S17) for the census tract and block group levels 

respectively. However, the trend is the opposite for the other three other macroinvertebrate indices 

(HBI, FIBI, and EPT). For instance, three significant parameters (S2, S16, and S17) are selected 

at the county level, while moving to the census tract and block group levels resulted in a change 

in significant parameters selected as well as a decrease in the total number of parameters selected 

to only two (S1, and S11), one (S1) for the census tract and block group levels respectively.  

Table 22. Significant parameters (in black) for the best-selected stream health based 

environmental justice models (Boldfaced values indicate repeated indices from Daneshvar et 

al. (2016), while red indices are those from Daneshvar et al. (2016) that are eliminated with 

the new approach) 
Census 

level 

Model type IBI HBI FIBI EPT 

County Single level S1, S3, S7, S11, 

S12, S13, S14, 

S16, S17 

S1, S2, S3, 

S5, S10, S13, 

S17 

S2, S3, S6, S7, 

S10, S15, S16, 

S17 

S1, S2, S3, S5, 

S8, S9, S15, S16, 

S17 

      

Census 

tract 

Single level S5, S9, S11, S16 S3 S1, S2, S10, S11, 

S16 

S1, S4, S5, S7, 

S9, S11 

 Multilevel S5, S9, S11, S16 S3 S1, S2, S10, S11, 

S16 

S1, S4, S5, S7, 

S9, S11 

      

Block 

group 

Single level S2, S6, S7, S8, 

S10, S16, S17  

S1, S16 S1, S2, S5, S6, 

S7 

 S1 

 Multilevel S2, S6, S7, S8, 

S10, S16, S17 

S1, S16 S1, S2, S5, S6, 

S7 

S1, S17 

 

The same trend of reduction is significant parameters is observed for the HBI and FIBI 

when moving from county, to census tract and block group levels, respectively. This dissimilarity 

in the trend of significant parameters among fish and macroinvertebrate indices can be explained 

by the fact that fish indices measure large scale impacts, while macroinvertebrates are responding 

to local stressors (Flinders et al., 2008; Paller et al., 2014; Herman and Nejadhashemi, 2015). 

Therefore, for the IBI (fish index) less significant parameters are selected at the county level 



93 
 

compared to the two detailed spatial levels of census tract and block group. Meanwhile for 

macroinvertebrate indices that are sensitive to local stressors, more parameters are selected as 

significant at the coarser resolution compared to finer census levels. This trend was not observed 

in the former study by Daneshvar et al. (2016). For instance, six significant parameters (S2, S3, 

S6, S10, S15, and S17) were reported for the FIBI at the county level, while at the census tract 

level the number of significant parameters was reduced to two (S2, and S10), and again increased 

to four (S2, S5, S6, and S7) at the block group level (Daneshvar et al., 2016). Therefore, the 

modified stream health scores using the two-phase approach improved model performances not 

only in terms of DICs, but also with regard to the type and number of significant parameters 

required for stream health based environmental justice models development. This is especially true 

for the county level where the number of significant parameters was drastically reduced from 9, 6, 

6, and 6, to 2, 1, 4, and 3 for IBI, HBI, FIBI, and EPT, respectively. Therefore, using more accurate 

stream health indicators when developing the environmental justice models can help with 

mitigating redundancy among predictors while revealing more meaningful relationships.  

5.4. Conclusion 

The goal of this study was to assess the relative importance of parameter estimation in 

stream health based environmental justice model development. The results showed that 

incorporating ecologically relevant water quantity and water quality parameters and using a two-

phase approach will provide more reliable and consistent stream health predictions that are less 

sensitive to aggregation at different census levels. Besides that, comparison of significant 

parameters selected for the development of stream health based environmental justice models for 

one- and two-phase approaches revealed that the modified stream health indices improve stream 
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health based environmental justice models’ performance by reducing redundancies especially at 

the county level.  

In addition, more meaningful spatial dependencies were observed among fish and 

macroinvertebrate indices and socioeconomic/physiographic components using the improved 

stream health models, where more significant parameters were selected at the finest level (block 

group) compared to the coarsest level (county) for fish index, while the trend was opposite for 

macroinvertebrate indices. Finally, in order to better evaluate the robustness of the developed 

techniques in this study, it is recommended that future studies will be implemented in other regions 

with different socioeconomic and physiographic characteristics. 
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6. CONCLUSIONS 

This research study enhanced the existing framework for environmental justice studies with 

respect to stream health. Four stream health indices evaluating response of fish and 

macroinvertebrates to instream stressors were used for stream health assessment. Meanwhile, in 

order to capture the socioeconomic indices representing concentrated disadvantages of a 

community, sixteen common indices from the U.S. Census Bureau in addition to one 

physiographic index were used to assess the environmental justice conditions within the study 

area. In this study, the role of spatial levels in stream health based environmental justice studies 

was evaluated. In addition, the significance of parameters estimation on the  newly developed 

stream health based environmental justice models was assessed. The following conclusions were 

made based on the two conducted research studies:  

 Pairwise correlation was highly sensitive to level of aggregation, especially for social 

parameters, where more than 30 significant correlations with absolute correlation 

coefficient above 0.7 were found at the county level. Whereas at the census tract and block 

group levels, this number drastically reduced to three.  

 Single level analysis of stream health based environmental justice models revealed that in 

general county level models are not able to capture spatial dependencies among stream 

health measures and their predictors. Meanwhile, spatial dependencies were seen at the 

census tract and block group levels.  

 Three developed forms of spatial, weighted regression, and ordinary regression models had 

quite similar performances at the county level, while at the census tract and block group 

levels, spatial models were preferred (with lower DICs). 
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 The highest spatial dependencies were found at the block group level, where spatial models 

had the lowest DICs compared to two non-spatial models. 

 In general, multilevel models that incorporate the nested effect of data collected at upper 

levels had lower DICs than single level models. Significant parameters required for both 

single level and multilevel models were almost the same. That revealed that multilevel 

models perform better than the single level models.  

 Summary of study 1: Incorporation of the spatial level of socioeconomic factors will 

improve the predictability of the stream health based environmental justice studies.  

 Incorporating ecologically relevant water quantity and water quality parameters, using the 

two-phase modeling approach, and stream order grouping enhanced the predictability of 

the stream health models. Using the new two-phase approach resulted in coefficient of 

determinations above 0.9 for all stream health measures. In contrast, the highest coefficient 

of determination for the one-phase approach was 0.57.   

 Comparison of one- and two-phase approaches of stream health modeling showed an 

improvement of model predictability of stream health scores by 25% for almost half of the 

streams in the study area. However, improvement for the HBI predictor model was 

minimum compared to other indices. This is because the HBI evaluates the response of 

aquatic ecosystems to organic pollutants; and therefore it is less sensitive to ecologically 

relevant hydrologic and water quality parameters than other macroinvertebrates and fish 

indices.  

 In the two-phase stream health modeling approach and similar to the one-phase approach,  

the most special dependencies among the stream health and the socioeconomic indices 

exist at the block group level, while these dependencies are lost at the county level.  
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 Using the two-phase approach and for all four stream health indices, spatial models had 

better performances than non-spatial ones at the census tract and block group levels. 

However at the county level, both spatial and non-spatial models had similar performances. 

 Evaluation of spatial correlations between stream health measures and their predictors at 

three census levels showed block group data are able to capture vulnerable communities 

with both low social and stream health status. However, aggregation of data in upper levels 

smoothed these spatial variations especially at the county level.   

 Summary of study 2: improvement in the accuracy of biological indices predictions will 

improve the overall performance of the stream health based environmental justice models. 

 Overall, using more accurate stream health predictive models provide robust and reliable 

stream health predictions while improving the performance of environmental justice 

models. We also observed more consistent responses at all three levels of study when more 

accurate biological measures were used in study 2.  

 Studies such as this can help policy makers to better understand the complex 

socioeconomic and environmental relationships. Also, using bivariate maps can help with 

identification of vulnerable communities.   
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7. FUTURE RESEARCH RECOMMENDATIONS 

The ultimate goal of this research is to identify the environmental inequality among different 

social groups. This will help water resources managers to find the most suitable places to 

implement conservation practices to expand environmental justice. This study improved our 

understanding regarding the relationship between aquatic species and socioeconomic factors that 

are key in detecting and modeling environmental justice concerning the health of streams. 

However, additional works are needed including: 

 This study was conducted in the Saginaw River Basin in Michigan. In order to evaluate 

the reliability of the proposed methods, regional and national scale analysis of these types 

of models are recommended. As a result, different and wider ranges of socioeconomic 

and biological characteristics can be examined. The next step is extending analysis for the 

entire Michigan. So far, hydrological datasets and models were created for all watersheds 

in Michigan. Then all models will be calibrated and validated using flow and water quality 

data at monitoring points. Once all hydrologic models are calibrated, their outputs are 

going to be used to predict statewide stream health measures. These indices along with 

existing socioeconomic/physiographic indices will be used to develop a statewide 

environmental justice model. 

