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ABSTRACT

CRYSTAL PLASTICITY MODELING OF THE DEFORMATION OF BCC IRON AND
NIOBIUM SINGLE CRYSTALS

By
Aboozar Mapar

The conventional Schmid-type crystal plasticity models cannot predict the deformation of
BCC polycrystals or single crystals. Therefore, in this study, a non-Schmid crystal plasticity
model was developed for single crystal ferrite which has a BCC structure. The average error
of this model in predicting the force-displacement response of these ferrite single crystals is
4.3%, while the average error of the Schmid-type crystal plasticity model is 10.1%.

To address the shortcomings of the conventional Hill-type hardening rule, two novel
hardening models were derived, developed, and compared to the classical hardening rule.
These models are named the Differential-Exponential and the Dynamic hardening rules.

The Differential-Exponential hardening rule was implemented into the non-Schmid crys-
tal plasticity model. This model was then used to predict the deformation behavior of the
single crystal ferrite micropillars that show stage I and stage II hardening. The average error
of this model in predicting the force-displacement of these ferrite micropillars is 3.7%.

The Dynamic hardening rule was implemented into the Schmid-type crystal plasticity
model. This enabled the crystal plasticity model to accurately predict the deformation
behavior of Nb single crystals. The average error in predicting the stress-strain curves using
the Schmid-type crystal plasticity model and the Dynamic hardening rule is 6.8%, while this
error with the classical hardening rule is 8.9%.

Finally, the hydroforming of an oligo-crystal Nb tube with several large grains was sim-
ulated with the Schmid-type crystal plasticity model and the Dynamic hardening. The goal
was to assess the accuracy of the new hardening model in simulating the tube hydroforming

process where the material undergoes the more complex biaxial deformations. Qualitatively,



the model predicted the location of the crack and the areas with significant circumferential

strain in the hydroformed tube effectively.
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CHAPTER 1

INTRODUCTION

Computational modeling has become an integral part of the design process in the modern
industry. Accurate models speed up design processes, reduce the time to commercialize
products and reduce the costs. The current deformation models are generally developed
for polycrystalline materials. Randomly-orientated polycrystals are less anisotropic than
single crystals. This means that the dependence of physical and mechanical properties of
randomly-orientated polycrystals on the direction of testing is often less evident than that
of single crystals. Therefore, the behavior of these materials can be modeled with simpler
models.

The available models for deformation of FCC materials are usually more accurate than
the models for BCC materials. FCC materials have 12 slip systems while BCC materials
have 48 slip systems. FCC materials have close-packed planes, so their active slip systems
can be clearly distinguished. On the other hand, there is no close-packed plane in BCC
materials, which causes ambiguity in finding the active slip system in these materials.

Crystal plasticity theory assumes that all deformation takes place because of dislocation
slip on a slip plane. This theory uses Schmid law; according to which dislocations start
slipping when the resolved shear stress on the dislocation plane parallel to slip direction
reaches a threshold. In BCC materials, the core of a screw dislocation is non-planar and
spreads on three planes. Therefore, stresses on planes other than the slip plane can affect
the threshold value for initiation of dislocation slip.

The above are some of the reasons why conventional crystal plasticity models cannot
predict the deformation behavior of BCC single crystals. In this study, a BCC crystal
plasticity model was developed. Next, multiple approaches were used to improve the accuracy
of the model for BCC materials including single crystal ferrite (a-Fe) and niobium (Nb).

A non-Schmid crystal plasticity model was developed and verified for ferrite and Nb.



This model could predict the deformation behavior of ferrite.

Each crystal plasticity model has a hardening rule that predicts the increase in flow
stress (yield stress) as the strain increases. The conventional Hill-type hardening rule cannot
accurately estimate the hardening of BCC materials. Therefore, two novel hardening models,
the Differential-Exponential hardening rule and the Dynamic hardening rule, were developed.

The Differential-Exponential hardening rule was developed to predict the deformation
behavior of ferrite micropillars that show stage I and II hardening. This model uses two
distinct hardening equations to predict the rate of hardening of stage I and II of deformation
of single crystals.

The Dynamic hardening rule was developed for single crystal Nb. This model reduces
the rate of hardening during single slip deformation and increases the hardening when more
slip systems activate. The Dynamic hardening rule increases the prediction accuracy of the
Schmid-type crystal plasticity model for Nb.

Finally, a large grain Nb tube was hydroformed. The process was simulated in Abaqus®
and the behavior of Nb under the loading was predicted using the Dynamic hardening model.
The location of the crack and areas with the highest circumferential strain predicted by this
model match with the experiment, although the magnitude of strains does not.

The rest of this dissertation is organized as follows. A review of literature is presented
in Chapter 2. Chapter 3 explores some of the methods that can be used to improve the
predictions of crystal plasticity models for BCC materials. Chapter 4 discusses the develop-
ment of a non-Schmid crystal plasticity model and derivation of the Differential-Exponential
hardening rule. Predictions of the Schmid and non-Schmid models are compared and the
Differential-Exponential is verified with the experiment. Chapter 5 presents the development
of the Dynamic hardening model. This chapter also compares the predictions of the Hill-type
and the Dynamic hardening rules for single crystal Nb. Chapter 6 discusses the modeling
of the hydroforming of a large grain Nb tube with the Dynamic hardening rule. Chapter

4 through Chapter 6 are presented as comprehensive papers. Among these, Chapter 4 has



been published. Chapter 7 discusses the findings of this dissertation. Conclusions of this
dissertation and proposed future works are presented in Chapter 8.

This document has two appendices. Many of the equations in this dissertation are written
using the Einstein (index) notation. Consequently, familiarity of the reader with this subject
is crucial, so Appendix A briefly reviews the Einstein notation. Appendix B covers the
calibration method that was used in this dissertation to find the material parameters of the

crystal plasticity models.



CHAPTER 2

LITERATURE REVIEW

The material response to loading can be divided into two general categories; elastic and
non-elastic. The material application determines the desirable type of response. In many
applications, the part or product should only deform elastically under the loading, like the
beams used in buildings, or the part or product would be useless. It is much easier to predict
the elastic behavior than the plastic behavior. In the 17th century, Robert Hooke modeled
the elastic deformation of materials [1]. Although Hooke’s law is only a first approximation,
it is what modern elasticity theory is built upon. The next step was to predict the yielding
point. In 1864, Henri Edouard Tresca proposed a yield criterion to predict the onset of
plastic deformation [2]. In 1913, Richard Edler von Mises [3] suggested another criterion
that gave better predictions of yielding than the Tresca criterion.

Plasticity, on the other hand, is the main area of interest in manufacturing processes.
One needs to know the minimum load needed for initiation and continuation of deformation.
Modeling the plastic deformation is more complicated than modeling the elastic deformation.
In fact, it was not until 300 years after Hooke, that John Holloman [4] proposed his well-
known equation for work hardening. This equation relates the stress and strain after yielding

and works for many steel alloys and nonferrous metals.
o=Ke" (2.1)

In this equation, o is the true stress and ¢ is the true strain after yielding. n is the slope
of the stress-strain curve on a logarithmic scale, which is also known as strain-hardening
exponent, and K is a material constant. Hollomon’s work hardening equation gives good
insight to the behavior of metals in uniaxial deformation, but it is far from sufficient for
designing deformation processes. In most manufacturing processes, stress states are more

complex than uniaxial deformation. Moreover, the flow stress of many metals changes when



the direction of the loading changes. While Hollomon’s law works for isotropic materials, it
has no means to capture changes in the deformation behavior of anisotropic materials.

Some of the physical properties of materials change with the direction in which they are
measured. Materials that show this kind of directionality are called anisotropic with respect
to the measured property. A material can be isotropic with respect to one property and
anisotropic with respect to another [5].

Applying a stress to a polycrystal with a random grain orientation causes crystals to
rotate and elongate in order to accommodate the deformation. This creates a crystallographic
texture (a set of preferred crystal orientations) that can cause anisotropy in the metal.
Anisotropy can also happen due to the existence of residual stress, lamellar inclusions, or
cavities. Anisotropy is usually undesirable, as it causes non-uniform deformation, like earing
in deep drawing [6]. This makes designing a deformation process more challenging, as one
must consider the non-uniform behavior of the material under loading.

Anisotropy should be considered in designing deformation processes. Simple yield criteria
like Tresca or von Mises are not accurate enough for designing an effective deformation. In
fact, models capable of predicting material behavior under complex loading conditions and
varying crystal orientations are needed to reduce the cost and increase the speed of designing
processes. Without such models manufacturing of many of modern parts would be virtually
impossible.

Numerous material models are available in the literature; ranging from the empirical
models developed based on extensive experimental data to phenomenological models and
crystal plasticity. Some of these models are reviewed in §2.1 through §2.2.

Over the years many researchers [7-21] have worked on modeling the deformation be-
havior of materials. They have used different methods to capture this behavior. One of the
main features of each deformation model is the yield criteria. For a given stress state, these
models define boundaries within which the material deforms elastically. If the stress state

falls beyond such boundaries, the material will deform plastically.



The rest of this chapter is organized as follows. In §2.1, some phenomenological yield
models are reviewed. These are the more familiar models and are often easier to use. Some
of these model can even be calculated by hand. Thus, these models can be used to roughly
estimate the type of deformation that an applied stress state causes.

Another category of the models is crystal plasticity which is explained in §2.2. These
models are more sophisticated than the phenomenological models. In most cases, computer
codes are needed to find the type of deformation these models predict for a given stress state.

§2.3 reviews the hydroforming process. Niobium and ferrite are the materials that were

studied in this dissertation. §2.4 explains the motivation for investigating these materials.

2.1 Phenomenological yield models

Anisotropy affects almost all modes of deformation. Therefore, special care should be
taken when using isotropic plasticity theories. These theories are only valid as an approx-
imation to anisotropic materials. Many researchers have tried to address this issue. In
1948, Hill [7] extended the von Mises criterion and proposed a quadratic yield function for
anisotropic materials. To derive this criterion, he assumed that the hydrostatic pressure does

not contribute to yielding.
2 2 2 2 2 2
F (ayy — azz) +G (0 —022) "+ H (am — ayy) +2Loy, +2Mo%, +2Noy, =1 (2.2)

In this equation, F, G, H, L, M, and N are anisotropic constants, and o;; (where
i,7 € {x,y, 2z}) are components of stress tensor. This form is useful when the principal axes
of anisotropy are chosen as the reference axes. Anisotropic axes are taken as orthogonal
directions on the three mutually perpendicular symmetry planes. This equation will have a
different form under an arbitrary choice of axes.

The Hill 1948 criterion is, in fact, a yield surface that can be used to predict the defor-
mation behavior of polycrystalline materials. Although this is an improvement over the von
Mises criterion, it is not sufficiently accurate in predicting the onset of plastic deformation.

Therefore, in 1979, Hill [22] revised his yield surface and proposed the following model for



orthotropic materials in terms of principal stresses.

flog —a3|" + glog—o1|" + hlor — oo™ +a 201 — 09 — 03|™

+b|209 — 03 — 01" + ¢|203 — 01 — o3| = 7" (2.3)

Similarly, this equation is valid when the axis of loading and orthotropy are the same.
Here o; (where i = 1...3) are the principal stresses. The exponent m > 1 and f, g, h, a,
b and ¢ are material constants and & is the effective stress. f, g and h are positive and if
divided by ¢ they turn back to respective coefficients (F', G, H) in Hill 1948.

In 1980, Logan and Hosford [23] proposed a model similar to the Hill 1979 model and
showed that it could give a good approximation of yield surfaces for anisotropic BCC metals.

The Hosford and Hill 1979 yield criteria are expressed in terms of principal stresses.
In 1990, Hill proposed a generalization of his 1979 model that was expressed in a general
coordinate system for a sheet.

m
2

m o™ 2 2
orx + ayy‘ + —m ‘(Ux.% — ayy) + 4amy

m
o

+ o2, + azy + 20%3/ {—2@(053952 — Uny) + b(ozz — ayy)2} = (203)" (24)

where o, and 7 are the yield stress in equi-biaxial tension and pure shear parallel to or-
thotropic axes, a, b and m are material constants and m > 1. To incorporate shear stresses,

in 1989, Barlat and Lian [24] expressed these yield functions in a general plane stress state

(Y1d89).
a|K1 + KoM + a| Ky — KoM + ¢ |2Ko)M = 6M (2.5)
where
K| = Oxx + hoyy (2.6)
2
Orx — hayy2 9 9
Ky =\ 2210 | g2y (2.7)

in which the coefficients a, ¢, h and p are material parameters.



In 1991, Barlat et al. [25] proposed another yield criteria (Y1d91) that used all six inde-
pendent components of a stress tensor. Thus, it could be used for any stress state. Habraken
and Dautzenberg used Y1d91 to predict the earing of an aluminum alloy in cup drawing [26].

In 2000, Barlat et al. [27] proposed another plane stress model (Y1d2000-2d). Yoon et al.
[28] compared this model with older Barlat yield criteria (Y1d91, Y1d94, and Y1d96). They
showed between the aforementioned criteria, Y1d2000-2d is the most accurate in predicting
the earing profile in aluminum cup drawing.

In 2004, Barlat et al. [29] proposed a 3D stress yield criteria (Y1d2004-18p) with 18

parameters.
/ 1"na / 1na / 1a / 1"a / 1a
|Sl_51 +}SI_SQ +‘SI_S3} +’52_Sl‘ +’52—52’
+ 195 — 51"+ |5 — SY|* + S5 — S5 |" + |5 — S| = 46" (2.8)
where a is a material constant and & is the effective stress. S = [S11, S22, S33, S23, S31, 512]T

is vector containing the deviatoric stress components along the orthotropic axes of material.

This vector is linearly transformed to S’ and S” with the following equations:

s'=cC's (2.9)

s"=c"s (2.10)

The linear transformations C’ and C” are defined as follows:
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0
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0

o 0 0 0 -~

0 0 0 0 0 —cg
In these matrices c; j and c;'j are constants that define the anisotropy of the material.
These linear transformations are, in fact, weighting matrices that define the anisotropy of
the material. SZ( and Sg’ (where i = 1...3) are the principal values of the linearly trans-
formed deviatoric stresses S’ and S”. Each of ¢’ and C” has nine independent components.
Therefore, the final form of this model has 18 material parameters. One needs the experi-
mental data from a balanced biaxial tensile test and uniaxial tensile tests performed in seven
directions between the rolling direction (RD) and transverse directions (TD) to find these
parameters.
Grytten et al. [30] used Y1d2004-18 and Voce isotropic hardening to predict the defor-
mation of an aluminum alloy sheet. Souto et al. [31] used Y1d2004-18 combined with the

Chaboche isotropic-kinematic hardening law to predict the deformation response of a mild

steel.

2.2 Crystal plasticity models

Crystal plasticity is a method of predicting the plastic deformation of metals which
assumes that the deformation takes place only by dislocation slip on crystal planes. Crystal
plasticity is mainly based on the 1938 work of Sir Geoffrey Ingram Taylor [32]. He observed
that slip in FCC aluminum crystals happens on octahedral {111} planes, parallel to the
(110) edges of each plane. An octahedron has four pairs of parallel planes; hence, there are
four independent slip planes and three directions on each plane. Thus, 12 slip systems will

be available in each crystal.



Taylor then resolved the shear stress on these planes parallel to each direction and noticed
that the slip direction with the highest resolved shear stress accommodates the deformation.
He further studied the grain structure of a drawn wire and concluded that all grains had the
same amount of strain as the bulk [32].

In 1928, Sachs assumed grains in a polycrystal under loading experience the same stress
[33]. Taylor however, argued for all grain boundaries to remain in contact during the defor-
mation, all grains in a polycrystal should experience the same macroscopic strain [32]. In
1964, Hutchinson [34] assumed the macroscopic plastic strain in a polycrystal is the average
of strain in all grains. A shear strain v* on a slip system « with slip direction m® and slip

plane normal n® causes a plastic strain e that can be calculated as [34]:

1
e = 5 (m* @n% 4+ n®* @m“) v (2.13)

This equation is based on the Schmid law [35] that states dislocation slip happens when
the resolved shear stress on the slip plane of a dislocation and parallel to its slip direction
reaches a critical value. The symmetric part of the Schmid tensor, d%, is used in the above

equation and is defined as follows:

1
d* = 5 (m® @n® +n* @m®) (2.14)

Summation of the shear strain over all N slip systems gives the total shear strain in a

grain.
N

e= Y d%" (2.15)

a=1

The dislocation motion on slip system « starts when the stress applied on this slip system

reaches a critical value Tya. Therefore, the yield criterion for slip system « is defined as:

o d* =1 (2.16)
In this equation, the colon operator is the double dot product of tensors, which produces a

scalar result. This operator is defined in Appendix A.
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2.2.1 Crystal plasticity yield surface

To predict the yielding of a crystal with multiple slip systems, a yield surface is required.
Toth et al. [36] proposed a yield surface based on Taylor’s model that is more accurate than
the yield criterion used by Hutchinson, equation (2.16). Darrieulat and Piot [37] developed
a yield surface for FCC single crystals based on the Toth model. This model includes an
exponent n, and reduces to Hill’s 1948 yield model when n = 2. The yield surface for a FCC

single crystal proposed by Darrieulat and Piot [37] is defined as follows:

12 n %
fa(s) = ( > S;j > (2.17)
a=1 Y

where s is the deviatoric part of the stress tensor. According to this equation, material is at
yield when the quantity in the parenthesis is one.

Following this approach, Zamiri and Pourboghrat [38] developed a method to define the
yield function for crystals with multiple slip systems, where the yield function (with internal

variables denoted by u) for a single slip system is described by:

lo: d¥|
_ —1=0 2.18
faler) = 75 219

where o is the stress tensor. Dislocation glide on slip system «a commences when the function
fa(o,u) reaches zero. This equation is similar to the Darrieulat and Piot yield function in
equation (2.17).

By summing the equation (2.18) for N slip systems, one can define a yield surface for
a crystal. However, the yield surface defined this way is not smooth. As will be discussed
later, the increment of plastic strain is parallel to the normal of yield surface. A non-smooth
yield surface introduces ambiguity in calculation of the increment of plastic strain at the
non-smooth conditions. To define a smooth yield surface, Zamiri and Pourboghrat [38] used

the following equation to combine all yield surfaces for « slip systems into one yield function.

o,u :in neX p_f w_
N e FIC
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Where py is the so-called closeness factor, which determines the proximity of f (o,u) to
the non-smooth yield surface, and p is a parameter to further tune the yield surface. This
equation was developed from a constraint optimization scheme and defines a smooth envelope
inside the surfaces for each slip system defined by equation (2.18).

The model Zamiri and Pourboghrat developed accurately predicts the deformation be-
havior of FCC materials, however, it falls short of predicting the deformation behavior of
BCC single crystals like Nb or a-Iron. This model does not account for the non-planar core
of screw dislocation in BCC materials, which is among the reasons for this failure. The
reasons for the failure of this model in predicting the deformation behavior of BCC single

crystals are discussed in detail in Chapter 4.

2.2.2 Hardening rule

Yield criteria alone can only predict the onset of plastic deformation. To predict the plastic
deformation behavior of the material beyond the initial yielding one needs a hardening
model. These models predict how the yield surface expands, and the flow stress (yield
stress) increases with the increase of strain.

Taylor’s hardening rule suggests that the hardening is proportional to the total strain in

a grain. In 1964, Hutchinson [34], used the incremental form of Taylor’s hardening rule as:

it =hy 4 (2.20)
«

in which / is the hardening moduli,y® is the increment of shear strain and 7;' is the increment
of shear stress on slip system «. With the above definition, the yield surface expands
uniformly. This is inconsistent with the Bauschinger effect, which states hardening in the
direction of plastic flow (e.g., tension) reduces yield strength in the reverse direction (e.g.,
compression). Thus, Taylor hardening model cannot predict reversed loading. It also cannot

model the soft behavior of single slip as well as the high hardening rate of multiple-slip.

12



In 1966, Hill [39] suggested the following hardening law, based on Taylor’s hardening

rule.

o Z e ‘75) (2.21)
B

Where ﬁﬂ is the increment of shear strain on slip system 3. This equation reduces to Taylor’s
hardening rule, when all components of the hardening moduli matrix hoB are equal.

Several authors defined relationships for hB. In 1970, Hutchinson [40] suggested the
following:

hOP = B 4 (h® — B™)§*P (2.22)

where A" and h® are the hardening rates for multiple and single slip, respectively. 528 s
the Kronecker delta.
In 1983, Asaro [41] summarized prior works and showed that the hardening moduli can

be defined with the below equation.
hoB = pb [q +(1— q)éaﬁ] (no summation on ) (2.23)

In this equation, ¢ is the latent-hardening ratio, which is defined as the ratio of latent-
hardening to self-hardening rate and has values in the range of 1.0 < ¢ < 1.4. Diagonal

components of hoP are called self-hardening and off-diagonal components describe latent-

equation.

B

hardening. h” is a function that defines the hardening rate and is defined with the following
LT
Ts

“ B
- sgn (1 - TL) (2.24)
Ts
B

where hq is the initial hardening rate, 7, is the current slip resistance on slip system (3, 75

KB = hy

is the saturation value of the slip resistance, and finally a is the exponent controlling the
hardening rate. Several other useful descriptions of hP are described in the work of Brahme
et al [42].

Shear stress vs. shear strain curves of single crystals that are initially orientated for

single slip show three distinct hardening stages. These stages are shown in Figure 2.1.
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The hardening rate just after yielding is low. Most of the deformation in this stage is
accommodated by the primary slip system and the hardening is chiefly due to self-hardening.
The low hardening rate corresponds to a large dislocation mean free path and few barriers.
This stage is known as “easy glide” [43].

The second stage, which is known as “linear hardening”, starts when other slip systems
activate and interact with the primary slip system. This reduces the mean free path of
dislocations and considerably increases the hardening rate. During this stage the dislocation
density increases [43].

The hardening rate eventually decreases which signals the onset of the third stage, “ex-
haustion hardening”. The high stress and dislocation density activate cross slip and dynamic
recovery which in turn reduce the accumulation of dislocations in the material.

Although Hill’s hardening rule, equation (2.21), is widely used in crystal plasticity, it can
only model the stress-strain of the first stage of the deformation of single crystals, where the

hardening rate does not change significantly during the deformation.

Shear stress, T

Tef Stagel

o
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Figure 2.1: Shear stress - shear strain curves of single crystals that are initially orientated
for single slip show three distinct stages. Each stage has a different hardening rate that is
due to the different underlying mechanisms. Figure form [43].
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2.2.3 Important aspects of crystal plasticity models

The crystal plasticity theory proposed by Taylor phenomenologically models the dislocation
slip of a close-packed crystal structure. Therefore, it can only accurately model an FCC
crystal that deforms just by dislocation slip. This type of crystal plasticity does not directly
model grain boundaries or subgrain structure, and does not consider the temperature de-
pendency of deformation. Moreover, this type of crystal plasticity model cannot accurately
predict the behavior of metals that have deformation or transformation twinning, show a
high temperature or strain rate sensitively, or do not have a close-packed crystal structure.
The fundamental equations of crystal plasticity do not have any length scale parameters.
Therefore, a crystal plasticity that gives accurate prediction for a microscale sample does
not necessarily produce reasonable results for a macroscale sample of the same material.
Over the years, numerous crystal plasticity models have been developed to fix the short
comings of the classical crystal plasticity theory and to increase the accuracy of predictions.
Darrieulat and Piot [37], suggested an analytical formulation based on Schmid law to gen-
erate a yield surface for single crystal FCC metals. Buchheit et al. [44] developed a crystal
plasticity model for FCC materials that tracks crystal orientation of grains and predicts the
subgrain evolution. Geers et al. [45] developed an extended crystal plasticity scheme that
models dislocation climb in addition to dislocation glide. Hansen et al. [46] developed a rate
dependent dislocation density based crystal plasticity model that considers the temperature
effects in the modeling of dislocation motion. Bittencourt [47] proposed a crystal plasticity
model that considers dislocation slip and deformation as independent variables. He also
included an artificial viscous effect. Depending on the value of the viscous term, the model
can be rate dependent or rate independent. These areas form some of the most important
aspects of the crystal plasticity theory. Therefore, some recent works in each of these areas

are briefly reviewed below.
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Rate-dependent vs. rate-independent crystal plasticity

Two stress update algorithms are used in crystal plasticity models, namely rate-independent
and rate-dependent. The rate-independent crystal plasticity models, which are designed for
low homologous temperature [48], assume that the dislocation slip is rate-independent. In
this type of crystal plasticity, one needs to find the set of active slip systems. Often, the
rate-independent crystal plasticity is ill-conditioned. The actives slip systems cannot be
uniquely identified, because they are linearly dependent [48-50]. In other words, the yield
surface defined in this type of crystal plasticity is not smooth [38], which cause ambiguity
in finding the slip rate. One way to overcome this issue is to use rate-dependent crystal
plasticity. This method does not distinguish between the active and inactive slip systems
[50]. Instead, the slip rate at each slip system depends on the slip resistance on that slip
system. Therefore, the activity of each slip system can be uniquely identified [48, 50].
Zhang and Li [51] used a rate-dependent crystal plasticity to calculate the lattice rotation
and studied orientation stability in biaxial tension of magnesium alloy sheets. Li and Yang
[52] worked on improving the efficiency of crystal plasticity. They used Taylor expansion to
approximate the rate of shear strain with a set of linear equations and used them to develop
an explicit integration algorithm. They showed that by implementing this model in parallel
processing, the efficiency of the crystal plasticity could be improved. Zhang et al. [53]
developed a semi-implicit integration algorithm. This algorithm facilitates the prediction
of evolution of grain orientations. They implemented this algorithm in a rate-dependent
crystal plasticity and simulated the earing profiles. The predictions of their model were in
good agreement with experiments. Nguyen et al. [54] developed a rate-dependent crystal
plasticity model for single crystals. This is a dislocation density based model and uses void
growth dynamics to model damage. They proposed a scalar equivalent dislocation density
parameter that models the effect of dislocation density on all slip systems in the crystal.
Tajalli et al. [55] used a rate-dependent crystal plasticity to simulate micro-machining of

copper. They included a thermal softening term in their crystal plasticity model to account
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for the heat generated during the high strain rate micro-machining. They concluded that
the initial orientation of the material affects the morphology of the chip.

