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ABSTRACT 
 

COMPUTATIONAL CHEMISTRY: INVESTIGATIONS OF PROTEIN-PROTEIN 
INTERACTIONS AND POST-TRANSLATIONAL MODIFICATIONS TO PEPTIDES 

 
By 

 
Michael R. Jones 

 
Computational chemistry plays a vital role in understanding chemical and physical 

processes and has been useful in advancing the understanding of reactions in biology. Improper 

signaling of the nuclear factor-κB (NF-κB) pathway plays a critical role in many inflammatory 

disease states, including cancer, stroke, and viral infections. Aberrant regulation of this 

pathway happens upon the signal-induced degradation of the inhibitor of κB (IκB) proteins. 

The activation of IκB kinase (IKK) subunit β (IKKβ) or NF-κB Inducing Kinase (NIK), 

initiates this cascade of events. Understanding the structure-property relationships associated 

with IKKβ and NIK is essential for the development of prevention strategies. Although the 

signaling pathways are known, how the molecular mechanisms respond to changes in the 

intracellular microenvironment (i.e., pH, ionic strength, temperature) remains elusive.  

In this dissertation, computer simulation and modeling techniques were used investigate 

two protein kinases complexed with either small molecule activators or inhibitors in the active, 

inactive, and mutant states to correlate structure-property and structure-function relationships 

as a function of intracellular ionic strength. Additionally, radical-induced protein 

fragmentation pathways, as a result of reactions with reactive oxygen species, were 

investigated to yield insight into the thermodynamic preference of the fragmentation 

mechanisms. Analyses of the relationship between structure-activity and conformational-

activity indicate that the protein-protein interactions and the binding of small molecules are 

sensitive to changes in the ionic strength and that there are several factors that influence the 



selectivity of peptide backbone cleavage. As there are many computational approaches for 

predicting physical and chemical properties, several methods were considered for the 

predictions of protein-protein dissociation, protein backbone fragmentation, and partition 

coefficients of drug-like molecules. 



iv 
 

 

This dissertation is dedicated to family. 

 



v 

ACKNOWLEDGEMENTS 

I am truly grateful for all of those who have been supportive during my academic career. 

Firstly, I would like to thank my research advisor and mentor, Professor Angela K. Wilson for her 

unremitting support and guidance. As an advisor, Professor Wilson consistently pushed me to be 

my best (propel through challenges), encouraged me to attend conferences and scientific meetings, 

apply for awards and seize opportunities for research enhancement and professional development. 

As a mentor, she fosters creativity in problem solving and I am very thankful for her patience 

through this journey. 

I acknowledge the training and support from: 

 Professor Maria C. Nagan for teaching me to be fearless of caveats in scientific research;

Professor Thomas R. Cundari for promoting out-of-the-box thinking and his support on

several projects;

 Professor H. David Wohlers for inspiring me on innovative teaching;

 Dr. Bernard R. Brooks, for training in software development and the opportunity to

experience the National Institute of Health;

 Dr. Frank Pickard, III and Dr. Andy Simmonett for teaching me better practices in

programming; the National Institutes of Health Graduate Partnership Program for

providing financial support throughout my dissertation research;

 Reata Pharmaceuticals for their support and Dr. Mike Visnick for continued collaboration;

 the Ronald E. McNair Scholars Program at Truman State University, for the academic

counseling and continuing support.



vi 

I thank my committee members at Michigan State University Professor Kenneth M. Merz, 

Jr., Professor Piotr Piecuch, and Professor Gary J. Blanchard for their time and guidance. 

Additionally, I would like to acknowledge my former committee members at the University of 

North Texas for their mentoring and encouragement: Professor Thomas R. Cundari, Professor 

Martin Schwartz, and Professor Weston T. Borden.  

The Wilson Research Group, collective for both current and past members, is characterized 

by a team of diverse thinkers from different backgrounds with a variety of talents that act as a 

family, sharing knowledge and promoting an environment of unconditional positive regard. I am 

very grateful for the Wilson Research Group for limitless discussion and feedback, advice, and 

exposure to amazing foods. Thank you Dr. Zainab H. A. Alsunaidi and Dr. Jiaqi Wang for sharing 

workspace and sharing your lunches with me; Dr. Kameron Jorgensen, Dr. Marie Laury, Dr. 

Andrew Mahler Dr. Cong Liu, Dr. Michael Drummond, Dr. George Schoendorff, Dr. Deborah 

Penchoff, and Dr. Inga Ulusoy for helping me troubleshoot through problems. Many thanks to 

Lucas Aebersold, Thomas Diaz, and Yigitcan Eken for great research discussions and for sharing 

pizza with me during the late evenings in lab.  

I extend my gratitude to my friends who filled in the roles of family, for their support and 

encouragement through my academic and professional pursuits: Michael D., Edward A., Erica S., 

Stephanie M., Kelsey W., Jessi B., Thiky V., Alexis M., Darius T., Shawn G., Chelsea C. Gabino 

M., Gail W., Jesseca S., Sherard L. Darrell M., Jose D., and Matthew C. I am grateful for my 

fraternity, Sigma Lambda Beta International Fraternity Incorporated, for providing an extended 

network of support.  



vii 
 

Special thanks to Anna Penchenina for unconditional love, motivation during the long 

nights of studying at the coffee shops, and making sure I stayed healthy and focused during my 

doctoral candidacy exams.  

Little Brother, Grandmother, and Intermediate Relatives, thank you for being there. 

Lastly, Mom and Dad, I thank you for everything. Although you were not able to see me 

through the completion, I carried your teachings and trainings throughout. Because of you, I am.   

 

 

 

  

 

 

 



viii 
 

TABLE OF CONTENTS 
 
 
LIST OF TABLES….………………………………………………………………………………………………………………………x 
 
LIST OF FIGURES….……………………………………………………………………………………………………………………xi 

CHAPTER 1 Introduction ........................................................................................................... 1 

CHAPTER 2 Theory and Methods in Molecular Modeling ....................................................... 5 
2.1 Equations of Motion ......................................................................................................... 5 
2.2 Molecular Dynamics ........................................................................................................ 7 

2.2.1 Considerations......................................................................................................... 10 
2.2.2 Limitations .............................................................................................................. 13 

2.3 Quantum Mechanics ....................................................................................................... 14 
2.3.1 Ab initio Methods .................................................................................................... 16 
2.3.2 Density Functional Theory ..................................................................................... 18 
2.3.3 Basis Sets ................................................................................................................ 19 

REFERENCES…………………………………………………………………………………………………………………….……….21 

CHAPTER 3 Molecular Dynamics Studies of the Protein–Protein Interactions in Inhibitor of 
κB Kinase-β………………………………………………………………………………………………………………………………….29 

3.1 Introduction .................................................................................................................... 29 
3.2 Computational Methods ................................................................................................. 32 
3.3 Results ............................................................................................................................ 37 

3.3.1 Docking is Aesthetic ............................................................................................... 37 
3.3.2 Dimer Stability of the Crystal System .................................................................... 40 
3.3.3 Coarse-Grained Simulations ................................................................................... 41 
3.3.4 Atomistic Simulation of Dimers and Monomer...................................................... 42 
3.3.5 Hydrogen Bonding Between Dimer Interfaces ....................................................... 45 
3.3.6 Binding Free Energies............................................................................................. 49 

3.4 Discussion ...................................................................................................................... 52 
3.5 Conclusion ...................................................................................................................... 54 

REFERENCES……………………………………………………………………………………………………….…………………….56 

CHAPTER 4 Impact of Intracellular Ionic Strength on Dimer Binding in the NF-kB Inducing 
Kinase…………………………………………………………………………………………………………………………………………...64 

4.1 Introduction .................................................................................................................... 64 
4.2 Material and Methods..................................................................................................... 68 
4.3 Results and Discussion ................................................................................................... 70 

4.3.1 Structural Fluctuation.............................................................................................. 70 
4.3.2 Changes in Solvent Accessibility............................................................................ 73 
4.3.3 Hydrogen-Bonding Analysis/Dimer vs Monomer .................................................. 75 
4.3.4 Aggregation Propensity Sensitive to Ion Buffer ..................................................... 77 
4.3.5 Comparisons Between the Dimer Binding Energies .............................................. 78 

4.4 Conclusions .................................................................................................................... 79 
REFERENCES…………………………………………………………………………………………………………………….……….81 



ix 
 

CHAPTER 5 Selectivity in ROS-Induced Peptide Backbone Bond Cleavage ......................... 87 
5.1 Introduction .................................................................................................................... 87 
5.2 Methodology .................................................................................................................. 90 
5.3 Results and Discussion ................................................................................................... 91 

5.3.1 Pathway Favorability .............................................................................................. 91 
5.3.2 Role of Structure on Bond Strength and Site Reactivity ........................................ 95 
5.3.3 Insights into Pathway Preferences .......................................................................... 96 
5.3.4 Evaluation of Methods ............................................................................................ 97 

5.4 Conclusion ...................................................................................................................... 99 
REFERENCES……………………………………………………………………………………………………………………..…….101 

CHAPTER 6 Partition Coefficients for the SAMPL5 Challenge using Transfer Free Energies
 …………………………………………………………………………………………………………..………………108 

6.1 Introduction .................................................................................................................. 108 
6.2 Methods ........................................................................................................................ 111 
6.3 Results and Discussion ................................................................................................. 113 
6.4 Conclusion .................................................................................................................... 121 

REFERENCES……………………………………………………………………………………………………………………..…….123 

CHAPTER 7 CONCLUDING REMARKS ............................................................................ 129 
REFERENCES………………………………………………………………………………………………………..………………….133 
 
 
  



x 
 

LIST OF TABLES 
 
 

Table 3.1 Summary of modeled systems. ..................................................................................... 33 

Table 3.2 Binding cavities near the activation segment. .............................................................. 38 

Table 3.3 Summary of dimer assembly energetics, determined with PISA. ................................ 41 

Table 3.4 Averaged thermodynamic data for the 10 ns atomistic simulation. ............................. 43 

Table 3.5 Hydrogen bonding occupancies for the AB dimer interface. ....................................... 46 

Table 3.6 Hydrogen bonding occupancies for the AD dimer interface. ....................................... 48 

Table 3.7 Binding free energies of the IKKβ dimer.a ................................................................... 50 

Table 4.1 Average thermodynamic parameters from simulations. ............................................... 70 

Table 4.2 Summary of the dimer interface of NIK. ...................................................................... 74 

Table 4.3 Hydrogen bonding analysis of the NIK dimer interface.a ............................................. 76 

Table 4.4 Binding free energies of the NIK dimer.a ..................................................................... 79 

Table 5.1 Calculated reaction enthalpies for Pathway [A] and Pathway [B] at the CCSD(T) level 
of theory. ............................................................................................................................... 92 

 
Table 5.2 Calculated reaction enthalpies for Pathway [A] and Pathway [B]. .............................. 98 

Table 5.3 Calculated reaction barriers for reactions [A1] and [B1]. ............................................ 99 

Table 6.1 Comparison of predicted logP with experimental logD. ............................................ 114 

Table 6.2 Overview of the results submitted to the SAMPL5 challenge.................................... 121 

  



xi 
 

LIST OF FIGURES 
 
 

Figure 3.1 Representation of the models.  The crystal structure was solved with 8 identical 
molecules (a) forming two “dimer of dimers” tetrameric complex (b). Although a dimer is 
defined as AB form (d), the alternative dimer AD (c) has significance for structure stability.
............................................................................................................................................... 34 

Figure 3.2 Characterization of ATP/Mg2+ docking cavity. The ATP ligand is positioned in the 
mouth of the activation loop (Top). The adenine head of ATP is pointed towards Asp166 
and the phosphate tail is outside of the pocket. The binding pocket is outlined and described 
by colored circles (purple and green) representing surrounding amino acids (Bottom); the 
different outlines on the purple circles contrast the different types of polar side chains. Blue 
and green arrows indicate sidechain and backbone acceptor-donors, respectively. The blue 
spheres surrounding the phosphate tail represent the pocket exposure, whereas the lighter-
blue spheres highlight the receptor’s exposure. .................................................................... 35 

Figure 3.3 Visualization of the predicted cavities. All alpha-spheres are shown for the four sites 
(Top). The red and white spheres indicated hydrophilic and hydrophobic cavities, 
respectively. Wireframe representations of the four sites are shown individually: Site 2 
(middle left); Site 3 (middle right); Site 6 (bottom left); and Site 10 (bottom right). .......... 39 

Figure 3.4 RMSD plots for the different assemblies using coarse-graining MD. Frames were 
plotted for every 1 ps for a total of 50,000 frames (50 ns). .................................................. 42 

Figure 3.5 The RMSD from the starting structure for the 10 ns simulation. The different RMSDs  
of the monomer (a-b), AB dimer (c-d) and AD dimer (e-f) are colored accordingly (blue, 
WT; red, S177/181E; green, WT+ATP; purple;S177/181pS).  Plots A, C, and E represent 
the RMSD of the entire structure whereas the plots B, D, and F represent only the activation 
segment of the principle monomeric chain. Frames were plotted for every 2 ps for a total of 
5,000 frames (10 ns). ............................................................................................................ 44 

Figure 3.6 Comparison of the phosphorylated AB Dimer. Shown are the starting structure (top) 
and the final structure (bottom) after 10 ns. .......................................................................... 51 

Figure 3.7 Comparison of binding free energy trends with the HCT, OBC1, and OBC2 models.
............................................................................................................................................... 52 

Figure 4.1 Root mean square deviations (RMSDs) obtained from the 215 ns simulation. (A) The 
RMSDs were calculated from the starting structure of the inactive (WT) and 
phosphomimetic mutant (S549D) states in a neutral solution (color coded in blue and green, 
respectively) and a 100 mM NaCl solution ([Na+]; color coded in red and purple, 
respectively). For comparison, plots B and C highlight the trends between the inactive and 
the active states, whereas the impact of the ionic environment is highlighted in plots D and 
E. The darker colored lines represent the moving average per 100 frames. ......................... 72 



xii 
 

Figure 4.2 Root mean square fluctuations (RMSF) of each protomer of NIK. The RMSFs over 
the 215 ns were calculated per residue for each protomer (332-675) for the modeled inactive 
states, WT and WT [Na+] (represented in blue and red, respectively), and active states, 
S549D and S549D [Na+] (represented in green and purple, respectively)........................... 73 

Figure 4.3 Solvent residing between the dimer interface. ............................................................ 77 

Figure 4.4 Changes in the compactness of the crystal structure. .................................................. 78 

Figure 4.5 Binding free energy trends with the HCT and OBC Generalized Born models. ........ 79 

Figure 5.1 Proposed reaction pathways. The diamide (pathway [A]) and α-amidation (pathway 
[B]) pathways were modeled in this study. The different sites of radicalization C1, C2, and 
C3 represent Cα1, Cα2 and Cα3, respectively. ..................................................................... 89 

Figure 5.2 Modeled backbone conformations. (1) Represents the β-strand or “sheet-like” 
component of a β-pleated-sheet. (2) The β-turn structure. In both conformations, the first α-
carbon has an alkoxyl radical in place of a hydrogen at Cα1. .............................................. 92 

Figure 6.1 Structure of the 53 compounds investigated in the SAMPL5 challenge. The 13 
molecules represent (left) correspond to the Batch 0 subset............................................... 112 

Figure 6.2 Subset of molecules (Batch0) LogP: effect of increasing basis sets.The predicted logP 
with respect to increasing basis set size (DZ, TZ, QZ) are represented by the red box, green 
triangle, and purple ‘X’, respectively. ................................................................................ 116 

  



1 
 

CHAPTER 1 Introduction 
 
 

Theoretical and computational chemistry play a vital role in understanding chemical and 

physical processes at both qualitative and quantitative levels and has proven useful towards 

advancements in research areas within chemistry, physics, materials science, biology, and 

medicine. In terms of chemical physics and physical chemistry, advances in computing technology 

have enabled theoretical predictions to yield insight about molecular properties and reactions, 

connecting microscopic and macroscopic phenomena that take place across various time scales. 

The development of next-generation simulation and modeling techniques have had a noteworthy 

influence on advancing the understanding of biological phenomena; applications of these 

theoretical approaches are often essential for resolving or uncovering phenomena not readily 

observable or explorable by traditional experimental techniques.  

A strength in computational modeling stems from the ability to commence investigations 

from either ab initio (from the beginning) or a posteriori (from the latter)—a bottom-up or top-

down approach—allowing theoretical predictions to provide useful insight, especially in an 

absence of experimental knowledge. The foundations of theoretical chemistry lie within the 

motions of atoms and molecules and are described using quantum, classical, and statistical 

mechanics. Methods in quantum chemistry are used to obtain comprehensive detail about 

structure, whereas methods in classical and statistical mechanics are employed to examine and 

relate structural dynamics to function or the macroscopic observation. Despite the advancements 

in high performance computing, computational chemistry methods face limitations as the 

complexity of the system of study increases as this requires more computing resources, hence there 
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are many methods that have advantages over the other at the expense of adding additional 

approximations.  

For the study of biological species, where complex processes happen at the cellular level, 

computation can play an important role. Mechanisms of the cell are a result of a series of molecular 

recognition events of proteins with other molecules—a many body problem. From a mesoscopic 

perspective, the structure, function, and activity of proteins rely on the local environment and must 

respond to perturbations to maintain equilibrium. Cellular dysfunctions occur when there is a fault 

within intracellular mechanisms, which may happen as a result of homeostatic imbalances, 

external signals, or errors within the genetic code. It is essential to understand the faults from not 

only a macroscopic perspective, but also a microscopic perspective, and, it is here where 

computation can provide important insight.   

Critical to the onset and progression of disease states, it is essential to understand not only 

the origin of the fault, but also the intermediates involved within the progression, like a chemical 

reaction, as this allows the potential to discover or design strategies to control the course of the 

disease. As electrostatic interactions mediate protein recognition of other molecules, including 

RNA, DNA, ligands and other proteins, it is essential to discern how the structure and function of 

key mechanisms, components, and proteins within the inflammatory pathway respond to 

perturbations.  

In this dissertation, theoretical methods, discussed in Chapter 2, were employed to examine 

post-translational modifications to proteins and how these alter protein structure and function. NF-

κB (nuclear factor kappa-light-chain-enhancer of activated B cells) proteins are involved in many 

cellular and organismal processes, including immune and inflammatory responses, developmental 

processes, cellular growth, and apoptosis.  In most cells, NF-κB is a latent, inactive complex in the 
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cytoplasm, but can rapidly enter the nucleus and activate gene expression via an abnormal signal 

cascade once it receives any number of extracellular signals. Many cancers are induced by NF-κB 

signaling, including breast cancer, leukemia, lung cancer, pancreatic cancer, lymphoma, colon 

cancer, prostate cancer, and ovarian cancer.  Thus, control of NF-κB activity is critical, and NF-B 

activating protein kinases are of great interest as a target for cancer therapeutics.  

In this work, two key enzymes associated with the canonical and non-canonical pathway 

of the NF-κB pathway are investigated. Activation of the inhibitor of κB kinase subunit β (IKKβ) 

oligomer initiates a cascade that results in the translocation of NF-κB transcription factors 

activating the canonical pathway. Dimerization of IKKβ is required for its activation. In Chapter 

4, coarse-grained and atomistic molecular dynamics simulations were employed to investigate the 

conformation-activity and structure-activity relationships within the oligomer assembly of IKKβ 

that are impacted upon activation, mutation, and binding of ATP. The non-canonical pathway is 

dependent upon the activation of NF-κB Inducing Kinase (NIK). While the activation of the 

canonical pathway is straightforward as a series of post-translational modifications, the activation 

of the NIK differs as it is dependent on the enzyme stability.  In Chapter 5, molecular dynamics 

simulations were employed to determine how the ionic environment alters the structure-property 

relationships and aid in the stabilization of NIK.  

 In cancer cells, high levels of reactive oxygen species (ROS) are prevalent and can result 

in post-translational mechanisms of protein oxidation that yield selective side-chain and backbone 

modifications including abstractions, donations, additions, substitutions, and fragmentation. From 

a molecular perspective, prediction of the area of a protein most likely to be oxidized is of interest 

as this may shed insight into mechanisms that follow. In Chapter 6, to characterize the selectivity 

of radical-mediated fragmentation, quantum mechanical investigations using ab initio and density 
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functional methods were employed to evaluate site, conformation, and fragmentation pathway 

trends of peptide models. 

 In Chapter 7, physiochemical properties of small drug-like molecules were predicted using 

a series of ab initio approaches to assess the reliability of different methods that may serve in lieu 

of when experimental data is unavailable. All of the research is summarized in Chapter 8 and future 

directions and interests are highlighted. 
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CHAPTER 2 Theory and Methods in Molecular Modeling 
 
 
2.1 Equations of Motion 

Chemistry is the study of structure, composition, and properties of molecules and the 

transformations they undergo. Understanding the underlying mechanisms that drive these 

transformations lies within the concept of mechanics, specifically the motions of electrons and 

nuclei. The properties of a many-body system can be expressed as a function of the position and 

the rate of change of displacement. 

In classical mechanics, the motion of a system of N particles can be described by Newton’s 

laws of motion (2.1). 1–3  

𝑚𝑚𝑖𝑖
𝑑𝑑2𝐫𝐫𝑖𝑖
𝑑𝑑𝑡𝑡2

= 𝐅𝐅𝑖𝑖(𝐫𝐫1, … , 𝐫𝐫N, �̇�𝐫1, … , �̇�𝐫N, 𝑡𝑡) 

(2.1) 

For a general particle i of mass m, the force F depends on the position 𝐫𝐫𝑖𝑖 = (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖), velocity 

(�̇�𝐫), and time (t).* This relationship of Newton’s second law is also expressed as the change in 

momentum (p) with respect to time (t). 

𝐅𝐅𝑖𝑖 =
𝑑𝑑
𝑑𝑑𝑡𝑡
𝑚𝑚𝑖𝑖�̇�𝐫𝑖𝑖 =

𝑑𝑑
𝑑𝑑𝑡𝑡
𝐩𝐩𝑖𝑖 

(2.2) 

𝐅𝐅𝑖𝑖 = 𝐅𝐅𝑖𝑖ext + � 𝐅𝐅𝑗𝑗𝑖𝑖

𝑁𝑁

𝑖𝑖≠𝑗𝑗,𝑖𝑖=1

 

For a system of N particles, the motion of particle i is influenced by external forces outside the 

system and internal forces that arise from the particle interacting with every other particle in the 

                                                 
*Vector quantities are represented in the boldface notation. Total time derivatives are expressed using Newton’s 
notation, where a dot is placed over the dependent variable ( ẋ = 𝑑𝑑x

𝑑𝑑𝑑𝑑
, ẍ = 𝑑𝑑2x

𝑑𝑑𝑑𝑑2
 ). 
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system. Forces in action may do work and transfer energy. For isolated systems in which there are 

no external forces (𝐅𝐅𝑖𝑖ext = 0), the momentum and the total energy (E) are conserved. For 

conservative forces, the change in energy of motion, or kinetic energy (T), is defined as 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑇𝑇 = �𝐅𝐅𝑖𝑖 ⋅ 𝐫𝐫�̇�𝚤

𝑁𝑁

𝑖𝑖=1

 

𝐅𝐅𝑖𝑖 = −𝛁𝛁𝑖𝑖𝑉𝑉 

𝑉𝑉 = 𝑉𝑉(𝐫𝐫1, … , 𝐫𝐫𝑁𝑁) 

(2.3) 

where the forces are derived from the gradient of a potential energy function V.  

In an alternative formulation, Newton’s laws can be expressed in the Lagrangian formula, 

 

𝐿𝐿 = 𝑇𝑇(𝐪𝐪, �̇�𝐪, 𝑡𝑡) − 𝑉𝑉(𝐪𝐪, �̇�𝐪, 𝑡𝑡) 

(2.4) 

where the Lagrangian (L) is defined as the difference between the kinetic energy and potential 

energy and is expressed in generalized coordinates q and generalized velocity (�̇�𝐪). Lagrangian 

mechanics differ from Newtonian mechanics because it uses generalized coordinates   

Hamilton’s equations (2.5) replaces the generalized velocity with generalized momenta 

(p), in which the Hamiltonian (H) represents the total energy.  