 In this study, one fish and three macroinvertebrate indices were used to examine the 

overall health condition of the riverine systems. These indices were commonly used in 

the Great Lakes region to evaluate stream health. However, different biological indices 

are used in different regions of United States and around the world. Therefore, it is 

recommended to establish similar types of relationships between other biological and 
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socioeconomic indices to assure the applicability of the proposed work at larger scales 

and for different regions.  

 Socioeconomic indices that were used here are typically employed to perform  

environmental justice studies. However, many of these indices can lose their predictive 

ability when aggregated to large scales. Future research should identify and recommend 

appropriate scales of use for different socioeconomic indices.  

  In this study, CAR models were used to evaluate the spatial dependencies among stream 

health measures and socioeconomic indices. Future study should examine the 

applicability of other techniques, such as spatial autoregressive models, to improve the 

reliability and accuracy of the stream health based environmental justice models.   
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APPENDIX A: Study One 

 

 

 
Figure A1. Spearman ranks correlation matrix between dependent and independent 

variables at the census tract level. Boldfaced value indicates significance at the 

0.05 level and correlation less than 0.7, Boldfaced value in red indicates 

significance at the 0.05 level and strongly positive correlation equal or above 0.7, 

value in blue indicates significance at the 0.05 level and strongly negative 

correlation equal or below -0.7  
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Figure A2. Spearman rank correlation matrix between dependent and independent 

variables at the block group level. Boldfaced value indicates significance at the 0.05 level 

and correlation less than 0.7, Boldfaced value in red indicates significance at the 0.05 level 

and strongly positive correlation equal or above 0.7, value in blue indicates significance at 

the 0.05 level and strongly negative correlation equal or below -0.7 
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Figure A3. EPT model residuals at: a) census tract single level (no random effect), b) 

census tract level with multilevel (random) effect, c) block group single level (no 

random effect), d) block group level with multilevel (nested random) effect 
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Figure A4. HBI model residuals at: a) census tract single level (no random effect), b) 

census tract level with multilevel (random) effect, c) block group single level (no random 

effect), d) block group level with multilevel (nested random) effect 
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Figure A5. FIBI model residuals at: a) census tract single level (no random effect), b) 

census tract level with multilevel (random) effect, c) block group single level (no random 

effect), d) block group level with multilevel (nested random) effect 
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Figure A6. IBI model residuals at: a) census tract single level (no random effect), b) census 

tract level with multilevel (random) effect, c) block group single level (no random effect), 

d) block group level with multilevel (nested random) effect 
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Table A1. Regression models for FIBI at census tract level (boldfaced values indicates a 

significant parameter at the 0.05 level) 

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 14.76 12.54 16.94 14.68 14.13 15.22 14.82 14.25 15.38 

β1 -0.05 -0.63 0.55 0.07 -0.53 0.65 0.23 -0.37 0.83 

β2 1.19 0.31 2.09 0.72 -0.24 1.69 1.028 0.10 1.95 

β3 -0.26 -0.86 0.36 -0.98 -1.57 -0.38 -0.82 -1.39 -0.24 

β4 -0.80 -1.89 0.30 -1.44 -2.60 -0.31 -1.61 -2.77 -0.45 

β5 0.70 -0.16 1.57 0.80 -0.14 1.73 0.93 -0.07 1.92 

β6 0.71 -0.41 1.79 -0.18 -1.35 0.98 -0.22 -1.33 0.89 

β7 1.65 -0.05 3.35 1.55 -0.31 3.44 1.78 -0.09 3.66 

β8 0.25 -1.62 2.23 -0.13 -2.27 1.98 -0.02 -2.18 2.20 

β9 1.65 -0.43 3.79 2.34 0.10 4.64 2.44 0.13 4.78 

β10 1.83 0.33 3.30 2.44 0.79 4.09 2.41 0.74 4.05 

β11 0.46 -0.54 1.47 0.91 0.01 1.79 0.83 -0.08 1.72 

β12 -0.14 -1.03 0.74 0.13 -0.82 1.08 0.17 -0.80 1.15 

β13 0.35 -0.82 1.53 1.67 0.35 2.30 1.57 0.210 2.94 

β14 1.40 -0.03 2.86 1.07 -0.51 2.65 1.24 -0.45 2.89 

β15 -1.51 -3.32 0.28 -1.68 -3.69 0.30 -1.68 -3.73 0.42 

β16 -0.65 -1.62 0.32 -0.97 -2.14 0.22 -0.99 -2.12 0.10 

β17 0.30 -0.59 1.22 0.39 -0.66 1.38 0.23 -0.85 1.30 

𝜏2 96.5 81.8 114.0 137.4 117.4 160.1 27.3 23.3 31.8 

𝛾 0.93 0.83 0.99 0 0 0 0 0 0 

DIC 1943.58 2011.64 2030.37 
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Table A2. Regression models for EPT at census tract level (boldfaced values indicates a 

significant parameter at the 0.05 level) 

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 5.86 3.22 8.33 5.98 5.61 6.34 5.94 5.57 6.32 

β1 -0.11 -0.46 0.25 -0.35 -0.74 0.04 -0.29 -0.68 0.10 

β2 0.46 -0.07 0.99 0.75 0.11 1.39 0.96 0.33 1.58 

β3 -0.04 -0.42 0.31 -0.98 -1.38 -0.59 -1.10 -1.50 -0.70 

β4 1.16 0.48 1.82 0.83 0.04 1.60 0.86 0.070 1.65 

β5 -0.63 -1.15 -0.10 -0.14 -0.79 0.49 -0.14 -0.79 0.49 

β6 0.14 -0.50 0.76 -0.56 -1.34 0.19 -0.66 -1.43 0.13 

β7 -1.36 -2.36 -0.33 -0.59 -1.82 0.62 -0.53 -1.78 0.73 

β8 -0.84 -1.95 0.26 -0.27 -1.71 1.16 -0.31 -1.75 1.15 

β9 -1.65 -2.87 -0.41 -0.73 -2.25 0.79 -0.76 -2.31 0.78 

β10 -0.73 -1.59 0.12 -1.24 -2.32 -0.18 -1.18 -2.28 -0.05 

β11 -0.04 -0.66 0.57 0.30 -0.30 0.88 0.36 -0.25 0.95 

β12 0.24 -0.29 0.77 0.77 0.12 1.40 1.05 0.39 1.71 

β13 0.31 -0.41 0.10 0.71 -0.22 1.61 0.51 -0.43 1.39 

β14 -0.42 -1.28 0.44 -0.76 -1.79 0.28 -0.67 -1.78 0.45 

β15 0.45 -0.62 1.51 1.31 0.02 2.65 1.19 -0.21 2.58 

β16 0.08 -0.47 0.64 -0.41 -1.15 0.37 -0.43 -1.18 0.33 

β17 0.39 -0.15 0.92 0.56 -0.14 1.24 0.70 0.01 1.43 

𝜏2 33.4 28.3 39.1 60.6 51.8 70.4 12.4 10.6 14.5 

𝛾 0.98 0.94 0.998 0 0 0 0 0 0 

DIC 1606.74 1743.92 1773.60 
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Table A3. Regression models for HBI at census tract level (boldfaced values indicates a 

significant parameter at the 0.05 level) 

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 4.82 4.26 5.36 4.82 4.68 4.95 4.83 4.69 4.97 