Forest and Rubin [56] developed a rate-independent crystal plasticity. They compared
their model with a quasi-rate-independent crystal plasticity for single crystals of a nickel
based superalloy and single crystal copper. They argued that their model improves the
computational efficiency and reduces the CPU time. Mohammed et al. [57] used a rate
independent crystal plasticity model to predict the bulging of a three-phase advanced high
strength steel. They started with a known volume fraction of each phase and assigned a
phase distribution to each material point within the model. Thereofre, the overall volume
fraction of all phases matches with experiment. They compared the prediction of their model
with the Nakajima bulge test of an advanced high strength steel, and concluded that the

model gives accurate predictions.

Phenomenological vs. dislocation density hardening rules

Many of the early crystal plasticity models used a phenomenological hardening rule [34, 39—
41]. According to this hardening rule, which is presented in §2.2.2, the increase in the slip
resistance of a slip system is a function of the shear strain on all slip systems. An alternative
to this hardening rule is the dislocation density based hardening rule which models the
evolution of dislocation density during the deformation [58-61]. This hardening rule, which
is discussed in more detail in §3.2, defines the increase in the dislocation density of a slip
system as a function of the shear strain on all slip systems.

Dislocation density based crystal plasticity models are widely used. For instance, Grilli
et al. [62] proposed a crystal plastic model based on dislocation interactions for fatigue of
FCC metals. They modeled the formation of dislocation junctions at a continuum level, and
showed that this model can predict the formation of dislocation walls after cyclic loading.
Gan et al. [63] proposed a rate-dependent elastic viscoplastic crystal plasticity for pure

magnesium. In addition to dislocations slip, their model accounts for tensile and compressive
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twinning. They studied the effect of each mechanism on deformation and concluded that for

magnesium each twining system and its hardening law need to be individually modeled.

Modeling deformation twinning in crystal plasticity

Many researchers [64-70] haved studied and modeled deformation twinning in crystal plas-
ticity. Tadano et al. [71] developed a crystal plasticity model for polycrystal magnesium. In
this model they considered the deformation by twining in addition to the dislocation slip.
They assumed at each material point only one twin system can be active and derived an
equation for the evolution of volume fraction of deformation twining. Wong et al. [72] pro-
posed a crystal plasticity model for twining induced plasticity (TWIP) and transformation
induced plasticity (TRIP) of high manganese steel. They used a dislocation density based
hardening model. In addition to twinning and dislocation slip, their model also accounts
for phase transformation of martensite. This model uses the temperature dependence of
stacking fault energy to distinguish the dominant deformation mode at each temperature.
This model predicts the deformation to be dominated by martensitic phase transformation
at low temperatures, twinning at mid-range temperatures, and dislocation slip at high tem-

peratures.

Grain boundary and length scale in crystal plasticity

The crystal plasticity theory does not directly model the grain boundary. This is not an issue
in modeling a single crystal, but the effect of grain boundaries needs to be considered for
polycrystals. The effect of grain boundaries in materials behavior is indirectly accounted for
in the material parameters (e.g., critical resolved shear stress) of crsytal plasticity. However,
this means that material parameters will depend on the grain size. Consequently, a set
of parameters that gives accurate predictions for a material may not be accurate for the
same material with considerably different grain size. Thus, for a more accurate modeling of

polycrystal behavior one needs to consider the effect of grain boundaries.
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Many researchers have worked on modeling the grain boundary with crystal plasticity
[73-78]. Benedetti et al. [79] proposed a method to model a 3D grain boundary using crystal
plasticity. They modeled each grain as elasto-plastic domains. They used boundary integral
equations and modeled the polycrystal as an aggregate of single crystals. Benedetti et al.
formulated the grain boundary problem only in terms of boundary displacement and traction.

Ghorbani Moghadam et al. [80] proposed a framework for a grain-size dependent crystal
plasticity, by defining core and mantle regions within a grain. The core is the inner part of
the grain and the mantle is the region affected by the grain boundary where the resistance
to dislocation pile up and nucleation is greater than the core. Such resistance increases
the yield stress and reduces the modulus of strain hardening. Ghorbani Moghadam et al.
validated their model by studying the relationship of yield stress and single crystal grain size.
Their model produced similar results as the Hall-Petch relationship. They also modeled the
deformation of a polycrystal copper sample and showed that their model could predict the
grain-size dependent behavior of this material.

Many crystal plasticity models neglect the length scale. As with the grain boundary,
the effect of length scale is indirectly incorporated in the material parameters. Therefore, a
model that gives accurate predictions at one scale may need to be re-calibrated to work for
a significantly different scale.

Many researchers have worked on incorporating the length scale in crystal plasticity [81—
86]. Aoyagi et al [87] developed a crystal plasticity model that accounts for grain boundaries
and dislocation sources. Thus, this model indirectly considers the effect of the grain size.
Counts et al. [88] proposed a non-local integral method that accounts for grain size effects.

Liu et al. [89] developed a size-dependent crystal plasticity and studied the effect of
sample size on the deformation of copper single crystals. They used a modified dislocation
density hardening model that has a phenomenological size-depended term. They showed
their model could predict the size effect in bending and compression.

Castelluccio and McDowell [90] argue that most crystal plasticity models only account for
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dislocation interactions without considering the effect of length scale on dislocation structure
at mesoscale. To address this issue, they propose a frame work for cyclic loading of metals
that accounts for the dislocation evolution and structure at mesoscale. They introduced a
method for calculating back stress that depends on the morphology of dislocation structure

at mesoscale. They verified their model for single crystals and polycrystals of nickel.

Temperature dependence in Crystal Plasticity

Although the deformation behavior of metals is temperature dependent, the classical theory
of crystal plasticity does not have a temperature dependent term. Therefore, a set of material
parameters of a crystal plasticity model is only valid for a specific temperature range.

Many researchers have studied temperature-dependent crystal plasticity models [91-93].
He et al. [94] proposed a temperature and rate dependent constitutive model which is based
on unified creep-plasticity theory. In this model the inelastic strain rate is defined as function
of drag stress, which itself is a function of temperate and is rate dependent. He et al. simu-
lated the uniaxial tensile test of high strength steel and solder alloys at various temperatures
and strain rates with this model. The results showed that their model can accurately predict
the experimental data.

Wang et al. [95] developed a temperature dependent crystal plasticity model based on
the elastic visco-plastic self-consistent frame work. They defined the yield by modeling the
dislocation de-pinning which itself is a function of temperature as well as the resolved shear
stress. The model also predicts the rate sensitivity by defining the shear rate as function of
activation energy of dislocation de-pinning.

Yu et al. [96] developed a rate dependent crystal plasticity to predict the cyclic deforma-
tion of super-elastic NiTi shape memory alloy. They accounted for the heat generated from
inelastic dissipation and latent heat of transformation. Yu et al. compared the predictions of
their model with experiments and concluded that the model matches with the experiment.

Liu et al. [97] developed a crystal plasticity model for temperature dependent behavior of
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magnesium. Their model accounts for dislocation slip, twining and the interaction of these
two. In this model both dislocation slip, and twining are temperature dependent. They
argued that their model could capture the Hall-Petch effect in a range of temperatures, and
concluded that the ductility of magnesium increases with temperature because of an increase

in the non-basal slip activity.

Non-Schmid crystal plasticity

The Schmid law was developed for FCC materials based on the fact that they have a closed-
packed crystal structure. Therefore, the slip plane and slip direction can be easily identified.
BCC materials, however, do not have a close-packed structure. Finding the active slip
system in BCC materials is more challenging than FCC materials [98-102], because slip
in BCC materials can happen on multiple planes in the same slip direction. Additionally,
dislocation slip in BCC materials may be affected by stresses other than the one resolved on
the slip plane and long the slip direction [11, 103-105]. This is known as the non-Schmid
behavior. Crystal plasticity models for BCC materials are usually more sophisticated than
the FCC models, since the dislocation slip behavior of BCC materials is more complicated.

Many researchers have studied the non-Schmid behavior of BCC materials [11, 16, 98,
103-109]. For instance, Ghanbarpour et al. [110] studied the crystal plasticity modeling of
a nickel based superalloy which was made through additive manufacturing. The model they
used accounts for non-Schmid stresses and has a dislocation density based hardening rule.
They also assumed that the initial slip resistance is size dependent and is affected by solid
solution hardening and precipitates. They concluded that their model could predict a wide
range of deformation response of this superalloy. More details on the non-Schmid modeling

of BCC materials is presented in §3.1.
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Multi-scale modeling

Crystal plasticity only models the behavior of materials at a crystal level. Often multiple
material models at different length scales are connected to each other to make an Integrated
Computational Materials Engineering (ICME) tool. Such multi-scale models can be used to
develop new materials and processes. Some examples of the recent development in multi-scale
modeling are discussed next.

Chandra et al. [111] created a multi-scale plasticity model for polycrystal copper that
bridges the atomics scale to continuum level. They started with atomistic simulation; fed
the results of that to a dislocation dynamic model; then found the parameters of a single
crystal plasticity model using the results of the dislocation dynamic model. Finally, they
simulated the tensile behavior of single crystal copper and used the results as inputs to a
polycrystal plasticity model. They showed that their polycrystal model could predict tensile
deformation behavior of polycrystal copper.

Kim et al. [112] developed a rate-dependent viscoplastic crystal plasticity model to predict
the Forming Limit Diagram (FLD) of a ferritic stainless steel. They found the material
parameters from experiments and used a multi-scale Marciniak-Kuczynski modeling scheme
to find the FLD of this steel.

Mellbin et al. [113] developed a multi-scale model for polycrystals by combining a rate-
dependent crystal plasticity and a vertex model of a polycrystal structure. The vertex
method predicts evolution of grain boundaries. In this method each triple junction is modeled
with a vertex and boundaries are defined by connecting the vertices. In addition, virtual
vertices (extra nodes on the grain boundary) are defined to capture the curvature of grain
boundaries. Mellbin et al. [114] implemented the crystal plasticity part of the model using
GPU-parallelization. This type of parallelization improves computational efficiency of crystal
plasticity models which use Taylor homogenization. In this type of homogenization, it is
assumed that all grains in a polycrystal are subject to the same strain. Therefore, at each

integration point stresses for a number of crystal orientation need to be calculated. These
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calculations can be done in parallel. Mellbin et al. achieved up to two orders of magnitude
reduction in the computation time by using GPU-parallelization.

Crystal plasticity models can be used to simulate a wide range of manufacturing pro-
cesses, including deep drawing [6], hydrofroming [115], and machining [55]. Before using any
model in predicting the deformation behavior of a material, however, one needs to find the
parameters of the model for the material. This is often done by fitting the model to results
of simple experiments like tensile tests. The predictions of the model need to be compared
to a new set of experiments to confirm the validity of material parameters. In addition, a
model that is fitted and validated only with tensile tests, cannot be safely used to predict a
more complex stress state. The model needs to be verified for complex stress states before

one can trust its predictions.

2.3 Hydroforming

Hydroforming is a process in which a sheet or a tube is deformed using fluid pressure. If
a die is used, the fluid pressure will force the material to conform to the shape of the die.
Hydroforming has been widely used for about half a century in the automobile industry [116,
117], aerospace [117] and sanitary uses [116, 117]. Many materials including steel [116, 118],
aluminum alloys [118-121], magnesium alloys [118, 122] and fine grain Nb [20, 123-125] can
be hydroformed.

Hydroforming interests many researchers. Asnafi [126] assumed the bulge of the tube has
a straight shape and developed a model to predict the limits of tube hydroforming. Using
this model, Asanfi and Skogsgardh [119] simulated the hydroforming of aluminum tubes.
Hwang and Lin [127] assumed the bulge of the tube has an ellipsoid shape and proposed
a model that considers non-uniform thinning of the material during the process. Koc and
Altan [128] studied the limits of tube hydroforming and failure modes of the tube.

Hydroforming can be divided into two groups: sheet hydroforming and tube hydroform-

ing. Tube hydroforming has many advantages over conventional stamping and welding tech-
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niques. These advantages include consolidating stamped and welded parts into one piece,
which can reduce the tooling cost, reduce weight by making more efficient designs possible
to manufacture, and reduce waste [117]. Tube hydroforming can also improve the strength
and stiffness of the parts [117, 118, 127, 129].

Advantages of sheet hydroforming over conventional deep drawing and welding include
better surface quality and drawing ratio, fewer forming steps and the possibility of forming
more complex shapes [130].

Disadvantages of hydroforming include the slow manufacturing process and the high cost
of machinery [117]. Due to technological difficulties, sheet hydroforming has fewer industrial
applications than tube hydroforming [130].

Common failure modes of tube hydroforming can be categorized as buckling, bursting
and wrinkling. These modes are shown in Figure 2.2. Buckling happens when the axial
compressive loading causes the material to yield. This often happens in long tubes with
thick walls, at small strains at the beginning of the process. High compressive strain in thin-
walled tubes causes wrinkling. Bursting takes place due to necking of the material, which is a
result of high local tensile stress [128]. The ability to predict failure modes computationally

is desirable and could expand the efficiency in designing hydroformed parts.

2.4 Exemplary BCC metals for examining crystal plasticity modeling

Two BCC materials were studied in this dissertation. These materials are ferrite (BCC

Iron) and niobium. The reasons for choosing these materials are explained further below.

2.4.1 Ferrite

To improve the fuel economy of vehicles, manufacturers need to find ways to reduce the
weight of vehicles. Materials optimization is one of the remaining options to reduce weight.
This includes designing new steel alloys with a higher strength that can be used as thinner

sheets while satisfying the safety and durability concerns. Adding new materials to the
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(a) Wrinkling (b) Buckling (c) Bursting

Figure 2.2: Common modes of failure in tube hydroforming. a) Wrinkling happens in
thin-walled tubes b) buckling thick-walled long tubes c¢) bursting happens due to necking.
Redrawn from [128].

current portfolio of hydroformable materials is desirable.

The current effort to model the deformation of ferrite is a part of a larger investigation
that aims to develop a 3rd Generation Advanced High Strength Steel (3GAHSS) using an
integrated computational materials engineering (ICME) tool. Models in multiple scales
including atomistic, phase transformation, crystal plasticity, and performance models are
being integrated to make a coordinated tool-set.

The 3GAHSS have complex microstructures comprised of different phases, such as ferrite,
martensite, austenite, with different volume fractions, grain sizes, and crystal orientations
distributed throughout the material. Therefore, the traditional models for steel with ho-
mogenized microstructure cannot predict the behavior of 3GAHSS. Consequently, crystal
plasticity finite element (CPFE) modeling of 3GAHSS is becoming crucial for the develop-
ment of lightweight structures.

Austenite has an FCC structure and can be modeled with available crystal plasticity
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models. Martensite has a Body Centered Tetragonal (BCT) structure. The BCT martensite
has the same slip systems as a BCC material [131]. Therefore, to enable modeling of the
phases present in 3GAHSS steels, better modeling of ferrite is needed.

The goal of Chapter 4 is to model the deformation of ferrite single crystals. This Chapter
explains the development of a rate-independent non-Schmid crystal plasticity model and
compares the predictions of this model with that of a Schmid crystal plasticity. Before the
models can be used, however, they need to be calibrated and verified. Therefore, Chapter
4 also explains the calibration and verification of both models using compression tests of

ferrite micropillars.

2.4.2 Niobium

Superconducting Radio Frequency (SRF) cavities are the essential building blocks that make
up the core of particle accelerators [20, 132]. These cavities are made from pure Niobium
(Nb), which has the highest critical temperature for superconductivity (7" = 9.2K) of the
pure metals [133]. Pure Nb is very ductile. Tensile experiments show that Nb can deform
more than 40% without necking [134]. Consequently, Nb is the preferred superconducting
material for fabricating complex shaped cavities. Nonetheless, the large strain deformation
behavior of pure Nb has not been thoroughly studied.

The mechanical behavior of Nb is anisotropic and shows a great directionality [134]. The
topology arising from differential strains in neighboring grains on the surface degrade the
SRF performance of Nb [135]. The deficiency in understanding the behavior of Nb makes
use of fine grain sheets more desirable than large grain sheets, as fine grain sheets are less
anisotropic.

As-cast ingots go through a series of steps including forging, milling, rolling, and inter-
mediate annealing, to make fine grain (25— 50pm) sheets. These sheets are then deep-drawn
into a half-cell shape and subsequently electron beam welded together to make a cavity.

Due to the Hall-Petch effect, fine grain materials have higher strength than large grain ones.
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Nonetheless, fine grain sheets are easier to deform uniformly [136] than the more anisotropic
large grain sheets. Therefore, most of Nb cavities are manufactured from fine grain Nb
sheets.

Disks sliced from as-cast Nb ingots have large grains. These disks provide a cheaper
path to cavity fabrication than fine grain sheets, because they go through fewer production
steps and result in less waste. The lower number of grain boundaries in large grain Nb slices
lead to a higher SRF performance, presumably due to having fewer defects or area per unit
volume in the form of grain boundaries [135].

Achieving consistency in manufacturing of cavities from fine grain sheets is easier than
large grain disks because anisotropy is less evident in deformation of non-textured fine grains.
Although the combination of cost and performance makes large grain sheets a desirable candi-
date, the difficulties caused by their anisotropic deformation has restricted their application.

To use large grain disks instead of fine grain sheets in manufacturing of superconductive
cavities, one needs to design a new manufacturing process. But the anisotropy complicates
the designing process. Furthermore, the high price of pure Nb makes the trial-and-error
design process costly. One way to overcome these difficulties and reduce the design costs
is to use a constitutive model to predict the deformation behavior of single crystal Nb. A
polycrystal can be modeled as an agglomerate of multiple single crystals. Therefore, a model
capable of predicting the deformation behavior of single crystals is desirable to predict the
behavior of polycrystals.

A model capable of predicting the deformation behavior of Nb can help facilitate design-
ing a manufacturing process for large grain cavities. Such a model can be implemented in
Computer Aided Design/Evaluation (CAD/CAE) software and be used to design a manu-
facturing process. Crystal plasticity is one of the modeling strategies that can be used to
predict the deformation behavior of metals. Although conventional crystal plasticity mod-
els work relatively well for FCC materials and BCC polycrystals, their performance is not

accurate enough for the highly anisotropic deformation behavior of single crystal BCC Nb.
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The hardening rule of conventional crystal plasticity models does not accurately model
the hardening of single crystals. To address this issue, Chapter 5 proposes a new hardening
rule that improves the predictions of a Schmid-type crystal plasticity for single crystal Nb.
This model needs to be calibrated and verified before it can be used. Therefore, Chapter
5 also discusses the calibrated and verification o the proposed model with tensile tests of
single crystal Nb samples with distinct crystal orientations. Nonetheless, the model still
needs to be verified for a more complex deformation path before it can be used to design
manufacturing processes.

An alternative fabrication path to the current Nb cavity manufacturing process, is to
make seamless cavities. This will eliminate the need to weld deep drawn cavity halves
together. Hot spots that develop and degrade cavity performance are commonly found
within the heat affected zone near the weld line. Also, the absence of a weld potentially
decreases the cost of manufacturing in the long run. Moreover, the performance of a cavity
potentially increases because the weld line is a possible source of contamination and other
rare or random defects that arise from the complexities of welding.

Tube hydroforming can be used to make cavities from a tube. Singer et al [123, 125] made
seamless polycrystalline Nb tubes by spinning and flow forming of a disk. The tubes were
then hydroformed into single-cell, or up to three-cell units. The initial values for hydroform-
ing parameters were found from FEM simulations and were further tuned in experiments.
The processing and properties of the seamless tube are critical to the success of the hydro-
forming process. Variations in properties of the tube such as the yield strength, thickness
and grain size can result in failure of the tube or irregular final shapes [125].

Thus, a number of issues have to be addressed before the hydroforming of large grain Nb
could be industrialized. Large grain seamless Nb tubes are not readily available in the market.
Therefore, Chapter 6 of this dissertation focuses on characterization of a large grain seamless
Nb tube that was made for this study. This prototype tube provides essential data for

comparing the experiment with numerical simulations of crystal plasticity models. Chapter
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6 also investigates the forming behavior of the tube under the hydroforming conditions.
Consequently, this dissertation work will provide the foundation for designing a seamless

large grain tube hydroformed cavity.
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CHAPTER 3

IMPROVEMENTS TO SCHMID CRYSTAL PLASTICITY MODEL

Traditional crystal plasticity models need improvement in multiple areas, like the yield func-
tion or hardening rule, before they can accurately predict the deformation response of many
BCC materials. The current models are usually more accurate for FCC materials and poly-
crystals. FCC materials have close-packed planes and their active slip system can be de-
termined without ambiguity. Randomly-orientated polycrystals are usually less anisotropic
than single crystals. Hence, predicting the deformation of such polycrystals is easier than
single crystals.

The deformation response of different BCC materials differs in nature and in many cases,
cannot be accurately described with the Schmid law. For example, molybdenum, when
loaded in compression, shows a twinning-antitwinning asymmetry, while tungsten shows
none of this asymmetry [107]. The stress-strain of both materials deviates from the Schmid
law. Groger et al. [106] argued that the breakdown of the Schmid law in molybdenum
is due to the combination of shear stresses perpendicular to slip direction and twinning-
antitwinning asymmetry. In tungsten, however, the deviation from the Schmid law is only
the effect of shear stresses perpendicular to slip direction. The extent of deviation from the
Schmid law changes from one BCC material to another. Within a material, this deviation
is also a function of crystal orientation.

Another area of the crystal plasticity theory that needs improvement is the hardening
rule. Hill’'s power-law hardening rule cannot predict the varying hardening rate of single
crystals. Instead, this model predicts a monotonic decrease in the hardening rate.

Dislocation density based crystal plasticity modeling is another method to improve the
accuracy. For instance, Ma et al. [137] modified their model for FCC materials by considering
the effect of the Peierls stress. Monnet [138] developed a dislocation density based crystal

plasticity model for BCC materials that is valid over a wide range of temperatures and strain
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rates.

Another approach is to modify the hardening moduli matrix. Madec and Kubin [139]
studied the interactions of 1/2(111){110} and 1/2(111){112} slip systems of BCC materials
and found 17 distinct interaction types. This contrasts with the Hill-type hardening moduli
matrix that only distinguishes between the self and latent-hardening. Following this idea,
Queyreau et al. [140] studied the interactions of 1/2(111){110} slip systems in ferrite and
calculated six independent hardening coefficients for possible interaction modes.

The rest of this chapter is organized as follows. The non-Schmid crystal plasticity model is
explained in §3.1. The dislocation density hardening rule is presented in §3.2. The remaining
sections in this chapter discuss the steps needed to implement a dislocation density based
Schmid-type crystal plasticity model in the finite element scheme. §3.3 explains bridging the
crystal level (crystal plasticity model) to the continuum level (finite element). §3.4 explains
the derivation of a dislocation density based crystal plasticity model and §3.5 lays out a

stress integration algorithm for this model.

