
Using Formal Analysis and Search-based Techniques to
Address the Assurance of Cyber-Physical Systems at the Requirements Level

By

Byron DeVries

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor Of Philosophy

2017

ABSTRACT

Using Formal Analysis and Search-based Techniques to
Address the Assurance of Cyber-Physical Systems at the Requirements Level

By

Byron DeVries

For high-assurance cyber-physical systems (CPS), such as the onboard features in modern

transportation systems (e.g., automobiles, trains, and flight systems), ensuring acceptable

and safe behavior is of paramount importance. Furthermore, the increasing complexity and

the number of onboard features for autonomous vehicles further exacerbates the challenge

of guaranteeing safe behavior. The operation of these high-assurance cyber-physical systems

depends on the specification, implementation, and verification of those systems. Obstacles

to assessing and ensuring assurance for cyber-physical system requirements may occur in

many forms, but two significant sources of specification errors are incomplete requirements

specifications and undesired feature interactions. In the case of incomplete requirements, it

can be challenging to enumerate all the decomposed requirements necessary to satisfy a re-

quirement (i.e., ensuring completeness), especially when considering different combinations

of environmental conditions. A feature interaction occurs when two or more features satisfy

specific properties in isolation, but no longer satisfy those properties when they are composed

together. It may be necessary to analyze an exponential number of feature combinations to

detect all possible interactions, resulting in a potentially exponential number of feature in-

teraction results presented to the system developer. Furthermore, the uncertainty created by

unexpected system and environmental scenarios exacerbates already difficult requirements

specifications problems, many of which involve an exhaustive search for errors and their

causes. That is, the exponential number of possibilities represents not only computational

growth but also growth in the effort it takes the system designer to assess the results. This

doctoral research tackles two key requirements assurance problems that exhibit these charac-

teristics: requirements incompleteness and undesired feature interactions. The work explores

how formal analysis and search-based techniques can be used in a complementary and syn-

ergistic fashion to address the assurance of cyber-physical systems facing environmental and

system uncertainty, both at design time and run time. Industrial applications are used to

demonstrate the respective techniques.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Betty H. C. Cheng, for taking a chance on a

non-traditional student who remained in the workforce. Without Dr. Cheng’s understanding

and support I would have never had such an opportunity, much less completed a doctoral

program. I could not have asked for a better advisor, or one I could have learned more from.

I would also like to thank my committee members, especially for their flexibility given

their very busy schedules. A heart felt thank you to Dr. Kalyanmoy Deb, Dr. Sandeep

Kulkarni, and Dr. Philip McKinley.

Many thanks to those I met along the way, especially those from the SENS lab. A special

thanks to Dr. Tony Clark, Dr. Erik Fredericks, and Dr. Jared Moore whose experiences I

could learn from as they went through the process before me.

I would be remiss if I did not thank Dr. Paul Jorgensen, a true friend and mentor, for

sparking my interest in software engineering in his graduate courses. Additionally, I would

like to thank Dr. Greg Wolffe for allowing me to take part in my first real academic research,

and Dr. Christian Trefftz for his constant positivity, supportiveness, and providing a very

kind introduction to Dr. Cheng.

Most importantly, I would like to thank my wife Angela. Without her, this would have

never been possible. I have leaned on her for both practical and emotional support through-

out, and she gave liberally of both.

iv

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . xi

Chapter 1 Introduction . 1
1.1 Problem Description . 2
1.2 Thesis Statement . 4
1.3 Research Contributions . 4
1.4 Organization of Dissertation . 6

Chapter 2 Background . 8
2.1 Goal Models . 8
2.2 Utility Functions . 10
2.3 Symbolic Analysis . 11
2.4 Evolutionary Computation . 11
2.5 Industrial Applications . 12

2.5.1 Automotive Braking Systems . 12
2.5.2 Automotive Adaptive Cruise Control 13

Chapter 3 Detecting Incomplete Requirements: Using Symbolic Analysis 15
3.1 Introduction . 16
3.2 Adaptive Cruise Control Input Model . 18
3.3 Symbolic Analysis Approach . 21

3.3.1 Ares Process . 24
3.3.2 Scalability and Limitations . 28

3.4 Symbolic Analysis Case Study . 29
3.4.1 Incomplete AND Decomposition: Goal D.1 29
3.4.2 Incomplete OR Decomposition: Goal B.3 34
3.4.3 Discussion . 38
3.4.4 Threats to Validity . 38

3.5 Symbolic Analysis Related Work . 39
3.6 Summary . 40

Chapter 4 Detecting Incomplete Requirements: Using Evolutionary Com-
putation . 41

4.1 Introduction . 41
4.2 Evolutionary Computation Approach . 43

4.2.1 Step 1: Generate Detection Logic . 44
4.2.2 Step 2: Search for Counterexamples and Summarize 46
4.2.3 Scalability and Limitations . 49

4.3 Evolutionary Computation Case Study . 49

v

4.3.1 Symbolic Analysis . 50
4.3.2 Evolutionary Computation . 50
4.3.3 SA Initialization then EC . 50
4.3.4 Periodic SA with EC Results . 51
4.3.5 Comparison . 52

4.4 Evolutionary Computation Related Work . 53
4.4.1 Requirements Completeness . 53
4.4.2 Search for Diversity . 54

4.5 Summary . 54

Chapter 5 Detecting Incomplete Requirements: At Run Time 55
5.1 Detecting at Run Time . 56
5.2 Complete Adaptive Cruise Control Input Model 59
5.3 Run-Time Approach . 61

5.3.1 DFD Step 1: Generate Logical Expression 62
5.3.2 DFD Step 2: Generate Monitoring Code 65
5.3.3 Execution Time & Deployment . 66
5.3.4 Limitations . 67

5.4 Run-Time Examples . 67
5.4.1 Experimental Setup . 68
5.4.2 Incomplete Requirement Decomposition 68
5.4.3 Inconsistent Requirement Decomposition 70
5.4.4 Threats to Validity . 72

5.5 Run-Time Related Work . 73
5.5.1 Requirements Completeness . 73
5.5.2 Run-Time Monitors . 74

5.6 Lykus Conclusion . 74

Chapter 6 Detecting Feature Interactions: Using Symbolic Analysis 75
6.1 Introduction . 76
6.2 Formally Specifying Feature Interactions . 78

6.2.1 Standard Feature Interactions . 78
6.2.2 N-Way Feature Interaction Extension 79
6.2.3 Requirements-Based Formalization of Feature Interactions 79
6.2.4 Phorcys Feature Interaction Causes 81

6.3 Proofs of Soundness and Completeness . 82
6.4 Goal-Based Modeling of Features . 85

6.4.1 Features . 85
6.4.2 Pre- and Post-Conditions . 86
6.4.3 Braking System Goal Model Example 87

6.5 Approach . 89
6.5.1 FI Detection Process . 89
6.5.2 Assumptions and Limitations . 98

6.6 Examples . 99
6.6.1 Specification Error Causes . 99

vi

6.6.2 Modeling Error Introduces FI . 101
6.6.3 Feature Interaction Free Model . 104
6.6.4 Discussion . 105

6.7 Related Work . 105
6.7.1 Feature Interaction . 105
6.7.2 Feature Representation . 107

6.8 Summary . 108

Chapter 7 Detecting Feature Interactions: Using Evolutionary Computation109
7.1 Introduction . 110
7.2 Input Model . 112
7.3 Evolutionary Computation Approach . 112

7.3.1 Phorcys-EC Approach . 113
7.3.2 Comparison of Analysis Approaches 116

7.4 Evolutionary Computation Case Study . 119
7.4.1 Symbolic Analysis (SA) . 119
7.4.2 Evolutionary Computation (EC) . 122
7.4.3 SA+EC . 122
7.4.4 Comparison . 123

7.5 Evolutionary Computation Related Work . 125
7.6 Summary . 125

Chapter 8 Detecting Feature Interactions: At Run Time 127
8.1 Introduction . 127
8.2 Run-Time Approach . 129

8.2.1 Step (1): Generate FI Detection Logic 130
8.2.2 Step (2): Generate Executable Code 131
8.2.3 Record Failures and/or Adapt . 132
8.2.4 Limitations . 133

8.3 Run-Time Case Study . 133
8.4 Run-Time Related Work . 136
8.5 Summary . 137

Chapter 9 Detecting Interactions of Non-Functional Properties 139
9.1 Detecting Feature Interactions . 140
9.2 Representation of Non-Functional Requirements 143

9.2.1 Non-Functional Properties . 143
9.2.2 Weak Mitigation . 144
9.2.3 Strong Mitigation . 146

9.3 Detection via Symbolic Analysis Approach 146
9.4 Detection of Interactions . 157

9.4.1 Safety Case Study: Collision . 157
9.4.2 Safety Case Study: Battery Charging 163
9.4.3 Performance Case Study . 170
9.4.4 Safety & Performance Case Study . 178

vii

9.5 Related Work . 185
9.6 Conclusion . 186

Chapter 10 Contributions . 187
10.1 Summary of Contributions . 187

10.1.1 Requirements Incompleteness . 189
10.1.2 Feature Interactions . 191
10.1.3 Non-functional Interactions . 193

10.2 Future Investigations . 195
10.2.1 Requirements Incompleteness Caused by FI 195
10.2.2 Partial Feature Interactions . 195
10.2.3 Partial Requirements Incompleteness 196
10.2.4 Automatic Mitigation Strategies . 196
10.2.5 Non-Functional Security Interactions 196
10.2.6 Incomplete Test Sets . 197

APPENDICES . 198
Appendix A Incomplete Requirements Artifacts 199
Appendix B Feature Interaction Artifacts 255
Appendix C Non-Functional Feature Interaction Artifacts 293

BIBLIOGRAPHY . 319

viii

LIST OF TABLES

Table 3.1: Agents used in Goal Model . 20

Table 3.2: ENV, MON, and REL Properties 22

Table 3.3: Units and Scaling for Variables in Table 3.2 23

Table 3.4: Counterexample Variables for D.1 in Goal Model M 32

Table 3.5: Counterexample Variables for B.3 in Goal Model M ′ 36

Table 5.1: Agents used in Goal Model . 60

Table 5.2: ENV, MON, and REL Properties 61

Table 5.3: Units and Scaling for Variables in Table 5.2 61

Table 5.4: Satisfaction Cases . 63

Table 5.5: Incomplete Decomposition Values . 70

Table 5.6: Environmental Assumptions: Incompleteness 70

Table 5.7: Inconsistent Decomposition Values 71

Table 5.8: Environmental Assumptions: Inconsistency 72

Table 6.1: FI Causes in Goal Model M . 99

Table 6.2: Variables for Cause B Counterexample in Goal Model M 100

Table 6.3: Variables for Cause C Counterexample in Goal Model M 101

Table 6.4: FI Causes in Goal Model M ′ . 102

Table 6.5: Counterexamples for FIs in Goal Model M ′ 104

Table 6.6: Detected FI Causes in Goal Model M ′′ 105

Table 7.1: FI Causes in the Goal Model . 119

ix

Table 7.2: Feature B . 121

Table 7.3: Feature C . 121

Table 8.1: Variables for Failure of Feature B . 134

Table 8.2: Run-Time Results for Feature B . 135

Table 8.3: Variables for Failure of Feature C . 135

Table 8.4: Run-Time Results for Feature C . 136

Table 9.1: Possible Failure Resolutions . 156

Table 9.2: Counterexample: Variables for Interaction in Goal Model M ′ 159

Table 9.3: Counterexample: Variables for Failure in Goal Model M ′′ 161

Table 9.4: Counterexample: Variables for Failure in Goal Model M ′′′ 162

Table 9.5: Example Counterexample for Non-Functional FI Causes 181

x

LIST OF FIGURES

Figure 1.1: Top Level Flowchart . 6

Figure 2.1: Braking System Overview . 13

Figure 3.1: Adaptive Cruise Control Goal Model 19

Figure 3.2: Ares Data Flow Diagram . 25

Figure 3.3: Example AND Decomposition in Goal Model M 30

Figure 3.4: Revised AND Decomposition in Goal Model M ′ 33

Figure 3.5: Example OR Decomposition in Goal Model M ′ 34

Figure 3.6: Revised OR Decomposition in Goal Model M ′′ 37

Figure 4.1: Ares-EC Data Flow Diagram . 44

Figure 4.2: Requirement D.1 . 52

Figure 4.3: Requirement B.3 . 52

Figure 5.1: Adaptive Cruise Control Goal Model 59

Figure 5.2: Lykus Data Flow Diagram . 62

Figure 5.3: Updated Utility Function Listing of C.1 66

Figure 5.4: Experimental Autonomous Car . 68

Figure 6.1: Braking System Goal Model . 88

Figure 6.2: Phorcys Data Flow Diagram . 90

Figure 6.3: Goal Configurations that Satisfy Top-Level Goal 91

Figure 6.4: Goal Configuration 2 in Figure 6.3 92

Figure 6.5: Feature Interaction in Goal Configuration Set {B, C, E} 96

xi

Figure 6.6: 3-Way FI in Figure 6.1 Caused by B or C 101

Figure 6.7: 3-Way FI in M ′ Caused by B or C . 104

Figure 7.1: Braking System Goal Model . 113

Figure 7.2: Phorcys-EC Data Flow Diagram . 114

Figure 7.3: Phorcys-EC Data Flow Diagram: Step 2, SA 116

Figure 7.4: Phorcys-EC Data Flow Diagram: Step 2, SA+EC 119

Figure 7.5: 3-Way FI in Figure 7.1 Caused by B or C 121

Figure 7.6: Environmental Variables . 124

Figure 8.1: Thoosa Data Flow Diagram . 130

Figure 8.2: Variables Calculated for FI Detection in Figure 6.1 132

Figure 8.3: Propagation Function for SS (Slip Sensor) Figure 6.1 132

Figure 8.4: 3-Way FI in Figure 6.1 Caused by B or C 134

Figure 9.1: Safety Model: Non-Functional Properties 144

Figure 9.2: Non-Functional Model: Weak Mitigation 145

Figure 9.3: Non-Functional Model: Strong Mitigation 147

Figure 9.4: Soter Data Flow Diagram . 148

Figure 9.5: Non-Functional Feature: Non-Functional Properties 150

Figure 9.6: Non-Functional Feature: Weak Mitigation 151

Figure 9.7: Non-Functional Feature: Strong Mitigation 152

Figure 9.8: Woven Goal Model Example . 153

Figure 9.9: Goal Model Woven With Non-Functional Safety Property (M) 158

Figure 9.10: Goal Model Woven With Strong Mitigation (M ′) 159

Figure 9.11: Brake Force Goal Update Excerpts of M ′′ 161

xii

Figure 9.12: Model Woven With Weak & Strong Mitigation (M ′′′) 162

Figure 9.13: Model Woven With Updated Weak Mitigation (Mfinal) 163

Figure 9.14: Safety Model: Non-Functional Properties 164

Figure 9.15: Non-Functional Feature: Non-Functional Properties 165

Figure 9.16: Goal Model Woven With Non-Functional Battery Safety Property . . 165

Figure 9.17: Non-Functional Model: Weak Mitigation 166

Figure 9.18: Non-Functional Feature: Weak Mitigation 167

Figure 9.19: Goal Model Woven With Non-Functional Battery Safety Weak Miti-
gation . 167

Figure 9.20: Non-Functional Model: Strong Mitigation 168

Figure 9.21: Non-Functional Feature: Strong Mitigation 169

Figure 9.22: Goal Model Woven With Non-Functional Battery Safety Strong Miti-
gation . 170

Figure 9.23: Safety Model: Non-Functional Properties 171

Figure 9.24: Non-Functional Feature: Non-Functional Properties 172

Figure 9.25: Goal Model Woven With Non-Functional Battery Performance Property172

Figure 9.26: Non-Functional Model: Weak Mitigation 173

Figure 9.27: Non-Functional Feature: Weak Mitigation 174

Figure 9.28: Goal Model Woven With Non-Functional Battery Performance Weak
Mitigation . 174

Figure 9.29: Non-Functional Model: Strong Mitigation 176

Figure 9.30: Non-Functional Feature: Strong Mitigation 177

Figure 9.31: Goal Model Woven With Non-Functional Battery Performance Strong
Mitigation . 177

Figure 9.32: Woven Model: Functional With Both Safety and Performance Mitigation179

xiii

Figure 9.33: Environmental Variables for Non-Functional Failures due to FI 182

Figure 9.34: Final Braking System Goal Model . 184

Figure 10.1: General Framework DFD . 189

Figure 10.2: Requirements Completeness DFD . 191

Figure 10.3: Feature Interaction DFD . 193

Figure 10.4: Non-Functional Interactions DFD . 194

xiv

Chapter 1

Introduction

For high-assurance cyber-physical systems, such as the onboard features in modern

transportation systems (e.g., automobiles, trains, and flight systems), ensuring acceptable

and safe behavior is important [65]. Furthermore, the increasing complexity and the number

of onboard features for autonomous vehicles further exacerbates the challenge of guaranteeing

safe behavior [4]. The operation of these high-assurance cyber-physical systems depends on

the specification, implementation, and verification of those systems. Obstacles to assurance

introduced early in the product life-cycle create a cascading effect that impacts downstream

artifacts. Worse, system specifications are often the basis for both implementation and testing

artifacts, resulting in specification errors that are not detected until negative consequences

occur in deployed systems. The difficulty in identifying specification errors is compounded

by both system and environmental uncertainty. The composition of independently-developed

features that realize a system introduces uncertainty when considering their cumulative be-

havior. Similarly, the impact of dimensionality (i.e., each of the environmental parameters

can be viewed as a dimension, thus increasing the environmental space with each added

parameter) from environmental parameters introduces uncertainty when unexpected envi-

ronmental scenarios occur in an exponential number of possible environmental scenarios.

Consequently, automated techniques to detect counterexamples to the assurance of cyber-

1

physical systems within system specifications is fundamentally important, especially when

system and environmental uncertainty abound.

Obstacles to assessing and ensuring assurance for cyber-physical system requirements

may occur in many forms, but two significant sources of specification errors are incomplete

requirements specifications and undesired feature interactions. In the case of incomplete

requirements, it can be challenging to enumerate all the decomposed requirements necessary

to satisfy a requirement (i.e., ensuring completeness), especially when considering different

combinations of environmental conditions. A feature interaction occurs when two or more

features satisfy specific properties in isolation, but no longer satisfy those properties when

they are composed together [20]. It may be necessary to analyze an exponential number of

feature combinations to detect all possible interactions, resulting in a potentially exponential

number of feature interaction results presented to the system developer [5].

1.1 Problem Description

The uncertainty created by unexpected system and environmental scenarios exacerbates

already difficult requirements specifications problems, many of which involve an exhaustive

search for errors and their causes. That is, the exponential number of possibilities represents

not only computational growth but also growth in the effort it takes the system designer

to assess the results. This doctoral research tackles two key requirements assurance prob-

lems that exhibit these characteristics: requirements incompleteness and undesired feature

interactions.

Requirements Completeness: The usefulness of a system specification depends in part

on the completeness of the requirements [38]. However, enumerating all necessary require-

ments is difficult, especially when requirements interact with an unpredictable environment.

A specification built with an idealized environmental view is incomplete if it does not include

requirements to handle non-idealized behavior [38]. Often incomplete requirements are not

2

detected until implementation, testing, or worse, after deployment. Even when performed

during requirements analysis, detecting incomplete requirements is typically an error prone,

tedious, and manual task. Worse yet, a single completeness counterexample may not clearly

indicate the extent that incomplete requirements impacts the system or what range of envi-

ronmental scenarios are affected.

Feature Interaction: Independently-developed features often exhibit overlapping, yet

conflicting behavior termed feature interactions [40]. Detecting unwanted feature interac-

tions amongst even a moderate number of features can involve the analysis of an exponential

number of possible interactions. To combat growth in both computational and designer ef-

fort, many researchers limit their analysis to pair-wise interactions [10, 21, 41, 59] where

only combinations of two features are analyzed at a time. However, a recent study found

interactions greater than pair-wise were found in every system analyzed [5]. This finding

indicates that n-way interaction detection techniques are needed that do not overwhelm the

system designer with results. A potentially human resource-intensive step is the subsequent

effort needed by the system designer to assess each detected interaction to determine the

failure caused by the feature interaction. Further, the definition of safety requirements are

intended to ensure the safety properties of the system under development. However, safety

properties of the system often crosscut functional and non-functional requirements. These

cross-cutting concerns are dispersed throughout the requirements. This dispersion renders

manual insertion of the safety concerns difficult and error prone.

Key Challenges: In order to address industry-relevant problems with respect to these

two areas, we must develop techniques with the following characteristics:

• Automated analysis techniques to reason about the specification of a system,

• Techniques to explore a broad solution space given challenges posed by environmental

and system uncertainty, and

3

• Techniques that can be applied at design time and run time.

1.2 Thesis Statement

This research defines a set of analysis methods to address the generation of counterex-

amples in model-based definitions of requirements. Specifically, we detect interactions and

incomplete requirement decompositions in hierarchical requirements models.

Thesis Statement: Formal analysis and search-based techniques can be used in a com-

plementary and synergistic fashion to address the automated detection and counterexample

generation of incomplete requirements and n-way feature interactions in cyber-physical sys-

tems facing environmental and system uncertainty.

1.3 Research Contributions

This dissertation research focuses on identifying solutions to two key challenges: identi-

fying incomplete requirements and undesired feature interactions. The research contributions

of this work are as follows.

1. Requirements Incompleteness: Detect incomplete requirements decomposition in

hierarchical requirements models. We illustrate our approach by analyzing a require-

ments model of an industry-based automotive adaptive cruise control system. We de-

scribe the following techniques that we developed to address this problem:

(a) Symbolic analysis to formally define requirements incompleteness and guarantee

detection of requirements completeness counterexamples if they exist [37].

(b) Evolutionary computation and symbolic analysis to detect a representative range

of requirements completeness counterexamples [38].

(c) Run-time analysis to detect incomplete requirements at run time [39].

4

2. Interaction Detection: Detect unwanted n-way feature interactions and determin-

ing their causes at the requirements level. Unlike previous n-way feature interaction

detection approaches that attempt to enumerate every set of interacting features, our

approach analyzes each feature for its ability to cause an interaction with other fea-

tures, thus reducing designer assessment effort to be linear with respect to the number

of features. We illustrate our approach by applying our approach to an industry-based

automotive braking system comprising multiple subsystems. We describe the following

techniques that we have developed for this dissertation:

(a) Symbolic analysis to formally analyze feature interactions and guarantee detection

of interactions if they exist [40].

(b) Evolutionary computation and symbolic analysis to detect a representative range

of scenarios where a given feature interaction manifests [40].

(c) Run-time analysis to detect feature interactions at run time.

3. Non-functional Interaction Detection: Detect feature interactions that include

safety and/or performance non-functional requirements and may include, but are not

limited to include, functional requirements. We describe the following techniques that

we have developed for this dissertation:

(a) Symbolic analysis to formally analyze non-functional feature interactions and

guarantee detection of interactions if they exist.

(b) Evolutionary computation and symbolic analysis to detect a representative range

of scenarios where a given non-functional feature interaction manifests.

(c) Run-time analysis to detect non-functional feature interactions at run time.

This dissertation presents a framework comprising multiple automated analysis tech-

niques that collectively identify counterexamples to assurance in the specifications of cyber-

physical systems in the presence of system and environmental uncertainty. Specifically, we

5

analyze requirements models for the existence of counterexamples that identify requirements

incompleteness and feature interactions. Throughout this dissertation, we present the theo-

retical foundation of each technique, a prototype implementation, and the empirical valida-

tion on an industrial-based application. The flowchart in Figure 1.1 illustrates the relation

between identifying completeness counterexamples and identifying interactions in require-

ments models. A system designer-defined set of requirements are analyzed for incomplete

requirements decomposition. If an incomplete decomposition exists, then the requirements

model is redefined by the system designer based on the detected counterexample. When no

additional decomposition counterexamples exist, then the requirements are analyzed for in-

teractions. If an interaction exists, then the system designer updates the requirements model

to remove the interaction and the process may be reapplied. When no additional interactions

exist, then a complete and interaction free requirements model is returned.

Requirements
Model

Detect
Incompleteness

Incomplete? Detect
Interaction

Interaction?
Revised

Requirements
Model

No

No

System
Designer
Update

Yes

Yes

Artifact
Flow

Legend:

Process

Figure 1.1: Top Level Flowchart

1.4 Organization of Dissertation

The organization of the remainder of this dissertation is as follows. Chapter 2 reviews

background material on modeling techniques used in this work, feature interactions, symbolic

6

analysis, evolutionary computation, and two industrial case studies in automotive braking

systems and adaptive cruise control. In Chapter 3, we introduce Ares, an approach to detect

incomplete requirements decomposition in hierarchical goal models using symbolic analysis,

and then apply it to an automotive adaptive cruise control case study. Chapter 4 presents

Ares-EC, a process of combining both symbolic and evolutionary computation to detect

wider ranges of requirements completeness counterexamples when applied to the same case

study. Next, in Chapter 5 we describe Lykus, a technique of generating run-time detection

code for incomplete and inconsistent requirements. We then move to feature interaction de-

tection. In Chapter 6, we describe Phorcys, an approach to detect feature interactions and

identify their causes; and we illustrate the approach using the automotive braking system

case study. Chapter 7 presents Phorcys-EC, a process of combining both symbolic and evo-

lutionary computation to detect wider ranges of feature interaction counterexamples in both

the feature space and environmental scenario space. Next, in Chapter 8, we describe Thoosa,

a process of generating run-time detection code for the features that fail due to a feature

interaction. Chapter 9 describes Soter, a process for detecting non-functional interactions

across both non-functional and functional features, including both safety and performance

non-functional requirements. Related work is included in each of the individual chapters. Fi-

nally, Chapter 10 presents a summary of the contributions of this dissertation and overviews

future investigations.

7

Chapter 2

Background

This chapter provides background information for the dissertation. An overview of goal

modeling is provided followed by information on utility functions. Symbolic analysis is cov-

ered along with evolutionary computation. Finally, the two industry applications used for

this research, automotive braking systems and adaptive cruise control systems, are described.

2.1 Goal Models

While the concepts of this dissertation are applicable to any hierarchical requirements

modeling framework, including i* [96], KAOS goal modeling [87], or simply hierarchical re-

quirements modeling [82], the case studies in this dissertation make use of the KAOS goal

modeling notation.1 True of all hierarchical requirements modeling approaches, requirements

are specified by decomposed requirements that are necessary to satisfy their parent require-

ment. Decomposition continues until some termination criteria is met.

KAOS goal modeling realizes Goal-Oriented Requirements Engineering (GORE) via a

graph-based decomposition of high-level goals and objectives that make up the system-to-be.

High-level objectives are decomposed into subsequently finer-grained goals and ultimately

into system requirements and environmental expectations, or prerequisites satisfied by agents

1For this work we do not use the KAOS formal decomposition patterns.

8

of the environment. Decomposition within KAOS goal modeling allows for both AND and

OR decompositions [87]. The satisfaction of an AND-decomposed goal only occurs if all of its

aggregate decomposed goals are satisfied. In contrast, the satisfaction of an OR-decomposed

goal occurs if any of its aggregate decomposed goals are satisfied. Decomposition terminates

when a system requirement can be satisfied by an agent or an environmental expectation

can be measured by an agent of the environment [87].

Goals are classified as either functional or non-functional. A functional goal defines a

service, or element of functionality, of the system-to-be (e.g., ‘stop the car’). Non-functional

goals, in contrast, define a constraint on the services that a functional goal provides (e.g.,

‘stop the car quickly’). Functional goals may be further refined into either invariant or non-

invariant goals, denoted ‘Maintain’ (e.g., Maintain(Current Speed)) and ‘Achieve,’ (e.g.,

Achieve(Higher Speed)) respectively. Decomposition is terminated when a requirement or

expectation can be fully satisfied by a single agent [48]. Since the methods presented are

intended to be generally applicable to hierarchical goal and requirements modeling, we refer

to goals and requirements interchangeably.

Typically, requirements incompleteness is due to unexpected scenarios for which the

system designer did not anticipate and are unsatisfied for the high-level objectives of the

system-to-be, more detailed, decomposed requirements do not imply their parent require-

ment. Formally, when the decomposed requirements (R1, R2, R3, R..., Rn), as well as the do-

main properties and assumptions, Dom (e.g., an increase in throttle causes an increase in

speed), of the parent requirement (R) are satisfied, then the parent requirement is satisfied,

as indicated by the entailment operator (i.e., �) in the following expression [87]:

{R1, R2, R3, R..., Rn, Dom} � R. (2.1)

If a requirement cannot be discharged or handled by a single agent, then it must be de-

composed into additional aggregate requirements that collectively can be combined to satisfy

9

the parent requirement. A requirement may even be decomposed into a single decomposed

requirement if the parent requirement cannot be satisfied by a single agent of the system. A

set of aggregate decomposed requirements is one of potentially numerous possible decompo-

sitions, and thereby constrains the solution for a given (parent) requirement to the behavior

specified by the aggregate decomposed requirements. Necessarily, the parent requirement

may be satisfied for any complete decomposition, but not all decompositions are necessarily

equivalent with respect to the behavior of any other complete decomposition.

In this dissertation, goal and requirement model labels are in bold courier font, while

variable names, goal and requirement text, and emphasis are indicated by italics .

2.2 Utility Functions

Utility functions [89] have been used for run-time monitoring [45, 47] to assess the

satisfaction of requirements. Satisfaction, while typically specified as a Boolean expression,

may also be represented as a degree of satisfaction called satisficement [92]. Previously,

Athena [75] was developed to automatically generate utility functions from specific properties

of the environment (ENV, MON, REL), where:

• ENV represents environmental properties related to the satisfaction of the goal that

may or may not be directly observable (e.g., the expected speed of a vehicle at a future

time),

• MON represents monitors (e.g., agents and sensors) in the system that are able to

monitor specific values (e.g., a GPS speed sensor that measures the speed of a vehicle

at the current time), and

• REL represents relationships between the monitors and environmental properties that

relate to the satisfaction or satisficement of goals (e.g., relating expected future vehi-

cle speed and current vehicle speed to measure the satisficement of a requirement to

increase speed).

10

Athena uses the REL properties to compute the degree of satisficement that the utility

function returns as either state-, metric-, or fuzzy-logic based satisficement results, repre-

sented as Boolean, numeric, or functions of real values, respectively. Utility functions encode

domain properties and assumptions (Dom) that are present in the ENV, MON, and REL

that describe the system. The domain properties are manually specified by the requirements

engineer [24]. While the addition of utility functions adds additional properties for each re-

quirement that must be documented, in cases where utility functions are already used to

assess run-time satisfaction, the utility functions can be used with no additional documen-

tation required.

2.3 Symbolic Analysis

Satisfiability Modulo Theories (SMT) solvers solve constraints defined in either SMT-

LIB [76] or SMT-LIB version 2 [12] standards [27]. SMT solvers are a collection of decidable

theories, represented as decision procedures, and a SAT solver, all of which are applied via

strategies to solve a diverse range of constraint problems [33]. In this dissertation, we use

the Microsoft Z3 SMT Solver [32], given its ubiquity and availability.

2.4 Evolutionary Computation

Genetic Algorithms are a stochastic optimization method often used to optimize complex

problems [51, 70]. A population of proposed solutions is randomly initialized and assigned a

fitness value that represents an evaluation of the performance of the individual in a popula-

tion. Additional individuals are ‘born’ using evolutionary operators including crossover and

mutation. Crossover mates two or more individuals by combining aspects of their genetic

code into a new individual. Mutation modifies an individual randomly. Typically, a portion

of the new and existing individuals are kept for the next generation. The process of simulated

evolution continues until some upper bound, often a number of generations, is reached.

11

2.5 Industrial Applications

In this dissertation, we make use of two industrial systems within the automotive do-

main: braking systems and adaptive cruise control. A general overview of each of these

systems is described in this section.

2.5.1 Automotive Braking Systems

Braking systems, such as the one considered in this dissertation, while often viewed

as a single subsystem within a vehicle, in fact, comprise two categories of subsystems: 1)

control subsystems that command a specific brake force and 2) actuator subsystems that

apply the commanded brake force. For the braking system used in this dissertation, the

two subsystems that apply a specific brake force are standard force braking (i.e., physical

hydraulic force applied to brake rotors in disk brakes to cause friction that slows the turning

speed of the wheels) and regenerative braking in hybrid vehicles (i.e., use of electric generators

to reduce speed and store energy). The two subsystems that can command the commanded

brake force, thus providing active braking, are continuous braking (i.e., use of electronic-

commanded signals to braking subsystems rather than physical hydraulic force) and anti-

lock braking (i.e., intermittent application of braking to reduce wheel lockup). Braking is

performed by the friction provided by electric generators in regenerative braking, by the

friction created by standard disk brakes, or a combination of both. Regenerative braking

only provides limited stopping force, thus necessitating standard force braking for larger

commanded brake forces. Figure 2.1 provides a graphical overview indicating the brake force

from the brake pedal distribution to both the continuous and anti-lock braking features.

Both the continuous and anti-lock braking features distribute a commanded brake force

to the brake application features (i.e., standard and regenerative force). We differentiate

between the features that apply brake force to those that command brake force as a design

decision to promote extensibility. A commanded brake force, in the case of larger onboard

12

systems, may not even be directly tied to the brake force read from a pedal. For example,

an adaptive cruise control system may employ brake force to prevent collision with a target

car (i.e., car in front of current vehicle). Many cars also use the braking system to allow for

traction control on snowy or icy roads, by applying braking to only the wheels that spin out

of control.

Standard Brake
Force

Feature D
Anti-Lock Brakes

Feature C
Regen Force

Feature E
Continuous

Brakes

Feature B
Standard Force

Brake Force

Commanded Brake Force

Regen Brake
Force

C
om

m
and

Brake Force
Apply

Brake Force

Figure 2.1: Braking System Overview

Onboard vehicle systems, including the braking system, may be viewed as individual

features. Similarly, the subsystems of a given system may also be viewed as individual features

depending on the level of subsystem decomposition. Herein, we use the term “feature” to refer

to the observable services and functionality provided by a given “subsystem” [10], where our

analysis focus is at the requirements level of a given feature (i.e., observable functionality).

That is, each feature may have multiple requirements and is viewed as a subsystem. For our

braking system, we have four subsystems, each of which is considered a feature: standard

force braking, regenerative force braking, continuous braking, and anti-lock braking.

2.5.2 Automotive Adaptive Cruise Control

An Adaptive Cruise Control (ACC) system uses radar to adjust vehicle speed ensuring a

safe following distance from the car ahead while maintaining as close to the desired speed as

13

possible. An ACC can be viewed in four parts: cruise control modes (e.g., on, off), increasing

speed, lowering speed, and maintaining speed. Speed is increased or lowered to match the

desired speed, however speed may also be lowered if there is not a safe distance to the target

car (i.e., car immediately in front). Similarly, the speed will not continue to increase if the

safe distance is violated. The speed is maintained if both the desired speed is met and the

target car is a safe distance.

14

Chapter 3

Detecting Incomplete Requirements:

Using Symbolic Analysis

The usefulness of a system specification depends in part on the completeness of the

requirements. However, enumerating all necessary requirements is difficult, especially when

requirements interact with an unpredictable environment. A specification built with an ide-

alized environmental view is incomplete if it does not include requirements to handle non-

idealized behavior. Often incomplete requirements are not detected until implementation,

testing, or worse, after deployment. Even when performed during requirements analysis,

detecting incomplete requirements is typically an error prone, tedious, and manual task.

This chapter introduces Ares, a design-time approach for detecting incomplete requirements

decomposition using symbolic analysis of hierarchical requirements models. We illustrate

our approach by applying Ares to a requirements model of an industry-based automotive

adaptive cruise control system. Ares is able to automatically detect specific instances of in-

complete requirements decompositions at design-time, many of which are subtle and would

be difficult to detect, either manually or with testing.

15

3.1 Introduction

Despite the best efforts and intentions of system developers, developing complete re-

quirements is often a challenge. Exhaustively enumerating all cases sufficient to satisfy ex-

pected functionality can be prohibitively difficult, especially when unexpected scenarios arise.

Verification of decomposed requirements commonly requires domain expertise to ensure com-

pleteness. However, verification is often performed manually, at some expense, and without

guarantee. This chapter presents Ares,1 a symbolic analysis approach to automatically iden-

tifying counterexamples to completeness in hierarchical requirements models.

The process used to create requirements that are decomposed completely is not

straightforward, and detecting incomplete requirements is still an active research ques-

tion [2, 23, 46, 69, 98]. For example, a requirement for a vehicle may be to stop. In an idealized

system, applying brake force (e.g., from hydraulic brakes) would be sufficient. However, in a

realistic system, applying the maximum amount of brake force may not be sufficient in the

presence of the maximum amount of throttle. In inclement weather, brake force may not be

sufficient without anti-lock brakes. Enumerating all decomposed requirements necessary to

satisfy a requirement (e.g., to stop) can be challenging especially when considering different

combinations of environmental conditions. While formal methods exist to decompose goals

and requirements with guaranteed completeness [31], they are not widely used in practice,

and system designers are limited to only specific formal decomposition rules. Methods also

exist for identifying counterexamples to completeness [2], but are limited to completeness

with respect to specific domain properties (i.e., the set of system and environmental vari-

ables and states) rather than with respect to decomposition and require manual review for

relevance and applicability. Currently, no methods exist that automate the detection of in-

complete requirements decomposition without imposing restrictions on how requirements are

decomposed or described.

This chapter describes Ares, a symbolic analysis approach to automatically identify

1Ares is the Greek god of war, especially the untamed aspects of war.

16

environmental configurations where completeness properties are violated in a hierarchical

requirements model. Hierarchical requirements satisfaction can be assessed in two ways: its

individual satisfaction, or the satisfaction of a requirement’s aggregate decomposed require-

ments (i.e., children or sub-requirements). Given complete decomposition, a requirement

should be satisfied whenever its aggregate decomposed requirements are satisfied. For exam-

ple, given a requirement to stop and a decomposed requirement to brake, the requirement

to stop should be satisfied if the aggregated decomposed requirements are satisfied (i.e., to

brake). However, if the throttle can overwhelm the brakes, then the requirement to stop

may not actually be satisfied. An additional aggregate decomposed requirement is needed

when a requirement is not satisfied even though its aggregate decomposed requirements are

satisfied. Since the requirement to stop is unsatisfied due to the force created by the throttle,

one possible solution would be AND decomposed into two requirements: a requirement to

brake and a requirement to use no throttle (e.g., remove foot from gas pedal), both of which

are necessary for the satisfaction of the requirement to stop. Ares identifies incomplete de-

compositions in the form of counterexamples that are summarized for the system designer

to revise the requirements accordingly.

Ares analyzes individual requirements within a hierarchical requirements model using

expressions from utility functions [75] that represent requirements satisfaction. Utility func-

tions translate system-monitored data to scalar values that scale proportionally to the de-

gree a requirement is satisfied. Utility functions are typically used to monitor requirements

at run-time [75]. Rather than using the utility functions for run-time monitoring, Ares uses

the expressions themselves for symbolic analysis. For each requirement’s decomposition, Ares

identifies, via symbolic analysis of the range of possible requirement variables values, whether

are any environmental conditions exist that cause a requirement to be unsatisfied while

its aggregate decomposed requirements are satisfied. Counterexamples are identified for an

industry-based requirements model for an adaptive cruise control system, and incomplete

requirements decompositions are summarized and presented to the system designer.

17

The contributions of this chapter are as follows:

• We introduce Ares, a design-time, symbolic analysis approach to automatically detect

incomplete decomposition in hierarchical requirements models.

• We present a prototype implementation of the Ares symbolic analysis approach.

• We demonstrate the applicability of Ares on an industry-based automotive example,

an adaptive cruise control system.

The remainder of this chapter is organized into the following sections. Section 3.2 pro-

vides an overview of the input model. Section 3.3 details the approach. Section 3.4 describes

the results of a case study, and Section 3.5 details related work. Finally, Section 3.6 summa-

rizes the work.

3.2 Adaptive Cruise Control Input Model

The Adaptive Cruise Control system is a cruise control system with radar that ad-

justs the vehicle’s speed autonomously to ensure a safe distance with a target vehicle, while

maintaining a desired speed. Figure 3.1 is a KAOS goal model for the ACC system. Key-

words Maintain and Achieve are shortened to M and A, respectively. Table 3.1 identifies

the agents referenced in Figure 3.1. The ACC model defined here was manually developed

by the authors in conjunction with automotive industrial practitioners and is intended to be

representative of a realistic example of industrial requirements engineering artifacts.2

In Figure 3.1, the goals that begin with prefix ‘A.’ (top left) contain the overall hierarchy

of ACC modes and also includes manual throttle and manual brake response requirements.

Goals A.6 through A.14 refer to the state of the value of their respective agents. For example,

A.6 indicates that its agent, Cruise Switch Sensor , is Off . All of A.6 through A.14 are

2Conversations with automotive industrial practitioners included reviewing our goal modeling approach
to automotive systems, including review of the specific ACC requirements model included here, over the
course of several meetings.

18

D.1

D.2
D.3

D.4
D.5

D.6 D.7

D.8

D.9 D.10

B.2

B.3

B.4

B.5 B.6 B.7

B.8

B.9

B.11 B.12

B.15

B.16 B.17 B.18 B.19

B.10

B.13 B.14

C.1

C.2
C.3

C.4 C.5

C.6 C.7 C.8

C.12

C.13

C.9

C.10 C.11

A.15

A.16 A.17

A.18 A.19 A.20 A.21

A.1

A.2 A.3 A.4 A.5

A.6 A.7 A.8
A.9 A.10

A.11 A.12 A.13 A.14
B.1

A(Faster Speed)

M(Automatic Control)

M(Adaptive Cruise System)

M(Off, Off)A(Off, Off) M(On, Off) M(On, On)

= Off = Off

1 2

= Off = On

1 2

A(Off)

3

= On = Off

1 2

M(Manual Control)

M(Throttle
Response)

M(Brake Response)

A(Throttle Pedal
Sensor Reading)

4

A(Throttle Actuator =
Throttle Pedal Sensor)

5

A(Brake Pedal
Sensor Reading)

6

 A(Brake Actuator =
Brake Pedal Sensor

Reading)

7

= On = On

1 2

 Speed > Desired Speed OR
Distance < Safe Distance

 Wheel Speed >
Desired Speed

GPS Speed >
Desired Speed

8 9

Speed >
Desired Speed Distance <

Safe Distance

Distance 1 <
Safe Distance

Distance 2 <
Safe Distance

10 11

A(Slower Speed)

A(Slow Car)

A(Reduce Throttle)

A(Increase Brake)

 A(Throttle Actuator =
Throttle Pedal Sensor - 1)

Throttle Angle > 0

5
4

A(Brake Pedal
Sensor Reading)

 Throttle Pedal
Sensor = 0

6 4

Brake Pedal
Sensor < 45

6

A(Throttle Pedal
Sensor Reading)

4

A(Brake Actuator =
Brake Pedal Sensor + 1)

7

 Speed < Desired Speed AND
Distance > Safe Distance

 Wheel Speed Sensor
< Desired Speed

 GPS Speed Sensor
< Desired Speed

8 9

Speed < Desired Speed

Distance >
Safe Distance

 Distance Sensor 1 >
Safe Distance

 Distance Sensor 2 >
Safe Distance

10 11

A(Increase Throttle)

Throttle Angle < 45

4

A(Brake Angle = 0)

7

 A(Throttle Actuator =
Throttle Pedal
Sensor + 1)

5

A(Throttle Pedal
Sensor Reading)

4

M(Speed)

Speed = Desired Speed AND
Distance > Safe Distance

 Wheel Speed Sensor =
Desired Speed

 GPS Speed Sensor =
Desired Speed

8 9

Speed = Desired Speed

Distance > Safe Distance

 Distance Sensor 1 >
Safe Distance

 Distance Sensor 2 >
Safe Distance

10 11

A(Throttle Actuator =
Throttle Pedal Sensor)

5

A(Throttle Pedal Sensor Reading)

4

Figure 3.1: Adaptive Cruise Control Goal Model

expectations (i.e., conditions to be handled by the environment or outside the control of the

system), except for A.8 which is a system goal to turn Off the Cruise Active Switch. The top-

level goal, A.1, is decomposed into four categories of functionality (A.2, A.3, A.4, and A.5),

each of these indicates a pair of values from Cruise Switch Sensor and Cruise Active Sensor ,

respectively. This functionality is dependent on the values of the Cruise Switch Sensor and

Cruise Active Sensor, which are either maintained or achieved. In goals A.3 and A.4, where

the Cruise Active Sensor is Off, the throttle is controlled manually. If the Cruise Active

Sensor is On, but the Cruise Switch Sensor is Off (i.e., goal A.2), then the Cruise Active

Switch is turned off via an Achieve goal (i.e., A.8). In goal A.5 where both Cruise Active

Sensor and Cruise Switch Sensor are both On, the throttle is automatically controlled. The

remainder of the goal model, where goals are prefixed with ‘B.’, ‘C.’, or ‘D.’ represents

19

Table 3.1: Agents used in Goal Model

Agent (Sensor / Actuator)
1 Cruise Switch Sensor
2 Cruise Active Sensor
3 Cruise Active Switch
4 Throttle Pedal Sensor
5 Throttle Actuator
6 Brake Pedal Sensor
7 Brake Actuator
8 Wheel Speed Sensor
9 GPS Speed Sensor
10 Distance Sensor 1
11 Distance Sensor 2

portions of the automatic control for throttle and braking by changing or maintaining the

speed, detailed as follows:

Goal B.2 : ‘A(Slower Speed)’ decreases the speed by reducing throttle via goal B.4 or in-

crease braking via goal B.15 when the Speed is greater than the Desired Speed (goal

B.9) or the Distance measured is less than the defined Safe Distance (goal B.10).

Goal C.1 : ‘A(Faster Speed)’ increases the speed by increasing the throttle via goal C.3

while ensuring braking is minimized via goal C.12 when the Speed is less than the

Desired Speed (goal C.4) and the Distance measured is greater than the defined

Safe Distance (goal C.9).

Goal D.1 : ‘M(Speed)’ maintains the speed by maintaining the current throttle position via

goal D.3 when the Speed is equal to the Desired Speed and the Distance measured is

greater than the defined Safe Distance (goal D.8).

The ENV, MON, and REL properties for the goal model in Figure 3.1 are defined in

Table 3.2. Environmental properties (ENV) that are not directly observable via agents or

sensors are calculated using a combination of monitors (MON) and a relationship (REL) to

compute their respective values. The ENV and MON properties are only listed when used

in the relationship (REL). For example, goals A.1 through A.21 can be assessed directly with

20

monitors (MON) without directly accessing environmental conditions. The ENV, MON,

and REL properties are generated manually by the requirements engineer. Table 3.3 defines

the range and unit for each of the variables defined in Table 3.2.

3.3 Symbolic Analysis Approach

Ares is a method for symbolically analyzing hierarchical requirements models for com-

pleteness. Issues with completeness are detectable when the measured satisficement of a

requirement is not logically implied by its decomposed requirements. For each decomposed

goal, symbolic analysis is used to evaluate the entire applicable range of all environmental

configurations and system variables referenced in the parent goal and its decomposed ag-

gregate requirements. Unlike variable testing with a finite number of concrete instantiations

where instances of completeness counterexamples may be missed, all possibilities can be si-

multaneously analyzed symbolically. As shown in Expression (2.1), a requirement is satisfied

if its aggregate decomposed requirements are complete and satisfied over the domain proper-

ties and assumptions (Dom). For AND-decomposition, the following equation must be true

for complete decompositions:

(R1 ∧ ... ∧Ri ∧ ... ∧Rn) ∧ Dom =⇒ R. (3.1)

For OR-decomposition, the following equation must be true for complete decompositions:

(R1 ∨ ... ∨Ri ∨ ... ∨Rn) ∧ Dom =⇒ R. (3.2)

In the case of AND- and OR-decompositions, the set of requirements

(R1, R2, R3, R..., Rn) composed by the decomposition operator (OR or AND) implies

the parent requirement (R), assuming the domain properties and assumptions (Dom) hold.

When using utility functions to assess satisficement, Boolean logic is not sufficient due to

21

Table 3.2: ENV, MON, and REL Properties

Goal ENV MON REL
A.1 Cruise Switch Sensor ,Cruise Active Sensor true
A.2 Cruise Switch Sensor ,Cruise Active Sensor Cruise Switch Sensor == Off ∧ Cruise Active Sensor == On
A.3 Cruise Switch Sensor ,Cruise Active Sensor Cruise Switch Sensor == Off ∧ Cruise Active Sensor == Off
A.4 Cruise Switch Sensor ,Cruise Active Sensor Cruise Switch Sensor == On ∧ Cruise Active Sensor == Off
A.5 Cruise Switch Sensor ,Cruise Active Sensor Cruise Switch Sensor == On ∧ Cruise Active Sensor == On
A.6 Cruise Switch Sensor Cruise Switch Sensor == Off
A.7 Cruise Active Sensor Cruise Active Sensor == On
A.8 Cruise Active Switch Cruise Active Switch == Off
A.9 Cruise Switch Sensor Cruise Switch Sensor == Off
A.10 Cruise Active Sensor Cruise Active Sensor == Off
A.11 Cruise Switch Sensor Cruise Switch Sensor == On
A.12 Cruise Active Sensor Cruise Active Sensor == Off
A.13 Cruise Switch Sensor Cruise Switch Sensor == On
A.14 Cruise Active Sensor Cruise Active Sensor == On

A.15
Throttle Pedal Sensor ,Throttle Actuator ,
Brake Pedal Sensor ,Brake Actuator

Throttle Pedal Sensor == Throttle Actuator∧
Brake Pedal Sensor == Brake Actuator

A.16 Throttle Pedal Sensor ,Throttle Actuator Throttle Pedal Sensor == Throttle Actuator
A.17 Brake Pedal Sensor ,Brake Actuator Brake Pedal Sensor == Brake Actuator
A.18 true
A.19 Throttle Pedal Sensor ,Throttle Actuator Throttle Pedal Sensor == Throttle Actuator
A.20 true
A.21 Brake Pedal Sensor ,Brake Actuator Brake Pedal Sensor == Brake Actuator
B.1 Speed t, Speed t+1,Distance Safe Distance Speed t >= Speed t+1 ∨ Distance < Safe Distance
B.2 Speed t, Speed t+1 Speed t > Speed t+1 ∨ (Speed t == MIN ∧ Speed t+1 == MIN)
B.3 Speed t, Speed t+1 Speed t > Speed t+1 ∨ (Speed t == MIN ∧ Speed t+1 == MIN)
B.4 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator < Throttle Pedal Sensor
B.5 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator < Throttle Pedal Sensor
B.6 true
B.7 Throttle Pedal Sensor Throttle Pedal Sensor > 0
B.8 Speed t,Distance Desired Speed , Safe Distance Speed t > Desired Speed ∨ Distance < Safe Distance
B.9 Speed t Desired Speed Speed t > Desired Speed
B.10 Distance Safe Distance Distance < Safe Distance
B.11 Wheel Speed Sensor ,Desired Speed Wheel Speed Sensor > Desired Speed
B.12 GPS Speed Sensor ,Desired Speed GPS Speed Sensor > Desired Speed
B.13 Distance Sensor 1 , Safe Distance Distance Sensor 1 < Safe Distance
B.14 Distance Sensor 2 , Safe Distance Distance Sensor 2 < Safe Distance
B.15 Brake Actuator , Brake Pedal Sensor Brake Actuator > Brake Pedal Sensor
B.16 Brake Actuator , Brake Pedal Sensor Brake Actuator > Brake Pedal Sensor
B.17 true
B.18 Throttle Pedal Sensor Throttle Pedal Sensor == MIN
B.19 Brake Pedal Sensor Brake Pedal Sensor < MAX
C.1 Speed t, Speed t+1 Speed t < Speed t+1
C.2 Speed t,Distance Desired Speed , Safe Distance Speed t < Desired Speed ∧ Distance > Safe Distance
C.3 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator > Throttle Pedal Sensor
C.4 Speed t Desired Speed Speed t < Desired Speed
C.5 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator > Throttle Pedal Sensor
C.6 Wheel Speed Sensor ,Desired Speed Wheel Speed Sensor < Desired Speed
C.7 GPS Speed Sensor ,Desired Speed GPS Speed Sensor < Desired Speed
C.8 Throttle Pedal Sensor Throttle Pedal Sensor < MAX
C.9 Distance Safe Distance Distance > Safe Distance
C.10 Distance Sensor 1 , Safe Distance Distance Sensor 1 > Safe Distance
C.11 Distance Sensor 2 , Safe Distance Distance Sensor 2 > Safe Distance
C.12 Brake Actuator Brake Actuator == MIN
C.13 true
D.1 Speed t, Speed t+1 Speed t == Speed t+1
D.2 Speed t,Distance Desired Speed , Safe Distance Speed t == Desired Speed ∧ Distance > Safe Distance
D.3 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator == Throttle Pedal Sensor
D.4 Speed t Desired Speed Speed t == Desired Speed
D.5 true
D.6 Wheel Speed Sensor ,Desired Speed Wheel Speed Sensor == Desired Speed
D.7 GPS Speed Sensor ,Desired Speed GPS Speed Sensor == Desired Speed
D.8 Distance Safe Distance Distance > Safe Distance
D.9 Distance Sensor 1 , Safe Distance Distance Sensor 1 > Safe Distance
D.10 Distance Sensor 2 , Safe Distance Distance Sensor 2 > Safe Distance

Speed t Wheel Speed Sensor ,GPS Speed Sensor Wheel Speed Sensor ∨GPS Speed Sensor
Speed t Throttle Pedal Sensor ,Brake Pedal Sensor max (MIN ,Throttle Pedal Sensor − Brake Pedal Sensor)

Speed t+1 Throttle Actuator ,Brake Actuator max (MIN ,Throttle Actuator − Brake Actuator)
Distance Distance Sensor 1 ,Distance Sensor 2 Distance Sensor 1 ∨ Distance Sensor 2

22

Table 3.3: Units and Scaling for Variables in Table 3.2

Variable Min Max Unit
Speed t 0.0 100.0 MPH
Speed t+1 0.0 100.0 MPH
Distance 0.0 50.0 Feet
Desired Speed 0.0 100.0 MPH
Safe Distance 0.0 50.0 Feet
Throttle Actuator 0.0 100.0 %
Throttle Pedal Sensor 0.0 100.0 %
Brake Actuator 0.0 100.0 %
Brake Pedal Sensor 0.0 100.0 %
Distance Sensor 1 0.0 50.0 Feet
Distance Sensor 2 0.0 50.0 Feet
Wheel Speed Sensor 0.0 100.0 MPH
GPS Speed Sensor 0.0 100.0 MPH
Cruise Switch Sensor Off On Boolean
Cruise Active Sensor Off On Boolean
Cruise Active Switch Off On Boolean

the real-valued results. Therefore, the minimum satisficement of the decomposed goals is

used for AND-decomposition and maximum satisficement of the decomposed goals is used

for OR-decomposition [75]. The measure of decompositional completeness for assessing

satisficement for Expression (3.1) (i.e., AND decomposition) is captured in Expression (3.3):

min(Satisficement(R1), (3.3)

...,

Satisficement(Ri),

...,

Satisficement(Rn)) =⇒ Satisficement(R),

where the Satisficement function is the corresponding utility function (i.e., measure of the

range of satisfaction from unsatisfied at 0.0 to satisfied at 1.0) for the respective require-

ment parameter. For example, Satisficement(B.2) is the REL expression from row B.2 in

Table 3.2. Similarly, the measure of decompositional completeness for assessing satisficement

23

for Expression (3.2) (i.e., OR decomposition) is captured in Expression (3.4):

max (Satisficement(R1), (3.4)

...,

Satisficement(Ri),

...,

Satisficement(Rn)) =⇒ Satisficement(R)

In both Expressions (3.3) and (3.4), the utility functions (i.e., Satisficement) encode

the applicable domain properties and assumptions (Dom) via the ENV, MON, and REL

properties as specified in Table 3.2. Specifically, the REL properties are used to describe the

degree of satisficement that the utility function returns as either state- or metric-logic based

satisficement results, that is, Boolean or real-value, respectively.

The remainder of this section describes the Ares process for detecting incomplete re-

quirements decompositions by finding counterexamples to Expressions (3.3) and (3.4).

3.3.1 Ares Process

Figure 3.2 overviews the Ares process in a Data Flow Diagram (DFD). The circles

represent processing elements. The parallel horizontal bars represent persistent data. The

labeled arrows represent data flows. The boxes represent external entities. Ares makes use

of Athena [75] to generate utility functions from a goal model (e.g., Figure 3.1) and ENV,

MON, and REL properties (e.g., Table 3.2). Step 1 of Figure 3.2 accepts a goal model and

the Athena-derived utility functions to produce a set of satisficement functions based on the

defined relationships for all the hierarchically decomposed requirements. Step 2 applies the

symbolic analysis to the satisficement expressions to identify decomposition counterexamples.

24

Expressions

Utility
Functions

Counterexample

 Logical
Expressions

Goals

Properties

Decomposition Operators

RevisedGoal Model

Revised
Properties

Logical Expressions

ENV, MON, REL
Properties Generate

Utility Functions
via Athena

(2)
Process Logical
Expressions &
 Summarize

Incomplete
Decompositions

Process
Flow

Process Key:

Optimizing
SMT Solver

System
Designer

External I/O
Persistent Data

KAOS
Goal Model

Utility Functions

(1)
Generate
Detection

Logic

Figure 3.2: Ares Data Flow Diagram

DFD Step 1: Generate Detection Logic

Ares uses the expressions generated by Athena, as well as the decomposition operators

(either AND or OR) to build an expression that measures the numerical difference in the

satisficement of a requirement and its decomposed requirements. Any requirement that does

not measure satisficement, but only discrete satisfaction (i.e., satisfied or not-satisfied) is

mapped to a satisficement of 1.0 for ‘satisfied’ and 0.0 for ‘not satisfied.’ The aggregate

decomposed requirements use the respective decomposition operator to define their collective

satisficement. For example, the satisficement of any requirement can be measured via its

utility function, therefore the satisficement of B.4 is measured by Expression (3.5) based on

the REL property specified by the requirements engineer in Table 3.2 and taken from the

25

generated utility function.

Satisficement(B.4) =Throttle Actuator < (3.5)

Throttle Pedal Sensor

The satisficement of a set of aggregate decomposed goals is dependent on the decom-

position operator, where OR-decomposed requirements are satisficed, as a group, at the

maximum any individual requirement is satisficed (i.e., the antecedent of the implication in

Expression (3.4)). For example, the requirements OR-decomposed from B.8 are:

SatisficementDecomp(B.8) = max (Satisficement(B.9), (3.6)

Satisficement(B.10)).

In contrast, requirements decomposed via an AND operator are satisficed as a group at

the minimum that any individual requirement is satisficed (i.e., the antecedent of the impli-

cation in Expression (3.3)). For example, the satisficement of requirements AND-decomposed

from B.4 are:

SatisficementDecomp(B.4) = min(Satisficement(B.5), (3.7)

Satisficement(B.6),

Satisficement(B.7)).

In order to detect completeness decomposition errors, a counterexample must be found

where the satisficement of the aggregate decomposed requirements do not imply the sat-

isficement of the parent requirement. For example, analysis of Expression (3.8) is used to

determine if goal B.4 has a completeness counterexample.

CounterexampleB.4 = ¬(SatisficementDecomp(B.4) =⇒ Satisficement(B.4)). (3.8)

26

Since satisficement of the goals is measured in terms of a real value in the range of 0.0

to 1.0, maximizing the difference between the decomposed requirements satisficement and

the parent requirement satisficement identifies the most significant (e.g., largest difference

between decomposed and parent satisficement) completeness counterexample (in case there

is more than one completeness counterexample for a given decomposed goal). For example,

maximizing Expression (3.9) identifies the most significant completeness counterexample for

the decomposition of B.4:

CounterexampleB.4 = SatisficementDecomp(B.4)− Satisficement(B.4). (3.9)

Identifying the maximum of Expression (3.9) yields counterexamples to Expressions

(3.3) and (3.4), where the parent requirement, B.4 is satisfied while the decomposed require-

ments are not.

For all decomposed goals, the corresponding difference expressions (e.g., Expression

(3.9) for B.4) are encoded in SMT version 2 [12], along with additional optimization

commands (e.g., maximize) [14, 15] that maximize a designated expression (e.g., Expression

(3.9) for B.4). The encoded expressions along with the decomposition operator are output

to Step 2 in Figure 3.2.

DFD Step 2: Process Logical Expressions & Summarize

The expressions generated from Step 1 are processed, along with the decomposition

operator from the goal model, to generate the following values for each decomposition:

• Measures of satisficement for individual requirements using utility functions (e.g., Ex-

pression (3.5)),

• Measures of satisficement for requirements based on their decomposed requirement’s

utility functions (e.g., Expressions (3.6) and (3.7)), and

27

• Measures of the maximum numerical difference between the satisficement of a require-

ment and its aggregate decomposed requirements (e.g., Expression (3.9)).

Each counterexample provides the previously generated values for the decomposition along

with the concrete values for environmental and system variables specific to the counterex-

ample.

Each expression that is analyzed represents a single requirement and its aggregate de-

composed requirements. To analyze the entire goal model, each decomposed requirement

must be analyzed for completeness.

Counterexamples representing the maximum satisficement differences are summarized

and can be used by the system designer to update the requirements model and/or ENV,

MON, and REL properties. Possibly unreachable, but also unguarded, scenarios that in-

dicate incomplete decomposition will be detected. Specific requirement guards (e.g., expec-

tations) should be used to address the incomplete decomposition counterexample, due to

possible changes in reachability throughout the life of the system. For example, the limita-

tions of a vehicle engine may bound the acceleration such that an incomplete decomposition

related to high acceleration is unreachable (i.e., impossible). However, if the car is modified,

then the incomplete decomposition may become reachable.

Incomplete requirements may arise due to a variety of causes, including missing or

superfluous requirements for either all environmental configurations or a subset of possible

environmental configurations. Alternatively, the parent or decomposed requirements may

simply be incorrect. Revising the goal model for each of these causes may require additional

levels of decomposition to allow for alternate requirement choices for subsets of cases, the

addition or removal of requirements, or correcting individual requirements.

3.3.2 Scalability and Limitations

Detection of incomplete requirements decomposition relies on the assumption that indi-

vidual requirements are correctly measured for satisficement by the respective utility func-

28

tions. Without such an assumption, no decompositions, including complete decompositions,

could be reasoned about due to possible measurement errors. The generation of utility func-

tions requires ENV, MON, and REL properties for each requirement, thereby increasing

the volume of information required by Ares. Increases in data or information required is an

issue shared by techniques that focus on the relationship of requirements models and the

environment [1, 64]. However, in cases where utility functions already exist (e.g., for run-time

monitoring) there is no additional information overhead.

Ares processes each decomposition individually, therefore the computational cost of

analyzing a goal model grows linearly with respect to the number of decompositions in

the context of the worst-case single decomposition. Given that individual decompositions

are typically small (e.g., not more than a dozen), Ares can provide scalable analysis, even

for large requirements specifications (e.g., tens of thousands to hundreds of thousands of

requirements). The execution time of the case study detailed in Section 3.4 is less than 3

seconds for each decomposition analysis on a 1.3 GHz Intel Core i5 processor with 4 GB of

1600 MHz DDR3 RAM.

3.4 Symbolic Analysis Case Study

This section describes the case study results of applying Ares to the ACC system in

Figure 3.1, referred to as goal model M .

3.4.1 Incomplete AND Decomposition: Goal D.1

The ACC system defined in Figure 3.1 identifies numerous decomposed requirements.

We start by describing the Ares processes for a single decomposed requirement, D.1. The

decomposition of D.1 is shown in its entirety in Figure 3.3. The goal D.1 in goal model

M is intended to specify requirements for the ACC system to maintain the current speed

by controlling the accelerator. The decomposition requires all three of its decomposed re-

29

quirements to be satisfied (i.e., D.2, D.3, and D.5). First, in goal D.2, the environmen-

tal expectations must be met. The current speed (Speed t) must match the desired speed

(Desired Speed) set in the ACC and there must be sufficient distance to maintain the current

speed safely (Distance > Safe Distance)3. Second, in goal D.3, the current throttle position

(Throttle Pedal Sensor) is maintained in the expressed throttle position (Throttle Actuator).

Third, in goal D.5, the current throttle position is read from the responsible agent (i.e., the

Throttle Pedal Sensor).

D.1

D.2 D.3

D.5

M(Speed)

Speed = Desired Speed AND
Distance > Safe Distance

A(Throttle Actuator =
Throttle Pedal Sensor)

5

A(Throttle Pedal Sensor Reading)

4

...

...

Figure 3.3: Example AND Decomposition in Goal Model M

1-M) Generate Detection Logic for Model M

We start by maximizing a version of Expression (3.9), instantiated for D.1:

CounterexampleD.1 = SatisficementDecomp(D.1)− Satisficement(D.1). (3.10)

Expanding SatisficementDecomp via Expression (3.7) (i.e., the expression that defines the

satisfaction of a combination of child goals) for D.1 yields the following expression, where

3While optimization typically requires an epsilon to be defined for less-than or greater-than, the opti-
mization methods used in this dissertation do not require an explicitly defined epsilon.

30

the child goals of D.1 are D.2, D.5, and D.3:

CounterexampleD.1 = min(Satisficement(D.2), (3.11)

Satisficement(D.5),

Satisficement(D.3))− Satisficement(D.1).

Employing the utility functions defined in Table 3.2, where true is mapped to 1.0 and

false is mapped to 0.0, Expression (3.12) is generated where the parent requirement is sub-

tracted from the minimum (i.e., equivalent to an AND operation) of the decomposed re-

quirements.

CounterexampleD.1 = min(Speed t == Desired Speed∧ (3.12)

Distance > Safe Distance,

true,

Throttle Actuator == Throttle Pedal Sensor)−

Speed t == Speed t+1

2-M) Process Logical Expressions & Summarize

The completeness counterexample expression (Expression (3.12)) is maximized, while

ensuring the domain properties and assumptions (i.e., Speed t, Speed t+1, and Distance) in

Table 3.2 are maintained, resulting in a maximized value of 1.0 (i.e., true). This result

indicates the existence of a completeness counterexample. The counterexample provides the

specific environmental configuration of variables, in both the normalized (from 0.0 to 1.0)

values symbolically analyzed and their real world values (see Table 3.4). The counterexample

indicates that while goal D.1 is unsatisfied, and therefore the current speed (Speed t) is not

maintained, all of the decomposed goals are satisfied. Therefore, it is not sufficient to maintain

speed via the throttle. The utility function for goal D.1, Speed t == Speed t+1, indicates

31

that the current and next speed values will not be the same. The domain properties and

assumptions of the environment for both Speed t and Speed t+1, as documented in Table 3.2,

depend on the throttle and brake. This finding is reasonable, as we would expect the speed

of a vehicle to be impacted by the application of the brake. Clearly, the decomposition of

goal D.1 must include braking control.

Table 3.4: Counterexample Variables for D.1 in Goal Model M

Variable or
Requirement

Normalized
Value Value

Speed t 0.5 50.0 MPH
Speed t+1 0.0 0.0 MPH
Distance 0.5 25.0 Feet
Desired Speed 0.5 50.0 MPH
Safe Distance 0.0 0.0 Feet
Throttle Actuator 0.5 50.0%
Throttle Pedal Sensor 0.5 50.0%
Brake Actuator 0.75 75.0%
Brake Pedal Sensor 0.0 0.0%
Goal D.1 0.0 Unsatisfied
Goal D.2 1.0 Satisfied
Goal D.3 1.0 Satisfied
Goal D.5 1.0 Satisfied

Following the example of goals D.3, and D.5, two additional requirements are added

to the decomposition in revised goal model M ′ for brake control. The partial goal model

in Figure 3.4 shows the updated portion of goal model M ′ where requirements D.New1 and

D.New2 are newly added to the decomposition of goal D.1. The new goals, D.New1 and

D.New2, set the Brake Actuator to the current pedal position and read the current pedal

position, respectively.

32

D.1

D.2 D.3

D.5

M(Speed)

Speed = Desired Speed AND
Distance > Safe Distance

A(Throttle Actuator =
Throttle Pedal Sensor)

5

A(Throttle Pedal Sensor Reading)

4

...

...
D.New1

A(Brake Actuator =
Brake Pedal Sensor)

7 D.New2
A(Brake Pedal Sensor Reading)

6

Figure 3.4: Revised AND Decomposition in Goal Model M ′

1-M ′) Generate Detection Logic for Model M ′

The associated utility functions for these new requirements model M ′ are:

Satisficement(D.New1) = Brake Actuator == Brake Pedal Sensor (3.13)

Satisficement(D.New2) = true, (3.14)

where Satisficement(D.New1) includes two MON properties: Brake Actuator and

Brake Pedal Sensor . Goal D.New2 includes no properties, only requires a sensor reading.

Inserting these additional utility functions (Expressions (3.13) and (3.14)) to those de-

fined in Table 3.2, results in the following completeness counterexample detection expression:

CounterexampleD.1 = min(Speed t == Desired Speed∧ (3.15)

Distance > Safe Distance, true,

Throttle Actuator == Throttle Pedal Sensor ,

Brake Actuator == Brake Pedal Sensor ,

true)− Speed t == Speed t+1.

33

2-M ′) Process Logical Expressions & Summarize

Maximizing Expression (3.15) for goal D.1 in goal model M ′, while ensuring the domain

properties and assumptions (i.e., Speed t, Speed t+1, and Distance) in Table 3.2 are maintained,

results in a maximized value of 0.0 (i.e., false). This result indicates that no completeness

counterexample exists in the updated M ′ goal model for decomposition from D.1.

3.4.2 Incomplete OR Decomposition: Goal B.3

In this section, we describe the Ares process for a single decomposed requirement, B.3,

in goal model M ′. The decomposition of goal B.3 is shown in Figure 3.5. The goal B.3 is

intended to specify requirements allowing the ACC system to reduce the current speed by

controlling both the accelerator and brake. The decomposition requires either of its decom-

posed requirements to be satisfied. First, in goal B.4, the throttle (Throttle Actuator) must

be reduced. Second, in goal B.15, the brake (Brake Actuator) must be increased. Either one

of these, or both, is intended to be sufficient to lower the speed of the vehicle unless the

speed (Speed t) is already zero.

B.3

B.4 B.15

A(Slow Car)

A(Reduce Throttle) A(Increase Brake)

...

... ...