β1 0.12 -0.03 0.27 0.15 -0.01 0.30 0.14 -0.02 0.29 

β2 -0.15 -0.38 0.09 -0.16 -0.40 0.09 -0.26 -0.50 -0.01 

β3 0.18 0.02 0.34 0.50 0.35 0.65 0.49 0.34 0.65 

β4 0.09 -0.20 0.38 0.19 -0.10 0.50 0.20 -0.10 0.51 

β5 -0.01 -0.23 0.22 -0.18 -0.42 0.06 -0.19 -0.44 0.07 

β6 -0.22 -0.50 0.07 0.06 -0.23 0.36 0.09 -0.20 0.38 

β7 0.12 -0.32 0.56 0.10 -0.38 0.59 0.05 -0.44 0.54 

β8 -0.32 -0.81 0.17 -0.29 -0.85 0.26 -0.30 -0.88 0.27 

β9 -0.47 -1.02 0.07 -0.65 -1.23 -0.06 -0.67 -1.28 -0.07 

β10 -0.01 -0.37 0.38 0.01 -0.41 0.45 0.03 -0.38 0.46 

β11 -0.13 -0.40 0.13 -0.28 -0.50 -0.04 -0.25 -0.48 -0.02 

β12 -0.09 -0.32 0.14 -0.34 -0.60 -0.10 -0.40 -0.66 -0.15 

β13 0.18 -0.13 0.49 -0.17 -0.51 0.18 -0.08 -0.44 0.28 

β14 0.04 -0.33 0.41 0.01 -0.40 0.42 -0.03 -0.46 0.40 

β15 0.08 -0.38 0.55 -0.02 -0.54 0.49 0.01 -0.53 0.53 

β16 -0.05 -0.29 0.20 0.04 -0.25 0.34 0.05 -0.24 0.34 

β17 -0.15 -0.39 0.09 -0.08 -0.35 0.17 -0.10 -0.38 0.17 

𝜏2 6.5 5.6 7.7 9.1 7.8 10.6 1.9 1.6 2.2 

𝛾 0.93 0.83 0.99 0 0 0 0 0 0 

DIC 1062.41 1124.94 1151.03 
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Table A4. Regression models for IBI at census tract level (boldfaced values indicates a 

significant parameter at the 0.05 level)  

Parameters 
Spatial Ordinary regression Weighted regression 

mean lower upper mean lower upper mean lower upper 

β0 49.25 46.55 52.09 49.27 48.51 50.03 49.30 48.53 50.07 

β1 0.28 -0.52 1.07 0.45 -0.35 1.26 0.46 -0.36 1.27 

β2 -0.85 -2.02 0.41 -0.74 -2.12 0.59 -0.48 -1.76 0.78 

β3 0.02 -0.84 0.88 -1.07 -1.90 -0.26 -1.15 -1.98 -0.31 

β4 0.58 -0.93 2.11 0.12 -1.46 1.72 0.36 -1.27 1.98 

β5 -0.77 -2.00 0.41 -0.97 -2.26 0.32 -1.14 -2.48 0.23 

β6 -0.12 -1.60 1.38 -1.03 -2.65 0.56 -0.76 -2.41 0.82 

β7 1.54 -0.77 3.85 1.18 -1.38 3.71 0.55 -2.13 3.15 

β8 -1.51 -4.13 1.09 -1.39 -4.37 1.56 -1.54 -4.61 1.57 

β9 -1.21 -4.07 1.56 -0.83 -3.96 2.33 -1.22 -4.41 1.97 

β10 -1.98 -3.96 0.01 -2.17 -4.36 0.02 -1.96 -4.20 0.32 

β11 -0.89 -2.25 0.47 -0.09 -1.30 1.14 0.10 -1.13 1.30 

β12 0.73 -0.53 1.94 1.38 0.08 2.71 1.50 0.14 2.85 

β13 0.19 -1.44 1.81 1.01 -0.86 2.87 0.32 -1.58 2.18 

β14 -1.25 -3.21 0.76 -2.34 -4.48 -0.15 -2.47 -4.74 -0.11 

β15 2.28 -0.21 4.63 3.34 0.59 6.04 3.11 0.31 5.92 

β16 -2.21 -3.50 -0.89 -2.32 -3.92 -0.71 -1.77 -3.35 -0.16 

β17 0.73 -0.51 1.96 0.81 -0.59 2.19 1.11 -0.37 2.63 

𝜏2 180.7 153.2 212.9 257.6 219.7 301.7 52.9 45.2 61.9 

𝛾 0.92 0.82 0.99 0 0 0 0 0 0 

DIC 2146.73 2217.03 2247.36 
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Table A5. Regression models for FIBI at block group level (boldfaced values indicates a 

significant parameter at the 0.05 level)  

Parameters 
Spatial Ordinary regression Weighted  regression 

mean lower upper mean lower upper mean lower upper 

β0 14.55 12.44 16.62 14.43 14.03 14.82 14.57 14.14 14.99 

β1 0.301 -0.07 0.67 0.59 0.17 1.01 0.53 0.08 0.99 

β2 0.98 0.50 1.47 0.82 0.29 1.36 0.86 0.31 1.41 

β3 -0.09 -0.50 0.30 -0.44 -0.85 -0.03 -0.57 -1.03 -0.11 

β4 -0.06 -0.70 0.58 -0.75 -1.51 -0.02 -1.30 -2.13 -0.49 

β5 0.51 0.001 1.00 0.37 -0.22 0.95 0.75 0.10 1.39 

β6 0.72 0.08 1.40 -0.35 -1.02 0.31 -0.17 -0.86 0.49 

β7 0.98 0.16 1.78 0.61 -0.31 1.55 0.96 -0.04 2.00 

β8 -0.42 -1.37 0.52 -1.39 -2.54 -0.24 -1.09 -2.31 0.15 

β9 0.46 -0.65 1.52 0.41 -0.94 1.72 1.17 -0.27 2.65 

β10 -0.01 -0.65 0.61 0.37 -0.42 1.17 0.42 -0.46 1.28 

β11 -0.33 -0.91 0.24 0.13 -0.39 0.66 0.30 -0.26 0.86 

β12 0.14 -0.28 0.56 0.07 -0.43 0.58 -0.14 -0.69 0.43 

β13 -0.31 -0.83 0.22 0.80 0.11 1.47 0.60 -0.12 1.33 

β14 0.17 -0.55 0.90 -0.16 -1.04 0.71 -0.51 -1.49 0.51 

β15 0.10 -0.72 0.92 -0.05 -1.11 1.02 0.08 -1.09 1.28 

β16 -0.06 -0.52 0.40 -0.13 -0.71 0.45 -0.08 -0.69 0.52 

β17 0.11 -0.33 0.56 0.30 -0.24 0.84 0.18 -0.43 0.79 

𝜏2 95.55 86.16 106.9 158.7 143.3 175.5 34.9 31.53 38.77 

𝛾 0.97 0.93 0.99 0 0 0 0 0 0 

DIC 4370.06 4622.94 4744.49 
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Table A6. Regression models for EPT at block group level (boldfaced values indicates a 

significant parameter at the 0.05 level)  

Parameters 
Spatial Ordinary regression Weighted  regression 

mean lower upper mean lower upper mean lower upper 

β0 5.51 4.03 6.97 5.59 5.362 5.82 5.63 5.37 5.88 

β1 -0.12 -0.33 0.08 -0.25 -0.50 -0.01 -0.27 -0.54 -0.01 

β2 -0.02 -0.29 0.24 -0.17 -0.49 0.16 -0.13 -0.45 0.19 

β3 0.02 -0.20 0.25 -0.72 -0.97 -0.48 -1.08 -1.35 -0.82 

β4 0.13 -0.22 0.48 0.23 -0.20 0.66 0.39 -0.13 0.80 

β5 -0.12 -0.40 0.16 -0.19 -0.54 0.14 -0.21 -0.60 0.17 

β6 0.08 -0.26 0.45 0.12 -0.27 0.50 0.11 -0.28 0.52 

β7 -0.19 -0.64 0.26 0.05 -0.51 0.61 -0.11 -0.71 0.49 

β8 -0.05 -0.56 0.47 0.29 -0.39 0.97 0.38 -0.36 1.14 

β9 -0.16 -0.74 0.44 0.11 -0.69 0.91 0.06 -0.80 0.96 

β10 0.15 -0.19 0.50 0.19 -0.27 0.65 0.14 -0.36 0.63 

β11 -0.09 -0.42 0.23 0.10 -0.22 0.41 0.23 -0.11 0.58 

β12 0.16 -0.07 0.40 0.23 -0.08 0.54 0.32 -0.02 0.67 

β13 0.05 -0.26 0.35 0.18 -0.22 0.57 0.15 -0.28 0.57 

β14 0.27 -0.13 0.69 0.27 -0.26 0.77 0.18 -0.39 0.75 

β15 -0.30 -0.76 0.15 -0.34 -0.93 0.29 -0.34 -1.04 0.36 

β16 0.22 -0.03 0.47 0.16 -0.18 0.50 0.20 -0.16 0.57 

β17 -0.24 -0.48 0.01 -0.01 -0.32 0.31 0.09 -0.26 0.44 

𝜏2 29.30 26.37 32.61 55.32 49.86 61.25 12.03 10.86 13.32 

𝛾 0.98 0.95 0.996 0 0 0 0 0 0 

DIC 3505.78 3844.15 3956.94 
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Table A7. Regression models for HBI at block group level (boldfaced values indicates a 

significant parameter at the 0.05 level)  