𝐻𝐻(𝐪𝐪,𝐩𝐩, 𝑡𝑡) ≡�𝐩𝐩𝑙𝑙𝐯𝐯𝑙𝑙

𝑓𝑓

𝑙𝑙=1

(𝐪𝐪,𝐩𝐩, 𝑡𝑡) − 𝐿𝐿(𝐪𝐪, 𝐯𝐯(𝐪𝐪,𝐩𝐩, 𝑡𝑡), 𝑡𝑡) 

(2.5) 

These equations of motions are useful as they can be used in quantum mechanics, thermodynamics, 

and statistical mechanics.  
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2.2 Molecular Dynamics 

Molecular dynamics (MD) simulations and the atomic level detail that they provide have 

enhanced our understanding of natural phenomena, allowing for enabling predictions about a 

system of interacting particles as time evolves. While serving as a connection between microscopic 

and macroscopic observations, MD simulations also act as a bridge between theory and experiment 

by establishing a connection between structure and dynamics.4–6 Using theory to help interpret and 

guide experiment, MD simulations are widely used in the study of hard and soft condensed matter 

physics, chemical reactions, and biological systems. For biological systems, MD simulations not 

only can provide insight into intermolecular interactions and structure, but can additionally 

examine properties not readily discernable by traditional experimental or other structural biology 

methods.7–9  

Classical MD simulations are deterministic and employ Newton’s equations of motion 

(2.6) to propagate the positions and velocities of particles under the influence of a given, pre-

defined potential (V) where F is the force on a particle i of mass m at configuration r with the 

acceleration (�̈�𝐫) and is the gradient of the potential.4 

𝐅𝐅𝑖𝑖 = 𝑚𝑚𝑖𝑖�̈�𝐫𝑖𝑖 = 𝑚𝑚𝑖𝑖
𝑑𝑑2𝐫𝐫𝑖𝑖
𝑑𝑑𝑡𝑡2

= −∇V(𝐫𝐫𝑖𝑖) 

(2.6) 

Dynamics of the system are determined by integrating Newton’s motion equation as a 

function of time, t, and is done so numerically (as there is no analytical solution) with a time 

stepping algorithm, such as the Verlet,10 Leap-Frog,11  Velocity-Verlet,12  or Beeman’s13 

algorithms that differ by how the velocities are assigned. Trajectories of particle i at time t can be 

determined using a Taylor series expansion for a finite time step (δt) of the forward and backward 

steps (2.7).  
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𝐫𝐫(𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝐫𝐫(𝑡𝑡) + �̇�𝐫(𝑡𝑡)𝛿𝛿𝑡𝑡 +
1
2
�̈�𝐫(𝑡𝑡)𝛿𝛿𝑡𝑡2 + ⋯ 

𝐫𝐫(𝑡𝑡 − 𝛿𝛿𝑡𝑡) = 𝐫𝐫(𝑡𝑡) − �̇�𝐫(𝑡𝑡)𝛿𝛿𝑡𝑡 +
1
2
�̈�𝐫(𝑡𝑡)𝛿𝛿𝑡𝑡2 − ⋯ 

(2.7) 

Adding the two expansions together yields the Verlet algorithm (2.8), which only uses the 

position and acceleration to predict the next step. Since it requires a previous step’s position, the 

velocity is not directly involved within the expression, which is needed for the kinetic energy. The 

velocity can be estimated by the difference between the forward and backward steps. 

𝐫𝐫(𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 2𝐫𝐫(𝑡𝑡) − 𝐫𝐫(𝑡𝑡 − 𝛿𝛿𝑡𝑡) + �̈�𝐫(𝑡𝑡)𝛿𝛿𝑡𝑡2 + ⋯ 

�̇�𝐫(𝑡𝑡) =
𝐫𝐫(𝑡𝑡 + 𝛿𝛿𝑡𝑡) − 𝐫𝐫(𝑡𝑡 − 𝛿𝛿𝑡𝑡)

2𝛿𝛿𝑡𝑡
 

(2.8) 

The Leap-Frog algorithm (2.9) is a modification of the Verlet algorithm, where the velocities are 

predicted at each half step independently of the positions.  

𝐫𝐫(𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝐫𝐫(𝑡𝑡) + �̇�𝐫 �𝑡𝑡 +
1
2
𝛿𝛿𝑡𝑡� 𝛿𝛿𝑡𝑡 

�̇�𝐫 �𝑡𝑡 +
1
2
𝛿𝛿𝑡𝑡� = �̇�𝐫 �𝑡𝑡 −

1
2
𝛿𝛿𝑡𝑡� + �̈�𝐫(𝑡𝑡)𝛿𝛿𝑡𝑡 

(2.9) 

The Velocity-Verlet algorithm (2.10) is a more precise numerical algorithm than the Leap-Frog 

algorithm, as within its formulation the acceleration, velocities, and positions are predicted 

simultaneously.  

�̇�𝐫 �𝑡𝑡 +
1
2
𝛿𝛿𝑡𝑡� = �̇�𝐫(𝑡𝑡) +

1
2
��̈�𝐫(𝑡𝑡) + �̈�𝐫(𝑡𝑡 + 𝛿𝛿𝑡𝑡)�𝛿𝛿𝑡𝑡 

(2.10) 
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The Beeman’s algorithm is similar to the Velocity-Verlet algorithm, but has a more 

complex expression for the Taylor expansion that is advantageous for infinitesimal time steps (see 

Ref 13).  

The motions and interactions between particles are modeled using an empirical potential 

energy function (2.11), better known as a force field, which is represented as the sum of bonding 

and nonbonding energies.14–16  

𝑉𝑉(𝐫𝐫𝟏𝟏, … , 𝐫𝐫𝐍𝐍) = � 𝐾𝐾𝑖𝑖𝑏𝑏�𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑒𝑒𝑒𝑒�
2

𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑏𝑏

+ � 𝐾𝐾𝑖𝑖θ�𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑒𝑒𝑒𝑒�
2

 
𝑎𝑎𝑏𝑏𝑎𝑎𝑙𝑙𝑒𝑒𝑏𝑏

+ � 𝐾𝐾𝑖𝑖
𝜙𝜙(1 + cos(𝜂𝜂𝜙𝜙𝑖𝑖 − 𝛿𝛿𝑖𝑖))

𝑑𝑑𝑏𝑏𝑡𝑡𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏

+ � 𝐾𝐾𝑖𝑖
𝜑𝜑�𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑒𝑒𝑒𝑒�

2

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑏𝑏𝑖𝑖𝑒𝑒𝑡𝑡𝑏𝑏

+ ���
𝐴𝐴𝑖𝑖𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗12

−
𝐵𝐵𝑖𝑖𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗6
�

𝑗𝑗≠𝑖𝑖𝑖𝑖

+ ��
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝜀𝜀𝑟𝑟𝑖𝑖𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖�����������������������

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑

 

  

(2.11) 

The first four terms of Eq. 2.11 represent the energy of bond stretching (b), angle bending 

(Θ), proper (ϕ) and improper torsion (φ). The potential utilizes the force constants, Kb, KΘ, Kϕ, and 

Kφ, for the bonds, angles, proper and improper torsions between atoms, respectively, exhibited at 

a configuration and reference-equilibrium position to characterize the potential. Van der Waals 

interactions between particles i and j are described by the Lennard-Jones potential separated by a 

distance r, in which A and B are constants that control the interatomic distances (well-depth) for 

the repulsive and attractive terms, respectively. The electrostatic interactions are defined by partial 

charges, q, of the two particles in a medium, ε, described by the effective dielectric constant, ε.  

Despite not being able to account for excited electronic states, quantum effects, or chemical 

bond breakage breaking and formation, classical MD simulations give insight into many biological 

problems of both chemical and physical interests. For example, biological macromolecules such 
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as proteins, nucleic acids, and lipids are naturally dynamic systems in which structure, function, 

and activity are modulated by intrinsic forces.  

While internal motions can be observed using spectroscopic methods like infrared 

spectroscopy and nuclear magnetic resonance spectroscopy, such investigations can become 

expensive and time intensive for complex systems. MD simulations clarify time-dependent 

attributes and dynamic processes, allowing for an in-depth understanding and explanation of 

biophysical behaviors and chemical properties, such as the free energy contribution to structural 

rearrangements.17–19   

MD studies can aid in defining the role of the motifs in protein-protein interactions and 

protein-ligand recognition, which are capable of many different types of interactions including van 

der Waals interactions through aliphatic chains, cation-π interactions with aromatics, hydrogen 

bonding and purely electrostatic interactions with solvent.20 For instance, solvent effects, structure, 

stacking interactions between aromatic residues and the strength of ion binding can all be 

correlated to biological activity to elucidate mechanisms in protein recognition of other molecules. 

2.2.1 Considerations 

There are many parameters needed to carry out a simulation. As improper set up of a 

simulation can generate trajectories that have no basis in reality, hence much detail should be taken 

into account when employing MD simulations.21  

For biomolecular systems, many force fields have been developed.16,22 Popular force fields, 

such as OPLS,23 GROMOS,24 CHARMM,25 and AMBER,26 are parameterized based on a mixture 

of empirical data and quantum mechanical calculations. Each force field differs by how a 

parameter is defined per atom (atom-type). While harmonic potentials for bond stretching and 

angle bending are typically fitted to experimental vibrational data (normal mode frequencies), the 
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force fields differ by how the in-plane and out-of-plane torsion and non-bonded terms have been 

parameterized and the data sets to which the parameters have been fitted.  

Partial atomic charges, although not a physically measurable property, have a critical 

impact on interaction energies, hence effective partial charges impact the bonding terms within the 

force field.27 For example, partial atomic charges in the CHARMM force field are parameterized 

based upon Mulliken population analysis while the AMBER force field uses the Restrained 

Electrostatic Potential (RESP)28 approach.  

The environment of the solute is critical in the determination of the properties and reactivity 

of biomolecular systems.29,30 For MD simulations, the solvent may be treated with an implicit 

water model, such as the Generalized Born model,31,32 or explicitly using rigid or flexible water 

molecules.33 Using an explicit water solvent is advantageous because the solute can relax and 

interact with the solvent. Many empirical water models have been developed over the years to 

reproduce bulk water properties,34,35 including the TIP3P36 (transferable intermolecular potential 

3 point), several variants of TIP4P37–43 and TIP5P,36,44 the SPC45 (simple point charge) and the 

SPC/E46 (extended simple point charge) water models. 

Periodic boundary conditions (PBCs) are used to represent the simulation as a continuous 

system.21 Under PBCs, if an atom were to leave the unit cell in one direction, its image would 

reenter the cell on the other side. Imposing PBCs avoids surface artifacts that would arise from the 

atoms’ unrealistic interactions with the unit cell surface. 

Statistical mechanics is fundamental to MD simulations as it allows for macroscopic 

properties (i.e. free energy)  to be determined from properties of microstates.47,48 For a given 

microstate (N) characterized at position r, momentum p, and time t, the instantaneous value of 



12 
 

property A will fluctuate over time as a result of the interacting particles (2.12). In experiment, the 

value reflects an averaged value of the property over the time of the measurement.  

With the assumption that all accessible microstates are attainable and equally probable, the 

calculated value of A approaches the true average value of the property as time evolves. The 

average value �̅�𝐴 (2.13) is expressed as a time average over infinite time. For a finite time period, 

the average value is expressed as the ensemble average (2.14), in which the probability ρ of the 

state is proportional to the total energy (E), where Boltzmann’s constant (kB) and temperature (T).  

 

𝐴𝐴�𝐩𝐩𝑁𝑁(𝑡𝑡), 𝐫𝐫𝑁𝑁(𝑡𝑡)� 

 

(2.12) 

�̅�𝐴 = lim
𝜏𝜏→∞

1
𝑡𝑡
� 𝐴𝐴�𝐩𝐩𝑁𝑁(𝑡𝑡), 𝐫𝐫𝑁𝑁(𝑡𝑡)� 𝑑𝑑𝑡𝑡
𝜏𝜏

𝑑𝑑=0
    

 

(2.13) 

⟨𝐴𝐴⟩ = �𝑑𝑑𝐩𝐩𝑁𝑁𝑑𝑑𝐫𝐫𝑁𝑁 𝐴𝐴(𝐩𝐩,𝑁𝑁, 𝐫𝐫N)𝜌𝜌(𝐩𝐩𝑁𝑁 , 𝐫𝐫𝑁𝑁) 

 

𝜌𝜌(𝐩𝐩𝑁𝑁 , 𝐫𝐫𝑁𝑁) ∝ 𝑒𝑒−
E�𝐩𝐩𝑁𝑁,𝐫𝐫𝑁𝑁�
kBT  

 

(2.14) 

 

Fundamental internal  motions, such as molecular vibrations, rotations, and torsions occur 

in the femtosecond, picosecond, and nanosecond timescales, respectively, while larger motions 
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such as allosteric transitions and large-scale conformational changes, are observed on much larger 

time scales.49 In order to observe the molecular vibrational modes, the time step used in the 

numerical integration scheme must be smaller than the period of the fastest oscillation. Constraint 

algorithms, such as SETTLE,50 SHAKE,51 EEM,52 SHAPE,53 and LINCS,54 are used to freeze high 

frequency motions that have minimal effects on the overall dynamics of the system by placing 

algebraic constraints on bonds or angles to an equilibrium distance, allowing for larger time steps 

to be used.  

For example, the SHAKE algorithm51 can be computationally beneficial when a simulation 

of a large system where a molecule is surrounded by bulk solvent (e.g. explicit water) because 

bond stretching motions (e.g. O-H stretching) can be constrained. SHAKE is applied to the Verlet 

algorithm by defining pairwise bond distance constraints between atoms and is used to calculate 

the force constants iteratively, allowing the use of a larger time step. 

2.2.2 Limitations 

A major limitation to the computational modeling of the chemistry of large biological systems 

using atomistic MD simulations is the inadequate sampling of conformational states that are 

computationally feasible. In order to circumvent the time-scale limitation of atomistic MD 

simulations, alternative potentials and protocols, such as coarse-grained and continuum modeling, 

have been developed to offer a reduced representation that allows for more conformational state 

sampling  than atomistic simulations.55–57 For example, in a coarse-grained model for a protein, 

the amino acid lysine can be reduced from 24 atoms to three pseudo atoms that represent the polar 

backbone, the apolar hydrocarbons, and the charged amino group. Together, utilizing both 

atomistic and coarse-grained simulations techniques, many rare events can be uncovered.  
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2.3 Quantum Mechanics 

While classical mechanics is used to study large systems, containing many microscopic 

particles,  quantum mechanics explains the motion of electrons.58 In quantum mechanics, the state 

of a system is described by a continuous wave function (Ψ) and can be used with an operator (𝑂𝑂�) 

to determine the expectation value (EO) which can correspond to physical observables, such as 

position, momentum, or energy. 

⟨EO⟩ =
∫Ψ∗𝑂𝑂�Ψ dτ
∫Ψ∗Ψ dτ

 

(2.15) 

The quantum mechanical Hamiltonian operator (2.16) is similar to the classical 

Hamiltonian, where 𝑇𝑇�  is the kinetic energy operator that is dependent on the momentum and 𝑉𝑉�  is 

the potential energy operator that is dependent on a position. Within the kinetic energy operator, 

the momentum operator �̂�𝑝 is adapted to wave mechanics, where i is an imaginary unit equal to 

√−1, ħ is the reduced Planck constant, and m is mass.  

𝐻𝐻� = 𝑇𝑇� + 𝑉𝑉�  

𝑇𝑇� =
(�̂�𝑝)2

2𝑚𝑚
=
−ħ2

2𝑚𝑚
∇2          �̂�𝑝 = 𝑖𝑖ħ

∂
∂𝑡𝑡

 

 

 (2.16) 

The non-relativistic time-dependent Schrödinger equation (2.17a) describes the dynamics of a 

system given by the wave function, however for many applications in chemistry, the non-

relativistic time-independent Schrödinger equation is used for obtaining the total energy of 

chemical systems (2.17b). 
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−
ℏ
𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
Ψ(𝑟𝑟,𝑅𝑅, 𝑡𝑡) = 𝐻𝐻�Ψ(𝑟𝑟,𝑅𝑅, 𝑡𝑡) 

(2.17a) 

𝐻𝐻�Ψ(𝑟𝑟,𝑅𝑅) = 𝐸𝐸Ψ(𝑟𝑟,𝑅𝑅) 

(2.17b) 

The non-relativistic molecular Hamiltonian is expressed as the sum of kinetic energy and 

potential energy operators for the electrons (N) and the nuclei (M), shown in eq. (2.18) where mA 

is the mass of nucleus A, ZA is the atomic number of nucleus A, and R and r represent the position 

of the nuclei (A and B) and electrons (i and j), respectively. This expression includes the kinetic 

energy of the electrons (𝑇𝑇�𝑒𝑒) and nuclei (𝑇𝑇�𝑏𝑏), the columbic attraction between the nuclei and 

electrons (𝑉𝑉�𝑏𝑏𝑒𝑒), and the repulsion between nuclei (𝑉𝑉�𝑏𝑏𝑏𝑏) and electrons (𝑉𝑉�𝑒𝑒𝑒𝑒). 

𝐻𝐻� = −
1
2
�∇i2
𝑁𝑁

𝑖𝑖=1�������
𝑇𝑇�𝑒𝑒 

−
1
2
�

∇𝐴𝐴2

𝑚𝑚𝐴𝐴

𝑀𝑀

𝐴𝐴=1�����
𝑇𝑇�𝑛𝑛

−��
𝑍𝑍𝐴𝐴

|𝑅𝑅𝐴𝐴 − 𝑟𝑟𝑖𝑖|

𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝐴𝐴=1�����������
𝑉𝑉�𝑛𝑛𝑒𝑒

+ ��
1

�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�
 

𝑁𝑁

𝑗𝑗>𝑖𝑖

𝑁𝑁

𝑖𝑖=1�����������
𝑉𝑉�𝑒𝑒𝑒𝑒

   + ��
𝑍𝑍𝐴𝐴𝑍𝑍𝐵𝐵

|𝑅𝑅𝐴𝐴 − 𝑅𝑅𝐵𝐵|

𝑀𝑀

𝐵𝐵>𝐴𝐴

𝑀𝑀

𝐴𝐴=1�����������
𝑉𝑉�𝑛𝑛𝑛𝑛

  

(2.18) 

As the masses of the nuclei are much larger than the electrons and therefore the nuclei 

move much slower than the electrons, the motion of the nuclei and the electrons can be separated. 

This is the Born-Oppenheimer approximation and allows for the separation of the nuclear and 

electronic components for the wave function, Ψ, as shown in eq. (2.19).  

Ψ = 𝜓𝜓𝑏𝑏 ∙ 𝜓𝜓𝑒𝑒  

(2.19) 

Within the Born-Oppenheimer approximation, the molecular Hamiltonian can be simplified to the 

electronic Hamiltonian (𝐻𝐻�𝑒𝑒𝑙𝑙) where 𝑇𝑇�𝑏𝑏 is zero and 𝑉𝑉�𝑏𝑏𝑏𝑏 is treated as a constant (2.20).59 The 

electronic wave function includes all possible states for electrons for a nucleus.  
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𝐻𝐻�𝑒𝑒𝑙𝑙 = −
1
2
�∇i2
𝑁𝑁

𝑖𝑖=1�������
𝑇𝑇�𝑒𝑒 

−��
𝑍𝑍𝐴𝐴

|𝑅𝑅𝐴𝐴 − 𝑟𝑟𝑖𝑖|

𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝐴𝐴=1�����������
𝑉𝑉�𝑛𝑛𝑒𝑒

+ ��
1

�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�

𝑁𝑁

𝑗𝑗>𝑖𝑖

𝑁𝑁

𝑖𝑖=1���������
𝑉𝑉�𝑒𝑒𝑒𝑒

 

  

 (2.20) 

The Pauli-Exclusion Principle expresses that no two electrons can occupy the same 

quantum state, meaning that the total wave function must be antisymmetric with respect to 

exchange of the two electrons. This is accounted for by a linear combination of the possibilities 

for N electrons with respect to the spin (xN) and spatial relations (χN) and is expressed with a Slater 

determinant as shown in eq. (2.21). 

Ψ = 𝜒𝜒1 (𝑥𝑥1)𝜒𝜒2(𝑥𝑥2) − 𝜒𝜒1(𝑥𝑥2)𝜒𝜒2(𝑥𝑥1) 

Ψ =
1
√𝑁𝑁!

�

𝜒𝜒1(𝑥𝑥1) 𝜒𝜒2(𝑥𝑥1) ⋯ 𝜒𝜒𝑁𝑁(𝑥𝑥1)
𝜒𝜒1(𝑥𝑥2) 𝜒𝜒2(𝑥𝑥2) ⋯ 𝜒𝜒𝑁𝑁(𝑥𝑥2)
⋮ ⋮ ⋱ ⋮

𝜒𝜒1(𝑥𝑥𝑁𝑁) 𝜒𝜒2(𝑥𝑥𝑁𝑁) ⋯ 𝜒𝜒𝑁𝑁(𝑥𝑥𝑁𝑁)

� 

(2.21) 

2.3.1 Ab initio Methods 

The Hartree-Fock (HF) approximation60 is one of the most commonly utilized electronic 

structure methods for solving the electronic Schrödinger equation by using a mean field 

approximation for the two electron term 𝑉𝑉�𝑒𝑒𝑒𝑒 in which each electron is treated as interacting with 

an effective average potential of the other electrons rather than an individual electron. The Fock 

operator (𝑓𝑓) is composed of the sum of the one electron terms (2.22), in which the first term 

represents the kinetic energy of the electron, the second term represents the electron-nuclear 

attraction, and the third term represents the HF potential, which approximates the two electron 

term of the Schrödinger equation. 
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𝑓𝑓𝑖𝑖 = −
1
2
∇𝑖𝑖2 −�

𝑍𝑍𝐴𝐴
|𝑅𝑅𝐴𝐴 − 𝑟𝑟𝑖𝑖|

+ 𝑣𝑣𝐻𝐻𝐻𝐻(𝑖𝑖)
 

𝑁𝑁

𝑗𝑗

     

 (2.22) 

Although this method accounts for most of the electronic energy of a system, the HF 

approximation does not fully describe the wave function because it neglects electron-electron 

correlation effects for electrons of the opposite spin, thus cannot describe dynamic correlation (the 

instantaneous repulsion of moving electrons) or static correlation (nearly degenerate electron 

configurations)—which is significant for understanding chemical phenomena.6 Post-Hartree-Fock 

methods have been developed to recover electron correlation using a single slater determinant, 

including configuration interaction (CI),6,59 Møller-Plesset (MPn) perturbation theory (e.g. MP2 

and MP4),61–65 and coupled cluster (CC)66–69 methods.  

Full CI includes all possible configurations or excitations of electrons (2.23), where ai is 

the coefficient corresponding to unique single (S), double (D), triple (T), quadruple (Q), and i-th 

level excitations, respectively, that are added to the HF reference (Ψ0). 

ΨCI =  𝑎𝑎0ΦHF +  �𝑎𝑎SΦS
S

+  �𝑎𝑎DΦD
D

+ �𝑎𝑎TΦT
T

+  �𝑎𝑎QΦQ
Q

+  ⋯ =  �𝑎𝑎𝑖𝑖Φ𝑖𝑖
𝑖𝑖=0

 

(2.23) 

When truncated, CI is still variational but is no longer size extensive, or linearly scaled with the 

electron count and the theory is no longer exact.  In CC methods, the wave function uses an 

exponential form ansatz that contains connected excitation operators (𝑇𝑇�) to approximate the true 

wave function, in which each Nth excitation includes previous excitations (2.24).70 By 

formulation, CC methods are size extensive, but no longer variational. Similar to CI methods, 

increasing the number of excitations in CC yields (e.g. CCS, CCSD, CCSDT, etc.) approach the 



18 
 

exact energy. While CI and CC are rigorous methods for recovering electron-electron correlation, 

they are both computationally expensive. 