Figure 3.5: Example OR Decomposition in Goal Model M ′

34

1-M ′) Generate Detection Logic for Model M ′

In order to detect a completeness counterexample, we maximize an expression similar

to Expression (3.9), but instantiated for B.3:

CounterexampleB.3 = SatisficementDecomp(B.3)− Satisficement(B.3). (3.16)

Expanding Expression (3.16) via Expression (3.7) and the decomposition specific for

goal B.3 results in:

CounterexampleB.3 = max (Satisficement(B.4), (3.17)

Satisficement(B.15))− Satisficement(B.3).

Using the corresponding utility functions defined in Table 3.2 yields the following in-

completeness detection expression:

CounterexampleB.3 = min(Throttle Actuator < Throttle Pedal Sensor , (3.18)

Brake Actuator > Brake Pedal Sensor)−

(Speed t > Speed t+1∨

(Speed t == MIN ∧ Speed t+1 == MIN)).

2-M ′) Process Logical Expressions & Summarize

Maximizing the completeness counterexample Expression (3.18), while ensuring the do-

main properties and assumptions (e.g., Speed t, and Speed t+1) in Table 3.2 are maintained,

results in a maximized value of 1.0. This result indicates the existence of a completeness

counterexample. The counterexample provides the specific environmental configuration of

variables defined in Table 3.5, in both the normalized (from 0.0 to 1.0) values symbolically

analyzed and their real world values. The counterexample indicates that goal B.3 is unsat-

35

isfied, and therefore the current speed (Speed t) does not decrease even when at least one of

the decomposed goals is satisfied (i.e., B.4). Therefore, the decomposition is not sufficient

to decrease speed. While either decomposed goal would be sufficient to slow the car if there

were no other changes, when goal B.4 decreases the throttle by a fractional amount (in this

case 50.0% of the available throttle) the brake can also be reduced by a comparable amount,

causing a neutral impact to the vehicle speed.

Table 3.5: Counterexample Variables for B.3 in Goal Model M ′

Variable or
Requirement

Normalized
Value Value

Speed t 0.5 50.0 MPH
Speed t+1 0.5 50.0 MPH
Throttle Actuator 0.5 50.0%
Throttle Pedal Sensor 1.0 100.0%
Brake Actuator 0.0 0.0%
Brake Pedal Sensor 0.5 50.0%
Goal B.3 0.0 Unsatisfied
Goal B.4 1.0 Satisfied
Goal B.15 0.0 Unsatisfied

In order for the decomposition of goal B.3 to be complete, there must be a requirement

that ensures the satisfaction of one decomposed goal is not negatively impacted by another

decomposed goal. Many specifications would be sufficient and could be represented via addi-

tional requirements, including adjusting the throttle and brake proportionally to one another.

However, one of the most straightforward possible solutions is to change the decomposition

operator from OR to AND. If both decomposed goals are required to contribute to slowing

the car, then neither goal can negatively impact the other. Figure 3.6 shows the portion of

the updated goal model, M ′′, where the decomposition of goal B.3 has been revised from an

OR-decomposition to an AND-decomposition.

36

B.3

B.4 B.15

A(Slow Car)

A(Reduce Throttle) A(Increase Brake)

...

... ...

Figure 3.6: Revised OR Decomposition in Goal Model M ′′

1-M ′′) Generate Detection Logic for Model M ′′

While the utility functions do not change, the decomposition operator does. Expres-

sion (3.17) is updated to use the minimum of the decomposed requirements (i.e., AND)

instead of the maximum (i.e., OR) in the following equation:

CounterexampleB.3 = min(Satisficement(B.4), (3.19)

Satisficement(B.15))− Satisficement(B.3).

Using the corresponding utility functions defined in Table 3.2 yields the following in-

completeness detection expression:

CounterexampleB.3 = min(Throttle Actuator < Throttle Pedal Sensor , (3.20)

Brake Actuator > Brake Pedal Sensor)−

(Speed t > Speed t+1∨

(Speed t == MIN ∧ Speed t+1 == MIN)).

2-M ′′) Process Logical Expressions & Summarize

Maximizing the updated completeness counterexample expression (i.e., the entire Ex-

pression (3.20), where the minimum satisficement of any of the decomposed requirements is

used, rather than the maximum satisficement of any of the decomposed requirements) for

37

goal B.3 in goal model M ′′, while ensuring the domain properties and assumptions (e.g.,

Speed t, and Speed t+1) in Table 3.2 are maintained, results in a maximized value of 0.0 (i.e.,

false). This indicates that no completeness counterexample exists in the updated M ′′ goal

model for B.3.

3.4.3 Discussion

The application of Ares to each of the decompositions in goal model M identifies two

incomplete decompositions: an AND decomposition from goal D.1, and an OR decompo-

sition from B.3. Both of these incompleteness causes are requirements specification errors

that would be difficult to detect with either manual analysis or testing techniques due to

the unexpected simultaneous use of brake and throttle. Neither incomplete decomposition

was artificially inserted, instead they were unexpected artifacts that remained even after

review by automotive industrial collaborators. The first incomplete decomposition, goal D.1,

required additional requirements (D.New1, and D.New2). The revised goal model, M ′, still

contained an incomplete decomposition for goal B.3. This final incompleteness problem was

addressed by changing the decomposition operator of B.3 from OR to AND to obtain the

final goal model M ′′, which contained no further incomplete requirements decompositions.

3.4.4 Threats to Validity

Ares depends on the accuracy of the utility functions provided by Athena [75]. However,

these utility functions are not guaranteed to be correct. The accuracy of the completeness

counterexample detection is bounded by the accuracy of the utility functions and the related

domain properties and assumptions.

38

3.5 Symbolic Analysis Related Work

While a number of projects have dealt with partial specifications and uncertainty about

the requirements (e.g., [85, 93]), this work focuses on automatically detecting incomplete

requirements in the context of requirements decomposition (i.e., requirements refinement).

Several different strategies have been developed to address requirements incompleteness with

respect to decomposition. We overview these techniques and compare them to the Ares

approach.

A search-based technique for the generation of obstacles [2] has been used to create

counterexamples to completeness, where the incompleteness is detected with respect to the

domain properties. However, this process requires manual review of the obstacles generated

to ensure their relevance and applicability. Ares automatically generates counterexamples

that are guaranteed to indicate incomplete requirement decomposition based on the artifacts

provided, and does so within the context of the decomposed requirement rather than the

entire domain.

Methods with formal guarantees exist, including analysis of behavioral state-based sys-

tems [56] and the application of theorem provers to formally described requirements [87].

However, methods that employ formal proofs are heavyweight solutions that require exper-

tise with theorem proving to describe requirements [87] or low-level functional details [56].

Ares supports the use of hierarchical requirements modeling, supplemented by specifications

of environmental conditions, described in terms of simple scalar and Boolean expressions

involving application variables.

Formal decomposition of requirements that guarantees completeness with respect to

decomposition [31] is limited to defined decomposition strategies and requires a high degree

of formality. It is possible to add completeness criteria to formal specification languages,

though not all criteria can be enforced via language semantics [67], thus potentially allowing

incomplete requirements. Ares is not limited to specific decompositions or language semantics

but supports unrestricted decomposition patterns and requirement descriptions.

39

Process rigor [98] and analysis of natural language requirements [46, 69] have both been

used to lower the likelihood of incomplete requirements, but are unable to provide guaranteed

detection or avoidance of incomplete requirements.

Ares is unique as it applies symbolic analysis to automatically-generated utility functions

to detect incomplete decompositions. By using symbolic analysis of application and domain

specific properties provided by domain experts at design-time, Ares supports full analysis of

the hierarchical requirements models.

3.6 Summary

In this chapter, we have presented Ares, a design-time approach for detecting incom-

plete requirements decomposition using symbolic analysis of hierarchical requirements mod-

els. Unlike previous incomplete requirements detection methods, Ares detects incomplete

requirements decompositions while not limiting the allowable decomposition strategies.

We demonstrate Ares on an adaptive cruise control system developed in collaboration

with our automotive industrial collaborators. We show that Ares is able to automatically

detect incomplete requirements decompositions and provide completeness counterexamples

in seconds.

40

Chapter 4

Detecting Incomplete Requirements:

Using Evolutionary Computation

While we previously developed a technique to detect incomplete requirements decompo-

sition with respect to a given environmental scenario, a single completeness counterexample

may not clearly indicate the extent that incomplete requirements impacts the system or what

range of environmental scenarios are affected. This chapter introduces Ares-EC, a design-

time approach for detecting incomplete requirements decomposition using a combination of

evolutionary computation and symbolic analysis of hierarchical requirements models to de-

tect a set of representative incompleteness counterexamples. We again illustrate our approach

by applying Ares-EC to the requirements model of an industry-based automotive adaptive

cruise control system. Ares-EC is able to apply symbolic analysis and evolutionary com-

putation to automatically detect multiple, diverse, and representative sets of requirements

incompleteness counterexamples at design time.

4.1 Introduction

Even when requirements incompleteness is automatically identified, a single counterex-

ample may not be not sufficient. Just as it is not sufficient for a system designer to correct a

41

single environmental scenario impacted by incompleteness, neither is it sufficient to simply

indicate that requirements are incomplete. Instead, the range of environmental scenarios im-

pacted by incomplete requirements decomposition should be identified in order to facilitate

the task of revising the requirements. For example, a requirement for a vehicle may be to stop.

In an idealized system, applying brake force (e.g., from hydraulic brakes) would be sufficient.

Applying the brakes may be insufficient if the throttle can overwhelm the braking force, thus

indicating that the decomposition is incomplete. However, that single counterexample is not

representative of the range of operational scenarios that are impacted by incompleteness. For

example, in inclement weather, brake force may not be sufficient without anti-lock brakes.

Not only is enumerating all necessary decomposed requirements difficult, it is also challenging

to identify the range of impacted scenarios to assess necessary additional requirements.

This chapter describes Ares-EC, an approach that combines symbolic analysis and evo-

lutionary computation to automatically identify sets of representative environmental config-

urations where completeness properties are violated in a hierarchical requirements model.

Hierarchical requirements satisfaction can be assessed in two ways: its individual satisfaction

or the satisfaction of a requirement’s aggregate decomposed requirements (i.e., children or

sub-requirements). Given complete decomposition, a requirement should be satisfied when-

ever its aggregate decomposed requirements are satisfied [37]. Ares-EC uses symbolic analysis

to identify individual counterexamples and uses evolutionary computation to search for sets

of diverse representations of counterexamples based on the previously identified counterex-

amples. By employing symbolic analysis, Ares-EC can guarantee that a single counterexam-

ple will be found, if one exists. Evolutionary computation, on the other hand, can identify

multiple diverse counterexamples in parallel. Ares-EC identifies incomplete decompositions

in the form of sets of representative environmental scenarios, or counterexamples, within a

valid range of values for the variables in the system in which the incompleteness is expressed.

Counterexamples are then summarized for the system designer to revise the requirements

accordingly.

42

Ares-EC applies utility functions [75] to assess individual requirements for completeness

within a hierarchical requirements model. Expressions representing completeness counterex-

amples used in both symbolic and evolutionary computation are defined in terms of these

utility functions. While utility functions have been used to measure run-time satisfaction of

requirements [50, 75], Ares-EC analyzes the utility functions (via expressions representing

incompleteness) at design time. For each requirement’s decomposition, Ares-EC identifies

a representative set of counterexamples from the range of possible requirement variables’

values. Counterexamples are identified as environmental conditions that cause a require-

ment to be unsatisfied while its aggregate decomposed requirements are satisfied. Sets of

counterexamples are identified for an industry-based requirements model for an automotive

application, and the incomplete requirements decompositions along with their representative

set of counterexamples are summarized for the system designer.

The contributions of this chapter are as follows:

• We introduce a design-time, symbolic analysis and evolutionary computation approach

to automatically detect diverse and representative sets of completeness counterexam-

ples in hierarchical requirements models.

• We present a prototype implementation of the Ares-EC approach.

• We demonstrate the applicability of Ares-EC on an industry-based automotive exam-

ple, an adaptive cruise control system.

The remainder of this chapter is organized into the following sections. Section 4.2 details

the Ares-EC approach. Section 4.3 describes the results of a case study, and Section 4.4 details

related work. Finally, Section 4.5 summarizes the work.

4.2 Evolutionary Computation Approach

Ares-EC is an automated method for identifying sets of completeness counterexamples

43

in a hierarchical requirements model. A requirement is considered to be incompletely decom-

posed if there exists a case such that a parent requirement is unsatisfied while the set of its

decomposed requirements are satisfied [37].

The Ares-EC process, as shown in Figure 4.1, generates detection logic using utility

functions and the decompositions in a hierarchical goal model. These logical expressions are

then processed by a search based method to identify solutions that represent completeness

counterexamples. Next, we detail the Ares-EC approach and provide a comparison of four

search methods that were considered before determining which approach to finally use.

Expressions

Utility
Functions

Goals

Properties

Decomposition
Operators

RevisedGoal Model

Revised
Properties

Logical Expressions

ENV, MON, REL
Properties Generate

Utility Functions
via Athena

(2)
Search for

Counterexamples
 & Summarize

Incomplete
Decompositions

System
Designer

Hierarchical
Goal Model

Utility Functions

(1)
Generate
Detection

Logic
Process
Flow

Process Key:
External I/O
Persistent Data

Optimizing
SMT Solver

SMT2
Expressions

Satisfiability
Results

Figure 4.1: Ares-EC Data Flow Diagram

4.2.1 Step 1: Generate Detection Logic

Ares-EC makes use of utility functions generated by Athena [75], just as Ares does.

A completeness counterexample is an unsatisfied parent requirement with a set of satisfied

decomposed requirements [37] indicating there are additional child requirements necessary

to satisfy the parent requirement. For example, D.1 is incompletely decomposed if it is not

satisfied according to its utility function value, but the set of its decomposed requirements

(i.e., D.2, D.5, and D.3) is satisfied (i.e., the minimum of an AND-decomposition) as shown

44

in Equation (4.1).

CounterexampleD.1 = min(Satisficement(D.2), (4.1)

Satisficement(D.5),

Satisficement(D.3))− Satisficement(D.1).

Each of the requirements referenced in Equation (4.1) may either be satisfied (i.e., 1.0)

or unsatisfied (i.e., 0.0) based on their utility function. By instantiating the satisficement

expressions in Equation (4.1) with their respective utility values (from Table 3.2), we obtain

the expression in Equation (4.2).

CounterexampleD.1 = min(Speed t == Desired Speed∧ (4.2)

Distance > Safe Distance,

true,

Throttle Actuator == Throttle Pedal Sensor)−

Speed t == Speed t+1

Similarly, OR-decomposed requirements such as B.3 use the maximum of the decomposed

requirements, as shown in Equation (4.3).

CounterexampleB.3 = max (Satisficement(B.4), (4.3)

Satisficement(B.15))− Satisficement(B.3).

A similar expression is generated for every requirement that is decomposed. Identifying an

optimum (i.e., a return value of 1.0) for a completeness counterexample expression indicates

a counterexample exists.

45

4.2.2 Step 2: Search for Counterexamples and Summarize

In this work, we compare four methods to identify which provides the largest range

of multiple counterexamples. Previously, symbolic analysis has been used to identify single

counterexamples of incomplete requirements decomposition [37]. In contrast, here we apply

evolutionary computation to search for a range of distributed counterexamples. Since we

know that evolutionary computation is not guaranteed to find a solution, especially in ‘needle

in a haystack’ cases, we supplement our evolutionary approach with initial optimal results

from our symbolic approach. Finally, we periodically use our symbolic approach to re-seed

the evolutionary population as a means to overcome additional ‘needle in a haystack’ cases.

For simplicity, we configure the parameters for evolutionary computation based on em-

pirical feedback with an emphasis on optimal results and execution time. All instances of

evolutionary computation used in this work make use of 200 individuals in the population, a

tournament size of 8 is used for mating selection, a tournament of size 4 is used for survival

selection, and a mutation rate of 5%. Executions have been limited to 2000 generations and

execution is on the order of seconds. Mating selection is performed by an eight-way tour-

nament based on the novelty of individuals within a set of randomly-selected individuals.

Crossover for mating is performed by the SBX crossover operator [35] for each real-valued

variable (i.e., variable in the completeness counterexample expressions) in the individuals

selected. Mutation is performed on five percent of the individuals by randomly modifying a

single real-value representing a variable in the genome. Survival via a four-way tournament

is used to maintain population size and is based on fitness as measured by the satisfaction of

the completeness counterexample expression and is elite preserving as no member of the pop-

ulation will be replaced with a less optimal member. Tournaments of this size were selected

in an effort to increase the likelihood that an optimal value takes part in the tournament.

The genetic algorithm emphasizes search diversity via the mating selection and mutation

operators (5% chance of mutation), while survival selection optimizes the results of the

diverse search. The optimal is a population where each individual is at an optimum and

46

each individual is as far as possible from the other individuals based on the Manhattan

distance [28] of the genotype. The genetic evolution described here differs from other genetic

algorithms that search for a single optimal individual, since we are looking for a collection

of diverse solutions.

Symbolic Analysis Only:

For each requirement, a utility function is used to represent the satisfaction of the re-

quirement based on a set of environmental and system variables that make up the utility

function. The parent requirement is symbolically compared to the combined derived re-

quirements, via the completeness counterexample expressions. Detecting a single complete-

ness counterexample is identified via symbolic analysis of the completeness counterexample

expressions (e.g., Equation (4.1) or (4.3)) using existing techniques [37]. We include this

technique here as a means to establish existence of at least one counterexample and for com-

parison to the other search-based techniques. Specifically, symbolic analysis, via Microsoft’s

SMT solver Z3 [32], is used to evaluate the entire range of applicable environmental config-

urations and system variables used in the completeness counterexample expressions for each

decomposed requirement.

In cases where the completeness counterexample expression cannot be satisfied, then no

counterexample exists and the requirement is thus complete, thereby alleviating the need to

perform additional analysis.

Evolutionary Computation Only:

EC-only employs evolutionary computation in the form of a genetic algorithm to search

for both novel and optimal results. Instead of searching for a single optimal solution to a

counterexample expression, EC-only searches for multiple solutions with optimal phenotype

responses (e.g., requirements with utility function values that indicate an incomplete de-

composition) and maximized genotype novelty (e.g., a large difference in the environmental

47

scenario upon which the requirements are applied). The expected results are a population of

optimal individuals (i.e., individuals that represent counterexample) distributed across the

range of the genotype. The genome is an array of real-valued variables, one for each variable

that exists in the completeness counterexample expression.

Symbolic Analysis, then Evolutionary Computation:

While evolutionary computation alone can provide a method of searching with an em-

phasis on diversity, two issues can occur:

• First, the so called ‘needle in a haystack’ problem may make finding the optimum

solution significantly unlikely to be found.

• Second, expressions without a gradient between satisfied and unsatisfied are likely to

take more time to find the optimum, and perhaps degenerate to random search, since

the requirements satisfaction is used to calculate the fitness function.

EC-SA alleviates these two problems by utilizing symbolic analysis to identify a single

optimum, which is used to seed a portion (10%, or 20 of the 200 individuals) of the initial

population. Given an initial optimum, the diverse search is intended to identify a distributed

set of optimum values.

Periodic Evolutionary Computation with Symbolic Analysis:

Symbolic analysis may provide a starting point for evolutionary computation, yet despite

the guarantee of optimal individuals in the initial population, two issues can still occur:

• First, while the ‘needle in a haystack’ problem is alleviated for a single optimum,

additional optima may also be similarly unlikely to be found.

• Second, a change in one variable may require a change in another variable in a single

individual to identify another optimum, resulting in additional search time.

48

PSAEC overcomes these problems by periodically re-analyzing the completeness coun-

terexample expression symbolically, with an added constraint to maximize the distance from

a selection of existing individuals in the population. If another optimum is found then that

individual is added to the population. We allow PSAEC to select up to 10 random individu-

als in the population to create a distance constraint from each of them during the first half of

the generations. If a new and diverse counterexample is found, then 20 random individuals

are replaced with the new counterexample.

4.2.3 Scalability and Limitations

Ares-EC is not guaranteed to identify all completeness counterexamples, even when

using evolutionary computation with periodic symbolic analysis. For example, given a set

of ‘needles in a haystack,’ two ‘needles’ that are close in genotype distance (e.g., when the

throttle is at 72% and 74%, but not at 73%) may cause one to be ignored in favor of coun-

terexamples that are further afield. While no guarantees can be made about identifying all

completeness counterexamples, the larger the set of counterexamples and greater the diver-

sity found, the more representative the solution set is of the incompleteness. Ultimately,

detecting completeness counterexamples is limited to the quality and fidelity of the hierar-

chical requirements model and utility functions.

4.3 Evolutionary Computation Case Study

This section describes and compares the results of applying the four different methods

of identifying counterexamples that satisfy the generated requirement completeness coun-

terexample expressions. These methods are symbolic analysis only (SA), evolutionary com-

putation only (EC), SA-Initialized EC (SAIEC), and Periodic-SA with EC (PSAEC). Each

of these methods were executed 50 times1. For the SA results, there is no difference between

1To ensure reproducibility via statistical measures given the stochastic nature of evolutionary computa-
tion.

49

executions, but for the results that include EC, the results vary across executions. Results

are compared for two incomplete requirements (Goals D.1 and B.3, to ‘Maintain Speed’ and

‘Slow Car’, respectively) that were previously shown to be incomplete using SA [37]. However,

in contrast to previous solutions [37], Ares-EC identifies multiple representative counterex-

amples as measured by a distance metric. Methods are compared based on their ability to

return diverse counterexamples. Next, we describe in detail the results from applying each

of these four techniques and analyze the results.

4.3.1 Symbolic Analysis

SA identified a single counterexample for both goals D.1 and B.3. Intrinsically, there

is no range or diversity in a solution set of one result. SA has been previously used to

identify completeness counterexamples [37] and is included here for comparison with the

other search-based methods.

4.3.2 Evolutionary Computation

EC attempts to address the fundamental shortcoming with the results from only SA by

identifying a population of results, rather than a single result. However, even after 50 execu-

tions, no counterexamples could be identified. Unlike the single SA result, EC attempts to

identify a range of solutions that are more representative of the scope in which the require-

ment incompleteness exists. In this case, the lack of variation in fitness (i.e., fitness values are

either 0.0 or 1.0) reduces the EC to random search. Significantly larger populations (5000)

and generations (20000) were also used with no success.

4.3.3 SA Initialization then EC

While the EC-based method alone was unable to provide counterexamples to a single re-

quirement incompleteness, it is possible to start with a known optimum and search for similar

50

counterexamples. The SAIEC method results in 200 counterexamples within a population of

200. This result does not mean that there are 200 missing or incomplete requirements, only

that this method identified 200 representative counterexamples for each single incomplete

requirement. For example, if incomplete requirements decompositions were only found when

the brake is depressed more than 50%, then the 200 counterexamples should be in a distri-

bution ranging from being pressed 50% to being pressed 100%. Unlike the EC-only method,

providing the EC algorithm with a sample optimum has made it possible to find additional

optima resulting in the identification of usable counterexamples from the population.

The SAIEC method is able to find a counterexample for every member of the popula-

tion for each of the known incomplete requirements (Goals D.1 and B.3). SAIEC is clearly

superior to EC alone, as EC alone is unable to identify any counterexamples. SAIEC is

also clearly superior to SA, as SA is unable to provide any range or diversity within its

counterexamples as SA only identifies a single counterexample.

4.3.4 Periodic SA with EC Results

The additional number of optimal results provided by initializing the EC-based method

with a counterexample found from SA still may leave an intrinsic bias to the original optimal

set in the results. When multiple variables must change in order to maintain an optimum,

it is more difficult to identify additional optima due to the likelihood of a crossover or

mutation maintaining the relationship between those variables. In an effort to identify the

largest range of counterexamples, it may be that periodically adding an optimal solution

outside of the known solutions would improve the overall range of solutions by overcoming

the dependencies between variables. Similar to the SAIEC method, the PSAEC identifies

200 diverse counterexamples within a population of 200.

Similar to SAIEC, the PSAEC method is clearly superior to EC alone for the same

reason that PSAEC is able to identify counterexamples while using EC only is not. PSAEC

is also superior to SA only, as SA only identifies a single counterexample.

51

●●●●●

●●●

SAIEC PSAEC

0.
0

0.
2

0.
4

0.
6

0.
8

M
ea

n
R

an
ge

Figure 4.2: Requirement D.1

●

●●●●

●●
●

●●
●

SAIEC PSAEC

0.
0

0.
2

0.
4

0.
6

0.
8

M
ea

n
R

an
ge

Figure 4.3: Requirement B.3

4.3.5 Comparison

While SA can only be used to identify the existence of a requirement completeness

counterexample, additional counterexamples provide more information on the range and

scope of the incompleteness. EC-based methods can identify additional counterexamples in

parallel, but encounter difficulties satisfying expressions with fitness cliffs or ‘needle in a

haystack’ solutions (i.e., in an EC-only method) or difficulties with identifying additional

novel solutions due to correlated variables (i.e., in a SAIEC search method). In fact, in this

specific case, the EC-only method was unable to identify results due to the lack of a fitness

gradient. In the general case, the greatest range of optimal genotype values is provided by

the PSAEC that escapes limitations of the SAIEC search methods. Evidence of this finding

can be seen in Figures 4.2 and 4.3 for requirements incompleteness for goals D.1 and B.3,

respectively, where the mean range of genotype values in each individual can be seen in box

plots.

It is necessary to statistically compare the two methods that identified a range of so-

lutions (i.e., SAIEC and PSAEC), since they are both able to identify the same number

52

of counterexamples. We define the null hypothesis H0 to state that there is no difference

between the range of optimal solutions for the SAIEC and PSAEC methods. We also define

an alternative hypothesis, H1, that states that there is a difference between the range of

optimal solutions for SAIEC and PSAEC methods. In both cases, in goals B.3 and D.1,

PSAEC achieves statistically significant larger mean range values over 50 executions as mea-

sured using the Mann-Whitney U-test (p < 0.05 where p = 2.2 ∗ 10−16). Therefore we can

reject the null hypothesis, H0, in favor of the alternate hypothesis H1 due to the statistically

significant difference.

4.4 Evolutionary Computation Related Work

This section covers related work for both requirements completeness and search methods

that maintain diversity. While there is a broad collection of research into leveraging search-

based techniques for requirements-related tasks, many of which are described in surveys [54,

99], to the best of the authors’ knowledge, none have explicitly tackled the problem of

requirements decomposition incompleteness.

4.4.1 Requirements Completeness

Outside of process rigor [98], formal guarantees of requirements completeness exist in

the form of decomposition strategies that are proven to define complete decomposed require-

ments [31]. Completeness criteria may be added to formal specification languages, though

incomplete requirements may still exist due to criteria that cannot be enforced by language

semantics [67]. A method exists to detect incomplete decompositions using symbolic analysis,

however only a single counterexample for each incomplete requirement is produced [37].

Ares-EC is unique as it applies symbolic analysis and evolutionary computation to

automatically-generated utility functions to detect sets of representative completeness coun-

terexamples without restricting decompositions to a finite set of formal patterns.

53

4.4.2 Search for Diversity

Multi-objective optimization (e.g., NSGA-II [36]) identifies multiple solutions, but the

solutions represent the Pareto front of a tradeoff between two or more objectives [34]. How-

ever, if the objectives are not competing, then the problem collapses to single-objective

optimization. Our method of searching for requirement completeness counterexamples does

not contain competing objectives, but rather a single objective with multiple solutions.

Novelty search uses evolutionary computation to identify novel behaviors [66] across

the genotype. Rather than identifying a population of optimum solutions, novelty search

identifies the range of possible solutions from an optimum to the worst solution. Niching is

typically used for multi-modal problems [43], rather than problems with an area of optimal

results.

The search method used by Ares-EC identifies multiple optimum solutions in parallel

while maximizing diversity of the solutions.

4.5 Summary

In this chapter, we have presented Ares-EC, a design-time approach for detecting in-

complete requirements decomposition using symbolic analysis and evolutionary computation

to analyze hierarchical requirements models. Unlike previous incomplete requirements detec-

tion methods, Ares-EC detects representative sets of incomplete requirements decompositions

while not limiting the allowable decomposition strategies.

We demonstrated Ares-EC on an adaptive cruise control system developed in collabo-

ration with our automotive industrial collaborators. We show that Ares-EC is able to auto-

matically detect incomplete requirements decompositions and provide sets of completeness

counterexamples in seconds, allowing holistic correction of the fundamental incompleteness

issues rather than the correction of single counterexamples. Further, by combining symbolic

analysis with evolutionary computation we achieve the benefits of both techniques.

54

Chapter 5

Detecting Incomplete Requirements:

At Run Time

The validity of run-time monitoring of system goals and requirements depends on both

the completeness of the requirements, as well as the correctness of the environmental as-

sumptions. Often specifications are built with an idealized view of the environment that

leads to incomplete and inconsistent requirements related to non-idealized behavior. Worse

yet, requirements may be measured as satisfied at run time despite an incomplete or in-

consistent decomposition of requirements due to violated environmental assumptions. While

methods exist to detect incomplete requirements at design time, environmental assumptions

may be invalidated in unexpected run-time environments causing undetected incomplete de-

compositions. This chapter introduces Lykus, an approach for using models at run time to

detect incomplete and inconsistent requirements decompositions at run time [39]. We illus-

trate our approach by applying Lykus to a requirements model of an adaptive cruise control

system from our industrial collaborators. Lykus is able to automatically detect instances of

incomplete and inconsistent requirements decompositions at run time.

55

5.1 Detecting at Run Time

While run-time requirement monitors are intended to measure and report the satisfac-

tion of the requirements in a software system, they are only effective if the requirements

are complete and consistent. Problematically, unexpected environmental scenarios that may

lead to incomplete or inconsistent requirements in cyber-physical systems may also allow

run-time monitors to erroneously assess requirements satisfaction. For example, if a require-

ments decomposition is incomplete, then the decomposed requirement would be satisfied even

if the missing requirement(s) were unsatisfied. This chapter presents Lykus,1 an approach to

automatically detect incomplete requirements coverage at run time.

Detecting incomplete requirements is still an active research area [2, 23, 46, 69, 98, 37],

which becomes more complicated when design-time environmental assumptions are found

to be invalid at run time. For example, a requirement for a vehicle may be to accelerate.

In an idealized system, applying the throttle (e.g., pressing the gas pedal) would be suffi-

cient. However, the assumption that spinning the wheels faster due to an increased throttle

affects vehicle speed may be found to be invalid. Given an environmental scenario with low

traction (e.g., ice) or where the vehicle’s wheels do not touch the ground (e.g., the vehicle

is flipped over) would invalidate the earlier assumption when the vehicle did not accelerate.

Formal design-time methods to decompose goals and requirements with guaranteed com-

pleteness exist [31], though they are limited to only specific formal decomposition rules.

Design-time methods exist that are not limited to formal decomposition patterns [37, 38],

but make assumptions about the environment that may be shown to be invalid at run time.

Problematically, run-time monitoring of incompletely decomposed requirements may indi-

cate satisfaction when the missing requirement(s) would be unsatisfied (e.g., the throttle is

increased indicating satisfaction, but the vehicle does not accelerate). Currently, no methods

exist to detect incomplete and inconsistent requirements decompositions at run time in order

to ensure relevant requirement satisfaction assessment.

1Lykus is the mortal son of Ares, who sacrificed strangers to his father.

56

This chapter describes Lykus, the extension of Ares, a design time model-driven tech-

nique [37] to detect incomplete and inconsistent requirements decompositions at run time.

Lykus adapts run-time monitors to ensure relevant assessment in the context of the physical

environment and requirements model. While requirements in a hierarchical decomposition

may be assessed directly or based on the satisfaction of the decomposed child requirements,

neither method is sufficient to assess satisfaction alone in the presence of an incomplete

or inconsistent decomposition. However, by using a combination of both assessments, it is

possible to detect an incomplete or inconsistent decomposition and calculate the correct

requirement satisfaction. For example, given a parent requirement to accelerate a vehicle,

it may appear that the requirement is satisfied when all of the decomposed child require-

ments (e.g., increase throttle) are satisfied. If the vehicle does not accelerate, then there is an

incomplete requirement decomposition and additional requirements that are unrepresented

are unsatisfied. Similarly, if the vehicle does accelerate but the decomposed requirements are

not satisfied, then the parent requirement to accelerate is not being satisfied in the manner

specified by the child requirements. Instead, it could be that the vehicle is rolling down a hill

rather than accelerating via throttle. In both cases, the intent of the acceleration requirement

is not met, therefore the requirement is unsatisfied. Lykus identifies incomplete and inconsis-

tent decompositions at run time to dynamically modify requirement satisfaction monitors in

order to provide more environmentally relevant assessments of the requirements unsatisfied.

Lykus also identifies violated environmental assumptions when incomplete or inconsistent

decompositions are identified at run time.

Lykus uses utility functions [75] to analyze individual requirements within the system

specification. Rather than return the raw assessment values generated by the utility func-

tions, Lykus identifies incomplete requirements (i.e., additional requirements are necessary

but not specified) and inconsistent requirements (i.e., the system is not constrained in the

manner defined by the requirements) at run time by comparing the utility function values

for parent and child requirements. In the case of incomplete requirements, the parent utility

57

function value is modified to be ‘unsatisfied,’ as there exists at least one requirement that

should have been decomposed (but was not) that is ‘unsatisfied.’ Similarly, in the case of

an inconsistent satisfied requirement, the parent utility function value is also modified to

be unsatisfied since the satisfaction did not take place according to the constraints imposed

by the decomposed requirements. Lykus explicitly uses the decompositions from within a

hierarchically decomposed goal model, typically a design-time model, to analyze the decom-

position completeness and consistency at run time where specific scenarios representing the

actual state of the environment and system are continually processed, or streamed, through

the detection system.

The contributions of this chapter are as follows:

• We introduce a run-time approach to automatically detect incomplete and inconsistent

requirement decompositions in hierarchical requirements models.

• We adapt the utility function results in the case of incomplete and inconsistent decom-

positions in order to assess satisfaction with respect to the actual physical environment

conditions, as opposed to an environmental model.

• We identify the environmental assumptions that are shown to be invalid and are the

contributing factor to the incomplete or inconsistent decomposition.

• We present a prototype implementation of the Lykus run-time analysis and requirement

assessment approach.

• We demonstrate the applicability of Lykus on an adaptive cruise control system imple-

mented on a rover vehicle.

The remainder of this chapter is organized into the following sections. The model used

for the example application is defined in Section 5.2. Section 5.3 details the approach. Section

5.4 describes an example application, and Section 5.5 details related work. Finally, Section

5.6 discusses the conclusions and avenues of future work.

58

5.2 Complete Adaptive Cruise Control Input Model

Figure 5.1 details a hierarchical goal and requirements model of an Adaptive Cruise Con-

trol system that uses distance sensors to ensure a safe following distance from the car ahead

by adjusting vehicle speed while simultaneously maintaining as close to the desired speed as

possible. This goal model is updated from the one presented in Chapter 3 (Figure 3.1) to

reflect the modifications performed according to Ares and Ares-EC analyses. Abbreviations

M and A are used for Maintain and Achieve, respectively. Leaf nodes (i.e., agents) that are

numbered in the requirements model are provided in Table 5.1. The ACC model defined here

has been previously shown to be complete [37], given the assumed environmental conditions.

D.1

D.2
D.3

D.4
D.5

D.6 D.7

D.8

D.9 D.10

B.2

B.3

B.4

B.5 B.6 B.7

B.8

B.9

B.11 B.12

B.15

B.16 B.17 B.18 B.19

B.10

B.13 B.14

C.1

C.2 C.3

C.4 C.5

C.6 C.7 C.8

C.12

C.13

C.9

C.10 C.11

A.15

A.16 A.17

A.18 A.19 A.20 A.21

A.1

A.2 A.3 A.4 A.5

A.6 A.7 A.8
A.9 A.10

A.11 A.12 A.13 A.14
B.1

A(Faster Speed)

M(Automatic Control)

M(Adaptive Cruise System)

M(Off, Off)A(Off, Off) M(On, Off) M(On, On)

= Off = Off

1 2

= Off = On

1 2

A(Off)

3

= On = Off

1 2

M(Manual Control)

M(Throttle
Response)

M(Brake Response)

A(Throttle Pedal
Sensor Reading)

4

A(Throttle Actuator =
Throttle Pedal Sensor)

5

A(Brake Pedal
Sensor Reading)

6

A(Brake Actuator =
Brake Pedal Sensor

Reading)

7

= On = On

1 2

Speed > Desired Speed OR
Distance < Safe Distance

Wheel Speed >
Desired Speed

GPS Speed >
Desired Speed

8 9

Speed >
Desired Speed Distance <

Safe Distance

Distance 1 <
Safe Distance

Distance 2 <
Safe Distance

10 11

A(Slower Speed)

A(Slow Car)

A(Reduce Throttle)

A(Increase Brake)

A(Throttle Actuator =
Throttle Pedal Sensor - 1)

Throttle Angle > 0

5
4

A(Brake Pedal
Sensor Reading)

Throttle Pedal
Sensor = 0

6 4

Brake Pedal
Sensor < 45

6

A(Throttle Pedal
Sensor Reading)

4

A(Brake Actuator =
Brake Pedal Sensor + 1)

7

Speed < Desired Speed AND
Distance > Safe Distance

Wheel Speed Sensor <
Desired Speed

GPS Speed Sensor <
Desired Speed

8 9

Speed < Desired Speed

Distance > Safe Distance

Distance Sensor 1 >
Safe Distance

Distance Sensor 2 >
Safe Distance

10 11

A(Increase Throttle)

Throttle Angle < 45

4

A(Brake Angle = 0)

7

A(Throttle Actuator =
Throttle Pedal
Sensor + 1)

5

A(Throttle Pedal
Sensor Reading)

4

M(Speed)

Speed = Desired Speed AND
Distance > Safe Distance

Wheel Speed Sensor =
Desired Speed

GPS Speed Sensor =
Desired Speed

8 9

Speed = Desired Speed

Distance > Safe Distance

Distance Sensor 1 >
Safe Distance

Distance Sensor 2 >
Safe Distance

10 11

A(Throttle Actuator =
Throttle Pedal Sensor)

5

A(Throttle Pedal Sensor Reading)

4

A(Brake Actuator =
Brake Pedal Sensor)

7

D.New2
A(Brake Pedal Sensor Reading)

6D.New1

Figure 5.1: Adaptive Cruise Control Goal Model

The ACC model in Figure 5.1 is defined by four primary components: cruise control

modes (i.e., goals with a prefix of ‘A.’), speed increase (i.e., goals decomposed from C.1),

59

Table 5.1: Agents used in Goal Model

Agent (Sensor / Actuator)
1 Cruise Switch Sensor
2 Cruise Active Sensor
3 Cruise Active Switch
4 Throttle Pedal Sensor
5 Throttle Actuator
6 Brake Pedal Sensor
7 Brake Actuator
8 Speed Sensor 1
9 Speed Sensor 2
10 Distance Sensor 1
11 Distance Sensor 2

speed decrease (i.e., goals decomposed from B.2), and maintain speed (i.e., goals decomposed

from D.1). The speed is increased or decreased to maximize speed up to the desired speed

while maintaining a safe distance from the target car (i.e., the car immediately in front).

In cases where the safe distance is violated, the speed is decreased regardless of the desired

speed. In cases that both the desired speed and safe distance are met, the speed is maintained.

The utility functions for the requirements in Figure 5.1 are derived from the ENV,

MON, and REL properties in Table 5.2, where, for brevity, only values related to the

ongoing example are presented. For example, the utility function for requirement C.1 is

given in Expression 5.1 indicating that goal C.1 (‘Achieve Faster Speed’) is satisfied if the

speed value at time t, Speedt, is less than the value at time t+ 1, Speedt+1. Table 5.3 defines

the variable value ranges and units.

Satisficement(C.1) = Speed t < Speed t+1 (5.1)

60

Table 5.2: ENV, MON, and REL Properties

ENV MON REL
C.1 Speed t, Speed t+1 Speed t < Speed t+1
C.2 Speed t,Distance Desired Speed , Safe Distance Speed t < Desired Speed ∧ Distance > Safe Distance
C.3 Throttle Actuator , Throttle Pedal Sensor Throttle Actuator > Throttle Pedal Sensor
C.12 Brake Actuator Brake Actuator == MIN

Speed t Speed Sensor 1 , Speed Sensor 2 Speed Sensor 1 ∨ Speed Sensor 2
Speed t Throttle Pedal Sensor ,Brake Pedal Sensor max (MIN ,Throttle Pedal Sensor − Brake Pedal Sensor)

Speed t+1 Throttle Actuator ,Brake Actuator max (MIN ,Throttle Actuator − Brake Actuator)
Distance Distance Sensor 1 ,Distance Sensor 2 Distance Sensor 1 ∨ Distance Sensor 2

Table 5.3: Units and Scaling for Variables in Table 5.2

Variable Min Max Unit
Speed t 0.0 100.0 MPH
Speed t+1 0.0 100.0 MPH
Distance 0.0 50.0 Inches
Desired Speed 0.0 100.0 MPH
Safe Distance 0.0 50.0 Inches
Throttle Actuator 0.0 100.0 %
Throttle Pedal Sensor 0.0 100.0 %
Brake Actuator 0.0 100.0 %
Brake Pedal Sensor 0.0 100.0 %
Distance Sensor 1 0.0 50.0 Inches
Distance Sensor 2 0.0 50.0 Inches
Speed Sensor 1 0.0 100.0 MPH
Speed Sensor 2 0.0 100.0 MPH
Cruise Switch Sensor Off On Boolean
Cruise Active Sensor Off On Boolean
Cruise Active Switch Off On Boolean

5.3 Run-Time Approach

An overview of Lykus is presented in Figure 5.2. Similar to Ares, Lykus makes use of

Athena [75] to generate the utility functions that are used as run-time monitors to detect

incomplete and inconsistent decompositions of parent requirements in the goal model (e.g.,

Figure 5.1) using the properties in Table 5.2. Optionally, Ares can be used to detect in-

complete requirements decompositions that can be identified at design-time [37]. The utility

functions and goal model are then used by Lykus to generate logical expressions that rep-

resent the decompositions within the hierarchically decomposed goal model to detect both

incomplete and inconsistent decompositions. These logical expressions are used by Lykus to

61

generate executable monitoring code that detects incomplete and inconsistent decomposi-

tions and accurately report parent satisfaction. The executable monitoring code generated

by Lykus is used at run time to monitor the system operating in its physical environment to

detect counterexamples and report satisfaction throughout the system’s execution.

Logical
Expressions

Goals

Run-Time
Monitoring

Code

(Complete)
Goals &

Utility Functions

Goal Model

(1)
Generate Logical

Expressions

(2)
Generate
Monitoring

Code

Run-Time
Monitoring

Code

Process
Flow

Process Key:

External I/O
File

(Optional)
AresAthena Goals &

Utility Functions

Figure 5.2: Lykus Data Flow Diagram

Lykus is applicable to systems that interact with their environment, where the environ-

ment is anything that is outside of the system-to-be. The environment may be other systems,

not just a physical environment. Additionally, the system must be able to sense its expected

impact on the environment to allow utility functions to measure the satisfaction of individ-

ual requirements directly, or indirectly using relationships between multiple sensors. Finally,

requirements must be defined hierarchically to detect decompositional counterexamples.

5.3.1 DFD Step 1: Generate Logical Expression

The input to Step 1 is a goal model that may be analyzed at design-time for incomplete

requirement decompositions using Ares [37] and utility functions generated by Athena [75].

Lykus outputs a set of requirements monitors and additional logic that detects incomplete

62

Table 5.4: Satisfaction Cases

Utility Function Updated
Parent

RequirementRow
Parent

Requirement
Child

Requirements
1 Unsatisfied Unsatisfied Unsatisfied
2 Unsatisfied Satisfied Unsatisfied (Incomplete)
3 Satisfied Unsatisfied Unsatisfied (Inconsistent)
4 Satisfied Satisfied Satisfied

and inconsistent requirements decomposition, as well as provides the status of the parent

requirement satisfaction.

Unlike design-time solutions that use utility functions for analysis across an entire range

of possible scenarios [37], Lykus applies the utility value functions at run time for a single

scenario that the system is currently experiencing. Based on the results of the comparisons of

the realized utility value functions, analysis is performed each time the utility functions are

calculated at run time. Counterexamples are identified, and subsequently used immediately

for run-time requirement assessments.

Table 5.4 lists the satisfaction of both the parent requirement and the set of decom-

posed child requirements along with the updated parent requirement satisfaction status to

reflect the run-time evaluation of the parent in actual environmental conditions. For each

decomposed requirement, two additional checks are performed, one for incomplete decom-

position and one for inconsistent composition. If the requirement is neither incomplete nor

inconsistent, then the requirement’s utility function is unmodified. The possible parent and

decomposed child requirement satisfaction results listed in Table 5.4 are discussed in the

following subsections. If the parent’s and decomposed child requirements’ satisfactions do

not match, then the parent must be unsatisfied due to either incomplete or inconsistent de-

composition. Table 5.4 identifies the possible combinations of parent and decomposed child

requirements satisfaction, along with the updated parent satisfaction based on run-time sat-

isfaction measures.

63

Standard Unsatisfied Requirements

In the case where both the parent and the child requirements are unsatisfied (i.e., Row

1 in Table 5.4), the satisfaction of the parent does not change and the parent requirement

remains unsatisfied at run time. Since both the utility function representing the satisfaction

of the parent requirement and the combined satisfaction of child requirements are both un-

satisfied, then the result is neither incomplete nor inconsistent. The requirement is correctly

assessed as unsatisfied by both the parent and child requirements. That is, there is not a

known missing requirement due to an unsatisfied parent requirement nor is there an inap-

propriately satisfied parent requirement due to a solution not specified by the decomposed

child requirements. When a parent requirement is unsatisfied, we would normally expect the

decomposed child requirements to be unsatisfied.

Unsatisfied Due to Incompleteness

In the case where the parent is unsatisfied, yet the decomposed child requirements are

satisfied (i.e., Row 2 in Table 5.4), the parent requirement should remain unsatisfied due to an

incomplete decomposition. While the aggregate child requirements indicate that the parent

requirement should be satisfied, they only indicate satisfaction due to a missing requirement

that would alter the satisfaction of the aggregate set.

Unsatisfied Due to Method Used

In the case where the parent requirement is satisfied, yet the decomposed child require-

ments are unsatisfied (i.e., Row 3 in Table 5.4), the parent status must be modified to indicate

that it is unsatisfied. While the parent requirement utility function indicates that the parent

requirement is satisfied, the method of satisfaction is not constrained to the solution provided

by the decomposed requirements.

64

Standard Satisfied Requirement

In the case where the parent requirement and the decomposed child requirements are

both satisfied (i.e., Row 4 in Table 5.4), then the decomposition is neither incomplete nor

inconsistent. Regardless of the method of assessing the requirement (i.e., directly or via the

requirement’s decomposed child requirements) the assessment results in satisfaction for both

the parent and children.

5.3.2 DFD Step 2: Generate Monitoring Code

The logic for comparing parent requirement and aggregate child requirements satis-

factions is generated for each decomposed parent requirement. Neither direct measurement

of each requirement (e.g., measuring parent requirements for satisfaction) nor measuring a

requirement’s aggregate decomposed requirements (e.g., measuring the set of child require-

ments for satisfaction) is sufficient to assess the satisfaction of the parent requirement in all

cases. An implementation of Table 5.4 to calculate the updated satisfaction of requirement

C.1 at run time is given in Figure 5.3. This approach differs from the Ares approach, since

here we detect at run time if a single specific environmental and system scenario related to the

current state of the system includes incomplete or inconsistent requirements decomposition.

The requirements, values of the variables, and (when included) environmental assumptions

are recorded upon the detection of an incomplete or inconsistent requirements decomposi-

tion. Similar functions that update parent requirement status, as measured from the original

utility functions, are provided for each of the parent requirements in the goal model in order

to detect incomplete and inconsistent decompositions and the associated variables at run

time.

65

bool u p d a t e d s a t o f c 1 () {
// Assess Parent S a t i s f a c t i o n
bool pa r en t s a t = s a t o f c 1 () ;
// Assess Aggregate Child S a t i s f a c t i o n
bool c h i l d s a t = s a t o f c 2 () &&

s a t o f c 3 () && s a t o f c 1 2 () ;

i f (pa r en t s a t == c h i l d s a t)
re turn pa r en t s a t ;

e l s e {
// Save v a r i a b l e s and requirement
record counterexample (‘ ‘C. 1 ’ ’) ;

// Unsat i f incomplete / i n c o r r e c t
re turn f a l s e ;

}
}

Figure 5.3: Updated Utility Function Listing of C.1

5.3.3 Execution Time & Deployment

For each requirements decomposition, the computational effort of Lykus grows linearly

with respect to the number of decomposed requirements, assuming a constant maximum size

of each utility function. Instead of calculating if a requirements decomposition is incomplete

or inconsistent in any scenario, Lykus calculates if a requirement decomposition is incomplete

or inconsistent in only the current scenario (e.g., the agents periodically read from sensors

to support the calculation of the utility functions). This is similar to checking a known NP

problem, SAT, for a single set of true or false assignments rather than attempting to find

which true or false assignments satisfy the Boolean expression.

More formally, identifying incomplete or inconsistent requirements decompositions exists

is NP-Complete. That is, identifying an incomplete or inconsistent requirements decompo-

sitions is computationally expensive but verifying a specific incomplete or inconsistent re-

quirements decomposition can be done very quickly. Lykus leverages the latter property and

66

verifies the decompositional completeness and consistency with respect to only the current

environmental scenario.

Given that utility functions are widely used as run-time monitors [75] (e.g., “ sat of ∗()”

in Figure 5.3), the additional cost Lykus incurs is used to calculate a single Boolean ex-

pression based on the concrete satisfaction of the utility functions (e.g., calculation of

“parent sat == child sat” in Figure 5.3) for each decomposition.

Lykus calculates if each decomposition is incomplete or inconsistent for the current

scenario as measured by the utility functions and their respective monitor properties (i.e.,

agents and sensors). The utility functions are updated as new sensor results are available (as

often as 20 times per second) based on the control loop of the software and the speed of the

processor and senor responses. When the utility function values are updated, the decompo-

sitions that include the requirements with updated utility function values are checked for

incompleteness. That is, the decompositions of the requirements specification are evaluated

and re-evaluated for incompleteness throughout the execution of the system in which the

generated run-time monitoring code is deployed.

5.3.4 Limitations

The accuracy of Lykus is only as good as the accuracy of the ENV, MON, and REL

properties used to define the utility functions. Additionally, counterexamples may be present

in a scenario that occurs only between sensor readings. In such cases, the values calculated

by the utility functions never represent an incompleteness or inconsistency and, therefore,

no counterexample is detected.

5.4 Run-Time Examples

This section covers examples of an incomplete requirement decomposition and an in-

consistent requirement decomposition. Lykus is able to generate code to use utility functions

67

to detect incomplete and inconsistent requirements decompositions at run time to ensure

run-time relevant requirements assessment.

5.4.1 Experimental Setup

The updated utility functions and detection logic are executed during the operation of

a small autonomous car. The car, shown in Figure 5.4, comprises a 16 MHz ATmega328

microcontroller and two speed controllers driving 4 motors turning 4 wheels. Distance mea-

surements are provided by an ultrasonic sensor, speed measurements are provided by a

cumulative accelerometer, and user input is provided by infrared remote control. The small

autonomous car was placed into two different environmental scenarios intended to elicit the

detection of both incomplete and inconsistent decompositions.

Figure 5.4: Experimental Autonomous Car

5.4.2 Incomplete Requirement Decomposition

In order to demonstrate an incomplete requirement decomposition for a parent require-

ment, the aggregate child requirements must be satisfied while the parent requirement itself

is unsatisfied. Using goal C.1 as an example, the car must be placed in a position where

the utility function is invalid. Specifically, the speed cannot increase over some given time

68

despite an increase in throttle with no braking. An environmental scenario outside of the

idealized environmental model (i.e., as defined in Table 5.2 for rows Speed t, Speed t+1, and

Distance) may elicit previously undetected incomplete requirement decompositions.

In this example, we physically flip the vehicle onto its back, allowing none of the wheels

to touch the ground. Since our idealized environmental model never considered the possibility

of rolling the vehicle over, the standard method of accelerating does not apply. The updated

utility function code generated by Lykus detects an incomplete decomposition from C.1 at

run time and records the incomplete decomposition, the system and environmental variables,

and violated environmental assumptions.

Importantly, in order to maintain the set speed, the cruise control system attempts

to accelerate by increasing the throttle (via goal C.3) while the brake is not applied (via

goal C.12); there is a safe distance to any upcoming obstacle and the current speed is less

than the desired speed (via expectation C.2). Despite these decomposed child goals being

satisfied, the speed (both at the current time and in the future) are 0. Due to the detected

incomplete decomposition, parent goal C.1 is reported as unsatisfied based on run-time

monitored conditions. The variables recorded for the incompleteness are shown in Table 5.5

and are limited to a resolution of 10% for percentage-based values and one tenth (i.e., 0.1)

for all other values due to the truncation of sensor and actuator resolution to minimize

oscillation and measurement error.

Given the list of environmental assumptions defined in Table 5.2, the values of the

counterexample variables can be used to identify violated environmental assumptions at run

time. Table 5.6 includes the list of environmental assumptions and indicates if they are valid

or not. It is important to note that if the optional design-time completeness detection was

not performed by Ares, there may be no environmental assumptions documented. In this

case, Table 5.6 shows that rows 2 and 3 both include violated environmental assumptions

related to the calculation of speed from only the brake and throttle, ignoring the possibility

of outside influences (e.g., rollovers). This information can be logged for analysis of failures

69

Table 5.5: Incomplete Decomposition Values

Row Variable or Goal Value
1 Brake Actuator MIN
2 Brake Pedal Sensor MIN
3 Desired Speed MAX
4 Distance MAX
5 Distance Sensor 1 MAX
6 Distance Sensor 2 MAX
7 Safe Distance 6 Inches
8 Speed Sensor 1 MIN
9 Speed Sensor 2 MIN
10 Speedt MIN
11 Speedt+1 MIN
12 Throttle Actuator 80%
13 Throttle Pedal Sensor 70%
14 Goal C.1 Unsatisfied
15 Goal C.2 Satisfied
16 Goal C.3 Satisfied
17 Goal C.12 Satisfied

Table 5.6: Environmental Assumptions: Incompleteness

Row Environmental Assumption Valid
1 Speed t = Speed Sensor 1 ∨ Speed t = Speed Sensor 2 True

2
Speed t = max (MIN ,
Throttle Pedal Sensor − Brake Pedal Sensor)

False

3
Speed t+1 = max (MIN ,
Throttle Actuator − Brake Actuator)

False

4
Distance = Distance Sensor 1∨
Distance = Distance Sensor 2

True

after they occur, or used as inputs to existing adaptation methods beyond the scope of this

chapter.

5.4.3 Inconsistent Requirement Decomposition

In order to demonstrate an inconsistent requirements decomposition, the speed must

increase despite not increasing the throttle. We achieve this case by allowing the vehicle

to drive off a ‘cliff,’ represented by the edge of a desk. The car accelerates through its fall

70

Table 5.7: Inconsistent Decomposition Values

Row Variable or Goal Value
1 Brake Actuator MIN
2 Brake Pedal Sensor MIN
3 Desired Speed 2 MPH
4 Distance MAX
5 Distance Sensor 1 MAX
6 Distance Sensor 2 MAX
7 Safe Distance 6 Inches
8 Speed Sensor 1 1.2 MPH
9 Speed Sensor 2 1.2 MPH
10 Speedt 1.2 MPH
11 Speedt+1 2 MPH
12 Throttle Actuator 20%
13 Throttle Pedal Sensor 20%
14 Goal C.1 Satisfied
15 Goal C.2 Unsatisfied
16 Goal C.3 Unsatisfied
17 Goal C.12 Satisfied

despite not increasing the throttle. Just as with the incomplete requirements decomposition,

the updated utility function code generated by Lykus detects an inconsistent decomposition

from C.1 and records the inconsistent decomposition (i.e., the parent requirement is satisfied

in a method outside of what is specified by the decomposed requirements), the system and

environmental variables, and violated environmental assumptions.

In this case, the ACC system accelerates without increasing the throttle (via goal C.3)

while the brake is not applied (via goal C.12). While there is a safe distance to any upcoming

obstacle, the current speed is not less than the desired speed (via expectation C.2). Despite

not satisfying these decomposed child goals, the speed increases due to the precipitous drop.

Due to the detected inconsistent decomposition, goal C.1 is reported as unsatisfied, as it is

not satisfied in the method required by the decomposed child requirements. The variables

recorded for the inconsistency are shown in Table 5.7 and are limited to a resolution of 10%

for percentage based values and one tenth (i.e., 0.1) for all other values due to the truncation

of sensor and actuator resolution to minimize oscillation and measurement error.

71

Given the list of environmental assumptions previously identified in Table 5.2, Table 5.8

lists the environmental assumptions and indicates their run-time validity. Similar to the in-

completeness counterexample, rows 2 and 3 both include violated environmental assumptions

related to the calculation of speed from only the brake and throttle, ignoring the possibility

of outside influences (e.g., drastic changes in terrain). The system designer may choose to

adapt to solutions that do not depend on the invalid environmental assumptions, or the

invalid environmental assumptions may be recorded for later revision of the system.

Table 5.8: Environmental Assumptions: Inconsistency

Row Environmental Assumption Valid
1 Speed t = Speed Sensor 1 ∨ Speed t = Speed Sensor 2 True

2
Speed t = max (MIN ,
Throttle Pedal Sensor − Brake Pedal Sensor)

False

3
Speed t+1 = max (MIN ,
Throttle Actuator − Brake Actuator)

False

4
Distance = Distance Sensor 1∨
Distance = Distance Sensor 2

True

5.4.4 Threats to Validity

Since Lykus is most realistically validated at run time, rather than using a simulation

or static analysis, the validation is limited to the finite set of scenarios that occur. We

have ensured that both inconsistent and incomplete requirements decompositions can be

identified, however additional inconsistent and incomplete requirements decompositions may

exist within the requirements model. The validation of the detection classification, however,

is done by specific cases (i.e., Table 5.4) within the description of the approach. Additionally,

methods that could manage sensor uncertainty (e.g., RELAXed goals and requirements [94])

are not included in the examples of incomplete and inconsistent requirements.

72

5.5 Run-Time Related Work

This section overviews related work, including requirements completeness and run-time

monitoring of requirements. Unlike proposals to use run-time specific models to support

run-time analysis [30], we use goal models intended for design time use for run-time analysis.

5.5.1 Requirements Completeness

Multiple methods have been developed to identify incomplete requirements decomposi-

tion. We overview these strategies and compare them to Lykus. Obstacles to requirements

completeness have been generated using search-based techniques [2], however the coun-

terexamples must be manually reviewed for applicability. Formal methods of guaranteeing

complete requirements exist for behavioral state-based systems [56], formally described re-

quirements using theorem provers [87], and low-level functional details [56]. Additionally,

decomposition with formally-proven completeness properties also exist, where a system de-

fined by repeated application of the formal decomposition patterns guarantees completeness.

Problematically, formal methods are intrinsically heavyweight solutions that often require

expertise with theorem proving [87] or limit possible solutions to the formally defined pat-

terns.

Tools also exists that identify single [37] or multiple [38] counterexamples (Ares and

Ares-EC, respectively) in hierarchical requirements decompositions at design time without

restrictions on decomposition patterns or heavyweight formal descriptions and analysis.

Lykus differs by acknowledging that invalid environmental assumptions made at design

time may leave incomplete decompositions intact until they occur at run time. Lykus detects

these incomplete decompositions at run time rather than at design-time and provides more

accurate utility function assessment in the presence of incomplete decompositions.

73

5.5.2 Run-Time Monitors

Several frameworks exist to monitor requirements at run time [45, 47, 78] that are

intended to support instrumentation, diagnosis, and reconfiguration operations within the

system. The utility functions whose values we adapt in Lykus, as generated by Athena [75],

provide the same support with the benefit of automatic generation from a set of environ-

mental properties. Lykus differs from existing run-time monitors by detecting incomplete

and inconsistent requirements at run time and adapting the results of existing run-time

monitors [75] to provide more accurate results.

5.6 Lykus Conclusion

In this chapter, we have presented Lykus, a run-time approach for detecting incomplete

and inconsistent requirements decomposition and using that information to identify invalid

environmental assumptions and unsatisfied requirements. Lykus reports the issues detected

with requirements, as well as the invalid environmental assumptions, while automatically

updating the satisfaction results of requirements monitoring.

We demonstrate Lykus on an adaptive cruise control system developed in collaboration

with our industrial collaborators and implemented on a robotic vehicle. We show that Lykus

is able to detect incomplete and inconsistent requirements at run time due to invalid envi-

ronmental assumptions. Specifically, we show that while existing tools identify no incomplete

requirements, incomplete decompositions may still exist due to incorrect assumptions that

are detectable using run-time monitors.

In the future, we plan to apply Lykus to additional examples, including requirements

models with RELAXed requirements [94] that make use of fuzzy logic in specifying require-

ments. Additionally, we plan to investigate how Lykus can be used to trigger additional

mitigations at run time due to unsatisfied requirements that would not be detected with

other methods.

74

Chapter 6

Detecting Feature Interactions: Using

Symbolic Analysis

Independently-developed features often exhibit overlapping, yet conflicting behavior

termed feature interactions. Detecting unwanted feature interactions amongst even a moder-

ate number of features can involve analysis of an exponential number of possible interactions.

A potentially human resource-intensive step is the subsequent effort needed by the system

designer to assess each detected interaction. This chapter introduces Phorcys, a symbolic

analysis, design-time approach for detecting unwanted n-way feature interactions and de-

termining their causes at the requirements level. Unlike previous n-way feature interaction

detection approaches that attempt to enumerate every set of interacting features, Phorcys

analyzes each feature for its ability to cause an interaction with other features, thus reducing

designer assessment effort to be linear with respect to the number of features. To the best of

the authors’ knowledge, Phorcys is the only technique to detect both the existence of n-way

feature interactions and identify the respective cause. We illustrate our approach by applying

Phorcys to an industry-based automotive braking system comprising multiple subsystems.

75

6.1 Introduction

Despite ongoing research since the 1980s, feature interactions (FIs) still pose a signifi-

cant challenge to modularity and assurance in software development and design [4]. While

heavily researched within the telecommunications domain, the increasing complexity and

number of features in onboard and cyber-physical systems has created a new generation of

challenges [4]. Detecting feature interactions is challenging due to the exponential growth

of potential interactions with respect to the number of features [17] and the range of en-

vironmental possibilities in cyber-physical systems. More formally, when defining a feature

interaction by the minimal set of features that are necessary for the interaction to occur, the

number of possible interactions is O(2|F |), where F is the set of features [5]. The development

of additional features is ultimately overwhelmed by integrating features and managing the

feature interaction problem [18], thus making it impractical for a system designer to assess all

possible feature combinations that cause an interaction. The growth in the number possible

feature interactions and consequently the number of possible feature interactions that must

be assessed can result in latent behavior that impacts the system dependability at run-time.

This problem is particularly prominent in cyber-physical systems where unexpected adverse

environmental conditions may occur and impact the dependability of the system. This chap-

ter presents Phorcys,1 a method for symbolically detecting each feature that causes an n-way

feature interaction in a requirements goal model, thus reducing the system designer’s effort

to assessing only as many interactions as there are features.

In order to address the computational intractability of feature interaction detection,

many researchers have focused on pair-wise interactions [10, 21, 41, 59]. Rather than detect-

ing interactions amongst any number of features, only pairs of features are analyzed. While

this approach decreases the number of potential interactions detected to O(|F |2), interac-

tions that only emerge when three or more features are present will not be detected [5].

In typical development projects, where features are added incrementally [20], pair-wise fea-

1Phorcys (pronounced ‘forsis’) is the Greek god of hidden dangers in the deep.

76

ture interaction analysis only assesses the newly added feature paired with each existing

feature. Given that a recent study found interactions greater than pair-wise in every system

analyzed [5], n-way interaction detection techniques are also needed.

This chapter presents Phorcys, a method for symbolically analyzing a feature, repre-

sented in a goal model, to detect an n-way feature interaction. Rather than analyze every

combination of features for an interaction, Phorcys analyzes each individual feature for its

ability to cause an interaction.2 For example, consider 3 features, F1, F2, and F3. If an interac-

tion exists, then at least one feature (F1, F2, or F3) no longer operates as it did independently.

When the inclusion of F1 is impacted by the functionality of F2, F3, or F2 and F3 together,

then F1 is the cause of the feature interaction. This relationship is not exclusive, if F1 im-

pacts the functionality of F3, it may also be true that F3 impacts the functionality of F1.

This concept of the cause of the interaction scales to any number of features. Any feature

under analysis can be the cause of an interaction if it is impacted by any features in the set

of features.

Phorcys analyzes features represented in goal models that hierarchically decompose

a high-level goal down to individual requirements [87]. Phorcys analyzes each feature by

symbolically representing the possible feature combinations of the goal model and uses a

constraint solver to check for the existence of any combination of features where the analyzed

feature causes conflict in one or more requirements to be satisfied. As such, Phorcys is able

to check for many feature interaction possibilities in a single analysis. Where previous n-

way feature interaction detection methods may present an intractably large (exponential)

set of automatically detected interactions for the system designer to assess manually for

causes [18, 20], Phorcys only presents features that cause an interaction and a corresponding

counterexample scenario for each of those interactions.

The contributions of this chapter are as follows:

2Phorcys identifies one counterexample for each feature that causes an interaction (e.g., the number of
counterexamples to be reviewed by the designer is linear with respect to the number of features). This does
not imply a linear run time, as each analysis may be computationally expensive.

77

• We introduce a new symbolic approach for analyzing requirements to detect unin-

tended n-way feature interactions and the features that cause them, including proofs

of soundness and completeness,

• We present Phorcys, a prototype implementation of the approach, and

• We demonstrate the applicability of Phorcys on an industry-based application of an

automotive braking system based in part on the feature interaction issues in the 2010

Toyota Prius [29, 63], a hybrid vehicle. Analysis shows that Phorcys is able to identify

feature interaction causes in the braking system goal model, involving two or more

features.

The remainder of this chapter is organized as follows. Section 6.2 describes how feature

interactions can be formalized, including the cause of feature interactions while Section 6.3

covers proofs of soundness and completeness for the formalization. Section 6.4 introduces

the Phorcys approach to modeling features in goal models. Section 6.5 describes the Phorcys

process and gives technical details of the detection methods. Section 6.6 provides results of

the Phorcys process applied to the braking system goal model. Sections 6.7 and 6.8 present

related work and a summary, respectively.

6.2 Formally Specifying Feature Interactions

This section formally defines pairwise feature interactions based on previous work [20]

and extends the formalization to n-way interactions. The n-way feature interaction problem

is then refined in terms of requirement specifications and detecting feature interaction causes.

6.2.1 Standard Feature Interactions

Previously, Calder, et al. [20] described a feature interaction between two features (F1

and F2) and their respective properties (φ1 and φ2). The description is as follows. A feature,

78

F1, satisfies a property, φ1, denoted as F1 |= φ1. Features may be combined, or composed,

via a composition operator (‘⊕’). Since decomposed goals and features in a goal model are

satisfied or unsatisfied in parallel, the composition operator (i.e., ‘⊕’) is a parallel composition

operator. Since requirements in goal models are declarative and must be satisfied in parallel

to satisfy the root goal, we only consider parallel composition. Future work may include

sequential composition. For example, features F1 and F2, may be composed as F1⊕F2. When

F1 |= φ1 and F2 |= φ2, the expected composition of F1 and F2 should satisfy the conjunction

of their respective properties, that is, F1 ⊕ F2 |= φ1 ∧ φ2. However, if the composition of the

features does not satisfy the conjunction of their respective properties, then there exists a

feature interaction [20] as shown in Equation 6.1:

F1 ⊕ F2 6|= φ1 ∧ φ2. (6.1)

6.2.2 N-Way Feature Interaction Extension

This 2-way interaction concept can be extended to represent n-way interactions where

any number of composed features result in the satisfaction of their aggregate properties:

|F |⊕
i=1

(Fi) 6|=
|F |∧
i=1

(φi), (6.2)

where F is a set of features that satisfies any overall feature composition requirements and

includes features in the full feature set, S, that contains all features of the system-to-be (i.e.,

F ⊆ S).

6.2.3 Requirements-Based Formalization of Feature Interactions

A feature can be defined by its pre-conditions, implementation, and post-conditions [16].

Since the implementation is unknown (i.e., an unimplemented requirement) but assumed

to fulfill the specification (i.e., pre- and post-conditions), each feature Fi, where Fi ∈ F

79

satisfies a property (i.e., φi), measured as a post-condition such that when the pre-condition

is satisfied we expect the post-condition to be satisfied. For a given feature Fi, where Fi ∈ F :

Pi =⇒ Ri, (6.3)

where Pi is the precondition for feature Fi, P is the set of all pre-conditions for the sys-

tem under development (i.e., the system-to-be), Ri is the post-condition for feature Fi, and

R is the set of post-conditions. Since we are performing our analysis at the requirements

level (rather than implementation), we reason about feature implementation indirectly by

assuming that if the pre-conditions are satisfied, then the feature is satisfied. If the feature

is satisfied, then the post-conditions of the feature must be satisfied unless there is a conflict

between the post-conditions (i.e., a feature interaction between any possible implementa-

tions of the features that fulfills the specification). Therefore, the composition of features

(conjunction of pre-conditions) fulfills their properties (conjunction of post-conditions) when

no feature interaction exists:

|F |∧
i=1

(Pi) =⇒
|F |∧
i=1

(Ri). (6.4)

We detect feature interactions when the properties (conjunction of post-conditions) are

not met since no implementation could possibly satisfy conflicting post-condition specifica-

tions, leaving at least one feature post-condition unsatisfied. As such, the complement of

Equation 6.4 used to detection feature interactions is as follows:

|F |∧
i=1

(Pi) ∧ ¬
|F |∧
i=1

(Ri). (6.5)

That is not to say that Equation 6.5 is identical to Equation 6.2. Equation 6.2 defines

a feature interaction where the implementation of a feature is specified (e.g., FI in code),

while Equation 6.5 defines a feature interaction given a specification and assuming an imple-

80

mentation (e.g., FI in requirements). While Equation 6.2 may detect a feature interaction

between two implementations, Equation 6.5 would detect conflicting specifications.

