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ABSTRACT 

MODAL ANALYSIS OF VERTICAL-AXIS DARRIEUS WIND TURBINE BLADE WITH A 
TOPOSKEIN SHAPE 

 
By 

Amr Fawzy Abdel hakeem Saleh  

Darrieus wind turbines with troposkein shaped blades are an important type of vertical 

axis wind turbines. When designing these turbines it is important to consider how 

vibrations may affect blade failure. In order to avoid resonance, the blade natural 

frequencies need to be determined. The goal of this research is to determine the blade free 

vibration mode shapes and modal frequencies, neglecting the variation of the upstream 

wind speed for simplicity. The blade modal vibration is studied numerically using ANSYS 

software, and analytically using thin-beam theory and an assumed modes method. Firstly, 

the analysis is performed on a 17 m diameter Sandia simplified troposkein shaped blade 

with a NACA 0015 airfoil. The first ten modes and the corresponding natural frequencies 

were calculated using ANSYS. The analysis was done for stationary and spinning blade at 

54 rpm. The spin case compared very well to previous Sandia results. The same analysis 

was then applied to an ideal troposkein shaped blade, and a slightly modified cross section. 

Results show consistency across the blade shapes. The Sandia blade shape was studied 

analytically using thin-beam theory and an assumed modes method. Kinetic and potential 

energies were derived. Mass and stiffness matrices are formulated for the discretized 

model, to which modal analysis is applied. The natural frequencies were calculated 

analytically for same simplified Sandia blade shape used for finite element model under 

stationary condition. The results of the two methods were compared for consistency.    
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1 Chapter 1: Introduction and literature review 

1.1 Background  

The development of renewable energy represents an obvious need especially when we see 

based on modern studies that fossil fuel sources like oil and gas reserve will be depleted in 

near future. Renewable energy can be solar energy, wind energy, geothermal energy,etc. 

Among the renewable energy alternatives, wind energy introduces itself as one of the most 

prominent sources of renewable energy. Wind turbines are the most popular machines that 

can convert wind power into mechanical power. Wind turbines convert the wind power 

into electricity via rotation in the generator. Now, after large technological improvements, 

we are able to develop wind turbines to be more feasible, reliable, and dependable source 

of energy especially for electricity. Indeed, a significant share of electricity for several 

countries comes from wind turbines. Figure 1.1 indicates the growth of global wind power 

production over years from 1996 to 2015 [1].  

 

 

 

 

 

 

 

 Figure 1.1 Global wind power cumulative capacity [1] 
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1.2 Types of wind converters 

Wind energy converters can be classified firstly in accordance with their constructional 

design (rotor axis orientation) and, secondly, according to their ways of extracting the 

energy from wind (lift or drag type) [2]. 

1.2.1 Constructional design (rotor axis orientation) based classification  

1.2.1.1 Vertical axis wind turbines (VAWTs): 

As shown in Figure.1.2. The axis of rotation of this type is perpendicular to the wind 

direction [2]. In this type the generator is on the ground which makes it more accessible 

and no yaw system required.  

 

 

 

 

 

 

 

 

 

The constant blade profile and cross sectional shape of an H-rotor type VAWT along the 

blade length is one of its advantages because it makes every blade section be subjected to 

the same wind speed. As a result blade twisting not required. Troposkein-shaped turbines 

also tend to have constant cross-sectional shapes. 

Figure 1.2 Schematic of vertical axis wind turbine [2] 
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The constant blade shape makes its design and manufacturing easier and the total 

production cost lower. 

1.2.1.2 Horizontal axis wind turbines (HAWTs): 

As shown in figure 1.3 [2] the axis of rotation of this type must be oriented parallel to the 

wind in order to capture the wind power. HAWTs are considered to be the most efficient 

turbines. The disadvantages of this type include: 

a. Operation at high starting wind velocity. 

b. Low starting torque.  

c. Yaw mechanism required to turn the rotor toward the wind. 

d. Power loss when the rotors are tracking the wind directions. 

e. High center of gravity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Schematic of horizontal wind turbine [2] 
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1.2.2 Classification based on ways of extracting the energy from wind (lift or drag 

type) 

The rotor’s aerodynamics is classified based on whether the wind energy converter 

captures its power from the aerodynamic drag of the air flow over the rotor surfaces, or 

whether it captures its power from the aerodynamic lift generated from the air flow against 

the airfoil surfaces [2]. Based on that, there are so-called drag-type rotors and lift- type 

rotors. 

1.2.2.1.1 The drag type  

This turbine takes less energy from the wind but provides a higher torque and is suitable 

for mechanical applications as water pumping [2]. The most representative model of a 

drag-type VAWT as shown in Figure 1.4 [3] is the Savonius. 

 

 

 

 

 

 

 

 

 

1.2.2.2 The lift type  

This turbine generates power mainly by the generated lift force on the blade cross section. 

It can move quicker than the free wind speed. The most important application of this kind 

Figure 1.4 Schematic of Savonius wind turbine [3] 
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is electricity generation [2]. The most representative model of a lift-type VAWT as shown in 

Figure 1.4 [4] is the Darrieus wind turbine. 

 

 

 

 

 

 

 

 

In 1931 the U.S. Patent Office patented Darrieus wind turbine in the name of G.J.M. Darrieus 

[5]. The Darrieus patent states that “each blade should have a streamline outline curved in 

the form of skipping rope.” [5] This means, the shape of the Darrieus rotor blades can be 

approximated to the shape of a perfectly flexible cable, of uniform density and cross 

section, anchored from two fixed points and rotating about its long axis; under the effect of 

centrifugal forces such a shape minimizes inherent bending stresses. This blade shape is 

called troposkien (from the Greek roots: τρoτs, turning and σχolυloυ, rope). A pure 

troposkien shape (gravity neglected) does not depend on angular velocity [6]. The equation 

that defines a troposkein blade profile was developed by Sandia in April 1974 [7]. The 

analysis considered a perfectly flexible cable rotating about a fixed axis at a constant 

angular velocity without gravity as shown in figure 1.6. The Darrieus wind turbine with a 

troposkien shaped blades has advantage of working under the effect of high centrifugal forces 

without failure. 

Figure 1.5  Schematic of Darrieus wind turbine [4] 
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1.3 Literature survey of the structural vibration analysis of vertical axis 

troposkein shaped wind turbine blade   

The performance of a Darrieus wind-turbine was studied firstly by R.S. Rangi and P. South 

using wind tunnel measurements in the National Research Council of Canada in March 

1971 [8]. In February 1974, R.S. Rangi and P. South and their team investigated Darrieus 

wind parameters including spoilers and aero-brakes effect on turbine performance and 

reliability, in addition to the effect of efficiency related parameters like the number of 

blades and the rotor’s solidity. Compared to Sandia’s simplified troposkein shape,  the 

engineers at the National Research Council of Canada (NRC) in the early 1970’s, 

independently developed catenary shape as an approximation to the troposkein curved 

Figure 1.6 Schematic of a perfectly flexible cable rotating about a vertical axis [7] 
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blade [9]. In December 1979 a NASA team developed second degree nonlinear aero-elastic 

partial differential equations of motion for a slender, flexible, non-uniform, Darrieus 

vertical axis wind turbine blade using Hamilton’s principle. The analysis of NASA team 

considered a blade undergoing combined flat-wise bending, edgewise bending, torsion, and 

extension. Flatwise and edgewise are defined as follows.  The airfoil cross section has a 

major (chord-length) and minor axis.  Bending about the major axis is referred to as “flat 

wise”, and bending about the minor axis is called “edge-wise.”  Extension refers to axial 

deformation, and torsion occurs about the elastic axis [can cite an elasticity book regarding 

elastic axis].The blade aero-dynamic loading was developed using strip theory based on a 

quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory [10]. 

The derivation of the equations of motion was done based on the geometric nonlinear 

theory of elasticity in which the elongations and shears (and hence strains) are negligible 

compared to unity. In this research work The NASA model was used to derive equations of 

the blade strain energy and kinetic energy. These equations are suitable to study the blade 

free vibration and the blade dynamic response [10]. 

In June 1979, Sandia introduced a modal analysis for a 17-m diameter simplified 

troposkein shape rotating at 54 rpm constant angular velocity using ANSYS finite element 

software. This simplified troposkein blade consists of two straight increments at both ends 

and circular part in the middle (described in details later) with a NASA 0015 airfoil cross 

section. The first eight natural frequencies were calculated and the corresponding mode 

shapes were produced [11].  

Another wind tunnel performance analysis for the Darrieus wind turbine with NACA 0012 

Blades was performed in Sandia by Bennie F. Blackwell, Robert E. Sheldahl, and  Louis V. 
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Feltz [12], where several configurations of Darrieus wind turbine blade with NASA 0012 

airfoil cross section and 2- meters diameter were tested in a low-speed wind tunnel to 

measure the output torque, rotational speed as a function of  rotor solidity, Reynolds 

number, and the free stream wind velocity. A significant step in the development of larger 

and more efficient commercial Darrieus VAWT’s was the installation and operation of 34-m 

Sandia-DOE VAWT in 1987, rated at 625 kW. The Sandia 34-m turbine (Fig. 1.7) was the 

first curved-blade Darrieus turbine rotor originally designed to incorporate step-tapered 

blades using varying blade-section airfoils and a blade airfoil section specifically designed 

for VAWTs [6].  

 

 

 

 

 

 

 

 

 

 

 

In 2014 a structural dynamic design tool developed by Sandia for large scale VAWTs for 

studying the effect of geometry configuration, blade material, and number of blades on the 

aeroelastic stability of VAWTs. This tool can describe quantitatively the aeroelastic 

Figure 1.7 Darrieus vertical-axis wind turbine (DOE/Sandia 34-m) [6] 
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instabilities in VAWT design [13]. This is part of a recent strong research effort led by 

Sandia to study VAWTs, motivated by the prospect of off-shore applications.  Their work 

has addressed the modeling of aeroelastic loading and the vibration responses, ultimately 

for guiding the design and manufacture of VAWT systems, and has involved the 

development of finite-element-based OWENS simulation toolkit, modal analysis of blade-

tower systems, potential for resonances, and field tests on the Sandia 34-m VAWT test bed 

[14-16].  Further interest in structural modeling of VAWTs is represented by a series of 

presentations at a recent conference dedicated to off-shore VAWTs [17]. 

1.4 Motivation  

The following facts indicate why we need deep and active research on Darrieus vertical axis 

wind turbines: 

1. Limited knowledge and experience about Darrieus VAWTs 

2. Large scaled HAWTs suffer failures due cyclic gravitational and aerodynamic loadings.  

Darrieus VAWTs offers a good solution for this problem because of the blade shape 

which minimizes inherent bending stresses and rotor vertical position which minimizes 

the gravitational effect, so by developing a large scale Darrieus VAWTs and improving 

VAWT dynamic behavior can provide an alternative to problematic HAWTs without 

losing advantage of high energy production.  

3. Further investigation and more study of VAWTs dynamics and vibration can increase its 

life and as a result save a lot of money  

4. All research in the field of troposkein shape blade dynamics was basically for the 

simplified and approximated shape. Now with the help of high performance computers 
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and advanced calculation techniques, it is time to investigate the ideal troposkein blade 

dynamics and how we can optimize this shape to get efficient blade performance. 

1.5 Objective  

This research aims to formulate a robust model for a troposkein shaped VAWT blade for 

studying the blade vibration and its mode shapes and natural frequencies, taking into 

account the blade loading and geometric complexities, which help us determine the safe 

margins for the blade operating loads and angular velocities.  

1.6 Thesis outline  

This research is presented in the next two chapters: 

Chapter 2 focuses on the finite-element analysis of the blade vibration, while chapter 3 

sketches an analytical beam-based model for vibration studies.  

More specifically, chapter 2 consists of the following: 

1. Modal analysis is done using ANSYS workbench software for Darrieus wind turbine 

blade with NASA 0015 airfoil for both simplified and ideal troposkein shapes. 

2. Model validation is performed by comparing the mode shapes and natural frequencies 

of the first eight modes to those of the Sandia model [11]. 

3. The effect of spinning on the model vibration is then examined  

Chapter 3 consists of the following:  

4. Kinetic and potential energies equations are derived and mass and stiffness matrices 

are formulated to be used in Lagrange’s equation to calculate the natural frequencies 

and mode shapes analytically. 
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2 Chapter 2: Finite element model for calculating mode shapes 

and modal frequencies of troposkein shaped vertical axis 

wind turbine blades  

2.1 Introduction  

The wind turbine structure will oscillate due to cyclic aerodynamic loads during operation. 

Because the turbine is a continuous system with many degrees of freedom it has many 

different modes of oscillation and many corresponding natural frequencies. The most 

critical component of the wind turbine is the blades. In this chapter a finite element modal 

analysis has been done using ANSYS WORKBENCH finite element software.  

In the first part of this chapter a model for a 17-m diameter straight-circular-straight shape 

suggested by Sandia as an approximation to the ideal troposkein shape has been built using 

inventor software. This wind turbine blade model has a 17-m diameter with 25.15 m height 

and 30.48 m total blade length. The blade cross section is a NASA-0015 airfoil with chord 

length 0.61 m, airfoil thickness of 0.091 m and wall thickness 6.35 mm except for the 

reinforced leading edge which has a wall thickness of 8.89 mm. 

The blade cross section has four uniform internal stiffeners with the same thickness of the 

wall. The stiffeners are strategically located to provide enough structural rigidity. 

A free vibration modal analysis for this model has been performed using ANSYS 

WORKBENCH under constant rotational velocity of 54 rpm with blade ends clamped. To 

validate this model the results of the analysis compared to the results of Sandia report [11]. 



 
 

12 
 

After validating our model, the vibrations of a stationary blade are studied. A stationary 

blade condition is useful as a benchmark for stationary laboratory experiments or 

comparison between models. It also helps to understand the effect of spin. 

In the second part of this chapter a model for the ideal troposkein shape has been built and 

analyzed to get the mode shapes and modal frequencies of the ideal troposkein shape and 

to compare the approximated blade shape of the straight-circular-straight segmented beam 

to the ideal shape.  

2.2 3-D model for 17m diameter blade of straight-circular-straight 

shape  

2.2.1 Blade cross section  

The blade airfoil is based on NASA’s four digit airfoils equation [18] as follows  

𝑦𝑡 =
𝑡

0.2
(0.2969√

𝑥

𝑐
− 0.126

𝑥

𝑐
− 0.3516(

𝑥

𝑐
)2 + 0.2843(

𝑥

𝑐
)3 − 0.1015(

𝑥

𝑐
)4)                    (2.1) 

where  

c is the chord length  

t is the maximum airfoil thickness which equals 0.15c  

x is the coordinates of the airfoil along the chord or the major axis   

𝑦𝑡 is the coordinates of the airfoil along the minor axis  

For a NASA 0015 airfoil with 0.61 m cord length, the blade cross section shape can be 

calculated using equation (2.1) and its coordinates as given in table A.1 in appendix A.  