Ψ𝐶𝐶𝐶𝐶 =  𝑒𝑒𝑇𝑇 Φ0 

𝑇𝑇� = 𝑇𝑇1� + 𝑇𝑇2� + 𝑇𝑇3� + 𝑇𝑇�4 + ⋯+ 𝑇𝑇�𝑁𝑁 

(2.24) 

A popular CC method is CCSD(T), which includes single (S) and double (D) excitations and 

perturbative triples (T). 

MPn methods use a reference, unperturbed Hamiltonian (𝐻𝐻�0), which is the sum of the one-

electron Fock operators, and a perturbation (𝑉𝑉� ) on the reference Hamiltonian to recover electron 

correlation, where λ is the expansion parameter that determines the strength of the perturbation 

(2.25).  

𝐻𝐻� = 𝐻𝐻�0 + 𝜆𝜆𝑉𝑉�  

(2.25) 

2.3.2 Density Functional Theory 

Density functional theory (DFT) is an alternative to wave function-based methods that 

relates the electron density (ρ) to the ground state energy of a system through the Hohenberg-Kohn 

and Kohn-Sham theorems.71–73  

𝐸𝐸𝐷𝐷𝐻𝐻𝑇𝑇[𝜌𝜌] = 𝑇𝑇𝑏𝑏[𝜌𝜌] + 𝐸𝐸𝑏𝑏𝑒𝑒[𝜌𝜌] + 𝐽𝐽[𝜌𝜌] + 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌] 

𝜌𝜌(𝑟𝑟) = �|𝜓𝜓𝑖𝑖(𝑟𝑟)|2 
𝑁𝑁

𝑖𝑖=1

 

(2.26) 

In Kohn-Sham theory, (2.26), Ts[ρ] is the kinetic energy for the non-interacting reference 

system, Ene[ρ] is the columbic nuclear-electron attraction energy, J[ρ] is the electron-electron 
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repulsion energy, and Exc[ρ] is the remaining energy termed the exchange-correlation functional. 

The exact functional form of the exchange-correlation term is unknown. DFT functionals have 

been developed that attempt to approximate this term, such as local density approximation (LDA), 

generalized gradient approximation (GGA), meta-GGA, and hybrid-GGA.74,75 The LDA 

functionals are only dependent on the stationary density whereas the GGA functionals are based 

on the change in electron density. Meta-GGA functionals include corrections for kinetic energy 

density. Hybrid functionals incorporate a mixture of exact exchange from HF with other DFT 

exchange-correlation approximations. A popular DFT functional used in this work is B3LYP, 

which is a hybrid-GGA functional optimized to contain 20% of HF exchange.76–78 Although 

popular, B3LYP is not the best functional. There are many DFT functionals which can outperform 

one another, however the superiority is often dependent upon the problem of interest.79,80 For 

example, the B3LYP functional is good for predicting the structure of organic molecules. 

2.3.3 Basis Sets 

Electronic structure methods use basis sets, which are mathematical representations used 

to describe the wave function. The Slater-type orbital (STO) is one of the earlier basis functions to 

model atomic orbitals similar to the hydrogen atom (2.27), where N is a normalization constant, 

Yl,m represents the angular function, n is the principle quantum number, and ζ is exponential 

parameter that determines radial distance r. The spherical harmonic is defined by the orbital 

angular momentum (l) and magnetic quantum number (m).  

𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝑁𝑁𝑌𝑌𝑙𝑙,𝑖𝑖(𝜃𝜃,𝜙𝜙)𝑟𝑟(𝑏𝑏−1)𝑒𝑒−𝜁𝜁𝑡𝑡  

(2.27) 

However, STOs are difficult to evaluate numerically. Gaussian-type orbitals (GTO), on the other 

hand, have a more advantageous mathematical form (2.28), however GTOs poorly represent the 
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atomic orbital. Rather, linear combinations of multiple GTOs are taken to better approximate 

STOs. A solution was to combine GTOs to better approximate STOs, which in general, improve 

by the addition of basis functions.     

𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝑁𝑁𝑌𝑌𝑙𝑙,𝑖𝑖(𝜃𝜃,𝜙𝜙)𝑟𝑟(2𝑏𝑏−2−𝑙𝑙)𝑒𝑒−𝜁𝜁𝑡𝑡2 

(2.28) 

There are many different families of atomic orbital basis sets. Two of the more popular families 

are the correlation consistent sets of Dunning and co-workers81–85 and the Pople-style sets.86–89 For 

the Pople-style basis sets, there are many different levels of complexity, beginning with a minimal 

basis such as STO-3G86 and increasing to split valence sets such as 3-21G87 and 6-31G.88 

Additional basis functions, such as diffuse and polarization functions can be added to the basis set 

to give a more complete representation of the orbital space.  

The correlation consistent basis sets were designed to systematically recover correlation 

energy with the addition of basis functions. These basis sets are noted correlation consistent, 

polarized, valence, n-ζ level, or cc-pVnZ, where n is equal to double-ζ (DZ), triple-ζ (TZ), 

quadruple-ζ (QZ), etc. An advantage of the correlation consistent basis sets is that they can be used 

to extrapolate to the complete basis limit.
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CHAPTER 3 Molecular Dynamics Studies of the Protein–Protein Interactions in Inhibitor 

of κB Kinase-β† 

 
 
3.1 Introduction  

Impeding activation of the nuclear factor (NF)-κB pathway has been a popular aim for 

designing new anti-inflammatory therapeutics for many disease states, including cancer, stroke, 

and viral infections.1 Directly involved in regulating immune responses to a variety of stimuli, the 

NF-κB complex is comprised of an assembly of five transcription activators2  related by the 

presence of a distinctive Rel homology domain (RHD):3,4 RelA (p65), RelB , c-Rel, p50/p105 (NF-

κB1), and p52/p100 (NF-κB2).5-9  Separated into two classes by C-terminal domains, the NF-κB 

subfamily proteins, p50/p105 and p52/p100, are not always transcription activators unless they 

form dimers with the Rel subfamily proteins, RelA, RelB, and c-Rel.10-17 The RHD, responsible 

for dimerization and binding to DNA, contains the nuclear localization sequence (NLS)18-20  and 

the binding sites for inhibitors.21-23 

  Although there are various ways to signal activation of the NF-κB pathway, the inhibitory 

subunits IκB (IκBα, IκBβ, and IκBε)5  are responsible for sequestering the inactive state of NF-κB 

dimers in the cytoplasm by acting as a steric block against NLS functionality.24 Liberation of NF-

κB complex happens upon signaled-induced degradation of the IκB complex thus mediating gene 

transcription henceforth inhibition of IκB activation is a promising target for anti-inflammatory 

drug development.24-29 Enzymes responsible for this cascade of events have been linked to the 

                                                 
† This chapter is presented in its entirety from: Jones, M. R; Liu, C.; Wilson, A. K. “Molecular 
Dynamics Studies of the Protein–Protein Interactions in Inhibitor of κB Kinase-β” J. Chem. Inf. 
Mod. 2014 54 (2), 562-572. 
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catalytic subunits of (IκB kinase) IKK,30-33 specifically activation of the IKKα and IKKβ isoforms. 

Dual phosphorylation of the IKKα (at Ser176 and Ser180) and IKKβ (at Ser177 and Ser181) 

catalytic subunits regulate aberrant signaling pathways by which the activated subunits, both 

capable of undergoing autophosphorylation, phosphorylate IκBα at Ser 32 and Ser26 and IκBβ at 

Ser19 and Ser23.  

Both IKKα and IKKβ subunits, having a 52% sequence identity, contain a kinase domain 

(KD), leucine zippers (LZ), and helix-loop-helix (HLH) motifs that are capable of forming both 

homo and heterodimers.34  Studies in vitro have shown that dimerization mediated by the LZ motifs 

regulate the activity and activation of KD by mutation of LZ and HLH motifs, although the HLH 

motif does not affect dimerization, it has been shown to contribute to KD activity.35 Serine to 

alanine mutations in IKKβ prevent IKK activation, whereas in IKKα, autophosphorylation is 

deactivated but has no effect on IKK activity highlighting IKKβ as an attractive target. 

Additionally, in the wild-type conformation of IKKβ, the position of the activation loop containing 

the Ser177 and Ser181 hampers the docking of substrates into the pocket whereas the activated 

conformation is more accessible as compared to the cyclic AMP-dependent kinase (cAPK).36 This 

is mainly because the phosphorylation of the activation loop residues causes conformational 

change of the loop and even surrounding residues. This is an important phenomenon that suggests 

conformational change induced by these interactions play an important role in bioactivity of the 

protein and medicinal chemistry. The activation loop also contains Cys179 within the motif that is 

known to be important for the phosphorylation of both IKKβ and IKKα. Studies have shown that 

modifications to the cysteine suppress activity of the enzyme and activation of the NF-κB 

pathway.37-40 
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With IKKβ being a key enzyme in activating the NF-κB pathway, the mechanism for 

inhibiting activation of IKKβ has remained elusive due to a lack of a tertiary structural insight. 

The newly determined crystal structure of Xenopus laevis IKKβ (xIKKβ), having a gapless 74% 

sequence identity of human gene (hIKKβ), was reported as a “dimer of dimers” in which 

dimerization was reasoned critical for activation, rather than the activity for each homogenous 

protomer.41  Each protomer consists of 647 amino acids composed to form a kinase domain (KD) 

(residues 16-307), an ubiquitin-like domain (ULD) (residues 310-394), and scaffold/dimerization 

domain (SDD) (410-666).  

The presented structure of the kinase domain in xIKKβ does not resemble the active 

conformation upon comparison of the activation segments in available protein kinase crystal 

structures.42  The activation segments were defined by a primary sequence beginning adjacent to a 

βsheet at a conserved DFG (Asp-Phe-Gly) triad and extends to a conserved APE (Ala-Pro-Glu) 

motif near an alpha-helix. Although the random coils share a consistent fold between the two 

motifs, the activation loop is diverse in both sequence and conformation unique to its protein-

protein interactions and regulation. The activation segment in the xIKKβ structure begins at 

Asp166 and ends at Glu192, where Ser177-Ser181 (SXXXS) contain residues shown critical for 

activation. While the KD contains the mitogen-activated protein (MAP) kinase43-46  for serine 

phosphorylation, the SDD regulates activation via maintaining dimerization.  Mutagenesis studies 

showed that the wild-type of IKKβ was a dimer whereas the mutant was a monomer with a weaker 

affinity for dimerization and upon mutation of Leu654 and Trp655 in the SDD, dimerization was 

lost.41  

Previous computational and experimental work with IKKβ and similar Ser/Thr/Tyr kinases 

has revealed that the allosteric adenosine triphosphate (ATP) binding cavity is near the hinge 
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connecting the N and C lobes of the kinase domain.41,42,47-51 Comparative homology modeling of 

the monomer of IKKβ suggested that the KD was flexible and allosteric ATP binding 

conformational changes were not easily observed using 80 ns simulations without the crystal 

structure.47,52 

 In this study, molecular dynamics (MD) simulations of IKKβ are presented offering a 

greater insight on how conformational changes and protein-protein interactions within a 

multimeric assembly are influenced by distal modifications  in the interacting subunits of IKKβ. 

Using a multiscale approach, coarse-grained modeling offers a reduced representation useful for 

predicting large-scale conformational changes whereas atomistic simulations provide a more 

descriptive insight on activity; together this approach helps discern dimerization disruption. 

3.2 Computational Methods 

System Preparation. The initial coordinates for eight phosphomimetic mutant 

(S177E/S181E) molecules of xIKKβ were obtained from the Protein Data Bank Database53 

(PDBID: 3QA8).41 Combinations of the eight molecules were constructed to model multiple sets 

of tetramers, trimers, and dimers while using a monomer as a control (Table 3.1; Figure 3.1). 

Missing atoms on the side chains of Val79, Asp90, and Asp291 were added using the Molecular 

Operating Environment v.2011.10 (MOE).54 Coarse-grained models (all models shown in Table 

3.1) were protonated using MOE and minimized using the AMBER99 force field.55,56 Models for 

the atomistic simulations (AB and AD dimers and monomer) were prepared using the Leap module 

of AmberTools12.57,58 The Site Finder application in MOE was used to investigate potential sites 

for ligand docking. Contact sites and Propensity for Ligand Binding (PLB) indices59  were used to 

compare both allosteric and non-allosteric ATP binding sites. ATP coordinated with Mg2+ ions 

were extracted from a crystal structure of the Vgrg protein (PDBID:4DTH)60 and docked using 
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MOE with the induced fit method positioning the adenine head towards the hinge (DFG motif) 

and tail near the phosphoacceptor serines, using the same starting position for all models (Figure 

3.2). Ligand parameters were retrieved from the AMBER parameter database61 and were set up 

using the GAFF.62  Parameters for phosphoserine63  mutants (S177/181pS) were retrieved from 

Leap. 

 
Table 3.1 Summary of modeled systems. 

Model Chain 
Tetramer ABCD, DEFG, BCEH 
Trimer ABC, BCE 
Dimer AB, AD, BE 
Monomer A 
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Figure 3.1 Representation of the models.  The crystal structure was solved with 8 identical 
molecules (a) forming two “dimer of dimers” tetrameric complex (b). Although a dimer is 
defined as AB form (d), the alternative dimer AD (c) has significance for structure stability. 
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Figure 3.2 Characterization of ATP/Mg2+ docking cavity. The ATP ligand is positioned in the 
mouth of the activation loop (Top). The adenine head of ATP is pointed towards Asp166 and the 
phosphate tail is outside of the pocket. The binding pocket is outlined and described by colored 
circles (purple and green) representing surrounding amino acids (Bottom); the different outlines 
on the purple circles contrast the different types of polar side chains. Blue and green arrows 
indicate sidechain and backbone acceptor-donors, respectively. The blue spheres surrounding the 
phosphate tail represent the pocket exposure, whereas the lighter-blue spheres highlight the 
receptor’s exposure. 

 



36 
 

Simulation Protocol. In order to observe large, dynamical conformational changes, 

coarse-grained simulations were carried out for 50 ns at 300 K using CafeMol 2.064 with the 

AICG2 model accounting for nonlocal intra-chain interaction (electrostatic, repulsion, and 

hydrophobic interactions).  Atomistic simulations were performed for 10 ns at 300 K and 1 atm 

using AMBER 11 in the presence of 100 mM of sodium chloride65 and 10 Å of SPC/E66 water 

beyond the solute in a cuboid box under the Amber99SB67 force field. Prior to simulation, each 

solvated system was gradually relaxed under the NVT ensemble by six minimization procedures 

(500 cycles of steepest descent minimization followed by 500 cycles of conjugate gradient 

minimization) with decreasing restraints on the protein of 500.0, 200.0, 20.0, 10.0, and 5.0 

kcal/mol-Å2 per procedure to no restrains and then heated to 300 K over 100 ps. The baths were 

maintained using the isotropic position scaling protocol and the Langevin thermostat with the 

SHAKE algorithm. 

Trajectory Analysis. Trajectory analysis was performed using Cafemol and AMBER 11 

for coarse-grained and atomistic simulations, respectively, and visualized in Chimera68 and 

VMD.69 

Simulation Stability. Simulation parameters were extracted from the trajectories and 

plotted to access atomistic simulation stability. RMSDs from the starting structure were performed 

using the PTRAJ module of Amber suite to investigate flexibility and conformational changes. 

Hydrogen Bonding Analysis. Hydrogen bonding analysis was performed with the 

CPPTRAJ module of AmberTools, where a hydrogen bond was defined by a cutoff distance of 3.5 

Å and a donor-hydrogen-acceptor angle of 180°±60°.  

Energetic Analysis. Free energy calculations were carried out using the MMPBSA.py70 

module with Amber Tools and Amber 11.  The electrostatic solvation energy was calculated for 
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every ps over a span of 10 ns using three GB models: the pairwise GB models of Hawkins and co-

workers (GB-HCT)71-73  two modified models developed by Onufriev and coworkers (GB-OBC1 

and GB-OBC2)74 , setting dielectric constants to 1 and 80 for the interior and exterior of the 

molecule, respectively. Because relative free energy trends were of interest, solute entropy was 

neglected.75 Additionally, the PISA (protein interfaces, surfaces, and assemblies) procedure76  was 

used to predict the free energy of formation and dissociation of the two dimeric assemblies studied. 

3.3 Results  

3.3.1 Docking is Aesthetic 

Potential binding sites for ligands were investigated using the Site Finder application in 

MOE to observe the accessible binding sites from the static tetrameric assembly (A, B, C and D 

stand for the four subunits of IKKβ, respectively). Approximately 46 accessible cavities were 

found in a single protomer; only four of the predicted sites have contacts with the activation 

segment and are listed in Table 3.2. Sites 2-3, 6 and 10 have pockets containing 103-270 contact 

atoms and a wide range of PLB scores. PLB indices are ranked on concavity in which the highest 

PLB index would be considered to be the most probable ligand binding site.59 The largest pocket 

is shown in Site 2 (Figure 3.3). It is stationed at the bottom of the kinase domain in a cavity that 

includes the APE motif as contact atoms. Deeper into the pocket of the activation loop, Sites 3 and 

6 both reach towards the hinge of the N and C terminus and include the DFG triad. Both sites are 

within a reasonable proximity (≤5.0 Å) of the SXXXS sequence. Site 10 is also in the hinge region 

and corresponds to an allosteric binding region. The only adjacent contact atom pertinent to the 

activation segment is Asp166 of the DFG triad. These accessible pockets within the structure led 

rise to the proposal of a non-allosteric docking pose for ATP.  
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Table 3.2 Binding cavities near the activation segment. 

Site 
α-

Spheres 
Contact 
Atoms 

Amino 
Acids 

PLB 
Index Residues 

2 118 270 171 2.37 LEU186, LEU189, ALA190, PRO191, 
GLU192, LEU193, TRP206, PRO221, 
PHE222, ASN225, GLN227, GLN230, 
TRP231, HIS232, GLY233, LYS234, VAL235, 
ILE243, VAL244, VAL245, TYR246, ASP247, 
ASP248, LEU249, THR250, VAL253, 
PHE255, SER256, SER257, LEU277, 
GLN278, LEU281, MET282, TRP283 

3 87 200 122 1.53 GLY22, THR23, GLY24, GLY25, ARG144, 
ASP145, LEU146, LYS147, GLU149, 
ASP166, LEU167, TYR169, THR180, 
PHE182, VAL183, GLY184, THR185, 
LEU186, GLN187, TYR188, LEU189, 
GLU192, LEU194, GLU195, TYR199, 
SER207 

6 35 115 76 0.64 GLU61, ILE64, MET65, LYS66, LEU68, 
ASN69, VAL73, VAL74, SER75, MET96, 
TYR135, LEU136, ILE141, HIS143, ILE164, 
ILE165, LEU167, GLY168, ALA170 

10 40 103 68 0.32 LEU21, GLY22, VAL29, TYR98, CYS99, 
GLU100, GLY101, GLY102, ASP103, 
LYS106, GLU149, ASN150, VAL152, 
ILE165, ASP166 

Column 2 characterizes the number of alpha spheres identified within the cavity. Quantities in 
columns 3 and 4 denote the number of contact atoms and amino acids surrounding the cavity. 
The PLB index ranks the concavity in an increasing order. 
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Figure 3.3 Visualization of the predicted cavities. All alpha-spheres are shown for the four sites 
(Top). The red and white spheres indicated hydrophilic and hydrophobic cavities, respectively. 
Wireframe representations of the four sites are shown individually: Site 2 (middle left); Site 3 
(middle right); Site 6 (bottom left); and Site 10 (bottom right). 
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3.3.2 Dimer Stability of the Crystal System 

Using the static conformations of the initial ligand-free dimer models, theoretical 

predictions on the dimer assemblies were calculated using PISA. The free energy of binding, ∆Gint, 

is used to describe the free energy of interface formation between subunits, whereas the free energy 

of change upon dissociation, ∆Gdiss, corresponds to the difference between the associated and 

dissociated structures.76, 77 In these approximations, a negative ∆Gdiss value indicates that the 

structure is thermodynamically unstable and would readily dissociate and a positive value suggests 

a more stable assembly in which an external component would need to be added to induce 

dissociation. The results shown in Table 3.3 Summary of dimer assembly energetics, 

determined with PISA.indicate that the AB dimer is more tightly bound than the AD dimer for 

the WT and S177/188E models. In contrast, the S177/181pS model has a weaker binding free 

energy in the AB dimer and a stronger binding affinity in the AD dimer. Additionally, both the 

WT and S177/188E models have larger ∆Gdiss values than the S177/181pS model in the AB dimer 

but smaller values in the AD dimer. This indicates that the S177/181pS model is less 

thermodynamically stable in the AB dimer and more thermodynamically stable in the AD dimer 

than the WT and S177/188E models. Although predictions for the WT agree with experimental 

observations, identical values for the WT and S177/181E models were predicted for both the AB 

and AD dimers highlighting an inherent weakness in the parameterization of the PISA procedure.76 

This method may not always be useful for predicting the conformational stability for protein-

protein interactions using static structures. 
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Table 3.3 Summary of dimer assembly energetics, determined with PISA. 

 AB dimer  AD dimer 
Model ABSA ∆Gint ∆Gdiss T∆Sdiss Pv  ABSA ∆Gint ∆Gdiss T∆Sdiss Pv 
WT 1614.2 -21.9 9.5 15.7 0.061  440.0 1.3 -14.9 15.6 0.801 
S177/188E 1614.2 -21.9 9.5 15.7 0.061  440.0 1.3 -14.9 15.6 0.801 
S177/188pS 1783.7 -14.9 1.5 17.2 0.207  615.8 -3.0 -12.1 17.1 0.491 

The buried surface between the engaged interfaces (ABSA) is reported in Å2.The P-value (Pv) 
indicates the probability of finding a more hydrophobic interface, eg. Lower Pv values indicate 
fewer hydrophobic sites. The dissociation free energies (∆Gdiss ) and binding free energies (∆Gint ) 
are reported in kcal/mol. 
 
3.3.3 Coarse-Grained Simulations 

All coarse-grained models were simulated for 50 ns to gain qualitative insight about the 

significance of simulating multiple protomers that may contribute to the conformational stability 

of the xIKKβ assembly. The root-mean-square deviation (RMSD) calculated from the starting 

structure was compared against the multiple models shown in Table 3.1 and scaled to fit a 

monomer (Figure 3.4). Although calculating RMSD from the starting structure is one way to 

determine the stability of the structure, the dynamics in flexible regions can yield misleading 

RMSDs. Each model exhibits continuous increases in the deviation indicating sustained 

conformational changes. In these simulations, the continuous structural changes occurred in the 

kinase domain. Qualitatively, throughout the simulation, the activation loop of the kinase domain 

periodically opened and closed suggesting that its structural flexibility may play a role in 

regulating molecular traffic in the activation loop. In terms of comparing conformational stability 

among the different models, it is apparent within the first 25 ns that there is conformational 

favorability, specifically fewer fluctuations in the assembly, for models containing multiple 

protomers. The monomer was the least stable system in these simulations because it began to 

denature within the first 25 ns of the simulation, thus RMSD after 25 ns were ignored. Although 

coarse-grained timescales cannot be directly compared with atomistic time scales, this 
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demonstrates the influence that the assembly of a complex has on the mobility of individual 

protomers on short time scales. 

 
 

 
Figure 3.4 RMSD plots for the different assemblies using coarse-graining MD. Frames were 
plotted for every 1 ps for a total of 50,000 frames (50 ns). 

