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ABSTRACT 

MULTISCALE MODELING OF NUCLEIC ACIDS IN CELLULAR ENVIRONMENTS 

By 

Asli Yildirim 

Biological cells are highly crowded due to the presence of various macromolecules. Here, the 

macromolecular crowding effects on DNA structure were investigated via computer simulations. 

Molecular dynamics simulations of DNA with crowder proteins showed that B-form of DNA is 

stabilized resulting from non-specific interactions of crowder proteins with DNA sugar-phosphate 

backbone, while the reduced dielectric response of cellular environments was found to favor A-

like conformations as shown by implicit solvent simulations of DNA in reduced dielectric 

environments. Overall, the results obtained here suggest that different aspects of cellular crowding 

have opposite impacts on DNA structure.  

As the largest molecule in the cell, genomic DNA also occupies a large fraction of the bacterial 

cell and causes crowding. An experimentally-driven multiscale modeling protocol was developed 

to study the three-dimensional structure of bacterial chromosomes and their effects on protein 

diffusion. Using this protocol, three dimensional structures of Caulobacter crescentus 

chromosome at base-pair resolution were generated. Investigation of these models provided 

insights into chromosome structural variability and organization. Coarse-grained Brownian 

dynamics simulations of these chromosome models in the presence of proteins, on the other hand, 

suggest that protein diffusion becomes slower and anomalous when around DNA. 
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This dissertation aims to comprehend the structure of DNA in cellular environments using 

computational modeling techniques. The first chapter provides a brief introduction to the DNA 

structure and macromolecular crowding observed in cellular environments, and explains the 

modeling approaches that are used in this dissertation. The second and third chapters present the 

results obtained from molecular dynamics simulations of DNA in environments with reduced 

dielectric response and protein crowding, respectively. The fourth chapter describes the 

development of a multiscale modeling algorithm to generate three-dimensional structures of 

bacterial nucleoids at base-pair resolution. The fifth chapter discusses the effect of nucleoid 

crowding on the diffusive properties of proteins observed in Brownian dynamics simulations of 

coarse-grained model systems containing bacterial nucleoid and proteins. Finally, the sixth chapter 

summarizes the findings and the future directions of the work. 

 

1.1 Structure of DNA 
 
DNA (deoxyribonucleic acid) is a complex biomolecule found in living cells and it carries the 

biological instructions for life. DNA was first discovered and isolated from human white blood 

cells by Friedrich Miescher in 1869 [1]. This discovery led many scientists to investigate molecular 

structure of DNA and the first clues were found by Phoebus Levene in 1919 [2]. He discovered 

that nucleotides are the building blocks of DNA structure and the major components of these 

nucleotides are sugar, nitrogenous bases (adenine (A), guanine (G), cytosine (C), thymine (T)) and 

phosphate (Figure 1.1). Later, Erwin Chargaff expanded Levene’s work and proposed two rules 

about DNA structure; relative A, G, C, T content differs from one species to another, and the total 

amount of A is equal to the total amount of T as well as the total amount of G is equal to the total 
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amount of C [3]. These rules provided an additional hint on the facts that DNA is the genetic 

material rather than proteins and the bases in its structure are paired. 

 

Figure 1.1 Building blocks of DNA structure. (A) Structure of a nucleotide. (B) Nitrogenous 
bases found in DNA. 

In the meantime, Maurice Wilkins and Rosalind Franklin were also investigating the DNA 

structure by using X-ray crystallography. In 1952, Rosalind Franklin had taken the X-ray 

diffraction image of DNA which provided crucial information on helical-nature of DNA structure 

[4].  Combining all the obtained knowledge of DNA structure, Francis Crick and James Watson 

derived the three-dimensional (3D) double-helical DNA model in 1953 [5].  They proposed that 

DNA is a right-handed double-stranded helix with the two strands coiled around the helical axis 

(Figure 1.2A). Each strand is composed of nucleotides linked by a phosphodiester bond between 
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the 3¢ carbon atom of the sugar of one nucleotide and the 5¢ carbon atom of the next nucleotide’s 

sugar, forming the sugar-phosphate backbone of DNA. The two strands with sequences running in 

opposite directions, are connected by hydrogen bonds between the purine and pyrimidine bases of 

nucleotides, constructing the DNA base-pairs, A-T and G-C. They also suggested that the helical 

diameter of DNA is 20 Å, the distance between the two-consecutive base-pairs in the helical axis 

direction is 3.4 Å and the rotation angle between them is 36°.  

 

 

Figure 1.2 Double helical DNA conformations. (A) B-DNA. (B) A-DNA. (C) Z-DNA. 

The described DNA model by Watson and Crick is called “B-DNA” (Figure 1.2A) and 

accepted as the most common DNA conformation found in nature. In addition to B-DNA, there 

are also two other significant conformations of DNA of which existences are experimentally 

proven: A-DNA and Z-DNA (Figure 1.2B and 1.2C). When B-DNA is dehydrated, it gets into A-

form [6]. A-DNA is much shorter than B-DNA with ~2.6 Å distance between two consecutive 

base-pairs, also wider as its diameter is suggested to be around 23 Å.  This form is also observed 
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in environments with high alcohol content due to the lower water activity of the environment [7, 

8] and in solutions with salt which helps bridging negatively charged phosphate atoms in the DNA 

backbone [9], therefore forming a more compact structure. Z-DNA, on the other hand, is much 

different from A- and B- forms since it has a left-handed helical structure. It is also relatively 

narrower and longer with a smaller helical diameter and a larger distance between the adjacent 

base pairs. Z-form is mainly found in DNA with alternating purine and pyrimidine sequences and 

also some proteins were found to bind to Z-DNA [10, 11] specifically. 

Similar to proteins, DNA is also assumed to have a primary, secondary and tertiary structures.  

The DNA sequence is the primary structure, and the 3D DNA conformations described above are 

the common secondary structures of DNA. Genomic DNA can be billions of base-pairs in length 

for eukaryotes and it has to undergo conformational compaction to fit into the microscopic cell 

nucleus. The compact conformation that DNA folds into, therefore, is considered as its tertiary 

structure. Briefly, genomic DNA in eukaryotes first wraps around eight histone cores and this 

DNA-histone complex is called nucleosome [12]. Multiple nucleosomes then package together 

forming the chromatin fibers [12]. The chromatin fibers also undergo further compaction with 

coiling and looping, finally forming chromosomes [12]. This multilevel compaction allows meters 

of genomic DNA to fit inside the cell nucleus that has an average diameter of 6 microns. 

On the other hand, genomic DNA in prokaryotes is a circular DNA and relatively smaller in 

size. However, it still needs compaction to fit inside the cell. In contrast to the eukaryotic genome, 

prokaryotic genome does not have a specific compartment separated from the rest of the cytoplasm 

with a nuclear membrane. It instead resides inside the cytoplasm and interacts freely with other 

biomolecules in the cell. The region of the cytoplasm where the genomic DNA lies together with 

proteins and RNA is called nucleoid. The DNA inside the nucleoid is lack of histones; however, it 
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still undergoes compaction via negative supercoiling introduced by topoisomerases [12]. Further 

looping of the supercoiled DNA also takes place with the help of nucleoid-associated proteins 

(NAPs).  The prokaryotic chromosome structure and organization is discussed in more detail in 

the next section as it is one of the major subjects of this dissertation. 

 

1.2 Bacterial Chromosome Structure and Organization 
 

The bacterial chromosome contains a closed circular DNA with a length of several million base-

pairs which would reach millimeters in length if stretched out [13]. In order to fit inside the cell 

nucleoid which has less than 1 µm3 volume, the chromosome undergoes multiple levels of 

compaction (Figure 1.3). The circular chromosomal DNA compacts itself by generating loops with 

the help of proteins [13]. Bacterial chromosomes do not have histones to wrap around for 

compaction as eukaryotic chromosomes have, however, there is a class of DNA-binding proteins 

in bacteria, called NAPs as discussed in Section 1.1, which play the dominant role in compacting 

and organizing chromosome structure by introducing sharp bends and kinks [14]. Some of the 

most abundant NAPs in bacteria are H-NS (histone-like nucleoid-structuring), Fis (factor for 

integration stimulation), IHF (integration host factor) and Smc (structural maintenance of 

chromosome) proteins [14]. The other crucial compaction mechanism for bacterial chromosomes 

is DNA supercoiling. Supercoiling of chromosomal DNA is controlled by DNA gyrase and 

topoisomerase I enzymes which introduce negative and positive supercoiling, respectively.  As a 

result of these compaction mechanisms, bacterial chromosomes get into a bottlebrush-like 

structure containing several topological domains with an average size of ~10 kb [15].  
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Figure 1.3 Bacterial chromosome compaction. 

DNA supercoiling occurs from under- or overwinding of the double-stranded DNA helix. 

When the DNA helix is underwound, it becomes negatively supercoiled (right-handed) and it is 

positively supercoiled (left-handed) when overwound. Most of the organisms including bacteria 

have negatively supercoiled DNA. Besides, there are two forms of supercoiling as illustrated in 

(Figure 1.4A) which are toroidal and plectonemic supercoiling. Plectonemic supercoiling is more 

common in nature; it is the dominant supercoiling form observed in bacterial chromosomes as 

well.   

The mathematical description of the degree of supercoiling is found using numerical properties 

of supercoiled DNA which are linking number (Lk), twist (Tw) and writhe (Wr).  Lk gives the 

number of winding of one DNA strand about the other DNA strand which is always integer and 

constant for a closed circular DNA. Tw is the number of turns in the DNA helix whereas Wr is the 

number of times the DNA helix coils around itself and the sum of these two values gives the Lk 

of DNA (Equation 1.1): 

     !" = $% +'(      (1.1) 

For the relaxed form of DNA, Wr is always zero, therefore Lk is equal to Tw. Lko, the linking 

number for the relaxed B-DNA form is calculated using Equation 1.2:  
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     !") = *+/10.5      (1.2) 

where bp is the number of basepairs in the DNA and 10.5 is the number of basepairs relaxed B-

DNA has per turn. DLk, the difference between the Lk of a supercoiled DNA and Lko (Equation 

1.3) gives the change in the total number of turns in the supercoiled DNA. When DLk is negative, 

DNA is negatively supercoiled (underwound).  

     ∆!" = !" − !")     (1.3) 

Finally, the specific linking difference calculated by Equation 1.4, s, is the measure of the 

degree of supercoiling. The specific linking difference of chromosomal DNA isolated from a cell 

is between -0.03 – -0.09 indicating that DNA is negatively supercoiled in cells [16]. 

     3 = ∆!"/!"4       (1.4) 

A typical configuration for a negatively supercoiled plectoneme is shown in Figure 1.4B. The 

average opening angle of a superhelix, a, has been shown to be constant and independent of the 

specific linking difference of DNA by various electron microscopy and computational studies [17, 

18]. The superhelix radius, r, on the other hand, is strongly dependent on s; it shows a decreasing 

trend with an increasing |s| [17, 18]. The pitch of the superhelix is 26+, and p is defined by 

Equation 1.5: 

     + = 789:×(      (1.5) 

Apart from the specific linking difference, a and r have also been suggested to depend on the salt 

concentration of the environment [19]. Nevertheless,  a is mostly around 55° and r varies between 

5 – 12 nm at typical cellular conditions with s range of -0.03 – -0.09 and 0.1 M salt concentration 

[16-19].  
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Figure 1.4 Properties of supercoiling. (A) Different types of supercoiling, (B) Plectonemic 
supercoiling parameters. 

In addition to the abovementioned knowledge on bacterial chromosome structure revealed by 

early studies, the developments in experimental biological techniques have provided new insights 

into the chromosome structure and organization [13, 20]. A summary of the most common 

experimental approaches to understand the spatial organization of bacterial chromosomes is 

illustrated in Figure 1.5. Fluorescence in situ hybridization (FISH) allows visualization of 

individual genetic loci in fixed cells using fluorescent probes that are able to bind DNA (Figure 

1.5A), while the fluorescence repressor-operator system (FROS) technique enables the same 

visualization in live cells by inserting exogenous sequences into the genome to which fluorescently 

labeled proteins can bind (Figure 1.5B). Besides these methods allowing the localization of 

individual loci, genome-wide approaches are also extensively used in investigating chromosome 

structure and organization. Binding-sites of a DNA-binding protein in a whole genome can be 

identified by using chromatin immunoprecipitation (ChIP)-based techniques (Figure 1.5C). In 

ChIP-based experiments, DNA and bound proteins are first crosslinked and then cells are lysed. 
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Next, the DNA-protein complexes are isolated from the rest of the solution using a purification 

technique called immunoprecipitation. And lastly, DNA is purified and sequenced. Another 

genome-wide method, called chromosome conformation capture (3C) [21], allows identifying the 

frequency of interactions between two different loci in a genome. The experiment starts with 

crosslinking the whole genomic DNA and then cutting it with a restriction enzyme. The resulting 

DNA products are then ligated. Finally, the ligated fragments are purified and sequenced. The 

derivative of this experiment (Hi-C) in which high-throughput sequencing is used results in a 

genome-wide contact matrix which provides insight into the 3D conformation of the chromosome 

[22]. 

Using these techniques on Escherichia coli, Caulobacter crescentus, Bacillus subtilis, and 

Mycoplasma pneumoniae revealed that bacterial chromosomes are highly-organized [23-33]. 

Early FISH studies showed that the E. coli chromosome is organized into four macrodomains; Ori, 

Ter, Left and Right [23] which have also been identified by 3C-based experiments later [30]. FROS 

studies on C. crescentus and B. subtilis reported that the origin and terminus of the replication 

reside at the opposite poles of the C. crescentus chromosome [24], and in the B. subtilis 

chromosome, while the origin of replication lies at the cell quarter position, the terminus resides 

at the mid-cell [25, 26]. Further investigation of the C. crescentus chromosome with 3C-based 

techniques have revealed that two chromosomal arms between the poles intertwined around each 

other [27] and the chromosome contains 23 different chromosome interacting domains (CIDs) 

where a locus is interacting more frequently with another within the same CID compared to a locus 

from other CIDs [28]. CIDs have also been observed in B. subtilis and M. pneumoniae 

chromosomes by Hi-C experiments [29, 31-33]. These CID domains with a size range of 30 – 400 

kb are similar to the topologically associating domains (TADs) found in eukaryotic chromosomes. 
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Figure 1.5 Technical advances for studying bacterial chromosomes. (A) Fluorescence in situ 
hybridization, (B) Fluorescently tagged DNA-binding proteins, including the fluorescence 
repressor–operator system (FROS), (C) Chromatin immunoprecipitation (ChIP)-based methods, 
(D) Chromosome conformation capture methods. Adapted by permission from Macmillan 
Publishers Ltd: [Organization and segregation of bacterial chromosomes] (Nature Reviews 
Genetics 14, 191–203 (2013)), copyright (2013). 
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Recent developments in experimental techniques to study chromosome structure and 

organization have paved the way for 3D modeling efforts for entire chromosomes. Interaction 

frequencies of two loci obtained from 3C-based experiments can be converted to spatial distances 

based on the assumption that two loci that are frequently interacting are spatially close, and when 

there is no interaction, they lie apart in 3D space. By using the converted distances derived from 

3C frequencies, 3D chromosome structures of C. crescentus and M. pneumonia have been 

generated at 10-kb resolution [27, 29]. Another modeling strategy where the topological 

parameters of a circular polymer model consisting of plectonemes were varied in order to find the 

model that fits the Hi-C data best, provided 3D C. crescentus chromosome models at 434 base-

pairs resolution [28]. In addition to using 3C contact frequencies, CHIP data on the RNA 

polymerase binding sites for the E. coli genome combined with the genomic DNA topological 

properties have also been utilized in generating 3D chromosome models of E. coli at nucleotide 

resolution [34]. Overall, the obtained 3D models have enabled better visualization of bacterial 

chromosomes in 3D space and shed light on the chromosome structure–function relationships.  

 

1.3 Macromolecular Crowding 
 

Macromolecular crowding phenomenon has drawn considerable attention by researchers in recent 

years since cellular environments are highly crowded and their crowded nature has been found to 

affect biomolecular structure and dynamics [35]. The cellular cytoplasm contains high 

concentrations of proteins, nucleic acids and various cosolvents [36]. A typical cell has a 

macromolecular concentration of 300 – 400 mg/ml which results in a 5 – 40 % fraction of the cell 

volume occupied by macromolecules [37]. This crowding condition is significantly different from 

a dilute solution which is an extensively used environment when conducting experiments, hence 
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the effect of macromolecular crowding on the biological cell functions and processes is mostly 

ignored in vitro.  

Studies on macromolecular crowding to date have reported three major effects of cellular 

crowding: volume exclusion, non-specific interactions with crowders, and reduced dielectric 

response of the crowded environment. The volume-exclusion effect arises from the less available 

volume for solutes because of the presence of other crowder macromolecules [38]. The steric 

repulsion between solutes and other crowders has been shown to entropically favor more compact 

conformation states due to the confinement [35]. The excluded-volume had been regarded as the 

most crucial effect of crowding over the years; however, it has been challenged by new crowding 

studies suggesting that enthalpic contributions resulting from possible intracellular interactions 

stabilize partially extended conformations in contrast to the excluded-volume effect [39-41]. 

Therefore, these studies show that nonspecific interactions between solutes and crowders also play 

a dominant role in determining structure and dynamics of biomolecules. Lastly, since the water is 

much less available because of its replacement by less polar crowder macromolecules, the reduced 

dielectric response of the environment is significantly reduced. The dielectric constant of a cellular 

environment is believed to lie in a range of 20 – 60 which is much lower compared to the bulk 

water’s dielectric constant (e=80) [42]. 

The effects of macromolecular crowding specifically on protein structure and dynamics has 

been extensively studied. Primary studies from Minton et al. have shown that the reduction of the 

accessible volume due to crowders stabilizes the folded native structure of proteins [35, 43]. On 

the other hand, recent studies have shown that the nonspecific interactions of proteins with other 

crowder proteins stabilize non-native, partially extended structures [39-41, 44-46]. Several 

experimental studies have reported the destabilizing effect of the cellular environment on different 
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proteins with different experimental techniques [39-41]. Pielak et al. have studied chymotrypsin 

inhibitor 2 (Cl2) by using hydrogen-exchange NMR and found that it is destabilized in the presence 

of lysozyme [40]. Another in-cell NMR study has shown the destabilization of ubiquitin in human 

cells due to possible interactions with intracellular macromolecules [39]. These experimental 

findings have also been supported by computational studies; different studies from our group 

suggest that protein-protein interactions lead to stabilization of unfolded states of proteins [44-46]. 

Cellular crowding has also been reported to alter the hydration structure around proteins [42]. In 

addition to the effects of crowding on structural properties of proteins, studies also show the change 

in diffusive properties of proteins in cellular environments. Diffusion rates of proteins were found 

to be greatly reduced in the cytoplasmic environment [47-49].  

Most of the crowding studies thus far have focused on characterizing the effect of crowding 

on protein structure and dynamics. The available findings on crowding in the literature are limited 

and less detailed when it comes to nucleic acids [50, 51]. It has been found that the excluded-

volume and different hydration patterns under crowding alter the structures of DNA G-

quadruplexes [52-54]. Short DNA duplexes have been found to undergo B- to A- form transition 

in the presence of alcohols and explicit salts [7, 8, 55-62]. On the other hand, longer DNA duplexes 

are most stabilized in compact conformations instead of elongated states in the presence of 

polyethylene glycol (PEG) due to the excluded-volume [63, 64]. In addition to structural 

observations, there is also some evidence that plasmid DNA has lower diffusion rates due to the 

crowding [65-68]. However, all in all, the changes in structure and dynamics of DNA have not 

been investigated as systematically as in protein studies; although DNA duplex structure has been 

studied in environments with alcohol or additional salt, the effect of explicit cellular crowder 

macromolecules, such as proteins, on DNA structure has not been explored. 
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On the other side, in addition to proteins which were generally used as crowding agents in 

studies due to their high concentration in cells, genomic DNA also occupies a large fraction of the 

cell volume; hence it is highly probable that DNA does not only experience the effect of crowding 

in cells, but they also give rise to crowding. Especially in prokaryotes, genomic DNA is not 

isolated in a nuclear compartment as in eukaryotes, and it freely interacts with the macromolecules 

in the cytoplasm as discussed in the previous section, suggesting that the nucleoid crowding effect 

may also play a crucial role in cellular processes.  

 

1.4 Computational Modeling of DNA 
 

Computer simulations play a very significant role in biology today as a complementary tool to 

experiments. Molecular dynamics (MD) simulations have become one of the most powerful 

techniques to study complex biomolecular systems since it enables studying the structure and 

dynamics of biological macromolecules at atomistic detail which many experiments lack [69]. MD 

simulations provide the time evolution of the positions and velocities of the particles in a biological 

system by using Newton’s law of motion.  In MD, first, the force on each particle is calculated 

from the derivation of the defined potential energy by using Equation 1.6: 

<= = −∆=>(@) = B=8=     (1.6) 

where Fi is the force on particle i, mi and ai are the mass and acceleration of particle i, and >(@) is 

the potential energy of particle i as a function of its set of coordinates, @. The integration of 

Equation 1.6 then provides the new positions and velocities.  

The potential energy function used in Equation 1.6 is a set of potentials based on bonded and 

nonbonded interactions in the system:  
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where, CD, Cq, Cf, Cw are the force constants of the bonding terms, bonds (b), angles (q), dihedrals 

(f) and impropers (w), and the constants with a subscription 0 denote the respective equilibrium 

values. Nonbonded terms contain Lennard-Jones and Coulombic terms. The former is for van der 

Waals interactions with constants e=V, (=VS=F, (=V corresponding to the depth of the potential well, 

distance between particles when the potential is minimum, and distance between particles at that 

time, and the latter is for electrostatic interactions where U= and UV are the charges on particle i and 

j, (=V is the distance between particles and e is the dielectric constant of the medium. 

The functional form and the set of parameters used in the potential energy is called “force 

field”. For the fully atomistic representations of biomolecules, there are several force fields 

available in the literature. The most widely used ones are CHARMM [70-72], AMBER [73] and 

GROMOS [74]. The most accurate force fields for all-atomic DNA models are CHARMM36 [72] 

and OL15 [75] and parmbsc1 [76] AMBER force fields. MD simulations of all-atom DNA models 

have been extensively carried out and shed light on conformational preferences of DNA [77, 78], 

the effect of salt and cosolvents on DNA structure [57, 62], B- ßà A- form DNA transitions [58-

60, 79], hydration and ion density patterns around DNA [80-82]. Reviews on MD studies on DNA 

structure can be found in the following references [77, 78]. 

All-atom simulations of biomolecules generally contain explicit all-atom water molecules as 

well, since biomolecules are mostly solvated with water in nature.  The addition of water molecules 

(1.7) 
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to the biological system for solvation increases the number of atoms in the system as well as the 

non-bonded interactions drastically, therefore requires more computational resources. In order to 

reduce the computational cost of the explicit solvation, the solvent environment can also be treated 

implicitly in which a continuous medium represents the solvent instead of explicit water molecules 

[83]. This way of solvation is less accurate than the explicit solvation; however, the computational 

cost is much lower. In implicit solvation, the solvation free energy is calculated with the following 

equation:  

∆]H)L[JX=)F = ∆]MLMWXR)HXJX=W + ∆]F)FT)LJR     (1.8) 

where the solvation energy consists of two parts: electrostatic (∆]MLMWXR)HXJX=W) and nonpolar 

(∆]F)FT)LJR) contributions. One way of calculating the electrostatic part of the Equation 1.8 is 

using Generalized Born (GB) theory which is an approximation of Poisson-Boltzmann (PB) 

method [84]. GB theory calculates the electrostatic component of the solvation free energy with 

Equation 1.9: 

∆]MLMWXR)HXJX=W = −"
1

^H)L_XM
−

1

^H)L[MFX

U=UV

(=V
E + :=:Vexp	(−(=V

E/4:=:V)

	

=,V

 
where ^H)L_XM and ^H)L[MFX are the dielectric constants of the solute and solvent, q is the charge of 

the atoms, r is the distance between the atoms and : is the Born radii of the corresponding atom. 

The estimation of Born radii can be done with different approaches which are reviewed in the 

following references [85, 86]. In this dissertation, the Generalized Born with molecular volume 

method (GBMV) is used where Born radii are calculated from the integration over molecular 

volume built from a superposition of atomic functions [87-89].  

(1.9) 
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The second component of Equation 1.8, ∆]F)FT)LJR, which is the contribution to the solvation 

free energy resulting from nonpolar interactions between solute and solvent as well as the cost of 

cavity is calculated from the solvent accessible surface area (SASA): 

∆]F)FT)LJR = e=fgfgh=                      (1.10) 

where γ is the surface tension coefficient. 

Classical MD simulations either with explicit or implicit solvation, sometimes is not efficient 

to sample all conformational states in a rough energy landscape due to the requirement of long 

simulation times to observe barrier crossings. To overcome this problem, many enhanced sampling 

methods have been developed including metadynamics, simulated annealing and replica-exchange 

molecular dynamics (REMD) [90]. REMD, which is also applied within this dissertation, simulates 

several independent replicas of the system simultaneously at different temperatures and exchanges 

between these replicas periodically according to the Metropolis criterion [91]: 

+(@S → @F) =

					
	1																			jk(	∆< 0

	
					

exp −∆ 				jk(	∆≥ 0
 

where p is the probability of swapping between configurations Xm and Xn at temperatures Tm and Tn, 

and D is;  

∆= [oF − oS](q US − q(UF)) 

where b=1/kTm(n), q US 	89r	q(UF) are the corresponding potential energies of configurations Xm 

and Xn.  

The idea behind REMD is that higher temperatures will cross the barriers between local 

minima easier, therefore span more conformational space and make other local minima that are 

(1.11) 

(1.12) 
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not reachable via straight MD available. In this dissertation, the secondary DNA structure under 

the effect of macromolecular crowding is investigated via REMD simulations of all-atom DNA 

model in implicit solvent (Chapter 2) and MD simulations in explicit solvent (Chapter 3).  

Although fully-atomistic representations of biological systems are the most realistic models to 

use in MD simulations, all-atom simulations suffer substantially from the computational cost 

required to reach biologically relevant timescales, especially for the biological systems because 

they generally contain thousands to millions of atoms. In addition to the enhanced sampling 

methods, an alternative way to reduce the computational cost of running long MD simulations is 

to reduce the degrees of freedom in the system by switching to coarse-grained (CG) models where 

several atoms are represented with one particle. CG models are extensively used in biomolecular 

studies of proteins, nucleic acids, lipids and carbohydrates [92]. One of the challenges in CG 

modeling is to develop CG force fields as accurate as the ones used in all-atom simulations. The 

reported CG force fields in the literature have been developed by extracting CG interactions from 

all-atom simulations, optimizing parameters in the interaction potentials to reproduce the key 

experimental data, or combination of these two approaches [92]. These available CG models have 

a wide variety of simplification levels. For DNA, coarsening levels of models vary from several 

base-pairs per a single particle [93, 94] to more sophisticated representations with one to three 

particles per nucleotide [95, 96] as reviewed in the following reference [97]. Representations of 

CG models with resolutions of one particle per nucleotide and four basepairs per particle for a 

DNA dodecamer are illustrated in Figure 1.6.  
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Figure 1.6 DNA models at different resolution. (A) All-atom model. (B) One bead per 
nucleotide model. (C) One bead per four basepairs model.  

The level of detail to include in CG models mainly depends on the phenomenon of interest. 

Biological processes where chemical interactions or a specific DNA sequence may play a role 

require finer details in the CG models, whereas for the studies investigating DNA at larger scales 

such as DNA supercoiling or 3D structure of chromosomes, coarser models could be used. The 

CG DNA model with a resolution of three particles per nucleotide developed by de Pablo et al. 