Plotting y versus x from table A.1 gives the airfoil shape as in figure 2.1 
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Taking points of airfoil from table.1in the appendix and generating the shape of the outer 

and inner airfoils by Inventor software using the offset feature, then a four stiffening spars 

was generated by Inventor with 6.5 mm thickness each and strategically located to provide 

proper structural rigidity [11].  The final shape of the airfoil is shown in figure 2.2 

 

 

 

 

                                                                        

(a)                                                                                (b) 

 

 

 

2.2.2 Blade profile 

The Sandia blade consists of three segments: one circular at the middle with radius 10.43 m 

and 16.754 m length and two straight segments of 6.858 m length each as indicated in 

figure 2.3. 

Figure 2.1 plot of airfoil points 

Figure 2.2 NASA 0015 blade cross section of 17 m diameter Sandia blade. (a) The 

original Sandia one. (b) The one rebuilt for this work 
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2.3 FEM model for 17m diameter blade of straight-circular-straight 

shape spins with 54 rpm constant rotational velocity  

A modal analysis for the 17 m diameter Sandia blade has been done using ANSYS 

workbench by meshing the blade structure using the SOLID 187 element. The SOLID 187 is 

a ten nodes higher order 3-D element, which makes it well suited to model irregular 

meshes. A SOLID 187 element has three degrees of freedom at each node (translations in 

the nodal x, y, and z directions) [19]. The blade is clamped at both ends except for rotation 

about the y-axis as shown in figure 2.4 where the blade assumed to be rotating at constant 

rotational velocity of 54 rpm. 

Figure 2.3 17 m diameter Sandia blade profile (all dimensions in m) 
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Figure 2.5 indicates the mesh pattern generated by ANSYS. By magnifying a part of this 

mesh we can note the elements shapes. For this analysis of 17 m diameter simplified Sandia 

blade the element size refined several times starting from automatic mesh and going finer 

to see the effect of mesh refinement on the results. After refining the mesh in limits of 

ANSYS academic version available for our lab, we found that there is no significant 

difference in the results of different meshing cases. The modal results of simplified Sandia 

blade for both spinning and stationary cases calculated with mesh element size of 0.07m 

and blade total number of elements equals 72562 elements. 

The first 10 modes and the corresponding natural frequencies of the Sandia blade rotating 

at 54 rpm constant rotational velocity have been calculated, and the results for the natural 

frequencies are indicated in table 2.1, and the modes are shown in figures 2.6 to 2.15. 

Figure 2.4 Sandia simplified blade shape clamped at both ends and allowed to rotate 
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Table 2.1.first 10 natural frequencies of 17 m diameter Sandia blade 

  

 

 

 

 

 

 

 

 

Figure 2.5 17 m diameter Sandia blade meshing pattern 
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Figure 2.6 first mode of Sandia blade at 54 rpm (flat-wise only), 2.0348 Hz 

Figure 2.7 second mode of Sandia blade at 54 rpm (edge-wise only), 2.5675 Hz 
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Figure 2.8 third mode of Sandia blade at 54 rpm (flat-wise only), 4 HZ 

Figure 2.9 fourth mode of Sandia blade at 54 rpm (edge-wise and torsion), 5.94 Hz 
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Figure 2.10 fifth mode of Sandia blade at 54 rpm (flat-wise only), 6.1904 Hz 

Figure 2.11 sixth mode of Sandia blade at 54 rpm (flat-wise only), 8.5349 Hz 
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Figure 2.12 seventh mode of Sandia blade at 54 rpm (flat-wise only), 11.749 Hz 

Figure 2.13 eighth mode of Sandia blade at 54 rpm (edge-wise and torsion), 13.52 Hz 
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Figure 2.14 ninth mode of Sandia blade at 54 rpm (flat-wise only), 15.335 Hz 

Figure 2.15 tenth mode of Sandia blade at 54 rpm (flat-wise only), 19.354 Hz 
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Comparing the above results to Sandia results [11] shown in figure 2.16; we find that the 

results are approximately the same. This validates the finite element analysis based on the 

ANSYS WORKBENCH and SOLID 187 element, which will then be applied to stationary and 

ideal troposkein blades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can make some observations from these results.  Figures 2.6 and 2.10 show 

antisymmetric flat-wise bending modes.  The zero-point on these mode shapes is not 

exactly centered.  Indeed, observing animations shows that the zero point moves during 

pure modal vibrations.  Since the stiffness and mass matrices are symmetric, this zero point 

shifting suggests that these flat-wise modes also involve extension.  This will be 

Figure 2.16 mode shapes and frequencies of a single blade of a spinning rotor by Sandia 
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investigated later with both finite-elements and beam-based modeling.  The Sandia results 

also suggest this behavior. Also, the dominantly flat-wise (or possibly flat-wise/extension) 

and edge/torsion mode shapes suggests that the flat-wise and extension deformation 

coordinates may be nearly decoupled from the edge-wise and torsion deformation 

coordinates. A flatwise mode similar to a first mode of a clamped-clamped beam does not 

show up among the lower modes.  Such a mode of flatwise deformation will necessarily 

involve significant extension and compression.  Since extension is in a stiff orientation of a 

blade (axial deformation tends to be stiffer than bending), such a mode is likely to have a 

high frequency. 

2.4 FEM model for 17m diameter stationary blade of straight-circular-

straight shape  

We have validated our model by comparing the calculated mode shapes and corresponding 

modal frequencies of the Sandia shape spinning blade to those which were calculated by 

Sandia. Now we will consider the mode shapes and modal frequencies of the same blade 

analyzed in section 2.3 but under stationary conditions, which means the blade rotational 

velocity is zero. For brevity the mode shapes will not be plotted. For the same element size 

and meshing pattern, the stationary case modal analysis results can be summarized as 

shown in table 2.2 below. 

Table 2.2 Sandia (MSU) stationary blade first ten modal frequencies 

Mode No. Freqency shape 

1 1.2824 Flat-wise 

2 2.4595 Edge-wise 

3 2.8691 Flat-wise 
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Table 2.2 (cont’d) 

4 4.8445 Flat-wise 

5 5.6198 Edge/torsion 

6 7.1157 Flat-wise 

7 10.188 Flat-wise 

8 13.177 Edge/torsion 

9 13.693 Flat-wise 

10 17.649 Flat-wise 

 

2.5 FEM model for 17m diameter ideal troposkein shaped blade  

In this part a modal analysis has been done for an ideal troposkein shape blade with 17 m 

diameter and blade cross section as in figure 2.17. Here the cross section is a little bit 

different than the simplified Sandia shape blade to overcome the limitations of the number 

of elements in the ANSYS software academic version available in our lab at Michigan State 

University. 

 

 

 

 

 

 

 

 

Figure 2.17 NASA 0015 blade cross section for 17 m diameter ideal troposkein shape blade  
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Comparing the ideal troposkein blade cross section shown in 2.17 to the simplified Sandia 

blade cross section shown in figure 2.2 we can summarize the differences as in table 2.3 

below.  

Table 2.3 cross sectional properties for both Sandia and Ideal troposkein blades under 

discussion 

Property Sandia cross section  Ideal troposkein cross 
section  

Airfoil / chord length NASA 0015/0.61 m NASA 0015/ 0.61m 

Cross section area  0.98 ∗ 10−2m2 = 15.129 in2 0.96613 ∗ 10−2m2 = 14.975 in2  

Flat wise moment of inertia 0.859 ∗ 10−5m^4 0.819 ∗ 10−5m^4 

Edge wise moment of inertia  2.814 ∗ 10−4m^4 2.816 ∗ 10−4m^4 

Total mass of  17 m diameter 
blade  

810.82 Kg 802 Kg 

Blade material 6063-T6 Aluminum alloy 6063-T6 Aluminum alloy 
 

From table 2.3 we can see some differences in the blade total mass and edge wise moment 

of inertia and we see later how these differences will contribute in the comparison of  

modal analysis results for both blades   

2.5.1 3-D model for ideal troposkein shape blade  

2.5.1.1 Blade profile  

The troposkein shape shown in figure 2.18 can be described by [6] 

𝑧0

0.5𝐻
= 1 −

𝐹(𝑘𝑒;𝜙)

𝐹(𝑘𝑒;
𝜋

2
)
                                   (2.2) 
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where  

H is the blade height 

𝜙 = 𝐴𝑟𝑐𝑆𝑖𝑛[
𝑥0

𝑅
], where 𝜙 ranges from 0 to  

𝜋

2
 , R is the blade radius  

𝐹(𝑘𝑒; 𝜙)  is the incomplete elliptic integral of the first kind  

𝐹(𝑘𝑒;
𝜋

2
)  is the complete elliptic integral of the first kind 

2.5.1.2 Elliptic integral arguments 

𝑘𝑒 is elliptic integral arguments [6] and it can be calculated from  

𝛽 =
2𝑘𝑒 

1−𝑘2
∗

1

𝐹(𝑘𝑒 ;
𝜋

2
)
                           (2.3) 

In Eq. 2.3 𝛽 =
𝑅

𝐻
 . 

Solving Eq. (2.3) using Matlab for R=8.5m and H=24.476 gives 𝑘𝑒 =0.457 

2.5.1.3 Blade length  

The blade length can be calculated from 𝑘𝑒 and the blade height 2H [6] as in Equation 2.4  

Figure 2.18 Troposkein shape 
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𝐿

2𝐻
=

2

1−𝐾2
∗
𝐸(𝑘𝑒;

𝜋

2
)

𝐹(𝑘𝑒;
𝜋

2
)
− 1                                                      (2.4) 

Solving Eq. 2.4 using MATLAB for 2H=24.476 m and k=0.457 gives L=30.42 m which is 

approximately the same length of Sandia 17 m diameter simplified shape discussed in 

sections 2.2 and 2.3. Plotting Eq. (2.2) for x0 ranging from 0 to R on MATLAB, where R=8.5 

and H=12.238 m, gives half of the blade shape, as in figure 2.19. The 3-D blade model can be 

generated by combining the blade cross section figure 2.17 and blade profile figure 2.19. 

 

 

 

 

 

 

 

 

2.5.2 FEM modal analysis for 17m diameter blade with ideal troposkein shape  

A modal analysis for 17 m diameter ideal troposkein shape blade has been done using 

ANSYS WORKBENCH by meshing the blade structure using SOLID 187 element and 

clamping both ends of the blade except for rotation. The blade assumed to be rotating at 

constant rotational velocity of 54 rpm. The mesh pattern used here is the same as the mesh 

pattern used for simplified Sandia blade shape to compare the results of both blades 

significantly. 

Figure 2.19 17 m diameter troposkein shape with H= 12.238 m 
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The first 10 modes and the corresponding natural frequencies of the blade have been 

calculated and the results for the natural frequencies indicated in table 2.4 and the modes 

in figures 2.20 to 2.29. The stationary ideal troposkein shaped blade was also analyzed and 

the modal frequencies are listed in table 2.5, but the mode shapes are not shown for brevity  

Table.2.4.first 10 natural frequencies of 17 m diameter ideal troposkein shape blade 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.20 first mode for the troposkein blade at 54 rpm (flat-wise only), 1.87 Hz 
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Figure 2.21 second mode for the troposkein blade at 54 rpm (edge-wise only), 2.34 Hz 

Figure 2.22 third mode for the troposkein blade at 54 rpm (flat-wise only), 3.68 Hz 
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Figure 2.24 fifth mode for the troposkein blade at 54 rpm (edge-wise & torsion), 6.2 Hz 

Figure 2.23 fourth mode for the troposkein blade at 54 rpm (flat-wise only), 5.82 Hz 
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Figure 2.25 sixth mode for the troposkein blade at 54 rpm (flat-wise only), 8.4 Hz 

Figure 2.26 seventh mode for the troposkein blade at 54 rpm (flat-wise only), 11.36 Hz 
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Figure 2.27eighth mode for the troposkein blade at 54 rpm (edge-wise / torsion), 13.3 Hz 

Figure 2.28 ninth mode for the troposkein blade at 54 rpm (flat-wise only), 14.82 Hz 
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Table 2.5. Comparison of the lower modal frequencies as obtained by finite element 

analysis. "Sandia" refers to the straight-circular-straight blade model. Spinning occurs at 54 

rpm. F (flat-wise), E (edge-wise), and ET (edge-wise/ torsion)  

Mode # Sandia(54 

rpm) 

Sandia (MSU) 

54rpm 

Troposkein 

54 rpm 

Sandia (MSU) 

stationary 

Troposkein  

(stationary  

Freq.  shape Freq.  shape Freq. shape Freq. shape Freq. shape 

1 1.99 F 2.04 F 1.87 F 1.28 F 1.28 F 

2 2.54 E 2.57 E 2.34 E 2.46 E 2.3 E 

3 3.69 F 4 F 3.68 F 2.87 F 2.81 F 

4 5.94 ET 5.94 ET 5.82 F 4.85 F 4.78 F 

5 6.06 F 6.2 F 6.2 ET 5.62 ET 5.6 ET 

6 8.47 F 8.54 F 8.36 F 7.12 F 7.21 F 

7 11.72 F 11.75 F 11.36 F 10.2 F 10.14 F 

8 13.51 ET 13.52 ET 13.3 ET 13.2 ET 13.06 ET 

9   15.34 F 14.82 F 13.7 F 13.55 F 

10   19.354 F 18.737 F 17.65 F 17.43 F 

Figure 2.29 tenth mode for the troposkein blade at 54 rpm (flat-wise only), 18.74 Hz 
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Table 2.5 summarizes our results for comparing the FEA results of Sandia blade and ideal 

troposkein blade for both stationary and rotating condition with constant rotational 

velocity 54 rpm as follows.  

1. For the spinning case of the simplified blade we find that our finite element model 

results and Sandia finite element results are essentially the same. 

2. Comparing the spinning blade (54 rpm) first ten modes for ideal troposkein shape and 

Sandia simplified shape we found that the natural frequencies spinning of ideal 

troposkein shape is little less than the natural frequencies of Sandia one. This difference 

may be because the ideal troposkein shape is slightly different, and its cross section is 

little bit different than the simplified Sandia shape blade to overcome the limitations of 

the number of elements in the ANSYS software academic version available in our lab, 

which makes the ideal troposkein shaped blade is little lighter than the Sandia one. 

3.  For stationary free vibration case the first ten mode shapes for Sandia and ideal 

troposkein shapes are essentially the same, but the natural frequencies of ideal 

troposkein shape are a little lower than for simplified Sandia shape. This difference in 

modal frequencies may be because of the difference in profile or difference in cross 

section to overcome the ANSYS limitation problem as we mentioned before. 