 
 
3.3.4 Atomistic Simulation of Dimers and Monomer 

 To characterize the significance and relationship between kinase domain activity and 

dimerization, atomistic simulations were carried out for 10 ns for two sets of dimers while the 

monomer was observed as a control. Simulation stability was characterized by monitoring 

thermodynamic parameters (Table 3.4) from the starting and average structures. Average total 
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energies, densities, and temperatures were compared amongst the different morphs of the 

monomer and dimers. Properties of each monomer, AB dimer and AD dimer were comparable 

among the WT, S177/181E, WT+ATP and S177/181pS models, indicating that each monomer and 

dimers structures, respectively, maintained the defined simulation parameters. The RMSD values 

for the twelve starting structures shown in Figure 3.5 reveal variations of conformational flexibility 

throughout the 10 ns simulations. For the monomer, the WT has much more structural fluctuations 

than the mutant and ATP bound  models. For the dimers, the WT, WT+ATP and S177/181pS 

models have more comparable RMSD values than the S177/181E model. In the WT+ATP model, 

the flexibility of the activation loop is minimized due to electrostatic interactions with the non-

allosteric bound ATP. From this data, it is indicative that the flexibility of the activation segment 

in the kinase domain contributes little towards the larger fluctuations observed in the full structure 

of the dimers indicating that the observed structural changes occur in other parts of the complexes. 

Table 3.4 Averaged thermodynamic data for the 10 ns atomistic simulation. 

Model Etot σ rho σ T σ 

WT 
Monomer -371875.0 398.6 1.0362 0.0008 300.0 0.9
Dimer:AB -448514.1 528.9 1.0530 0.0009 300.0 0.8
Dimer:AD -880796.6 651.6 1.0222 0.0005 300.0 0.6

S177/188E 
Monomer -371885.3 400.0 1.0362 0.0008 300.0 0.9
Dimer:AB -460262.3 531.5 1.0513 0.0009 300.0 0.8
Dimer:AD -880880.4 652.1 1.0221 0.0005 300.0 0.6

WT-ATP 
Monomer -373339.9 394.6 1.0364 0.0007 300.0 0.9
Dimer:AB -448774.7 524.0 1.0528 0.0010 300.0 0.8
Dimer:AD -881975.2 659.6 1.0226 0.0005 300.0 0.6

S177/181pS 
Monomer -372369.3 396.6 1.0363 0.0007 300.0 0.9
Dimer:AB -447724.1 519.1 1.0521 0.0009 300.0 0.8
Dimer:AD -881267.0 657.1 1.0221 0.0005 300.0 0.6

The total energy (Etot), density (rho) and temperature (T) per system are reported in units of 
kcal/mol, (g/mL) and Kelvin, respectively next to the standard deviation (σ). 
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Figure 3.5 The RMSD from the starting structure for the 10 ns simulation. The different RMSDs  
of the monomer (a-b), AB dimer (c-d) and AD dimer (e-f) are colored accordingly (blue, WT; 
red, S177/181E; green, WT+ATP; purple;S177/181pS).  Plots A, C, and E represent the RMSD 
of the entire structure whereas the plots B, D, and F represent only the activation segment of the 
principle monomeric chain. Frames were plotted for every 2 ps for a total of 5,000 frames (10 
ns). 
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3.3.5 Hydrogen Bonding Between Dimer Interfaces 

 Structure-based mutagenesis and ultracentrifugation studies investigating SDD mediated 

dimerization established that the wild-type is a dimer, whereas upon mutation of Leu654, Trp655, 

and Leu658 dimerization failed. To quantify the loss in dimerization upon activation of the 

complex, a hydrogen bond analysis was performed. Hydrogen bonding patterns in the AB dimer 

includes series of both charged and uncharged amino acids including Glu, Asp, Gln, Ser, and Leu. 

Activation by both phosphomimetic mutation and phosphorylation lead to a decrease in hydrogen 

bond occupancy throughout the simulation. Specifically, Glu576, Ser489, Asp493, Gln478, 

Glu565 and Leu658 of one protomer maintain hydrogen bonds with the opposing protomer 50% 

to 100% of the simulation for the wild-type; however these hydrogen bond occupancies decrease 

in the activated species (Table 3.5). Trends for the AD dimer (Table 3.6), however, do not follow 

a similar trend, which is due to the distances between the dimer interface. Occupancies for the 

WT+ATP models failed to follow a trend readily comparable with the other models; however, it 

is clear that the docking of ATP has the ability to disrupt SDD mediated dimerization.  
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Table 3.5 Hydrogen bonding occupancies for the AB dimer interface. 

(AB) WT  (AB) S177/181E 
Y X-H O  Y X-H O 

Glu 576 Arg 573 99  Glu 576 Arg 573 71 
Ser 489 Gln 651 96  Asp 569 Arg 572 68 
Glu 576 Arg 572 89  Ser 489 Gln 651 57 
Tyr 497 Gln 651 81  Asp 493 Gln 651 53 
Asp 546 Arg 460 75  Asp 493 Gln 652 50 
Asp 493 Gln 652 63  Ser 489 Gln 652 45 
Gln 478 Gln 478 55  Glu 19 Arg 592 39 
Glu 565 Arg 438 52  Phe 485 Phe 485 29 
Leu 658 Leu 658 49  Gln 110 Gln 566 28 
Trp 655 Gln 500 39  Glu 502 Arg 666 25 
Arg 573 Arg 572 36  Lys 482 Phe 485 22 
Glu 464 Thr 463 36  Glu 19 Asn 588 21 
Trp 655 Tyr 497 34  Gln 548 Gln 548 21 
Lys 659 Gly 504 29  Gly 504 Trp 655 21 
Arg 573 Arg 573 28  Ala 481 Lys 482 19 
Glu 648 Ser 489 27  Phe 503 Arg 666 18 
Pro 578 Glu 576 26  Glu 19 Arg 419 17 
Lys 467 Lys 467 26  Trp 655 Lys 496 17 
Asp 569 Arg 572 26  Gln 548 Arg 452 16 
Cys 662 Phe 503 25  Glu 648 Phe 485 16 
Glu 502 Ser 653 24  Ser 619 Phe 503 15 
Gln 500 Trp 655 23  Lys 482 Lys 482 15 
Lys 482 Phe 485 18  Gln 110 Leu 570 15 
Ala 481 Lys 482 18  Gln 478 Gln 478 14 
Lys 482 Ala 481 17  Gly 504 Lys 659 13 

In each model, an acceptor (Y) and a donor (X-H) were defined and analyzed throughout the 10 
ns simulation. The percent occupancy (O) represents the fraction of frames in which a bond was 
observed.  
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Table 3.5 (cont’d) 

(AB) WT-ATP (AB) S177/181pS 
Y X-H O Y X-H O

Arg 650 Gln  651 84 Glu 565 Arg 568 70 
Asp 546 Arg 460 71 Lys 482 Lys 482 59 
Trp 655 Tyr  497 50 Lys 482 Phe 485 53 
Gln 478 Gln  478 36 Asp 493 Gln 652 45 
Ser 489 Glu 648 31 Asp 493 Trp 655 36 
Phe 485 Phe  485 29 Phe 485 Phe 485 33 
Phe 485 Gln 647 26 Gln 651 Gln 651 31 
Gln 500 Lys 659 26 Glu 648 Ser 488 30 
Phe 486 Gln 651 22 Phe 485 Lys 482 29 
Ala 481 Lys 482 22 Trp 655 Tyr 497 28 
Trp 268 Gln 651 22 Phe 503 Cys 652 28 
Asp 484 Lys 482 22 Ala 481 Lys 482 27 
Ala 481 Gln 478 19 Phe 485 Phe 486 25 
Lys 482 Phe 485 19 Gln 478 Gln 478 23 
Lys 482 Lys 482 16 Ser 357 Gln 548 23 
Leu 654 Trp 655 16 Trp 655 Asp 493 21 
Phe 485 Lys 482 16 Asp 493 Gln 651 20 
Phe 486 Phe 485 14 Ser 489 Gln 651 20 
Phe 485 Phe 486 14 Asp 569 Arg 568 19 
Gln 652 Lys 496 14 Phe 485 Glu 648 18 
Gln 500 Trp 655 13 Ala 481 Gln 478 17 
Ile 490 Gln 651 12 Lys 467 Lys 467 16 
Ser 489 Gln 651 11 Arg 549 Ser 357 16 
Phe 485 Glu 648 11 Glu 16 Arg 419 16 

Leu 658 Leu 658 15 
Lys 659 Tyr 497 14 
Ser 489 Glu 648 13 
Phe 503 Arg 666 13 
Gln 500 Lys 659 13 
Arg 573 Arg 572 13 

In each model, an acceptor (Y) and a donor (X-H) were defined and analyzed throughout the 10 
ns simulation. The percent occupancy (O) represents the fraction of frames in which a bond was 
observed.  
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Table 3.6 Hydrogen bonding occupancies for the AD dimer interface. 

(AD) WT (AD) S177/181E 
Y X-H O Y X-H O

Asn 225 Leu 223 97 Thr 250 Trp 226 78 
Leu 193 Thr 250 84 Asp 536 Arg 579 55 
Thr 250 Trp 226 82 His 232 Trp 231 39 
His 232 Val 229 38 His 232 His 232 39 
Asn 225 Phe 222 29 Pro 224 Asn 225 35 
Pro 228 Asp 248 29 Arg 577 Arg 582 35 
Gly 251 Trp 226 27 Glu 49 Arg 592 23 
His 232 Trp 231 22 Pro 224 Pro 228 20 
Pro 228 Asp 247 19 Thr 250 Gln 227 19 
Trp 226 Tyr 423 18 Arg 236 Pro 228 19 
Trp 226 Phe 255 17 Gln 230 Val 229 18 
Asn 225 His 425 16 Thr 424 Asn 225 18 
Pro 224 Pro 224 15 Arg 579 Arg 582 17 
Asn 225 Pro 224 14 Val 183 Thr 422 17 
Leu 384 Trp 226 13 Asp 248 Pro 228 14 
Val 183 Leu 421 12 Glu 49 Arg 419 13 
Phe 255 Trp 226 11 Arg 582 Arg 582 13 
Thr 250 Gln 227 10 Asn 225 Val 229 12 

Leu 186 Thr 250 10 
In each model, an acceptor (Y) and a donor (X-H) were defined and analyzed throughout the 10 
ns simulation. The percent occupancy (O) represents the fraction of frames in which a bond was 
observed. 
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Table 3.6 (cont’d) 

(AD) WT-ATP (AD) S177/181pS 
Y X-H O Y X-H O

Asp 536 Arg 582 59 Asp 536 Arg 579 88 
Asp 536 Arg 579 49 Pro 228 Thr 250 53 
Asp 248 Trp 226 25 Pro 224 Asn 225 45 
Pro 417 Gln 48 21 Leu 249 Leu 194 40 
Asn 225 Trp 226 20 Asp248 Leu 193 34 
His 232 Trp 226 16 Pro 578 Arg 579 29 
Trp 226 Tyr 423 15 Thr 250 Trp 226 28 
Leu 384 Ser 181 14 Pro 228 His 232 28 
Trp 231 Trp 231 12 Trp 226 His 425 27 
Gln 227 Thr 250 10 Pro 228 Asp 248 25 
Leu 193 Leu 249 10 Ser 257 Pro 228 17 
Trp 231 His 232 9 Thr 250 Gln 227 15 
Pro 578 Arg 579 7 Leu 249 Glu 195 13 

Trp 226 Tyr 423 13 
Thr 250 Leu 194 12 
Sep 181 Lys 418 9 
His 232 Val 229 9 

In each model, an acceptor (Y) and a donor (X-H) were defined and analyzed throughout the 10 
ns simulation. The percent occupancy (O) represents the fraction of frames in which a bond was 
observed. 

3.3.6 Binding Free Energies 

 Calculating the average binding free energy using GB approximations can provide relative 

trends of free energies of association and dissociation. All binding free energies are shown in Table 

3.7. Using the pairwise de-screening approach (HCT), the dimerization of the AB model is less 

favorable upon mutation of the S177/181. Although the phosphomimetic mutations show a weaker 

binding affinity trend than the phosphoserine model, the phosphoserine dimer does begin 

dissociating (Figure 3.6). In contrast, the AD model has a stronger binding affinity upon active 

rendering with similar exaggerations from the phosphomimetic mutation.  This relative trend 

visualized in Figure 3.7 supports the favorability for dimerization in the wild type but also proposes 

an affinity shift towards the AD dimer upon activation. Observing the OBC models, the trend is 

consistent, excluding the phosphomimetic mutant with the OBC2 model. For the AB dimer 
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containing ATP, only the HCT model was used to calculate ∆Gbind between the dimer interfaces 

to investigate how ATP binding affects dimerization. The results show that ATP, as expected, 

prompts dissociation. 

Table 3.7 Binding free energies of the IKKβ dimer.a 

Model HCT OBC1 OBC2 

Wild-type 
AB -180.7 -88.6 -50.3
AD -74.6 -41.6 -25.8

E177/181 
AB -153.7 -65.5 -30.4
AD -93.9 -51.0 -35.0

pS177/181 
AB -168.5 -82.4 -39.5
AD -69.5 -28.2 -13.4

WT-ATP AB -122.0
aAll energies are in kcal/mol. 
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Figure 3.6 Comparison of the phosphorylated AB Dimer. Shown are the starting structure (top) 
and the final structure (bottom) after 10 ns. 
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Figure 3.7 Comparison of binding free energy trends with the HCT, OBC1, and OBC2 models. 

 
 
 
3.4 Discussion 

Different structure-guided approaches to drug discovery have been developed over the 

years to better guide rational design.78-81 MD simulations are widely used to elucidate structure-

activity relationships, however this approach has its own weaknesses due to inadequate 

conformational sampling which can be due to high computational costs and inherent weaknesses 

within the force-field parameterizations.79,82,83 Focusing on the limitation of conformational 

sampling, coarse-graining techniques have been designed to provide reduced representations that 

permit investigations of various conformational states of large biomolecular systems and 

assemblies with longer time scales84,85 that provide a foundation for multiscale modeling 

approaches. Typically, molecular dynamics simulations of protein-ligand recognition are studied 

using non-covalently bound ligands to a single subunit or domain of a protein, often neglecting the 

protein’s contribution to the quaternary structure. Although these free, unbound ligands are unable 

to induce a change in effective force constants or break bonds with point-charged based force 
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fields, they do induce sterics which can make changes in the local tertiary structure. Despite the 

limits to conformational sampling, it is important to study the multiple protomers or subunits of 

quaternary structures when investigating the impact of ligand binding or point mutations to avoid 

misleading details describing the recognition events, especially those of systems containing homo-

multimeric subunits.   

As shown in this work, it is important to consider the full structure of IKKβ for the study 

of the effects of distal modifications. The assembly of the inactive xIKKβ is described as a 

symmetric stationary assembly whereas upon activation, the quaternary structure dissociates from 

the central configuration. From the coarse-grained simulation, the large-scale motions of the kinase 

domain are pertinent to the kinase activity, in that the activation loop symbolizes a pair of lips that 

opens and closes repeatedly during the MD simulation. This ‘open’ and ‘closed’ conformation 

resembles the backbone flexibility experimentally shown in the cAMP-dependent protein kinase 

(cAPK or PKA) catalytic subunit.86,87 A central location for potential conformational dynamics is 

at the hinge, thus opening of the hinge makes the possibility for ligand entrance in the lips of the 

KD possible in both conformations. Due to the orientation of the dimer-dimer interface, the 

activation loop was unhindered and accessible. The accessibility of the hinge through the 

activation loop in the crystal structure is tight, but accessible for flat structures, such as ATP. The 

polar functional groups of the residues in the pocket of the activation loop cause great polarity of 

the pocket, which favors the formation of hydrogen bonds. Non-covalent docking of ATP in the 

binding pocket made an impact on the dimerization. From this docked ATP position, the role of 

CYS179 modulating ATP binding and activation can be described as a side chain that aids in 

holding ATP in the pocket. 
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Since the publication of the xIKKβ crystal structure, two structures have been solved for 

the active conformation of hIKKβ.88,89 Both studies confirm that the overall modular arrangement 

of the different domains between hIKKβ and xIKKβ are consistent. Additionally, both of the 

crystal structures confirm that the active assembly of IKKβ resembles a pair of opening shears; 

this is in agreement with our simulation data. Despite the subtle differences of the opened and 

closed conformations, the activation segment of the KD regulates activity and dynamics. 

Modifications to the distal activation loop made a significant impact to the dimerization within a 

short simulation time. Although the atomistic simulation time was not long enough to observe the 

opened and the closed conformations, we saw that the pocket from the KD began to open 

throughout the 10 ns simulation across all models. The phosphomimetic and phosphoserine 

mutations formed hydrogen bonds and salt interactions with the solvent and nearby side-chains, 

however, the occupancies of these interactions were not maintained which suggests an entropic 

flexibility of the KD. Previous investigations of IκB kinase activity showed that IKKβ activity can 

be expressed with phosphomimetic mutations.32 In agreement with experiment, the effects of 

imploring phosphomimetic mutations rather than actual phosphorylated amino acids were 

observed in these simulations. Although the opened conformation resembles the active kinase, the 

inactive KD shows similar activity.  

 

3.5 Conclusion 

In this study, molecular dynamics simulations were employed to investigate 

conformational stability for modeling multimeric species and to decipher whether dimerization is 

interrupted upon activation of IKKβ. Coarse-grained MD simulations showed that simulating more 

that one protomer of the  multimeric assembly provided more stability for the assembly of IKKβ. 
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Interactions at the dimer-dimer interface between the SDD and KD promote a conformational 

stability for the inactive state of IKKβ. Atomistic simulations of the two dimer models confirmed 

that each protomer mediates electrostatic interactions that are responsible for activity of IKKβ. 

Dimerization of IKKβ is disrupted upon activation of Ser177 and Ser181. Rather than inducing 

local conformational changes within the KD observable within the 10 ns simulation, binding of 

ATP induces conformational changes that disrupt dimerization. Additionally, phosphomimetic 

mutations can adequately express the active state of IKKβ.  

Regarding the molecular modeling of IKKβ activity, we highlight the importance of 

considering both conformation-activity and structure-activity relationships. Considering how 

protein-protein interactions within assemblies are affected when docking ligands or modifying 

protein side-chains is critical for understanding structure-activity relationships, even in sites distal 

from the protein-protein interface. Significant structure-activity relationships can be 

underestimated by neglecting protein-protein interactions.   

 



56 
 

 

 
REFERENCES 



57 
 

REFERENCES 

(1) Baldwin, A. S., Jr. Series Introduction: The transcription factor NF-κB and human 
disease. J. Clin. Invest 2001, 107, 3-6. 

(2) de Martin, R.; Schmid, J. A.; Hofer-Warbinek, R. The NF-kappaB/Rel family of 
transcription factors in oncogenic transformation and apoptosis. Mutat. Res. 1999, 437, 
231-243. 

(3) Ghosh, S.; May, M. J.; Kopp, E. B. NF-kappa B and Rel proteins: evolutionarily 
conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 16, 225-260. 

(4) Sullivan, J. C.; Kalaitzidis, D.; Gilmore, T. D.; Finnerty, J. R. Rel homology domain-
containing transcription factors in the cnidarian Nematostella vectensis. Dev. Genes 
Evol. 2007, 217, 63-72. 

(5) Baldwin, A. S. Control of oncogenesis and cancer therapy resistance by the 
transcription factor NF-kappaB. J. Clin. Invest. 2001, 107, 241-246. 

(6) Ghosh, S.; Karin, M. Missing pieces in the NF-kappaB puzzle. Cell 2002, 109 Suppl, 
S81-96. 

(7) Gilmore, T. D.; Garbati, M. R. Inhibition of NF-kappaB signaling as a strategy in 
disease therapy. Curr. Top. Microbiol. Immunol. 2011, 349, 245-263. 

(8) Gilmore, T. D.; Wolenski, F. S. NF-kappaB: where did it come from and why? 
Immunol. Rev. 2012, 246, 14-35. 

(9) Rayet, B.; Gelinas, C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 
1999, 18, 6938-6947. 

(10) Gilmore, T. D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 
2006, 25, 6680-6684. 

(11) Perkins, N. D.; Gilmore, T. D. Good cop, bad cop: the different faces of NF-kappaB. 
Cell Death Differ. 2006, 13, 759-772. 

(12) Gilmore, T. D.; Gerondakis, S. The c-Rel Transcription Factor in Development and 
Disease. Genes Cancer. 2011, 2, 695-711. 

(13) Gilmore, T. D.; Kalaitzidis, D.; Liang, M. C.; Starczynowski, D. T. The c-Rel 
transcription factor and B-cell proliferation: a deal with the devil. Oncogene 2004, 23, 
2275-2286. 

(14) Gilmore, T. D. Introduction: The Rel/NF-kappaB signal transduction pathway. Semin. 
Cancer Biol. 1997, 8, 61-62. 



58 
 

(15) Gilmore, T. D.; Koedood, M.; Piffat, K. A.; White, D. W. Rel/NF-kappaB/IkappaB 
proteins and cancer. Oncogene 1996, 13, 1367-1378. 

(16) Gilmore, T. D. NF-kappa B, KBF1, dorsal, and related matters. Cell 1990, 62, 841-843. 

(17) Sun, S. C. Non-canonical NF-kappaB signaling pathway. Cell Res. 2011, 21, 71-85. 

(18) Beg, A. A.; Ruben, S. M.; Scheinman, R. I.; Haskill, S.; Rosen, C. A.; Baldwin, A. S.,Jr 
I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa 
B: a mechanism for cytoplasmic retention. Genes Dev. 1992, 6, 1899-1913. 

(19) Beg, A. A.; Baldwin, A. S.,Jr The I kappa B proteins: multifunctional regulators of 
Rel/NF-kappa B transcription factors. Genes Dev. 1993, 7, 2064-2070. 

(20) Zabel, U.; Henkel, T.; Silva, M. S.; Baeuerle, P. A. Nuclear uptake control of NF-kappa 
B by MAD-3, an I kappa B protein present in the nucleus. EMBO J. 1993, 12, 201-211. 

(21) Huguet, C.; Crepieux, P.; Laudet, V. Rel/NF-kappa B transcription factors and I kappa 
B inhibitors: evolution from a unique common ancestor. Oncogene 1997, 15, 2965-
2974. 

(22) Baeuerle, P. A.; Henkel, T. Function and activation of NF-kappa B in the immune 
system. Annu. Rev. Immunol. 1994, 12, 141-179. 

(23) Siebenlist, U.; Franzoso, G.; Brown, K. Structure, regulation and function of NF-kappa 
B. Annu. Rev. Cell Biol. 1994, 10, 405-455. 

(24) Karin, M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. 
Oncogene 1999, 18, 6867-6874. 

(25) Israel, A. The IKK Complex, a Central Regulator of NF-κB Activation. Cold Spring 
Harb. Perspect. Biol. 2010, 2, a000158-a000158. 

(26) Nishikori, M. Classical and Alternative NF-kB Activation Pathways and Their Roles in 
Lymphoid Malignancies. J. Clin. Exp. Hematop. 2005, 45, 15-24. 

(27) Gamble, C.; McIntosh, K.; Scott, R.; Ho, K. H.; Plevin, R.; Paul, A. Inhibitory kappa B 
Kinases as targets for pharmacological regulation. Br. J. Pharmacol. 2012, 165, 802-
819. 

(28) Karin, M.; Delhase, M. The I kappa B kinase (IKK) and NF-kappa B: key elements of 
proinflammatory signalling. Semin. Immunol. 2000, 12, 85-98. 

(29) May, M. J.; Ghosh, S. Rel/NF-kB and IkB proteins: an overview. Semin. Cancer Biol. 
1997, 8, 63-73. 



59 
 

(30) Zandi, E.; Rothwarf, D. M.; Delhase, M.; Hayakawa, M.; Karin, M. The IkappaB kinase 
complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for 
IkappaB phosphorylation and NF-kappaB activation. Cell 1997, 91, 243-252. 