6.2.4 Phorcys Feature Interaction Causes

Features in Phorcys are specified as a collection of pre-conditions (P) and post-conditions

(R) for each feature in the set of features (F). The composition of features and their de-

composed components is parallel. Sequential composition and temporal properties are not

considered. When pre-conditions (P) are satisfied, the presumed implementation is expected

to satisfy the post-conditions (R) (i.e., Equation 6.3) representing the properties (φ). We

define a feature interaction in the Phorcys process to be a parallel composition of features

where one feature (Fcause) causes the interaction by not satisfying its respective property

(φcause) assessed by its post-condition (Rcause). The cause is individually effected such that

it causes the system as a whole (i.e., the root goal) to be unsatisfied. That is:

• We consider a feature to be satisfied if its pre-conditions are satisfied (i.e., the feature

would be executed in an implemented system),

• We expected the properties of a feature, as measured by the post-conditions, to be

satisfied when the feature would be executed in an implemented system (i.e., the pre-

conditions are satisfied), and

• When the post-conditions cannot be satisfied due to a conflict with other post-

conditions (i.e., two or more features are specified to fulfill conflicting properties) we

consider a feature interaction to have occurred.

In logical terms, we define Expression 6.6 as a feature interaction for some set of features,

F , such that the features in F satisfy the compositional requirements of the system (e.g.,

the features in F satisfy the top-level goal in a goal model) and Fcause ∈ F :

|F |∧
i=1

(Pi) ∧ ¬Rcause. (6.6)

81

Equation 6.6 is based on the formal definition for n-way feature interaction detection in

Equation 6.5; however, instead of detecting unsatisfied post-conditions in any feature (i.e.,

¬∧|F |i=1(Ri)), Equation 6.6 identifies unsatisfied post-conditions in a single feature under

analysis (i.e., ¬Rcause) as the feature interaction cause.

6.3 Proofs of Soundness and Completeness

The feature interaction detection logic defined in the Phorcys process is functionally

equivalent to existing definitions that do not explicitly detect the cause of the feature inter-

action (i.e., Equation 6.5). We assume a subset of features that satisfies the compositional

requirements of the system. In the case of Phorcys, the subset of features is defined by the

goal model decomposition of the features.

The reasoning behind completeness (i.e., no missing interactions) and soundness (i.e., no

superfluous interactions detected) is straightforward. Given definitions for feature interaction

detection in Equation 6.5 and Equation 6.6, for Phorcys feature interaction detection, a

single post-condition is both necessary and sufficient to cause the entire conjunction of post-

conditions to be unsatisfied in the presence of a satisfied set of pre-conditions that are

assumed to satisfy their properties (i.e., post-conditions), unless otherwise constrained. The

proofs of completeness and soundness prove a single post-condition is both necessary and

sufficient to be true.

Completeness Theorem

For the purposes of feature interaction detection, completeness is defined such that every

feature interaction that is detected via existing methods (i.e., Equation 6.5) is detected via

the Phorcys method (i.e., Equation 6.6). Therefore, if Phorcys feature interaction detection

is complete, any feature interaction detected in Equation 6.5 implies a feature interaction is

detected in Equation 6.6:

82

 |F |∧
i=1

(Pi) ∧ ¬
|F |∧
i=1

(Ri)

⇒
 |F |∧
i=1

(Pi) ∧ ¬Rcause

. (6.7)

The completeness proof below shows that in any case where a feature interaction is

detected (i.e., the logical conjunction of post-conditions of some set of features are not

satisfied) then at least one of the features must be the cause of the interaction (i.e., at least

one of the post-conditions must not be satisfied).

Proof. A proof by contradiction will be used. We assume the completeness equation in Equa-

tion 6.7 is false. That is:

¬

 |F |∧
i=1

(Pi) ∧ ¬
|F |∧
i=1

(Ri)

⇒
 |F |∧
i=1

(Pi) ∧ ¬Rcause

. (6.8)

Applying logical simplification and converting implications to their logical structures

yields:

 |F |∧
i=1

(Pi) ∧ ¬
|F |∧
i=1

(Ri)

 ∧
¬ |F |∧

i=1

(Pi) ∨Rcause

. (6.9)

i.) In the case where Rcause is false, ‘¬∧|F |i=1(Pi)’ and ‘
∧|F |
i=1(Pi)’ must both be true,

which is a contradiction. Therefore Rcause cannot be false.

ii.) In the case where Rcause is true, ‘
∧|F |
i=1(Pi)’ and ‘¬∧|F |i=1(Ri)’ must also be true.

Given the assumption that each feature satisfies its property unless otherwise constrained

(Pi =⇒ Ri for every Fi ∈ F due to Equation 6.3) there must exist a Rcause that is not true

for ‘¬∧|F |i=1(Ri)’ to be true. Therefore Rcause cannot be true for all features if ‘¬∧|F |i=1(Ri)’ is

true.

Since Rcause cannot be false and it cannot be true for all features when a FI is detected

(e.g., ¬∧|F |i=1(Ri)), then Phorcys cannot be incomplete.

83

Soundness Theorem

For the purposes of feature interaction detection, soundness is defined such that every

feature interaction that is detected via the Phorcys method is also detected using existing

methods (i.e., Equation 6.5). Therefore, if Phorcys feature interaction detection is sound,

any feature interaction detected in Equation 6.6 implies a feature interaction is detected in

Equation 6.5:

 |F |∧
i=1

(Pi) ∧ ¬Rcause

⇒
 |F |∧
i=1

(Pi) ∧ ¬
|F |∧
i=1

(Ri)

. (6.10)

The soundness proof below shows that in any case where at least one of the features

is the cause of a feature interaction (i.e., at least one of the post-conditions must not be

satisfied) then a feature interaction must also be detected (i.e., the logical conjunction of

post-conditions of some set of features are not satisfied).

Proof. A proof by contradiction will be used. We assume the soundness equation in Equation

6.10 is false. That is:

¬

 |F |∧
i=1

(Pi) ∧ ¬Rcause

⇒
 |F |∧
i=1

(Pi) ∧ ¬
|F |∧
i=1

(Ri)

. (6.11)

Applying logical simplification and converting implications to their logical structures

yields:

 |F |∧
i=1

(Pi) ∧ ¬Rcause

 ∧
¬ |F |∧

i=1

(Pi) ∨
|F |∧
i=1

(Ri)

. (6.12)

i.) In the case where
∧|F |
i=1(Ri) is false, ‘¬∧|F |i=1(Pi)’ and ‘

∧|F |
i=1(Pi)’ must both be true,

which is a contradiction. Therefore ‘
∧|F |
i=1(Ri)’ cannot be false.

ii.) In the case where
∧|F |
i=1(Ri) is true, ‘

∧|F |
i=1(Pi)’ and ‘¬Rcause’ must also be true.

84

Since Rcause ∈ R and ′
∧|F |
i=1(Ri)’ are both satisfied it is not possible for expression ¬Rcause to

be true.

Since
∧|F |
i=1(Ri) cannot be false and true at the same time, then Phorcys cannot be

unsound.

Given the proofs of both soundness and completeness, it is true that the Phorcys fea-

ture interaction cause detection is equivalent (i.e., is capable of detecting the same feature

interactions) to feature interaction detection with the addition of explicitly identifying the

cause of the interaction.

6.4 Goal-Based Modeling of Features

This section details the Phorcys approach to modeling features within goal models. This

section includes our annotations for features, pre- and post-conditions, as well as an example

braking system goal model that is used throughout the remainder of the dissertation.

6.4.1 Features

Goal Models [87] are notationally extended in this work to include the concept of fea-

tures. While a goal model defines the system-to-be [48], we add an additional notation, ‘(f),’

to denote specific goals and their decompositions representing features within the system.

For example, the braking system goal model in Figure 6.1, goals B, C, D, and E are annotated

with an (f) as high-level goals for four different features. While the additional notation to

identify features adds information about the system-to-be, it does not change the underlying

semantics of a goal model. Any standard goal model can be annotated to identify features,

or used as a standard goal model without the additional annotation.

85

6.4.2 Pre- and Post-Conditions

In this work, we use expectations to define the expected environmental properties that

exist before and after the fulfillment of a requirement. Since elements of the system are used

to satisfy a requirement, the element performs some action that causes an observable effect.

The expression of these changes is measurable via elements in the environment, and are

therefore specified as expectations. We differentiate between expectations of the environment

before the requirement’s satisfaction, or pre-conditions, and those that are expressed after

the requirement satisfaction, or post-conditions. The use of expectations in this manner is

similar to awareness requirements that document domain assumptions [81, 83] and expecta-

tions in KAOS goal modeling [87]. Pre- and post-conditions are explicitly included only when

necessary to ensure satisfaction of the unique constraints of a requirement, and are shared

amongst AND-decomposed siblings. We distinguish these expectations in goal models by

the annotations ‘(pre)’ and ‘(post)’, respectively. For example, in Figure 6.1, expectations

B.3 and B.1 are annotated as pre- and post-conditions, respectively. The pre-condition B.3

ensures only positive brake forces can be applied via requirement B.2. Similarly, the post-

condition B.1 indicates that after requirement B.2 has been satisfied, the standard brake

force (SF) is equal to the commanded brake force (CBF). Expectations may expect proper-

ties that are changed by the actions of the agent responsible for a requirement. For example,

an expectation may be that a car must be in Park to allow a gear shift via a requirement from

Park to Drive. However, after the requirement (shift from Park to Drive), the expectation

is no longer satisfied. Just as an expectation may be expected before a requirement, it may

be expected after as well. For example, another expectation may be that the car must be

in Drive after having shifted from Park to Drive. One expectation is measured before the

requirement, and one after. These expectations do not necessarily conflict if one measures the

state of the car’s transmission now, and one measures state of the car’s transmission later.

Similar to the feature annotation, this annotation provides additional information about the

86

system-to-be that could be applied to any goal model or removed from an annotated goal

model without consequence on standard goal model semantics.

6.4.3 Braking System Goal Model Example

The goal model in Figure 6.1 represents an automotive braking system with several

features. In general, a feature reads the actual brake pedal position and relates that infor-

mation to a commanded brake force that is translated to an external braking force via a

braking mechanism. However, for this system, the braking system has been developed as

four individual features (i.e., B, C, D, E) rather than as a single, monolithic system. The use

of multiple brake features is based on a known 2010 Toyota Prius braking system issue [29].

The braking system features defined here have been independently developed without re-

spect for each other and is intended to be a realistic example of industrial design artifacts at

the requirements level, based on our collaboration with automotive industrial practitioners.3

Specific ratios used in the braking system goal model are commonly included in high-level

specifications regarding input and output limitations of line-replaceable components that

interface with the system under development.

The features included are standard force braking, regenerative braking, continuous brak-

ing, and anti-lock brakes, where the target vehicle is a hybrid (i.e., contains both an electric

motor and gas engine). Acronyms used are: PBF (Previous Brake Force), CBF (Commanded

Brake Force), SS (Slip Sensor), RF (Regenerative Brake Force), SF (Standard Brake Force),

and BF (Brake Force). Each of these features was specified without specific regard for the

other features, and operates as described below.

Feature B: ‘Achieve(Standard Force Braking)’ applies (via B.2) a brake force through

standard force brake methods (e.g., disk brakes on the wheels) based on a commanded brake

force using the Hydraulic Brake Actuator .

Feature C: ‘Achieve(Regen Braking)’ applies a brake force using both standard brake
3Collaboration with automotive industrial practitioners included reviewing our goal modeling approach

to automotive systems, however the specific braking system presented here was not explicitly reviewed.

87

A
Maintain(Brake

System)

OR
B (f)

Achieve(Standard
Force Braking)

B.1 (post)
SF = CBF

B.2
Achieve(Apply

Standard Force)

B.3 (pre)
CBF > 0

AND
C (f)

Achieve(Regen
Braking)

C.1 (pre)
CBF > 0

D (f)
Achieve(Anti-
Lock Braking)

D.5
Achieve(Brake

Pulse)

D.4
Achieve(Read
Brake Force)

D.3 (pre)
BF > 0

AND

D.6 (pre)
SS = true

D.7
Achieve(Read
Slip Sensor)

D.8
Achieve(Brake

On)

D.9
Achieve(Brake

Off)

OR

D.11 (post)
CBF = BF

D.13 (post)
CBF = 0

D.12
Achieve(Brake
Force Change)

D.14 (pre)
PBF > 0

D.10 (pre)
PBF = 0

AND AND

D.2
Achieve(Read

CBF)

E (f)
Achieve(Continuous

Braking)

E.3 (post)
CBF = BF

E.4
Achieve(Read
Brake Force)

E.5 (pre)
BF > 0

AND

E.6 (pre)
SS = false

E.2
Achieve(Read

CBF)

E.7
Achieve(
Read SS)

A.1
Maintain(Brake

Force)
OR

A.2
Maintain(Brake

Command)

AND

C.5 (post)
SF = 0.2 * CBF

C.6
Achieve(Apply

Standard Force)

C.10 (post)
RF = 0.8 * CBF

C.9
Achieve(Apply
Regen Force)

C.3
Achieve(

Standard Force)

C.4
Achieve(Regen

Force)

C.7 (pre)
CBF > 20

C.8 (pre)
CBF < 50

C.2
Achieve(Regen

& Standard Force)

AND AND

OR

AND

Figure 6.1: Braking System Goal Model

force methods (via C.3) as well as regenerative braking methods (via C.4) that help capture

electrical energy from braking. Due to limitations in the amount of braking force that regen-

erative braking may provide, three combinations are used for braking: regenerative force is

used alone for low-braking force needs; a combination of both is used when a mid-range brak-

ing force is needed; and standard braking force is used when a large amount of braking force is

needed. In all cases, the amount of braking force is dependent on the commanded brake force

and is applied using the Hydraulic Brake Actuator and/or the Regeneration Brake Actuator ,

depending on the Commanded Brake Force value.

Feature D: ‘Achieve(Anti-Lock Braking)’ reads the current brake force from the

Brake Pedal Sensor (D.4) and alternates applying it to the Commanded Brake Force (D.8)

or applying no commanded brake force (D.9) when the Slip Sensor detects slippage of the

wheels on the driving surface (D.6 and D.7).

Feature E: ‘Achieve(Continuous Braking)’ reads (E.4) the current brake force from

88

the Brake Pedal Sensor and applies it to the Commanded Brake Force (E.2) when the

Slip Sensor does not detect any slippage (E.7).

These features either command the brake force (e.g., D, E) or physically apply the brake

force (e.g., B, C). In order to satisfy the top-level braking goal (A), there must be a commanded

and applied brake force. Features D and E are mutually exclusive due to pre-conditions

E.6 (SS = false) and D.6 (SS = true), since both E.6 and D.6 cannot both be satisfied

simultaneously. Therefore, due to the AND decomposition of both goal D and goal E, if

either pre-condition D.6 or E.6 is unsatisfied, then the entire feature is inactive. The set of

features that satisfies the top-level goal is captured via the decompositions in goals A, A.1,

and A.2.

6.5 Approach

Phorcys is a method for symbolically analyzing a goal model for n-way feature interac-

tions that cause a conflict in the way requirements satisfy their specifications as defined by

their respective pre- and post-conditions. The equations limit symbolically instantiated goal

models to concrete instances that contain feature interactions. These counterexamples are

generated for each feature that can cause an interaction.

6.5.1 FI Detection Process

Figure 6.2 overviews the Phorcys process with a DFD. As shown in Step 1 of Figure 6.2,

Phorcys accepts a goal model defined in its entirety by the system designer (including feature

and pre- and post-condition annotations), such as the one in Figure 6.1. Step 2 analyzes each

feature to determine if each feature can cause a feature interaction. The Phorcys output from

Step 3, contains the features that cause an interaction along with affected features, as well

as the concrete values of the variables in the system. Next, we describe each of the steps in

the DFD in turn.

89

Counter
Examples

SMT2
Expressions

Goals

Refined
Goal Model

Feature
Interactions
& Causes

Feature
Interactions
& Causes

Satisfiability
Results

Logical
ExpressionsGoal Model

(1)
Generate

FI Detection
Logic

(2)
Process Logical

Expressions

(3)
Counterexample

Summary

Feature
Interactions
& Causes

Process
Flow

Process Key:

SMT Solver
System

Designer

External I/O
File

Figure 6.2: Phorcys Data Flow Diagram

Step (1): Generate FI Detection Logic

Phorcys feature interaction causes are detected based on generated logical expressions

for each feature represented in the goal model provided by the system designer. The logical

expressions are generated from the pre- and post-conditions in the goal model that are

satisfied when a goal model instance is both i) valid and ii) contains properties of a feature

interaction as defined within this step. The specific goal model instances are created by

symbolically analyzing the logical expressions.

i) Valid Goal Configurations: Phorcys limits the allowable feature sets to those that

satisfy the top level goal. For example, given the goal model in Figure 6.1, the pre-conditions

of features that, when combined, satisfy goal A define the allowable feature sets:

(PB ∨ PC) ∧ (PD ∨ PE), (6.13)

where PB, PC, PD, and PE represent the sets of pre-conditions that refer to conditions that

should be true before realization of features B, C, D, E. For example, PB = B.3 = (CBF > 0),

90

since the only pre-condition in feature B is B.3. Figure 6.3 shows all possible goal configura-

tions represented at the feature level for the braking system, where shading is used to denote

satisfied goals.

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

A

OR

B C D E

A.1 A.2

AND

OR

...

Satisfied
Not Satisfied

Satisfiability Key:

1.) 2.) 3.)

4.) 5.) 6.)

7.) 8.) 9.)

Figure 6.3: Goal Configurations that Satisfy Top-Level Goal

It is important to note that while all the goal configurations shown in Figure 6.3 would

satisfy the top level goal (i.e., goal A) at a feature level, not all of those goal configurations

are valid and would satisfy Equation 6.13. For example, a goal model configuration with

both E.6 and D.6 cannot be feasible since E.6, SS = false while D.6, SS = true, and

expression (SS = false) ∧ (SS = true) cannot be satisfied. This means that in Figure 6.3,

goal configurations that have both D and E satisfied simultaneously are not valid (i.e., goal

91

configurations 7, 8, and 9). For example, goal configuration 2 in Figure 6.3 must be fully

satisfied as shown in Figure 6.4.

Satisfied
Not Satisfied

Satisfiability Key:

A

OR

B

B.1 B.2 B.3

AND
C

C.1

D

D.5
D.4

D.3

ANDD.6 D.7

D.8 D.9

OR

D.11 D.13D.12 D.14D.10

AND

D.2

E

E.3

E.4

E.5

AND

E.6E.2 E.7

A.1
OR

A.2

AND

C.5 C.6 C.10C.9

C.3 C.4

C.7 C.8

C.2

AND

Figure 6.4: Goal Configuration 2 in Figure 6.3

ii) Feature Interaction Properties: Feature interactions are only detected in goal

configurations where the top-level goal would be satisfied if it were not for the interaction.

For example, when analyzing feature B as the cause (i.e., Fcause with post-condition Rcause)

only goal configurations 2, 3, 5, 6, 8, and 9 in Figure 6.3 are applicable. For the detection

analysis, the potential causing feature (e.g., B) is then constrained to satisfy its pre-condition

expectations (e.g., B.3) while not satisfying its post-condition expectations (e.g., ¬B.1).

For example, feature B is evaluated for satisfaction of Expression 6.14 that is derived from

Expression 6.6, an example of a feature interaction property:

|F |∧
i=1

(Pi) ∧ ¬RB, (6.14)

92

where F can be any of the sets of features that satisfy Equation 6.13 and include the feature

under analysis (i.e., at least feature B and one of feature D or E). That is, the causing

feature (i.e., B) would be satisfied (i.e., implemented to the specification) if it were not

for the presence of the other features in the set. Given a feature interaction analysis for

feature B as the cause, the possible sets of features that satisfy the top-level goal and satisfy

their pre-conditions (i.e., Equation 6.13) are: {B, E}, {B, C, E}, {B, D}, {B, C, D}. Feature sets

that do not include feature B cannot have feature B as a feature interaction cause, and

we already know that feature D and feature E are mutually exclusive. In order to detect a

feature interaction, the set of features must constrain the possible implementations of feature

B such that feature B cannot be implemented according to its specifications. Importantly,

for each feature’s pre-condition (Pi) that is satisfied, the post-condition (Ri) is satisfied

unless otherwise constrained (i.e., Equation 6.3) For example, the pre- and post-conditions

for feature set {B, E} are:

PB = (CBF > 0) (6.15)

PE = (SS = false) ∧ (BF > 0) (6.16)

RB = (SF = CBF) (6.17)

RE = (CBF = BF). (6.18)

In order for Equation 6.14 to detect a feature interaction caused by feature B given the

feature set of {B, E}, three conditions must be satisfied. First, the pre-conditions of both

features (i.e., PB and PE) must be satisfied. Second, the properties (post-conditions) of the

features with satisfied pre-conditions must be satisfied (i.e., RB and RE), unless otherwise

constrained by another expectation (i.e., pre- or post-condition). Finally, the feature under

analysis as the cause (i.e., feature B) must violate its properties (i.e., ¬RB) due to the pre-

or post-condition of another feature in the feature set. However, since SF is not constrained

93

by any other pre- or post-condition, then feature B cannot be a feature interaction cause

given the feature set {B, E}. In summary, for feature set {B, E} with feature B under analysis,

the following equation representing the feature interaction properties must be satisfiable to

detect a feature interaction caused by feature B:

(PB ∧ PE) ∧ ¬RB, (6.19)

where both RB and RE must also be satisfied, unless constrained by any other pre- or post-

condition (i.e., elements of P , and R, respectively).

However, in the case of {B, C, E}, the pre- and post-conditions are:

PB = (CBF > 0) (6.20)

PC = ((CBF > 0) ∧ ((CBF > 20) ∨ (CBF < 50)) (6.21)

PE = (SS = false) ∧ (BF > 0) (6.22)

RB = (SF = CBF) (6.23)

RC = (SF = 0.2 ∗ CBF) ∨ (RF = 0.8 ∗ CBF) (6.24)

RE = (CBF = BF). (6.25)

In order for Equation 6.14 to detect a feature interaction caused by feature B given the

feature set of {B, C, E}, three conditions must be satisfied. First, the pre-conditions of both

features (i.e., PB, PC, and PE) must be satisfied. Second, the properties (post-conditions) of the

features with satisfied pre-conditions must be satisfied (i.e., RB, RC, and RE), unless otherwise

constrained by another expectation (i.e., pre- or post-condition). Finally, the feature under

analysis as the cause (i.e., feature B) must violate its properties (i.e., ¬RB) due to the pre- or

post-condition of another feature in the feature set. Unlike the set {B, E}, in the set {B, C, E}

the variable SF is constrained by both RB and RC.

94

Importantly, in order for a post-condition to violate its properties due to another pre-

or post-condition, several things must be true. That is, a post-condition must fail due to

the constraint imposed by another pre- or post-condition where 1) the variables have all

been constrained by another pre- or post-condition and 2) the pre- and post-conditions

contribute (or would contribute if not for the FI) to the satisfaction of the top level goal. This

necessitates that the pre- and post-conditions are decomposed from a satisfied parent, applied

recursively until the top-level goal is satisfied (i.e., each parent is either decomposed from

another satisfied parent or is the top-level goal). Similarly, the variables must be constrained

by variables that are either similarly constrained or initialized by reading the variables from

the environment (e.g., in requirements E.2, E.4, E.7, D.2, D.4, and D.7) where those pre-

or post-conditions or requirements also contribute to the satisfaction of the top level goal.

Figure 6.5 identifies one possible configuration of satisfied goals that could lead to the

violation of feature B’s post-condition. It is important to note that the pre-condition expres-

sion (i.e., PC) for feature C is satisfied, despite the satisfaction of only one of its decomposed

goals (i.e., goal C.3). Further, since each pre- and post-condition must contribute to the

satisfaction of the top-level goal, the pre- and post-condition expressions for feature C (i.e.,

PC and PC, respectively) must be satisfied by expectations C.5 and C.7, C.8 and C.10, or

both due to their respective decompositions from goals C.3 and C.4. The post-condition for

feature B (i.e., B.1) is unsatisfied due to the conflict between itself and post-condition C.9.

Post-condition B.1 is exempt from contributing to the top-level goal due to its violation from

another pre- or post-condition, an exemption which is applicable to any post-condition, not

just those within the feature under analysis.

Specific values identified by Phorcys when analyzing feature B are presented in the

feature interaction detection examples section (Section 6.6). The analysis logic presented

here is generated for each feature.

95

Satisfied
Not Satisfied

Satisfiability Key:

A

OR

B

B.1 B.2 B.3

AND
C

C.1

D

D.5
D.4

D.3

ANDD.6 D.7

D.8 D.9

OR

D.11 D.13D.12 D.14D.10

AND

D.2

E

E.3

E.4

E.5

AND

E.6E.2 E.7

A.1
OR

A.2

AND

C.5 C.6 C.10C.9

C.3 C.4

C.7 C.8

C.2

AND

Figure 6.5: Feature Interaction in Goal Configuration Set {B, C, E}

Step (2): Process Logical Expressions

The logical expressions defined by the process in Step 1, of the DFD in Figure 6.2

are translated into SMT v.2 [12] for analysis by a Satisfiability Modulo Theories (SMT)

solver. SMT solvers follow the SMT-LIB [76] or SMT-LIB v.2 [12] standards to determine

the satisfiability or validity of defined constraints [27]. In this work, we make use of the

Microsoft Z3 SMT Solver [32].

For each feature, the valid goal configurations and feature interaction properties (i.e.,

the conjunction of Equations 6.13 and 6.14) specific for the feature under analysis are sub-

mitted to the SMT solver, and counterexamples are returned after processing the logical

expressions. Therefore, a maximum of one counterexample is detected for each feature that

acts as the cause of a feature interaction. If a conflict is detected, then it is added to the set

of counterexamples to be summarized in Step 3.

96

Step (3): Counterexample Summary

For each feature that causes an interaction, the following information is summarized

from the counterexample:

• The feature that caused the interaction,

• The set of features involved in the interaction, and

• The values of the instantiated variables.

Importantly, the features satisfied in the goal model may not be necessary for the feature

interaction to occur but they are sufficient for the interaction to occur. There is no guarantee

of minimal sets of features that cause an interaction, however the feature that causes an

interaction is identified. Summarized counterexamples are stored for review by the system

designer.

Update Goal Model by System Designer

The summarized counterexamples are intended to be used by the system designer to

revise the input goal model. The root cause of a feature interaction may include one or more

of the following incomplete list of possible problems:

• Incorrect pre- or post-conditions for a requirement,

• Incorrect decomposition of goals that do not meet desired requirements specification,

or

• Incorrect decomposition of goals that indicate incorrect requirements specification.

The features identified as the cause of a feature interaction may be revised by: modifying the

requirement and/or its associated pre- and post-conditions, or revising the decomposition

of the goal model to restrict the feature interaction from occurring. Additional means of

mitigating feature interactions are outside the scope of this chapter. A revised goal model

97

may then be analyzed again by Phorcys to detect newly introduced or remaining feature

interactions.

6.5.2 Assumptions and Limitations

While a goal model, or its collection of pre-conditions, can be verified for satisfiability

in a specific case by checking each expectation, identifying a specific satisfiable case is not

always as computationally tractable. Using expectations (e.g., pre-conditions), a goal model

is capable of representing a conjunction of disjunctions over variables to represent any in-

stance of 3-SAT. Due to this reduction, the properties of 3-SAT also apply to goal model

satisfaction in the expectations. Given that 3-SAT is an NP-Complete problem [62], goal

model satisfiability is as well. Further, based on the exponential time hypothesis [57], such a

problem is hypothesized not to be solvable in sub-exponential time in the worst case. Given

the exponential nature of the feature interaction problem, this worst case is not unexpected.

In fact, previous methods of n-way feature interaction detection using satisfiability have

also been exponential in the worst case [9]. In general, reliably detecting n-way interactions

requires exponential enumeration of possible interactions [5]. As such, Phorcys is no worse

than existing feature interaction detection techniques in the worst case. However, the worst

case is dependent on the system defined. Other hierarchically decomposed models, such as

feature models, have been shown to typically be computationally inexpensive to symbolically

analyze for realistic systems [68].

Similar to other feature interaction detection methods [41], Phorcys only analyzes a

single step in time for feature interactions. This strategy may allow for unguarded, but still

unreachable states to be detected as feature interactions. Similarly, cyclical or sequential

changes, such as over and under shooting for a desired state, are undetectable as feature

interactions even if the cycling is caused by competing features.

98

6.6 Examples

This section describes the results from applying Phorcys to the braking system goal

model in Figure 6.1. Phorcys is used to illustrate two different types of feature interaction

scenarios, involving more than two features: incorrect requirements and a typographical error,

both of which could be extremely difficult to detect and identify using traditional testing

techniques if these errors were propagated to program code.

6.6.1 Specification Error Causes

The braking system defined in Figure 6.1 identifies two potential sources for driving

brake commands (features D and E) that provide the inputs to two methods of physically

applying the brakes (features B and C). This initial braking system model is referred to as

M . Table 6.1 provides the results of applying Phorcys to each of the features (B, C, D, and

E) in goal model M to determine if any are the cause of a feature interaction.

Table 6.1: FI Causes in Goal Model M

Set of Features Feature Under Analysis Causes FI
{B, C, E} B Yes
{B, C, E} C Yes

N/A D No
N/A E No

After analysis, both features B and C are shown to cause a feature interaction. In both

cases, the full set of features involved in the interaction are features B, C, and E, as shown in

the ‘Set of Features’ column that identifies the features involved in the interaction.

Analyzing Feature B as Cause

The values of the variables in the goal model counterexample are shown in Table 6.2.

Figure 6.6 illustrates the applicable parts of the goal model (at the feature level) for the

3-way feature interaction caused by feature B where the red text (SF = ?) indicates the

99

conflict detected. (The set of features represented in Figure 6.6 is goal configuration 6 in

Figure 6.3). The brake force (BF = 21.0) is provided externally by the driver pressing on the

brake pedal. This value is read via the ‘Brake Pedal Sensor’ and converted to a commanded

brake force (CBF = 21.0) by feature D. The features that apply the brake force, B and C, read

this commanded brake force (CBF) from memory and use it to apply external brake forces.

Feature B applies, via B.2, the entire commanded brake force to standard braking force

(SF = 21.0) (e.g., drum or disk brakes on the wheels). Feature C applies a portion (defined

by C.5) of the commanded brake force to the standard braking force (SF = 4.2) and a

portion (defined by C.10) to the regenerative braking force (RF = 16.8). The interaction

occurs due to the conflict where features B and C attempt to set SF to different values, clearly

SF = 21.0∧SF = 4.2 cannot be true simultaneously. Phorcys, in two separate analysis runs,

is able to identify that both B or C can act as the cause of the interaction.

Table 6.2: Variables for Cause B Counterexample in Goal Model M

Variable Value
SF 21.0/5.0 = 4.2
CBF 21
PBF 0.0
RF 84.0/5.0 = 16.8
BF 21.0
SS true

Analyzing Feature C as Cause

A counterexample with a similar type of cause as the interaction caused by feature B:

a conflict between B and C attempting to set SF to different values. Since the SMT solver

identifies a different counterexample, the values identified for the goal model variables are

different (as shown in Table 6.3), where feature C is the cause.

The interaction caused by feature C is a three-way feature interaction (i.e., B, C, D)

where two features (i.e., B, C) are performing conflicting actions due to the commands of a

third feature (i.e., D). This unwanted feature interaction is a requirements specification flaw

100

20%
SF=4.2

100%
SF=21

A
Maintain(Brake

System)

OR

B
Achieve(Standard

Force Braking)

C
Achieve(Regen

Braking)

D
Achieve(Anti-
Lock Braking)

E
Achieve(Continuous

Braking)

A.1
Maintain(Brake

Force)
OR

A.2
Maintain(Brake

Command)

AND

BF=21CBF=21SF=? RF=16.8

Input
Output

Key:

Satisfied
Not Satisfied

Figure 6.6: 3-Way FI in Figure 6.1 Caused by B or C

Table 6.3: Variables for Cause C Counterexample in Goal Model M

Variable Value
SF 21.0
CBF 21.0
PBF 0.0
RF 84.0/5.0 = 16.8
BF 21.0
SS true

(e.g., incorrect requirements) in the specification of the goal model. Two conflicting values

should not be applied to SF . However, it may not be obvious that such an interaction exists

due to a requirements specification flaw when features are developed independently. This

specification flaw was not purposefully injected into the goal model and was not obvious to

the authors when the features were developed independently and without any consideration

for other features.

6.6.2 Modeling Error Introduces FI

One method of handing conflicts due to specification flaws, such as the one that exists

in Figure 6.1, is strengthening the pre-condition expectations for one or both of the caus-

ing features. This strategy reduces, or even eliminates, the overlap between features when

101

conflicting goals are satisfied. For example, it may be reasonable to enforce standard force

braking only, as provided by feature B, when the commanded brake force is over 80%. Con-

versely, C would be applicable under a commanded force of 80%. The reasoning behind such

a change may be related to safety where standard force brakes have known historical fail-

ure rates while regenerative braking is a relatively new technology. Standard force braking

(feature B) may be more reliable than a combination of braking methods (feature C) that

include regenerative braking. Therefore, if the commanded brake force is high (greater than

80%) it may be reasonable to assume braking is safety related, thus justifying the use of

only standard brake force using feature B. However, braking forces that are lower (under

80%) may indicate a less safety critical need and justify the electrical power capture from

regenerative braking in feature C.

The system designer adds additional pre-condition expectations to both goals B and

C to remove the interaction. The additional pre-condition expectation for goal B is B.0,

CBF ­ 80.0, and the additional pre-condition expectation for goal C is C.0, CBF ¬ 80.0.

This revised goal model is referred to as M ′.

Phorcys is then used to process the goal model M ′ to identify any remaining or newly

introduced feature interactions. Executing Phorcys shows that features B and C still cause

feature interactions, as shown in Table 6.4.

Table 6.4: FI Causes in Goal Model M ′

Set of Features Feature Under Analysis Causes FI
{B, C, D} B Yes
{B, C, E} C Yes

N/A D No
N/A E No

Analyzing Feature B as Cause

In the revised goal model, the set of features in the counterexample are B, C, and

D. Despite the pre-condition expectation B.0, an interaction is still caused by feature B.

102

However, as shown in Table 6.5a, CBF is equal to 80.0, exactly the intended cutoff between

features B and C. Importantly, a modeling error (i.e., typo) has been inadvertently introduced

by the system designer while manually updating the goal model that allows features B and

C to overlap due to both expectations including the value 80.0, thus allowing an interaction

to continue to exist when CBF = 80.0.

Similar to the previous interaction causes in model M , the interactions in model M ′ pass

a value from the driver set brake force (BF = 80.0) that is then passed on to the commanded

brake force (CBF = 80.0) via feature D. Just as before, features B and C both attempt to

set the standard brake force (SF) to differing values (80.0 and 16.0 via expectations B.1

and C.5, respectively). In this case, the additional expectations (B.0 and C.0) only allow

features B and C to occur simultaneously when the commanded brake force (CBF) is exactly

80.0.

Analyzing Feature C as Cause

The counterexample includes features B, C, and D. As shown in the counterexamples

variable values in Table 6.5b, CBF is equal to 80.0 just as it was when B was the cause.

The difference is which feature sets SF to a value. In the case where feature C is the cause

of the interaction, standard braking force is set to 80.0. In the case where feature B is the

cause, standard braking force is set to 16.0. Thus, the causing feature is the one that is not

satisfied, and thus causes the top-level goal to be unsatisfied, in the presence of the other

feature.

Both of these detected FIs are present in the goal model shown in Figure 6.7, a de-

tailed view of goal configuration 6 from Figure 6.3 representing one of the 9 possible goal

configurations.

Instead of correcting the feature interaction in model M by adding pre-condition expec-

tations to the features that caused the interactions, the M ′ revision allowed for a single point

of overlap between the additional pre-conditions at a commanded brake force of exactly 80.0.

103

Table 6.5: Counterexamples for FIs in Goal Model M ′

Variable Value
SF 16.0
CBF 80.0
PBF 0.0
RF 65.0
BF 80.0
SS true

(a) Cause B Variables

Variable Value
SF 80.0
CBF 80.0
PBF −1.0
RF 0.0
BF 80.0
SS false

(b) Cause C Variables

20%
SF=16

100%
SF=80

A
Maintain(Brake

System)

OR

B
Achieve(Standard

Force Braking)

C
Achieve(Regen

Braking)

D
Achieve(Anti-
Lock Braking)

E
Achieve(Continuous

Braking)

A.1
Maintain(Brake

Force)
OR

A.2
Maintain(Brake

Command)

AND

BF=80CBF=80SF=?

Input
Output

Key:

Satisfied
Not Satisfied

Figure 6.7: 3-Way FI in M ′ Caused by B or C

This form of feature interaction is not a specification error, but rather a modeling error that

is still caught by Phorcys. Again, this error is subtle and difficult to detect with existing

state of practice techniques.

6.6.3 Feature Interaction Free Model

We can mitigate this feature interaction by revising of the pre-conditions of the causing

feature C. Specifically, expectation C.0 is revised to CBF < 80.0 to yield model M ′′. Applying

Phorcys to M ′′ detects no further interactions as shown in the results in Table 6.6.

104

Table 6.6: Detected FI Causes in Goal Model M ′′

Feature Causes FI
B Achieve(Standard Force Braking) No
C Achieve(Regen Braking) No
D Achieve(Anti-Lock Braking) No
E Achieve(Continuous Braking) No

6.6.4 Discussion

Phorcys is able to detect n-way feature interactions with more than two features and

provide counterexamples to support specification updates. Due to the feature-oriented re-

quirements specification, an initial requirements specification flaw is uncovered in model M

that could produce an unwanted interaction when the features are combined. In the revised

model M ′, a subsequent modeling error (e.g., typo) was inadvertently introduced by the

system designer leading to a single possible 3-way unwanted interaction. Finally, an updated

model (M ′′) is shown to be interaction free. All executions were performed on a laptop with

a 1.3 GHz Intel Core i5 processor and 4 GB of 1600 MHz DDR3 RAM in fractions of a

second.

6.7 Related Work

Significant work has been done in the area of representing features as well as detecting,

avoiding, and resolving feature interactions. This section overviews and compares related

work. More comprehensive surveys on feature interaction have been presented elsewhere [4,

5, 20].

6.7.1 Feature Interaction

In general, feature interactions have been addressed by three main categories of tech-

niques: detection, avoidance, and resolution [20], each of which is detailed below.

105

Detection

Typically, the detection of feature interactions focuses on identifying minimal sets of

features that are necessary for a feature interaction to take place [41, 59, 6, 7]. Often, these

methods are limited to pair-wise detection [21, 41], where only interactions between two

features can be detected. For n-way feature interaction detection techniques, these minimal

sets require a potentially exponential number of feature interactions to be detected [7].

Phorcys detects which features can cause an interaction thus providing a linear number of

representative interactions that the system designer must assess (not to be conflated with a

linear run-time). Search-based techniques for discovering latent properties, including feature

interactions, exist, but require manual analysis of discovered properties [52, 60]. Phorcys

differs from existing feature interaction detection methods by combining three key elements:

• it operates at the requirements level,

• it detects n-way feature interactions, and

• it identifies the cause of the interaction.

Avoidance

Feature Interaction avoidance composes features using operators that are conflict-

free [55, 58] or makes use of frameworks that ensure separation of potentially conflicting

concerns, eliminating specific classes of feature interactions [86]. Using these methods, the

design and development of features is limited to the operators or frameworks employed.

Detection methods, including Phorcys, could be employed to ensure no unexpected feature

interactions occur due to limitations of the composition operators or frameworks.

Resolution

Feature Interaction resolution is often performed at run-time, and includes techniques

such as prioritization [22] and negotiation [53] between features. Recently, methods to resolve

106

interactions based on the conflicting variables have been presented to reduce the number of

resolutions [17], though dependencies between variables (e.g., speed and acceleration) are

not considered for interactions. This method does not provide guarantees that the resolution

provides desired behavior for the system. Therefore, while resolution at run-time may be

better than allowing a conflict to occur, detecting and removing an interaction at design-

time with Phorcys allows for verification of the modified behavior. When resolutions must

be defined at design-time, detection methods like Phorcys can be used to identify which

resolutions are necessary, thus eliminating excess resolutions.

6.7.2 Feature Representation

In this dissertation, we use annotated goal models to represent features, however features

have also been represented as various behavioral models [41], logical representations [21, 9],

or product line models [26, 61]. Often product lines are represented as feature models [59].

While goal modeling, product lines, and feature models are high-level representations of

systems, behavioral and logical specifications necessitate specific implementation details.

Feature models only decompose to the feature level and use cross-tree constraints that are

limited to the feature level [13]. Therefore, feature models can only model conflicts between

entire features and miss requirements-level conflicts that often cause feature interactions [6,

84]. For example, in Figure 6.1, features B and C conflict for only a range of values. The

cross-tree constraints represented in feature models cannot adequately constrain the features

without also constraining non-interacting functionality. The annotated goal models presented

in this dissertation allow features to be decomposed to the requirements level, allowing for

the detection of interactions that occur only in a portion of a feature’s functionality while

allowing for detection before implementation artifacts are created.

107

6.8 Summary

In this chapter, we have presented Phorcys, a design-time approach for detecting un-

wanted n-way feature interactions and determining their causes at the requirements level.

Unlike previous n-way feature interaction detection approaches that attempt to enumerate

every set of features that interact, Phorcys reduces the effort of the system developer by an-

alyzing each feature for its ability to cause an interaction with other features. The method

we present offers several advantages to reducing the cost of feature interaction detection.

First, Phorcys reduces the computational and system designer effort by detecting interac-

tions at the requirements level rather than implementation specifications. Second, Phorcys

reduces the system designer effort by identifying which features cause an interaction rather

than reviewing a potentially exponential set of interactions. Third, Phorcys reduces the com-

putational effort to detect feature interactions for a subset of feature interaction detection

problems by applying optimized constraint solvers in the form of SMT solvers to feature

interaction detection. We demonstrated Phorcys on a cyber-physical system represented as

a braking system goal model comprised of several features that are composed to realize an

automotive braking system. We show that Phorcys is able to automatically detect the causes

of n-way feature interactions due to specification and modeling flaws in fractions of a second.

108

Chapter 7

Detecting Feature Interactions: Using

Evolutionary Computation

Ensuring acceptable and safe behavior is of paramount importance for high-assurance

systems across the full range of functionality, not just a single scenario. However, detecting

whether each feature can cause of a feature interaction only provides a single counterexample

for each feature. This chapter introduces Phorcys-EC, a design-time approach for detecting

unwanted failures caused by n-way feature interactions at the requirements level using both

symbolic analysis and evolutionary computation to identify multiple counterexamples. Unlike

previous n-way feature interaction detection approaches that look for single features that

cause an interaction, Phorcys-EC uses a combination of symbolic analysis and evolutionary

computation to identify multiple counterexamples for each feature, thus providing more

guidance for mitigation (e.g., revising specifications, adding constraints, etc.). To the best of

the authors’ knowledge, Phorcys-EC is the only technique to detect failures caused by n-way

feature interactions using a combination of symbolic analysis and evolutionary computation.

We illustrate our approach by applying Phorcys-EC to an industry-based automotive braking

system comprising multiple subsystems.

109

7.1 Introduction

This chapter presents Phorcys-EC,1 a method for 1) identifying whether a feature fails

due to a feature interaction and 2) returning a collection of diverse counterexamples across

features and environmental properties using a combination of symbolic analysis and evolu-

tionary computation.

N-way feature interaction detection methods typically detect a potentially exponen-

tial number of feature interactions (i.e., O(|F |2), where F is the set of features). In order

to address the computational intractability of n-way feature interaction detection, many re-

searchers have focused on pair-wise interactions [10, 21, 41, 59]. While this approach decreases

the number of potential interactions detected to O(|F |2), interactions that only emerge when

three or more features are present will not be detected [5]. Methods to detect which features

cause an interaction without “creating all possible feature interactions” [5] have previously

been considered unreliable, but such methods that are sounds and complete are a necessity.

Additionally, a single counterexample may be insufficient

This chapter presents Phorcys-EC, an extension of the symbolic approach Phorcys.

Phorcys-EC detects feature interactions using a combination of symbolic analysis and evo-

lutionary computation. That is, feature interaction counterexamples are identified via a

feature-oriented analysis based on whether a feature can fail due to an interaction. For ex-

ample, consider 3 features, F1, F2, and F3. If an interaction exists, then at least one feature

(F1, F2, or F3) no longer operates as it did independently. However, where Phorcys would

provide up to a single counterexample for each feature, Phorcys-EC identifies multiple coun-

terexamples with diverse feature sets and environmental scenarios for each feature.

Phorcys-EC analyzes features represented in goal models that hierarchically decompose

a high-level goal down to individual requirements [87]. Phorcys-EC, using Phorcys, symbol-

ically analyzes each feature with respect to different possible feature combinations of the

goal model and uses a constraint solver to check for the existence of any combination of

1Phorcys-EC (pronounced ‘forsis’) is the Greek god of hidden dangers in the deep.

110

features (i.e., feature set) where the analyzed feature can fail due to a conflict in one or more

requirements to be satisfied. The initially identified feature interaction counterexample is

used to pre-populate a genetic algorithm that searches for additional diverse counterexam-

ples. Periodically, the symbolic analysis will be re-applied to re-seed the genetic algorithm

during evolution. Where previous n-way feature interaction detection methods may present

an intractably large set of automatically detected interactions that are only diverse across

features (i.e., do not include additional counterexamples with diverse environmental scenar-

ios for a single interacting feature set) for the system designer to assess manually as to what

environmental conditions are necessary for the feature interaction to occur [18, 20], Phorcys-

EC identifies sets of feature interaction counterexamples for each feature that can fail due to

an interaction. The diverse nature of the counterexamples provides more information (i.e., a

larger range of environmental scenarios and/or a larger set of features) that can be utilized

when revising the requirements and assumptions to mitigate the feature interaction.

The contributions of this chapter are as follows:

• We introduce a new approach for analyzing requirements to detect unintended feature

failures caused by n-way feature interactions using symbolic analysis and evolutionary

computation,

• The new approach can identify multiple counterexamples that represent diverse sets

of features and diverse environmental scenarios for a given feature that can cause a

feature interaction,

• We present Phorcys-EC, a prototype implementation of the approach, and

• We demonstrate the applicability of Phorcys-EC on an industry-based application of

an automotive braking system based in part on the feature interaction issues in the

2010 Toyota Prius [29, 63], a hybrid vehicle. Analysis shows that Phorcys-EC is able

to identify feature failures caused by feature interactions in the braking system goal

model involving two or more features.

111

The remainder of this chapter is organized as follows. Section 7.2 provides background

information on the automotive braking system used for feature interaction analysis in this

chapter. The Phorcys-EC approach, examples, and results are included in Sections 7.3 and

7.4, respectively. Work related to Phorcys-EC is presented in Section 7.5, and our conclusions

are described in Section 7.6.

7.2 Input Model

The goal model in Figure 7.1 represents an automotive braking system with several

features. This model is similar to previous braking system goal models; however it has been

updated such that the variables are mapped appropriately to a range of zero to one to allow

for a more direct application of evolutionary computation in the range of zero to one. This

not only causes some changes to the goal model, but subsequently to the results themselves.

In general, a feature reads the actual brake pedal position and relates that information to a

commanded brake force that is translated to an external braking force via a braking mech-

anism. However, for this system, the braking system has been developed as four individual

features (i.e., B, C, D, E) rather than as a single, monolithic system. The use of multiple

brake features is based on a known 2010 Toyota Prius braking system issue [29]. The brak-

ing system features defined here have been independently developed without consideration

for each other and is intended to be a realistic example of industrial design artifacts at the

requirements level, based on our collaboration with automotive industrial practitioners.2

7.3 Evolutionary Computation Approach

This section presents the Phorcys-EC approach and a comparison of analysis approaches.

2Collaboration with automotive industrial practitioners included reviewing our goal modeling approach
to automotive systems, however the specific braking system presented here was not explicitly reviewed.

112

A
Maintain(Brake

System)

OR
B (f)

Achieve(Standard
Force Braking)

B.1 (post)
SF = CBF

B.2
Achieve(Apply

Standard Force)

B.3 (pre)
CBF > 0

AND
C (f)

Achieve(Regen
Braking)

C.1 (pre)
CBF > 0

D (f)
Achieve(Anti-
Lock Braking)

D.5
Achieve(Brake

Pulse)

D.4
Achieve(Read
Brake Force)

D.3 (pre)
BF > 0

AND

D.6 (pre)
SS = true

D.7
Achieve(Read
Slip Sensor)

D.8
Achieve(Brake

On)

D.9
Achieve(Brake

Off)

OR

D.11 (post)
CBF = BF

D.13 (post)
CBF = 0

D.12
Achieve(Brake
Force Change)

D.14 (pre)
PBF > 0

D.10 (pre)
PBF = 0

AND AND

D.2
Achieve(Read

CBF)

E (f)
Achieve(Continuous

Braking)

E.3 (post)
CBF = BF

E.4
Achieve(Read
Brake Force)

E.5 (pre)
BF > 0

AND

E.6 (pre)
SS = false

E.2
Achieve(Read

CBF)

E.7
Achieve(
Read SS)

A.1
Maintain(Brake

Force)
OR

A.2
Maintain(Brake

Command)

AND

C.5 (post)
SF = 0.2 * CBF

C.6
Achieve(Apply

Standard Force)

C.10 (post)
RF = 0.8 * CBF

C.9
Achieve(Apply
Regen Force)

C.3
Achieve(

Standard Force)

C.4
Achieve(Regen

Force)

C.7 (pre)
CBF > 0.2

C.8 (pre)
CBF < 0.5

C.2
Achieve(Regen

& Standard Force)

AND AND

OR

AND

Figure 7.1: Braking System Goal Model

7.3.1 Phorcys-EC Approach

Figure 7.2 overviews the Phorcys-EC process with a DFD. As shown in Step 1 of Fig-

ure 7.2, Phorcys-EC accepts a goal model defined by the system designer (including feature

and pre-/post-condition annotations), such as the one in Figure 7.1. Step 2 analyzes each

feature to determine if a feature can fail due to a feature interaction. The Phorcys-EC output

from Step 3 contains the features that fail due to an interaction along with affected features,

as well as the concrete values of the variables in the system. Next, we describe each of the

steps in the DFD in turn.

Step (1): Generate FI Detection Logic

Features that can fail due to a feature interaction, or the causes of feature interactions,

are detected based on generated logical expressions for each feature represented in the goal

113

Counter
Examples

Goals

Refined
Goal Model

Feature
Interactions
& Causes

Feature
Interactions
& Causes

Logical
ExpressionsGoal Model

(1)
Generate

FI Detection
Logic

(2)
Process Logical

Expressions

(3)
Counterexample

Summary

Feature
Interactions
& Causes

Process
Flow

Process Key:

System
Designer

External I/O
File

SMT2
Expressions

Satisfiability
Results

SMT Solver

Figure 7.2: Phorcys-EC Data Flow Diagram

model provided by the system designer. The logical expressions are generated from the pre-

and post-conditions in the goal model that are satisfied when a goal model instance is both

i) valid and ii) contains properties of a feature interaction as defined within this step. The

specific goal model instances are created by symbolically analyzing the logical expressions

(i.e., Equation 6.6).

The feature interaction detection logic generated is identical to that of Phorcys, and is

used for both symbolic analysis and evolutionary computation. Specific values identified by

Phorcys-EC when analyzing feature B are presented in the Examples section (Section 7.4).

The analysis logic is generated for each feature.

114

Step (2): Process Logical Expressions

The logical expressions generated by Phorcys-EC are processed by one of three methods

that are compared in this chapter: Symbolic Analysis (SA), Evolutionary Computation (EC),

or Symbolic Analysis and Evolutionary Computation (SA+EC).

Step (3): Counterexample Summary

For each feature that can fail due to an interaction, the following information is sum-

marized from the counterexample(s):

• The feature that failed due to the interaction,

• The set of features involved in the interaction, and

• The values of the instantiated variables.

Importantly, the features satisfied in the goal model may not be necessary for the feature

interaction to occur but they are sufficient for the interaction to occur. There is no guarantee

of minimal sets of features that cause an interaction, however as the analysis identifies if a

feature can cause a feature interaction (i.e., fail due to a feature interaction) the cause is

intrinsically identified. Summarized counterexamples can be reviewed by the system designer.

Update Goal Model by System Designer

The summarized counterexamples are intended to be used by the system designer to

revise the input goal model. The root cause of a feature interaction may include one or

more of the following incomplete list of possible problems: incorrect pre- or post-conditions

for a requirement; incorrect decomposition of goals that do not meet desired requirements

specification; or indicate incorrect requirements specification.

The features identified as failing due to a feature interaction may be revised by: modi-

fying the requirement and/or its associated pre- and post-conditions or revising the decom-

position of the goal model to restrict the feature interaction from occurring. A revised goal

115

model may then be analyzed again by Phorcys-EC to detect newly introduced or remaining

feature interactions.

7.3.2 Comparison of Analysis Approaches

This subsection provides details of three implementations used to analyze the logical

expressions, as shown in Step (2) in the Phorcys-EC DFD in Figure 7.2.

Symbolic Analysis (SA)

As illustrated in Figure 7.3, the symbolic analysis instantiation of Step (2) in Figure 7.2

accepts the logical expressions defined by the process in Step (1). These logical expressions are

translated into SMT version 2 [12] for analysis by a Satisfiability Modulo Theories (SMT)

solver and the results are returned. SMT solvers follow the SMT-LIB [76] or SMT-LIB

version 2 [12] standards to determine the satisfiability or validity of defined constraints [27]

in a diverse range of constraint problems [33]. In this work, we make use of the Microsoft Z3

SMT Solver [32].

Counter
Examples

Logical
Expressions

(2)
Process Logical

Expressions:
SA

SMT2
Expressions

Satisfiability
Results

SMT Solver

Figure 7.3: Phorcys-EC Data Flow Diagram: Step 2, SA

For each feature, the valid goal configurations and feature interaction properties (i.e., the

conjunction of Equations 6.13 and 6.14) specific for the feature under analysis are submitted

116

to the SMT solver, and counterexamples are returned after processing the logical expressions.

Therefore, a maximum of one counterexample is detected for each feature that can fail due to

a feature interaction. If a conflict is detected, then it is added to the set of counterexamples

to be summarized in Step 3.

Evolutionary Computation (EC) Analysis

While symbolic analysis can identify individual counterexamples, EC naturally lends it-

self to identifying multiple counterexamples (i.e., optimum). The genome itself is represented

by the variables in the logical expressions generated by Phorcys-EC, where each variable in

the expression is represented by a real value.

The EC configuration parameters in this work are based on empirical feedback where

both optimal results and execution time were emphasized. Both analysis approaches us-

ing evolutionary computation (i.e., the EC-only analysis approach, as well as the combined

SA+EC analysis approach) make use of a population of 200, a novelty proportionate tour-

nament of size 8 for mating selection, a fitness proportionate tournament of size 4 is used

for survival selection, as well as a 5% mutation rate applied by randomly modifying a single

real-value representing a variable in the genome. Mating is performed by the SBX crossover

operator [35] for each real-value in the individuals selected. Novelty and fitness measures are

based on minimum Manhattan distance [28] of the selected genotype values (e.g., features

included in the feature set or environmental variables) from any other individual and the ex-

istence of a failure for the feature under analysis caused by a feature interaction, respectively.

The number of generations is limited to 500. The intention of this genetic algorithm is to

emphasize diversity using both the mating and mutation operators while survival selection

optimizes the results by culling from the diverse individuals.

Therefore, evolutionary computation is used to search for both optimal (i.e., a feature

interaction is detected via the Phorcys-EC generated detection logic) and novel results (e.g.,

counterexamples including diverse sets of features or diverse environmental scenarios). In-

117

stead of searching for a single counterexample identifying a feature interaction, EC looks for

multiple solutions using the entire population of the genetic algorithm. The expected results

are optimal individuals spread across a range of genotypes.

SA+EC Analysis

While EC can search for multiple solutions with diversity, the following limitations and

problems can occur:

• A single or multiple ‘needle(s) in a haystack’ may exist as the optimum and be pro-

hibitively difficult to find.

• There may be no gradient between optimal and non-optimal results providing no basis

for improvement related to changes in fitness resulting in a degradation to random

search.

• Dependencies between variables may require changes in additional variables to main-

tain optimality.

Phorcys-EC overcomes these issues by combining symbolic analysis with evolution-

ary computation. As illustrated in the DFD in Figure 7.4, Phorcys-EC initially and then

periodically performs symbolic analysis to identify a single diverse counterexample. That

symbolically-identified counterexample is used to supply or replace a portion of the genetic

algorithm’s population. In order to select this single diverse counterexample, Phorcys-EC

selects 10 random individuals in the population to create a distance constraint from each

of them during the first half of the generations. If a new and diverse counterexample is

found, then 20 random individuals are replaced with the new counterexample. This process

is performed initially without the existing random chosen individuals and another 4 times

(for a total of 5 symbolic analyses, selected based on empirical feedback), evenly distributed

throughout the first half of the genetic algorithm’s generations.

118

Counter
Examples

Counterexample,
Logical Expressions

Logical
Expressions

(2)
Process Logical

Expressions:
SA+EC

Symbolic
Analysis

Genetic
Algorithm

Counterexamples

SMT2
Expressions

Satisfiability
Results

SMT Solver

Figure 7.4: Phorcys-EC Data Flow Diagram: Step 2, SA+EC

7.4 Evolutionary Computation Case Study

This section provides the results of the Phorcys-EC tool when applied with each of the

three methods of analyzing logical expressions (i.e., Step 2 in the Phorcys-EC DFD in Figure

7.2), as well as a comparison of the three methods.

7.4.1 Symbolic Analysis (SA)

The braking system defined in Figure 7.1 identifies two potential sources for driving

brake commands (features D and E) that provide the inputs to two methods of physically

applying the brakes (features B and C). Table 7.1 provides the results of applying Phorcys-EC

to each of the features (B, C, D, and E) in the goal model to determine if any are the cause

of a feature interaction.

Table 7.1: FI Causes in the Goal Model

Set of Features Feature Under Analysis Fails Due to FI
{B, C, E} B Yes
{B, C, E} C Yes

N/A D No
N/A E No

119

After analysis, both features B and C are shown to fail due to a feature interaction. In

both cases, the full set of features involved in the interaction are features B, C, and E, as

shown in the ‘Set of Features’ column that identifies the features involved in the interaction.

Analyzing Feature B for Failure Due to FI

The values of the variables in the goal model counterexample are shown in Table 7.2.

Figure 7.5 illustrates the applicable parts of the goal model (at the feature level) for the

3-way feature interaction caused by feature B where the red text (SF = ?) indicates the

conflict detected. (The set of features represented in Figure 7.5 is goal configuration 6 in

Figure 6.3). The brake force (BF = 0.35) is provided externally by the driver pressing on the

brake pedal. This value is read via the ‘Brake Pedal Sensor’ and converted to a commanded

brake force (CBF = 0.35) by feature D. The features that apply the brake force, B and C, read

this commanded brake force (CBF) from memory and use it to apply external brake forces.

Feature B applies, via B.2, the entire commanded brake force to standard braking force

(SF = 0.35) (e.g., drum or disk brakes on the wheels). Feature C applies a portion (defined

by C.5) of the commanded brake force to the standard braking force (SF = 0.07) and a

portion (defined by C.10) to the regenerative braking force (RF = 0.28). The interaction

occurs due to the conflict where features B and C both attempt to set SF to different values,

clearly SF = 0.35 and SF = 0.07 cannot be true simultaneously. SA, in two separate analysis

runs, is able to identify that both B or C can fail due to the interaction.

Analyzing Feature C for Failure Due to FI

A counterexample with a similar type failure of feature C: a conflict between B and C

attempting to set SF to different values. Since the SMT solver identifies a different coun-

terexample, the values identified for the goal model variables are different (as shown in Table

7.3), where feature C fails due to the interaction.

The interaction caused by feature C is a 3-way feature interaction (i.e., B, C, D) where

120

20%
SF=0.07

100%
SF=0.35

A
Maintain(Brake

System)

OR

B
Achieve(Standard

Force Braking)

C
Achieve(Regen

Braking)

D
Achieve(Anti-
Lock Braking)

E
Achieve(Continuous

Braking)

A.1
Maintain(Brake

Force)
OR

A.2
Maintain(Brake

Command)

AND

BF=0.35CBF=0.35SF=? RF=0.28

Input
Output

Key:

Satisfied
Not Satisfied

Figure 7.5: 3-Way FI in Figure 7.1 Caused by B or C

Variable Value
SF 0.07
CBF 0.35
PBF 0.0
RF 0.28
BF 0.35
SS true

Table 7.2: Feature B

Variable Value
SF 0.35
CBF 0.35
PBF 0.0
RF 0.28
BF 0.35
SS true

Table 7.3: Feature C

Variables for Failure

two features (i.e., B, C) are performing conflicting actions due to the commands of a third

feature (i.e., D). This unwanted feature interaction is a requirements specification flaw (e.g.,

incorrect requirements) in the specification of the goal model. Two conflicting values should

not be applied to SF . However, it may not be obvious that such an interaction exists due

to a requirements specification flaw when features are developed independently of one an-

other. This specification flaw was not purposefully injected into the goal model and was not

obvious to the authors when the features were developed independently and without any

consideration for other features.

121

7.4.2 Evolutionary Computation (EC)

The EC method uses a genetic algorithm to generate variable instantiations for the

logical expressions to detect feature interactions in an effort to address the limitations of

a single counterexample result identified by symbolic analysis. However, EC is unable to

identify a single counterexample, much less a set of counterexamples, within 50 full executions

of the genetic algorithm. Even significantly larger generations (2000) and larger populations

(500) did not lead to success for the genetic algorithm. The most likely reason for the lack

of results is the lack of a fitness gradient (i.e., either 0.0 or 1.0) for the detection of feature

interactions causing the genetic algorithm to function as random search.

7.4.3 SA+EC

SA+EC detected both features B and C as features that can fail due to feature inter-

actions, just as they were identified in the SA-only method. In the cases of features B and

C, the SA+EC method is always able to identify a set of diverse counterexamples. In all 50

executions of the genetic algorithm, at least 97% of the population succeeded in finding a

counterexample (i.e., feature interaction).

Feature Diversity

In the cases of both features B and C, the possible feature sets that are involved in the

interaction are both B and C as well as one of either D or E. All executions of SA+EC, using

feature diversity, identified all possible feature combinations that could provide the feature

interaction that causes the feature under analysis to fail. That is, each of the 50 executions

for both features B and C identified the exhaustive list of possible feature sets.

Environmental Diversity

Regardless of which feature, or features, failed due to the feature interaction, at least

99.9% of the feature interactions identified by SA+EC analysis included unique environmen-

122

tal variable values. That is, the feature interaction counterexamples identified were almost

always completely unique and every set of counterexamples (i.e., in a population of 200 iden-

tified by the SA+EC) included significant diversity as measured by the Manhattan distance

of the environmental scenarios. This diversity is illustrated in Figures 7.6a and 7.6b that

show the range (distance from minimum to maximum) each environmental variable took

across each set of 200 individuals in the SA+EC analysis, where the box plot represents all

50 executions of the SA+EC. It should be noted, that it is expected that some of the ranges

are limited since they represent the ranges of environmental variable values necessary for

feature interactions to cause a feature to fail. In both cases, we can see that SS , PBF , and

RF have a large range of values while the remainder (i.e., BF , SF , and CBF) are limited due

to the smaller range of those environmental variable values when feature interactions occur.

With just the box plots of the ranges, it is clear that the feature interaction will be related

to the variables BF , SF , and CBF . System designers may infer that the values with a more

restricted range must be within those ranges in order for a feature interaction to occur, while

variables with a larger range are not limited to specific values for a feature interaction to

occur.

7.4.4 Comparison

The SA+EC approach used by Phorcys-EC is preferred over either SA or EC alone.

Though SA can only identify a single counterexample for every feature that can fail due

to a feature interaction, the failure is guaranteed to detect the interactions. This analysis

differs from EC where there is no guarantee that a counterexample will be found even when

one is known to exist. This weakness is especially apparent when the EC approach failed to

detect any of the feature interactions due to the discrete nature of the fitness assessment.

Therefore, while SA is limited to a single counterexample, it provides a guaranteed result

and is the preferred solution when comparing between a SA approach or an EC approach.

However, SA+EC is not only able to identify failures due to feature interactions as consis-

123

●●

●

●●

●

●●

● ●●●●

●

●●●●●●

●●●

B
F

S
F

C
B

F

S
S

P
B

F

R
F

0.0

0.2

0.4

0.6

0.8

1.0
E

xe
cu

tio
n

R
an

ge

(a) B Failing

●●●●
●

●

●●
●●●
●
●
●

●
●

B
F

S
F

C
B

F

S
S

P
B

F

R
F

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
R

an
ge

(b) C Failing

Figure 7.6: Environmental Variables

tently as SA, but SA+EC also identifies a diverse and unique set of counterexamples. Since

SA+EC uses the SA approach, the guarantees of SA are also the guarantees of SA+EC since

the EC portion is elite preserving and does not remove true counterexamples for anything

but a more diverse true counterexample. Additionally, SA+EC was able to identify an ex-

haustive list of feature sets that can take part in a feature interaction and over 99.9% of

counterexamples identified were unique. Therefore, SA+EC is preferable to the SA approach

alone as SA+EC includes both the completeness and soundness guarantees of SA, as well

as providing diverse results that better inform how to mitigate the feature interaction with

respect to the requirements and/or expectation revisions.

124

7.5 Evolutionary Computation Related Work

Significant work has been done in the area of representing features as well as detecting,

avoiding, and resolving feature interactions. This section overviews and compares related

work limited to those that address detection, the focus of this work. More comprehensive

surveys on feature interaction have been presented elsewhere [4, 5, 20].

Typically, the detection of feature interactions focuses on identifying minimal sets of

features that are necessary for a feature interaction to take place [41, 59, 6, 7]. Often, these

methods are limited to pair-wise detection [21, 41], where only interactions between two

features can be detected. For n-way feature interaction detection techniques, these minimal

sets require a potentially exponential number of feature interactions to be detected (i.e., every

possible feature set) [7], while Phorcys detects which features can fail due to an interaction,

up to only a single counterexample for each feature is provided. Search-based techniques

for discovering latent properties, including feature interactions, exist, but require manual

analysis of discovered properties [52, 60]. Phorcys-EC differs from existing feature interaction

detection methods by combining several key elements:

• it operates at the requirements level,

• it determines if a feature can fail due to a feature interaction automatically (i.e., without

manual analysis),

• it employs a combination of both symbolic analysis and evolutionary computation to

generate a representative and diverse range of counterexamples for each feature that

can fail due to a feature interaction.

7.6 Summary

In this chapter, we have described Phorcys-EC, a design-time approach for detecting

unwanted n-way feature interactions and determining their causes at the requirements level

125

using symbolic analysis and evolutionary computation to identify diverse counterexamples.

Unlike Phorcys, Phorcys-EC uses evolutionary computation and symbolic analysis to detect

multiple counterexamples that represent diverse feature sets and environmental scenarios for

each feature without sacrificing guaranteed detection. We have demonstrated Phorcys-EC

on a braking system goal model comprising several features to realize an automotive braking

system.

Future research will continue to explore how Phorcys-EC can be extended to address

additional assurance challenges posed by computing-based systems as they interact with the

environment. For example, we will explore how to detect feature interactions in the face of

uncertainty due to environmental conditions as they impact system conditions. Addition-

ally, while Phorcys-EC detects feature interactions at design-time, we will also investigate

run-time feature interaction detection and mitigation strategies, just as existing SA+EC

requirements completeness approaches [38] have been extended to run-time approaches [39].

We will also explore the use of RELAXed goals [94], whose utility functions are evaluated ac-

cording to fuzzy logic expressions, or applying other transformations to introduce a gradient

to requirements satisfaction in support of evolutionary search.

126

Chapter 8

Detecting Feature Interactions: At

Run Time

The validity of systems at run time depends on the features included in those systems

operating as specified. However, when feature interactions occur, the specifications no longer

reflect the state of the run-time system due to the conflict. While methods exist to detect

feature interactions at design time [40], conflicts that cause features to fail may still arise

when new detected feature interactions are considered unreachable, new features are added,

or an exhaustive design-time detection approach is impractical due to computational costs.

This chapter introduces Thoosa, an approach for using models at run time to detect features

that can fail due to feature interactions at run time. We illustrate our approach by applying

Thoosa to an industry-based automotive braking system comprising multiple subsystems.

8.1 Introduction

While systems are expected to satisfy their specifications at run time, these specifications

can only be satisfied if they are logically sound and do not include conflicts that result in

feature interactions. Detecting feature interactions is challenging due to the exponential

growth of potential interactions with respect to the number of features [17] and the range of

127

environmental possibilities in cyber-physical systems. More formally, when defining a feature

interaction by the minimal set of features that are necessary for the interaction to occur,

the number of possible interactions is O(2|F |), where F is the set of features [5]. The growth

in the number possible feature interactions and consequently the number of possible feature

interactions that must be assessed can result in latent behavior that impacts the system

dependability at run time. This problem is particularly prominent in cyber-physical systems

where unexpected adverse environmental conditions may occur and impact the dependability

of the system. However, run-time detection of feature interactions reduces the possible feature

and environmental combinations to a single concrete instantiation that must be analyzed for

feature interactions. This chapter presents Thoosa,1 a method for detecting each feature that

causes an n-way feature interaction in a requirements goal model at run time.

This chapter presents Thoosa, a method for detecting each feature that fails at run time

due to feature interactions using executable code generated from a symbolic representation of

feature interactions. That is, feature interaction counterexamples are identified via a feature-

oriented analysis based on whether a feature can fail due to an interaction given the concrete

instantiation of the system at a given time. For example, consider 3 features, F1, F2, and F3.

If an interaction exists, then at least one feature (F1, F2, or F3) no longer operates as it did

independently. Thoosa reduces the computational effort by only analyzing a single scenario

or set of features, at run time, while still detecting n-way feature interactions.

Thoosa analyzes features represented in goal models that hierarchically decompose a

high-level goal down to individual requirements [87]. Thoosa executes generated logic, in the

form of C++ code, that analyzes each feature with respect to the current feature combina-

tions of the goal model and identifies if the analyzed feature can fail due to a conflict in one

or more requirements to be satisfied at run time. Each feature is analyzed for failure due

to a feature interaction. Where previous run-time feature interaction detection techniques

1Thoosa is a Greek sea nymph associated with swiftness and the daughter of Phorcys.