[95] has been used to study DNA hybridization, bubble formation and thermodynamics of DNA 

melting [95, 98, 99]. Simulations of another CG model which uses one particle per nucleotide have 

provided insight into DNA persistence length and rigidity [96, 97]. On the other hand, worm-like-

chain or beads-on-a-string models with particles smaller than the persistence length of DNA, 

corresponding to several tens of base pairs, have been investigated to understand thermodynamic 

and kinetic properties of DNA supercoiling [16, 18, 93, 94, 100]. At the extreme end, there are 

also some CG models available in which hundreds to thousands of basepairs are represented by a 

single particle to study chromosome structure and organization [28, 101]. 
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In addition to the CG models of biological systems, CG water models have also been developed 

for solvation [97]. Nevertheless, the implicit treatment of the water environment is more frequently 

performed in CG simulations in spite of the fact that the application of implicit solvation does not 

only neglect the interactions between solute and solvent or solvent and solvent, but also excludes 

the friction and random collisions caused by solvent molecules. This omission can be corrected by 

addition of two extra terms to the Newton’s equation: 

  <= − st= + u(7) = −∆=>(@) − st= + u(7) = B=8=    (1.13) 

where s is the frictional coefficient, t= is the velocity of particle i and u(7) is a random force 

vector. The rest of the terms are the same as in Equation 1.6. Equation 1.13 is a stochastic 

differential equation and called the Langevin equation. The mean of the random force in the 

equation, u 7  is zero and its variance is related to the parameter s by fluctuation-dissipation 

theorem:  

< u 7 >= 0,									 < u 7 u 7′ >= 2e"x$B=y(7 − 7
z)         (1.14) 

where e	is the collision frequency and equal to s/B=, "x	is the Boltzmann’s constant, T is the 

temperature, mi is the mass and y is the Dirac delta. The collision frequency, e can be estimated 

via Stokes’ law:  

e =
s

B=

=
66|:

B=

 

where | is the solvent viscosity and : is the radius of the particle i. Considering the magnitude of 

e	and the integration time step, Langevin motion can be divided into three parts: (1) ey7 ≤ 1	where 

the effect of solvent is minimal, (2) ey7 ≥ 1 describes the diffusive limit of the Langevin equation, 

(3) the intermediate values. The second part describes the Brownian motion which assumes a more 

(1.15) 
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random movement due to the high number of collisions with the solvent. In this case, the 

momentum relaxation occurs much faster than the inertial relaxation of the particle, and the inertial 

motion does not affect the motion anymore. Therefore, the right-hand side of the Equation 1.13 

can be neglected:  

<= + u(7) = −∆=>(@) + u(7) = st=     (1.16) 

Equation 1.16 is the simplified version of the Langevin equation and the basis of Brownian 

Dynamics (BD) simulations. In comparison to MD, BD simulations can use larger time steps 

which allow longer simulations and sample larger conformational space due to the random force 

which can help crossing barriers. 

The most common algorithm to solve Equation 1.16 in order to get new positions of the 

particles is Ermak & McCammon first-order algorithm [102]:  

@F~Y = @F +
∆7

"x$
�F<F + uF 

where @F	and @F~Y are the initial and new position of the particle, �F is the translational diffusion 

coefficient, <F and uF	are the actual and random force acting on the particle. Later, second- [103] 

and third-order [104] BD algorithms have also been developed which provide better accuracy.  

BD simulations have been extensively applied in biomolecular studies from molecular to 

cellular levels [105] since large biomolecules in water environment also follow Brownian motion. 

The CG models for closed circular DNA have also been simulated via BD to investigate DNA 

supercoiling [16, 18, 93, 94, 100]. In those studies, some modifications were applied in order to 

also take the torsional motion of DNA into account. Similar to the translational motion (Equation 

1.16), the torsional motion is described by Equation 1.18: 

(1.17) 
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$= + Ä(7) = −∆=>(Å) + Ä(7) = sRÅ=    (1.18) 

where $= and Ä(7) are the actual and random torques acting on the particle i, sR is the rotational 

friction coefficient and Å is the torsional angle of the particle i. $= is obtained from the derivation 

of the potential energy with respect to Å. Therefore, the torsional displacement can be calculated 

as:  

ÅF~Y = ÅF +
∆7

"x$
�R

F$F + ÄF 

where ÅF	and ÅF~Y are the initial and new torsion angles of the particle, �RF is the rotational 

diffusion coefficient, $F and ÄF	are the actual and random torques acting on the particle. The CG 

model and the additional torsional motion algorithm described here are also used within this 

dissertation and the model details can be found in Chapter 4.  

Lastly, in addition to the simulation techniques described above, Monte Carlo (MC) method is 

also widely used for biomolecular studies. It samples the conformational space by random moves 

as opposed to Newton’s or Langevin’s law of motion in MD/BD simulations. At each step of the 

algorithm, a new configuration is generated via randomly changing a structural property and its 

energy is calculated. The new configuration is then accepted or rejected via the following criteria: 

+(@ → @F) =

					
	1																																																jk(	> @F ≤ >(@)

	
					

exp −(> @F − > @ )/"x$ 										k7ℎÉ(%ÑÖÉ
 

where > @F  and > @  are the energies of the new and old configurations and + @ → @F  is the 

probability of accepting the move. After sufficient number of MC steps run, the Boltzmann 

distribution of the configurations is obtained. Therefore, this method provides a distribution of 

conformational states rather than a time evolution as in MD.  On the other hand, observing larger 

(1.19) 
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number of configurations compared to MD is possible due to the random moves which prevents 

getting stuck in local minima. MC sampling is also applied within this dissertation to generate 3D 

chromosome structures and the details of MC moves can be found in Chapter 4.  

In addition to the Chapters 2 and 3 where the results of MD simulations of all-atomic DNA 

models are discussed, the effect of nucleoid as a crowding agent on diffusive properties of proteins 

acquired from BD simulations of CG model systems of nucleoid and proteins are presented in 

Chapter 5. On the other hand, in line with the CG BD simulations, a multiscale modeling algorithm 

is proposed to generate 3D structures of nucleoids at base-pair resolution using MC and Langevin 

dynamics simulations (Chapter 4).  
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2.1 Abstract 
 
The effect of reduced dielectric environments on the conformational sampling of DNA was 

examined through molecular dynamics simulations. Different dielectric environments were used 

to model one aspect of cellular environments. Implicit solvent based on the Generalized Born 

methodology was used to reflect different dielectric environments in the simulations. The 

simulation results show a tendency of DNA structures to favor noncanonical A-like conformations 

rather than canonical A- and B-forms as a result of the reduced dielectric environments. The results 

suggest that the reduced dielectric response in cellular environments may be sufficient to enhance 

the sampling of A-like DNA structures compared to dilute solvent conditions. 

 

2.2 Introduction 
 
DNA is an essential biomolecule due to its role in numerous biological processes. Its structure, 

flexible and sensitive to environmental conditions, is one of the most crucial physical determinants 

of its biological roles. The major conformations of DNA, B-form and A-form, are well-known 

from in vitro studies; the B-form is the major conformation in solution [5] while the A-form is 

seen for GC-rich sequences under low-humidity environments and, sometimes, when bound to 

other biomolecules [4]. The structural preferences and transitions of DNA between these two 

forms have been studied extensively for many years not only to gain insight into the structure–

function relationship of DNA, but also because DNA is a fascinating biophysical model system 

that exquisitely balances electrostatic and solvent interactions [7-9, 56-62, 79, 106-119]. 

Experimental studies on DNA structure have shown that B- to A-form transitions occur under 

conditions of “low water activity”, for example, when ethanol is introduced as a cosolvent [7, 8, 

106, 110] and also when salt is added to solution which bridges the phosphate groups in the major 
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groove of A-DNA [9, 112, 116]. These findings have also been reproduced by computational 

approaches, especially by molecular dynamics (MD) simulation techniques for the exploration of 

these conformational preferences in atomistic detail [57-62, 79, 107, 108, 115, 117, 118]. These 

MD studies showed that DNA maintained its B-DNA form in aqueous solvent, while A-DNA was 

stabilized in solutions containing explicit salt ions or cosolvents such as ethanol as expected from 

the experiments [57-60, 115, 117, 118]. The effect of salt on DNA structure is easily rationalized 

by increased electrostatic screening that allows subsequent phosphate groups along the backbone 

to come closer to each other so that A-DNA can be formed. It is less clear, however, whether 

cosolvents affect DNA structure through specific molecular interactions or via a more general 

physical effect such as an altered dielectric response of the environment. 

Reduced dielectric environments are also interesting in the context of understanding DNA 

structure in the cellular context. Cellular environments are highly crowded systems with high 

concentrations of proteins, nucleic acids, and numerous cosolvents. It has been reported that 20–

30% of the cellular volume is occupied by macromolecules [120]. Previous studies have shown 

that the effect of such crowding on protein structure and dynamics can be significant [35]. Crowded 

environments alter the balance between enthalpic and entropic contributions to the conformational 

free energy either directly through macromolecular interactions or indirectly by modifying solvent 

properties [35, 39-46, 121-125]. Essentially, the effect of crowding is threefold: (1) volume 

exclusion by surrounding macromolecules resulting in an entropic penalty for assuming more 

expanded states [121, 124]; (2) reduced dielectric response of the environment due to the 

displacement of 20–30% of the water with less polar macromolecules [126-131] and due to slowed 

dynamics of the water itself [42, 132]; (3) specific interactions between different macromolecules. 

Therefore, studying the effect of reduced dielectric environments on DNA structure addresses one 
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major consequence of cellular crowding. Such an approach neglects the effect of specific 

interactions between DNA and protein crowder molecules as well as the volume-exclusion effect, 

but it allows for more fundamental insight about how DNA structure is altered by different 

environments. 

In this study, we rely on MD simulations using an implicit continuum dielectric model based 

on the Generalized Born (GB) methodology [87, 89, 133] to directly observe the effect of reduced 

dielectric environments on the conformational sampling of DNA. The GB methodology 

approximates the solvation free energies obtained from Poisson(-Boltzmann) theory in a 

numerically convenient and computationally efficient manner that is suitable for the application in 

MD simulations. This methodology has been applied previously to study peptides in reduced 

dielectric environments [45, 134]. We are focusing here on reduced dielectric constants of 20 and 

40 that are compared with ε = 80. The reduced values cover the effective dielectric response of 

ethanol–water mixtures as well as that of cellular environments. As mentioned above, 20–30% of 

water in the cell is replaced by macromolecules with an internal dielectric constant of 2–20 [126-

130] and cosolvents [131]. Furthermore, water itself was found to have a reduced dielectric 

constant in crowded environments [42, 132]. As a result, the effective total dielectric constant of 

cellular environments is assumed to be in the range of 20–60 depending on the degree of crowding 

[45, 134, 135]. We considered only scalar, static dielectric constants here as the dielectric response 

of aqueous solvent is isotropic and largely independent of frequency for the range of dynamics 

considered here (ps−μs). Implicit solvent simulations of DNA using GB models with ε = 80 were 

previously shown to closely approximate the conformational sampling of DNA seen in explicit 

solvent [136-139]. Therefore, we have confidence in applying the implicit solvent methodology to 

nucleic acids. 
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2.3 Methods 
 
Replica exchange molecular dynamics simulations [91] of d(CGCGAATTCGCG)2 and 

d(CGCCCGCGGGCG)2 dodecamers were performed to enhance the sampling by accelerating 

barrier crossings at elevated temperatures. The Generalized Born with molecular volume (GBMV) 

implicit solvation model [87, 89, 133] was used with dielectric constants 20, 40, and 80. The initial 

d(CGCGAATTCGCG)2 structure was obtained from X-ray analysis (PDB ID code: 1BNA) 

[140] and the initial d(CGCCCGCGGGCG)2 structure was obtained by mutating the base sequence 

in the X-ray structure of 1BNA. Structures were minimized and equilibrated before the replica 

exchange simulations. Replica exchange simulations were performed using eight replicas between 

temperatures 300 and 400 K. Although the replicas visit higher temperatures than 300 K, only the 

sampling at 300 K is considered and reported here. Exchange probabilities of the simulations were 

around 25–30%. Langevin dynamics [141] was performed using a friction coefficient of 50 ps–1 to 

control the temperature of the system. Simulations were carried out for 50 ns for each replica with 

a total simulation time of 400 ns and replica exchange was attempted every 10 ps. The first 6 ns 

of each replica was excluded during the analysis of the simulations. Nonbonded interactions were 

cut off at 18 Å with a switching function becoming effective at 16 Å and a cutoff at 20 Å was used 

for the nonbonded list. 

All simulations were performed using the CHARMM program package (v c37a2) [142] with 

CHARMM36 force field [143, 144] for nucleic acids. Replica exchange simulations were carried 

out using the Multiscale Modeling Tools for Structural Biology (MMTSB) [145] in combination 

with CHARMM. Cluster analysis of the conformations was carried out with the kclust program in 

MMTSB. Helicoidal and backbone parameters of dodecamers were analyzed by using the 3DNA 
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program package [146]. VMD [147] and PyMOL [148] were used for the visualization of 

structures. 

 

2.4 Results  
 
As test systems, we considered the Drew-Dickerson dodecamer d(CGCGAATTCGCG)2 [140] 

known to be exceptionally stable in B-form and the GC-rich dodecamer d(CGCCCGCGGGCG)2 

[149] which tends toward A-form conformations under conditions of high salt, low humidity, or 

in the presence of cosolvents. Simulations of both systems were started from the standard B-form 

experimental structure of the Drew-Dickerson dodecamer and we hypothesized that a reduced 

dielectric response may favor A-like structures akin to the effect of cosolvents shifting the A/B 

balance toward A. This is indeed what we observe as described in more detail below, although the 

A-like conformations we observe here appear to be distinct from salt-induced A-DNA. In the 

following, results are described and discussed. 

DNA conformations are distinguished by the orientation of their bases, captured by helical 

parameters, and by backbone torsional angles. Both were analyzed from our simulations and will 

be described in the following. The most distinctive helical parameters to characterize A- and B-

type conformations are the base inclination relative to the helical axis, the twist between 

subsequent base pairs, and the x-displacement of base pairs from the helical axis. Secondary 

parameters of common interest are the relative displacement between subsequent base pairs along 

the base pair axis (slide) and along the helical axis (rise) as well as the propeller twist between 

bases forming a base pair. The average values from the simulation are given in Tables 2.1 and 2.2. 

Distributions are shown as Figures 2.1 and 2.2. The simulation results are compared with averaged 

helical parameters for ten A-form and ten B-form DNA duplexes and for the X-ray structures of 
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the exact sequences that were studied here. In all analyses, only the eight inner base pairs were 

taken into consideration, because of structural distortions at the duplex ends due to occasional base 

fraying. 

Table 2.1 Helicoidal parameters for the GC-rich dodecamer compared to experimental 
results.  

  Canonicalb MD Simulationsc
 

 X-rayd
 A-DNA B-DNA e=20 e=40 e=80 

Propeller (deg) −12.49 
(2.0) 

−9.00 
(7.1) 

−11.72 
(5.8) 

2.16 
(15.5) 

−2.85 
(12.0) 

−7.26 
(14.1) 

Slide (Å) −1.71 
(0.4) 

−1.67 
(0.4) 

0.17 
(0.7) 

−1.48 
(0.8) 

−1.23 
(0.9) 

−0.52 
(1.4) 

Twist (deg) 29.59 
(3.5) 

30.24 
(4.0) 

34.81 
(5.7) 

27.50 
(10.0) 

29.70 
(7.3) 

36.27 
(17.7) 

X-displacement 
(Å) 

−5.01 
(1.1) 

−4.54 
(1.3) 

−0.13 
(1.1) 

−2.68 
(3.6) 

−2.80 
(2.9) 

−1.19 
(2.5) 

Helical rise (Å) 2.66 
(0.6) 

2.77 
(0.5) 

3.25 
(0.2) 

3.42 
(1.0) 

3.36 
(0.8) 

3.36 
(0.8) 

Inclination (deg) 20.71 
(11.4) 

16.00 
(10.7) 

4.01 
(6.7) 

0.45 
(20.7) 

3.73 
(15.1) 

5.43 
(16.4) 

a
 (a) All values are averaged over nonterminal base pairs with standard deviations given in 

parentheses. (b) Averages over the A-form structures 3V9D, 3QK4, 2B1B, 1ZEX, 1ZEY, 
1ZF1,1ZF6, 1ZF8, 1ZF9, 1ZFA and the B-form structures 2M2C, 4AGZ, 4AH0, 4AH1, 3U05, 
3U08, 1VTJ, 3U2N, 3OIE, 3BSE. (c) Averages over snapshots at 300 K from replica exchange 
MD simulations. (d) PDB ID code for the X-ray structure is 399D. 
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Table 2.2 Helicoidal parameters for the Drew-Dickerson dodecamer compared to 
experimental results. 

  Canonicalb MD Simulationsc
 

 X-rayd
 A-DNA B-DNA e=20 e=40 e=80 

Propeller (deg) −13.34 
(5.9) 

−9.00 
(7.1) 

−11.72 
(5.8) 

-6.93 
(12.5) 

−10.67 
(12.7) 

−11.32 
(13.7) 

Slide (Å) 0.07 
(0.5) 

−1.67 
(0.4) 

0.17 
(0.7) 

−0.86 
(0.8) 

−0.50 
(0.7) 

−0.32 
(0.7) 

Twist (deg) 34.22 
(5.7) 

30.24 
(4.0) 

34.81 
(5.7) 

30.62 
(6.4) 

32.36 
(5.9) 

33.12 
(6.7) 

X-displacement 
(Å) 

−0.23 
(0.5) 

−4.54 
(1.3) 

−0.13 
(1.1) 

−2.33 
(2.8) 

−1.65 
(2.3) 

−1.23 
(2.4) 

Helical rise (Å) 3.29 
(0.1) 

2.77 
(0.5) 

3.25 
(0.2) 

3.24 
(0.7) 

3.25 
(0.6) 

3.18 
(0.7) 

Inclination (deg) 4.02 
(7.2) 

16.00 
(10.7) 

4.01 
(6.7) 

7.26 
(19.1) 

8.00 
(16.7) 

6.30 
(19.8) 

a (a) All values are averaged over nonterminal base pairs with standard deviations given in 
parentheses. (b) Averages over the A-form structures 3V9D, 3QK4, 2B1B, 1ZEX, 1ZEY, 
1ZF1,1ZF6, 1ZF8, 1ZF9, 1ZFA and the B-form structures 2M2C, 4AGZ, 4AH0, 4AH1, 3U05, 
3U08, 1VTJ, 3U2N, 3OIE, 3BSE. (c) Averages over snapshots at 300 K from replica exchange 
MD simulations. (d) PDB ID code for the X-ray structure is 1BNA. 
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Figure 2.1 Distributions of helicoidal parameters for the GC-rich dodecamer in different 
dielectric environments with ε=20 (red), 40 (blue) and 80 (green). 
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Figure 2.2 Distributions of helicoidal parameters for the Drew-Dickerson dodecamer in 
different dielectric environments with ε=20 (red), 40 (blue) and 80 (green). 

 
X-displacement is one of the clearest indicators of A- vs BDNA conformations. It is expected 

to have near zero values for B-DNA and significantly negative values for A-DNA, where bases 

are displaced from the helical axis. We find that, for both the GC-rich and the Drew-Dickerson 

dodecamers, reduced dielectric environments resulted in a clear shift toward more negative x-

displacement values that are about halfway between canonical B- and A-DNA. The shift was 

slightly greater for the GC-rich sequence and was equally large at ε = 40 and ε = 20. On the other 

hand, the Drew-Dickerson dodecamer values changed more gradually as the dielectric constant 

was reduced. A similar observation was made for the twist angle that changed from values of 

33−36°, typical for B-DNA, to 28−31°, typical for A-DNA, as the dielectric constant was changed 
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from ε = 80 to ε = 20. Again, the change was already complete at ε = 40 for the GC-rich sequence 

but occurred more gradually for the Drew-Dickerson dodecamer. The inclination of base pairs 

relative to the helical axis in A-type conformations is typically quite pronounced compared to B-

type conformations, which are mostly perpendicular to the helical axis. Interestingly, we find that 

the average for the GC-rich dodecamer shifted to more B-like values as the dielectric constant was 

reduced. This appears to be in part due to increased sampling of negative inclination angles at ε = 

20 (Figure 2.1). On the other hand, the Drew-Dickerson dodecamer showed a slightly increased 

inclination angle upon reduction of the dielectric response of the environment. In contrast to what 

x-displacement and twist values suggest, the changes in base inclination angles are not fully 

consistent with a classical transition from B-DNA to A-DNA. However, as commented by 

Dickerson and Ng [150], the inclination angle can be problematic in short helical segments for 

distinguishing A- from B-form due to the difficulties in separating inclination from local helix 

bending.  

The slide of a base pair along its long axis relative to its neighboring base pair is another 

measure that can discriminate between A- and B-form DNA structures. While a significant slide 

is not observed for base pairs in typical B-DNA, A-DNA base pairs have a more pronounced 

propensity to slide along their long axes. We observed a significant increase in negative slide 

values for the GC-rich dodecamer at reduced dielectric constants and to a lesser extent for the 

Drew-Dickerson dodecamers. Another discriminative helical property is helical rise, which is 

smaller for typical A-DNA, around 2.7−2.8 Å, compared to B-DNA, where it is typically around 

3.3−3.4 Å. Interestingly, we found the helical rise to remain unchanged upon reduction of the 

dielectric constants. Finally, the propeller twist of bases in a base pair with respect to each other is 

known to be highly sequence dependent with more negative values for A/T base pairs than for C/G 
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base pairs, but it is also reduced in A-DNA vs B-DNA. As expected, the propeller twist was less 

pronounced for the GC-rich dodecamers than for the AT-base pair containing Drew-Dickerson 

dodecamer. There was a trend, however, toward less negative propeller twist values upon a 

decrease of the dielectric constant. This is again indicative of a transition toward A-like structural 

features. Overall, the analysis of the helical parameters suggests a tendency toward A-type 

conformations upon a reduction in the dielectric constant. The tendency toward A-DNA was more 

pronounced for the GC-rich dodecamer and it manifested itself at higher dielectric constants 

compared to the Drew-Dickerson dodecamer. The helical parameters in the X-ray structure of the 

B-form Drew-Dickerson dodecamer agree closely with the simulation results at ε = 80 while the 

helical parameters of the A-form X-ray structure of the GC-rich dodecamer are reproduced best 

by the simulation results at ε = 20 and ε = 40 rather than ε = 80. 

Among backbone torsion angles, the ribose sugar pseudo-rotation angle is the most significant 

indicator of A- vs B-DNA conformations. While A-DNA structures commonly have C3ʹ- endo or 

C2ʹ-exo sugar conformations, sugars in B-DNA structures are more often found in C3ʹ-exo or C2ʹ-

endo conformations. The preferred sugar conformations for each base in the GC-rich and the 

Drew-Dickerson dodecamers in different dielectric environments are depicted in Figure 2.3. As 

expected from DNA simulations with the CHARMM force field [143], there was extensive 

sampling of both C2ʹ-endo and C3ʹ- endo conformations at ε = 80 but with an overall preference 

for C2ʹ-endo conformers. With a decreasing dielectric constant of the environment, sugar 

conformations in the GC-rich dodecamer were switched largely to C3ʹ-endo or C2ʹ-exo 

conformations, further indicating a B to A transition for this sequence. In contrast, the ribose sugars 

in the Drew-Dickerson dodecamer were largely unaffected by a change in the dielectric 

environment, suggesting that the backbone retained B-like features.  
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Figure 2.3 Sugar pucker conformations of each base from simulations of the GC-rich 
dodecamer (GC), the Drew-Dickerson dodecamer (DD) in different dielectric environments 
with ε = 20, 40, and 80. 

 
We analyzed the ε and ζ backbone torsion angles as an indicator of the relative sampling of BI 

and BII conformations. A value of ε − ζ near −90° corresponds to the BI conformation whereas 

+90° characterizes BII conformations. The potential of mean force as a function of ε/ζ is given in 

Figure 2.4. Frequent BI/BII transitions were observed in both dodecamers for all dielectric 

constants as expected from the most recent version of the CHARMM nucleic acid force field [143] 

used in this study. Closer inspection shows that the sampling of BII conformations diminished at 

ε = 20 and ε = 40 for the GC-rich dodecamer and at ε = 20 for the Drew-Dickerson dodecamer. 

This suggests that excursions to the less-populated BI conformer may be further suppressed in 

reduced dielectric environments. We also found two minima at ε = 80 corresponding to 

noncanonical conformations of the GC-rich dodecamers that appear to be missing at the lower 

dielectric constants. However, it is likely that this observation is due to limited sampling in our 

simulations and/or structural distortions due to the implicit solvent model used here (see Figure 

2.4).  
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Figure 2.4 Potential of mean force (kcal/mol) from simulations as a function of ε and ζ torsion 
angles for the GC-rich at ε = 20. (a), ε = 40 (b), and ε = 80 (c) and for the Drew-Dickerson 
dodecamer at ε = 20 (d), ε = 40 (e), and ε = 80 (f).  

 
Next, we clustered snapshots from each of the simulations to obtain representative structures 

at different dielectric environments. The resulting structures for both studied dodecamers are 

shown in Figure 2.5. Using a clustering radius of 3 Å resulted in five major conformations for the 

GC-rich dodecamer and three major conformations for the Drew-Dickerson dodecamer. The 

average helical parameters of these clusters were calculated and compared with canonical A-, B-, 

and C-DNA forms (Tables 2.3 and 2.4). According to this analysis, GC1 and GC2, GC5 and DD3, 

and DD1 and DD2 have A-like, B-like, and mixed A- and B-type features, respectively, further 

confirming the prevalence of B-form conformations (GC5 and DD3) at ε = 80 and a shift toward 

A-like structures at lower dielectric constants. We also observed a minor population of a distorted 

conformation (GC4) at ε = 80 that may be a simulation artifact. At the lowest dielectric, a new 
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conformation appears (GC3) that has mixed characteristics of A- and B- type structures. As for the 

Drew-Dickerson dodecamer, the B-form DD3 conformation persists at ε = 40, but disappears at ε 

= 20. Instead, A-like structures (DD1 and DD2) appear with a small percentage at ε = 40 while 

becoming dominant at ε = 20. None of the structures observed here resemble other previously 

characterized conformations of DNA, such as C-DNA.  

 

 

Figure 2.5 Representative conformations from clustering analysis in different dielectric 
environment for GC-rich dodecamer with ε = 80. (a), 40 (b), and 20 (c) and for the Drew-
Dickerson dodecamer with ε = 80 (d), 40 (e), and 20 (f). Cluster populations are given in the 
parentheses.  
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Table 2.3 Helicoidal Parameters for GC1, GC2, GC5 clusters compared to canonical A-, B- 
and C-DNA forms. 

 A-DNA B-DNA C-DNA GC1 GC2 GC5 

Propeller (deg) −9.00 
(7.1) 

−11.72 
(5.8) -2.01 -2.67 

(11.8) 
−1.78 
(9.7) 

−8.07 
(10.9) 

Slide (Å) −1.67 
(0.4) 

0.17 
(0.7) 0.09 −1.23 

(0.5) 
−1.90 
(0.5) 

−0.21 
(0.6) 

Twist (deg) 30.24 
(4.0) 

34.81 
(5.7) 38.06 30.55 

(5.2) 
27.48 
(5.3) 

34.11 
(5.9) 

X-displacement (Å) −4.54 
(1.3) 

−0.13 
(1.1) 0.82 −2.62 

(2.3) 
−3.95 
(2.2) 

−0.88 
(1.7) 

Helical rise (Å) 2.77 
(0.5) 

3.25 
(0.2) 3.31 3.40 

(0.7) 
3.46 
(0.8) 

3.39 
(0.5) 

Inclination (deg) 16.00 
(10.7) 

4.01 
(6.7) -8.07 3.22 

(14.8) 
1.65 

(13.6) 
4.85 

(12.2) 

Minor Groove (Å) 9.92 
(0.7) 

10.77 
(0.9) 10.6 14.9 

(0.4) 
15.49 
(0.4) 

13.77 
(1.2) 

Major Groove (Å) 7.14 
(2.4) 

17.14 
(0.9) 16.1 20.6 

(0.9) 
21.70 
(0.9) 

18.04 
(1.3) 

Parameters are calculated for canonical C-DNA form using 3DNA program package [146]. 
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Table 2.4 Helicoidal Parameters for DD1, DD2, DD3 clusters compared to canonical A-, B- 
and C-DNA forms. 

 A-DNA B-DNA C-DNA DD1 DD2 DD3 

Propeller (deg) −9.00 
(7.1) 

−11.72 
(5.8) -2.01 -9.65 

(10.9) 
−5.32 
(12.0) 

−12.23 
(12.3) 

Slide (Å) −1.67 
(0.4) 

0.17 
(0.7) 0.09 −0.64 

(0.5) 
−1.04 
(0.7) 

−0.41 
(0.5) 

Twist (deg) 30.24 
(4.0) 

34.81 
(5.7) 38.06 32.47 

(4.8) 
30.41 
(6.2) 

34.12 
(4.9) 

X-displacement (Å) −4.54 
(1.3) 

−0.13 
(1.1) 0.82 −1.80 

(2.1) 
−2.55 
(2.8) 

−1.12 
(2.1) 

Helical rise (Å) 2.77 
(0.5) 

3.25 
(0.2) 3.31 3.23 

(0.6) 
3.22 
(0.7) 

3.21 
(0.5) 

Inclination (deg) 16.00 
(10.7) 

4.01 
(6.7) -8.07 7.03 

(17.4) 
5.38 

(20.3) 
4.20 

(18.7) 

Minor Groove (Å) 9.92 
(0.7) 

10.77 
(0.9) 10.6 14.42 

(0.5) 
14.86 
(0.4) 

13.74 
(0.6) 

Major Groove (Å) 7.14 
(2.4) 

17.14 
(0.9) 16.1 19.16 

(0.9) 
21.38 
(1.2) 

18.23 
(0.9) 

Parameters are calculated for canonical C-DNA form using 3DNA program package [146]. 
 