3.1 Non-Schmid crystal plasticity model for BCC single crystals

The models introduced in §2.2, are mainly intended for FCC polycrystals. In the 1980s,
researchers noticed that the deformation behavior of BCC single crystals does not obey
the Schmid law. Many authors, including Qin and Bassani [11, 103], Bassani et al. [104],
Groger et al. [16, 106, 107] and Wang and Beyerlein [98] have worked on the modeling of
this behavior, which is known as the non-Schmid behavior.

In BCC crystals the critical resolved shear stress (CRSS) is a function of the orientation
of the crystal with respect to the loading axis, the sense of loading [11], as well as stresses
on planes that are non-parallel and/or non-planar with respect to the slip direction [108].
These stresses are known as non-Schmid stresses.

The yielding asymmetry of BCC single crystals in tension and compression has long been

associated with the twinning and antitwinning sense of the shear [141]. Recent studies,

31



however, show this may be only partially true, as non-Schmid stresses have a significant
impact on the yielding asymmetry [107]. The non-Schmid stresses are also known as non-
glide stresses because they affect the structure of the dislocation core and consequently the
ease of dislocation slip, so they do not directly cause dislocation slip.

In BCC materials, the core of 1/2(111) screw dislocations spreads on three non-parallel
{110} planes in the (111) zone, which reduces their mobility, and in turn limits plastic flow
[105]. The core spreading is controlled by the crystal symmetry [105]. This non-planar core
leads to a violation of the Schmid law and also accounts for the strain rate sensitivity and
temperature dependence of the flow stress [108].

To capture the effect of non-glide stresses on the non-planar core and subsequently on
the yielding of BCC materials, Qin and Bassani [103] proposed the following yield criterion

which is a generalization of Schmid law.

Y el =gt (3.)

Here a corresponds to the slip system, 745 is the critical resolved shear stress value in the

non-Schmid case, TZ-O[ and Ny are the non-Schmid stresses and their identifying number,
respectively. a$' are material parameters, and 7¢ is the Schmid based resolved shear stress.

The expanded form of the summation in equation (3.1) is:

Nps
> afr = a1o: [m® @ nf] +azo : [(n x m®) ®n] +azo : [(nf x m*) @nf] (3:2)
1=1

in which n{" is the plane normal of a {110} plane in the slip direction zone, that makes —60°
with the slip plane normal n®. The expanded non-Schmid yield criterion has the following

form [107].
Tt =0 (m*@n®)+ario : (m*@nf)+ago : [(n* xm*)@n*+azo : [(n xm®)@n{] (3.3)

Bassani et al. [104] combined all the geometric terms in a single parameter, d*®, that

resembles the Schmid tensor in equation (2.16) as:

o:d** =71 (3.4)
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where
4 =d"+ ) agdy (3.5)
in which d% are the second rank tensors that rnepresent the non-glide components of the
applied stress.
Although BCC materials yield according to a non-Schmid rule, they still deform by
dislocation motion (slip) on slip planes. This means that, similar to the Schmid-type crystal

plasticity, the rate of plastic deformation DP is proportional to the shear rate ¥ [11].

N
DP =" d*y® (3.6)

(67

In the Schmid-type crystal plasticity model, d is used to define both the yield criterion
and the flow potential [38]. This is known as the associated flow rule, and requires the
increment of the plastic strain to be in the direction of the outward normal to the yield
surface. A non-Schmid model, however, is based on the non-associated flow rule [142]. In
non-associated plasticity, two functions need to be defined, one to estimate stresses that
cause yielding, and another to define the direction of the plastic strain.

The non-Schmid model has been verified for several BCC materials including BCC iron,
molybdenum, and tungsten, but there is still no consensus on the number of effective non-
glide stress components. This number can vary for each material and may vary from one
study to another. For instance, according to Groger and Vitek [16], for tungsten the second
term, and for molybdenum the third term, on the right-hand side of equation (3.3) vanishes.
To model BCC iron, Chen et al. [109] used all terms in equation (3.3) while Koester et al.
[108] proposed a more general non-Schmid model with an additional three non-glide normal

stress terms included. This model is shown below.
o:m®@nY +ayo: [m* @nf]+ ago : [(n® x m*) @ n] + azo : [(n] x m*) @ n{]
+ago : [N @n%] +as0 : [(n® x mY) @ (N x mY)] + ago : [m* @m*] = 75> (3.7)

The first term in this equation is the Schmid stress. The second to fourth terms incor-

porate the effect of shear stresses, and the fifth to seventh terms model the effect of normal
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stresses. Parameters a; to ag are material constants. The planes on which these resolved
stresses act are schematically shown in Figure 3.1. The red, green, and blue planes are
three {110}. The red plane is the slip plane. The gold and purple planes are drawn only
to facilitate the illustration of non-Schmid normal stresses. The gray line is the slip direc-
tion and is along (111). The Schmid resolved shear stress is shown with a solid black line
and is marked accordingly. The non-Schmid resolved shear stresses are shown with dashed
lines, and normal stresses are shown with solid lines and are marked with their respective
non-Schmid constants a-ag.

The term including aq is the shear stress parallel to the slip direction on any {110} plane
other than the slip plane (the blue and green planes in Figure 3.1). According to Groger
et al. [107], this stress causes the twinning-antitwinning effect. The term including a9 is
the shear stress normal to the slip direction acting in the slip plane; ag is the shear stress
normal to slip direction acting on a {110} plane other than the slip plane (the red plane in
Figure 3.1); a4 is the normal stress perpendicular to slip plane (and therefore perpendicular
to the slip direction) acting on the slip plane; a5 is the normal stress perpendicular to slip
direction acting on a plane perpendicular to the slip plane (the gold plane in Figure 3.1);
and finally ag is the normal stress parallel to slip direction acting on a plane perpendicular
to slip direction (the purple plane in Figure 3.1). According to Koester et al. [108], the last
term makes the yield criterion independent of the hydrostatic stress. Many researchers [16,
35, 104-108, 142, 143] have used atomistic simulation to find the material constants used in

the non-Schmid models.

3.2 The dislocation density hardening rule

An alternative to the Hill-type power-law hardening rule is a dislocation density based
model, which directly models the slip and mutual intersection of dislocations.
Many researchers [17, 58-61, 137, 144, 145] have used a Taylor type equation to predict

the increase of the flow stress with the evolution of the dislocation density. This hardening
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Figure 3.1: The non-Schmid planes and stresses that are considered in equation (3.7) are
schematically shown here. The red, blue, and green planes are the {110} planes. Here the
red plane is the slip plane. The slip direction is shown with a gray line along (111)
direction. The Schmid resolved shear stress along the slip direction is shown with a solid
black line on the red plane and in the slip direction. The non-Schmid resolved shear
stresses are shown with dashed lines. For brevity, the resolved shear stresses a1 and ag are
only shown on the blue plane, however, similar shear stresses may be resolved on the green
plane. The gold and purple planes are not planes and are only drawn to help with the
visualization of the non-Schmid normal stresses. These stresses (a4, a5 and ag) are drawn
with solid lines and act normal to the red, gold and purple planes.

equation often has the following form [58, 145, 146]:

N
T =10 +aGb Z hgﬁpﬁ
A=1

where Tyo‘ is the current slip resistance on slip system «, and 7§ is the initial value of the

CRSS on this slip system, a is a material parameter, b is the magnitude of the Burgers
vector, GG is the shear modulus, ,06 is the dislocation density on slip system [, and hgﬁ is
the dislocation density hardening moduli matrix.

Equation (3.8) assumes dislocations of every slip system (3, which are denoted with pﬁ ,

interact with dislocations on slip system « and contribute to the increase of the flow stress.
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The contribution of each slip system to hardening is defined through the hardening moduli

matrix hgﬁ with the following equation [145].
hs? = ne . P (3.9)

In which n® is the slip plane normal and f? is the line direction of the forest dislocation
corresponding to the moving dislocation. Therefore, the hardening contribution of the part
of the dislocation forest that is co-planar with the slip system « is zero.

The line direction of the forest dislocation can be calculated by assuming that all immobile
statistically stored dislocations (SSDs) are the product of mobile dislocation interaction.
Therefore, one can find the line direction of the forest dislocation from the cross product of

the slip plane normal and the dislocation slip direction [60].
B=nfxmb (3.10)

This, however, is only true for edge dislocations.
Several equations for the evolution of dislocation density are suggested and used in the
literature [60, 144, 145]. For instance, the evolution of dislocation density can be defined

with [145]:

(3.11)

where k, and kj are material constants for dislocation generation and annihilation. This ap-
proach is more physically realistic than the phenomenological model described in §2.2.2; but
the computation cost of the dislocation density model is higher than the phenomenological

model.

3.3 Implementation of crystal plasticity in finite element modeling

Crystal plasticity models are usually implemented as constitutive equations in finite el-

ement codes. To make the connection between the continuum mechanics (used in finite
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element analysis) and dislocation slip (used in crystal plasticity theory), one needs to define
the relationship between the slip rate as defined by each of these theories.

The velocity gradient tensor L that is applied to a material point can be additively
decomposed.

L=D+W (3.12)

The symmetric part D is known as the rate of deformation tensor and the antisymmetric
part W is known as the spin tensor. Subsequently, each of these tensors can be decomposed

into elastic (lattice rotation) and plastic parts.

D =D+ DP (3.13)

W=Q+WP (3.14)

Where superscripts e and p denote elastic and plastic parts of the respective tensors. The

elastic part of the spin tensor is the lattice spin rate tensor €2 which can be defined as follows:

Q= RRT (3.15)

where R is the rigid body lattice rotation.

Two coordinate systems are used in the crystal plasticity finite element model. One
coordinate system is attached to the axes of a crystal and rotates with the crystal. This
coordinate system is known as the crystal coordinate system. The second one is defined in the
local material axes (a finite element) and rotates with the material. This coordinate system
is called a material co-rotational coordinate system. The grain orientation matrix ¢) defines
the orientation of the crystal coordinate system with respect to the material co-rotational
coordinate system.

Let us assume for a slip system «, the slip direction, m®, and the slip plane normal, n®,
are defined with respect to the material co-rotational coordinate system. The initial state of

any slip system « in this coordinate system can be defined with the Schmid tensor.
PY=m*@n" (3.16)
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One can write the Schmid tensor, P%, as the sum of a symmetric and an antisymmetric
tensor.

P =d% +w® (3.17)

Here d“ is the symmetric part of the Schmid tensor which is defined with equation (2.14).

This equation is repeated below.

1
d* = 5 (m® @ n® +n* @m") (3.18)

w® is the antisymmetric part of the Schmid tensor and is defined with the following

equation.
1

w® = 5 (m® @n® —n® @ m®) (3.19)

Crystal plasticity assumes that dislocation slip accommodates all deformation. Therefore,
as discussed in §3.1, the rate of plastic deformation DP needs to be accommodated by
dislocation slip. This means that for a single crystal with IV slip systems, DP is proportional
to the shear rate 4 [11]. This was modeled with equation (3.6), which for convenience is

repeated here.
N

DP = " d*4” (3.6)
«
From plasticity theory, the rate of deformation is parallel to the outward normal of the

yield surface. Therefore, DP can also be found from the following [38]:

DP = AW (3.20)

Here X is a Lagrange multiplier, or as it is called in plasticity theory, the consistency param-
eter. By comparing equations (3.6) and (3.20), one can find the equation for 4.

The plastic spin rate is defined with the following equation [38].

N
WP =" "wy® (3.21)
o
Therefore, one can find the lattice spin rate by plugging equation (3.21) in equation (3.14)

and rearranging.

Q=W -3 w*" (3.22)

(07
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The increment of rigid body rotation can be written in the following form [115].
Ryyiar = Riy + Ryg v = |1+ Rig - Ry AtAt] Ry, = [I + 0y +AtAt] Ry (3.23)

The grain orientation matrix () can be updated in a similar fashion with the following
equation [115].

Qugrar = Qug +AQ = |1+ arlt] Qy, (3:24)

Where Qt0+ A¢ 1s the increment of lattice spin rate tensor in the finite element coordinate
system. More details on updating crystal orientation can be found in [147] and [115].

A general stress state applied on a crystal can induce a shear stress parallel to slip
direction on the slip system «. This shear stress can be found from the Schmid resolved

shear stress.

o:d¥=71% (3.25)

Where o is the stress tensor, and 7% is the resolved shear stress (RSS).

According to the Schmid law, the dislocation motion starts when the in-plane shear stress
parallel to the slip direction reaches a critical value. This is known as the critical resolved
shear stress (CRSS). In FCC crystals, the CRSS is a material parameter and is independent

of the crystal orientation and the sense of loading (compression or tension).

3.4 Derivation of a crystal plasticity model with a dislocation
density based hardening rule

The details of derivation of a Schmid-type associate crystal plasticity model with a dis-
location density based hardening rule are presented here. The flow stress and the yielding
behavior in a Schmid-type crystal plasticity model are defined using a yield function. This
translates to an associated plasticity model. Following Zamiri and Pourboghrat [38], equa-

tion (2.19) is used to define the yield function. This equation is repeated below.

Pf lo = d“| B
T
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Here py is termed the closeness factor and has an inverse relation with the distance between
the smooth inner envelope and the original yield surface.

Next, the dislocation density hardening rule defined in §3.2 is used to complete the crystal

plasticity model. Equation (3.8) calculates the slip resistance, Tya, for each slip system based

on the initial value of slip resistance and the current dislocation content. This equation is

repeated here.

N
T =10 +aGb Z hgﬁpﬁ (3.8)

B=1

where ,05 is the dislocation density on slip system f.
During the deformation dislocations interact and change the dislocation content of the

material. This evolution is modeled with equation (3.11), which is repeated below.

(3.11)

The normality rule of plasticity states that the increment of plastic strain, AeP, at yield
is parallel to the outward normal of the yield surface. The normality rule can be expressed
with the following equation [38].

of

Ael = AN~ 2
e 5 (3.27)

Where AN\ is the consistency parameter.
Using the normality rule and the chain rule, the increment of shear strain on slip system

a can be written as: N
of AN oar ore

Ay = A=t =

~— (3.28)
070‘ 87’“ le 8p5

During the deformation the increment of total strain, Ae?, is known. But the amount
of stress resulting form this strain needs to be calculated. The change in the stress can be

found from elasticity theory.

Ao =C°: Ae® = C°: (Al — AeP) (3.29)
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Where C° is the fourth-order stiffness tensor. Ae is the change in the strain and superscripts
t, e, and p denote total, elastic and plastic strains, respectively. Substituting equation (3.27)
in equation (3.29), the change in the stress as a result of plastic strain can be calculated as

follows.
of

Ao = C°: (A - AN

) (3.30)

Therefore, to calculate the change in the stress one needs to find the consistency pa-
rameter AX. This can be found at the yield point where the value of the yield function is
f=0.

The yield function can be linearized with Taylor expansion with respect to o, 7 and pﬁ :

of (oY, ulk=1)

Fo™ a®)y = 0= e a1 + - 000
of (0D w1y Lgre
+ Z 2 557 SAp (3.31)

Here (k) and (k — 1) refer to the current and previous increment of deformation. To eval-
uate the above equation one needs to derive the differential terms on the right-hand-side.
f(a(k_l), u(k_l)) can be calculated by plugging the values of ok=1) and (k=1 in equation

(3.26). Differentiating equation (3.26) with respect to o and 7 gives the following equations.

N ) {pf (|a lo:d®| _ 1)}
df (o,u) Ty Ty
SEAIL . (3.32)
do o;l N or [ ot
MZﬂ:l exXp | 4 B 1
Ty
_o:d? exp[ (ad | 1)] N
Of (o, u) B Tyo‘g i or®
52::1 57 (3.33)

ore odB
p .
Y5y exp [7f< 3 _1>

Rate of change of stress, 6Ac¥, can be found form the Taylor expansion of Ac* with

respect to the consistency parameter A\,

(k=1)

il SAN (3.34)

(k) — Ay(k—1)
Ao Ao + AN
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Substituting Ao in the above equation with equation (3.30), one arrives at the following:

(k—1)
Aol — Agk-D) _ sance . (3.35)
do
By rearranging the above equation one can find the rate of change of stress.
(k—1)
sAcK) = AgF) — Aglh=1) = _ sANCE g—f (3.36)
o
Similarly, one can find the rate of change of shear strain.
5 N oo (k—1)
5AE) — Aqalk) _ pqalk=1) _ 5o 9T 5= 0T (3.37)
87-04 ﬂ:l apﬁ

To find the variation of the slip resistance, 7, with the change of dislocation density,

pIB , one needs to differentiate equation (3.8) with respect to ,05 .

«a haﬁ
87' _ aGb d (338)

B 2
N> e

The rate of change of the dislocation density, 0Ap®, can be found by differentiating

equation (3.11) with respect to Ay“.

k
= 0" | 16497 (3.39)

Finally, A\ can be found by replacing equations (3.32) and (3.33), and equations (3.36)
through (3.39) in the linearized form of the yield function (3.31). To simplify the notation

in the following equation all occurrence of f (J(k_l), u(k_l)) are represented with f (k1)

(k—1) (k—1) N 5pk-1) NV s
S :(—mm@;—af - >+ OF " 7§~ uch d

«
0o = = Vi g%

N _ N B
1 k o f(k=1) aGb h
0 2081 5AN d =0
> " p p > (3.40)
bka'\ &= b orf =2 /—évzlhggpg
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By rearranging this equation and factoring 0 A\ one arrives at the following equation.

o fk=1)

oo ore

(k—1) o (k—1) Gb 2 N N N B (k—1)
(-1) _gan [OF570 pe OSTD aGb /
f SAN O = Sgn(dA)\)( 5 ) ;::15221 > g

w=1

haﬁ h,@w 1
\/29_ hoz@ 0\/21\7 h[k bkq

Dividing both sides of equation (3.41) by the term in the parenthesis gives one can find

al k
> - ?bpﬁ (3.41)
9—1

the rate of change of the consistency parameter.

fk=1)
0AN = o7 0—1) o7(h—1) G of(k=1) | gp(k—1)
a—J:C‘f: R —sgn(5A>\)< 2 > Za 1Zﬂ 1Zw 1 or@ a8
(3.42)

aﬁ hﬁw

d N 9 _k
o i bV ]
P

By summing dA\, over (k) increments of deformation one can find AX. Then, buy plug-
ging this value in equation (3.30) one can find the change in the stress. This concludes

development of the dislocation density based Schmid crystal plasticity model.

3.5 Stress-Integration algorithm of Schmid-type crystal plasticity
with the dislocation density hardening

This section summarizes the algorithm for stress integration for schmid type crystal plas-
ticity, which follows [115]. This algorithm is developed for the dislocation density hardening

rule.

1. The following variables are assumed to be known at the beginning of a finite element
increment i for a grain (6;, g5*,A¢;,Q;, p§') in the element coordinate system. Parameter
Q; is the crystal orientation matrix and g§* = Tyi is the critical resolved shear stress

(slip resistance) of slip system «. Then, stress and strain tensors are rotated to the

43




crystal coordinate system as:

0i = Qi6:Q;
Aci = QidQ)

2. Initialize variables
7: FEM increment

k: Plasticity iteration

o0 — o +C°: Ag;

i+1
oy = oo
gD = gp
A/\g(}r)l =0
k=1

3. Evaluate the yield condition fz(_]i)l
(k) (k=1) . (k—1) 1 al pr ( lo:d?
S =fle\"  u\"") = —1In exp |~ | — -1
1+1 < ) pf o;l " TyOé

1
d* = é(ma®na+na®mo‘)
If fi(f)l < 0 go to step 9.

4. Calculate the correction to the plastic consistency parameter

(®) i

. (3

OAN ] = 3f'(k)1 a(k)l NN N ey ark) 8f(k)1
ch—’r_ - Ce - % — sgn(0AN) <&T> a=1 25:1 szl _83'—5 (“):'—E

noB i . ~ i
T W e B

N a6 0
Vil g \/Zévzl Hy o
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5. Compute increment of stress, rate of change of shear strain, change of dislocation

density and the critical resolved shear stress (slip resistance).

o7 (ol ")

(k) (k—1) (k) .
Ao,y = Ao — 5A)‘i+1ce : 90
k—1) (k-1
N of (O-Z(-i-l )’uz(—i—l )> hgﬂ

5,28 _ saptk) 2P 3

5=1 \/ =1 hgPe?

N
SAp0HR) S0 %pa(kz—l) ‘5A7a(1f—1)‘
B=
(k) _ a(k-1) (k)
IO?—H = /’?H +5Ap?+1
a(k)
Adir1) =
A=1
(k) _ a(k-1) (k)
g1 =91 FAgH

6. Evaluate the yield function. If fz(—]i)l < Tolerance go to step 8, otherwise go to step 7.

7. Update the consistency parameter

a(k)

alk) a(k—1)
AN = A ol

i1 i+1 | TOAA

k=k+1

Then Go to 3.
8. Update the crystal orientation using equation (3.24).

9. Rotate the stress tensor back to the FEM coordinate system.
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CHAPTER 4

DEVELOPMENT OF A NON-SCHMID CRYSTAL PLASTICITY MODEL
AND A DIFFERENTIAL-EXPONENTIAL HARDENING RULE FOR
FERRITE SINGLE CRYSTALS

Third generation advanced high strength steels (3GAHSS) are being developed for fabrica-
tion of lightweight automotive parts. These new steels have complex microstructures com-
prised of different phases, such as ferrite (BCC), martensite (BCT), austenite (FCC), etc.,
with different volume fractions, grain sizes, and crystal orientations distributed throughout
the material. Crystal plasticity finite element (CPFE) modeling of 3GAHSS is, therefore,
becoming crucial for the development of lightweight structures.

Accurate modeling of 3GAHSS using a CPFE model requires calibration of the hard-
ening parameters of family of slip systems active in each phase (e.g., FCC and BCC). The
calibration process involves repeated simulations of the uniaxial compression of a micropillar
of a single phase (e.g., ferrite, martensite or austenite) with the CPFE model until there is a
good match between predicted and experimentally measured force-displacement curves. The
calibration could use just one or multiple experimental force-displacement curves. To assess
the validity of the calibration, the calibrated CPFE model is used to simulate the uniaxial
compression of the remaining micropillars that were not involved in the calibration process.
In the case of 3GAHSS, the CPFE model gets calibrated separately for each phase in the
bulk material, as explained above. The collection of calibrated CPFE models for FCC and
BCC phases will then be used to predict the behavior of the bulk material. The focus of this
Chapter, however, is on modeling of the ferrite phase, which has a BCC crystal structure.

Modeling the deformation of BCC materials is more challenging than FCC materials
[98-102] due to the differences in the structure of dislocations. BCC materials have 48 slip
systems but the slip planes are not ideally close-packed. The 1/2(111) screw dislocations

in BCC metals have a non-planar core structure that spreads on three {110} planes. This
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causes the non-Schmid behavior, in which stresses developing on planes and directions other
than those on the primary slip system will influence dislocation motion.

The non-planar structure of the core of screw dislocations in BCC metals has been known
for decades [148]. Studies of the effect of stresses other than the glide stress on this non-
planar core can be traced back to the work of Duesbery [149, 150]. The first mechanistic
model to capture the effect of the non-Schmid stresses, however, was proposed by Qin and
Bassani [11, 103], which accounts for shear stresses affecting the core of screw dislocations.
Terms for normal stresses affecting the core were later added to the model by Koester et
al. [108]. The non-Schmid behavior has been studied in many BCC materials including
molybdenum [16, 35, 104-107, 143, 151], tungsten [16, 35, 106, 107, 143, 152-154], tantalum
(98], tantalum-tungsten alloy [155] and BCC iron [108, 109, 146, 156-158|.

This Chapter will be only concerned with the calibration and verification of the CPFE
for modeling of single crystal BCC metals. The primary goal is to examine the differences
between CPFE models based on Schmid and a non-Schmid law to predict the deformation
of the ferrite phase in three-phase quenched and partitioned QP980 steels.

Another important issue to consider when calibrating the CPFE model is related to the
stage I and stage II hardening of single crystals during the deformation [43]. There is very
little hardening in stage I, due to the lack of competing slip systems and barriers to pin
dislocations in a single crystal. However, in stage II rate of hardening increases, which is
attributed to dislocation entanglements and pile up caused by a combination of the primary
slip system rotating away from the loading direction, and secondary slip systems becoming
activated with increasing deformation.

