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ABSTRACT

MODAL ANALYSIS OF VERTICAL-AXIS DARRIEUS WIND TURBINE BLADE WITH A
TOPOSKEIN SHAPE

By

Amr Fawzy Abdel hakeem Saleh
Darrieus wind turbines with troposkein shaped blades are an important type of vertical
axis wind turbines. When designing these turbines it is important to consider how
vibrations may affect blade failure. In order to avoid resonance, the blade natural
frequencies need to be determined. The goal of this research is to determine the blade free
vibration mode shapes and modal frequencies, neglecting the variation of the upstream
wind speed for simplicity. The blade modal vibration is studied numerically using ANSYS
software, and analytically using thin-beam theory and an assumed modes method. Firstly,
the analysis is performed on a 17 m diameter Sandia simplified troposkein shaped blade
with a NACA 0015 airfoil. The first ten modes and the corresponding natural frequencies
were calculated using ANSYS. The analysis was done for stationary and spinning blade at
54 rpm. The spin case compared very well to previous Sandia results. The same analysis
was then applied to an ideal troposkein shaped blade, and a slightly modified cross section.
Results show consistency across the blade shapes. The Sandia blade shape was studied
analytically using thin-beam theory and an assumed modes method. Kinetic and potential
energies were derived. Mass and stiffness matrices are formulated for the discretized
model, to which modal analysis is applied. The natural frequencies were calculated
analytically for same simplified Sandia blade shape used for finite element model under

stationary condition. The results of the two methods were compared for consistency.
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1 Chapter 1: Introduction and literature review

1.1 Background

The development of renewable energy represents an obvious need especially when we see
based on modern studies that fossil fuel sources like oil and gas reserve will be depleted in
near future. Renewable energy can be solar energy, wind energy, geothermal energy,etc.
Among the renewable energy alternatives, wind energy introduces itself as one of the most
prominent sources of renewable energy. Wind turbines are the most popular machines that
can convert wind power into mechanical power. Wind turbines convert the wind power
into electricity via rotation in the generator. Now, after large technological improvements,
we are able to develop wind turbines to be more feasible, reliable, and dependable source
of energy especially for electricity. Indeed, a significant share of electricity for several
countries comes from wind turbines. Figure 1.1 indicates the growth of global wind power

production over years from 1996 to 2015 [1].
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Figure 1.1 Global wind power cumulative capacity [1]



1.2 Types of wind converters

Wind energy converters can be classified firstly in accordance with their constructional
design (rotor axis orientation) and, secondly, according to their ways of extracting the
energy from wind (lift or drag type) [2].

1.2.1 Constructional design (rotor axis orientation) based classification

1.2.1.1 Vertical axis wind turbines (VAWTSs):

As shown in Figure.1.2. The axis of rotation of this type is perpendicular to the wind
direction [2]. In this type the generator is on the ground which makes it more accessible

and no yaw system required.

Savonius-Rotor Darrieus-Rotor H-Rotor

Figure 1.2 Schematic of vertical axis wind turbine [2]

The constant blade profile and cross sectional shape of an H-rotor type VAWT along the
blade length is one of its advantages because it makes every blade section be subjected to
the same wind speed. As a result blade twisting not required. Troposkein-shaped turbines

also tend to have constant cross-sectional shapes.



The constant blade shape makes its design and manufacturing easier and the total
production cost lower.
1.2.1.2 Horizontal axis wind turbines (HAWTs):
As shown in figure 1.3 [2] the axis of rotation of this type must be oriented parallel to the
wind in order to capture the wind power. HAWTSs are considered to be the most efficient
turbines. The disadvantages of this type include:

a. Operation at high starting wind velocity.

b. Low starting torque.

c. Yaw mechanism required to turn the rotor toward the wind.

d. Power loss when the rotors are tracking the wind directions.

e. High center of gravity.

Rotation

|.'|‘_.\q’:l_:r

Figure 1.3 Schematic of horizontal wind turbine [2]



1.2.2 Classification based on ways of extracting the energy from wind (lift or drag
type)

The rotor’s aerodynamics is classified based on whether the wind energy converter

captures its power from the aerodynamic drag of the air flow over the rotor surfaces, or

whether it captures its power from the aerodynamic lift generated from the air flow against

the airfoil surfaces [2]. Based on that, there are so-called drag-type rotors and lift- type

rotors.

1.2.2.1.1 The drag type

This turbine takes less energy from the wind but provides a higher torque and is suitable

for mechanical applications as water pumping [2]. The most representative model of a

drag-type VAWT as shown in Figure 1.4 [3] is the Savonius.

Rortor air flow field

Figure 1.4 Schematic of Savonius wind turbine [3]

1.2.2.2 The lift type
This turbine generates power mainly by the generated lift force on the blade cross section.

[t can move quicker than the free wind speed. The most important application of this kind



is electricity generation [2]. The most representative model of a lift-type VAWT as shown in

Figure 1.4 [4] is the Darrieus wind turbine.

m Lift force
‘ How the Darrieus
wind turbine works

1 Resultant airflow (red arrow) forms positive
1 angle of attack to wing

Airspeed due to rotation

Figure 1.5 Schematic of Darrieus wind turbine [4]

In 1931 the U.S. Patent Office patented Darrieus wind turbine in the name of G.].M. Darrieus
[5]. The Darrieus patent states that “each blade should have a streamline outline curved in
the form of skipping rope.” [5] This means, the shape of the Darrieus rotor blades can be
approximated to the shape of a perfectly flexible cable, of uniform density and cross
section, anchored from two fixed points and rotating about its long axis; under the effect of
centrifugal forces such a shape minimizes inherent bending stresses. This blade shape is
called troposkien (from the Greek roots: tpots, turning and oxolvlov, rope). A pure
troposkien shape (gravity neglected) does not depend on angular velocity [6]. The equation
that defines a troposkein blade profile was developed by Sandia in April 1974 [7]. The
analysis considered a perfectly flexible cable rotating about a fixed axis at a constant
angular velocity without gravity as shown in figure 1.6. The Darrieus wind turbine with a
troposkien shaped blades has advantage of working under the effect of high centrifugal forces

without failure.



Figure 1.6 Schematic of a perfectly flexible cable rotating about a vertical axis [7]

1.3 Literature survey of the structural vibration analysis of vertical axis

troposkein shaped wind turbine blade

The performance of a Darrieus wind-turbine was studied firstly by R.S. Rangi and P. South
using wind tunnel measurements in the National Research Council of Canada in March
1971 [8]. In February 1974, R.S. Rangi and P. South and their team investigated Darrieus
wind parameters including spoilers and aero-brakes effect on turbine performance and
reliability, in addition to the effect of efficiency related parameters like the number of
blades and the rotor’s solidity. Compared to Sandia’s simplified troposkein shape, the
engineers at the National Research Council of Canada (NRC) in the early 1970’s,

independently developed catenary shape as an approximation to the troposkein curved
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blade [9]. In December 1979 a NASA team developed second degree nonlinear aero-elastic
partial differential equations of motion for a slender, flexible, non-uniform, Darrieus
vertical axis wind turbine blade using Hamilton’s principle. The analysis of NASA team
considered a blade undergoing combined flat-wise bending, edgewise bending, torsion, and
extension. Flatwise and edgewise are defined as follows. The airfoil cross section has a
major (chord-length) and minor axis. Bending about the major axis is referred to as “flat
wise”, and bending about the minor axis is called “edge-wise.” Extension refers to axial
deformation, and torsion occurs about the elastic axis [can cite an elasticity book regarding
elastic axis].The blade aero-dynamic loading was developed using strip theory based on a
quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory [10].
The derivation of the equations of motion was done based on the geometric nonlinear
theory of elasticity in which the elongations and shears (and hence strains) are negligible
compared to unity. In this research work The NASA model was used to derive equations of
the blade strain energy and kinetic energy. These equations are suitable to study the blade
free vibration and the blade dynamic response [10].

In June 1979, Sandia introduced a modal analysis for a 17-m diameter simplified
troposkein shape rotating at 54 rpm constant angular velocity using ANSYS finite element
software. This simplified troposkein blade consists of two straight increments at both ends
and circular part in the middle (described in details later) with a NASA 0015 airfoil cross
section. The first eight natural frequencies were calculated and the corresponding mode
shapes were produced [11].

Another wind tunnel performance analysis for the Darrieus wind turbine with NACA 0012

Blades was performed in Sandia by Bennie F. Blackwell, Robert E. Sheldahl, and Louis V.



Feltz [12], where several configurations of Darrieus wind turbine blade with NASA 0012
airfoil cross section and 2- meters diameter were tested in a low-speed wind tunnel to
measure the output torque, rotational speed as a function of rotor solidity, Reynolds
number, and the free stream wind velocity. A significant step in the development of larger
and more efficient commercial Darrieus VAWT’s was the installation and operation of 34-m
Sandia-DOE VAWT in 1987, rated at 625 kW. The Sandia 34-m turbine (Fig. 1.7) was the
first curved-blade Darrieus turbine rotor originally designed to incorporate step-tapered
blades using varying blade-section airfoils and a blade airfoil section specifically designed

for VAWTs [6].