Finally, we estimated relative conformational free energies using the MMPB/SA approach 

[118] and compared the effect of reduced dielectric environments to previously described effects 

of increased salt concentrations on the A- vs B-DNA equilibrium [9, 58, 112, 116, 118]. Calculated 

free energy differences between A- and B-form structures are given in Tables 2.5 and 2.6 with 

positive values indicating a preference for the A-form while negative values indicate a preference 

for the B-form.  

The total free energy differences (⟨E(total)⟩) at ε = 80 between simulated B- and A-forms and 

between simulated B- and canonical A-structures were more positive for the GC-rich dodecamer 



	 42 

(Table 2.5) than for the Drew-Dickerson dodecamer (Table 2.6). This indicates that the A-form is 

relatively more favorable in aqueous medium for the GC-rich dodecamer as we would expect. 

Furthermore, at ε = 80, both dodecamers appear to be more favorable in canonical A-DNA than in 

the A-form structures observed in our simulations. This is also consistent with expectations since 

past in vitro studies have established the canonical A-DNA structure as the relevant A-form in 

non-cellular environments instead of the somewhat different A-form reported here. We note that 

the energetic differences are relatively large (tens of kcal/mol instead of physically probably more 

realistic values of less than 10 kcal/mol). This is likely a result of the approximate nature of the 

MMPB/SA methodology and/or limitations in sampling. Overall, we estimate that the errors of the 

MMPB/SA estimates are on the order of tens of kcal/mol, consistent with previous studies [115, 

118, 151]. Nevertheless, the MMPB/SA estimates appear to give at least qualitatively the correct 

picture.  

Addition of salt to the environment is known to favor A- DNA over B-DNA structures [9, 58, 

112, 115, 116, 118]. Within the MMPB/SA framework, salt can be considered by solving the 

Poisson− Boltzmann equation with added salt [118]. While the overall MMPB/SA estimate is 

prone to uncertainties because, in part, the vacuum force field term is highly sensitive to small 

conformational changes, and because entropic effects are not fully taken into account, the relative 

change in the electrostatic solvation term as a result of added salt or a changed dielectric constant 

can be estimated with much higher accuracy [152]. We find that canonical A-DNA was favored 

with increasing salt as expected. However, the trend was reversed when the A-like structures from 

our simulations were considered instead of the canonical forms. Increasing salt concentration 

appeared to stabilize the B-form over our A-form structures. On the other hand, a reduced dielectric 

resulted in a stabilization of our A- like structures while canonical A-DNA structures were 
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destabilized for both dodecamers when compared to ε = 80. This suggests that the effects of 

increased salt and reduced dielectric environment are different and that, although both changes in 

the environment appear to lead to A-like structures, the resulting conformational ensembles appear 

to have distinct features.  

Table 2.5 Conformational free energies from MMPB/SA analysis for the GC-rich 
dodecamer.a  

 Ab
 Bb

 

Canonical 
Ad

 
(B – A) (B – 

Can.A) 

⟨E(gas)⟩e 
2181.2 
(4.1) 

2331.1 
(4.1) 

2371.2 
(4.2) 149.9 -40.1 

⟨E(nonpolar)⟩f 
26.9 
(0.0) 

26.9 
(0.0) 

26.3 
(0.0) 0.0 0.6 

⟨E(PB), ε = 80⟩g 
-5837.5 

(3.2) 
-5965.5 

(3.5) 
-6069.4 

(3.7) -128.0 103.9 

⟨E(total), ε = 80⟩ -3629.4 
(4.0) 

-3607.5 
(3.9) 

-3672.0 
(2.3) 21.9 64.5 

⟨ΔE(total), salt: 0.1 M⟩ -40.6 
(0.0) 

-41.1 
(0.0) 

-42.9 
(0.0) -0.5 1.8 

⟨ΔE(total), salt: 1.0 M⟩ -53.4 
(0.1) 

-54.5 
(0.1) 

-58.5 
(0.1) -1.1 4.0 

⟨ΔE(total), ε = 20⟩ 242.6 
(0.2) 

247.3 
(0.2) 

261.1 
(0.3) 4.7 -13.8 

(a) Standard errors are given in the parentheses. (b) 100 snapshots selected from GC1 and GC2 
clusters closest to cluster centers and with minimal distortions at terminal base pairs. (c) 100 
snapshots selected from GC5 cluster. (d) Snapshots from 1 ns restrained implicit solvent 
simulation of canonical A-DNA structure taken at 5 ps intervals starting from 0.5 ns. (e) 
CHARMM force field energy in vacuum. (f) Solvent-accessible surface area term: γ*SASA+β 
with γ = 0.00542 kcal/mol/Å2 and β = 0.92 kcal/mol [153]. (g) Solution of Poisson−Boltzmann 
equation using PBEQ module [142] in CHARMM program with a grid spacing of 0.25 Å. 
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Table 2.6 Conformational free energies from MMPB/SA analysis for the Drew-Dickerson 
dodecamer.a  

 Ab
 Bb

 

Canonical 
Ad

 
(B – A) (B – 

Can.A) 

⟨E(gas)⟩e 
2742.6 
(5.8) 

2812.8 
(7.3) 

2944.2 
(5.3) 70.2 -131.4 

⟨E(nonpolar)⟩f 
26.9 
(0.0) 

26.7 
(0.0) 

26.2 
(0.0) -0.2 0.5 

⟨E(PB), ε = 80⟩g 
-5818.1 

(3.9) 
-5931.7 

(6.1) 
-6090.8 

(4.6) -113.6 159.1 

⟨E(total), ε = 80⟩ -3048.6 
(5.5) 

-3092.3 
(3.5) 

-3120.4 
(2.0) -43.7 28.1 

⟨ΔE(total), salt: 0.1 M⟩ -40.5 
(0.0) 

-41.1 
(0.1) 

-43.1 
(0.0) -0.6 2.0 

⟨ΔE(total), salt: 1.0 M⟩ -53.1 
(0.1) 

-54.2 
(0.1) 

-59.1 
(0.1) -1.1 4.9 

⟨ΔE(total), ε = 20⟩ 239.2 
(0.2) 

245.0 
(0.3) 

260.4 
(0.3) 5.8 -15.4 

(a) Standard errors are given in the parentheses. (b) 100 snapshots selected from DD1 and DD2 
clusters as in Table 2.5. (c) 100 snapshots selected from DD3 cluster as in Table 2.5. (d) Snapshots 
from 1 ns restrained implicit solvent simulation of canonical A-DNA structure taken at 5 ps 
intervals starting from 0.5 ns. (e) CHARMM force field energy in vacuum. (f) Solvent-accessible 
surface area term: γ*SASA+β with γ = 0.00542 kcal/mol/Å2 and β = 0.92 kcal/ mol [153]. (g) 
Solution of Poisson−Boltzmann equation using PBEQ module [142] in CHARMM program with 
a grid spacing of 0.25 Å. 
 
 
 
2.5 Discussion and Conclusions  

 
The main goal of this study has been to examine the conformational sampling of DNA in 

reduced dielectric environments to both understand the origin of cosolvent induced A-DNA 

stabilization as well as explore the possible effects of cellular environments. At ε = 80 we observe 
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stable sampling of mostly B-DNA structures with the implicit solvent methodology used here in 

agreement with experimental expectations. This suggests that the implicit solvent methodology 

can reasonably describe the conformational sampling of DNA in aqueous solutions. Additional 

simulations were then carried out at lower dielectric constants. This approach emphasizes mean 

field solvation properties while neglecting specific molecular interactions with the environment. 

%85 (v/ v) Ethanol/water solutions have dielectric constants of 30 [154]. At the same time, while 

ε = 20 may be at the low end of what is found in crowded environments, an effective dielectric 

near ε = 40 is assumed to be a typical value for crowded biological cells [45, 134]. 

Our results indicate an overall shift toward A-like conformations that was moderate at ε = 40 

and became more pronounced at ε = 20 for both studied dodecamers. The tendency to form A-like 

conformations was greater for the GC-rich dodecamer, but even the classical B-DNA Drew-

Dickerson dodecamer exhibited A-like features in low-dielectric environments. The transition to 

canonical A-form DNA was nearly complete for the GC-rich dodecamer, but the Drew-Dickerson 

dodecamers retained many B-like features even at ε = 20. However, even for the GC-rich 

dodecamer at ε = 20, the resulting structures differ somewhat from canonical A-form. MMPB/SA 

analytical results further show that increased salt appears to destabilize the A-like structures seen 

in our simulations, while it stabilizes canonical A-DNA. This suggests the important conclusion 

that salt effects and reduced dielectric environments, for example, by reducing “water activity” 

through cosolvents or crowding, affect DNA structure in similar but different ways. The results 

are not fully consistent with fiber diffractions studies where DNA remains in canonical B-DNA 

form with its two hydration layers [155]. However, the fiber environment is likely not as packed 

as crowded environments, and hence, the effective dielectric environment may not actually be 

reduced dramatically. Furthermore, DNA−DNA interactions and the presence of salt in fibers may 
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further explain differences between the fiber experiments and our findings. Specific interactions 

of DNA with proteins in crowded cellular environments as well as volume exclusion effects were 

also not considered here and may significantly modulate the results reported here. Nevertheless, 

any tendency toward A-DNA features under crowded cellular conditions could have significant 

energetic consequences for protein−DNA interactions since most DNA bound to proteins is in B-

form. 

It is clear that further studies are needed to fully understand DNA structure in crowded 

environments and in the presence of cosolvents. One specific question to be addressed is whether 

protein−DNA interactions could counteract the apparent tendency toward A-form DNA and 

modulate these findings. Furthermore, the studies performed here involved short oligomers vs the 

very long polymeric DNA found in vivo. Further investigations are also required to see whether 

longer DNA molecules would exhibit the same tendencies. It is our hope that the results reported 

will also stimulate new experimental studies of DNA structure under crowded conditions none of 

which are available to our knowledge. 
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3.1 Abstract 
 
The effect of protein crowding on the conformational preferences of DNA is described from fully 

atomistic molecular dynamics simulations of systems containing a DNA dodecamer surrounded 

by protein crowders. Analysis of the simulations show that DNA structures prefer to stay in B-like 

conformations in the presence of the crowders. The preference for B-like conformations results 

from non-specific interactions of crowder proteins with the DNA sugar-phosphate backbone. The 

results are complementary to a previous study of DNA in reduced dielectric environments 

suggesting that the reduced dielectric response of cellular environments and non-specific 

interactions with protein crowders have opposite impacts on DNA structure under in vivo 

conditions.  

 
3.2 Introduction 
 
Biological cells are highly crowded environments due to the presence of various macromolecules. 

The macromolecular crowding in cells plays a crucial role in biological processes as it may alter 

the structure and dynamics of biomolecules [35]. A typical biological cell has a concentration of 

biomolecules in the range of 300 – 400 mg/ml [156], corresponding to a macromolecular volume 

fraction of 20 – 30 % [120]. Such an environment is substantially different from dilute solutions, 

the frequently considered environment in most biological experiments. Recent studies have begun 

to consider the effects of cellular crowding and have shed light on its effects on the structure and 

function of biomolecules [43, 122, 157-160]. Three essential crowding effects have been reported 

from experiments[161] and simulations [162]: (1) the volume exclusion effect has been suggested 

to favor more compact conformations based on entropic arguments, thereby generally stabilizing 
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more compact states [163, 164]; (2) non-specific interactions between biomolecules and 

surrounding protein crowders have led to the destabilization of native states [44, 46, 165] as well 

as reduced diffusion [166]; and (3) altered solvation properties including reduced dynamic and 

dielectric properties [42] have implied a reduced hydrophobic effect [134, 167].  

While much attention so far has been on proteins, nucleic acids are also affected by 

macromolecular crowding [50, 51]. G-quadruplex DNA structure assumes a parallel-G quadruplex 

form under crowded environments due to the excluded volume effect as well as alterations in the 

hydration of DNA [52-54]. Long DNA duplexes undergo a collapsing transition in the presence of 

polyethylene glycol (PEG) in solution, which can also be explained by the volume exclusion effect 

favoring states that are more compact [63, 64]. The negatively charged protein bovine serum 

albumin (BSA) similarly causes a compaction of large DNA molecules due to the volume 

exclusion effect and repulsive electrostatic interactions [168]. Short DNA duplexes, on the other 

hand, have been extensively investigated by both experimental techniques and computer 

simulations in terms of co-solvent and salt effects [7, 8, 55-62]. The DNA duplex is well-known 

to be most stable in the B-form [169] in aqueous solution and in A-form in environments with 

depleted water and for certain sequences [4]. High concentrations of salt can also induce the B- to 

A- form transition by bringing the negatively charged phosphate groups of DNA closer [112, 116, 

170-172] while the addition of ethanol favors the A-form due to reduced electrostatics [8, 57, 59, 

110, 118, 173, 174]. More recently, the effect of reduced dielectric environments on DNA as one 

aspect of cellular crowding was investigated and has also been shown to favor non-canonical A-

form structures in implicit solvent simulations [167]. However, the effect of explicit protein 

crowder molecules on DNA duplex structures is still not well understood.  
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Here, we describe fully atomistic molecular dynamics (MD) simulations of DNA dodecamers 

in the presence of explicit protein crowders in order to investigate how DNA structure and stability 

may be affected under such conditions. We find a general tendency of the DNA to favor the B-

form in crowded environments, which is in contrast to the shift towards A-form DNA observed in 

the simpler reduced dielectric environments [167]. The stabilization of B-DNA appears to be due 

to non-specific protein-DNA interactions. We also observe, some alterations in the hydration 

structure and ion distributions around DNA under crowded conditions. The results are described 

in detail and discussed in the following after outlining the computational methods used in this 

study. 

 

3.3 Methods 
 
MD simulations of Drew-Dickerson ((CGCGAATTCGCG)2) and GC-rich 

(CGCCCCGCGGGCG)2) dodecamers in crowded protein environments were carried out using the 

CHARMM program package (v41a1) [175] with the CHARMM36 force field [71, 72]. The initial 

Drew-Dickerson dodecamer structure was obtained from the X-ray structure (PDB: 1BNA)[140], 

and the initial GC-rich dodecamer structure was obtained by mutating the base sequence in the X-

ray structure of the Drew-Dickerson dodecamer using the MMTSB Tool Set [145]. The Drew-

Dickerson dodecamer is very stable in B-form[140], while the GC-rich dodecamer prefers to stay 

in A-form in environments with co-solvents or high salt concentrations [149]. For each dodecamer, 

a dilute system without crowders (0% crowder fraction) and three systems with different protein 

crowder volume fractions (20%, 30%, 40%) were prepared. Protein G (PDB: 1PGB) [176] was 

selected to be used as a crowder protein due to its small size and stability in computer simulations. 

In our simulations, we used neutral protein G molecules, which were obtained by the protonation 
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of D36, D40, E19 and E42. Protein G is not known to specifically interact with DNA and the 

neutral form minimizes electrostatic interactions with the highly charged DNA to focus on the 

more general crowding effects. The crowded systems (20%, 30%, 40%) consisted of one 

dodecamer and 8 protein G molecules, whereas the dilute systems only contained one dodecamer. 

Simulation box sizes were varied between 53.2 – 61.3 Å to obtain the abovementioned crowder 

volume fractions. Simulation conditions of the systems are given in Table 3.1. The initial crowded 

systems were set up by randomly placing the DNA dodecamer and the crowder proteins in the 

simulation box. All systems were solvated with explicit TIP3P [177] water molecules. To 

neutralize the DNA dodecamer, 22 sodium ions were added to the systems. In order to keep the 

ion molality of all systems the same, 6 and 12 additional pairs of sodium and chloride ions were 

added to 30 % and 0/20 % systems, respectively. Therefore, all systems had 0.45 mol/kg ion 

molality.  

The initial systems were minimized for 1000 steps using the adopted basis Newton Raphson 

(ABNR) algorithm and were subsequently heated by running simulations without using any 

restraints at 50K, 100K, 150K, 200K, 250K for 4 ps and at 298K for 10 ps. Productions runs were 

carried out at 298 K in the NVT ensemble for 1 µs with a 2 fs time step. The SHAKE algorithm 

[178] was used to constrain bond lengths involving hydrogen atoms. Temperature control was 

obtained by a Langevin thermostat with a 0.01 ps-1 friction coefficient. Lennard-Jones and direct 

electrostatic interactions were cut off at 12 Å with a switching function becoming effective at 10 

Å. Electrostatic interactions were calculated from particle-mesh Ewald[179] summation using 1 Å 

grid spacing. All simulations were performed using periodic boundary conditions. For the crowded 

systems, five independent simulations were carried out starting from different initial orientations. 
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For the dilute systems, simulations were replicated three times starting from different initial 

velocities for the atoms. The total length of all of the simulations reported here is 36 µs.  

The analysis of the helicoidal and backbone parameters of the dodecamers were performed by 

using the 3DNA program package [146]. Radial distribution functions and 3D volume densities 

were analyzed by using in-house scripts. All the other analysis was carried out using the Multiscale 

Modeling Tool for Structural Biology Tool Set (MMTSB) [145] in combination with CHARMM 

[175]. Only the last 700 ns of the simulations were analyzed because of larger variations in the 

helicoidal parameters during the first 300 ns. Only the inner eight base-pairs were taken into 

consideration to ignore structural distortions due to base fraying. VMD [180] and PyMOL [181] 

were used for visualization.  

Table 3.1 Simulation conditions. 

DNA 
Dodecamer 

Box 
Size (Å) 

Protein 
Vol (%) 

Protein 
Conc. 
(g/L) 

Ion 
Molarity 

(M) 

Ion 
Molality 
(mol/kg) 

Simulation 
Length (µs) 

Drew-
Dickerson 54.62 0 0.00 0.45 0.45 1 

Drew-
Dickerson 61.02 20 362.49 0.32 0.45 1 

Drew-
Dickerson 57.90 30 424.31 0.29 0.45 1 

Drew-
Dickerson 53.21 40 546.68 0.24 0.45 1 

GC-rich 
 56.26 0 0.00 0.43 0.45 1 

GC-rich 
 61.31 20 357.37 0.32 0.45 1 

GC-rich 
 57.74 30 427.84 0.29 0.45 1 

GC-rich 
 53.18 40 547.61 0.24 0.45 1 

 

 



	 53 

3.4 Results 
 
Microsecond-scale molecular dynamics simulations of DNA dodecamers with and without protein 

crowders were carried to study the effect of crowding on DNA structure. We focused our analysis 

on helical properties including base geometries, groove widths and DNA bending, backbone 

torsions, interactions with crowder proteins, correlations between protein contacts and helical 

properties, and water and ion distributions around DNA.  

3.4.1 Helical properties 
 
Snapshots from the simulations were clustered to identify major conformations. Representative 

structures for each of the major clusters are depicted in Fig. 3.1. Generally, the helices stayed intact 

with only minor base fraying at the termini, which is common in simulations of short DNA 

fragments. The structures generally resemble B-DNA structures for both sequences with only 

minor changes in the presence of the crowders.  

Helicoidal parameters for both, Drew-Dickerson and GC-rich dodecamers were averaged from 

the simulations. They are summarized in Tables 3.2 and 3.3, respectively. Helicoidal parameters 

for crystal structures of the respective dodecamers as well as canonical A- and B-forms of DNA, 

averaged over ten A- and B-form crystal structures each, are provided for comparison. Average 

properties for each of the clusters shown in Fig. 3.1 are given in Tables 3.4 and 3.5 (Supplementary 

Information). The more detailed analysis of the base geometries also indicates that both 

dodecamers remained close to B-DNA. The Drew-Dickerson dodecamer also remained reasonably 

close to the respective crystal structure (1BNA) but there are larger deviations between the 

simulation results and the crystal structure of the GC-rich dodecamer. The crystal structure for the 

GC-rich dodecamer sequence used here was reported to overall have A-form but show some B-

form features for terminal base-pairs [149]. The reason we see deviations from the crystal structure 
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could be that we started the simulations from canonical B-form and since the GC-rich dodecamer 

may be stable in this form to some degree, we did not observe the full transition to A-form in the 

simulation length we used here. In the presence of the protein crowders, the helical parameters 

generally did not change much. Statistically significant changes are increased X-displacement and 

base inclination for both dodecamers and a slight increase in the helical twist angle and a slight 

reduction in slide of base-pairs along the base-pair axis for the GC-rich dodecamer. The increased 

x-displacement and base inclination point towards A-DNA but the values upon crowding still 

remained much closer to canonical B-DNA than A-DNA. The increased twist angles, on the other 

hand are consistent with a shift towards more canonical B-DNA structures.  
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Figure 3.1 Representative conformations from clustering simulation snapshots for the Drew-
Dickerson (A) and GC-rich (B) dodecamers with and without crowders. Cluster populations 
are given in parentheses. 
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Table 3.2 Average Helical Parameters for the Drew-Dickerson Dodecamer. 

  Canonical Simulations in crowded environment 
 X-ray (1BNA) A-DNA B-DNA 0 % 20 % 30 % 40 % 
Slide (Å) 0.07 (0.20) -1.62 (0.06) 0.16 (0.08) 0.26 (0.03) 0.25 (0.03) 0.21 (0.02) 0.25 (0.02) 
Twist (deg) 34.22 (2.13) 30.34 (0.58) 34.70 (0.70) 33.42 (0.13) 34.06 (0.14) 33.96 (0.16) 33.43 (0.14) 
X-displacement (Å) -0.23 (0.20) -4.50 (0.18) -0.20 (0.13) -0.59 (0.06) -0.60 (0.06) -0.72 (0.06) -0.79 (0.06) 
Helical rise (Å) 3.29 (0.05) 2.68 (0.08) 3.25 (0.02) 3.24 (0.00) 3.27 (0.01) 3.25 (0.01) 3.27 (0.01) 
Inclination (deg) 4.02 (2.73) 17.78 (1.56) 4.34 (0.77) 10.87 (0.13) 10.62 (0.19) 11.15 (0.34) 12.59 (0.35) 
zp (Å) -0.23 (0.07) 2.06 (0.07) -0.33 (0.04) -0.07 (0.08) 0.12 (0.04) 0.14 (0.03) 0.22 (0.04) 
Minor groove (Å) 10.32 (0.46) 15.72 (0.12) 10.77 (0.12) 13.50 (0.03) 13.42 (0.08) 13.08 (0.07) 13.73 (0.08) 
Major groove (Å) 17.34 (0.33) 12.94 (0.39) 17.14 (0.12) 16.47 (0.07) 16.54 (0.06) 16.39 (0.08) 16.31 (0.06) 

Averages over all base-pairs excluding the first and last two terminal base-pairs with errors given in parentheses from block averaging. 
Canonical values were averaged over the A-form structures 3V9D, 3QK4, 2B1B, 1ZEX, 1ZEY, 1ZF1, 1ZF8, 1ZF9, 1ZFA and the B-
form structures 2M2C, 4AGZ, 4H0, 4AH1, 3U05, 3U08, 1VTJ,3U2N, 3OIE, 3BSE.  
 
Table 3.3 Average Helical Parameters for the GC-rich Dodecamer. 

  Canonical Simulations in crowded environment 
 X-ray (399D) A-DNA B-DNA 0 % 20 % 30 % 40 % 
Slide (Å) -1.71 (0.16) -1.62 (0.06) 0.16 (0.08) 0.32 (0.10) 0.02 (0.05) 0.02 (0.04) 0.00 (0.04) 
Twist (deg) 29.59 (1.34) 30.34 (0.58) 34.70 (0.70) 32.47 (0.45) 32.93 (0.23) 33.34 (0.16) 33.11 (0.20) 
X-displacement (Å) -5.01 (0.41) -4.50 (0.18) -0.20 (0.13) -0.46 (0.15) -1.03 (0.10) -1.09 (0.09) -1.10 (0.10) 
Helical rise (Å) 2.66 (0.22) 2.68 (0.08) 3.25 (0.02) 3.26 (0.03) 3.23 (0.02) 3.26 (0.01) 3.27 (0.02) 
Inclination (deg) 20.71 (4.33) 17.78 (1.56) 4.34 (0.77) 10.01 (0.37) 10.70 (0.34) 11.34 (0.28) 11.34 (0.50) 
zp (Å) 1.56 (0.35) 2.06 (0.07) -0.33 (0.04) -0.21 (0.02) -0.20 (0.02) -0.23 (0.02) -0.18 (0.02) 
Minor groove (Å) 16.22 (0.47) 15.72 (0.12) 10.77 (0.12) 14.91 (0.13) 14.54 (0.06) 14.52 (0.06) 14.76 (0.10) 
Major groove (Å) 13.14 (2.63) 12.94 (0.39) 17.14 (0.12) 16.26 (0.14) 16.53 (0.09) 16.22 (0.06) 16.27 (0.09) 

see Table 2. 
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We further analyzed the displacement of phosphorus atoms relative to the horizontal plane 

passing between base-pairs in a base-pair step (zp) and major/minor grooves (Tables 3.2 & 3.3). 

The zp parameter is very different between the two forms of DNA. While B-DNA has values 

around -0.3 Å, the parameter is mostly larger than 2.0 Å for A-DNA. This parameter does not 

show a trend upon crowding for the GC-rich dodecamer, while the Drew-Dickerson dodecamer 

had slightly larger values in crowded environments, again indicating a slight tendency towards 

A-DNA geometries but still remained much closer to canonical B-DNA values. Minor and 

major groove widths also did not change significantly upon crowding but we note that minor 

groove widths were generally overestimated compared to canonical B-DNA values. This is a 

general feature of the CHARMM force field that was used here [182].  Finally, we analyzed 

the helical bending angles (see Table 3.6, SI) which also did not show a significant change 

upon crowding.  

3.4.2 Sugar conformations and backbone torsions  
 
A key feature of nucleic acid backbone is the ribose pucker conformation. A-form DNA is 

known to prefer C3’-endo and C2’-exo conformations whereas B-form DNA is characterized 

by C3’-exo and C2’-endo conformations. The simulation results shown in Fig. 3.2 show that 

the sugars of both dodecamers generally remain in C3’-exo and C2’-endo conformations. As 

expected, C3’-endo and C2’-exo sugar conformations are more prominent for the GC-rich 

dodecamer (see Fig. 3.2B). Again, there is no major change upon crowding, but in the GC-

rich dodecamer, sugars slightly shift to C3’-exo and C2’-endo sugar conformations up to 30% 

crowding, but then revert back to more A-form conformations at 40 % crowder 

concentrations.  

We further analyzed torsion angles along the phosphate backbone. c and d angles are the 

most distinctive backbone angles to distinguish between A- and B- form DNA. We 

constructed potentials of mean force (PMF) as a function of d/c from the simulations (Fig. 
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3.3). The separation between A- and B-DNA torsion angles is readily apparent. Consistent 

with the ribose puckers and helical geometries, there is more sampling of B-DNA torsion 

angles for both dodecamers. While there is little change in the sampling of the major A- and 

B-form, the presence of crowders appears to affect the sampling of minor conformations with 

A-like d values around 80 degrees and B-like c values around -100 degrees. Sampling in this 

region is significantly reduced in both dodecamers upon crowding (see Fig. 3.3). This region 

corresponds to a conformation where bases stay in the same orientation relative to the sugar 

as in B-form but they are slightly more exposed to the environment, and apparently, this 

conformation is largely prevented by crowder proteins. The sampling of e and z torsion 

angles distinguishes between BI/BII forms. A similar trend is observed where crowding 

reduces the sampling of minor states outside the major BI/BII basins (see Fig. 3.12, SI). Based 

on this analysis, it appears that one effect of protein crowders may be to focus the sampling 

of DNA conformations on the major conformations.  
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Figure 3.2 Sugar pucker conformations for each base of the Drew-Dickerson dodecamer 
(A) and the GC-rich dodecamer (B) from simulations at different protein concentrations. 

 

Figure 3.3 PMF (kcal/mol) as a function of  d and c backbone angles for the Drew-
Dickerson dodecamer at 0 % (A), 20 % (B), 30 % (C) and 40 % (D) protein 
concentrations, and for the GC-rich dodecamer at 0 % (E), 20 % (F), 30 % (G) and 40 % 
(H) protein concentrations. 
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3.4.3 DNA-protein interactions 

Protein G is not known to interact specifically with DNA but under highly crowded conditions, 

interactions are unavoidable. Fig. 3.4 shows where contacts between protein G and DNA occur 

based on minimum distances between the major/minor grooves and sugar/phosphate groups of 

the DNA with different residues of protein G. More detailed contact analysis between 

individual base-pairs and protein G residues is shown in Figures 3.13 and 3.14 (SI ) for the 

Drew-Dickerson and GC-rich dodecamers, respectively. Most of the contacts are between the 

DNA sugar-phosphate backbone and protein residues 15-30, mostly in the α-helix of protein 

G, as well as residues at the N-terminus and near the C-terminus. Contacts involving the DNA 

grooves, a typical mode of interaction for DNA-binding proteins were not common with 

protein G.  The interactions partially involve electrostatic attraction between the DNA 

phosphate and certain lysine residues (K4, K28, K31, and K50), but sugar oxygens O3’ and 

O4’ as well as phosphate oxygens also form hydrogen bonds with other polar protein residues. 