Parameters 
Spatial Ordinary regression Weighted  regression 

mean lower upper mean lower upper mean lower upper 

β0 5.01 4.60 5.38 5.015 4.92 5.10 4.99 4.89 5.09 

β1 -0.11 -0.20 -0.02 -0.07 -0.18 0.03 -0.07 -0.18 0.04 

β2 -0.07 -0.19 0.05 0.01 -0.12 0.14 0.02 -0.11 0.15 

β3 0.04 -0.06 0.14 0.34 0.24 0.44 0.43 0.33 0.54 

β4 0.09 -0.06 0.25 0.20 0.02 0.38 0.24 0.045 0.44 

β5 -0.01 -0.13 0.12 -0.06 -0.20 0.08 -0.10 -0.25 0.06 

β6 -0.01 -0.16 0.15 0.08 -0.08 0.24 0.04 -0.12 0.21 

β7 0.05 -0.16 0.25 0.10 -0.13 0.33 0.11 -0.14 0.36 

β8 -0.04 -0.28 0.18 -0.13 -0.40 0.15 -0.29 -0.59 0.02 

β9 -0.22 -0.49 0.04 -0.50 -0.82 -0.18 -0.71 -1.06 -0.36 

β10 0.08 -0.07 0.24 0.05 -0.15 0.24 0.03 -0.18 0.23 

β11 0.05 -0.09 0.20 -0.01 -0.14 0.12 -0.04 -0.17 0.10 

β12 -0.01 -0.12 0.09 -0.03 -0.16 0.10 -0.06 -0.20 0.07 

β13 0.04 -0.09 0.18 -0.10 -0.26 0.05 -0.13 -0.30 0.05 

β14 0.12 -0.06 0.30 0.13 -0.08 0.34 0.15 -0.08 0.38 

β15 -0.13 -0.34 0.07 -0.07 -0.32 0.19 -0.05 -0.33 0.23 

β16 -0.12 -0.24 -0.01 -0.17 -0.31 -0.03 -0.14 -0.28 0.01 

β17 -0.01 -0.12 0.09 -0.01 -0.15 0.12 0.03 -0.13 0.18 

𝜏2 5.90 5.31 6.58 9.33 8.42 10.35 2.06 1.85 2.28 

𝛾 0.95 0.91 0.99 0 0 0 0 0 0 

DIC 2305.94 2528.70 2651.31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 
 

Table A8. Regression models for IBI at block group level (boldfaced values indicates a 

significant parameter at the 0.05 level)  

Parameters 
Spatial Ordinary regression Weighted  regression 

mean lower upper mean lower upper mean lower upper 

β0 49.14 47.79 50.47 48.98 48.4 49.56 48.99 48.4 49.6 

β1 0.34 -0.29 0.96 0.81 0.19 1.43 0.59 -0.05 1.21 

β2 -0.9 -1.75 -0.08 -1.7 -2.51 -0.85 -1.71 -2.51 -0.92 

β3 -0.57 -1.26 0.08 -0.94 -1.55 -0.34 -1.14 -1.77 -0.5 

β4 -0.69 -1.75 0.36 -0.77 -1.87 0.34 -0.97 -2.17 0.21 

β5 -0.29 -1.13 0.57 -0.48 -1.37 0.36 -0.41 -1.36 0.52 

β6 -0.42 -1.45 0.67 -0.64 -1.6 0.38 -0.65 -1.66 0.33 

β7 1.74 0.38 3.11 1.00 -0.38 2.43 0.86 -0.60 2.35 

β8 -0.56 -2.16 1.07 -1.19 -2.98 0.52 -1.09 -2.92 0.70 

β9 0.39 -1.42 2.197 0.09 -1.94 2.06 0.17 -1.95 2.24 

β10 -0.38 -1.48 0.69 -0.59 -1.81 0.59 -0.76 -2.00 0.51 

β11 -0.37 -1.27 0.50 0.17 -0.62 0.95 0.36 -0.46 1.18 

β12 0.07 -0.66 0.83 0.38 -0.41 1.20 0.23 -0.56 1.04 

β13 0.5 -0.42 1.43 1.35 0.35 2.38 1.43 0.40 2.45 

β14 -0.93 -2.15 0.32 -1.44 -2.77 -0.15 -1.74 -3.14 -0.32 

β15 1.01 -0.38 2.45 1.09 -0.48 2.69 1.24 -0.47 2.96 

β16 -0.92 -1.71 -0.13 -1.22 -2.09 -0.35 -1.26 -2.11 -0.42 

β17 0.15 -0.60 0.89 0.14 -0.66 0.94 0.24 -0.63 1.11 

𝜏2 281.2 252.8 313.7 354.2 319.4 393.2 71.6 64.7 79.3 

𝛾 0.84 0.74 0.93 0 0 0 0 0 0 

DIC 5120.12 5216.79 5275.78 
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APPENDIX B: Study Two 

 

 

Table B1. Input parameters used for stream health predictive models 
Modeling 

approach 

Stream health 

measure 

Water quantity Water quality 

One-

phase 

IBI* 2 indices including: 

1 annual average of flow, and 

1 stream segment gradient 

3 indices including: 

1 annual average of phosphorus, and 

2 seasonal averages of nitrogen 

concentrations 

 HBI** 1 index of cross-sectional area 3 indices including: 

2 annual averages of nitrogen, and 

1 seasonal average of nitrogen 

concentrations 

 FIBI** 2 indices including: 

1 annual average of flow, and 

1 cross-sectional area 

2 indices including: 

1 annual average of nitrogen, and 

1 annual average of phosphorus 

concentrations 

 EPT** 2 indices including: 

1 seasonal average of flow, and  

1 cross-sectional area 

2 annual average indices of nitrogen 

concentration 

 

Two-

phase 

All 171 indices introduced by Poff et 

al. (1997), including: 

94 indices of magnitude, 

14 indices of frequency, 

44 indices of duration, 

10 indices of timing, and 

9 indices of rate of change in 

flow. 

78 indices, including: 

1 annual average, 

1 annual average of coefficient of 

variation, 

12 seasonal averages, and 

12 seasonal averages of coefficient 

of variations for sediment, total 

nitrogen, and total phosphorus loads.  
* This data was obtained from Einheuser et al. (2013a) 
** This data was obtained from Einheuser et al. (2012) 
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Table B2. Comparison of root-mean-square error of developed stream health predictive 

models 
Stream 

health 

measures 

One-phase 

approach 

  Two-phase 

approach 

 

All streams  All streams Headwater streams Medium and large streams 

IBI 16.37*  7.56**** 6.24**** 4.96**** 

HBI 0.45**  0.27*** 0.21*** 0.11*** 

FIBI 5.46**  4.14*** 1.71*** 2.01*** 

EPT 2.57**  2.04*** 0.73*** 1.10*** 
* This data was obtained from Einheuser et al. (2013a) 
** This data was obtained from Einheuser et al. (2012) 
*** This data was obtained from Daneshvar et al. (2017) 
**** Results obtained from this study 
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Table B3. Regression models for IBI at county level (Boldfaced values indicate significant 

parameters at the 0.05 level) 
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 45.15 41.25 49.14  45.04 41.74 48.34  45.20 42.20 48.26 

𝛽1 -10.21 -15.65 -4.89  -10.44 -16.77 -4.32  -10.14 -15.55 -4.39 

𝛽2 -28.10 -88.45 29.65  -33.09 -96.69 29.10  -28.48 -87.58 29.80 

𝛽3 13.04 2.99 23.50  14.07 3.34 24.65  13.41 2.54 23.50 

𝛽4 -4.29 -15.89 7.20  -5.03 -18.38 8.02  -4.24 -15.88 7.68 

𝛽5 -6.13 -22.34 10.23  -6.59 -27.57 14.07  -6.30 -23.61 10.68 

𝛽6 5.22 -11.74 21.78  4.30 -13.43 21.47  5.27 -11.23 22.16 

𝛽7 -7.79 -23.15 8.03  -6.71 -23.73 10.91  -7.91 -24.59 8.25 

𝛽8 11.02 -23.49 45.46  9.27 -28.02 47.25  11.14 -24.40 46.32 

𝛽9 9.46 -33.63 52.51  6.92 -39.72 54.71  9.29 -35.75 52.58 

𝛽10 81.90 -58.65 228.29  94.54 -49.31 240.04  82.46 -61.00 224.19 

𝛽11 0.42 -12.59 13.63  1.24 -13.55 15.83  0.31 -13.22 13.93 

𝛽12 14.69 -4.23 34.34  16.67 -4.22 37.40  14.99 -5.71 34.22 

𝛽13 -3.24 -18.23 11.55  -3.57 -17.06 10.34  -3.73 -18.16 10.94 

𝛽14 10.70 -12.15 33.85  11.06 -13.09 34.49  10.39 -13.25 32.44 

𝛽15 -63.48 -163.35 33.08  -71.27 -173.41 31.56  -63.70 -162.81 35.06 

𝛽16 -6.27 -17.01 3.78  -6.36 -18.83 6.02  -6.12 -16.76 4.93 

𝛽17 1.53 -15.43 19.23  -0.75 -20.03 19.15  1.20 -16.95 19.20 

𝜏2 181.19 56.99 493.82  56.25 16.03 175.95  202.35 63.39 599.48 

𝛾 -0.14 -0.97 0.93  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 156.50  158.74  156.65 
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Table B4. Regression models for HBI at county level (Boldfaced values indicate significant 

parameters at the 0.05 level) 
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 4.96 4.76 5.17  4.95 4.83 5.07  4.95 4.83 5.08 