4. The spinning blades have increased modal frequencies.  The increase is more significant 

in the flat-wise modes than the edge-wise/torsion modes.  It is likely that the spin 

stiffening induces tension in the blade, and has a more significant effect on flat-wise 

bending than torsion.  Since the flat-wise modal frequencies undergo larger changes 

under spin, in some cases their frequencies become larger than a nearby edge/torsion 

mode, and the modal ordering therefore changes slightly. 
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3 Chapter 3: Analytical beam-based formulation of troposkein 

shaped blade modal analysis    

3.1 Introduction  

In this chapter we will study the vibration of Darrieus wind turbine blade with a 

troposkein-shape. Because of the blade shape complexity we will use an assumed modes 

method for discretizing the kinetic energy and potential energy for the case of free 

vibration (no aerodynamic forces condition). The gravitational effect will be neglected and 

Lagrange’s equation will be used to formulate the mass and stiffness matrices which can 

then be used to calculate the natural frequency and mode shapes analytically. 

In the current work we will use the clamped-clamped beam modes as our assumed modal 

functions to formulate the displacement functions for the blade, and by substituting these 

functions and their derivatives we can get descretized expressions for the energies, which 

can be used to approximate the modes and frequencies. 

3.2 Blade potential energy  

The potential energy of the blade can be divided in to two parts: 

1. Strain energy  

2. Gravitational potential energy or gravitational work  

Here we will consider the strain energy only. The gravitational potential energy will be 

neglected in this initial study. The strain energy SE for an element of volume V can be 

expressed as  

S𝐸 =
1

2
𝑉𝜎𝜖              (3.1)                    

where  
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V is the volume  

σ is the engineering stress 

𝜖 is the engineering strain  

To express the blade strain energy using equation (3.1), several orthogonal coordinate 

systems will be employed. These coordinate systems are shown in figures 3.1, 3.2, and 3.3 

and can be defined as follows 

1. Inertial coordinate system (XI YI ZI - system). As shown in figure 3.1 the ZI-axis coincides 

with the vertical axis of the rotor. The XI-axis aligned with the free stream wind velocity, 

𝑉∞. The YI-axis is normal to XI-ZI plane. 

2. Rotating coordinate system (XR YR ZR - system). As shown in figure 3.1, this system is 

obtained by rotating the XI YI ZI – system by an angle τ =Ω*t, where Ω is the turbine 

rotational velocity. 

3. Blade coordinate system B1 (XB1YB1ZB1-system) ; as shown in figure 3.1 this blade local 

coordinate system has its origin coincident with the blade cross section shear center 

and parallel to the XR YR ZR – system. The unit vectors of this system are 𝑒
−

𝑥B1 , 𝑒
−

𝑦B1 , 𝑒
−

𝑧B1  in 

XB1 ,YB1 ,ZB1 respectively  

4. Blade coordinate system B2 (XB2YB2ZB2-system).  As shown in figure 3.1, this system is 

obtained by rotating the B1 system about the negative YB1-axis by an angle θ (θ is the 

meridian angle, which we will discuss later in detail). The unit vectors of this system are 

𝑒
−

𝑥B2 , 𝑒
−

𝑦B2 , 𝑒
−

𝑧B2  in XB2 , YB2 , ZB2, respectively.  

5. Blade principle axes system B3 (XB3YB3ZB3-system). As shown in figure 3.2, in this 

coordinate system XB3 and YB3 are taken to be aligned with the minor and major 
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principle axes of the blade cross section, respectively. The unit vectors of this system 

are 𝑒
−

𝑥B3 , 𝑒
−

𝑦B3 , 𝑒
−

𝑧B3  in XB3 , YB3, ZB3, respectively.  

6. The blade coordinate system B6 (XB6YB6ZB6-system) is shown in figure 3.3 and is 

obtained by translating and rotating the B3-system as we will see later in this chapter. 

7. The deformations of the blade elastic axis are denoted by u, v, and w, in the XB3 ,YB3 , ZB3 

respectively, and ϕ represents the twisting deformation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 vertical-axis wind turbine and coordinate systems [8] 

Figure 3.2 coordinate systems of blade cross section [8] 
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The blade strain energy can be expressed based on eq. (3.1) and using the B3 coordinate 

system as 

𝑆𝐸 =
1

2
∫ ∫ ∫ (𝜎𝑧3𝑧3𝛾𝑧3𝑧3 + 𝜎𝑧3𝑥3𝛾𝑧3𝑥3 + 𝜎𝑧3𝑦3𝛾𝑧3𝑦3) ⅆ𝑥3 ⅆ𝑦3 ⅆ𝑧3

𝑋3

0

𝑌3

0

𝑆

0

              (3.2) 

Here because of the blade slenderness assumption we neglected 𝛾𝑥3𝑥3 ,  𝛾𝑥3𝑦3 , and 𝛾𝑦3𝑦3 . 

Assuming that the engineering strain components 𝛾𝑧3𝑧3 , 𝛾𝑧3𝑥3, 𝛾𝑧3𝑦3  are equal to the 

corresponding components of Lagrangian strain 𝜖𝑧3𝑧3 , 𝜖𝑧3𝑥3, 𝜖𝑧3𝑦3 , and using Hooke’s law we 

can get  

𝜎𝑧3𝑧3 = 𝐸𝛾𝑧3𝑧3 = 𝐸𝜖𝑧3𝑧3  

𝜎𝑧3𝑥3 = 𝐺𝛾𝑧3𝑥3 = 2𝐺𝜖𝑧3𝑥3                                                                  (3.3) 

Figure 3.3 axis of blade before and after deformation, and coordinate systems [8] 
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𝜎𝑧3𝑦3 = 𝐺𝛾𝑧3𝑦3 = 2𝐺𝜖𝑧3𝑦3  

Also 

 𝛾𝑧3𝑧3 = 𝜖𝑧3𝑧3  

𝛾𝑧3𝑥3 = 2𝜖𝑧3𝑥3                                                                                       (3.4) 

𝛾𝑧3𝑦3 = 2𝜖𝑧3𝑦3  

Substituting equations (3.3) and (3.4) into (3.2), we get  

𝑆𝐸 =
1

2
∫ ∫ ∫ (𝐸𝜖𝑧3𝑧3

2 + 4𝐺(𝜖𝑧3𝑥3
2 + 𝜖𝑧3𝑦3

2 )) ⅆ𝑥3 ⅆ𝑦3 ⅆ𝑧3
𝑋3

0

𝑌3

0

𝑆

0

          (3.5) 

From eq. (3.5) we can find that the blade strain energy is only a function of Lagrangian 

strain components 𝜖𝑧3𝑧3 , 𝜖𝑧3𝑥3 , 𝜖𝑧3𝑦3 . So we need to calculate these strain components for 

the troposkein shaped blade. 

3.2.1 Derivation of strain equations  

From continuum mechanics we know that the Lagrangian finite strain 𝜖 for a beam of 

length L subjected to axial stress is given by [20] 

𝜖 =
1

2
(
𝑙2−𝐿2

𝐿2
)                                                              (3.6)  

where 

l is the extended length  

From eq. (3.6) we can express the strain tensor for the blade as  

𝜖𝑖𝑗 =
1

2
(
❘𝑑𝑟
−
1❘
2−❘𝑑𝑟

−
0❘
2

❘𝑑𝑟
−
0❘
2 )   (3.7) 

where  𝑟0
−

  and 𝑟1
–

 are the position vectors of an arbitrary mass point in the cross section of 

the blade before and after deformation respectively [10]  with respect to the origin of the 

inertial coordinate system (XIYIZI)  as shown in figure 3.1  
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Rearranging eq. 3.7 we get   

❘ⅆ𝑟
−

1❘
 2 − ❘ⅆ𝑟

−

0❘
 2 = 2❘ⅆ𝑟

−

0❘
 2𝜖𝑖𝑗                           (3.8) 

Using figures 3.1, 3.2, and 3.3, and assuming that the blade cross section deformation is 

negligible, using a slender blade assumption we get  

𝑟
−

0 = 𝑅
−

+ 𝑥3𝑒
−

𝑥𝐵3 + 𝑦3𝑒
−

𝑦𝐵3                                               

𝑟
−

1 = 𝑅
−

1 + 𝑥3𝑒
−

𝑥𝐵6 + 𝑦3𝑒
−

𝑦𝐵6                                     (3.9) 

where 

1. R
−

 and  R
−

1 are the position vectors of the blade cross section shear center (P) before and 

after deformation with respect to the inertial coordinate system (XIYIZI) which is 

shown in figure 3.3.  

2. 𝑥3 and 𝑦3 are the coordinates of any arbitrary point in the blade cross section with 

respect to the coordinate system (𝑋𝐵3𝑌𝐵3) shown in figure 3.2, where in this system 𝑋3 

and 𝑌3 are taken to be coincident with blade cross section minor and major axes, 

respectively, and e
−

xB3  and e
−

yB3  are the unit vectors in the direction of  𝑋𝐵3 and 𝑌𝐵3 

respectively.  

3. 𝑒
−

𝑥𝐵6  and 𝑒
−

𝑦𝐵6   are position vectors in the directions of 𝑋𝐵6 and 𝑌𝐵6 ,respectively, where 

𝑋𝐵6 and 𝑌𝐵6 are the minor and major axes of the blade cross section, respectively, after 

deformation. We will indicate later how we get the B6- coordinate system from B3-

coordinate system.  

Now from eq. (3.8) we need the differentials of 𝑟0
−

  and 𝑟1
–

. Firstly, 

ⅆ𝑟
−

0 = [
𝑑𝑅
−

𝑑𝑠
+ 𝑥3

𝑑𝑒
−
𝑥𝐵3

𝑑𝑠
+ 𝑦3

𝑑𝑒
−
𝑦𝐵3

𝑑𝑠
]ⅆ𝑠 + 𝑒

−

𝑥𝐵3ⅆ𝑥3 + 𝑒
−

𝑦𝐵3ⅆ𝑦3                             (3.10) 
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where s is the same as Z3, and represents a coordinate tangent to the blade elastic axis at 

each cross section and perpendicular to the cross section minor and major axes. The 

derivative of the unit vectors with respect to the axial blade coordinate s can be written as  

𝑑𝑒
−
𝑥𝐵3

𝑑𝑠
= 𝜔
−

𝑋𝐵3𝑌𝐵3𝑍𝐵3 × 𝑒
−

𝑥𝐵3  

𝑑𝑒
−
𝑦𝐵3

𝑑𝑠
= 𝜔
−

𝑋𝐵3𝑌𝐵3𝑍𝐵3 × 𝑒
−

𝑦𝐵3                                                                                 (3.11) 

The curvature vector of the undeformed blade ω
−

XB3YB3ZB3  is given by  

𝜔
−

𝑋B3𝑌B3𝑍B3 = −𝜃′𝑒
−

𝑦B2 + 𝛾′𝑒
−

𝑧B3                                                                          (3.12) 

where  

𝜃  is the blade meridian angle or the angle between the vertical and the tangent to the blade 

elastic axis at any point.   

𝛾 is the total section pitch angle which includes the built-in twist and section pitch change 

due to control inputs. In this thesis we will consider a blade with zero pitch angle.  

From figure 3.2 the coordinate system B2 is the coordinate system generated by rotating 

the B1-coordinate system by an angle 𝜃 about the negative yB1-axis to make the zB1-axis 

tangent to the blade elastic axis. The transformation matrix between the B2 and B3 

coordinate systems is  

          (

𝑒
−

𝑥𝐵2

𝑒
−

𝑦𝐵2

𝑒
−

𝑧𝐵2

) = [
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0
0 0 1

](

𝑒
−

𝑥𝐵3

𝑒
−

𝑦𝐵3

𝑒
−

𝑧𝐵3

)                                                (3.13) 

Eq. (3.13) gives  

𝑒
−

𝑦B2 = 𝑒
−

𝑥B3sinγ + 𝑒
−

𝑦B3cosγ                                                                              (3.14) 

Substituting eq. (3.14) in eq. (3.12) gives 
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𝜔
−

𝑋B3𝑌B3𝑍B3 = −𝜃′sinγ𝑒
−

𝑥B3 − 𝜃′cosγ𝑒
−

𝑦B3 + 𝛾′𝑒
−

𝑧B3                                             (3.15) 

Now eq. (3.11) can be written as  

de
−
xB3

ds
= 𝛾′e

−

yB3 + θ′cosγe
−

zB3   

de
−
yB3

ds
= −𝛾′e

−

xB3 − θ′sinγe
−

zB3                                                                             (3.16)                        

Substituting equation (3.16) into equation (3.10) and letting 

𝑘𝑥B3 = −𝜃′sinγ  

𝑘𝑦B3 = −𝜃′cosγ  

𝑘𝑧B3 = 𝛾′  

leads to 

ⅆ𝑟
−

0 = (dx3 − 𝑦3𝑘𝑧B3ds)𝑒
−

𝑥B3 + (𝑥3𝑘𝑧B3ds + dy3)𝑒
−

𝑦B3  

+(1 + 𝑦3𝑘𝑥B3 − 𝑥3𝑘𝑦B3)ds𝑒
−

𝑧B3                                                                              (3.17) 

With the same procedure as  ⅆ𝑟
−

0 we can express ⅆ𝑟
−

1 as  

 

ⅆ𝑟
−

1 = (ⅆ𝑥3 − 𝑦3𝑘𝑧𝐵6ⅆ𝑠1)𝑒
−

𝑥𝐵6 + (ⅆ𝑦3 + 𝑥3𝑘𝑧𝐵6ⅆ𝑠1)𝑒
−

𝑦𝐵6  

+(1 − 𝑥3𝑘𝑦𝐵6 + 𝑦3𝑘𝑥𝐵6)ⅆ𝑠1𝑒
−

𝑧𝐵6                                                                            (3.18) 

Now from eq. (3.8) the Lagrangian strain tensor can be defined as follows  

ⅆ𝑟
−

1. ⅆ𝑟
−

1 − ⅆ𝑟
−

0. ⅆ𝑟
−

0 = 2[ⅆ𝑥3ⅆ𝑥3ⅆ𝑧3][𝜖𝑖𝑗] (
ⅆ𝑥3
ⅆ𝑥3
ⅆ𝑧3

)                                                   (3.19) 

𝜖𝑖𝑗 = (

𝜖𝑥3𝑥3 𝜖𝑥3𝑦3 𝜖𝑥3𝑧3
𝜖𝑦3𝑥3 𝜖𝑦3𝑦3 𝜖𝑦3𝑧3
𝜖𝑧3𝑥3 𝜖𝑧3𝑦3 𝜖𝑧3𝑧3

)  

Expanding the right hand side of eq. (3.19) gives  
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2[ⅆ𝑥3ⅆ𝑥3ⅆ𝑧3][𝜖𝑖𝑗] (
ⅆ𝑥3
ⅆ𝑥3
ⅆ𝑧3