(31) Hacker, H.; Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. 
STKE 2006, 2006, re13. 

(32) Mercurio, F.; Zhu, H.; Murray, B. W.; Shevchenko, A.; Bennett, B. L.; Li, J.; Young, D. 
B.; Barbosa, M.; Mann, M.; Manning, A.; Rao, A. IKK-1 and IKK-2: cytokine-
activated IkappaB kinases essential for NF-kappaB activation. Science 1997, 278, 860-
866. 

(33) Hayden, M. S.; Ghosh, S. Signaling to NF-kappaB. Genes Dev. 2004, 18, 2195-2224. 

(34) Zandi, E.; Chen, Y.; Karin, M. Direct phosphorylation of IkappaB by IKKalpha and 
IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science 1998, 
281, 1360-1363. 

(35) Delhase, M.; Karin, M. The I kappa B kinase: a master regulator of NF-kappa B, innate 
immunity, and epidermal differentiation. Cold Spring Harb. Symp. Quant. Biol. 1999, 
64, 491-503. 

(36) Johnson, L. N.; Noble, M. E.; Owen, D. J. Active and inactive protein kinases: 
structural basis for regulation. Cell 1996, 85, 149-158. 

(37) Pandey, M. K.; Sung, B.; Kunnumakkara, A. B.; Sethi, G.; Chaturvedi, M. M.; 
Aggarwal, B. B. Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses 
nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis. 
Cancer Res. 2008, 68, 5370-5379. 

(38) Gupta, S. C.; Prasad, S.; Reuter, S.; Kannappan, R.; Yadav, V. R.; Ravindran, J.; Hema, 
P. S.; Chaturvedi, M. M.; Nair, M.; Aggarwal, B. B. Modification of cysteine 179 of 
IkappaBalpha kinase by nimbolide leads to down-regulation of NF-kappaB-regulated 
cell survival and proliferative proteins and sensitization of tumor cells to 
chemotherapeutic agents. J. Biol. Chem. 2010, 285, 35406-35417. 

(39) Byun, M. S.; Choi, J.; Jue, D. M. Cysteine-179 of IkappaB kinase beta plays a critical 
role in enzyme activation by promoting phosphorylation of activation loop serines. Exp. 
Mol. Med. 2006, 38, 546-552. 

(40) Harikumar, K. B.; Kunnumakkara, A. B.; Ahn, K. S.; Anand, P.; Krishnan, S.; Guha, S.; 
Aggarwal, B. B. Modification of the cysteine residues in IkappaBalpha kinase and NF-
kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene 
products and potentiation of apoptosis in leukemia cells. Blood 2009, 113, 2003-2013. 

(41) Xu, G.; Lo, Y. C.; Li, Q.; Napolitano, G.; Wu, X.; Jiang, X.; Dreano, M.; Karin, M.; 
Wu, H. Crystal structure of inhibitor of kappaB kinase beta. Nature 2011, 472, 325-330. 



60 
 

(42) Nolen, B.; Taylor, S.; Ghosh, G. Regulation of protein kinases; controlling activity 
through activation segment conformation. Mol. Cell 2004, 15, 661-675. 

(43) Boutros, T.; Chevet, E.; Metrakos, P. Mitogen-Activated Protein (MAP) Kinase/MAP 
Kinase Phosphatase Regulation: Roles in Cell Growth, Death, and Cancer. Pharmacol. 
Rev. 2008, 60, 261-310. 

(44) Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B. E.; Karandikar, M.; Berman, K.; 
Cobb, M. H. Mitogen-activated protein (MAP) kinase pathways: regulation and 
physiological functions. Endocr. Rev. 2001, 22, 153-183. 

(45) Dhillon, A. S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in 
cancer. Oncogene 2007, 26, 3279-3290. 

(46) Ferrell, J. E.,Jr; Bhatt, R. R. Mechanistic studies of the dual phosphorylation of 
mitogen-activated protein kinase. J. Biol. Chem. 1997, 272, 19008-19016. 

(47) Kalia, M.; Kukol, A. Structure and dynamics of the kinase IKK-beta--A key regulator 
of the NF-kappa B transcription factor. J. Struct. Biol. 2011, 176, 133-142. 

(48) Kornev, A. P.; Taylor, S. S.; Ten Eyck, L. F. A helix scaffold for the assembly of active 
protein kinases. Proc. Natl. Acad. Sci. USA 2008, 105, 14377-14382. 

(49) Steichen, J. M.; Iyer, G. H.; Li, S.; Saldanha, S. A.; Deal, M. S.; Woods, V. L., Jr; 
Taylor, S. S. Global consequences of activation loop phosphorylation on protein kinase 
A. J. Biol. Chem. 2010, 285, 3825-3832. 

(50) Scheeff, E. D.; Bourne, P. E. Structural evolution of the protein kinase-like superfamily. 
PLoS Comput. Biol. 2005, 1, e49. 

(51) Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the "gatekeeper door": 
exploiting the active kinase conformation. J. Med. Chem. 2010, 53, 2681-2694. 

(52) Palermo, N. Y.; Natarajan, A. Beyond the frog: the evolution of homology models of 
human IKKbeta. Bioorg. Med. Chem. Lett. 2011, 21, 6081-6084. 

(53) Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235-242. 

(54) Chemical Computing Group Inc. Molecular Operating Environment (MOE), 2011.10. 
2011, . 

(55) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential 
(RESP) model perform in calculating conformational energies of organic and biological 
molecules? J. Comput. Chem. 2000, 21, 1049-1074. 

(56) Ponder, J. W.; Case, D. A. Force fields for protein simulations. Adv. Protein Chem. 
2003, 66, 27-85. 



61 
 

(57) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An overview of the Amber 
biomolecular simulation package. Wiley Interdiscip.  Rev. Comput. Mol. Sci. 2013, 3, 
198-210. 

(58) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, 
A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber biomolecular simulation 
programs. J. Comput. Chem. 2005, 26, 1668-1688. 

(59) Soga, S.; Shirai, H.; Kobori, M.; Hirayama, N. Use of amino acid composition to 
predict ligand-binding sites. J. Chem. Inf. Model. 2007, 47, 400-406. 

(60) Durand, E.; Derrez, E.; Audoly, G.; Spinelli, S.; Ortiz-Lombardia, M.; Raoult, D.; 
Cascales, E.; Cambillau, C. Crystal structure of the VgrG1 actin cross-linking domain 
of the Vibrio cholerae type VI secretion system. J. Biol. Chem. 2012, 287, 38190-
38199. 

(61) Meagher, K. L.; Redman, L. T.; Carlson, H. A. Development of polyphosphate 
parameters for use with the AMBER force field. J. Comput. Chem. 2003, 24, 1016-
1025. 

(62) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and 
testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-1174. 

(63) Homeyer, N.; Horn, A. H.; Lanig, H.; Sticht, H. AMBER force-field parameters for 
phosphorylated amino acids in different protonation states: phosphoserine, 
phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model. 2006, 12, 
281-289. 

(64) Kenzaki, H.; Koga, N.; Hori, N.; Kanada, R.; Li, W.; Okazaki, K.; Yao, X.; Takada, S. 
CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. 
J. Chem. Theory Comput. 2011, 7, 1979-1989. 

(65) Joung, I. S.; Cheatham, T. E. Determination of Alkali and Halide Monovalent Ion 
Parameters for Use in Explicitly Solvated Biomolecular Simulations. J.  Phys. Chem. B 
2008, 112, 9020-9041. 

(66) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair 
potentials. J. Phys. Chem. 1987, 91, 6269-6271. 

(67) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. 
Comparison of multiple Amber force fields and development of improved protein 
backbone parameters. Proteins 2006, 65, 712-725. 

(68) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, 
E. C.; Ferrin, T. E. UCSF Chimera--a visualization system for exploratory research and 
analysis. J. Comput. Chem. 2004, 25, 1605-1612. 



62 
 

(69) Prall, M. VMD: a graphical tool for the modern chemists. J. Comput. Chem. 2001, 22, 
132-134. 

(70) Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. 
MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. 
Theory Comput. 2012, 8, 3314-3321. 

(71) Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Pairwise solute descreening of solute 
charges from a dielectric medium. Chem.  Phys.  Lett. 1995, 246, 122-129. 

(72) Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Parametrized Models of Aqueous Free 
Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a 
Dielectric Medium. J. Phys. Chem. 1996, 100, 19824-19839. 

(73) Tsui, V.; Case, D. A. Theory and applications of the generalized born solvation model 
in macromolecular simulations. Biopolymers 2000, 56, 275-291. 

(74) Onufriev, A.; Bashford, D.; Case, D. A. Exploring protein native states and large-scale 
conformational changes with a modified Generalized Born model. Proteins: Struct., 
Funct., Bioinf. 2004, 55, 383-394. 

(75) Massova, I.; Kollman, P. A. Combined molecular mechanical and continuum solvent 
approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discovery Des. 
2000, 18, 113-135. 

(76) Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline 
state. J. Mol. Biol. 2007, 372, 774-797. 

(77) Krissinel, E. Crystal contacts as nature's docking solutions. J. Comput. Chem. 2010, 31, 
133-143. 

(78) Mandal, S.; Moudgil, M.; Mandal, S. K. Rational drug design. Eur. J. Pharmacol. 2009, 
625, 90-100. 

(79) Durrant, J. D.; McCammon, J. A. Molecular dynamics simulations and drug discovery. 
BMC Biol. 2011, 9, 71-7007-9-71. 

(80) Borhani, D. W.; Shaw, D. E. The future of molecular dynamics simulations in drug 
discovery. J. Comput.-Aided Mol. Des. 2012, 26, 15-26. 

(81) Hao, G. F.; Yang, G. F.; Zhan, C. G. Structure-based methods for predicting target 
mutation-induced drug resistance and rational drug design to overcome the problem. 
Drug Discovery Today 2012, 17, 1121-1126. 

(82) Chodera, J. D.; Mobley, D. L.; Shirts, M. R.; Dixon, R. W.; Branson, K.; Pande, V. S. 
Alchemical free energy methods for drug discovery: progress and challenges. Curr. 
Opin. Struct. Biol. 2011, 21, 150-160. 



63 
 

(83) Mobley, D. L.; Chodera, J. D.; Dill, K. A. The Confine-and-Release Method: Obtaining 
Correct Binding Free Energies in the Presence of Protein Conformational Change. 
J. Chem. Theory Comput. 2007, 3, 1231-1235. 

(84) Tozzini, V. Minimalist models for proteins: a comparative analysis. Q. Rev. Biophys. 
2010, 43, 333-371. 

(85) Kamerlin, S. C. L.; Vicatos, S.; Dryga, A.; Warshel, A. Coarse-Grained (Multiscale) 
Simulations in Studies of Biophysical and Chemical Systems. Annu. Rev. Phys. Chem. 
2011, 62, 41-64. 

(86) Li, F.; Gangal, M.; Juliano, C.; Gorfain, E.; Taylor, S. S.; Johnson, D. A. Evidence for 
an internal entropy contribution to phosphoryl transfer: a study of domain closure, 
backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase. J. Mol. 
Biol. 2002, 315, 459-469. 

(87) Li, F.; Gangal, M.; Jones, J. M.; Deich, J.; Lovett, K. E.; Taylor, S. S.; Johnson, D. A. 
Consequences of cAMP and catalytic-subunit binding on the flexibility of the A-kinase 
regulatory subunit. Biochemistry 2000, 39, 15626-15632. 

(88) Polley, S.; Huang, D.; Hauenstein, A. V.; Fusco, A. J.; Zhong, X.; Vu, D.; 
Schroefelbauer, B.; Kim, Y.; Hoffmann, A.; Verma, I. M.; Ghosh, G.; Huxford, T. A 
structural basis for IkB Kinase 2 Activation via oligomerization dependent trans auto-
phosphorylation. PLoS Biol. 2013, 11, 1-13. 

(89) Liu, S.; Misquitta, Y. R.; Olland, A.; Johnson, M. A.; Kelleher, K. S.; Kriz, R.; Lin, L. 
L.; Stahl, M.; Mosyak, L. Crystal Structure of a Human IkappaB Kinase beta 
Asymmetric Dimer. J. Biol. Chem. 2013, 288, 22758-22767. 



64 
 

CHAPTER 4 Impact of Intracellular Ionic Strength on Dimer Binding in the NF-kB 

Inducing Kinase 

 
 
4.1 Introduction 

Understanding the signaling pathways associated with the onset and progression of 

oncogenesis has been a target of many diverse disciplines. Much emphasis has been placed on 

elucidating the nuclear factor (NF)-κB signaling pathway since aberrations within this pathway 

are associated with many different kinds of immune responses.1–3 Sequestered in an inactive state 

in the cytoplasm by its inhibitory subunits (IκBα, IκBβ, and IκBε), the NF-κB pathway includes a 

family of five transcription factors, NF-κB1 (p50 and p105), NF-κB2 (p52 and p100), RelA (p65), 

RelB, and c-Rel.4–7 These transcription factors are assembled into operational-specific and 

functional-specific dimers. The dimers include both heteroligomers and homoligomers that, 

depending upon the conformational and oligomeric architecture, can either induce or repress gene 

regulation and expression.8–12 These transcription factors differ on how and where they bind to 

DNA and different combinations lead to different specificities of gene expression.9 As a central 

activator of genes involved in inflammation and immune function, the NF-κB family represents a 

vital signaling cascade that must be further analyzed to prevent dysregulations in gene expression.    

Although there are many ways in which NF-κB activation can be triggered, the release of 

the NF-κB dimers are regulated by two main pathways.13 In the classical, or canonical, pathway, 

the rate-limiting step of the signaling mechanism is the signal-induced degradation of the IκBs, 

which happens upon the activation of the catalytic subunits of the IκB kinase (IKK) complex. 

Comprised of two homologous catalytic subunits, IKKα and IKKβ, and a regulatory subunit IKKγ, 

activated enzymes of the IKK complex phosphorylate IκB, leading to the selective release of the 
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NF-κB dimers. These NF-κB dimers translocate to the nucleus to regulate gene expression. The 

signaling cascades that result from the activation of IKKβ regulate the classical pathway by 

targeting NF-κB1. In contrast, the alternative, or non-canonical, pathway is dependent upon the 

activation of the NF-κB Inducing Kinase (NIK), an upstream kinase that selectively 

phosphorylates IKKα, which activates NF-κB2.14–17 Although some studies have suggested that 

NIK serves specific functions in the classical pathway, as the critical component of the non-

canonical pathway, NIK serves a promising target for the treatment of autoimmune disorders and 

cancers. 18–22 

The human sequence of NIK, composed of 947 amino acids, is comprised of an N-terminal 

domain that binds to TRAF3 (30–120), a negative regulatory domain (121–318), a kinase domain 

(390–660), and a non-catalytic C-terminus (661-947).23 The negative regulatory domain contains 

two structural motifs, a basic region (127-147)—similar to that of a leucine zipper—and a proline-

rich repeat sequence (250-317). The two regions of the negative regulatory domain have been 

shown to control the signaling function of NIK as deletions of either motif greatly enhances the 

NF-ΚB inducing activity of NIK.24 The C-terminal region is responsible for the signaling function 

of NIK and is critical for its recognition of other proteins within the pathway, including IKKα and 

NF-κB2. As a member of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) 

family, NIK contains the conserved DFG-APE motif (534-566) shared among serine/threonine 

kinases. Kinases in this family typically are activated via phosphorylation of serines or threonines 

homologous to Ser549, Thr552, and Thr559 in NIK. 

Previous structural and biochemical studies investigating the regulation of NIK have drawn 

interest into understanding how NIK maintains its structural integrity for its function.25 A crystal 

structure of truncated NIK, encompassing residues 330-679, was shown to retain catalytic 
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activity.23 However, unlike other kinase domains, this catalytically competent conformation is 

maintained by an N-terminal extension prior to the kinase domain rather than through a 

phosphorylation event. Mutations that mimic the state of being phosphorylated, termed 

phosphomimetic mutations, including S549D, T552E/E, and T559D/E, were considered, however, 

it was determined that the activity of the mutants was similar to that of the wild-type (WT).26 The 

crystal structure contained two molecules of NIK in an asymmetric arrangement that formed a 

head-to tail homodimer with a buried solvent-accessible surface area between the interface of 2900 

Å2. 

 Additional studies were carried out to further investigate whether the observed dimer 

arrangement represented the actual dimer interface or a nonspecific crystallographic artifact. 

Chromatographic analyses indicated that the protein in solution formed both monomers and 

dimers. While the full NIK protein is known to be an oligomer, what the dimeric arrangement of 

the crystal corresponds to remains elusive.25 It has been demonstrated that dimerization, along with 

other oligomeric arrangements, is significant among many protein kinases as the oligomeric state 

represents a specific functional state that couples with local conformational changes within a 

protomer, as small as local sidechain or segment movements to larger domain movements, that 

dictate how the protein interacts with other biomolecules.27–29  

The active site of NIK has been characterized as having structural features that resemble a 

catalytically active conformation similar to other Ser/Thr kinases in the active state.23,26,30–32 Small 

molecule binding sites in NIK have been identified in crystallographic studies. The nucleotide 

binding mode has been shown to be consistent with that of protein kinases that undergo 

phosphorylation in the activation segment, including the cyclic AMP-dependent kinase.26,33 

Several inhibitors have been identified to bind within the catalytic segment. Despite the diversity 
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of the compounds in regards to the structure and activity properties, the compounds have a similar 

scaffold that relates to the purine base of ATP, containing a nitrogen heterocycle that binds near 

the hinge region between the N and C lobes and interacts with the backbone of Leu471, Leu472, 

and Glu470. The crystal structure of the truncated NIK oligomer shows that the activation segment 

of one subunit interacts with the N-terminal extension of the other. In this structure, each subunit 

is crystallized with ATP-γ-S in the activation segment, however, the conformation of the oligomer 

interface may hinder the binding of other substrates. 

Previous work investigating the conformational-activity and structure-activity 

relationships of IKKβ identified that protein-protein complexes crystallized with surface mutations 

or phosphomimetic mutations do not always represent the true conformational state and that 

dynamics are essential.34 Additionally, it was demonstrated that through the use of molecular 

simulation and by introducing mutations and the binding of small molecules to the crystal 

structure, allosteric responses could be observed on both a local and a global scale. As the function 

of a protein is determined by its structure, which is impacted by the surrounding environment, the 

activity of proteins is extremely sensitive to changes in the environment. Specifically, changes in 

the intracellular temperature, pressure, pH, and ionic strength can all affect the structure and 

function of proteins.35–40 The aforementioned conditions can also influence crystal growth as 

oligomerizing may be significant for crystallization.  Since the activity of a protein is measured by 

its ability to effectively bind and communicate with other molecules, it is essential to understand 

the environmental sensitivity of the protein recognition of other molecules involved in abnormal 

signal transduction mechanisms. Previous studies have observed that cancerous cells, relative to 

normal cells, have different acidic environments and intracellular ionic compositions 41–44, 
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however, how this directly impacts protein interactions with other molecules within the signaling 

cascade have not been investigated.  

In this work, computer simulation and modeling techniques are employed to investigate 

the crystallographic arrangement corresponds to a stable dimer and offer additional insight into 

how the structure-function properties of NIK are dependent upon the intracellular 

microenvironment and contribute to the its stabilization. By investigating both the inactive and 

active states of NIK in conjunction with different intracellular ionic strengths, the assessment of 

the protein-protein interactions provide further resolution of the oligomeric properties of the 

truncated construct and explicitly highlight the role of the microenvironment in the maintenance 

of the active conformational states of NIK. The inactive state of NIK, also referred to as the wild-

type (WT) system, is compared to an active state of NIK which has a phosphomimetic mutation 

on Ser549 (S549D). Furthermore, to evaluate the impact of the environment on NIK’s structure, 

100 mM of sodium chloride was added to both the inactive and active states, represented as WT 

[Na+] and S549D [Na+] systems, respectively, and compared to the neutralized systems with 0 

mM sodium chloride.  

4.2 Material and Methods 

The crystal structure of NIK, determined with two phosphomimetic mutant (S549D) 

molecules, was obtained from the Protein Data Bank (PDB ID: 4DN5)26 and prepared using 

Molecular Operating Environment 45 (MOE). Unresolved bonds and atoms were added using MOE 

and minimized under the Amber99 force field. Mutations were introduced to model both the 

inactive (wild-type) state and active state, via S549D phosphomimetic mutations. Both models of 

the inactive and active states were neutralized with 8 Na+ ions and solvated in 14 Å of TIP4P-Ew46 

water beyond the solute in a cuboid box, resulting in an addition of 27560 water molecules. From 
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these, two additional models were created by solvating with 100 mM of sodium chloride by adding 

136 molecules of NaCl (68 of each ion). 

 The energy of each solvated system was minimized holding a harmonic restraint on the 

protein of 500, 200, and 20 kcal/mol-A2, using 500 steepest descent steps and 500 conjugate 

gradient steps per harmonic restraint and a non-bond cutoff of 10 Å, followed by 50 ps of NPT 

MD with a 20 kcal/mol-A2 restraint. Subsequently, the energy of each system was further 

minimized under decreasing restraints on the protein of 10, 5, and 0 kcal/mol using 250 steepest 

descent steps and 250 conjugate gradient steps. After the energy minimization, the systems were 

heated gradually to 300K over 50 ps, followed by 1 ns of NPT MD simulation. Four independent 

simulations were performed for 215 ns at 300K using AMBER 1447 in the presence of 0 mM and 

100 mM of sodium chloride and under the Amber99SB48 force field. The temperature was 

controlled using Langevin dynamics with a collision frequency of 1 ps-1. The Berendsen barostat 

was used with isotropic position scaling with a pressure relaxation time of 2 ps to maintain the 

pressure at 1 bar. 

 Trajectory analysis was performed using AmberTools and visualized with VMD49. 

Thermodynamic parameters and root mean-squared deviations (RMSDs) from the starting 

structure were performed using the CPPTRAJ module50 of AmberTools. Hydrogen bonding 

analysis was performed with the CPPTRAJ module of AmberTools, where a hydrogen bond was 

defined by a cutoff distance of 3.5 Å and a donor-hydrogen-acceptor angle of 180º±60º. Free 

energy calculations were carried out using MMPBSA.py.51 The electrostatic solvation energies 

were calculated for every ps using three GB models: the pairwise GB models of Hawkins and co-

workers52–54 (HCT) and two modified models developed by Onufriev and coworkers55 (OBC1 and 

OBC2), setting the dielectric constants to 1 and 80 for the molecule and the solvent, respectively. 
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Since only relative free energy trends were of interest, solute entropy was neglected. The PISA 

(Protein Interfaces, Surfaces, and Assemblies) software was used on static structures of the initial 

crystal structure and the final frames of the four independent simulations to calculate properties of 

the macromolecular interface.56 

4.3 Results and Discussion 

To assess the stability of the simulation, thermodynamic parameters are extracted from the 

trajectories and plotted as a function of time (Table 4.1). Analysis of the thermodynamic 

parameters shows that the total energy, temperature, and density fluctuated around a common 

value, reflecting that the simulations are stable under the isobaric-isothermal ensemble and that 

the properties investigated have physical significance.  

 
Table 4.1 Average thermodynamic parameters from simulations. 

 
 
 
 
 

 

4.3.1 Structural Fluctuation 

Local side-chain dynamics are structurally significant as they often couple with larger 

conformational dynamics and are central for understanding correlations between protein-function. 

The flexibility of NIK was observed by measuring the RMSD to compare its deviations from both 

the starting structure and the average structure. As shown in Figure 4.1, the RMSD of WT [Na+] 

generally deviated less than the WT, but the mutant S549D [Na+] deviated more than the S549D. 