128

indicate that a feature interaction exists, Thoosa identifies which features fail due to the

feature interaction.

The contributions of this chapter are as follows:

• We introduce a new approach for analyzing requirements to determine if they fail at

run time due to a feature interaction,

• We present Thoosa, a prototype implementation of the approach, and

• We demonstrate the applicability of Thoosa on an industry-based application of an

automotive braking system based in part on the feature interaction issues in the 2010

Toyota Prius [29, 63], a hybrid vehicle. Analysis shows that Thoosa is able to iden-

tify feature failures caused by feature interactions in the braking system goal model

involving two or more features.

The remainder of this chapter is organized into the following sections. Section 8.2 details

the approach. Section 8.3 describes an example application, and Section 8.4 details related

work. Finally, Section 8.5 discusses the conclusions and avenues of future work.

8.2 Run-Time Approach

Figure 8.1 overviews the Thoosa process with a DFD. As shown in Step 1 of Figure 8.1,

Thoosa accepts a goal model defined by the system designer (including feature and pre-

/post-condition annotations), such as the one in Figure 6.1, and generates feature interaction

detection logic. Step 2 generates monitoring code that can be executed at run time based

on the feature interaction detection logic. The Thoosa output from Step 2 contains the

generated monitoring code that can detect feature failures due to feature interactions. Next,

we describe each of the steps in the DFD in turn.

129

Run-Time
Monitoring

Code

Goals,
Expectations,
Requirements

Logical
Expressions

Annotated
Goal Model

(1)
Generate

FI Detection
Logic

(2)
Generate
Monitoring

Code

Run-Time
Monitoring

Code

Process
Flow

Process Key:

External I/O
File

Figure 8.1: Thoosa Data Flow Diagram

8.2.1 Step (1): Generate FI Detection Logic

A failure of a specific feature is identified when that specific feature’s properties are

unsatisfied for a specific composition of features that includes the feature under analysis, as

indicated in Equation (6.6). Assuming all features are analyzed for failure due to a feature

interaction, Equation (6.6) is both complete (i.e., no missing interactions) and sound (i.e.,

no superfluous interactions detected). In this chapter, we employ Equation 6.6 to detect if

a feature can fail due to a feature interaction where we measure the inclusion of a feature

based on that feature’s pre-conditions, while the feature properties are measured by the

satisfaction of the feature’s post-conditions.

Features that can fail due to a feature interaction are detected based on generated logical

expressions for each feature represented in the goal model provided by the system designer.

The logical expressions are generated from the pre- and post-conditions in the goal model

that are satisfied when a goal model instance is both i) valid and ii) contains properties of a

130

feature interaction as defined within previous work on symbolically analyzing goal models for

feature interactions in Chapter 6. That is, the feature interaction detection logic generated

by Thoosa is the same as that generated by Phorcys.

8.2.2 Step (2): Generate Executable Code

Thoosa automatically generates executable code based on the logic generated to detect

failures that are caused by feature interactions in Step (1). Specifically, the following items

are calculated and assigned to variables based on the current state of goal model variables

(i.e., the values those variables take on at run time while executing the implemented system):

• The satisfaction of the goal model based on the decomposition of the top-level features,

• The satisfaction of each of the feature pre-conditions (i.e., corresponding to if the

feature should be included in the feature set and satisfied), and

• The satisfaction of each of the features including their pre- and post-conditions.

An example of the generated code is shown in the partial code listing in Figure 8.2, where

the top-level goal satisfaction, feature pre-condition satisfaction, and feature satisfaction are

all calculated. A full listing of the generated code is included in the Appendix.

Importantly, all features are analyzed for failure for the generated code instead of an-

alyzing features one at a time. That is, each feature is analyzed for its current ability to

cause a feature interaction (e.g., ‘B fails,’ ‘C fails,’ ‘D fails,’ and ‘E fails’ in Figure 8.2). The

system designer must update the propagation, or ‘freshness,’ of any variables in the system

by updating functions starting with a ‘V ’ to return true when the variable has been up-

dated, and false when it has not. For example, Figure 8.3 includes the sample code listing

for ‘V SS ’ that must be updated to return true when the slip sensor variable has been read

from the sensor, and false when it is out of date. In a typical system, sensors would likely be

read continuously while actuators would only propagate when they are specifically set to a

value by the system.

131

// Ca lcu la t e the top−l e v e l goa l s a t i s f a c t i o n
(t o p L e v e l S a t i s f a t i o n = ((B() | | C()) && (D() | | E ()))) ;

// Ca l cu la t e the s a t i s f a c t i o n o f each f ea ture ’ s
// p r e c o n d i t i o n s
(B precond i t ion = B P ()) ;
(C precond i t ion = C P ()) ;
(D precond i t ion = D P ()) ;
(E precond i t i on = E P ()) ;

// Ca l cu la t e
(B f a i l s = B PP ()) ;
(C f a i l s = C PP ()) ;
(D f a i l s = D PP ()) ;
(E f a i l s = E PP ()) ;

Figure 8.2: Variables Calculated for FI Detection in Figure 6.1

// Ca lcu la t e v a r i a b l e propagat ion :
bool V SS () {

r e turn true ;
}

Figure 8.3: Propagation Function for SS (Slip Sensor) Figure 6.1

8.2.3 Record Failures and/or Adapt

Based on the values that are returned from the run-time detection of feature interactions

and the features that fail due to the interaction, a partial list of appropriate systems actions

that could be manually defined by the system designer are:

• The feature interaction along with the failing feature(s) could be recorded for later

analysis. For example, a recorded feature interaction may be used by the system de-

signer to update the system to mitigate that feature interaction.

• Specific mitigations may be put in place to allow fail-safe or fail-silent operation.

• Specific feature failures due to feature interactions and their satisfied pre-conditions

132

may be used as guidance or input to run-time adaptations to adapt from the feature

set that causes a feature interaction.

8.2.4 Limitations

Counterexamples may be present in a scenario that occurs only between sensor readings.

In such cases, the values calculated by the utility functions never represent an incompleteness

or inconsistency and, therefore, no counterexample is detected.

8.3 Run-Time Case Study

This section provides the results of applying the Thoosa tool with simulated run-time

inputs. The braking system defined in Figure 6.1 identifies two potential sources for driving

brake commands (features D and E) that provide the inputs to two methods of physically

applying the brakes (features B and C). Previous analysis of the braking system has shown

that both features B and C can cause an interaction. We apply the variables identified in

the symbolic approach in Chapter 6, to ensure the run-time approach of Thoosa correctly

identifies features that can fail due to an interaction.

Run-Time Analysis of Feature B for Failure Due to FI

The values of the variables in the goal model counterexample when Feature B is the

cause of a feature interaction are shown in Table 8.1 and are applied to the run-time system

for detection. Figure 8.4 illustrates the applicable parts of the goal model (at the feature

level) for the 3-way feature interaction caused by feature B where the red text (SF = ?)

indicates the conflict that should be detected. The brake force (BF = 0.35) is provided

externally by the driver pressing on the brake pedal. This value is read via the ‘Brake Pedal

Sensor’ and converted to a commanded brake force (CBF = 0.35) by feature D. The features

that apply the brake force, B and C, read this commanded brake force (CBF) from memory

133

and use it to apply external brake forces. Feature B applies, via B.2, the entire commanded

brake force to standard braking force (SF = 0.35) (e.g., drum or disk brakes on the wheels).

Feature C applies a portion (defined by C.5) of the commanded brake force to the standard

braking force (SF = 0.07) and a portion (defined by C.10) to the regenerative braking force

(RF = 0.28). The interaction occurs due to the conflict where features B and C both attempt

to set SF to different values, clearly SF = 0.35 and SF = 0.07 cannot be true simultaneously.

Table 8.1: Variables for Failure of Feature B

Variable Value
SF 0.07
CBF 0.35
PBF 0.0
RF 0.28
BF 0.35
SS true

20%
SF=0.07

100%
SF=0.35

A
Maintain(Brake

System)

OR

B
Achieve(Standard

Force Braking)

C
Achieve(Regen

Braking)

D
Achieve(Anti-
Lock Braking)

E
Achieve(Continuous

Braking)

A.1
Maintain(Brake

Force)
OR

A.2
Maintain(Brake

Command)

AND

BF=0.35CBF=0.35SF=? RF=0.28

Input
Output

Key:

Satisfied
Not Satisfied

Figure 8.4: 3-Way FI in Figure 6.1 Caused by B or C

Thoosa does identify that feature B fails due to a feature interaction, along with the

remainder of the run-time results shown in Table 8.2. That is, when a known counterexample

is used to initialize the system variables, the detection code generated by Thoosa is able

to detect the known feature interaction. Note, the top level goal is still satisfied because

134

either goal B or goal C is required, and goal C is still satisfied. Therefore, despite the feature

interaction the system still succeeds, but not as intended. In this case the system designer

may desire this feature interaction to be recorded, but adaptation is not strictly necessary due

to the top-level satisfaction of the system. Other strategies are proposed in Sub-Section 8.2.3.

Table 8.2: Run-Time Results for Feature B

Identifier In Code Result
Top-Level (Goal A) topLevelSatisfaction Satisfied
Feature B Fails B fails True
Feature C Fails C fails False
Feature D Fails D fails False
Feature E Fails D fails False
Pre-Conditions for B B precondition True
Pre-Conditions for C C precondition True
Pre-Conditions for D D precondition True
Pre-Conditions for E E precondition False

Run-Time Analysis of Feature C for Failure Due to FI

A counterexample with a similar type of failure is the interaction failure of feature C: a

conflict between B and C attempting to set SF to different values. The variable values applied

to the run-time system, as shown in Table 8.3, result in the detection of a failure of feature

C due to the interaction.

Table 8.3: Variables for Failure of Feature C

Variable Value
SF 0.35
CBF 0.35
PBF 0.0
RF 0.28
BF 0.35
SS true

Thoosa does identify that feature C fails due to a feature interaction, along with the

remainder of the run-time results shown in Table 8.4. Note, the top-level goal is still satisfied

because either goal B or goal C is required, and goal B is still satisfied. Therefore, despite

135

the feature interaction the system still succeeds, but not as intended. This is similar to

the top-level satisfaction shown when feature B fails due to a feature interaction. Again, no

adaptation is strictly required, however recording the feature interaction is one of several

possibilities proposed in Sub-Section 8.2.3.

Table 8.4: Run-Time Results for Feature C

Identifier In Code Result
Top-Level (Goal A) topLevelSatisfaction Satisfied
Feature B Fails B fails False
Feature C Fails C fails True
Feature D Fails D fails False
Feature E Fails D fails False
Pre-Conditions for B B precondition True
Pre-Conditions for C C precondition True
Pre-Conditions for D D precondition True
Pre-Conditions for E E precondition False

8.4 Run-Time Related Work

Significant work has been done in the area of detecting, avoiding, and resolving fea-

ture interactions. This section overviews and compares related work limited to those that

address run-time detection, the focus of this work. More comprehensive surveys on feature

interactions have been presented elsewhere [4, 5, 20].

Often run-time detection techniques are paired with an effort at run-time resolution, in-

cluding techniques such as prioritization [22] and negotiation [53] between features. Recently,

methods to resolve interactions based on the conflicting variables have been presented to re-

duce the number of resolutions [17, 100], though dependencies between variables (e.g., speed

and acceleration) are not considered for interactions. This method does not provide guaran-

tees that the resolution provides desired behavior for the system. Therefore, while resolution

at run-time may provide an acceptable solution, it is not guaranteed. Thoosa operates at

the requirements level and identifies which features fail due to the feature interaction and

136

allows for mitigations to be created that adapt from an interacting set of features while still

satisfying the top-level goal.

Typically, the design-time detection of feature interactions focuses on identifying mini-

mal sets of features that are necessary for a feature interaction to take place [41, 59, 6, 7].

Often, these methods are limited to pair-wise detection [21, 41] or other small feature sets [44],

where only interactions between two features can be detected to reduce computational cost.

Thoosa, however, detects n-way feature interactions at run-time, and only inspects a single

scenario (i.e., set of variables and features) at a time.

Thoosa differs from existing feature interaction detection methods by combining three

key elements:

• it operates at the requirements level,

• it detects n-way feature interactions, and

• it identifies which features can fail due to an interaction, and

• it only inspects a single scenario (i.e., set of variables and features) at run time, reducing

computational cost.

8.5 Summary

In this chapter, we have described Thoosa, a run-time approach for detecting unwanted

n-way feature interactions and determining features that they can cause to fail. Thoosa

is an important practical assessment of feature interactions at run time when the design-

time computational costs of n-way interactions are infeasible. Unlike previous n-way feature

interaction detection approaches that detect feature interactions at run time, Thoosa also

identifies the features that can fail due to the feature interaction that is detected. Thoosa

reduces the effort to log errors or adapt run-time behavior by identifying which features fail

in an interaction rather than simply detecting that an interaction has occurred. We have

137

demonstrated Thoosa on a braking system goal model comprising several features to realize

an automotive braking system.

138

Chapter 9

Detecting Interactions of

Non-Functional Properties

Non-functional requirements, including safety requirements, are intended to ensure the

non-functional properties of the system under development. However, non-functional prop-

erties of the system often crosscut functional and non-functional requirements. These cross-

cutting concerns are dispersed throughout the requirements. This dispersion renders manual

insertion of the non-functional requirements difficult and error prone. One approach to ad-

dress this challenge is to take an aspect-oriented modeling approach, where the cross-cutting

concerns (i.e., aspects) are modeled separately from the functional concerns and then woven

together, thus facilitating traceability and maintainability. This chapter introduces Soter, a

method for aspect-oriented modeling of non-functional requirements and properties, which

applies a symbolic analysis, evolutionary computation and symbolic analysis, and run time-

based approaches to detect unwanted interactions between non-functional properties and/or

functional requirements for cyber-physical systems. We illustrate our approach by applying

Soter to detect unwanted interactions in the aspect-oriented safety and performance models

and requirements of an industry-based automotive braking system.

139

9.1 Detecting Feature Interactions

Including safety requirements in a requirements specification can be challenging, espe-

cially in cyber-physical systems. The safety requirements may be violated due to unwanted

system behavior in response to adverse or unexpected environmental conditions. Safety re-

quirements, often cross-cutting, must be meticulously applied to any system scenario that

could cause a violation. For high-assurance systems (e.g., automotive braking systems), en-

suring safety requirements are satisfied is of paramount importance. The increasing com-

plexity and the number of onboard features in modern vehicles further exacerbates the

challenge of guaranteeing safety requirements. Aspect-Oriented Requirements Engineering

(AORE) [11] provides a method of modeling non-functional requirements, including safety

requirements, independent of the overall requirements model. However, issues of composi-

tion, weaving, traceability, and analyzability must be addressed to ensure safety across the

suite of requirements. This chapter presents Soter,1 an automated approach to detect non-

functional requirement violations, including safety violations, and unwanted interactions be-

tween cross-cutting non-functional requirements and functional requirements at design time

and run time.

Current methods of defining non-functional goals and properties in Goal-Oriented Re-

quirements Engineering require explicitly defined links between non-functional requirements

and functional goals and requirements in the GORE model. Goals to avoid non-functional

violations, or mitigations, can be included in a requirements decomposition [87]. For exam-

ple, obstacles for a given goal can be directly linked to requirements within a KAOS goal

model. Mitigation of obstacles can be performed at or above the level of abstraction of the

obstructed requirement to allow for both weak and strong mitigation, respectively [87]. Non-

functional goals can be linked to existing goals and requirements based on their contribution

to functional goals and requirements [95]. Each of these methods requires a direct connection

to specific functional goals or requirements without taking into account how interactions on

1Soter is the Greek spirit of safety, preservation, and deliverance from harm.

140

requirements impact the subsequent contribution to other requirements in the system. While

methods for defining non-functional requirements as aspects exist, they have not been used to

explicitly represent important non-functional requirements like safety requirements [77], re-

quire manual detection processes [25], or only assist in identifying cross-cutting concerns [97]

in a model.

This chapter describes Soter, an approach to detecting violated cross-cutting non-

functional requirements, including safety and performance requirements to detect feature

interaction at design time, using a symbolic analysis and evolutionary computation-based

approach, and run time. Currently, only a limited number of methods exist to detect as-

pect interactions at the requirements level, despite the similarity to feature interactions [71].

Soter leverages the similarity between aspect and feature interactions by translating the

aspect-oriented safety requirements into features representing the non-functional require-

ments. These additional non-functional features are woven into the existing GORE model.

Feature interaction detection analysis is applied to each of the functional features and non-

functional features to determine if they cause an interaction or non-functional property vi-

olation [40]. The counterexamples for each detected interaction amongst the safety features

are classified according to the safety model properties and provided to the system designer

to guide the revision of the functional and safety requirements. For example, an Adaptive

Cruise Control may have a safety requirement to avoid collision with other cars depending

on a specific proximity, while the requirements model for the ACC also has requirements

to maintain the driver’s desired speed. The safety requirement to avoid a collision, (i.e., a

non-functional requirement) can be violated when the driver’s desired speed is maintained

and therefore an interaction exists between the requirements to avoid collision and maintain

the driver’s desired speed.

Soter provides a method for modeling aspect-oriented non-functional goals, including

safety and performance goals, that includes goal decomposition strategies that provide func-

141

tional mitigations. Soter recombines the non-functional property and an optional mitigation

decomposition to create non-functional features that represent one of the following cases:

• Non-Functional Properties: non-functional invariants of the system with no miti-

gation,

• Weak Mitigations: mitigations that are applied when non-functional properties are

violated, and

• Strong Mitigations: mitigations that are applied to ensure non-functional properties

are never violated.

These non-functional features are defined separately (i.e., as aspect models) from the tradi-

tional requirements decomposition hierarchy and are subsequently woven into the relevant

portions of the requirements model automatically. Counterexamples representing interactions

between functional and non-functional features are generated by a feature interaction detec-

tion tool, Phorcys [40], and categorized by Soter as to whether the non-functional properties,

the mitigation objectives, or both were violated.

The contributions of this chapter are as follows:

• We propose a goal modeling approach to modeling non-functional requirements as

cross-cutting concerns,

• We introduce an approach to automatically detect conflicts between non-functional

requirements and functional requirements by exploiting the similarity between aspect

and feature interactions, and

• We present a prototype implementation of the Soter approach, and demonstrate the

applicability of Soter on an industry-based automotive braking system using non-

functional safety and performance goals and requirements.

The remainder of this chapter is organized as follows. Section 9.2 describes and gives

examples of the Soter aspect-oriented requirements model. Section 9.3 introduces the Soter

142

approach. Section 9.4 describes the application of Soter to an industry-based example. Sec-

tion 9.5 covers related work, and Section 9.6 discusses conclusions and future work.

9.2 Representation of Non-Functional Requirements

Soter supports the modeling and the analysis of three kinds of non-functional require-

ments models: non-functional properties, weak mitigation (of non-functional property vio-

lation), and strong mitigation (of non-functional property violation). Each of these three

comprise a non-functional property trigger that assesses non-functional property violations

and for the latter two model types, a goal decomposition representing the mitigation require-

ments. Importantly, each of these non-functional requirement models are based on a cross-

cutting non-functional goal that represents a cross-cutting non-functional concern. Each of

the three kinds of non-functional requirements models may be applied to a functional goal

model individually or in combination with any number of additional non-functional require-

ments models.

9.2.1 Non-Functional Properties

Non-functional properties specify non-functional goals (e.g., ‘Avoid collision’) and are

represented by non-functional models that use a non-functional property trigger to detect

a non-functional property goal violation. For example, in Figure 9.1a, the Non-Functional

Goal is violated when the non-functional property Trigger is satisfied, denoted by a single

hashed directed edge from the non-functional property trigger to the non-functional goal.

The non-functional property Trigger may be decomposed as needed.

The system, as a whole, is intended to continuously satisfy the Non-Functional Goal

by never satisfying the non-functional property Trigger. For example, in Figure 9.1b, goal PT

is the cross-cutting safety goal intended to avoid front collisions. Goal PT, a safety property

trigger, indicates a safety goal violation if the ‘Front Distance’ is zero or less, which is true

143

if either of the front distance sensors (‘FD Sensor 1’ or ‘FD Sensor 2’) report a value of

zero or less (i.e., via goals PT.1 or PT.2, respectively).

Non-Functional
Goal

Trigger

...

(a) Template

NFG
Avoid(Collision)

PT
Front Distance <= 0

OR

PT.1
FD Sensor 1 <= 0

PT.2
FD Sensor 2 <= 0

(b) Safety Instantiation

Figure 9.1: Safety Model: Non-Functional Properties

9.2.2 Weak Mitigation

Weak mitigations are represented by non-functional requirement models that provide

alternative functionality when the non-functional goal is violated as detected by the non-

functional property trigger. For example, in Figure 9.2a, goal Non-Functional Goal is still

the cross-cutting non-functional goal. The non-functional property trigger, goal Trigger

and its derived expectations, measures violations of the non-functional goal. For this non-

functional requirements model, when the non-functional goal is violated, the Mitigation

Goal provides alternate behavior to mitigate the impact of the non-functional goal violation.

The Mitigation Goal is identified by a double hashed edge from the Non-Functional

Goal to the Mitigation Goal. These mitigation requirements may attempt to minimize

the adverse impact of the violation of the non-functional goal or provide fail-safe behavior

when the non-functional goal is known to be violated.

Weak mitigations are used to model non-functional requirements whose violation can-

not be prevented, but necessitate an alternative behavior when the non-functional goal is

violated. For example, in Figure 9.2b, a fail-safe mitigation applies full brakes in the event

144

of an imminent collision. The safety property trigger, decomposed from goal PT, indicates a

violation of the non-functional safety goal when the distance measured by either of the front

distance sensors (i.e., ‘FD Sensor 1’ or ‘FD Sensor 2’) is zero. When the non-functional

safety property violation occurs, the mitigation (i.e., Goal M) and its decomposed goals and

requirements apply the maximum amount of standard braking (i.e., Goals M.1, M.3, and

M.4) while minimizing regenerative braking (i.e., Goals M.2, M.5, M.6) to prevent the bat-

tery from being charged during a collision. Goals M.3 and M.5 are expectations expressed as

post-conditions of the M.1 and M.2 requirements, respectively.

Mitigation
Goal

Non-Functional
Goal

Trigger

...

...

(a) Template

M
Minimize Collision

M.3 (post)
SF = MAX

M.4
Achieve(Apply

Standard Force)

AND

NFG
Avoid(Collision)

M.1
Achieve(Max
SF Braking)

M.5 (post)
RF = MIN

M.6
Achieve(Apply
Regen Force)

M.2
Achieve(Max

Regen Braking)

PT
Front Distance <= 0

OR

PT.1
FD Sensor 1 <= 0

PT.2
FD Sensor 2 <= 0

AND AND

(b) Safety Instantiation

Figure 9.2: Non-Functional Model: Weak Mitigation

145

9.2.3 Strong Mitigation

Strong mitigations are represented by non-functional requirement models that provide

mitigation requirements that guarantee the non-functional goal will not be violated. For

example, in Figure 9.3a the non-functional property Trigger measures the violation of the

Non-Functional & Mitigation Goal. However, unlike weak mitigations, the decomposi-

tion of the mitigation is a decomposition of the non-functional goal itself. If the mitigation

is satisfied, then the non-functional goal must not be violated.

Strong mitigations are used to model non-functional requirements whose violation can

be prevented, but necessitate additional mitigation behavior to ensure the non-functional

goal is not violated. For example, in Figure 9.3b, the non-functional safety property trigger

(i.e. Goal ST) should never indicate that the distance measured by either of the front distance

sensors is zero indicating that the non-functional safety goal (i.e., NGF & M) is violated. The

non-functional safety goal is not violated as the mitigation itself (i.e., NGF & M) is decomposed

from the non-functional safety goal. In Figure 9.3b, a front collision is avoided by applying

the brakes well before the distance sensors measure zero when there is still adequate distance

to avoid the collision (i.e., Safe Distance in goals M.2, M.5, and M.6).

9.3 Detection via Symbolic Analysis Approach

Soter is a tool for symbolically analyzing the woven goal model comprising the cross-

cutting non-functional concerns and the functional requirements to detect interactions or

failures. Feature interaction detection is applied to detect aspect interactions and failures

in aspect-oriented non-functional requirements models (e.g., Figures 9.1b, 9.2b, and 9.3b)

where non-functional requirements have been translated into features in a goal model.

An overview of the Soter process is shown in the DFD in Figure 9.4. Step 1 accepts the

non-functional models and transforms them into features represented in terms of hierarchical

goal models with pre- and post-conditions and requirements at the leaf level that can be

146

Non-Functional
& Mitigation

Goal

Trigger

...

...

(a) Template

M.2
Front Distance <=

Safe Distance
AND

M.5 (pre)
FD Sensor 1 <=
Safe Distance

M.6 (pre)
FD Sensor 2 <=
Safe Distance

M.1
Achieve(Maximum

Stopping)

M.7 (post)
SF = MAX

M.8
Achieve(Apply

Standard Force)

AND

NFG & M
Avoid(Collision)

M.3
Achieve(Max
SF Braking)

M.9 (post)
RF = MAX

M.10
Achieve(Apply
Regen Force)

M.4
Achieve(Max

Regen Braking)

PT
Front Distance <= 0

OR

PT.1
FD Sensor 1 <= 0

PT.2
FD Sensor 2 <= 0

AND AND

AND

(b) Safety Instantiation

Figure 9.3: Non-Functional Model: Strong Mitigation

woven into a functional goal model (e.g., Figure 7.1). Step 2 weaves the generated non-

functional features into an overall woven goal model that includes both the non-functional

models and functional goal model. In Step 3, the overall woven goal model woven with the

non-functional features is processed to identify feature interactions and failures. Finally, in

Step 4, the counterexamples detected are classified according to the type of failure (i.e., non-

functional property, mitigation, or both). The classified counterexample causes are provided

to the system designer to facilitate the revision of the functional goal model and/or non-

functional models. (For brevity, the updated non-functional models and functional goal model

147

in this section may use goal names to refer to previously defined goals without repeating

their full specification.) Next, we describe the details of each of the key steps for Soter.

Classified
Counterexamples

Updated
Models

Classified
Counterexamples

Non-Functional
Counterexamples

Goal
Model
with

Non-Functional
Features

Goal
Model

(2)
Weave

Non-Functional
 Features
into Goal

Model

(1)
Transform

Non-Functional
Models to
Features

FI Detection
(3)

Classifies
Counter-
examples

Non-Functional
Models

Non-Functional
Models

Non-Functional
Features

Goal
Model

System
Designer

Process
Flow

Process Key:

External I/O
File

Classified
Counterexamples

Figure 9.4: Soter Data Flow Diagram

Step (1): Transform Non-Functional Models to Features

Step 1 accepts the non-functional models developed by the system designer and trans-

lates them to non-functional features in terms of a hierarchical goal model. For each of the

three types of non-functional models, a separate transformation process is needed for the re-

spective non-functional feature: non-functional property features, weak mitigation features,

and strong mitigation features. All three include a non-functional trigger that specifies a

measure that indicates whether the aspect-oriented non-functional goal has been violated.

148

Non-Functional Properties

The complement of the non-functional property trigger specifies the properties that the

system as a whole must maintain if it is not to violate the non-functional goal. A non-

functional property model comprises this measure (i.e., the non-functional property trigger)

and the aspect-oriented non-functional goal. The feature is modeled as the complement of the

non-functional property trigger, as shown in Figure 9.5a. The only way that a non-functional

property feature can be satisfied is if none of the non-functional property triggers detect a

violation of the non-functional goal. Given that there are no pre-conditions for the feature,

the feature’s applicability is not restricted by its specification. A non-functional property

model is intrinsically applicable, or crosscuts, the entire specification in which it is included.

For example, the non-functional safety model in Figure 9.1b is transformed into a feature

in Figure 9.5b (as denoted by ‘(f)’). The shaded goals in Figure 9.5a are portions of the tem-

plate that are carried forward into the instantiated feature, while the non-shaded goals are

replaced by instantiated goals from the non-functional safety model (e.g., Figure 9.1b). Just

as in Figure 9.5a, Figure 9.5b includes a top-level feature goal (i.e., goal Non-Functional

Property: Avoid Collision), as well as the complement of the non-functional safety trig-

ger (i.e., goal ¬PT and its decomposed goals) from the non-functional safety model in Figure

9.1b (i.e., PT and its decomposed goals). Notice that due to the negation of the non-functional

safety property trigger, the decomposition changes from an OR-decomposition to an AND-

decomposition in the non-functional safety properties feature goal decomposition. Impor-

tantly, neither goal PT.1 nor goal PT.2 can be violated if the non-functional safety property

trigger, goal PT, is to remain unviolated.

Weak Mitigation

A weak mitigation non-functional model provides alternate behavior via the mitiga-

tion. Figure 9.6a, presents a template of a weak mitigation feature with two behaviors that

define the translation from a safety model. In one branch, goal Trigger and Mitigation

149

Non-Functional
Property

(f)

...

¬ Trigger (post)

(a) Template

¬ PT (post)

¬ PT.1 ¬ PT.2

AND

Non-Functional
Property:

Avoid Collision
(f)

(b) Safety Instantiation

Figure 9.5: Non-Functional Feature: Non-Functional Properties

is AND-decomposed into non-functional goal violations and the corresponding mitigation,

both of which must be satisfied (i.e., provide alternate functionality) to satisfy the weak

mitigation feature. The second branch is the complement of non-functional properties (i.e.,

goal ¬Trigger) which is satisfied when the non-functional goal is not violated.

For example, the weak mitigation non-functional safety model in Figure 9.2b is trans-

lated into a weak mitigation non-functional safety feature in Figure 9.6b. Based on the

template in Figure 9.6a, the translated weak mitigation non-functional safety feature in Fig-

ure 9.6b includes alternatives for when the non-functional safety goal is violated (i.e., goal

Trigger and Mitigation: Minimize Collision) and when it is not violated (i.e., ¬PT).

Functionally, the mitigation (i.e., applying the maximum brake force to both standard fric-

tion and regenerative braking) is applied if the non-functional safety goal is violated (i.e.,

goal PT is satisfied due to the distance measured by the front distance sensors). Otherwise,

the mitigation is not applied if the safety goal is not violated (i.e., ¬PT).

Strong Mitigation

A strong mitigation non-functional model provides a mitigation that, when applied,

ensures the non-functional goal is never violated. Figure 9.7a defines the translation template

used to generate a strong mitigation non-functional feature. Similar to a weak mitigation non-

150

OR

Trigger and
Mitigation

Trigger (pre)

AND

Weak
Mitigation

(f)

...

...

Mitigation

¬Trigger (post)

...

(a) Template

OR
Trigger and
Mitigation

AND

Weak Mitigation:
Minimize Collision

(f)

M

¬PT (post)

¬PT.1 ¬PT.2

AND

PT (pre)

PT.1 PT.2

OR

M.1 M.2

AND

M.3 (post) M.4

AND

M.5 (post) M.6

AND

(b) Safety Instantiation

Figure 9.6: Non-Functional Feature: Weak Mitigation

functional feature, a strong mitigation non-functional feature includes two behavior cases.

The first case is a mitigation that is applied when the non-functional goal is not violated

(i.e., goal Trigger and Mitigation). In the second case, no mitigation is applied when the

non-functional goal is not violated (i.e., ¬Trigger).

For example, the instantiated strong mitigation non-functional safety model in Figure

9.3b is translated into the feature goal model in Figure 9.7b. In both alternatives, the com-

plement of the non-functional safety property trigger is required (i.e., goals ¬PT), while in

goal NFG & M, the mitigation is also applied. Functionally, the non-functional safety feature

cannot be satisfied unless the non-functional safety goal is satisfied (i.e., not violated by the

complement of the non-functional safety trigger). That is, the distance as measured by the

front distance sensors must not be equal to (or less than) 0. In cases where the mitigation

may be applied due to a distance measured that is less than or equal to the ‘Safe Distance’,

the brakes are applied.

151

OR

Trigger and
Mitigation

AND

Strong
Mitigation

(f)

...

...

Mitigation

¬Trigger (post)

...

¬Trigger (post)

(a) Template

OR
Trigger and
Mitigation

AND

Strong Mitigation:
Avoid Collision

(f)

¬PT (post)

¬PT.1 ¬PT.2

AND

¬PT (post)

¬PT.1 ¬PT.2

AND

M.3 M.4

AND

M.7 (post) M.8

AND

M.9 (post) M.10

AND

M.1

M.5 (pre)

M.6 (pre)

AND
M.2

NFG & M

AND

(b) Safety Instantiation

Figure 9.7: Non-Functional Feature: Strong Mitigation

Step (2): Weave Non-Functional Features into Goal Model

The second step of the Soter process weaves the non-functional features generated from

the translation in Step 1 into the functional goal model provided by the system designer

(e.g., Figure 7.1). Unlike source code weaving in aspect-oriented programming, where the

aspects are woven into joinpoints along the execution path by the information provided in

pointcuts [88], goal models have no implicit ordering of requirements based solely on the

structure of the model itself. Weaving safety features into a goal model is based on pointcuts

described by pre-conditions of the safety feature and expressed as joinpoints of pre-conditions

in the non-functional feature that are satisfied by the agents of the system or environment.

Since requirements are declarative, they are globally applicable unless filtered by the pre-

conditions, unlike source code where a portion of code is applicable only if it is executed. To

accomplish the weaving of requirements, each non-functional feature (e.g., Figure 9.5b, 9.6b,

152

or 9.7b), along with the functional goal model (i.e., Figure 7.1) is AND-decomposed from a

new root goal. The translated non-functional features are logically propagated to where the

pre-conditions of the functional goals and that of the non-functional features are satisfied

(i.e., the pre-condition is satisfied by the environmental and system instantiated values),

otherwise they are not applicable.

For example, in Figure 9.8, the non-functional safety feature (Safety Model (f)) has

been woven into the braking system goal model in Figure 7.1 at the newly introduced root

(i.e., ‘Woven Goal Model’). Both the non-functional safety feature (i.e., Safety Model) and

the original functional goal model (i.e., A) are AND-decomposed under a single top-level

goal.

A
Maintain(Brake

System)

Woven
Goal Model

Safety
Model
(f)

AND

... ...

Figure 9.8: Woven Goal Model Example

In order for the Woven Goal Model to be satisfied, the original goal model and the

non-functional safety feature must be satisfied.

FI Detection

Using the features in the goal model, including the woven safety features representing

the safety models, symbolic feature interaction detection is used to detect features that

cause interactions or safety failures [40]. A previously developed symbolic feature interaction

detection method, Phorcys [40], is used to detect the interactions and failures from the woven

goal model and returns a set of counterexamples.

153

Step (3): Classifies Counterexamples

Causes of an interaction or non-functional property violation are individual features

where the post-conditions are not satisfied in a given counterexample. Soter categorizes

these counterexamples based on the location of the unsatisfied post-conditions. If the unsat-

isfied post-condition exists in a functional feature, then the failure is classified as a feature

interaction. However, if the unsatisfied post-condition exists in a safety feature, then Soter

categorizes the failure based on the type of safety feature violated, as defined below.

Non-Functional Property Features

The only post-condition in a non-functional property feature is the complement of the

non-functional property trigger. Given a counterexample that identifies a non-functional

property feature as the feature that fails in a feature interaction, Soter classifies the failure

as a safety goal violation.

For example, in the translated non-functional safety property feature in Figure 9.5b, if

the counterexample shows that at least one of the front distance sensors (e.g., ‘Front Distance

Sensor 1’ or ‘Front Distance Sensor 2’) is less than or equal to zero, then the safety goal SG

in Figure 9.1b has been violated.

Weak Mitigation Features

In weak mitigation features, two sets of post-conditions may be violated and can be

traced back to the non-functional model: the complement of the non-functional property

trigger and the post-conditions that exist in the weak mitigation. Soter classifies failure

based on the post-conditions that are violated as follows:

• The complement of the non-functional property trigger is violated indicating

the mitigation pre-conditions must be violated and the non-functional model is not

sufficient to provide alternate functionality in all cases where the non-functional goal

is measured as violated by the non-functional property triggers.

154

• The complement of the non-functional property trigger and the mitigation

post-condition is violated indicating an interaction exists with the mitigation func-

tionality that prevents alternate functionality in all cases where the non-functional goal

is measured as violated by the safety triggers.

When the mitigation post-condition is violated, it is assumed that the complement of the

non-functional property triggers are also violated. Otherwise the feature could be satisfied

by the complement of the non-functional property triggers alone.

Strong Mitigation Features

Strong mitigation features, similar to weak mitigation features, have the same two

sets of post-conditions that may be violated and traced back to the original non-functional

model (i.e., the complement of the non-functional property trigger and the mitigation post-

conditions). However, the complement of the non-functional property triggers are used as

post-conditions in both alternatives of the non-functional model (i.e., ¬Trigger in Figure

9.7a). Soter classifies the failures based on the post-conditions that are violated as follows:

• The complement of the non-functional property trigger is violated indicating

the mitigation is unable to prevent the violation of the non-functional goal in the

non-functional model as measured by the non-functional property triggers.

• The mitigation post-condition is violated indicating an interaction exists that

prevents the mitigation from satisfying its specification, but has not caused a non-

functional goal violation as measured by the non-functional property triggers.

• The complement of the non-functional property trigger and the mitiga-

tion post-condition is violated indicating an interaction exists with the mitigation

functionality that prevents the mitigation from ensuring the non-functional goal is not

violated as measured by the non-functional property triggers.

155

System Designer Revisions

The analysis results, including the failure caused by the unwanted interaction and the

non-functional property violation is provided to the system designer for manual revision. For

each of the possible combinations of non-functional model type and failure or interaction

source, a possible resolution is provided in Table 9.1. The resolution is not identified auto-

matically by Soter, but rather is identified by the system designer. It may also be necessary

to weaken non-functional property triggers or even mitigation model type, if non-functional

goals are not practically achievable within the system specification.

Table 9.1: Possible Failure Resolutions

#
Model
Type

Failure
Source Possible Resolution

1
Non-Functional
Property

Trigger
Weaken non-functional goal or update
goal model.

2
Weak
Mitigation

Trigger Weaken pre-condition of mitigation.

3
Weak
Mitigation

Trigger,
Mitigation

Update mitigation and/or goal model
to prevent interaction.

4
Strong
Mitigation

Trigger Weaken mitigation pre-condition.

5
Strong
Mitigation

Mitigation
Update mitigation and/or goal model
to prevent interaction.

6
Strong
Mitigation

Trigger,
Mitigation

Update mitigation and/or goal model
to prevent interaction.

7 Functional Feature
Update goal model and/or non-
functional mitigation.

Additionally, the type of non-functional model initially used may not be sufficient. For

example, if a non-functional property is violated then it may be necessary to provide a weak

or strong mitigation. It is suggested to first implement a non-functional model as a non-

functional property (i.e., without a mitigation) to determine if the non-functional property

is ever violated. If it is, then a strong mitigation is the most appropriate mitigation since

a strong mitigation ensures the original non-functional property would never be violated.

However, if no mitigation exists that prevents the non-functional violation, then it is im-

156

portant to minimize the negative impact via a weak mitigation that is applied when the

non-functional violation occurs.

Updates to the aspect-oriented non-functional models or functional goal model that are

performed by the system designer may be analyzed again by Soter to determine whether

there exist remaining or newly-introduced interactions or failures.

9.4 Detection of Interactions

This section details the detection of interactions and failures caused by the non-

functional safety models developed in Sections 9.2 and 9.3 and their impact on the functional

model. This subsection can be viewed as a complete example of Soter, as it illustrates the

detection and mitigation of interactions caused by the non-functional and functional models.

Additionally, we develop non-functional models for an additional non-functional safety goal

and a non-functional performance goal to illustrate the generally applicable nature of Soter

by creating non-functional property models, non-functional weak mitigation models, and

non-functional strong mitigation models. Finally, three of the non-functional models (two

safety and one performance) are woven into the functional model and any interactions are

detected.

9.4.1 Safety Case Study: Collision

This subsection gives the results of applying Soter to aspect-oriented safety models re-

lated to collisions for the braking system goal model in Figure 7.1. Soter is used to detect

safety failures, safety model interactions with functional requirements, and interactions be-

tween safety models. The safety models used in this example application are defined by

the system designer and represent three different non-functional goals intended to avoid or

minimize the effect of a collision.

157

Avoid Collision via Safety Property

Initially, the non-functional safety property model in Figure 9.5b (translated from Figure

9.1b) is woven into the functional goal model in Figure 7.1 in order to detect any feature

interactions or failures caused by the safety properties necessary to avoid a frontal collision.

An excerpt of the woven goal model, including the functional braking system and the safety

properties model is shown in Figure 9.9. This initial woven model is referred to as M .

Non-Functional Property:
Avoid Collision

(f)

A
Maintain(Brake

System)

Woven
Goal Model

(M)
AND

...

...

¬PT (post)

Figure 9.9: Goal Model Woven With Non-Functional Safety Property (M)

Applying Soter to detect interactions and failures caused by the safety model results in

a counterexample that includes a violation of the safety model without an interaction (i.e.,

a safety failure). In this counterexample, one of the front distance sensors (FD Sensor 1)

results in a distance of 0.0. This safety goal violation is caused by there being nothing in the

functional goal model (i.e., Figure 7.1) that applies the brakes based on information from

the distance sensors.

Avoid Collision via Strong Mitigation

In order to avoid a safety goal violation, a mitigation must be employed to avoid the

violation. Accordingly, we replace the non-functional safety property model, which only

detects the violation of the non-functional safety properties, with a strong mitigation model

158

that attempts to avoid the violation entirely. The strong mitigation model in Figure 9.7b

(translated from Figure 9.3b) attempts to apply the brakes before an object becomes too

close (i.e., causes a front collision) to the front distance sensors. The new woven goal model,

including the functional braking system and the strong mitigation model, is shown in Figure

9.10. This updated woven model is referred to as M ′.

Strong Mitigation:
Avoid Collision

(f)

A
Maintain(Brake

System)

Woven
Goal Model

(M)
AND

...
OR

Trigger and
Mitigation

¬PT (post)

...
...

Figure 9.10: Goal Model Woven With Strong Mitigation (M ′)

Applying Soter to detect interactions and failures caused by the safety model results in

an interaction detected with features B and E. Table 9.2 provides the values of the variables in

the counterexample, and indicates by which post-conditions a given variable is constrained.

Table 9.2: Counterexample: Variables for Interaction in Goal Model M ′

Variable Value Constrained In
BF 0.40
CBF 0.40 E.3, D.11, D.13
DS1 0.0
DS2 0.0
RF 0.32 C.10, SG.9
SF 0.08 B.1, C.5, SG.7
SS false E.6, D.6

While features B and E are satisfied, the strong mitigation model is violated. Specifically,

goals SG.7 and SG.9 are violated since they are unable to set regenerative brake force (RF)

or standard brake force (SF) to the MAX value (100.0). Further, the safety trigger is satisfied

159

(i.e., a safety goal violation) since the front distance sensors both read 0.0 (DS1 and DS2).

Given the source of the cause and the safety model type, Table 9.1, row 6 suggests an update

to either the mitigation or the goal model could be used to remove the interaction.

The purpose of the mitigation in the safety model in Figure 9.3b is to prevent the

vehicle from violating the safety goal by applying brake force before the vehicle is involved

in a collision. Since the safety goal is violated and we do not want to permit collisions, an

update to allow the mitigation is necessary, and the functional goal model must be updated.

Functionally, any expectation that changes the value of standard or regenerative braking

force (SF or RF), must only be applied when the mitigation from the strong mitigation

model is not applied. The functional goals that change the braking force values are B.1, C.5,

and C.10. Each of these goals is replaced with a system designer-defined goal decomposition

excerpt to remove the conflict when changing the braking force values. The update for B.1

is AND-decomposed from goal B, taking the position previously occupied by B.1, while goal

B.1 moves to the gray goal as shown in Figure 9.11a. Similarly, both expectations C.5 and

C.10 that are AND decomposed from goals C.3 and C.4 are updated in Figures 9.11b and

9.11c, respectively.

The updates to goals B.1, C.5, and C.10 using the update excerpts in Figures 9.11a,

9.11b, and 9.11c result in an updated goal model, referred to as M ′′. However, when Soter

analyzes goal model M ′′, the mitigation no longer fails due to an interaction, but the safety

trigger can still indicate a safety goal violation. The counterexample variable values for this

safety goal violation are shown in Table 9.3. Importantly DS1 and DS2 , the distance sensors,

both show a distance of zero, indicating a collision despite maximum (MAX) braking for

both regenerative and standard braking (RF and SF). Unfortunately, the strong mitigation

is not sufficient to guarantee the prevention of a collision.

160

New BF

OR
Limited

BF
AND

M.5
(pre)

M.6
(pre)

AND
M.2

¬M.5
(pre)

¬M.6
(pre)

¬M.2
OR

B.1

B (f)

AND

B.0 B.2

B.3

...

(a) B.1 Excerpt

New BF

OR
Limited

BF
AND

M.5
(pre)

M.6
(pre)

AND
M.2

¬M.5
(pre)

¬M.6
(pre)

¬M.2
OR

C.5

C.3

AND

C.6

C.7

...

(b) C.5 Excerpt

New BF
OR

Limited
BF

AND

M.5
(pre)

M.6
(pre)

AND
M.2

¬M.5
(pre)

¬M.6
(pre)

¬M.2
OR

C.10

C.4

AND

C.9

...

C.8

(c) C.10 Excerpt

Figure 9.11: Brake Force Goal Update Excerpts of M ′′

Table 9.3: Counterexample: Variables for Failure in Goal Model M ′′

Variable Value Constrained In
BF 0.40
CBF 0.40 E.3, D.11, D.13
DS1 0.0
DS2 0.0
RF MAX C.10, SG.9
SF MAX B.1, C.5, SG.7
SS false E.6, D.6

Minimize Collision via Weak Mitigation

Without significant additional sensors and actuators, it is not possible to prevent a

collision simply by braking. For example, a completely stopped vehicle may still be unable

to avoid a frontal collision if another vehicle drives into it. In the event of a collision, it is

desirable to have a fail-safe, or behavior intended to preserve safe operation. In the case of

regenerative brakes, there is the possibility that batteries could be damaged in a collision

making it unsafe to recharge them. A weak mitigation model, such as the one in Figure 9.2b

could be used as a fail-safe to ensure that when the safety goal is violated, the regenerative

161

braking force (RF) is set as low as possible to ensure no generation of electricity to recharge

the batteries while maximizing the standard braking force (SF) in order to prevent charging

damaged batteries. Updating the woven goal model by weaving both the weak and strong

mitigations yields the goal model in Figure 9.12, referred to as M ′′′.

Weak Mitigation:
Minimize Collision

(f)

Strong Mitigation:
Avoid Collision

(f)

A
Maintain(Brake

System)

Woven
Goal Model

AND

...

Figure 9.12: Model Woven With Weak & Strong Mitigation (M ′′′)

Applying Soter to the goal model M ′′′ where, both the weak and strong mitigation

models have been woven indicates that both can fail due to an interaction. In the case

where the front distance sensors read 0.0, the weak mitigation model attempts to set the

regenerative brake force to MIN , while the strong mitigation attempts to set the same

regenerative brake force to MAX , resulting in an interaction between safety mitigations.

When the strong mitigation is the cause, the values of the counterexample variables are as

shown in Table 9.4.

Table 9.4: Counterexample: Variables for Failure in Goal Model M ′′′

Variable Value Constrained In
BF 0.40
CBF 0.40 E.3, D.11, D.13
DS1 0.0
DS2 0.0
RF MIN C.10, SG.9
SF MAX B.1, C.5, SG.7
SS false E.6, D.6

Since the strong mitigation is unable to prevent the violation of the safety goal, it should

have been removed when the weak mitigation was put in place. The model woven with only

162

the weak mitigation is shown in Figure 9.13, referred to as M final. Applying Soter to model

M final, which after analysis by Soter, has no interactions or safety violations.

Weak Mitigation:
Minimize Collision

(f)

A
Maintain(Brake

System)

Woven
Goal Model

AND

... ...

Figure 9.13: Model Woven With Updated Weak Mitigation (Mfinal)

Summary

We have demonstrated that Soter can detect safety model violations (e.g., M ′), fea-

ture interactions between safety models and functional requirements (e.g., M ′′), and feature

interactions between multiple safety models (e.g., M ′′′).

9.4.2 Safety Case Study: Battery Charging

This subsection gives the results of applying Soter to aspect-oriented safety models re-

lated to battery charging for the braking system goal model in Figure 7.1. Soter is used to

detect safety failures, safety model interactions with functional requirements, and interac-

tions between safety models. The safety models used in this example application are defined

by the system designer. The safety goal modeled in this subsection is intended to ensure that

the battery is never overcharged, in order to prevent battery damage that could lead to fire

or explosion.

163

Maintain Safe Charge via Safety Property

Initially, a non-functional safety property is created (i.e., as shown in Figure 9.14b)

based on the template of a non-functional property (i.e., as shown in Figure 9.14a). The

non-functional safety property assesses one condition: if the battery has been charged to

100% or more (i.e., Battery Charge ­ 1.0). If that property is violated, then the safety

property is violated and must be mitigated.

Non-Functional
Goal

Trigger

...

(a) Template

NFG
Maintain(Safe

Charge)

PT
Battery Charge >=

MAX Battery

(b) Battery Safety Instantiation

Figure 9.14: Safety Model: Non-Functional Properties

The non-functional safety property model defined in Figure 9.14b is converted by Soter

into a feature by applying the template in Figure 9.15a, resulting in the non-functional safety

property feature defined in Figure 9.15b. As expected, the feature can only be satisfied if the

non-functional trigger is not satisfied, that is, when the battery is not charged to or beyond

100%. Due to the relative simplicity of the non-functional safety property, the translation

of the non-functional safety model to the feature instantiation in Figure 9.15b only requires

the negation of the single non-functional property.

Once Soter translates the non-functional safety property model in Figure 9.14b into

the feature represented in Figure 9.15b, the feature is woven into the functional goal model

by creating a new top-level goal and AND decomposing the new non-functional feature in

Figure 9.15b with the functional goal model in Figure 7.1. The complete woven goal model

is shown in Figure 9.16.

Soter analyzes the woven goal model in Figure 9.16 to detect any feature interactions

164

Non-Functional
Property

(f)

...

¬ Trigger (post)

(a) Template

¬PT (post)

Non-Functional
Property:

Maintain(Safe
Charge) (f)

(b) Battery Safety Instantiation

Figure 9.15: Non-Functional Feature: Non-Functional Properties

Non-Functional
Property:

Maintain(Safe
Charge) (f)

A
Maintain(Brake

System)

Woven
Goal Model

AND

...

...

Figure 9.16: Goal Model Woven With Non-Functional Battery Safety Property

or failures of the non-functional feature woven into the functional goal model. Since it is still

possible to use the regenerative brakes, which would result in a continued charging of the

battery, the non-functional safety property is able to fail. Therefore, a mitigation of some

form is required.

Maintain Safe Charge via Weak Mitigation

After the failure of the non-functional safety property, it is necessary to perform some

kind of mitigation. In this case, we attempt to create a weak mitigation (as shown in Fig-

ure 9.17b) based on the template of a non-functional weak mitigation (i.e., as shown in

Figure 9.17a). The effect of a weak mitigation is that in the event of a non-functional prop-

165

erty violation, in this case the violation of a safety property related to the amount a battery

is charged, the mitigation is required in an effort to minimize the negative impact of the

non-functional property violation. This weak mitigation works to ensure the regenerative

force braking is set to no force (i.e., 0.0) to ensure that the potentially damaged batteries

are no longer being charged.

Mitigation
Goal

Non-Functional
Goal

Trigger

...

...

(a) Template

M.2 (post)
RF = 0.0

NFG
Maintain(Safe

Charge)

PT
Battery Charge >=

MAX Battery

M
Achieve(Safe

Charge)
AND

M.1
Achieve(Apply

No Regen Force)

(b) Battery Safety Instantiation

Figure 9.17: Non-Functional Model: Weak Mitigation

The non-functional safety weak mitigation model defined in Figure 9.17b is converted

by Soter into a feature by applying the template in Figure 9.18a, resulting in the non-

functional safety weak mitigation feature defined in Figure 9.18b. In order for the feature

representing the non-functional safety weak mitigation model to be satisfied, one of two

conditions must be true: either the non-functional trigger (i.e., ¬PT) is not violated or the

non-functional trigger is violated (i.e., PT) and the mitigation is performed. That is, when

the non-functional trigger indicates a violation, the mitigation (i.e., setting the regenerative

force to 0.0 to prevent battery charging) is required.

Once Soter translates the non-functional weak mitigation model in Figure 9.17b into

the feature represented in Figure 9.18b, the feature is woven into the functional goal model

by creating a new top-level goal and AND decomposing the new non-functional feature in

166

OR

Trigger and
Mitigation

Trigger (pre)

AND

Weak
Mitigation

(f)

...

...

Mitigation

¬Trigger (post)

...

(a) Template

OR

Trigger and
Mitigation

AND

Weak Mitigation:
Maintain Safe Charge

(f)

M

¬PT (post)

PT (pre)

M.1

AND

M.2 (post)

(b) Battery Safety Instantiation

Figure 9.18: Non-Functional Feature: Weak Mitigation

Figure 9.18b with the functional goal model in Figure 7.1. The complete woven goal model

is shown in Figure 9.19.

A
Maintain(Brake

System)

Woven
Goal Model

AND

...

Weak Mitigation:
Maintain Safe Charge

(f)

...

Figure 9.19: Goal Model Woven With Non-Functional Battery Safety Weak Mitigation

Soter analyzes the woven goal model in Figure 9.19 to detect any feature interactions

or failures of the non-functional feature woven into the functional goal model. Since it is

still possible to use the regenerative brakes, which would result in a continued charging of

the battery, the non-functional safety property is able to fail due to an interaction when

the non-functional property is violated, thus requiring a mitigation. However, the mitigation

(specifically M.2) conflicts with goal C.10 (i.e., ‘RF = 0.8 ∗ CBF ’) in the functional goal

model. However, a pre-condition requiring a non-violated non-functional property (i.e., ¬PT)

167

can be added to the children of goal C.4 to ensure the conflict does not occur. That is, goal

C.10 would never execute when M.2 was required as a mitigation. The update ensures the

battery is no longer charging once it has become dangerous to do so.

Maintain Safe Charge via Strong Mitigation

Based on the success of the weak mitigation in preventing additional charging, it may be

possible to mitigate issues with battery charging before a safety violation even takes place. In

this case, we attempt to create a strong mitigation (as shown in Figure 9.20b) based on the

template of a non-functional strong mitigation (i.e., as shown in Figure 9.20a). The effect of a

strong mitigation is that the mitigation should prevent the non-functional property violation

from ever occurring. In this case, the violation of a safety property is related to the amount

a battery is charged, and the mitigation is required to ensure the negative impact of the non-

functional property violation never occurs. Rather than wait until the non-functional safety

property has been violated, the regenerative braking force is limited before the violation

occurs.

Non-Functional
& Mitigation

Goal

Trigger

...

...

(a) Template

M.3 (post)
RF = 0

NFG & M
Maintain(Safe

Charge)

PT
Battery Charge >=

MAX Battery

AND

M.2
Achieve(Apply

Full Regen Force)

M.1 (pre)
Battery Charge > 0.99

(b) Battery Safety Instantiation

Figure 9.20: Non-Functional Model: Strong Mitigation

168

The non-functional safety strong mitigation model defined in Figure 9.20b is converted

by Soter into a feature by applying the template in Figure 9.21a, resulting in the non-

functional safety strong mitigation feature defined in Figure 9.21b. In order for the feature

representing the non-functional safety strong mitigation model to be satisfied, one of two

conditions must be true: either the non-functional trigger (i.e., ¬PT) is not violated or the

non-functional trigger is not violated and the mitigation is performed. That is, when strong

mitigation is performed, the non-functional trigger should not indicate a violation. Instead,

the mitigation (i.e., setting the regenerative force to 0.0 to prevent battery charging) prevents

the violation before it takes place.

OR

Trigger and
Mitigation

AND

Strong
Mitigation

(f)

...

...

Mitigation

¬Trigger (post)

...

¬Trigger (post)

(a) Template

OR

Trigger and
Mitigation

AND

Strong Mitigation:
Maintain Safe Charge

(f)

NFG & M

¬PT (post)

¬PT (post)

M.2

AND

M.3 (post)M.1 (pre)

(b) Battery Safety Instantiation

Figure 9.21: Non-Functional Feature: Strong Mitigation

Once Soter translates the non-functional strong mitigation model in Figure 9.20b into

the feature represented in Figure 9.21b, the feature is woven into the functional goal model

by creating a new top-level goal and AND decomposing the new non-functional feature in

Figure 9.21b with the functional goal model in Figure 7.1. The complete woven goal model

is shown in Figure 9.22.

Soter analyzes the woven goal model in Figure 9.22 to detect any feature interactions

or failures of the non-functional feature woven into the functional goal model. Since it is still

possible to use the regenerative brakes, which would result in a continued charging of the

169

A
Maintain(Brake

System)

Woven
Goal Model

AND

...

Strong Mitigation:
Maintain Safe Charge

(f)

...

Figure 9.22: Goal Model Woven With Non-Functional Battery Safety Strong Mitigation

battery, the non-functional safety property is able to fail due to an interaction when the non-

functional property is violated, requiring a mitigation. However, the mitigation (specifically

M.3) conflicts with goal C.10 in the functional goal, just as goal C.10 conflicted in the

weak mitigation. However, just as before, a pre-condition can be added to ensure that when

M.3 is mitigating, C.10 is not setting the regenerative brake force. Goal M.3 only sets the

regenerative brake force when M.1 is true, so adding ¬M.1 as a pre-condition to the children

of goal C.4 ensures the conflict does not occur. That is, goal C.10 would never execute when

M.2 is required as a mitigation. The update ensures the battery is no longer charged once it

has become close to violating the non-functional safety property.

Summary

We have demonstrated that Soter can detect safety interactions with functional require-

ments symbolically by demonstrating each of the three non-functional model types (property,

weak mitigation, and strong mitigation). Using the strong mitigation, we can prevent the

safety violation from ever occurring, making strong mitigation the clearly appropriate non-

functional safety model to select since it can completely prevent the safety violation.

9.4.3 Performance Case Study

This subsection gives the results of applying Soter to aspect-oriented performance mod-

els for the braking system goal model in Figure 7.1. Soter is used to detect performance

170

interactions and failures. The performance models used in this example application are de-

fined by the system designer. The performance goals modeled in this subsection are intended

to ensure that the battery is always charged to some minimal acceptable level to ensure that

the hybrid drive functionality is ensured to operate.

Maintain Charge via Safety Property

Initially, a non-functional performance property is created (as shown in Figure 9.23b)

based on the template of a non-functional property (as shown in Figure 9.23a). The non-

functional performance property assesses one characteristic: if the battery has been dis-

charged to less than 50% (i.e., Battery Charge < 50). If that property is violated, then the

performance property is violated and must be mitigated.

Non-Functional
Goal

Trigger

...

(a) Template

NFG
Maintain(Charge)

PT
Battery Charge < MIN

Desired Battery

(b) Safety Instantiation

Figure 9.23: Safety Model: Non-Functional Properties

The non-functional performance property model defined in Figure 9.23b is converted by

Soter into a feature by applying the template in Figure 9.24a, resulting in the non-functional

performance property feature defined in Figure 9.24b. The feature can only be satisfied if the

non-functional trigger is not satisfied, that is, when the battery is not discharged to less than

50%. Due to the relative simplicity of the non-functional performance property, the trans-

lation of the non-functional performance model to the feature instantiation in Figure 9.24b

only requires the negation of the single non-functional property.

Once Soter translates the non-functional performance property model in Figure 9.23b

171

Non-Functional
Property

(f)

...

¬ Trigger (post)

(a) Template

¬PT (post)

Non-Functional
Property:

Maintain(Charge)
(f)

(b) Performance Instantiation

Figure 9.24: Non-Functional Feature: Non-Functional Properties

into the feature represented in Figure 9.24b, the feature is woven into the functional goal

model by creating a new top-level goal and AND decomposing the new non-functional feature

in Figure 9.24b with the functional goal model in Figure 7.1. The complete woven goal model

is shown in Figure 9.25.

Non-Functional
Property:

Maintain(Charge)
(f)

A
Maintain(Brake

System)

Woven
Goal Model

AND

...

...

Figure 9.25: Goal Model Woven With Non-Functional Battery Performance Property

Soter analyzes the woven goal model in Figure 9.25 to detect any feature interactions

or failures of the non-functional feature woven into the functional goal model. Since it is still

possible to discharge the battery when driving, which may not be made up by subsequent

braking, the non-functional safety property is able to fail. Therefore, a mitigation of some

form is required.

172

Maintain Charge via Weak Mitigation

After the failure of the non-functional performance property, it is necessary to perform

some kind of mitigation. In this case, we attempt to create a weak mitigation (as shown

in Figure 9.26b) based on the template of a non-functional weak mitigation (as shown in

Figure 9.26a). The effect of a weak mitigation is that in the event of a non-functional property

violation, in this case, the violation of a performance property related to the amount a battery

is charged, the mitigation is required in an effort to minimize the impact of the non-functional

property violation. This weak mitigation works to ensure the regenerative force braking is

set to the entire commanded brake force to ensure that the batteries are charged as much as

possible.

Mitigation
Goal

Non-Functional
Goal

Trigger

...

...

(a) Template

M.2 (post)
RF = 1.0 * CBF

NFG
Maintain(Charge)

PT
Battery Charge < MIN

Desired Battery

M
Achieve(Charge)

AND

M.1
Achieve(Apply

Full Regen Force)

(b) Performance Instantiation

Figure 9.26: Non-Functional Model: Weak Mitigation

The non-functional performance weak mitigation model defined in Figure 9.26b is con-

verted by Soter into a feature by applying the template in Figure 9.27a, resulting in the

non-functional performance weak mitigation feature defined in Figure 9.27b. In order for the

feature representing the non-functional performance weak mitigation model to be satisfied,

one of two properties must be true: either the non-functional trigger (i.e., ¬PT) is not vi-

olated or the non-functional trigger is violated (i.e., PT) and the mitigation is performed.

173

That is, when the non-functional trigger indicates a violation, the mitigation (i.e., setting

the regenerative force to the entire commanded brake force to maximize battery charging)

is required.

OR

Trigger and
Mitigation

Trigger (pre)

AND

Weak
Mitigation

(f)

...

...

Mitigation

¬Trigger (post)

...

(a) Template

OR

Trigger and
Mitigation

AND

Weak Mitigation:
Maintain Charge

(f)

M

¬PT (post)

PT (pre)

M.1

AND

M.2 (post)

(b) Performance Instantiation

Figure 9.27: Non-Functional Feature: Weak Mitigation

Once Soter translates the non-functional weak mitigation model in Figure 9.26b into

the feature represented in Figure 9.27b, the feature is woven into the functional goal model

by creating a new top-level goal and AND decomposing the new non-functional feature in

Figure 9.27b with the functional goal model in Figure 7.1. The complete woven goal model

is shown in Figure 9.28.

A
Maintain(Brake

System)

Woven
Goal Model

AND

...

Weak Mitigation:
Maintain Charge

(f)

...

Figure 9.28: Goal Model Woven With Non-Functional Battery Performance Weak Mitigation

Soter analyzes the woven goal model in Figure 9.28 to detect any feature interactions

174

or failures of the non-functional feature woven into the functional goal model. Since it is

still possible to drive the car without braking, which would result in a continued discharging

of the battery, the non-functional performance property is able to fail due to an interaction

when the non-functional property is violated, requiring a mitigation. However, the mitigation

(specifically M.2) conflicts with goal C.10 (i.e., ‘RF = 0.8 ∗ CBF ’) in the functional goal.

However, a pre-condition requiring a non-violated non-functional property (i.e., ¬PT) can be

added to the children of goal C to ensure the conflict does not occur by allowing the mitigation

to provide all the commanded brake force when the performance property is violated. That

is, goal C.10 would never execute when M.2 is required as a mitigation. The update ensures

the battery is charged once it has become low enough to be below the desired charge level.

While the mitigation cannot prevent further discharging of the battery, it is unlikely that

a strong mitigation will be found that guarantees the performance non-functional property

will remain unviolated.

Maintain Charge via Strong Mitigation

In this case, we attempt to create a strong mitigation to prevent the non-functional

performance property from every being violated. The strong mitigation is shown in Fig-

ure 9.29b) and is based on the template of a non-functional strong mitigation (as shown

in Figure 9.29a). The effect of a strong mitigation is that the mitigation should prevent

the non-functional property violation from ever occurring. In this case, the violation of a

performance property is related to the amount a battery is charged, and the mitigation is

required to ensure the negative impact of the non-functional property violation never occurs.

Rather than wait until the non-functional safety property has been violated, the regenerative

braking force is used to charge the battery before the violation.

The non-functional performance strong mitigation model defined in Figure 9.29b is

converted by Soter into a feature by applying the template in Figure 9.30a, resulting in

the non-functional performance strong mitigation feature defined in Figure 9.30b. In order

175

Non-Functional
& Mitigation

Goal

Trigger

...

...

(a) Template

M.2 (post)
RF > 0.1

NFG & M
Achieve(Charge)

PT
Battery Charge < MIN

Desired Battery

AND

M.1
Achieve(Apply

Full Regen Force)

(b) Performance Instantiation

Figure 9.29: Non-Functional Model: Strong Mitigation

for the feature representing the non-functional performance strong mitigation model to be

satisfied, one of two properties must be true: either the non-functional trigger (i.e., ¬PT) is

not violated or the non-functional trigger is not violated and the mitigation is performed.

That is, when strong mitigation is performed, the non-functional trigger should not indicate

a violation. Instead, the mitigation (i.e., setting the regenerative force to some amount to

attempt to ensure the battery is charged) prevents the violation before it takes place.

Once Soter translates the non-functional strong mitigation model in Figure 9.29b into

the feature represented in Figure 9.30b, the feature is woven into the functional goal model

by creating a new top-level goal and AND decomposing the new non-functional feature in

Figure 9.30b with the functional goal model in Figure 7.1. The complete woven goal model

is shown in Figure 9.31.

Soter analyzes the woven goal model in Figure 9.31 to detect any feature interactions

or failures of the non-functional feature woven into the functional goal model. Since it is

still possible to use the discharge brakes due to driving, the non-functional performance

property is able to fail due to an interaction when the non-functional property is violated,

requiring a mitigation. However, the mitigation (specifically M.2) conflicts with goal C.10 in

the functional goal, just as goal C.10 conflicted in the weak mitigation. However, this time it

is incorrect to give precedence to the mitigation over the functional braking system. Simply

176

OR

Trigger and
Mitigation

AND

Strong
Mitigation

(f)

...

...

Mitigation

¬Trigger (post)

...

¬Trigger (post)

(a) Template

OR

Trigger and
Mitigation

AND

Strong Mitigation:
Maintain Charge

(f)

NFG & M

¬PT (post)

¬PT (post)

M.1

AND

M.2 (post)

(b) Performance Instantiation

Figure 9.30: Non-Functional Feature: Strong Mitigation

A
Maintain(Brake

System)

Woven
Goal Model

AND

...

Strong Mitigation:
Maintain Charge

(f)

...

Figure 9.31: Goal Model Woven With Non-Functional Battery Performance Strong Mitiga-
tion

ensuring the regenerative brakes are on at all times will help to recharge the battery, but

will ultimately also reduce both the battery and gasoline energy stores.

Strong mitigation to ensure that the battery remains sufficiently charged exists, includ-

ing those that would use the gas engine to charge the battery of a hybrid vehicle. However,

using the braking system alone, battery recharging may only be accomplished via braking

when the vehicle is moving. Since the vehicle may not brake often enough to ensure the

177

battery is charged, the best course of action is to mitigate the low battery state when it

occurs (i.e., weak mitigation).

Summary

We have shown that Soter can detect performance interactions with functional require-

ments symbolically with respect to each of the three non-functional model types (property,

weak mitigation, and strong mitigation). Given the interactions and potential updates to the

functional goal model, weak performance mitigation is the appropriate model to use since

there is no model that can reasonably prevent the safety violation from ever occurring within

the scope of the braking system.

9.4.4 Safety & Performance Case Study

This subsection gives the results of applying Soter to aspect-oriented safety models and

performance models for the braking system goal model in Figure 7.1. Soter is used to de-

tect interactions between safety models, performance models, and the functional goal model

using symbolic analysis, a combination of symbolic analysis and evolutionary computation

(SA+EC), and finally via generated run-time detection code. The models used in this ex-

ample application are defined by the system designer.

Interactions Detected via Symbolic Analysis

The braking system goal model in Figure 7.1 has been previously woven with three nec-

essary non-functional models: the weak mitigations for maintaining charge and minimizing

collision and the strong mitigation for maintaining a safe charge amount (Figures 9.18b,

9.5b, and 9.30b, respectively). Soter weaves these three non-functional models that have

been translated to features into the braking system goal model in Figure 7.1 resulting in the

woven goal model shown in Figure 9.32.

Applying Soter to detect interactions due to the inclusion of non-functional properties

178

Weak Mitigation:
Maintain Charge

(f)

A
Maintain(Brake

System)

Woven
Goal Model

(SPM)
AND

... ...

Weak Mitigation:
Minimize Collision

(f)

...

Strong Mitigation:
Maintain Safe Charge

(f)

...

Figure 9.32: Woven Model: Functional With Both Safety and Performance Mitigation

in the overall goal model (i.e., the woven goal model shown in Figure 9.32) results in the

following interactions caused by failures in:

• Weak Mitigation: Maintain Charge: As illustrated in the previous section describ-

ing this mitigation, it is still possible to drive the car without braking, which would

result in a continued discharging of the battery. The non-functional performance prop-

erty is able to fail due to an interaction when the non-functional property is violated,

thus requiring a mitigation. However, the mitigation (specifically M.2) conflicts with

goal C.10 in the functional goal. However, a pre-condition requiring a non-violated

non-functional property (i.e., ¬PT) can be added to the children of goal C to ensure

the conflict does not occur by allowing the mitigation to provide all the commanded

brake force when the performance property is violated. That is, goal C.10 would never

execute when M.2 was required as a mitigation. The update ensures the battery is

charged once it has become low enough to be below the desired charge level. While the

mitigation cannot prevent further discharging of the battery, it is unlikely that a strong

mitigation will be found that guarantees the performance non-functional property will

remain unviolated.