) = 2(𝜖𝑥3𝑥3ⅆ𝑥3
2 + 𝜖𝑥3𝑦3ⅆ𝑥3ⅆ𝑦3 + 𝜖𝑥3𝑧3ⅆ𝑥3ⅆ𝑧3 + 𝜖𝑦3𝑦3ⅆ𝑦3

2 +

𝜖𝑦3𝑥3ⅆ𝑥3ⅆ𝑦3 + 𝜖𝑦3𝑧3ⅆ𝑦3ⅆ𝑧3 + 𝜖𝑧3𝑧3ⅆ𝑧3
2 + 𝜖𝑧3𝑥3ⅆ𝑥3ⅆ𝑧3 + 𝜖𝑧3𝑦3ⅆ𝑧3ⅆ𝑦3)  

Using the fact that the strain tensor is symmetric and neglecting any strain component in 

the plane of the blade cross section (x3-y3) because of the blade slenderness, the above 

equation reduces to 

2[ⅆ𝑥3ⅆ𝑥3ⅆ𝑧3][𝜖𝑖𝑗] (
ⅆ𝑥3
ⅆ𝑥3
ⅆ𝑧3

) = 4𝜖𝑧3𝑥3ⅆ𝑥3ⅆ𝑧3 + 4𝜖𝑧3𝑦3ⅆ𝑦3ⅆ𝑧3 + 2𝜖𝑧3𝑧3ⅆ𝑧3
2             (3.20) 

By simplifying the left hand side of eq. (3.19) 

ⅆ𝑟
−

1. ⅆ𝑟
−

1 − ⅆ𝑟
−

0. ⅆ𝑟
−

0 = {(ⅆ𝑥3 − 𝑦3𝑘𝑧𝐵6ⅆ𝑠1)
2
+ (ⅆ𝑦3 + 𝑥3𝑘𝑧𝐵6ⅆ𝑠1)

2
+ (1 − 𝑥3𝑘𝑦𝐵6 +

𝑦3𝑘𝑥𝐵6)
2
ⅆ𝑠1
2} − {(ⅆ𝑥3 − 𝑦3𝑘𝑧𝐵3ⅆ𝑠)

2
+ (ⅆ𝑦3 + 𝑥3𝑘𝑧𝐵3ⅆ𝑠)

2
+ (1 − 𝑥3𝑘𝑦𝐵3 + 𝑦3𝑘𝑥𝐵3)

2ⅆ𝑠2}                               

(3.21) 

The relation between ds1 and ds can be expressed as [10] 

ⅆ𝑠1 = (1 + 2 𝜖𝑒)
0.5ⅆ𝑠                             (3.22) 

where 𝜖𝑒  is the extensional component of the Green’s strain tensor  

Substituting eq. (3.22) in to (3.21) and expanding leads to  

ⅆ𝑟
−

1. ⅆ𝑟
−

1 − ⅆ𝑟
−

0. ⅆ𝑟
−

0 = −ⅆ𝑠
2 + ⅆ𝑠2(1 + 2𝜖𝑒) + 2ⅆ𝑠

2𝑘𝑦𝐵3𝑥3 − 2ⅆ𝑠
2(1 + 2𝜖𝑒)𝑘𝑦𝐵6𝑥3 −

2ⅆ𝑠ⅆ𝑦3𝑘𝑧𝐵3𝑥3 + 2ⅆ𝑠(1 + 2𝜖𝑒)ⅆ𝑦3𝑘𝑧𝐵6𝑥3 − ⅆ𝑠
2𝑘𝑦𝐵3
2 𝑥3

2 + ⅆ𝑠2(1 + 2𝜖𝑒)𝑘𝑦𝐵6
2 𝑥3

2 − ⅆ𝑠2𝑘𝑧𝐵3
2 𝑥3

2 +

ⅆ𝑠2(1 + 2𝜖𝑒)𝑘𝑧𝐵6
2 𝑥3

2 − 2ⅆ𝑠2𝑘𝑥𝐵3𝑦3 + 2ⅆ𝑠
2(1 + 2𝜖𝑒)𝑘𝑥𝐵6𝑦3 + 2ⅆ𝑠ⅆ𝑥3𝑘𝑧𝐵3𝑦3 − 2ⅆ𝑠(1 +

2𝜖𝑒)ⅆ𝑥3𝑘𝑧𝐵6𝑦3 + 2ⅆ𝑠
2𝑘𝑥𝐵3𝑘𝑦𝐵3𝑥3𝑦3 − 2ⅆ𝑠

2(1 + 2𝜖𝑒)𝑘𝑥𝐵6𝑘𝑦𝐵6𝑥3𝑦3 − ⅆ𝑠
2𝑘𝑥𝐵3
2 𝑦3

2 + ⅆ𝑠2(1 +

2𝜖𝑒)𝑘𝑥𝐵6
2 𝑦3

2 − ⅆ𝑠2𝑘𝑧𝐵3
2 𝑦3

2 + ⅆ𝑠2(1 + 2𝜖𝑒)𝑘𝑧𝐵6
2 𝑦3

2  
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Assuming that the extensional strain component 𝜖𝑒  is negligible compared to unity, we 

have  

ⅆ𝑟
−

1. ⅆ𝑟
−

1 − ⅆ𝑟
−

0. ⅆ𝑟
−

0 = 2ⅆ𝑠
2𝜖𝑒 + 2ⅆ𝑠

2𝑘𝑦𝐵3𝑥3 − 2ⅆ𝑠
2𝑘𝑦𝐵6𝑥3 − 2ⅆ𝑠ⅆ𝑦3𝑘𝑧𝐵3𝑥3 +

2ⅆ𝑠ⅆ𝑦3𝑘𝑧𝐵6𝑥3 − ⅆ𝑠
2𝑘𝑦𝐵3
2 𝑥3

2 + ⅆ𝑠2𝑘𝑦𝐵6
2 𝑥3

2 − ⅆ𝑠2𝑘𝑧𝐵3
2 𝑥3

2 + ⅆ𝑠2𝑘𝑧𝐵6
2 𝑥3

2 − 2ⅆ𝑠2𝑘𝑥𝐵3𝑦3 +

2ⅆ𝑠2𝑘𝑥𝐵6𝑦3 + 2ⅆ𝑠ⅆ𝑥3𝑘𝑧𝐵3𝑦3 − 2ⅆ𝑠ⅆ𝑥3𝑘𝑧𝐵6𝑦3 + 2ⅆ𝑠
2𝑘𝑥𝐵3𝑘𝑦𝐵3𝑥3𝑦3 − 2ⅆ𝑠

2𝑘𝑥𝐵6𝑘𝑦𝐵6𝑥3𝑦3 −

ⅆ𝑠2𝑘𝑥𝐵3
2 𝑦3

2 + ⅆ𝑠2𝑘𝑥𝐵6
2 𝑦3

2 − ⅆ𝑠2𝑘𝑧𝐵3
2 𝑦3

2 + ⅆ𝑠2𝑘𝑧𝐵6
2 𝑦3

2                                     (3.23)                                    

Simplifying eq. (3.23) considering (dz3 = ds) along the blade elastic axis 

ⅆ𝑟
−

1. ⅆ𝑟
−

1 − ⅆ𝑟
−

0. ⅆ𝑟
−

0 = 2(𝜖𝑒 + 𝑥3(𝑘𝑦𝐵3 − 𝑘𝑦𝐵6) − 𝑦3(𝑘𝑥𝐵3 − 𝑘𝑥𝐵6) + 𝑥3𝑦3(𝑘𝑥𝐵3𝑘𝑦𝐵3 −

𝑘𝑥𝐵6𝑘𝑦𝐵6) −
𝑦3
2

2
(𝑘𝑥𝐵3
2 − 𝑘𝑥𝐵6

2 ) +
𝑥3
2

2
(𝑘𝑦𝐵6
2 − 𝑘𝑦𝐵3

2 ) +
(𝑥3
2+𝑦3
2)

2
(𝑘𝑧𝐵6
2 − 𝑘𝑧𝐵3

2 ))ⅆ𝑧3
2 − 2𝑥3(𝑘𝑧𝐵3 −

𝑘𝑧𝐵6)ⅆ𝑧3ⅆ𝑦3 + 2𝑦3(𝑘𝑧𝐵3 − 𝑘𝑧𝐵6)ⅆ𝑧3ⅆ𝑥3                                                                   (3.24)  

Comparing the right hand side in eq. (3.20) to the left hand side in eq. (3.24) we find  

ϵz3z3 = ϵe + x3(kyB3 − kyB6) − y3(kxB3 − kxB6) + x3y3(kxB3kyB3 − kxB6kyB6) −
y3
2

2
(kxB3
2 −

kxB6
2 ) +

x3
2

2
(kyB6
2 − kyB3

2 ) +
(x3
2+y3
2)

2
(kzB6
2 − kzB3

2 )                                                       (3.25) 

𝜖𝑧3𝑥3 =
𝑦3

2
(𝑘𝑧𝐵3 − 𝑘𝑧𝐵6)                                                                                                   (3.26) 

𝜖𝑧3𝑦3 =
𝑥3

2
(𝑘𝑧𝐵3 − 𝑘𝑧𝐵6)                                                                                                   (3.27) 

For calculating the blade strain energy we need to get the strains in equations (3.25), 

(3.26), and (3.27) in terms of the elastic deformations (u, v, and w) and the twisting 

deformation ϕ, where u, v, and w are deformations in x3, y3, and z3 directions respectively.   

As in Ref. [10] appendix A 

𝜖𝑒 = 𝛼𝑧 +
1

2
(𝛼𝑥
2 + 𝛼𝑦

2)                                                                                                        (3.28)  

𝑘𝑥𝐵6 = 𝑘𝑥𝐵3 − 𝛼𝑥𝑘𝑧𝐵3 − 𝛼𝑦
′ −
1

2
𝑘𝑥𝐵3𝛼𝑥

2 −
1

2
𝑘𝑥𝐵3𝜙

2 +𝜙𝛼𝑥
′ − 𝜙𝛼𝑦𝑘𝑧𝐵3 +𝜙𝑘𝑦𝐵3   
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𝑘𝑦𝐵6 = 𝑘𝑦𝐵3 − 𝛼𝑦𝑘𝑧𝐵3 + 𝛼𝑥
′ −
1

2
𝑘𝑦𝐵3(𝛼𝑦

2 +𝜙2) + 𝜙𝛼𝑦
′ + 𝜙𝛼𝑥𝑘𝑧𝐵3 −𝜙𝑘𝑥𝐵3 − 𝑘𝑥𝐵3𝛼𝑥𝛼𝑦         

(3.29)  

𝑘𝑧𝐵6 = 𝛼𝑥𝑘𝑥𝐵3 + 𝛼𝑦𝑘𝑦𝐵3 + 𝑘𝑧𝐵3 −
1

2
𝑘𝑧𝐵3(𝛼𝑦

2 + 𝛼𝑥
2) + 𝜙′ + 𝛼𝑥

′𝛼𝑦          

For case of zero section pitch angle [10] 

𝑘𝑥B3 = 0  

𝑘𝑦B3 = −𝜃
′  

𝑘𝑧B3 = 0                                                                                                                 (3.30)  

𝛼𝑥 = 𝑢
′ −𝑤𝜃′  

𝛼𝑦 = 𝑣
′  

𝛼𝑧 = 𝑤
′ + 𝑢𝜃′  

Substituting equations (3.28), (3.29), and (3.30) in to equations (3.25), (3.26), (3.27) we get   

𝜖𝑧3𝑧3 =
(𝑣′)2

2
+𝑤′ + 𝑢𝜃′ +

1

2
(𝑢′ −𝑤𝜃′)2 + 𝑦3(−𝜙𝜃

′ + 𝜙(𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′) − 𝑣′′) −

𝑥3(
𝜃′

2
(𝜙2 + (𝑣′)2) + (𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′) + 𝜙𝑣′′) + 𝑥3

2(−
1

2
𝜙2(𝜃′)2 − 𝜃′(𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′) +

1

2
((𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′))2 −𝜙𝜃′𝑣′′) + 𝑥3𝑦3(−𝜙(𝜃

′)2 + 2𝜙𝜃′(𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′) − 𝜃′𝑣′′ +

(𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′)𝑣′′) + 𝑦3
2(
1

2
𝜙2(𝜃′)2 +

1

2
(𝑣′)2(𝜃′)2 + 𝜙𝜃′𝑣′′ +

(𝑣′′)2

2
) +
(𝑥3
2+𝑦3
2)

2
((𝜙′)2 −

𝑣′𝜃′𝜙′)                                                                                                                                (3.31)                      

𝜖𝑧3𝑥3 = −
1

2
𝑦3(−𝑣

′𝜃′ +𝜙′ + 𝑣′(𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′))                                              (3.32) 

𝜖𝑧3𝑦3 =
1

2
𝑥3(−𝑣

′𝜃′ +𝜙′ + 𝑣′(𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′))                                                  (3.33) 

Now substituting equations (3.31), (3.32), and (3.33) in to equation (3.5), we can get the 

strain energy as a function of u, v, w, and ϕ and their derivatives  
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𝑆𝐸 =
1

2

∫

 
 
 
∫ ∫ {𝐸 [(

(𝑣′)
2

2
+ 𝑤′ + 𝑢𝜃′ +

1

2
(𝑢′ − 𝑤𝜃′)2 + 𝑦3(−𝜙𝜃

′ + 𝜙(𝑢′′ −𝑤′𝜃′ −

𝑋3

0

𝑌3

0

𝑆

0

𝑤𝜃′′) − 𝑣′′) − 𝑥3 (
𝜃′

2
(𝜙2 + (𝑣′)2) + (𝑢′′ − 𝑤′𝜃′ −𝑤𝜃′′) + 𝜙𝑣′′) + 𝑥3

2 (−
1

2
𝜙2(𝜃′)2 −

𝜃′(𝑢′′ − 𝑤′𝜃′ −𝑤𝜃′′) +
1

2
((𝑢′′ − 𝑤′𝜃′ −𝑤𝜃′′))

2
−𝜙𝜃′𝑣′′) + 𝑥3𝑦3(−𝜙(𝜃

′)2 + 2𝜙𝜃′(𝑢′′ −

𝑤′𝜃′ − 𝑤𝜃′′) − 𝜃′𝑣′′ + (𝑢′′ −𝑤′𝜃′ − 𝑤𝜃′′)𝑣′′) + 𝑦3
2 (
1

2
𝜙2(𝜃′)2 +

1

2
(𝑣′)2(𝜃′)2 + 𝜙𝜃′𝑣′′ +

(𝑣′′)
2

2
) +
(𝑥3
2+𝑦3
2)

2
((𝜙′)2 − 𝑣′𝜃′𝜙′))

2

] + 4𝐺 [(−
1

2
𝑦3(−𝑣

′𝜃′ +𝜙′ + 𝑣′(𝑢′′ −𝑤′𝜃′ −

𝑤𝜃′′)))
2

+ (
1

2
𝑥3(−𝑣

′𝜃′ +𝜙′ + 𝑣′(𝑢′′ −𝑤′𝜃′ − 𝑤𝜃′′)))
2

]} ⅆ𝑥3 ⅆ𝑦3 ⅆ𝑧3                  (3.34)                                                  

Because we seeking linear system of equations from Lagrange’s equation we will keep 

quadratic terms only so we can simplify eq. (3.34) as follows:   

𝑆𝐸 =
1

2

∫

 
 
 
∫ ∫ {𝐸[(𝑤′ + 𝑢𝜃′ + 𝑦3(−𝜙𝜃

′ − 𝑣′′) − 𝑥3(𝑢′′ − 𝑤′𝜃′ − 𝑤𝜃′′) + 𝑥3
2(−𝜃′(𝑢′′ −

𝑋3

0

𝑌3

0

𝑆

0

𝑤′𝜃′ − 𝑤𝜃′′)) + 𝑥3𝑦3(−𝜙(𝜃
′)2 − 𝜃′𝑣′′))2] + 4𝐺[(−

1

2
𝑦3(−𝑣

′𝜃′ +𝜙′))
2

+ (
1

2
𝑥3(−𝑣

′𝜃′ +

𝜙′))
2

]} ⅆ𝑥3 ⅆ𝑦3 ⅆ𝑧3                                                                       (3.35)       

where  

u, v, w, ϕ, and their derivatives represent u(s,t) , v(s,t) , w(s,t) , ϕ(s,t) and their derivatives. 