In this Chapter, the CPFE models were calibrated with single crystal ferrite micropillars
with different initial orientations. These micropillars were carved out of dual-phase DP980
and three-phase QP980 steels using Focused Ion Beam (FIB). The reason for using two
different steels was two-fold, a) deformation of ferrite in these two steels show non-Schmid

behavior [109, 146], and b) the ferrite phase was compressed to about 4% strain in QP980 and

47



only showed stage I hardening, while the strain reached double that amount in DP980 and
showed both stage I and stage II hardening. Given that a conventional power-law hardening
model could not represent the two-stage hardening of the ferrite phase, another important
goal of this Chapter was to develop a novel phenomenological exponential hardening rule to
be implemented into the CPFE model to predict the two-stage hardening of the ferrite phase.
This new model, known as differential-exponential (DE) hardening, judiciously decides on
the transitioning from stage I to stage II hardening when the following, a) the ratio of
secondary to primary shear strain, and b) the ratio of the maximum shear stress to the
saturation shear stress, are greater than the pre-specified values.

This Chapter is organized as follows. §4.1 reviews the materials and the sample prepara-
tion method of this study. §4.2 describes the development of a rate-independent non-Schmid
crystal plasticity model. §4.3 proposes a new hardening rule to improve the predictions of
the non-Schmid crystal plasticity model in cases when the hardening rate changes during
deformation. This section also outlines the numerical implementation of the model for stress
integration. §4.4 and §4.5 discuss the predictions of the CPFE model for uniaxial compres-
sion of ferrite micropillars obtained from QP980 and DP980 steels, respectively. The findings
of this Chapter are summarized in §4.6. Various strategies used for calibrating the hardening
parameters and the non-Schmid material parameters are explained in detail in Appendix B.
The comparison between experimental force-displacement curves and those predicted by the

CPFE model are also presented in this Appendix.

4.1 Materials and method - extraction of ferrite micropillars

Two advanced high strength steels (AHSS) were used in this study. A dual-phase DP980
and a three-phase QP980 steel. The chemical composition of these steels is shown in Ta-
ble 4.1. All micropillar experiments were performed by Dr. Peng Chen and Dr. Hassan

Ghassemi-Armaki at Brown University. The details of these experiments are presented in

(109, 146] and reviewed below.
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The microstructure of DP980 steel consists of ~60% volume fraction martensite and
~40% volume fraction ferrite. In uniaxial tensile tests of 1 inch gauge length samples per-
formed at strain rate of 10~3s~1, the yielding occurred at 350 MPa and the ultimate tensile
strength was at ~1050 £ 50 MPa.

Samples from the as-received 2 mm thick DP980 sheet were mechanically polished with
1pm diamond paste. Next, to remove the damaged layer formed during the mechanical
polishing, the samples were electropolished at 20V at —40 °C with 1 part perchloric acid in
9 parts ethanol solution.

Four ferrite micropillars were curved out of the polished samples using focused ion beam
at 30keV Ga ions. Final milling was performed at 9.7 pA. The microscope used for milling
was a dual-beam FEI focused ion beam. The extracted micropillars had a diameter of
1.3 pm, a height to diameter ratio of between 2-4, and a taper angle of 4°. Each micropillar
was extracted from the center of a single ferrite grain at least two diameters away from
any boundary. The orientation of micropillars were the measured with Electron Back-
Scattered Diffraction (EBSD). Finally, micropillars were uniaxially compressed using a flat
punch nanoindenter [109].

The as received microstructure of QP980 sheet consists of ferrite, martensite and retained
austenite. The volume fraction of martensite and retained austenite phases are 44 + 2% and
8-10%, respectively. The reset of the microstructure is ferrite. The uniaxial tensile tests
of this steel showed a yield stress of 400 MPa and an ultimate tensile strength of about
1000 MPa.

Six ferrite micropillars were extracted from the QP980 polished samples using the method
that was explained above. The diameter of micropillars was in the range of 1pum to 1.7 pm,
had a height to diameter ratio of 2-3, and a taper angle of 4°. Orientation of these micropillars
was also measured with EBSD. Then they were uniaxially compressed with a flat punch

nanoindenter.
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Table 4.1: Chemical composition of the steel sheets used in this study (wt%).

Chemical Composition C Mn Si P Cr Al Fe

DP980 0.09 215 0.60 - - - rest
QP980 02 1.8 15 0.02 0.024 0.04 rest

4.2 Developing the non-Schmid, non-associated crystal plasticity
model

Crystal plasticity theory assumes that plastic deformation occurs as a result of disloca-
tion motion on a slip plane. The current non-Schmid crystal plasticity model is developed
following a Schmid-type crystal plasticity framework that Zamiri and Pourboghrat proposed
[38]. The basic equations of this model are given in §3.3. Zamiri and Pourboghrat formulated

the yield function for a single crystal with multiple slip systems as:

. O
fa(a,u):%—lgo for a=1...N (4.1)

Ty

where u represents the internal variables, « is the slip system, N is the total number of slip
systems, d is the Schmid tensor defined in equation (2.14), and 7'5‘ is the critical resolved
shear stress for slip system a.

The yield surface defined with this equation is not smooth and may have sharp corners.
Therefore, the outward normal to the yield surface at these points will not be unique and

that implies that the plastic strain increment cannot be uniquely identified. To address this

problem, Zamiri and Pourboghrat [38] used the following scheme.

N «
G(o,u) = 1ln Z exp [E (% — 1)] (4.2)

a=1

This equation defines a smooth envelope inside the yield surface defined by equation
(4.1). The parameter p is termed the closeness factor and has an inverse relation with the
distance between the smooth inner envelope and the original yield surface. Parameter pu is

used to further tune the yield function.
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Assuming associated flow rule, the rate of the plastic deformation can be found from:

_ A@G(a, w)

DP
oo

(4.3)

where ) is the plastic consistency parameter.

For BCC materials, as discussed above, the Schmid law does not apply. This is one of
the reasons why the crystal plasticity scheme that works well for FCC single crystals, such
as aluminum, does not perform as well for BCC materials like Nb or BCC Iron.

Zamiri and Pourboghrat’s combined constrained yield function is developed using the
associated flow rule [38]. This rule mandates the plastic strain increment to be in the
direction of the outward normal to the yield surface. While this is the case for FCC materials,
it is not true for BCC materials.

To address this problem, and based on the above discussions, the authors developed a
combined constrained non-associated (non-Schmid) crystal plasticity model by defining a
yield function and an independent flow potential.

According to the non-Schmid rule, the material yields when the combined effect of the
glide and non-glide resolved stresses, T; = o : d*, reaches a critical value, 7%.. For one slip

system, the following function is used to indicate the onset of yielding. One can arrive at

the below equation simply by rearranging equation (3.3).

o d_y (4.4)

The non-glide stresses do not cause dislocation slip. Only the glide stresses can initiate

the dislocation motion. Therefore, the flow potential is modeled using the following equation.

o:d

*
Ter

—1 (4.5)

Notice that the numerator in equation (4.4) is the non-Schmid resolved stress, and in

equation (4.5) is the Schmid resolved shear stress.
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Following Zamiri and Pourboghrat, a smooth flow potential is defined based on equation

Flo, :—ln Ze [ (%—1)] (4.6)

Ty

(4.5) as

where pq is the closeness factor and pq is a parameter to tune the flow potential. Then, the

rate of plastic strain is defined as:

OF (o, u)
DP = \——= 4.7
5o (4.7)
And the rate of slip (shear rate) as
, OF (o, u)
C=A ’ 4.8
¥ 5 (4.8)

Finally, the rate of increase in the critical resolved shear stress (yield stress) is modeled with

the hardening model by Hill [39].

=

=3 hef )75 ( (4.9)

The hardening moduli matrix, h%°, is defined as [41]:
hoB = pp [q r(1- q)W} (4.10)

where 6% is the Kronecker delta, and ¢ is the latent-hardening ratio which is defined as the
ratio of latent-hardening to self-hardening rate and has values in the range of 1 < ¢ < 1.4.
Diagonal components of hoB are called self-hardening, and off-diagonal components are

latent-hardening. Parameter hP is a function that defines the hardening rate and is defined

n Tﬁ
sgn (1 - i) (4.11)
Ts
B

Here, hg is the initial hardening rate, 7. is the current slip resistance on slip system 3, 75 is

using the following equation.

B

Te
1 &
Ts

h = hg

the saturation value of slip resistance, and 7 is the exponent controlling the hardening rate.
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Equation (4.4) is then used to define the following smooth non-Schmid yield function,

N
1 p2 [ lo:d™|
Y(o,u) = —1In E exp | — -1 4.12
() P2 = [#2 < Ty (4.12)

where po is the closeness factor and p9 is a parameter to tune the yield function. Although,
in general, BCC materials could have {110}, {112} and {123} slip planes, in the non-Schmid
crystal plasticity model only {110} planes of (111) zone are considered. Table 4.2 lists the

slip systems available in the non-Schmid model [107].

Table 4.2: This table lists the slip systems available in the non-Schmid crystal Plasticity
model [107].

a  Reference system  m®  n® n{ a Reference system m®  n® n{

1 (011)[111] [111] [011) [110] 13 (011)[111] [111] [011] [101]
2 (101)[111] [111] [fo1] [oT1] 14 (101)[111] [111] [f01] [I10]
3 (110)[111] [111] [110] [101] 15 (110)[T11] [111] [110] [011]
4 (10T)[111] [{11] [fo1] [i10] 16 (10T)[111] [111] [T01] [011]
5 (011)[111] [111] [011] [101] 17 (011)[111] [111] [011] [110]
6 (110)[111] [111] [110] [011] 18 (110)[111] [111] [110] [101]
7 (011)[111] [111] [011] [110] 19 (011)[111] [111] [011] [101]
8 (101)[111] [I11] [101] [o011] 20 (101)[111] [111] [101] [110]
9 (110)[111] [111] [f10] [fo1] 21 (110)[111] [111] [110] [011]
10 (101)[111] [111] [101] [110] 22 (101)[111] [111] [101] [011]
11 (011)[111] [111] [011] [101] 23 (011)[111] [111] [011] [110]
12 (110)[111] [111] [110] [011] 24 (110)[111] [111] [110] [101]

4.3 Modeling the hardening rate of a single crystal

Shear stress - shear strain curves for single crystals that are initially oriented for single
slip show three distinct stages usually referred to as Stage I, II and Stage III hardening
[43]. The hardening rate just after yielding is low. Most of the deformation in this stage is
accommodated by the primary slip system and hardening is chiefly due to self-hardening.
The low hardening rate corresponds to a large dislocation mean free path and few barriers.
This stage I regime is also known as the “easy glide” [43].

The second stage, which is known as “linear hardening”, starts when other slip systems

become activated due to crystal rotation during deformation and interact with the primary
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slip system. This reduces the mean free path of dislocations and considerably increases the
hardening rate. During this stage the dislocation density increases [43]. The hardening rate
eventually decreases which signals the onset of the third stage, “exhaustion hardening”. The
high stress and dislocation density activate cross slip and dynamic recovery which in turn
softens the material.

Although the classical Hill-type hardening rule, equation (4.9), is widely used in crystal
plasticity codes to model the hardening behavior of polycrystalline metals, it can only model
the stress-strain behavior observed in the first stage of the deformation of a single crystal.
The hardening rate predicted by equation (4.9) does not change significantly during the
deformation.

As was discussed above, the hardening rate in each stage of the deformation of a single
crystal is controlled by a different set of underlying mechanisms. Equation (4.11) effectively
only models those mechanisms that are active in the first stage and predicts a rather uniform
increase in hardening. To capture the variable hardening rate of a single crystal, a more

sophisticated model is needed.

4.3.1 The Differential-Exponential (DE) hardening model

A single crystal oriented for single slip typically hardens linearly with a small slope in the
first stage. In the second stage, the density of mobile dislocations decreases exponentially
[159], which results in an exponential increase in the hardening of the material. To model

this behavior, the authors propose the following exponential equation for the hardening rate.

14
Woyagea = hopE exp [vlst - (1 + vlst) } (4.13)

where hgDE is the hardening rate of stage II, 415t is the accumulated shear strain on the
most active (primary) slip system, and exponent v is a material parameter. As will be

discussed later in this section, the above equation successfully predicts the two-stage stress-
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strain behavior of a single crystal. However, its definition is incomplete without some criteria
for predicting the initiation of the second stage.

Based on the knowledge that second stage hardening occurs in single crystals when sec-
ondary slip systems become active, it became evident that criteria for the start of the second
stage hardening must be a function of the ratio of the accumulated shear strain and critical
resolved shear stresses in primary and secondary slip systems. The reason for the acti-
vation of secondary slip systems is the eventual rotation of the primary slip system away
from the loading direction, caused by the evolution of texture induced by increased plastic
deformation.

Using the definition of a step function:

0, z<0
(x) = (4.14)

1, >0
the following hardening rate equation for stages I and II in a single crystal is proposed. Due
to its ability to differentiate between active slip systems, as well as the use of the exponential
function, this new hardening model was termed the Differential-Exponential (DE) hardening
model.

15} 2nd
B _ (1P g max (") Y 8
hDE - (hstagel B hstageQ) (k1 — o ) (kg — 718t )+ hstageQ (4.15)

In this equation, k1 and k9 are material parameters to be fitted to the experimental stress-
strain curve, P is the slip resistance on a slip system (3, and HlaX(Tﬁ ) is the largest slip

2nd gre the cumulative

resistance among all slip systems, 75 is the saturation value, vt and ~
shear strains on the first and second most active slip systems. It should also be noted that at
the start of deformation when the value of both step functions is equal to 1, equation (4.15)

reduces to h*B

stagel’ which is the Hill’s hardening equation (4.9). However, as the plastic

deformation increases and the value of either of those two step functions becomes zero, the

second stage hardening, Bo

stage2’ becomes activated. It should be pointed out that when the

values of k1 and ko are very large, the step functions become equal to 1, and equation (4.15)

behaves similar to equation (4.11).
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The hardening rate equation (4.11) was replaced by equation (4.15) in the non-Schmid
crystal plasticity model, and implemented in the commercial FEM software Abaqus® as a

user-defined material subroutine (VUMAT).

4.3.2 Stress-integration algorithm to solve for shear rate

This section summarizes the algorithm for stress integration which follows [115]. This algo-

rithm is developed for the Differential-Exponential hardening rule.

1. The following variables are assumed to be known at the beginning of a finite element
increment i for a grain (6, g§',A¢;,Q;) in the element coordinate system. Parameter
Q; is the crystal orientation matrix and g{* is the slip resistance of slip system a. Then

stress and strain tensors are rotated to the crystal coordinate system as:

0i = Qi6iQ;
Acj = QiA&Q]

2. Initialize variables
7: FEM increment

k: Plasticity iteration

o0 — o +C°: Ag;

i+1
gl = g2
A/\z@l =0
k=1
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. k)
3. Evaluate the yield condition Y;}'}

Y;_(fizy<0(lc—1)7u(k—l)) = Ze p[m (Io— 4*| 1)]

ma gy
-~ +Zaada

1
d® = é(mo‘®no‘+no‘®mo‘)
Z apdy = am® @n{ + az(n® x m®) @ n + azg(n x m) @ nf

Ui

+ agn® @n* + a5(n® x m*) @ (n* x m®) + agm® @ m«

If Y;(_& < 0 go to step 10.

4. Compute the flow potential

N . O
quf)l =F (J(k_l),u(k_1)> = iln Zexp [;;—11 <|0 'Ofi | — 1)]

P1

1
= (m®* @ n® +n* @m®)

d* = 5

5. Calculate the correction to the plastic consistency parameter

(k)

5A)\( ) _ Y;—f-l
v 8F(k) v |artk)
5: oL Za 125 1h0¢5 sgn(6AN) ;‘F 6:5

6. Compute stress, increment of shear strain, and slip resistance

oF <O'(k_1) u(k_1)>

(k) _ A (k=1) (k) ) i+l 0 i
Ao,y =Ao; 7 — 5A)‘z+10e : 90
(k—1) (k-1)
5A ()_5A)\()5F<Uz’+1 Uiy )
H—l - i+1 T

o7




10.

5 2nd
It ky > 2200 and (ks > )
o & | L g
5Ag?+1 :Zho 1—% sgn 1—%
ﬂzl S S
(k—1) (k-1)
OF <C’i+1 Uil )

4+ (1= g)0°7] [sar)

oTe

Else,
) _ v v
0Ag T = hoppexp [vlst + (1 + vlst) ]
5=1
OF U(k—l) u(k—l))
(k) (erl » P41
g+ (1= g)0°7] [sar) —
Then
alk)  alk-1) a(k)
911 =911 TOAg,

Evaluate the yield function. If YZ(J_? < Tolerance go to step 9, otherwise go to step 8.

. Update the consistency parameter

a(k)

alk) alk—1)
AN = A\ i1

i+1 i+1 T OAA

kE=k+1

Then Go to 3.

. Update the crystal orientation using equation (3.24).

Rotate the stress tensor back to the FEM coordinate system.
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4.4 CPFE modeling of uniaxial compression of QP980 ferrite micropillar

The models developed in §4.2 and §4.3 were used to predict the deformation behavior
of ferrite micropillars of QP980 steel under uniaxial compression. First, the experimental
results from compression of QP980 ferrite micropillars are presented, and then they are

compared with the predictions of Schmid and non-Schmid crystal plasticity models.

4.4.1 Uniaxial compression of QP980 ferrite micropillars

Six ferrite micropillars were carved out of the bulk of QP980 steel using Focused Ion Beam
(FIB), using the technique that was explained in §4.1.The micropillars were named 1-6,
respectively. Each micropillar was extracted from a ferrite grain with a distinct initial
orientation. Figure 4.8 shows the orientation of the compression axis of these micropillars
in an inverse pole figure. Figure 4.1 shows a schematic of the cylindrical micropillar with a
taper angle of 4°, a height to diameter ratio of 2-3, and a top surface diameter between 1.0 pm
and 1.7 pm. The micropillar compression test was performed with a flat punch nanoindenter,
and the force-displacement data was recorded for each experiment. More details on these
experiments are given in [146].

Slip bands were observed at the end of the deformation of some of these micropillars.
These bands changed the effective cross section of micropillars, which rendered calculation
of engineering stress inappropriate. Therefore, the experimental data in this Chapter will be

presented as force-displacement curves.

4.4.2 Modeling QP980 ferrite micropillars

The geometry of micropillars was modeled in Abaqus® commercial finite element software.
The flat punch nanoindenter was modeled with a rigid surface. A friction coefficient of 0.5 was
applied between the punch and the micropillar to prevent the slip between the surfaces [109].

The base of each micropillar was modeled with a perfectly elastic material to approximate

99



Figure 4.1: Schematic of the cylindrical micropillar with a taper angle of 4°, a height to
diameter ratio of 2-3, and top surface diameter between 1.0 pm and 1.7 pm.

the elastic deformation of the bulk of the sheet underneath the micropillar [109].

Both Schmid and non-Schmid crystal plasticity models were implemented into Abaqus
as user-defined material subroutines (UMAT) and were used to predict the deformation
behavior of these micropillars. In the crystal plasticity finite element simulations, the typical
48 slip systems for BCC materials, i.e., {110}, {112}, {123} planes and (111) slip directions,
were used in the Schmid case. These will be referred to as slip family 1 to 3, respectively.
In the non-Schmid case, the 24 slip systems (12 slip systems of {110} (111) in positive and
12 in negative slip direction) shown in Table 4.2 were used. Since in this case the normal
stresses also affect the yield stress, the positive and negative sense of the slip translates to
tensile and compressive stresses, which in turn affect the onset of dislocation slip through

the non-Schmid effect.

4.4.3 Material parameter fitting and evaluation

The criterion for evaluating the quality of the parameter fit was based on how accurately
the calibrated CPFE model predicted the uniaxial compressive force-displacement curve

of the remaining micropillars with distinct orientations. The metric used to quantify the
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accuracy of the fit was based on the calculated error between experimental and predicted
force-displacement curves, using equation (B.2) in Appendix B. The consistency of the fit
was evaluated based on the variation in the calculated error for all available experimental
data.

In the Schmid model, 7g;, 79; and hgy; (where i = 1...3 refers to the slip family) were
used as fitting parameters. These are the saturation shear stress, initial critical resolved
shear stress and hardening rate, respectively. In the non-Schmid model, 7g, 7, hg and aq;
(where ¢ = 1...3) were used as fitting parameters. Here, a; are the non-Schmid constants.
The hardening exponent 7; (where i = 1...3) in the Schmid model and 7 in the non-Schmid
model were kept constant, ; = n = 3. Also, the value of the initial hardening in the
non-Schmid model was assumed to be a constant, hg = 10.

Material parameters for Schmid and non-Schmid models were fitted using one or more
experimental force-displacement curves through an iterative procedure using commercial
optimization software LS-OPT®. More details about the model calibration process are
provided in Appendix B and in [160].

In the case of the non-Schmid model, it was found that a minimum of two experimental
force-displacement curves (with different crystal orientations) are needed to get an accurate
and consistent fit. When only one force-displacement curve was used, the fitted parameters
were inconsistent and the non-Schmid CPFE model was unable to accurately predict the
force-displacement curve for other micropillar orientations. Further improvement with using
more than two experimental force-displacement curves was negligible. Also, it was found
that the non-Schmid parameters, a4, a5 and ag have negligible effect on the predictions
of the model, therefore, they were ignored and only aj, as and ag were considered in the
non-Schmid model.

In the case of the Schmid model, it was discovered that the accuracy of this model’s
prediction is less than that of the non-Schmid model, regardless of how many experimental

force-displacement curves were used for parameter calibration. The accuracy and consistency
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of the Schmid model, however, improved when two or more experimental force-displacement
curves were used in the calibration.

Material parameters fitted using various combinations of force-displacement curves are
shown in Tables B.1 and B.3 for the non-Schmid model, and Tables B.5 and B.7 for the

Schmid model, in Appendix B.

4.4.4 Predictions of calibrated models

In this section, only select number of CPFE simulation results will be presented and dis-
cussed. The summary of all numerical simulation results and their comparison with experi-
mental data are given in Appendix B. Table 4.3 shows the fitted material parameters for the
Schmid model using two micropillars (i.e., 1 and 4), and Table 4.4 shows the fitted material
parameters for the non-Schmid model using three micropillar force-displacement curves (i.e.,
1, 3 and 5). The CPFE simulation results based on these fitted parameters will be discussed
next.

Figures 4.2 through 4.7 show the experimental force-displacement curves for micropillars
1-6. For comparison purposes, the force-displacement curves predicted by the Schmid model
calibrated with micropillars 1 and 4, and those predicted by the non-Schmid model calibrated
with micropillars 1, 3 and 5 are also shown in the same figures.

Overall, it can be seen from Figures 4.3, 4.4, 4.6 and 4.7, that the force-displacement
predictions of the Schmid model for micropillars 2, 3, 5 and 6 are erratic. That is, in some
cases the Schmid model overestimates, and in other cases, it underestimates the experimental
curve. This erratic prediction by the Schmid model, however, is expected as ferrite has a BCC
crystal structure, and its deformation is best described by the non-Schmid law. This will be
discussed in more detail in the next section. Tables B.6 and B.8 in Appendix B show the
magnitude of error and sign (i.e., over or underestimation) associated with different different
calibrations of the Schmid model. For example, Table B.8 shows that the Schmid model

calibrated with micropillars 1 and 4 underestimate the experimental curve for micropillar 5
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Table 4.3: Material parameters found for the Schmid model (using QP980 Ferrite
micropillars 1 and 4).

Tg1 TS2 TS3 Tol 702 703 hor ho2 hoz m m2 M3
650 650 720 195 205 330 110 110 110 3 3 3

Table 4.4: Material parameters found for the non-Schmid model (using QP980 Ferrite
micropillars 1, 3 and 5).

s 10 ho m oap as as
37 249 10 3 0.0103 0.5748 0.0007

by 11.93% (see Figure 4.6), and overestimate that for micropillar 3 by 27.93% (see Figure
4.4). The worst overall prediction by the Schmid model is for micropillar 3 with an error
of 47.75%, when the model was calibrated with the single force-displacement curve from
micropillar 5 (Table B.6).

The non-Schmid model’s predictions, however, are much more consistent and closer to
experimental force-displacement curves. Table B.4 in Appendix B shows that the worst
prediction of the non-Schmid model calibrated with micropillars 1, 3 and 5 is for micropillar
5 with an error value of -8.98, which implies that it underestimated the experimental curve
by 8.98% (see Figure 4.6). Finally, Table B.2 shows that the non-Schmid model’s worst
overall error is for micropillar 3 with an error of 44.73%, when the model is calibrated with

a single force-displacement curve from micropillar 6.