• Weak Mitigation: Minimize Collision: Since this weak mitigation sets both the

standard brake force and the regenerative brake force, an interaction can exist whenever

the braking system has a commanded brake force that is used to set either of the

179

standard or regenerative brake forces to a value outside of the weak safety mitigation

(i.e., goals B.1, C.5, and C.10). To prevent this interaction, the functional goal model

must be updated according to the changes specified in the previous section describing

this mitigation and detailed in Figures 9.11a, 9.11b, and 9.11c for goals B.1, C.5, and

C.10, respectively.

• Strong Mitigation: Maintain Safe Charge: As illustrated in the previous section

describing this mitigation, it is still possible to use the regenerative brakes, which would

result in a continued charging of the battery, the non-functional safety property is able

to fail due to an interaction when the non-functional property is violated, requiring a

mitigation. However, the mitigation (specifically M.3) conflicts with goal C.10 in the

functional goal, just as goal C.10 conflicted in the weak mitigation. However, just as

before, a pre-condition can be added to ensure that when M.3 is mitigating, C.10 is

not setting the regenerative brake force. Goal M.3 only sets the regenerative brake

force when M.1 is true, so adding ¬M.1 as a pre-condition to the children of goal C.4

ensures the conflict does not occur. That is, goal C.10 would never execute when M.2

was required as a mitigation. The update ensures the battery is no longer charged once

it has become close to violating the non-functional safety property.

Using symbolic analysis available to Soter, each of the non-functional models that have

been translated into features and included in the woven goal model (i.e., in Figure 9.32)

can fail to be satisfied due to a feature interaction across functional and non-functional

specifications. For example, Table 9.5 shows a scenario where the functional model is satisfied

and yet every single one of the non-functional features is unsatisfied due to an interaction.

Interactions Detected via SA+EC

Soter-EC combines SA and EC by making use of Phorcys-EC to detect failures in

all three non-functional features (i.e., features Weak Mitigation: Maintain Charge, Weak

180

Table 9.5: Example Counterexample for Non-Functional FI Causes

Variable Value
SF 0.07
CBF 0.35
PBF 0.0
RF 0.28
BF 0.35
SS true
FD Sensor 1 0.0
FD Sensor 2 0.0
Battery Charge MAX

Mitigation: Minimize Collision, and Strong Mitigation: Maintain Safe Charge)

as features that can fail due to FIs, just as they were identified in the SA-only method

when woven with the functional goal model individually. In all 50 executions of the ge-

netic algorithm where each feature was analyzed for failure due to a FI, at least 97% of the

population succeeded in finding a counterexample (i.e., FI).

Regardless of which feature, or features, failed due to the FI, at least 99.9% of the FIs

identified included unique environmental variable values. That is, the FI counterexamples

identified were almost always completely unique and every set of counterexamples (i.e., in

a population of 200 identified by the SA+EC) included significant diversity as measured

by the Manhattan distance of the environmental scenarios. This diversity is illustrated in

Figures 9.33a, 9.33b and 9.33c that show the range (distance from minimum to maximum)

each environmental variable took across each set of 200 individuals in the SA+EC analysis,

where the box plot represents all 50 executions of the SA+EC. It should be noted, that it is

expected that some of the ranges are limited since they represent the ranges of environmental

variable values necessary for FIs to cause a feature to fail.

In all three cases, we can see that Charge, Dist , SF , SS , PBF , and RF have a large

range of values while the remainder (i.e., BF and CBF) are limited due to the smaller

range of those environmental variable values when FIs occur. Variables with a smaller range

displayed are more likely to have an impact on the expression of the feature interaction,

181

●●

●●

●

●●●●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●

●

●●●●

●●

●

●

●

●

●●●●

●

●●

●

●●●

C
ha

rg
e

D
is

t

B
F

S
F

C
B

F

S
S

P
B

F

R
F

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
R

an
ge

(a) Weak Mitigation:
Maintain Charge

●●●●●

●●●●●●●

●

●●●●●●

●

●

●●●●●●●

●

●●

●
●

●

●

C
ha

rg
e

D
is

t

B
F

S
F

C
B

F

S
S

P
B

F

R
F

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
R

an
ge

(b) Weak Mitigation:
Minimize Collision

●●●
●●●

●

●

●

●

●

●

●
●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

C
ha

rg
e

D
is

t

B
F

S
F

C
B

F

S
S

P
B

F

R
F

0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
R

an
ge

(c) Strong Mitigation:
Maintain Safe Charge

Figure 9.33: Environmental Variables for Non-Functional Failures due to FI

due to the feature interaction only occurring over a small portion of the variable’s range.

However, variables with a larger range displayed are less likely to have an impact on the

expression of the feature interaction, since a feature interaction could be expressed over a

large portion of the variable’s range. System designers can use this information to assess the

types of situations in which an interaction could occur, possibly directing additional testing

to scenarios more likely to be adversely impacted by feature interactions.

Interactions Detected at Run Time

Soter-RT generates run-time code using Thoosa. Given the SA+EC analysis already

applied (using Soter-EC), there are more than 9,750 individual and diverse examples for

each of the three non-functional models (i.e., Weak Mitigation: Maintain Charge, Weak

Mitigation: Minimize Collision, and Strong Mitigation: Maintain Safe Charge)

that have been converted into features. That is, they are the causes of feature interac-

tions, all of which are non-functional features converted from non-functional models. Each of

these non-functional features has been previously identified using SA+EC to have multiple

counterexamples.

The run-time detection code is verified by applying the set of individuals in the genetic

population that identify known failures due to feature interactions, and ensuring that the en-

182

vironmental and system scenarios described by those individuals result in a detected feature

interaction at simulated run time. In the case of the more than 29,000 individual examples

identified by the SA+EC detection process, all (100%) are correctly detected and reported

by the generated run-time detection code. That is, we use the existing counterexamples

identified by SA+EC and initialize the run-time detection code with the values identified to

simulate the scenario in order to verify the run-time detection code.

Functional Goal Model Updates and Re-analysis

Finally, the functional goal model originally introduced in Figure 7.1 must be updated

to ensure the mitigations put in place by the non-functional features remain in effect. The

updated functional goal model is shown in Figure 9.34 that is based on Figure 7.1 with the

following changes made to the functional goal model to mitigate the feature interactions:

1. The functional goal model must be updated according to the changes specified in the

previous section describing this mitigation and detailed in Figures 9.11a, 9.11b, and

9.11c for goals B.1, C.5, and C.10, respectively.

2. The functional goal model must be updated to constrain the satisfaction of goal C.4

such that it is only specified if Battery Charge ­ 0.50 by adding such a pre-condition

(i.e., C.New2) as one of goal C.4’s decomposed goals.

3. The functional goal model must be updated to constrain the satisfaction of goal C such

that it is only specified if Battery Charge < 1.0 by adding such a pre-condition (i.e.,

C.New1) as one of goal C’s decomposed goals.

Applying Soter to the functional goal model updated by these three changes and woven

into Figure 9.32 results in no further interactions.

183

A
Maintain(Brake

System)

OR

C (f)
Achieve(Regen

Braking)

C.1 (pre)
CBFt+1 > 0

D (f)
Achieve(Anti-
Lock Braking)

D.5
Achieve(Brake

Pulse)
D.3 (pre)

BF > 0

AND

D.6 (pre)
SS = true

D.7
Achieve(Read
Slip Sensor)D.8

Achieve(Brake
On)

D.9
Achieve(Brake

Off)

OR

D.11 (post)
CBFt+1 = BF

D.13 (post)
CBFt+1 = 0

D.12
Achieve(Brake
Force Change)

D.14 (pre)
CBFt > 0

D.10 (pre)
CBFt = 0

AND AND

D.2
Achieve(Read

CBF)

D.1 (post)
CBFt =

CBF

E (f)
Achieve(Continuous

Braking)

E.3 (post)
CBFt+1 = BF

E.4
Achieve(Read
Brake Force)

E.5 (pre)
BF > 0

AND

E.6 (pre)
SS = false

E.2
Achieve(Read

CBF)

E.1 (post)
CBFt =

CBF

E.7
Achieve(
Read SS)

A.1
Maintain(Brake

Force)
OR

A.2
Maintain(Brake

Command)

AND

C.2
Achieve(Regen

& Standard Force)
OR

AND

C.New1 (pre)
Battery Charge < 0

New BF

OR
Limited

BF
AND

M.5
(pre)

M.6
(pre)

AND
M.2

¬M.5
(pre)

¬M.6
(pre)

¬M.2
OR

B.1

B (f)

AND

B.0 B.2

B.3

New BF

OR
Limited

BF
AND

M.5
(pre)

M.6
(pre)

AND
M.2

¬M.5
(pre)

¬M.6
(pre)

¬M.2
OR

C.5

C.3

AND

C.6

C.7

New BF

OR

Limited
BF

AND

M.5
(pre)

M.6
(pre)

AND
M.2

¬M.5
(pre)

¬M.6
(pre)

¬M.2
OR

C.10

C.4

AND

C.9C.8
C.New2 (pre)

Battery Charge >= 0.5

D.4
Achieve(Read
Brake Force)

Figure 9.34: Final Braking System Goal Model

Summary

We have demonstrated that Soter can detect interactions between safety and perfor-

mance models in an example of one of two weak mitigations (i.e., safety or performance)

that failed due to a conflict with the other weak mitigation. Therefore, Soter can detect

failures due to interactions when multiple aspect oriented non-functional goal models fail

due to an interaction.

184

9.5 Related Work

Aspect-oriented requirements engineering allows for early separation of concerns, in-

cluding cross-cutting safety and performance concerns [77]. However, aspect interactions

may introduce failures early in the development process and require continued research [74].

This section broadly covers existing AORE work, especially as it relates to explicit modeling

of safety and detecting interactions in aspect-oriented requirements.

Non-functional goals and properties are currently represented in GORE by directed

edges that connect goals or properties. In KAOS goal modeling, non-functional goals may

be included in the requirements decomposition or defined by obstacles and mitigations that

are connected to goals or requirements [87]. For i*, non-functional goals are connected to

existing GORE elements based on the impact of the non-functional goal to the connected

element [95]. The non-functional models defined using the Soter process are defined in relation

to a non-functional concern, represented as an aspect-oriented non-functional goal model and

is developed independently of the dominant decomposition.

Methods for modeling aspect-oriented requirements exist in multiple modeling

paradigms, including UML [8] and GORE [91]. Existing requirements models can even be

analyzed to identify candidate aspect-oriented requirements [79]. The Soter process is applied

to GORE models specifically for analyzing cross-cutting non-functional concerns, including

safety and performance.

Aspect interactions occur when separate and conflicting aspects are woven into the same

model [71]. While aspect interaction detection in Aspect-Oriented Programming (AOP) can

detect behavioral interactions [42, 90, 3], aspect interactions can also occur at the require-

ments level. Soter operates at the requirements level modeled by goals and detects aspect

interactions in the corresponding goal models.

In aspect-oriented requirements engineering, aspect interactions can be detected in tex-

tual requirements [80], but more often, formalized models are used [71, 72, 73]. Some methods

include conflict resolution for interactions [80, 19]. Soter differs from existing AORE aspect

185

interaction detection methods in that it identifies the failure caused by the interaction and is

applied specifically to safety and performance non-functional concerns and directly utilizes

the similarity between aspect and feature interactions by translating cross-cutting safety

goals into formally analyzable features.

9.6 Conclusion

In this chapter, we have presented Soter, a design-time and run-time approach for detect-

ing aspect interactions and non-functional model violations in aspect-oriented non-functional

models. Unlike previous methods of detecting aspect interactions, Soter leverages the similar-

ity between feature interaction and aspect interaction by using feature interaction detection

techniques with aspect-oriented non-functional models translated into features.

We demonstrate Soter on an industry-based automotive braking system. We show that

Soter is able to automatically detect safety and performance-based violations and aspect

interactions in fractions of a second by translating aspect-oriented non-functional models

into features and analyzing those features while maintaining traceability to the original

models. Additionally, Soter-EC applies SA+EC to identify multiple diverse counterexamples

that can be used by the system designer to more fully assess the impact of the interaction.

Finally, Soter-RT generates run-time detection code and ensures the generated code can

detect known counterexamples identified via Soter-EC.

186

Chapter 10

Contributions

This chapter summarizes our contributions with respect to the detection of incomplete

requirements decompositions and feature interactions in the fields of software and require-

ments engineering. Additionally, we also propose future investigations to complement this

body of work.

10.1 Summary of Contributions

Given the increasing complexity and intrinsic uncertainty in specifying cyber-physical

systems, the design-time assurance of requirements specifications is necessary to reduce and,

if possible, eliminate the proliferation of specification errors. Errors in the specification of

cyber-physical systems may be introduced in several ways. First, specification errors may be

introduced due to an idealized view of the environment where requirements do not account for

environmental uncertainty. Second, specification errors may be introduced due to conflicting

specifications due to system uncertainty. Due to the growth of system and environmental

uncertainty in cyber-physical systems, researchers are actively exploring the analysis and

detection of counterexamples in the specification of cyber-physical systems at design-time [4].

We have presented several methods to automatically identify counterexamples to com-

pleteness and consistency of requirements by identifying incomplete requirements and feature

187

interactions. First, we applied Ares, Ares-EC, and Lykus (i.e., a set of incomplete require-

ments detection tools) to detect incomplete requirements decompositions within a model-

based hierarchical requirements decomposition. Second, we applied Phorcys, Phorcys-EC,

and Thoosa (i.e., a set of feature interaction detection tools) to detect n-way feature inter-

actions between the functional feature requirements specifications. Finally, we have applied

Soter to non-functional requirements, including safety and performance non-functional re-

quirements. We have demonstrated these approaches to requirements models related to the

adaptive cruise control and braking systems, both of which are examples of onboard auto-

motive system.

The methods and tools presented in this body of work fit within a general framework

represented by the DFD in Figure 10.1. First, a problem is converted to propositional logic

allowing for the creation of a method to verify solutions as correct or incorrect (i.e., detect if

an existing solution for the propositional logic satisfies the propositional logic) and a method

to solve problems by creating solutions (i.e., generating a new solution for the propositional

logic that is known to satisfy the propositional logic). Since each of these problems can be

used to represent any instance of 3-SAT, an NP-Complete problem [62], verifying solutions

(i.e., checking if the solution satisfies the propositional logic) can be done quickly (i.e., in

polynomial time) while the worst case for generating a new solution (i.e., generating a new

solution that satisfies the propositional logic) is not in polynomial time. Where the faster

solution verification method can be used to analyze either at run time or as part of a fitness

function within a genetic algorithm, the slower solution generation method can be used to

generate single results. These methods (i.e., solution verification and solution generation)

can be employed to generate multiple solutions via a combination of evolutionary computa-

tion (EC) and symbolic analysis (SA), potentially multiple results as they are encountered

individually at run time via verification of potential solutions (i.e., streaming results), or

a single result via symbolic analysis of the solution generation method. Subsequently, we

188

identify the portions of the DFD in relation to the chapters presented in this body of work.

The remainder of the contributions and future work are identified within this framework.

Propositional
Logic

Run-time
Method

SA+EC
Method

SA
Method

Produce
Verification

Method

Produce
Solution
Method

Streaming
Results

Multiple
Results

Single
Results

Conversion
Tool

Problem

Problem
Properties

Autom
atic D

efinition
M

anual
D

efinition

method method

counterexample counterexamples counterexample

Figure 10.1: General Framework DFD

10.1.1 Requirements Incompleteness

We detect incomplete requirements decomposition in hierarchical requirements models.

We illustrate our approach by analyzing a requirements model of an industry-based auto-

189

motive adaptive cruise control system. We describe the following techniques that we are

developing to address this problem:

1. Symbolic analysis (Ares) to formally define requirements incompleteness and guarantee

detection of requirements completeness counterexamples if they exist [37].

2. Evolutionary computation and symbolic analysis (Ares-EC) to detect a representative

range of requirements completeness counterexamples [38].

3. Run-time analysis (Lykus) to detect incomplete requirements at run time [39].

Figure 10.2 depicts the applicability of the generalized framework (i.e., Figure 10.1) for

the three pieces of work in the requirements incompleteness space.

190

Propositional
Logic

Lykus Ares-EC Ares

Produce
Verification

Method

Produce
Solution
Method

Streaming
Results

Multiple
Results

Single
Results

Incomplete Req
Conversion Tool

Incomplete
Requirements

Properties

Autom
atic D

efinition
M

anual
D

efinition

method method

counterexample counterexamples counterexample

Figure 10.2: Requirements Completeness DFD

10.1.2 Feature Interactions

We detect unwanted n-way feature interactions and determining their causes at the

requirements level. Unlike previous n-way feature interaction detection approaches that at-

tempt to enumerate every set of interacting features, our approach analyzes each feature

for its ability to cause an interaction with other features, thus reducing designer assessment

effort to be linear with respect to the number of features. We illustrate our approach by

191

applying our approach to an industry-based automotive braking system comprising multiple

subsystems. We describe the following techniques that we have developed for this disserta-

tion:

1. Phorcys: Symbolic analysis to formally define feature interactions and guarantee de-

tection of interactions if they exist [40].

2. Phorcys-EC: Evolutionary computation and symbolic analysis to detect a representative

range of feature interactions [40].

3. Thoosa: Run-time analysis to detect feature interactions at run time.

Figure 10.3 demonstrates the applicability of the generalized framework (i.e., Fig-

ure 10.1) for the three pieces of work in the feature interaction detection space.

192

Propositional
Logic

Thoosa Phorcys-EC Phorcys

Produce
Verification

Method

Produce
Solution
Method

Streaming
Results

Multiple
Results

Single
Results

FI Conversion
Tool

Feature
Interactions
Properties

Autom
atic D

efinition
M

anual
D

efinition

method method

counterexample counterexamples counterexample

FI
Properties

Figure 10.3: Feature Interaction DFD

10.1.3 Non-functional Interactions

We detect feature interactions that include safety and/or performance non-functional

requirements and may include, but are not limited to include, functional requirements. We

illustrate our approach by applying it to detect unwanted interactions in the safety models

and requirements of an industry-based automotive braking system. We apply the detection

method to the following types of non-functional requirements:

193

1. Safety requirements, and

2. Performance requirements.

Figure 10.4 depicts the applicability of the generalized framework (i.e., Figure 10.1) for

the non-functional interaction detection.

Propositional
Logic

Soter-RT Soter-EC Soter

Produce
Verification

Method

Produce
Solution
Method

Streaming
Results

Multiple
Results

Single
Results

Non-Functional
Conversion Tool

Non-Functional
Interactions
Properties

Autom
atic D

efinition
M

anual
D

efinition
method method

counterexample counterexamples counterexample

Non-Functional FI
Properties

Figure 10.4: Non-Functional Interactions DFD

194

10.2 Future Investigations

This dissertation has presented a framework for applying symbolic analysis, evolutionary

computation, and run-time detection to feature interactions, requirements completeness, and

non-functional feature interactions. Given these results, we now describe future work that

would complement what has been presented in this dissertation. Each of these is described

in turn.

10.2.1 Requirements Incompleteness Caused by FI

While we detect both incomplete requirements decomposition and feature interactions

within this work, we do not consider the combination of the two problems. However, there

are almost certainly situations where a specification cannot act as it is intended due to a

feature interaction. Those instances may introduce requirements incompleteness that are

not inherent to the local structure of the decomposition, but the cross-cutting structure of

conflicting specifications. Whereas our requirements completeness work analyzes each de-

composition independently of the remaining specification, an interaction outside of that

individual decomposition may introduce an incompleteness not previously detected. We en-

vision analyzing the entire specification for incomplete decompositions and identifying if any

of the unsatisfied requirements are due to a feature interaction.

10.2.2 Partial Feature Interactions

Currently the feature interaction logic that is generated by Phorcys applies logic-based

on discrete satisfaction of the features in questions. The satisfaction of those features is

derived from the satisfaction of the decomposed goals, requirements, and expectations that

make up those features. However, Phorcys does not take into account partial satisfaction, or

satisficement, of goal model elements that would correspond to a partially-satisfied feature.

Naturally, an interaction between two (or more) features is a conflict that allows for a trade-

195

off between two (or more) features that are partially satisfied. We envision extending the

Phorcys work to include feature interaction detection logic for partially satisfied features,

allowing for multi-objective optimization of the trade-offs between features.

10.2.3 Partial Requirements Incompleteness

Currently the case study for requirements incompleteness includes no RELAXed or Au-

toRELAXED requirements [49], despite the use of satisficement to measure the proportional

satisfaction of each requirement. As such, results are binary for requirements incompleteness,

while RELAXed (or otherwise proportionally satisfied) requirements may result in partial

requirements incompleteness due to their own intrinsic proportional satisfaction. We envision

the application of the Ares set of tools to RELAXed goal models to automatically detect

partial requirements incompleteness.

10.2.4 Automatic Mitigation Strategies

The methods detailed in this work focus on the detection of problematic states. Even

the work on non-functional interactions where mitigations are included requires manual def-

inition of the mitigations. However, significant existing work exists in dynamically adaptive

software systems that could be leveraged to employ adaptation when such problematic states

are encountered. The adaptive mitigation techniques can be particularly applicable to the

Thoosa, Lykus, and Soter run-time detection methods detailed within this work.

10.2.5 Non-Functional Security Interactions

The non-functional interaction detection in this work has been shown to be applicable

to both safety and performance non-functional goals. However, the detection method is

generally applicable to all non-functional requirements. We envision the application of the

existing framework to include case studies with non-functional security requirements.

196

10.2.6 Incomplete Test Sets

Similar to requirements completeness, which depends on the complete decomposition of

a parent requirement by its children, individual requirements should be tested by a complete

set of tests. That is, the functionality defined by the parent should be completely covered

by the set of tests that exercise the system. If a specific instance of functionality exists that

is not tested, the test set is incomplete. We envision using the Ares tool set to describe

requirements and their tests as parent and child requirements where the child requirements

are OR decomposed (i.e., disjunct) from one another.

197

APPENDICES

198

Appendix A

Incomplete Requirements Artifacts

This appendix presents the goal model specifications as well as the satisfiability-modulo

theory (SMT) solver and code (C++) outputs from the Ares and Lykus tools for incomplete

requirements detection. Incomplete requirements artifacts are included in this appendix since

no complete example can be given, due to issues of space, within Chapters 3 and 5.

A.1 Goal Model Specifications

This section of the appendix includes the XML schema for representing goal models in

XML, as well as XML representations of the adaptive cruise control system goal model used

in Chapters 3, 4, and 5.

A.1.1 Goal Model Schema

Listing A.1: XSD Goal Model XML Schema for Incomplete Requirements

1 <?xml v e r s i on =”1.0” encoding=”UTF−8”?>
2 <xs : schema xmlns : xs=”http ://www. w3 . org /2001/XMLSchema”
3 elementFormDefault=” q u a l i f i e d ”
4 xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e”>
5 <xs : element name=”goalmodel”>
6 <xs : complexType>
7 <xs : sequence>

199

8 <xs : element r e f =”goa l”/>
9 <xs : element r e f =”environment”/>

10 </xs : sequence>
11 </xs : complexType>
12 </xs : element>
13 <xs : element name=”environment”>
14 <xs : complexType>
15 <xs : sequence>
16 <xs : element minOccurs=”0” maxOccurs=”unbounded” r e f =”env”/>
17 </xs : sequence>
18 </xs : complexType>
19 </xs : element>
20 <xs : element name=”env”>
21 <xs : complexType>
22 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
23 <xs : a t t r i b u t e name=”r e l a t i o n s h i p ” use=”requ i r ed ” type=”xs :

s t r i n g ”/>
24 </xs : complexType>
25 </xs : element>
26 <xs : element name=”goa l”>
27 <xs : complexType>
28 <xs : cho ice>
29 <xs : element maxOccurs=”unbounded” r e f=”goa l”/>
30 <xs : element r e f =”agent”/>
31 </xs : cho ice>
32 <xs : a t t r i b u t e name=”contents ” use=”requ i r ed ” type=”xs : s t r i n g

”/>
33 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
34 <xs : a t t r i b u t e name=”r e l a t i o n s h i p ” use=”requ i r ed ” type=”xs :

s t r i n g ”/>
35 <xs : a t t r i b u t e name=”type ” use=”requ i r ed ” type=”xs :NCName”/>
36 </xs : complexType>
37 </xs : element>
38 <xs : element name=”agent”>
39 <xs : complexType>
40 <xs : a t t r i b u t e name=”contents ” use=”requ i r ed ” type=”xs : s t r i n g

”/>
41 <xs : a t t r i b u t e name=”l o c a t i o n ” use=”requ i r ed ” type=”xs :NCName

”/>
42 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
43 </xs : complexType>
44 </xs : element>
45 </xs : schema>

200

A.1.2 Incomplete Requirements Goal Model for Adaptive Cruise

Control System

Listing A.2: Incomplete ACC Goal Model

1 <?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
2 <!−− c reated with XMLSpear −−>
3 <goalmodel xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e ”

x s i : noNamespaceSchemaLocation=’goalmodel . xsd ’>
4
5 <goa l name=”A.1” contents=”NA” r e l a t i o n s h i p=”true ” type=”OR”>
6 <goa l name=”A.2” contents=”NA” r e l a t i o n s h i p =”(and2 (EQUALS

CruiseSwitchSensor 0 . 0) (EQUALS Crui seAct iveSensor 1 . 0))
” type=”AND”>

7 <goa l name=”A.6” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 0 . 0) ” type=”PRE”>

8 </goal>
9 <goa l name=”A.7” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 1 . 0) ” type=”REQ”>
10 </goal>
11 <goa l name=”A.8” contents=”NA” r e l a t i o n s h i p =”(EQUALS

CruiseAct iveSwitch 0 . 0) ” type=”REQ”>
12 </goal>
13 </goal>
14 <goa l name=”A.3” contents=”NA” r e l a t i o n s h i p =”(and (=

CruiseSwitchSensor f a l s e) (= Cru i seAct iveSensor f a l s e)) ”
type=”AND”>

15 <goa l name=”A.9” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 0 . 0) ” type=”PRE”>

16 </goal>
17 <goa l name=”A.10” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 0 . 0) ” type=”PRE”>
18 </goal>
19 <goa l name=”A.15 a” contents=”NA” r e l a t i o n s h i p =”(and2 (

EQUALS Thrott l ePeda lSensor Thrott leActuator) (EQUALS
BrakePedalSensor BrakeActuator)) ” type=”AND”>

20 <goa l name=”A.16 a” contents=”NA” r e l a t i o n s h i p =”(
EQUALS Thrott l ePeda lSensor Thrott leActuator) ”
type=”AND”>

21 <goa l name=”A.18 a” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

22 </goal>
23 <goa l name=”A.19 a” contents=”NA” r e l a t i o n s h i p

=”(EQUALS Thrott l ePeda lSensor
Thrott leActuator) ” type=”PRE”>

24 </goal>

201

25 </goal>
26 <goa l name=”A.17 a” contents=”NA” r e l a t i o n s h i p =”(

EQUALS BrakePedalSensor BrakeActuator) ” type=”
AND”>

27 <goa l name=”A.20 a” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

28 </goal>
29 <goa l name=”A.21 a” contents=”NA” r e l a t i o n s h i p

=”(EQUALS BrakePedalSensor BrakeActuator) ”
type=”PRE”>

30 </goal>
31 </goal>
32 </goal>
33 </goal>
34 <goa l name=”A.4” contents=”NA” r e l a t i o n s h i p =”(and (=

CruiseSwitchSensor t rue) (= Cru i seAct iveSensor f a l s e)) ”
type=”AND”>

35 <goa l name=”A.11” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 1 . 0) ” type=”PRE”>

36 </goal>
37 <goa l name=”A.12” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 0 . 0) ” type=”PRE”>
38 </goal>
39 <goa l name=”A.15 b” contents=”NA” r e l a t i o n s h i p =”(and2 (

EQUALS Thrott l ePeda lSensor Thrott leActuator) (EQUALS
BrakePedalSensor BrakeActuator)) ” type=”AND”>

40 <goa l name=”A.16 b” contents=”NA” r e l a t i o n s h i p =”(
EQUALS Thrott l ePeda lSensor Thrott leActuator) ”
type=”AND”>

41 <goa l name=”A.18 b” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

42 </goal>
43 <goa l name=”A.19 b” contents=”NA” r e l a t i o n s h i p

=”(EQUALS Thrott l ePeda lSensor
Thrott leActuator) ” type=”PRE”>

44 </goal>
45 </goal>
46 <goa l name=”A.17 b” contents=”NA” r e l a t i o n s h i p =”(

EQUALS BrakePedalSensor BrakeActuator) ” type=”
AND”>

47 <goa l name=”A.20 b” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

48 </goal>
49 <goa l name=”A.21 b” contents=”NA” r e l a t i o n s h i p

=”(EQUALS BrakePedalSensor BrakeActuator) ”
type=”PRE”>

50 </goal>

202

51 </goal>
52 </goal>
53 </goal>
54 <goa l name=”A.5” contents=”NA” r e l a t i o n s h i p =”(and (=

CruiseSwitchSensor f a l s e) (= Cru i seAct iveSensor t rue)) ”
type=”AND”>

55 <goa l name=”A.13” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 1 . 0) ” type=”PRE”>

56 </goal>
57 <goa l name=”A.14” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 1 . 0) ” type=”PRE”>
58 </goal>
59 <goa l name=”B.1” contents=”NA” r e l a t i o n s h i p =”(or3 (

EQUALS Speed t S p e e d t p l u s 1) (GREATER Speed t
S p e e d t p l u s 1) (LESS Distance Sa feDi s tance)) ” type
=”OR”>

60 <goa l name=”B.2” contents=”NA” r e l a t i o n s h i p =”(or2 (
and2 (EQUALS Speed t 0 . 0) (EQUALS S p e e d t p l u s 1

0 . 0)) (GREATER Speed t S p e e d t p l u s 1)) ” type=”
AND”>

61 <goa l name=”B.3” contents=”NA” r e l a t i o n s h i p =”(
or2 (and2 (EQUALS Speed t 0 . 0) (EQUALS
S p e e d t p l u s 1 0 . 0)) (GREATER Speed t
S p e e d t p l u s 1)) ” type=”OR”>

62 <goa l name=”B.4” contents=”NA” r e l a t i o n s h i p
=”(LESS Thrott l eActuator
Thrott l ePeda lSensor) ” type=”AND”>

63 <goa l name=”B.5” contents=”NA”
r e l a t i o n s h i p =”(LESS Thrott leActuator

Thrott l ePeda lSensor) ” type=”REQ”>
64 </goal>
65 <goa l name=”B.6” contents=”NA”

r e l a t i o n s h i p=”true ” type=”REQ”>
66 </goal>
67 <goa l name=”B.7” contents=”NA”

r e l a t i o n s h i p =”(GREATER
Thrott l ePeda lSensor 0 . 0) ” type=”PRE
”>

68 </goal>
69 </goal>
70 <goa l name=”B.15” contents=”NA”

r e l a t i o n s h i p =”(GREATER BrakeActuator
BrakePedalSensor) ” type=”AND”>

71 <goa l name=”B.16” contents=”NA”
r e l a t i o n s h i p =”(GREATER BrakeActuator
BrakePedalSensor) ” type=”REQ”>

72 </goal>

203

73 <goa l name=”B.17” contents=”NA”
r e l a t i o n s h i p=”true ” type=”REQ”>

74 </goal>
75 <goa l name=”B.18” contents=”NA”

r e l a t i o n s h i p =”(EQUALS
Thrott l ePeda lSensor 0 . 0) ” type=”PRE
”>

76 </goal>
77 <goa l name=”B.19” contents=”NA”

r e l a t i o n s h i p =”(LESS BrakePedalSensor
1 . 0) ” type=”PRE”>

78 </goal>
79 </goal>
80 </goal>
81 <goa l name=”B.8” contents=”NA” r e l a t i o n s h i p =”(

or2 (GREATER Speed t DesiredSpeed) (LESS
Distance Sa feDi s tance)) ” type=”OR”>

82 <goa l name=”B.9” contents=”NA” r e l a t i o n s h i p
=”(GREATER Speed t DesiredSpeed) ” type=”
AND”>

83 <goa l name=”B.11” contents=”NA”
r e l a t i o n s h i p =”(GREATER
WheelSpeedSensor DesiredSpeed) ” type
=”PRE”>

84 </goal>
85 <goa l name=”B.12” contents=”NA”

r e l a t i o n s h i p =”(GREATER
GPSSpeedSensor DesiredSpeed) ” type=”
PRE”>

86 </goal>
87 </goal>
88 <goa l name=”B.10” contents=”NA”

r e l a t i o n s h i p =”(LESS Distance
Sa feDi s tance) ” type=”AND”>

89 <goa l name=”B.13” contents=”NA”
r e l a t i o n s h i p =”(LESS DistanceSensor1
Sa feDi s tance) ” type=”PRE”>

90 </goal>
91 <goa l name=”B.14” contents=”NA”

r e l a t i o n s h i p =”(LESS DistanceSensor2
Sa feDi s tance) ” type=”PRE”>

92 </goal>
93 </goal>
94 </goal>
95 </goal>
96 <goa l name=”C.1” contents=”NA” r e l a t i o n s h i p =”(LESS

Speed t S p e e d t p l u s 1) ” type=”AND”>

204

97 <goa l name=”C.2” contents=”NA” r e l a t i o n s h i p =”(
and2 (LESS Speed t DesiredSpeed) (GREATER
Distance Sa feDi s tance)) ” type=”AND”>

98 <goa l name=”C.4” contents=”NA” r e l a t i o n s h i p
=”(LESS Speed t DesiredSpeed) ” type=”AND
”>

99 <goa l name=”C.6” contents=”NA”
r e l a t i o n s h i p =”(LESS WheelSpeedSensor
DesiredSpeed) ” type=”PRE”>

100 </goal>
101 <goa l name=”C.7” contents=”NA”

r e l a t i o n s h i p =”(LESS GPSSpeedSensor
DesiredSpeed) ” type=”PRE”>

102 </goal>
103 </goal>
104 <goa l name=”C.9” contents=”NA” r e l a t i o n s h i p

=”(GREATER Distance Sa feDi s tance) ” type
=”AND”>

105 <goa l name=”C.10” contents=”NA”
r e l a t i o n s h i p =”(GREATER
DistanceSensor1 Sa feDi s tance) ” type
=”PRE”>

106 </goal>
107 <goa l name=”C.11” contents=”NA”

r e l a t i o n s h i p =”(GREATER
DistanceSensor2 Sa feDi s tance) ” type
=”PRE”>

108 </goal>
109 </goal>
110 </goal>
111 <goa l name=”C.3” contents=”NA” r e l a t i o n s h i p =”(

GREATER Thrott leActuator Thrott l ePeda lSensor
) ” type=”AND”>

112 <goa l name=”C.5” contents=”NA” r e l a t i o n s h i p
=”(GREATER Thrott leActuator
Thrott l ePeda lSensor) ” type=”REQ”>

113 </goal>
114 <goa l name=”C.8” contents=”NA” r e l a t i o n s h i p

=”(LESS Thrott l ePeda lSensor 1 . 0) ” type=”
PRE”>

115 </goal>
116 <goa l name=”C.13” contents=”NA”

r e l a t i o n s h i p=”true ” type=”PRE”>
117 </goal>
118 </goal>
119 <goa l name=”C.12” contents=”NA” r e l a t i o n s h i p =”(

EQUALS BrakeActuator 0 . 0) ” type=”REQ”>

205

120 </goal>
121 </goal>
122 <goa l name=”D.1” contents=”NA” r e l a t i o n s h i p =”(

EQUALS Speed t S p e e d t p l u s 1) ” type=”AND”>
123 <goa l name=”D.2” contents=”NA” r e l a t i o n s h i p =”(

and2 (EQUALS Speed t DesiredSpeed) (GREATER
Distance Sa feDi s tance)) ” type=”AND”>

124 <goa l name=”D.4” contents=”NA” r e l a t i o n s h i p
=”(EQUALS Speed t DesiredSpeed) ” type=”
AND”>

125 <goa l name=”D.6” contents=”NA”
r e l a t i o n s h i p =”(EQUALS
WheelSpeedSensor DesiredSpeed) ” type
=”PRE”>

126 </goal>
127 <goa l name=”D.7” contents=”NA”

r e l a t i o n s h i p =”(EQUALS GPSSpeedSensor
DesiredSpeed) ” type=”PRE”>

128 </goal>
129 </goal>
130 <goa l name=”D.8” contents=”NA” r e l a t i o n s h i p

=”(GREATER Distance Sa feDi s tance) ” type
=”AND”>

131 <goa l name=”D.9” contents=”NA”
r e l a t i o n s h i p =”(GREATER
DistanceSensor1 Sa feDi s tance) ” type
=”PRE”>

132 </goal>
133 <goa l name=”D.10” contents=”NA”

r e l a t i o n s h i p =”(GREATER
DistanceSensor2 Sa feDi s tance) ” type
=”PRE”>

134 </goal>
135 </goal>
136 </goal>
137 <goa l name=”D.5” contents=”NA” r e l a t i o n s h i p=”

true ” type=”REQ”>
138 </goal>
139 <goa l name=”D.3” contents=”NA” r e l a t i o n s h i p =”(

EQUALS Thrott leActuator Thrott l ePeda lSensor)
” type=”REQ”>

140 </goal>
141 </goal>
142 </goal>
143 </goal>
144 </goal>
145

206

146 <environment>
147 <env name=”s p e e d t a ” r e l a t i o n s h i p =”(or (= Speed t

WheelSpeedSensor) (= Speed t GPSSpeedSensor))”/>
148 <env name=”speed t b ” r e l a t i o n s h i p =”(= Speed t (max2 0 .0 (−

Thrott l ePeda lSensor BrakePedalSensor)))”/>
149 <env name=”s p e e d t p l u s o n e ” r e l a t i o n s h i p =”(= S p e e d t p l u s 1

(max2 0 .0 (− Thrott leActuator BrakeActuator)))”/>
150 <env name=”d i s t ance ” r e l a t i o n s h i p =”(or (= Distance

DistanceSensor1) (= Distance DistanceSensor2))”/>
151 </environment>
152
153 </goalmodel>

A.1.3 Complete Requirements Goal Model for Adaptive Cruise

Control System

Listing A.3: Complete ACC Goal Model

1 <?xml v e r s i on =”1.0” encoding=”UTF−8”?>
2 <!−− c reated with XMLSpear −−>
3 <goalmodel xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e ”

x s i : noNamespaceSchemaLocation=’goalmodel . xsd ’>
4
5 <goa l name=”A.1” contents=”NA” r e l a t i o n s h i p=”true ” type=”OR”>
6 <goa l name=”A.2” contents=”NA” r e l a t i o n s h i p =”(and2 (EQUALS

CruiseSwitchSensor 0 . 0) (EQUALS Crui seAct iveSensor 1 . 0))
” type=”AND”>

7 <goa l name=”A.6” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 0 . 0) ” type=”PRE”>

8 </goal>
9 <goa l name=”A.7” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 1 . 0) ” type=”REQ”>
10 </goal>
11 <goa l name=”A.8” contents=”NA” r e l a t i o n s h i p =”(EQUALS

CruiseAct iveSwitch 0 . 0) ” type=”REQ”>
12 </goal>
13 </goal>
14 <goa l name=”A.3” contents=”NA” r e l a t i o n s h i p =”(and (=

CruiseSwitchSensor f a l s e) (= Cru i seAct iveSensor f a l s e)) ”
type=”AND”>

15 <goa l name=”A.9” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 0 . 0) ” type=”PRE”>

16 </goal>
17 <goa l name=”A.10” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 0 . 0) ” type=”PRE”>

207

18 </goal>
19 <goa l name=”A.15 a” contents=”NA” r e l a t i o n s h i p =”(and2 (

EQUALS Thrott l ePeda lSensor Thrott leActuator) (EQUALS
BrakePedalSensor BrakeActuator)) ” type=”AND”>

20 <goa l name=”A.16 a” contents=”NA” r e l a t i o n s h i p =”(
EQUALS Thrott l ePeda lSensor Thrott leActuator) ”
type=”AND”>

21 <goa l name=”A.18 a” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

22 </goal>
23 <goa l name=”A.19 a” contents=”NA” r e l a t i o n s h i p

=”(EQUALS Thrott l ePeda lSensor
Thrott leActuator) ” type=”PRE”>

24 </goal>
25 </goal>
26 <goa l name=”A.17 a” contents=”NA” r e l a t i o n s h i p =”(

EQUALS BrakePedalSensor BrakeActuator) ” type=”
AND”>

27 <goa l name=”A.20 a” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

28 </goal>
29 <goa l name=”A.21 a” contents=”NA” r e l a t i o n s h i p

=”(EQUALS BrakePedalSensor BrakeActuator) ”
type=”PRE”>

30 </goal>
31 </goal>
32 </goal>
33 </goal>
34 <goa l name=”A.4” contents=”NA” r e l a t i o n s h i p =”(and (=

CruiseSwitchSensor t rue) (= Cru i seAct iveSensor f a l s e)) ”
type=”AND”>

35 <goa l name=”A.11” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 1 . 0) ” type=”PRE”>

36 </goal>
37 <goa l name=”A.12” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 0 . 0) ” type=”PRE”>
38 </goal>
39 <goa l name=”A.15 b” contents=”NA” r e l a t i o n s h i p =”(and2 (

EQUALS Thrott l ePeda lSensor Thrott leActuator) (EQUALS
BrakePedalSensor BrakeActuator)) ” type=”AND”>

40 <goa l name=”A.16 b” contents=”NA” r e l a t i o n s h i p =”(
EQUALS Thrott l ePeda lSensor Thrott leActuator) ”
type=”AND”>

41 <goa l name=”A.18 b” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

42 </goal>
43 <goa l name=”A.19 b” contents=”NA” r e l a t i o n s h i p

208

=”(EQUALS Thrott l ePeda lSensor
Thrott leActuator) ” type=”PRE”>

44 </goal>
45 </goal>
46 <goa l name=”A.17 b” contents=”NA” r e l a t i o n s h i p =”(

EQUALS BrakePedalSensor BrakeActuator) ” type=”
AND”>

47 <goa l name=”A.20 b” contents=”NA” r e l a t i o n s h i p=”
true ” type=”REQ”>

48 </goal>
49 <goa l name=”A.21 b” contents=”NA” r e l a t i o n s h i p

=”(EQUALS BrakePedalSensor BrakeActuator) ”
type=”PRE”>

50 </goal>
51 </goal>
52 </goal>
53 </goal>
54 <goa l name=”A.5” contents=”NA” r e l a t i o n s h i p =”(and (=

CruiseSwitchSensor f a l s e) (= Cru i seAct iveSensor t rue)) ”
type=”AND”>

55 <goa l name=”A.13” contents=”NA” r e l a t i o n s h i p =”(EQUALS
CruiseSwitchSensor 1 . 0) ” type=”PRE”>

56 </goal>
57 <goa l name=”A.14” contents=”NA” r e l a t i o n s h i p =”(EQUALS

Crui seAct iveSensor 1 . 0) ” type=”PRE”>
58 </goal>
59 <goa l name=”B.1” contents=”NA” r e l a t i o n s h i p =”(or3 (

EQUALS Speed t S p e e d t p l u s 1) (GREATER Speed t
S p e e d t p l u s 1) (LESS Distance Sa feDi s tance)) ” type
=”OR”>

60 <goa l name=”B.2” contents=”NA” r e l a t i o n s h i p =”(or2 (
and2 (EQUALS Speed t 0 . 0) (EQUALS S p e e d t p l u s 1

0 . 0)) (GREATER Speed t S p e e d t p l u s 1)) ” type=”
AND”>

61 <goa l name=”B.3” contents=”NA” r e l a t i o n s h i p =”(
or2 (and2 (EQUALS Speed t 0 . 0) (EQUALS
S p e e d t p l u s 1 0 . 0)) (GREATER Speed t
S p e e d t p l u s 1)) ” type=”AND”>

62 <goa l name=”B.4” contents=”NA” r e l a t i o n s h i p
=”(LESS Thrott l eActuator
Thrott l ePeda lSensor) ” type=”AND”>

63 <goa l name=”B.5” contents=”NA”
r e l a t i o n s h i p =”(LESS Thrott leActuator

Thrott l ePeda lSensor) ” type=”REQ”>
64 </goal>
65 <goa l name=”B.6” contents=”NA”

r e l a t i o n s h i p=”true ” type=”REQ”>

209

66 </goal>
67 <goa l name=”B.7” contents=”NA”

r e l a t i o n s h i p =”(GREATER
Thrott l ePeda lSensor 0 . 0) ” type=”PRE
”>

68 </goal>
69 </goal>
70 <goa l name=”B.15” contents=”NA”

r e l a t i o n s h i p =”(GREATER BrakeActuator
BrakePedalSensor) ” type=”AND”>

71 <goa l name=”B.16” contents=”NA”
r e l a t i o n s h i p =”(GREATER BrakeActuator
BrakePedalSensor) ” type=”REQ”>

72 </goal>
73 <goa l name=”B.17” contents=”NA”

r e l a t i o n s h i p=”true ” type=”REQ”>
74 </goal>
75 <goa l name=”B.18” contents=”NA”

r e l a t i o n s h i p =”(EQUALS
Thrott l ePeda lSensor 0 . 0) ” type=”PRE
”>

76 </goal>
77 <goa l name=”B.19” contents=”NA”

r e l a t i o n s h i p =”(LESS BrakePedalSensor
1 . 0) ” type=”PRE”>

78 </goal>
79 </goal>
80 </goal>
81 <goa l name=”B.8” contents=”NA” r e l a t i o n s h i p =”(

or2 (GREATER Speed t DesiredSpeed) (LESS
Distance Sa feDi s tance)) ” type=”OR”>

82 <goa l name=”B.9” contents=”NA” r e l a t i o n s h i p
=”(GREATER Speed t DesiredSpeed) ” type=”
AND”>

83 <goa l name=”B.11” contents=”NA”
r e l a t i o n s h i p =”(GREATER
WheelSpeedSensor DesiredSpeed) ” type
=”PRE”>

84 </goal>
85 <goa l name=”B.12” contents=”NA”

r e l a t i o n s h i p =”(GREATER
GPSSpeedSensor DesiredSpeed) ” type=”
PRE”>

86 </goal>
87 </goal>
88 <goa l name=”B.10” contents=”NA”

210

r e l a t i o n s h i p =”(LESS Distance
Sa feDi s tance) ” type=”AND”>

89 <goa l name=”B.13” contents=”NA”
r e l a t i o n s h i p =”(LESS DistanceSensor1
Sa feDi s tance) ” type=”PRE”>

90 </goal>
91 <goa l name=”B.14” contents=”NA”

r e l a t i o n s h i p =”(LESS DistanceSensor2
Sa feDi s tance) ” type=”PRE”>

92 </goal>
93 </goal>
94 </goal>
95 </goal>
96 <goa l name=”C.1” contents=”NA” r e l a t i o n s h i p =”(LESS

Speed t S p e e d t p l u s 1) ” type=”AND”>
97 <goa l name=”C.2” contents=”NA” r e l a t i o n s h i p =”(

and2 (LESS Speed t DesiredSpeed) (GREATER
Distance Sa feDi s tance)) ” type=”AND”>

98 <goa l name=”C.4” contents=”NA” r e l a t i o n s h i p
=”(LESS Speed t DesiredSpeed) ” type=”AND
”>

99 <goa l name=”C.6” contents=”NA”
r e l a t i o n s h i p =”(LESS WheelSpeedSensor
DesiredSpeed) ” type=”PRE”>

100 </goal>
101 <goa l name=”C.7” contents=”NA”

r e l a t i o n s h i p =”(LESS GPSSpeedSensor
DesiredSpeed) ” type=”PRE”>

102 </goal>
103 </goal>
104 <goa l name=”C.9” contents=”NA” r e l a t i o n s h i p

=”(GREATER Distance Sa feDi s tance) ” type
=”AND”>

105 <goa l name=”C.10” contents=”NA”
r e l a t i o n s h i p =”(GREATER
DistanceSensor1 Sa feDi s tance) ” type
=”PRE”>

106 </goal>
107 <goa l name=”C.11” contents=”NA”

r e l a t i o n s h i p =”(GREATER
DistanceSensor2 Sa feDi s tance) ” type
=”PRE”>

108 </goal>
109 </goal>
110 </goal>
111 <goa l name=”C.3” contents=”NA” r e l a t i o n s h i p =”(

211

GREATER Thrott leActuator Thrott l ePeda lSensor
) ” type=”AND”>

112 <goa l name=”C.5” contents=”NA” r e l a t i o n s h i p
=”(GREATER Thrott leActuator
Thrott l ePeda lSensor) ” type=”REQ”>

113 </goal>
114 <goa l name=”C.8” contents=”NA” r e l a t i o n s h i p

=”(LESS Thrott l ePeda lSensor 1 . 0) ” type=”
PRE”>

115 </goal>
116 <goa l name=”C.13” contents=”NA”

r e l a t i o n s h i p=”true ” type=”PRE”>
117 </goal>
118 </goal>
119 <goa l name=”C.12” contents=”NA” r e l a t i o n s h i p =”(

EQUALS BrakeActuator 0 . 0) ” type=”REQ”>
120 </goal>
121 </goal>
122 <goa l name=”D.1” contents=”NA” r e l a t i o n s h i p =”(

EQUALS Speed t S p e e d t p l u s 1) ” type=”AND”>
123 <goa l name=”D.2” contents=”NA” r e l a t i o n s h i p =”(

and2 (EQUALS Speed t DesiredSpeed) (GREATER
Distance Sa feDi s tance)) ” type=”AND”>

124 <goa l name=”D.4” contents=”NA” r e l a t i o n s h i p
=”(EQUALS Speed t DesiredSpeed) ” type=”
AND”>

125 <goa l name=”D.6” contents=”NA”
r e l a t i o n s h i p =”(EQUALS
WheelSpeedSensor DesiredSpeed) ” type
=”PRE”>

126 </goal>
127 <goa l name=”D.7” contents=”NA”

r e l a t i o n s h i p =”(EQUALS GPSSpeedSensor
DesiredSpeed) ” type=”PRE”>

128 </goal>
129 </goal>
130 <goa l name=”D.8” contents=”NA” r e l a t i o n s h i p

=”(GREATER Distance Sa feDi s tance) ” type
=”AND”>

131 <goa l name=”D.9” contents=”NA”
r e l a t i o n s h i p =”(GREATER
DistanceSensor1 Sa feDi s tance) ” type
=”PRE”>

132 </goal>
133 <goa l name=”D.10” contents=”NA”

r e l a t i o n s h i p =”(GREATER

212

DistanceSensor2 Sa feDi s tance) ” type
=”PRE”>

134 </goal>
135 </goal>
136 </goal>
137 <goa l name=”D.5” contents=”NA” r e l a t i o n s h i p=”

true ” type=”REQ”>
138 </goal>
139 <goa l name=”D.3” contents=”NA” r e l a t i o n s h i p =”(

EQUALS Thrott leActuator Thrott l ePeda lSensor)
” type=”REQ”>

140 </goal>
141 <goa l name=”D. New1” contents=”NA” r e l a t i o n s h i p

=”(EQUALS BrakeActuator BrakePedalSensor) ”
type=”PRE”>

142 </goal>
143 <goa l name=”D. New2” contents=”NA” r e l a t i o n s h i p

=”true ” type=”REQ”>
144 </goal>
145 </goal>
146 </goal>
147 </goal>
148 </goal>
149
150 <environment>
151 <env name=”s p e e d t a ” r e l a t i o n s h i p =”(or (= Speed t

WheelSpeedSensor) (= Speed t GPSSpeedSensor))”/>
152 <env name=”speed t b ” r e l a t i o n s h i p =”(= Speed t (max2 0 .0 (−

Thrott l ePeda lSensor BrakePedalSensor)))”/>
153 <env name=”s p e e d t p l u s o n e ” r e l a t i o n s h i p =”(=

S p e e d t p l u s 1 (max2 0 .0 (− Thrott leActuator
BrakeActuator)))”/>

154 <env name=”d i s t ance ” r e l a t i o n s h i p =”(or (= Distance
DistanceSensor1) (= Distance DistanceSensor2))”/>

155 </environment>
156
157 </goalmodel>

A.2 Design-Time Detection Constraints (SMT)

This section of the appendix includes the SMT constraint output for detecting incom-

plete requirements decompositions in Chapter 3. Constraint sets are listed for an incomplete

requirements model and a complete requirements model.

213

A.2.1 Detection Constraints for Incomplete Adaptive Cruise Con-

trol System

Listing A.4: Incomplete Adaptive Cruise Control System Constraints

1 (de f ine−fun min2 ((x1 Real) (x2 Real)) Real
2 (/ (− (+ x1 x2) (abs (− x1 x2))) 2))
3
4 (de f ine−fun and2 ((x1 Real) (x2 Real)) Real
5 (min2 x1 x2))
6
7 (de f ine−fun and3 ((x1 Real) (x2 Real) (x3 Real)) Real
8 (and2 (and2 x1 x2) x3))
9

10 (de f ine−fun and4 ((x1 Real) (x2 Real) (x3 Real) (x4 Real)) Real
11 (and2 (and3 x1 x2 x3) x4))
12
13 (de f ine−fun and5 ((x1 Real) (x2 Real) (x3 Real) (x4 Real) (x5 Real)

) Real
14 (and2 (and4 x1 x2 x3 x4) x5))
15
16 (de f ine−fun max2 ((x1 Real) (x2 Real)) Real
17 (/ (+ x1 x2 (abs (− x1 x2))) 2))
18
19 (de f ine−fun or2 ((x1 Real) (x2 Real)) Real
20 (max2 x1 x2))
21
22 (de f ine−fun or3 ((x1 Real) (x2 Real) (x3 Real)) Real
23 (or2 x1 (or2 x2 x3)))
24
25 (de f ine−fun or4 ((x1 Real) (x2 Real) (x3 Real) (x4 Real)) Real
26 (or2 x1 (or3 x2 x3 x4)))
27
28 (de f ine−fun not1 ((x1 Real)) Real
29 (− 1 .0 x1))
30
31 (de f ine−fun EQUALS ((a Real) (b Real)) Real
32 (i t e (= a b) 1 .0 0 . 0))
33
34 (de f ine−fun GREATER ((a Real) (b Real)) Real
35 (i t e (> a b) 1 .0 0 . 0))
36
37 (de f ine−fun LESS ((a Real) (b Real)) Real
38 (i t e (< a b) 1 .0 0 . 0))
39
40 (dec la re−const Speed t Real)

214

41 (a s s e r t (and (<= Speed t 1 . 0) (>= Speed t 0 . 0)))
42
43 (dec la re−const S p e e d t p l u s 1 Real)
44 (a s s e r t (and (<= S p e e d t p l u s 1 1 . 0) (>= S p e e d t p l u s 1 0 . 0)))
45
46 (dec la re−const Distance Real)
47 (a s s e r t (and (<= Distance 1 . 0) (>= Distance 0 . 0)))
48
49 (dec la re−const Sa feDi s tance Real)
50 (a s s e r t (and (<= SafeDis tance 1 . 0) (>= SafeDis tance 0 . 0)))
51
52 (dec la re−const DesiredSpeed Real)
53 (a s s e r t (and (<= DesiredSpeed 1 . 0) (>= DesiredSpeed 0 . 0)))
54
55 (dec la re−const Thrott l eActuator Real)
56 (a s s e r t (and (<= Thrott leActuator 1 . 0) (>= Thrott leActuator 0 . 0)))
57
58 (dec la re−const Thrott l ePeda lSensor Real)
59 (a s s e r t (and (<= Thrott l ePeda lSensor 1 . 0) (>= Thrott l ePeda lSensor

0 . 0)))
60
61 (dec la re−const WheelSpeedSensor Real)
62 (a s s e r t (and (<= WheelSpeedSensor 1 . 0) (>= WheelSpeedSensor 0 . 0)))
63
64 (dec la re−const GPSSpeedSensor Real)
65 (a s s e r t (and (<= GPSSpeedSensor 1 . 0) (>= GPSSpeedSensor 0 . 0)))
66
67 (dec la re−const DistanceSensor1 Real)
68 (a s s e r t (and (<= DistanceSensor1 1 . 0) (>= DistanceSensor1 0 . 0)))
69
70 (dec la re−const DistanceSensor2 Real)
71 (a s s e r t (and (<= DistanceSensor2 1 . 0) (>= DistanceSensor2 0 . 0)))
72
73 (dec la re−const BrakeActuator Real)
74 (a s s e r t (and (<= BrakeActuator 1 . 0) (>= BrakeActuator 0 . 0)))
75
76 (dec la re−const BrakePedalSensor Real)
77 (a s s e r t (and (<= BrakePedalSensor 1 . 0) (>= BrakePedalSensor 0 . 0)))
78
79 (dec la re−const CruiseSwitchSensor Real)
80 (a s s e r t (and (<= CruiseSwitchSensor 1 . 0) (>= CruiseSwitchSensor

0 . 0)))
81
82 (dec la re−const Cru i seAct iveSensor Real)
83 (a s s e r t (and (<= Crui seAct iveSensor 1 . 0) (>= Crui seAct iveSensor

0 . 0)))
84

215

85 (dec la re−const CruiseAct iveSwitch Real)
86 (a s s e r t (and (<= CruiseAct iveSwitch 1 . 0) (>= CruiseAct iveSwitch

0 . 0)))
87
88 (a s s e r t (or (= Speed t WheelSpeedSensor) (= Speed t GPSSpeedSensor)

))
89 (a s s e r t (or (= Distance DistanceSensor1) (= Distance

DistanceSensor2)))
90 (a s s e r t (= S p e e d t p l u s 1 (max2 0 .0 (− Thrott leActuator

BrakeActuator))))
91 (a s s e r t (= Speed t (max2 0 .0 (− Thrott l ePeda lSensor

BrakePedalSensor))))
92
93 (de f ine−fun A 1 () Real
94 1 . 0)
95
96 (de f ine−fun A 2 () Real
97 (and2 (EQUALS CruiseSwitchSensor 0 . 0) (EQUALS

Crui seAct iveSensor 1 . 0)))
98
99 (de f ine−fun A 3 () Real

100 (and2 (EQUALS CruiseSwitchSensor 0 . 0) (EQUALS
Crui seAct iveSensor 0 . 0)))

101
102 (de f ine−fun A 4 () Real
103 (and2 (EQUALS CruiseSwitchSensor 1 . 0) (EQUALS

Crui seAct iveSensor 0 . 0)))
104
105 (de f ine−fun A 5 () Real
106 (and2 (EQUALS CruiseSwitchSensor 1 . 0) (EQUALS

Crui seAct iveSensor 1 . 0)))
107
108 (de f ine−fun A 6 () Real
109 (EQUALS CruiseSwitchSensor 0 . 0))
110
111 (de f ine−fun A 7 () Real
112 (EQUALS Crui seAct iveSensor 1 . 0))
113
114 (de f ine−fun A 8 () Real
115 (EQUALS CruiseAct iveSwitch 0 . 0))
116
117 (de f ine−fun A 9 () Real
118 (EQUALS CruiseSwitchSensor 0 . 0))
119
120 (de f ine−fun A 10 () Real
121 (EQUALS Crui seAct iveSensor 0 . 0))
122

216

123 (de f ine−fun A 11 () Real
124 (EQUALS CruiseSwitchSensor 1 . 0))
125
126 (de f ine−fun A 12 () Real
127 (EQUALS Crui seAct iveSensor 0 . 0))
128
129 (de f ine−fun A 13 () Real
130 (EQUALS CruiseSwitchSensor 1 . 0))
131
132 (de f ine−fun A 14 () Real
133 (EQUALS Crui seAct iveSensor 1 . 0))
134
135 (de f ine−fun A 15 () Real
136 (and2 (EQUALS Thrott l ePeda lSensor Thrott leActuator) (EQUALS

BrakePedalSensor BrakeActuator)))
137
138 (de f ine−fun A 16 () Real
139 (EQUALS Thrott l ePeda lSensor Thrott leActuator))
140
141 (de f ine−fun A 17 () Real
142 (EQUALS BrakePedalSensor BrakeActuator))
143
144 (de f ine−fun A 18 () Real
145 1 . 0)
146
147 (de f ine−fun A 19 () Real
148 (EQUALS Thrott l ePeda lSensor Thrott leActuator))
149
150 (de f ine−fun A 20 () Real
151 1 . 0)
152
153 (de f ine−fun A 21 () Real
154 (EQUALS BrakePedalSensor BrakeActuator))
155
156 (de f ine−fun B 1 () Real
157 (or3 (EQUALS Speed t S p e e d t p l u s 1) (GREATER Speed t

S p e e d t p l u s 1) (LESS Distance Sa feDi s tance)))
158
159 (de f ine−fun B 2 () Real
160 (or2 (and2 (EQUALS Speed t 0 . 0) (EQUALS S p e e d t p l u s 1 0 . 0)

) (GREATER Speed t S p e e d t p l u s 1)))
161
162 (de f ine−fun B 3 () Real
163 (or2 (and2 (EQUALS Speed t 0 . 0) (EQUALS S p e e d t p l u s 1 0 . 0)

) (GREATER Speed t S p e e d t p l u s 1)))
164
165 (de f ine−fun B 4 () Real

217

166 (LESS Thrott leActuator Thrott l ePeda lSensor))
167
168 (de f ine−fun B 5 () Real
169 (LESS Thrott leActuator Thrott l ePeda lSensor))
170
171 (de f ine−fun B 6 () Real
172 1 . 0)
173
174 (de f ine−fun B 7 () Real
175 (GREATER Thrott l ePeda lSensor 0 . 0))
176
177 (de f ine−fun B 8 () Real
178 (or2 (GREATER Speed t DesiredSpeed) (LESS Distance

Sa feDi s tance)))
179
180 (de f ine−fun B 9 () Real
181 (GREATER Speed t DesiredSpeed))
182
183 (de f ine−fun B 10 () Real
184 (LESS Distance Sa feDi s tance))
185
186 (de f ine−fun B 11 () Real
187 (GREATER WheelSpeedSensor DesiredSpeed))
188
189 (de f ine−fun B 12 () Real
190 (GREATER GPSSpeedSensor DesiredSpeed))
191
192 (de f ine−fun B 13 () Real
193 (LESS DistanceSensor1 Sa feDi s tance))
194
195 (de f ine−fun B 14 () Real
196 (LESS DistanceSensor2 Sa feDi s tance))
197
198 (de f ine−fun B 15 () Real
199 (GREATER BrakeActuator BrakePedalSensor))
200
201 (de f ine−fun B 16 () Real
202 (GREATER BrakeActuator BrakePedalSensor))
203
204 (de f ine−fun B 17 () Real
205 1 . 0)
206
207 (de f ine−fun B 18 () Real
208 (EQUALS Thrott l ePeda lSensor 0 . 0))
209
210 (de f ine−fun B 19 () Real
211 (LESS BrakePedalSensor 1 . 0))

218

212
213 (de f ine−fun C 1 () Real
214 (LESS Speed t S p e e d t p l u s 1))
215
216 (de f ine−fun C 2 () Real
217 (and2 (LESS Speed t DesiredSpeed) (GREATER Distance

Sa feDi s tance)))
218
219 (de f ine−fun C 3 () Real
220 (GREATER Thrott leActuator Thrott l ePeda lSensor))
221
222 (de f ine−fun C 4 () Real
223 (LESS Speed t DesiredSpeed))
224
225 (de f ine−fun C 5 () Real
226 (GREATER Thrott leActuator Thrott l ePeda lSensor))
227
228 (de f ine−fun C 6 () Real
229 (LESS WheelSpeedSensor DesiredSpeed))
230
231 (de f ine−fun C 7 () Real
232 (LESS GPSSpeedSensor DesiredSpeed))
233
234 (de f ine−fun C 8 () Real
235 (LESS Thrott l ePeda lSensor 1 . 0))
236
237 (de f ine−fun C 9 () Real
238 (GREATER Distance Sa feDi s tance))
239
240 (de f ine−fun C 10 () Real
241 (GREATER DistanceSensor1 Sa feDi s tance))
242
243 (de f ine−fun C 11 () Real
244 (GREATER DistanceSensor2 Sa feDi s tance))
245
246 (de f ine−fun C 12 () Real
247 (EQUALS BrakeActuator 0 . 0))
248
249 (de f ine−fun C 13 () Real
250 1 . 0)
251
252 (de f ine−fun D 1 () Real
253 (EQUALS Speed t S p e e d t p l u s 1))
254
255 (de f ine−fun D 2 () Real
256 (and2 (EQUALS Speed t DesiredSpeed) (GREATER Distance

Sa feDi s tance)))

219

257
258 (de f ine−fun D 3 () Real
259 (EQUALS Thrott leActuator Thrott l ePeda lSensor))
260
261 (de f ine−fun D 4 () Real
262 (EQUALS Speed t DesiredSpeed))
263
264 (de f ine−fun D 5 () Real
265 1 . 0)
266
267 (de f ine−fun D 6 () Real
268 (EQUALS WheelSpeedSensor DesiredSpeed))
269
270 (de f ine−fun D 7 () Real
271 (EQUALS GPSSpeedSensor DesiredSpeed))
272
273 (de f ine−fun D 8 () Real
274 (GREATER Distance Sa feDi s tance))
275
276 (de f ine−fun D 9 () Real
277 (GREATER DistanceSensor1 Sa feDi s tance))
278
279 (de f ine−fun D 10 () Real
280 (GREATER DistanceSensor2 Sa feDi s tance))
281
282 (de f ine−fun A 1 decomp () Real
283 (or4 A 2 A 3 A 4 A 5))
284
285 (de f ine−fun A 2 decomp () Real
286 (and3 A 6 A 7 A 8))
287
288 (de f ine−fun A 3 decomp () Real
289 (and3 A 9 A 10 A 15))
290
291 (de f ine−fun A 4 decomp () Real
292 (and3 A 15 A 11 A 12))
293
294 (de f ine−fun A 5 decomp () Real
295 (and3 A 13 A 14 B 1))
296
297 (de f ine−fun A 15 decomp () Real
298 (and2 A 16 A 17))
299
300 (de f ine−fun A 16 decomp () Real
301 (and2 A 18 A 19))
302
303 (de f ine−fun A 17 decomp () Real

220

304 (and2 A 20 A 21))
305
306 (de f ine−fun B 1 decomp () Real
307 (and3 C 1 B 2 D 1))
308
309 (de f ine−fun B 2 decomp () Real
310 (and2 B 8 B 3))
311
312 (de f ine−fun B 3 decomp () Real
313 (or2 B 4 B 15))
314
315 (de f ine−fun B 4 decomp () Real
316 (and3 B 5 B 6 B 7))
317
318 (de f ine−fun B 8 decomp () Real
319 (or2 B 9 B 10))
320
321 (de f ine−fun B 9 decomp () Real
322 (and2 B 11 B 12))
323
324 (de f ine−fun B 10 decomp () Real
325 (and2 B 13 B 14))
326
327 (de f ine−fun B 15 decomp () Real
328 (and4 B 16 B 17 B 18 B 19))
329
330 (de f ine−fun C 1 decomp () Real
331 (and3 C 2 C 3 C 12))
332
333 (de f ine−fun C 2 decomp () Real
334 (and2 C 4 C 9))
335
336 (de f ine−fun C 3 decomp () Real
337 (and3 C 5 C 13 C 8))
338
339 (de f ine−fun C 4 decomp () Real
340 (and2 C 6 C 7))
341
342 (de f ine−fun C 9 decomp () Real
343 (and2 C 10 C 11))
344
345 (de f ine−fun D 1 decomp () Real
346 (and3 D 2 D 5 D 3))
347
348 (de f ine−fun D 2 decomp () Real
349 (and2 D 4 D 8))
350

221

351 (de f ine−fun D 4 decomp () Real
352 (and2 D 6 D 7))
353
354 (de f ine−fun D 8 decomp () Real
355 (and2 D 9 D 10))
356
357 (push)
358 (maximize (− A 1 decomp A 1))
359 (check−sa t)
360 (pop)
361
362 (push)
363 (maximize (− A 2 decomp A 2))
364 (check−sa t)
365 (pop)
366
367 (push)
368 (maximize (− A 3 decomp A 3))
369 (check−sa t)
370 (pop)
371
372 (push)
373 (maximize (− A 4 decomp A 4))
374 (check−sa t)
375 (pop)
376
377 (push)
378 (maximize (− A 5 decomp A 5))
379 (check−sa t)
380 (pop)
381
382 (push)
383 (maximize (− A 15 decomp A 15))
384 (check−sa t)
385 (pop)
386
387 (push)
388 (maximize (− A 16 decomp A 16))
389 (check−sa t)
390 (pop)
391
392 (push)
393 (maximize (− A 17 decomp A 17))
394 (check−sa t)
395 (pop)
396
397 (push)

222

398 (maximize (− B 1 decomp B 1))
399 (check−sa t)
400 (pop)
401
402 (push)
403 (maximize (− B 2 decomp B 2))
404 (check−sa t)
405 (pop)
406
407 (push)
408 (maximize (− B 3 decomp B 3))
409 (check−sa t)
410 (pop)
411
412 (push)
413 (maximize (− B 4 decomp B 4))
414 (check−sa t)
415 (pop)
416
417 (push)
418 (maximize (− B 8 decomp B 8))
419 (check−sa t)
420 (pop)
421
422 (push)
423 (maximize (− B 9 decomp B 9))
424 (check−sa t)
425 (pop)
426
427 (push)
428 (maximize (− B 10 decomp B 10))
429 (check−sa t)
430 (pop)
431
432 (push)
433 (maximize (− B 15 decomp B 15))
434 (check−sa t)
435 (pop)
436
437 (push)
438 (maximize (− C 1 decomp C 1))
439 (check−sa t)
440 (pop)
441
442 (push)
443 (maximize (− C 2 decomp C 2))
444 (check−sa t)

223

445 (pop)
446
447 (push)
448 (maximize (− C 3 decomp C 3))
449 (check−sa t)
450 (pop)
451
452 (push)
453 (maximize (− C 4 decomp C 4))
454 (check−sa t)
455 (pop)
456
457 (push)
458 (maximize (− C 9 decomp C 9))
459 (check−sa t)
460 (pop)
461
462 (push)
463 (maximize (− D 1 decomp D 1))
464 (check−sa t)
465 (pop)
466
467 (push)
468 (maximize (− D 2 decomp D 2))
469 (check−sa t)
470 (pop)
471
472 (push)
473 (maximize (− D 4 decomp D 4))
474 (check−sa t)
475 (pop)
476
477 (push)
478 (maximize (− D 8 decomp D 8))
479 (check−sa t)
480 (pop)

A.2.2 Detection Constraints for Complete Adaptive Cruise Con-

trol System

Listing A.5: Complete Adaptive Cruise Control System Constraints

1 (de f ine−fun min2 ((x1 Real) (x2 Real)) Real
2 (/ (− (+ x1 x2) (abs (− x1 x2))) 2))
3