Figure 1.7 Darrieus vertical-axis wind turbine (DOE/Sandia 34-m) [6]

In 2014 a structural dynamic design tool developed by Sandia for large scale VAWTSs for
studying the effect of geometry configuration, blade material, and number of blades on the

aeroelastic stability of VAWTs. This tool can describe quantitatively the aeroelastic

8



instabilities in VAWT design [13]. This is part of a recent strong research effort led by
Sandia to study VAWTs, motivated by the prospect of off-shore applications. Their work
has addressed the modeling of aeroelastic loading and the vibration responses, ultimately
for guiding the design and manufacture of VAWT systems, and has involved the
development of finite-element-based OWENS simulation toolkit, modal analysis of blade-
tower systems, potential for resonances, and field tests on the Sandia 34-m VAWT test bed
[14-16]. Further interest in structural modeling of VAWTs is represented by a series of

presentations at a recent conference dedicated to off-shore VAWTs [17].
1.4 Motivation

The following facts indicate why we need deep and active research on Darrieus vertical axis

wind turbines:

1. Limited knowledge and experience about Darrieus VAWTs

2. Large scaled HAWTs suffer failures due cyclic gravitational and aerodynamic loadings.
Darrieus VAWTs offers a good solution for this problem because of the blade shape
which minimizes inherent bending stresses and rotor vertical position which minimizes
the gravitational effect, so by developing a large scale Darrieus VAWTSs and improving
VAWT dynamic behavior can provide an alternative to problematic HAWTs without
losing advantage of high energy production.

3. Further investigation and more study of VAWTSs dynamics and vibration can increase its
life and as a result save a lot of money

4. All research in the field of troposkein shape blade dynamics was basically for the

simplified and approximated shape. Now with the help of high performance computers



and advanced calculation techniques, it is time to investigate the ideal troposkein blade

dynamics and how we can optimize this shape to get efficient blade performance.
1.5 Objective

This research aims to formulate a robust model for a troposkein shaped VAWT blade for
studying the blade vibration and its mode shapes and natural frequencies, taking into
account the blade loading and geometric complexities, which help us determine the safe

margins for the blade operating loads and angular velocities.
1.6 Thesis outline

This research is presented in the next two chapters:

Chapter 2 focuses on the finite-element analysis of the blade vibration, while chapter 3

sketches an analytical beam-based model for vibration studies.

More specifically, chapter 2 consists of the following:

1. Modal analysis is done using ANSYS workbench software for Darrieus wind turbine
blade with NASA 0015 airfoil for both simplified and ideal troposkein shapes.

2. Model validation is performed by comparing the mode shapes and natural frequencies
of the first eight modes to those of the Sandia model [11].

3. The effect of spinning on the model vibration is then examined
Chapter 3 consists of the following:

4. Kinetic and potential energies equations are derived and mass and stiffness matrices
are formulated to be used in Lagrange’s equation to calculate the natural frequencies

and mode shapes analytically.
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2 Chapter 2: Finite element model for calculating mode shapes
and modal frequencies of troposkein shaped vertical axis

wind turbine blades

2.1 Introduction

The wind turbine structure will oscillate due to cyclic aerodynamic loads during operation.
Because the turbine is a continuous system with many degrees of freedom it has many
different modes of oscillation and many corresponding natural frequencies. The most
critical component of the wind turbine is the blades. In this chapter a finite element modal
analysis has been done using ANSYS WORKBENCH finite element software.

In the first part of this chapter a model for a 17-m diameter straight-circular-straight shape
suggested by Sandia as an approximation to the ideal troposkein shape has been built using
inventor software. This wind turbine blade model has a 17-m diameter with 25.15 m height
and 30.48 m total blade length. The blade cross section is a NASA-0015 airfoil with chord
length 0.61 m, airfoil thickness of 0.091 m and wall thickness 6.35 mm except for the
reinforced leading edge which has a wall thickness of 8.89 mm.

The blade cross section has four uniform internal stiffeners with the same thickness of the
wall. The stiffeners are strategically located to provide enough structural rigidity.

A free vibration modal analysis for this model has been performed using ANSYS
WORKBENCH under constant rotational velocity of 54 rpm with blade ends clamped. To

validate this model the results of the analysis compared to the results of Sandia report [11].
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After validating our model, the vibrations of a stationary blade are studied. A stationary
blade condition is useful as a benchmark for stationary laboratory experiments or
comparison between models. It also helps to understand the effect of spin.

In the second part of this chapter a model for the ideal troposkein shape has been built and
analyzed to get the mode shapes and modal frequencies of the ideal troposkein shape and
to compare the approximated blade shape of the straight-circular-straight segmented beam

to the ideal shape.
2.2 3-D model for 17m diameter blade of straight-circular-straight
shape

2.2.1 Blade cross section

The blade airfoil is based on NASA'’s four digit airfoils equation [18] as follows
Ve = Ot—z (0.2969\/§ ~0.126 =~ 0.3516(5)* + 0.2843(5)* — 0.1015(9)*) (2.1)

where

c is the chord length

t is the maximum airfoil thickness which equals 0.15c

x is the coordinates of the airfoil along the chord or the major axis

y¢ is the coordinates of the airfoil along the minor axis

For a NASA 0015 airfoil with 0.61 m cord length, the blade cross section shape can be
calculated using equation (2.1) and its coordinates as given in table A.1 in appendix A.

Plotting y versus x from table A.1 gives the airfoil shape as in figure 2.1

12



Figure 2.1 plot of airfoil points

Taking points of airfoil from table.1lin the appendix and generating the shape of the outer
and inner airfoils by Inventor software using the offset feature, then a four stiffening spars
was generated by Inventor with 6.5 mm thickness each and strategically located to provide

proper structural rigidity [11]. The final shape of the airfoil is shown in figure 2.2

/505 R D35R

1837
pee 250 WALL EXCEPT |

: ; A5 NOTED
I 7., N :

11.303 - j

ot 11,500 w—~~—-—|

16.500 o

24,000

(a) (b)

Figure 2.2 NASA 0015 blade cross section of 17 m diameter Sandia blade. (a) The

original Sandia one. (b) The one rebuilt for this work

2.2.2 Blade profile
The Sandia blade consists of three segments: one circular at the middle with radius 10.43 m
and 16.754 m length and two straight segments of 6.858 m length each as indicated in

figure 2.3.
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Figure 2.3 17 m diameter Sandia blade profile (all dimensions in m)
2.3 FEM model for 17m diameter blade of straight-circular-straight

shape spins with 54 rpm constant rotational velocity

A modal analysis for the 17 m diameter Sandia blade has been done using ANSYS
workbench by meshing the blade structure using the SOLID 187 element. The SOLID 187 is
a ten nodes higher order 3-D element, which makes it well suited to model irregular
meshes. A SOLID 187 element has three degrees of freedom at each node (translations in
the nodal x, y, and z directions) [19]. The blade is clamped at both ends except for rotation
about the y-axis as shown in figure 2.4 where the blade assumed to be rotating at constant

rotational velocity of 54 rpm.
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Figure 2.4 Sandia simplified blade shape clamped at both ends and allowed to rotate

Figure 2.5 indicates the mesh pattern generated by ANSYS. By magnifying a part of this
mesh we can note the elements shapes. For this analysis of 17 m diameter simplified Sandia
blade the element size refined several times starting from automatic mesh and going finer
to see the effect of mesh refinement on the results. After refining the mesh in limits of
ANSYS academic version available for our lab, we found that there is no significant
difference in the results of different meshing cases. The modal results of simplified Sandia
blade for both spinning and stationary cases calculated with mesh element size of 0.07m
and blade total number of elements equals 72562 elements.

The first 10 modes and the corresponding natural frequencies of the Sandia blade rotating
at 54 rpm constant rotational velocity have been calculated, and the results for the natural

frequencies are indicated in table 2.1, and the modes are shown in figures 2.6 to 2.15.
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Figure 2.5 17 m diameter Sandia blade meshing pattern

Table 2.1.first 10 natural frequencies of 17 m diameter Sandia blade

L

=

Se@NOGELN =T

Frequency [Hz]
2.0416
2.5621
4.0247
5.9241
6.224
8.6015
11.88
13.486
15.57
19.722

(1]
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Figure 2.6 first mode of Sandia blade at 54 rpm (flat-wise only), 2.0348 Hz

ANSYS
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Figure 2.7 second mode of Sandia blade at 54 rpm (edge-wise only), 2.5675 Hz
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Figure 2.8 third mode of Sandia blade at 54 rpm (flat-wise only), 4 HZ
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Figure 2.9 fourth mode of Sandia blade at 54 rpm (edge-wise and torsion), 5.94 Hz

18



ANSYS

R18.1
Academic

10.000 (rm)

Figure 2.10 fifth mode of Sandia blade at 54 rpm (flat-wise only), 6.1904 Hz
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Figure 2.11 sixth mode of Sandia blade at 54 rpm (flat-wise only), 8.5349 Hz
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Figure 2.12 seventh mode of Sandia blade at 54 rpm (flat-wise only), 11.749 Hz
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Figure 2.13 eighth mode of Sandia blade at 54 rpm (edge-wise and torsion), 13.52 Hz
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Figure 2.14 ninth mode of Sandia blade at 54 rpm (flat-wise only), 15.335 Hz
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Figure 2.15 tenth mode of Sandia blade at 54 rpm (flat-wise only), 19.354 Hz
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Comparing the above results to Sandia results [11] shown in figure 2.16; we find that the
results are approximately the same. This validates the finite element analysis based on the
ANSYS WORKBENCH and SOLID 187 element, which will then be applied to stationary and

ideal troposkein blades.