This indicates that the introduction of the mutation increases the sensitivity of the protein to solvent 

ions. The fluctuations of the neutral WT and the S549D converged and stabilized early in the 

 Density (g/mL) Total Energy (kcal/mol) Temperature (K) 
WT 1.032 ± 0.001 -264465.5 ± 352.6 300.01 ± 0.96 
WT [Na+] 1.038 ± 0.001 -276116.7 ± 351.1 300.01 ± 0.96 
S549D 1.033 ± 0.001 -267543.1 ± 343.2 300.01 ± 0.97 
S549D [Na+] 1.038 ± 0.001 -279172.3 ± 354.4 300.01 ± 0.96 
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simulation in which the mutant deviated less than the WT; however, the addition of the ion buffer 

perturbed this relationship. By comparing the neutral systems with the [Na+] systems, it is clear 

that the presence of the [Na+] buffer stabilizes the WT more than the mutant. To further 

characterize these motions, the root mean-squared fluctuation (RMSF) was measured to identify 

whether the deviations were consistent across the full structure. The RMSF plot indicates that the 

N-terminal segment and part of the kinase domain (Val338 to Ala438) is stabilized throughout the 

simulation, whereas the activation loop and the C-terminal (Ser581 to Pro675) are more dynamic 

regions (Figure 4.2). Both systems containing [Na+] resulted in significantly lower deviations, 

suggesting that [Na+] maintains an accessible area for catalytic activity. The results show that the 

presence of the ionic environment results in a reduced flexibility of the NIK structure, which may 

potentially mediate its catalytic activity. As discussed earlier, the C-terminal plays a role in 

controlling the signaling function of NIK while the N-terminal maintains its catalytically 

competent conformation; here the results agree. 
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Figure 4.1 Root mean square deviations (RMSDs) obtained from the 215 ns simulation.   
(A) The RMSDs were calculated from the starting structure of the inactive (WT) and 
phosphomimetic mutant (S549D) states in a neutral solution (color coded in blue and green, 
respectively) and a 100 mM NaCl solution ([Na+]; color coded in red and purple, 
respectively). For comparison, plots B and C highlight the trends between the inactive and 
the active states, whereas the impact of the ionic environment is highlighted in plots D and 
E. The darker colored lines represent the moving average per 100 frames. 
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4.3.2 Changes in Solvent Accessibility 

Driving forces that promote the functional and dysfunctional association or dissociation of 

proteins can be measured by physicochemical properties.57–59 In particular, the solvent accessible 

surface area is useful for detecting and analyzing changes in the protein conformation induced as 

a result of point-mutations, ligand binding as well the binding of other proteins. 60 The structure 

of the NIK protein was crystallized with two molecules related by a 2-fold symmetry, which is a 

common point group symmetry observed in biological homodimers.61,62 Together, the two 

molecules had a surface area of 29656 Å2 in which 2932 Å2 is buried between the two units (Table 

4.2) However, this was based on a static structure that was crystalized with magnesium, g-ATP, 

and crystallizing agents.  
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Figure 4.2 Root mean square fluctuations (RMSF) of each protomer of NIK. The RMSFs over 
the 215 ns were calculated per residue for each protomer (332-675) for the modeled inactive 
states, WT and WT [Na+] (represented in blue and red, respectively), and active states, S549D 
and S549D [Na+] (represented in green and purple, respectively). 
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Table 4.2 Summary of the dimer interface of NIK. 

Modelab 
Surface Area 

(Å2) 
Buried Area 

(Å2) 
ΔGint 

(kcal/mol) 
ΔGdiss 

(kcal/mol) 
TΔSdiss 

(kcal/mol) 
4DN5a   29656.2    2931.8    -4.9    3.9    13.9  
WT    29509.2    3692.0    -5.2    3.5    13.8  
WT [Na+]    30740.6    2894.5    -8.9    2.8    14.1  
S549D    33479.4    492.8    -1.6    -11.2    13.2  
S549D [Na+]    31878.6    2829.6    1.8    -4.5    13.8  

a The crystal structure of the NIK dimer. 
b Predictions of the structural and chemical properties correspond to the last trajectory (215 ns). 
The free energy of formation (ΔGint) and free energy of dissociation (ΔGdiss) are reported in 
kcal/mol. 

 

Using a static image from the last frame of simulation, the changes in the total and buried 

surface area of the four models are summarized in Table 4.2. Looking at the changes between the 

crystal structure and WT, the change in the surface area is small (-147 Å2), however the change in 

the buried surface area increases by 760 Å2. This is interesting because the crystal structure 

corresponds to a phosphomimic state of NIK, as reflected by S549D, which the surface area 

increases by 3823 Å2 and the buried surface area decreases by 2439 Å2 (meaning that the unit is 

dissociating/associating).  

For the models that include an ionic strength relative to the crystal structure, the surface area 

of WT [Na+] and S549D [Na+] increases by 1084 Å2 and 2222 Å2, respectively, and buried surface 

area decreases at by 37 Å2 and 102 Å2, respectively, suggesting that the presence of ions may have 

an explicit role in stabilizing or destabilizing interactions between the dimer interface. Comparing 

the changes between systems with and without an ion buffer, the change in the surface area of WT 

to WT [Na+] increases by 1231 Å2 and the buried surface area decreases by 798 Å2. In contrast, 

for the phosphomimic mutant model, the surface area decreases by 1601 Å2 (from S549D to S549D 

[Na+]) and the buried surface area increases by 2337 Å2, which means that the dimer interface 

becomes more exposed. 
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 By analyzing the dynamic changes of a reference protein structure, a mutant or modified 

state can be examined in the absence of a corresponding experimentally resolved structure to 

observe how the reference system responds to changes. To characterize the effect of the ionic 

composition on the dimerization, the accessible surface area (ASA) was measured to determine if 

either the phosphomimetic mutation or the ionic strength induced conformational changes that 

expose the dimer to more solvent (Figure 4.3). The neutral WT and S549D have an average ASA 

of 28359±450 and 29481±390 Å2, respectively, and a greater average ASA of 28840±511 and 

29912±591 Å2, respectively, for the [Na+] systems. After 8 ns, the ASA for both states fluctuate 

around a common value, in which the ASA of S549D is nearly 3000 Å2 greater than the WT. In 

contrast, the ASA for the [Na+] systems increases consistently, in which the S549D [Na+] is 

around 2000 Å2 greater than the WT [Na+]. Comparing each state with and without the presence 

of an ion buffer, the trends in the ASA diverge with separations from 1000-3000 Å2 for the WT 

and 1000-2000 Å2 for the S549D model after 6 ns. These trends indicate that the S549D 

phosphomimetic mutation induces conformational changes that make the NIK dimer more exposed 

to solvent and that the presence of the ion buffer impacts the structure more than the mutation 

alone. 

4.3.3 Hydrogen-Bonding Analysis/Dimer vs Monomer  

Structural-based chromatographic spectroscopy and spectrometry studies were used to 

determine whether the two asymmetric molecules resolved in the crystal structure of the truncated 

NIK protein are representative of the homodimer as expressed in the full-length protein or a 

crystallographic artifact. 26 However, the oligomeric arrangement was unable to be resolved as it 

was determined that NIK in solution is both monomeric and dimeric. To quantify the gain or loss 

of interactions between the dimer interface upon mutation, a hydrogen bond analysis was 
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performed. As illustrated in Table 4.3, upon the activation of NIK, hydrogen bonding interactions 

between the dimer interface decrease in comparison to the WT. Interestingly, three strong 

hydrogen bond donor-acceptor pairs, (Phe436-Arg368; Glu434-Ser367; Val435-Arg368), were 

identified in the neutral WT that were not observed in the other models. Furthermore, the loss of 

Thre559, NIK’s phosphorylation site, as an acceptor of Lys373 in both [Na+] systems shows that 

the presence of sodium alters the phosphorylation activity of NIK. The results suggest that the 

presence of the sodium buffer alters hydrogen bonding networks. Regarding the dimerization, the 

trends indicate that the crystallized structure of NIK may resemble the homodimer.  

 
Table 4.3 Hydrogen bonding analysis of the NIK dimer interface.a 

Y  
(Unit A) 

X-H 
(Unit B) WT 

WT 
[Na+] S549D 

S549D 
[Na+] 

Ser371 Glu560 81% 80% 75% 97% 
Gly558 Ser371 77% 66% 67% 72% 
Thr561 Lys373 54% 3% 19% 7% 
Ser371 Thr559 39% 47% 36% 47% 
Glu395 Arg408 38% 8% 30% 14% 
Thr561 Pro372 34% - 7% 3% 
Arg432 Phe411 32% 23% 35% 8% 
Glu461 Arg408 30% 36% 18% 19% 
Trp464 Gly412 29% 9% 14% 18% 
Ser410 Arg432 27% 43% 11% 42% 
Glu395 Arg405 25% 14% 18% 47% 
Asp554 Arg368 23% - 12% 49% 
Gly412 Trp464 19% 14% 24% 3% 
Glu396 Arg405 19% 25% 20% 14% 
Pro370 Pro557 16% 22% 29% 11% 
Pro370 Met563 15% 3% 9% 1% 
Asp519 Lys373 15% - 7% - 
Glu413 Lys430 14% 6% 12% 5% 
Hie402 Gln403 11% 6% 0% 9% 
Pro370 Val568 11% - 8% - 
Glu560 Pro370 10% 12% 7% 11% 
Gly558 Pro370 10% 2% 18% 2% 
Arg408 Glu461 10% 1% 1% - 
Asn466 Arg408 10% - - - 
Leu551 Arg368 - - - 51% 
Gln403 Gln403 2% 3% 2% 40% 
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Table 4.3 (cont’d) 
 
a The hydrogen bond acceptor (Y) and donor (X-H) pairs observed from the simulations are 
denoted by percent occupations. 
 
4.3.4 Aggregation Propensity Sensitive to Ion Buffer 

To characterize the aggregation propensity of the two dimer states, the radius of gyration 

was measured to differentiate the effects caused by the ionic strength versus the mutation (Figure 

4.4). Relative to the respective neutral systems, the presence of the ionic buffer in the WT and 

S549D marginally enhances the rate of the dimer dissociation. For the neutral systems, the radius 

of gyration plateaus after 8 ns indicating that the dissociation of the dimer is less dependent upon 

the mutation and that the oligomerization is sensitive to the ionic strength. There are several 

exposed cavities between the dimer interface in which solvent molecules are occupied for the 

duration of the simulation (Figure 4.5). It should be noted that the presence of sodium ions within 

these hydrated cavities was observed.  

 

Figure 4.3 Solvent residing between the dimer interface. 
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Figure 4.4 Changes in the compactness of the crystal structure. 

 

4.3.5 Comparisons Between the Dimer Binding Energies 

To estimate the effects of the ionic strength in terms of the energetic property between the 

inactive and active state, the relative binding free energies were evaluated (Table 4.4; Figure 4.5). 

Using the pairwise screening approach (HCT), relative to the WT, the binding free energy of the 

S549D decreases. The presence of ions enhances the association and dissociation of the WT and 

S549D, respectively. The electrostatic component of the binding free energy is sensitive to input 

parameters involved within the calculation—including the internal dielectric constant, the probe 

radius, and the force field—and can lead to unreliable absolute free energy predictions. For this 

only relative binding free energetics are considered. In order to evaluate the consistency of the 

trends between the active and inactive states, additional free energy GB solvation models, 

including the OBCn and GBn models, were used to calculate the dimer binding free energies; in 

all cases the trends held.  
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Figure 4.5 Binding free energy trends with the HCT and OBC Generalized Born models. 

 

Table 4.4 Binding free energies of the NIK dimer.a 

Model HCT OBC1 OBC2 
WT -126.8 -80.9 -75.2 
WT [Na+] -118.1 -76.1 -71.2 
S549D -126.1 -76.3 -68.5 
S549D [Na+] -134.4 -81.0 -75.0 

a All units are reported in kcal/mol. 
 

4.4 Conclusions 

The structure of a protein determines the binding ability and specificity of small molecules 

and other proteins. Disruptions that cause changes in the native structure of NIK usually serve as 

the basis for mutations and incorrect gene expressions that lead to diseases and cancers. Changes 

in the intracellular compositions of healthy cells are a potential factor for disrupting protein 

structure. The results in this study indicate that an increase in [Na+] tends to further aid in the 



80 
 

stabilization of the inactive state of NIK and the destabilization of active state. This implies that 

increases in sodium concentration in cells can actually disrupt protein structure and lead to 

mutations and diseases. This claim is also supported by studies that indicate that there is a 

considerable increase in the sodium in many tumor cells43, which is most likely through sustained 

depolarization of their cell membranes and high mitotic activity of the cancer cells. These shifts in 

ionic concentrations within the cells may change the environment in which proteins such as NIK 

function. These could lead to changes in the function of the protein and the onset of cancer. 

This computational study was conducted to determine structure-function properties of the 

NIK protein. NIK is of interest due to its important role in the NF-kB pathway, a pathway that 

regulates many inflammatory and autoimmune processes. The results show a homodimeric 

structure with sensitivity towards ionic presence. Furthermore, the introduction of the 

phosphomimetic mutation on the 549th residue significantly impacted the behavior and 

subsequently the function of NIK. The S549D mutation induces conformational changes that make 

the NIK dimer more exposed to solvent. The increase in solvent-accessibility due to the mutation 

also serves to make NIK even more sensitive to an ionic presence. The addition of the ions then 

causes the structural flexibility of NIK to increase. These changes brought on by the ionic 

sensitivity of NIK then cause structural fluctuations, specifically in the C-terminal and N-terminal 

regions. These fluctuations in structure then result in changes in kinase domain, allowing for the 

surrounding residues to acclimate in order to allow NIK to maintain the active conformation. This 

is further supported in that the presence of the sodium buffer alters hydrogen bonding networks 

and results in changes in the bonding patterns. Together, these results provide further insight on 

how NIK maintains an active conformation.   
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CHAPTER 5 Selectivity in ROS-Induced Peptide Backbone Bond Cleavage2 
 
 

5.1 Introduction 

Radical-mediated modifications to lipids, proteins, and nucleic acids have been identified 

to influence the progression of diseases, including degenerative disorders, cancers, diabetes as well 

as aging.1-10 Damaged nucleic acids and lipids have specific repair mechanisms; however, 

damaged proteins are usually marked for degradation. The removal pathways for defective proteins 

are not always efficient and can lead to accumulations that interfere with cellular functions.11 

Irreversible backbone and side chain oxidations can occur as a result of exposure to different types 

of radical species, including reactive oxygen species (ROS), reactive nitrogen species (RNS), and 

species generated from the radiolysis of water.12,13  Production of ROS in organisms occurs 

naturally resulting from cell metabolism under normal physiological conditions and can be 

enriched in alternative environments induced by stress.14-19  

Although many external sources of ROS exist, ROS can be produced in excess by 

numerous physiological processes.2,14 Normally, the prooxidative activity is balanced with 

antioxidative defense mechanisms.14,20,21 Imbalances induced from excessive ROS result in 

damaged proteins and other biomolecules necessary for maintaining healthy human physiological 

functions. Two hypotheses suggest why amyloid deposits come into existence after this damage 

occurs: the amyloid cascade hypothesis and an alternative hypothesis.22,23 In the amyloid cascade 

hypothesis, β-amyloid is viewed as the cause of neurodegeneration, whereas, in the alternative 

hypothesis, β-amyloid is the body’s defense mechanism against imbalanced stress. One example 

                                                 
2 This chapter is presented in its entirety from: Stringfellow, H. M.; Jones, M. R.; Green, M. C.; Wilson, A. K.; 
Francisco, J. S. Selectivity in ROS-Induced Peptide Backbone Bond Cleavage. J. Phys. Chem. A 2014, 118 (48), 
11399–11404. 
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of excess ROS production occurs in dysfunctional or defective complex III of the mitochondrial 

electron transport chain.24-29 In humans, neuronal cells secrete extracellular proteins in misfolded 

agglomerations (a structure termed β-amyloid) which function as an extracellular shield against 

more deleterious lipid oxidation capable of damaging vital cellular membranes.18-20,30  The initial 

deposits of β-amyloids incite a positive feedback mechanism that increases β-amyloid 

production.31  Higher concentrations of β-amyloid in the brain could result in the dysfunction of 

neuronal cells, leading to neurodegeneration and dementia that eventually lead to an Alzheimer's 

diagnosis.3,32-35 A generic β-amyloid structure contains multiple β-pleated sheet motifs that 

contribute to its structural stability.36-39 These β-pleated sheets consist of straight “β-strand” 

components connected by random coils (“β-turn” structures)  that are positioned in either parallel 

or antiparallel orientations to each other.40 

All protein side chains are vulnerable towards oxidation; however, each side chain 

contributes to a different reactivity with ROS. For example, amino acids containing sulfurs are 

defenseless towards oxidation, in which cysteines and methionines are amended to disulfides and 

sulfoxide derivatives, respectively.2,3,41 Protein backbones can be oxidized directly by ROS as well 

as by internal free-radical transfers42 and are known to undergo fragmentation upon oxidation. 

Berlett and Stadtman suggested that proteins undergo oxidation upon attack by ROS generated by 

Fenton catalysis.2,4  Superoxide radicals attack the protein deposits at the α-carbon sites to form 

alkoxyl radicals (Figure 5.1) that further endure fragmentation via two pathways in which 

complete and terminated oxidation of the protein can occur. In the diamide pathway (Pathway 

[A]), the carbon-carbon bond of the peptide backbone (i) can undergo homolytic cleavage to 

produce a diamide (ii) and an isocyanate radical (iii), which then undergoes termination to form 

an isocyanate (iv). Alternatively in the α-amidation pathway (Pathway [B]), the carbon-nitrogen 
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bond encompassing the α-carbon site of radicalization can undergo homolytic cleavage to produce 

an N-α-ketoacyl derivative (v) and an amide radical, which terminates via the addition of peroxyl 

radical to form an amide (vii). The present study focuses on the selectivity of these two pathways 

that bifurcate from the formation of the alkoxyl radical at each α-carbon site and also examines the 

selectivity of each potential radicalization site. 

 
Figure 5.1 Proposed reaction pathways. The diamide (pathway [A]) and α-amidation (pathway 
[B]) pathways were modeled in this study. The different sites of radicalization C1, C2, and C3 
represent Cα1, Cα2 and Cα3, respectively. 

 
 Quantum mechanics and molecular mechanics have provided insight about general peptide 

structures. Most investigations of small peptides focus on the folding and misfolding mechanisms 

rather than on structural disruptions.43-48 A challenge for ab initio modeling of peptides is to 

simulate all of the appropriate features of a generic peptide without allowing size limitations to 

alter any of those intrinsic characteristics. As the molecule size directly affects the computational 

expense of first principles calculations, it is important to maintain balances among the molecular 
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modeling options without affecting relevant chemical features of the peptide. Ab initio works by 

Francisco and co-workers show that the α-carbon site is the preferred site of radical attack in a 

capped tripeptide model.49,50 The 42 atom capped tripeptide model is an appropriate molecular size 

for ab inito methods given the computational cost of the methods chosen. Previously, it has been 

demonstrated that capping the ends of smaller peptide structures is important to avoid introducing 

additional ionic influences into the energies of neutral peptide systems modeled quantum 

mechanically.46,51,52 In terms of side-chains, peptide models of trialanine structures have been 

shown to replicate the β-turn features of the β-pleated sheet;45 larger side-chain functional groups, 

however, have the potential to produce steric hindrance that limits radical formation. Although 

glycine residues have been observed to be less reactive than alanine, they have also been found to 

undergo intramolecular α-hydrogen abstraction reactions, introducing additional charge onto the 

peptide structure.53-55 

In this study, pathways [A] and [B] were modeled to determine the effects of ROS attack 

at N-terminal, internal, and C-terminal carbon sites. Two models representing a β-strand and a β-

turn (both important motifs of the β-amyloid fibril) were compared for each pathway to elucidate 

potential site preference for backbone bond cleavage. The results of these calculations suggest a 

thermodynamic preference for pathway [A]. The impact of method and basis set choice on the 

energetics of the system were also investigated. 

5.2 Methodology  

The model system was constructed of 42 atoms to mimic a peptide backbone composed of 

three α-carbon sites (Figure 5.2). In each model of the parent strand, one α-carbon was radicalized 

via the substitution of an alkoxyl radical in place of a hydrogen at each site, as per the Berlett and 

Stadtman mechanism.2 The model features N-terminal, C-terminal, and internal α-carbon sites. 
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Methyl caps on both sides of the peptide minimize possible steric, charge, and α-hydrogen transfer 

effects. Alanine residues eliminate the possibility of side chain interactions. Both β-strand and β-

turn structural conformations are modeled to provide insight into possible site preference for 

backbone cleavage within a secondary structure. In the model system, all equilibrium geometries 

were optimized using second order Møller-Plesset perturbation correction (MP2)56-59 and density 

functional theory (DFT) using the B3LYP functional60,61 with the 6-31G(d)62,63 and 6-31+G(d)64-

66 basis sets. To assess the effectiveness of DFT in calculating the energetics of this system, the 

B3LYP functional was utilized similarly with the same basis sets. Coupled cluster with singles, 

doubles, and perturbed triples (CCSD(T))67-69 with the 6-31G(d) basis set were computed from 

MP2/6-31G(d) stationary points and served as the reference values for this system. Reaction 

barriers (∆Erxn) for the N-Cα and C-Cα bond fission per site and conformation were determined 

from optimizations of the transition states that were carried out with the respective method in 

conjunction with the 6-31G(d) basis set using the Berny algorithm from the parent strand with an 

elongated bond length of the cleaved bond. All reaction enthalpies included zero-point and thermal 

corrections to 298 K. 

5.3 Results and Discussion 

5.3.1 Pathway Favorability 

The CCSD(T) results are summarized in Table 5.1. The results of the method and basis set 

comparisons are summarized in Table 5.2 and Table 5.3. The results generated through the use of 

both B3LYP and MP2 using 6-31G(d) and 6-31+G(d) basis sets were unable to reproduce the 

reference values that the CCSD(T) data generated, meaning that they were determined to be 

inadequate in describing this type of radical-peptide system. Thus the CCSD(T) data will be the 
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only data referenced in this discussion hereafter. Both pathways are exothermic, as expected from 

the predictions of Berlett and Stadtman.  

 
Table 5.1 Calculated reaction enthalpies for Pathway [A] and Pathway [B] at the CCSD(T) level 
of theory. 

    Pathway [A] Pathway [B] 
Reaction Site β-strand β-turn β-strand β-turn 
  Cα1 4.8 30.1 38.8 43.9 
ΔHrxn(1) Cα2 23.7 23.6 40.5 33.6 
  Cα3 -0.4 31.3 30.1 36.7 
  Cα1 -30.4 -60.2 -33.9 -33.9 
ΔHrxn(2) Cα2 -48.8 -44.8 -35.2 -34.8 
  Cα3 -45.6 -45.6 -18.2 -49.4 
  Cα1 -25.6 -30.2 4.9 10.0 
ΔHtotal Cα2 -25.1 -21.1 5.3 -1.2 
 Cα3 -46.0 -14.3 11.8 -12.6 
  C-Cα bond fission N-Cα  bond fission 

ΔErxn 
 β-strand β-turn β-strand β-turn 
Cα1 8.8 5.5 22.9 24.1 

 Cα2 8.7 6.0 23.6 26.0 
  Cα3 7.2 5.7 24.5 27.6 
aAll energies are in kcal/mol. 
 

Figure 5.2 Modeled backbone conformations. (1) Represents the β-strand or “sheet-like” 
component of a β-pleated-sheet. (2) The β-turn structure. In both conformations, the first α-
carbon has an alkoxyl radical in place of a hydrogen at Cα1. 
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Overall, Pathway [A] is much more energetically favorable than Pathway [B] by 30.4 to 

57.4 kcal/mol for the β-strand conformation and by 1.7 to 40.2 kcal/mol for the β-turn 

conformation. Pathway [A] is to be the more energetically favorable pathway because of the nature 

of the structures formed through the process of complete fragmentation. The carbon immediately 

adjacent to the alkoxyl-radicalized α-carbon (referred to from this point on as “Cα”) is doubly-

bonded to an O atom, so that the resulting carbonyl functional group withdraws electron density 

from that Cα atom, straining the Cα-C bond to the point of cleavage. Reaction A2 and B2, the 

second steps of each pathway, involve the termination of a radical on the peptide fragment structure 

involved in the reaction. It is striking that in Pathway [A] a radical is propagated through the 

production of •OOH, while in Pathway [B] both products are completely terminated.  