224

4 (de f ine−fun and2 ((x1 Real) (x2 Real)) Real
5 (min2 x1 x2))
6
7 (de f ine−fun and3 ((x1 Real) (x2 Real) (x3 Real)) Real
8 (and2 (and2 x1 x2) x3))
9

10 (de f ine−fun and4 ((x1 Real) (x2 Real) (x3 Real) (x4 Real)) Real
11 (and2 (and3 x1 x2 x3) x4))
12
13 (de f ine−fun and5 ((x1 Real) (x2 Real) (x3 Real) (x4 Real) (x5 Real)

) Real
14 (and2 (and4 x1 x2 x3 x4) x5))
15
16 (de f ine−fun max2 ((x1 Real) (x2 Real)) Real
17 (/ (+ x1 x2 (abs (− x1 x2))) 2))
18
19 (de f ine−fun or2 ((x1 Real) (x2 Real)) Real
20 (max2 x1 x2))
21
22 (de f ine−fun or3 ((x1 Real) (x2 Real) (x3 Real)) Real
23 (or2 x1 (or2 x2 x3)))
24
25 (de f ine−fun or4 ((x1 Real) (x2 Real) (x3 Real) (x4 Real)) Real
26 (or2 x1 (or3 x2 x3 x4)))
27
28 (de f ine−fun not1 ((x1 Real)) Real
29 (− 1 .0 x1))
30
31 (de f ine−fun EQUALS ((a Real) (b Real)) Real
32 (i t e (= a b) 1 .0 0 . 0))
33
34 (de f ine−fun GREATER ((a Real) (b Real)) Real
35 (i t e (> a b) 1 .0 0 . 0))
36
37 (de f ine−fun LESS ((a Real) (b Real)) Real
38 (i t e (< a b) 1 .0 0 . 0))
39
40 (dec la re−const Speed t Real)
41 (a s s e r t (and (<= Speed t 1 . 0) (>= Speed t 0 . 0)))
42
43 (dec la re−const S p e e d t p l u s 1 Real)
44 (a s s e r t (and (<= S p e e d t p l u s 1 1 . 0) (>= S p e e d t p l u s 1 0 . 0)))
45
46 (dec la re−const Distance Real)
47 (a s s e r t (and (<= Distance 1 . 0) (>= Distance 0 . 0)))
48
49 (dec la re−const Sa feDi s tance Real)

225

50 (a s s e r t (and (<= SafeDis tance 1 . 0) (>= SafeDis tance 0 . 0)))
51
52 (dec la re−const DesiredSpeed Real)
53 (a s s e r t (and (<= DesiredSpeed 1 . 0) (>= DesiredSpeed 0 . 0)))
54
55 (dec la re−const Thrott l eActuator Real)
56 (a s s e r t (and (<= Thrott leActuator 1 . 0) (>= Thrott leActuator 0 . 0)))
57
58 (dec la re−const Thrott l ePeda lSensor Real)
59 (a s s e r t (and (<= Thrott l ePeda lSensor 1 . 0) (>= Thrott l ePeda lSensor

0 . 0)))
60
61 (dec la re−const WheelSpeedSensor Real)
62 (a s s e r t (and (<= WheelSpeedSensor 1 . 0) (>= WheelSpeedSensor 0 . 0)))
63
64 (dec la re−const GPSSpeedSensor Real)
65 (a s s e r t (and (<= GPSSpeedSensor 1 . 0) (>= GPSSpeedSensor 0 . 0)))
66
67 (dec la re−const DistanceSensor1 Real)
68 (a s s e r t (and (<= DistanceSensor1 1 . 0) (>= DistanceSensor1 0 . 0)))
69
70 (dec la re−const DistanceSensor2 Real)
71 (a s s e r t (and (<= DistanceSensor2 1 . 0) (>= DistanceSensor2 0 . 0)))
72
73 (dec la re−const BrakeActuator Real)
74 (a s s e r t (and (<= BrakeActuator 1 . 0) (>= BrakeActuator 0 . 0)))
75
76 (dec la re−const BrakePedalSensor Real)
77 (a s s e r t (and (<= BrakePedalSensor 1 . 0) (>= BrakePedalSensor 0 . 0)))
78
79 (dec la re−const CruiseSwitchSensor Real)
80 (a s s e r t (and (<= CruiseSwitchSensor 1 . 0) (>= CruiseSwitchSensor

0 . 0)))
81
82 (dec la re−const Cru i seAct iveSensor Real)
83 (a s s e r t (and (<= Crui seAct iveSensor 1 . 0) (>= Crui seAct iveSensor

0 . 0)))
84
85 (dec la re−const CruiseAct iveSwitch Real)
86 (a s s e r t (and (<= CruiseAct iveSwitch 1 . 0) (>= CruiseAct iveSwitch

0 . 0)))
87
88 (a s s e r t (or (= Speed t WheelSpeedSensor) (= Speed t GPSSpeedSensor)

))
89 (a s s e r t (or (= Distance DistanceSensor1) (= Distance

DistanceSensor2)))

226

90 (a s s e r t (= S p e e d t p l u s 1 (max2 0 .0 (− Thrott leActuator
BrakeActuator))))

91 (a s s e r t (= Speed t (max2 0 .0 (− Thrott l ePeda lSensor
BrakePedalSensor))))

92
93 (de f ine−fun A 1 () Real
94 1 . 0)
95
96 (de f ine−fun A 2 () Real
97 (and2 (EQUALS CruiseSwitchSensor 0 . 0) (EQUALS

Crui seAct iveSensor 1 . 0)))
98
99 (de f ine−fun A 3 () Real

100 (and2 (EQUALS CruiseSwitchSensor 0 . 0) (EQUALS
Crui seAct iveSensor 0 . 0)))

101
102 (de f ine−fun A 4 () Real
103 (and2 (EQUALS CruiseSwitchSensor 1 . 0) (EQUALS

Crui seAct iveSensor 0 . 0)))
104
105 (de f ine−fun A 5 () Real
106 (and2 (EQUALS CruiseSwitchSensor 1 . 0) (EQUALS

Crui seAct iveSensor 1 . 0)))
107
108 (de f ine−fun A 6 () Real
109 (EQUALS CruiseSwitchSensor 0 . 0))
110
111 (de f ine−fun A 7 () Real
112 (EQUALS Crui seAct iveSensor 1 . 0))
113
114 (de f ine−fun A 8 () Real
115 (EQUALS CruiseAct iveSwitch 0 . 0))
116
117 (de f ine−fun A 9 () Real
118 (EQUALS CruiseSwitchSensor 0 . 0))
119
120 (de f ine−fun A 10 () Real
121 (EQUALS Crui seAct iveSensor 0 . 0))
122
123 (de f ine−fun A 11 () Real
124 (EQUALS CruiseSwitchSensor 1 . 0))
125
126 (de f ine−fun A 12 () Real
127 (EQUALS Crui seAct iveSensor 0 . 0))
128
129 (de f ine−fun A 13 () Real
130 (EQUALS CruiseSwitchSensor 1 . 0))

227

131
132 (de f ine−fun A 14 () Real
133 (EQUALS Crui seAct iveSensor 1 . 0))
134
135 (de f ine−fun A 15 () Real
136 (and2 (EQUALS Thrott l ePeda lSensor Thrott leActuator) (EQUALS

BrakePedalSensor BrakeActuator)))
137
138 (de f ine−fun A 16 () Real
139 (EQUALS Thrott l ePeda lSensor Thrott leActuator))
140
141 (de f ine−fun A 17 () Real
142 (EQUALS BrakePedalSensor BrakeActuator))
143
144 (de f ine−fun A 18 () Real
145 1 . 0)
146
147 (de f ine−fun A 19 () Real
148 (EQUALS Thrott l ePeda lSensor Thrott leActuator))
149
150 (de f ine−fun A 20 () Real
151 1 . 0)
152
153 (de f ine−fun A 21 () Real
154 (EQUALS BrakePedalSensor BrakeActuator))
155
156 (de f ine−fun B 1 () Real
157 (or3 (EQUALS Speed t S p e e d t p l u s 1) (GREATER Speed t

S p e e d t p l u s 1) (LESS Distance Sa feDi s tance)))
158
159 (de f ine−fun B 2 () Real
160 (or2 (and2 (EQUALS Speed t 0 . 0) (EQUALS S p e e d t p l u s 1 0 . 0)

) (GREATER Speed t S p e e d t p l u s 1)))
161
162 (de f ine−fun B 3 () Real
163 (or2 (and2 (EQUALS Speed t 0 . 0) (EQUALS S p e e d t p l u s 1 0 . 0)

) (GREATER Speed t S p e e d t p l u s 1)))
164
165 (de f ine−fun B 4 () Real
166 (LESS Thrott leActuator Thrott l ePeda lSensor))
167
168 (de f ine−fun B 5 () Real
169 (LESS Thrott leActuator Thrott l ePeda lSensor))
170
171 (de f ine−fun B 6 () Real
172 1 . 0)
173

228

174 (de f ine−fun B 7 () Real
175 (GREATER Thrott l ePeda lSensor 0 . 0))
176
177 (de f ine−fun B 8 () Real
178 (or2 (GREATER Speed t DesiredSpeed) (LESS Distance

Sa feDi s tance)))
179
180 (de f ine−fun B 9 () Real
181 (GREATER Speed t DesiredSpeed))
182
183 (de f ine−fun B 10 () Real
184 (LESS Distance Sa feDi s tance))
185
186 (de f ine−fun B 11 () Real
187 (GREATER WheelSpeedSensor DesiredSpeed))
188
189 (de f ine−fun B 12 () Real
190 (GREATER GPSSpeedSensor DesiredSpeed))
191
192 (de f ine−fun B 13 () Real
193 (LESS DistanceSensor1 Sa feDi s tance))
194
195 (de f ine−fun B 14 () Real
196 (LESS DistanceSensor2 Sa feDi s tance))
197
198 (de f ine−fun B 15 () Real
199 (GREATER BrakeActuator BrakePedalSensor))
200
201 (de f ine−fun B 16 () Real
202 (GREATER BrakeActuator BrakePedalSensor))
203
204 (de f ine−fun B 17 () Real
205 1 . 0)
206
207 (de f ine−fun B 18 () Real
208 (EQUALS Thrott l ePeda lSensor 0 . 0))
209
210 (de f ine−fun B 19 () Real
211 (LESS BrakePedalSensor 1 . 0))
212
213 (de f ine−fun C 1 () Real
214 (LESS Speed t S p e e d t p l u s 1))
215
216 (de f ine−fun C 2 () Real
217 (and2 (LESS Speed t DesiredSpeed) (GREATER Distance

Sa feDi s tance)))
218

229

219 (de f ine−fun C 3 () Real
220 (GREATER Thrott leActuator Thrott l ePeda lSensor))
221
222 (de f ine−fun C 4 () Real
223 (LESS Speed t DesiredSpeed))
224
225 (de f ine−fun C 5 () Real
226 (GREATER Thrott leActuator Thrott l ePeda lSensor))
227
228 (de f ine−fun C 6 () Real
229 (LESS WheelSpeedSensor DesiredSpeed))
230
231 (de f ine−fun C 7 () Real
232 (LESS GPSSpeedSensor DesiredSpeed))
233
234 (de f ine−fun C 8 () Real
235 (LESS Thrott l ePeda lSensor 1 . 0))
236
237 (de f ine−fun C 9 () Real
238 (GREATER Distance Sa feDi s tance))
239
240 (de f ine−fun C 10 () Real
241 (GREATER DistanceSensor1 Sa feDi s tance))
242
243 (de f ine−fun C 11 () Real
244 (GREATER DistanceSensor2 Sa feDi s tance))
245
246 (de f ine−fun C 12 () Real
247 (EQUALS BrakeActuator 0 . 0))
248
249 (de f ine−fun C 13 () Real
250 1 . 0)
251
252 (de f ine−fun D New1 () Real
253 (EQUALS BrakeActuator BrakePedalSensor))
254
255 (de f ine−fun D New2 () Real
256 1 . 0)
257
258 (de f ine−fun D 1 () Real
259 (EQUALS Speed t S p e e d t p l u s 1))
260
261 (de f ine−fun D 2 () Real
262 (and2 (EQUALS Speed t DesiredSpeed) (GREATER Distance

Sa feDi s tance)))
263
264 (de f ine−fun D 3 () Real

230

265 (EQUALS Thrott leActuator Thrott l ePeda lSensor))
266
267 (de f ine−fun D 4 () Real
268 (EQUALS Speed t DesiredSpeed))
269
270 (de f ine−fun D 5 () Real
271 1 . 0)
272
273 (de f ine−fun D 6 () Real
274 (EQUALS WheelSpeedSensor DesiredSpeed))
275
276 (de f ine−fun D 7 () Real
277 (EQUALS GPSSpeedSensor DesiredSpeed))
278
279 (de f ine−fun D 8 () Real
280 (GREATER Distance Sa feDi s tance))
281
282 (de f ine−fun D 9 () Real
283 (GREATER DistanceSensor1 Sa feDi s tance))
284
285 (de f ine−fun D 10 () Real
286 (GREATER DistanceSensor2 Sa feDi s tance))
287
288 (de f ine−fun A 1 decomp () Real
289 (or4 A 2 A 3 A 4 A 5))
290
291 (de f ine−fun A 2 decomp () Real
292 (and3 A 6 A 7 A 8))
293
294 (de f ine−fun A 3 decomp () Real
295 (and3 A 9 A 10 A 15))
296
297 (de f ine−fun A 4 decomp () Real
298 (and3 A 15 A 11 A 12))
299
300 (de f ine−fun A 5 decomp () Real
301 (and3 A 13 A 14 B 1))
302
303 (de f ine−fun A 15 decomp () Real
304 (and2 A 16 A 17))
305
306 (de f ine−fun A 16 decomp () Real
307 (and2 A 18 A 19))
308
309 (de f ine−fun A 17 decomp () Real
310 (and2 A 20 A 21))
311

231

312 (de f ine−fun B 1 decomp () Real
313 (and3 C 1 B 2 D 1))
314
315 (de f ine−fun B 2 decomp () Real
316 (and2 B 8 B 3))
317
318 (de f ine−fun B 3 decomp () Real
319 (and2 B 4 B 15))
320
321 (de f ine−fun B 4 decomp () Real
322 (and3 B 5 B 6 B 7))
323
324 (de f ine−fun B 8 decomp () Real
325 (or2 B 9 B 10))
326
327 (de f ine−fun B 9 decomp () Real
328 (and2 B 11 B 12))
329
330 (de f ine−fun B 10 decomp () Real
331 (and2 B 13 B 14))
332
333 (de f ine−fun B 15 decomp () Real
334 (and4 B 16 B 17 B 18 B 19))
335
336 (de f ine−fun C 1 decomp () Real
337 (and3 C 2 C 3 C 12))
338
339 (de f ine−fun C 2 decomp () Real
340 (and2 C 4 C 9))
341
342 (de f ine−fun C 3 decomp () Real
343 (and3 C 5 C 13 C 8))
344
345 (de f ine−fun C 4 decomp () Real
346 (and2 C 6 C 7))
347
348 (de f ine−fun C 9 decomp () Real
349 (and2 C 10 C 11))
350
351 (de f ine−fun D 1 decomp () Real
352 (and5 D 2 D 5 D 3 D New1 D New2))
353
354 (de f ine−fun D 2 decomp () Real
355 (and2 D 4 D 8))
356
357 (de f ine−fun D 4 decomp () Real
358 (and2 D 6 D 7))

232

359
360 (de f ine−fun D 8 decomp () Real
361 (and2 D 9 D 10))
362
363 (push)
364 (maximize (− A 1 decomp A 1))
365 (check−sa t)
366 (pop)
367
368 (push)
369 (maximize (− A 2 decomp A 2))
370 (check−sa t)
371 (pop)
372
373 (push)
374 (maximize (− A 3 decomp A 3))
375 (check−sa t)
376 (pop)
377
378 (push)
379 (maximize (− A 4 decomp A 4))
380 (check−sa t)
381 (pop)
382
383 (push)
384 (maximize (− A 5 decomp A 5))
385 (check−sa t)
386 (pop)
387
388 (push)
389 (maximize (− A 15 decomp A 15))
390 (check−sa t)
391 (pop)
392
393 (push)
394 (maximize (− A 16 decomp A 16))
395 (check−sa t)
396 (pop)
397
398 (push)
399 (maximize (− A 17 decomp A 17))
400 (check−sa t)
401 (pop)
402
403 (push)
404 (maximize (− B 1 decomp B 1))
405 (check−sa t)

233

406 (pop)
407
408 (push)
409 (maximize (− B 2 decomp B 2))
410 (check−sa t)
411 (pop)
412
413 (push)
414 (maximize (− B 3 decomp B 3))
415 (check−sa t)
416 (pop)
417
418 (push)
419 (maximize (− B 4 decomp B 4))
420 (check−sa t)
421 (pop)
422
423 (push)
424 (maximize (− B 8 decomp B 8))
425 (check−sa t)
426 (pop)
427
428 (push)
429 (maximize (− B 9 decomp B 9))
430 (check−sa t)
431 (pop)
432
433 (push)
434 (maximize (− B 10 decomp B 10))
435 (check−sa t)
436 (pop)
437
438 (push)
439 (maximize (− B 15 decomp B 15))
440 (check−sa t)
441 (pop)
442
443 (push)
444 (maximize (− C 1 decomp C 1))
445 (check−sa t)
446 (pop)
447
448 (push)
449 (maximize (− C 2 decomp C 2))
450 (check−sa t)
451 (pop)
452

234

453 (push)
454 (maximize (− C 3 decomp C 3))
455 (check−sa t)
456 (pop)
457
458 (push)
459 (maximize (− C 4 decomp C 4))
460 (check−sa t)
461 (pop)
462
463 (push)
464 (maximize (− C 9 decomp C 9))
465 (check−sa t)
466 (pop)
467
468 (push)
469 (maximize (− D 1 decomp D 1))
470 (check−sa t)
471 (pop)
472
473 (push)
474 (maximize (− D 2 decomp D 2))
475 (check−sa t)
476 (pop)
477
478 (push)
479 (maximize (− D 4 decomp D 4))
480 (check−sa t)
481 (pop)
482
483 (push)
484 (maximize (− D 8 decomp D 8))
485 (check−sa t)
486 (pop)

A.3 Run-Time Detection Code (C++)

This section of the appendix includes the C++ code output for detecting incomplete

and inconsistent requirements at run time in Chapter 5.

Listing A.6: Incomplete and Inconsistent Requirements Detection

1 #include <cmath>
2 #include <s t r i ng>
3

235

4 void record counterexample (std : : s t r i n g message) {
5 ;
6 }
7
8 double min2 (double x1 , double x2) {
9 return (((x1 + x2) − (std : : abs (x1 − x2))) / 2 . 0) ;

10 }
11
12 double and2 (double x1 , double x2) {
13 return (min2 (x1 , x2)) ;
14 }
15
16 double and3 (double x1 , double x2 , double x3) {
17 return (and2 (and2 (x1 , x2) , x3)) ;
18 }
19
20 double and4 (double x1 , double x2 , double x3 , double x4) {
21 return (and2 (and3 (x1 , x2 , x3) , x4)) ;
22 }
23
24 double and5 (double x1 , double x2 , double x3 , double x4 , double x5)

{
25 return (and2 (and4 (x1 , x2 , x3 , x4) , x5)) ;
26 }
27
28 double max2(double x1 , double x2) {
29 return ((x1 + x2 + (std : : abs (x1 − x2))) / 2) ;
30 }
31
32 double or2 (double x1 , double x2) {
33 return (max2(x1 , x2)) ;
34 }
35
36 double or3 (double x1 , double x2 , double x3) {
37 return (or2 (x1 , or2 (x2 , x3))) ;
38 }
39
40 double or4 (double x1 , double x2 , double x3 , double x4) {
41 return (or2 (x1 , or3 (x2 , x3 , x4))) ;
42 }
43
44 double not1 (double x1) {
45 return (1 . 0 − x1) ;
46 }
47
48 double EQUALS(double a , double b) {
49 return (std : : abs (a − b) < 0 .0001) ? 1 .0 : 0 . 0 ;

236

50 }
51
52 double GREATER(double a , double b) {
53 return (a > b) ? 1 .0 : 0 . 0 ;
54 }
55
56 double LESS(double a , double b) {
57 return (a < b) ? 1 .0 : 0 . 0 ;
58 }
59
60 double Speed t ;
61 double S p e e d t p l u s 1 ;
62 double Distance ;
63 double SafeDi s tance ;
64 double DesiredSpeed ;
65 double Thrott leActuator ;
66 double Thrott l ePeda lSensor ;
67 double WheelSpeedSensor ;
68 double GPSSpeedSensor ;
69 double DistanceSensor1 ;
70 double DistanceSensor2 ;
71 double BrakeActuator ;
72 double BrakePedalSensor ;
73 double CruiseSwitchSensor ;
74 double Crui seAct iveSensor ;
75 double CruiseAct iveSwitch ;
76
77 double A 1 () {
78 return 1 . 0 ;
79 }
80
81 double A 2 () {
82 return (and2 (EQUALS(CruiseSwitchSensor , 0 . 0) , (EQUALS(

CruiseAct iveSensor , 1 . 0)))) ;
83 }
84
85 double A 3 () {
86 return (and2 (EQUALS(CruiseSwitchSensor , 0 . 0) , (EQUALS(

CruiseAct iveSensor , 0 . 0)))) ;
87 }
88
89 double A 4 () {
90 return (and2 (EQUALS(CruiseSwitchSensor , 1 . 0) , (EQUALS(

CruiseAct iveSensor , 0 . 0)))) ;
91 }
92
93 double A 5 () {

237

94 return (and2 (EQUALS(CruiseSwitchSensor , 1 . 0) , (EQUALS(
CruiseAct iveSensor , 1 . 0)))) ;

95 }
96
97 double A 6 () {
98 return (EQUALS(CruiseSwitchSensor , 0 . 0)) ;
99 }

100
101 double A 7 () {
102 return (EQUALS(CruiseAct iveSensor , 1 . 0)) ;
103 }
104
105 double A 8 () {
106 return (EQUALS(CruiseAct iveSwitch , 0 . 0)) ;
107 }
108
109 double A 9 () {
110 return (EQUALS(CruiseSwitchSensor , 0 . 0)) ;
111 }
112
113 double A 10 () {
114 return (EQUALS(CruiseAct iveSensor , 0 . 0)) ;
115 }
116
117 double A 11 () {
118 return (EQUALS(CruiseSwitchSensor , 1 . 0)) ;
119 }
120
121 double A 12 () {
122 return (EQUALS(CruiseAct iveSensor , 0 . 0)) ;
123 }
124
125 double A 13 () {
126 return (EQUALS(CruiseSwitchSensor , 1 . 0)) ;
127 }
128
129 double A 14 () {
130 return (EQUALS(CruiseAct iveSensor , 1 . 0)) ;
131 }
132
133 double A 15 () {
134 return (and2 (EQUALS(Thrott lePedalSensor , Thrott l eActuator) , (

EQUALS(BrakePedalSensor , BrakeActuator)))) ;
135 }
136
137 double A 16 () {
138 return (EQUALS(Thrott lePedalSensor , Thrott l eActuator)) ;

238

139 }
140
141 double A 17 () {
142 return (EQUALS(BrakePedalSensor , BrakeActuator)) ;
143 }
144
145 double A 18 () {
146 return 1 . 0 ;
147 }
148
149 double A 19 () {
150 return (EQUALS(Thrott lePedalSensor , Thrott l eActuator)) ;
151 }
152
153 double A 20 () {
154 return 1 . 0 ;
155 }
156
157 double A 21 () {
158 return (EQUALS(BrakePedalSensor , BrakeActuator)) ;
159 }
160
161 double B 1 () {
162 return (or3 (EQUALS(Speed t , S p e e d t p l u s 1) , (GREATER(Speed t ,

S p e e d t p l u s 1)) , (LESS(Distance , Sa feDi s tance)))) ;
163 }
164
165 double B 2 () {
166 return (or2 (and2 (EQUALS(Speed t , 0 . 0) , (EQUALS(Speed t p lu s 1 ,

0 . 0))) , (GREATER(Speed t , S p e e d t p l u s 1)))) ;
167 }
168
169 double B 3 () {
170 return (or2 (and2 (EQUALS(Speed t , 0 . 0) , (EQUALS(Speed t p lu s 1 ,

0 . 0))) , (GREATER(Speed t , S p e e d t p l u s 1)))) ;
171 }
172
173 double B 4 () {
174 return (LESS(Thrott leActuator , Thrott l ePeda lSensor)) ;
175 }
176
177 double B 5 () {
178 return (LESS(Thrott leActuator , Thrott l ePeda lSensor)) ;
179 }
180
181 double B 6 () {
182 return 1 . 0 ;

239

183 }
184
185 double B 7 () {
186 return (GREATER(Thrott lePedalSensor , 0 . 0)) ;
187 }
188
189 double B 8 () {
190 return (or2 (GREATER(Speed t , DesiredSpeed) , (LESS(Distance ,

Sa feDi s tance)))) ;
191 }
192
193 double B 9 () {
194 return (GREATER(Speed t , DesiredSpeed)) ;
195 }
196
197 double B 10 () {
198 return (LESS(Distance , Sa feDi s tance)) ;
199 }
200
201 double B 11 () {
202 return (GREATER(WheelSpeedSensor , DesiredSpeed)) ;
203 }
204
205 double B 12 () {
206 return (GREATER(GPSSpeedSensor , DesiredSpeed)) ;
207 }
208
209 double B 13 () {
210 return (LESS(DistanceSensor1 , Sa feDi s tance)) ;
211 }
212
213 double B 14 () {
214 return (LESS(DistanceSensor2 , Sa feDi s tance)) ;
215 }
216
217 double B 15 () {
218 return (GREATER(BrakeActuator , BrakePedalSensor)) ;
219 }
220
221 double B 16 () {
222 return (GREATER(BrakeActuator , BrakePedalSensor)) ;
223 }
224
225 double B 17 () {
226 return 1 . 0 ;
227 }
228

240

229 double B 18 () {
230 return (EQUALS(Thrott lePedalSensor , 0 . 0)) ;
231 }
232
233 double B 19 () {
234 return (LESS(BrakePedalSensor , 1 . 0)) ;
235 }
236
237 double C 1 () {
238 return (LESS(Speed t , S p e e d t p l u s 1)) ;
239 }
240
241 double C 2 () {
242 return (and2 (LESS(Speed t , DesiredSpeed) , (GREATER(Distance ,

Sa feDi s tance)))) ;
243 }
244
245 double C 3 () {
246 return (GREATER(Thrott leActuator , Thrott l ePeda lSensor)) ;
247 }
248
249 double C 4 () {
250 return (LESS(Speed t , DesiredSpeed)) ;
251 }
252
253 double C 5 () {
254 return (GREATER(Thrott leActuator , Thrott l ePeda lSensor)) ;
255 }
256
257 double C 6 () {
258 return (LESS(WheelSpeedSensor , DesiredSpeed)) ;
259 }
260
261 double C 7 () {
262 return (LESS(GPSSpeedSensor , DesiredSpeed)) ;
263 }
264
265 double C 8 () {
266 return (LESS(Thrott lePedalSensor , 1 . 0)) ;
267 }
268
269 double C 9 () {
270 return (GREATER(Distance , Sa feDi s tance)) ;
271 }
272
273 double C 10 () {
274 return (GREATER(DistanceSensor1 , Sa feDi s tance)) ;

241

275 }
276
277 double C 11 () {
278 return (GREATER(DistanceSensor2 , Sa feDi s tance)) ;
279 }
280
281 double C 12 () {
282 return (EQUALS(BrakeActuator , 0 . 0)) ;
283 }
284
285 double C 13 () {
286 return 1 . 0 ;
287 }
288
289 double D New1 () {
290 return (EQUALS(BrakeActuator , BrakePedalSensor)) ;
291 }
292
293 double D New2 () {
294 return 1 . 0 ;
295 }
296
297 double D 1 () {
298 return (EQUALS(Speed t , S p e e d t p l u s 1)) ;
299 }
300
301 double D 2 () {
302 return (and2 (EQUALS(Speed t , DesiredSpeed) , (GREATER(Distance ,

Sa feDi s tance)))) ;
303 }
304
305 double D 3 () {
306 return (EQUALS(Thrott leActuator , Thrott l ePeda lSensor)) ;
307 }
308
309 double D 4 () {
310 return (EQUALS(Speed t , DesiredSpeed)) ;
311 }
312
313 double D 5 () {
314 return 1 . 0 ;
315 }
316
317 double D 6 () {
318 return (EQUALS(WheelSpeedSensor , DesiredSpeed)) ;
319 }
320

242

321 double D 7 () {
322 return (EQUALS(GPSSpeedSensor , DesiredSpeed)) ;
323 }
324
325 double D 8 () {
326 return (GREATER(Distance , Sa feDi s tance)) ;
327 }
328
329 double D 9 () {
330 return (GREATER(DistanceSensor1 , Sa feDi s tance)) ;
331 }
332
333 double D 10 () {
334 return (GREATER(DistanceSensor2 , Sa feDi s tance)) ;
335 }
336
337 double A 1 decomp () {
338 return (or4 (A 2 () , A 3 () , A 4 () , A 5 ())) ;
339 }
340
341 double A 2 decomp () {
342 return (and3 (A 6 () , A 7 () , A 8 ())) ;
343 }
344
345 double A 3 decomp () {
346 return (and3 (A 9 () , A 10 () , A 15 ())) ;
347 }
348
349 double A 4 decomp () {
350 return (and3 (A 15 () , A 11 () , A 12 ())) ;
351 }
352
353 double A 5 decomp () {
354 return (and3 (A 13 () , A 14 () , B 1 ())) ;
355 }
356
357 double A 15 decomp () {
358 return (and2 (A 16 () , A 17 ())) ;
359 }
360
361 double A 16 decomp () {
362 return (and2 (A 18 () , A 19 ())) ;
363 }
364
365 double A 17 decomp () {
366 return (and2 (A 20 () , A 21 ())) ;
367 }

243

368
369 double B 1 decomp () {
370 return (and3 (C 1 () , B 2 () , D 1 ())) ;
371 }
372
373 double B 2 decomp () {
374 return (and2 (B 8 () , B 3 ())) ;
375 }
376
377 double B 3 decomp () {
378 return (and2 (B 4 () , B 15 ())) ;
379 }
380
381 double B 4 decomp () {
382 return (and3 (B 5 () , B 6 () , B 7 ())) ;
383 }
384
385 double B 8 decomp () {
386 return (or2 (B 9 () , B 10 ())) ;
387 }
388
389 double B 9 decomp () {
390 return (and2 (B 11 () , B 12 ())) ;
391 }
392
393 double B 10 decomp () {
394 return (and2 (B 13 () , B 14 ())) ;
395 }
396
397 double B 15 decomp () {
398 return (and4 (B 16 () , B 17 () , B 18 () , B 19 ())) ;
399 }
400
401 double C 1 decomp () {
402 return (and3 (C 2 () , C 3 () , C 12 ())) ;
403 }
404
405 double C 2 decomp () {
406 return (and2 (C 4 () , C 9 ())) ;
407 }
408
409 double C 3 decomp () {
410 return (and3 (C 5 () , C 13 () , C 8 ())) ;
411 }
412
413 double C 4 decomp () {
414 return (and2 (C 6 () , C 7 ())) ;

244

415 }
416
417 double C 9 decomp () {
418 return (and2 (C 10 () , C 11 ())) ;
419 }
420
421 double D 1 decomp () {
422 return (and5 (D 2 () , D 5 () , D 3 () , D New1 () , D New2 ())) ;
423 }
424
425 double D 2 decomp () {
426 return (and2 (D 4 () , D 8 ())) ;
427 }
428
429 double D 4 decomp () {
430 return (and2 (D 6 () , D 7 ())) ;
431 }
432
433 double D 8 decomp () {
434 return (and2 (D 9 () , D 10 ())) ;
435 }
436
437 bool updated sa t o f A 1 () {
438 // Assess Parent S a t i s f a c t i o n
439 bool pa r en t sa t = A 1 () ;
440 // Assess Aggregate Chi ld S a t i s f a c t i o n
441 bool c h i l d s a t = A 1 decomp () ;
442
443 i f (pa r e n t s a t == c h i l d s a t)
444 return pa r en t sa t ;
445 else {
446 // Save v a r i a b l e s and requirement
447 record counterexample (”A 1”) ;
448
449 // Unsat i f incomple te / i n c o r r e c t
450 return fa l se ;
451 }
452 }
453
454 bool updated sa t o f A 2 () {
455 // Assess Parent S a t i s f a c t i o n
456 bool pa r en t sa t = A 2 () ;
457 // Assess Aggregate Chi ld S a t i s f a c t i o n
458 bool c h i l d s a t = A 2 decomp () ;
459
460 i f (pa r e n t s a t == c h i l d s a t)
461 return pa r en t sa t ;

245

462 else {
463 // Save v a r i a b l e s and requirement
464 record counterexample (”A 2”) ;
465
466 // Unsat i f incomple te / i n c o r r e c t
467 return fa l se ;
468 }
469 }
470
471 bool updated sa t o f A 3 () {
472 // Assess Parent S a t i s f a c t i o n
473 bool pa r en t sa t = A 3 () ;
474 // Assess Aggregate Chi ld S a t i s f a c t i o n
475 bool c h i l d s a t = A 3 decomp () ;
476
477 i f (pa r e n t s a t == c h i l d s a t)
478 return pa r en t sa t ;
479 else {
480 // Save v a r i a b l e s and requirement
481 record counterexample (”A 3”) ;
482
483 // Unsat i f incomple te / i n c o r r e c t
484 return fa l se ;
485 }
486 }
487
488 bool updated sa t o f A 4 () {
489 // Assess Parent S a t i s f a c t i o n
490 bool pa r en t sa t = A 4 () ;
491 // Assess Aggregate Chi ld S a t i s f a c t i o n
492 bool c h i l d s a t = A 4 decomp () ;
493
494 i f (pa r e n t s a t == c h i l d s a t)
495 return pa r en t sa t ;
496 else {
497 // Save v a r i a b l e s and requirement
498 record counterexample (”A 4”) ;
499
500 // Unsat i f incomple te / i n c o r r e c t
501 return fa l se ;
502 }
503 }
504
505 bool updated sa t o f A 5 () {
506 // Assess Parent S a t i s f a c t i o n
507 bool pa r en t sa t = A 5 () ;
508 // Assess Aggregate Chi ld S a t i s f a c t i o n

246

509 bool c h i l d s a t = A 5 decomp () ;
510
511 i f (pa r e n t s a t == c h i l d s a t)
512 return pa r en t sa t ;
513 else {
514 // Save v a r i a b l e s and requirement
515 record counterexample (”A 5”) ;
516
517 // Unsat i f incomple te / i n c o r r e c t
518 return fa l se ;
519 }
520 }
521
522 bool updated sat o f A 15 () {
523 // Assess Parent S a t i s f a c t i o n
524 bool pa r en t sa t = A 15 () ;
525 // Assess Aggregate Chi ld S a t i s f a c t i o n
526 bool c h i l d s a t = A 15 decomp () ;
527
528 i f (pa r e n t s a t == c h i l d s a t)
529 return pa r en t sa t ;
530 else {
531 // Save v a r i a b l e s and requirement
532 record counterexample (”A 15”) ;
533
534 // Unsat i f incomple te / i n c o r r e c t
535 return fa l se ;
536 }
537 }
538
539 bool updated sat o f A 16 () {
540 // Assess Parent S a t i s f a c t i o n
541 bool pa r en t sa t = A 16 () ;
542 // Assess Aggregate Chi ld S a t i s f a c t i o n
543 bool c h i l d s a t = A 16 decomp () ;
544
545 i f (pa r e n t s a t == c h i l d s a t)
546 return pa r en t sa t ;
547 else {
548 // Save v a r i a b l e s and requirement
549 record counterexample (”A 16”) ;
550
551 // Unsat i f incomple te / i n c o r r e c t
552 return fa l se ;
553 }
554 }
555

247

556 bool updated sat o f A 17 () {
557 // Assess Parent S a t i s f a c t i o n
558 bool pa r en t sa t = A 17 () ;
559 // Assess Aggregate Chi ld S a t i s f a c t i o n
560 bool c h i l d s a t = A 17 decomp () ;
561
562 i f (pa r e n t s a t == c h i l d s a t)
563 return pa r en t sa t ;
564 else {
565 // Save v a r i a b l e s and requirement
566 record counterexample (”A 17”) ;
567
568 // Unsat i f incomple te / i n c o r r e c t
569 return fa l se ;
570 }
571 }
572
573 bool updated sa t o f B 1 () {
574 // Assess Parent S a t i s f a c t i o n
575 bool pa r en t sa t = B 1 () ;
576 // Assess Aggregate Chi ld S a t i s f a c t i o n
577 bool c h i l d s a t = B 1 decomp () ;
578
579 i f (pa r e n t s a t == c h i l d s a t)
580 return pa r en t sa t ;
581 else {
582 // Save v a r i a b l e s and requirement
583 record counterexample (”B 1”) ;
584
585 // Unsat i f incomple te / i n c o r r e c t
586 return fa l se ;
587 }
588 }
589
590 bool updated sa t o f B 2 () {
591 // Assess Parent S a t i s f a c t i o n
592 bool pa r en t sa t = B 2 () ;
593 // Assess Aggregate Chi ld S a t i s f a c t i o n
594 bool c h i l d s a t = B 2 decomp () ;
595
596 i f (pa r e n t s a t == c h i l d s a t)
597 return pa r en t sa t ;
598 else {
599 // Save v a r i a b l e s and requirement
600 record counterexample (”B 2”) ;
601
602 // Unsat i f incomple te / i n c o r r e c t

248

603 return fa l se ;
604 }
605 }
606
607 bool updated sa t o f B 3 () {
608 // Assess Parent S a t i s f a c t i o n
609 bool pa r en t sa t = B 3 () ;
610 // Assess Aggregate Chi ld S a t i s f a c t i o n
611 bool c h i l d s a t = B 3 decomp () ;
612
613 i f (pa r e n t s a t == c h i l d s a t)
614 return pa r en t sa t ;
615 else {
616 // Save v a r i a b l e s and requirement
617 record counterexample (”B 3”) ;
618
619 // Unsat i f incomple te / i n c o r r e c t
620 return fa l se ;
621 }
622 }
623
624 bool updated sa t o f B 4 () {
625 // Assess Parent S a t i s f a c t i o n
626 bool pa r en t sa t = B 4 () ;
627 // Assess Aggregate Chi ld S a t i s f a c t i o n
628 bool c h i l d s a t = B 4 decomp () ;
629
630 i f (pa r e n t s a t == c h i l d s a t)
631 return pa r en t sa t ;
632 else {
633 // Save v a r i a b l e s and requirement
634 record counterexample (”B 4”) ;
635
636 // Unsat i f incomple te / i n c o r r e c t
637 return fa l se ;
638 }
639 }
640
641 bool updated sa t o f B 8 () {
642 // Assess Parent S a t i s f a c t i o n
643 bool pa r en t sa t = B 8 () ;
644 // Assess Aggregate Chi ld S a t i s f a c t i o n
645 bool c h i l d s a t = B 8 decomp () ;
646
647 i f (pa r e n t s a t == c h i l d s a t)
648 return pa r en t sa t ;
649 else {

249

650 // Save v a r i a b l e s and requirement
651 record counterexample (”B 8”) ;
652
653 // Unsat i f incomple te / i n c o r r e c t
654 return fa l se ;
655 }
656 }
657
658 bool updated sa t o f B 9 () {
659 // Assess Parent S a t i s f a c t i o n
660 bool pa r en t sa t = B 9 () ;
661 // Assess Aggregate Chi ld S a t i s f a c t i o n
662 bool c h i l d s a t = B 9 decomp () ;
663
664 i f (pa r e n t s a t == c h i l d s a t)
665 return pa r en t sa t ;
666 else {
667 // Save v a r i a b l e s and requirement
668 record counterexample (”B 9”) ;
669
670 // Unsat i f incomple te / i n c o r r e c t
671 return fa l se ;
672 }
673 }
674
675 bool updated sa t o f B 10 () {
676 // Assess Parent S a t i s f a c t i o n
677 bool pa r en t sa t = B 10 () ;
678 // Assess Aggregate Chi ld S a t i s f a c t i o n
679 bool c h i l d s a t = B 10 decomp () ;
680
681 i f (pa r e n t s a t == c h i l d s a t)
682 return pa r en t sa t ;
683 else {
684 // Save v a r i a b l e s and requirement
685 record counterexample (”B 10”) ;
686
687 // Unsat i f incomple te / i n c o r r e c t
688 return fa l se ;
689 }
690 }
691
692 bool updated sa t o f B 15 () {
693 // Assess Parent S a t i s f a c t i o n
694 bool pa r en t sa t = B 15 () ;
695 // Assess Aggregate Chi ld S a t i s f a c t i o n
696 bool c h i l d s a t = B 15 decomp () ;

250

697
698 i f (pa r e n t s a t == c h i l d s a t)
699 return pa r en t sa t ;
700 else {
701 // Save v a r i a b l e s and requirement
702 record counterexample (”B 15”) ;
703
704 // Unsat i f incomple te / i n c o r r e c t
705 return fa l se ;
706 }
707 }
708
709 bool updated sa t o f C 1 () {
710 // Assess Parent S a t i s f a c t i o n
711 bool pa r en t sa t = C 1 () ;
712 // Assess Aggregate Chi ld S a t i s f a c t i o n
713 bool c h i l d s a t = C 1 decomp () ;
714
715 i f (pa r e n t s a t == c h i l d s a t)
716 return pa r en t sa t ;
717 else {
718 // Save v a r i a b l e s and requirement
719 record counterexample (”C 1”) ;
720
721 // Unsat i f incomple te / i n c o r r e c t
722 return fa l se ;
723 }
724 }
725
726 bool updated sa t o f C 2 () {
727 // Assess Parent S a t i s f a c t i o n
728 bool pa r en t sa t = C 2 () ;
729 // Assess Aggregate Chi ld S a t i s f a c t i o n
730 bool c h i l d s a t = C 2 decomp () ;
731
732 i f (pa r e n t s a t == c h i l d s a t)
733 return pa r en t sa t ;
734 else {
735 // Save v a r i a b l e s and requirement
736 record counterexample (”C 2”) ;
737
738 // Unsat i f incomple te / i n c o r r e c t
739 return fa l se ;
740 }
741 }
742
743 bool updated sa t o f C 3 () {

251

744 // Assess Parent S a t i s f a c t i o n
745 bool pa r en t sa t = C 3 () ;
746 // Assess Aggregate Chi ld S a t i s f a c t i o n
747 bool c h i l d s a t = C 3 decomp () ;
748
749 i f (pa r e n t s a t == c h i l d s a t)
750 return pa r en t sa t ;
751 else {
752 // Save v a r i a b l e s and requirement
753 record counterexample (”C 3”) ;
754
755 // Unsat i f incomple te / i n c o r r e c t
756 return fa l se ;
757 }
758 }
759
760 bool updated sa t o f C 4 () {
761 // Assess Parent S a t i s f a c t i o n
762 bool pa r en t sa t = C 4 () ;
763 // Assess Aggregate Chi ld S a t i s f a c t i o n
764 bool c h i l d s a t = C 4 decomp () ;
765
766 i f (pa r e n t s a t == c h i l d s a t)
767 return pa r en t sa t ;
768 else {
769 // Save v a r i a b l e s and requirement
770 record counterexample (”C 4”) ;
771
772 // Unsat i f incomple te / i n c o r r e c t
773 return fa l se ;
774 }
775 }
776
777 bool updated sa t o f C 9 () {
778 // Assess Parent S a t i s f a c t i o n
779 bool pa r en t sa t = C 9 () ;
780 // Assess Aggregate Chi ld S a t i s f a c t i o n
781 bool c h i l d s a t = C 9 decomp () ;
782
783 i f (pa r e n t s a t == c h i l d s a t)
784 return pa r en t sa t ;
785 else {
786 // Save v a r i a b l e s and requirement
787 record counterexample (”C 9”) ;
788
789 // Unsat i f incomple te / i n c o r r e c t
790 return fa l se ;

252

791 }
792 }
793
794 bool updated sat o f D 1 () {
795 // Assess Parent S a t i s f a c t i o n
796 bool pa r en t sa t = D 1 () ;
797 // Assess Aggregate Chi ld S a t i s f a c t i o n
798 bool c h i l d s a t = D 1 decomp () ;
799
800 i f (pa r e n t s a t == c h i l d s a t)
801 return pa r en t sa t ;
802 else {
803 // Save v a r i a b l e s and requirement
804 record counterexample (”D 1”) ;
805
806 // Unsat i f incomple te / i n c o r r e c t
807 return fa l se ;
808 }
809 }
810
811 bool updated sat o f D 2 () {
812 // Assess Parent S a t i s f a c t i o n
813 bool pa r en t sa t = D 2 () ;
814 // Assess Aggregate Chi ld S a t i s f a c t i o n
815 bool c h i l d s a t = D 2 decomp () ;
816
817 i f (pa r e n t s a t == c h i l d s a t)
818 return pa r en t sa t ;
819 else {
820 // Save v a r i a b l e s and requirement
821 record counterexample (”D 2”) ;
822
823 // Unsat i f incomple te / i n c o r r e c t
824 return fa l se ;
825 }
826 }
827
828 bool updated sat o f D 4 () {
829 // Assess Parent S a t i s f a c t i o n
830 bool pa r en t sa t = D 4 () ;
831 // Assess Aggregate Chi ld S a t i s f a c t i o n
832 bool c h i l d s a t = D 4 decomp () ;
833
834 i f (pa r e n t s a t == c h i l d s a t)
835 return pa r en t sa t ;
836 else {
837 // Save v a r i a b l e s and requirement

253

838 record counterexample (”D 4”) ;
839
840 // Unsat i f incomple te / i n c o r r e c t
841 return fa l se ;
842 }
843 }
844
845 bool updated sat o f D 8 () {
846 // Assess Parent S a t i s f a c t i o n
847 bool pa r en t sa t = D 8 () ;
848 // Assess Aggregate Chi ld S a t i s f a c t i o n
849 bool c h i l d s a t = D 8 decomp () ;
850
851 i f (pa r e n t s a t == c h i l d s a t)
852 return pa r en t sa t ;
853 else {
854 // Save v a r i a b l e s and requirement
855 record counterexample (”D 8”) ;
856
857 // Unsat i f incomple te / i n c o r r e c t
858 return fa l se ;
859 }
860 }

254

Appendix B

Feature Interaction Artifacts

This appendix presents the goal model specifications as well as the satisfiability-modulo

theory (SMT) solver and code (C++) outputs from the Phorcys and Thoosa tools for feature

interaction detection. Feature interaction artifacts are included in this appendix since no

complete example can be given, due to issues of space, within Chapters 6 and 8.

B.1 Goal Model Specifications

This section of the appendix includes the XML schema for representing goal models in

XML, as well as XML representations of the braking system goal model used in Chapters 6,

7, and 8.

B.1.1 Goal Model Schema

Listing B.1: XSD Goal Model XML Schema for Feature Interactions

1 <?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
2 <xs : schema xmlns : xs=”http ://www. w3 . org /2001/XMLSchema”
3 elementFormDefault=” q u a l i f i e d ”
4 xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e”>
5 <xs : element name=”goalmodel”>
6 <xs : complexType>
7 <xs : sequence>
8 <xs : element r e f =”goa l”/>
9 <xs : element r e f =”environment”/>

10 </xs : sequence>

255

11 </xs : complexType>
12 </xs : element>
13 <xs : element name=”environment”>
14 <xs : complexType>
15 <xs : sequence>
16 <xs : element minOccurs=”0” maxOccurs=”unbounded” r e f =”env”/>
17 </xs : sequence>
18 </xs : complexType>
19 </xs : element>
20 <xs : element name=”env”>
21 <xs : complexType>
22 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
23 <xs : a t t r i b u t e name=”r e l a t i o n s h i p ” use=”requ i r ed ” type=”xs :

s t r i n g ”/>
24 </xs : complexType>
25 </xs : element>
26 <xs : element name=”goa l”>
27 <xs : complexType>
28 <xs : cho ice>
29 <xs : element maxOccurs=”unbounded” r e f=”goa l”/>
30 <xs : element r e f =”agent”/>
31 </xs : cho ice>
32 <xs : a t t r i b u t e name=”contents ” use=”requ i r ed ” type=”xs : s t r i n g

”/>
33 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
34 <xs : a t t r i b u t e name=”r e l a t i o n s h i p ” use=”requ i r ed ” type=”xs :

s t r i n g ”/>
35 <xs : a t t r i b u t e name=”type ” use=”requ i r ed ” type=”xs :NCName”/>
36 </xs : complexType>
37 </xs : element>
38 <xs : element name=”agent”>
39 <xs : complexType>
40 <xs : a t t r i b u t e name=”contents ” use=”requ i r ed ” type=”xs : s t r i n g

”/>
41 <xs : a t t r i b u t e name=”l o c a t i o n ” use=”requ i r ed ” type=”xs :NCName

”/>
42 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
43 </xs : complexType>
44 </xs : element>
45 </xs : schema>

B.1.2 Goal Model for Braking System in Chapter 6

Listing B.2: Braking System Goal Model in Chapter 6

1 <?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
2 <!−− c reated with XMLSpear −−>

256

3 <goalmodel xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e ”
x s i : noNamespaceSchemaLocation=’goalmodel . xsd ’>

4
5 <goa l name=”A” contents=”Maintain (Brake System) ” r e l a t i o n s h i p

=”” type=”AND”>
6 <goa l name=”A 1” contents=”Maintain (Brake Force) ”

r e l a t i o n s h i p =”” type=”OR”>
7 <goa l name=”B” contents=”Achieve (Standard Force Braking

) ” r e l a t i o n s h i p =”” type=”AND”>
8 <goa l name=”B 1” contents=”(= SF CBF t plus one) ”

r e l a t i o n s h i p =”” type=”POST”>
9 <agent name=”B 1 Agent” contents=”Hydraul ic Brake

Sensor ” l o c a t i o n=”environment”/>
10 </goal>
11 <goa l name=”B 2” contents=”Achieve (Apply Standard

Force) ” r e l a t i o n s h i p =”” type=”REQ”>
12 <agent name=”B 2 Agent” contents=”Hydraul ic Brake

Actuator ” l o c a t i o n=”system”/>
13 </goal>
14 <goa l name=”B 3” contents=”(> ; CBF t plus one 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
15 <agent name=”B 3 Agent” contents=”CBF Value”

l o c a t i o n=”environment”/>
16 </goal>
17 </goal>
18 <goa l name=”C” contents=”Achieve (Regen Braking) ”

r e l a t i o n s h i p =”” type=”AND”>
19 <goa l name=”C 1” contents=”(> ; CBF t plus one 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
20 <agent name=”C 1 Agent” contents=”CBF Value”

l o c a t i o n=”environment”/>
21 </goal>
22 <goa l name=”C 2” contents=”Achieve (Regen and Standard

Force) ” r e l a t i o n s h i p =”” type=”OR”>
23 <goa l name=”C 3” contents=”Achieve (Standard Force

Braking) ” r e l a t i o n s h i p =”” type=”AND”>
24 <goa l name=”C 5” contents=”(= SF (∗

CBF t plus one 0 . 2)) ” r e l a t i o n s h i p =”” type=”
POST”>

25 <agent name=”C 5 Agent” contents=”Hydraul ic
Brake Sensor ” l o c a t i o n=”environment”/>

26 </goal>
27 <goa l name=”C 6” contents=”Achieve (Apply

Standard Force) ” r e l a t i o n s h i p =”” type=”REQ”>
28 <agent name=”C 6 Agent” contents=”Hydraul ic

Brake Actuator ” l o c a t i o n=”system”/>
29 </goal>

257

30 <goa l name=”C 7” contents=”(> ; CBF t plus one
2 0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>

31 <agent name=”C 7 Agent” contents=”CBF Value”
l o c a t i o n=”environment”/>

32 </goal>
33 </goal>
34 <goa l name=”C 4” contents=”Achieve (Regen Force) ”

r e l a t i o n s h i p =”” type=”AND”>
35 <goa l name=”C 8” contents=”(& l t ; CBF t plus one

5 0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
36 <agent name=”C 7 Agent” contents=”CBF Value”

l o c a t i o n=”environment”/>
37 </goal>
38 <goa l name=”C 9” contents=”Achieve (Apply Regen

Force) ” r e l a t i o n s h i p =”” type=”REQ”>
39 <agent name=”C 6 Agent” contents=”Regenerat ion

Brake Actuator ” l o c a t i o n=”system”/>
40 </goal>
41 <goa l name=”C 10” contents=”(= RF (∗

CBF t plus one 0 . 8)) ” r e l a t i o n s h i p =”” type=”
POST”>

42 <agent name=”C 5 Agent” contents=”Regenerat ion
Brake Sensor ” l o c a t i o n=”environment”/>

43 </goal>
44 </goal>
45 </goal>
46 </goal>
47 </goal>
48 <goa l name=”A 2” contents=”Maintain (Brake Command) ”

r e l a t i o n s h i p =”” type=”OR”>
49 <goa l name=”D” contents=”Achieve (Brake−by−Wire) ”

r e l a t i o n s h i p =”” type=”AND”>
50 <goa l name=”D 2” contents=”Achieve (Read CBF) ”

r e l a t i o n s h i p =”” type=”REQ”>
51 <agent name=”D 2 Agent” contents=”Memory (CBF) ”

l o c a t i o n=”system”/>
52 </goal>
53 <goa l name=”D 3” contents=”(> ; BF 0 . 0) ” r e l a t i o n s h i p

=”” type=”PRE”>
54 <agent name=”D 3 Agent” contents=”BF Value” l o c a t i o n

=”environment”/>
55 </goal>
56 <goa l name=”D 4” contents=”Achieve (Read Brake Force) ”

r e l a t i o n s h i p =”” type=”REQ”>
57 <agent name=”D 4 Agent” contents=”Brake Pedal Sensor

(BF) ” l o c a t i o n=”system”/>
58 </goal>

258

59 <goa l name=”D 5” contents=”Achieve (Brake Pulse) ”
r e l a t i o n s h i p =”” type=”OR”>

60 <goa l name=”D 8” contents=”Achieve (Brake On) ”
r e l a t i o n s h i p =”” type=”AND”>

61 <goa l name=”D 10” contents=”(= CBF t 0 . 0) ”
r e l a t i o n s h i p =”” type=”PRE”>

62 <agent name=”D 10 Agent” contents=”CBF Value”
l o c a t i o n=”environment”/>

63 </goal>
64 <goa l name=”D 11” contents=”(= CBF t plus one BF)

” r e l a t i o n s h i p =”” type=”POST”>
65 <agent name=”D 11 Agent” contents=”Brake Pedal

Sensor (BF) ” l o c a t i o n=”environment”/>
66 </goal>
67 <goa l name=”D 12a” contents=”Achieve (Brake Force

Change) ” r e l a t i o n s h i p =”” type=”REQ”>
68 <agent name=”D 12a Agent” contents=”Memory (

CBF t plus one) ” l o c a t i o n=”system”/>
69 </goal>
70 </goal>
71 <goa l name=”D 9” contents=”Achieve (Brake Off) ”

r e l a t i o n s h i p =”” type=”AND”>
72 <goa l name=”D 12b” contents=”Achieve (Brake Force

Change) ” r e l a t i o n s h i p =”” type=”REQ”>
73 <agent name=”D 12b Agent” contents=”Memory (

CBF t plus one) ” l o c a t i o n=”system”/>
74 </goal>
75 <goa l name=”D 13” contents=”(= CBF t plus one

0 . 0) ” r e l a t i o n s h i p =”” type=”POST”>
76 <agent name=”D 13 Agent” contents=”

CBF t plus one Value” l o c a t i o n=”environment
”/>

77 </goal>
78 <goa l name=”D 14” contents=”(> ; CBF t 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
79 <agent name=”D 14 Agent” contents=”CBF Value”

l o c a t i o n=”environment”/>
80 </goal>
81 </goal>
82 </goal>
83 <goa l name=”D 6” contents=”(= SS 1 . 0) ” r e l a t i o n s h i p =””

type=”PRE”>
84 <agent name=”D 6 Agent” contents=”SS Value” l o c a t i o n

=”environment”/>
85 </goal>
86 <goa l name=”D 7” contents=”Achieve (Read SS) ”

r e l a t i o n s h i p =”” type=”REQ”>

259

87 <agent name=”D 7 Agent” contents=”S l i p Sensor ”
l o c a t i o n=”system”/>

88 </goal>
89 </goal>
90 <goa l name=”E” contents=”Achieve (Anti−Lock Braking) ”

r e l a t i o n s h i p =”” type=”AND”>
91 <goa l name=”E 2” contents=”Achieve (Read CBF) ”

r e l a t i o n s h i p =”” type=”REQ”>
92 <agent name=”E 2 Agent” contents=”Memory (CBF) ”

l o c a t i o n=”system”/>
93 </goal>
94 <goa l name=”E 3” contents=”(= CBF t plus one BF) ”

r e l a t i o n s h i p =”” type=”POST”>
95 <agent name=”E 3 Agent” contents=”BF Value” l o c a t i o n

=”environment”/>
96 </goal>
97 <goa l name=”E 4” contents=”Achieve (Read Brake Force) ”

r e l a t i o n s h i p =”” type=”REQ”>
98 <agent name=”E 4 Agent” contents=”Brake Pedal Sensor

(BF) ” l o c a t i o n=”system”/>
99 </goal>

100 <goa l name=”E 5” contents=”(> ; BF 0 . 0) ” r e l a t i o n s h i p
=”” type=”PRE”>

101 <agent name=”E 5 Agent” contents=”BF Value” l o c a t i o n
=”environment”/>

102 </goal>
103 <goa l name=”E 6” contents=”(& l t ; SS 1 . 0) ” r e l a t i o n s h i p

=”” type=”PRE”>
104 <agent name=”E 6 Agent” contents=”SS Value” l o c a t i o n

=”environment”/>
105 </goal>
106 <goa l name=”E 7” contents=”Achieve (Read SS) ”

r e l a t i o n s h i p =”” type=”REQ”>
107 <agent name=”E 7 Agent” contents=”S l i p Sensor ”

l o c a t i o n=”system”/>
108 </goal>
109 </goal>
110 </goal>
111 </goal>
112
113 <environment/>
114 </goalmodel>

B.1.3 Goal Model for Braking System in Chapter 7 and 8

Listing B.3: Braking System Goal Model in Chapter 7 and 8

260

1 <?xml v e r s i on =”1.0” encoding=”UTF−8”?>
2 <!−− c reated with XMLSpear −−>
3 <goalmodel xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e ”

x s i : noNamespaceSchemaLocation=’goalmodel . xsd ’>
4
5 <goa l name=”A” contents=”Maintain (Brake System) ” r e l a t i o n s h i p

=”” type=”AND”>
6 <goa l name=”A 1” contents=”Maintain (Brake Force) ”

r e l a t i o n s h i p =”” type=”OR”>
7 <goa l name=”B” contents=”Achieve (Standard Force Braking

) ” r e l a t i o n s h i p =”” type=”AND”>
8 <goa l name=”B 1” contents=”(= SF CBF t plus one) ”

r e l a t i o n s h i p =”” type=”POST”>
9 <agent name=”B 1 Agent” contents=”Hydraul ic

Brake Sensor ” l o c a t i o n=”environment”/>
10 </goal>
11 <goa l name=”B 2” contents=”Achieve (Apply Standard

Force) ” r e l a t i o n s h i p =”” type=”REQ”>
12 <agent name=”B 2 Agent” contents=”Hydraul ic

Brake Actuator ” l o c a t i o n=”system”/>
13 </goal>
14 <goa l name=”B 3” contents=”(> ; CBF t plus one

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
15 <agent name=”B 3 Agent” contents=”CBF Value”

l o c a t i o n=”environment”/>
16 </goal>
17 </goal>
18 <goa l name=”C” contents=”Achieve (Regen Braking) ”

r e l a t i o n s h i p =”” type=”AND”>
19 <goa l name=”C 1” contents=”(> ; CBF t plus one

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
20 <agent name=”C 1 Agent” contents=”CBF Value”

l o c a t i o n=”environment”/>
21 </goal>
22 <goa l name=”C 2” contents=”Achieve (Regen and

Standard Force) ” r e l a t i o n s h i p =”” type=”OR”>
23 <goa l name=”C 3” contents=”Achieve (Standard

Force Braking) ” r e l a t i o n s h i p =”” type=”AND”>
24 <goa l name=”C 5” contents=”(= SF (∗

CBF t plus one 0 . 2)) ” r e l a t i o n s h i p =””
type=”POST”>

25 <agent name=”C 5 Agent” contents=”
Hydraul ic Brake Sensor ” l o c a t i o n=”
environment”/>

26 </goal>
27 <goa l name=”C 6” contents=”Achieve (Apply

261

Standard Force) ” r e l a t i o n s h i p =”” type=”
REQ”>

28 <agent name=”C 6 Agent” contents=”
Hydraul ic Brake Actuator ” l o c a t i o n=”
system”/>

29 </goal>
30 <goa l name=”C 7” contents=”(> ;

CBF t plus one 0 . 2) ” r e l a t i o n s h i p =””
type=”PRE”>

31 <agent name=”C 7 Agent” contents=”CBF
Value” l o c a t i o n=”environment”/>

32 </goal>
33
34 </goal>
35 <goa l name=”C 4” contents=”Achieve (Regen Force)

” r e l a t i o n s h i p =”” type=”AND”>
36 <goa l name=”C 8” contents=”(& l t ;

CBF t plus one 0 . 5) ” r e l a t i o n s h i p =””
type=”PRE”>

37 <agent name=”C 7 Agent” contents=”CBF
Value” l o c a t i o n=”environment”/>

38 </goal>
39 <goa l name=”C 9” contents=”Achieve (Apply

Regen Force) ” r e l a t i o n s h i p =”” type=”REQ
”>

40 <agent name=”C 6 Agent” contents=”
Regenerat ion Brake Actuator ”
l o c a t i o n=”system”/>

41 </goal>
42 <goa l name=”C 10” contents=”(= RF (∗

CBF t plus one 0 . 8)) ” r e l a t i o n s h i p =””
type=”POST”>

43 <agent name=”C 5 Agent” contents=”
Regenerat ion Brake Sensor ” l o c a t i o n
=”environment”/>

44 </goal>
45 </goal>
46 </goal>
47 </goal>
48 </goal>
49 <goa l name=”A 2” contents=”Maintain (Brake Command) ”

r e l a t i o n s h i p =”” type=”OR”>
50 <goa l name=”D” contents=”Achieve (Brake−by−Wire) ”

r e l a t i o n s h i p =”” type=”AND”>
51 <goa l name=”D 2” contents=”Achieve (Read CBF) ”

r e l a t i o n s h i p =”” type=”REQ”>

262

52 <agent name=”D 2 Agent” contents=”Memory (CBF) ”
l o c a t i o n=”system”/>

53 </goal>
54 <goa l name=”D 3” contents=”(> ; BF 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
55 <agent name=”D 3 Agent” contents=”BF Value”

l o c a t i o n=”environment”/>
56 </goal>
57 <goa l name=”D 4” contents=”Achieve (Read Brake Force

) ” r e l a t i o n s h i p =”” type=”REQ”>
58 <agent name=”D 4 Agent” contents=”Brake Pedal

Sensor (BF) ” l o c a t i o n=”system”/>
59 </goal>
60 <goa l name=”D 5” contents=”Achieve (Brake Pulse) ”

r e l a t i o n s h i p =”” type=”OR”>
61 <goa l name=”D 8” contents=”Achieve (Brake On) ”

r e l a t i o n s h i p =”” type=”AND”>
62 <goa l name=”D 10” contents=”(= CBF t 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
63 <agent name=”D 10 Agent” contents=”CBF

Value” l o c a t i o n=”environment”/>
64 </goal>
65 <goa l name=”D 11” contents=”(=

CBF t plus one BF) ” r e l a t i o n s h i p =”” type
=”POST”>

66 <agent name=”D 11 Agent” contents=”
Brake Pedal Sensor (BF) ” l o c a t i o n=”
environment”/>

67 </goal>
68 <goa l name=”D 12a” contents=”Achieve (Brake

Force Change) ” r e l a t i o n s h i p =”” type=”REQ
”>

69 <agent name=”D 12a Agent” contents=”
Memory (CBF t plus one) ” l o c a t i o n=”
system”/>

70 </goal>
71 </goal>
72 <goa l name=”D 9” contents=”Achieve (Brake Off) ”

r e l a t i o n s h i p =”” type=”AND”>
73 <goa l name=”D 12b” contents=”Achieve (Brake

Force Change) ” r e l a t i o n s h i p =”” type=”REQ
”>

74 <agent name=”D 12b Agent” contents=”
Memory (CBF t plus one) ” l o c a t i o n=”
system”/>

75 </goal>
76 <goa l name=”D 13” contents=”(=

263

CBF t plus one 0 . 0) ” r e l a t i o n s h i p =””
type=”POST”>

77 <agent name=”D 13 Agent” contents=”
CBF t plus one Value” l o c a t i o n=”
environment”/>

78 </goal>
79 <goa l name=”D 14” contents=”(> ; CBF t

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
80 <agent name=”D 14 Agent” contents=”CBF

Value” l o c a t i o n=”environment”/>
81 </goal>
82 </goal>
83 </goal>
84 <goa l name=”D 6” contents=”(= SS 1 . 0) ” r e l a t i o n s h i p

=”” type=”PRE”>
85 <agent name=”D 6 Agent” contents=”SS Value”

l o c a t i o n=”environment”/>
86 </goal>
87 <goa l name=”D 7” contents=”Achieve (Read SS) ”

r e l a t i o n s h i p =”” type=”REQ”>
88 <agent name=”D 7 Agent” contents=”S l i p Sensor ”

l o c a t i o n=”system”/>
89 </goal>
90 </goal>
91 <goa l name=”E” contents=”Achieve (Anti−Lock Braking) ”

r e l a t i o n s h i p =”” type=”AND”>
92 <goa l name=”E 2” contents=”Achieve (Read CBF) ”

r e l a t i o n s h i p =”” type=”REQ”>
93 <agent name=”E 2 Agent” contents=”Memory (CBF) ”

l o c a t i o n=”system”/>
94 </goal>
95 <goa l name=”E 3” contents=”(= CBF t plus one BF) ”

r e l a t i o n s h i p =”” type=”POST”>
96 <agent name=”E 3 Agent” contents=”BF Value”

l o c a t i o n=”environment”/>
97 </goal>
98 <goa l name=”E 4” contents=”Achieve (Read Brake Force

) ” r e l a t i o n s h i p =”” type=”REQ”>
99 <agent name=”E 4 Agent” contents=”Brake Pedal

Sensor (BF) ” l o c a t i o n=”system”/>
100 </goal>
101 <goa l name=”E 5” contents=”(> ; BF 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
102 <agent name=”E 5 Agent” contents=”BF Value”

l o c a t i o n=”environment”/>
103 </goal>

264

104 <goa l name=”E 6” contents=”(& l t ; SS 1 . 0) ”
r e l a t i o n s h i p =”” type=”PRE”>

105 <agent name=”E 6 Agent” contents=”SS Value”
l o c a t i o n=”environment”/>

106 </goal>
107 <goa l name=”E 7” contents=”Achieve (Read SS) ”

r e l a t i o n s h i p =”” type=”REQ”>
108 <agent name=”E 7 Agent” contents=”S l i p Sensor ”

l o c a t i o n=”system”/>
109 </goal>
110 </goal>
111 </goal>
112 </goal>
113
114 <environment/>
115 </goalmodel>

B.2 Design-Time Detection Constraints (SMT)

This section of the appendix includes the SMT constraint output for detecting feature

interactions in Chapter 6. Constraint sets are listed for each of the four features in the

braking system goal model.