e i o —

“tal mode ;1.9 M1 2nd mode ; 284 HE
M“:;II'II-. lﬂ-.plll'lt bending  [Coupird O.P. bending wad twisling)

- 1072 He ath moae : 1351 Hz
S383H ath made . & 54 M2 Tih mode 1%
rd mads ' {Coupied 0P, pending and bmashng

Anti-sym, {OPE and tensting)
Calculaled Natural Freguencies and Mode Shapes (Roter L - 54 APM}
(Assumphon : Fized ends) {17m YAWT)

Figure 2.16 mode shapes and frequencies of a single blade of a spinning rotor by Sandia
We can make some observations from these results. Figures 2.6 and 2.10 show
antisymmetric flat-wise bending modes. The zero-point on these mode shapes is not
exactly centered. Indeed, observing animations shows that the zero point moves during
pure modal vibrations. Since the stiffness and mass matrices are symmetric, this zero point

shifting suggests that these flat-wise modes also involve extension. This will be
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investigated later with both finite-elements and beam-based modeling. The Sandia results
also suggest this behavior. Also, the dominantly flat-wise (or possibly flat-wise/extension)
and edge/torsion mode shapes suggests that the flat-wise and extension deformation
coordinates may be nearly decoupled from the edge-wise and torsion deformation
coordinates. A flatwise mode similar to a first mode of a clamped-clamped beam does not
show up among the lower modes. Such a mode of flatwise deformation will necessarily
involve significant extension and compression. Since extension is in a stiff orientation of a
blade (axial deformation tends to be stiffer than bending), such a mode is likely to have a
high frequency.

2.4 FEM model for 17m diameter stationary blade of straight-circular-

straight shape

We have validated our model by comparing the calculated mode shapes and corresponding
modal frequencies of the Sandia shape spinning blade to those which were calculated by
Sandia. Now we will consider the mode shapes and modal frequencies of the same blade
analyzed in section 2.3 but under stationary conditions, which means the blade rotational
velocity is zero. For brevity the mode shapes will not be plotted. For the same element size
and meshing pattern, the stationary case modal analysis results can be summarized as
shown in table 2.2 below.

Table 2.2 Sandia (MSU) stationary blade first ten modal frequencies

Mode No. | Fregency | shape

1 1.2824 Flat-wise
2 2.4595 Edge-wise
3 2.8691 Flat-wise
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Table 2.2 (cont’'d)

4 4.8445 Flat-wise

5 5.6198 Edge/torsion
6 7.1157 Flat-wise

7 10.188 Flat-wise

8 13.177 Edge/torsion
9 13.693 Flat-wise

10 17.649 Flat-wise

2.5 FEM model for 17m diameter ideal troposkein shaped blade

In this part a modal analysis has been done for an ideal troposkein shape blade with 17 m

diameter and blade cross section as in figure 2.17. Here the cross section is a little bit

different than the simplified Sandia shape blade to overcome the limitations of the number

of elements in the ANSYS software academic version available in our lab at Michigan State

University.

35—= =

L

o

16.50

R.04

Figure 2.17 NASA 0015 blade cross section for 17 m diameter ideal troposkein shape blade
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Comparing the ideal troposkein blade cross section shown in 2.17 to the simplified Sandia

blade cross section shown in figure 2.2 we can summarize the differences as in table 2.3

below.

Table 2.3 cross sectional properties for both Sandia and Ideal troposkein blades under

discussion

Property Sandia cross section Ideal troposkein cross
section

Airfoil / chord length NASA 0015/0.61 m NASA 0015/ 0.61m

Cross section area

0.98 * 1072m? = 15.129 in?

0.96613 * 10~?m? = 14.975 in?

Flat wise moment of inertia

0.859 * 10~°m"4

0.819 * 10~°m"4

Edge wise moment of inertia

2.814 * 10™*m"4

2.816 * 10~*m"4

Total mass of 17 m diameter
blade

810.82 Kg

802 Kg

Blade material

6063-T6 Aluminum alloy

6063-T6 Aluminum alloy

From table 2.3 we can see some differences in the blade total mass and edge wise moment

of inertia and we see later how these differences will contribute in the comparison of

modal analysis results for both blades

2.5.1 3-D model for ideal troposkein shape blade

2.5.1.1 Blade profile

The troposkein shape shown in figure 2.18 can be described by [6]

Zo _ 4 _ Flkw)
0.5H F(ke;g

(2.2)
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Figure 2.18 Troposkein shape

where

H is the blade height

¢ = ArcSin [%0], where ¢ ranges from 0 to g, R is the blade radius
F(k,; ¢) is the incomplete elliptic integral of the first kind

F(k,; g) is the complete elliptic integral of the first kind

2.5.1.2 Elliptic integral arguments

k. is elliptic integral arguments [6] and it can be calculated from

2k, 1

B = 1-k2 * F(ke ,g) (2'3)
InEq.236 =+

Solving Eq. (2.3) using Matlab for R=8.5m and H=24.476 gives k, =0.457
2.5.1.3 Blade length

The blade length can be calculated from k, and the blade height 2H [6] as in Equation 2.4
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TT.
L 2  E(ker)

= *
2H  1-K?  F(keiy)

1 (2.4)

Solving Eq. 2.4 using MATLAB for ZH=24.476 m and k=0.457 gives L=30.42 m which is
approximately the same length of Sandia 17 m diameter simplified shape discussed in
sections 2.2 and 2.3. Plotting Eq. (2.2) for xoranging from 0 to R on MATLAB, where R=8.5
and H=12.238 m, gives half of the blade shape, as in figure 2.19. The 3-D blade model can be

generated by combining the blade cross section figure 2.17 and blade profile figure 2.19.

Lo,

X0

Figure 2.19 17 m diameter troposkein shape with H=12.238 m

2.5.2 FEM modal analysis for 17m diameter blade with ideal troposkein shape

A modal analysis for 17 m diameter ideal troposkein shape blade has been done using
ANSYS WORKBENCH by meshing the blade structure using SOLID 187 element and
clamping both ends of the blade except for rotation. The blade assumed to be rotating at
constant rotational velocity of 54 rpm. The mesh pattern used here is the same as the mesh
pattern used for simplified Sandia blade shape to compare the results of both blades

significantly.
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The first 10 modes and the corresponding natural frequencies of the blade have been
calculated and the results for the natural frequencies indicated in table 2.4 and the modes
in figures 2.20 to 2.29. The stationary ideal troposkein shaped blade was also analyzed and
the modal frequencies are listed in table 2.5, but the mode shapes are not shown for brevity

Table.2.4.first 10 natural frequencies of 17 m diameter ideal troposkein shape blade

18.737

s Mode | Frequency [Hz]
1.8685
2.3412
3.68
5.8174
6.1824
8.363
11.36
13.301
14.821
18.737

Frequency (Hz)
3

OO [N |0 & W1

5
25 I |
al
2 3 4 5 6

Number of modes

-
e

ANSYS

R18.1
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Y

-
10.000 {m) l—s X
I

5.000

Figure 2.20 first mode for the troposkein blade at 54 rpm (flat-wise only), 1.87 Hz
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Figure 2.21 second mode for the troposkein blade at 54 rpm (edge-wise only), 2.34 Hz
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5.000

Figure 2.22 third mode for the troposkein blade at 54 rpm (flat-wise only), 3.68 Hz
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Figure 2.23 fourth mode for the troposkein blade at 54 rpm (flat-wise only), 5.82 Hz
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Figure 2.24 fifth mode for the troposkein blade at 54 rpm (edge-wise & torsion), 6.2 Hz
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Figure 2.25 sixth mode for the troposkein blade at 54 rpm (flat-wise only), 8.4 Hz
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Figure 2.26 seventh mode for the troposkein blade at 54 rpm (flat-wise only), 11.36 Hz
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Figure 2.27eighth mode for the troposkein blade at 54 rpm (edge-wise / torsion), 13.3 Hz
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Figure 2.28 ninth mode for the troposkein blade at 54 rpm (flat-wise only), 14.82 Hz
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Figure 2.29 tenth mode for the troposkein blade at 54 rpm (flat-wise only), 18.74 Hz

Table 2.5. Comparison of the lower modal frequencies as obtained by finite element
analysis. "Sandia" refers to the straight-circular-straight blade model. Spinning occurs at 54

rpm. F (flat-wise), E (edge-wise), and ET (edge-wise/ torsion)

Sandia(54 Troposkein

rpm) (stationary
Freq. | shape
128 |F
2.3 E}
281 |F
478 | F
5.6 ET
721 | F
10.14 | F
13.06 | ET
13.55 | F
1743 | F
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Table 2.5 summarizes our results for comparing the FEA results of Sandia blade and ideal
troposkein blade for both stationary and rotating condition with constant rotational
velocity 54 rpm as follows.

1. For the spinning case of the simplified blade we find that our finite element model
results and Sandia finite element results are essentially the same.

2. Comparing the spinning blade (54 rpm) first ten modes for ideal troposkein shape and
Sandia simplified shape we found that the natural frequencies spinning of ideal
troposkein shape is little less than the natural frequencies of Sandia one. This difference
may be because the ideal troposkein shape is slightly different, and its cross section is
little bit different than the simplified Sandia shape blade to overcome the limitations of
the number of elements in the ANSYS software academic version available in our lab,

which makes the ideal troposkein shaped blade is little lighter than the Sandia one.