𝛽1 0.28 0.04 0.51  0.28 0.04 0.51  0.27 0.05 0.50 

𝛽2 1.77 -0.67 4.15  1.98 -0.62 4.37  1.73 -0.63 4.08 

𝛽3 -0.06 -0.50 0.37  -0.07 -0.47 0.31  -0.06 -0.49 0.37 

𝛽4 0.19 -0.30 0.66  0.23 -0.26 0.73  0.19 -0.30 0.67 

𝛽5 0.12 -0.59 0.80  0.12 -0.67 0.90  0.10 -0.60 0.80 

𝛽6 -0.29 -0.95 0.39  -0.21 -0.86 0.47  -0.28 -0.95 0.42 

𝛽7 0.38 -0.28 1.05  0.28 -0.42 0.98  0.36 -0.29 0.99 

𝛽8 0.60 -0.84 2.03  0.64 -0.94 2.03  0.61 -0.84 2.16 

𝛽9 0.65 -1.17 2.39  0.69 -1.19 2.40  0.66 -1.12 2.52 

𝛽10 -4.60 -10.47 1.26  -4.96 -10.52 0.79  -4.48 -10.20 1.40 

𝛽11 -0.06 -0.62 0.48  -0.06 -0.62 0.50  -0.06 -0.60 0.50 

𝛽12 -0.12 -0.94 0.68  -0.17 -0.95 0.56  -0.11 -0.89 0.71 

𝛽13 -0.22 -0.82 0.37  -0.21 -0.75 0.32  -0.23 -0.85 0.37 

𝛽14 -0.50 -1.47 0.41  -0.56 -1.50 0.39  -0.49 -1.46 0.48 

𝛽15 3.08 -1.01 7.09  3.25 -0.80 7.17  2.99 -1.15 6.97 

𝛽16 0.02 -0.41 0.47  0.01 -0.45 0.48  0.03 -0.43 0.46 

𝛽17 0.09 -0.63 0.81  0.15 -0.58 0.90  0.10 -0.64 0.84 

𝜏2 0.32 0.10 0.96  0.08 0.02 0.23  0.34 0.11 1.07 

𝛾 0.09 -0.95 0.96  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 22.47  22.08  21.72 
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Table B5. Regression models for FIBI at county level (Boldfaced values indicate significant 

parameters at the 0.05 level)  
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 14.88 13.64 16.14  14.80 13.93 15.68  14.89 14.00 15.73 

𝛽1 0.88 -0.64 2.46  0.70 -0.98 2.32  0.87 -0.75 2.44 

𝛽2 23.30 7.03 39.78  22.64 5.90 39.48  23.32 7.26 38.89 

𝛽3 -0.49 -3.30 2.30  -0.40 -3.26 2.58  -0.38 -3.30 2.55 

𝛽4 0.61 -2.47 3.89  0.58 -2.88 4.12  0.58 -2.75 3.90 

𝛽5 -3.31 -8.05 1.34  -3.63 -9.13 1.84  -3.36 -7.97 1.25 

𝛽6 3.69 -0.88 8.25  3.94 -0.77 8.48  3.71 -0.95 8.24 

𝛽7 -5.04 -9.59 -0.57  -5.23 -10.04 -0.49  -5.07 -9.39 -0.62 

𝛽8 4.12 -5.60 13.87  3.79 -6.66 14.43  4.39 -5.67 14.26 

𝛽9 6.30 -5.36 18.41  5.75 -7.49 18.78  6.54 -5.96 18.74 

𝛽10 -29.89 -69.31 10.77  -28.71 -69.45 10.96  -29.96 -68.95 9.27 

𝛽11 -0.72 -4.44 2.83  -0.49 -4.60 3.56  -0.81 -4.60 2.87 

𝛽12 3.93 -1.43 9.19  4.06 -1.37 9.46  4.03 -1.35 9.36 

𝛽13 0.67 -3.30 4.71  0.89 -3.13 4.72  0.67 -3.26 4.77 

𝛽14 -0.40 -6.86 6.14  -0.35 -6.82 6.21  -0.31 -6.99 6.28 

𝛽15 9.12 -18.98 36.11  8.41 -19.97 37.58  9.02 -18.43 36.10 

𝛽16 -4.28 -7.16 -1.30  -4.30 -7.58 -1.06  -4.35 -7.29 -1.42 

𝛽17 7.45 2.44 12.25  7.19 1.92 12.53  7.42 2.66 12.25 

𝜏2 14.21 4.38 40.10  4.04 1.23 11.68  15.47 4.99 46.06 

𝛾 -0.06 -0.97 0.96  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 102.85  105.09  102.42 
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Table B6. Regression models for EPT at county level (Boldfaced values indicate significant 

parameters at the 0.05 level)  
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 7.44 6.56 8.31  7.35 6.70 8.01  7.43 6.77 8.09 

𝛽1 0.79 -0.42 1.95  0.73 -0.57 2.05  0.78 -0.46 2.02 

𝛽2 16.01 3.54 28.37  16.37 3.46 29.49  15.91 3.76 28.30 

𝛽3 -0.99 -3.25 1.29  -0.89 -3.14 1.33  -0.94 -3.34 1.29 

𝛽4 0.95 -1.57 3.52  1.02 -1.73 3.81  0.94 -1.46 3.44 

𝛽5 -3.24 -6.88 0.37  -3.25 -7.52 0.93  -3.26 -6.98 0.42 

𝛽6 0.18 -3.34 3.78  0.59 -3.06 4.21  0.24 -3.23 3.85 

𝛽7 0.21 -3.12 3.71  -0.18 -3.70 3.45  0.17 -3.40 3.76 

𝛽8 0.19 -7.55 7.55  -0.02 -8.09 7.99  0.28 -6.96 7.79 

𝛽9 -0.69 -10.00 8.19  -1.01 -11.25 9.34  -0.63 -9.95 8.45 

𝛽10 -28.93 -58.44 1.72  -29.22 -60.29 1.09  -29.02 -59.22 0.48 

𝛽11 -1.55 -4.32 1.27  -1.31 -4.42 1.67  -1.57 -4.46 1.34 

𝛽12 1.11 -3.14 5.21  1.16 -3.19 5.50  1.11 -3.17 5.47 

𝛽13 0.29 -2.82 3.34  0.42 -2.54 3.26  0.28 -2.75 3.47 

𝛽14 -0.34 -5.28 4.50  -0.59 -5.84 4.61  -0.30 -5.11 4.72 

𝛽15 14.95 -6.99 36.04  14.88 -6.91 37.13  15.03 -5.39 36.06 

𝛽16 -2.88 -5.14 -0.54  -2.98 -5.60 -0.46  -2.88 -5.12 -0.53 

𝛽17 5.18 1.34 9.01  5.03 1.03 9.07  5.16 1.40 9.23 

𝜏2 8.58 2.63 25.85  2.39 0.76 7.02  9.53 2.91 29.57 

𝛾 -0.10 -0.96 0.94  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 91.50  94.33  91.56 
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Table B7. Regression models for IBI at census tract level (Boldfaced values indicate 

significant parameters at the 0.05 level) 
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 40.25 28.58 51.49  40.87 39.06 42.64  40.46 38.72 42.18 