4.4.5 Further discussions on the Schmid versus non-Schmid law

As explained in §4.2, the non-Schmid model considers the effect of stresses that are applied on
planes other than the slip plane or along directions other than the slip direction. Depending
on the orientation of the material, these stresses can contract the dislocation core and reduce
the critical stress needed for yielding. Similarly, for some other orientations, the combined
effect of the non-Schmid stresses can expand the dislocation core and increase the stress

needed for the initiation of dislocation slip and yielding. This is the reason why, compared
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Figure 4.2: The green curve shows the Schmid and the red curve shows the non-Schmid
models fit to ferrite micropillar 1. The Schmid model was simultaneously fitted to
micropillars 1 and 4, while the non-Schmid model was calibrated with micropillars 1, 3 and
5. The blue circles represent the experimental measurements.

with the Schmid model, the non-Schmid model can more consistently and accurately predict
the force-displacement curves of all micropillars.

The deviation from Schmid law can be further analyzed using the following equation
which represents the ratio of the non-Schmid resolved shear stress, equation (3.3), to the

Schmid resolved shear stress [157].

o:(m*®@nY) +ajo: (m*@nf)+ago : [(n* x m*) @ n] +azo : [(n{ x m*) @ nf]

Fins = o (m®®n)
(4.16)
When this ratio is equal to 1.0, the material behaves according to Schmid law. In contrast,
the more it deviates from 1.0, the more the material behavior deviates from the Schmid-type.
Figure 4.8 shows the orientation of the compression axis for QP980 ferrite micropillars 1-6
mapped over the contour of Ry, as defined by equation (4.16). The calculated value of Ry

for each micropillar is also shown in Table 4.5.

When the Schmid model is calibrated with the force-displacement data of a material with
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Figure 4.3: Comparing predictions of Schmid (green curve) and non-Schmid (red curve)
models for ferrite micropillar 2 against the experiment. The Schmid model was
simultaneously fitted to micropillars 1 and 4, while the non-Schmid model was calibrated
with micropillars 1, 3 and 5.

a given Ry ., the model will overestimate the force-displacement of all other orientations with

Rps > Ry, . and underestimate those with Ry < R};,. For example, in Figures 4.2 through
4.7, the Schmid model was calibrated with micropillars 1 and 4, which have R, of 1.09 and
1.29, respectively. In comparison, micropillars 2 and 3 have higher R,s of 1.33 and 1.78
(see Table 4.5), which means that the contribution of non-Schmid stresses to yielding for
these micropillars is greater than those for micropillars 1 and 4. In contrast, micropillars
5 and 6 have lower Ry of 0.96 and 0.94, which implies that the contribution of the non-
Schmid stresses to their yielding is less than those for micropillars 1 and 4. Therefore, in
the absence of non-Schmid stresses, the Schmid model calibrated with micropillars 1 and 4
will overestimate the required critical resolved shear stress (CRSS) to deform micropillars
2 and 3, and in turn overestimates their experimental force-displacement curve (as seen in
Figures 4.3 and 4.4). On the other hand, given that micropillars 5 and 6 have smaller Ry

values, the same Schmid model underestimates their CRSS, and in turn underestimates their
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Figure 4.4: Calibration of the non-Schmid model (red curve) to micropillar 3. The
non-Schmid model was simultaneously calibrated with micropillars 1, 3 and 5. This figure
also compares the predictions of the Schmid model (green curve) for ferrite micropillar 3
against the experiment. The Schmid model was simultaneously fitted to micropillars 1 and
4.

Table 4.5: Value of deviation from Schmid-type behavior Ry, as defined in equation (4.16).

Micropillar 1 2 3 4 ) 6
Rps 1.09 133 1.78 1.29 096 0.94

experimental force-displacement curves (as seen in Figures 4.6 and 4.7).

Figure 4.9 further confirms this conclusion. This figure compares the predictions of the
Schmid model for micropillar 2 when the model is calibrated with pairs of micropillars 1
and 6 and micropillars 4 and 5. The Rjs value for mircopillar 2 is greater than that for
micropillars 1, 4, 5 and 6 which were used to calibrate the Schmid model. As expected, both

calibrations overestimate the behavior of micropillar 2.
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Figure 4.5: The green curve shows the calibration of the Schmid model to micropillar 4.
The red curve shows the prediction of the non-Schmid model for ferrite micropillar 4
against the experiment. The Schmid model was simultaneously fitted to micropillars 1 and
4, while the non-Schmid model was calibrated with micropillars 1, 3 and 5.

4.5 CPFE modeling of uniaxial compression of DP980 ferrite micropillar

Four single crystal ferrite micropillars were machined out of a dual-phase DP980 steel
sheet using the same FIB technique that was discussed in the §4.1. The modeling also
followed the same procedure explained in that section. The samples were named A, B, C,
and D. These micropillars have a height to diameter ratio of 2-4, a top surface diameter
of about 1.3pm and a taper angle of 4°. Figure 4.1 shows a schematic of the cylindrical
micropillar. Each micropillar was uniaxially compressed using a flat punch nano-indentor.
Figure 4.10 shows the orientation of these micropillars with respect to the loading axis. More
details on the sample extraction and compression experiments can be found in [161].

It is noted here that after the first few percent of plastic deformation (strains < 5%),
these micropillars exhibit large slip steps and often deviate from the uniaxial loading due to

bending and twisting.
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Figure 4.6: The red curve shows the fitting of the non-Schmid model to micropillar 5. This
model was simultaneously calibrated with micropillars 1, 3 and 5. The green curve shows
the prediction of the Schmid model for ferrite micropillar 5, based on material parameters
fit to curves 1 and 4.

Unfortunately, the current test set-up and procedure do not lend themselves to inter-
rupted testing or in-situ observations. Consequently, images of deformed micropillars were
recorded at the end of each test using a scanning electron microscope (SEM). These images
usually show significant micropillar distortion, as shown in Figure 4.13(a).

One of the most important parts of a crystal plasticity model is its hardening law, as it
predicts the flow stress of each slip system. As mentioned before, the most commonly used
hardening model is based on the pioneering work of Hill [39] and further development by
authors like Hill and Rice [162], Havner and Baker [163, 164], Vause and Havner [165] and
Asaro [41].

The main difference between these models is the definition of the hardening moduli
matrix. The one defined by Asaro [41], equation (22), which is used in the simulation of
QP980 micropillars only has two distinct parameters. One defines the self-hardening rate and

the other defines the latent-hardening rate. This matrix, although convenient, only predicts
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Figure 4.7: Comparing predictions of Schmid (green curve) and non-Schmid (red curve)
models for ferrite micropillar 6 against the experiment. The Schmid model was
simultaneously fitted to micropillars 1 and 4, while the non-Schmid model was calibrated
with micropillars 1, 3 and 5.

good results until the end of stage I of deformation of a single crystal. Beyond this stage,
the Asaro hardening moduli matrix is not accurate. The solid lines in Figures 4.11 and 4.12
compare the predictions of the non-Schmid crystal plasticity model with the conventional
(Hill-type) hardening rule and the Asaro type hardening moduli matrix for deformation of
DP980 ferrite micropillars A and B against the experiments.

To improve the predictions of the Hill-type hardening model, Madec and Kubin [139]
studied the interactions of 12 slip systems of type 1/2(111) {110} and 12 slip systems of type
1/2(111) {112} and found 17 distinct interaction types out of 144 possible binary interactions.
The hardening moduli matrix they defined, therefore, has 17 distinct coefficients. Researchers
like [140, 166, 167] used this matrix to model hardening. The dashed lines in Figures 4.11
and 4.12 compare the predictions of the non-Schmid model with the Hill-type hardening
rule and Madec-Kubin (MK) type hardening moduli matrix for deformation of DP980 ferrite

micropillars A and B against the experiments. As can be seen in these figures, the predictions
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Figure 4.8: The contour shows the ratio of the non-Schmid resolved shear stress to the
Schmid resolved shear stress equation (4.16). Circles show the orientation of compression
axis of ferrite micropillars 1-6. Green circles denote the orientations for which predictions
of both the Schmid and non-Schmid models are accurate. Red circles show the orientations
for which only the non-Schmid model gives good predictions.

of the non-Schmid model with either of the hardening moduli are only accurate until the
slope of the force-displacement curve changes and stage II begins.

Since the classical hardening model and moduli cannot accurately predict the deformation
of single crystals past stage I, the deformation of DP980 micropillars was modeled with the
non-Schmid model with the DE hardening rule described in §4.3.1. To ensure that FE
simulation closely follows the complex deformation of the micropillar, care was taken to
match the boundary conditions implemented in the CPFE model with those observed in the
experiment. This allowed for qualitative comparison of the CPFE model results with the
experimental curves beyond the uniform compression of the micropillar that was estimated
to end around 5-6% strain.

Figure 4.13 shows the actual deformed shape and the prediction of the non-Schmid model
with DE hardening rule for micropillar A. Qualitatively, the predicted deformed shape of the
micropillar is similar to the experiment. Due to the lack of a damage criterion, however, the
CPFE model is not equipped to predict slip bands and discontinuities which result in the

slip step observed in the experiment. The predicted compressive strain contour levels shown
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Figure 4.9: Comparing predictions of the Schmid model against the experiment when
material parameters are calibrated using pairs of micropillars 1 and 6 (yellow curve) and
micropillars 4 and 5 (purple curve).

in Figure 4.13(b) nonetheless, show similar shear bands forming in the same general area as
in Figure 4.13(a).

Uchic [168] explained one needs to use a gradient based model to consider the size effect.
Kuroda [169] compared a conventional and a gradient based model to predict the deforma-
tion of an FCC material and argued that to accurately predict the deformation mode of
micropillars one should use a gradient based deformation model. He also points out that
there is no significant difference between the yield stress predictions of the conventional and
gradient based models. The non-Schmid crystal plasticity model developed in this Chapter is
not a gradient-based model. However, given Kuroda’s [169] findings, this model should still
be able to accurately predict the yield stress of the uniaxially compressed ferrite micropillar.
Given that the primary purpose of this study was to accurately match the force-displacement
response of micropillars for parameter calibration, the use of the conventional CPFE model

is well justified.
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As mentioned earlier, equation (4.11) due to its two adjustable parameters can only
predict the hardening rate of the first stage of deformation. However, the new hardening
model in equation (4.15) has three extra material constants, i.e., k1, ko and v that can
be calibrated with an experimental force-displacement curve. In this study, to reduce the
total number of calibration parameters and increase the calibration speed, the non-Schmid
parameters for DP980 ferrite micropillars, i.e., a1, as and ag, were taken from the literature
[157].

Commercial optimization software LS-OPT® was used to calibrate the model the com-
pression test of ferrite micropillars A and B. Table 4.6 shows the material parameters found
from this calibration. Figures 4.14 and 4.15 show the experimental and predicted force-
displacement curves for these micropillars, which are in very good agreement.

Next, the compression response of the other two ferrite micropillars, i.e., C and D, were
predicted with the calibrated non-Schmid crystal plasticity model using the Differential-
Exponential (DE) hardening rule. Figures 4.16 and 4.17 compare predictions of the CPFE
model with remaining two experiments (i.e., C and D) using the same hardening parameters
shown in Table 4.6. As can be seen in these figures, predictions of the DE hardening model
are in good agreement with the force-displacement curves of the DP980 ferrite micropillars.
This confirms the validity of the DE hardening model and as a result, the corresponding
criteria that were used to define the initiation of the stage II hardening. The black stars
in Figures 4.14 through 4.16 indicate the point at which the DE hardening model switched
the hardening rule from stage I to stage II. Figure 4.17 shows that for micropillar D, stage
I hardening is dominant and stage Il hardening never starts.

To study the mesh sensitivity of the DE hardening model, simulations for all micropillars
were repeated with finer meshes. These are also shown in Figures 4.14 through 4.17 with a
dashed line. As can be seen in these figures, the model is not mesh sensitive. The number
of elements in each case is shown in Table 4.7.

As was discussed earlier, the second stage hardening commences when secondary slip sys-
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tems become active and interact with the primary slip system. The activation of secondary
slip systems is mainly caused by the crystal rotation which makes these systems more favor-
able, as well as the increase in the resolved shear stress beyond the CRSS value for secondary
slip systems. This justifies the use of maX(Tﬁ ) as one of the criteria. Figure 4.18 shows the

X(Tﬁ)

evolution of IMT parameter with the increasing engineering strain. The critical value
k1 is shown by a dashed black line. It is interesting to note that micropillars with different
initial orientations reach the critical value at different engineering strain levels. It should be
noted from Figure 4.17 that unlike micropillars A, B, and C, micropillar D never reaches the
critical value for k.

The maximum slip resistance among all slip systems, however, cannot independently
signal the onset of stage II hardening. Additionally, dislocations on secondary slip systems
must start interacting and intersecting dislocations on the primary system. These dislocation
interactions can act as barriers, thus increase the slip resistance, and harden the material.
Therefore, the ratio %212—5 was also chosen as part of the criteria for the initiation of stage
IT hardening. Figure 4.19 shows the evolution of this criterion and the dashed black line
represents the critical value. Figures 4.18 and 4.19 clearly show that these two conditions
are met at different engineering strains for pillars A, B, C, and D. In other words, the stage

IT hardening occurs dynamically and is dependent on the loading direction and the crystal

orientation.

Table 4.6: Material parameters found for the non-Schmid modeling of DP980 (calibrated to
micropillars A and B).

s 10 ho hope n ki ke v @ as as
840 190 200 44060 3 0.2538 0.0700 3 0.0293 0.1727 0.3000

4.6 Summary

According to the Schmid law, only shear stresses resolved on the slip plane and parallel

to the slip direction affect the dislocation motion. Although this is true for FCC materials,
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Figure 4.10: This inverse pole figure shows the orientation of compression axis of the
DP980 ferrite micropillars A-D.

Table 4.7: The number of elements in coarse and fine mesh cases for DP9&0 ferrite
micropillars.

Number of Elements in

Micropillar
Coarse Mesh Fine Mesh
A 640 3276
B 640 3040
C 480 3217
D 480 3840

it does not represent the more complex deformation behavior of BCC materials. In these
materials, other stresses that are not parallel and/or non-planar to the slip direction may
also affect the dislocation motion.

In this study, the uniaxial compression of single crystal ferrite micropillars of QP980
steel was simulated with Schmid and non-Schmid crystal plasticity models, and their pre-
dicted force-displacement curves were compared with experimental curves. For some special
orientations, predictions of both models were identical. Generally, however, only predic-
tions of the non-Schmid-type crystal plasticity model accurately matched the experimental
force-displacement curves of ferrite micropillars.

The Schmid model consistently overestimated the force-displacement of micropillars with

orientations that had R,s values greater than those used for the calibration, and underesti-
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Figure 4.11: Comparing predictions of the non-Schmid model with classical hardening rule
and two hardening moduli against the experiment of DP980 ferrite micropillar A. The
circles show the experimental data, the solid line shows the predictions of the model with
the Asaro hardening moduli and the dashed line represents the predictions of the model
with the Madec-Kubin (MK) hardening moduli. As can be seen, the predictions are close
to the experiment in stage I of deformation before the rate of hardening changes.

mated the force-displacement curves of those micropillars that had smaller R, s values.

The classical Hill’s power-law hardening used in crystal plasticity models can only predict
the stage I hardening. In this study, an exponential hardening model was proposed to
also model the stage II hardening. The accuracy of this model, termed as Differential-
Exponential (DE) hardening, was verified against the uniaxial compression of single crystal
ferrite micropillars of DP980 steel. It was shown that the DE hardening model can accurately
predict stage I and stage II hardening in these single crystals.

Another important finding of this study was that calibrating the material parameters
of the non-Schmid CPFE model using only one micropillar compression force-displacement
curve will not be sufficient, and will result in invalid material parameters. This study shows
that calibrating with two independent experimental force-displacement curves significantly

improves the consistency of fitted parameters, and also increases the accuracy of the model’s
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Figure 4.12: Comparing predictions of the non-Schmid model with classical hardening rule
and two hardening moduli against the experiment of DP980 ferrite micropillar B. The solid
line represents the predictions of the model with the Asaro hardening moduli and the
dashed line shows the predictions of the model with the Madec-Kubin (MK) hardening
moduli. The circles show the experimental data.

predictions.

According to the Schmid law, only shear stresses resolved on the slip plane and parallel
to the slip direction affect the dislocation motion. Although this is true for FCC materials,
it does not represent the more complex deformation behavior of BCC materials. In these
materials, other stresses that are not parallel and/or non-planar to the slip direction may
also affect the dislocation motion.

In this chapter, the uniaxial compression of single crystal ferrite micropillars of QP980
steel, which only show hardening stage I, were simulated with the Schmid and non-Schmid
crystal plasticity models with the conventional Hill-type hardening rule. The force-displacement
curves predicted by these models were compared with experimental curves. For some special
orientations, predictions of both models were identical. Generally, however, only predic-

tions of the non-Schmid type crystal plasticity model accurately matched the experimental
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Figure 4.13: This figure compares the geometry of the deformed ferrite A from (a)
experiment with the (b) prediction of the non-Schmid model with DE hardening rule. The
contour shows the compressive strain parallel to the axis of the micropillar. The current
crystal plasticity model does not have a damage model. Therefore, it cannot show the slip
steps. The contour levels, however, qualitatively match with the slip step observed in the
experiment.

force-displacement curves of ferrite micropillars.

The Schmid model consistently overestimated the force-displacement of micropillars with
orientations that had R,s values greater than those used for the calibration, and underesti-
mated the force-displacement curves of those micropillars that had smaller R, values.

The conventional Hill-type hardening rule can only predict the hardening stage I. An
exponential hardening model was proposed in this Chapter to also model the hardening
stage II. The accuracy of this model, termed as Differential-Exponential (DE) hardening,
was verified against the uniaxial compression of single crystal ferrite micropillars of DP980
steel. It was shown that the DE hardening model can accurately predict stage I and stage
IT hardening in these single crystals.

Another important finding of this Chapter was that calibrating the material parameters
of the non-Schmid CPFE model using only one experimental force-displacement curve will
not be sufficient, and will result in invalid material parameters. The results presented in

the current Chapter shows that calibrating the models with two independent experimental
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Figure 4.14: The Differential-Exponential non-Schmid crystal plasticity model was
calibrated using DP980 single crystal ferrite micropillars A and B. The solid line shows the
calibration of the model (with coarse mesh) against the experiment of DP980 ferrite
micropillar A. The dashed line is the predictions of the model with a finer mesh. The black
star represents the point at which the hardening rule switches from the stage I to stage II.

force-displacement curves significantly improves the consistency of fitted parameters, and

0.2 0.3 0.4
Displacement (;:m)

increases the accuracy of the model predictions.
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Figure 4.15: The Differential-Exponential non-Schmid crystal plasticity model was
calibrated using DP980 single crystal ferrite micropillars A and B. The solid line shows the
calibration of the model (with coarse mesh) against the experiment of ferrite micropillar B.
The dashed line is the predictions of the model with a finer mesh. The black star
represents the point at which the hardening rule switches from the stage I to stage II.
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Figure 4.16: Comparing predictions of the Differential-Exponential non-Schmid crystal
plasticity model for DP980 single crystal ferrite micropillar C against the experiment. The
solid line shows the predicted behavior with the coarse mesh and the dashed line shows the
predicted behavior with the fine mesh. The model is not mesh sensitive. The black star
represents the point at which the hardening rule switches from the stage I to stage II.
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Figure 4.17: Comparing predictions of the Differential-Exponential non-Schmid crystal
plasticity model for DP980 single crystal ferrite micropillar D against the experiment. The
solid line shows the predicted behavior with the coarse mesh and the dashed line shows the
predicted behavior with the fine mesh. The model is not mesh sensitive.
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Figure 4.18: This plot shows the evolution of %g) for each (coarse mesh) micropillar
during the deformation. One of the conditions of the DE hardening model is met when this

parameter reaches k1, which is shown with the dashed black line.

81



0.8

s Pillar A
0.7 F s Pillar B

Pillar C
s Pillar D

- =k,

0 0.02 0.04 0.06 0.08 0.1
Eng. Strain

2nd
Figure 4.19: This plot shows the evolution of lIZ—t for each (coarse mesh) micropillar

during the deformation. One of the conditions of the DE hardening model is met when this
parameter reaches ko, which is shown with the dashed black line.
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CHAPTER 5

A DYNAMIC HARDENING RULE FOR DEFORMATION OF BCC
MATERIALS

In this Chapter, modeling the behavior of single crystal niobium (Nb) is explored. This
BCC metal is the superconducting material of choice for particle accelerator cavities. Over
the years, several Schmid-type crystal plasticity models have been developed [37, 44-47].
However, none of these models capture the behavior of BCC single crystals. Many researchers
have tried to modify the classical crystal plasticity to make it capable of predicting the
deformation behavior of BCC materials.

The non-Schmid crystal plasticity is one method to improve the prediction of the Schmid-
type crystal plasticity for BCC materials. The non-Schmid modeling of deformation has been
studied in many BCC materials including BCC iron [108, 156-158, 170], molybdenum [16,
35, 104-107, 143, 151], tantalum [98], tantalum-tungsten alloy [155], tungsten [16, 35, 106,
107, 143, 152-154]. Dislocation density based crystal plasticity modeling is another method
to improve the accuracy [60, 137, 138, 145, 146].

The predictions of a crystal plasticity model can also be improved by modifying the hard-
ening moduli matrix. Madec and Kubin [139] studied the interactions of 1/2(111) {110} and
1/2(111) {112} slip systems of BCC materials and found 17 distinct interaction types. This
contrasts with the Hill-type hardening moduli matrix that only distinguishes between the self
and latent-hardening. Following this idea, Queyreau et al. [140] studied the interactions of
1/2(111) {110} slip systems in ferrite and calculated six independent hardening coefficients
for possible interaction modes.

Mapar et al. [100, 101] also devised schemes to modify these moduli. Their technique is
based on multiplying the hardening moduli with a ratio of strain rate of the most active slip
systems which changes with the deformation and alters the hardening rate of the material.

Fine grain (25 - 50 pm) niobium sheets are deep drawn and welded to make supercon-
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ducting cavities. Disks sliced from as-cast Nb ingots have large grains. These disks provide
a cheaper path to cavity fabrication than fine grain sheets because they go through fewer
production steps and have less waste. Moreover, the large grain Nb cavities frequently pro-
vide higher superconducting performance, presumably due to having fewer grain boundaries
[135]. Making a cavity consistently out of these disks however, is more challenging because
deformation anisotropy is more evident in deformation of large grains. Reproducibility in
making superconducting cavities can be improved if the formability of a particular slice from
an ingot could be predicted. Subsequently, one can determine if the plastic anisotropy will
cause undesirable flow behavior while forming.

To predict anisotropic deformation, a crystal plasticity model for BCC materials was
derived based on the model of Zamiri and Pourboghrat [38]. A new hardening rule was
developed and embedded in the BCC crystal plasticity model which was subsequently im-
plemented as a user subroutine in commercial FEM software Abaqus®. This model was
then used to predict the uniaxial response of nine Nb single crystal tensile specimens with
distinct crystal orientations.

This Chapter is organized in the following order. §5.1 reviews the material and the exper-
imental method used in this study. §5.2 discusses the development of the proposed Dynamic
hardening rule. The details of the model calibration and the procedure for quantifying the
quality of predictions are explained in §5.3. The boundary conditions implemented in the
simulation are also explained in §5.3. The predictions of the Hill-type and the proposed
Dynamic hardening rules are compared with experiments in §5.4. §5.5 explains how the
Dynamic hardening rule improves the predictions of the classical Hill-Type hardening rule

and §5.6 summarizes the findings of this Chapter.

5.1 Material and method - extraction of tensile specimens

The uniaxial tensile experiment data used in this study was a part of the Ph.D. research

performed by Derek Baars and Di Kang. These experiments are explained in more details
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below.

Residual Resistivity Ratio (RRR) is a measure that is used to roughly specify the purity
of niobium [171]. This ratio is defined as the resistivity of a sample at room temperature
(300 K) divided by its resistivity at 4.2 K. Since Nb is superconductive below 9.2 K and has
no resistivity, the normal-state resistivity is extrapolated to define the resistivity at 4.2 K
[172]. The residual resistivity (resistivity at 0 K) increases with the increase of impurity and
reduces the RRR. Therefore, the higher the RRR, the higher the purity of Nb.

The material used in this study was pure niobium (RRR > 300), which came from an as-
cast ingot slice manufactured by “Ningxia Nonferrous Metals Import & Export Corporation”.
Table 5.1 shows the maximum acceptable impurity levels for RRR > 300 and the impurity
levels reported by the manufacturer for the production batch of the ingot slice used in this
study.

A 3mm-thick slice was cut from an ingot using electron discharge machining (EDM).
The grain boundaries were visible on the as-cut slice. The orientation of the grains was
measured using Laue camera. Nine sets of triplet uniaxial tensile specimens with distinct
crystal orientations were cut from single grains using EDM. The geometry of these specimens
follows the sub-size sample design of ASTM E8-04 which has a gauge length of 18 mm. The
orientation of each set of tensile specimens was intentionally selected to favor dislocation slip
on a single slip system or a known combination of multiple slip systems. More details on the
selection of the sample orientation is given in [171].