3. For stationary free vibration case the first ten mode shapes for Sandia and ideal
troposkein shapes are essentially the same, but the natural frequencies of ideal
troposkein shape are a little lower than for simplified Sandia shape. This difference in
modal frequencies may be because of the difference in profile or difference in cross
section to overcome the ANSYS limitation problem as we mentioned before.

4. The spinning blades have increased modal frequencies. The increase is more significant
in the flat-wise modes than the edge-wise/torsion modes. It is likely that the spin
stiffening induces tension in the blade, and has a more significant effect on flat-wise
bending than torsion. Since the flat-wise modal frequencies undergo larger changes
under spin, in some cases their frequencies become larger than a nearby edge/torsion

mode, and the modal ordering therefore changes slightly.
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3 Chapter 3: Analytical beam-based formulation of troposkein

shaped blade modal analysis

3.1 Introduction

In this chapter we will study the vibration of Darrieus wind turbine blade with a
troposkein-shape. Because of the blade shape complexity we will use an assumed modes
method for discretizing the kinetic energy and potential energy for the case of free
vibration (no aerodynamic forces condition). The gravitational effect will be neglected and
Lagrange’s equation will be used to formulate the mass and stiffness matrices which can
then be used to calculate the natural frequency and mode shapes analytically.

In the current work we will use the clamped-clamped beam modes as our assumed modal
functions to formulate the displacement functions for the blade, and by substituting these
functions and their derivatives we can get descretized expressions for the energies, which

can be used to approximate the modes and frequencies.
3.2 Blade potential energy

The potential energy of the blade can be divided in to two parts:

1. Strain energy

2. Gravitational potential energy or gravitational work
Here we will consider the strain energy only. The gravitational potential energy will be
neglected in this initial study. The strain energy SE for an element of volume V can be

expressed as
SE =-Voe (3.1)

where
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Vis the volume

o is the engineering stress

€ is the engineering strain

To express the blade strain energy using equation (3.1), several orthogonal coordinate

systems will be employed. These coordinate systems are shown in figures 3.1, 3.2, and 3.3

and can be defined as follows

1. Inertial coordinate system (X; Y7 Z; - system). As shown in figure 3.1 the Z;-axis coincides
with the vertical axis of the rotor. The Xj-axis aligned with the free stream wind velocity,
V. The Yi-axis is normal to X;-Z; plane.

2. Rotating coordinate system (Xr Yr Zr - system). As shown in figure 3.1, this system is
obtained by rotating the X; Y; Z; - system by an angle t =Q2*t, where (2 is the turbine
rotational velocity.

3. Blade coordinate system B1 (Xp:Yr1Zpi-system) ; as shown in figure 3.1 this blade local
coordinate system has its origin coincident with the blade cross section shear center
and parallel to the Xz Yr Zr - system. The unit vectors of this system are ExBl’ EyBl, EZBl in
Xb1,YB1,Zp1 respectively

4. Blade coordinate system B2 (Xp2Yp2Zp2-system). As shown in figure 3.1, this system is
obtained by rotating the B1 system about the negative Yp;-axis by an angle 0 (6 is the
meridian angle, which we will discuss later in detail). The unit vectors of this system are
;sz' Eysz' Esz in Xp2, Yp2, Zp2, respectively.

5. Blade principle axes system B3 (Xp3Ys3Zp3-system). As shown in figure 3.2, in this

coordinate system Xpzand Y3 are taken to be aligned with the minor and major
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principle axes of the blade cross section, respectively. The unit vectors of this system
are ey, €y, €, in X3, Y3, Zps, respectively.

The blade coordinate system B6 (XpsYrsZps-system) is shown in figure 3.3 and is
obtained by translating and rotating the B3-system as we will see later in this chapter.
The deformations of the blade elastic axis are denoted by u, v, and w, in the Xz3, Y53, Zp3

respectively, and ¢ represents the twisting deformation.

Yg2

ris)
Y
P > B3

Figure 3.2 coordinate systems of blade cross section [8]
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Figure 3.3 axis of blade before and after deformation, and coordinate systems [8]

The blade strain energy can be expressed based on eq. (3.1) and using the B3 coordinate

system as

1 ’ i X3
SE = E J-0 (0-2323)/2323 + O'z3x3)/z3x3 + 0-233/3)/233/3) dx3 dy3 dZS (32)
0
0

Here because of the blade slenderness assumption we neglected yy.x., Yx;y, and y;.,..
Assuming that the engineering strain components v, ,., ¥z, x,, ¥z,y, are equal to the
corresponding components of Lagrangian strain €,.,., €., €,,, and using Hooke's law we
can get

o-Z3Z3 = EYZ3Z3 = EEZ3Z3

o-Z3X3 = GYZ3X3 = 2G623X3 (3'3)
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Oy = GVpyy, = 2GE,,,,.

Also

Vzyz3 = €232,

Vzsxs = 2625, (3.4)

]/Z33’3 = 26233’3

Substituting equations (3.3) and (3.4) into (3.2), we get

Y3
1 X3
=2 f jo [ EBeZ,, +46(eh, + €2,))) dusdysdz;  (35)
0

From eq. (3.5) we can find that the blade strain energy is only a function of Lagrangian
strain components €., €,.., €,.y,- SO we need to calculate these strain components for
the troposkein shaped blade.

3.2.1 Derivation of strain equations

From continuum mechanics we know that the Lagrangian finite strain € for a beam of

length L subjected to axial stress is given by [20]

1 1%-12

=15 (36)

where
lis the extended length

From eq. (3.6) we can express the strain tensor for the blade as

1 /drl/z /dro
y - 2 /drolz

——) (3.7)

where 1:0 and r, are the position vectors of an arbitrary mass point in the cross section of
the blade before and after deformation respectively [10] with respect to the origin of the
inertial coordinate system (X;Y;Z;) as shown in figure 3.1
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Rearranging eq. 3.7 we get
dry/? — ldrel* = 2/dry /e (3.8)
Using figures 3.1, 3.2, and 3.3, and assuming that the blade cross section deformation is

negligible, using a slender blade assumption we get
Ty = R+ X36x33 + y36y33

;1 = R1 + X3EXB6 + y3;y36 (39)
where

1. Rand 1_11 are the position vectors of the blade cross section shear center (P) before and
after deformation with respect to the inertial coordinate system (X;Y;Z;) which is
shown in figure 3.3.

2. x5 and y; are the coordinates of any arbitrary point in the blade cross section with
respect to the coordinate system (Xg3Yg3) shown in figure 3.2, where in this system X3
and Y; are taken to be coincident with blade cross section minor and major axes,
respectively, and EXB3 and EyB3 are the unit vectors in the direction of Xz; and Y5
respectively.

3. Ex% and Ey% are position vectors in the directions of Xz and Yg¢ ,respectively, where
Xpe and Yg¢ are the minor and major axes of the blade cross section, respectively, after

deformation. We will indicate later how we get the B6- coordinate system from B3-

coordinate system.

Now from eq. (3.8) we need the differentials 0f1:0 and . Firstly,

- dR dex de - -
dro = [ +x:3— 2+ s ;:3]615 + ey, dxs + €y, dys (3.10)
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where s is the same as Z3 and represents a coordinate tangent to the blade elastic axis at
each cross section and perpendicular to the cross section minor and major axes. The

derivative of the unit vectors with respect to the axial blade coordinate s can be written as

d;xBS . 5
ds WXp3Yp3Zps X €xps
de - -
yB3 _
ds Wxp3Yp3Zps X €yps (3.11)

The curvature vector of the undeformed blade (I)XB3YB3 Zgs 1S given by

WOxgo¥pazes = —0'€ys, TV €2, (3.12)

where

6 is the blade meridian angle or the angle between the vertical and the tangent to the blade
elastic axis at any point.

y is the total section pitch angle which includes the built-in twist and section pitch change
due to control inputs. In this thesis we will consider a blade with zero pitch angle.

From figure 3.2 the coordinate system B2 is the coordinate system generated by rotating
the B1-coordinate system by an angle 8 about the negative yg; -axis to make the zg;-axis
tangent to the blade elastic axis. The transformation matrix between the B2 and B3

coordinate systems is

fsz cosy —siny 0 fst
ey, | =|siny cosy O|f ey, (3.13)
eZBz 0 0 1 eZB3

Eq. (3.13) gives

;ysz = Exmsiny + Eymcosy (3.14)

Substituting eq. (3.14) in eq. (3.12) gives
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Wyp,vpazps = —0'sinye,. . —0'cosye, . +7y'e .. (3.15)

Now eq. (3.11) can be written as

dgxsg 1 1 =

3 7 Cyss + 6'cosye,,,

dEYB3 1 [ =

s = TV exg — B'sinye,,, (3.16)

Substituting equation (3.16) into equation (3.10) and letting

k.., = —0'siny
ky,, = —6'cosy
Koy = V'

leads to

dT_‘O = (dX3 - y3kZB3 ds)gxss + (x3k233 ds + dY3)E3’B3

+(1 + yskyy, — X3kyg, )dse,,, (3.17)

YB3

With the same procedure as dr, we can express dr; as

dry = (dxz — y3kyp,ds1)exg, + (dys + x5k, dsy ey,

+(1 — x3kyy, + Y3k, )ds1€,,, (3.18)