𝛽1 -0.15 -1.82 1.56  -1.95 -3.84 -0.03  -2.02 -3.92 -0.16 

𝛽2 0.13 -2.37 2.64  0.14 -2.81 3.08  -0.02 -3.07 3.06 

𝛽3 -0.97 -2.65 0.77  -2.02 -3.85 -0.21  -2.11 -3.98 -0.21 

𝛽4 2.37 -0.73 5.50  2.80 -0.90 6.47  3.04 -0.63 6.63 

𝛽5 -4.68 -7.14 -2.22  -6.00 -9.17 -2.85  -6.07 -9.09 -3.11 

𝛽6 -0.34 -3.43 2.65  -3.00 -6.54 0.51  -1.71 -5.44 1.97 

𝛽7 0.76 -4.02 5.53  -0.22 -6.18 5.74  -1.49 -7.41 4.52 

𝛽8 -1.39 -6.61 4.12  -0.30 -7.15 6.75  -1.66 -8.47 5.02 

𝛽9 -6.03 -11.87 -0.05  -4.69 -12.03 2.73  -5.60 -12.70 1.73 

𝛽10 -2.06 -6.23 2.05  0.29 -5.00 5.51  0.49 -4.75 5.72 

𝛽11 -3.33 -6.20 -0.38  -5.89 -8.80 -3.06  -5.90 -8.77 -3.10 

𝛽12 -0.87 -3.37 1.64  -2.46 -5.55 0.66  -2.13 -5.14 0.90 

𝛽13 -2.56 -5.81 0.72  0.80 -3.52 5.13  1.51 -2.71 5.72 

𝛽14 1.38 -2.66 5.42  3.21 -2.18 8.44  2.46 -2.57 7.47 

𝛽15 -0.87 -5.94 4.14  -2.86 -9.38 3.79  -3.01 -9.37 3.29 

𝛽16 -0.77 -3.44 1.94  -3.06 -6.64 0.43  -3.27 -6.97 0.50 

𝛽17 1.35 -1.15 3.87  0.64 -2.79 4.05  -0.05 -3.41 3.10 

𝜏2 748.36 635.32 880.81  275.47 234.80 320.85  1385.93 1184.42 1614.95 

𝛾 0.98 0.93 1.00  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 2623.42  2786.37  2767.44 
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Table B8. Regression models for HBI at census tract level (Boldfaced values indicate 

significant parameters at the 0.05 level) 
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 5.23 4.83 5.61  5.22 5.16 5.28  5.23 5.17 5.29 

𝛽1 0.00 -0.06 0.07  0.07 0.00 0.13  0.06 0.00 0.13 

𝛽2 -0.02 -0.11 0.08  0.04 -0.06 0.14  0.05 -0.05 0.16 

𝛽3 0.02 -0.04 0.08  -0.03 -0.09 0.04  -0.02 -0.09 0.05 

𝛽4 0.04 -0.08 0.15  0.03 -0.09 0.16  0.03 -0.10 0.16 

𝛽5 -0.01 -0.10 0.08  0.05 -0.06 0.15  0.05 -0.06 0.15 

𝛽6 0.08 -0.03 0.18  0.13 0.01 0.26  0.13 0.01 0.26 

𝛽7 -0.04 -0.22 0.13  0.03 -0.17 0.23  -0.01 -0.21 0.19 

𝛽8 0.03 -0.16 0.22  0.01 -0.23 0.24  0.00 -0.24 0.24 

𝛽9 -0.02 -0.23 0.20  -0.08 -0.33 0.17  -0.08 -0.33 0.17 

𝛽10 0.12 -0.03 0.27  0.03 -0.14 0.21  0.02 -0.16 0.19 

𝛽11 0.03 -0.08 0.13  0.18 0.09 0.28  0.21 0.11 0.31 

𝛽12 0.00 -0.09 0.09  0.06 -0.05 0.17  0.05 -0.06 0.16 

𝛽13 -0.08 -0.20 0.04  -0.18 -0.33 -0.04  -0.21 -0.37 -0.06 

𝛽14 -0.01 -0.15 0.14  -0.08 -0.25 0.10  -0.09 -0.26 0.08 

𝛽15 -0.15 -0.33 0.04  -0.06 -0.29 0.16  -0.05 -0.26 0.17 

𝛽16 0.03 -0.06 0.13  0.06 -0.07 0.18  0.10 -0.02 0.23 

𝛽17 0.00 -0.09 0.09  0.06 -0.05 0.18  0.09 -0.03 0.20 

𝜏2 0.98 0.83 1.15  0.32 0.27 0.37  1.66 1.42 1.93 

𝛾 0.97 0.93 1.00  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 452.75  577.96  567.20 
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Table B9. Regression models for FIBI at census tract level (Boldfaced values indicate 

significant parameters at the 0.05 level) 
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 12.81 9.90 15.63  12.76 12.15 13.37  12.71 12.11 13.30 

𝛽1 0.88 0.25 1.49  0.98 0.33 1.64  0.98 0.32 1.64 

𝛽2 -0.11 -1.09 0.86  -1.04 -2.06 0.01  -0.86 -1.92 0.21 

𝛽3 0.52 -0.11 1.16  1.29 0.65 1.94  1.25 0.58 1.90 

𝛽4 -0.37 -1.56 0.84  -0.27 -1.53 1.03  -0.39 -1.67 0.93 

𝛽5 -0.54 -1.47 0.38  -1.40 -2.46 -0.31  -1.26 -2.30 -0.24 

𝛽6 -0.90 -2.07 0.26  -1.18 -2.44 0.05  -0.88 -2.15 0.39 

𝛽7 1.62 -0.20 3.41  1.25 -0.81 3.30  1.23 -0.84 3.37 

𝛽8 -1.79 -3.80 0.22  -1.16 -3.60 1.27  -1.67 -4.09 0.71 

𝛽9 -1.63 -3.88 0.59  -1.10 -3.64 1.44  -1.33 -3.86 1.23 

𝛽10 -1.33 -2.87 0.25  -0.42 -2.16 1.39  -0.53 -2.38 1.34 

𝛽11 -1.28 -2.37 -0.18  -2.03 -2.99 -1.05  -2.22 -3.21 -1.22 

𝛽12 -0.47 -1.42 0.47  -1.51 -2.63 -0.45  -1.26 -2.34 -0.19 

𝛽13 0.48 -0.75 1.72  -0.21 -1.72 1.31  -0.13 -1.62 1.37 

𝛽14 0.55 -0.98 2.06  0.23 -1.58 2.05  0.30 -1.47 2.05 

𝛽15 1.10 -0.77 3.03  -0.03 -2.29 2.15  0.21 -2.02 2.43 

𝛽16 -1.32 -2.32 -0.31  -0.93 -2.15 0.29  -1.14 -2.39 0.15 

𝛽17 0.51 -0.48 1.47  0.67 -0.51 1.80  0.58 -0.57 1.69 

𝜏2 107.96 92.13 126.42  32.81 27.99 38.47  170.00 145.41 197.76 

𝛾 0.95 0.88 0.99  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 1984.03  2090.95  2081.21 
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Table B10. Regression models for EPT at census tract level (Boldfaced values indicate 

significant parameters at the 0.05 level)  
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 5.80 4.08 7.58  5.91 5.67 6.16  5.83 5.57 6.08 

𝛽1 0.38 0.13 0.63  0.16 -0.10 0.42  0.10 -0.17 0.37 

𝛽2 0.22 -0.13 0.60  0.25 -0.16 0.66  0.15 -0.31 0.60 

𝛽3 0.20 -0.06 0.46  -0.01 -0.27 0.26  -0.01 -0.29 0.26 

𝛽4 -0.32 -0.78 0.15  -0.34 -0.87 0.17  -0.34 -0.87 0.20 

𝛽5 -0.21 -0.59 0.15  -0.29 -0.72 0.15  -0.29 -0.72 0.15 

𝛽6 -0.06 -0.52 0.40  -0.68 -1.20 -0.17  -0.62 -1.16 -0.09 

𝛽7 0.18 -0.52 0.89  0.00 -0.86 0.83  -0.10 -0.96 0.75 

𝛽8 -0.05 -0.85 0.75  -0.06 -1.04 0.93  -0.21 -1.21 0.78 

𝛽9 0.00 -0.86 0.85  0.29 -0.73 1.31  0.19 -0.86 1.26 

𝛽10 -0.13 -0.74 0.47  0.07 -0.64 0.80  0.06 -0.68 0.80 

𝛽11 -0.51 -0.93 -0.08  -1.05 -1.44 -0.66  -1.05 -1.46 -0.64 

𝛽12 0.01 -0.38 0.38  0.10 -0.33 0.53  0.08 -0.36 0.53 

𝛽13 -0.02 -0.52 0.47  0.44 -0.17 1.04  0.49 -0.14 1.11 

𝛽14 0.04 -0.57 0.65  0.31 -0.42 1.06  0.13 -0.59 0.87 

𝛽15 0.18 -0.58 0.90  0.11 -0.78 1.01  0.21 -0.71 1.12 

𝛽16 -0.19 -0.59 0.21  -0.50 -1.01 0.01  -0.44 -0.98 0.11 

𝛽17 0.06 -0.32 0.44  0.02 -0.45 0.51  0.01 -0.46 0.47 

𝜏2 16.64 14.19 19.55  5.41 4.62 6.33  29.10 24.82 34.08 

𝛾 0.98 0.93 1.00  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 1378.87  1501.52  1503.99 
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Table B11. Regression models for IBI at block group level (Boldfaced values indicate 