 From this study of a trialanine peptide model it has been determined that there are no 

absolute trends regarding conformational preference. The β-strand conformation generally favors 

fragmentation via Pathway [A], while the β-turn conformation generally favors fragmentation via 

Pathway [B]. Intramolecular noncovalent interactions are more prevalent in the β-turn structures 

than in the β-strand structures. In the results of our trialanine peptide study, intramolecular 

noncovalent interactions stabilize the biomolecule and reduce the favorability of C-Cα bond fission 

(∆Erxn in Table 5.1) for the β-turn conformation. These results are verified by a study conducted 

by Chin et al.46 on the local secondary structure conformations of dipeptides and tripeptides, that 

show that tripeptides are indeed more stable in the β-turn conformation than in the β-strand 

conformation due to an increase in the intramolecular noncovalent interactions between the 

backbone and side chains. Other studies investigating reactivity and conformational specificity in 

peptide fragments also report similar advantages in side-chain stability from intramolecular 

noncovalent interactions.54,55 Additionally, α-carbon hydrogen abstractions from the peptide 
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backbones in the β-turn conformation do not induce major conformational changes in the gas phase 

due to intramolecular noncovalent stabilization.53  However, in spite of this similarity in results for 

the β-turn conformation following C-Cα bond fission, our results also identify a striking difference 

with regard to N-Cα bond fission. The intramolecular noncovalent stabilization that caused the β-

turn conformation to have less energetic gain from undergoing C-Cα bond fission does not impact 

the favorability of the β-turn conformation to undergo N-Cα bond fission. 

 The Cα3 site is the most favorable site of radicalization in Pathway [A] for the β-strand 

conformation, but the Cα1 site is the most favorable site of radicalization for the β-turn 

conformation. The greatest difference between the most energetically favorable site and the next 

closest value is in Pathway [A], where reacting at the Cα3 site in the β-strand structure produces 

an enthalpy 20.4 kcal/mol lower in energy than the next most favorable site. In Pathway [B], the 

β-turn structure has the next greatest difference in enthalpy; reacting at the Cα3 site has a 11.4 

kcal/mol advantage over the next lowest value. Site selectivity is not consistent from one 

conformation or reaction to the next; however, it is still an important factor in determining overall 

favorability of the reactions in question. 

 These results are corroborated with the calculated reaction barriers for the C-Cα and N-Cα 

bond fissions, as shown in Table 5.1. For all three sites of radicalization, the C-Cα bond fission 

has a much lower reaction barrier than that of N-Cα bond scission, by an average difference of 

15.4 kcal/mol for the β-strand and by 20.2 kcal/mol for the β-turn. The reaction barriers reveal that 

the C-Cα bond fission reaction barrier is consistently lower in the β-turn conformation than in the 

β-strand conformation by an average of 2.5 kcal/mol. Conversely, the N-Cα bond fission reaction 

barrier is consistently lower in the β-strand conformation than in the β-turn conformation by an 

average of 2.2 kcal/mol. This difference in barrier energies for the two conformations by fission 
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type indicates that intramolecular noncovalent stabilization contributes to the stability of β-turn 

reactants relative to products for Pathway [B] (which involves N-Cα fission) but not for Pathway 

[A]. In Pathway [A], another factor must be contributing to the relative stability of the β-strand to 

increase the reaction barrier of the C-Cα bond fission. 

5.3.2 Role of Structure on Bond Strength and Site Reactivity 

 The three radical α-carbon sites do not harbor identical bond strengths. This is consistent 

with previous findings that not all α-carbon radicals are equally stable.16,70 The C-Cα bond at site 

Cα3 within the β-strand conformation is the strongest C-Cα bond to be broken from the structures 

analyzed. The differences in enthalpy between the β-strand and β-turn models reveal that due to 

structural differences, the C-Cα bond at Cα3 is much stronger in the β-strand conformation than 

in the β-turn conformation of the peptide. This is because more energy is released upon β-strand 

C-Cα bond fission than through β-turn C-Cα bond fission at the same relative position. The average 

energy of the C-Cα bonds in the model is 18.9 kcal/mol. The stronger C-Cα bond at the Cα2 site 

of the two conformations is in the β-turn structure. The data further indicates that internal C-Cα 

bond fission releases more energy in the β-turn conformational construct than in the β-strand 

counterpart. The strongest N-Cα  bond site of all the sites is located at the Cα3 site. For this type 

of bond fission, the conformation of the model does not play a significant a role in the strength of 

the bond. The N-Cα bonds have an average energy of 37.3 kcal/mol. The C-Cα bonds have a 

greater range of energies throughout the molecule than do the N-Cα bonds. The relative location 

of the backbone C-Cα bond within the peptide structure plays a greater role in determining the 

energy of that bond than does the relative location of the backbone N-Cα bond analog.  
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5.3.3 Insights into Pathway Preferences 

The importance of the second reaction (Reaction A2 or B2) in defining the energetic 

favorability of the reaction pathway varies. The isocyanate radical termination step is influential 

in determining the favorability of completely following reaction Pathway [A]. Similarly, in 

Pathway [B], the reaction enthalpy of the pathway becomes comparably favorable because of the 

amide radical termination step. 

For all sites of ROS-induced bond fission (all three Cα sites), Pathway [A] is more 

energetically favorable than the Pathway [B]. In Pathway [A], the location of the site at which 

bond fission occurs plays a key role in identifying the strongest bonds. In the β-strand, the C-Cα3 

is the strongest bond, stronger than the other C-Cα bonds by an average of 14.7 kcal/mol, and 

stronger than any of the N-Cα bonds by an average of 36.9 kcal/mol. In the β-turn, the strengths 

of all N-Cα and C-Cα bonds are more similar. For the β-turn structure, the C-Cα2 bond is strongest, 

stronger than the other C-Cα bonds by an average of 7.1 kcal/mol, and stronger than the N-Cα 

bonds by an average of 14.5 kcal/mol. In Pathway [B], the most important step in determining the 

overall energetic favorability of the pathway is the re-association of the reactive amide radical.  

The difference in reaction barriers of peptide backbone bond fission at each site of 

radicalization plays an important role in overall pathway preference. The differences in the barriers 

are consistent by site and conformation to determining this preference. The reaction barrier of C-

Cα bond fission is notably lower than that of N-Cα bond fission, by an average difference of 15.4 

kcal/mol in the β-strand conformation and by 20.2 kcal/mol in the β-turn conformation. These 

trends confer a definite energetic preference for Pathway [A] over Pathway [B]. Both the 

individual reaction steps and the first energy barrier of Pathway [A] are lower in energy than 

Pathway [B]. The present study neglects the electronic nature of neighboring amino acid side-
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chains, which is known to influence backbone cleavage. Within the current approach, the sampled 

conformations (β-strand and β-turn) are appropriate for describing potential configurational states 

of the trialanine peptide due to the lack of flexibility and reactivity of the side-chain. The 

introduction of alternative side-chains would require a more elaborate approach that assesses 

conformational rearrangements and radical migrations. Assessing how the selectivity in backbone 

fragmentation changes as a result of neighboring side-chains is suggested as important follow-up. 

5.3.4 Evaluation of Methods 

Enthalpies computed using MP2 and B3LYP (Table 5.2) were able to point to the presence 

of selectivity between the Pathway [A] and Pathway [B].   However, these methods were unable 

to reproduce the selectivity trends generated by the CCSD(T) calculations (summarized in Table 

5.1). Although adding diffuse functions had a slight impact on the enthalpy per each individual 

fragments, the additional basis functions had small significance in the prediction of the reaction 

enthalpies. 

The uniqueness of the CCSD(T) results in describing the trends of ROS-induced peptide 

backbone fragmentation implies that the self-consistent single-, double-, and triple-electron 

coupling contributes significantly. Notably, less expensive methods to observe this chemistry are 

unable to replicate the reactions and thus cannot be used to correctly predict the favored sites or 

conformations of ROS-induced peptide backbone bond cleavage. The results also indicate that in 

spite of the attractiveness of using MP2, a more comprehensive method than B3LYP but a less-

expensive method than CCSD(T), to determine the relative site and conformational favorability, 

MP2 was not observed to provide any additional insight than B3LYP towards elucidating the 

trends observed with CCSD(T).  
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Table 5.2 Calculated reaction enthalpies for Pathway [A] and Pathway [B]. 

Pathway [A] 

β-strand β-turn 
Site Method/Basis ΔH[A1] ΔH[A2] ΔHtot ΔH[A1] ΔH[A2] ΔHtot 

Cα1 

CCSD(T)/6-31G(d) 4.8 -30.4 -25.6 30.3 -60.2 -30.2
MP2/6-31G(d) -7.4 -42.6 -50.1 2.8 -43.1 -40.3
MP2/6-31+G(d) -9.6 -40.0 -49.6 4.5 -42.6 -38.2
B3LYP/6-31G(d) -6.8 -53.5 -60.3 2.7 -56.8 -54.1
B3LYP/6-31+G(d) -10.0 -53.3 -63.4 -1.4 -57.2 -58.6

Cα2 

CCSD(T)/6-31G(d) 23.7 -48.8 -25.1 23.6 -44.8 -21.1
MP2/6-31G(d) -5.8 -43.5 -49.3 -5.3 -41.1 -46.4
MP2/6-31+G(d) -7.5 -40.7 -48.2 -4.0 -40.6 -44.6
B3LYP/6-31G(d) -5.4 -54.5 -59.9 -6.9 -54.6 -61.5
B3LYP/6-31+G(d) -8.7 -54.3 -63.0 -11.4 -52.6 -64.0

Cα3 

CCSD(T)/6-31G(d) -0.4 -45.6 -46.0 31.3 -45.6 -14.3
MP2/6-31G(d) -7.7 -41.4 -49.1 1.4 -41.4 -40.0
MP2/6-31+G(d) -8.0 -40.2 -48.2 -2.8 -40.2 -43.0
B3LYP/6-31G(d) -4.1 -54.8 -58.8 0.1 -54.8 -54.6
B3LYP/6-31+G(d) -7.4 -54.0 -61.4 -3.7 -54.0 -57.8

aAll energies are in kcal/mol. 

Pathway [B] 

β-strand β-turn 
Site Method/Basis ΔH[B1] ΔH[B2] ΔHtot ΔH[B1] ΔH[B2] ΔHtot 

Cα1 

CCSD(T)/6-31G(d) 38.8 -33.9 4.9 43.9 -33.9 10.0
MP2/6-31G(d) 13.5 -47.3 -33.8 18.3 -47.3 -29.0
MP2/6-31+G(d) 13.8 -47.3 -33.6 19.2 -47.3 -28.1
B3LYP/6-31G(d) 16.2 -25.9 -9.6 13.8 -21.6 -7.7
B3LYP/6-31+G(d) 14.2 -26.3 -12.1 10.0 -21.6 -11.6

Cα2 

CCSD(T)/6-31G(d) 40.5 -35.2 5.3 33.6 -34.8 -1.2
MP2/6-31G(d) 15.3 -48.9 -33.6 26.1 -49.6 -23.4
MP2/6-31+G(d) 16.5 -48.8 -32.4 26.3 -48.6 -22.4
B3LYP/6-31G(d) 13.7 -23.5 -9.8 21.7 -26.0 -4.3
B3LYP/6-31+G(d) 11.3 -23.3 -12.0 9.0 -25.5 -16.5

Cα3 

CCSD(T)/6-31G(d) 30.1 -18.2 11.8 36.7 -49.4 -12.6
MP2/6-31G(d) 24.7 -49.2 -24.5 19.4 -46.6 -27.1
MP2/6-31+G(d) 15.9 -49.1 -33.2 16.1 -46.6 -30.5
B3LYP/6-31G(d) 23.4 -23.8 -0.4 16.8 -25.4 -8.6
B3LYP/6-31+G(d) 20.7 -23.5 -2.7 13.2 -25.1 -12.0

aAll energies are in kcal/mol. 
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Table 5.3 Calculated reaction barriers for reactions [A1] and [B1]. 

β-strand β-turn 
Site Method/Basis ΔE‡

[A1] ΔE‡
 [B1] ΔE‡

 [A1] ΔE‡
 [B1] 

Cα1 CCSD(T)/6-31G(d) 8.8 22.9 5.5 24.1 
MP2/6-31G(d) 11.0 26.9 8.2 29.2 
B3LYP/6-31G(d) 3.5 20.9 2.1 21.4 

Cα2 CCSD(T)/6-31G(d) 8.7 23.6 6.0 26.0 
MP2/6-31G(d) 10.7 28.0 10.1 35.4 
B3LYP/6-31G(d) 3.9 21.7 1.3 19.5 

Cα3 CCSD(T)/6-31G(d) 7.2 24.5 5.7 27.6 
MP2/6-31G(d) 9.0 28.5 8.1 35.1 
B3LYP/6-31G(d) 2.3 20.2 1.3 19.9 

aAll energies are in kcal/mol. 

5.4 Conclusion 

This study utilized ab initio and density functional methods to investigate site, pathway, 

and conformational trends associated with the ROS-mediated fragmentation of the trialanine 

peptide. The results show that the reactions associated with the two pathways of the Berlett and 

Stadtman mechanisms of ROS-induced peptide backbone bond cleavage are exothermic and 

provide a quantified estimate of their relative selectivity. Pathway [A] is consistently more 

energetically favorable than Pathway [B], and site preferences are not determined strictly by their 

positions as N-terminal, internal, or C-terminal. Energetic analysis reveals that intramolecular 

noncovalent stabilization contributes to conformational selection for fragmentation following 

Pathway [A] only. Calculation of reaction barriers confirms the energetic analysis that C-Cα bond 

fission (following Pathway [A]) is much more favorable to occur than N-Cα bond fission 

(following Pathway [B]). The results identify the key backbone bonds (the C-Cα3 bond in the β-

strand and the C-Cα2 bond in the β-turn) that contribute to the overall stability of the β-pleated 

sheet motif. Furthermore, because this work identifies the most favorable types of fragmentation 

within the β-pleated sheet, this research can be utilized to predict how secreted amyloid precursor 
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proteins will fragment in response to ROS bombardment. The ability to predict the structural 

features involved in these fragmentation mechanisms is significant towards understanding the role 

of oxidative stress in neurodegenerative disease pathologies. 
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CHAPTER 6 Partition Coefficients for the SAMPL5 Challenge using Transfer Free 

Energies 

6.1 Introduction 

Theoretical approaches can be a useful partner for predicting physiochemical properties 

important in experimental design, from drug development, to studies in toxicology and 

environmental science. Such predictive approaches can provide guidance in high-throughput 

screening for rational design.1,2 An important step in establishing such utility, however, is to ensure 

that the approaches are suitable and well-tested.  

A popular route towards rationale design is the use of mathematical models to determine 

quantitative structure-activity relationships (QSAR) or quantitative structure-property 

relationships (QSPR), based on parameters or descriptors that correlate physical and chemical 

properties with experimental observations. Though useful, it is difficult for these predictive models 

to determine properties coupled with changes in the electronic environment such as those that arise 

from solute-solute and solute-solvent interactions.       

Measurements of solvation properties of molecules in different solution phases and the 

distribution equilibria between the phases are of strong interest in drug discovery as these 

properties are critical for drug profiling. Promising drug candidates can be discarded as a result of 

inaccurate predictions of such properties; particularly of interest are the partition (P) and 

distribution (D) coefficients. The partition coefficient (P) between two phases x and y, respectively, 

is the ratio of the concentration of solute C in each phase, where the subscript 0 represents the 

neutral, unionized state of the solute. 

P =
[C0]𝑦𝑦
[C0]𝑥𝑥

D =
∑ [C𝑖𝑖]𝑦𝑦𝑖𝑖
∑ [C𝑖𝑖]𝑥𝑥𝑖𝑖
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In contrast, the distribution coefficient (D) is the actual partitioning or distribution of the total 

analytical concentration between two solvents at a fixed pH, which includes all chemical states in 

solution (i.e., unionized and ionized states). Although many QSAR and QSPR techniques exist, 

because these approaches are based on defining statistical relationships via parameters trained to 

fit known experimental properties, this may not be the most suitable approach for predicting 

properties for molecules that undergo chemical transformations in different environments, such as 

compounds with multiple protonation states or compounds that can undergo structural 

rearrangements.3–5 Additionally, many QSAR and QSPR models are paramertized to predict 

octanol/water partition coefficients as there is an abundance of reliable experimental data for 

available to parameterize this predictive approach.   For this, it is ideal to have a simple approach 

that relies on less parameterization and is transferable for use with other solvents.  

The partition coefficient between two immiscible solvents, such as water and cyclohexane, 

is expressed as the equilibrium distribution between the concentrations of a solute in each solvent 

and is related to the change in energy associated with the solute-solvent interactions, which is 

expressed as the free energy difference, ∆G, of the solute in each solvent,  

log𝑃𝑃 = log�
[solute]cyclohexane

[solute]water
�

 
= �Δ𝐺𝐺water − Δ𝐺𝐺cyclohexane�

log10 𝑒𝑒
𝑘𝑘𝑇𝑇

where e is Euler’s number, k is Boltzmann’s constant, and T is temperature. Predicting the free 

energy of solvation for a molecule using chemometric techniques can be challenging due to the 

difficulties in parameterizing the solute-solvent interactions, with the many intermolecular forces 

that contribute to solvation.  

Another route that can be used to predict the partition coefficient is to use quantum 

mechanical (QM) approaches, accounting for solvation via either an explicit or implicit route.  For 

explicit solvation, individual solvent molecules are included in a calculation.  While these 
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approaches can account for non-covalent solute-solvent interactions, they can become 

computationally intensive due to the number of solvent molecules that may be needed within the 

solvation shell as well as the amount of sampling that would be required. For implicit solvation, a 

representation of the solvent is utilized which neglects explicit contributions of the solute-solvent 

interactions, resulting in a lower computational cost approach. Implicit solvation approaches, 

continuum solvent models, are commonly used and include the Conductor-like Polarizable 

Continuum Model (CPCM)6, the COnductor-like Screening MOdel (COSMO)7, and the Solvation 

Model based on Density (SMD)8, for predicting the free energies of hydration. Of these solvation 

models, SMD is a more portable model for the prediction of solvation free energies, as it uses the 

electron density of the solute in contrast to partial charges as used in CPCM and COSMO.  In 

previous studies predicting the free energies of solvation of small molecules, it has been shown 

that the increasing quality of a basis set can improve the prediction, including ab initio approaches9 

as well as in hybrid QM and molecular mechanics (MM) approaches such as the QM/MM-non-

Boltzmann-Bennett method.10,11 

For this investigation, emphasis is on the 13 molecule subset (Batch 0) of the SAMPL5 

distribution coefficient molecule set. Using this subset, a variety of hybrid DFT functionals with 

different basis sets were used to predict the cyclohexane-water partition coefficient. A vertical 

solvation approach, using gas-phase optimized geometries to predict the free energy in solution, 

was used for predicting the cyclohexane-water transfer free energy needed for the calculation of 

the partition coefficient. The approach that was chosen was applied to the full molecule set of 53 

compounds, which corresponds to Submission #40 in the SAMPL5 Distribution Coefficient 

Challenge.  
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6.2 Methods 

The initial structures issued with the SAMPL5 challenge data set were used as the reference 

state for all calculations. Gas phase geometry optimizations and frequency calculations were 

performed on the 53 molecules of the SAMPL5 set (shown in Error! Reference source not 

found.) using B3LYP12–14 in conjunction with cc-pVTZ basis sets.15–18 B3LYP/cc-pVTZ was 

selected due to its well-established success in the prediction of ground state gas-phase structures 

for molecules such as those in the SAMPL5 set. Frequencies were examined to ensure that 

equilibrium stationary points were reached.  For second-row species such as sulfur, the 

recommended form of the correlation consistent basis sets, the augmented tight-d basis sets, cc-

pV(T+d)Z,19 was used to avoid the deficiencies noted in the original form of the correlation 

consistent basis sets for second-row atoms.  The correlation consistent basis sets were selected due 

to their demonstrated behavior with a broad range of functionals20–29, known to converge with 

respect to increasing basis set size (i.e., cc-pVnZ, where n=D, T, Q) to the Complete Basis Set 

(CBS), or Kohn-Sham limit, for numerous properties such as thermochemical properties.  Though 

DFT structures are generally known to reach convergence using a triple-zeta basis set, for 

molecules that include sulfur or transition metal species or molecules of increasing size, energetic 

properties determined using DFT may not reach convergence unless a basis set of at least 

quadruple-zeta quality basis sets are used.  Thus, basis sets through quadruple-zeta quality were 

considered in this work. 
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Many prior studies seeking to predict the solvation free energies of small organic molecules 

often chose hybrid DFT methods, however, an optimal functional or optimal functional class has 

not yet been agreed upon.8,30–40 In order to identify which functional would serve best for the blind 

prediction, single point calculations were carried out on the optimized geometries using several 

different hybrid DFT functionals, (B97-141, B9842, B3PW9112,43, M0544, M05-2X45, M0646, M06-

Figure 6.1 Structure of the 53 compounds investigated in the SAMPL5 challenge. The 13 
molecules represent (left) correspond to the Batch 0 subset. 



113 

2X, M06-HF47, ωB9748, and ωB97X-D49) in combination with the cc-pVnZ basis sets (where n=D, 

T, and Q) for the subset of 13 molecules (noted Batch 0 in Error! Reference source not found.). 

These functionals can be classified as three different types of hybrid functionals: global hybrid 

generalized gradient approximation (GH-GGA) includes B97-1, B98, and B3PW91; global hybrid 

meta-GGA (GH-mGGA) includes M05, M05-2X, M06, M06-2X, and M06-HF; and range 

separated hybrid (RSH)-GGA includes ωB97 and ωB97X-D. These functionals were chosen due 

to their popularity and utility for organic species, as well as to provide a variety of classes of hybrid 

functionals. All calculations were performed using the “Ultrafine” integration grid as it is known 

that HM-GGA functionals are sensitive to the integration grid size50 and finer grids can improve 

numerical accuracy. These single point calculations were carried out in implicit solvent using the 

SMD solvation model for both water and cyclohexane. The partition coefficients were estimated 

from the difference in the transfer free energy in water and in cyclohexane. 

6.3 Results and Discussion 

For the Batch 0 subset of molecules, several hybrid DFT functionals were tested with 

double, triple, and quadruple-ζ level basis sets. In these calculations, only a single conformation, 

protonation state, and tautomer were considered thus there is not a statistical uncertainty associated 

with the calculations. Rather, there is model uncertainty that arises from the assumption of a single 

geometry, the DFT method, the basis set, and the solvent model. From the results shown in Table 

6.1, overall, each approach predicts the partition coefficient within a mean absolute deviation 

(MAD) in the range of 1.5 - 2.0 logP units in reference to experiment, which corresponds to a 2.0 

- 2.7 kcal mol-1 variation in the transfer free energy. While QSPR methods are able to predict
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within 0.3 - 1.0 log units from experiment, the physical significance of the predictions are 

questionable as these models have adroit tactics at modeling noise.51 

Table 6.1 Comparison of predicted logP with experimental logD. 