Now from eq. (3.8) the Lagrangian strain tensor can be defined as follows

dxs
dT‘l. d‘l"l - dro. dro = Z[dxgdx3d23] [EU] <dx3) (3.19)
dzs

6x3x3 EJ533/3 e-95323
€ij = €ysxs  €yzys  Eyszg

623x3 6233/3 62323

Expanding the right hand side of eq. (3.19) gives
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dx

2[dxsdx;dzs][€;)] (dx3> = 2(€xyx,dX3" + €3y, dX3dY3 + €45, dx3dz3 + €5, dys” +
dz;

€y, AX3dYs + €y, ,.dysdz; + €, ;. d232 + €5,x,dX3d2Z3 + €4, dz3dy3)
Using the fact that the strain tensor is symmetric and neglecting any strain component in
the plane of the blade cross section (x3-y3) because of the blade slenderness, the above
equation reduces to

dx;
2[dx3dx3dzs][€)] (dx3> = 4€,, 5, dx3dz3 + 4€,,,. dysdz; + 2623Z3dZ32 (3.20)

dz,

By simplifying the left hand side of eq. (3.19)

dry. dry — dro.dry = {(dxs — ysky, ds;)” + (dys + x5k, ds;)” + (1 - +

ZB6 YBG

y3ka6)2dslz} — {(dx; - y3kZB3ds)2 + (dy; + x3kZB3ds) + (1 = x3ky,, + y3ky,,)?ds?}
(3.21)

The relation between ds; and ds can be expressed as [10]

ds; = (1+2¢,)%ds (3.22)

where €, is the extensional component of the Green’s strain tensor

Substituting eq. (3.22) in to (3.21) and expanding leads to

dry.dry — dro.drg = —ds? + ds?(1 + 2¢,) + 2ds?ky,, x5 — 2ds?(1 + 2€,)k

YBG

— ds?k?

ZB3

2dsdysk,,.x3 + 2ds(1 + 2€,)dysk,, x5 — ds?k3

YB3

x% 4+ ds?(1 + 2¢,)k? 2+

ZB3 YBG

ds?(1+ 2€,)kZ, x5 — 2ds%ky,, s + 2ds?(1 + 2€,)ky, Vs + 2dsdxzk, .. y; — 2ds(1 +
2€.)dxzk,, ys + 2ds%ky, ky, x3y3 — 2ds* (14 2€,)kyp Ky X3y3 — ds?kZ, y5 + ds*(1 +

XB3

Zee)kx36y3 dszk§B3y3 +ds?(1+ 26€)k236y3
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Assuming that the extensional strain component €, is negligible compared to unity, we

have
dry.dr; — dry. dry = 2ds?e, + 2ds?ky, x5 — 2ds*k,, x3 — 2dsdysk,, x3 +
2dsdysk,, x3 — ds*k3 x5 + ds?k}, x5 —ds*kZ, x5 + ds®kZ, x5 — 2ds®k,,.ys +

2ds?ky, y3 + 2dsdxsk,,. ys — 2dsdxsk,, ys + 2ds?ky, ky, x3y3 — 2ds%k,, Ky, X3y3 —

XB3 XB6

ds?k%,,v5 + ds?k?, y; — ds*k;

ZB3

y; +ds*kZ, y3 (3.23)
Simplifying eq. (3.23) considering (dz; = ds) along the blade elastic axis

dry.dry — dro.drg = 2(€ + X3(kyg, — k) = Va(kngy — Knge) + X3¥3(Kag, Kyp, —

kaekJ’Bs) - (k32533 - k92586) + x2_3 (kz - kz

(x3+¥3) /1.2 2
2 YBe YB3) + 32 : (k —k

ZB6 ZB3

))dZ32 — 2x3(k

Zps

kZBG)dZ3dy3 + 2y3 (k - kZBG)dZ3dx3 (324‘)

ZB3

Comparing the right hand side in eq. (3.20) to the left hand side in eq. (3.24) we find

2
€232; = €e + X3 (kYB3 o kYBs) — Y3 (kXB3 o kXBe) + X3¥3 (kXB3kYB3 o kXBekYBe) o 3’2_3 (k>2<B3 B

2 2,2

k>2<Be) + X?3 (k}Z’Be - k}2’B3) + (X3ZY3) (k%BG - k333) (3.25)
e-Z_'_),JC_'_), = y??' (kZB3 - kZB6) (3.26)
€23y = % (kZB3 - kZBs) (3-27)

For calculating the blade strain energy we need to get the strains in equations (3.25),
(3.26), and (3.27) in terms of the elastic deformations (u, v, and w) and the twisting
deformation ¢, where u, v, and w are deformations in x3, y3 and zzdirections respectively.

Asin Ref. [10] appendix A
€, = a, + % (af + aj) (3.28)

— — —a =1 2_1 2 r_
kas - ka3 akaB3 Ay 2 kasax 2 kx33¢ t day ¢C¥ykZ33 + ¢ky33
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4 1 !
kJ/Ba = kJ’Bs - aykZBs Tay — Ek:VBS (alz’ + ¢2) + d)ay + ¢axk233 - ¢kx33 - ka3axay
(3.29)
1 ! !
kppe = Qukyy, tayky  + Kk, — Eszs(aazl +a)+¢' +a,a,

For case of zero section pitch angle [10]

ka3 =0
kJ’Bs = =0
kZB3 =0 (3.30)

a, =u —wb’

a, =v

a,=w'+ub’

Substituting equations (3.28), (3.29), and (3.30) in to equations (3.25), (3.26), (3.27) we get
€252, = % +w' +uf’ + % w —wb)2+y;(—p8' + p(u'' — W8 —wh'") —v") —

x3(%’ (2 + (W) + W' —wo —wb'") + ¢pv'") + x%(—%d)z(e')z -0’ —wo —wbo'") +

(W' = w0 = w0'")? = $O'V") + x3y3(—p(0)? + 200" (W' — w0’ —wb") —0'v" +

" 2 2
W'’ = w8 —wh" ") + R ()7 +1 (W) (6" + o'y + 1) + EEXD (412 -

v'o'd’) (3.31)
€y = —3Y3(—V'0" + ' + V' (W — w6 — wh")) (3.32)
€ryys = 3X3(—V'0' + @' + V' (W — w0 — wb'")) (3.33)

Now substituting equations (3.31), (3.32), and (3.33) in to equation (3.5), we can get the

strain energy as a function of u, v, w, and ¢ and their derivatives
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N2
(ﬂ WUl + L — w8 + s (0" + (U — w0’ —

2

S aYs
X
SE—l'r 3E
_2| {
JO 0 0

wo'") = v") = x5 (S (97 + ()2 + (W' — w0 —w8") + v ) +x3 (— 1 p2(6))? -
0'(u" —w'e’ —wb") + ; (W —w'e’ - we)"))2 - ¢>0’v”) + x3y3(—p(0)% + 296" (u"" —

w'eo' — WHH) —0'v" + (uu —w'e' — WQII),UH) + ysg (%¢2(0/)2 + %(UI)Z(BI)Z + ¢9!vu +

2 2,.2 2
(Vz) ) + (x3-;-y3) ((d)r)z _ U’H’¢')>

+ 4G l<—%y3(—v’9’ + ¢’ + v’(ull —w'e —

2 2
W9"))> + (%xg(—v’é?’ +¢' +v' W' —-w'e — WH”))) l} dx; dys; dzg (3.34)

Because we seeking linear system of equations from Lagrange’s equation we will keep

quadratic terms only so we can simplify eq. (3.34) as follows:

(-5 Ys

X3
SE = % i j (E[(Ww' +ub' + y3(—p8’ —v") — xz(u" —w'8' —wh") + x2(—0'(u"' —
0

JO 0
1 2 1
WO = w8")) + x5 (~(0) = 0'v" )] +4G[(~ 2y (—v'0" + ) + (Sxs(-v'0 +

#)) Ddxsdys dz, (335)

where

u, v, w, ¢ and their derivatives represent u(s,t), v(s,t), w(s,t), ¢(s,t) and their derivatives.
Assuming that the blade cross section shown in figure 3.2 is symmetric about Yp3-axis, the
cross sectional properties resulting from expanding eq. (3.35) are defined as follows

1. The blade cross sectionarea A = [ [ dx,dys
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8.

9.

Ae, = [ [ y3 dx; dy; {eais the chord-wise offset of area centeroid of cross section from
elastic axis (has a positive value when measured in front of elastic axis and vice versa)}
Edge-wise second moment of area of blade cross section I,_,, = [ [ y3? dx; dys
Flat-wise second moment of area of blade cross section I, = [ [ %32 dx5 dys

Polar second moment of area | = [ [ (y5% + x32) dx; dys

ffX3dX3dY3 =0

ffX3Y3 dxz dy; = 0

J | %3(x3% +y3%) dx3 dy; = 0

ffY3X33 dx3 dy; =0

1O.ffX3Y33 dX3 dY3 =0
11.ffX3Y32 dX3 dY3 =0

12P1 =ffx34 dxg dy3

13.P, = f fx323’3 dx; dy;

14.P; = f fx§y§ dx; dy;

Substituting the above blade cross sectional properties and expanding we get

SE

N %f;{E[A((W,)Z +2uw'0’ +u?(8')%) — 24e4(dw'0" + up(6")* + w'v" +ub'v'") +

Liyey (92(0)% + 200'0" + (V")) + P3(¢*(0)* + 2¢(6")°v" + (6)*(v'")?) +

4P2(—¢W’(6’)3 + d)(e/)zuu _ W’(HI)ZU” + elunvn _ W¢(9’)29” _ WH"U”H”) +

Ly, BW2(0")? 4 2uw’(6") — 4w'0'u" — 2u(6")?u" + (u")? + 4ww'0'0" +

2uw(0)20" — 2wu" 8" + w2(0")?) + PL((W")2(8)* — 2w'(8")3u" + (8")*(u')* +

2WW’(6’)36” _ 2W(9’)2u”9” + WZ(BI)Z(BII)Z)] + G][((UI)Z(QI)Z _ 2U’9’¢’ + (¢l)2)]}ds

(3.36)
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3.3 Kinetic energy

The kinetic energy of the blade in terms of r, can be given by

S
Y3 X5 L
1 d d
T=2 f j p(%.%) dxs dys dzs) (3.37)
0 0
0
In eq. (3.36)
D—ftoxn (3.38)

With reference to figure 3.3
w is the angular velocity of the B3-system.
ry is the position vector of an arbitrary mass point on the blade.