One of each triplet samples were electropolished and annealed at 800°C for 2 hours
before being deformed using an Ernest Fullam in-situ tensile stage. The deformation was
performed inside a Tescan Scanning Electron Microscope (SEM). The orientation of each
sample was measured at three locations on the gauge length before the deformation, and at
every 10% strain increment. The crystal orientation data and stress-strain curves from these
experiments were used in the crystal plasticity modeling that is presented in the current

Chapter.
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Table 5.1: This table shows the acceptable impurity levels that was ordered to Ningxia and
the actual impurity amounts of the batch from which the ingot slice was supplied.

Impurity Element Ta W Ti Fe Si Mo Ni O N H C
Specification (less than ppm) 257 35 97 50 99 48 47 58 66 184 77
Ingot (ppm) 51 8 10 8 33 10 &8 29 33 276 77

5.2 The Dynamic hardening model

The complete form of the classical Hill-type hardening rule consists of equations (2.21),

(2.23), and (2.24). This form is summarized as follows.

=3 ned |3 (5.1a)
B
heP = P [q +(1— q)(50‘5] (no summation on f) (5.1b)
Bl B
h’ = hg|1— U - sgn (1 - Ti) (5.1c)
Ts Ts

Where 7% and f'yﬁ are the increment of shear stress and shear strain on slip systems « and
B, respectively. hob is the hardening moduli matrix, hP defines the hardening rate, q is the
latent-hardening ratio, and 5P is the Kronecker delta. hg is the initial hardening rate, Tcﬂ is
the current slip resistance on slip system 3, 75 is the saturation value of the slip resistance,
and finally a is the exponent controlling the hardening rate.

The classical hardening model cannot predict the rapid change of the hardening rate in
the different stages of single crystal deformation (easy glide, hardening, saturation). The
distinction between these three stages is more evident in BCC than FCC materials. The clas-
sical hardening model assumes that during the deformation, slip systems harden through self
or latent-hardening. The rate of hardening of each slip system depends on the instantaneous
slip rate of all slip systems and the ratio of the current resolved shear stress to the maximum
shear stress on each slip system. This model has some shortcomings. For instance, at early
stages of deformation when only one slip system is active, the model predicts increased shear

resistance on all slip systems. Also, it does not account for the slip history and only considers
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the instantaneous slip rate.

At the beginning of deformation of an annealed single crystal, mobile dislocations in the
bulk can travel a long distance before encountering other dislocations. In addition, many
and perhaps most of the dislocations can escape from a surface without encountering many
obstacles, resulting in the easy glide first stage of deformation of a single crystal. As there
is little accumulation of dislocations, the classical Hill-type hardening model overestimates
the hardening of this stage, because it predicts hardening on all slip systems.

In the second stage of deformation of a single crystal, the hardening rate increases due to
the activation of secondary slip systems which then interact with the primary slip systems
resulting in dislocation multiplication mechanisms that cause hardening.

These two stages can be differentiated with the proposed Dynamic hardening rule defined

with the below equations. This model is a generalization of the classical Hill-type hardening

rule [100].
Py = Z h%ﬂH ’75‘ (5.2a)
B
h%ﬂH = h%H [q + (1 — q)éo‘ﬁ} (no summation on f3) (5.2b)
B@ B ond\ "
T, T v
h%tho 1_7_(; - sgn (1—T—Z> [(1—w)+w<w> ] (5.2¢)

2nd are the total shear

Here DH subscript signifies the “Dynamic Hardening” rule, vt and ~
strain on the first and second most active slip systems (more specifically, the first and second
most active slip directions that result in the opportunity for dislocation intersections), the
exponent 1 > 0 is a material constant and 0 < w < 1 is a weighting factor. The weighting
factor, w, controls the deviation from the classical hardening and the exponent, n, controls
the hardening rate. The Dynamic hardening rule thus considers the slip history in predicting
the hardening of the material. This hardening rule can be expressed in terms of the classical
hardening rule with the following equation.

» B |.p ,y2nd n
TDH:ZhDH‘V ‘ (1—w)+w por (5.3)
B
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Depending on the value of w, the hardening rate predicted by the Dynamic hardening
model will be less than or equal the hardening rate predicted by the classical hardening.
In the extreme case when w = 0, the Dynamic hardening model reduces to the classical
hardening. This also happens for n = 0.

When w = 1, the bracket on the right most part of the Dynamic hardening equation

ond \ "
(5.3), simplifies to only (71 st) . This ratio is always less than one, and consequently
Y

the hardening rate predicted by the model is less than the classical hardening rule. At the
beginning of the deformation, when only the primary slip system is active, this ratio is nearly

zero. Therefore, the Dynamic hardening model predicts no increase in the flow stress until

2nd

n
other slip systems become active. At this point (’y Tof ) becomes greater than zero and the
Y

model predicts hardening.

The hardening rate predicted by the model when w = 1 is only appropriate for a perfect
crystal. For cases where the material has pre-existing dislocations, there will be dislocation
multiplication and hardening that is based upon classical latent-hardening concepts. Hence,
the weight parameter, w, reflects the initial dislocation density. To match experiments where
there is a significant dislocation density, the weight factor is adjusted. For w < 1, the model
predicts a non-zero hardening rate; even when only one slip system is active and (77212—?)”

1S zero.

5.3 Calibration of the crystal plasticity models

Nine tensile specimens were cut from differently oriented single crystals of a slice of a
niobium ingot, as was explained in §5.1. The tensile experiments of these specimens were
used to calibrate the BCC crystal plasticity models. Details underlying the motivation
for choosing the orientations and the anticipated slip activity is summarized in [173, 174].
The samples were named alphabetically from “P” through ”X”. These samples were then
annealed before going through 30 to 40% tensile deformation monitored in-situ in a scanning

electron microscope. Figure 5.1(a) shows the initial orientation of the tensile axis of these
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samples. Figure 5.1(b) shows the dimensions of the tensile dog-bone specimens and the
model geometry that matches the tensile samples.

A plasticity model needs to be calibrated before its ability to accurately predict the
behavior of a material can be assessed. Commercial optimization software LS-OPT® was
used to fit the crystal plasticity models to the experiments and find the material parameters.
This is an iterative process through which the optimization software generates a design (a
set of several input parameters) based on the initial estimate of the parameters and within
a pre-specified range for each parameter. The initial estimates can be found from literature
or by trial and error. These initial estimates and ranges help constrain the design space so
that an optimum design can be found with fewer iterations. Next, LS-OPT® runs the finite
element crystal plasticity model through a user-defined script, which starts the simulation
and extracts the results. Then the optimization software compares the simulation results
with the experiment(s) and updates the design. The software continues the iterative process
until the difference in the prediction error (objective function) in two consecutive iterations
is less than a tolerance (in this case 0.01 which is the default value) and the difference
between two consecutive parameter designs is less than another tolerance (again 0.01 which
is the default value) or until a maximum number of iterations (20 iterations) is reached. The
number of designs per iteration depends on the number of parameters to be fitted. For the
details on the calibration process, see the Appendix B.

To calibrate the crystal plasticity model, at least one stress-strain curve is needed. To
increase the accuracy, however, the crystal plasticity models with the classical (w = 0) and
the Dynamic (w as a curve fitting parameter) hardening rules were calibrated against several
sets of two and three stress-strain curves. The quality of each calibration was evaluated using
a criterion that is presented below. Among the tested sets, the set of samples P, T and U
provided the best calibration. The materials parameters resulting from these calibrations
are shown in Table 5.2.

The normalized root-mean-square error (NRMSE) was used to evaluate the quality of
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predictions. This is the mean-square error between the values of stress measured in the
tensile test experiments and those predicted by the crystal plasticity models at specific

strains which are then normalized by the maximum stress within each experiment. The

NRMSE is formulated as below.

N
e= %Z {P(x”) — M(:”")]Q x 100 (5.4)

Where M (xy,) is the nt" experimental stress measurement at strain z;, and P(xy,) is predicted
stress value at the same strain. NV is the number of measurements per experiment. The mean-
square error is then divided by the maximum value of M (zy,) to normalize the error to make
it dimensionless. For reasonable predictions, this normalized error is less than one. The

error is then multiplied by 100 and expressed as percentage.
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Figure 5.1: (a) The inverse pole figure shows the orientation of tensile axis of samples used
in this study. (b) This figure shows the dimensions of the tensile dog-bone samples, and
the model geometry that is used to simulate the tensile tests.
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Table 5.2: Material parameters found from the calibrations to samples P, T and U for the
crystal plasticity models with the classical hardening and the Dynamic hardening rules.
The superscript denote the family of slip systems the parameter represents. For both

models 742 = 100, 7{*** = 1000, and A{'* = 200.
Parameters 7_5110) 7‘5112) 75(110) 715112) h(()llo) hélu) a w n
Classical 15.42  18.17 100 171.68 10 339.65 3 0 0

Dynamic 15.34  16.51 444.63 545.90 10.92 22441 3 0.702 8

5.4 Comparing predictions of the models with the experiments

Figures 5.2(a) through 5.4(a) show the calibration curves of the crystal plasticity model
with the classical and Dynamic hardening rules against the tensile experiments of orientations
P, T and U. These three orientations were chosen because they represent extremes of the
material response. NRMSE values for these calibrations are presented in Table 5.3. As can
be seen in this Table, the average error in the predictions of the Dynamic hardening model
is less than that of the classical hardening rule. Therefore, the predictions of the Dynamic
hardening model are generally more accurate than the classical hardneing model.

Calibrations were also done with other samples, including the set of P and R and the
set of P and T. Results of these calibrations are presented in Tables 5.4 and 5.5. In both
cases, the predictions of the dynamic hardening model are more accurate than the classical
hardneing model. Nonetheless, the calibration of the Dynamic hardening model with P, T
and U samples provided the least average error, thus it is presented in more details here.

The models calibrated with samples P, T and U were then used to predict the tensile
stress-strain response of the remaining six (Q, R, S, V, W, and X) single crystal samples.
Figures 5.5(a) through 5.10(a) compare the predictions of the classical and Dynamic hard-
ening models with the results of tensile experiments of these six orientations. Open circle
symbols in these figures show the results of experiments, dashed lines show the predictions
of the Dynamic hardening, and solid lines show the predictions of the classical hardening

models. Inspecting these figures, one can easily see that the predictions of the Dynamic
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hardening model are better than the predictions of the classical hardening model. In Table
5.3, the average error in the predictions of the Dynamic hardening model is 6.76%, while the
average error in the predictions of the classical hardening rule is larger by a factor of 1.32.

As can be seen in Figures 5.2(a) through Figure 5.10(a), the experimental slope of most of
the stress-strain curves changes around 25% engineering strain. Neither of the classical and
Dynamic hardening rules can predict this kind of change in the hardening rate of Nb single
crystals. Therefore, the predictions of the crystal plasticity models deviate more strongly
from the experiment after about 25% engineering strain. This indicates that the classical
hardening assumption that the hardening is uniformly increased with increasing activity of
the secondary slip system overestimates the rate of dislocation multiplication. It should be
noted that neither of the models can predict the increase in slope that occurs with later
strain.

Figures 5.2(b) through 5.10(b) show the geometry of the samples after straining. Figures
5.2(c)-(d) through 5.10(c)-(d) show contour plots of axial engineering stress on the deformed
geometry of the samples as predicted by the simulation using the Dynamic hardening and the
classical hardening model. The spatial distribution of stress (but not the magnitude) is sim-
ilar for both models. The deformed geometry predicted by the models matches qualitatively
with the experiment. Nevertheless, there are cases where the predictions and experiment are
different. For instance, for specimen U, the deformed geometry shows macro shear bands
that are not predicted by the models. These shear bands are a consequence of orientation
splitting [from unpublished work of Di Kang, Ph.D. student at Michigan State University].
The crystal plasticity model has no means to identify localized dislocation reorganization,
thus such features cannot be predicted.

The finite element model shown in Figure 5.1(b) has 600 elements. To study the mesh
sensitivity of the prediction, the mesh was refined, which increased the number of elements
to 21580. Figure 5.11 shows the effect of the mesh size on the predictions of the model for

samples Q and X. As can be seen from these figures, the stress-strain curves of both mesh
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sizes are similar. Therefore, the model is not mesh sensitive. The effect of the mesh size on
the rest of the orientations was also minimal. Consequently, the stress-strain curves of other
orientations with a finer mesh are not presented here.

The evolution of the texture during the tensile deformation is illustrated in Figures 5.12
through 5.20. Part “a” of these figures show the rotation of the tensile axis of the dog-
bone samples during the deformation. Part “b” and “c” represent the evolution of crystal
orientation as predicted by the crystal plasticity models with the Dynamic hardening and
classical hardening rules, respectively. The contour shows the tensile strain. The predicted
texture evolution is qualitatively accurate for all samples.

As was mentioned earlier, the tensile experiments were performed inside an electron
microscope chamber using a specially designed tensile stage. The initial crystal orientation
of the samples was measured before the deformation. Then the shoulders of the samples
were secured between the grips of the tensile stage. One grip was fixed and the other one
was moved in the tensile direction. The deformation was stopped at 10% engineering strain
increments and the crystal orientation was measured. Samples were deformed up to 40%
engineering strain.

In simulating the above tensile experiments, the grips were neglected and the deformation
was imposed by boundary conditions. Neglecting the grips simplifies the model and makes
the simulations less computationally expensive. The effect of the fixed grip was modeled
with an encastre boundary condition. All the nodes on the left end of the left shoulder (the
left-most nodes on the X-Z plane) in Figure 5.1(b) were pinned in their position. To model
the moving grip, all the nodes on the right end of the right shoulder (the right-most nodes
on the X-Z plane) in Figure 5.1(b) were moved in the positive Y direction.

The tensile stage recorded the force and displacement during the deformation. This data
was used to calculate the engineering stress-strain curves. In simulations, the displacement
at each finite element increment was extracted from the node at the top right corner of the

right shoulder in Figure 5.1(b). The force was extracted from the encastre nodes of the
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left shoulder. This data was used to plot the global engineering stress-strain curves of the

simulation.
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(c¢) Contour of axial stress for sample P as pre- (d) Contour of axial stress for sample P as pre-
dicted by the Dynamic hardening rule. dicted by the classical hardening rule.

Figure 5.2: Each of the crystal plasticity models with the classical hardening and the
Dynamic hardening rules was simultaneously calibrated against stress-strain curves of the
experiments of P, T and U. (a) Compares the calibration of the Dynamic hardening and
classical hardening rules to stress-strain curve of orientation P. In this plot, the
experimental data is shown with circles, prediction of the Dynamic hardening model with a
dashed line and prediction of the classical hardening rule with a solid line. (b) Shows the
deformed P sample. (¢) And (d) show the contour of the axial stress for sample P as
predicted by the Dynamic hardening and the classical hardening rules, respectively.

5.5 Justifying the Dynamic hardening rule

As illustrated in Figures 5.2(a) through 5.10(d) and evident in Tables 5.3 through 5.5,

the crystal plasticity model with the classical hardening rule cannot adequately predict
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(¢) Contour of axial stress for sample T as pre- (d) Contour of axial stress for sample T as pre-
dicted by the Dynamic hardening rule. dicted by the classical hardening rule.

Figure 5.3: Each of the crystal plasticity models with the classical hardening and the
Dynamic hardening rules was simultaneously calibrated against stress-strain curves of the
experiments of P, T and U. (a) Compares the calibration of the Dynamic hardening and
classical hardening rules to stress-strain curve of orientation T. In this plot, the
experimental data is shown with circles, prediction of the Dynamic hardening model with a
dashed line and prediction of the classical hardening rule with a solid line. (b) Shows the
deformed T sample. (¢) And (d) show the contour of the axial stress for sample T as
predicted by the Dynamic hardening and the classical hardening rules, respectively.

the deformation behavior of Nb single crystals. One of the reasons for the failure of the
classical model is that the definition of the hardening rate in this model does not accurately
represent the physical processes taking place in a single crystal. The classical hardening
model, equations (5.1), does not have an accumulated strain term. This model indirectly
considers the effect of strain in calculation of the hardening rate, through the term % This

B

is the ratio of current critical shear stress (yield stress), 7 , of slip system (3 to a saturation
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Figure 5.4: Each of the crystal plasticity models with the classical hardening and the
Dynamic hardening rules was simultaneously calibrated against stress-strain curves of the
experiments of P, T and U. (a) Compares the calibration of the Dynamic hardening and
classical hardening rules to stress-strain curve of orientation U. In this plot, the
experimental data is shown with circles, prediction of the Dynamic hardening model with a
dashed line and prediction of the classical hardening rule with a solid line. (b) Shows the
deformed U sample. (c¢) And (d) show the contour of the axial stress for sample U as
predicted by the Dynamic hardening and theclassical hardening rules, respectively.

shear stress (the maximum allowed value), 75, which means that a slip system active at any
moment hardens all other slip systems operating at different rate, unless its resolved shear
stress reaches 75. In the single crystal deformation, no hardening occurs at the beginning
as dislocation slip in only one direction dominates the deformation. At this stage, perhaps
only one slip system is active, and there is no significant interaction with other slip systems

to harden the material. This problem is addressed in the Dynamic hardening model.
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(c) Contour of axial stress for sample Q as pre- (d) Contour of axial stress for sample Q as pre-
dicted by the Dynamic hardening rule. dicted by the classical hardening rule.

Figure 5.5: (a) Comparing the stress-strain curves predicted by the Dynamic hardening
and classical hardening rules against the experiments for sample Q. The experimental data
is shown with circles, prediction of the Dynamic hardening model with a dashed line and
prediction of the classical hardening rule with a solid line. (b) Shows the deformed Q
sample. (¢) And (d) show the contour of the axial stress for sample Q as predicted by the
Dynamic hardening and the classical hardening rules, respectively.

To further discuss the Dynamic hardening model, equations (5.3) can be decomposed
into two parts; the part modeling the hardening effect of the pre-existing barriers 75, and

the part modeling the effect of interaction between active slip systems 75 ;.
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(a) Comparing the stress-strain curves predicted (b) Geometry of sample R after deformation.
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Figure 5.6: (a) Comparing the stress-strain curves predicted by the Dynamic hardening
and classical hardening rules against the experiments for sample R. The experimental data
is shown with circles, prediction of the Dynamic hardening model with a dashed line and
prediction of the classical hardening rule with a solid line. (b) Shows the deformed R
sample. (c¢) And (d) show the contour of the axial stress for sample R as predicted by the
Dynamic hardening and the classical hardening rules, respectively.

ond\ "
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B

At the beginning of the deformation when mainly one slip system is active; the total shear
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(a) Comparing the stress-strain curves predicted (b) Geometry of sample S after deformation.
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Figure 5.7: (a) Comparing the stress-strain curves predicted by the Dynamic hardening
and classical hardening rules against the experiments for sample S. The experimental data
is shown with circles, prediction of the Dynamic hardening model with a dashed line and
prediction of the classical hardening rule with a solid line. (b) Shows the deformed S
sample. (c¢) And (d) show the contour of the axial stress for sample S as predicted by the
Dynamic hardening and the classical hardening rules, respectively.

strain on the second most active slip system 42"? is very small in comparison to total shear
. . 1st 2nd . . .
strain of the most active system v-*'. Therefore, the term w 7@ in equation (5.5¢) is
Y
very small which effectively shuts down the increment in hardening, due to the lack of barriers
such as grain boundaries and forest dislocations. The material, nevertheless, hardens slightly
through the interaction of the active slip systems with the pre-existing obstacles. Equation

(5.5b) models this effect. Any active slip system can run into pre-existing barriers and cause

hardening. The term w adjusts this contribution to the overall hardening behavior. In the
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(a) Comparing the stress-strain curves predicted (b) Geometry of sample V after deformation.
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Figure 5.8: (a) Comparing the stress-strain curves predicted by the Dynamic hardening
and classical hardening rules against the experiments for sample V. The experimental data
is shown with circles, prediction of the Dynamic hardening model with a dashed line and
prediction of the classical hardening rule with a solid line. (b) Shows the deformed V
sample. (c¢) And (d) show the contour of the axial stress for sample V as predicted by the
Dynamic hardening and the classical hardening rules, respectively.

experiments, the pre-existing dislocation content is not known. It is likely that pre-existing
dislocations may be more effective in hardening some orientations than others, given that
the samples were extracted from 4 distinct grains in an ingot slice. Consequently, a single
value for w is not likely to be descriptive of the particular interactions between activated
and existing dislocations in the experiments.

As seen in Figures 5.2(a) through 5.10(d), the Dynamic hardening model adequately

predicts the deformation behavior of single crystal Nb. This confirms the validity of the

100



90

80

Eng. Stress (MPa)

10! = = \\ - Dynamic
s \\\ - Classical

1 1 1 1 1 1 1 )
0 5 10 15 20 25 30 35 40

Eng. Strain (%)
(a) Comparing the stress-strain curves predicted (b) Geometry of sample W after deformation.
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Figure 5.9: (a) Comparing the stress-strain curves predicted by the Dynamic hardening
and classical hardening rules against the experiments for sample W. The experimental data
is shown with circles, prediction of the Dynamic hardening model with a dashed line and
prediction of the classical hardening rule with a solid line. (b) Shows the deformed W
sample. (c¢) And (d) show the contour of the axial stress for sample W as predicted by the
Dynamic hardening and the classical hardening rules, respectively.

Dynamic hardening model and is consistent with the underlying physical metallurgy of dis-
location behavior.

The texture evolution predicted by both hardening model qualitatively matches with
experiments. Although the tensile samples are single crystals, their orientation slightly varies
from one side to the other. In addition, the initial dislocation density might vary slightly
from one sample to other. The model, though, considers only one orientation throughout

each sample and assumes an identical initial state for all samples. These can affect the
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(a) Comparing the stress-strain curves predicted (b) Geometry of sample X after deformation.
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Figure 5.10: (a) Comparing the stress-strain curves predicted by the Dynamic hardening
and classical hardening rules against the experiments for sample X. The experimental data
is shown with circles, prediction of the Dynamic hardening model with a dashed line and
prediction of the classical hardening rule with a solid line. (b) Shows the deformed X
sample. (¢) And (d) show the contour of the axial stress for sample X as predicted by the
Dynamic hardening and the classical hardening rules, respectively.

prediction of the texture evolution as well as the stress-strain curves.

The current model is based on a Schmid law for activation of a slip system. The de-
formation behavior of BCC materials, however, may be more accurately modeled with non-
Schmid-type models [170], which provides a potential improvement to the Dynamic hard-
ening approach. Given the uncertainties in initial dislocation content and their effect on
hardening, the non-Schmid effects may be hidden behind effects from the initial dislocation

content. Furthermore, the mathematical construction of the model still results in flow curves
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Figure 5.11: Comparing the stress-strain curves predicted by the Dynamic hardening
model for coarse (600 elements - shown with dashed lines) and fine mesh (21580 elements -
shown with solid lines) models of (a) Q and (b) X. As can be seen in these figures the
crystal plasticity model is not mesh sensitive.
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Figure 5.12: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 40%
tensile deformation of P orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.

with downward curvature, so inflection leading to upward curvature cannot be captured by
the Dynamic hardening rule. Thus, the source of this more pronounced hardening effect
requires models that can generate flow behavior with upward curvature and is the subject

of continuing research efforts.
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Figure 5.13: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 40%
tensile deformation of Q orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.
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Figure 5.14: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 40%
tensile deformation of R orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.

5.6 Summary

Another approach taken to improve the predictions of the Schmid-type crystal plasticity
model was presented in this Chapter. This approach proposes a generalization to the classical
hardening rule (which is termed the Dynamic hardening rule) to model the hardening of
single crystal BCC materials more accurately. The Dynamic hardening rule, equations (5.2),
reduces to the classical form, equations (5.1), when either w = 0 or n = 0.

The classical hardening model cannot accurately predict the deformation behavior of Nb.
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Figure 5.15: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 30%
tensile deformation of S orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.
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Figure 5.16: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 40%
tensile deformation of T orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.

The Dynamic hardening model, however, significantly improves the ability of the Schmid-

type crystal plasticity model to predict the flow behavior of BCC single crystal niobium. This

is done by introducing a simplified concept based on the physical processes of dislocation

behavior. The Dynamic hardening model assumes at the beginning of the deformation and

during the single slip stage, dislocation accumulation is minimal and the material does not

harden significantly. This model can be easily implemented into the existing crystal plasticity

codes.
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Figure 5.17: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 30%
tensile deformation of U orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.
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Figure 5.18: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 30%
tensile deformation of V orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.