SAMPL5 logD B97-1 B98 B3PW91 
ID Exp. DZa TZ QZ DZ TZ QZ DZ TZ QZ 
003 1.9 ± 0.1 3.1 2.7 2.6 3.0 2.6 2.5 3.0 2.7 2.6 
015 -2.2 ± 0.3 -3.1 -3.6 -3.6 -3.1 -3.6 -3.7 -3.2 -3.6 -3.7
017 2.5 ± 0.3 1.3 1.0 1.0 1.2 1.0 1.0 1.0 0.9 0.9 
020 1.6 ± 0.3 0.9 0.3 0.1 0.9 0.2 0.1 0.8 0.2 0.1 
037 -1.5 ± 0.1 -3.9 -4.2 -4.3 -4.0 -4.3 -4.4 -4.0 -4.3 -4.3
045 -2.1 ± 0.2 -1.1 -1.5 -1.6 -1.1 -1.6 -1.7 -1.2 -1.6 -1.7
055 -1.5 ± 0.1 -2.6 -3.1 -3.2 -2.7 -3.2 -3.3 -2.7 -3.2 -3.2
058 0.8 ± 0.1 2.7 2.3 2.2 2.7 2.2 2.2 2.6 2.2 2.2 
059 -1.3 ± 0.3 -0.4 -0.5 -0.5 -0.4 -0.5 -0.5 -0.5 -0.6 -0.6
061 -1.5 ± 0.1 -0.8 -1.2 -1.3 -0.8 -1.3 -1.4 -0.9 -1.3 -1.4
068 1.4 ± 0.3 1.5 0.9 0.8 1.5 0.8 0.7 1.4 0.8 0.7 
070 1.6 ± 0.3 5.5 5.1 5.0 5.5 5.1 5.0 5.3 4.9 4.9 
080 -2.2 ± 0.2 1.1 0.5 0.4 1.0 0.4 0.3 1.1 0.5 0.4 

MSDb 0.5 0.1 0.0 0.5 0.0 -0.1 0.4 0.0 -0.1
MADc 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

SAMPL5 logD M06 M06-2X M06-HF 
ID Exp. DZ TZ QZ DZ TZ QZ DZ TZ QZ 
003 1.9 ± 0.1 3.0 2.7 2.7 2.8 2.3 2.3 1.8 1.4 1.3 
015 -2.2 ± 0.3 -3.1 -3.4 -3.4 -3.5 -4.0 -3.9 -4.6 -5.3 -5.1
017 2.5 ± 0.3 1.3 1.2 1.2 0.6 0.3 0.5 -1.0 -1.4 -1.3
020 1.6 ± 0.3 0.9 0.4 0.3 0.5 -0.2 -0.2 -0.6 -1.5 -1.6
037 -1.5 ± 0.1 -4.0 -4.2 -4.2 -4.4 -4.8 -4.7 -5.4 -6.2 -6.0
045 -2.1 ± 0.2 -1.0 -1.4 -1.4 -1.4 -1.9 -1.9 -2.4 -3.1 -3.0
055 -1.5 ± 0.1 -2.7 -3.1 -3.1 -2.9 -3.4 -3.4 -3.6 -4.2 -4.1
058 0.8 ± 0.1 2.8 2.4 2.4 2.3 1.8 1.8 1.0 0.5 0.4 
059 -1.3 ± 0.3 -0.3 -0.4 -0.4 -0.6 -0.8 -0.7 -1.4 -1.5 -1.5
061 -1.5 ± 0.1 -0.8 -1.3 -1.4 -1.0 -1.6 -1.7 -1.7 -2.4 -2.5
068 1.4 ± 0.3 1.7 1.1 1.1 1.2 0.5 0.5 -0.3 -0.8 -1.0
070 1.6 ± 0.3 5.6 5.4 5.3 5.0 4.6 4.6 3.3 2.8 2.6 
080 -2.2 ± 0.2 1.1 0.5 0.5 0.8 0.1 0.1 0.1 -0.8 -0.7

MSDb 0.5 0.2 0.2 0.1 -0.4 -0.3 -0.9 -1.5 -1.6
MADc 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.9 1.9 
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Table 6.1 (cont’d) 

SAMPL5 logD ωB97 ωB97X-D 
ID Exp. DZ TZ QZ DZ TZ QZ 
003 1.9 ± 0.1 2.9 2.5 2.4 2.8 2.5 2.4 
015 -2.2 ± 0.3 -3.3 -3.9 -4.0 -3.5 -3.9 -3.9
017 2.5 ± 0.3 0.9 0.6 0.6 0.9 0.7 0.6 
020 1.6 ± 0.3 0.7 -0.1 -0.2 0.6 -0.1 -0.2
037 -1.5 ± 0.1 -4.1 -4.5 -4.5 -4.2 -4.5 -4.5
045 -2.1 ± 0.2 -1.3 -1.8 -1.9 -1.4 -1.8 -1.9
055 -1.5 ± 0.1 -2.7 -3.2 -3.3 -2.8 -3.3 -3.4
058 0.8 ± 0.1 2.5 2.0 2.0 2.4 2.0 2.0 
059 -1.3 ± 0.3 -0.5 -0.7 -0.7 -0.6 -0.7 -0.7
061 -1.5 ± 0.1 -1.0 -1.6 -1.7 -1.0 -1.5 -1.6
068 1.4 ± 0.3 1.3 0.5 0.4 1.2 0.6 0.5 
070 1.6 ± 0.3 5.2 4.8 4.7 5.2 4.8 4.7 
080 -2.2 ± 0.2 1.0 0.3 0.2 0.8 0.2 0.2 

MSDb 0.3 -0.2 -0.3 0.2 -0.2 -0.3
MADc 1.5 1.5 1.5 1.5 1.5 1.5 

SAMPL5 logD M05 M05-2X 
ID Exp. DZ TZ QZ DZ TZ QZ 
003 1.9 ± 0.1 3.0 2.7 2.6 2.8 1.9 2.0 
015 -2.2 ± 0.3 -3.1 -3.5 -3.7 -3.5 -4.6 -4.4
017 2.5 ± 0.3 1.3 1.2 1.1 0.6 -0.1 0.0
020 1.6 ± 0.3 0.9 0.4 0.2 0.5 -0.8 -0.8
037 -1.5 ± 0.1 -3.7 -4.0 -4.1 -4.4 -5.1 -5.0
045 -2.1 ± 0.2 -1.0 -1.4 -1.5 -1.4 -2.4 -2.4
055 -1.5 ± 0.1 -2.6 -3.0 -3.1 -2.9 -3.8 -3.8
058 0.8 ± 0.1 2.8 2.4 2.3 2.3 1.3 1.3 
059 -1.3 ± 0.3 -0.3 -0.4 -0.4 -0.6 -1.0 -1.0
061 -1.5 ± 0.1 -0.7 -1.2 -1.3 -1.0 -1.9 -1.9
068 1.4 ± 0.3 1.6 1.0 0.9 1.2 0.0 0.0 
070 1.6 ± 0.3 5.5 5.3 5.0 5.0 4.1 4.0 
080 -2.2 ± 0.2 1.2 0.7 0.6 0.8 -0.3 -0.3

MSDb 0.6 0.2 0.1 0.1 -0.8 -0.8
MADc 1.5 1.5 1.5 1.5 1.6 1.6 

aThe columns labeled DZ, TZ, and QZ correspond to the cc-pVDZ, cc-pVTZ, and cc-pVQZ 
basis sets. 
bThe mean signed deviation of the predicted logP from the experimental logD. 
cThe mean absolute deviation of the predicted logP from the experimental logD. 



116 

Figure 6.2 Subset of molecules (Batch0) LogP: effect of increasing basis sets.The predicted 
logP with respect to increasing basis set size (DZ, TZ, QZ) are represented by the red box, 
green triangle, and purple ‘X’, respectively. 
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For the Batch 0 subset of molecules and the functionals considered, there is not a systematic 

underestimation or overestimation in the prediction of the logP. The predicted logP for the GH-

GGA and RSH-GGA functionals are similar, with a MAD of 1.5 logP units. Each of the tested 

approaches are able to predict the correct sign of logP in water and cyclohexane 

(hydrophobicity/hydrophilicity) for each molecule, with the exception of molecules 017, 020, 058, 

068, and 080. Predicting the correct sign of logP is important as this reflects the preference of the 

molecule to reside in either the organic or aqueous phase.  

The lowest MAD observed in this study is 1.5 logP units, which is given by eight out of 

the ten functionals tested. As shown in Table 6.1, most of the functionals result in a low mean 

signed deviation (MSD) compared with the magnitude of the MAD. This indicates that there is not 

a consistent deviation from the experimental values.  Rather, the small magnitude of the MSD is 

the result of deviations above and below experiment such that they largely cancel for the Batch 0 

subset of molecules. The largest MSDs observed are for the M06-HF functional with the 

magnitude of the MSDs within 50% or more of the MADs. Thus, the M06-HF functional has a 

larger systematic error resulting in underestimation of the logP value, i.e. negative MSDs in 

comparison to the other functionals. The calculated values for logP are plotted with respect to the 

molecule number in Figure 6.2 while the numerical results are shown in Table 6.1. As shown, the 

quality of the basis set used does not impact the predictions of hydrophobicity or hydrophilicity 

since the sign of the deviations is mostly unchanged when changing basis. For M06-HF, although 

it appears that the calculated logP is consistently underestimated with the TZ and QZ basis sets, 

the functional tends to predict molecules to be more hydrophilic than those predicted with the other 

functionals. This bias towards hydrophilicity would become a problem for high-throughput drug 
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screening as ideal compounds are neither too hydrophobic nor too hydrophilic. Predictions that are 

too hydrophilic could result in discarding potential compounds.  

The correlation consistent basis sets used for this work were constructed in a systematic 

fashion to recover correlation energy for ab initio methods and overall convergence is commonly 

demonstrated for properties determined with increasing size of basis sets. As illustrated in Figure 

6.2, the increasing quality of the basis sets lowers the logP values. This behavior is clearly 

convergent, yet convergence to the Kohn-Sham limit does not necessarily result in improved 

results with respect to experiment. 

In examining the Batch 0 subset, trends in the predictions of logP for each molecule are 

consistent for each functional with only a few exceptions. Molecules 020, 068, and 070 have 

deviations that differ in sign as a function of basis set and functional.  This is simply the result of 

the predictions being so close to experiment that even a small variation in the predicted logP values 

can change the sign of the deviation.  Increasing the basis set size typically improves the 

predictions of logP for the HG-GGA functionals and the RSH-GGA functionals, while the 

magnitude of the signed deviation increases slightly for the GH-mGGA functionals.  Overall, the 

small variation between the logP values obtained with the TZ and QZ basis sets indicates that the 

TZ basis set is already near the Kohn-Sham limit. A greater percentage of exact exchange from 

the functionals may help in the prediction of logP, for example, from M05 to M05-2X, a better 

prediction of logP is obtained for molecules 003, 045, 058, 059, 070, and 080. However, for some 

molecules too much exact exchange overestimates the solvation in water and underestimates the 

logP by at least 1.0 to 2.0 logP units. For example, each functional underestimates the logP for 

molecules 015, 017, 020, 037, and 055, as each overestimates the solvation in water relative to 

cyclohexane. Additionally for these molecules, increasing the size of the basis set predicts the 
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molecules to be more hydrophilic. In these cases, the functionals perform best using a DZ basis 

set. In the case for molecule 068, each functional predicts within experimental error using a DZ 

basis set, with the exclusion of M06-HF. 

Overall, similar predictions of logP are obtained with the GH-GGA functionals and the 

RSH-GGA functionals. For the GH-mGGA functionals, predictions of logP obtained using M05 

and M06 are similar. Using M05-2X and M06-2X yield similar predictions of logP as well. M06-

HF stands out the most in contrast to the other functionals as it consistently overestimates the 

solvation of the molecule in water. From the results, it is evident that increasing the amount of 

exact exchange, as well the quality of the basis set, overestimates the solvation energy in water 

relative to the solvation energy in cyclohexane. It is believed that this bias in overestimation in 

water is due to the parameter fitting for the SMD solvation model. The SMD solvation model, 

which was reported to achieve an accuracy for predicting the solvation free energies (mean 

unsigned error of 0.6 to 1.0 kcal/mol for neutral solutes), was more heavily parameterized against 

molecules solvated in water in contrast to cyclohexane.8 This situation can be advantageous for 

molecules that are slightly hydrophobic.  However, this is not optimal since there is a consistent 

overestimation of the energy from being solvated in water as this results in misleading predictions 

of the equilibrium distribution of a molecule in different solvents. Although there are cases in 

which the GH-mGGA functionals perform best, the GGA functionals were constructed with less 

parameter fitting and may serve as a stronger class of functionals for initial starting guesses when 

predicting the solvation properties of molecules in which experiment is unavailable. 

B3PW91 was chosen as the method for predicting the transfer free energy of the remaining 

SAMPL5 subsets because of its overall consistent behavior across the period table, and for a 

number of energetic properties. Some of the molecules within the SAMPL5 set contain sulfur. 



120 

Previous studies have shown that for molecules containing sulfur, the BP3W91 functional yields 

more accurate energetics than the B3LYP functional when using correlation consistent basis 

sets.21,52 The results submitted for the SAMPL5 challenge are shown in Table 6.2. Using B3PW91 

and a quadruple-ζ basis level basis set has an MAD of 1.9 and was able to estimate the logP within 

2.0 logP units from the experimental logD for about 60% of the molecule set. Although this 

approach lacks contributions from other protonation states, tautomers, and additional protomers, 

it provided a good starting estimate of logP. Regarding the outliers that this approach predicted 

over 2.0 logP units in reference to the experimental logD, it is believed that the prediction can be 

improved by including the chemical contributions from tautomerization, protonation, as well as 

with additional conformational sampling as many of the outliers that are greater than 3.0 logP units 

from the experimental logD are less rigid than other molecules within the dataset. For several of 

the molecules, the source of the larger deviations are known whereas other relationships between 

the prediction and the structure will require further investigations. The largest outlier is molecule 

083, with a deviation of 9.0 logP units, is a result of modeling of the incorrect tautomer. The 

tautomeric state issued in the SAMPL5 data set was not the preferred tautomer. The results 

obtained from using the triple-ζ and the quadruple-ζ level basis sets are very similar. Rather than 

using a quadruple-ζ level basis set, it is recommended to use a triple-ζ level size and the correlation 

consistent basis sets that include tight d functions for molecules containing sulfur.29 



121 

Table 6.2 Overview of the results submitted to the SAMPL5 challenge. 

ID LogDExp. LogPCalc. ID LogDExp. LogPCalc. 
002 1.4 ± 0.3 -1.0 055 -1.5 ± 0.1 -3.2
003 1.9 ± 0.1 2.6 056 -2.5 ± 0.1 -1.6
004 2.2 ± 0.3 4.1 058 0.8 ± 0.1 2.2
005 -0.9 ± 0.1 1.1 059 -1.3 ± 0.3 -0.6
006 -1.0 ± 0.1 -0.9 060 -3.9 ± 0.2 -1.7
007 1.4 ± 0.3 3.5 061 -1.5 ± 0.1 -1.4
010 -1.7 ± 0.4 -2.4 063 -3.0 ± 0.4 -6.0
011 -3.0 ± 0.1 3.2 065 0.7 ± 0.2 -1.4
013 -1.5 ± 0.4 3.1 067 -1.3 ± 0.3 0.4
015 -2.2 ± 0.3 -3.7 068 1.4 ± 0.3 0.7
017 2.5 ± 0.3 0.9 069 -1.3 ± 0.3 -0.1
019 1.2 ± 0.4 5.9 070 1.6 ± 0.3 4.9
020 1.6 ± 0.3 0.1 071 -0.1 ± 0.5 -0.9
021 1.2 ± 0.3 0.7 072 0.6 ± 0.3 3.3
024 1.0 ± 0.4 1.9 074 -1.9 ± 0.3 -6.3
026 -2.6 ± 0.1 -2.8 075 -2.8 ± 0.3 -1.4
027 -1.9 ± 0.1 2.7 080 -2.2 ± 0.2 0.4
033 1.8 ± 0.2 3.4 081 -2.2 ± 0.3 -5.3
037 -1.5 ± 0.1 -4.3 082 2.5 ± 0.4 6.4
042 -1.1 ± 0.3 0.7 083 -1.9 ± 0.4 -10.9
044 1.0 ± 0.4 0.9 084 0.0 ± 0.2 2.6 
045 -2.1 ± 0.2 -1.7 085 -2.2 ± 0.4 0.7 
046 0.2 ± 0.3 -1.0 086 0.7 ± 0.2 1.1 
047 -0.4 ± 0.3 0.2 088 -1.9 ± 0.3 -1.0 
048 0.9 ± 0.4 0.8 090 0.8 ± 0.2 1.0 
049 1.3 ± 0.1 1.9 092 -0.4 ± 0.3 -1.1
050 -3.2 ± 0.6 -5.4

MSDa 0.5 
MADb 1.9 

aThe mean signed deviation of the predicted logP from the experimental logD. 
bThe mean absolute deviation of the predicted logP from the experimental logD. 

6.4 Conclusion 

In this study, several DFT functionals were used to predict the partition coefficients in 

cyclohexane and water of molecules in the SAMPL5 molecule set, a diverse set of molecules, 

representing a variety of protonation states and tautomerization states. Using the SMD implicit 

solvation model and a vertical solvation approach, the free energy of transfer was predicted, 
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resulting in a mean absolute deviation of 1.9 logP units from the experimental logD.  The results 

highlight that the performance of density functionals does not consistently overestimate or 

underestimate the logP for some molecules in the SAMPL5 set. Functionals in the GH-GGA and 

the RSH-GGA class perform similarly, whereas the performance of GH-mGGA does not provide 

similar results as GH-GGA and RSH-GGA functionals. The results show that functionals that 

include a larger percentages of exact exchange tend to predict logP values that overestimate the 

hydrophilicity. For molecules that are similar to those studied in this work, using a GH-GGA 

functional, such as B3PW91, in conjunction with cc-pVTZ can be used for predicting transfer free 

energy of small organic molecules.  

Moving forward, alternative strategies should be considered to try to improve the 

predictions. The acid dissociation constants for many of the ionizable compounds are not known. 

It is possible that these theoretical predictions could be improved by accounting for the multiple 

ionization states as this would more accurately estimate the distribution.53 Although assumptions 

were made regarding the protonation, tautomeric, and conformational states, the results highlight 

the ability of hybrid DFT approaches and the SMD implicit solvent model for estimating logP. As 

these approaches are able to predict close to experimental logD, the predicted logP underestimates 

the energetic contributions related to the structural and environmental heterogeneity in solution 

that is reflective of experiment.  To attempt to further reduce the logP deviations from the 

experimental logD, the performance of ab initio electronic correlation methods could be 

considered for predicting the logP. While the use of these electronic structure methods would 

increase the computational cost, these predictions may provide a stronger approach that allows for 

systematic improvement.   
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CHAPTER 7 CONCLUDING REMARKS 
 
 

Proteins are dynamic in nature and can have many conformational-dependent functional 

states, including active, inactive, and intermediate states. These conformational states can 

represent an array of structural features that distinguish the ability of the protein to bind other 

molecules. Elucidating the transitions between the conformational states of protein complexes is 

critical for effective drug discovery, design, and delivery methods, as it would allow direct 

correlation between conformational-activity and structure-activity relationships. In this 

dissertation, theoretical investigations were employed to examine structure-function relationships 

of proteins and peptides. More specifically, investigations were carried out on oncogenic protein-

kinases involved in the signaling of the NF-κB pathway.  

 NF-κB transcription factors are sequestered in the inactive state by IκB proteins and are 

released upon activation of the canonical or the non-canonical pathway. The canonical pathway is 

dependent upon the activation of IKKβ and the non-canonical pathway is dependent upon the 

activation of NIK. In Chapter 3, molecular dynamics simulations of IKKβ were used to investigate 

how conformational changes and protein-protein interactions within multimeric assemblies are 

influenced by changes in the interacting subunits, as dimerization of IKKβ is critical for its 

activation, although it is not required for its reactivity.1 An approach was designed to characterize 

the changes in the inactive and active states by contrasting and quantifying the changes in protein-

protein association and dissociation upon post-translational modification.  

Thermodynamic properties were monitored for simulation stability. Hydrogen-bonding 

interactions, salt-bridges, and conformational changes were compared among the monomer, the 

two different dimers and the tetrameric arrangement of IKKβ and suggest that the tetrameric 

structure mediates a global stability for the enzyme. Additionally, the results highlight that 



130 
 

modeling a single monomer of the protein kinase is insufficient for capturing the associated 

structure-activity relationships as the oligomeric assembly is significant for function. 

In Chapter 4, molecular dynamics simulations and modeling techniques were employed to 

differentiate the structural dynamics of the NF-kB Inducing Kinase (NIK) in its native and mutant 

form, and in the absence and presence of salt concentration in efforts to probe whether changes in 

the ionic environment stabilize or destabilize the NIK dimer. Analyses of structure-activity and 

conformational-activity relationships indicate that the protein-protein interactions are sensitive to 

changes in the ionic strength. Ligand binding pockets either compress or expand, affecting both 

local and distal intermolecular interactions, yielding further insight into how changes within the 

intracellular microenvironment affect molecular mechanisms and how small molecules may bind.  

Ligand-binding sites in rational drug design are often proposed from static conformational 

states from X-ray crystallography that neglect intrinsic dynamics induced by natural molecular 

and physiological environments. As the environment of a molecular system directly impacts the 

structure, it is reasonable that this impacts the activity. Although changes in the ionic concentration 

are known to impact protein-ligand binding, the specific role and mechanism that assist and hinder 

ligand binding remain elusive for many protein kinases.  Additionally, cancer cells are unique 

because they are highly expressed with features that aid the cell in maintaining its oncogenic 

homeostatic conditions, including the expression of heat shock proteins, ion transporters, and other 

complexes that regulate the intracellular environment (eg. pH and ionic strength). Using the 

modeling schemes proposed in Chapters 3 and 4, future investigations should include investigating 

related Serine/Threonine and Tyrosine protein kinases to better understand structure-activity and 

conformational-activity relationships mediated by changes in the intracellular environment for 
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these protein kinases and how these changes may induce alternative mechanisms leading to 

oncogenic activity.  

Another aspect of this work includes the assessment of different theoretical methods for 

the prediction of physical properties of peptides and drug molecules. In Chapter 5, ab initio and 

density functional methods were used to characterize the selectivity of radical-mediated 

fragmentation by evaluating site, conformation, and pathway trends of small trialanine peptides 

resembling a β-strand and a β-turn.2 Comparisons of reaction enthalpies show that the diamide 

pathway is more energetically favorable than the α-amidation pathway and that both pathways are 

site and conformationally selective. An evaluation of electronic structure methods illustrates that 

more approximate methods can provide insight on which fragmentation pathway is preferred but 

are unable to discern site or conformational selectivity and that sophisticated methods that account 

for electron correlation are needed for reactions of radicals to proteins. All results and conclusions 

in Chapter 5 were based on gas-phase computations, whereas the target is at understanding larger 

biomolecules. While these findings offer a fundamental insight into how proteins can respond to 

reactive oxygen species, producing fragments with predictable terminal functional groups, this 

study neglects solvent-induced conformational rearrangement and the impact of varying side 

chains on the reaction pathways. These are of interest for further investigations because they will 

allow for an enhanced understanding of protein fragmentation as well as the ability to predict the 

structural features involved in such mechanisms, which is significant towards understanding 

oxidative stress. As indicated in the results, additional methods should be considered in future 

work including both quantum mechanics and molecular mechanics methods to account for 

conformational rearrangements.  
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In Chapter 6, several density functional methods were employed to estimate the partition 

coefficients of drug-like molecules from the transfer free energies in cyclohexane and water.3 

Three classes of hybrid density functionals were assessed and the results highlight that functionals 

with less parameterization outperformed those deemed as more sophisticated functions. The results 

also highlight some of the inadequacies of the modeling schemes. Moving forward with first 

principle predictions of physiochemical properties, partition coefficients are a measurement of 

only the neutral forms of the solute, while distribution coefficients include all charged and neutral 

tautomers of the solute distributing between two immiscible solvents. Future investigations should 

include efforts at predicting the distribution coefficients by considering reactions of the of the 

solute ion solution and by further assessing the performance of other ab initio and density 

functional methods as well as solvation models. 
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