Representative snapshots of protein G-DNA interactions are shown in Fig. 3.5. As would be 

expected, the contacts between the proteins and DNA increase with crowder concentration and 

crowding seems to increase sugar-phosphate-protein contacts more for the Drew-Dickerson 

dodecamer than for the GC-rich dodecamer. 
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Figure 3.4 Average minimum heavy atom distances between crowder protein residues 
and DNA major groove, minor groove, sugar and phosphate backbone for the Drew-
Dickerson dodecamer (left) and the GC-rich dodecamer (right) at different protein 
concentrations. The secondary structure of protein G is indicated on top for reference.  

 

 
Figure 3.5 Representative structures showing interactions of crowder proteins with the 
Drew-Dickerson phosphate group (A) and sugar (B), and the GC-rich phosphate group 
(C) and sugar (D). Interacting residues are shown in licorice representation.  

 

3.4.4 Correlations between DNA-protein contacts and DNA helix properties 
 
To investigate in more detail whether the close contacts of the crowder proteins with the DNA 

have the potential to perturb DNA structure, we analyzed correlations between DNA – protein 

contacts and helicoidal properties of DNA as well as backbone torsion and pseudorotation 

phase angles. First, we examined the effect of close contacts on the helicoidal parameters listed 

in Tables 3.2 and 3.3. We found that a higher number of close protein contacts corresponded 

to a narrower range of sampled values for all of the helicoidal parameters (Figures 3.6 – 3.9, 

Figures 3.15 – 3.18, SI). Among these parameters, slide (Fig. 3.6), x-displacement (Fig. 3.7), 

helical rise (Fig. 3.8) and zp (Fig. 3.9) values showed a clear shift towards B-form values with 

increasing number of contacts. These parameters focus on the displacement of bases along the 
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x- (x-displacement) and y- (slide) axes and of phosphates along the base-pair axis (zp). All of 

the values approach zero with crowding. This suggests that DNA bases and phosphates undergo 

less displacement as a result of crowding. On the other hand, rotations of base-pairs about 

helical (twist) or base-pair axes (inclination) do not show a distinct shift towards any canonical 

values (Fig. 3.15, 3.16, SI). Major and minor groove widths do not seem to be affected by 

contacts except for the GC-rich dodecamer, where there appears to be a clear tendency towards 

larger minor groove values, i.e. values more similar to A-DNA (Fig. 3.17, 3.18, SI).   

Similar to the helicoidal parameters, backbone torsion angles also fluctuate in a narrower 

range upon crowding (Fig. 3.18 – 3.25, SI). This suggests that protein – DNA interactions limit 

the conformational fluctuations of DNA backbone. Particularly, d and c angles shift towards 

B-form values upon higher number of protein contacts, explaining a decrease in the sampling 

of non-canonical conformations shown in Fig. 3.3. Finally, pseudorotation angles move to B-

form values with protein contacts which lead to C3’-exo and C2’-endo sugar pucker 

conformations (Fig. 3.26, SI). 

The results discussed here are most pronounced for the Drew-Dickerson dodecamer. In the 

GC-rich dodecamer, the fluctuations of helicoidal parameters and backbone angles are reduced 

less and the tendency to sample A-form values further complicates the picture. Overall, our 

results suggest that the interactions of protein crowders with DNA sugar/phosphate backbone 

shown in the previous section result in a stiffer DNA backbone, which also prevents larger 

base/base-pair displacements, and therefore restricts the conformational space of DNA. 

Although it appears that there is not a specific tendency towards one of the major forms of 

DNA upon crowding, there is a distinct effect of protein crowders on DNA structure by 

narrowing the conformational sampling to canonical structures. 
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Figure 3.6 PMF (kcal/mol) as a function of slide and number of protein contacts for the 
Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and 
for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations. A 
contact is defined when the minimum distance between the heavy atoms of crowder proteins 
and DNA phosphate groups is less than 5 Å. Solid and dashed lines indicate the slide and x-
displacement values for canonical B- and A-forms, respectively.  

 
 

 
Figure 3.7 PMF (kcal/mol) as a function of x-displacement and number of protein 
contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein 
concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein 
concentrations.  

 



	 64 

 
Figure 3.8 PMF (kcal/mol) as a function of helical rise and number of protein contacts 
for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein 
concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein 
concentrations.  

 

 
Figure 3.9 PMF (kcal/mol) as a function of Zp and number of protein contacts for the 
Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) protein concentrations, and 
for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) protein concentrations.  

 

 

 

 

 



	 65 

3.4.5 Hydration and ion distributions around DNA  
 
Water and ions are integral parts of DNA structures. We analyzed hydration patterns and 

sodium ion distributions around DNA as a function of crowding. Conditional water radial 

distribution functions (RDF) were obtained for water oxygen distances to the closest heavy 

atoms in DNA, normalized by the corresponding accessible volume at each distance and the 

bulk water density (0.034 Å-3) (see Figure 3.10A). The analysis shows that the first hydration 

shell is almost unaffected by the level of crowding, but the RDF decreases beyond the hydration 

shell significantly as a function of crowding. This observation is similar to what has been 

reported previously for the hydration around proteins under crowded environments[42].  

Sodium RDFs were calculated in the same way as the water RDFs but normalized by the 

ion density of the system (0.002 Å-3). There are two peaks in the sodium RDFs corresponding 

to ions in direct contact with the DNA (around 2.5 Å and largely in the minor groove) and ions 

interacting with the DNA through water (around 4.5 Å)[80, 183, 184]. While the direct contact 

peak is not affected significantly by crowding, the second peak shows a greater dependence on 

crowding.  At the highest crowder fractions the second peak is significantly reduced in both 

dodecamers (see Fig. 3.10B) and the ion density is reduced further at larger distances similar 

to the reduction in hydration upon crowding. The effect of crowding on the ion distributions 

also impacts the DNA neutralization as a function of distance (Figure 3.10C). 76 % of the DNA 

phosphate groups are neutralized as suggested by counterion condensation theory at around 9 

Å for the dilute system, however, it takes up to 11 – 12 Å to reach 76 % DNA neutralization 

under crowding conditions. It is interesting, that despite the impact of crowding on the second 

peak of the ion distribution, the counterion condensation is affected less for distances less than 

6 Å. As this may seem counterintuitive, the reader is reminded that the RDF is normalized by 

the available volume and the overall ion density, at constant ion molality, whereas Fig. 3.10C 

simply describes the net neutralization of the DNA by the ions. The extended distance to reach 
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76% charge neutralization upon crowding may seem to challenge counterion condensation 

theory. However, the protein crowders, despite being net neutral, can provide additional charge 

neutralization by orienting basic lysines near the DNA surface as described above to 

compensate for the reduced neutralization by the sodium ions. 

Finally, the 3D distributions of sodium ions around the Drew-Dickerson and GC-rich 

dodecamers are compared in Fig. 3.11. The sodium ion networks in the major and minor 

grooves of DNA are largely preserved for both dodecamers with little changes upon crowding. 

However, additional densities become apparent further away from the DNA at different 

locations upon crowding. This additional ordering is a result of crowder proteins interacting 

with the DNA and coordinating ions near the DNA. A snapshot showing a crowder protein 

interacting with the DNA and orienting a sodium ion at the same time is shown in Figure 3.27 

(SI). 
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Figure 3.10 Radial distribution functions for water (A), sodium ions (B) and DNA 
neutralization fractions (C) as a function of distance from the closest heavy atoms of the 
Drew-Dickerson dodecamer (left) and the GC-rich dodecamer (right). Line colors 
indicate different protein concentrations (black: 0 %, red: 20 %, green: 30 %, blue: 40 
%). The horizontal black line in C indicates the counterion condensation value of 76% of the 
ions to be condensed on the surface of the DNA. Error bars indicate the calculated standard 
errors from five independent replicate simulations.  
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Figure 3.11 3D sodium ion densities around the Drew-Dickerson dodecamer (A) and the 
GC-rich dodecamer (B) at different protein concentrations. The ion density observed in 
0 % crowding is shown with a transparent representation for comparison with ion 
densities (orange) in crowded solutions. Density contours are shown at a level of 0.002 Å-3. 
The top and bottom figures represent front and top views of DNA.  

 
 
3.5 Discussion and Conclusions 
 
In this study, we investigated the effect of protein crowding on the conformational preferences 

of DNA duplexes. In a previous study, we examined one aspect of cellular crowding, namely 

a reduced dielectric response of the environment due to the less available water and its slowed 

dynamics. We found an overall shift towards A-like conformations for DNA under as a result 

of a reduced dielectric response of its environment [167]. Here, we included protein crowders 

and solvent explicitly to test whether the same conclusions would be found.  Although some 

of base parameters moved slightly towards A-like values upon crowding, B-DNA was largely 
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maintained in contrast to our previous findings. This suggests that a reduced dielectric response 

of crowded environments and interactions with crowder proteins have different effects on DNA 

conformational preferences with a net effect of not altering canonical B-DNA structures much.   

We found that the crowder proteins mostly interact with DNA via its phosphate-sugar backbone 

as previously observed in non-specific binding of proteins to DNA [185]. These interactions 

arise from the electrostatic interactions between negatively charged phosphate oxygens and 

positively charged amino acid residues as well as the polar interactions between phosphate 

and/or sugar oxygens and side chains of polar amino acid residues. Previous studies have 

shown that DNA can undergo structural deformations from its B-form towards A-type helix as 

a result of forming complexes with specific DNA binding proteins [186-190], but we did not 

see such an effect here. It does appear, however, that for the system studied here, the presence 

of the protein crowders limits the conformational space of DNA to more canonical structures, 

mostly in B-form, both for the backbone torsions and the helical parameters. However, the 

narrowed conformational sampling appears to have little effect on the overall structural 

averages. Such a crowding effect on DNA structure may be understood in similar ways as 

protein native state stabilization due to the volume exclusion effect [35, 164, 191, 192] where 

the reduced space due to crowders limits the ability to widely sample conformational space. 

This would mean that protein crowding in vivo helps stabilize the biologically most relevant 

forms of DNA.   

We also studied hydration patterns and ion densities around DNA in protein crowding. The 

first hydration shell around DNA is largely unaffected by crowding, while the water densities 

beyond the first solvation shell significantly reduced compared to the bulk water density under 

crowding effect. This result is very similar to the hydration shell around proteins upon 

crowding [42]. This further confirms that, protein crowding in cells generally does not alter the 

first hydration shell around biomolecules. However, sodium densities around DNA are affected 
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already when interacting with DNA through water. Only the direct-contact first peak in the 

sodium-DNA RDF appears to be unaffected by crowding. Moreover, the charge neutralization 

by ions is altered upon crowding with the classical counter-ion condensation threshold reached 

at larger distances from the DNA than under dilute conditions. This suggests that proteins have 

to play an increasing role in neutralizing DNA under highly crowded conditions.  

In conclusion, the results obtained here shed light on the effect of protein crowding on DNA 

structure. We found that the crowder proteins mostly assist DNA to stay in canonical B-like 

conformations, limiting excursions to non-canonical conformations rather than a clear shift in 

the overall, average structure as suggested by a simple dielectric model of cellular 

environments. We hope that this hypothesis will motivate new experimental efforts to 

characterize DNA structure under crowded conditions. We expect that reduced conformational 

dynamics upon crowding may be observable via NMR spectroscopy. Another testable 

hypothesis is the altered ion distribution predicted by our simulations, which could be amenable 

to the ion-counting experiments recently carried out by the Herschlag group [193-196].     
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3.7 Supplementary Information 
 
Table 3.4 Parameters and RMSD values from the canonical B-form structure for the 
individual clusters of the Drew-Dickerson dodecamer. 

 DD1 DD2 DD3 DD4 
Slide (Å) 0.07 (0.00) 0.34 (0.00) 0.19 (0.00) 0.38 (0.00) 
Twist (deg) 33.67 (0.01) 34.63 (0.01) 33.12 (0.01) 32.73 (0.02) 
X-displacement (deg) -1.09 (0.00) -0.30 (0.01) -0.94 (0.01) -0.42 (0.01) 
Helical rise (Å) 3.21 (0.00) 3.30 (0.00) 3.24 (0.00) 3.29 (0.00) 
Inclination (deg) 12.89 (0.03) 8.95 (0.03) 13.14 (0.04) 11.07 (0.05) 
zp (Å) -0.06 (0.00) -0.32 (0.00) -0.14 (0.00) -0.29 (0.00) 
Minor groove (Å) 13.63 (0.01) 12.77 (0.01) 13.86 (0.01) 13.69 (0.01) 
Major groove (Å) 16.10 (0.01) 16.52 (0.01) 16.27 (0.01) 16.97 (0.01) 
RMSD (Å) 1.82 (0.00) 1.37 (0.00) 2.00 (0.00) 1.70 (0.00) 
All values are averaged over all base-pairs excluding the first and last two terminal base-
pairs with standard errors given in the parentheses.  

 
 
Table 3.5 Parameters and RMSD values from the canonical B-form structure for the 
individual clusters of the GC-rich dodecamer. 

 GC1 GC2 GC3 GC4 
Slide (Å) 0.12 (0.00) -0.30 (0.00) 0.69 (0.01) 0.44 (0.01) 
Twist (deg) 34.36 (0.01) 33.13 (0.01) 34.63 (0.03) 33.02 (0.03) 
X-displacement (deg) -0.67 (0.01) -1.69 (0.01) 0.53 (0.01) -0.20 (0.01) 
Helical rise (Å) 3.30 (0.00) 3.20 (0.00) 3.37 (0.00) 3.33 (0.00) 
Inclination (deg) 8.80 (0.03) 12.12 (0.03) 5.90 (0.08) 9.42 (0.07) 
zp (Å) 0.05 (0.00) 0.34 (0.00) -0.21 (0.01) -0.08 (0.01) 
Minor groove (Å) 14.05 (0.01) 14.55 (0.01) 14.00 (0.02) 14.78 (0.01) 
Major groove (Å) 16.34 (0.01) 16.13 (0.01) 16.47 (0.01) 16.82 (0.02) 
RMSD (Å) 1.62 (0.00) 2.28 (0.00) 1.68 (0.01) 2.05 (0.01) 
 GC5 GC6 GC7 GC8 
Slide (Å) 0.44 (0.01) -0.06 (0.01) -0.11 (0.02) 0.04 (0.00) 
Twist (deg) 30.98 (0.06) 31.97 (0.03) 30.90 (0.41) 32.72 (0.02) 
X-displacement (deg) -0.55 (0.02) -1.41 (0.01) -0.94 (0.03) -1.19 (0.01) 
Helical rise (Å) 3.36 (0.01) 3.24 (0.00) 3.07 (0.02) 3.25 (0.00) 
Inclination (deg) 12.55 (0.14) 13.05 (0.06) 12.00 (0.30) 12.99 (0.04) 
zp (Å) 0.03 (0.01) 0.19 (0.01) -0.20 (0.03) 0.17 (0.01) 
Minor groove (Å) 15.68 (0.02) 15.11 (0.01) 14.94 (0.03) 15.09 (0.01) 
Major groove (Å) 16.82 (0.02) 16.69 (0.02) 15.47 (0.05) 16.25 (0.01) 
RMSD (Å) 2.58 (0.01) 2.47 (0.01) 3.70 (0.02) 2.25 (0.00) 

All values are averaged over all base-pairs excluding the first and last two terminal base-pairs 
with standard errors given in the parentheses. 
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Table 3.6 Bending angles for both DNA dodecamers (degrees). 

  Canonical Simulations in crowded environment 
 X-ray A-DNA B-DNA 0% 20% 30% 40% 
Drew-
Dickerson 170.11 122.72 

(3.57) 
163.05 
(5.94) 

155.24 
(0.47) 

155.55 
(0.65) 

155.50 
(0.76) 

152.80 
(0.87) 

GC-rich 100.77 122.72 
(3.57) 

163.05 
(5.94) 

156.85 
(1.09) 

153.00 
(1.12) 

153.03 
(0.91) 

152.18 
(1.04) 

Bending angle is defined as the angle between the center of masses of three sections of 
basepairs: Section 1: 3 – 5, Section 2: 6 – 7, and Section 3: 8 – 10. Standard errors given in the 
parentheses. Statistical errors of the averages over the simulations are estimated from block 
averaging by comparing results for 100 ns segments from the simulations. Canonical values 
are averaged over the A-form structures 3V9D, 3QK4, 2B1B, 1ZEX, 1ZEY, 1ZF1, 1ZF8, 
1ZF9, 1ZFA and the B-form structures 2M2C, 4AGZ, 4H0, 4AH1, 3U05, 3U08, 1VTJ,3U2N, 
3OIE, 3BSE. For X-ray structure values; 1BNA and 399D are used for Drew-Dickerson and 
GC-rich dodecamers, respectively. 
 
 
 

Figure 3.12  Potential of mean force (kcal/mol) as a function of  e and x backbone angles 
for the Drew-Dickerson dodecamer at 0 % (A), 20 % (B), 30 % (C) and 40 % (D) 

protein concentrations, and for the GC-rich dodecamer at 0 % (E), 20 % (F), 30 % (G) 
and 40 % (H) protein concentrations. 
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Figure 3.13  Average minimum distances between the crowder protein residues and the 
major groove, minor groove, sugar and phosphate backbone for the individual base-pairs 
of Drew-Dickerson dodecamer at 20% (A), 30% (B) and 40% (C) protein concentrations. 
Distances were calculated from the heavy atoms only. 

 
 

 
Figure 3.14 Average minimum distances between the crowder protein residues and the 
major grooves, minor grooves, sugar and phosphate backbone for the individual base-
pairs of GC-rich dodecamer at 20% (A), 30% (B) and 40% (C) protein concentrations. 
Distances were calculated from the heavy atoms only. 
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Figure 3.15 Potential of mean force (kcal/mol) as a function of twist angle and number of 
protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) 
protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) 
protein concentrations. A contact is defined when the minimum distance between the heavy 
atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines 
indicate the canonical B- and A-form values, respectively. 

 
 

 
Figure 3.16 Potential of mean force (kcal/mol) as a function of inclination angle and 
number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 
% (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 
% (F) protein concentrations. A contact is defined when the minimum distance between the 
heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed 
lines indicate the canonical B- and A-form values, respectively. 
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Figure 3.17 Potential of mean force (kcal/mol) as a function of minor groove and number 
of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) 
protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) 
protein concentrations. A contact is defined when the minimum distance between the heavy 
atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines 
indicate the canonical B- and A-form values, respectively. 

 
 

 
Figure 3.18 Potential of mean force (kcal/mol) as a function of major groove and number 
of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % (B), 40 % (C) 
protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % (E), 40 % (F) 
protein concentrations. A contact is defined when the minimum distance between the heavy 
atoms of crowder proteins and DNA phosphate groups is less than 5 Å. Solid and dashed lines 
indicate the canonical B- and A-form values, respectively. 
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Figure 3.19 Potential of mean force (kcal/mol) as a function of a backbone torsion angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 

 
 

 
Figure 3.20 Potential of mean force (kcal/mol) as a function of b backbone torsion angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 
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Figure 3.21 Potential of mean force (kcal/mol) as a function of g backbone torsion angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 

	
	

 
Figure 3.22 Potential of mean force (kcal/mol) as a function of d backbone torsion angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 
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Figure 3.23 Potential of mean force (kcal/mol) as a function of e backbone torsion angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 

	
	

 
Figure 3.24 Potential of mean force (kcal/mol) as a function of z backbone torsion angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 
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Figure 3.25 Potential of mean force (kcal/mol) as a function of c backbone torsion angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 

	

 
Figure 3.26 Potential of mean force (kcal/mol) as a function of sugar pucker phase angle 
and number of protein contacts for the Drew-Dickerson dodecamer at 20 % (A), 30 % 
(B), 40 % (C) protein concentrations, and for the GC-rich dodecamer at 20 % (D), 30 % 
(E), 40 % (F) protein concentrations. A contact is defined when the minimum distance 
between the heavy atoms of crowder proteins and DNA phosphate groups is less than 5 Å. 
Solid and dashed lines indicate the canonical B- and A-form values, respectively. 
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Figure 3.27 A snapshot showing a crowder protein interacting with the Drew-Dickerson 
DNA and orienting a sodium ion at the same time.  
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4.1 Abstract 
	
High-resolution three-dimensional models of Caulobacter crescentus nucleoid structures were 

generated via a multi-scale modeling protocol. Models were built as a plectonemically 

supercoiled circular DNA and by incorporating chromosome conformation capture based data 

to generate an ensemble of base pair resolution models consistent with the experimental data. 

Significant structural variability was found with different degrees of bending and twisting but 

with overall similar topologies and shapes that are consistent with Caulobacter crescentus cell 

dimensions. The models allowed a direct mapping of the genomic sequence onto the three-

dimensional nucleoid structures. Distinct spatial distributions were found for several genomic 

elements such as AT-rich sequence elements where nucleoid associated proteins (NAPs) are 

likely to bind, promoter sites, and some genes with common cellular functions. These findings 

shed light on the correlation between the spatial organization of the genome and biological 

functions. 

 

4.2 Introduction 
	
Much is known about the gene organization within genomes, but the detailed three-dimensional 

(3D) structure of chromosomes has so far remained elusive. Gene-structure-function 

relationships at the DNA level are poorly understood as is the role of chromosomal structure 

in many cellular processes such as DNA transcription, replication and segregation. Two 

experimental approaches, fluorescence in situ hybridization (FISH)  [197] and the recently 

introduced chromosome conformation capture (3C) techniques [21], especially the whole-

genome sequencing variants (Hi-C) [22],  have opened up new possibilities for understanding 

how chromosomes are folded inside the cell. FISH measures the spatial distance between two 

DNA segments in single cells providing a direct visualization of the relative positioning of 

different loci in a given chromosome. Hi-C methods generate genome-wide contact 
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probabilities between loci based on cross-linking from population of many cells providing 

information about spatial proximities between genomic elements that reflects 3D structure 

ensembles.  

High-resolution structural insight of bacterial chromosomes has been derived from FISH 

[197-209] and 3C-based techniques [32, 210-215]. Bacterial chromosomes form highly 

compact structures induced by DNA supercoiling and further stabilized by the binding of 

nucleoid associated proteins (NAPs) [216, 217]. Further investigation of the global 

organization of bacterial chromosomes have revealed certain features of highly-organized 

chromosomal structure [200, 202, 218]. In Caulobacter crescentus, the origin and terminus of 

replication are located at opposite poles of a longitudinally organized chromosome, referred to 

as an ori-ter configuration [200].  This configuration has also been confirmed from 3C 

experiments on the C. crescentus genome [211, 214]. Chromosome Conformation Capture 

Carbon Copy (5C) study reported an ellipsoidal chromosome with periodically arranged arms 

confirming longitudinal organization [214]. Furthermore, a Hi-C study on the same bacterium 

further revealed that C. crescentus chromosome consists of multiple chromosome interacting 

domains (CIDs) with highly expressed genes found at domain boundaries [211]. On the other 

hand, the chromosome of Escherichia coli contains four macrodomains (Ori, Ter, Left and 

Right) with their localization dependent on different stages in the cell cycle [197]. Ori and Ter 

domains were also identified by 3C-based studies[210]. In slow-growing E. coli chromosome, 

the origin and terminus of replication are located near mid-cell and right and left chromosomal 

arms reside in separate cell halves [199, 202], so-called left-ori-right pattern, whereas the 

chromosome adopts an ori-ter configuration in fast-growing E. coli where these macrodomains 

localize at opposite poles of the cell [203]. The Bacillus subtilis chromosome is organized into 

a similar configuration alternating between ori-ter and left-ori-right patterns depending on the 
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cell cycle phase as in E. coli [201, 219]. CIDs have also been observed in the B. subtilis 

chromosome [212, 215].   

NAPs play a crucial role in the observed organization of bacterial chromosomes [217, 220]. 

One of the most abundant NAPs, H-NS that is largely found in E. coli, has been reported to 

bridge different segments of the genome [221, 222] and control supercoiling of the DNA [223]. 

This suggests an active role in nucleoid organization. HU, another ubiquitous NAP in bacteria, 

has been found to influence chromosome compaction by wrapping the DNA around itself 

analogous to histones in eukaryotes thereby forming short-range interactions [211, 220]. 

Integration host factor (IHF) and factor for inversion stimulation (Fis) proteins help 

chromosome compaction by introducing DNA bending [217, 220]. Additionally, SMC 

(structural maintenance of chromosomes) proteins, which are believed to contribute to 

chromosome compaction [220], have recently been shown to affect collinearity of 

chromosomal arms in C. crescentus rather than regulating overall compaction [211].  

Since bacterial genomes are not segregated into a special compartment as in eukaryotic cells, 

they occupy a large portion of the cell and interact extensively with the intracellular 

environment. Therefore, the spatial organization of a bacterial genomic DNA can play a major 

role in the regulation of biological functions in the cell. This idea is affirmed by a recent study 

where the statistical analysis of genome conformation capture data for E. coli suggested that 

operons from the same regulons and genes in the same biological pathway tend to be close to 

each other in 3D space, thereby maximizing compactness of the genome [224]. Furthermore, 

genes that are spatially close in 3D genomic structure tend to be co-expressed and their protein 

products are prone to form more protein-protein interactions [224].  A previous computational 

study, where the chromosome is modeled as a worm-like polymer chain with interacting sites 

corresponding to genes that are regulated by same transcription factors, showed that 

chromosomes form different topological orderings that increase local concentration of 
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interaction sites, therefore co-localize the co-regulated genes in 3D space, suggesting a 

correlation between gene co-regulation and 3D chromosome organization [225]. A very recent 

Hi-C study on the Mycoplasma pneumoniae chromosome has provided the first evidence of 

the correlation between 3D chromosome organization and transcriptional regulation [213]. 

They found that genes that are in the same CID have higher co-expression levels than genes 

between different domains [213]. In addition, independent of CIDs, they also reported high co-

expression levels for spatially close genes [213]. Despite the recent progress, a more detailed 

understanding of the structural organization of bacterial chromosomes is still lacking.  

The data generated with 3C-based methods lends itself to experimentally-driven modeling 

of 3D chromosome structures where restraints defined from 3C studies are used. Initial 

modeling approaches have used the generally accepted assumption that 3C-based contact 

probabilities are inversely related to the average distances between loci pairs [226]. Further 

calibration is possible by comparing 3C-based contact probabilities with average distances 

obtained via FISH. Such a calibration curve was obtained for C. crescentus where contact 

probabilities based on Chromosome Conformation Capture Carbon Copy (5C) for 112 different 

loci from the flagellated pole of swarmer cells were compared with FISH data [200]. This 

allowed for a direct conversion of the 5C contacts to distances, which could then be used as 

constraints during modeling. Initially, such an approach based on 5C data was used to generate 

models for the C. crescentus chromosome at 13-kilobase (kb) resolution which provided first 

insights into its spatial organization in 3D space [214]. Restraint-based modeling based on 

contact probabilities between loci pairs has also been applied for generating 3D structures of 

eukaryotic chromosomes or their subsections [227-232].  

The generation of chromosome models simply based on satisfying restraints from 3C 

contact frequencies that are converted to distances via calibration against FISH data is 

seemingly straightforward, but it has been pointed out that this approach is problematic [226, 
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233-237]. 3C-based contacts stem from cross-links that can only form if two loci come within 

a certain contact threshold. This means that a given contact frequency for a certain pair of loci 

only reflects in what fraction of cells those loci come closer than the contact threshold, instead 

of directly reporting on the average distance between two loci as FISH does when averaged 

over many cells. In other words, 3C-based studies only give information about the low-end of 

the distance distribution while FISH considers the mean of the entire distribution. This has 

prompted efforts to employ population-based modeling techniques to generate ensembles that 

reflect cell-to-cell variability and explicitly consider the short-range sensitivity of 3C-based 

methods when matching the cumulative contact map from the experimental contacts [238-241]. 

Another issue is that the experimental data even with Hi-C is too sparse to fully determine 

3D structures beyond kb resolution. This leaves an important role to computational methods to 

compensate for a lack of resolution in the experimental data by including general topological 

features and packing constraints as part of the model building protocol. The rationale for this 

strategy is similar to the well-established protocols for the determination of macromolecular 

structures based on restraints from nuclear magnetic resonance (NMR) data. In the case of 

NMR, such assumptions e.g. about peptides being polymers with a backbone and side chains 

with certain molecular bonding geometries are key to obtaining atomic resolution structures 

from data that is otherwise effectively at much lower resolutions. In the case of bacterial 

chromosomes, one can apply knowledge about a plectonemic structure made up of supercoiled 

segments with branching points and long persistence lengths to generate high-resolution 

models when combined with the experimental data. Le et al. generated 3D structures for the C. 

crescentus genome at 434 base pair (bp) resolution by modeling the chromosome as a circular 

polymer consisting of plectonemes and structures that best fit the Hi-C data were selected after 

varying model parameters [211]. These models further extended the knowledge on 3D 
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organization of C. crescentus chromosome gained previously and shed light on the CIDs and 

their organization. 