Note: w and 7_‘1 are not shown in figure 3.3. Then

11 =R+ AR + x3e,,, + V3€,,, (3.39)

R = xgey, + zpe,,

For a nonrotating blade

R = xpey, + zpe,,

Because the R-system and BI-system are parallel we can express I_? as

R = xgey,, +20€,,,

The coordinate transformation between the BI and B2 coordinate systems is

fxBl cos@ 0 —sind fsz
0 1 0
sin@ 0 cosf

eys, (3.40)

eYB1

e e

ZB1 ZB2

Using eq. (3.40)
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R = (xycos0 + Zosine)éxﬂ,2 + (zoco0s0 — xosinH)EZBz

For zero section pitch angle B2 and B3 are the same so:

R = (xycosf + Zosine)é,%,3 + (zycos0 — xosinH)EZB3 (3.41)

With reference to figure 3.3

Note: u, v, w are not shown in figure 3.3

AR = ue,, +vey,, +we,, (3.42)

The rotational transformation matrix [T] from B3 to B6 coordinates can be formulated by

Eulerian-type angles [8] S, 6, and ¢, which can be defined as follows:

1. B isthe positive rotation angle about yg_ - axis which converts
Xp,Yp,Zp, tO Xg, Vg, Zp, (NOt shown)

2. ( isthe positive rotation angle about the negative xg, - axis which converts xg,yg, 7, to
Xg,Yp.Zp, (not shown)

3. o isthe positive rotation about zg, - axis which converts xp_yg zp_ to xg yp Zg,.

Applying these three rotations we get [T] as follows:

[T]=

—cos(B)sin(o) — cos(a)sin({)sin(B) cos({)cos(a) sin(f)sin(c) — cos(a)sin({)cos(B)

cos(B)cos(o) — sin(o)sin({)sin(f) cos({)sin(c) —cos(o)sin(B) — sin(o)sin({)cos(p)
cos(§)sin(pB) sin(¢) cos(B)cos(9)

(3.43)

Rewriting [T] matrix as a function of strain components u, v, w, and ¢ we get [10]

|[1 2l - 0wy ¢ —' - 6'w) — v’ 1|
=| —p-@-owy 1-T-Z g -ow)-v | (3.44)
[ (u' —0'w) v 1- % [(W — 8'w)? —v'?]
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The transformation from unit vectors in the B3- coordinate system to unit vectors in

B6- coordinate system can be written as

exB6 exBS
eype | = [T1] €yp, (3.45)
eZB6 eZBs

Using eq. (3.45) with eq. (3.44)

- ¢2 a 2 — — _
exBe = (1 - 7 - %)ex33 + ¢€y33 + (_ax - ¢C(y)€ZB3

— — 2 a 2 _ —
ype = (=@ —ayay)e,, + (1— % — %)eyB3 + (pay, —ay)e,,, (3.46)
Substituting equations (3.41), (3.42), and (3.46) in to equation 3.39 we get

2 2
¢ Ox

ry = (xocosé’ +zgsind +u+ x5 (15 =) ~y3(p + axay)> €xps T (VX300 +y5(1 -

2 a 2 — . -
% — %))eylg3 + (zgc0s0 — x¢sind + w — x3(ay + dpa,) + ys(pay, — ay))e,,, (3.47)
Substituting for a, and ay, from eq. (3.30) in to eq. (3.47)

_ 2 ’ 2_2 9" +w2(g’ 2
T = Ixocose + z,sinb + u + x5 <1 -5 (Gl Wuz Hie) )> —y3(p + (v'u' —

72

_ 2 _
v’wH’))l €xps T [v + x50 + y;5 (1 - % - %)] ey, + [20c050 — xosinf + w — x3(u' —

wl' + ¢v') + ys(pu’ — dwo’ —v')]e,,, (3.48)

From eq. (3.48)

ry = [t + xs(—pd —wur — 0 (wu' +wa) + wiv(6)2) — ys (¢ +vu +v'u -

' (v'w + v’w))] Crp + [V + 230 +y3(—pd — v'v)]ey,, + [W—x5(w — W' + pv' +
ov') + ys(du’ + pu' — 6" (¢pw + dpw) — v')]e,,, (3.49)

The angular velocity of the B3-coordinate system can be expressed as
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w = e, = Ne,, = Ne,,, (3.50)
Substituting for EZBlfrom equation (3.40) and for case of zero section pitch angle
w = Osinfe,,, + Ncosbe,,, (3.51)

SO

2 12 _
(v +x3¢ + y3 (1 - % - %)) Qcos@l €xps — [(ZOCOSQ — XxoSinf +w —

xs(W — w8’ + ¢pv') + ys(pu’ — w8’ — v'))2sing — (xocose + zysinf + u +

X3 (1 _ (1)72 _ ((u’) —2wu’29'+w2(9') )) _ y3(¢ + (v/u/ _ vlwel))) 0cosO

€yg, [<v + X3¢ +

¢2 U’Z i —
V3 (1 -5 T) Qsinb]e,,. (3.52)
Substituting equations (3.49) and (3.52) in to equation 3.38 we find

dry

dt

(u + x3(—q,’>d> —u'u + 60" (wu' +wu') —ww(6)2) -y, (d) +v'u v —
Hf(ﬁfw + v’vi/))) - ((U + x3¢ + y3 (1 - %Z - VTIZ>> Qcos@)] Exm + (1'7 + x50 +

Vs (—d)d) - v’v")) — | (zoc0s8 — x5inO + w — x3(u' — w8’ + pv') + y3(pu’ — pwh’ —

2 N2 _owu'e'+w2(9")?
v’))!)sinH + (xocose + zy,sinf +u + x3< - %— (Gl Wuz () )> - y3(¢ +
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(w'u' - v’w@’)))[)cos@ EYBs + [(W — x3(u" —wo' + ¢v' + dm") + v (qbu’ +ou’ —

61(¢w + qu) — v’)) + ((v +x3¢ +y;3 (1 — %2 — 07,2)> !251'110)]5233 (3.53)

Now we can get an expression for the kinetic energy as a function of u, v, w, and ¢ and the
inertial coordinates of the elastic axis by substituting eq. (3.53) into eq. (3. 37) to get

{-s {-Y3 X3
_ I
T=sp | | {

JO JO 0

[

(u + xg(—qbqb —u'u — 6'(wu' + Wu.') +ww(8')?) -y, (¢ +

N

2

_|_

. . . 12
v'u' +v'u — ef(v'w + v’W))) - ((v +x3¢0 +y;3 (1 - %2 - %)) Qcos@)

(1'7 + X3¢ + 3 (—q,’xﬁ - v’v")) — | (zoc0s6 — x4sin@ + w — x3(u' — W' + pv') +

2

ys(pu' — pwo’ — v"))2sing — (xocose + z,sinb + u + x5 <1 - % -

2
((u’)2—2wu’0’+w2(0')2)

2 ) —ys(¢+ (' - U’WH’))) Qcost || +

(W — x5 (uw — WO’ + v’ +

ov') + y3(pu’ + pu' — 6'(¢pw + pw) — v’)) + <<v + x3¢ + y3 ( - %2—

72

2
%))nsm0>]}dxyn@dz3 (3.54)

Simplifying eq. (3.54) by keeping quadratic powers and neglecting any higher order terms

(linearize) and using the following blade cross sectional properties
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1. The blade mass per unitlengthm = [ [ p dx; dy;

2. me= [ [ py;dx;dy; {eis the chord-wise offset of mass centeroid of cross section
from elastic axis (has a positive value when measured in front of elastic axis and vice
versa)}

3. Mass moment of inertia about Yz-axis Iy, = [ [ px% dxs dy;

4. Mass moment of inertia about Xs-axis Iy, = J [ py? dx3 dys

5. [ [ pxsdxsdy; =0

6. | J pxsysdxsdy; =0

Eqg. 3.53 can be rewritten as

T = %f:{m(uz + 02 + W?) + me(—21p — 2wv') + Iy ($7 + v’ + I, (6% + W’ 2wue’ +
w2(6)2)}ds (3.55)

Note that in eq. (55); (') = a%

3.4 Discretization of energy expressions for modal analysis

In this section we will use modal functions of a uniform clamped-clamped beam as an
approximation for the assumed modal functions of the clamped-clamped Darrieus wind
turbine blade with troposkein shape.