B.2.1 Detection Constraints for Failure of Feature B

Listing B.4: Feature Interaction for Failure of Feature B

1 (set−opt ion : pr int−s u c c e s s t rue)
2 (de f ine−fun min2 ((x1 Real) (x2 Real)) Real (/ (− (+ x1 x2) (abs (−

x1 x2))) 2))
3 (de f ine−fun max2 ((x1 Real) (x2 Real)) Real (/ (+ x1 x2 (abs (− x1

x2))) 2))
4 (dec la re−const BF Real)
5 (dec la re−const CBF t plus one D 11 Bool)
6 (dec la re−const RF C 10 Bool)
7 (dec la re−const CBF t plus one D 13 Bool)
8 (dec la re−const CBF t D 14 Bool)
9 (dec la re−const SF Real)

10 (dec la re−const CBF t plus one Real)
11 (dec la re−const BF D 3 Bool)
12 (dec la re−const CBF t plus one C 8 Bool)
13 (dec la re−const CBF t plus one C 7 Bool)
14 (dec la re−const SS Real)
15 (dec la re−const SF B 1 Bool)

265

16 (dec la re−const CBF t plus one E 3 Bool)
17 (dec la re−const SF C 5 Bool)
18 (dec la re−const CBF t plus one B 3 Bool)
19 (dec la re−const BF E 5 Bool)
20 (dec la re−const CBF t plus one C 1 Bool)
21 (dec la re−const CBF t D 10 Bool)
22 (dec la re−const CBF t Real)
23 (dec la re−const RF Real)
24 (dec la re−const C s Bool)
25 (dec la re−const B s Bool)
26 (dec la re−const E s Bool)
27 (dec la re−const D s Bool)
28 (dec la re−const SS D 6 Bool)
29 (dec la re−const SS E 6 Bool)
30 (de f ine−fun V SS () Bool (or (or f a l s e SS D 6) SS E 6))
31 (de f ine−fun V SF () Bool (or (or f a l s e SF B 1) SF C 5))
32 (de f ine−fun V CBF t () Bool (or (or f a l s e CBF t D 10) CBF t D 14))
33 (de f ine−fun V RF () Bool (or f a l s e RF C 10))
34 (de f ine−fun V BF () Bool (or (or f a l s e BF D 3) BF E 5))
35 (de f ine−fun V CBF t plus one () Bool (or (or (or (or (or (or (or

f a l s e CBF t plus one B 3) CBF t plus one C 1) CBF t plus one C 7
) CBF t plus one C 8) CBF t plus one D 11) CBF t plus one D 13)
CBF t plus one E 3))

36 (de f ine−fun B 1 () Bool (and (and (= SF CBF t plus one) V SF)
V CBF t plus one))

37 (de f ine−fun B 2 () Bool t rue)
38 (de f ine−fun B 3 () Bool (and (> CBF t plus one 0 . 0)

V CBF t plus one))
39 (de f ine−fun B () Bool (and (and (and true B 1) B 2) B 3))
40 (de f ine−fun C 1 () Bool (and (> CBF t plus one 0 . 0)

V CBF t plus one))
41 (de f ine−fun C 5 () Bool (and (and (= SF (∗ CBF t plus one 0 . 2))

V SF) V CBF t plus one))
42 (de f ine−fun C 6 () Bool t rue)
43 (de f ine−fun C 7 () Bool (and (> CBF t plus one 2 0 . 0)

V CBF t plus one))
44 (de f ine−fun C 3 () Bool (and (and (and true C 5) C 6) C 7))
45 (de f ine−fun C 8 () Bool (and (< CBF t plus one 5 0 . 0)

V CBF t plus one))
46 (de f ine−fun C 9 () Bool t rue)
47 (de f ine−fun C 10 () Bool (and (and (= RF (∗ CBF t plus one 0 . 8))

V RF) V CBF t plus one))
48 (de f ine−fun C 4 () Bool (and (and (and true C 8) C 9) C 10))
49 (de f ine−fun C 2 () Bool (or (or f a l s e C 3) C 4))
50 (de f ine−fun C () Bool (and (and true C 1) C 2))
51 (de f ine−fun A 1 () Bool (or (or f a l s e B) C))
52 (de f ine−fun D 2 () Bool t rue)

266

53 (de f ine−fun D 3 () Bool (and (> BF 0 . 0) V BF))
54 (de f ine−fun D 4 () Bool t rue)
55 (de f ine−fun D 10 () Bool (and (= CBF t 0 . 0) V CBF t))
56 (de f ine−fun D 11 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
57 (de f ine−fun D 12a () Bool t rue)
58 (de f ine−fun D 8 () Bool (and (and (and true D 10) D 11) D 12a))
59 (de f ine−fun D 12b () Bool t rue)
60 (de f ine−fun D 13 () Bool (and (= CBF t plus one 0 . 0)

V CBF t plus one))
61 (de f ine−fun D 14 () Bool (and (> CBF t 0 . 0) V CBF t))
62 (de f ine−fun D 9 () Bool (and (and (and true D 12b) D 13) D 14))
63 (de f ine−fun D 5 () Bool (or (or f a l s e D 8) D 9))
64 (de f ine−fun D 6 () Bool (and (= SS 1 . 0) V SS))
65 (de f ine−fun D 7 () Bool t rue)
66 (de f ine−fun D () Bool (and (and (and (and (and (and true D 2) D 3)

D 4) D 5) D 6) D 7))
67 (de f ine−fun E 2 () Bool t rue)
68 (de f ine−fun E 3 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
69 (de f ine−fun E 4 () Bool t rue)
70 (de f ine−fun E 5 () Bool (and (> BF 0 . 0) V BF))
71 (de f ine−fun E 6 () Bool (and (< SS 1 . 0) V SS))
72 (de f ine−fun E 7 () Bool t rue)
73 (de f ine−fun E () Bool (and (and (and (and (and (and true E 2) E 3)

E 4) E 5) E 6) E 7))
74 (de f ine−fun A 2 () Bool (or (or f a l s e D) E))
75 (de f ine−fun A () Bool (and (and true A 1) A 2))
76 (de f ine−fun B P () Bool (and true B 3))
77 (de f ine−fun C 3 P () Bool (and true C 7))
78 (de f ine−fun C 4 P () Bool (and true C 8))
79 (de f ine−fun C 2 P () Bool (or (or f a l s e C 3 P) C 4 P))
80 (de f ine−fun C P () Bool (and (and true C 1) C 2 P))
81 (de f ine−fun A 1 P () Bool (or (or f a l s e B P) C P))
82 (de f ine−fun D 8 P () Bool (and true D 10))
83 (de f ine−fun D 9 P () Bool (and true D 14))
84 (de f ine−fun D 5 P () Bool (or (or f a l s e D 8 P) D 9 P))
85 (de f ine−fun D P () Bool (and (and (and true D 3) D 5 P) D 6))
86 (de f ine−fun E P () Bool (and (and true E 5) E 6))
87 (de f ine−fun A 2 P () Bool (or (or f a l s e D P) E P))
88 (de f ine−fun A P () Bool (and (and true A 1 P) A 2 P))
89 (de f ine−fun B 1 N () Bool (and (and (not (= SF CBF t plus one))

V SF) V CBF t plus one))
90 (de f ine−fun C 5 N () Bool (and (and (not (= SF (∗ CBF t plus one

0 . 2))) V SF) V CBF t plus one))
91 (de f ine−fun C 10 N () Bool (and (and (not (= RF (∗ CBF t plus one

0 . 8))) V RF) V CBF t plus one))

267

92 (de f ine−fun D 11 N () Bool (and (and (not (= CBF t plus one BF))
V BF) V CBF t plus one))

93 (de f ine−fun D 13 N () Bool (and (not (= CBF t plus one 0 . 0))
V CBF t plus one))

94 (de f ine−fun E 3 N () Bool (and (and (not (= CBF t plus one BF))
V BF) V CBF t plus one))

95 (de f ine−fun B PP () Bool (and (and true B 3) (or f a l s e B 1 N)))
96 (de f ine−fun C 3 PP () Bool (and (and true C 7) (or f a l s e C 5 N)))
97 (de f ine−fun C 4 PP () Bool (and (and true C 8) (or f a l s e C 10 N)))
98 (de f ine−fun C 2 PP () Bool (or (or f a l s e C 3 PP) C 4 PP))
99 (de f ine−fun C PP () Bool (and (and true C 1) C 2 PP))

100 (de f ine−fun A 1 PP () Bool (or (or f a l s e B PP) C PP))
101 (de f ine−fun D 8 PP () Bool (and (and true D 10) (or f a l s e D 11 N)))
102 (de f ine−fun D 9 PP () Bool (and (and true D 14) (or f a l s e D 13 N)))
103 (de f ine−fun D 5 PP () Bool (or (or f a l s e D 8 PP) D 9 PP))
104 (de f ine−fun D PP () Bool (and (and (and true D 3) D 5 PP) D 6))
105 (de f ine−fun E PP () Bool (and (and (and true E 5) E 6) (or f a l s e

E 3 N)))
106 (de f ine−fun A 2 PP () Bool (or (or f a l s e D PP) E PP))
107 (de f ine−fun A PP () Bool (and (and true A 1 PP) A 2 PP))
108 (de f ine−fun A Contr ibutes () Bool A)
109 (de f ine−fun A 1 Contr ibutes () Bool (and A 1 A Contr ibutes))
110 (de f ine−fun B Contr ibutes () Bool B)
111 (de f ine−fun B 1 Contr ibutes () Bool (and B 1 B Contr ibutes))
112 (de f ine−fun B 2 Contr ibutes () Bool (and B 2 B Contr ibutes))
113 (de f ine−fun B 3 Contr ibutes () Bool (and B 3 B Contr ibutes))
114 (de f ine−fun C Contr ibutes () Bool C)
115 (de f ine−fun C 1 Contr ibutes () Bool (and C 1 C Contr ibutes))
116 (de f ine−fun C 2 Contr ibutes () Bool (and C 2 C Contr ibutes))
117 (de f ine−fun C 3 Contr ibutes () Bool (and C 3 C 2 Contr ibutes))
118 (de f ine−fun C 5 Contr ibutes () Bool (and C 5 C 3 Contr ibutes))
119 (de f ine−fun C 6 Contr ibutes () Bool (and C 6 C 3 Contr ibutes))
120 (de f ine−fun C 7 Contr ibutes () Bool (and C 7 C 3 Contr ibutes))
121 (de f ine−fun C 4 Contr ibutes () Bool (and C 4 C 2 Contr ibutes))
122 (de f ine−fun C 8 Contr ibutes () Bool (and C 8 C 4 Contr ibutes))
123 (de f ine−fun C 9 Contr ibutes () Bool (and C 9 C 4 Contr ibutes))
124 (de f ine−fun C 10 Contr ibutes () Bool (and C 10 C 4 Contr ibutes))
125 (de f ine−fun A 2 Contr ibutes () Bool (and A 2 A Contr ibutes))
126 (de f ine−fun D Contributes () Bool D)
127 (de f ine−fun D 2 Contr ibutes () Bool (and D 2 D Contributes))
128 (de f ine−fun D 3 Contr ibutes () Bool (and D 3 D Contributes))
129 (de f ine−fun D 4 Contr ibutes () Bool (and D 4 D Contributes))
130 (de f ine−fun D 5 Contr ibutes () Bool (and D 5 D Contributes))
131 (de f ine−fun D 8 Contr ibutes () Bool (and D 8 D 5 Contr ibutes))
132 (de f ine−fun D 10 Contr ibutes () Bool (and D 10 D 8 Contr ibutes))
133 (de f ine−fun D 11 Contr ibutes () Bool (and D 11 D 8 Contr ibutes))
134 (de f ine−fun D 12a Contr ibutes () Bool (and D 12a D 8 Contr ibutes))

268

135 (de f ine−fun D 9 Contr ibutes () Bool (and D 9 D 5 Contr ibutes))
136 (de f ine−fun D 12b Contr ibutes () Bool (and D 12b D 9 Contr ibutes))
137 (de f ine−fun D 13 Contr ibutes () Bool (and D 13 D 9 Contr ibutes))
138 (de f ine−fun D 14 Contr ibutes () Bool (and D 14 D 9 Contr ibutes))
139 (de f ine−fun D 6 Contr ibutes () Bool (and D 6 D Contributes))
140 (de f ine−fun D 7 Contr ibutes () Bool (and D 7 D Contributes))
141 (de f ine−fun E Contr ibutes () Bool E)
142 (de f ine−fun E 2 Contr ibutes () Bool (and E 2 E Contr ibutes))
143 (de f ine−fun E 3 Contr ibutes () Bool (and E 3 E Contr ibutes))
144 (de f ine−fun E 4 Contr ibutes () Bool (and E 4 E Contr ibutes))
145 (de f ine−fun E 5 Contr ibutes () Bool (and E 5 E Contr ibutes))
146 (de f ine−fun E 6 Contr ibutes () Bool (and E 6 E Contr ibutes))
147 (de f ine−fun E 7 Contr ibutes () Bool (and E 7 E Contr ibutes))
148 (a s s e r t (i t e B 1 Contr ibutes (= SF B 1 true) (= SF B 1 f a l s e)))
149 (a s s e r t (i t e B 3 Contr ibutes (= CBF t plus one B 3 true) (=

CBF t plus one B 3 f a l s e)))
150 (a s s e r t (i t e C 1 Contr ibutes (= CBF t plus one C 1 true) (=

CBF t plus one C 1 f a l s e)))
151 (a s s e r t (i t e C 5 Contr ibutes (= SF C 5 true) (= SF C 5 f a l s e)))
152 (a s s e r t (i t e C 7 Contr ibutes (= CBF t plus one C 7 true) (=

CBF t plus one C 7 f a l s e)))
153 (a s s e r t (i t e C 8 Contr ibutes (= CBF t plus one C 8 true) (=

CBF t plus one C 8 f a l s e)))
154 (a s s e r t (i t e C 10 Contr ibutes (= RF C 10 true) (= RF C 10 f a l s e)))
155 (a s s e r t (i t e D 3 Contr ibutes (= BF D 3 true) (= BF D 3 f a l s e)))
156 (a s s e r t (i t e D 10 Contr ibutes (= CBF t D 10 true) (= CBF t D 10

f a l s e)))
157 (a s s e r t (i t e D 11 Contr ibutes (= CBF t plus one D 11 true) (=

CBF t plus one D 11 f a l s e)))
158 (a s s e r t (i t e D 13 Contr ibutes (= CBF t plus one D 13 true) (=

CBF t plus one D 13 f a l s e)))
159 (a s s e r t (i t e D 14 Contr ibutes (= CBF t D 14 true) (= CBF t D 14

f a l s e)))
160 (a s s e r t (i t e D 6 Contr ibutes (= SS D 6 true) (= SS D 6 f a l s e)))
161 (a s s e r t (i t e E 3 Contr ibutes (= CBF t plus one E 3 true) (=

CBF t plus one E 3 f a l s e)))
162 (a s s e r t (i t e E 5 Contr ibutes (= BF E 5 true) (= BF E 5 f a l s e)))
163 (a s s e r t (i t e E 6 Contr ibutes (= SS E 6 true) (= SS E 6 f a l s e)))
164 (a s s e r t (and (or B s C s) (or D s E s)))
165 (a s s e r t (i t e C s (or C C P) (not C)))
166 (a s s e r t (i t e D s (or D D P) (not D)))
167 (a s s e r t (i t e E s (or E E P) (not E)))
168 (a s s e r t (i t e B s B PP f a l s e))

269

B.2.2 Detection Constraints for Failure of Feature C

Listing B.5: Feature Interaction for Failure of Feature C

1 (set−opt ion : pr int−s u c c e s s t rue)
2 (de f ine−fun min2 ((x1 Real) (x2 Real)) Real (/ (− (+ x1 x2) (abs (−

x1 x2))) 2))
3 (de f ine−fun max2 ((x1 Real) (x2 Real)) Real (/ (+ x1 x2 (abs (− x1

x2))) 2))
4 (dec la re−const BF Real)
5 (dec la re−const CBF t plus one D 11 Bool)
6 (dec la re−const RF C 10 Bool)
7 (dec la re−const CBF t plus one D 13 Bool)
8 (dec la re−const CBF t D 14 Bool)
9 (dec la re−const SF Real)

10 (dec la re−const CBF t plus one Real)
11 (dec la re−const BF D 3 Bool)
12 (dec la re−const CBF t plus one C 8 Bool)
13 (dec la re−const CBF t plus one C 7 Bool)
14 (dec la re−const SS Real)
15 (dec la re−const SF B 1 Bool)
16 (dec la re−const CBF t plus one E 3 Bool)
17 (dec la re−const SF C 5 Bool)
18 (dec la re−const CBF t plus one B 3 Bool)
19 (dec la re−const BF E 5 Bool)
20 (dec la re−const CBF t plus one C 1 Bool)
21 (dec la re−const CBF t D 10 Bool)
22 (dec la re−const CBF t Real)
23 (dec la re−const RF Real)
24 (dec la re−const C s Bool)
25 (dec la re−const B s Bool)
26 (dec la re−const E s Bool)
27 (dec la re−const D s Bool)
28 (dec la re−const SS D 6 Bool)
29 (dec la re−const SS E 6 Bool)
30 (de f ine−fun V SS () Bool (or (or f a l s e SS D 6) SS E 6))
31 (de f ine−fun V SF () Bool (or (or f a l s e SF B 1) SF C 5))
32 (de f ine−fun V CBF t () Bool (or (or f a l s e CBF t D 10) CBF t D 14))
33 (de f ine−fun V RF () Bool (or f a l s e RF C 10))
34 (de f ine−fun V BF () Bool (or (or f a l s e BF D 3) BF E 5))
35 (de f ine−fun V CBF t plus one () Bool (or (or (or (or (or (or (or

f a l s e CBF t plus one B 3) CBF t plus one C 1) CBF t plus one C 7
) CBF t plus one C 8) CBF t plus one D 11) CBF t plus one D 13)
CBF t plus one E 3))

36 (de f ine−fun B 1 () Bool (and (and (= SF CBF t plus one) V SF)
V CBF t plus one))

37 (de f ine−fun B 2 () Bool t rue)

270

38 (de f ine−fun B 3 () Bool (and (> CBF t plus one 0 . 0)
V CBF t plus one))

39 (de f ine−fun B () Bool (and (and (and true B 1) B 2) B 3))
40 (de f ine−fun C 1 () Bool (and (> CBF t plus one 0 . 0)

V CBF t plus one))
41 (de f ine−fun C 5 () Bool (and (and (= SF (∗ CBF t plus one 0 . 2))

V SF) V CBF t plus one))
42 (de f ine−fun C 6 () Bool t rue)
43 (de f ine−fun C 7 () Bool (and (> CBF t plus one 2 0 . 0)

V CBF t plus one))
44 (de f ine−fun C 3 () Bool (and (and (and true C 5) C 6) C 7))
45 (de f ine−fun C 8 () Bool (and (< CBF t plus one 5 0 . 0)

V CBF t plus one))
46 (de f ine−fun C 9 () Bool t rue)
47 (de f ine−fun C 10 () Bool (and (and (= RF (∗ CBF t plus one 0 . 8))

V RF) V CBF t plus one))
48 (de f ine−fun C 4 () Bool (and (and (and true C 8) C 9) C 10))
49 (de f ine−fun C 2 () Bool (or (or f a l s e C 3) C 4))
50 (de f ine−fun C () Bool (and (and true C 1) C 2))
51 (de f ine−fun A 1 () Bool (or (or f a l s e B) C))
52 (de f ine−fun D 2 () Bool t rue)
53 (de f ine−fun D 3 () Bool (and (> BF 0 . 0) V BF))
54 (de f ine−fun D 4 () Bool t rue)
55 (de f ine−fun D 10 () Bool (and (= CBF t 0 . 0) V CBF t))
56 (de f ine−fun D 11 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
57 (de f ine−fun D 12a () Bool t rue)
58 (de f ine−fun D 8 () Bool (and (and (and true D 10) D 11) D 12a))
59 (de f ine−fun D 12b () Bool t rue)
60 (de f ine−fun D 13 () Bool (and (= CBF t plus one 0 . 0)

V CBF t plus one))
61 (de f ine−fun D 14 () Bool (and (> CBF t 0 . 0) V CBF t))
62 (de f ine−fun D 9 () Bool (and (and (and true D 12b) D 13) D 14))
63 (de f ine−fun D 5 () Bool (or (or f a l s e D 8) D 9))
64 (de f ine−fun D 6 () Bool (and (= SS 1 . 0) V SS))
65 (de f ine−fun D 7 () Bool t rue)
66 (de f ine−fun D () Bool (and (and (and (and (and (and true D 2) D 3)

D 4) D 5) D 6) D 7))
67 (de f ine−fun E 2 () Bool t rue)
68 (de f ine−fun E 3 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
69 (de f ine−fun E 4 () Bool t rue)
70 (de f ine−fun E 5 () Bool (and (> BF 0 . 0) V BF))
71 (de f ine−fun E 6 () Bool (and (< SS 1 . 0) V SS))
72 (de f ine−fun E 7 () Bool t rue)
73 (de f ine−fun E () Bool (and (and (and (and (and (and true E 2) E 3)

E 4) E 5) E 6) E 7))

271

74 (de f ine−fun A 2 () Bool (or (or f a l s e D) E))
75 (de f ine−fun A () Bool (and (and true A 1) A 2))
76 (de f ine−fun B P () Bool (and true B 3))
77 (de f ine−fun C 3 P () Bool (and true C 7))
78 (de f ine−fun C 4 P () Bool (and true C 8))
79 (de f ine−fun C 2 P () Bool (or (or f a l s e C 3 P) C 4 P))
80 (de f ine−fun C P () Bool (and (and true C 1) C 2 P))
81 (de f ine−fun A 1 P () Bool (or (or f a l s e B P) C P))
82 (de f ine−fun D 8 P () Bool (and true D 10))
83 (de f ine−fun D 9 P () Bool (and true D 14))
84 (de f ine−fun D 5 P () Bool (or (or f a l s e D 8 P) D 9 P))
85 (de f ine−fun D P () Bool (and (and (and true D 3) D 5 P) D 6))
86 (de f ine−fun E P () Bool (and (and true E 5) E 6))
87 (de f ine−fun A 2 P () Bool (or (or f a l s e D P) E P))
88 (de f ine−fun A P () Bool (and (and true A 1 P) A 2 P))
89 (de f ine−fun B 1 N () Bool (and (and (not (= SF CBF t plus one))

V SF) V CBF t plus one))
90 (de f ine−fun C 5 N () Bool (and (and (not (= SF (∗ CBF t plus one

0 . 2))) V SF) V CBF t plus one))
91 (de f ine−fun C 10 N () Bool (and (and (not (= RF (∗ CBF t plus one

0 . 8))) V RF) V CBF t plus one))
92 (de f ine−fun D 11 N () Bool (and (and (not (= CBF t plus one BF))

V BF) V CBF t plus one))
93 (de f ine−fun D 13 N () Bool (and (not (= CBF t plus one 0 . 0))

V CBF t plus one))
94 (de f ine−fun E 3 N () Bool (and (and (not (= CBF t plus one BF))

V BF) V CBF t plus one))
95 (de f ine−fun B PP () Bool (and (and true B 3) (or f a l s e B 1 N)))
96 (de f ine−fun C 3 PP () Bool (and (and true C 7) (or f a l s e C 5 N)))
97 (de f ine−fun C 4 PP () Bool (and (and true C 8) (or f a l s e C 10 N)))
98 (de f ine−fun C 2 PP () Bool (or (or f a l s e C 3 PP) C 4 PP))
99 (de f ine−fun C PP () Bool (and (and true C 1) C 2 PP))

100 (de f ine−fun A 1 PP () Bool (or (or f a l s e B PP) C PP))
101 (de f ine−fun D 8 PP () Bool (and (and true D 10) (or f a l s e D 11 N)))
102 (de f ine−fun D 9 PP () Bool (and (and true D 14) (or f a l s e D 13 N)))
103 (de f ine−fun D 5 PP () Bool (or (or f a l s e D 8 PP) D 9 PP))
104 (de f ine−fun D PP () Bool (and (and (and true D 3) D 5 PP) D 6))
105 (de f ine−fun E PP () Bool (and (and (and true E 5) E 6) (or f a l s e

E 3 N)))
106 (de f ine−fun A 2 PP () Bool (or (or f a l s e D PP) E PP))
107 (de f ine−fun A PP () Bool (and (and true A 1 PP) A 2 PP))
108 (de f ine−fun A Contr ibutes () Bool A)
109 (de f ine−fun A 1 Contr ibutes () Bool (and A 1 A Contr ibutes))
110 (de f ine−fun B Contr ibutes () Bool B)
111 (de f ine−fun B 1 Contr ibutes () Bool (and B 1 B Contr ibutes))
112 (de f ine−fun B 2 Contr ibutes () Bool (and B 2 B Contr ibutes))
113 (de f ine−fun B 3 Contr ibutes () Bool (and B 3 B Contr ibutes))

272

114 (de f ine−fun C Contr ibutes () Bool C)
115 (de f ine−fun C 1 Contr ibutes () Bool (and C 1 C Contr ibutes))
116 (de f ine−fun C 2 Contr ibutes () Bool (and C 2 C Contr ibutes))
117 (de f ine−fun C 3 Contr ibutes () Bool (and C 3 C 2 Contr ibutes))
118 (de f ine−fun C 5 Contr ibutes () Bool (and C 5 C 3 Contr ibutes))
119 (de f ine−fun C 6 Contr ibutes () Bool (and C 6 C 3 Contr ibutes))
120 (de f ine−fun C 7 Contr ibutes () Bool (and C 7 C 3 Contr ibutes))
121 (de f ine−fun C 4 Contr ibutes () Bool (and C 4 C 2 Contr ibutes))
122 (de f ine−fun C 8 Contr ibutes () Bool (and C 8 C 4 Contr ibutes))
123 (de f ine−fun C 9 Contr ibutes () Bool (and C 9 C 4 Contr ibutes))
124 (de f ine−fun C 10 Contr ibutes () Bool (and C 10 C 4 Contr ibutes))
125 (de f ine−fun A 2 Contr ibutes () Bool (and A 2 A Contr ibutes))
126 (de f ine−fun D Contributes () Bool D)
127 (de f ine−fun D 2 Contr ibutes () Bool (and D 2 D Contributes))
128 (de f ine−fun D 3 Contr ibutes () Bool (and D 3 D Contributes))
129 (de f ine−fun D 4 Contr ibutes () Bool (and D 4 D Contributes))
130 (de f ine−fun D 5 Contr ibutes () Bool (and D 5 D Contributes))
131 (de f ine−fun D 8 Contr ibutes () Bool (and D 8 D 5 Contr ibutes))
132 (de f ine−fun D 10 Contr ibutes () Bool (and D 10 D 8 Contr ibutes))
133 (de f ine−fun D 11 Contr ibutes () Bool (and D 11 D 8 Contr ibutes))
134 (de f ine−fun D 12a Contr ibutes () Bool (and D 12a D 8 Contr ibutes))
135 (de f ine−fun D 9 Contr ibutes () Bool (and D 9 D 5 Contr ibutes))
136 (de f ine−fun D 12b Contr ibutes () Bool (and D 12b D 9 Contr ibutes))
137 (de f ine−fun D 13 Contr ibutes () Bool (and D 13 D 9 Contr ibutes))
138 (de f ine−fun D 14 Contr ibutes () Bool (and D 14 D 9 Contr ibutes))
139 (de f ine−fun D 6 Contr ibutes () Bool (and D 6 D Contributes))
140 (de f ine−fun D 7 Contr ibutes () Bool (and D 7 D Contributes))
141 (de f ine−fun E Contr ibutes () Bool E)
142 (de f ine−fun E 2 Contr ibutes () Bool (and E 2 E Contr ibutes))
143 (de f ine−fun E 3 Contr ibutes () Bool (and E 3 E Contr ibutes))
144 (de f ine−fun E 4 Contr ibutes () Bool (and E 4 E Contr ibutes))
145 (de f ine−fun E 5 Contr ibutes () Bool (and E 5 E Contr ibutes))
146 (de f ine−fun E 6 Contr ibutes () Bool (and E 6 E Contr ibutes))
147 (de f ine−fun E 7 Contr ibutes () Bool (and E 7 E Contr ibutes))
148 (a s s e r t (i t e B 1 Contr ibutes (= SF B 1 true) (= SF B 1 f a l s e)))
149 (a s s e r t (i t e B 3 Contr ibutes (= CBF t plus one B 3 true) (=

CBF t plus one B 3 f a l s e)))
150 (a s s e r t (i t e C 1 Contr ibutes (= CBF t plus one C 1 true) (=

CBF t plus one C 1 f a l s e)))
151 (a s s e r t (i t e C 5 Contr ibutes (= SF C 5 true) (= SF C 5 f a l s e)))
152 (a s s e r t (i t e C 7 Contr ibutes (= CBF t plus one C 7 true) (=

CBF t plus one C 7 f a l s e)))
153 (a s s e r t (i t e C 8 Contr ibutes (= CBF t plus one C 8 true) (=

CBF t plus one C 8 f a l s e)))
154 (a s s e r t (i t e C 10 Contr ibutes (= RF C 10 true) (= RF C 10 f a l s e)))
155 (a s s e r t (i t e D 3 Contr ibutes (= BF D 3 true) (= BF D 3 f a l s e)))

273

156 (a s s e r t (i t e D 10 Contr ibutes (= CBF t D 10 true) (= CBF t D 10
f a l s e)))

157 (a s s e r t (i t e D 11 Contr ibutes (= CBF t plus one D 11 true) (=
CBF t plus one D 11 f a l s e)))

158 (a s s e r t (i t e D 13 Contr ibutes (= CBF t plus one D 13 true) (=
CBF t plus one D 13 f a l s e)))

159 (a s s e r t (i t e D 14 Contr ibutes (= CBF t D 14 true) (= CBF t D 14
f a l s e)))

160 (a s s e r t (i t e D 6 Contr ibutes (= SS D 6 true) (= SS D 6 f a l s e)))
161 (a s s e r t (i t e E 3 Contr ibutes (= CBF t plus one E 3 true) (=

CBF t plus one E 3 f a l s e)))
162 (a s s e r t (i t e E 5 Contr ibutes (= BF E 5 true) (= BF E 5 f a l s e)))
163 (a s s e r t (i t e E 6 Contr ibutes (= SS E 6 true) (= SS E 6 f a l s e)))
164 (a s s e r t (and (or B s C s) (or D s E s)))
165 (a s s e r t (i t e B s (or B B P) (not B)))
166 (a s s e r t (i t e D s (or D D P) (not D)))
167 (a s s e r t (i t e E s (or E E P) (not E)))
168 (a s s e r t (i t e C s C PP f a l s e))

B.2.3 Detection Constraints for Failure of Feature D

Listing B.6: Feature Interaction for Failure of Feature D

1 (set−opt ion : pr int−s u c c e s s t rue)
2 (de f ine−fun min2 ((x1 Real) (x2 Real)) Real (/ (− (+ x1 x2) (abs (−

x1 x2))) 2))
3 (de f ine−fun max2 ((x1 Real) (x2 Real)) Real (/ (+ x1 x2 (abs (− x1

x2))) 2))
4 (dec la re−const BF Real)
5 (dec la re−const CBF t plus one D 11 Bool)
6 (dec la re−const RF C 10 Bool)
7 (dec la re−const CBF t plus one D 13 Bool)
8 (dec la re−const CBF t D 14 Bool)
9 (dec la re−const SF Real)

10 (dec la re−const CBF t plus one Real)
11 (dec la re−const BF D 3 Bool)
12 (dec la re−const CBF t plus one C 8 Bool)
13 (dec la re−const CBF t plus one C 7 Bool)
14 (dec la re−const SS Real)
15 (dec la re−const SF B 1 Bool)
16 (dec la re−const CBF t plus one E 3 Bool)
17 (dec la re−const SF C 5 Bool)
18 (dec la re−const CBF t plus one B 3 Bool)
19 (dec la re−const BF E 5 Bool)
20 (dec la re−const CBF t plus one C 1 Bool)
21 (dec la re−const CBF t D 10 Bool)
22 (dec la re−const CBF t Real)

274

23 (dec la re−const RF Real)
24 (dec la re−const C s Bool)
25 (dec la re−const B s Bool)
26 (dec la re−const E s Bool)
27 (dec la re−const D s Bool)
28 (dec la re−const SS D 6 Bool)
29 (dec la re−const SS E 6 Bool)
30 (de f ine−fun V SS () Bool (or (or f a l s e SS D 6) SS E 6))
31 (de f ine−fun V SF () Bool (or (or f a l s e SF B 1) SF C 5))
32 (de f ine−fun V CBF t () Bool (or (or f a l s e CBF t D 10) CBF t D 14))
33 (de f ine−fun V RF () Bool (or f a l s e RF C 10))
34 (de f ine−fun V BF () Bool (or (or f a l s e BF D 3) BF E 5))
35 (de f ine−fun V CBF t plus one () Bool (or (or (or (or (or (or (or

f a l s e CBF t plus one B 3) CBF t plus one C 1) CBF t plus one C 7
) CBF t plus one C 8) CBF t plus one D 11) CBF t plus one D 13)
CBF t plus one E 3))

36 (de f ine−fun B 1 () Bool (and (and (= SF CBF t plus one) V SF)
V CBF t plus one))

37 (de f ine−fun B 2 () Bool t rue)
38 (de f ine−fun B 3 () Bool (and (> CBF t plus one 0 . 0)

V CBF t plus one))
39 (de f ine−fun B () Bool (and (and (and true B 1) B 2) B 3))
40 (de f ine−fun C 1 () Bool (and (> CBF t plus one 0 . 0)

V CBF t plus one))
41 (de f ine−fun C 5 () Bool (and (and (= SF (∗ CBF t plus one 0 . 2))

V SF) V CBF t plus one))
42 (de f ine−fun C 6 () Bool t rue)
43 (de f ine−fun C 7 () Bool (and (> CBF t plus one 2 0 . 0)

V CBF t plus one))
44 (de f ine−fun C 3 () Bool (and (and (and true C 5) C 6) C 7))
45 (de f ine−fun C 8 () Bool (and (< CBF t plus one 5 0 . 0)

V CBF t plus one))
46 (de f ine−fun C 9 () Bool t rue)
47 (de f ine−fun C 10 () Bool (and (and (= RF (∗ CBF t plus one 0 . 8))

V RF) V CBF t plus one))
48 (de f ine−fun C 4 () Bool (and (and (and true C 8) C 9) C 10))
49 (de f ine−fun C 2 () Bool (or (or f a l s e C 3) C 4))
50 (de f ine−fun C () Bool (and (and true C 1) C 2))
51 (de f ine−fun A 1 () Bool (or (or f a l s e B) C))
52 (de f ine−fun D 2 () Bool t rue)
53 (de f ine−fun D 3 () Bool (and (> BF 0 . 0) V BF))
54 (de f ine−fun D 4 () Bool t rue)
55 (de f ine−fun D 10 () Bool (and (= CBF t 0 . 0) V CBF t))
56 (de f ine−fun D 11 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
57 (de f ine−fun D 12a () Bool t rue)
58 (de f ine−fun D 8 () Bool (and (and (and true D 10) D 11) D 12a))

275

59 (de f ine−fun D 12b () Bool t rue)
60 (de f ine−fun D 13 () Bool (and (= CBF t plus one 0 . 0)

V CBF t plus one))
61 (de f ine−fun D 14 () Bool (and (> CBF t 0 . 0) V CBF t))
62 (de f ine−fun D 9 () Bool (and (and (and true D 12b) D 13) D 14))
63 (de f ine−fun D 5 () Bool (or (or f a l s e D 8) D 9))
64 (de f ine−fun D 6 () Bool (and (= SS 1 . 0) V SS))
65 (de f ine−fun D 7 () Bool t rue)
66 (de f ine−fun D () Bool (and (and (and (and (and (and true D 2) D 3)

D 4) D 5) D 6) D 7))
67 (de f ine−fun E 2 () Bool t rue)
68 (de f ine−fun E 3 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
69 (de f ine−fun E 4 () Bool t rue)
70 (de f ine−fun E 5 () Bool (and (> BF 0 . 0) V BF))
71 (de f ine−fun E 6 () Bool (and (< SS 1 . 0) V SS))
72 (de f ine−fun E 7 () Bool t rue)
73 (de f ine−fun E () Bool (and (and (and (and (and (and true E 2) E 3)

E 4) E 5) E 6) E 7))
74 (de f ine−fun A 2 () Bool (or (or f a l s e D) E))
75 (de f ine−fun A () Bool (and (and true A 1) A 2))
76 (de f ine−fun B P () Bool (and true B 3))
77 (de f ine−fun C 3 P () Bool (and true C 7))
78 (de f ine−fun C 4 P () Bool (and true C 8))
79 (de f ine−fun C 2 P () Bool (or (or f a l s e C 3 P) C 4 P))
80 (de f ine−fun C P () Bool (and (and true C 1) C 2 P))
81 (de f ine−fun A 1 P () Bool (or (or f a l s e B P) C P))
82 (de f ine−fun D 8 P () Bool (and true D 10))
83 (de f ine−fun D 9 P () Bool (and true D 14))
84 (de f ine−fun D 5 P () Bool (or (or f a l s e D 8 P) D 9 P))
85 (de f ine−fun D P () Bool (and (and (and true D 3) D 5 P) D 6))
86 (de f ine−fun E P () Bool (and (and true E 5) E 6))
87 (de f ine−fun A 2 P () Bool (or (or f a l s e D P) E P))
88 (de f ine−fun A P () Bool (and (and true A 1 P) A 2 P))
89 (de f ine−fun B 1 N () Bool (and (and (not (= SF CBF t plus one))

V SF) V CBF t plus one))
90 (de f ine−fun C 5 N () Bool (and (and (not (= SF (∗ CBF t plus one

0 . 2))) V SF) V CBF t plus one))
91 (de f ine−fun C 10 N () Bool (and (and (not (= RF (∗ CBF t plus one

0 . 8))) V RF) V CBF t plus one))
92 (de f ine−fun D 11 N () Bool (and (and (not (= CBF t plus one BF))

V BF) V CBF t plus one))
93 (de f ine−fun D 13 N () Bool (and (not (= CBF t plus one 0 . 0))

V CBF t plus one))
94 (de f ine−fun E 3 N () Bool (and (and (not (= CBF t plus one BF))

V BF) V CBF t plus one))
95 (de f ine−fun B PP () Bool (and (and true B 3) (or f a l s e B 1 N)))

276

96 (de f ine−fun C 3 PP () Bool (and (and true C 7) (or f a l s e C 5 N)))
97 (de f ine−fun C 4 PP () Bool (and (and true C 8) (or f a l s e C 10 N)))
98 (de f ine−fun C 2 PP () Bool (or (or f a l s e C 3 PP) C 4 PP))
99 (de f ine−fun C PP () Bool (and (and true C 1) C 2 PP))

100 (de f ine−fun A 1 PP () Bool (or (or f a l s e B PP) C PP))
101 (de f ine−fun D 8 PP () Bool (and (and true D 10) (or f a l s e D 11 N)))
102 (de f ine−fun D 9 PP () Bool (and (and true D 14) (or f a l s e D 13 N)))
103 (de f ine−fun D 5 PP () Bool (or (or f a l s e D 8 PP) D 9 PP))
104 (de f ine−fun D PP () Bool (and (and (and true D 3) D 5 PP) D 6))
105 (de f ine−fun E PP () Bool (and (and (and true E 5) E 6) (or f a l s e

E 3 N)))
106 (de f ine−fun A 2 PP () Bool (or (or f a l s e D PP) E PP))
107 (de f ine−fun A PP () Bool (and (and true A 1 PP) A 2 PP))
108 (de f ine−fun A Contr ibutes () Bool A)
109 (de f ine−fun A 1 Contr ibutes () Bool (and A 1 A Contr ibutes))
110 (de f ine−fun B Contr ibutes () Bool B)
111 (de f ine−fun B 1 Contr ibutes () Bool (and B 1 B Contr ibutes))
112 (de f ine−fun B 2 Contr ibutes () Bool (and B 2 B Contr ibutes))
113 (de f ine−fun B 3 Contr ibutes () Bool (and B 3 B Contr ibutes))
114 (de f ine−fun C Contr ibutes () Bool C)
115 (de f ine−fun C 1 Contr ibutes () Bool (and C 1 C Contr ibutes))
116 (de f ine−fun C 2 Contr ibutes () Bool (and C 2 C Contr ibutes))
117 (de f ine−fun C 3 Contr ibutes () Bool (and C 3 C 2 Contr ibutes))
118 (de f ine−fun C 5 Contr ibutes () Bool (and C 5 C 3 Contr ibutes))
119 (de f ine−fun C 6 Contr ibutes () Bool (and C 6 C 3 Contr ibutes))
120 (de f ine−fun C 7 Contr ibutes () Bool (and C 7 C 3 Contr ibutes))
121 (de f ine−fun C 4 Contr ibutes () Bool (and C 4 C 2 Contr ibutes))
122 (de f ine−fun C 8 Contr ibutes () Bool (and C 8 C 4 Contr ibutes))
123 (de f ine−fun C 9 Contr ibutes () Bool (and C 9 C 4 Contr ibutes))
124 (de f ine−fun C 10 Contr ibutes () Bool (and C 10 C 4 Contr ibutes))
125 (de f ine−fun A 2 Contr ibutes () Bool (and A 2 A Contr ibutes))
126 (de f ine−fun D Contributes () Bool D)
127 (de f ine−fun D 2 Contr ibutes () Bool (and D 2 D Contributes))
128 (de f ine−fun D 3 Contr ibutes () Bool (and D 3 D Contributes))
129 (de f ine−fun D 4 Contr ibutes () Bool (and D 4 D Contributes))
130 (de f ine−fun D 5 Contr ibutes () Bool (and D 5 D Contributes))
131 (de f ine−fun D 8 Contr ibutes () Bool (and D 8 D 5 Contr ibutes))
132 (de f ine−fun D 10 Contr ibutes () Bool (and D 10 D 8 Contr ibutes))
133 (de f ine−fun D 11 Contr ibutes () Bool (and D 11 D 8 Contr ibutes))
134 (de f ine−fun D 12a Contr ibutes () Bool (and D 12a D 8 Contr ibutes))
135 (de f ine−fun D 9 Contr ibutes () Bool (and D 9 D 5 Contr ibutes))
136 (de f ine−fun D 12b Contr ibutes () Bool (and D 12b D 9 Contr ibutes))
137 (de f ine−fun D 13 Contr ibutes () Bool (and D 13 D 9 Contr ibutes))
138 (de f ine−fun D 14 Contr ibutes () Bool (and D 14 D 9 Contr ibutes))
139 (de f ine−fun D 6 Contr ibutes () Bool (and D 6 D Contributes))
140 (de f ine−fun D 7 Contr ibutes () Bool (and D 7 D Contributes))
141 (de f ine−fun E Contr ibutes () Bool E)

277

142 (de f ine−fun E 2 Contr ibutes () Bool (and E 2 E Contr ibutes))
143 (de f ine−fun E 3 Contr ibutes () Bool (and E 3 E Contr ibutes))
144 (de f ine−fun E 4 Contr ibutes () Bool (and E 4 E Contr ibutes))
145 (de f ine−fun E 5 Contr ibutes () Bool (and E 5 E Contr ibutes))
146 (de f ine−fun E 6 Contr ibutes () Bool (and E 6 E Contr ibutes))
147 (de f ine−fun E 7 Contr ibutes () Bool (and E 7 E Contr ibutes))
148 (a s s e r t (i t e B 1 Contr ibutes (= SF B 1 true) (= SF B 1 f a l s e)))
149 (a s s e r t (i t e B 3 Contr ibutes (= CBF t plus one B 3 true) (=

CBF t plus one B 3 f a l s e)))
150 (a s s e r t (i t e C 1 Contr ibutes (= CBF t plus one C 1 true) (=

CBF t plus one C 1 f a l s e)))
151 (a s s e r t (i t e C 5 Contr ibutes (= SF C 5 true) (= SF C 5 f a l s e)))
152 (a s s e r t (i t e C 7 Contr ibutes (= CBF t plus one C 7 true) (=

CBF t plus one C 7 f a l s e)))
153 (a s s e r t (i t e C 8 Contr ibutes (= CBF t plus one C 8 true) (=

CBF t plus one C 8 f a l s e)))
154 (a s s e r t (i t e C 10 Contr ibutes (= RF C 10 true) (= RF C 10 f a l s e)))
155 (a s s e r t (i t e D 3 Contr ibutes (= BF D 3 true) (= BF D 3 f a l s e)))
156 (a s s e r t (i t e D 10 Contr ibutes (= CBF t D 10 true) (= CBF t D 10

f a l s e)))
157 (a s s e r t (i t e D 11 Contr ibutes (= CBF t plus one D 11 true) (=

CBF t plus one D 11 f a l s e)))
158 (a s s e r t (i t e D 13 Contr ibutes (= CBF t plus one D 13 true) (=

CBF t plus one D 13 f a l s e)))
159 (a s s e r t (i t e D 14 Contr ibutes (= CBF t D 14 true) (= CBF t D 14

f a l s e)))
160 (a s s e r t (i t e D 6 Contr ibutes (= SS D 6 true) (= SS D 6 f a l s e)))
161 (a s s e r t (i t e E 3 Contr ibutes (= CBF t plus one E 3 true) (=

CBF t plus one E 3 f a l s e)))
162 (a s s e r t (i t e E 5 Contr ibutes (= BF E 5 true) (= BF E 5 f a l s e)))
163 (a s s e r t (i t e E 6 Contr ibutes (= SS E 6 true) (= SS E 6 f a l s e)))
164 (a s s e r t (and (or B s C s) (or D s E s)))
165 (a s s e r t (i t e B s (or B B P) (not B)))
166 (a s s e r t (i t e C s (or C C P) (not C)))
167 (a s s e r t (i t e E s (or E E P) (not E)))
168 (a s s e r t (i t e D s D PP f a l s e))

B.2.4 Detection Constraints for Failure of Feature E

Listing B.7: Feature Interaction for Failure of Feature E

1 (set−opt ion : pr int−s u c c e s s t rue)
2 (de f ine−fun min2 ((x1 Real) (x2 Real)) Real (/ (− (+ x1 x2) (abs (−

x1 x2))) 2))
3 (de f ine−fun max2 ((x1 Real) (x2 Real)) Real (/ (+ x1 x2 (abs (− x1

x2))) 2))
4 (dec la re−const BF Real)

278

5 (dec la re−const CBF t plus one D 11 Bool)
6 (dec la re−const RF C 10 Bool)
7 (dec la re−const CBF t plus one D 13 Bool)
8 (dec la re−const CBF t D 14 Bool)
9 (dec la re−const SF Real)

10 (dec la re−const CBF t plus one Real)
11 (dec la re−const BF D 3 Bool)
12 (dec la re−const CBF t plus one C 8 Bool)
13 (dec la re−const CBF t plus one C 7 Bool)
14 (dec la re−const SS Real)
15 (dec la re−const SF B 1 Bool)
16 (dec la re−const CBF t plus one E 3 Bool)
17 (dec la re−const SF C 5 Bool)
18 (dec la re−const CBF t plus one B 3 Bool)
19 (dec la re−const BF E 5 Bool)
20 (dec la re−const CBF t plus one C 1 Bool)
21 (dec la re−const CBF t D 10 Bool)
22 (dec la re−const CBF t Real)
23 (dec la re−const RF Real)
24 (dec la re−const C s Bool)
25 (dec la re−const B s Bool)
26 (dec la re−const E s Bool)
27 (dec la re−const D s Bool)
28 (dec la re−const SS D 6 Bool)
29 (dec la re−const SS E 6 Bool)
30 (de f ine−fun V SS () Bool (or (or f a l s e SS D 6) SS E 6))
31 (de f ine−fun V SF () Bool (or (or f a l s e SF B 1) SF C 5))
32 (de f ine−fun V CBF t () Bool (or (or f a l s e CBF t D 10) CBF t D 14))
33 (de f ine−fun V RF () Bool (or f a l s e RF C 10))
34 (de f ine−fun V BF () Bool (or (or f a l s e BF D 3) BF E 5))
35 (de f ine−fun V CBF t plus one () Bool (or (or (or (or (or (or (or

f a l s e CBF t plus one B 3) CBF t plus one C 1) CBF t plus one C 7
) CBF t plus one C 8) CBF t plus one D 11) CBF t plus one D 13)
CBF t plus one E 3))

36 (de f ine−fun B 1 () Bool (and (and (= SF CBF t plus one) V SF)
V CBF t plus one))

37 (de f ine−fun B 2 () Bool t rue)
38 (de f ine−fun B 3 () Bool (and (> CBF t plus one 0 . 0)

V CBF t plus one))
39 (de f ine−fun B () Bool (and (and (and true B 1) B 2) B 3))
40 (de f ine−fun C 1 () Bool (and (> CBF t plus one 0 . 0)

V CBF t plus one))
41 (de f ine−fun C 5 () Bool (and (and (= SF (∗ CBF t plus one 0 . 2))

V SF) V CBF t plus one))
42 (de f ine−fun C 6 () Bool t rue)
43 (de f ine−fun C 7 () Bool (and (> CBF t plus one 2 0 . 0)

V CBF t plus one))

279

44 (de f ine−fun C 3 () Bool (and (and (and true C 5) C 6) C 7))
45 (de f ine−fun C 8 () Bool (and (< CBF t plus one 5 0 . 0)

V CBF t plus one))
46 (de f ine−fun C 9 () Bool t rue)
47 (de f ine−fun C 10 () Bool (and (and (= RF (∗ CBF t plus one 0 . 8))

V RF) V CBF t plus one))
48 (de f ine−fun C 4 () Bool (and (and (and true C 8) C 9) C 10))
49 (de f ine−fun C 2 () Bool (or (or f a l s e C 3) C 4))
50 (de f ine−fun C () Bool (and (and true C 1) C 2))
51 (de f ine−fun A 1 () Bool (or (or f a l s e B) C))
52 (de f ine−fun D 2 () Bool t rue)
53 (de f ine−fun D 3 () Bool (and (> BF 0 . 0) V BF))
54 (de f ine−fun D 4 () Bool t rue)
55 (de f ine−fun D 10 () Bool (and (= CBF t 0 . 0) V CBF t))
56 (de f ine−fun D 11 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
57 (de f ine−fun D 12a () Bool t rue)
58 (de f ine−fun D 8 () Bool (and (and (and true D 10) D 11) D 12a))
59 (de f ine−fun D 12b () Bool t rue)
60 (de f ine−fun D 13 () Bool (and (= CBF t plus one 0 . 0)

V CBF t plus one))
61 (de f ine−fun D 14 () Bool (and (> CBF t 0 . 0) V CBF t))
62 (de f ine−fun D 9 () Bool (and (and (and true D 12b) D 13) D 14))
63 (de f ine−fun D 5 () Bool (or (or f a l s e D 8) D 9))
64 (de f ine−fun D 6 () Bool (and (= SS 1 . 0) V SS))
65 (de f ine−fun D 7 () Bool t rue)
66 (de f ine−fun D () Bool (and (and (and (and (and (and true D 2) D 3)

D 4) D 5) D 6) D 7))
67 (de f ine−fun E 2 () Bool t rue)
68 (de f ine−fun E 3 () Bool (and (and (= CBF t plus one BF) V BF)

V CBF t plus one))
69 (de f ine−fun E 4 () Bool t rue)
70 (de f ine−fun E 5 () Bool (and (> BF 0 . 0) V BF))
71 (de f ine−fun E 6 () Bool (and (< SS 1 . 0) V SS))
72 (de f ine−fun E 7 () Bool t rue)
73 (de f ine−fun E () Bool (and (and (and (and (and (and true E 2) E 3)

E 4) E 5) E 6) E 7))
74 (de f ine−fun A 2 () Bool (or (or f a l s e D) E))
75 (de f ine−fun A () Bool (and (and true A 1) A 2))
76 (de f ine−fun B P () Bool (and true B 3))
77 (de f ine−fun C 3 P () Bool (and true C 7))
78 (de f ine−fun C 4 P () Bool (and true C 8))
79 (de f ine−fun C 2 P () Bool (or (or f a l s e C 3 P) C 4 P))
80 (de f ine−fun C P () Bool (and (and true C 1) C 2 P))
81 (de f ine−fun A 1 P () Bool (or (or f a l s e B P) C P))
82 (de f ine−fun D 8 P () Bool (and true D 10))
83 (de f ine−fun D 9 P () Bool (and true D 14))

280

84 (de f ine−fun D 5 P () Bool (or (or f a l s e D 8 P) D 9 P))
85 (de f ine−fun D P () Bool (and (and (and true D 3) D 5 P) D 6))
86 (de f ine−fun E P () Bool (and (and true E 5) E 6))
87 (de f ine−fun A 2 P () Bool (or (or f a l s e D P) E P))
88 (de f ine−fun A P () Bool (and (and true A 1 P) A 2 P))
89 (de f ine−fun B 1 N () Bool (and (and (not (= SF CBF t plus one))

V SF) V CBF t plus one))
90 (de f ine−fun C 5 N () Bool (and (and (not (= SF (∗ CBF t plus one

0 . 2))) V SF) V CBF t plus one))
91 (de f ine−fun C 10 N () Bool (and (and (not (= RF (∗ CBF t plus one

0 . 8))) V RF) V CBF t plus one))
92 (de f ine−fun D 11 N () Bool (and (and (not (= CBF t plus one BF))

V BF) V CBF t plus one))
93 (de f ine−fun D 13 N () Bool (and (not (= CBF t plus one 0 . 0))

V CBF t plus one))
94 (de f ine−fun E 3 N () Bool (and (and (not (= CBF t plus one BF))

V BF) V CBF t plus one))
95 (de f ine−fun B PP () Bool (and (and true B 3) (or f a l s e B 1 N)))
96 (de f ine−fun C 3 PP () Bool (and (and true C 7) (or f a l s e C 5 N)))
97 (de f ine−fun C 4 PP () Bool (and (and true C 8) (or f a l s e C 10 N)))
98 (de f ine−fun C 2 PP () Bool (or (or f a l s e C 3 PP) C 4 PP))
99 (de f ine−fun C PP () Bool (and (and true C 1) C 2 PP))

100 (de f ine−fun A 1 PP () Bool (or (or f a l s e B PP) C PP))
101 (de f ine−fun D 8 PP () Bool (and (and true D 10) (or f a l s e D 11 N)))
102 (de f ine−fun D 9 PP () Bool (and (and true D 14) (or f a l s e D 13 N)))
103 (de f ine−fun D 5 PP () Bool (or (or f a l s e D 8 PP) D 9 PP))
104 (de f ine−fun D PP () Bool (and (and (and true D 3) D 5 PP) D 6))
105 (de f ine−fun E PP () Bool (and (and (and true E 5) E 6) (or f a l s e

E 3 N)))
106 (de f ine−fun A 2 PP () Bool (or (or f a l s e D PP) E PP))
107 (de f ine−fun A PP () Bool (and (and true A 1 PP) A 2 PP))
108 (de f ine−fun A Contr ibutes () Bool A)
109 (de f ine−fun A 1 Contr ibutes () Bool (and A 1 A Contr ibutes))
110 (de f ine−fun B Contr ibutes () Bool B)
111 (de f ine−fun B 1 Contr ibutes () Bool (and B 1 B Contr ibutes))
112 (de f ine−fun B 2 Contr ibutes () Bool (and B 2 B Contr ibutes))
113 (de f ine−fun B 3 Contr ibutes () Bool (and B 3 B Contr ibutes))
114 (de f ine−fun C Contr ibutes () Bool C)
115 (de f ine−fun C 1 Contr ibutes () Bool (and C 1 C Contr ibutes))
116 (de f ine−fun C 2 Contr ibutes () Bool (and C 2 C Contr ibutes))
117 (de f ine−fun C 3 Contr ibutes () Bool (and C 3 C 2 Contr ibutes))
118 (de f ine−fun C 5 Contr ibutes () Bool (and C 5 C 3 Contr ibutes))
119 (de f ine−fun C 6 Contr ibutes () Bool (and C 6 C 3 Contr ibutes))
120 (de f ine−fun C 7 Contr ibutes () Bool (and C 7 C 3 Contr ibutes))
121 (de f ine−fun C 4 Contr ibutes () Bool (and C 4 C 2 Contr ibutes))
122 (de f ine−fun C 8 Contr ibutes () Bool (and C 8 C 4 Contr ibutes))
123 (de f ine−fun C 9 Contr ibutes () Bool (and C 9 C 4 Contr ibutes))

281

124 (de f ine−fun C 10 Contr ibutes () Bool (and C 10 C 4 Contr ibutes))
125 (de f ine−fun A 2 Contr ibutes () Bool (and A 2 A Contr ibutes))
126 (de f ine−fun D Contributes () Bool D)
127 (de f ine−fun D 2 Contr ibutes () Bool (and D 2 D Contributes))
128 (de f ine−fun D 3 Contr ibutes () Bool (and D 3 D Contributes))
129 (de f ine−fun D 4 Contr ibutes () Bool (and D 4 D Contributes))
130 (de f ine−fun D 5 Contr ibutes () Bool (and D 5 D Contributes))
131 (de f ine−fun D 8 Contr ibutes () Bool (and D 8 D 5 Contr ibutes))
132 (de f ine−fun D 10 Contr ibutes () Bool (and D 10 D 8 Contr ibutes))
133 (de f ine−fun D 11 Contr ibutes () Bool (and D 11 D 8 Contr ibutes))
134 (de f ine−fun D 12a Contr ibutes () Bool (and D 12a D 8 Contr ibutes))
135 (de f ine−fun D 9 Contr ibutes () Bool (and D 9 D 5 Contr ibutes))
136 (de f ine−fun D 12b Contr ibutes () Bool (and D 12b D 9 Contr ibutes))
137 (de f ine−fun D 13 Contr ibutes () Bool (and D 13 D 9 Contr ibutes))
138 (de f ine−fun D 14 Contr ibutes () Bool (and D 14 D 9 Contr ibutes))
139 (de f ine−fun D 6 Contr ibutes () Bool (and D 6 D Contributes))
140 (de f ine−fun D 7 Contr ibutes () Bool (and D 7 D Contributes))
141 (de f ine−fun E Contr ibutes () Bool E)
142 (de f ine−fun E 2 Contr ibutes () Bool (and E 2 E Contr ibutes))
143 (de f ine−fun E 3 Contr ibutes () Bool (and E 3 E Contr ibutes))
144 (de f ine−fun E 4 Contr ibutes () Bool (and E 4 E Contr ibutes))
145 (de f ine−fun E 5 Contr ibutes () Bool (and E 5 E Contr ibutes))
146 (de f ine−fun E 6 Contr ibutes () Bool (and E 6 E Contr ibutes))
147 (de f ine−fun E 7 Contr ibutes () Bool (and E 7 E Contr ibutes))
148 (a s s e r t (i t e B 1 Contr ibutes (= SF B 1 true) (= SF B 1 f a l s e)))
149 (a s s e r t (i t e B 3 Contr ibutes (= CBF t plus one B 3 true) (=

CBF t plus one B 3 f a l s e)))
150 (a s s e r t (i t e C 1 Contr ibutes (= CBF t plus one C 1 true) (=

CBF t plus one C 1 f a l s e)))
151 (a s s e r t (i t e C 5 Contr ibutes (= SF C 5 true) (= SF C 5 f a l s e)))
152 (a s s e r t (i t e C 7 Contr ibutes (= CBF t plus one C 7 true) (=

CBF t plus one C 7 f a l s e)))
153 (a s s e r t (i t e C 8 Contr ibutes (= CBF t plus one C 8 true) (=

CBF t plus one C 8 f a l s e)))
154 (a s s e r t (i t e C 10 Contr ibutes (= RF C 10 true) (= RF C 10 f a l s e)))
155 (a s s e r t (i t e D 3 Contr ibutes (= BF D 3 true) (= BF D 3 f a l s e)))
156 (a s s e r t (i t e D 10 Contr ibutes (= CBF t D 10 true) (= CBF t D 10

f a l s e)))
157 (a s s e r t (i t e D 11 Contr ibutes (= CBF t plus one D 11 true) (=

CBF t plus one D 11 f a l s e)))
158 (a s s e r t (i t e D 13 Contr ibutes (= CBF t plus one D 13 true) (=

CBF t plus one D 13 f a l s e)))
159 (a s s e r t (i t e D 14 Contr ibutes (= CBF t D 14 true) (= CBF t D 14

f a l s e)))
160 (a s s e r t (i t e D 6 Contr ibutes (= SS D 6 true) (= SS D 6 f a l s e)))
161 (a s s e r t (i t e E 3 Contr ibutes (= CBF t plus one E 3 true) (=

CBF t plus one E 3 f a l s e)))

282

162 (a s s e r t (i t e E 5 Contr ibutes (= BF E 5 true) (= BF E 5 f a l s e)))
163 (a s s e r t (i t e E 6 Contr ibutes (= SS E 6 true) (= SS E 6 f a l s e)))
164 (a s s e r t (and (or B s C s) (or D s E s)))
165 (a s s e r t (i t e B s (or B B P) (not B)))
166 (a s s e r t (i t e C s (or C C P) (not C)))
167 (a s s e r t (i t e D s (or D D P) (not D)))
168 (a s s e r t (i t e E s E PP f a l s e))

B.3 Run-Time Detection Code (C++)

This section of the appendix includes the C++ code output for detecting feature in-

teractions at run time in Chapter 8. All four features in the braking system goal model are

detected with this single code listing.

Listing B.8: Feature Interaction for Failure of Feature B, C, D, and E

1 double BF;
2 bool CBF t plus one D 11 ;
3 bool D precondi t ion ;
4 bool RF C 10 ;
5 bool C precond i t ion ;
6 bool CBF t plus one D 13 ;
7 bool E precond i t i on ;
8 bool CBF t D 14 ;
9 double SF ;

10 bool t o p L e v e l S a t i s f a t i o n ;
11 bool D f a i l s ;
12 double CBF t plus one ;
13 bool B f a i l s ;
14 bool BF D 3 ;
15 bool CBF t plus one C 8 ;
16 bool CBF t plus one C 7 ;
17 double SS ;
18 bool SF B 1 ;
19 bool CBF t plus one E 3 ;
20 bool SF C 5 ;
21 bool CBF t plus one B 3 ;
22 bool BF E 5 ;
23 bool CBF t plus one C 1 ;
24 bool E f a i l s ;
25 bool CBF t D 10 ;
26 bool C f a i l s ;
27 double CBF t ;
28 double RF;
29 bool B precond i t ion ;

283

30 bool SS D 6 ;
31 bool SS E 6 ;
32 bool V SS () {
33 return true ;
34 }
35 bool V SF () {
36 return true ;
37 }
38 bool V CBF t () {
39 return true ;
40 }
41 bool V RF() {
42 return true ;
43 }
44 bool V BF() {
45 return true ;
46 }
47 bool V CBF t plus one () {
48 return true ;
49 }
50 bool B 1 () {
51 return (((std : : abs (SF − CBF t plus one) < 0 .0001)
52 && V SF ()) && V CBF t plus one ()) ;
53 }
54 bool B 2 () {
55 return true ;
56 }
57 bool B 3 () {
58 return ((CBF t plus one > 0 . 0) && V CBF t plus one ()) ;
59 }
60 bool B() {
61 return (((true && B 1 ()) && B 2 ()) && B 3 ()) ;
62 }
63 bool C 1 () {
64 return ((CBF t plus one > 0 . 0) && V CBF t plus one ()) ;
65 }
66 bool C 5 () {
67 return (((std : : abs (SF − (CBF t plus one ∗ 0 . 2)) < 0 .0001)
68 && V SF ()) && V CBF t plus one ()) ;
69 }
70 bool C 6 () {
71 return true ;
72 }
73 bool C 7 () {
74 return ((CBF t plus one > 0 . 2) && V CBF t plus one ()) ;
75 }
76 bool C 3 () {

284

77 return (((true && C 5 ()) && C 6 ()) && C 7 ()) ;
78 }
79 bool C 8 () {
80 return ((CBF t plus one < 0 . 5) && V CBF t plus one ()) ;
81 }
82 bool C 9 () {
83 return true ;
84 }
85 bool C 10 () {
86 return (((std : : abs (RF − (CBF t plus one ∗ 0 . 8)) < 0 .0001)
87 && V RF()) && V CBF t plus one ()) ;
88 }
89 bool C 4 () {
90 return (((true && C 8 ()) && C 9 ()) && C 10 ()) ;
91 }
92 bool C 2 () {
93 return ((fa l se | | C 3 ()) | | C 4 ()) ;
94 }
95 bool C() {
96 return ((true && C 1 ()) && C 2 ()) ;
97 }
98 bool A 1 () {
99 return ((fa l se | | B()) | | C()) ;

100 }
101 bool D 2 () {
102 return true ;
103 }
104 bool D 3 () {
105 return ((BF > 0 . 0) && V BF()) ;
106 }
107 bool D 4 () {
108 return true ;
109 }
110 bool D 10 () {
111 return ((std : : abs (CBF t − 0 . 0) < 0 .0001) && V CBF t ()) ;
112 }
113 bool D 11 () {
114 return (((std : : abs (CBF t plus one − BF) < 0 .0001)
115 && V BF()) && V CBF t plus one ()) ;
116 }
117 bool D 12a () {
118 return true ;
119 }
120 bool D 8 () {
121 return (((true && D 10 ()) && D 11 ()) && D 12a ()) ;
122 }
123 bool D 12b () {

285

124 return true ;
125 }
126 bool D 13 () {
127 return ((std : : abs (CBF t plus one − 0 . 0) < 0 .0001)
128 && V CBF t plus one ()) ;
129 }
130 bool D 14 () {
131 return ((CBF t > 0 . 0) && V CBF t ()) ;
132 }
133 bool D 9 () {
134 return (((true && D 12b ()) && D 13 ()) && D 14 ()) ;
135 }
136 bool D 5 () {
137 return ((fa l se | | D 8 ()) | | D 9 ()) ;
138 }
139 bool D 6 () {
140 return ((std : : abs (SS − 1 . 0) < 0 .0001) && V SS ()) ;
141 }
142 bool D 7 () {
143 return true ;
144 }
145 bool D() {
146 return ((((((true && D 2 ()) && D 3 ()) && D 4 ())
147 && D 5 ()) && D 6 ()) && D 7 ()) ;
148 }
149 bool E 2 () {
150 return true ;
151 }
152 bool E 3 () {
153 return (((std : : abs (CBF t plus one − BF) < 0 .0001)
154 && V BF()) && V CBF t plus one ()) ;
155 }
156 bool E 4 () {
157 return true ;
158 }
159 bool E 5 () {
160 return ((BF > 0 . 0) && V BF()) ;
161 }
162 bool E 6 () {
163 return ((SS < 1 . 0) && V SS ()) ;
164 }
165 bool E 7 () {
166 return true ;
167 }
168 bool E() {
169 return ((((((true && E 2 ()) && E 3 ()) && E 4 ())
170 && E 5 ()) && E 6 ()) && E 7 ()) ;

286

171 }
172 bool A 2 () {
173 return ((fa l se | | D()) | | E()) ;
174 }
175 bool A() {
176 return ((true && A 1 ()) && A 2 ()) ;
177 }
178 bool B P () {
179 return (true && B 3 ()) ;
180 }
181 bool C 3 P () {
182 return (true && C 7 ()) ;
183 }
184 bool C 4 P () {
185 return (true && C 8 ()) ;
186 }
187 bool C 2 P () {
188 return ((fa l se | | C 3 P ()) | | C 4 P ()) ;
189 }
190 bool C P () {
191 return ((true && C 1 ()) && C 2 P ()) ;
192 }
193 bool A 1 P () {
194 return ((fa l se | | B P ()) | | C P ()) ;
195 }
196 bool D 8 P () {
197 return (true && D 10 ()) ;
198 }
199 bool D 9 P () {
200 return (true && D 14 ()) ;
201 }
202 bool D 5 P () {
203 return ((fa l se | | D 8 P ()) | | D 9 P ()) ;
204 }
205 bool D P () {
206 return (((true && D 3 ()) && D 5 P ()) && D 6 ()) ;
207 }
208 bool E P () {
209 return ((true && E 5 ()) && E 6 ()) ;
210 }
211 bool A 2 P () {
212 return ((fa l se | | D P ()) | | E P ()) ;
213 }
214 bool A P () {
215 return ((true && A 1 P ()) && A 2 P ()) ;
216 }
217 bool B 1 N () {

287

218 return (((! (s td : : abs (SF − CBF t plus one) < 0 .0001))
219 && V SF ()) && V CBF t plus one ()) ;
220 }
221 bool C 5 N () {
222 return (((! (s td : : abs (SF − (CBF t plus one ∗ 0 . 2)) < 0 .0001))
223 && V SF ()) && V CBF t plus one ()) ;
224 }
225 bool C 10 N () {
226 return (((! (s td : : abs (RF − (CBF t plus one ∗ 0 . 8)) < 0 .0001))
227 && V RF()) && V CBF t plus one ()) ;
228 }
229 bool D 11 N () {
230 return (((! (s td : : abs (CBF t plus one − BF) < 0 .0001))
231 && V BF()) && V CBF t plus one ()) ;
232 }
233 bool D 13 N () {
234 return ((! (std : : abs (CBF t plus one − 0 . 0) < 0 .0001))
235 && V CBF t plus one ()) ;
236 }
237 bool E 3 N () {
238 return (((! (s td : : abs (CBF t plus one − BF) < 0 .0001))
239 && V BF()) && V CBF t plus one ()) ;
240 }
241 bool B PP() {
242 return ((true && B 3 ()) && (fa l se | | B 1 N ())) ;
243 }
244 bool C 3 PP () {
245 return ((true && C 7 ()) && (fa l se | | C 5 N ())) ;
246 }
247 bool C 4 PP () {
248 return ((true && C 8 ()) && (fa l se | | C 10 N ())) ;
249 }
250 bool C 2 PP () {
251 return ((fa l se | | C 3 PP ()) | | C 4 PP ()) ;
252 }
253 bool C PP() {
254 return ((true && C 1 ()) && C 2 PP ()) ;
255 }
256 bool A 1 PP () {
257 return ((fa l se | | B PP()) | | C PP()) ;
258 }
259 bool D 8 PP () {
260 return ((true && D 10 ()) && (fa l se | | D 11 N ())) ;
261 }
262 bool D 9 PP () {
263 return ((true && D 14 ()) && (fa l se | | D 13 N ())) ;
264 }

288

265 bool D 5 PP () {
266 return ((fa l se | | D 8 PP ()) | | D 9 PP ()) ;
267 }
268 bool D PP() {
269 return (((true && D 3 ()) && D 5 PP ()) && D 6 ()) ;
270 }
271 bool E PP () {
272 return (((true && E 5 ()) && E 6 ()) && (fa l se | | E 3 N ())) ;
273 }
274 bool A 2 PP () {
275 return ((fa l se | | D PP()) | | E PP ()) ;
276 }
277 bool A PP() {
278 return ((true && A 1 PP ()) && A 2 PP ()) ;
279 }
280 bool A Contr ibutes () {
281 return A() ;
282 }
283 bool A 1 Contr ibutes () {
284 return (A 1 () && A Contr ibutes ()) ;
285 }
286 bool B Contr ibutes () {
287 return (B() && A 1 Contr ibutes ()) ;
288 }
289 bool B 1 Contr ibutes () {
290 return (B 1 () && B Contr ibutes ()) ;
291 }
292 bool B 2 Contr ibutes () {
293 return (B 2 () && B Contr ibutes ()) ;
294 }
295 bool B 3 Contr ibutes () {
296 return (B 3 () && B Contr ibutes ()) ;
297 }
298 bool C Contr ibutes () {
299 return (C() && A 1 Contr ibutes ()) ;
300 }
301 bool C 1 Contr ibutes () {
302 return (C 1 () && C Contr ibutes ()) ;
303 }
304 bool C 2 Contr ibutes () {
305 return (C 2 () && C Contr ibutes ()) ;
306 }
307 bool C 3 Contr ibutes () {
308 return (C 3 () && C 2 Contr ibutes ()) ;
309 }
310 bool C 5 Contr ibutes () {
311 return (C 5 () && C 3 Contr ibutes ()) ;

289

312 }
313 bool C 6 Contr ibutes () {
314 return (C 6 () && C 3 Contr ibutes ()) ;
315 }
316 bool C 7 Contr ibutes () {
317 return (C 7 () && C 3 Contr ibutes ()) ;
318 }
319 bool C 4 Contr ibutes () {
320 return (C 4 () && C 2 Contr ibutes ()) ;
321 }
322 bool C 8 Contr ibutes () {
323 return (C 8 () && C 4 Contr ibutes ()) ;
324 }
325 bool C 9 Contr ibutes () {
326 return (C 9 () && C 4 Contr ibutes ()) ;
327 }
328 bool C 10 Contr ibutes () {
329 return (C 10 () && C 4 Contr ibutes ()) ;
330 }
331 bool A 2 Contr ibutes () {
332 return (A 2 () && A Contr ibutes ()) ;
333 }
334 bool D Contributes () {
335 return (D() && A 2 Contr ibutes ()) ;
336 }
337 bool D 2 Contr ibutes () {
338 return (D 2 () && D Contributes ()) ;
339 }
340 bool D 3 Contr ibutes () {
341 return (D 3 () && D Contributes ()) ;
342 }
343 bool D 4 Contr ibutes () {
344 return (D 4 () && D Contributes ()) ;
345 }
346 bool D 5 Contr ibutes () {
347 return (D 5 () && D Contributes ()) ;
348 }
349 bool D 8 Contr ibutes () {
350 return (D 8 () && D 5 Contr ibutes ()) ;
351 }
352 bool D 10 Contr ibutes () {
353 return (D 10 () && D 8 Contr ibutes ()) ;
354 }
355 bool D 11 Contr ibutes () {
356 return (D 11 () && D 8 Contr ibutes ()) ;
357 }
358 bool D 12a Contr ibutes () {

290

359 return (D 12a () && D 8 Contr ibutes ()) ;
360 }
361 bool D 9 Contr ibutes () {
362 return (D 9 () && D 5 Contr ibutes ()) ;
363 }
364 bool D 12b Contr ibutes () {
365 return (D 12b () && D 9 Contr ibutes ()) ;
366 }
367 bool D 13 Contr ibutes () {
368 return (D 13 () && D 9 Contr ibutes ()) ;
369 }
370 bool D 14 Contr ibutes () {
371 return (D 14 () && D 9 Contr ibutes ()) ;
372 }
373 bool D 6 Contr ibutes () {
374 return (D 6 () && D Contributes ()) ;
375 }
376 bool D 7 Contr ibutes () {
377 return (D 7 () && D Contributes ()) ;
378 }
379 bool E Contr ibutes () {
380 return (E() && A 2 Contr ibutes ()) ;
381 }
382 bool E 2 Contr ibutes () {
383 return (E 2 () && E Contr ibutes ()) ;
384 }
385 bool E 3 Contr ibutes () {
386 return (E 3 () && E Contr ibutes ()) ;
387 }
388 bool E 4 Contr ibutes () {
389 return (E 4 () && E Contr ibutes ()) ;
390 }
391 bool E 5 Contr ibutes () {
392 return (E 5 () && E Contr ibutes ()) ;
393 }
394 bool E 6 Contr ibutes () {
395 return (E 6 () && E Contr ibutes ()) ;
396 }
397 bool E 7 Contr ibutes () {
398 return (E 7 () && E Contr ibutes ()) ;
399 }
400 void updateAsser t ions () {
401 (B 1 Contr ibutes () ? (SF B 1 = true) : (SF B 1 = fa l se)) ;
402 (B 3 Contr ibutes () ? (CBF t plus one B 3 = true) :
403 (CBF t plus one B 3 = fa l se)) ;
404 (C 1 Contr ibutes () ? (CBF t plus one C 1 = true) :
405 (CBF t plus one C 1 = fa l se)) ;

291

406 (C 5 Contr ibutes () ? (SF C 5 = true) : (SF C 5 = fa l se)) ;
407 (C 7 Contr ibutes () ? (CBF t plus one C 7 = true) :
408 (CBF t plus one C 7 = fa l se)) ;
409 (C 8 Contr ibutes () ? (CBF t plus one C 8 = true) :
410 (CBF t plus one C 8 = fa l se)) ;
411 (C 10 Contr ibutes () ? (RF C 10 = true) : (RF C 10 = fa l se)) ;
412 (D 3 Contr ibutes () ? (BF D 3 = true) : (BF D 3 = fa l se)) ;
413 (D 10 Contr ibutes () ? (CBF t D 10 = true) : (CBF t D 10 =

fa l se)) ;
414 (D 11 Contr ibutes () ? (CBF t plus one D 11 = true) :
415 (CBF t plus one D 11 = fa l se)) ;
416 (D 13 Contr ibutes () ? (CBF t plus one D 13 = true) :
417 (CBF t plus one D 13 = fa l se)) ;
418 (D 14 Contr ibutes () ? (CBF t D 14 = true) : (CBF t D 14 =

fa l se)) ;
419 (D 6 Contr ibutes () ? (SS D 6 = true) : (SS D 6 = fa l se)) ;
420 (E 3 Contr ibutes () ? (CBF t plus one E 3 = true) :
421 (CBF t plus one E 3 = fa l se)) ;
422 (E 5 Contr ibutes () ? (BF E 5 = true) : (BF E 5 = fa l se)) ;
423 (E 6 Contr ibutes () ? (SS E 6 = true) : (SS E 6 = fa l se)) ;
424 (t o p L e v e l S a t i s f a t i o n = ((B() | | C()) && (D() | | E()))) ;
425 (B precond i t ion = B P ()) ;
426 (C precond i t ion = C P ()) ;
427 (D precondi t ion = D P ()) ;
428 (E precond i t i on = E P ()) ;
429 (B f a i l s = B PP()) ;
430 (C f a i l s = C PP()) ;
431 (D f a i l s = D PP()) ;
432 (E f a i l s = E PP ()) ;
433 }

292

Appendix C

Non-Functional Feature Interaction

Artifacts

This appendix presents the goal model specifications as well as the satisfiability-modulo

theory (SMT) solver and code (C++) outputs from the Phorcys and Thoosa tools used by

Soter for non-functional feature interaction detection from Chapter 9.