In the current Chapter and Chapter 4, the normalized root means-square error (NRMSE)
was used as a metric to compare the quality of model predictions throughout the deformation
process. NRMSE is a scalar measure of error between predictions of simulations and the
respective experimental data. A model fit to the experiment is acceptable when NRMSE
value is small. Therefore, the model calibration process was defined as an optimization

problem to minimize this error.
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Figure 5.19: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 40%
tensile deformation of W orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.
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Figure 5.20: Inverse pole figures show the results of (a) experiment, (b) the Dynamic
hardening and (c) the classical hardening rule for the evolution of texture during 30%
tensile deformation of X orientation. The contour shows the engineering strain. The
orientation data in the experiment was recorded at 10% increments while the simulation
data was recorded at 1% increments.
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Table 5.3: NRMSE for predictions of crystal plasticity models with the classical and the
Dynamic hardening rules calibrated simultaneously with stress-strain curves of samples P,
T, and U. The lower error values are in bold font.

NRMSE (%) for crystal plasticity model

Sample
(Classical hardening Dynamic hardening

P 6.93 7.16
Q 11.29 4.17
R 16.30 5.92
S 11.94 5.17
T 4.88 4.49
U 4.62 8.60
\Y% 5.32 8.77
W 4.76 10.04
X 14.31 6.89
Average error 8.93 6.76

Table 5.4: NRMSE for predictions of crystal plasticity models with the classical and the
Dynamic hardening rules calibrated simultaneously with stress-strain curves of samples P
and R. The lower error values are in bold font.

NRMSE (%) for crystal plasticity model

Sample
(Classical hardening Dynamic hardening

P 7.85 7.81
Q 6.68 4.16
R 15.41 3.78
S 6.38 5.96
T 3.51 5.65
T 22.53 21.02
\Y% 7.16 5.54
W 5.44 10.10
X 15.93 8.26
Average error 10.10 8.03
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Table 5.5: NRMSE for predictions of crystal plasticity models with the classical and the
Dynamic hardening rules calibrated simultaneously with stress-strain curves of samples P,
T. The lower error values are in bold font.

NRMSE (%) for crystal plasticity model

Sample
Classical hardening Dynamic hardening

P 5.92 6.47
Q 14.03 5.50
R 20.87 4.60
S 13.20 7.15
T 5.17 4.82
T 7.70 13.74
\Y% 5.24 7.26
W 4.75 11.38
X 19.88 8.24
Average error 10.75 7.68
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CHAPTER 6

CRYSTAL PLASTICITY MODELING OF TUBE HYDROFORMING

A major industrial application of pure polycrystalline niobium (Nb) sheet metal is for particle
accelerator cavities. The International Linear Collider (ILC) project will require a very
large amount of Nb to fabricate cavities in a limited time. This large future demand has
stimulated alternative cavity fabrication strategies such as directly slicing disks out of as-cast
Nb ingots [175] which eliminates the costly Nb sheet rolling process [176] and reduces waste
for axisymmetric parts. It has been shown that cavities manufactured from large grain
(grains larger than 5-10 mm) sheets often have a better superconducting radio frequency
(SRF) performance than the fine grain (grain size in range of 50 pm) sheets [135, 176]. This
increase in performance is correlated with the presence of fewer grain boundaries in the
material. Also, the sheet rolling process can introduce impurities to the material. Slices that
are cut form from an ingot potentially have fewer defects per unit volume.

Nb ingots are manufactured by electron beam melting of a Nb feedstock. This molten Nb
drips into a continuous casting mold. The ingot made with this process has a nearly columnar
grain structure. As single crystal ingots are routinely fabricated in other materials, it may be
possible to fabricate ingots with a preferred orientation [175]. However, the intrinsic plastic
anisotropy of Nb single crystals will lead to non-uniform forming, which must be anticipated.

Figure 6.1 schematically shows a particle accelerator cavity. These cavities are tradition-
ally made from deep drawing of a Nb sheet into bowl shapes having a hole in the center. Two
bowls are welded together to make an elliptical cavity. Then a tube with the inner diameter
equal to the diameter of the holes is welded to each end to make a single cell cavity.

Although the above is the standard manufacturing process for these cavities, it is not an
optimal one. A manufacturing process like tube hydroforming has the potential to fabricate
a cavity from a single piece of tube, and the lack of welding could lead to better reproducibil-

ity and improve the performance of the cavity while reducing the manufacturing costs. Tube
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hydroforming is a forming process in which an internal hydraulic pressure applies the defor-
mation force. If an outer die is used, the material conforms to it. Figure 6.2 schematically
shows the steps of the tube hydroforming process. The ultimate goal of this research is
to make a particle accelerator cavity from the large grain tube that was previously made.
The current study uses a crystal plasticity model with Dynamic hardening rule described in
Chapter 5 to predict the hydroforming of a large grain Nb tube.

The rest of this Chapter is organized as follows. §6.1 reviews the process for fabrica-
tion of the seamless large grain Nb tube that was hydroformed in this study. To verify
the microstructure of the tube, crystal orientation was systematically measured at several
locations around the tube. The results of these measurements are presented in §6.2. Next,
the tube was hydroformed. Details of this experiment are explained in §6.3. Then, the
hydroforming experiment was simulated with the Schmid-type crystal plasticity model with
the Dynamic hardening rule. §6.4 compares the predictions of the model with the experi-
ment. §6.5 discusses the tube making process, the hydroforming experiment and the crystal

plasticity modeling in more details. Findings of this Chapter are summarized in §6.6.

Figure 6.1: Cross section of a single-cell particle accelerator cavity. Figure from [132].
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Figure 6.2: This figures shows the schematics of a tube hydroforming process. The tube is
secured between the rams and die (if available). The fluid pressure brings the material to
yield. Rams can be moved axially to assist in the forming process. Figure from [177].

6.1 Material and method - fabrication of a large grain niobium
tube

To provide the means to examine effects of large grain material on hydroforming, a
seamless large grain Nb tube with an outer diameter of 38 mm was made from a 2 mm-thick
polycrystal Nb sheet. The tube manufacturing process was done by Dr. Jim Murphy at
University of Nevada, Reno.

A rectangular Nb sheet was bent into a 38 mm (1.5 inches) outer diameter tube and arc
welded. To grow the crystals and convert the initial microstructure to a large grain structure,
the tube was locally heated to a very high temperature (near the melting temperature) in
a high vacuum (~5 x 1076 torr) furnace. The vacuum reduced impurities that have a lower
melting point and a higher vapor pressure. The heat was created with a radio frequency
local hot zone. This technique quickly heated up a small section of the tube. The hot
zone was then moved along the length of the tube with a fixed velocity, which encouraged

recrystallization and grain growth parallel to the tube axis. The tube was fixed between
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water-cooled copper plates in the furnace, that did not allow thermal expansion in the axial
direction. Therefore, the tubes that came out of this process were not perfectly straight.
The most successful tube is shown in Figure 6.3(a). The surface of the tube shows some
grooves and ledges, the deepest of which are traced with black lines in Figure 6.3. As will
be demonstrated later, these black lines (often) mark the grain boundaries. Some shallower
grooves represent the location of finer grain boundaries that were present before the large

grain growth. These grooves are evident in an enlarged part of the tube image in Figure

6.3(b).

Figure 6.3: (a) The large grain Nb tube made for this study. The tube is not fully straight
because it was fixed between two rigid cooling plates in the furnace. The black lines mark
the current grain boundaries. (b) An enlarged section from the center of the tube shows
visible grooves and ledges showing the grain boundaries prior to forming the large grains.

6.2 Characterization of the tube

After the heat treatment, the orientation of the tube was examined with a Laue camera.
Laue measurement is an X-ray diffraction based technique and does not need to be performed

in a vacuum. This contrasts with Orientation Imaging Microscopy (OIM) measurement,
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which is extracted from Electron Back Scatter Diffraction (EBSD) data and is done in an
electron microscope chamber under a vacuum. Laue camera samples can be larger than OIM
samples because they do not have to fit into a microscope chamber.

Figure 6.4 shows the arrangement of the large grain boundary lines unrolled into a sheet.
The white dashed lines show the location of the original weld line. The black lines correspond
to the dominant surface groove features of the tube. Each color in this figure represents an
individual grain, but the colors are arbitrary.

To examine the visible ledges on the surface of the tube more closely, grain orientations
on either side of selected ledges were measured using Laue camera at locations denoted with
A1-A4, B1-B4, and C1-C6 in Figure 6.4. Crystal orientations were also measured around the
weld line at locations that are labeled with D1-D3 in Figure 6.4. The orientations measured
at locations A through D are shown in pole figures in Figure 6.5. The B measurements
were made parallel to the length of the tube, so they were directly measured in a common
coordinate system. Measurements made at locations A, C, and D required rotation around
the tube axis. Each orientation shown in Figure 6.5(a), (c¢) and (d) is measured with respect
to a separate coordinate system. Each coordinate system is rotated around the tube axis
with respect to other orientations within the same plots.

As can be seen in Figure 6.5(a), the measurements A2 and A3 represent the same grain
orientation but with a rotation around the tube axis. By rotating A3 around the tube axis
by approximately 50°, one gets to the A2 orientation. Hence, A2 and A3 are from the same
grain. By rotating A4 around the tube by approximately 80°, it gets close to the orientation
of A2, but there is still a misorientation between them. There is also a misorientation
between grains Al and A2.

By inspecting B1 through B4 in Figure 6.5(b), one can easily conclude that the ledge
between B2 and B3 is a grain boundary. B1 and B2 have the same grain orientation and B3
and B4 have another orientation.

The measurements at locations C1 through C6 were performed to check three visible
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ledges in that section of the tube. The orientation was measured on either side of each
boundary. Results shown in Figure 6.5(c) confirm that these ledges are grain boundaries.

The heat treatment was designed to remove the weld line and the heat affected zone
(HAZ). To verify that grain growth consumed the weld line, measurements D1 through D3
were performed below, on, and above the weld line, as shown in Figure 6.4. The orientation of
these measurements is shown in Figure 6.5(d). Orientations D2 and D3 match the orientation
D1 when rotated by the approximately 30° and 50° around the tube axis that was imposed.
Therefore, the heat treatment fully recrystallized the heat affected zone and the initial grain
structure to a new grain that covers the middle section of the tube. This grain is represented
by the light green area in the middle of Figure 6.4 .

Next, the orientations of grains were measured systematically using a grid. The grid lines
are on the surface of the tube, parallel to the tube axis and approximately 60° apart. The ori-
entation was measured at eight points along each axial line. The points are 25.4 mm (1 inch)
apart from each other and the ends. The Laue camera stage on which the tube was placed,
moves in X-Z plane (left-right and up-down directions). This machine, however, does not
have the capability of turning the tube around its axis. Therefore, the measurements along
the axis of the tube were made on the exact 25.4 mm intervals; while the rotation around
the axis of the tube was manual and approximately 60°. Figure 6.4 schematically shows
the grid defined by outside longitudinal locations 25.4 mm apart (P-W) and circumferential
markings (approximately 60° apart, 1-6) at which the orientation was measured. The axis of
the tube is horizontal (Y-direction). Red circles show the approximate locations of X and
7 axis. The commercial software “Orient Express” was used to index the Laue patterns and
identify the crystal orientation.

Since orientations were measured on the surface of the tube; each measurement around
the circumference was with respect to a separate coordinate system. Therefore, to express
all the measured orientations in a common reference coordinate system the measurements

around the axis of the tube (on lines 1-6) were rotated by 0°, 71°, 152°, 213°, 263° and 315°,
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respectively.

The three (100) directions for each set of circumferential measurements (at positions
P through W after rotating the orientations to the 0° common reference) are plotted on
pole figures shown in Figure 6.6. At positions P and Q, two distinct (100) orientations are
apparent. This means that there are two grains in these locations. At positions R, S, and T,
the three (100) directions coincide, indicating that the central grain has the same orientation
with respect to the reference coordinate system. Three distinct orientations can be seen in

U and V and four orientations are seen in position W.

P Q R S T U \% w

Figure 6.4: This map shows the grain structure of the large grain Nb tube. Major grain
boundaries are shown with black lines and the weld is shown with the white dashed lines.
The red line shows the location of crack after hydroforming. Each color represents one
grain. The axis of the tube is horizontal (Y-direction). Red circles show the approximate
locations of X and Z axis.

6.3 Tube bulging with pressurized water

A standard approach to the tube hydroforming process was used to study the deformation

of the large grain tube and as a first step towards designing a tube hydroforming manufac-
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Figure 6.5: These Pole figures show the Laue camera measurements of crystal orientations
at locations A through D. The orientation of these measurements was not corrected for the
rotation of the tube.

turing process. A square-circle grid was put on the tube to facilitate the measurement of
local strains after deformation.

The tube was mounted in a custom-built tube hydroforming machine. A clamp fixture
was used to secure the tube between the rams and create a seal. The clamp system design
includes a pair of collars that have an inner diameter equal to the outer diameter of the
tube. They have a negative conical shape that matches the conical shape of the rams. These
collars were put on the tube; then the tube was compressed between the conical shape rams
to flare out the ends. The collars are designed to compress the flare of the tube against the

rams. The clamp system compresses the flared ends of the tube between the rams and the
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Figure 6.6: Pole figures show the Laue camera measurements of crystal orientation. Each
pole figure shows 6 measurements made around the tube at positions P-W shown in Figure
6.4. The crystal orientations plotted in these pole figures are rotated back to a common
reference orientation by 0°, 71°, 152°, 213°, 263° and 315°, respectively for circumferential
positions 1-6 shown in Figure 6.4.

collars to establish the seal.

The inner surfaces of the flared parts of the tube were lightly grounded circumferentially
to remove the grain boundary ledges and grooves. Because the tube was not straight, it
bent slightly due to the compressive force of the flaring process. To make the tube nearly
straight again, the fixing clamps were put around the tube and the rams (but they were not
tightened) to allow pulling the tube back to nearly straight. The clamps were then tightened.

Figure 6.7 shows the final assembly.
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The tube bulging process started with incrementally increasing the fluid pressure. The
left ram was also incrementally moved along the tube axis to maintain an approximately
constant compressive load. Both fluid pressure and axial load were incrementally increased
until the tube cracked. The tube cracked in the middle of a bulged section within the center
single crystal region, about 10 mm from grain boundaries, and far from the prior weld line.
The crack is shown in Figure 6.8(a) and schematically presented in Figure 6.4. A side view
of the deformed tube is shown in Figure 6.8(b).

The data acquisition software recorded the fluid pressure, ram displacement and reaction
force. Figure 6.9 shows the value of these parameters during the deformation. The hydro-

forming process was monitored with a “GoPro Hero3+ dual-camera system” at two-second
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intervals.

As can be seen in Figure 6.9, at the beginning of the process the left ram was moved
0.025 mm to apply an axial force on the tube. Then the fluid pressure was increased to about
600 kPa. This resulted in a drop in the axial force. Next, at second 54, the ram was moved
to the 0.305 mm location, which increased the compressive load to about 4300 N. The fluid
pressured was then incrementally increased. The tube bulged with increasing of the pressure
which caused a contraction in the length of the tube and a drop in the compressive load.
At second 237, after the fluid pressure reached about 5000 kPa and the compressive load
dropped to about 500 N, the left ram was moved to the position of 0.635 mm. This increased
the compressive load to the maximum of ~5460N. The pressure was then increased to
the maximum of ~5400kPa. The material became unstable under these conditions and
eventually cracked at about second 280.

After the deformation, the change in the dimensions of the square grid (which was pre-
viously put on the tube) was measured and the local strains were calculated at each of the
locations in the longitudinal and circumferential positions. Figure 6.10 shows the distribu-
tion of the measured local circumferential (hoop) strain. The white regions are where the
grid was damaged or incomplete and no reliable measurements could be made. The location

of the crack is shown with a purple arrow.

6.4 Crystal plasticity modeling of the tube hydroforming

As was mentioned before, the large grain tube that came out of the heat treatment process
was not straight. To capture the geometry of the tube in the simulation, the company “Laser
Design” created a CAD model from a 3D scan of the tube with a target accuracy of £0.001
inch. The CAD model was then meshed with 60012 solid eight-node brick elements with
reduced integration (C3D8R). The mesh is composed of three layers with 20004 elements
each.

While the geometry of the model matches closely with the physical tube, the finite
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element mesh does not show any of the surface features of the tube, such as the curved
grain boundaries, ledges, and grooves. The complex grain boundary shapes were not easily
mapped onto the finite element mesh of the tube. Therefore, as a first approximation, smaller
grains were neglected and the boundaries were modeled with straight lines using the grid
shown in Figure 6.11.

In the experiment, the clamp system constrained the smaller grains near the ends of the
tube, so they did not contribute to the overall deformation. The implemented boundary
conditions in the model similarly limit the deformation of these grains. Therefore, the
smaller grains were ignored in modeling without compromising the results. The colored
blocks were filled with the corresponding Laue camera measurement orientation data from
the pole figures shown in Figure 6.6. Figure 6.12 shows the model of the tube with the grain
orientations mapped.

Next, mechanical boundary conditions were imposed on the model of the tube. The
rams and the clamps were ignored, but the boundary condition imposed by the collars were
modeled. To do so, the nodes within ~25mm of each end were constrained to only move in
the axial direction. The tube flaring process which resulted in the slight bending of the tube
was modeled with an axial 12.7 mm compressive displacement on each end of the tube. This
was applied on the end nodes (nodes perpendicular to the axis of the tube). The applied
displacement is equal to the flaring displacement that was done in the experiment. An equal
displacement but in the reverse directions was then applied to simulate the straightening of
the tube. Then the nodes on the right end of the tube (nodes perpendicular to the axis of
the tube) were fixed. Next, the left ram was displaced incrementally to 0.635 mm, and the
pressure was incrementally increased to 5400 kPa. These values of applied pressure and the
compressive displacement are similar to the experiment.

A tensor visualization technique was used to process the simulation data. Therefore,
the basics of this technique need to be explained before presenting the simulation results.

This method is named Superquadric Tensor Glyphs [178] and visualizes tensors using their
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eigenvectors and eigenvalues. In a strain tensor, the principal directions (eigenvectors) of
the tensor define the spatial orientation of the glyph and the principal strains (eigenvalues)
convey the dimensions of a glyph. Therefore, for a plane strain state the glyph has a plate
shape; for a uniaxial strain the glyph has a bar shape, and for a hydrostatic pressure the
glyph is a sphere. A larger hydrostatic strain will be presented by a larger sphere. The color
of each glyph signifies the von Mises strain value of the element from which the strain tensor
was extracted. The details of the visualization method are explained in [178] and a range of
glyph shapes are shown in Figure 6.13.

The Schmid-type crystal plasticity model with the Dynamic hardening rule was used
to predict the deformation of the tube. This model was previously calibrated with single
crystal Nb tensile specimens described in the Chapter 5. The deformed geometry predicted
by this model is shown in Figure 6.14. The color bar on the left of this figure represents the
equivalent plastic strain of the top surface of the tube. In Figure 6.14(a), the location that
corresponds with the location of the crack in the experiment is shown with a purple ellipse.
This area has a light blue strain contour.

The colors used to illustrate plastic strain contours are set to discern the strain gradients
in the bulged center of the tube most easily. The gradient occurs in the equivalent strain
range of 0-0.3. As will be shown with strain glyphs, the gray and red parts of the contour are
mainly compressive strain, which arose due to the axial compressive displacement applied
during the deformation. Most of the hoop strain happens in the mid-section of the tube,
where the tube has bulged the most. The spatial orientation of the tube is the same as the
deformed tube shown in Figure 6.8(b).

Although the equivalent plastic strain in the mid-section of the tube is less than other
parts, the bulging happened in this section. Therefore, the type of strain experienced by
elements in the center is different from the strain experienced by elements closer to the ends
(in red and gray parts of the contour). To study the variation of strain, two lines of elements

parallel to the axis of the tube were selected and highlighted in Figure 6.14. These lines
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are also shown with two purple arrows. The line in Figure 6.14(a) corresponds to the line
where the crack developed in the experiment. The line in Figure 6.14(b) is a location with
significant hoop strain. The location of the crack in Figure 6.14(b) is marked with a purple
ellipse.

Plastic strain tensors were extracted from elements highlighted in Figure 6.14 and visu-
alized using glyphs. The glyphs on either end have a plate shape, which means that they
represent a plane strain state. The orientation of the glyphs in the center, which have a bar
shape, indicate the direction of maximum tensile hoop strain. The glyphs closer to the ends
are approximately parallel to the axis of the tube, which means that they have a principal
component parallel to the axis of the tube. This component is a longitudinal compressive
strain that was applied during the deformation. On the other hand, the glyphs in the center
are perpendicular to the axis of the tube. This means that neither of their two principal

strain directions is a compressive strain along the axis of the tube.

6.5 Further analysis of the experiments and crystal plasticity simulation

The goal of the initial heat treatment was to obtain a seamless large grain tube. The
Laue camera investigations confirm that this goal was achieved. During the heat treatment,
the fine grains grew and formed large grains. A few of these large grains grew and consumed
most of the remaining microstructure. The tube was supported on each end by water-cooled
copper plates. The high thermal gradient limited the grain growth at the ends. Therefore,
the grains close to each end were smaller and were not consumed by the larger grains. The
Laue camera measurements showed, however, that the grain growth fully consumed the weld
line and the heat affected zone. If the small grains at the ends of the tube are ignored, one
can argue that the heat treatment was successful in creating a seamless large grain tube.
Thus, this method can be used as a baseline for designing a manufacturing process of such
large grain tubes.

The tube hydroforming method has been used in automotive industry for decades. Prior
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to the current hydroforming experiment, several practice experiments were performed with
annealed polycrystalline copper tubes. Figure 6.15 shows a copper tube before and after
tube hydroforming. While pure niobium is exceptionally ductile, the tube burst with a
much smaller bulge than was formed in the copper tubes. This is evident when comparing
Figures 6.8(b) and 6.15(a). Clearly, more research is needed before this process can be used
to form large grain Nb cavities. Future research should focus on developing optimal tubes
with strategic crystal orientations that do not form preferential strain conditions (light blue
to yellow regions in Figure 6.10 and light blue regions in Figure 6.14).

During the hydroforming process, the tube deformed inhomogeneously and asymmetri-
cally and eventually cracked in the large grain in the middle of the tube and away from the
grain boundaries. This is the largest grain of the tube. It has the same crystal orientation
with respect to an external coordinate frame for every point around the circumference of
the tube. This effect can be illustrated with a counter-example. The crystal orientation for
every point on a single crystal sheet is the same. But if such a sheet is rolled into a tube,
every point around the circumference will have a different crystal orientation with respect
to a fixed external frame, which is the opposite condition of the present experiment.

The applied internal fluid pressure exerts a radial stress normal to the interior wall of the
tube. Consequently, the crystal has a varying orientation at each point around the tube with
respect to the radial stress exerted by the internal fluid pressure. Thus, the resolved shear
stress and the active slip systems are different at each location around the circumference
of the tube. This is evident in Figure 6.16 which shows the variation of Schmid factor for
(111){110} and (111){112} slip systems around the tube for the large grain in the middle of
the tube. As can be seen in this figure, the maximum Schmid factor (or resolved shear stress
on a slip system) varies with azimuthal location. There are four regions with high values
and four regions between them with low values. Two of the regions with higher values have
multiple peaks from different slip systems near each other, while the other two have only

two peaks with two slip directions. In most azimuthal locations of the grain, there is at least
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one slip system that is favorably oriented for dislocation slip and will yield with increasing
fluid pressure. The positions with the highest Schmid factor (resolved shear stress) yield
earlier than other locations, resulting in thinning the material locally. This increases the
stress in that location and makes it more susceptible to further strain and eventual cracking.
It should be noted that such thinning did not happen at the prior weld line since it had
become a part of the large grain.

As can be seen in Figure 6.10, the circumferential (hoop) strain in the tube is very
inhomogeneous. The location of the crack is shown with a purple arrow. At the crack and a
few other areas, the strain grid was damaged and unmeasurable. Since no data is available
in these areas, they are shown with white blocks. Some locations in Figure 6.10 show
highly localized deformation. Locations immediately around the crack show a relatively
small localized hoop strain. Therefore, another reason for the failure of the tube in the
center of a large grain could be the arrangement of the grain orientations and boundaries,
and the distribution of the strain in the in the vicinity of a boundary dividing soft and hard
orientations. Based on the contour levels around the crack, it seems to have developed in a
soft region adjacent to harder regions.