significant parameters at the 0.05 level) 
Parameter

s 

spatial  Weighted regression  Ordinary regression 

 
mean lower upper  mean lower upper  mean lower upper 

𝛽0 39.00 27.53 49.97  39.39 38.01 40.73  39.31 38.00 40.61 

𝛽1 0.79 -0.30 1.88  -1.43 -2.87 0.04  -1.63 -3.03 -0.21 

𝛽2 -1.18 -2.60 0.24  -2.07 -3.81 -0.30  -1.72 -3.51 0.08 

𝛽3 -0.63 -1.81 0.53  -2.97 -4.42 -1.50  -2.70 -4.08 -1.34 

𝛽4 0.36 -1.48 2.23  0.96 -1.68 3.53  1.90 -0.63 4.34 

𝛽5 -0.98 -2.48 0.44  -3.25 -5.34 -1.21  -2.82 -4.79 -0.89 

𝛽6 -3.86 -5.74 -1.90  -4.30 -6.49 -2.19  -3.97 -6.22 -1.76 

𝛽7 1.77 -0.61 4.14  0.30 -2.91 3.59  -0.30 -3.38 2.83 

𝛽8 2.89 0.13 5.61  2.59 -1.30 6.53  2.03 -1.82 5.85 

𝛽9 0.68 -2.55 3.78  0.27 -4.31 5.00  -0.47 -4.96 3.91 

𝛽10 -2.14 -4.00 -0.31  -1.60 -4.37 1.15  -1.46 -4.10 1.21 

𝛽11 -0.79 -2.52 0.90  -4.19 -5.94 -2.39  -3.81 -5.55 -2.05 

𝛽12 -1.02 -2.25 0.21  -2.52 -4.29 -0.72  -2.18 -3.85 -0.45 

𝛽13 -0.50 -2.01 1.03  0.18 -2.11 2.50  0.41 -1.87 2.65 

𝛽14 -0.46 -2.57 1.67  -0.73 -3.87 2.51  -0.58 -3.51 2.34 

𝛽15 1.82 -0.57 4.20  1.03 -2.70 4.83  0.68 -2.85 4.25 

𝛽16 0.88 -0.47 2.21  -0.31 -2.24 1.61  0.13 -1.79 2.10 

𝛽17 1.54 0.24 2.83  1.42 -0.53 3.37  1.23 -0.59 3.04 

𝜏2 
810.55 731.39 

901.9

7 

 353.4

6 

318.9

7 

392.2

1 

 1765.4

5 

1593.5

3 

1952.2

8 

𝛾 0.99 0.97 1.00  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 5964.52  6454.62  6403.28 
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Table B12. Regression models for HBI at block group level (Boldfaced values indicate 

significant parameters at the 0.05 level)  
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 5.23 4.94 5.52  5.23 5.18 5.27  5.23 5.18 5.28 

𝛽1 -0.03 -0.07 0.01  0.01 -0.04 0.06  0.02 -0.03 0.07 

𝛽2 -0.04 -0.10 0.01  -0.10 -0.16 -0.03  -0.10 -0.17 -0.04 

𝛽3 -0.01 -0.05 0.04  -0.02 -0.07 0.03  -0.01 -0.06 0.04 

𝛽4 -0.02 -0.09 0.05  -0.08 -0.17 0.01  -0.10 -0.19 -0.01 

𝛽5 -0.01 -0.07 0.04  0.03 -0.04 0.10  0.01 -0.06 0.08 

𝛽6 0.03 -0.04 0.10  0.07 -0.01 0.15  0.08 0.01 0.16 

𝛽7 -0.02 -0.11 0.07  0.07 -0.04 0.19  0.06 -0.05 0.17 

𝛽8 0.05 -0.06 0.15  0.14 0.00 0.28  0.11 -0.03 0.24 

𝛽9 0.01 -0.10 0.13  0.05 -0.12 0.22  0.03 -0.13 0.19 

𝛽10 -0.02 -0.09 0.05  -0.10 -0.19 -0.01  -0.09 -0.19 0.00 

𝛽11 -0.01 -0.08 0.06  0.10 0.04 0.17  0.11 0.04 0.17 

𝛽12 -0.03 -0.08 0.02  -0.02 -0.08 0.05  -0.03 -0.09 0.03 

𝛽13 0.05 -0.01 0.11  0.01 -0.07 0.09  0.02 -0.06 0.09 

𝛽14 0.03 -0.05 0.11  -0.05 -0.16 0.05  -0.05 -0.15 0.05 

𝛽15 -0.01 -0.10 0.08  0.07 -0.06 0.20  0.07 -0.05 0.19 

𝛽16 0.00 -0.05 0.05  0.01 -0.06 0.08  0.02 -0.05 0.09 

𝛽17 0.01 -0.04 0.05  0.02 -0.05 0.09  0.03 -0.03 0.09 

𝜏2 1.19 1.07 1.33  0.43 0.38 0.47  2.21 1.99 2.45 

𝛾 0.98 0.95 1.00  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 1139.18  1488.91  1463.87 
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Table B13. Regression models for FIBI at block group level (Boldfaced values indicate 

significant parameters at the 0.05 level) 
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 12.95 10.09 15.63  12.74 12.27 13.20  12.88 12.44 13.31 

𝛽1 0.76 0.36 1.14  1.02 0.55 1.50  0.77 0.27 1.25 

𝛽2 -0.55 -1.07 -0.02  -0.72 -1.31 -0.15  -0.68 -1.30 -0.03 

𝛽3 -0.01 -0.44 0.43  0.69 0.21 1.18  0.51 0.03 1.00 

𝛽4 0.16 -0.52 0.86  0.02 -0.86 0.90  0.25 -0.63 1.09 

𝛽5 -0.52 -1.07 0.00  -0.96 -1.66 -0.28  -0.76 -1.42 -0.09 

𝛽6 -0.74 -1.44 -0.05  -1.11 -1.87 -0.38  -1.13 -1.90 -0.36 

𝛽7 0.15 -0.71 1.06  -0.30 -1.40 0.81  -0.21 -1.30 0.87 

𝛽8 -0.94 -1.97 0.06  -0.89 -2.24 0.48  -1.07 -2.38 0.24 

𝛽9 -0.79 -1.97 0.36  -0.36 -1.92 1.22  -0.36 -1.90 1.16 

𝛽10 -0.25 -0.93 0.43  0.15 -0.77 1.04  0.23 -0.69 1.14 

𝛽11 -0.16 -0.82 0.48  -1.42 -2.02 -0.79  -1.22 -1.82 -0.59 

𝛽12 0.23 -0.23 0.69  -0.43 -1.04 0.18  -0.33 -0.94 0.29 

𝛽13 0.10 -0.46 0.69  -0.20 -0.98 0.58  -0.18 -0.94 0.59 

𝛽14 -0.28 -1.05 0.51  -0.08 -1.15 0.95  -0.15 -1.15 0.87 

𝛽15 0.52 -0.39 1.41  -0.16 -1.42 1.12  -0.17 -1.38 1.06 

𝛽16 0.04 -0.46 0.54  -0.04 -0.69 0.60  -0.11 -0.77 0.56 

𝛽17 0.04 -0.43 0.52  0.37 -0.32 1.05  0.43 -0.20 1.05 

𝜏2 111.26 100.11 123.76  41.16 37.09 45.62  211.86 191.23 235.16 

𝛾 0.98 0.95 1.00  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 4491.20  4865.83  4836.51 
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Table B14. Regression models for EPT at block group level (Boldfaced values indicate 

significant parameters at the 0.05 level) 
Parameters spatial  Weighted regression  Ordinary regression  