C.1 Goal Model Specifications

This section of the appendix includes the XML schema for representing goal models in

XML, as well as XML representations of the braking system goal model use in Chapter 9.

C.1.1 Goal Model Schema

Listing C.1: XSD Goal Model XML Schema

1 <?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
2 <xs : schema xmlns : xs=”http ://www. w3 . org /2001/XMLSchema”
3 elementFormDefault=” q u a l i f i e d ”
4 xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e”>
5 <xs : element name=”goalmodel”>
6 <xs : complexType>
7 <xs : sequence>
8 <xs : element r e f =”goa l”/>
9 <xs : element r e f =”environment”/>

10 </xs : sequence>

293

11 </xs : complexType>
12 </xs : element>
13 <xs : element name=”environment”>
14 <xs : complexType>
15 <xs : sequence>
16 <xs : element minOccurs=”0” maxOccurs=”unbounded” r e f =”env”/>
17 </xs : sequence>
18 </xs : complexType>
19 </xs : element>
20 <xs : element name=”env”>
21 <xs : complexType>
22 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
23 <xs : a t t r i b u t e name=”r e l a t i o n s h i p ” use=”requ i r ed ” type=”xs :

s t r i n g ”/>
24 </xs : complexType>
25 </xs : element>
26 <xs : element name=”goa l”>
27 <xs : complexType>
28 <xs : cho ice>
29 <xs : element maxOccurs=”unbounded” r e f=”goa l”/>
30 <xs : element r e f =”agent”/>
31 </xs : cho ice>
32 <xs : a t t r i b u t e name=”contents ” use=”requ i r ed ” type=”xs : s t r i n g

”/>
33 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
34 <xs : a t t r i b u t e name=”r e l a t i o n s h i p ” use=”requ i r ed ” type=”xs :

s t r i n g ”/>
35 <xs : a t t r i b u t e name=”type ” use=”requ i r ed ” type=”xs :NCName”/>
36 </xs : complexType>
37 </xs : element>
38 <xs : element name=”agent”>
39 <xs : complexType>
40 <xs : a t t r i b u t e name=”contents ” use=”requ i r ed ” type=”xs : s t r i n g

”/>
41 <xs : a t t r i b u t e name=”l o c a t i o n ” use=”requ i r ed ” type=”xs :NCName

”/>
42 <xs : a t t r i b u t e name=”name” use=”requ i r ed ” type=”xs :NCName”/>
43 </xs : complexType>
44 </xs : element>
45 </xs : schema>

C.1.2 Goal Model for Braking System in Chapter 9

Listing C.2: Woven Braking System Goal Model in Chapter 9

1 <?xml v e r s i o n =”1.0” encoding=”UTF−8”?>
2 <!−− c reated with XMLSpear −−>

294

3 <goalmodel xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t anc e ”
x s i : noNamespaceSchemaLocation=’goalmodel . xsd ’>

4
5 <goa l name=”AA” contents=”Woven Model” r e l a t i o n s h i p =”” type=”

AND”>
6
7 <goa l name=”WM” contents=”AND WEAK MITIGATIONS”

r e l a t i o n s h i p =”” type=”AND”>
8 <goa l name=”WMS” contents=”Weak Mit iga t i on : Minimize

C o l l i s i o n ” r e l a t i o n s h i p =”” type=”OR”>
9 <goa l name=”TMS” contents=”NA” r e l a t i o n s h i p =”” type=”

AND”>
10 <goa l name=”TMS PT” contents=”NA” r e l a t i o n s h i p =””

type=”OR”>
11 <goa l name=”TMS PT 1” contents=”(& l t ; FDSensor

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
12 <agent name=”TMS PT 1 Agent” contents=”

Battery Charge” l o c a t i o n=”environment”/>
13 </goal>
14 <goa l name=”TMS PT 2” contents=”(= FDSensor

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
15 <agent name=”TMS PT 2 Agent” contents=”

Battery Charge” l o c a t i o n=”environment”/>
16 </goal>
17 </goal>
18 <goa l name=”TMS M” contents=”M” r e l a t i o n s h i p =””

type=”AND”>
19 <goa l name=”TMS M 1” contents=”(= SF 1 . 0) ”

r e l a t i o n s h i p =”” type=”POST”>
20 <agent name=”TMS M 1 Agent” contents=”

Standard Brakes ” l o c a t i o n=”system”/>
21 </goal>
22 <goa l name=”TMS M 2” contents=”(= RF 0 . 0) ”

r e l a t i o n s h i p =”” type=”POST”>
23 <agent name=”TMS M 2 Agent” contents=”Regen

Brakes ” l o c a t i o n=”system”/>
24 </goal>
25 </goal>
26 </goal>
27 <goa l name=”TMS NOT PT” contents=”(> ; FDSensor 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
28 <agent name=”TMS PT Agent” contents=”” l o c a t i o n=”

environemnt”/>
29 </goal>
30 </goal>
31

295

32 <goa l name=”WMP” contents=”Weak Mit iga t i on : Maintain
Charge” r e l a t i o n s h i p =”” type=”OR”>

33 <goa l name=”TMP” contents=”Tr igger and Mit iga t i on ”
r e l a t i o n s h i p =”” type=”AND”>

34 <goa l name=”TMP PT 1” contents=”(& l t ; BCHARGE 0 . 5) ”
r e l a t i o n s h i p =”” type=”PRE”>

35 <agent name=”TMP PT Agent” contents=”Battery
Charge” l o c a t i o n=”environment”/>

36 </goal>
37 <goa l name=”TMP M” contents=”M” r e l a t i o n s h i p =””

type=”AND”>
38 <goa l name=”TMP M 1” contents=”Achieve (Apply

Fu l l Regen Force) ” r e l a t i o n s h i p =”” type=”REQ
”>

39 <agent name=”TM M 1 Agent” contents=”Regen
Brakes ” l o c a t i o n=”system”/>

40 </goal>
41 <goa l name=”TMP M 2” contents=”(= RF (∗

CBF t plus one 1 . 0)) ” r e l a t i o n s h i p =”” type=”
POST”>

42 <agent name=”TM M 2 Agent” contents=”Regen
Brakes ” l o c a t i o n=”system”/>

43 </goal>
44 </goal>
45 </goal>
46 <goa l name=”TMP NOT PT” contents=”NA” r e l a t i o n s h i p =””

type=”AND”>
47 <goa l name=”TMP NOT PT 1” contents=”(> ; BCHARGE

0 . 5) ” r e l a t i o n s h i p =”” type=”POST”>
48 <agent name=”TM NOT PT 1 Agent” contents=”

Battery Charge” l o c a t i o n=”environment”/>
49 </goal>
50 <goa l name=”TMP NOT PT 2” contents=”(= BCHARGE 0 . 5)

” r e l a t i o n s h i p =”” type=”POST”>
51 <agent name=”TM NOT PT 2 Agent” contents=”

Battery Charge” l o c a t i o n=”environment”/>
52 </goal>
53 </goal>
54 </goal>
55 </goal>
56
57 <goa l name=”SMF” contents=”AND STRONG MITIGATIONS

FUNCTIONAL” r e l a t i o n s h i p =”” type=”AND”>
58 <goa l name=”SM” contents=”Strong Mit i ga t i on : Maintain

Safe Charge” r e l a t i o n s h i p =”” type=”OR”>
59

296

60 <goa l name=”TM PT” contents=”NA” r e l a t i o n s h i p =”” type=”
AND”>

61 <goa l name=”NOT PT M” contents=”(& l t ; BCHARGE 1 . 0) ”
r e l a t i o n s h i p =”” type=”POST”>

62 <agent name=”NOT PT M Agent” contents=”Battery
Charge” l o c a t i o n=”environment”/>

63 </goal>
64
65 <goa l name=”M” contents=”NA” r e l a t i o n s h i p =”” type=”

AND”>
66
67 <goa l name=”M 1” contents=”(> ; BCHARGE 0 .9 9) ”

r e l a t i o n s h i p =”” type=”PRE”>
68 <agent name=”M 1 Agent” contents=”Battery

Charge” l o c a t i o n=”environment”/>
69 </goal>
70 <goa l name=”M 2” contents=”NA” r e l a t i o n s h i p =””

type=”REQ”>
71 <agent name=”M 2 Agent” contents=”Battery

Charge” l o c a t i o n=”environment”/>
72 </goal>
73 <goa l name=”M 3” contents=”(= RF 0 . 0) ”

r e l a t i o n s h i p =”” type=”POST”>
74 <agent name=”M 3 Agent” contents=”Regen

Force ” l o c a t i o n=”environment”/>
75 </goal>
76
77 </goal>
78 </goal>
79
80 <goa l name=”NOT PT” contents=”(& l t ; BCHARGE 1 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
81 <agent name=”NOT PT Agent” contents=”Battery Charge

” l o c a t i o n=”environment”/>
82 </goal>
83
84 </goal>
85
86 <goa l name=”A” contents=”Maintain (Brake System) ”

r e l a t i o n s h i p =”” type=”AND”>
87 <goa l name=”A 1” contents=”Maintain (Brake Force) ”

r e l a t i o n s h i p =”” type=”OR”>
88 <goa l name=”B” contents=”Achieve (Standard Force

Braking) ” r e l a t i o n s h i p =”” type=”AND”>
89 <goa l name=”B 1” contents=”(= SF CBF t plus one

) ” r e l a t i o n s h i p =”” type=”POST”>

297

90 <agent name=”B 1 Agent” contents=”Hydraul ic
Brake Sensor ” l o c a t i o n=”environment”/>

91 </goal>
92 <goa l name=”B 2” contents=”Achieve (Apply

Standard Force) ” r e l a t i o n s h i p =”” type=”REQ”>
93 <agent name=”B 2 Agent” contents=”Hydraul ic

Brake Actuator ” l o c a t i o n=”system”/>
94 </goal>
95 <goa l name=”B 3” contents=”(> ; CBF t plus one

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
96 <agent name=”B 3 Agent” contents=”CBF Value

” l o c a t i o n=”environment”/>
97 </goal>
98 </goal>
99 <goa l name=”C” contents=”Achieve (Regen Braking) ”

r e l a t i o n s h i p =”” type=”AND”>
100 <goa l name=”C 1” contents=”(> ; CBF t plus one

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
101 <agent name=”C 1 Agent” contents=”CBF Value

” l o c a t i o n=”environment”/>
102 </goal>
103 <goa l name=”C 2” contents=”Achieve (Regen and

Standard Force) ” r e l a t i o n s h i p =”” type=”OR”>
104 <goa l name=”C 3” contents=”Achieve (Standard

Force Braking) ” r e l a t i o n s h i p =”” type=”
AND”>

105 <goa l name=”C 5” contents=”(= SF (∗
CBF t plus one 0 . 2)) ” r e l a t i o n s h i p
=”” type=”POST”>

106 <agent name=”C 5 Agent” contents=”
Hydraul ic Brake Sensor ” l o c a t i o n
=”environment”/>

107 </goal>
108 <goa l name=”C 6” contents=”Achieve (

Apply Standard Force) ” r e l a t i o n s h i p
=”” type=”REQ”>

109 <agent name=”C 6 Agent” contents=”
Hydraul ic Brake Actuator ”
l o c a t i o n=”system”/>

110 </goal>
111 <goa l name=”C 7” contents=”(> ;

CBF t plus one 0 . 2) ” r e l a t i o n s h i p =””
type=”PRE”>

112 <agent name=”C 7 Agent” contents=”
CBF Value” l o c a t i o n=”environment
”/>

113 </goal>

298

114
115 </goal>
116 <goa l name=”C 4” contents=”Achieve (Regen

Force) ” r e l a t i o n s h i p =”” type=”AND”>
117 <goa l name=”C 8” contents=”(& l t ;

CBF t plus one 0 . 5) ” r e l a t i o n s h i p =””
type=”PRE”>

118 <agent name=”C 7 Agent” contents=”
CBF Value” l o c a t i o n=”environment
”/>

119 </goal>
120 <goa l name=”C 9” contents=”Achieve (

Apply Regen Force) ” r e l a t i o n s h i p =””
type=”REQ”>

121 <agent name=”C 6 Agent” contents=”
Regenerat ion Brake Actuator ”
l o c a t i o n=”system”/>

122 </goal>
123 <goa l name=”C 10” contents=”(= RF (∗

CBF t plus one 0 . 8)) ” r e l a t i o n s h i p
=”” type=”POST”>

124 <agent name=”C 5 Agent” contents=”
Regenerat ion Brake Sensor ”
l o c a t i o n=”environment”/>

125 </goal>
126 </goal>
127 </goal>
128 </goal>
129 </goal>
130 <goa l name=”A 2” contents=”Maintain (Brake Command) ”

r e l a t i o n s h i p =”” type=”OR”>
131 <goa l name=”D” contents=”Achieve (Brake−by−Wire) ”

r e l a t i o n s h i p =”” type=”AND”>
132 <goa l name=”D 2” contents=”Achieve (Read CBF) ”

r e l a t i o n s h i p =”” type=”REQ”>
133 <agent name=”D 2 Agent” contents=”Memory (

CBF) ” l o c a t i o n=”system”/>
134 </goal>
135 <goa l name=”D 3” contents=”(> ; BF 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
136 <agent name=”D 3 Agent” contents=”BF Value”

l o c a t i o n=”environment”/>
137 </goal>
138 <goa l name=”D 4” contents=”Achieve (Read Brake

Force) ” r e l a t i o n s h i p =”” type=”REQ”>
139 <agent name=”D 4 Agent” contents=”Brake

Pedal Sensor (BF) ” l o c a t i o n=”system”/>

299

140 </goal>
141 <goa l name=”D 5” contents=”Achieve (Brake Pulse)

” r e l a t i o n s h i p =”” type=”OR”>
142 <goa l name=”D 8” contents=”Achieve (Brake On

) ” r e l a t i o n s h i p =”” type=”AND”>
143 <goa l name=”D 10” contents=”(= CBF t

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
144 <agent name=”D 10 Agent” contents=”

CBF Value” l o c a t i o n=”environment
”/>

145 </goal>
146 <goa l name=”D 11” contents=”(=

CBF t plus one BF) ” r e l a t i o n s h i p =””
type=”POST”>

147 <agent name=”D 11 Agent” contents=”
Brake Pedal Sensor (BF) ”
l o c a t i o n=”environment”/>

148 </goal>
149 <goa l name=”D 12a” contents=”Achieve (

Brake Force Change) ” r e l a t i o n s h i p =””
type=”REQ”>

150 <agent name=”D 12a Agent” contents
=”Memory (CBF t plus one) ”
l o c a t i o n=”system”/>

151 </goal>
152 </goal>
153 <goa l name=”D 9” contents=”Achieve (Brake

Off) ” r e l a t i o n s h i p =”” type=”AND”>
154 <goa l name=”D 12b” contents=”Achieve (

Brake Force Change) ” r e l a t i o n s h i p =””
type=”REQ”>

155 <agent name=”D 12b Agent” contents
=”Memory (CBF t plus one) ”
l o c a t i o n=”system”/>

156 </goal>
157 <goa l name=”D 13” contents=”(=

CBF t plus one 0 . 0) ” r e l a t i o n s h i p =””
type=”POST”>

158 <agent name=”D 13 Agent” contents=”
CBF t plus one Value” l o c a t i o n=”
environment”/>

159 </goal>
160 <goa l name=”D 14” contents=”(> ; CBF t

0 . 0) ” r e l a t i o n s h i p =”” type=”PRE”>
161 <agent name=”D 14 Agent” contents=”

CBF Value” l o c a t i o n=”environment
”/>

300

162 </goal>
163 </goal>
164 </goal>
165 <goa l name=”D 6” contents=”(= SS 1 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
166 <agent name=”D 6 Agent” contents=”SS Value”

l o c a t i o n=”environment”/>
167 </goal>
168 <goa l name=”D 7” contents=”Achieve (Read SS) ”

r e l a t i o n s h i p =”” type=”REQ”>
169 <agent name=”D 7 Agent” contents=”S l i p

Sensor ” l o c a t i o n=”system”/>
170 </goal>
171 </goal>
172 <goa l name=”E” contents=”Achieve (Anti−Lock Braking)

” r e l a t i o n s h i p =”” type=”AND”>
173 <goa l name=”E 2” contents=”Achieve (Read CBF) ”

r e l a t i o n s h i p =”” type=”REQ”>
174 <agent name=”E 2 Agent” contents=”Memory (

CBF) ” l o c a t i o n=”system”/>
175 </goal>
176 <goa l name=”E 3” contents=”(= CBF t plus one BF

) ” r e l a t i o n s h i p =”” type=”POST”>
177 <agent name=”E 3 Agent” contents=”BF Value”

l o c a t i o n=”environment”/>
178 </goal>
179 <goa l name=”E 4” contents=”Achieve (Read Brake

Force) ” r e l a t i o n s h i p =”” type=”REQ”>
180 <agent name=”E 4 Agent” contents=”Brake

Pedal Sensor (BF) ” l o c a t i o n=”system”/>
181 </goal>
182 <goa l name=”E 5” contents=”(> ; BF 0 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
183 <agent name=”E 5 Agent” contents=”BF Value”

l o c a t i o n=”environment”/>
184 </goal>
185 <goa l name=”E 6” contents=”(& l t ; SS 1 . 0) ”

r e l a t i o n s h i p =”” type=”PRE”>
186 <agent name=”E 6 Agent” contents=”SS Value”

l o c a t i o n=”environment”/>
187 </goal>
188 <goa l name=”E 7” contents=”Achieve (Read SS) ”

r e l a t i o n s h i p =”” type=”REQ”>
189 <agent name=”E 7 Agent” contents=”S l i p

Sensor ” l o c a t i o n=”system”/>
190 </goal>
191 </goal>

301

192 </goal>
193 </goal>
194 </goal>
195 </goal>
196
197 <environment/>
198 </goalmodel>

C.2 Run-Time Detection Code (C++)

This section of the appendix includes the C++ code output for detecting feature in-

teractions at run time in Chapter 8. All four features in the braking system goal model are

detected with this single code listing.

Listing C.3: Feature Interaction for Failure of Feature B, C, D, and E

1 bool WMP fails ;
2 double FDSensor ;
3 bool RF TMS M 2 ;
4 bool C precond i t ion ;
5 bool E precond i t i on ;
6 bool BCHARGE M 1;
7 bool WMP precondition ;
8 bool BCHARGE NOT PT M;
9 bool FDSensor TMS NOT PT ;

10 double CBF t plus one ;
11 bool B f a i l s ;
12 bool WMS fails ;
13 bool CBF t plus one C 8 ;
14 bool CBF t plus one C 7 ;
15 bool BCHARGE TMP PT 1;
16 bool SF B 1 ;
17 bool CBF t plus one E 3 ;
18 bool CBF t plus one C 1 ;
19 bool C f a i l s ;
20 double BCHARGE;
21 double CBF t ;
22 double RF;
23 bool B precond i t ion ;
24 bool SM precondit ion ;
25 bool RF TMP M 2 ;
26 bool SS E 6 ;
27 bool RF M 3 ;
28 double BF;
29 bool BCHARGE NOT PT;

302

30 bool CBF t plus one D 11 ;
31 bool D precondi t ion ;
32 bool SF TMS M 1 ;
33 bool RF C 10 ;
34 bool CBF t plus one D 13 ;
35 bool CBF t D 14 ;
36 double SF ;
37 bool t o p L e v e l S a t i s f a t i o n ;
38 bool D f a i l s ;
39 bool WMS precondition ;
40 bool SM fa i l s ;
41 bool BF D 3 ;
42 double SS ;
43 bool SF C 5 ;
44 bool CBF t plus one B 3 ;
45 bool BF E 5 ;
46 bool E f a i l s ;
47 bool CBF t D 10 ;
48 bool BCHARGE TMP NOT PT 1;
49 bool FDSensor TMS PT 2 ;
50 bool BCHARGE TMP NOT PT 2;
51 bool FDSensor TMS PT 1 ;
52 bool SS D 6 ;
53 bool V SS () {
54 return true ;
55 }
56 bool V SF () {
57 return true ;
58 }
59 bool V BCHARGE() {
60 return true ;
61 }
62 bool V CBF t () {
63 return true ;
64 }
65 bool V RF() {
66 return true ;
67 }
68 bool V BF() {
69 return true ;
70 }
71 bool V FDSensor () {
72 return true ;
73 }
74 bool V CBF t plus one () {
75 return true ;
76 }

303

77 bool TMS PT 1 () {
78 return ((FDSensor < 0 . 0) && V FDSensor ()) ;
79 }
80 bool TMS PT 2 () {
81 return ((std : : abs (FDSensor − 0 . 0) < 0 .0001) && V FDSensor ()) ;
82 }
83 bool TMS PT() {
84 return ((fa l se | | TMS PT 1 ()) | | TMS PT 2 ()) ;
85 }
86 bool TMS M 1() {
87 return ((std : : abs (SF − 1 . 0) < 0 .0001) && V SF ()) ;
88 }
89 bool TMS M 2() {
90 return ((std : : abs (RF − 0 . 0) < 0 .0001) && V RF()) ;
91 }
92 bool TMS M() {
93 return ((true && TMS M 1()) && TMS M 2()) ;
94 }
95 bool TMS() {
96 return ((true && TMS PT()) && TMS M()) ;
97 }
98 bool TMS NOT PT() {
99 return ((FDSensor > 0 . 0) && V FDSensor ()) ;

100 }
101 bool WMS() {
102 return ((fa l se | | TMS()) | | TMS NOT PT()) ;
103 }
104 bool TMP PT 1() {
105 return ((BCHARGE < 0 . 5) && V BCHARGE()) ;
106 }
107 bool TMP M 1() {
108 return true ;
109 }
110 bool TMP M 2() {
111 return (((std : : abs (RF − (CBF t plus one ∗ 1 . 0)) < 0 .0001) &&

V RF()) && V CBF t plus one ()) ;
112 }
113 bool TMP M() {
114 return ((true && TMP M 1()) && TMP M 2()) ;
115 }
116 bool TMP() {
117 return ((true && TMP PT 1()) && TMP M()) ;
118 }
119 bool TMP NOT PT 1() {
120 return ((BCHARGE > 0 . 5) && V BCHARGE()) ;
121 }
122 bool TMP NOT PT 2() {

304

123 return ((std : : abs (BCHARGE − 0 . 5) < 0 .0001) && V BCHARGE()) ;
124 }
125 bool TMP NOT PT() {
126 return ((true && TMP NOT PT 1()) && TMP NOT PT 2()) ;
127 }
128 bool WMP() {
129 return ((fa l se | | TMP()) | | TMP NOT PT()) ;
130 }
131 bool WM() {
132 return ((true && WMS()) && WMP()) ;
133 }
134 bool NOT PT M() {
135 return ((BCHARGE < 1 . 0) && V BCHARGE()) ;
136 }
137 bool M 1 () {
138 return ((BCHARGE > 0 . 9 9) && V BCHARGE()) ;
139 }
140 bool M 2 () {
141 return true ;
142 }
143 bool M 3 () {
144 return ((std : : abs (RF − 0 . 0) < 0 .0001) && V RF()) ;
145 }
146 bool M() {
147 return (((true && M 1 ()) && M 2 ()) && M 3 ()) ;
148 }
149 bool TM PT() {
150 return ((true && NOT PT M()) && M()) ;
151 }
152 bool NOT PT() {
153 return ((BCHARGE < 1 . 0) && V BCHARGE()) ;
154 }
155 bool SM() {
156 return ((fa l se | | TM PT()) | | NOT PT()) ;
157 }
158 bool B 1 () {
159 return (((std : : abs (SF − CBF t plus one) < 0 .0001) && V SF ()) &&

V CBF t plus one ()) ;
160 }
161 bool B 2 () {
162 return true ;
163 }
164 bool B 3 () {
165 return ((CBF t plus one > 0 . 0) && V CBF t plus one ()) ;
166 }
167 bool B() {
168 return (((true && B 1 ()) && B 2 ()) && B 3 ()) ;

305

169 }
170 bool C 1 () {
171 return ((CBF t plus one > 0 . 0) && V CBF t plus one ()) ;
172 }
173 bool C 5 () {
174 return (((std : : abs (SF − (CBF t plus one ∗ 0 . 2)) < 0 .0001) &&

V SF ()) && V CBF t plus one ()) ;
175 }
176 bool C 6 () {
177 return true ;
178 }
179 bool C 7 () {
180 return ((CBF t plus one > 0 . 2) && V CBF t plus one ()) ;
181 }
182 bool C 3 () {
183 return (((true && C 5 ()) && C 6 ()) && C 7 ()) ;
184 }
185 bool C 8 () {
186 return ((CBF t plus one < 0 . 5) && V CBF t plus one ()) ;
187 }
188 bool C 9 () {
189 return true ;
190 }
191 bool C 10 () {
192 return (((std : : abs (RF − (CBF t plus one ∗ 0 . 8)) < 0 .0001) &&

V RF()) && V CBF t plus one ()) ;
193 }
194 bool C 4 () {
195 return (((true && C 8 ()) && C 9 ()) && C 10 ()) ;
196 }
197 bool C 2 () {
198 return ((fa l se | | C 3 ()) | | C 4 ()) ;
199 }
200 bool C() {
201 return ((true && C 1 ()) && C 2 ()) ;
202 }
203 bool A 1 () {
204 return ((fa l se | | B()) | | C()) ;
205 }
206 bool D 2 () {
207 return true ;
208 }
209 bool D 3 () {
210 return ((BF > 0 . 0) && V BF()) ;
211 }
212 bool D 4 () {
213 return true ;

306

214 }
215 bool D 10 () {
216 return ((std : : abs (CBF t − 0 . 0) < 0 .0001) && V CBF t ()) ;
217 }
218 bool D 11 () {
219 return (((std : : abs (CBF t plus one − BF) < 0 .0001) && V BF()) &&

V CBF t plus one ()) ;
220 }
221 bool D 12a () {
222 return true ;
223 }
224 bool D 8 () {
225 return (((true && D 10 ()) && D 11 ()) && D 12a ()) ;
226 }
227 bool D 12b () {
228 return true ;
229 }
230 bool D 13 () {
231 return ((std : : abs (CBF t plus one − 0 . 0) < 0 .0001) &&

V CBF t plus one ()) ;
232 }
233 bool D 14 () {
234 return ((CBF t > 0 . 0) && V CBF t ()) ;
235 }
236 bool D 9 () {
237 return (((true && D 12b ()) && D 13 ()) && D 14 ()) ;
238 }
239 bool D 5 () {
240 return ((fa l se | | D 8 ()) | | D 9 ()) ;
241 }
242 bool D 6 () {
243 return ((std : : abs (SS − 1 . 0) < 0 .0001) && V SS ()) ;
244 }
245 bool D 7 () {
246 return true ;
247 }
248 bool D() {
249 return ((((((true && D 2 ()) && D 3 ()) && D 4 ()) && D 5 ()) &&

D 6 ()) && D 7 ()) ;
250 }
251 bool E 2 () {
252 return true ;
253 }
254 bool E 3 () {
255 return (((std : : abs (CBF t plus one − BF) < 0 .0001) && V BF()) &&

V CBF t plus one ()) ;
256 }

307

257 bool E 4 () {
258 return true ;
259 }
260 bool E 5 () {
261 return ((BF > 0 . 0) && V BF()) ;
262 }
263 bool E 6 () {
264 return ((SS < 1 . 0) && V SS ()) ;
265 }
266 bool E 7 () {
267 return true ;
268 }
269 bool E() {
270 return ((((((true && E 2 ()) && E 3 ()) && E 4 ()) && E 5 ()) &&

E 6 ()) && E 7 ()) ;
271 }
272 bool A 2 () {
273 return ((fa l se | | D()) | | E()) ;
274 }
275 bool A() {
276 return ((true && A 1 ()) && A 2 ()) ;
277 }
278 bool SMF() {
279 return ((true && SM()) && A()) ;
280 }
281 bool AA() {
282 return ((true && WM()) && SMF()) ;
283 }
284 bool TMS PT P() {
285 return ((fa l se | | TMS PT 1 ()) | | TMS PT 2 ()) ;
286 }
287 bool TMS M P() {
288 return true ;
289 }
290 bool TMS P() {
291 return ((true && TMS PT P()) && TMS M P()) ;
292 }
293 bool WMS P() {
294 return ((fa l se | | TMS P()) | | TMS NOT PT()) ;
295 }
296 bool TMP M P() {
297 return true ;
298 }
299 bool TMP P() {
300 return ((true && TMP PT 1()) && TMP M P()) ;
301 }
302 bool TMP NOT PT P() {

308

303 return true ;
304 }
305 bool WMPP() {
306 return ((fa l se | | TMP P()) | | TMP NOT PT P()) ;
307 }
308 bool WMP() {
309 return ((true && WMS P()) && WMPP()) ;
310 }
311 bool M P() {
312 return (true && M 1 ()) ;
313 }
314 bool TM PT P() {
315 return (true && M P()) ;
316 }
317 bool SM P() {
318 return ((fa l se | | TM PT P()) | | NOT PT()) ;
319 }
320 bool B P () {
321 return (true && B 3 ()) ;
322 }
323 bool C 3 P () {
324 return (true && C 7 ()) ;
325 }
326 bool C 4 P () {
327 return (true && C 8 ()) ;
328 }
329 bool C 2 P () {
330 return ((fa l se | | C 3 P ()) | | C 4 P ()) ;
331 }
332 bool C P () {
333 return ((true && C 1 ()) && C 2 P ()) ;
334 }
335 bool A 1 P () {
336 return ((fa l se | | B P ()) | | C P ()) ;
337 }
338 bool D 8 P () {
339 return (true && D 10 ()) ;
340 }
341 bool D 9 P () {
342 return (true && D 14 ()) ;
343 }
344 bool D 5 P () {
345 return ((fa l se | | D 8 P ()) | | D 9 P ()) ;
346 }
347 bool D P () {
348 return (((true && D 3 ()) && D 5 P ()) && D 6 ()) ;
349 }

309

350 bool E P () {
351 return ((true && E 5 ()) && E 6 ()) ;
352 }
353 bool A 2 P () {
354 return ((fa l se | | D P ()) | | E P ()) ;
355 }
356 bool A P () {
357 return ((true && A 1 P ()) && A 2 P ()) ;
358 }
359 bool SMF P() {
360 return ((true && SM P()) && A P ()) ;
361 }
362 bool AA P() {
363 return ((true && WMP()) && SMF P()) ;
364 }
365 bool TMS M 1 N() {
366 return ((! (std : : abs (SF − 1 . 0) < 0 .0001)) && V SF ()) ;
367 }
368 bool TMS M 2 N() {
369 return ((! (std : : abs (RF − 0 . 0) < 0 .0001)) && V RF()) ;
370 }
371 bool TMP M 2 N() {
372 return (((! (s td : : abs (RF − (CBF t plus one ∗ 1 . 0)) < 0 .0001)) &&

V RF()) && V CBF t plus one ()) ;
373 }
374 bool TMP NOT PT 1 N() {
375 return ((! (BCHARGE > 0 . 5)) && V BCHARGE()) ;
376 }
377 bool TMP NOT PT 2 N() {
378 return ((! (std : : abs (BCHARGE − 0 . 5) < 0 .0001)) && V BCHARGE()) ;
379 }
380 bool NOT PT M N() {
381 return ((! (BCHARGE < 1 . 0)) && V BCHARGE()) ;
382 }
383 bool M 3 N () {
384 return ((! (std : : abs (RF − 0 . 0) < 0 .0001)) && V RF()) ;
385 }
386 bool B 1 N () {
387 return (((! (s td : : abs (SF − CBF t plus one) < 0 .0001)) && V SF ())

&& V CBF t plus one ()) ;
388 }
389 bool C 5 N () {
390 return (((! (s td : : abs (SF − (CBF t plus one ∗ 0 . 2)) < 0 .0001)) &&

V SF ()) && V CBF t plus one ()) ;
391 }
392 bool C 10 N () {

310

393 return (((! (s td : : abs (RF − (CBF t plus one ∗ 0 . 8)) < 0 .0001)) &&
V RF()) && V CBF t plus one ()) ;

394 }
395 bool D 11 N () {
396 return (((! (s td : : abs (CBF t plus one − BF) < 0 .0001)) && V BF())

&& V CBF t plus one ()) ;
397 }
398 bool D 13 N () {
399 return ((! (std : : abs (CBF t plus one − 0 . 0) < 0 .0001)) &&

V CBF t plus one ()) ;
400 }
401 bool E 3 N () {
402 return (((! (s td : : abs (CBF t plus one − BF) < 0 .0001)) && V BF())

&& V CBF t plus one ()) ;
403 }
404 bool TMS PT PP() {
405 return ((fa l se | | TMS PT 1 ()) | | TMS PT 2 ()) ;
406 }
407 bool TMS M PP() {
408 return (true && ((fa l se | | TMS M 1 N()) | | TMS M 2 N())) ;
409 }
410 bool TMS PP() {
411 return ((true && TMS PT PP()) && TMS M PP()) ;
412 }
413 bool WMS PP() {
414 return ((fa l se | | TMS PP()) | | TMS NOT PT()) ;
415 }
416 bool TMP M PP() {
417 return (true && (fa l se | | TMP M 2 N())) ;
418 }
419 bool TMP PP() {
420 return ((true && TMP PT 1()) && TMP M PP()) ;
421 }
422 bool TMP NOT PT PP() {
423 return (true && ((fa l se | | TMP NOT PT 1 N()) | | TMP NOT PT 2 N

())) ;
424 }
425 bool WMP PP() {
426 return ((fa l se | | TMP PP()) | | TMP NOT PT PP()) ;
427 }
428 bool WMPP() {
429 return ((true && WMS PP()) && WMP PP()) ;
430 }
431 bool M PP() {
432 return ((true && M 1 ()) && (fa l se | | M 3 N ())) ;
433 }
434 bool TM PT PP() {

311

435 return ((true && M PP()) && (fa l se | | NOT PT M N())) ;
436 }
437 bool SM PP() {
438 return ((fa l se | | TM PT PP()) | | NOT PT()) ;
439 }
440 bool B PP() {
441 return ((true && B 3 ()) && (fa l se | | B 1 N ())) ;
442 }
443 bool C 3 PP () {
444 return ((true && C 7 ()) && (fa l se | | C 5 N ())) ;
445 }
446 bool C 4 PP () {
447 return ((true && C 8 ()) && (fa l se | | C 10 N ())) ;
448 }
449 bool C 2 PP () {
450 return ((fa l se | | C 3 PP ()) | | C 4 PP ()) ;
451 }
452 bool C PP() {
453 return ((true && C 1 ()) && C 2 PP ()) ;
454 }
455 bool A 1 PP () {
456 return ((fa l se | | B PP()) | | C PP()) ;
457 }
458 bool D 8 PP () {
459 return ((true && D 10 ()) && (fa l se | | D 11 N ())) ;
460 }
461 bool D 9 PP () {
462 return ((true && D 14 ()) && (fa l se | | D 13 N ())) ;
463 }
464 bool D 5 PP () {
465 return ((fa l se | | D 8 PP ()) | | D 9 PP ()) ;
466 }
467 bool D PP() {
468 return (((true && D 3 ()) && D 5 PP ()) && D 6 ()) ;
469 }
470 bool E PP () {
471 return (((true && E 5 ()) && E 6 ()) && (fa l se | | E 3 N ())) ;
472 }
473 bool A 2 PP () {
474 return ((fa l se | | D PP()) | | E PP ()) ;
475 }
476 bool A PP() {
477 return ((true && A 1 PP ()) && A 2 PP ()) ;
478 }
479 bool SMF PP() {
480 return ((true && SM PP()) && A PP()) ;
481 }

312

482 bool AA PP() {
483 return ((true && WMPP()) && SMF PP()) ;
484 }
485 bool AA Contributes () {
486 return AA() ;
487 }
488 bool WM Contributes () {
489 return (WM() && AA Contributes ()) ;
490 }
491 bool WMS Contributes () {
492 return WMS() ;
493 }
494 bool TMS Contributes () {
495 return (TMS() && WMS Contributes ()) ;
496 }
497 bool TMS PT Contributes () {
498 return (TMS PT() && TMS Contributes ()) ;
499 }
500 bool TMS PT 1 Contributes () {
501 return (TMS PT 1 () && TMS PT Contributes ()) ;
502 }
503 bool TMS PT 2 Contributes () {
504 return (TMS PT 2 () && TMS PT Contributes ()) ;
505 }
506 bool TMS M Contributes () {
507 return (TMS M() && TMS Contributes ()) ;
508 }
509 bool TMS M 1 Contributes () {
510 return (TMS M 1() && TMS M Contributes ()) ;
511 }
512 bool TMS M 2 Contributes () {
513 return (TMS M 2() && TMS M Contributes ()) ;
514 }
515 bool TMS NOT PT Contributes () {
516 return (TMS NOT PT() && WMS Contributes ()) ;
517 }
518 bool WMP Contributes () {
519 return WMP() ;
520 }
521 bool TMP Contributes () {
522 return (TMP() && WMP Contributes ()) ;
523 }
524 bool TMP PT 1 Contributes () {
525 return (TMP PT 1() && TMP Contributes ()) ;
526 }
527 bool TMP M Contributes () {
528 return (TMP M() && TMP Contributes ()) ;

313

529 }
530 bool TMP M 1 Contributes () {
531 return (TMP M 1() && TMP M Contributes ()) ;
532 }
533 bool TMP M 2 Contributes () {
534 return (TMP M 2() && TMP M Contributes ()) ;
535 }
536 bool TMP NOT PT Contributes () {
537 return (TMP NOT PT() && WMP Contributes ()) ;
538 }
539 bool TMP NOT PT 1 Contributes () {
540 return (TMP NOT PT 1() && TMP NOT PT Contributes ()) ;
541 }
542 bool TMP NOT PT 2 Contributes () {
543 return (TMP NOT PT 2() && TMP NOT PT Contributes ()) ;
544 }
545 bool SMF Contributes () {
546 return (SMF() && AA Contributes ()) ;
547 }
548 bool SM Contributes () {
549 return SM() ;
550 }
551 bool TM PT Contributes () {
552 return (TM PT() && SM Contributes ()) ;
553 }
554 bool NOT PT M Contributes () {
555 return (NOT PT M() && TM PT Contributes ()) ;
556 }
557 bool M Contributes () {
558 return (M() && TM PT Contributes ()) ;
559 }
560 bool M 1 Contributes () {
561 return (M 1 () && M Contributes ()) ;
562 }
563 bool M 2 Contributes () {
564 return (M 2 () && M Contributes ()) ;
565 }
566 bool M 3 Contributes () {
567 return (M 3 () && M Contributes ()) ;
568 }
569 bool NOT PT Contributes () {
570 return (NOT PT() && SM Contributes ()) ;
571 }
572 bool A Contr ibutes () {
573 return (A() && SMF Contributes ()) ;
574 }
575 bool A 1 Contr ibutes () {

314

576 return (A 1 () && A Contr ibutes ()) ;
577 }
578 bool B Contr ibutes () {
579 return B() ;
580 }
581 bool B 1 Contr ibutes () {
582 return (B 1 () && B Contr ibutes ()) ;
583 }
584 bool B 2 Contr ibutes () {
585 return (B 2 () && B Contr ibutes ()) ;
586 }
587 bool B 3 Contr ibutes () {
588 return (B 3 () && B Contr ibutes ()) ;
589 }
590 bool C Contr ibutes () {
591 return C() ;
592 }
593 bool C 1 Contr ibutes () {
594 return (C 1 () && C Contr ibutes ()) ;
595 }
596 bool C 2 Contr ibutes () {
597 return (C 2 () && C Contr ibutes ()) ;
598 }
599 bool C 3 Contr ibutes () {
600 return (C 3 () && C 2 Contr ibutes ()) ;
601 }
602 bool C 5 Contr ibutes () {
603 return (C 5 () && C 3 Contr ibutes ()) ;
604 }
605 bool C 6 Contr ibutes () {
606 return (C 6 () && C 3 Contr ibutes ()) ;
607 }
608 bool C 7 Contr ibutes () {
609 return (C 7 () && C 3 Contr ibutes ()) ;
610 }
611 bool C 4 Contr ibutes () {
612 return (C 4 () && C 2 Contr ibutes ()) ;
613 }
614 bool C 8 Contr ibutes () {
615 return (C 8 () && C 4 Contr ibutes ()) ;
616 }
617 bool C 9 Contr ibutes () {
618 return (C 9 () && C 4 Contr ibutes ()) ;
619 }
620 bool C 10 Contr ibutes () {
621 return (C 10 () && C 4 Contr ibutes ()) ;
622 }

315

623 bool A 2 Contr ibutes () {
624 return (A 2 () && A Contr ibutes ()) ;
625 }
626 bool D Contributes () {
627 return D() ;
628 }
629 bool D 2 Contr ibutes () {
630 return (D 2 () && D Contributes ()) ;
631 }
632 bool D 3 Contr ibutes () {
633 return (D 3 () && D Contributes ()) ;
634 }
635 bool D 4 Contr ibutes () {
636 return (D 4 () && D Contributes ()) ;
637 }
638 bool D 5 Contr ibutes () {
639 return (D 5 () && D Contributes ()) ;
640 }
641 bool D 8 Contr ibutes () {
642 return (D 8 () && D 5 Contr ibutes ()) ;
643 }
644 bool D 10 Contr ibutes () {
645 return (D 10 () && D 8 Contr ibutes ()) ;
646 }
647 bool D 11 Contr ibutes () {
648 return (D 11 () && D 8 Contr ibutes ()) ;
649 }
650 bool D 12a Contr ibutes () {
651 return (D 12a () && D 8 Contr ibutes ()) ;
652 }
653 bool D 9 Contr ibutes () {
654 return (D 9 () && D 5 Contr ibutes ()) ;
655 }
656 bool D 12b Contr ibutes () {
657 return (D 12b () && D 9 Contr ibutes ()) ;
658 }
659 bool D 13 Contr ibutes () {
660 return (D 13 () && D 9 Contr ibutes ()) ;
661 }
662 bool D 14 Contr ibutes () {
663 return (D 14 () && D 9 Contr ibutes ()) ;
664 }
665 bool D 6 Contr ibutes () {
666 return (D 6 () && D Contributes ()) ;
667 }
668 bool D 7 Contr ibutes () {
669 return (D 7 () && D Contributes ()) ;

316

670 }
671 bool E Contr ibutes () {
672 return E() ;
673 }
674 bool E 2 Contr ibutes () {
675 return (E 2 () && E Contr ibutes ()) ;
676 }
677 bool E 3 Contr ibutes () {
678 return (E 3 () && E Contr ibutes ()) ;
679 }
680 bool E 4 Contr ibutes () {
681 return (E 4 () && E Contr ibutes ()) ;
682 }
683 bool E 5 Contr ibutes () {
684 return (E 5 () && E Contr ibutes ()) ;
685 }
686 bool E 6 Contr ibutes () {
687 return (E 6 () && E Contr ibutes ()) ;
688 }
689 bool E 7 Contr ibutes () {
690 return (E 7 () && E Contr ibutes ()) ;
691 }
692 void updateAsser t ions () {
693 (TMS PT 1 Contributes () ? (FDSensor TMS PT 1 = true) : (

FDSensor TMS PT 1 = fa l se)) ;
694 (TMS PT 2 Contributes () ? (FDSensor TMS PT 2 = true) : (

FDSensor TMS PT 2 = fa l se)) ;
695 (TMS M 1 Contributes () ? (SF TMS M 1 = true) : (SF TMS M 1 =

fa l se)) ;
696 (TMS M 2 Contributes () ? (RF TMS M 2 = true) : (RF TMS M 2 =

fa l se)) ;
697 (TMS NOT PT Contributes () ? (FDSensor TMS NOT PT = true) : (

FDSensor TMS NOT PT = fa l se)) ;
698 (TMP PT 1 Contributes () ? (BCHARGE TMP PT 1 = true) : (

BCHARGE TMP PT 1 = fa l se)) ;
699 (TMP M 2 Contributes () ? (RF TMP M 2 = true) : (RF TMP M 2 =

fa l se)) ;
700 (TMP NOT PT 1 Contributes () ? (BCHARGE TMP NOT PT 1 = true) : (

BCHARGE TMP NOT PT 1 = fa l se)) ;
701 (TMP NOT PT 2 Contributes () ? (BCHARGE TMP NOT PT 2 = true) : (

BCHARGE TMP NOT PT 2 = fa l se)) ;
702 (NOT PT M Contributes () ? (BCHARGE NOT PT M = true) : (

BCHARGE NOT PT M = fa l se)) ;
703 (M 1 Contributes () ? (BCHARGE M 1 = true) : (BCHARGE M 1 = fa l se)

) ;
704 (M 3 Contributes () ? (RF M 3 = true) : (RF M 3 = fa l se)) ;

317

705 (NOT PT Contributes () ? (BCHARGE NOT PT = true) : (BCHARGE NOT PT
= fa l se)) ;

706 (B 1 Contr ibutes () ? (SF B 1 = true) : (SF B 1 = fa l se)) ;
707 (B 3 Contr ibutes () ? (CBF t plus one B 3 = true) : (

CBF t plus one B 3 = fa l se)) ;
708 (C 1 Contr ibutes () ? (CBF t plus one C 1 = true) : (

CBF t plus one C 1 = fa l se)) ;
709 (C 5 Contr ibutes () ? (SF C 5 = true) : (SF C 5 = fa l se)) ;
710 (C 7 Contr ibutes () ? (CBF t plus one C 7 = true) : (

CBF t plus one C 7 = fa l se)) ;
711 (C 8 Contr ibutes () ? (CBF t plus one C 8 = true) : (

CBF t plus one C 8 = fa l se)) ;
712 (C 10 Contr ibutes () ? (RF C 10 = true) : (RF C 10 = fa l se)) ;
713 (D 3 Contr ibutes () ? (BF D 3 = true) : (BF D 3 = fa l se)) ;
714 (D 10 Contr ibutes () ? (CBF t D 10 = true) : (CBF t D 10 = fa l se))

;
715 (D 11 Contr ibutes () ? (CBF t plus one D 11 = true) : (

CBF t plus one D 11 = fa l se)) ;
716 (D 13 Contr ibutes () ? (CBF t plus one D 13 = true) : (

CBF t plus one D 13 = fa l se)) ;
717 (D 14 Contr ibutes () ? (CBF t D 14 = true) : (CBF t D 14 = fa l se))

;
718 (D 6 Contr ibutes () ? (SS D 6 = true) : (SS D 6 = fa l se)) ;
719 (E 3 Contr ibutes () ? (CBF t plus one E 3 = true) : (

CBF t plus one E 3 = fa l se)) ;
720 (E 5 Contr ibutes () ? (BF E 5 = true) : (BF E 5 = fa l se)) ;
721 (E 6 Contr ibutes () ? (SS E 6 = true) : (SS E 6 = fa l se)) ;
722 (t o p L e v e l S a t i s f a t i o n = ((WMS() && WMP()) && (SM() && ((B() | | C

()) && (D() | | E()))))) ;
723 (B precond i t ion = B P ()) ;
724 (C precond i t ion = C P ()) ;
725 (D precondi t ion = D P ()) ;
726 (E precond i t i on = E P ()) ;
727 (SM precondit ion = SM P()) ;
728 (WMP precondition = WMPP()) ;
729 (WMS precondition = WMS P()) ;
730 (B f a i l s = B PP()) ;
731 (C f a i l s = C PP()) ;
732 (D f a i l s = D PP()) ;
733 (E f a i l s = E PP ()) ;
734 (SM fa i l s = SM PP()) ;
735 (WMP fails = WMP PP()) ;
736 (WMS fails = WMS PP()) ;
737 }

318

BIBLIOGRAPHY

319

BIBLIOGRAPHY

[1] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Requirements-driven deployment -
customizing the requirements model for the host environment. Software and System
Modeling, 13(1):433–456, 2014.

[2] Dalal Alrajeh, Jeff Kramer, Axel van Lamsweerde, Alessandra Russo, and Sebastian
Uchitel. Generating obstacle conditions for requirements completeness. In Proceedings
of the 34th International Conference on Software Engineering, pages 705–715. IEEE
Press, 2012.

[3] Zaid Altahat, Tzilla Elrad, Luay Tahat, and Nada Almasri. Detection of syntactic
aspect interaction in UML state diagrams using critical pair analysis in graph trans-
formation. arXiv preprint arXiv:1312.6939, 2013.

[4] Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave. Feature Interactions:
The Next Generation (Dagstuhl Seminar 14281). Dagstuhl Reports, 4(7):1–24, 2014.

[5] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. Exploring feature interactions in the wild: the new feature-interaction chal-
lenge. In Proceedings of the 5th International Workshop on Feature-Oriented Software
Development, pages 1–8. ACM, 2013.

[6] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander Von Rhein, and Dirk Beyer.
Detection of feature interactions using feature-aware verification. In Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software Engineering,
pages 372–375. IEEE Computer Society, 2011.

[7] Sven Apel, Alexander Von Rhein, Thomas Thüm, and Christian Kästner. Feature-
interaction detection based on feature-based specifications. Computer Networks,
57(12):2399–2409, 2013.

[8] João Araújo, Ana Moreira, Isabel Brito, and Awais Rashid. Aspect-oriented require-
ments with UML. In Workshop on Aspect-oriented Modeling with UML, volume 7.
Citeseer, 2002.

[9] Carlos Areces, Wiet Bouma, and Maarten de Rijke. Feature interaction as a satisfia-
bility problem, 2000.

[10] Silky Arora, Prahladavaradan Sampath, and S Ramesh. Resolving uncertainty in au-
tomotive feature interactions. In Requirements Engineering Conference (RE), 2012
20th IEEE International, pages 21–30. IEEE, 2012.

[11] Elisa Baniassad, Paul C Clements, and João Araújo. Discovering early aspects.

320

[12] C. Barrett, A. Stump, and C. Tinelli. The smt-lib Standard: Version 2.0. In Proceed-
ings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
England), volume 13, 2010.

[13] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems, 35(6):615–
636, 2010.

[14] Nikolaj Bjørner and Anh-Dung Phan. νz-maximal satisfaction with z3. In SCSS, pages
1–9, 2014.

[15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz-an optimizing smt solver.
In Tools and Algorithms for the Construction and Analysis of Systems, pages 194–199.
Springer, 2015.

[16] Johan Blom, Roland N Bol, and Lars Kempe. Automatic detection of feature interac-
tions in temporal logic. In FIW, pages 1–19, 1995.

[17] Cecylia Bocovich and Joanne M. Atlee. Variable-specific resolutions for feature in-
teractions. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16 -
22, 2014, pages 553–563, 2014.

[18] Thomas F Bowen, FS Dworack, Ching-Hua Chow, Nancy Griffeth, Gary E Herman,
and Y-J Lin. The feature interaction problem in telecommunications systems. In
Software Engineering for Telecommunication Switching Systems, 1989. SETSS 89.,
Seventh International Conference on, pages 59–62. IET, 1989.

[19] Isabel Sofia Brito, Ana Moreira, Rita A Ribeiro, and João Araújo. Handling con-
flicts in aspect-oriented requirements engineering. In Aspect-Oriented Requirements
Engineering, pages 225–241. Springer, 2013.

[20] Muffy Calder, Mario Kolberg, Evan H Magill, and Stephan Reiff-Marganiec. Feature
interaction: a critical review and considered forecast. Computer Networks, 41(1):115–
141, 2003.

[21] Muffy Calder and Alice Miller. Feature interaction detection by pairwise analysis of
ltl properties-a case study. Formal Methods in System Design, 28(3):213–261, 2006.

[22] A Chavan, L Yang, K Ramachandran, and WH Leung. Resolving feature interaction
with precedence lists in the feature language extensions. In ICFI, pages 114–128, 2007.

[23] Betty H. C. Cheng and Joanne M Atlee. Research directions in requirements engineer-
ing. In 2007 Future of Software Engineering, pages 285–303. IEEE Computer Society,
2007.

[24] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. A goal-based
modeling approach to develop requirements of an adaptive system with environmental
uncertainty. In Model Driven Engineering Languages and Systems, pages 468–483.
Springer, 2009.

321

[25] Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia, M Pinto Alarcon,
Jethro Bakker, Bedir Tekinerdogan, Siobhán Clarke, and Andrew Jackson. Survey of
aspect-oriented analysis and design approaches. 2015.

[26] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Symbolic
model checking of software product lines. In Proceedings of the 33rd International
Conference on Software Engineering, pages 321–330. ACM, 2011.

[27] David R Cok. The SMT-LIBv2 language and tools: A tutorial. Language C, pages
2010–2011, 2011.

[28] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[29] Michael A Cusumano. Reflections on the toyota debacle. Communications of the ACM,
54(1):33–35, 2011.

[30] Fabiano Dalpiaz, Alexander Borgida, Jennifer Horkoff, and John Mylopoulos. Runtime
goal models: Keynote. In Research Challenges in Information Science (RCIS), 2013
IEEE Seventh International Conference on, pages 1–11. IEEE, 2013.

[31] Robert Darimont and Axel van Lamsweerde. Formal refinement patterns for goal-
driven requirements elaboration. In ACM SIGSOFT Software Engineering Notes, vol-
ume 21, pages 179–190. ACM, 1996.

[32] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

[33] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9):69–77, 2011.

[34] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms. Wiley,
2005.

[35] Kalyanmoy Deb and Ram B Agrawal. Simulated binary crossover for continuous search
space. Complex Systems, 9(3):1–15, 1994.

[36] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[37] Byron DeVries and Betty H. C. Cheng. Automatic detection of incomplete require-
ments via symbolic analysis. In 19th International Conference on Model Driven En-
gineering Languages and Systems, MODELS 2016, Proceedings, Saint-Malo, France,
October 2-7, pages 385–395. ACM, 2016.

[38] Byron DeVries and Betty H. C. Cheng. Automatic detection of incomplete require-
ments using symbolic analysis and evolutionary computation. In International Sym-
posium on Search Based Software Engineering, pages 49–64. Springer, 2017.

322

[39] Byron DeVries and Betty H. C. Cheng. Using models at run time to detect incomplete
and inconsistent requirements. In Proceedings of the 21th International Workshop
on Models@run.time co-located with 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2017), Austin, Texas, September 18,
2017.

[40] Byron DeVries and Betty H. C. Cheng. Automatic detection of feature interactions
using symbolic analysis and evolutionary computation (in review). In Submitted for
Publication, 2018.

[41] Alma L Juarez Dominguez. Detection of feature interactions in automotive active
safety features. PhD thesis, University of Waterloo, 2012.

[42] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection and
resolution of aspect interactions. In International Conference on Generative Program-
ming and Component Engineering, pages 173–188. Springer, 2002.

[43] Agoston E Eiben and James E Smith. Introduction to evolutionary computing, vol-
ume 53. Springer, 2003.

[44] Alessandro Fantechi, Stefania Gnesi, and Laura Semini. Optimizing feature interaction
detection. In Critical Systems: Formal Methods and Automated Verification, pages
201–216. Springer, 2017.

[45] Martin S Feather, Stephen Fickas, Axel van Lamsweerde, and Cristophe Ponsard.
Reconciling system requirements and runtime behavior. In Proceedings of the 9th
international workshop on Software specification and design, page 50. IEEE Computer
Society, 1998.

[46] Alessio Ferrari, Felice dell’Orletta, Giorgio Oronzo Spagnolo, and Stefania Gnesi. Mea-
suring and improving the completeness of natural language requirements. In Require-
ments Engineering: Foundation for Software Quality, pages 23–38. Springer, 2014.

[47] Stephen Fickas and Martin S Feather. Requirements monitoring in dynamic environ-
ments. In Requirements Engineering, Proceedings of the Second IEEE International
Symposium on, pages 140–147. IEEE, 1995.

[48] Erik M Fredericks, Byron DeVries, and Betty H. C. Cheng. Towards run-time adap-
tation of test cases for self-adaptive systems in the face of uncertainty. In Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 17–26. ACM, 2014.

[49] Erik M Fredericks, Byron DeVries, and Betty HC Cheng. Autorelax: automati-
cally relaxing a goal model to address uncertainty. Empirical Software Engineering,
19(5):1466–1501, 2014.

[50] David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

323

[51] DE Goldberg. Genetic algorithms in search, optimization, and machine learning,
addison-wesley, reading, ma, 1989.

[52] Heather J Goldsby and Betty H. C. Cheng. Automatically discovering properties that
specify the latent behavior of UML models. In Model Driven Engineering Languages
and Systems, pages 316–330. Springer, 2010.

[53] Nancy D Griffeth and Hugo Velthuijsen. The negotiating agents approach to runtime
feature interaction resolution. In FIW, pages 217–235, 1994.

[54] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based software en-
gineering: Trends, techniques and applications. ACM Computing Surveys (CSUR),
45(1):11, 2012.

[55] Jonathan D. Hay and Joanne M. Atlee. Composing features and resolving interactions.
In Proceedings of the 8th ACM SIGSOFT International Symposium on Foundations of
Software Engineering: Twenty-first Century Applications, SIGSOFT ’00/FSE-8, pages
110–119, New York, NY, USA, 2000. ACM.

[56] Mats PE Heimdahl and Nancy G Leveson. Completeness and consistency in hierarchi-
cal state-based requirements. Software Engineering, IEEE Transactions on, 22(6):363–
377, 1996.

[57] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Computational
Complexity, 1999. Proceedings. Fourteenth Annual IEEE Conference on, pages 237–
240. IEEE, 1999.

[58] Michael Jackson and Pamela Zave. Distributed feature composition: A virtual archi-
tecture for telecommunications services. IEEE Trans. Softw. Eng., 24(10):831–847,
October 1998.

[59] Praveen Jayaraman, Jon Whittle, Ahmed M Elkhodary, and Hassan Gomaa. Model
composition in product lines and feature interaction detection using critical pair anal-
ysis. In Model Driven Engineering Languages and Systems, pages 151–165. Springer,
2007.

[60] Adam C Jensen, Betty H. C. Cheng, Heather J Goldsby, and Edward C Nelson. A
toolchain for the detection of structural and behavioral latent system properties. In
Model Driven Engineering Languages and Systems, pages 683–698. Springer, 2011.

[61] Martin Fagereng Johansen, Øystein Haugen, Franck Fleurey, Erik Carlson, Jan En-
dresen, and Tormod Wien. A technique for agile and automatic interaction testing for
product lines. In Testing Software and Systems, pages 39–54. Springer, 2012.

[62] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[63] Phil Koopman. A case study of Toyota unintended acceleration and software safety.
Presentation. Sept, 2014.

324

[64] Alexei Lapouchnian and John Mylopoulos. Modeling domain variability in require-
ments engineering with contexts. In International Conference on Conceptual Modeling,
pages 115–130. Springer, 2009.

[65] Edward A Lee. Cyber physical systems: Design challenges. In Object oriented real-
time distributed computing (isorc), 2008 11th ieee international symposium on, pages
363–369. IEEE, 2008.

[66] Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[67] Nancy Leveson. Completeness in formal specification language design for process-
control systems. In Proceedings of the Third Workshop on Formal methods in software
practice, pages 75–87. ACM, 2000.

[68] Marcilio Mendonca, Andrzej Wąsowski, and Krzysztof Czarnecki. Sat-based analysis
of feature models is easy. In Proceedings of the 13th International Software Product
Line Conference, pages 231–240. Carnegie Mellon University, 2009.

[69] Igor Menzel, Mark Mueller, Anne Gross, and Joerg Doerr. An experimental comparison
regarding the completeness of functional requirements specifications. In Requirements
Engineering Conference (RE), 2010 18th IEEE International, pages 15–24. IEEE, 2010.

[70] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[71] Gunter Mussbacher, Jon Whittle, and Daniel Amyot. Towards semantic-based aspect
interaction detection. 1st Intl. Wksh. on Non-functional System Properties in Domain
Specific Modeling Languages (NFPinDSML2008), 2008.

[72] Gunter Mussbacher, Jon Whittle, and Daniel Amyot. Semantic-based interaction de-
tection in aspect-oriented scenarios. In 2009 17th IEEE International Requirements
Engineering Conference, pages 203–212. IEEE, 2009.

[73] Gunter Mussbacher, Jon Whittle, and Daniel Amyot. Modeling and detecting semantic-
based interactions in aspect-oriented scenarios. Requirements Engineering, 15(2):197–
214, 2010.

[74] M Nakamura and S Reiff-Marganiec. Semantic-based aspect interaction detection with
goal models (position paper). Feature Interactions in Software and Communication
Systems X, page 176, 2009.

[75] Andres J Ramirez and Betty H. C. Cheng. Automatic derivation of utility functions
for monitoring software requirements. In Model Driven Engineering Languages and
Systems, pages 501–516. Springer, 2011.

[76] Silvio Ranise and Cesare Tinelli. The SMT-LIB standard: Version 1.2. Technical
report, Technical report, Department of Computer Science, The University of Iowa,
2006. Available at www. SMT-LIB. org, 2006.

325

[77] Awais Rashid, Peter Sawyer, Ana Moreira, and João Araújo. Early aspects: A model
for aspect-oriented requirements engineering. In Requirements Engineering, 2002. Pro-
ceedings. IEEE Joint International Conference on, pages 199–202. IEEE, 2002.

[78] William N Robinson. Monitoring software requirements using instrumented code. In
System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii International
Conference on, pages 3967–3976. IEEE, 2002.

[79] Américo Sampaio, Ruzanna Chitchyan, Awais Rashid, and Paul Rayson. Ea-miner: a
tool for automating aspect-oriented requirements identification. In Proceedings of the
20th IEEE/ACM international Conference on Automated software engineering, pages
352–355. ACM, 2005.

[80] Alberto Sardinha, Ruzanna Chitchyan, João Araújo, Ana Moreira, and Awais Rashid.
Conflict identification with ea-analyzer. In Aspect-Oriented Requirements Engineering,
pages 209–224. Springer, 2013.

[81] Vı́tor E Silva Souza, Alexei Lapouchnian, William N Robinson, and John Mylopoulos.
Awareness requirements for adaptive systems. In Proceedings of the 6th international
symposium on Software engineering for adaptive and self-managing systems, pages 60–
69. ACM, 2011.

[82] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal verification
of avionics software products. In International Symposium on Formal Methods, pages
532–546. Springer, 2009.

[83] Vı́tor E Silva Souza, Alexei Lapouchnian, William N Robinson, and John Mylopoulos.
Awareness requirements. In Software Engineering for Self-Adaptive Systems II, pages
133–161. Springer, 2013.

[84] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition of
product lines. In Proceedings of the 6th international conference on Generative pro-
gramming and component engineering, pages 95–104. ACM, 2007.

[85] Sebastian Uchitel and Marsha Chechik. Merging partial behavioural models. In ACM
SIGSOFT Software Engineering Notes, volume 29, pages 43–52. ACM, 2004.

[86] Rob van der Linden. Using an architecture to help beat feature interaction. In FIW,
pages 24–35, 1994.

[87] Axel van Lamsweerde et al. Requirements engineering: from system goals to UML
models to software specifications. Wiley, 2009.

[88] John Viega and Jeffrey Voas. Can aspect-oriented programming lead to more reliable
software? IEEE Software, 17(6):19, 2000.

[89] William E Walsh, Gerald Tesauro, Jeffrey O Kephart, and Rajarshi Das. Utility func-
tions in autonomic systems. In Proceedings of the International Conference on Auto-
nomic Computing, pages 70–77. IEEE, 2004.

326

[90] Nathan Weston, Francois Taiani, and Awais Rashid. Interaction analysis for fault-
tolerance in aspect-oriented programming. 2007.

[91] Jon Whittle and Praveen Jayaraman. Mata: A tool for aspect-oriented modeling based
on graph transformation. In International Conference on Model Driven Engineering
Languages and Systems, pages 16–27. Springer, 2007.

[92] Jon Whittle, Pete Sawyer, Nelly Bencomo, and Betty H. C. Cheng. A language for
self-adaptive system requirements. In Service-Oriented Computing: Consequences for
Engineering Requirements, 2008. SOCCER’08. International Workshop on, pages 24–
29. IEEE, 2008.

[93] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel Bruel.
Relax: a language to address uncertainty in self-adaptive systems requirement. Re-
quirements Engineering, 15(2):177–196, 2010.

[94] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-Michel Bruel.
Relax: Incorporating uncertainty into the specification of self-adaptive systems. In
Requirements Engineering Conference, 2009. RE’09. 17th IEEE International, pages
79–88. IEEE, 2009.

[95] Eric Yu. Modelling strategic relationships for process reengineering. Social Modeling
for Requirements Engineering, 11:2011, 2011.

[96] Eric SK Yu. Towards modelling and reasoning support for early-phase requirements
engineering. In Requirements Engineering, 1997., Proceedings of the Third IEEE In-
ternational Symposium on, pages 226–235. IEEE, 1997.

[97] Yijun Yu, Julio CSP Leite, and John Mylopoulos. From goals to aspects: discovering
aspects from requirements goal models. In Requirements Engineering Conference, 2004.
Proceedings. 12th IEEE International, pages 38–47. IEEE, 2004.

[98] Marina MN Zenun and Geilson Loureiro. A framework for dependability and com-
pleteness in requirements engineering. In Latin American Symposium on Dependable
Computing, pages 1–4, 2013.

[99] Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman. Search based requirements
optimisation: Existing work and challenges. In International Working Conference on
Requirements Engineering: Foundation for Software Quality, pages 88–94, 2008.

[100] M Hadi Zibaeenejad, Chi Zhang, and Joanne M Atlee. Continuous variable-specific
resolutions of feature interactions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE, pages 408–418. ACM, 2017.

327