For simplicity we will consider the Sandia blade to get expressions for mass and stiffness
matrices. The modal functions of a clamped-clamped beam [21] under the same
deformation conditions of the blade are:

1. flat-wise bending
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/115 _ (Cosh[/lj]—cos[lﬂ)sinh[@] _ Ais (Cosh[lj]—cos[lj])sin[$]

Pu,(s) = 2] {cosh[T] Sinh[2;]-sin[A] cos[- Sinh[A;]—sin[,]
(3.56)
2. Edge-wise bending

s s
b= Zp ot - R ot
(3.57)
3. Extension
Yu,(s) = 2 {sinZF]) (3.58)
4. Torsion
Yo, (s) = 2 {sinZF]) (3.59)

We can express u, v, w, and ¢ as functions of the assumed modal functions {(s) and

assumed modal coordinates q (t) as follows

ui(s,t) = Xiaa{ qu; (®) Pu; (5D} (3.60)
vi(s,t) = Lj=a{ qv; (1) ¥y ()} (3.61)
wj(s, ) = X1 {qw; () Yw;(s)} (3.62)
¢i(s,t) = Xj=1{dg, () ¥y, (s)} (3.63)

Substituting eqns. (3.56) - (3.59) in eqns. (3.60)-(3.63) we get

A;s
s (cosh[Aj]—cos[1j])sinh 0,
uj(S, t) = Z;‘lzl{ Quj(t)(COSh[%] - Si‘rjlh[/lj]—SJin[/lj] [ l ]

/1.
- cos[%s] +

(COSh[’lj]_COS[/lj])sin [E

: ]} (3.64)

sinh|2;]-sin[4;]
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l —

ags,  (cosnlaj]-cos[a;])sinn| | ays. . (cosn[a;]-cos[,])sin| L]

vj(5,8) = Ljr{ 4w, () (cosh[] Sinn ;] -sin[A,] oS+~ pn sl
(3.65)

wi(s,8) = X1 { qu, (Dsin[5]} (3.65)

(s, t) = X1 g, (Osin 2] (3.66)

3.4.1 Derivation of stiffness matrix expressions

Putting equations (3.60)-(3.63) into equation (3.36) we get

SE = Y7 12k=105 fOS{A[Eujuk(é?’)2 + Eu,0'w;’ + Eu;i6'wy,’ + Ew;'w;,'] +
Pi[E(0")*w;'wy" + Ewy (0')3w;' 0" + Ew;(8")*wy,'0" + Ew;wy (0")%(0")? — E(8")*wy'u;" —
Ewi(0")0"w;" — E(0')*w;'uy," — Ew;(0')20"wy," + E(0")*w;" uy"'] + Aea[—Euy;(6")* —
Eujpp(0")* — Epy0'w;' —E¢;0'w,’ — Eu,0'vy"" — Ew,'v;" — Eu;0'v}," — Ew;'v,,"'] +
Ly, [EQ;r(0)* + G(0) v/ vy — GO'vy,' ;" — GO'vj' ' + Gp;' by’ + Ey0'v" +
E¢;0'v," + Evj"v,""1 + p3[Ed;pr(0')* + Ed(0")3v;" + Ed;(0")3v," + E(8")%v;" v, ] +
Ly, [G(0) v v, + Eue (0")3w;" + Eu;(6')3wy' + 3E(0")*w;'wy,’ — GO'vy' ;' —

GO'v/p' + G ' + Ewpw;(0")%0" + Eujwy (0')260" + 2Ew,.0'w;' 6" + 2Ew;0'w,,'0" +
Ewjwy(0")* — Eup (0")*w;" — 2E0'wy'u;" — Ewy 0" w;"" — Eu;(0")?u,,” — 2E0'w;'u" —
Ew;0"u," + Eu;" "] + P, [—2E¢(8")°w;" — 2E;(6")*wy' — 2Ewyp;(6")%60" —
2Ew;py(0')20" + 2E i (0")*w;" + 2E¢;(0")*uy" — 2E(8")*wy'v;" — 2Ew;,0'0"v;" +
2E0"w, " v;" — 2E(0")*w;'v," — 2Ew;0'0"v," + 2E0'u;" v, "' 1} ds (3.67)
Combining eqns. (3.60-3.63) with eq. (3.67) and simplifying using the blade cross sectional

properties, we can express the stiffness matrices equations as follows

1. Flat-wise only
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S
Kt =-E f (A0 [5)2y, [SThu, [S] + Ly, (—20"[s129, [T, [] + W, [T, " [sT) +
P,0'[s12y, " [Ty, " [s1} ds (3.68)
2. Edge-wise only
S
Ky = j G ELy g Wy [y, 5] + P30 [s]20, " [s]0, " [s]) + 3 GODO'[s]20, [s] Wy, [s]) ds

(3.69)

3. Extension only
s
Ky =1E f (A, [T, [5] + Ly (8" [51290, [5Tthu, [5] + 46/ 516" [Ty, [sTthw, 5] +
30 [s]*Yw, [s]tbw, '[s]) + P1(8'[s120" [s1*Yw, [s]vbw, [s] + 26" [s]°6" [s]vhw, [STthw, ' [s] +
0'[s1*w, [s]hw, [sD)) ds (3.70)
4. Torsion only
s
Kt = f G E (L8 [51%0g, [T, [] + P30'[51*is, [5Tg [S]) + 3 Gy, 5T, [s]) ds

(3.71)

5. Flat wise-Edge wise

S
K = f LE1(~24e,0'[sTy [sTy, " [s] + 420" [sTy, " [sTy, " [sD ds (3.72)

6. Flat wise - extension
. s
K" = gEf {AQ20" [s]u, [sT¥w, [S]) + 1,5, (20" [s]20" [s]pu, [SThw, [s] +
0

20" [y, [s]hw, [s] — 26" [s]thw, [T, [s] — 40" [s]ihw, ' [sy; " [s]) +
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Py (=20'[s]?0" [s]thw, [sIw; " [s] — 26" [sP¥w, [l " [s)} ds
(3.73)

7. Flat wise-torsion
L[S
Kb =1E jo (—24¢,0' [s12Py [T, [5] + 4P26 [s1PWg, [Ty, "[sT}ds  (3.74)
8. Edge wise-extension
L[S
KW =2E ] (—2Aesth, 510y, [] + Po(—46'[s16” [s], [Ty, [s] —
0

46" [s1%w, [s]wy, " [sD} ds (3.75)

9. Edge wise-torsion
s
K = f (E (L2, ' T T, STy, [] + P30 [T, 5Ty, " [sT) -

GJO'[sTpy, [sTihw, [s1} ds (3.76)

10. Extension-torsion
s
K’ = E f (—Aes0'[s1Pg, [sTihw, [s] + Po(—26' [s126" [s]thu, [sThg [5] —

20'[s1P g, [sTw, [sD} ds (3.77)

Note that the stiffness matrix of the blade is symmetric so we have

uv _ povu
jk T Bk
uw _ pwu
jk T Dk
up _ ,ou
K = Kk
vp _ PV
K¢ = K
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wo _ ,Pw
Kj? =K

3.4.2 Derivation of mass matrix expressions
In this section the mass matrix expressions were derived for the nonrotating blade
condition (for simplicity Q = 0). For u, v, w, and ¢ as expressed in eqns. (3.60-3.63) we can

rewrite eq. (3.55) as

n n S
T = %p E E f fo 3{1/)u]- [S]lpuk[s]Quj[t]Quk[t] +
j=1 k=1Jy °

P, 1510, [510, (610, €] + W, [5T10, 151, (€100, [€] + 30005, [5T0045, 510, [ €105, [€] +
x5, (5T, 15100, [0, 6] = 295t [5Tbip, 151, [€ s, 1] =

2y50, (510, 5100, (1, [] + Y304, [T, [1d [E 0, 1] +

Y30y, 51, 1510, [£10, [£] = 236" [T, [5TW0, [1u, [£1G, [£] +

x50 [51) 2, [T [51 o, [1 G, [ 11} xs dys dizs (3.79)
From the kinetic energy expression shown in eq. (3.79) we can formulate the mass matrix

as follows

1. Flat-wise only

S
ol =2 [ b 5N 5] + Ty, W, T, 513 05 (3.80)
0

2. Edge-wise only

S
my =2 f (W [810, 5] + Ly U, [sT0, []} ds (3.81)
0

3. Extension only
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S
mi =2 f {0y, 51U 5] + Iy (8'[S1) W [51r, [51} ds (3.82)

4. Torsion only

S
M3 = 2 (U, + Iy, ]0 (g [5Ts, [51) ds (3.83)
5. Flat wise- edge wise
mj = 0 (3.84)

6. Flat wise-extension

S
MY = Ly, f (O[5, [T [5]) ds (3.85)

7. Flat wise-torsion

S
m = —me | (5], [s]) (336)

8. Edge wise-extension

S
miY = —me f (U, [T [5]} ds (3.87)

9. Edge wise-torsion
m;’kq’ =0 (3.88)
10. Extension-torsion

m]f’l"(q’ =0 (3.89)

Note that the mass matrix of the blade is symmetric so we have

uv vu

My = My
uw __ wu
My = My
up __ du
my " = my

59



my” = my” (3.90)

v ov

m =m

jk jk
wd _ dw
m].k = mjk

3.4.3 Meridian angle (0)

In the mass and stiffness expressions derived in section 3.4.2 we can see the parameter 0
and its derivatives with respect to zz or s. This 0 is known as the meridian angle and is
defined as the angle between the tangent to the blade at any point in the elastic axis and the
vertical axis at this point as shown in figure 2.17. For the simplified Sandia shape the

meridian angle can be calculated as:

0 =2¢
RC
where

Sc: is the length of the circular segment of Sandia simplified shape blade

Rc: is the radius of the circular segment of Sandia simplified shape blade

gr=%9_1

_ds_RC
d?e

9" =2=0
ds

3.5 Numerical calculation of modal frequencies of 17 m diameter Sandia

simplified blade shape

In this section the analytical model developed in sections 3.2, 3.3, 3.4, was tested by using
the derived modal mass and stiffness matrices expressions to calculate the first ten modal
frequencies for 17 m diameter stationary simplified Sandia blade and comparing it with the

finite element modal analysis results.
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3.5.1 17 m diameter simplified Sandia blade cross section properties
The blade cross section geometric and mass related parameters are calculated here for the
NASA 0015 blade cross section shown in figure 2.2 as follows

A =0.98%10"% m?