Using a different strategy, Hacker et al. very recently described a model of the E. coli 

chromosome at nucleotide resolution [242]. Starting with a multi-scale polymer model that 

captures the plectonemic topology and physical properties of double-stranded and supercoiled 

DNA, spatially resolved models were generated primarily based on RNA polymerase (RNAP) 

binding data from CHIP-chip experiments [243]. RNAP binding sites obtained from the ChIP-

chip data were used to identify highly-transcribed regions which were then modeled as 

plectoneme-free, i.e. not supercoiled, regions in the chromosomal structure. The modeling was 

then further guided to match the distributions of the beads that mapped to RNAP binding sites 

to the projected 2D distribution of RNAP as well as the distribution of the rest of the beads to 

the 2D distribution of HU proteins obtained from single-molecule fluorescence experiments 

for E. coli [244]. These models allowed, for the first time, the ground-breaking investigation 

of physical properties a bacterial chromosome at the nucleotide level and a direct mapping of 

genome sequence to structure. 

In this study, we employed a similar multi-scale modeling protocol to encode the 

plectonemic and supercoiled topology of bacterial DNA via coarse-grained (CG) models at 

different resolutions up to the bp level but using 3C-based contact frequency matrices to guide 

the modeling. This protocol was used to generate structural ensembles for the C. crescentus 

chromosome where extensive Hi-C data [211] is available. The Hi-C data provides direct 

information about relative spatial distances between loci under the consideration of dynamics 

and population-based variations. Similar to the models generated by Hacker et al. for E. coli, 

the models presented here for C. crescentus are thus believed to provide an accurate picture of 

where gene loci are located in individual chromosome structures and how such distributions 

vary between cells and as a result of chromosome dynamics. As the models from Hacker et al., 



	 88 

the models generated here also allowed a direct mapping of the genomic sequence onto the 

generated 3D structures and a detailed analysis of how the mapping of genomic sequences onto 

the bacterial chromosome structures may be related to biological function encoded by the 

corresponding genes. 

4.3 Materials and Methods 
	
Experimentally driven high-resolution models of the C. crescentus genome were generated as 

a hyper-branched polymer of supercoiled DNA segments forming plectonemic rosettes. The 

multi-scale modeling protocol is illustrated in Figure 4.1 and described in full detail in the 

Supplementary Information (SI). Briefly, initial Monte Carlo (MC) sampling of a segment-

based plectonemic model was guided by distance restraints based on Hi-C interaction 

frequencies [211] between specific pairs of loci.	The distance restraints were derived by using 

a calibration curve obtained by Umbarger et al. [214] which is a polynomial function to map 

between interaction frequencies from 3C-based data and expected distances. Simply, such 

mapping was possible by comparing the available average spatial distances of loci pairs 

measured by fluorescence microscopy data for the C. crescentus chromosome and the 

corresponding interaction scores for pairs with similar genomic site-separations.  

In the initial sampling round, the general topology of branches extending from a central 

ring was fixed, but branches were allowed to reconnect and move. Next, 15-bp CG models 

were constructed by wrapping higher resolution beads around the segments in the initial 

plectonemic models. The 15-bp CG models were then further refined via molecular dynamics 

(MD) simulations using a CG interaction potential that accounts for the elastic properties of 

DNA. An example of a C. crescentus model at 15-bp resolution is shown in Figure 4.2. In total, 

1,050 models were generated covering a range of branch segment lengths and number of 

supercoiled loops (microdomains). The resulting models were subsequently reweighted to 

generate an ensemble of structures where not just the average distance between two loci but 
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also the distribution of contacts in the models is maximally consistent with the Hi-C scores. 

The reweighted ensemble was then used for all further analysis. 

The final models were also used to reconstruct models at base-pair resolution by taking 

advantage of the long persistence length of double-stranded DNA (see Supplementary Data). 

The base-pair resolution model for the structure shown in Figure 4.2 is given in Figure 4.13. 

Projections of the beads in the bp-resolution models and 15-bp resolution models did not show 

any difference (Supplementary Figure 4.13B vs Figure 4.5A, Pearson’s coefficient: 1.00, 

Slope: 1.00, Intercept: 0.00). Therefore, 15-bp resolution models were used for further analysis 

throughout this study.  

 

 

 
Figure 4. 1 Multi-scale modeling procedure during model generation based on Hi-C 
data. (A) Plectonemic and CG model generation. (B) Model reweighting. 
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Figure 4. 2 3D structure of C. crescentus chromosome at 15-bp resolution projected onto 
a C. crescentus cell with typical dimensions. 

 
 
4.4 Results 
	
4.4.1 Structural Characterization of C. crescentus Chromosome Models 
	
An ensemble of chromosome models for C. crescentus were generated as described above and 

in more detail in the Supplementary Data. To characterize the ensemble, we initially compare 

contact maps with the experimental data. The contact map based on the number of contacts 

within a distance threshold (see SI) is shown in Fig. 4.3. This map compares to the Hi-C scores 

and is in good agreement with the Hi-C contact map with a Pearson’s correlation coefficient of 

0.88 (Slope: 1.62, Intercept: 0.04) (Figure 4.3). Both contact maps exhibit the same 

characteristic two diagonals that reflect two chromosomal arms in an ellipsoidal shape 

interacting with each other [211, 214]. Previously, the inspection of the Hi-C interaction map 

revealed that C. crescentus chromosome is organized into 23 chromosome interacting domains 

(CIDs) which appear as triangles along the main diagonal [214]. The boundaries of the CIDs 

were identified by comparing the interaction preferences of loci from its left- and right-hand 

side; because when a locus is at the border of a CID, it strongly interacts either with its left- or 

right-hand side, whereas it interacts with both sides when it is in the middle of CID [211]. The 

triangles corresponding to CIDs are less apparent in our contact map, but the analysis of the 

interaction preferences of loci (SI) was carried out in the same manner as was done previously 
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[211]. The results are also shown in Figure 4.3. We found 21 CIDs, 18 of those match the CIDs 

identified previously from experiment. These results further confirm that our models are 

consistent with the information gained from the Hi-C experiment.  

The average distance contact map at 10-kb resolution from the models is also shown in 

Supplementary Figure 4.15B and compared with the distance contact map converted from Hi-

C interaction frequencies [211] by using the calibration curve derived by Umbarger et al. [214] 

(Figure 4.15A). The average distance map from the models shows an excellent agreement with 

the Hi-C derived map with a Pearson’s correlation coefficient of 0.98 [211,214]. One 

significant difference between the two distance maps are apparent contacts between the origin 

(at 0 Mb) and the middle of the genome (at 2 Mb) in the experimental map. In the 3D 

organization of the chromosome, the middle of the genome (2 Mb) resides at the opposite pole 

from the origin, therefore these interactions are unlikely. The Hi-C scores for those regions 

were below the cutoff for contacts to be considered significant and likely result from replication 

and segregation of the origin to the opposite pole in some cells during the experiment [214]. 

On the other hand, if these contacts were included in the modeling protocol, a large fraction of 

highly bent structures would be necessary to satisfy average distances of ~650 nm between the 

opposite poles of the genome structure. Such bent structures are not consistent with the typical 

cell dimensions of C. crescentus (see below).  
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Figure 4. 3 Contact maps. (A) Hi-C score map (left panel) from Le et al. [211], average 
contact map of models by using cross-linking probability function used in the reweighting 
procedure (right panel). Hi-C scores were normalized to 1 for comparison. (B) The main 
diagonal of the average contact from models rotated 45° clockwise. The bottom panel shows 
the directional preferences of different loci (green: left-, red: right-hand side preference). 
Dashed lines show the boundaries of CIDs found from our models, blue dots indicate CID 
boundaries found in the study by Le et al [211]. 

 
The intramolecular distances can be further compared with recently reported distance 

measurements between 51 fluorescent-labeled DNA segments in the C. crescentus 

chromosome by Hong et al. [245]. We note that these distances were not used in the modeling 

or for generating the calibration curve between Hi-C interactions scores and spatial distances. 

Therefore, a comparison of the models with this data provides important independent validation 

[226]. The comparison of the projected average distances from the models with the 

experimental distance measurements is shown in Figure 4.4A. It can be seen that the models 

generally reproduce the experimental distances. For longer distances, the models have 

somewhat larger values than the experimental data suggesting an overall slightly too expanded 

shape. When distances of DNA segments only from the origin of replication are compared, the 

models produce similar distances up to 500 nm but become more extended for larger distances 
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compare to the available FISH data [200, 245]. This may be a consequence of modeling the 

DNA based on the Hi-C experiments that become insensitive to contacts beyond ~485 nm (see 

SI). This threshold stems from the fact that 3C-based experiments result in a flat distributions 

of interaction frequencies with long tails that correspond to the fragments that are in contact 

very frequently or infrequently. However, intermediate interaction frequencies are relatively 

noisy. Umbarger et al. have used the ~ 485 nm threshold to distinguish frequent contact 

frequencies from less reliable intermediate contacts but differences in the phases of the cells 

used in the FISH and Hi-C experiments can also explain different dimensions of the 

chromosome structures.  

Another explanation for the different dimensions of the chromosome structures could be 

the differences in the phases of the cells used in the FISH and Hi-C experiments. FISH 

experiments were based on swarmer cells that were not allowed to grow FISH experiments 

were based on swarmer cells that were not allowed to grow [200, 245], whereas the Hi-C data 

were collected from cells allowed to grow for 0, 10, 30, 60 or 75 minutes [211] which would 

be expected to result in larger cell sizes [246] and, hence, allow for more extended chromosome 

structures. 
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Figure 4. 4 Compatibility of the models with experimentally measured distances from 
FISH in the study by Hong et al. [245] (A) Distances for loci pairs from Hong et al. and 
from the models (B) Distance between the origin of replication and different DNA segments 
with different genomic distances from Viollier et al. [200]  (black), Hong et al. [245] (red), 
models (pink), and scaled models (orange). The distances obtained from the calibration curve 
and used as restraints during the modeling are shown in blue. (C) Distances for loci pairs 
from Hong et al. and from models scaled by 0.8.  

In order to test if our models would still be compatible with the Hi-C data if they had overall 

smaller dimensions consistent with the FISH data, we scaled the representative models of 

clusters obtained from the clustering analysis (see Figure 4.7) by 0.8 followed by 50 ns MD 

refinement to relax the models. This generated models that reproduce the correlation observed 

between distance and site-separation of loci pairs from experiment (orange curve in Figure 4. 

4B) and, as expected, the FISH data also matched better (Pearson’s correlation coefficient: 

0.98, slope: 1.09, root-mean-squared-error: 15.73) (Figure 4.4C). The resulting average 

distance map after scaling is still in excellent agreement with the experimental data, but the 

Pearson’s correlation coefficient of 0.96 with respect to the Hi-C data is slightly worse than for 

the unscaled models (Figure 4.14C).  

Next, we analyzed the spatial dimensions of our models. Projections of the beads in the 

models onto their principal axes are shown in Figure 4.5A. The average length of the core 

structure is around 2 µm, with the edges extending to around 2.5 µm. This is slightly less than 

the experimentally observed C. crescentus cell lengths of ~2.5 – 3 µm [246]. The projection 

onto the short axes reflects the curved shape of most of our models. Therefore, we also 

determined the width perpendicular to the local axis of a curved line fit to the nucleoid models 
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(see SI). The resulting widths shown in Figure 4.4C are around 0.7 µm with a maximum extent 

to about 0.8 µm. For comparison, experimental cell widths are around ~0.8 µm [246]. Our 

models fit just inside the known dimensions of C. crescentus cells without imposing such a 

requirement during the modeling protocol. If the models are scaled to better fit the FISH data 

(see above), the dimensions of the chromosome become somewhat smaller (Figure 4.15, SI). 

In either case, our results imply that the genomic DNA fills out the majority of the cellular 

volume with the outermost parts of the DNA able to come close to the cellular membrane.  

These results are consistent with previous work showing the level of nucleoid compaction in 

different bacteria where nucleoids have been imaged by electron microscopy [247, 248]. 

Although the morphology of the nucleoid depends upon the organism as well as environmental 

conditions and growth rate [248, 249], nucleoids are generally found to occupy a large fraction 

of the cell cytoplasm [247, 248, 250]. In particular, the distribution of the nucleoid-associated 

HU protein in C. crescentus suggests that the nucleoid exhibits a diffuse morphology that 

extends to most of the cell volume [250]. Interestingly, the distribution of HU proteins in E. 

coli obtained from single-molecule fluorescence data [244] as well as the distribution of DNA 

in 3D models of E. coli nucleoid [242] are quite similar to the DNA distribution on the shortest 

axis of the C. crescentus nucleoid models (Figure 4.5A, green curve). This indicates that the 

level of nucleoid compaction for E. coli and C. crescentus are similar. We also compared the 

nucleotide densities from our models with the 3D models for the E. coli nucleoid [242] (Figure 

4.5B). We compared absolute nucleotide densities rather than nucleotide counts to better 

compare with E. coli chromosome models since the number of nucleotides in C. crescentus and 

E. coli chromosomes is different and the distribution of nucleotides along the axis could be 

differentOur models show slightly less DNA densities which is consistent with C. crescentus 

having a smaller genome by about 600 kb compared to E. coli while the overall cell dimensions 
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are very similar. However, the overall distribution patterns of the DNA density along the short 

axis from both our and E. coli models was found to be very compatible. 

Figure 4.5D shows the bending angle distribution observed for our models. The peak is 

between 150 and 160 degrees, which is comparable to the experimental bending angle of 

162.9o with a standard deviation of 8.46o observed for the overall C. crescentus shape  [246]. 

Our models show a slightly wider distribution with smaller bending angles, however we note 

that the average experimental bending angle we use for comparison is for swarmer cells [246]; 

therefore, the difference could again be because of the cells from different cell stages used in 

the Hi-C experiment.   
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Figure 4. 5 Dimensions of the models. (A) Projections of beads in the models onto their 
longest principal axis (black), the second principal axis (blue), the shortest principal axis (red) 
and the DNA distribution based on HU proteins in E. coli nucleoid short axis reproduced by 
digitizing the figure 4A-ii in the article from Stracy et al. [244] (green). In order to compare 
the E. coli data with our projections, the relative x-axis values given in the experimental results 
were multiplied by half the C. crescentus width (400 nm) to obtain comparable distributions, 
and the curve was normalized again to keep the area under the curve 1. (B) Nucleotide density 
projection onto the shortest axis from our models (red) and 3D models of E. coli chromosome 
[242] (green) reproduced by digitizing the figure 5A in the article from Hacker et al. [242]. The 
probability densities of DNA in E. coli models in the reference were converted to nucleotide 
densities by multiplying the probability densities by the total number of nucleotides in E. coli 
and divided by the width and length of their models. (C) Width of the models vs. the positions 
along the longest principal axis, p, normalized to the length of the models along the x-axis, l. 
Here, 1 represents the pole that contains the replication of origin while 0 represents the opposite 
pole. (D) Distribution of bending angles for the models. The shaded areas indicate the standard 
deviations and the error bars indicate the standard errors based on the ensemble averages. 

 

Since the bacterial nucleoids occupy a large portion of the cell, extensive interactions with 

the intracellular environment are unavoidable and proteins as large as RNAPs and ribosome 

subunits have been found to penetrate into nucleoids to initiate co-transcriptional translation 
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[244, 249, 251]. On the other hand, complete ribosomes and polysomes are strongly segregated 

from the nucleoid [252, 253] presumably excluded from the nucleoid based on their size. We 

analyzed our models to determine whether they are compatible with the experiments, i.e. 

whether the structures are porous enough for RNAP and ribosome subunits to enter while 

excluding assembled ribosomes. Figure 4.6A shows the accessible cavity volume as a function 

of macromolecular radius. Essentially molecules with radii up to 10 nm are able to penetrate 

the chromosome structures at significant fractions whereas molecules larger than 15 nm are 

almost fully excluded. Table 4.1 compares accessible cavity sizes for a typical size protein, 

RNAP, the 30S and 50S ribosomal subunits, and entire ribosomes based on their hydrodynamic 

radii [254]. Despite its size, RNAP can access half of the volume available to small proteins 

and the ribosomal subunits can still access about a quarter of the volume suggesting that both 

RNAP and ribosomal subunits are able to penetrate and interact extensively with the DNA. 

However, assembled ribosomes can only access 10% of the space accessible to small proteins 

consistent with the experiments that find ribosomes to be largely excluded from the nucleoid 

[252, 253].  If the scaled models that better fit the FISH data are used, the overall size of the 

cavities is reduced but the general conclusions remain the same (Table 4.1, Figure 4.16, SI). 

Figure 4.6B further contrasts the much-reduced volume accessible to ribosomes in our models 

compared to the volume that can be occupied by RNAP. Overall, although the results here 

depend on the parameters used in the analysis, they suggest that larger molecules have more 

difficulties accessing the nucleoid interior and seem to agree with the finding that the porous 

nucleoid structure would allow mobile RNAP to diffuse relatively easily within the nucleoid 

in contrast to ribosomes [244]. Our results can also be compared with the void distribution in 

the recent models for the E. coli chromosome [242]. The E. coli models appear to be less 

compact since voids with radii up to 40 nm were identified in that study and entire ribosomes 

with radii of about 12 nm appear to fit comfortably within most of the structure according to 
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the distribution of void sizes [242] despite the higher DNA density compared to our models 

(Figure 4.4B). The void size distribution in our models appears to be more consistent with the 

experimental data than in the E. coli models, but a direct comparison between our analysis and 

the work by Hacker et al. is complicated by likely differences in how exactly the voids are 

calculated as well as slightly different DNA topological parameters such as higher superhelical 

densities in the E. coli.  

 

Figure 4. 6 Cavities in the models. (A) Distributions of the cavities for different probe radii 
in the models. The shaded area indicates the standard deviations and the error bars indicate 
the standard errors based on the ensemble averages. (B) Cavities that could be occupied by 
RNAP (red) and ribosomes (blue).  

 
Table 4.1 Nucleoid cavity volumes accessible to proteins of different sizes. Ensemble-
averaged volumes with standard errors given in the parentheses. Hydrodynamic radii of the 
molecules were calculated by HYDRPRO [254] based on PDB structures for RNA polymerase 
(4KMU), the 30S subunit (5NO3),  the 50S subunit (5ADY), and the ribosome (4V4Q). 

 Hydrodynamic  
 radius (nm) 

Cavity volume (x106 nm3) 
Original models Scaled models 

Average size protein 2.0 95.4 (1.5)  86.0 (1.8) 
RNA polymerase 6.9 45.5 (0.7)  25.5 (0.4) 
Ribosomal subunit 30S 8.7 28.6 (0.4)  11.1 (0.2) 
Ribosomal subunit 50S 10.0 19.3 (0.3)   5.7 (0.1) 
Ribosome 11.7 10.6 (0.1) 2.1 (0.04) 
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4.4.2 Structural variability in the ensemble  
	
All of the nucleoid models generated by our protocol have overall similar shapes. The origin 

of replication is at one end of the structure and the prominent feature are two arms that are 

wound around each other in most structures following a sinusoidal pattern with 1.5 – 2 period 

repeats. The overall shape is similar to lower-resolution models reported previously by 

Umbarger et al. [214]. Many structures exhibit bending that generally follows the curved rod 

shape of C. crescentus cells [246] as already discussed above. Beyond these overall features, 

there are significant structural variation at the more detailed level. Clustering of the ensemble 

based on pairwise mutual similarity resulted in 27 different major groups. Representative 

structures for each cluster are shown in Figure 4.7A, population percentages are given in Table 

4.2, and individual contact maps for each cluster that show deviations and many different 

patterns are shown in Figure 4.17 (SI). The weights of different clusters were optimized in the 

final step of the ensemble generation to match the resulting contact distributions to 

experimental Hi-C contact frequencies as described in the SI. The weights of the clusters show 

that some clusters with lower population percentages have higher weights. This could be 

because in our modeling protocol the initial sampling may be biased and not fully reflect the 

correct relative populations. 
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Figure 4. 7 Clustering of our models and possible inter-conversions between clusters. 
(A) Representative structures for ensemble clusters. (B) Inter-conversion between clusters 
based on targeted molecular dynamics. Colors indicate the number of connections to other 
clusters (from red to white, descending order) and the size of the circles corresponds to the 
weights of the clusters (0.005 – 0.113). The indices correspond to the structures shown in (A)
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Table 4.2 Features of major clusters of nucleoid structures. Structural characteristics are averaged over all members in each cluster. The 
population percentages refer to the models in the unweighted ensemble. Standard errors are given in parentheses. 

 

Cluster Population 
% Weight 

Medial 
axis 

length (nm) 

Width 
(nm) 

Bending 
angle 

(degrees) 

Bending 
direction (degrees) Arm-twisting (degrees) Arm-crossings 

1 2.10 0.113 2684.7 (52.1) 762.7 (12.6) 151.5 (2.1) -12.9 (9.1) 1.27 (0.61) 0.07 (0.23) 
2 2.48 0.103 2549.9 (33.3) 753.8 (9.6) 148.3 (2.3) 6.9 (17.4) -0.26 (0.53) -0.49 (0.25) 
3 2.00 0.095 2666.8 (30.1) 723.8 (10.2) 163.2 (1.6) -110.0 (21.3) 3.39 (0.92) -0.40 (0.26) 
4 3.05 0.071 2648.1 (34.3) 745.6 (8.9) 153.9 (1.9) -42.8 (10.6) -0.92 (0.48) 0.26 (0.17) 
5 1.71 0.068 2441.7 (33.0) 738.9 (10.3) 159.8 (2.7) -76.1 (14.5) -1.40 (0.95) 0.11 (0.34) 
6 2.38 0.056 2649.9 (37.5) 752.8 (10.1) 150.8 (1.8) 21.5 (19.4) -1.62 (0.72) 0.88 (0.25) 
7 2.29 0.045 2761.9 (30.8) 747.5 (9.5) 160.0 (1.6) 64.8 (21.5) 0.49 (0.91) -0.26 (0.30) 
8 0.57 0.044 2839.1 (28.0) 746.7 (21.7) 160.5 (3.3) 10.8 (14.3) 2.55 (0.58) -0.79 (0.16) 
9 2.29 0.042 2870.2 (31.2) 746.7 (9.1) 145.5 (1.6) 90.9 (8.7) 4.38 (0.78) -1.18 (0.22) 

10 8.86 0.033 2762.6 (14.1) 725.8 (5.2) 151.6 (0.9) 124.2 (4.1) -1.17 (0.39) 0.12 (0.16) 
11 2.67 0.031 2774.0 (36.1) 823.6 (14.0) 130.8 (2.1) -61.9 (20.1) 0.96 (0.61) 0.01 (0.16) 
12 3.52 0.029 2755.8 (28.4) 725.4 (9.4) 143.0 (1.5) 124.8 (8.5) 1.52 (0.57) -0.11 (0.20) 
13 4.10 0.028 2694.0 (27.0) 723.7 (7.9) 159.2 (1.6) -179.7 (10.6) -0.62 (0.54) 0.38 (0.17) 
14 3.33 0.028 2888.4 (26.3) 747.4 (7.7) 149.9 (1.5) -65.9 (11.3) -3.17 (0.63) 0.87 (0.19) 
15 4.38 0.027 2791.3 (24.3) 721.7 (6.9) 144.1 (1.5) -24.1 (8.2) 4.05 (0.57) -1.28 (0.19) 
16 8.57 0.026 2745.4 (15.2) 718.4 (5.8) 151.9 (1.0) -47.3 (6.9) -0.68 (0.37) -0.16 (0.14) 
17 1.05 0.025 2964.0 (51.3) 760.0 (13.5) 147.6 (3.7) -100.3 (30.9) 2.92 (1.07) -0.37 (0.32) 
18 5.43 0.024 2729.7 (18.3) 734.0 (6.5) 147.5 (1.4) -125.2 (9.7) -1.31 (0.38) 0.64 (0.17) 
19 4.19 0.023 2707.7 (21.7) 745.0 (7.2) 142.5 (1.4) 14.5 (7.8) 0.24 (0.51) -0.53 (0.17) 
20 2.00 0.019 2682.5 (44.3) 733.3 (11.2) 149.6 (2.5) 53.1 (17.0) -3.29 (0.52) 1.00 (0.20) 
21 4.48 0.018 2698.8 (33.4) 782.1 (8.5) 135.9 (1.2) -97.8 (13.1) 0.56 (0.56) 0.14 (0.17) 
22 8.00 0.018 2815.1 (17.5) 754.0 (5.8) 135.2 (1.1) -108.1 (9.2) 3.10 (0.46) -0.56 (0.12) 
23 4.57 0.011 2795.9 (23.6) 774.2 (7.1) 133.8 (1.3) -9.9 (6.6) -3.39 (0.50) 0.48 (0.15) 
24 2.57 0.007 2888.3 (31.9) 744.4 (7.6) 143.8 (1.7) -133.5 (16.6) -2.61 (0.58) 0.77 (0.18) 
25 2.67 0.007 2749.5 (29.5) 731.4 (9.8) 145.7 (1.5) 35.7 (5.9) -0.70 (0.68) 0.26 (0.23) 
26 3.71 0.006 2763.0 (24.9) 787.2 (8.2) 132.5 (1.8) 15.2 (7.8) -0.50 (0.54) -0.36 (0.15) 
27 4.76 0.005 2851.8 (24.5) 734.0 (6.4) 116.8 (2.5) 2.9 (9.4) 0.38 (0.58) -0.22 (0.17) 
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Table 4.2 summarizes the clusters along with their optimized weights and selected structural 

properties based on cluster averages. The different clusters are primarily distinguished by different 

degrees of twisting of the arms and bending. Bending angles range from 116.8o (for the most bent 

cluster 27) to 163.2o (for the least bent cluster 3). The most strongly bent structures tend to have 

the lowest weights and as they do not seem to fit well into reported bending angles of 162.9 ͦ±08.5 

for the C. crescentus cell shape [246], they are either rare outliers or modeling artifacts. The 

bending directions with respect to the two arms also vary in different clusters. 12 clusters show 

one direction, while others are bent in the opposite direction. Clusters with negative bending 

direction angles tend to bend towards the nucleoid arm which holds high-index loci, in contrast, 

the positive bending direction results in clusters with bending towards the low-index loci arm.  In 

terms of the twisting patterns of the arms, all clusters seem to have partial twisting of arms around 

each other as observed previously [214].  

We further quantified the degree of twisting by calculating the average twisting of one arm 

around the other and the number of crossings of the arms (Table 4.2) to understand differences 

between clusters. Positive twist values correspond to right-handed twisting and negative values 

indicate left-handed twisting. Both directions are present in the models. Although the overall 

twisting angles sum up to values near 0ᵒ, the twist angles fluctuate between -20ᵒ – 20ᵒ along the 

nucleoid axis with different patterns in different clusters (Figure 4.18, SI).   Right-handed twisting 

is more dominant at the poles for all clusters, while there is more variation in the twisting pattern 

near the centers of the nucleoid. The number of arm-crossings also differs among the clusters. 

Some clusters (1 and 11) show, on average, less arm-crossing values indicating that the arms prefer 

to remain on different sides of the nucleotide without crossing in these structures. On the other 

hand, clusters 9 and 15 have larger twisting and crossing values, therefore these clusters tend to 
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have their arms more extensively intertwined. Although the clusters differ in terms of bending and 

arm-twisting patterns, they all have similar medial axis lengths (see SI for the medial axis 

definition) and widths, consistent with the reported cell size dimensions of C. crescentus [246] as 

discussed in the previous section (Table 4.2).  

As described in the SI, we generated models with different branch lengths and number of 

microdomains. Interestingly, each cluster contains a mixture of different internal topologies in 

terms of the branch length and the number of microdomains (Table 4.3, SI). This suggests that the 

overall structure in our models is not sensitive to the detailed topology of the DNA. An exponential 

distribution of microdomain sizes in E. coli chromosome was reported by Postow et al. [15]. A 

comparison of that data with the microdomain size distributions in our models is shown in Figure 

S19. Generally, the distributions are similar and the exponential distribution is reproduced in our 

models. However, our models have overall smaller microdomains and lack the very large 

microdomain sizes (50 – 60 kb) seen in E. coli. Additionally, the total lengths of the branch 

segments in a microdomain were also reported for plasmids at ~ 7 kb size by Boles et al. [17]. The 

total length of the branch segments in the microdomains with similar sizes from our models are in 

good agreement with the reported branch lengths except for the smallest number of microdomains 

(Figure S19). 

An ensemble of nucleoid models with different structures as reported here would be expected 

based on cell-to-cell variations. However, nucleoid structures are known to be highly dynamic. 