mean lower upper  mean lower upper  mean lower upper 

𝛽0 5.85 4.70 7.01  5.87 5.68 6.07  5.82 5.63 6.01 

𝛽1 0.32 0.14 0.49  0.27 0.06 0.47  0.22 0.02 0.43 

𝛽2 0.09 -0.15 0.33  0.14 -0.12 0.39  0.10 -0.17 0.38 

𝛽3 -0.03 -0.23 0.16  -0.18 -0.39 0.02  -0.11 -0.32 0.09 

𝛽4 0.04 -0.27 0.34  -0.05 -0.43 0.33  0.04 -0.33 0.41 

𝛽5 -0.14 -0.38 0.11  -0.33 -0.64 -0.03  -0.29 -0.58 -0.01 

𝛽6 -0.17 -0.48 0.15  -0.44 -0.77 -0.13  -0.52 -0.85 -0.19 

𝛽7 -0.15 -0.54 0.24  -0.43 -0.90 0.05  -0.44 -0.90 0.04 

𝛽8 0.02 -0.43 0.49  -0.33 -0.92 0.25  -0.32 -0.91 0.25 

𝛽9 0.01 -0.51 0.52  0.03 -0.66 0.69  0.01 -0.67 0.66 

𝛽10 -0.07 -0.38 0.24  0.31 -0.09 0.72  0.27 -0.14 0.67 

𝛽11 -0.16 -0.44 0.11  -0.69 -0.96 -0.43  -0.75 -1.01 -0.49 

𝛽12 0.15 -0.06 0.36  0.14 -0.12 0.40  0.10 -0.16 0.37 

𝛽13 -0.05 -0.31 0.21  0.13 -0.20 0.46  0.20 -0.13 0.55 

𝛽14 -0.08 -0.43 0.28  0.16 -0.29 0.62  0.08 -0.36 0.51 

𝛽15 0.11 -0.28 0.52  -0.31 -0.86 0.25  -0.23 -0.76 0.30 

𝛽16 0.02 -0.20 0.24  -0.17 -0.45 0.10  -0.17 -0.46 0.12 

𝛽17 0.07 -0.14 0.28  0.23 -0.06 0.51  0.19 -0.08 0.45 

𝜏2 22.32 20.13 24.85  7.44 6.72 8.24  39.16 35.32 43.48 

𝛾 0.98 0.95 1.00  0.00 0.00 0.00  0.00 0.00 0.00 

DIC 3301.39  3602.18  3589.46 
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Table B15. Significant parameters of former developed single level (with no random effect) 

regression models (adapted from Daneshvar et al. (2016))  
Index Census level  Spatial  Weighted regression  Ordinary regression 

IBI County  S1, S3, S7, S11, 

S12, S13, S14, S16, 

S17 

 S1, S3, S7, S11, S12, 

S13, S14, S16, S17 

 S1, S3, S7, S11, 

S12, S13, S14, S16, 

S17 

 Census tract  S16  S3, S12, S14, S15, 

S16 

 S3, S12, S14, S15, 

S16 

 Block group  S2, S7, S16  S2, S3, S13, S14, S16  S1, S2, S3, S13, 

S14, S16 

        

HBI County  S2, S3, S5, S10, 

S13, S17 

 S2, S3, S5, S10, S13, 

S17 

 S2, S3, S5, S10, 

S13, S17 

 Census tract  S3  S2, S3, S9, S11,S12  S3, S9, S11,S12 

 Block group  S1, S16  S3, S9  S3, S9, S16 

        

FIBI County  S2, S3, S6, S10, 

S15, S17 

 S2, S3, S6, S10, S15, 

S17 

 S2, S3, S6, S10, 

S15, S17 

 Census tract  S2, S10  S3, S4, S9, S10, S13  S3, S4, S9, S10, 

S11, S13 

 Block group  S2, S5, S6, S7  S1, S2, S3, S4, S5   S1, S2, S3, S4, S8, 

S13 

        

EPT County  S1, S3, S5, S8, S9, 

S15 

 S1, S3, S5, S8, S9, 

S15 

 S1, S3, S5, S8, S9, 

S15 

 Census tract  S4, S5, S7, S9  S2, S3, S4, S10, S12, 

S17 

 S2, S3, S4, S10, 

S12, S15 

 Block group  -  S1, S3  S1, S3 

 

 

 

 

 

 

 

 

 

 



130 
 

Table B16. DICs of multilevel models with random effect (boldfaced values represent best 

models at each census level)  
Census 

level 

IBI HBI FIBI EPT County Census tract Block group 

County 157.05 21.66 102.72 91.66 S - - 

 155.21 21.26 103.02 92.10 WR - - 

 159.36 20.66 104.73 92.91 OR - - 

Census tract 2623.40 452.17 1984.62 1378.67 - S - 

 2767.23 566.99 2080.73 1503.45 - WR - 

 2786.39 578.36 2090.36 1500.95 - OR - 

 2545.98 374.99 1911.28 1303.82 S S - 

 2693.09 519.87 2051.87 1494.41 S WR - 

 2758.83 532.41 2127.92 1492.62 S OR - 

 2547.84 374.58 1907.28 1302.31 WR S - 

 2738.06 518.64 2120.23 1496.95 WR WR - 

 2711.38 531.05 2128.32 1495.14 WR OR - 

 2577.94 398.04 1939.60 1332.71 OR S - 

 2797.10 520.75 2117.31 1495.01 OR WR - 

 2778.78 533.68 2124.73 1494.39 OR OR - 

Block group 5963.90 1138.60 4490.49 3301.54 - - S 

 4771.02 -14.54 3157.34 2728.20 - S S 

 4760.74 -147.77 3477.51 2179.16 - WR S 

 5209.03 424.34 5199.75 3085.80 - OR S 

 5891.49 1059.42 4414.88 3227.68 S - S 

 4638.39 -58.75 3995.43 2549.41 S S S 

 4668.49 -178.71 3012.60 2567.20 S WR S 

 5101.30 331.39 5664.51 3286.72 S OR S 

 5891.27 1061.49 4414.31 3225.52 WR - S 

 4748.95 -168.91 4891.46 1951.01 WR S S 

 4582.47 -185.82 3067.69 2218.64 WR WR S 

 5196.39 326.04 5669.20 3677.82 WR OR S 

 5917.26 1085.44 4448.66 3253.57 OR - S 

 4750.03 27.82 3156.61 3936.86 OR S S 

 4575.22 -232.51 3178.86 1976.94 OR WR S 

 5124.94 335.07 5707.52 3457.36 OR OR S 

 6402.57 1463.68 4835.85 3588.55 - - WR 

 6310.63 1154.37 5978.36 4228.37 - S WR 

 5278.24 1384.96 5248.37 4448.53 - WR WR 

 5647.59 1367.25 6153.98 4427.92 - OR WR 

 6349.00 1367.86 4820.98 3515.08 S - WR 

 4981.45 1074.26 5076.34 4147.85 S S WR 

 5215.06 1282.79 5250.74 4368.86 S WR WR 
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Table B16. (cont’d) 

 6552.89 1269.07 6148.93 4346.66 S OR WR 

 6352.81 1368.25 4822.64 3522.26 WR - WR 

 8141.82 1075.42 5901.44 4150.88 WR S WR 

 5110.65 1284.42 4404.15 4379.42 WR WR WR 

 5649.36 1269.91 6150.23 4358.68 WR OR WR 

 6403.09 1365.45 4819.88 3520.87 OR - WR 

 5244.83 1099.75 5930.90 4181.62 OR S WR 

 5096.33 1281.20 4384.33 4374.62 OR WR WR 

 5561.06 1266.87 6149.38 4354.36 OR OR WR 

 6454.18 1488.14 4865.62 3601.96 - - OR 

 5255.03 1211.91 5999.84 4264.16 - S OR 

 5174.01 1431.45 4433.10 4483.43 - WR OR 

 6617.13 1436.20 6192.67 4481.22 - OR OR 

 6451.08 1396.14 4837.30 3530.47 S - OR 

 5058.44 1134.36 5205.39 4194.31 S S OR 

 5132.75 1331.21 5295.58 4402.44 S WR OR 

 6613.27 1337.35 6178.11 4401.13 S OR OR 

 6405.06 1397.41 4839.72 3537.43 WR - OR 

 5204.89 1132.23 5923.58 4192.28 WR S OR 

 5287.24 1333.95 4448.26 4410.71 WR WR OR 

 6788.09 1340.97 6180.55 4408.32 WR OR OR 

 6456.93 1393.59 4837.34 3536.58 OR - OR 

 5170.98 1154.58 5953.40 4223.69 OR S OR 

 6308.15 1330.46 5317.24 4408.29 OR WR OR 

 6652.80 1335.65 6175.45 4407.38 OR OR OR 

S: Spatial; WR: Weighted Regression; OR: Ordinary regression 
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Figure B1. Predicted stream health indices for Saginaw River Basin: (a) IBI, (b) HBI, (c) 

FIBI, (d) EPT using the two-phased approach (data for sections b, c, and d are adapted 

from Daneshvar et al. (2017)) 
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Figure B2. Correlation matrix of indices at the census tract level. The diagonal 

represents the scatterplots, while lower level and upper levels represent pairwise 

distributions and correlation coefficients, respectively. Boldfaced numbers represent 

significant correlation coefficients at the 0.05 level. Red and blue values represent 

positive and negative significant correlation coefficients with absolute value above 0.7 at 

0.05 level  
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Figure B3. Correlation matrix of indices at the block group level. The diagonal 

represents the scatterplots, while lower level and upper levels represent pairwise 

distributions and correlation coefficients, respectively. Boldfaced numbers represent 

significant correlation coefficients at the 0.05 level. Red and blue values represent 

positive and negative significant correlation coefficients with absolute value above 0.7 at 

0.05 level 
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