Iy,y, = 0.859 * 10~°m*

Ae, = —0.001434m3

Ly, = 2.814 % 107 m*

P, = 2.897 * 1072 m®

P, = —6.8499 x 10™"m°

P, =1.816 107" m®

A1=4.730040744862704

A2 =7.853204624095838

A3=10.995607838001671

A1 =14.137165491257464

As=17.27875965739948

A6 =20.42035224562606

A7=23.561944902040455

E = 68.95 * 10°N/m?

G = 25.86 * 10°N/m?

m = 30.5kg/m
me = —3.97Kg
Imx, = 1.5 kg.m

Imy, = 0.0247 kg.m
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Blade length S=30.47m

Meridian angle 6= 46.36° for straight segments

Meridian angle 0 is variable for circular segments

0'= 6"=0 for straight segments
0'=0.096 rad/m for circular segment

6"=0 for circular segment

3.5.2 Numerical values for first ten modal frequencies

Substituting the cross section parameters values calculated in section 3.5.1 in addition to
the blade length (S) and the meridian angle (8) in the modal mass and stiffness sub-
matrices equations and varying the summation parameters values (j and k) we got the best
convergence at ( j=k=7). When j=k=7, and all flat wise, edge wise, torsion, and extension

modes included, modal mass and stiffness gives the first 28 modal frequencies as shown in

table 3.1

Table 3.1 modal frequencies for 17 m diameter Sandia stationary blade (coupling between

all modes considered

modal frequencies (1 to 14)

modal frequencies (15 to 28)

1.5564

83.2925

93.1968

124.232

134.915

162.029

.

180.423
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Table 3.1 (cont'd)

15.5556 236.816
20.0909 263.703
23.5478 310.944
279191 327.779
49.2278 388.544
50.7068 i 462.103
55.4277 540.848

From table 3.1 we can see that the lowest seven modal frequencies are of a similar order of
magnitude as the first seven modal frequencies calculated using the FE model in chapter 2
with around 70% so the error here is around 30% which is not acceptable. Also the modal
frequency number 13 in red color is complex and this is not allowed because the mass and
stiffness matrices are supposed to be positive definite, and symmetric. The K matrix
contains some asymmetric terms. The terms are small compared to other terms in the K
matrix. They may be due to numerical errors, but in a continuing investigation we are
examining this further.

Because we followed a good derivation procedure to get expressions for kinetic and
potential energies and we checked that these equations are physically and dimensionally
correct, the sources of results inconsistency with our finite element model and Sandia finite
element model results may be because of some programming errors in the Mathematica

code for calculating modal frequencies and mode shapes, or because of unsuitable selection
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of assumed modal functions. One of our future plans for this work is to replace these
assumed modal functions, which contain hyperbolic terms, with polynomial ones which are

better conditioned, and then seek better convergence for our analytical model.
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4 Chapter 4

4.1 Conclusion and comments

As a result of this research work:

1.

FEM model for troposkein-shaped Darrieus wind turbine blade free vibration has been
built for both ideal and simplified shapes. The blade vibration under flat-wise, edge-
wise, extensional, and torsional deformations was studied and the lowest ten modes
have been characterized for stationary and rotating blade conditions.

Energy equations for a troposkein blade under the same loading conditions mentioned
above were derived. We have made initial progress on the low-order model of the
curved blade. We have followed an analysis from a 1979 NASA paper by K and K, and
extended it by performing an assumed-mode discretization. However, the predicted
frequencies from the reduced-order model are not yet matching well. Possible
problems are listed below. Nonetheless, the work sets up the next student to review
and validate the analysis process, and then apply low-order modeling.

Possible problems in the low-order model are as follows

a) The use of clamped-clamped assumed modes. These modal functions involve
hyperbolic functions, which have extreme values when the arguments become large.
(However, the first mode won'’t have this issue, and it is not producing satisfactory
estimations)

b) The use of clamped-clamped boundary conditions in the beam model may not
accurately represent the connections in the finite element analysis (However, this

should be a stiffening assumption, and lead to over-predicted frequencies)
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c) The strain formulation followed in KK 1979 involves several rotating, deformation
dependent, coordinate transformations, and the algebra should be validated once
again. This is in progress.

4.2 Contribution

Because of the shortage in studying Darrieus wind turbine blade vibration, this work has
provided an initial contribution to research literature toward developing the study of
Darrieus wind turbine blade vibration.
The model developed here can be used for characterization of Darrieus wind turbine blade
modal vibration analytically and these results can be compared to the numerical (FEM)
results for validation.
4.3 Future work
Based on this work some follow-up studies will be useful. Some of the future work
includes.

e More development in the analytical model to correct its erroneous results, which
makes it valid for analytical characterization of Darrieus wind turbine blade modal
vibration

e Studying Darrieus wind turbine blade forced vibration under aerodynamic loadings

e Modeling Darrieus wind turbine blade vibration considering higher order terms

using nonlinear techniques (for example perturbation methods)
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Table.1 blade airfoil coordinates
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x/c

0
0.016393
0.032787
0.04918
0.065574
0.081967
0.098361
0.114754
0.131148
0.147541
0.163934
0.180328
0.196721
0.213115
0.229508
0.245902
0.262295
0.278689
0.295082
0.311475
0.327869
0.344262
0.360656
0.377049
0.393443
0.409836
0.42623
0.442623
0.459016
0.47541
0.491803
0.508197
0.52459
0.540984
0.557377
0.57377
0.590164
0.606557
0.622951

camber
line(Yc)
0
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4.056357
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4360144
4.427822
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4.574017
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4.544312
4.517615
4.483671
4.442915
4.395746
4.342531
4.283606
4.219284
4.149852
4.075573
3.996694
3.913439
3.826016
3.734615
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3.540565
3.43822
3.332507
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0
1.640381364
2.25368702
2.691405028
3.034709024
3.3152312
3.549340183
3.746876512
3.914348168
4.056356584
4.176321059
4.276882334
4.360143598
4.427822451
4.481351006
4.52194425
4.55064816
4.568374455
4.575926263
4574017431
4.563287327
4.544312334
4517614914
4.483670829
4.442914969
4.395746095
4.342530731
4.283606395
4.219284293
4.149851581
4.075573284
3.996693923
3.913438914
3.826015767
3.734615124
3.639411661
3.540564874
3.438219769
3.332507465
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YL

0
-1.640381364
-2.25368702
-2.691405028
-3.034709024
-3.3152312
-3.549340183
-3.746876512
-3.914348168
-4.056356584
-4.176321059
-4.276882334
-4.360143598
-4.427822451
-4.481351006
-4.52194425
-4.55064816
-4.568374455
-4.575926263
-4.574017431
-4.563287327
-4.544312334
-4.517614914
-4.483670829
-4.442914969
-4.395746095
-4.342530731
-4.283606395
-4.219284293
-4.149851581
-4.075573284
-3.996693923
-3.913438914
-3.826015767
-3.734615124
-3.639411661
-3.540564874
-3.438219769
-3.332507465



Table.1 (cont’d)

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

0.639344
0.655738
0.672131
0.688525
0.704918
0.721311
0.737705
0.754098
0.770492
0.786885
0.803279
0.819672
0.836066
0.852459
0.868852
0.885246
0.901639
0.918033
0.934426
0.95082
0.967213
0.983607
1

O O O © O O ©O © O O O O O o o oo o o o o o o

3.223546
3.111439
2.996281
2.878151
2.757118
2.633238
2.506559
2.377115
2.24493

2.110018
1.972382
1.832017
1.688904
1.543018
1.394322
1.242769
1.088305
0.930864
0.770372
0.606744
0.439888
0.269702
0.096075
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39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
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3.223545733
3.111439463
2.996281088
2.878150957
2.75711767
2.633238376
2.506559046
2.377114708
2.244929673
2.11001773
1.972382324
1.832016723
1.688904161
1.543017978
1.394321742
1.242769361
1.08830519
0.930864123
0.770371683
0.606744102
0.439888396
0.269702434
0.096075

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

-3.223545733
-3.111439463
-2.996281088
-2.878150957
-2.75711767
-2.633238376
-2.506559046
-2.377114708
-2.244929673
-2.11001773
-1.972382324
-1.832016723
-1.688904161
-1.543017978
-1.394321742
-1.242769361
-1.08830519
-0.930864123
-0.770371683
-0.606744102
-0.439888396
-0.269702434
-0.096075
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