For example, studies on E. coli nucleoid dynamics in living cells have shown the possibility of 

global and local nucleoid dynamics during a cell-cycle [198, 255]. Therefore, it is an interesting 

question that to what extent the different conformations for the C. crescentus nucleoid are 

interconvertible without encountering significant topological barriers that could not be overcome 
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without unwinding and expanding the nucleoid structures. We carried out targeted MD simulations 

between all pairs of representative cluster structures to test which interconversions are likely 

feasible based on simple energetic criteria (see SI). We find that many structures appear to be in 

fact interconvertible, at least at the overall topological level (see Figure 4.6B). There are enough 

pair-wise connections for all of the structures to be connected either directly or indirectly via 

intermediates. Some structures stand out as central hub structures with a high number of 

connections. It appears, however, that the number of connections is not strongly correlated with 

the cluster weights which may suggest that many of the hub structures are less stable intermediates.  

While the simulations do not provide meaningful insight into relative energetics or kinetics 

due to the biased and coarse-grained nature of the targeted MD simulations, the general conclusion 

is that in addition to cell-to-cell variability, the nucleoid structures could be dynamically sampling 

a wide variety of structures within a single cell. A better understanding of nucleoid dynamics is 

clearly an area that would benefit from further studies, both experimentally and via simulations.  

Finally, we analyzed our models with respect to macrodomain formation. We previously 

showed that the investigation of the average contact map revealed 21 CIDs (Fig. 4.3) which is in 

agreement with the number of CIDs identified by Hi-C experiment  [211]. To test if the same 

conclusion can be achieved when hierarchical clustering of the CG beads is performed based on 

pairwise distances. Similarly, the results show a varying number of macrodomains in the range of 

16 to 34 depending on the cluster (Table 4.3, SI) and macrodomains consisting typically of 100-

350 kb.  As an example, the macrodomains of cluster 1 are shown in Figure 4.8. 
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Figure 4. 8 Macrodomains based on hierarchical clustering for cluster 18. 

4.4.3 Genome-structure mappings 
	
Our models of the C. crescentus nucleoid are of sufficiently high-resolution to directly map the 

genetic sequence onto the 3D structure. This allows an investigation into possible correlations 

between the DNA structure and the genome sequence that it represents. In order to facilitate the 

analysis of projections onto variable 3D structures, we will primarily discuss projections of 

sequence features onto the long axis of the nucleoid models. All of the results were further 

averaged over the entire ensemble of models taking into account the weights of the clusters that 

different models belong to. 

We began by analyzing the spatial locations of basic sequence features. The distribution of 

AT- and GC-rich sections is shown in Figure 4.9 in comparison with the positions of all base pairs 

in the model. The distributions of AT-rich sites are significantly different from the distribution of 

all base pairs with enrichment in the central region towards the origin of replication (Cori) and 
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depletion opposite Cori but no preference was found for GC-rich sites. Most NAPs are known to 

bind to AT-rich sites[217], therefore an enrichment of AT-rich sites from the center to Cori may 

imply enhanced binding of NAPs in that region. Integration host factor (IHF), another NAP, is 

also reported to assist in maintaining a compact genome by introducing U-turns to DNA [217]. 

We find a statistically significant preference for binding near the center of the nucleoid (Figure 

4.9B). Many of our models are bent and such bending is primarily facilitated by kinking in the 

central region. Therefore, it could be that IHF is involved in stabilizing a bent nucleoid structure 

to better fit into the curved bacterial envelope of C. crescentus. If this hypothesis is correct, we 

would expect straightening of the DNA when the IHF gene is disabled.  
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Figure 4. 9 Projections of genomic sequence features onto the 3D nucleoid structures.  (A) 
Sites with least 70% is AT-sites (red) or GC-sites (blue) within a 20-bp window compared with 
the positions of all base pairs (black), (B) IHF-binding sites (red), (C) Promoter sites (red). (D) 
Radial positions of the promoter (red) and all (black) sites in the models from the nucleoid center 
(black) and the distribution of bound-RNAP in E. coli nucleoid short axis reproduced by digitizing 
the figure 4A-ii in the article from Stracy et al. [244] (blue). In order to compare the E. coli data 
with our projections, the relative x-axis values given in the experimental results were multiplied 
by half the C. crescentus width (400 nm) to obtain comparable distributions, and the curve was 
normalized again to keep the area under the curve 1. Gray shaded areas in A, B, and C indicate 
standard deviations obtained from distributions for the same number of loci that were randomly 
selected 200 times. The shaded area in D indicates the standard deviations and all the error bars 
indicate the standard errors based on the ensemble averages. 

Promoter sites show only a slight preference for the middle part of the nucleoid along the 

longest axis (Figure 4.9C). Recently, the distribution of RNAP in E. coli nucleoid showed that 

RNAPs that are specifically bound to DNA tend to stay closer to the edge of the nucleoid [244]. 

The positions of the bound RNAPs on the nucleoid were later used in the E. coli nucleoid modeling 

and the generated 3D models reproduced the experimental distribution [242]. Here, we also 
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analyzed the radial distributions of the promoters along the medial axis of the models (see SI) in 

order to compare with the bound RNAP distribution found for E. coli [244] (Figure 4.9D). We 

note that in our modeling protocol we did not impose the RNAP distribution as a constraint. The 

promoter distribution is quite similar and a slight depression in the bound-RNAP distribution in 

the center relative to the distribution of nucleotides (see Figure 4.5A) was also observed for the 

promoter distribution of our models. These results suggest that promoters might be pre-arranged 

to reside on the outside of the nucleoid to facilitate transcription. However, a similar distribution 

was found for the radial distribution of all beads which suggests that there is not a clear special 

pre-arrangement of promoters that would favor positions on the ‘outside’ of the chromosome 

structure. 

A study by Fang et al. analyzed groups of genes in C. crescentus that are co-expressed [256]. 

76 different gene modules were clustered according to their expression profiles [256]. In order to 

test whether co-expression correlates with spatial co-localization, we mapped the beginning of the 

operon for the corresponding genes in each module onto our models and calculated spatial 

proximity from the average pair-wise distances of all genes in a given module. We note that we 

only included the genes with unique operons for each module in the analysis. The same analysis 

was also performed considering genomic distances rather than spatial distances. The resulting z-

scores for the modules for which genomic separations of operons are not different than the genomic 

separations of randomly selected ones (-1<z-score<1) are shown in Figure 4.10A. Out of total 43 

modules, z-scores of 3 modules are skewed towards negative values indicating that a subset (about 

7%) of the modules of co-expressed genes is also co-localized. Additionally, in order to avoid any 

linear sequence effects, we also analyzed only the gene-pairs that are at least 500 kb apart in 

genomic sequence and we found that the percentage of the modules that have negative z-scores is 
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increased to ~20 %. However, we also observed that a similar fraction of co-expressed gene 

modules resulted in positive z-scores. Overall, the results show that although the genes that are co-

expressed seem to have some non-random distributions, a strong tendency for co-expressed gene 

pairs to be spatially closer was not found. Z-scores of the models are listed in Supplementary Table 

4.4. While co-expression is expected to involve the regulatory elements at the beginning of 

operons, we also examined whether the observed co-localization remains valid if we analyze the 

positions of the end of each gene in a given module. Figure 4.10B shows that there is no significant 

difference to the analysis of the beginning of the operon for each gene. 

 

Figure 4. 10 Correlation between co-localized and co-expressed genes. (A) Z-scores for each 
module of intra-gene distances for co-expressed genes vs. random genes for the end of genes (red) 
or the beginning of the corresponding operons (blue). (B) Same plot as in (A) but only for gene or 
operon pairs that are separated at least by 500 kb in the genomic sequence. 

	
To further examine a possible relation between gene co-localization and protein product co-

localization, we compared with another experimental study on C. crescentus where the localization 

of ~300 proteins was analyzed [257]. We mapped the corresponding genes according to their 

protein product localization onto our models. We found weak evidence that genes whose products 

are near the poles may be located closer to Cori, on one end of the structure (Figure 4.11), but we 

could not correlate proteins localized in the center of the cell with an enhanced localization of their 
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genes in the center of the nucleoid (Figure 4.11). These results are again consistent with the 

findings from E. coli chromosome models where no localization have been found for the genes of 

which protein products are co-localized [242]. While this does not contradict the idea that proteins 

are initially synthesized close to where the gene is located, it suggests that the memory of the 

synthesis site is largely lost due to protein diffusion and/or other cellular transport processes in the 

experimental study.  

 

Figure 4. 11 Correlation between gene co-localization and protein product co-localization. 
Distributions of the genes of the proteins which are experimentally found to be at central (A) and 
polar (B) locations [257]. Central genes include Midband and Central Focus genes whereas polar 
genes correspond to polar and bipolar genes in the experimental analysis [257]. Gray areas indicate 
the standard deviations as calculated in Figure 8. The error bars indicate the standard errors based 
on the ensemble averages. 

 
Finally, we analyzed the spatial organization of the genes as a function of their cellular 

functions to test the hypothesis that the localization of certain genes on the nucleoid may be 

correlated to where they are needed within the cell. Groups of functionally related genes that were 

distributed significantly different from a random distribution are shown in Figure 4.12. Genes for 

regulatory functions, and proteins with unknown functions (‘hypothetical proteins’) were found to 

localize in the middle of the nucleoid. In contrast, translation, metabolism and replication genes 

appear to have a tendency to localize near the poles of the nucleoid while transcription genes tend 
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to be clustered around the Cori region. Genes involved in cell division are both near the center and 

near Cori. One can rationalize why replication genes would be near Cori and why cell division 

genes are near the center since Fts genes form rings attached to the membrane to constrict the cell 

during cell division and parA/parB accumulate near the poles before cell division in C. crescentus 

swarmer cells [258-261]. The preferential localization of metabolic genes opposite Cori could 

contribute to enhanced metabolic efficiency by bringing proteins involved in metabolic cascades 

closer together. Based on our data, we generated a diagram in Figure 4.12B to summarize relative 

preferences for genes with different functions along the nucleoid. We assume that the resulting 

protein products would also be enhanced or suppressed accordingly given that transcription and 

translation is local to a given gene location and that diffusion in crowded environments is relatively 

slow [262]. In general, our findings based solely on the distribution of genes on the nucleoid 

structure are consistent with findings for E. coli where a special organization of genes with similar 

biological pathways was found [224] and also with the study by Junier et al. that found a 

correlation between co-localization of genes with similar transcriptional regulations and the 3D 

structure of the chromosome [225]. However, it is clear that further experimental validation is 

necessary to fully understand a possible correlation between gene location on the nucleoid and its 

function. Experimentally, this could be accomplished for example by analyzing phenotypes for 

bacteria with shuffled gene distributions.  

In order to ensure that the localizations of genomic elements observed in our models are really 

an effect of the 3D organization of the chromosome rather than the relative locations of genomic 

features in linear sequence, we also checked their linear sequence localization. In general, it is 

difficult to distinguish specific patterns in the distributions of the gene loci along the linear 

sequences. (Figures 4.20 – 4.22). 
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Figure 4. 12 Projections of functionally related genes onto the 3D nucleoid structures. (A) 
Localization of functionally related genes compared to the distribution of all the genes (black) with 
the standard deviations in gray as calculated in Figure 8. The error bars indicate the standard errors 
based on the ensemble averages. (B) Schematic representation for the proposed functional 
localization of genes in C. crescentus. Colors are as in (A). 

 
We repeated the mapping analysis for the central hub clusters in Figure 4.7B (clusters 2, 7, 8, 

9, 12, 16, 17, 18, and 21) as well as all of the individual clusters to see if there is any difference in 

the localization of the genomic elements by nucleoid structure and/or connectivity. However, we 

did not find significantly different results from the results for the overall ensemble (Figure 4.23 – 

4.25, SI). This suggests that despite differences in the nucleoid structure, the overall genome 

localization is largely preserved. 

 

4.5 Discussion 
	
In this study, we developed an advanced multi-scale modeling method that is based on data 

extracted from 3C-based experiments for generating an ensemble of 3D structures of a bacterial 

chromosome at high-resolution.  The key idea is to use information about	the	plectonemic and 
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supercoiled organization of bacterial chromosome in combination with the specific experimental 

restraints that allowed us to generate higher-resolution models compared to models that only use 

the experimental data. This strategy is similar to the refinement of proteins via NMR where 

intermediate resolution restraints from the experiment are combined with the knowledge that all 

proteins are polypeptide chains with certain limited topologies to generate atomistic models. We 

applied this approach to the C. crescentus chromosome where extensive data sets from Hi-C 

experiments are available [211]. Previously, low-resolution models at 13-kb and 434-bp were 

constructed for C. crescentus chromosome using the 5C [214] and Hi-C [211] experimental data, 

respectively. The 434-bp models generated by Le et al. [211] have been the starting point for 

understanding the organization of genomic DNA based on the Hi-C based experimental data. Here, 

we further extend this work by developing models at higher resolution that includes DNA 

supercoiling. We are primarily discussing models with 15-bp resolution, slightly more than one 

helical turn, but because the DNA structure is fairly stiff on such short length scales, we were also 

able to generate base-pair resolution models with a reasonable degree of accuracy to the extent 

that the 15-bp resolution model is accurate. 

Another important aspect of our modeling involves the application of experimental restraints 

by considering the population-based nature of 3C-based experiments. In the first step of modeling, 

we used soft distance restraints to bring a random polymer model to an average possible structure 

from where it can deviate to other alternative structures. After the initial generation of plectonemic 

models and the reconstruction of 15 bp CG models, all the simulations were performed without 

applying any restraints which allowed models to have fluctuations in their local topologies. Further 

reweighting of the generated models with significant structural variability enabled obtaining an 

overall ensemble of chromosome structures that possibly reflects the possible cell-to-cell structural 



 115 

variability observed in 3C-based experiments. Our modeling protocol resulted in 27 different 

model clusters with different weights. We found that the average distance map of the reweighted 

ensemble is in very good agreement with the distance map derived from the experiment, on the 

other hand, individual clusters do not show that much consistency indicating that we were able to 

generate an ensemble that contains structural variability but also is compatible to the experimental 

distances in average. In this aspect, our modeling protocol which resulted in structurally variable 

conformations is different than previous studies on C. crescentus chromosome which focused more 

on generating a single consensus chromosome structure with small variations [211, 214]. 

Investigation of the physical properties of the chromosome models showed that our models are 

compact enough to fit within the cell envelope of C. crescentus but at the same time they are porous 

enough for proteins as large as RNAPs and ribosome subunits to penetrate and diffuse through the 

nucleoid as previously reported [244, 249, 251]. In addition, we explored if the models are 

compatible with the experimental data reported for C. crescentus that was not used while building 

the models [245]. The distances calculated from the models showed agreement with the 

experimental distances for the given DNA segment pairs but with some deviations for distances 

larger than ~1000 nm. We argued that this deviation might result from the fact that the Hi-C 

experiment were performed on cells at different cell phases [211] whereas FISH data was collected 

only from swarmer cells that were stopped from cell growth [200, 245]. However, if we scale our 

models and reanalyze their compatibility to the FISH distances showed that the scaled models still 

agree with the experimental data and preserve their global topologies. This suggests that there is 

significant room for the chromosome to expand and shrink as the cell size varies during the cell 

cycle.   
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Our 3D models are similar to previous shape outlines for the C. crescentus genome derived 

based on the 5C data [214] but we also see significant differences in topology. We found that there 

is different degree of arm-twisting and bending in different clusters. Some of the structures exhibit 

extreme bending that is not fully compatible with previously reported data for C. crescentus [246]. 

These models may be artifacts of our modeling procedure, however as the modeling suggests 

relatively low weights, these structures could be rare outliers that are difficult to detect 

experimentally if they occurred.  

We found significant structural variability in our ensemble. This is expected and interpreted 

generally as cell-to-cell variation of chromosome structure. However, our analysis suggests that 

different structures may interconvert to a significant degree within the same cell. In fact, it appears 

that all of the clusters we observe are inter-convertible to each other either directly or through 

intermediate structures. This is an intriguing finding, although such remodeling of chromosome 

structures would require cooperation and activity by NAPs which was not considered here. It is 

clear that there is much room for further studies and the nucleoid structures presented here are an 

ideal starting point to further examine nucleoid dynamics via simulations. 

The high-resolution models enabled mapping the genomic sequence onto the 3D structure. 

This allowed us to analyze the distribution of generic sequence elements as well as specific genes. 

We found non-random distributions of AT-rich sequences and other NAP-binding motifs that hint 

at the role of NAPs in stabilizing the nucleoid structure. We also observed an apparent spatial 

organization of genes involved in certain functions and we hope that these results will further 

motivate new research. Experimental tests for a proposed non-random distribution of genes could 

involve gene or operon randomizations with the hypothesis that randomly distributed genes could 

affect metabolic efficiency and/or regulatory processes. 
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High-resolution nucleoid models were also recently generated by Hacker et al. for the E. coli 

chromosome [242]. They generated chromosome models at one-nucleotide resolution for the first 

time. Here we apply similar approach to generate C. crescentus chromosome initially at 15-bp 

resolution but then extended the resolution to the one-base pair level. One major difference 

between the modeling protocols by Hacker et al. and us is that our models rely primarily on Hi-C 

based contacts, which we took into account via an ensemble approach that considers the nature of 

the measured crosslinking contacts. In the work by Hacker et al., the modeling protocol is guided 

by experimentally found 2D radial distributions of RNAP to generate models that reproduce these 

experimental distributions [244]. This approach would be expected to give nucleoid models that 

are physically realistic, but since RNAP radial distributions are projected onto 2D, the specific 

positions of the genomic loci in 3D space might not be as well defined as there were no constraints 

guiding those positions, or their relative distances, in the modeling protocol. On the other hand, E. 

coli chromosome models include plectoneme-free (relaxed DNA) and plectoneme-abundant 

(supercoiled DNA) regions based on the ChIP-chip data on RNAP for E. coli [243]. In our C. 

crescentus chromosome models, we did not specifically identify supercoiled-free regions. 

However, we assume that some parts may be unwound for active transcription however and is 

sufficient space for supercoils for unwinding. Because only modeled the segments lying between 

plectoneme rosettes that form the central ring of the model as single double stranded DNA strand, 

it is possible that our model is topologically less accurate. However, despite the significant 

differences in the modeling protocols, it is exciting that the overall structural and mapping analyses 

showed consistent conclusions in both C. crescentus and E. coli chromosomes.  

Our methodology is easily applicable to other bacteria as additional 3C-based data set are 

becoming available and expand the ability to study the direct connection between the 3D 
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distribution of genes and their function that should be part of a complete analysis of genotype-

phenotype relationships. 
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4.7 Supplementary Information 
	
4.7.1 Hi-C interaction frequencies and conversion to distances  
	
Normalized Hi-C interaction frequency matrices available from Le et al. [211] were first converted 

to z-scores to distinguish frequent interactions from infrequent ones. Contact frequencies that have 

high z-scores correspond to pairs which interact frequently, while low z-scores indicate infrequent 

or no interactions. To generate z-scores, the mean and the standard deviation of the frequencies 

were first calculated row-by-row from the matrix. Z-scores were then obtained for each element 

in a row by using the corresponding mean and standard deviations of the row in which that element 

resides. Z-scores were converted to spatial distances by using the calibration curve derived for the 

C. crescentus genome by Umbarger et al. [214]. This resulted in a set of distances between loci 

pairs of the genome with an effective resolution of about 10 kb.  
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4.7.2 Plectonemic Model  
	
Models for the C. crescentus chromosomal DNA were based on a hyperbranched polymer chain 

consisting of ring beads forming a central ring and branch beads extending from the central ring 

to mimic the rosette model of DNA (Figure 4.26). Each ring bead is connected to two neighbour 

ring beads and one branch bead, and each branch bead is connected to either one, two or three 

other branch beads, forming a hyperbranched structure (Figure 4.26). Each ring bead along with 

all of the attached branch beads represent one microdomain. The number of ring beads (and 

therefore microdomains) was varied between 200 and 700 as the number of microdomains in a 

bacterial genome with a 4 Mbp-size is believed to be in that range [263]. The segments between 

ring beads represent double stranded DNA and connect individual microdomains, whereas the 

segments between branch beads represent supercoiled DNA (Figure 4.26).  NAPs are presumed to 

bind at the junctions in order to assist microdomain formation and stabilize the plectonemic 

structure but such proteins were not included in the model. The length of the connectors between 

individual microdomains was set to vary around ~20 nm, following a previous polymer model of 

the C. crescentus chromosome [211] while providing sufficient space for the binding of NAPs that 

cover on average about 25-bp (~ 8.5 nm). The length of the segments between branch beads 

essentially reflects the persistence length of supercoiled DNA and was set to 40 – 100 nm in our 

models (corresponding to 270 – 670 base pairs per branch segment).   

The radii of the ring beads and the cylindrical segments between them were set to 1 nm, 

corresponding to the radius of double-stranded DNA. The radii of the branch beads, and the 

segments connecting those, depend on the geometry of supercoiled DNA. The radius of 

supercoiled DNA depends on a number of factors such as the superhelical density (σ) and salt 

concentration. The radius of the supercoiled DNA increases with reduced superhelical density 
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(smaller magnitude) as observed by electron microscopy [264] and found in theoretical 

calculations [265]. DNA extracted from cells has a superhelical density in a range of -0.03 – -0.09 

[266]. However, when considering the effect of NAPs on DNA, σ is believed to be at the lower 

end in magnitude, around -0.025 [267]. When σ was set to a small value to include the effect of 

NAPs, our plectonemic models did not fit into the known dimensions of C. crescentus cells with 

the corresponding superhelical radius. Therefore, we assumed an average value of σ	=-0.06, 

corresponding to a 5 nm supercoiled DNA radius at 0.1 M monovalent salt concentration [265]. In 

our models, we set the radius to a slightly larger value (6.5 nm) to account for proteins that may 

be bound to the DNA such as H-NS, HU or IHF which have equivalent spherical radii of about 

between 1.5 – 1.8 nm [268]. 

Bond and angle restraints: Neighbouring beads were connected via a harmonic bond potential: 

$%&'()*+%,(- = .%&'()*+%,(-× 0 − 0% 2    (4.1) 

$&3(4+%,(- = .&3(4+%,(-× 0 − 0& 2    (4.2) 

where l is the connecting segment length, lb is the equilibrium branch segment length set to 40-100 

nm (lr is the ring segment length set to 20 nm) and kbranch-bond is the force constant (and kring-bond is 

the force constant in the ring-bond potential), set to values of kbranch-bond= 0.05 kcal/mol/nm2 and 

kring-bond=1.0 kcal/mol/nm2, respectively. These values kept the deviations of the segment lengths 

to less than 10%. Deviations of 10% limit the pitch angle to fluctuate between 50ᵒ – 70ᵒ	as reported 

in previous studies [264, 269]. Furthermore, the limited segment lengths and corresponding pitch 

angle variations in the supercoiled DNA allow the reconstruction of the higher-resolution DNA 

representation assuming a fixed number of bases per segment.  

The stiffness of the chain was maintained by a one-sided harmonic angle potential that prevents 

unfavorable sharp angles between segments: 
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$'(467 = .'(467×(9 − 9:)2										<=	9 < 90°   (4.3) 

where B is the angle between successive segments between beads, B0 is the equilibrium angle set 

to 90ᵒ	and kangle is the force constant set to 0.05 kcal/mol/degrees2 to keep angles between segments 

larger than 90ᵒ.		

The chosen bond force constants set the overall energetic scale of the plectonemic model and 

the following potentials were adjusted to lead to a balanced distribution of potential energies while 

still maintaining 10% fluctuations in the segment lengths with the full potential.  

Segment overlap: To keep supercoiled DNA segments separated, a restraint potential was applied 

to beads and to the segments connecting two beads. In all-atom molecular dynamics (MD) 

simulations, the distance between two supercoiled DNA segments was observed to fluctuate  

between 2.5 – 5 nm in 0.1 M NaCl solution (the same ion concentration as considered here) [270]. 

Therefore, the closest contact between two segments was penalized with a one-sided harmonic 

function: 

$,D7&6'E = .,D7&6'E×(F − F:)2										<=	F < F:  (4.4)  

where d is the minimum distance between two beads and/or segments with d0 set to 2 nm and 

koverlap is the force constant set to 1 kcal/mol/nm2 to prevent segment-segment distances of less than 

2 nm. The minimum distance between segments was calculated as follows:  

First two lines which the segments i and j lie on were defined using parametric equations: 

G3 = H3I + K H3L − H3I = H3I + KM        (4.5) 

GN = HNI + O HNL − HNI = 	HNI + OP         (4.6) 

where Pi0 and Pj0 are the starting points and Pi1 and Pj1 are the end points (the starting points of 

segment i+1 and j+1) of segments i and j, and s and t are real numbers. These equations also define 
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the segments i and j with 0 ≤ K ≤ 1 and	0 ≤ O ≤ 1. In addition, a vector was defined between two 

points in Li and Lj: 

S K, O = G3 K − GN(O)          (4.7) 

The shortest length of the vector w gives the minimum distance between the two lines. The vector 

w is at its minimum length when it is perpendicular to both u and v vectors. Therefore, sc and tc 

values which give the minimum distance were found by satisfying two equations:  

M.S = 0               (4.8) 

P.S = 0             (4.9) 

If sc and tc were between 0 and 1, then the length of w also gave the minimum distance between 

the segments i and j. However, if any or both of the values were outside the range, then additional 

steps were taken in order to obtain new sc and tc values within 0 and 1. If sc<0 or sc>1, it was set 

to 0 or 1, respectively. Then, the following quadratic equation was used in order to find tc: 

S.S = 	 (H3I − HNI + K)M − O)P	). (H3I − HNI + K)M − O)P	)     (4.10) 

This equation is also minimized when the length of w is minimum. Hence, taking the derivative 

of Eq. (10) with respect to t and setting it to 0 gave the value for tc since sc is known. If 0 ≤ O) ≤ 1, 

these sc and tc values resulted in the minimum length of w. If not, this time tc was set to 0 or 1 and 

sc was recomputed by taking the derivative of Eq. (10) with respect to s. In case both sc and tc 

values were outside of the range, then minimum distance between the segments were calculated 

using either starting (sc=0 or tc=0) or end points (sc=1 or tc=1) of the segments depending on the 

side of the range sc and tc lie on. 

Spatial constraints: All models were confined in a sphere with a 4 µm diameter to limit sampling 

to more compact conformations. A one-sided harmonic potential was used: 

$),(U3(7V7(W = .),(U3(7V7(W×(X − X:)2										<=	X > X: (4.11) 
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where r is the distance of the bead from origin, r0 is the radius of the confined volume set to 2 µm 

and kconfinement is the force constant. kconfinement was set to 0.0001 kcal/mol/µm2 that kept all beads 

within the confinement sphere. This confinement sphere is significantly larger than the cell 

dimensions as C. crescentus cells have a length of ~2.5 – 3 µm and a width of ~0.8 µm[246]. A 

spherical confinement was used instead of cylindrical confinement since we did not want to 

presume the overall shape of the C. crescentus chromosome a priori. 

Polymer branching: The degree of branching was chosen based on an average number of  

2.94±1.2 branching points observed for 7 kb plasmids [264]. This value would correspond to 

~1700 branching points for the 4 Mb length of the C. crescentus genome. The number of total 

branch segments in our models are around ~10,000, but varying due to different numbers of 

microdomains and the length of segments between branch beads in different models. 1,700 branch 

points would correspond to a percentage of about 20% for models with ~10,000 branch beads, 

therefore, we constrained our models for around 20% of the branch beads to be three-way 

branching points.  

The degree of branching in the model was restrained via a harmonic potential; 

$%&'()*3(4 = .%&'()*3(4×(ZX[ − ZX[:)2    (4.12) 

where brp is the branching percentage, brp0 is the expected branching percentage, set to 20% and 

kbranching is the force constant which was set to 106 kcal/mol/brp2. The large force constant value 

was necessary to obtain the targeted branching percentage (Figure 4.27). The branching percentage 

was defined as; 

ZX[ = (\V%7&	,U	%&'()*	%7'-]	^3W*	_	),((7)W3,(]
(\V%7&	,U	'66	%&'()*	%7'-]

	×100  (4.13) 
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Restraints based on Hi-C contacts: Hi-C contact frequency z-scores larger than 0.75 were 

considered significant and pairs with corresponding distances of less than ~485 nm were restrained 

with a harmonic potential during the initial model generation [214]: 

` F = .*×(F − F:)2               (4.14) 

where d is the distance between the pair, d0 is the distance derived from the Hi-C contact 

frequencies and kh is the harmonic force constant set to 0.005 kcal/mol/nm2 which amounts to a 

relatively weak guiding force so that the generated models are generally consistent with the Hi-C 

derived distances but retain significant conformational heterogeneity (Figure 4.28). 

Z-scores smaller than -0.85 were also considered significant to indicate a complete lack of 

interaction [214].  Loci pairs with such z-scores were, therefore, restrained to remain apart with a 

lower-bound potential; 

G F =
					0																																<=	F ≥ F6

.6× F − F6 2											b0Kb
             (4.15)  

where dl was set to 925 nm, which is the distance beyond which interaction counts are not 

distinguishable from noise anymore. The lower-bound force constant, kl, was also set to 0.005 

kcal/mol/nm2. Using z-score thresholds to decide which contact frequencies will be used for 

restraints resulted in 17,412 harmonic and 15,631 lower-bound restraints. 