 Assuming that the blade cross section shown in figure 3.2 is symmetric about YB3-axis, the 

cross sectional properties resulting from expanding eq. (3.35) are defined as follows  

1. The blade cross section area    A = ∫ ∫ dx3 dy3 
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2. AeA = ∫ ∫ y3 dx3 dy3 {eA is  the chord-wise offset of area centeroid of cross section from 

elastic axis (has a positive value when measured in front of elastic axis and vice versa)} 

3. Edge-wise second moment of area of blade cross section Ix3x3 = ∫ ∫ y3
2 dx3 dy3 

4. Flat-wise second moment of area of blade cross section Iy3y3 = ∫ ∫ x3
2 dx3 dy3 

5. Polar second moment of area  J = ∫ ∫ (y3
2 + x3

2) dx3 dy3 

6. ∫ ∫ x3 dx3 dy3 = 0 

7. ∫ ∫ x3y3 dx3 dy3 = 0 

8. ∫ ∫ x3(x3
2 + y3

2) dx3 dy3 = 0 

9. ∫ ∫ y3x3
3 dx3 dy3 = 0 

10. ∫ ∫ x3y3
3 dx3 dy3 = 0 

11. ∫ ∫ x3y3
2 dx3 dy3 = 0 

12. 𝑃1 = ∫ ∫ 𝑥3
4 d𝑥3 d𝑦3 

13. 𝑃2 = ∫ ∫ 𝑥3
2𝑦3 d𝑥3 d𝑦3 

14. 𝑃3 = ∫ ∫ 𝑥3
2𝑦3
2 d𝑥3 d𝑦3       

Substituting the above blade cross sectional properties and expanding we get    

SE =
1

2
∫ {𝐸[𝐴((𝑤′)2 + 2𝑢𝑤′𝜃′ + 𝑢2(𝜃′)2) − 2𝐴𝑒𝐴(𝜙𝑤

′𝜃′ + 𝑢𝜙(𝜃′)2 +𝑤′𝑣′′ + 𝑢𝜃′𝑣′′) +
𝑆

0

𝐼𝑥3𝑥3(𝜙
2(𝜃′)2 + 2𝜙𝜃′𝑣′′ + (𝑣′′)2) + 𝑃3(𝜙

2(𝜃′)4 + 2𝜙(𝜃′)3𝑣′′ + (𝜃′)2(𝑣′′)2) +

4𝑃2(−𝜙𝑤
′(𝜃′)3 + 𝜙(𝜃′)2𝑢′′ −𝑤′(𝜃′)2𝑣′′ + 𝜃′𝑢′′𝑣′′ − 𝑤𝜙(𝜃′)2𝜃′′ − 𝑤𝜃′𝑣′′𝜃′′) +

𝐼𝑦3𝑦3(3(𝑤
′)2(𝜃′)2 + 2𝑢𝑤′(𝜃′)3 − 4𝑤′𝜃′𝑢′′ − 2𝑢(𝜃′)2𝑢′′ + (𝑢′′)2 + 4𝑤𝑤′𝜃′𝜃′′ +

2𝑢𝑤(𝜃′)2𝜃′′ − 2𝑤𝑢′′𝜃′′ +𝑤2(𝜃′′)2) + 𝑃1((𝑤
′)2(𝜃′)4 − 2𝑤′(𝜃′)3𝑢′′ + (𝜃′)2(𝑢′′)2 +

2𝑤𝑤′(𝜃′)3𝜃′′ − 2𝑤(𝜃′)2𝑢′′𝜃′′ + 𝑤2(𝜃′)2(𝜃′′)2)] + 𝐺𝐽[((𝑣′)2(𝜃′)2 − 2𝑣′𝜃′𝜙′ + (𝜙′)2)]} d𝑠                                         

(3.36) 
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3.3 Kinetic energy  

The kinetic energy of the blade in terms of r
−

1 can be given by  

𝑇 =
1

2
∫ ∫ ∫ 𝜌(

𝑑𝑟
−
1

𝑑𝑡
.
𝑑𝑟
−
1

𝑑𝑡
) ⅆ𝑥3 ⅆ𝑦3 ⅆ𝑧3

𝑋3

0

𝑌3

0

𝑆

0

)                             (3.37) 

In eq. (3.36) 

𝑑𝑟
−
1

𝑑𝑡
= 𝑟
.

1 +𝜔
−
× 𝑟
−

1                                                                           (3.38) 

With reference to figure 3.3 

𝜔
−

  is the angular velocity of the B3-system. 

 𝑟
−

1 is the position vector of an arbitrary mass point on the blade.  

Note: 𝜔
−

 and 𝑟
−

1 are not shown in figure 3.3. Then 

𝑟
−

1 = 𝑅
−

+ 𝛥𝑅
−

+ 𝑥3𝑒
−

𝑥𝐵6 + 𝑦3𝑒
−

𝑦𝐵6                                                     (3.39) 

𝑅
−

= 𝑥0𝑒
−

𝑥𝐼 + 𝑧0𝑒
−

𝑧𝐼   

For a nonrotating blade  

𝑅
−

= 𝑥0𝑒
−

𝑥𝑅 + 𝑧0𝑒
−

𝑧𝑅             

Because the R-system and B1-system are parallel we can express 𝑅
−

  as  

𝑅
−

= 𝑥0𝑒
−

𝑥𝐵1 + 𝑧0𝑒
−

𝑧𝐵1   

The coordinate transformation between the B1 and B2 coordinate systems is  

(

𝑒
−

𝑥𝐵1

𝑒
−

𝑦𝐵1

𝑒
−

𝑧𝐵1

) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

](

𝑒
−

𝑥𝐵2

𝑒
−

𝑦𝐵2

𝑒
−

𝑧𝐵2

)                                                     (3.40) 

Using eq. (3.40) 
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𝑅
−

= (𝑥0𝑐𝑜𝑠𝜃 + 𝑧0𝑠𝑖𝑛𝜃)𝑒
−

𝑥𝐵2 + (𝑧0𝑐𝑜𝑠𝜃 − 𝑥0𝑠𝑖𝑛𝜃)𝑒
−

𝑧𝐵2   

For zero section pitch angle B2 and B3 are the same so: 

𝑅
−

= (𝑥0𝑐𝑜𝑠𝜃 + 𝑧0𝑠𝑖𝑛𝜃)𝑒
−

𝑥𝐵3 + (𝑧0𝑐𝑜𝑠𝜃 − 𝑥0𝑠𝑖𝑛𝜃)𝑒
−

𝑧𝐵3                              (3.41) 

With reference to figure 3.3  

Note: u, v, w are not shown in figure 3.3 

𝛥𝑅
−

= 𝑢𝑒
−

𝑥𝐵3 + 𝑣𝑒
−

𝑦𝐵3 +𝑤𝑒
−

𝑧𝐵3                                                                               (3.42) 

The rotational transformation matrix [T] from B3 to B6 coordinates can be formulated by 

Eulerian-type angles [8] β, θ, and ζ, which can be defined as follows: 

1. β  is the positive rotation angle about yB3- axis which converts 

𝑥𝐵3𝑦𝐵3𝑧𝐵3  to 𝑥𝐵4𝑦𝐵4𝑧𝐵4  (not shown) 

2. ζ  is the positive rotation angle about the negative  𝑥𝐵4- axis which converts 𝑥𝐵4𝑦𝐵4𝑧𝐵4 to 

𝑥𝐵5𝑦𝐵5𝑧𝐵5(not shown) 

3. σ is the positive rotation about zB5  - axis which converts 𝑥𝐵5𝑦𝐵5𝑧𝐵5  to 𝑥𝐵6𝑦𝐵6𝑧𝐵6 . 

Applying these three rotations we get [T] as follows:  

[𝑇] =

[

𝑐𝑜𝑠 (𝛽)𝑐𝑜𝑠 (𝜎) − 𝑠𝑖𝑛 (𝜎)𝑠𝑖𝑛 (𝜁)𝑠𝑖𝑛 (𝛽) 𝑐𝑜𝑠 (𝜁)𝑠𝑖𝑛 (𝜎) −𝑐𝑜𝑠 (𝜎)𝑠𝑖𝑛 (𝛽) − 𝑠𝑖𝑛 (𝜎)𝑠𝑖𝑛 (𝜁)𝑐𝑜𝑠 (𝛽)
−𝑐𝑜𝑠 (𝛽)𝑠𝑖𝑛 (𝜎) − 𝑐𝑜𝑠 (𝜎)𝑠𝑖𝑛 (𝜁)𝑠𝑖𝑛 (𝛽) 𝑐𝑜𝑠 (𝜁)𝑐𝑜𝑠 (𝜎) 𝑠𝑖𝑛 (𝛽)𝑠𝑖𝑛 (𝜎) − 𝑐𝑜𝑠 (𝜎)𝑠𝑖𝑛 (𝜁)𝑐𝑜𝑠 (𝛽)

𝑐𝑜𝑠 (𝜁)𝑠𝑖𝑛 (𝛽) 𝑠𝑖𝑛 (𝜁) 𝑐𝑜𝑠 (𝛽)𝑐𝑜𝑠 (𝜁)
] 

(3.43) 

Rewriting [T] matrix as a function of strain components u, v, w, and ϕ we get [10] 

[𝑇] =

[
 
 
 
 1 −

𝜙2

2
−
1

2
(𝑢′ − 𝜃′𝑤)2 𝜙 −(𝑢′ − 𝜃′𝑤) − 𝜙𝑣′

−𝜙 − (𝑢′ − 𝜃′𝑤)𝑣′ 1 −
𝜙2

2
−
𝑣′2

2
𝜙(𝑢′ − 𝜃′𝑤) − 𝑣′

(𝑢′ − 𝜃′𝑤) 𝑣′ 1 −
1

2
[(𝑢′ − 𝜃′𝑤)2 − 𝑣′2]]

 
 
 
 

                  (3.44) 
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The transformation from unit vectors in the B3- coordinate system to unit vectors in 

B6- coordinate system can be written as  

(

𝑒
−

𝑥𝐵6

𝑒
−

𝑦𝐵6

𝑒
−

𝑧𝐵6

) = [𝑇](

𝑒
−

𝑥𝐵3

𝑒
−

𝑦𝐵3

𝑒
−

𝑧𝐵3

)                                                                                                 (3.45) 

Using eq. (3.45) with eq. (3.44)  

𝑒
−

𝑥𝐵6 = (1 −
𝜙2

2
−
𝛼𝑥
2

2
)𝑒
−

𝑥𝐵3 +𝜙𝑒
−

𝑦𝐵3 + (−𝛼𝑥 − 𝜙𝛼𝑦)𝑒
−

𝑧𝐵3   

𝑒
−

𝑦𝐵6 = (−𝜙 − 𝛼𝑥𝛼𝑦)𝑒
−

𝑥𝐵3 + (1 −
𝜙2

2
−
𝛼𝑦
2

2
)𝑒
−

𝑦𝐵3 + (𝜙𝛼𝑥 − 𝛼𝑦)𝑒
−

𝑧𝐵3                          (3.46) 

Substituting equations (3.41), (3.42), and (3.46) in to equation 3.39 we get  

𝑟
−

1 = (𝑥0𝑐𝑜𝑠𝜃 + 𝑧0𝑠𝑖𝑛𝜃 + 𝑢 + 𝑥3 (1 −
𝜙2

2
−
𝛼𝑥
2

2
) − 𝑦3(𝜙 + 𝛼𝑥𝛼𝑦)) 𝑒

−

𝑥𝐵3 + (𝑣 + 𝑥3𝜙 + 𝑦3(1 −

𝜙2

2
−
𝛼𝑦
2

2
))𝑒
−

𝑦𝐵3 + (𝑧0𝑐𝑜𝑠𝜃 − 𝑥0𝑠𝑖𝑛𝜃 + 𝑤 − 𝑥3(𝛼𝑥 + 𝜙𝛼𝑦) + 𝑦3(𝜙𝛼𝑥 − 𝛼𝑦))𝑒
−

𝑧𝐵3      (3.47) 

Substituting for αx and αy from eq. (3.30) in to eq. (3.47)  

𝑟
−

1 = [𝑥0𝑐𝑜𝑠𝜃 + 𝑧0𝑠𝑖𝑛𝜃 + 𝑢 + 𝑥3 (1 −
𝜙2

2
−
((𝑢′)

2
−2𝑤𝑢′𝜃′+𝑤2(𝜃′)

2
)

2
) − 𝑦3(𝜙 + (𝑣

′𝑢′ −

𝑣′𝑤𝜃′))] 𝑒
−

𝑥𝐵3 + [𝑣 + 𝑥3𝜙 + 𝑦3 (1 −
𝜙2

2
−
𝑣′
2

2
)] 𝑒
−

𝑦𝐵3 + [𝑧0𝑐𝑜𝑠𝜃 − 𝑥0𝑠𝑖𝑛𝜃 + 𝑤 − 𝑥3(𝑢
′ −

𝑤𝜃′ + 𝜙𝑣′) + 𝑦3(𝜙𝑢
′ − 𝜙𝑤𝜃′ − 𝑣′)]𝑒

−

𝑧𝐵3                                            (3.48) 

From eq. (3.48)  

𝑟
−
.

1 = [𝑢
.
+ 𝑥3(−𝜙𝜙

.

− 𝑢′𝑢′
.

− 𝜃′(𝑤
.
𝑢′ +𝑤𝑢′

.

) + 𝑤𝑤
.
(𝜃′)2) − 𝑦3 (𝜙

.

+ 𝑣′
.

𝑢′ + 𝑣′𝑢′
.

−

𝜃′(𝑣′
.

𝑤 + 𝑣′𝑤
.
))] 𝑒
−

𝑥𝐵3 + [𝑣
.
+ 𝑥3𝜙

.

+ 𝑦3(−𝜙𝜙
.

− 𝑣′𝑣′
.

)]𝑒
−

𝑦𝐵3 + [𝑤
.
− 𝑥3(𝑢′

.

−𝑤
.
𝜃′ + 𝜙

.

𝑣′ +

𝜙𝑣′
.

) + 𝑦3(𝜙
.

𝑢′ +𝜙𝑢′
.

− 𝜃′(𝜙
.

𝑤 +𝜙𝑤
.
) − 𝑣′

.

)]𝑒
−

𝑧𝐵3                               (3.49) 

The angular velocity of the B3-coordinate system can be expressed as  
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𝜔
−
= 𝛺𝑒

−

𝑧𝐼 = 𝛺𝑒
−

𝑧𝑅 = 𝛺𝑒
−

𝑧𝐵1                                                                      (3.50) 

Substituting for e
−

zB1from equation (3.40) and for case of zero section pitch angle  

𝜔
−
= 𝛺𝑠𝑖𝑛𝜃𝑒

−

𝑥𝐵3 + 𝛺𝑐𝑜𝑠𝜃𝑒
−

𝑧𝐵3                                                                  (3.51) 

so  

𝜔
−
× 𝑟
−

1 = − [(𝑣 + 𝑥3𝜙 + 𝑦3 (1 −
𝜙2

2
−
𝑣′
2

2
))𝛺𝑐𝑜𝑠𝜃] 𝑒

−

𝑥𝐵3 − [(𝑧0𝑐𝑜𝑠𝜃 − 𝑥0𝑠𝑖𝑛𝜃 + 𝑤 −

𝑥3(𝑢
′ − 𝑤𝜃′ + 𝜙𝑣′) + 𝑦3(𝜙𝑢

′ − 𝜙𝑤𝜃′ − 𝑣′))𝛺𝑠𝑖𝑛𝜃 − (𝑥0𝑐𝑜𝑠𝜃 + 𝑧0𝑠𝑖𝑛𝜃 + 𝑢 +

𝑥3 (1 −
𝜙2

2
−
((𝑢′)

2
−2𝑤𝑢′𝜃′+𝑤2(𝜃′)

2
)

2
) − 𝑦3(𝜙 + (𝑣

′𝑢′ − 𝑣′𝑤𝜃′)))𝛺𝑐𝑜𝑠𝜃] 𝑒
−

𝑦𝐵3 + [(𝑣 + 𝑥3𝜙 +

𝑦3 (1 −
𝜙2

2
−
𝑣′
2

2
))𝛺𝑠𝑖𝑛𝜃]𝑒

−

𝑧𝐵3                                                                  (3.52) 

Substituting equations (3.49) and (3.52) in to equation 3.38 we find  

𝑑𝑟
−
1

𝑑𝑡
= [(𝑢

.
+ 𝑥3(−𝜙𝜙

.

− 𝑢′𝑢′
.

+ 𝜃′(𝑤
.
𝑢′ + 𝑤𝑢′

.

) − 𝑤𝑤
.
(𝜃′)2) − 𝑦3 (𝜙

.

+ 𝑣′
.

𝑢′ + 𝑣′𝑢′
.

−

𝜃′(𝑣′
.

𝑤 + 𝑣′𝑤
.
))) − ((𝑣 + 𝑥3𝜙 + 𝑦3 (1 −

𝜙2

2
−
𝑣′
2

2
))𝛺𝑐𝑜𝑠𝜃)] 𝑒

−

𝑥𝐵3 + [(𝑣
.
+ 𝑥3𝜙

.

+

𝑦3(−𝜙𝜙
.

− 𝑣′𝑣′
.

)) − ((𝑧0𝑐𝑜𝑠𝜃 − 𝑥0𝑠𝑖𝑛𝜃 + 𝑤 − 𝑥3(𝑢
′ −𝑤𝜃′ +𝜙𝑣′) + 𝑦3(𝜙𝑢

′ − 𝜙𝑤𝜃′ −

𝑣′))𝛺𝑠𝑖𝑛𝜃 + (𝑥0𝑐𝑜𝑠𝜃 + 𝑧0𝑠𝑖𝑛𝜃 + 𝑢 + 𝑥3 (1 −
𝜙2

2
−
((𝑢′)

2
−2𝑤𝑢′𝜃′+𝑤2(𝜃′)

2
)

2
) − 𝑦3(𝜙 +
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(𝑣′𝑢′ − 𝑣′𝑤𝜃′)))𝛺𝑐𝑜𝑠𝜃)] 𝑒
−

𝑦𝐵3 + [(𝑤
.
− 𝑥3(𝑢′

.

− 𝑤
.
𝜃′ + 𝜙

.

𝑣′ +𝜙𝑣′
.

) + 𝑦3(𝜙
.

𝑢′ +𝜙𝑢′
.

−

𝜃′(𝜙
.

𝑤 + 𝜙𝑤
.
) − 𝑣′

.

)) + ((𝑣 + 𝑥3𝜙 + 𝑦3 (1 −
𝜙2

2
−
𝑣′
2

2
))𝛺𝑠𝑖𝑛𝜃)]𝑒

−

𝑧𝐵3                       (3.53) 

Now we can get an expression for the kinetic energy as a function of u, v, w, and ϕ and the 

inertial coordinates of the elastic axis by substituting eq. (3.53) into eq. (3. 37) to get 

𝑇 =
1

2
𝜌

∫

 
 
 

∫

 
 
 
∫ {[(𝑢

.
+ 𝑥3(−𝜙𝜙

.

− 𝑢′𝑢′
.

− 𝜃′(𝑤
.
𝑢′ +𝑤𝑢′

.

) + 𝑤𝑤
.
(𝜃′)2) − 𝑦3 (𝜙

.

+

𝑋3

0

𝑌3

0

𝑆

0

𝑣′
.

𝑢′ + 𝑣′𝑢′
.

− 𝜃′(𝑣′
.

𝑤 + 𝑣′𝑤
.
))) − ((𝑣 + 𝑥3𝜙 + 𝑦3 (1 −

𝜙2

2
−
𝑣′
2

2
))𝛺𝑐𝑜𝑠𝜃)]

2

+

[(𝑣
.
+ 𝑥3𝜙

.

+ 𝑦3(−𝜙𝜙
.

− 𝑣′𝑣′
.

)) − ((𝑧0𝑐𝑜𝑠𝜃 − 𝑥0𝑠𝑖𝑛𝜃 + 𝑤 − 𝑥3(𝑢
′ − 𝑤𝜃′ +𝜙𝑣′) +

𝑦3(𝜙𝑢
′ −𝜙𝑤𝜃′ − 𝑣′))𝛺𝑠𝑖𝑛𝜃 − (𝑥0𝑐𝑜𝑠𝜃 + 𝑧0𝑠𝑖𝑛𝜃 + 𝑢 + 𝑥3 (1 −

𝜙2

2
−

((𝑢′)
2
−2𝑤𝑢′𝜃′+𝑤2(𝜃′)

2
)

2
) − 𝑦3(𝜙 + (𝑣

′𝑢′ − 𝑣′𝑤𝜃′)))𝛺𝑐𝑜𝑠𝜃)]

2

+ [(𝑤
.
− 𝑥3(𝑢′

.

− 𝑤
.
𝜃′ + 𝜙

.

𝑣′ +

𝜙𝑣′
.

) + 𝑦3(𝜙
.

𝑢′ +𝜙𝑢′
.

− 𝜃′(𝜙
.

𝑤 +𝜙𝑤
.
) − 𝑣′

.

)) + ((𝑣 + 𝑥3𝜙 + 𝑦3 (1 −
𝜙2

2
−

𝑣′
2

2
))𝛺𝑠𝑖𝑛𝜃)]

2

} ⅆ𝑥3 ⅆ𝑦3 ⅆ𝑧3      (3.54) 

Simplifying eq. (3.54) by keeping quadratic powers and neglecting any higher order terms 

(linearize) and using the following blade cross sectional properties  
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1. The blade mass per unit length 𝑚 = ∫ ∫ 𝜌 d𝑥3 d𝑦3 

2. me = ∫ ∫ ρy3 d𝑥3 d𝑦3    {e is  the chord-wise offset of mass centeroid of cross section 

from elastic axis (has a positive value when measured in front of elastic axis and vice 

versa)} 

3. Mass moment of inertia about Y3-axis 𝐼my3 = ∫ ∫ 𝜌𝑥3
2 d𝑥3 d𝑦3 

4. Mass moment of inertia about X3-axis 𝐼mx3 = ∫ ∫ 𝜌𝑦3
2 d𝑥3 d𝑦3 

5. ∫ ∫ 𝜌𝑥3 d𝑥3 d𝑦3 = 0 

6. ∫ ∫ 𝜌𝑥3𝑦3 d𝑥3 d𝑦3 = 0 

Eq. 3.53 can be rewritten as  

𝑇 =
1

2
∫ {𝑚(𝑢

. 2 + 𝑣
. 2 + 𝑤

. 2) +me(−2𝑢
.
𝜙
.

− 2𝑤
.
𝑣′
.

) + 𝐼𝑚𝑥3(𝜙
.
2 + 𝑣′

. 2
) + 𝐼𝑚𝑦3(𝜙

.
2 + 𝑢′

. 2
− 2𝑤

.
𝑢′
.

𝜃′ +
𝑆

0

𝑤
. 2(𝜃′)2)} d𝑠                                                                    (3.55) 

Note that in eq. (55);  ( )
.

=
∂

∂t
 

3.4 Discretization of energy expressions for modal analysis  

In this section we will use modal functions of a uniform clamped-clamped beam as an 

approximation for the assumed modal functions of the clamped-clamped Darrieus wind 

turbine blade with troposkein shape. 

For simplicity we will consider the Sandia blade to get expressions for mass and stiffness 

matrices. The modal functions of a clamped-clamped beam [21] under the same 

deformation conditions of the blade are:  

1. flat-wise bending  
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𝜓𝑢𝑗(𝑠) = ∑ {
𝑛

𝑗=1
𝑐𝑜𝑠ℎ[

𝜆𝑗𝑠

𝑙
] −
(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛ℎ[

𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑠𝑖𝑛[𝜆𝑗]
− 𝑐𝑜𝑠[

𝜆𝑗𝑠

𝑙
] +
(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛[

𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑠𝑖𝑛[𝜆𝑗]
}   

(3.56) 

2. Edge-wise bending  

𝜓𝑣𝑗(𝑠) = ∑ {
𝑛

𝑗=1
𝑐𝑜𝑠ℎ[

𝜆𝑗𝑠

𝑙
] −
(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛ℎ[

𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑠𝑖𝑛[𝜆𝑗]
− 𝑐𝑜𝑠[

𝜆𝑗𝑠

𝑙
] +
(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛[

𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑠𝑖𝑛[𝜆𝑗]
}   

(3.57) 

3. Extension  

𝜓𝑤𝑗(𝑠) = ∑ {
𝑛

𝑗=1
𝑠𝑖𝑛[

𝑗𝜋𝑠

𝑙
]}                                                                                              (3.58) 

4. Torsion  

𝜓𝜙𝑗(𝑠) = ∑ {
𝑛

𝑗=1
𝑠𝑖𝑛[

𝑗𝜋𝑠

𝑙
]}                                                                                               (3.59) 

We can express u, v, w, and ϕ as functions of the assumed modal functions  ψ(s) and 

assumed modal coordinates q (t) as follows 

𝑢𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝑢𝑗(𝑡) 𝜓𝑢𝑗(𝑠)}                                               (3.60)                                                                                                     

𝑣𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝑣𝑗(𝑡) 𝜓𝑣𝑗(𝑠)}                                               (3.61)                                                                                           

𝑤𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝑤𝑗(𝑡) 𝜓𝑤𝑗(𝑠)}                                            (3.62)                                                                                                     

𝜙𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝜙𝑗(𝑡) 𝜓𝜙𝑗(𝑠)}                                            (3.63) 

Substituting eqns. (3.56) - (3.59) in eqns. (3.60)-(3.63) we get  

𝑢𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝑢𝑗(𝑡)(𝑐𝑜𝑠ℎ[
𝜆𝑗𝑠

𝑙
] −
(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛ℎ[

𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑆𝑖𝑛[𝜆𝑗]
− 𝑐𝑜𝑠[

𝜆𝑗𝑠

𝑙
] +

(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛[
𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑠𝑖𝑛[𝜆𝑗]
}   (3.64) 
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𝑣𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝑣𝑗(𝑡)(𝑐𝑜𝑠ℎ[
𝜆𝑗𝑠

𝑙
] −
(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛ℎ[

𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑠𝑖𝑛[𝜆𝑗]
− 𝑐𝑜𝑠[

𝜆𝑗𝑠

𝑙
] +
(𝑐𝑜𝑠ℎ[𝜆𝑗]−𝑐𝑜𝑠[𝜆𝑗])𝑠𝑖𝑛[

𝜆𝑗𝑠

𝑙
]

𝑠𝑖𝑛ℎ[𝜆𝑗]−𝑠𝑖𝑛[𝜆𝑗]
}    

(3.65) 

𝑤𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝑤𝑗(𝑡)𝑠𝑖𝑛[
𝑗𝜋𝑠

𝑙
]}                                                                   (3.65)                                                                            

𝜙𝑗(𝑠, 𝑡) = ∑ {𝑛𝑗=1 𝑞𝜙𝑗(𝑡)𝑠𝑖𝑛[
𝑗𝜋𝑠

𝑙
]}                                                                    (3.66) 