Model generation: The generation of plectonemic models was carried out by running a custom-

written program that sampled plectonemic models using a simulated annealing Monte Carlo (MC) 

algorithm. Random initial conformations were initially subjected to 2 x 106 MC steps with a move 

set that consisted of either translation of ring and branch beads (attempted 9 out of 10 steps) or the 

reconnection of branch beads to build one, two, or three connections with other branch beads 

(attempted 1 out or 10 steps). During the initial MC run, all of the potentials described above 

except the segment overlap potential were applied so that segment crossing would be possible to 
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achieve rapid equilibration. The initial temperature was set to 1,500,000 K and gradually decreased 

to 0 K by reducing the temperature 0.00001 % at each step. This cooling schedule resulted in ~85% 

initial acceptance rates. The configurations after the initial MC runs established the overall 

connectivity and were then equilibrated further with MD simulations using the CHARMM 

program package (c41a2) [142] for 5 ns with a 0.002 ps time step by applying the same potentials 

used as in the initial MC run (except for the branching potential since the overall connectivity 

could not change during MD). Further equilibration with MD was carried out to accelerate 

convergence. The temperature of the system was set to 298 K controlled by a Langevin thermostat 

with a friction coefficient of 5 ps-1. Lastly, the structures after the MD run were subjected to 

another round of 2 x 106 MC steps, in which the overlap potential was applied together with all the 

other potentials (again except the branching potential in order to maintain the established overall 

connectivity) to remove and prevent crossings of the beads and the connecting segments. In the 

second MC run, the temperature was reduced by 0.0001 % from 150,000 K to 0 K resulting in 

initial acceptance rates of ~70%. The plectonemic models converged after 1 x 106 steps in MC 

runs, and after 2 ns in the MD step. (Figure 4.29). 

The overall MC/MD/MC procedure required 24 hours of runtime to generate one model with 

8 cores on recent Intel CPUs and was repeated 25 times for each set of number of microdomains 

and branch segment lengths with different initial random conformations. Six different numbers of 

microdomains (200, 300, 400, 500, 600, and 700) and seven different branch segment lengths (40 

nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm and 100 nm) were explored. Thus 1,050 simulations were 

carried out in total resulting in 1,050 models. 
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4.7.3 15-bp coarse-grained model 
	
In this level, C. crescentus chromosomal DNA was modeled as a closed worm-like chain of 

segments with an equilibrium length of 5 nm each representing 15 base pairs and a radius of 1 nm, 

the width of double-stranded following previous studies by Chirico et al. [93], Jian et al. [94] and 

Huang et al. [271]. The total energy of the chain consists of the following five terms: 

Stretching energy was computed as: 

$]W&7W)*3(4 = 	
c
26I
	(03 − 0:)2d

3ef      (4.16)  

    

where N is the number of segments, li is the segment length, l0 is the equilibrium length of the 

segment set to 5 nm, and σ is the stretching modulus of DNA which was set to 1000 pN [272, 273]. 

Bending energy was expressed as: 

$%7(-3(4 = 	
4
2
	93

2d
3ef      (4.17) 

where N is the number of segments, θi is the angular displacement of segment i relative to segment 

i+1. g is the bending rigidity constant, set to 9.82 kBT, corresponding to 20 rigid segments per 100 

nm Kuhn length (since our segment length is 5 nm) as estimated by Frank-Kamanetskii et al. [274].  

Torsional energy was specified as: 

$W,&]3,( = 	 g
26I
	 h3,3if − h:

2d
3ef 	 	 	 	 (4.18)	  

where N is the number of segments, l0 is the equilibrium segment length set to 5 nm, h3,3if is the 

torsion angle between segments i and i+1, h: is the equilibrium torsion angle set to 0ᵒ [93]  and C 

is the torsional rigidity constant of DNA set to 43.17 kcal*nm/mol [275]. In order to calculate the 

torsion angle, a body-fixed coordinate system (fi, vi, ui) was defined for each segment and Euler 
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angles (α, β, γ) were used to describe the torsional angle between segment i and segment i+1: 

h3,3if = j3,3if + k3,3if.   

Electrostatic energy was computed according to the Debye-Hückel (DH) potential:  

$767)W&,]W'W3) = 	
Dl6I

l

mVl

nop	(+q&rs)

&rs
dV
3,N     (4.19) 

where N is the number of segments, l0 is the equilibrium segment length, t is the linear charge 

density, D is the dielectric constant of water, κ-1 is the Debye length, and rij is the distance between 

sections i and j. The linear charge density, t, and the Debye length, κ-1, were set to 6.08 e/nm and 

0.961 nm for 0.1 M salt concentration, respectively [276, 277]. Each segment is divided into m 

sections. The value of m was set to 2 in our simulations since no change in electrostatic interactions 

was observed in the simulations when m≥2 (Figure 4.30). Electrostatic interactions between DNA 

segments in our models calculated from the DH potential were also compared with the interaction 

potential of DNA segments calculated from all-atom simulations [278] and the DH potential was 

found to give comparable electrostatic interactions between DNA segments (Figure 4.30).  

Segment overlap energy was specified using a soft-core potential [279] of a modified Lennard-

Jones potential that only has a repulsive term: 

$D,6\V7+7u)6\]3,( = vw f

x f+y li
zrs
zI

{ l   (4.20) 

where v is a scaling factor between 0 and 1 (v=1 means a standard Lennard-Jones potential), w is 

the depth of the potential well, X3N is the minimum distance between segments i and j, X: is the 

distance at which the potential reaches its minimum set to 2 nm, and j is a positive constant which 

was set to 0.5. We chose v=0.8, w=0.5 kcal/mol as sufficient values to avoid passing segments 

through another during the simulations. 
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Model generation: Supercoiled CG models were constructed with a custom-written program 

where the CG beads in the higher resolution model were wrapped around the segments in the 

plectonemic model. Wrapping of the higher resolution segments was performed by taking the pitch 

angle of the supercoiled DNA into account, which is around 61.5ᵒ at a superhelical density of σ=-

0.06 [264, 265]. The exact same sequence mapping in the plectonemic models was also achieved 

in CG models by modifying pitch angles according to the observed fluctuations in the plectonemic 

segment lengths. The resulting CG models had 269,529 beads to represent the entire C. crescentus 

genome (for the 4,042,929 base pairs in the NA1000 variant). The average pitch angle from the 

CG models was found to be 62.4ᵒ with a standard deviation of 9.4ᵒ. 

We carried out Langevin dynamics simulations for our CG models by considering both 

translational and torsional dynamics at 298 K with a friction coefficient of 10 ps-1. Simulations 

were performed with the CHARMM program [142] version c41a2 which already has the equations 

for translational motion, however we had to implement the torsional motion equations by 

following the derivations in previous work [93]. Simulations were run for 200 ns with a 0.2 ps time 

step. Electrostatic and soft-core repulsive Lennard-Jones interactions were cut off at 20 nm with a 

switching function becoming effective at 25 nm and the non-bonded list was cut off at 30 nm. 

Convergence of the 15-bp CG models was achieved after 150 ns (Figure 4.29). The total time 

required to run 200 ns MD simulations for one model is ~48 hours with a single core on a modern 

Intel CPU.  

4.7.4 Base-pair resolution models 

Double-stranded DNA has a long persistence length of tens of nm. Therefore, it is possible to 

approximately reconstruct base-pair resolution from coarse-grained models. The C. crescentus 

nucleoid models are modeled at a resolution of 15 base pairs, which corresponds to a DNA segment 
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of about 5 nm length. The centripetal Catmull-Rom spline interpolation was applied to generate 

DNA at base-pair resolution along a smooth curve through the 15-bp coarse-grained beads. The 

method was tested on the DNA from crystal structures of the nucleosome core particle (see Figure 

4.31). It can be seen that the actual base pair locations (green) are closely reproduced by the spline 

interpolation (red) between the 15-bp beads (orange), although this method cannot capture local 

distortions of the DNA structure (most pronounced at the upper right corner of the structure shown 

in Supplementary Figure 4.31). The overall RMSD between the true base pair centers of mass and 

the interpolated base pairs is 2.6 Å.  

4.7.5 Model reweighting  
	
Hi-C experiments provide ensemble-averaged contact frequencies, therefore converting 

frequencies to spatial distances and using these distances to generate chromosome structure models 

is not sufficient to generate a structurally variable ensemble of structures, this method rather results 

in a single consensus model. Recently, population-based modeling efforts have been made to 

generate an ensemble of structures by applying maximum entropy principle in combination with 

minimal structural assumptions. Here, we followed an alternative approach which is a combination 

of restraint and population based modeling methods. In contrast to many restraint-based modeling 

studies, here we applied relatively weak force for the distance restraints in our modeling rather 

than rigid forces to overcome the limitation of generating single chromosome models. The 

assumption we took here is that, chromosome structures in different cells have a similar topology 

in general terms, but vary significantly in local structural organizations. Our modeling was able to 

generate an ensemble of structures that are highly variable. To further agree with the experiments, 

we reweighted our models in order to obtain an ensemble of structures that, on average, matches 

the Hi-C data but explicitly considers cell-to-cell variability. Since the degree of structural 
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variability for each contact is not available in Hi-C data, the structural variability was 

approximated by estimating standard deviations for the experimentally-derived distances. In order 

to do that, first we estimated a function for how the likelihood of crosslink formation varies by 

distance (Figure 4.32): 

 

|X}KK0<~.	[X}Z�Z<0<OÄ = 	

1 −
F× 1 − Å
ÅÇO}==f

																																																				<=	F < ÅÇO}==f	

Å −
Å× F − ÅÇO}==f
ÅÇO}==2 − ÅÇO}==f 	

														<=	ÅÇO}==f < F < ÅÇO}==2

0																																																																							<=	F > ÅÇO}==2

 

(4.21) 

where d is the distance between loci pair, cutoff1 and cutoff2 are the distance thresholds and c is a 

positive constant. Next, we approximated standard deviations for distances by using the function 

below (Figure 4.32):  

ÉO�~F�XF	Fbt<�O<}~ = 	

Ñ: +
-× cL+cI
])\W,UUL

																																																									<=	F < KÅÇO}==f	

Ñf +
-+])\W,UUL × cl+cL
])\W,UUl+])\W,UUL 	

																<=	KÅÇO}==f < F < KÅÇO}==2
Ñ2 + F − KÅÇO}==2 ×K																																					<=	F > KÅÇO}==2

 

(4.22) 

 

where d is the distance between loci pair, scutoff1 and scutoff2 are the distance thresholds, σ0,	σ1	

and	σ2	are initial standard deviations for each condition in the function and s is the scale factor.  

For each experimentally-derived distance, we assumed a distribution of distances observed in 

the population with an average which is actually the experimentally-derived distance and a 

standard deviation estimated with Eq. (22). Then, we scaled the Gaussian distribution with the 

cross-linking probability function in Eq. (21), and from obtained scaled distributions, we 
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calculated new z-scores for each distance and tried to match the z-score/distance calibration curve 

used for converting z-scores of the Hi-C scores to distances (see Conversion of Hi-C interaction 

frequencies to distance restraints section) by simultaneously optimizing the variables in those 

functions. When we set cutoff1, cutoff2, and c to 100 nm, 380 nm and 0.54 in Eq. (21), respectively, 

and set scutoff1, scutoff2, σ0,	σ1,	σ2	and s to 100 nm, 300 nm, 10 nm, 30 nm, 42 nm and 0.1 in Eq. 

(22), respectively, we were able to obtain a z-score/distance curve that is in an excellent agreement 

with the calibration curve used for converting z-scores of the Hi-C scores to distances (Figure 

4.32). We note that, 380 nm threshold for crosslinking seems large to have a formaldehyde 

crosslinking, however it is still within possible distance range when one considers the large 

proteins that are interacting with the DNA such as RNAP or SMC complexes, the maximum length 

of a 10-kb DNA fragment and its dynamic nature. Compared to previous studies which set 1 and 

0 for the contact probability below and beyond 200 nm, we here use a relatively more complex 

function where probability decreases with distance (it decreases to less than ~ 35 % probability 

beyond 200 nm). 

After the assignment of standard deviations for each experimentally-derived average distance, 

we reweighted our models in order to match the average and the estimated standard deviation for 

each distance better. In other words, we aimed to obtain an ensemble that agrees with the 

experimental data better as well as retains the structural variability between models (Figure 4.32). 

The reweighting was carried out using a MC algorithm in a custom-written program. Initial 

weights of models were set to 1, and then subjected to 100,000 MC steps. In these MC steps, 

weight of a randomly selected model was altered by adding a random value between -0.2 – 0.2 and 

the average and standard deviation of distances were recalculated. If the total deviation of the 

averages and standard deviations of the distances from the experimentally-derived averages and 
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initially estimated standard deviations is lower, then new weights of the models were accepted. 

Ten independent MC runs were carried out. The final weight of each model was then calculated 

by taking the average of the ten different weights obtained from these ten independent runs. Final 

weights of all models were normalized so that the weights sum up to 1. All the subsequent 

structural and mapping analyses were carried out by taking the weights of the models into 

consideration. 

4.7.6 Generation of contact maps 
	
To generate contact maps, the segments in a model were first divided into 10-kb bins. This resulted 

in 405 bins, each having 666 segments. Next, the distances were calculated between all possible 

segment pairs in a bin (666 x 666) and the minimum distance was used in the crosslinking 

probability function described above to calculate the crosslinking probability for the given pair of 

bins. To generate distance contact maps, for each bin, the center of mass of the 666 segments were 

calculated. The center of mass points for each bin were used to calculate the distance between each 

pair of bins, resulting in 164,025 (405x405) distances for each model. The distances between each 

pair were then averaged over the models and those average distances were used to generate the 

contact map. Distances between the bins that are above 925 nm were not taken into account during 

averaging to match how the contact maps were generated based on the experimental data. 

 

4.7.7 Identification of CIDs 

The identification of chromosome interacting domains (CIDs) was carried out by following the 

same approach as in the study by Le et al. [211]. We investigated the crosslinking probabilities of 

a given bin with bins at its left- and right- hand side up to 100 kb and compared the crosslinking 

probability distributions of left- and hand-side by calculating t-values which is referred as 
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“directional preference” in the main text. Negative preference means that a locus is interacting 

with bins to the left (and positive preference corresponds to right-hand side preference). When 

there is a sharp change in the preference for a locus (from negative to positive or vice versa), a 

CID boundary is identified.  

 

4.7.8 Structural Analyses 
	
Structures were clustered with a K-means algorithm using a radius of 30 nm using the Multiscale 

Modeling Tools for Structural Biology (MMTSB) [145]. Interconvertibility was tested by using 

the TREK module [280] in CHARMM [142] which constructs smooth minimum energy paths 

between given start and end points. We used the same CG force field as for the final MD-based 

refinement step. Paths were generated between all pairs of clusters by using representative 

structures closest to the respective cluster centers. If a path was found between two states where 

the energy along the path did not exceed the energies of the initial or final states by more than 10 

kcal/mol, those two states were considered interconvertible. Alternative thresholds of 2.5, 5 or 7.5 

kcal/mol were also explored as well as shown in Figure 4.33 and no significant change was 

observed in the interconversion map of the clusters. 

Cavity analysis was performed using Voss Volume Voxelator (3V) web server 

(http://3vee.molmovdb.org) [281] using solvent extractor option with a 20 nm outer probe radius. 

Hydrophobic radii of the macromolecules of interest were used as inner probe radius.  

Macrodomain analysis was performed by clustering bp sites at 150-bp resolution for the 

representative models for each clusters using MMTSB [145] for hierarchical clustering with Xu’s 

optimal clustering criterion [282] while generating sub-clusters only for clusters larger than 420 

kb which is the largest reported macrodomain by Le et al. [211]. 
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The overall shape of the models was analyzed as follows: First, all models were aligned to 

their principal axes so that the longest principal axis coincides with the x-axis, second longest 

principal axis coincides with the y-axis and the shortest principal axis corresponds to the z-axis. 

Next, the models were divided into 100 nm slices in the longest axis (x-axis) direction as shown 

in Figure 4.34. The center of masses of the segments were then calculated for each individual slice, 

and these center of mass points were joined with lines as shown in Figure 4.34. The total length of 

the lines gave the medial axis length of the models reported in Table 4.2. The widths of the models 

were estimated by finding the width around the medial line (red arrow in S Figure 4.34B) of each 

new slice defined by the lines passing through the two-consecutive center of mass points (black 

dashed lines in Figure 4.34B) where 95% of the segments were found inside. Bending angles of 

the models were found by calculating the angle between the vectors formed by the initial and 

midpoint of the medial axis and the midpoint and the end point of the medial axis (Figure 4.34). 

Bending directions were also calculated from those initial, mid and end points of the medial axis. 

First, a vector from the midpoint to the end point of the medial axis in the model (Ü| vector in 

Figure 4.34D), and another vector from the midpoint to the initial point of the axis were defined 

(Üá vector in Figure 4.34D). Next, all models were aligned so that models’ Ü| vectors as shown 

in Figure 4.34D fell onto the x-axis. After alignment, Üá vector of each model then gave the 

bending direction in yz plane.  

The medial axes constructed for the models were also used in calculating the radial distribution 

of the promoters. Radial distances were calculated as follows: First the point on the medial axis 

that is at a shortest distance from the promoter site was found. Then the projections of the promoter 

site and the point on the axis onto the shortest principal axis of the model were compared in order 

to figure out the side the promoter site resides relative to the axis. If the position of the promoter 
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site on the shortest axis is less positive than the point’s position, then we assigned a negative sign 

to the calculated distance.  

In order to calculate the degree of twisting of the chromosomal arms in the structures, we first 

reduced the resolution of the models to 50-kb which resulted in a ring with 81 segments that shows 

the overall twisting pattern of the chromosome (Figure 4.35). Then each bead in one arm was 

paired up with a bead in the opposite arm based on their indices (bead 1 – bead 81, bead 2 – bead 

80, bead 3 – bead 79 and so on.). This step resulted in 40 bead pairs. The dihedral angles between 

each consecutive bead pairs gave the arm-twisting angles. The arm-crossing values were calculated 

from the 50-kb models based on the previously reported method by Klenin et al. (Method 2a in 

the reference article) [283]. 

4.7.9 Sequence mapping onto 3D models 
	
The C. crescentus NA1000 genome sequence was obtained from the National Center 

Biotechnology Information (NCBI) website (Reference Sequence: NC_011916.1) and mapped 

onto the structures. AT/GC rich sites were defined as regions in the sequence where at least 70% 

of the base pairs is AT or GC within a 20-bp window using a custom-written program. Promoter 

sites in the sequence were obtained from the PromBase database [284]. Operons were found with 

DOOR[285]. IHF-binding motifs ((A/T)ATCAANNNNTT(A/G)) were obtained from a previous 

study [217]. Gene annotations and classifications of the genes were obtained from the Microbial 

Genome Database (MBGD) [286]. Gene annotations for the proteins which are found to be central 

and polar were obtained from previous work [257]. 

The statistical significance of projected gene distributions was estimated by comparing the 

distributions of selected loci with the variation in the distribution for the same number of loci that 

were selected randomly multiple times (200 times for projections and 10,000 times for the co-
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expression/co-localization analysis). Since all models were reoriented so that the longest principal 

axis coincides with the x-axis, the positions of the segments of interest on the longest axis of the 

models were obtained from the x coordinates for the beads contained by the segments.  

4.7.10 Graphics and visualization 
	
Graphs were generated using Origin (OriginLab, Northampton, MA) and MATLAB R2016b (The 

MathWorks, Inc., Natick, MA). Network maps were generated with R (R Core Team, R: A 

language and environment for statistical computing, R Foundation for Statistical Computing, 

Vienna, Austria. URL http://www.R-project.org/). Models were visualized with PyMOL (The 

PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC) and animations were 

generated using VMD [147]. 

	
 
Figure 4. 13 Base-pair resolution models. 

 (A) 3D structure of C. crescentus chromosome at base-pair resolution. (B) Projections of beads in 
the bp-resolution models onto their longest principal axis (black), the second principal axis (blue), 
the shortest principal axis (red). 
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Figure 4. 14 Contact maps between loci for C. crescentus genome. 

(A) Distance map generated based on spatial distances derived from Hi-C data by Le et al. (1) by 
using the calibration curve derived by Umbarger et al. (2) (B) Average distance map from the 
weighted ensemble of models (Pearson’s correlation coefficient: 0.98). (C) Average distance map 
for the scaled models (Pearson’s correlation coefficient: 0.96). 
 

 

Figure 4. 15 Dimensions of the scaled models. 

(A) Projections of beads in the models onto their longest principal axis (black), second longest 
axis (blue), and shortest axis (red). (B) Width of the models vs. the positions along the longest 
principal axis, d, normalized to the length of the models along the x-axis, l. Here, 1 represents the 
pole that contains the replication of origin while 0 represents the opposite pole. (C) Bending angle 
distribution of the models. Shaded area indicates standard deviations. Error bars indicate standard 
errors.  
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Figure 4. 16 Cavities in the scaled models. 

Cavities that could be occupied by (A) RNAP and (B) ribosomes. 

 
 
Figure 4. 17 Average distance maps for each 27 individual clusters. 
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Figure 4. 18 Twist angles of the arms for all 27 clusters along the longest principal axis, p, 
normalized to the length of the models along the x-axis, l. 

Here, 1 represents the pole that contains the replication of origin (red) while 0 represents the 
opposite pole (blue). Gray shadows and error bars indicate the standard deviations and standard 
errors, respectively.  
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Figure 4. 19 Microdomain and branch length properties of the models. 

(A) Microdomain size of the models in Cluster 1 and 27 (left panel), with different numbers of 
microdomains (right panel) in comparison with the domain sizes in E. coli chromosome measured 
by electron microscopy and transcriptional microarray experiments (39). (B) Average branch 
lengths of microdomains in the models with different number of microdomains. Upper and lower 
horizontal lines represent average branch lengths measured in 7-kb 3.5-kb plasmids, respectively 
(4). 
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Figure 4. 20 Circular chromosome maps for genomic sequence features. 

 (A) AT-sites, (B) IHF-binding sites, (C) Promoter sites.  
 
 

 

Figure 4. 21 Circular chromosome maps for genes for which protein products were found 
to be (A) central and (B) polar in previous work [256].  
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Figure 4. 22 Circular chromosome maps for functionally related genes. 

(A) Cell division, (B) metabolism, (C) regulatory functions, (D) DNA replication, (E) 
transcription, (F) translation, (G) hypothetical genes.  
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Figure 4. 23 Projections of genomic sequence features onto the 3D nucleoid structures for 
the average of central hub clusters (solid red), and cluster 18 only (gray). 

Positions of all base pairs are shown with solid black line. (A) Sites with least 70% in AT-sites 
within a 20-bp window. (B) IHF-binding sites. (C) Promoter sites. (D) Distributions of the genes 
of the proteins which are experimentally found to be central and (E) polar in previous work (36). 
Gray shadows indicate standard deviations obtained from distributions for the same number of loci 
that were randomly selected 200 times. Error bars indicate the standard errors of the ensemble 
averages.  
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Figure 4. 24 Comparison of the correlation between co-localized and co-expressed genes for 
the average of all clusters (solid red or blue), average of central clusters (solid gray), cluster 
18 only (dashed gray). 

(A) Z-score distribution of intra-gene distances for co-expressed genes vs. the beginning of the 
corresponding operons (blue). (B) Z-score distribution of intra-gene distances for co-expressed 
genes vs. random genes for the end of genes (red).  
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Figure 4. 25 Projections of functionally related genes onto the 3D nucleoid structures for the 
average of central clusters (solid colors), and cluster 18 only (gray). 

Positions of all base pairs are shown with solid black line. Gray shadows indicate standard 
deviations obtained from distributions for the same number of loci that were randomly selected 
200 times. Error bars indicate the standard errors of the ensemble averages.  
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Figure 4. 26 Plectonemic and supercoiled model of bacterial chromosomal DNA. 

(A) Plectonemic model with ring beads (gray) and branch beads (green). (B) Supercoiled model 
built on the plectonemic model. Each segment in the supercoiled model represents a 15-bp stretch 
of DNA (orange segments). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 27 Branching percentage distribution of plectonemic models. 
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Figure 4. 28 Standard deviations of average distances of plectonemic models for each 
experimental restraint distances.  
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Figure 4. 29 Convergence of energies of the models during MC and MD runs. 

Convergence of the models in terms of (A) Energy in the first MC run. (B) Energy in the first MD 
run. (C) Energy in the second MC run. (D) CG force-field energy for double stranded DNA in the 
last MD refinement run.  
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Figure 4. 30 Debye-Hückel potential parameters. 

 (A) Comparison of the electrostatic interaction potentials with different number of point charges 
per segment (m). Results here are calculated using the Debye-Hückel approximation in 0.1 M salt 
concentration. (B) Comparison of pairwise PMFs from Debye Hückel calculations in 0.1 M and 
0.2 M salt concentrations and all-atom calculations in 0.2 M salt concentration by Yoo et al. (22). 
The potential by Yoo et al. was normalized to match the 0.2 M DH potential at 40 Å. 
 
 

 

 

 

 

 

 

 

 
Figure 4. 31 DNA from the nucleosome core particle structure (PDB: 1EQZ). 

The atomistic structure is shown in line representation colored by atom types. A 1-bp and 15-bp 
coarse-grained model based on the centers of mass of base pairs is shown in green and orange, 
respectively. A reconstructed 1-bp model using the 15-bp CG model as input is shown in red. 
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Figure 4. 32 Reweighting parameters and results. 

(A) Estimated probability of crosslinking as a function of pair distance. (B) Estimated standard 
deviations of distances. (C) Calibration curve derived from experimental data (black) and from 
estimated standard deviations in (B) (red). (D) Average distances from models before (red) and 
after (blue) reweighting. (E) Standard deviations from models before (red) and after (blue) 
reweighting.  
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Figure 4. 33 Possible interconversions between clusters based on targeted molecular 
dynamics with (A) 2.5 kcal/mol, (B) 5 kcal/mol and (C) 7.5 kcal/mol thresholds.  
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Figure 4. 34 Definition of model shape parameters. 

(A) The model was divided into slices based on the x coordinates of the beads in the model. Blue 
points are the center of masses of the segments in each slice. (B) Each center of mass point was 
joined with lines to obtain medial axis of the model. Red dashed arrow shows the width of the slice 
lying between the second and the third center of masses. (C) Bending angle calculation is carried 
out by finding the initial point of the medial axis (point A), midpoint (point B) and end point (point 
C) and calculating the angle between those points. (D) Bending direction is calculated by aligning 
models so that their Ü| vectors coincide with the x axis, and the Üá vector of each model gives 
the bending direction in yz plane.  
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Figure 4. 35 A representative 50-kb model and its arm-twisting along the nucleoid. 

Each bead is paired up with the opposite bead in the other arm and the twisting angle is calculated 
step by step.  The bottom graph shows the twisting angle of the arms for the model along the 
nucleoid.  
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Table 4.3 Average number of microdomains and branch segment lengths (nm), and the 
longest principal axis lengths (nm) for each cluster. Standard errors are given as separate 
columns.  