3.4.1 Derivation of stiffness matrix expressions  

Putting equations (3.60)-(3.63) into equation (3.36) we get  

𝑆𝐸 = ∑ ∑ 0.5𝑛
𝑘=1

𝑛
𝑗=1 ∫ {𝐴[𝐸𝑢𝑗𝑢𝑘(𝜃

′)2 + 𝐸𝑢𝑘𝜃
′𝑤𝑗
′ + 𝐸𝑢𝑗𝜃

′𝑤𝑘
′ + 𝐸𝑤𝑗

′𝑤𝑘
′] +

𝑆

0

𝑃1[𝐸(𝜃
′)4𝑤𝑗

′𝑤𝑘
′ + 𝐸𝑤𝑘(𝜃

′)3𝑤𝑗
′𝜃′′ + 𝐸𝑤𝑗(𝜃

′)3𝑤𝑘
′𝜃′′ + 𝐸𝑤𝑗𝑤𝑘(𝜃

′)2(𝜃′′)2 − 𝐸(𝜃′)3𝑤𝑘
′𝑢𝑗
′′ −

𝐸𝑤𝑘(𝜃
′)2𝜃′′𝑢𝑗

′′ − 𝐸(𝜃′)3𝑤𝑗
′𝑢𝑘
′′ − 𝐸𝑤𝑗(𝜃

′)2𝜃′′𝑢𝑘
′′ + 𝐸(𝜃′)2𝑢𝑗

′′𝑢𝑘
′′] + 𝐴𝑒𝐴[−𝐸𝑢𝑘𝜙𝑗(𝜃

′)2 −

𝐸𝑢𝑗𝜙𝑘(𝜃
′)2 − 𝐸𝜙𝑘𝜃

′𝑤𝑗
′ − 𝐸𝜙𝑗𝜃

′𝑤𝑘
′ − 𝐸𝑢𝑘𝜃

′𝑣𝑗
′′ − 𝐸𝑤𝑘

′𝑣𝑗
′′ − 𝐸𝑢𝑗𝜃

′𝑣𝑘
′′ − 𝐸𝑤𝑗

′𝑣𝑘
′′] +

𝐼𝑥3𝑥3[𝐸𝜙𝑗𝜙𝑘(𝜃
′)2 + 𝐺(𝜃′)2𝑣𝑗

′𝑣𝑘
′ − 𝐺𝜃′𝑣𝑘

′𝜙𝑗
′ − 𝐺𝜃′𝑣𝑗

′𝜙𝑘
′ + 𝐺𝜙𝑗

′𝜙𝑘
′ + 𝐸𝜙𝑘𝜃

′𝑣𝑗
′′ +

𝐸𝜙𝑗𝜃
′𝑣𝑘
′′ + 𝐸𝑣𝑗

′′𝑣𝑘
′′] + 𝑝3[𝐸𝜙𝑗𝜙𝑘(𝜃

′)4 + 𝐸𝜙𝑘(𝜃
′)3𝑣𝑗

′′ + 𝐸𝜙𝑗(𝜃
′)3𝑣𝑘

′′ + 𝐸(𝜃′)2𝑣𝑗
′′𝑣𝑘
′′] +

𝐼𝑦3𝑦3[𝐺(𝜃
′)2𝑣𝑗

′𝑣𝑘
′ + 𝐸𝑢𝑘(𝜃

′)3𝑤𝑗
′ + 𝐸𝑢𝑗(𝜃

′)3𝑤𝑘
′ + 3𝐸(𝜃′)2𝑤𝑗

′𝑤𝑘
′ − 𝐺𝜃′𝑣𝑘

′𝜙𝑗
′ −

𝐺𝜃′𝑣𝑗
′𝜙𝑘
′ + 𝐺𝜙𝑗

′𝜙𝑘
′ + 𝐸𝑢𝑘𝑤𝑗(𝜃

′)2𝜃′′ + 𝐸𝑢𝑗𝑤𝑘(𝜃
′)2𝜃′′ + 2𝐸𝑤𝑘𝜃

′𝑤𝑗
′𝜃′′ + 2𝐸𝑤𝑗𝜃

′𝑤𝑘
′𝜃′′ +

𝐸𝑤𝑗𝑤𝑘(𝜃
′′)2 − 𝐸𝑢𝑘(𝜃

′)2𝑢𝑗
′′ − 2𝐸𝜃′𝑤𝑘

′𝑢𝑗
′′ − 𝐸𝑤𝑘𝜃

′′𝑢𝑗
′′ − 𝐸𝑢𝑗(𝜃

′)2𝑢𝑘
′′ − 2𝐸𝜃′𝑤𝑗

′𝑢𝑘
′′ −

𝐸𝑤𝑗𝜃
′′𝑢𝑘
′′ + 𝐸𝑢𝑗

′′𝑢𝑘
′′] + 𝑃2[−2𝐸𝜙𝑘(𝜃

′)3𝑤𝑗
′ − 2𝐸𝜙𝑗(𝜃

′)3𝑤𝑘
′ − 2𝐸𝑤𝑘𝜙𝑗(𝜃

′)2𝜃′′ −

2𝐸𝑤𝑗𝜙𝑘(𝜃
′)2𝜃′′ + 2𝐸𝜙𝑘(𝜃

′)2𝑢𝑗
′′ + 2𝐸𝜙𝑗(𝜃

′)2𝑢𝑘
′′ − 2𝐸(𝜃′)2𝑤𝑘

′𝑣𝑗
′′ − 2𝐸𝑤𝑘𝜃

′𝜃′′𝑣𝑗
′′ +

2𝐸𝜃′𝑢𝑘
′′𝑣𝑗
′′ − 2𝐸(𝜃′)2𝑤𝑗

′𝑣𝑘
′′ − 2𝐸𝑤𝑗𝜃

′𝜃′′𝑣𝑘
′′ + 2𝐸𝜃′𝑢𝑗

′′𝑣𝑘
′′]} ⅆ𝑠                    (3.67) 

Combining eqns. (3.60-3.63) with eq. (3.67) and simplifying using the blade cross sectional 

properties, we can express the stiffness matrices equations as follows  

1. Flat-wise only  
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𝐾𝑗𝑘
𝑢𝑢 =

1

2
𝐸 ∫ {𝐴𝜃′[𝑠]2𝜓𝑢𝑗[𝑠]𝜓𝑢𝑘[𝑠] + 𝐼𝑦3𝑦3(−2𝜃

′[𝑠]2𝜓𝑢𝑗[𝑠]𝜓𝑢𝑘
′′[𝑠] + 𝜓𝑢𝑗

′′[𝑠]𝜓𝑢𝑘
′′[𝑠]) +

𝑆

0

𝑃1𝜃
′[𝑠]2𝜓𝑢𝑗

′′[𝑠]𝜓𝑢𝑘
′′[𝑠]} ⅆ𝑠                                                                     (3.68) 

2. Edge-wise only  

Kjk
vv = ∫ (

1

2
E(Ix3x3ψvj

′′[s]ψvk
′′[s] + P3θ

′[s]2ψvj
′′[s]ψvk

′′[s]) +
1

2
G(J)θ′[s]2ψvj

′[s]ψvk
′[s]) ds

S

0

   

(3.69)                                                                      

3. Extension only  

𝐾𝑗𝑘
𝑤𝑤 =

1

2
𝐸 ∫ (𝐴𝜓𝑤𝑗

′[𝑠]𝜓𝑤𝑘
′[𝑠] + 𝐼𝑦3𝑦3(𝜃

′′[𝑠]2𝜓𝑤𝑗[𝑠]𝜓𝑤𝑘[𝑠] + 4𝜃
′[𝑠]𝜃′′[𝑠]𝜓𝑤𝑗[𝑠]𝜓𝑤𝑘

′[𝑠] +
𝑆

0

3𝜃′[𝑠]2𝜓𝑤𝑗
′[𝑠]𝜓𝑤𝑘

′[𝑠]) + 𝑃1(𝜃
′[𝑠]2𝜃′′[𝑠]2𝜓𝑤𝑗[𝑠]𝜓𝑤𝑘[𝑠] + 2𝜃

′[𝑠]3𝜃′′[𝑠]𝜓𝑤𝑗[𝑠]𝜓𝑤𝑘
′[𝑠] +

𝜃′[𝑠]4𝜓𝑤𝑗
′[𝑠]𝜓𝑤𝑘

′[𝑠]))ⅆ𝑠                           (3.70) 

4. Torsion only  

𝐾𝑗𝑘
𝜙𝜙
= ∫ (

1

2
𝐸(𝐼𝑥3𝑥3𝜃

′[𝑠]2𝜓𝜙𝑗[𝑠]𝜓𝜙𝑘[𝑠] + 𝑃3𝜃
′[𝑠]4𝜓𝜙𝑗[𝑠]𝜓𝜙𝑘[𝑠]) +

1

2
𝐺𝐽𝜓𝜙𝑗

′[𝑠]𝜓𝜙𝑘
′[𝑠]) ⅆ𝑠

𝑆

0

       

(3.71)                                                                                              

5. Flat wise-Edge wise  

𝐾𝑗𝑘
𝑢𝑣 = ∫

1

2
𝐸1(−2𝐴𝑒𝐴𝜃

′[𝑠]𝜓𝑢𝑗[𝑠]𝜓𝑣𝑘
′′[𝑠] + 4𝑃2𝜃

′[𝑠]𝜓𝑢𝑗
′′[𝑠]𝜓𝑣𝑘

′′[𝑠]) ⅆ𝑠
𝑆

0

    (3.72) 

6. Flat wise – extension 

𝐾𝑗𝑘
𝑢𝑤 =

1

2
𝐸∫ {𝐴(2𝜃′[𝑠]𝜓𝑢𝑗[𝑠]𝜓𝑤𝑘

′[𝑠]) + 𝐼𝑦3𝑦3(2𝜃
′[𝑠]2𝜃′′[𝑠]𝜓𝑢𝑗[𝑠]𝜓𝑤𝑘[𝑠] +

𝑆

0

2𝜃′[𝑠]3𝜓𝑢𝑗[𝑠]𝜓𝑤𝑘
′[𝑠] − 2𝜃′′[𝑠]𝜓𝑤𝑘[𝑠]𝜓𝑢𝑗

′′[𝑠] − 4𝜃′[𝑠]𝜓𝑤𝑘
′[𝑠]𝜓𝑢𝑗

′′[𝑠]) +
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𝑃1(−2𝜃
′[𝑠]2𝜃′′[𝑠]𝜓𝑤𝑘[𝑠]𝜓𝑢𝑗

′′[𝑠] − 2𝜃′[𝑠]3𝜓𝑤𝑘
′[𝑠]𝜓𝑢𝑗

′′[𝑠])} ⅆ𝑠                                                                                         

(3.73)  

7. Flat wise-torsion  

𝐾𝑗𝑘
𝑢𝜙
=
1

2
𝐸 ∫ {−2𝐴𝑒𝐴𝜃

′[𝑠]2𝜓𝑢𝑗[𝑠]𝜓𝜙𝑘[𝑠] + 4𝑃2𝜃
′[𝑠]2𝜓𝜙𝑘[𝑠]𝜓𝑢𝑗

′′[𝑠]} ⅆ𝑠
𝑆

0

           (3.74) 

8. Edge wise-extension 

𝐾𝑗𝑘
𝑣𝑤 =

1

2
𝐸∫ {−2𝐴𝑒𝐴𝜓𝑤𝑘

′[𝑠]𝜓𝑣𝑗
′′[𝑠] + 𝑃2(−4𝜃

′[𝑠]𝜃′′[𝑠]𝜓𝑤𝑘
′[𝑠]𝜓𝑣𝑗

′′[𝑠] −
𝑆

0

4𝜃′[𝑠]2𝜓𝑤𝑘
′[𝑠]𝜓𝑣𝑗

′′[𝑠])} ⅆ𝑠                                              (3.75) 

9. Edge wise-torsion  

𝐾𝑗𝑘
𝑣𝜙
= ∫ {𝐸(𝐼𝑥3𝑥3𝜃

′[𝑠]𝜓𝜙𝑘[𝑠]𝜓𝑣𝑗
′′[𝑠] + 𝑃3𝜃

′[𝑠]3𝜓𝜙𝑘[𝑠]𝜓𝑣𝑗
′′[𝑠]) −

𝑆

0

𝐺𝐽𝜃′[𝑠]𝜓𝑣𝑗
′[𝑠]𝜓𝑤𝑘

′[𝑠]} ⅆ𝑠 (3.76) 

10. Extension-torsion 

𝐾𝑗𝑘
𝑤𝜙
= 𝐸∫ {−𝐴𝑒𝐴𝜃

′[𝑠]𝜓𝜙𝑘[𝑠]𝜓𝑤𝑗
′[𝑠] + 𝑃2(−2𝜃

′[𝑠]2𝜃′′[𝑠]𝜓𝑤𝑗[𝑠]𝜓𝜙𝑘[𝑠] −
𝑆

0

2𝜃′[𝑠]3𝜓𝜙𝑘[𝑠]𝜓𝑤𝑗
′[𝑠])} ⅆ𝑠                                                                     (3.77) 

Note that the stiffness matrix of the blade is symmetric so we have  

 𝐾𝑗𝑘
𝑢𝑣 = 𝐾𝑗𝑘

𝑣𝑢 

𝐾𝑗𝑘
𝑢𝑤 = 𝐾𝑗𝑘

𝑤𝑢 

𝐾𝑗𝑘
𝑢𝜙
= 𝐾𝑗𝑘

𝜙𝑢
 

𝐾𝑗𝑘
𝑣𝑤 = 𝐾𝑗𝑘

𝑤𝑣                                                                                      (3.78) 

𝐾𝑗𝑘
𝑣𝜙
= 𝐾𝑗𝑘

𝜙𝑣
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𝐾𝑗𝑘
𝑤𝜙
= 𝐾𝑗𝑘

𝜙𝑤
 

3.4.2 Derivation of mass matrix expressions  

In this section the mass matrix expressions were derived for the nonrotating blade 

condition (for simplicity Ω = 0). For u, v, w, and ϕ as expressed in eqns. (3.60-3.63) we can 

rewrite eq. (3.55) as  

𝑇 =
1

2
𝜌∑ ∑ ∫∫ ∫ {𝜓𝑢𝑗[𝑠]𝜓𝑢𝑘[𝑠]𝑞

.

𝑢𝑗
[𝑡]𝑞
.

𝑢𝑘
[𝑡] +

𝑋3

0

𝑌3

0

𝑆

0

𝑛

𝑘=1

𝑛

𝑗=1

𝜓𝑣𝑗[𝑠]𝜓𝑣𝑘[𝑠]𝑞
.

𝑣𝑗
[𝑡]𝑞
.

𝑣𝑘
[𝑡] + 𝜓𝑤𝑗[𝑠]𝜓𝑤𝑘[𝑠]𝑞

.

𝑤𝑗
[𝑡]𝑞
.

𝑤𝑘
[𝑡] + 𝑥3

2𝜓𝜙𝑗[𝑠]𝜓𝜙𝑘[𝑠]𝑞
.

𝜙𝑗
[𝑡]𝑞
.

𝜙𝑘
[𝑡] +

𝑥3
2𝜓𝑢𝑗

′[𝑠]𝜓𝑢𝑘
′[𝑠]𝑞

.

𝑢𝑗
[𝑡]𝑞
.

𝑢𝑘
[𝑡] − 2𝑦3𝜓𝑢𝑗[𝑠]𝜓𝜙𝑘[𝑠]𝑞

.

𝑢𝑗
[𝑡]𝑞
.

𝜙𝑘
[𝑡] −

2𝑦3𝜓𝑣𝑗
′[𝑠]𝜓𝑤𝑘[𝑠]𝑞

.

𝑣𝑗
[𝑡]𝑞
.

𝑤𝑘
[𝑡] + 𝑦3

2𝜓𝜙𝑗[𝑠]𝜓𝜙𝑘[𝑠]𝑞
.

𝜙𝑗
[𝑡]𝑞
.

𝜙𝑘
[𝑡] +

𝑦3
2𝜓𝑣𝑗

′[𝑠]𝜓𝑣𝑘
′[𝑠]𝑞

.

𝑣𝑗
[𝑡]𝑞
.

𝑣𝑘
[𝑡] − 2𝑥3

2𝜃′[𝑠]𝜓𝑢𝑗
′[𝑠]𝜓𝑤𝑘[𝑠]𝑞

.

𝑢𝑗
[𝑡]𝑞
.

𝑤𝑘
[𝑡] +

𝑥3
2(𝜃′[𝑠])2𝜓𝑤𝑗[𝑠]𝜓𝑤𝑘[𝑠]𝑞

.

𝑤𝑗
[𝑡]𝑞
.

𝑤𝑘
[𝑡]} ⅆ𝑥3 ⅆ𝑦3 ⅆ𝑧3                                                                     (3.79) 

From the kinetic energy expression shown in eq. (3.79) we can formulate the mass matrix 

as follows 

1. Flat-wise only  

mjk
uu =

1

2
∫ {mψuj[s]ψuk[s] + Imy3ψuj

′[s]ψuk
′[s]} ds

S

0

                                       (3.80) 

2. Edge-wise only  

mjk
vv =

1

2
∫ {mψvj[s]ψvk[s] + Imx3ψvj

′[s]ψvk
′[s]} ds

S

0

                                        (3.81) 

3. Extension only  
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mjk
ww =

1

2
∫ {mψwj[s]ψwk[s] + Imy3(θ

′[s])2ψwj[s]ψwk[s]} ds
S

0

                         (3.82) 

4. Torsion only  

𝑚jk
ϕϕ
=
1

2
(𝐼mx3 + 𝐼my3)∫ {𝜓𝜙𝑗[𝑠]𝜓𝜙𝑘[𝑠]} d𝑠

𝑆

0

                                                       (3.83) 

5. Flat wise- edge wise  

mjk
uv = 0                                                                                                       (3.84) 

6. Flat wise-extension 

mjk
uw = −Imy3 ∫ {θ

′[s]ψuj
′[s]ψwk[s]} ds

S

0

                                                 (3.85)                                          

7. Flat wise-torsion 

mjk
uϕ
= −me∫ { ψuj[s]ψϕk[s]} ds

S

0

                                                             (3.86)                                               

8. Edge wise-extension 

mjk
vw = −me∫ {ψvj

′[s]ψwk[s]} ds
S

0

                                                             (3.87) 

9. Edge wise-torsion 

𝑚jk
vϕ
= 0                                                                                                         (3.88) 

10. Extension-torsion 

mjk
wϕ
= 0                                                                                                          (3.89)                                 

Note that the mass matrix of the blade is symmetric so we have  

 mjk
uv = mjk

vu 

mjk
uw = mjk

wu 

mjk
uϕ
= mjk

ϕu
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mjk
vw = mjk

wv                                                                                      (3.90) 

mjk
vϕ
= mjk

ϕv
 

mjk
wϕ
= mjk

ϕw
 

3.4.3 Meridian angle (θ) 

In the mass and stiffness expressions derived in section 3.4.2 we can see the parameter θ 

and its derivatives with respect to z3 or s. This θ is known as the meridian angle and is 

defined as the angle between the tangent to the blade at any point in the elastic axis and the 

vertical axis at this point as shown in figure 2.17.  For the simplified Sandia shape the 

meridian angle can be calculated as: 

θ =
Sc

Rc
  

where  

Sc: is the length of the circular segment of Sandia simplified shape blade  

Rc: is the radius of the circular segment of Sandia simplified shape blade 

θ′ =
dθ

ds
=
1

Rc
  

θ′′ =
d2θ

ds
= 0  

3.5 Numerical calculation of modal frequencies of 17 m diameter Sandia 

simplified blade shape 

In this section the analytical model developed in sections 3.2, 3.3, 3.4, was tested by using 

the derived modal mass and stiffness matrices expressions to calculate the first ten modal 

frequencies for 17 m diameter stationary simplified Sandia blade and comparing it with the 

finite element modal analysis results.  
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3.5.1 17 m diameter simplified Sandia blade cross section properties  

The blade cross section geometric and mass related parameters are calculated here for the 

NASA 0015 blade cross section shown in figure 2.2 as follows  

A = 0.98 ∗ 10−2 m2 

Iy3y3 = 0.859 ∗ 10
−5m4 

AeA = −0.001434m
3 

Ix3x3 = 2.814 ∗ 10
−4m4 

P1 = 2.897 ∗ 10
−9 m6 

P2 = −6.8499 ∗ 10
−7m5 

P3 = 1.816 ∗ 10
−7 m6 

λ1 =4.730040744862704 

λ2 =7.853204624095838 

λ3 =10.995607838001671 

λ4 =14.137165491257464 

λ5 =17.27875965739948 

λ6 =20.42035224562606 

λ7 =23.561944902040455 

E = 68.95 ∗ 109N/m2 

G = 25.86 ∗ 109N/m2 

m = 30.5kg/m 

me = −3.97Kg 

Imx3 = 1.5 kg.m 

Imy3 = 0.0247 kg.m 
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Blade length S = 30.47m 

Meridian angle θ= 46.36o for straight segments 

Meridian angle θ is variable for circular segments 

θ'= θ''=0 for straight segments 

θ'= 0.096 rad/m for circular segment 

θ''=0 for circular segment 

3.5.2 Numerical values for first ten modal frequencies  

Substituting the cross section parameters values calculated in section 3.5.1 in addition to 

the blade length (S) and the meridian angle (θ) in the modal mass and stiffness sub-

matrices equations and varying the summation parameters values (j and k) we got the best 

convergence at ( j=k=7). When  j=k=7, and all flat wise, edge wise, torsion, and extension 

modes included, modal mass and stiffness gives the first 28 modal frequencies as shown in 

table 3.1  

Table 3.1 modal frequencies for 17 m diameter Sandia stationary blade (coupling between 

all modes considered 

modal frequencies (1 to 14) modal frequencies (15 to 28) 

1.5564 83.2925 

3.00157 93.1968 

4.32495 124.232 

8.4747 134.915 

10.254 162.029 

11.7791 180.423 
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From table 3.1 we can see that the lowest seven modal frequencies are of a similar order of 

magnitude as the first seven modal frequencies calculated using the FE model in chapter 2 

with around 70% so the error here is around 30% which is not acceptable. Also the modal 

frequency number 13 in red color is complex and this is not allowed because the mass and 

stiffness matrices are supposed to be positive definite, and symmetric. The K matrix 

contains some asymmetric terms. The terms are small compared to other terms in the K 

matrix. They may be due to numerical errors, but in a continuing investigation we are 

examining this further. 

Because we followed a good derivation procedure to get expressions for kinetic and 

potential energies and we checked that these equations are physically and dimensionally 

correct, the sources of results inconsistency with our finite element model and Sandia finite 

element model results may be because of some programming errors in the Mathematica 

code for calculating modal frequencies and mode shapes, or because of unsuitable selection 

Table 3.1 (cont’d) 

13.9191 218.931 

15.5556 236.816 

20.0909 263.703 

23.5478 310.944 

27.9191 327.779 

49.2278 388.544 

50.7068 i 462.103 

55.4277 540.848 
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of assumed modal functions. One of our future plans for this work is to replace these 

assumed modal functions, which contain hyperbolic terms, with polynomial ones which are 

better conditioned, and then seek better convergence for our analytical model.  
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4 Chapter 4 

4.1  Conclusion and comments 

As a result of this research work: 

1.  FEM model for troposkein-shaped Darrieus wind turbine blade free vibration has been 

built for both ideal and simplified shapes. The blade vibration under flat-wise, edge-

wise, extensional, and torsional deformations was studied and the lowest ten modes 

have been characterized for stationary and rotating blade conditions.  

2. Energy equations for a troposkein blade under the same loading conditions mentioned 

above were derived. We have made initial progress on the low-order model of the 

curved blade.  We have followed an analysis from a 1979 NASA paper by K and K, and 

extended it by performing an assumed-mode discretization.  However, the predicted 

frequencies from the reduced-order model are not yet matching well.  Possible 

problems are listed below.  Nonetheless, the work sets up the next student to review 

and validate the analysis process, and then apply low-order modeling. 

3. Possible problems in the low-order model are as follows 

a) The use of clamped-clamped assumed modes.  These modal functions involve 

hyperbolic functions, which have extreme values when the arguments become large. 

(However, the first mode won’t have this issue, and it is not producing satisfactory 

estimations) 

b) The use of clamped-clamped boundary conditions in the beam model may not 

accurately represent the connections in the finite element analysis (However, this 

should be a stiffening assumption, and lead to over-predicted frequencies) 
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c) The strain formulation followed in KK 1979 involves several rotating, deformation 

dependent, coordinate transformations, and the algebra should be validated once 

again.  This is in progress. 

4.2 Contribution  

Because of the shortage in studying Darrieus wind turbine blade vibration, this work has 

provided an initial contribution to research literature toward developing the study of 

Darrieus wind turbine blade vibration. 

The model developed here can be used for characterization of Darrieus wind turbine blade 

modal vibration analytically and these results can be compared to the numerical (FEM) 

results for validation.  

4.3 Future work 

Based on this work some follow-up studies will be useful. Some of the future work 

includes.  

 More development in the analytical model to correct its erroneous results, which 

makes it valid for analytical characterization of Darrieus wind turbine blade modal 

vibration 

 Studying Darrieus wind turbine blade forced vibration under aerodynamic loadings  

 Modeling Darrieus wind turbine blade vibration considering higher order terms 

using nonlinear techniques (for example perturbation methods) 
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APPENDIX 
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Table.1 blade airfoil coordinates  

x x/c 
camber 
line(Yc) yt θ Xu Yu XL YL 

0 0 0 0 0 0 0 0 0 

1 0.016393 0 1.640381 0 1 1.640381364 1 -1.640381364 

2 0.032787 0 2.253687 0 2 2.25368702 2 -2.25368702 

3 0.04918 0 2.691405 0 3 2.691405028 3 -2.691405028 

4 0.065574 0 3.034709 0 4 3.034709024 4 -3.034709024 

5 0.081967 0 3.315231 0 5 3.3152312 5 -3.3152312 

6 0.098361 0 3.54934 0 6 3.549340183 6 -3.549340183 

7 0.114754 0 3.746877 0 7 3.746876512 7 -3.746876512 

8 0.131148 0 3.914348 0 8 3.914348168 8 -3.914348168 

9 0.147541 0 4.056357 0 9 4.056356584 9 -4.056356584 

10 0.163934 0 4.176321 0 10 4.176321059 10 -4.176321059 

11 0.180328 0 4.276882 0 11 4.276882334 11 -4.276882334 

12 0.196721 0 4.360144 0 12 4.360143598 12 -4.360143598 

13 0.213115 0 4.427822 0 13 4.427822451 13 -4.427822451 

14 0.229508 0 4.481351 0 14 4.481351006 14 -4.481351006 

15 0.245902 0 4.521944 0 15 4.52194425 15 -4.52194425 

16 0.262295 0 4.550648 0 16 4.55064816 16 -4.55064816 

17 0.278689 0 4.568374 0 17 4.568374455 17 -4.568374455 

18 0.295082 0 4.575926 0 18 4.575926263 18 -4.575926263 

19 0.311475 0 4.574017 0 19 4.574017431 19 -4.574017431 

20 0.327869 0 4.563287 0 20 4.563287327 20 -4.563287327 

21 0.344262 0 4.544312 0 21 4.544312334 21 -4.544312334 

22 0.360656 0 4.517615 0 22 4.517614914 22 -4.517614914 

23 0.377049 0 4.483671 0 23 4.483670829 23 -4.483670829 

24 0.393443 0 4.442915 0 24 4.442914969 24 -4.442914969 

25 0.409836 0 4.395746 0 25 4.395746095 25 -4.395746095 

26 0.42623 0 4.342531 0 26 4.342530731 26 -4.342530731 

27 0.442623 0 4.283606 0 27 4.283606395 27 -4.283606395 

28 0.459016 0 4.219284 0 28 4.219284293 28 -4.219284293 

29 0.47541 0 4.149852 0 29 4.149851581 29 -4.149851581 

30 0.491803 0 4.075573 0 30 4.075573284 30 -4.075573284 

31 0.508197 0 3.996694 0 31 3.996693923 31 -3.996693923 

32 0.52459 0 3.913439 0 32 3.913438914 32 -3.913438914 

33 0.540984 0 3.826016 0 33 3.826015767 33 -3.826015767 

34 0.557377 0 3.734615 0 34 3.734615124 34 -3.734615124 

35 0.57377 0 3.639412 0 35 3.639411661 35 -3.639411661 

36 0.590164 0 3.540565 0 36 3.540564874 36 -3.540564874 

37 0.606557 0 3.43822 0 37 3.438219769 37 -3.438219769 

38 0.622951 0 3.332507 0 38 3.332507465 38 -3.332507465 
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Table.1 (cont’d) 

39 0.639344 0 3.223546 0 39 3.223545733 39 -3.223545733 

40 0.655738 0 3.111439 0 40 3.111439463 40 -3.111439463 

41 0.672131 0 2.996281 0 41 2.996281088 41 -2.996281088 

42 0.688525 0 2.878151 0 42 2.878150957 42 -2.878150957 

43 0.704918 0 2.757118 0 43 2.75711767 43 -2.75711767 

44 0.721311 0 2.633238 0 44 2.633238376 44 -2.633238376 

45 0.737705 0 2.506559 0 45 2.506559046 45 -2.506559046 

46 0.754098 0 2.377115 0 46 2.377114708 46 -2.377114708 

47 0.770492 0 2.24493 0 47 2.244929673 47 -2.244929673 

48 0.786885 0 2.110018 0 48 2.11001773 48 -2.11001773 

49 0.803279 0 1.972382 0 49 1.972382324 49 -1.972382324 

50 0.819672 0 1.832017 0 50 1.832016723 50 -1.832016723 

51 0.836066 0 1.688904 0 51 1.688904161 51 -1.688904161 

52 0.852459 0 1.543018 0 52 1.543017978 52 -1.543017978 

53 0.868852 0 1.394322 0 53 1.394321742 53 -1.394321742 

54 0.885246 0 1.242769 0 54 1.242769361 54 -1.242769361 

55 0.901639 0 1.088305 0 55 1.08830519 55 -1.08830519 

56 0.918033 0 0.930864 0 56 0.930864123 56 -0.930864123 

57 0.934426 0 0.770372 0 57 0.770371683 57 -0.770371683 

58 0.95082 0 0.606744 0 58 0.606744102 58 -0.606744102 

59 0.967213 0 0.439888 0 59 0.439888396 59 -0.439888396 

60 0.983607 0 0.269702 0 60 0.269702434 60 -0.269702434 

61 1 0 0.096075 0 61 0.096075 61 -0.096075 
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