 

Cluster 
Longest 
principle 

axis length 
(nm) 

Standard 
error 

Number of 
microdomains 

Standard 
error 

Branch 
length 
(nm) 

Standard 
error 

1 2200.0 43.0 459.1 40.4 70.9 5.1 
2 2065.4 27.6 396.2 37.0 69.6 3.6 
3 2288.1 28.0 366.7 32.6 72.4 4.0 
4 2165.6 31.8 412.5 29.4 70.9 3.6 
5 2083.3 36.2 411.1 47.8 60.6 4.0 
6 2142.0 25.1 388.0 30.2 70.8 4.3 
7 2329.2 34.0 483.3 31.1 74.6 4.6 
8 2366.7 47.7 483.3 74.9 70.0 9.7 
9 2345.8 25.9 520.8 31.3 75.0 4.4 
10 2266.1 10.4 441.9 17.8 70.6 2.0 
11 2117.9 31.7 510.7 30.6 71.1 3.9 
12 2204.1 18.0 421.6 25.4 71.4 3.5 
13 2245.3 19.7 334.9 23.5 69.1 3.2 
14 2370.0 23.8 480.0 26.8 74.9 3.5 
15 2247.8 17.4 463.0 23.9 65.4 2.8 
16 2251.1 11.9 397.8 19.0 69.3 2.1 
17 2450.0 38.1 536.4 38.8 71.8 5.0 
18 2220.2 16.4 464.9 21.9 68.2 2.6 
19 2184.1 22.0 429.5 25.3 71.6 3.2 
20 2202.4 30.6 471.4 40.9 67.1 4.0 
21 2090.4 25.9 429.8 27.5 68.3 2.6 
22 2195.2 12.3 479.8 17.8 68.2 2.2 
23 2172.9 17.7 439.6 22.6 74.8 2.8 
24 2324.1 23.0 507.4 23.8 67.4 4.1 
25 2242.9 21.8 514.3 34.8 70.0 4.3 
26 2126.9 19.9 474.4 24.0 65.1 3.1 
27 2230.0 19.8 502.0 23.1 68.2 2.8 
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Table 4.4 Calculated z-scores for different modules. Module names are adapted from previous 
study [256]. 

	 z-scores	

	 Proteins	
Proteins		
(>500	kb)	 Operons	

Operons		
(>	500	kb)	

Module Genomi
c	

Spatia
l	

Genomi
c	

Spatia
l	

Genomi
c	

Spatia
l	

Genomi
c	

Spatia
l	

yellowgreen -0.89	 -1.74	 -0.25	 -3.54	 -0.85	 -1.58	 -0.41	 -3.36	
yellow4 -1.90	 -1.84	 -1.99	 -2.30	 -1.83	 -1.76	 -2.00	 -2.15	
yellow -2.34	 2.06	 0.68	 11.43	 -2.24	 2.21	 0.80	 12.38	
white 0.21	 1.91	 4.81	 8.20	 0.21	 1.88	 4.74	 8.16	
violet 0.59	 1.79	 2.37	 5.95	 0.60	 1.89	 2.44	 6.20	
turquoise -0.06	 -2.91	 1.64	 -14.10	 -0.11	 -2.88	 1.80	 -13.75	
thistle2 -1.86	 -0.92	 -0.89	 -0.31	 -1.79	 -0.81	 -1.14	 -0.20	
thistle1 -2.61	 0.12	 -2.39	 1.86	 -2.70	 0.12	 -2.43	 1.99	
tan -2.15	 -1.51	 -0.85	 -3.10	 -2.01	 -1.40	 -0.65	 -2.75	
steelblue -3.49	 -0.13	 -2.75	 1.71	 -3.45	 -0.14	 -2.74	 1.77	
skyblue3 -3.38	 -0.92	 -2.69	 -0.36	 -3.28	 -0.87	 -2.14	 0.26	
skyblue2 0.08	 1.31	 0.49	 2.60	 0.55	 1.73	 1.11	 3.17	
skyblue1 -1.29	 -0.04	 -1.90	 0.01	 -1.24	 0.04	 -1.91	 0.15	
skyblue -0.13	 -1.05	 -0.38	 -2.76	 -0.09	 -1.00	 -0.37	 -2.64	
sienna3 0.29	 2.89	 4.50	 10.33	 0.32	 2.82	 4.48	 10.77	
salmon4 0.14	 0.09	 -0.57	 -0.28	 0.14	 0.15	 -0.55	 -0.14	
salmon -5.38	 -6.32	 3.49	 -10.48	 -5.11	 -6.38	 3.74	 -10.27	
saddlebrown 0.55	 0.36	 0.17	 0.74	 -0.21	 0.31	 0.37	 1.39	
royalblue -0.16	 1.26	 0.55	 4.13	 -0.14	 1.32	 0.70	 4.52	
red -3.04	 0.27	 -2.19	 2.65	 -2.96	 0.27	 -2.11	 3.49	
purple 0.40	 0.94	 -0.61	 2.47	 0.41	 1.08	 -0.50	 3.10	
plum2 -3.47	 -2.37	 -3.01	 -3.25	 -3.45	 -2.31	 -3.02	 -3.19	
plum -3.90	 -2.00	 -3.38	 -0.46	 -3.91	 -2.24	 -3.34	 -0.45	
plum1 -1.14	 1.29	 1.63	 5.86	 -1.09	 1.35	 1.63	 6.09	
pink -0.29	 -2.66	 0.73	 -8.21	 -0.26	 -2.60	 0.76	 -7.97	
palevioletred
3 0.08	 -0.81	 -0.14	 -1.97	 0.07	 -0.74	 -0.12	 -1.81	
paleturquois
e 0.05	 -0.26	 0.58	 -0.02	 0.05	 -0.11	 0.60	 0.35	
orangered4 -0.51	 -0.03	 -0.89	 0.04	 -0.50	 0.09	 -0.85	 0.25	
orangered3 -3.84	 -1.37	 -3.13	 0.68	 -3.78	 -1.42	 -3.19	 0.69	
orange -5.73	 -3.48	 -2.83	 -5.32	 -5.68	 -3.46	 -2.73	 -4.92	
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Table 4.4 (cont’d) 
 
navajowhite2 -1.55	 -0.59	 0.59	 0.45	 -2.86	 -0.45	 -0.41	 1.83	
midnightblue -1.52	 -0.39	 -1.84	 -0.42	 -1.48	 -0.28	 -1.78	 -0.08	
mediumpurple3 -1.47	 -2.40	 2.35	 -2.34	 -1.46	 -2.37	 2.41	 -2.15	
mediumpurple2 -0.30	 1.33	 -0.71	 2.25	 -0.32	 1.37	 -0.71	 2.36	
mediumorchid -0.57	 -0.57	 -0.69	 -0.92	 -0.51	 -0.24	 -0.08	 -0.01	
maroon -3.37	 -2.69	 -3.12	 -3.71	 -0.42	 -0.34	 0.47	 0.51	
magenta -0.43	 0.73	 0.96	 3.87	 -0.50	 1.01	 1.23	 5.39	
lightyellow -0.64	 0.74	 -0.57	 2.53	 -0.67	 0.61	 -0.66	 2.22	
lightsteelblue -0.13	 -0.39	 -0.58	 -1.03	 -0.14	 -0.37	 -0.57	 -0.94	
lightsteelblue1 0.49	 -0.13	 0.07	 -0.77	 0.49	 -0.11	 0.09	 -0.73	
lightpink4 -1.14	 0.90	 -0.79	 2.46	 -1.14	 1.01	 -0.77	 2.79	
lightgreen 0.85	 0.45	 1.01	 1.07	 0.87	 0.53	 1.05	 1.40	
lightcyan1 -0.30	 1.04	 0.69	 2.98	 0.22	 1.50	 1.28	 3.73	
lightcyan -1.30	 -0.38	 0.13	 0.23	 -1.26	 -0.40	 0.13	 0.33	
lightcoral -6.58	 -4.79	 0.00	 0.00	 -6.64	 -4.91	 0.00	 0.00	
lavenderblush3 -0.34	 -0.28	 -0.63	 -0.65	 -0.34	 -0.20	 -0.62	 -0.46	
ivory -0.67	 0.77	 -0.02	 2.62	 -0.14	 1.10	 0.27	 3.03	
indianred4 -1.46	 -1.92	 -2.13	 -2.76	 -1.43	 -2.07	 -2.16	 -2.71	
honeydew1 0.76	 0.42	 0.55	 0.51	 0.76	 0.44	 0.58	 0.62	
grey60 -3.59	 -0.32	 -1.44	 2.54	 -3.54	 -0.13	 -1.54	 2.99	
greenyellow -0.47	 -2.77	 4.30	 -4.90	 -0.46	 -2.82	 4.30	 -4.51	
green 0.97	 -1.23	 1.04	 -4.81	 0.97	 -0.97	 1.14	 -4.03	
floralwhite -1.40	 -1.57	 -1.09	 -2.67	 -1.37	 -1.55	 -1.03	 -2.53	
firebrick4 0.46	 0.66	 0.77	 0.94	 0.48	 0.66	 0.78	 1.06	
darkturquoise 0.16	 -0.58	 1.25	 -0.88	 0.20	 -0.61	 1.27	 -0.91	
darkslateblue -1.30	 -0.02	 0.12	 1.46	 -1.29	 0.08	 0.12	 1.64	
darkseagreen4 0.55	 -0.02	 -0.35	 -0.82	 0.56	 0.00	 -0.07	 -0.69	
darkred 0.18	 1.85	 1.10	 6.08	 0.19	 1.92	 1.10	 6.47	
darkorange2 0.62	 1.68	 2.89	 4.97	 0.63	 1.69	 2.86	 5.25	
darkorange 0.54	 -0.79	 0.83	 -2.10	 0.66	 -0.70	 1.06	 -1.66	
darkolivegreen4 0.75	 -0.02	 -0.53	 -0.99	 0.77	 -0.01	 -0.53	 -0.95	
darkolivegreen -2.29	 -3.88	 2.54	 -6.08	 -2.26	 -3.92	 2.61	 -5.93	
darkmagenta 0.43	 -0.16	 0.11	 -0.65	 0.47	 0.14	 0.66	 0.41	
darkgrey -0.83	 -0.56	 -0.34	 -0.93	 -0.83	 -0.48	 -0.36	 -0.71	
darkgreen 0.70	 -0.17	 0.64	 -0.77	 0.70	 -0.02	 0.65	 -0.36	
cyan -1.06	 -0.38	 -0.43	 -0.32	 -1.00	 -0.36	 -0.40	 -0.08	
coral2 0.51	 -1.40	 0.78	 -2.38	 0.51	 -1.34	 0.77	 -2.23	
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Table 4.4 (cont’d) 
 
coral1 -1.71	 -0.03	 -1.92	 0.41	 -1.67	 -0.05	 -1.91	 0.41	
brown4 0.68	 -0.95	 1.41	 -1.71	 0.67	 -0.92	 1.44	 -1.60	
brown2 1.03	 0.82	 0.19	 0.24	 1.02	 0.82	 0.21	 0.26	
brown -5.22	 -1.13	 -3.20	 -1.16	 -5.08	 -1.01	 -3.21	 -0.31	
blue 0.78	 -2.17	 2.17	 -10.24	 0.69	 -1.91	 2.03	 -8.42	
blue2 -1.23	 -0.75	 -2.00	 -1.07	 -1.26	 -0.73	 -1.98	 -1.01	
black -4.22	 -3.01	 -3.35	 -7.52	 -4.04	 -2.91	 -3.27	 -7.00	
bisque4 0.51	 -0.91	 -0.44	 -2.37	 0.49	 -0.94	 -0.65	 -2.48	
antiquewhite4 0.10	 0.71	 0.67	 1.72	 0.13	 0.75	 0.67	 1.74	
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5.1 Introduction 
	
Macromolecular crowding in cellular environments plays a crucial role for the structure and 

dynamics of biomolecules and, accordingly, their biological functions [35, 38, 160, 287]. 

Therefore, a full comprehension of cellular structure and function requires a systematic 

understanding of the macromolecular crowding effect.  Macromolecular crowding by proteins has 

been extensively studied to understand the impact of their high concentration in the cell on 

structure and dynamics of other macromolecules. Studies have shown that protein diffusion which 

is one of the vital biological processes that governs many cellular functions, is substantially 

different in crowded environments than in vitro [47, 49, 160, 288-290]. Proteins under the effect 

of macromolecular crowding have been found to move much more slowly and undergo anomalous 

diffusion where the relationship between mean-square displacement and time is not linear anymore 

[47, 49].  

On the other hand, although genomic DNA also occupies a significant fraction of the cell, little 

is known about its role as a crowding agent. Notably, in bacteria, nucleoids do not reside in a 

particular compartment in contrast to the nucleus of a eukaryotic cell and, therefore, the presence 

of the nucleoid may affect all of the components inside the cell. Compared to proteins, genomic 

DNA is one very long molecule that can act as a labyrinth which may fasten the diffusion of protein 

by limiting the possible directions that the protein can go, therefore indirectly guiding its path 

during diffusion. Very recently, a study has shown that the target search of the lac repressor is 

accelerated in the packed nucleoid environment [291]. On the other hand, the nucleoid may only 

overcrowd the environment and cause anomalous diffusion as observed as an effect of protein 

crowding; the available studies are not sufficient to rule out this possible effect yet.  
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Herein, we use a recently built high-resolution DNA model at a size of 10-kb, an average size 

of topological microdomains observed in bacterial nucleoids, to study the nucleoid crowding effect 

on diffusion of proteins with different sizes based on a coarse-grained (CG) formalism in 

combination with Brownian dynamics (BD) simulations. We use a closed circular DNA model at 

15 basepairs (bp) resolution for the nucleoid microdomain and hard-sphere models with various 

sizes to represent proteins in our systems. We compare the effect of the DNA structure on diffusion 

with the effects of protein crowding. 

 

5.2 Methodology 
	
BD simulations with hydrodynamics interactions (HI) of CG systems containing a closed circular 

supercoiled DNA, and neutral proteins were carried out using the GENESIS program package 

[292]. Proteins were modeled as hard-spheres, and the DNA model was constructed as a worm-

like chain of 5-nm long segments with a 1-nm radius each representing 15-bp of double-stranded 

DNA. The details of the DNA model and the energy potentials for bonded and non-bonded 

interactions used here can be found in the 15-bp CG model section in Chapter 4. Here, the 

stretching and bending potentials were used for the DNA model and instead of the torsional 

potential, an additional dihedral angle potential was applied to avoid DNA unwinding: 

$-3*7-&'6 = 	 .f 1 + cos f− f:     (5.1) 

where f is the dihedral angle formed by four sequential segments, f:is the equilibrium dihedral 

angle, and .f	is the force constant. f:	is set to 209° which is the average dihedral angle calculated 

from the initial structures, and .f	is set to 6.476 kcal/mol which roughly matches the torsion 

potential used in the previous procedure. Non-bonded interactions between DNA-DNA, DNA-
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protein, and protein-protein particles were calculated using Debye-Hückel potential for 

electrostatic interactions and the segment-overlap potential described in Chapter 4 to avoid passing 

one particle through another.  

The DNA chain consists of 604 segments corresponding to a total length of 9-kb which lies in 

the microdomain size range observed in bacterial chromosomes [293]. The number of proteins in 

the system varies depending on the protein size and the crowding concentration. Nine different 

systems with 20 %, 30 %, and 40 % protein volume fractions and 2.5, 5 and 10 nm protein radii 

were constructed. The volume fractions used here is within the range of the volume fraction of 

proteins observed in cells which is believed to be in the range of 5 – 40 % [37] and the proteins 

with 2.5, 5 and 10 nm radii represent an average size protein observed in bacterial cells, a larger 

size protein such as RNA polymerase and very big proteins such as ribosome.  The simulation 

conditions for the systems can be found in Table 5.1. All systems with different protein sizes and 

crowding concentrations were also repeated without DNA for comparison (Table 5.2). The 

simulations were carried out for 1 µs at 298 K with a 2 ps timestep. Nonbonded interactions were 

cut off at 30 nm with a switching function becoming effective at 35 nm, and the non-bonded list 

was cut off at 40 nm.  
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Table 5.1 Simulation conditions for the systems containing proteins and DNA. 

System 
Protein 
Radius 
(nm) 

Number of 
Proteins 

Protein 
Vol (%) 

Number of 
DNA 

particles 

DNA 
Vol 
(%) 

Box 
Size 
(nm) 

Length 
(µs) 

PD1 2.5 1769 20 604 1.6 83.34 1 
PD2 2.5 2654 30 604 1.6 83.34 1 
PD3 2.5 3538 40 604 1.6 83.34 1 
PD4 5.0 221 20 604 1.6 83.34 1 
PD5 5.0 332 30 604 1.6 83.34 1 
PD6 5.0 442 40 604 1.6 83.34 1 
PD7 10.0 28 20 604 1.6 83.34 1 
PD8 10.0 42 30 604 1.6 83.34 1 
PD9 10.0 55 40 604 1.6 83.34 1 

 

Table 5.2 Simulation conditions for the systems containing only proteins. 

System Protein 
Radius (nm) 

Number of 
Proteins 

Protein  
Vol (%) 

Box 
 Size (nm) Length (µs) 

P1 2.5 1914 21.6 83.34 1 
P2 2.5 2799 31.6 83.34 1 
P3 2.5 3683 41.6 83.34 1 
P4 5.0 239 21.6 83.34 1 
P5 5.0 350 31.6 83.34 1 
P6 5.0 460 41.6 83.34 1 
P7 10.0 30 21.6 83.34 1 
P8 10.0 40 31.6 83.34 1 
P9 10.0 57 41.6 83.34 1 

 

 

5.3 Results and Discussion 
	
The effect of the presence of DNA in the environment on protein diffusion was investigated by 

BD simulations of protein systems with DNA at different crowding concentrations. Initial 

configurations of PD4 – PD6 systems are shown in Figure 5.1.  
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Figure 5.1 Initial configurations of the simulated systems containing DNA (orange) and 
proteins with 5-nm radius (green). (A) 20 % crowding (PD4), (B) 30 % crowding (PD5), (C) 40 
% crowding (PD6).  

 

Mean square displacements (MSD) of proteins with various sizes and different crowding 

conditions were plotted as a function of time and they are depicted in Figure 5.2. Protein diffusion 

becomes slower for larger proteins as well as higher crowding ratios as expected. The MSD of 

small proteins with 2.5 nm radius shows a slight decrease over time in the presence of DNA in all 

systems with different crowding conditions (Figure 5.2A). This decrease is also observed in larger 

proteins; however, it is more pronounced for the proteins with 10-nm radius (Figure 5.2B and C). 

Besides, it has been observed that the MSD of small proteins shows a less linear relationship with 

time compared to the MSDs of bigger proteins. This can be seen more clearly from the logarithmic 

scale MSD vs. time plots (Figure 5, right panels). Overall, the more linearity in the MSD vs. time 

relationship and the larger decrease in the MSD when DNA is in the system observed for larger 

proteins may suggest that the effect of nucleoid crowding is effective in both long and short time 

regimes for larger proteins; however, smaller size proteins are only affected in longer-time lag.   
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Figure 5.2 Linear (left panel) and logarithmic scale (right panel) plots for MSDs of proteins 
vs time in the systems with 20 % (black), 30 % (red) and 40 % (blue) crowding. (A) 2.5-nm 
protein radius, (B) 5-nm protein radius, (C) 10-nm protein radius.  Dashed lines are for the 
corresponding systems with DNA (PD1 to PD9) and solid lines are for P1 – P9 systems.  

 
Next, the diffusion constants were calculated from the MSDs of proteins using the equation  

ã = lim
W→ê

ëím(W)
ìW

+ îïñó
ìòôö

      (5.2) 
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where t is time, kB is the Boltzmann constant, T is the temperature, L is the box length, h is the 

shear viscosity of water and x is the correction factor which is equal to 2.83729 [294]. Since the 

slope of the MSD vs. time line is different in shorter and longer times for all systems as shown in 

Figure 5.2, diffusion constants were calculated from the slopes of 1 – 10 ns and 10 – 100 ns time 

regimes separately and the results are given in Table 5.3 for the DNA + protein systems and in 

Table 5.4 for the protein systems. 

Table 5.3 Diffusion constants of the proteins in systems PD1 – PD9 (Å2/ns). Standard errors are 
given in the parentheses.  

 
 1 – 10 ns 10 – 100 ns 

Radius 20 % 
Crowding 

30 % 
Crowding 

40 % 
Crowding 

20 % 
Crowding 

30 % 
Crowding 

40 % 
Crowding 

2.5 nm 5.42 (0.09) 4.47 (0.07) 3.60 (0.05) 4.33 (0.08) 3.44 (0.05) 2.56 (0.03) 
5.0 nm 3.27 (0.14) 2.96 (0.10) 2.63 (0.07) 2.53 (0.09) 2.02 (0.06) 1.76 (0.04) 
10.0 nm 1.95 (0.16) 1.81 (0.12) 1.78 (0.11) 1.68 (0.15) 1.62 (0.10) 1.54 (0.08) 

 

Table 5.4 Diffusion constants of the proteins in systems P1 – P9 (Å2/ns). Standard errors are 
given in the parentheses. 

 
 1 – 10 ns 10 – 100 ns 

Radius 20 % 
Crowding 

30 % 
Crowding 

40 % 
Crowding 

20 % 
Crowding 

30 % 
Crowding 

40 % 
Crowding 

2.5 nm 5.44 (0.10) 4.59 (0.07) 3.73 (0.05) 4.54 (0.08) 3.57 (0.05) 2.69 (0.03) 
5.0 nm 3.35 (0.14) 3.19 (0.11) 2.87 (0.08) 2.40 (0.09) 2.11 (0.06) 1.73 (0.04) 
10.0 nm 1.95 (0.17) 1.96 (0.15) 1.90 (0.12) 1.90 (0.16) 1.85 (0.14) 1.69 (0.09) 

 

The comparison of diffusion constants from shorter and longer time regimes show that 

diffusion is much slower in 10 – 100 ns time range which is an indication of	different short and 

long-time diffusion rates with anomalous behavior. Also, both in the shorter and longer time 

regimes, proteins have slightly lower diffusion rates in the presence of DNA.  
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Lastly, in addition to the analysis of the diffusional behavior of proteins under crowding, the 

spatial distribution of proteins around DNA has also been investigated (Figure 5.3). For the 

proteins with 2.5 and 5 nm radii (Figure 5.3A and B), proteins move to the locations which are at 

a larger distance from the DNA center of mass with increasing crowding. This could be because 

of the larger number of proteins in the system with increasing crowding, which can also be visually 

confirmed from Figure 5.1, and limited space inside the nucleoid microdomain. One interesting 

result is, however, there are two different peaks and a depletion in between for the distribution of 

proteins with 10-nm radii (Figure 5.3C). The depletion shown with a green arrow is seen around 

~320 nm which corresponds to the distance of the DNA surface from its center of mass. This result 

shows that big proteins do not stay around DNA surface, they reside either inside or outside the 

DNA. This could result from the DNA topology which do not allow larger proteins to sit on the 

surface due to the lacking void volume.  
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Figure 5.3 Distributions of the distances of the proteins from the center of mass of DNA in 
the systems with 20 % (black), 30 % (red) and 40 % (blue) crowding. (A) 2.5-nm protein 
radius, (B) 5-nm protein radius, (C) 10-nm protein radius.  The green arrow in C indicates the 
DNA surface. 

 
 

5.4 Conclusions and Future Work 
	
In this study, we have performed BD simulations of CG systems containing proteins and DNA at 

a size of bacterial nucleoid microdomain and have observed slightly slower diffusion for the 

proteins in the systems where DNA is also present. However, there are some potential concerns:  

1) The volume fraction of DNA used here is 1.6 % which is far less than the actual nucleoid 

volume fraction for bacterial cells which is reported to be around 10 % [295]. This is 

because of the DNA model used here which is much less compact than the bacterial 
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nucleoid. The extended model of DNA did not allow using smaller box size that could lead 

to higher DNA concentration. Therefore, the crowding effect primarily caused by DNA 

might not have been captured in our simulations.  

2) Although the procedure presented in Chapter 4 was followed to generate the DNA model 

used here, there is one difference from that method: Here, no experimental data was used 

for the model construction. Use of the recently-built experimentally driven bacterial 

chromosome models instead of an arbitrary model would result in more accurate DNA 

models in terms of nucleoid folding and packing since the experimentally-driven models 

were constructed using the genome-wide loci interactions.  

3) The diffusion constants calculated here are at least two-fold larger than the protein 

diffusion constants found from the Stokesian dynamics (SD) simulations of CG systems 

with similar crowding conditions as well as molecular dynamics (MD) simulations of all-

atom systems [48, 49]. In addition to far-field HI, SD also calculates near-field HI as well 

which is also captured in fully atomistic MD simulations with explicit solvent. Here, we 

used BD because of its much lower computational cost, however the difference between 

the diffusion constants calculated here and in the previous studies is probably resulting 

from neglecting near-field HI which could play a significant role in protein diffusion. 

 In summary, although the DNA volume fraction considered here is much smaller than the 

actual volume fraction of nucleoids in bacterial cells, the preliminary results of this study show 

a slight difference in the rate of protein diffusion in systems with and without DNA, as well as  

different diffusion rates at shorter and longer time regimes due to the anomalous behavior. 

Once the abovementioned improvements are made, the models and methodology used here can 

provide insights into the effects of nucleoid macromolecular crowding on protein diffusion.  
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The aim of this dissertation is to contribute to the understanding of the behavior of DNA both as a 

molecule experiencing macromolecular crowding and as a crowder. In this regard, computer 

simulations of DNA in crowded environments were performed to investigate the macromolecular 

crowding effect on DNA structure. On the other hand, the DNA crowding effect on other 

macromolecules in the cell was also examined by developing a multiscale modeling algorithm to 

generate three-dimensional (3D) bacterial chromosome models at high-resolution and computer 

simulations of DNA models constructed using this algorithm together with proteins were carried 

out to study the nucleoid crowding impact on protein diffusion.  

In Chapter 2, one aspect of the macromolecular crowding, the reduced dielectric response of 

the environment due to the less available water and its slowed dynamics, was investigated to 

explore its effects on canonical B-form DNA structure. Results show that DNA structure tends to 

shift towards A-like conformations in reduced dielectric environments as observed in previous 

studies of DNA in solvents containing cosolvents that have lower dielectric constants than water 

[57, 59, 117]. Although the reduced dielectric response of the environment due to the crowding 

favors A-form of DNA, macromolecular crowding has two other significant effects which are the 

volume-exclusion effect that favors more compact forms of macromolecules due to the less 

available space in the environment and the non-specific interactions with crowders which 

challenge the former impact by stabilizing more extended states due to the interactions. In order 

to study these effects on DNA structure as well, all-atom MD simulations of DNA in the presence 

of explicit protein crowders were carried out (Chapter 3). Results suggest that the less available 

space due to crowders, as well as the electrostatic and polar interactions with them, confine and 

stabilize B-form of DNA which actually modulates the tendency toward A-like conformations due 
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to the reduced dielectric response of the environment. In conclusion, these studies provided 

insights into each aspect of macromolecular crowding and its effect on short DNA duplexes.  

The DNA models used in the studies mentioned above consist of 12 basepairs (bp), however, 

DNA are more abundant in a much longer polymeric form in vivo, such as plasmids and 

chromosomes. As a future work, it would be useful to study the effects of cellular crowding on 

longer DNA molecules. On the other hand, DNA is a highly negatively charged molecule which 

actively interacts with other charged molecules electrostatically. The protein crowders used in our 

simulations were neutral, but it would also be interesting to see how negatively or positively 

charged crowder proteins affect DNA structure. Hopefully, the results described here will also 

stimulate experimental efforts to characterize DNA structure under crowded conditions using 

techniques such as Nuclear magnetic resonance (NMR) spectroscopy. 

The focus of the following chapters is investigating the macromolecular crowding effect 

caused by genomic DNA on other macromolecules in cells. Within this context, an experimentally-

driven multiscale modeling algorithm to generate realistic bacterial chromosome structures in 

high-resolution was developed (Chapter 4). Chromosome conformation capture (3C) techniques 

[21, 22] which are recently developed to study 3D structure of chromosomes also paved the way 

for computational modeling of chromosome structures. Integration of the available genome-wide 

contact information of Caulobacter crescentus genome [28] with the topological properties of 

closed circular DNA in the modeling protocol developed here allowed generating C. crescentus 

chromosome structures at 15-bp resolution which are compatible with the available experimental 

data for this chromosome. High-resolution chromosome structures enabled investigating structural 

properties of a bacterial chromosome in base-pair detail as well as genome structure and function 

relationship. The methodology developed here is the pioneer approach to generate chromosome 
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structures at basepair resolution by using 3C-based data and readily applicable to other bacteria as 

additional 3C-based data sets are becoming available. Currently, data sets for the chromosomes of 

C. crescentus, Escherichia coli, Bacillus Subtilis and Mycoplasma Pneumoniae bacteria are 

available [27-33]. Obtaining high-resolution chromosome structures for different bacteria 

hopefully will help us to gain a global understanding of bacterial chromosomes and their relation 

to the regulation of gene expression, therefore the biological functions of cells, by enabling direct 

mapping of the genomic sequence onto the 3D bacterial chromosome structures.  

In addition to the investigation of the chromosome structure itself, the constructed high-

resolution chromosome models could also be used to investigate their effect on other 

macromolecules in the cell.  A high-resolution DNA model generated by the modeling algorithm 

discussed above was further used to examine its effect on protein diffusion; but the DNA model 

was constructed without using any experimental data.  The preliminary results of Brownian 

dynamics simulations of the DNA model with proteins indicate slower motion of proteins around 

genomic DNA (Chapter 5). However, this work still needs improvements such as using DNA 

models generated by incorporating the available experimental data and also considering 

hydrodynamic interactions as discussed in more detail in Chapter 5.  

In the end, the ultimate goal of these studies is to expand our ability to generate computational 

biomolecular systems as accurate as possible to study cellular structure and function in detail.  

Using high-resolution chromosome models not only with proteins but with all macromolecules in 

the cell would help us to construct complete realistic models of cellular systems. Previous 

computational models for cellular systems contained proteins, metabolites, ions, and solvents, 

however, did not include DNA which could be because of the requirement of bigger system size 

as well as the unavailability of realistic genomic DNA models [47, 48]. I hope the experimentally-
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driven high-resolution chromosome modeling methodology described here will contribute to the 

computational efforts to understand how all the cellular material works together in harmony and 

ultimately, how cells, the basic biological units of life, function. 
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