Figure 6.17(a) and (b) show the distribution of circumferential (hoop) strain as predicted
by the model. The strain distribution in these figures is shown with two contour scales. In
Figure 6.17(a) the contour levels are adjusted so that the variation is visible. The contour
levels of Figure 6.17(b) match with Figure 6.10. The detailed contour levels in Figure 6.17
are different from the contour levels in Figure 6.10, but the location of the highest strain
in Figure 6.17 matches with the location of the crack in Figure 6.10. The simulation data
has a higher resolution because the element size of the model is smaller than the grid size
in the experiment. The bright yellow areas in Figure 6.17(a) match approximately with the
locations of maximum Schmid factor in Figure 6.16. Both figures predict highly localized
deformation at four locations (areas near angles 0°, 90°, 180° and 270°).

As can be seen in Figure 6.14, the center of the tube bulged the most. The reason for
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the chosen strain range in the plot is to show the variation of the strain in the mid-section
of the tube. The equivalent plastic strain predicted for this part of the tube is less than
other parts. When a larger contour scale range is used, the variations in the center are not
as apparent.

One can argue that the green to red strain contours in Figure 6.14 show a different type
of strain than the navy to light blue areas because most of the bulging is accommodated by
the smaller strains in the central region. Strain tensor glyphs in Figure 6.14 show that the
sense of the strain at the ends and in the center of the tube are quite different. By inspecting
Figure 6.13, one can conclude in each element (or glyph) the deformation is almost plane
strains. In other words, the minimum principal strain is very small in comparison to the two
other principal directions. Otherwise, the glyphs would have been thicker. For the glyphs on
either side, the angle between at least one of the mid or maximum principal directions and
the axis of the tube (which is horizontal) is small. Many of these glyphs are nearly coplanar
with the axis of the tube. On the other hand, the mid and maximum principal directions for
glyphs extracted from the center of the tube are approximately perpendicular to the axis of
the tube. These glyphs still have a plate shape, but because they are perpendicular to the
axis of the tube, they appear as a bar. The middle part of the tube bulged the most, which
confirms that most of the strain in this part of the tube is hoop strain. The glyphs closer
to ends are nearly perpendicular to the glyphs extracted from the center. Therefore, strain
away from the center is mostly longitudinal stress.

In Figure 6.14(a), the horizontal light blue area noted with a purple arrow shows the
highest circumferential strain. This is also the area where the tube cracked in the experiment.
As can be seen in Figure 6.14(b), the predicted deformed geometry of the tube matches
qualitatively with the experiment. Moreover, the location of the light blue contour in this
figure, which is another area that shows large circumferential strain, approximately matches
with the white block at the bottom of Figure 6.10. Therefore, the Dynamic hardening crystal

plasticity model can predict the location of significant circumferential deformation and the
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potential location of the crack.

Nb is a very anisotropic BCC material. Therefore, forming or modeling of large grain Nb
sheets and tubes is challenging. For that reason, fine grain Nb sheets are traditionally used in
making particle accelerator cavities, although cavities made from large grain Nb often have
a better performance. Nonetheless, the crystal plasticity model with the Dynamic hardening
rule, which was developed in Chapter 5, gives satisfactory predictions of deformation of large
grain Nb tube. One can use this model to find an optimum grain orientation for forming a
large grain tube. This information can be used as a guide to identify desirable orientation

as an experimental goal.

6.6 Summary

The possibility of making a large grain Nb cavity was explored in this Chapter. To do so,
a Nb tube was made from bending and arc welding a Nb polycrystal sheet. The tube then
went through a heat treatment cycle that was designed for grain growth. The Laue camera
measurement of the tube showed that the heat treatment successfully favored the growth of
a few grains that consumed the weld line and created a large grain tube.

The tube was hydroformed until it cracked in the middle grain. This is the only grain in
the mid-section of the tube and spans the entire circumference of the middle section. Due to
variation of the crystal orientation with respect to the hoop stress resulting from the applied
pressure, slip systems at different material points around the tube experienced different
resolved shear stresses and have regions of distinctly favored dislocation slip activity. Such
anisotropy is one of the reasons for the failure of the tube in the middle of a large grain.
Another reason may be the deformation characteristics of the neighboring grains that may
have been softer or harder, and influenced the magnitude of hoop strain where the failure
occurred.

The Schmid-type crystal plasticity model with the Dynamic hardening rule, that was

developed and calibrated in Chapter 5, was used to simulation the tube hydroforming process.
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The location of the crack predicted by this model matches with the experiment. Therefore,
this model can be used to give insight in designing new manufacturing processes for large

grain Nb cavities.
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Figure 6.7: This picture shows the assembly of the tube in the hydroforming machine. The
tube was clamped to the rams to ensure a seal. The ram heads have a conical shape. The
tube ends were flared with the rams, so the seal could be established. This picture was
taken with a “GoPro Hero3+” camera which has a wide angle lens.
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(b)

Figure 6.8: The tube was hydroformed until it cracked. (a) The cracked region is shown in
the enlarged image looking down to the top of the tube. (b) The side view of the tube

shows the bulge. The location of the crack is at the top of this image. The crack location is
schematically shown in Figure 6.4. The collars shown at either end are a part of the clamp

design.
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Figure 6.9: Variation of hydroforming fluid pressure, ram load and displacement recorded
during the experiment. All three parameters were incrementally increased.
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Figure 6.10: Distribution of the circumferential (hoop) strain on the length of the tube.
The strains were measured from the change in the dimensions of the square grid that was
put on the tube before deformation. The grid has 39 rows along the length of the tube and
50 columns wrapping around the tube. The white blocks are where the grid was damaged
and unmeasurable. The crack is shown with a purple arrow.
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Figure 6.11: This figure shows the grid that was created from the orientations measured
with the Laue camera. Each color represents a distinct grain orientation, but the colors are
arbitrary. The smaller grains were neglected. This grid was then mapped on the model of
the tube, as can be seen in Figure 6.12.
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L.

Figure 6.12: This figure shows the grain distribution as implemented in the finite element
model. Each color represents one grain orientation and corresponds with the grain
orientation grid shown in Figure 6.11. The spatial orientation of the tube is the same as
the spatial orientation of the deformed in Figure 6.8.
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Figure 6.13: This figure shows how tensors can be visualized in 3D space using
Superquadric Tensor Glyphs method described in [178]. In this technique, the principal
directions (eigenvectors) of a tensor are used to define the orientation of the glyph in 3D
space. The principal values (eigenvalues) convey the dimensions of a glyph. Therefore, for
plane strain, the glyph has a plate shape; while for a hydrostatic pressure the glyph is a
sphere. The glyph representation of uniaxial strain is a bar. Any other strain state will be
visualized by a unique glyph between these three extreme shapes. The details of the
visualization method are explained in [178].
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Figure 6.14: Contours of the equivalent plastic strain of the deformed tube. The glyphs
above the tube represent strain tensors extracted from highlighted elements for (a) top
view and (b) side view of the tube. The black arrows are guidelines and connect the tensor
glyphs to the elements from which they were extracted. The purple ellipses show the
location of the crack. The color bar on the left shows the contour of the equivalent plastic
strain of the tube. The light blue area along the purple arrow in the center of (a) is where
the tube cracked and (b) is another area where the tube bulged significantly. This high
strain area is located where a white block is visible along the bottom edge of Figure 6.10.
The strain tensor was extracted from the highlighted elements along the purple arrows and
visualized as tensor glyphs which are shown above the tube. These glyphs represent the
orientation of the stress tensor at the locations indicated by the thin black arrows. The
color bar on the right represents the contour of von Mises strain in the glyphs. All the
glyphs have a plate shape, but the ones in the center appear as bars due to their
orientation. Therefore, highlighted elements in the center experience a different strain state
than the highlighted elements on the ends.
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(b)

Figure 6.15: (a) Shows a hydroformed annealed commercial polycrystal copper tube.
Practice copper tubes bulged considerably more than the large grain Nb tube shown in
Figure 6.8(b). The collars shown at either end of the tube are a part of the clamp design.
(b) The copper tube before deformation.
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Figure 6.16: Variation of the absolute value of Schmid factor around the tube for slip
systems (111){110} and (111){112}.This plot only shows the slip systems of the large

single crystal in the middle of the tube.
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Figure 6.17: Predicted distribution of the circumferential (hoop) strain along the length of
the tube as extracted from the model. This figure is shown with two contour scales. In (a)
contour levels are adjusted to make the gradient visible. In (b) the same data is plotted on
the same scale as Figure 6.10. The grid has 104 rows along the length of the tube and 54
columns wrapping around the tube. The location with the highest strain is shown with a
purple arrow. The contour is qualitatively similar to the experiment in Figure 6.10,
although the contour levels are different.
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CHAPTER 7

DISCUSSION

This dissertation focuses on improving conventional crystal plasticity model to make it ca-
pable of predicting the deformation of single crystals of BCC. To that end, two parts of the
crystal plasticity theory were explored: the yield function and the hardening rule. The crystal
plasticity models with these improvements were verified for single crystal ferrite micropillars
and single crystal Nb tensile dog-bone samples. Finally, the crystal plasticity model that
was developed for Nb was used to predict the tube hydroforming of a large grain Nb Tube.
The simulation results qualitatively match with the experiment. Each of the above subjects

is discussed in more details in the following sections.

7.1 Non-Schmid crystal plasticity modeling of BCC single crystals

Conventional crystal plasticity is based on the associated flow rule of plasticity. This rule
states that the increment of plastic strain is in the direction of the outward normal of the
yield surface. This flow rule is not correct for some BCC materials, which yield according
to the non-Schmid law. In such materials, the flow behavior and yield behavior are defined
with separate functions. The non-Schmid model defines yielding by considering the effect of
stresses resolved on planes and directions in additions to the ones calculated by the Schmid
model. Nonetheless, in the non-Schmid crystal plasticity, deformation is accommodated
by dislocation slip which happens on slip planes and along slip directions. Therefore, the
outward normal of the non-Schmid yield function will not be parallel to the direction of
plastic strain increment. In this case, a flow potential is used to find the direction of this
increment. This kind of flow behavior is known as the non-associated flow rule. This method
was implemented in the crystal plasticity model, and was compared against the classical
crystal plasticity for ferrite and Nb. The results showed that ferrite behaves according to

the non-Schmid rule.
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The efforts to fit the non-Schmid model to the tensile tests of single crystal Nb was not
successful. The Schmid model, however, could predict the deformation of Nb. Nonetheless,
this does not necessarily mean that Nb behaves according to the Schmid law. Nb may still
show non-Schmid behavior in other stress states like compression. Groger et al. [106] studied
the deformation of molybdenum and tungsten, and observed that in pure shear tungsten
follows the Schmid law and molybdenum shows the non-Schmid behavior. In tension and
compression, however, both materials show the non-Schmid effect.

All the Nb tensile experiments were performed at room temperature. However, the effect
of non-Schmid stresses decrease with the increase of temperature [157, 179]. Christian [179]
reported that the tension-compression asymmetry of Nb is very small at room temperature,
but it is considerable at 77 K. Therefore, the non-Schmid model needs to be verified for
other stress states and temperature ranges before a strong argument could be made for or
against the validity of the Schmid model in Nb.

As was explained in §3.1, the core of screw dislocations in BCC materials simultaneously
spread on three {110} planes that share a (111) direction. The non-Schmid model considers
the effect of shear and normal stresses that are applied on all three planes, because these
stresses can affect the dislocation core. Depending on the orientation of the material with
respect to the imposed load, the resolved shear stress on the slip plane and parallel to the
slip direction (RSS) needed for yield will change. If the material is orientated so that the
non-Schmid stresses contract the dislocation core, the RSS needed for yielding will decrease.
This is mathematically modeled by adding the value of non-Schmid stresses to the value of
the Schmid RSS. For some other orientations, the combined effect of the non-Schmid stresses
can expand the dislocation core and increase the RSS needed for the initiation of yielding.
This change in the critical shear stress with the orientation improves the accuracy of the
non-Schmid model with respect to the Schmid model.

As was shown in Figures 4.2 through 4.7 the Schmid model that was calibrated simul-

taneously with micropillars 1 and 4 over estimates the force-displacement of micropillars 2
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and 3 and underestimates the behavior of micropillars 5 and 6. The reason is that in the
Schmid model the RSS must reach the same critical value (CRSS) for all orientations.

In §4.4.5 the ratio of non-Schmid to Schmid stress (Rjs), equation (4.16), was defined.
The variation of this ratio with the orientation of the material is shown in Figure 4.8. This
ratio can be used to predict if the Schmid model will overestimate or underestimate the
behavior of some orientations, based on the orientations that were used for the calibrations.

A CRSS value is found when the Schmid model is calibrated with an orientation with a

*

s, the combined contribution of non-Schmid

given Ry . For other orientations with Rps > R
stresses contracts the dislocation core, thus a smaller RSS is needed for this material to de-
form. Therefore, the Schmid model will overestimate the behavior of this orientation. On
the other hand, for orientations with R, < R}, the non-Schmid stresses expand the dislo-
cation core, which means a higher RSS will be needed to initiate the dislocation motion. The
previously calibrated Schmid model will underestimate the behavior of these orientations.
The range of values of the ratio of non-Schmid to Schmid stress (R;s) depend on the
non-Schmid constants ay through a3 in equation (4.16). These constants are found from the
calibration of the non-Schmid model to experiments and vary for different BCC materials.
For materials with very small non-Schmid constants, variation of this ratio with the crystal
orientation is small. In this case, non-Schmid stresses do not significantly affect the yielding,
and a Schmid model can predict the behavior of the material accurately. The larger the

non-Schmid constants, the more the predictions of the Schmid model will deviate from the

predictions of the non-Schmid model.

7.2 Improving the hardening rule of the conventional crystal plasticity

The hardening model predicts how the flow stress increases during the deformation. This
is an essential part of the crystal plasticity model and significantly impacts the predictions
of the model beyond initial yielding. Conventional crystal plasticity models often use a Hill-

type hardening rule. This study showed that the Hill-type hardening rule cannot accurately
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predict the behavior of BCC single crystals such as Nb and ferrite. This model is only
correct for early stages of deformation when the hardening rate is low, and fails to predict
the deformation of BCC single crystals at higher strains.

The stress-strain curves predicted by the classical Hill-type hardening rule have negative
curvatures. Experimentally, though, as the switch from the stage I to stage II of the hard-
ening of single crystal happens, the slope of stress-strain changes considerably. The classical
hardening rule, however, has no means to model such a change in the stress-strain curves.

To address the shortcomings of the Hill-type hardening rule for BCC single crystals, two
novel hardening rules were developed and verified for Nb and ferrite. These models are

discussed in more details below.

7.2.1 The Differential-Exponential (DE) hardening rule

Shear stress - shear strain curves for single crystals that are initially oriented for single slip
show three distinct stages usually referred to as Stage I, IT and Stage 11T hardening [43]. Stage
I is known as the “easy glide”, stage II as “linear hardening”, and stage II as “exhaustion
hardening”.

Most of the deformation in stage I is accommodated by the primary slip system, and
hardening is chiefly due to self-hardening. The low hardening rate in stage I corresponds
to a large dislocation mean free path and few barriers. Stage II starts when other slip
systems become activated due to crystal rotation during deformation and they interact with
the primary slip system. This reduces the mean free path of dislocations and considerably
increases the hardening rate. During this stage, the dislocation density increases significantly
[43].

The classical Hill-type hardening rule can model the hardening rate at stage I but not
the stage II and III, because different underlying mechanisms control each hardening stage.
Nonetheless, the classical hardening rule only considers some of the underlying mechanism

of deformation. This model accounts for self and latent-hardening, but the rate of hardening
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it predicts cannot change significantly. Therefore, the classical hardening model can only
predict the behavior of the materials that show a monotonic increase in the flow stress.

The classical hardening rule does not change as the hardening mechanisms change. To
capture the variable hardening rate of a single crystal, the Differential-Exponential (DE)
hardening rule, equation (4.15), was proposed in §4.3.1. This hardening rule models each
stage of hardening with a separate hardening rate equation.

A single crystal oriented for single slip typically hardens with a small slope in the first
stage. Therefore, in the DE hardening model, stage I is modeled with the Hill-type hardening
rate, equation (2.24). In the second stage, the density of mobile dislocations decreases
exponentially [159], which results in an exponential increase in the hardening rate of the
material. Therefore, in the DE hardening rule, an exponential equation is used to model the
rate of hardening of stage II.

Since the DE hardening model has two hardening rate equations, some criteria are needed
for the model to switch between the hardening rate equations. Stage II of the hardening
of single crystals occurs when secondary slip systems become active. The reason for the
activation of secondary slip systems is the eventual rotation of the primary slip system away
from the loading direction, caused by the evolution of texture induced by increased plastic
deformation. Thus, the criteria for the start of the second stage hardening was defined as a
function of the ratio of the accumulated shear strain and critical resolved shear stresses in
primary and secondary slip systems. This model successfully predicted the deformation of
ferrite single crystals.

The Hill-type hardening rate equation, equation (2.24), has only two adjustable parame-
ters. However, the DE hardening model in equation (4.15) has three extra material constants,
that can be calibrated with an experimental force-displacement curve.

The compression response of DP980 ferrite micropillars was simulated with the non-
Schmid crystal plasticity model using the Differential-Exponential (DE) hardening rule.

Predictions of the DE hardening model are in good agreement with the force-displacement

141



curves of the experiments. This confirms the validity of the DE hardening model, and as
a result, the corresponding criteria that were used to define the initiation of the stage II

hardening.

7.2.2 The Dynamic hardening rule

As illustrated in Figures 5.2(a) through 5.10(a), the Schmid-type crystal plasticity model
with the classical hardening rule cannot adequately predict the deformation behavior of Nb
single crystals. The Dynamic hardening rule was developed as another way to improve the
Hill hardening rule [100-102]. The Dynamic hardening rule reduces the rate of hardening
predicted by the Hill-type hardening model for single slip deformation and increases the
hardening rate as other slip systems activate.

At the beginning of deformation of an annealed single crystal, mobile dislocations in the
bulk can travel a long distance before interacting other dislocations. Furthermore, some
dislocation can escape from the surface without encountering many obstacles. Thus, there
is little accumulation of dislocations at the beginning of the deformation. The classical
Hill-type hardening model overestimates the hardening behavior of single crystals at the
beginning of the deformation, because it assumes hardening on all slip systems throughout
the deformation.

As the strain increases, the hardening rate increases due to the activation of secondary
slip systems which then interact with the primary slip systems. This interaction results in
dislocation multiplication mechanisms that cause hardening.

The classical hardening model, equations (5.1), does not have an accumulated strain
term and predicts the hardening rate of a slip system « based on the summation of the
instantaneous shear rate (75 ) of every slip system. This model indirectly considers the effect
of total strain on a slip system in calculation of the hardening rate, through the term TTLS
This is the ratio of current critical shear stress (yield stress) of slip system [ to a saturation

shear stress (the maximum allowed value). In addition to this ratio, the Dynamic hardening
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model, equations (5.2), also uses the strain the ratio (ﬁ—gf)n in modeling hardening rate.
This ratio contains the history of deformation and increases the rate of hardening with the
activity of secondary slip systems. The Dynamic hardening model has two parameters more
than the classical hardening model, which provides more control over the rate of hardening.
One of these parameters is a weight factor, w, that reflects the initial dislocation density
and controls the deviation from the classical hardening rule. The other parameter is the
exponent, 7, which controls the hardening rate.

As seen in Figures 5.2(a) through 5.10(a), the Schmid-type crystal plasticity with the
Dynamic hardening model adequately predicts the deformation behavior of single crystal Nb.
After about 25% strain the curvature of some of the stress-strain curve becomes positive;
but neither the Dynamic nor classical hardening models can predict a positive curvature.

The Dynamic hardening model is a generalization of the Hill-type hardening rule. There-
fore, some of the issues of this model are inevitably inherited by the Dynamic hardening
model. The existence of the term % forces the hardening rate to saturate and the stress-
strain curve to eventually plateau. Nonetheless, the Dynamic hardening model considerably
increases the overall accuracy of the classical hardening for single crystal Nb.

The texture evolution predicted by the Dynamic hardening model qualitatively matches
with experiments. Although the tensile samples are single crystals, their orientation slightly
varies from one side to the other. In addition, the initial dislocation density might vary
slightly from one sample to another. The model, though, considers only one orientation
throughout each sample and assumes an identical initial state for all samples. This difference
in the orientation between the experiment and simulation can affect the predictions of the
texture evolution, as well as the predictions of the stress-strain curves.

The current model is based on the Schmid law for activation of a slip system. As was
discussed earlier the deformation behavior of some BCC materials may be more accurately
modeled with the non-Schmid crystal plasticity model. The non-Schmid model that was

developed in Chapter 4, was used to predict the deformation behavior of Nb. The results,
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that are not presented here, showed that the behavior of the Nb in tension is closer to the
Schmid-type behavior. However, one needs to test the Nb in other stress states including
compression and shear before concluding that it behaves according to the Schmid law.

At room temperature, the non-Schmid effect in Nb is small [179]. This means that
the core of screw dislocations are only weakly affected by stresses other than the resolved
shear stress on the slip plane and parallel to the slip direction. Christian [179] studied
the deformation of single crystals of Nb and found that the orientations near the [101] —
[111] edge of the inverse pole figure show a small tension-compression asymmetry at room
temperature. The orientations near the center of the inverse pole figure, however, did not
show any asymmetry at room temperature. As the temperature decreases the non-Schmid
effect become more evident [156, 157, 179]. Therefore, the Schmid-type crystal plasticity
model, that was developed in Chapter 5, could accurately predict the behavior of Nb single
crystals at room temperature, where the non-Schmid effect is negligible.

The Schmid-type crystal plasticity with the Dynamic hardening rule that was verified
for the single crystal tensile dog-bones of Nb was used to predict the deformation behavior
of a large grain Nb tube. The next section discusses the results of the latter study in more

detail.

7.3 Tube hydroforming of a large grain Nb tube

Grain boundaries and the weld line are sources of defects in the crystal and can affect the
superconductive performance of a particle accelerator cavity. Therefore, the performance of
cavities could potentially increase, if they could be made by hydroforming of a seamless large
grain tube.

A large grain tube was made from rolling, welding and heat treatment of a fine grain
Nb sheet. The Laue camera measurements showed that the heat treatment successfully
recrystallized the prior microstructure to large grains. The recrystallization also consumed

the prior weld line and made the tube seamless. Although the current process can be used
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to create large grain sheets, more research is needed to find ways to control the resulting
microstructure. As will be discussed later, due to the spatial orientation of the large grains
around the tube, preferential thinning and premature failure can occur. Therefore, finding
orientations that are less susceptible to localized-thinning is of interest.

While pure niobium is exceptionally ductile, the large grain tube burst with a much
smaller bulge than was formed in practice copper tubes. The large grain structure of the
tube is one of the reasons for the early failure. Due to the spatial orientation of the large
grains with respect to the axis of the tube, the Schmid factor is maximum at a few azimuthal
locations around the tube. Figure 6.16 shows the variation of the Schmid factor around the
tube. This variation is likely the reason behind the highly localized deformation and early
failure of the tube during the hydroforming experiment. Other researchers [123, 125] have
performed tube hydroforming on fine grain Nb sheets, and have successfully made cavities.
The randomly oriented fine grains reduce the strong anisotropy of Nb. Thus, fine grain
sheets can be uniformly hydroformed with less difficulty than large grain ones.

As can be seen in Figure 6.10, the circumferential (hoop) strain in the tube is very
inhomogeneous. Locations immediately around the crack show a relatively small localized
hoop strain. Therefore, another reason for the failure of the tube in the center of a large grain
could be the arrangement of the grain orientations and boundaries, and the distribution of
the strain in the vicinity of a boundary dividing soft and hard orientations. Based on the
contour levels around the crack, it developed in a soft region adjacent to harder regions.

As can be seen in Figure 6.14, the predicted deformed geometry of the tube matches
qualitatively with the experiment. Moreover, the location of the light blue contour in this
figure, which is another area that shows large circumferential strain, matches with the white
block at the bottom of Figure 6.10. Therefore, the Dynamic hardening crystal plasticity
model can effectively predict the location of significant circumferential deformation and the
potential location of the crack.

The crystal plasticity model with the Dynamic hardening rule that was developed in
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Chapter 5 gives satisfactory predictions of the deformation of the large grain Nb tube, even
with a highly-simplified representation of the grain shapes. One can use this model to find
an optimum grain orientation for forming a large grain tube. This information can be used

as a guide to identify desirable orientation as an experimental goal.

146



CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusions

The classical crystal plasticity model cannot accurately predict the deformation of single
crystal BCC materials like ferrite and niobium. One method to improve the accuracy of such
models is to use the non-Schmid law. This type of crystal plasticity, in addition to resolved
shear stresses on the slip plane and parallel to the slip direction, considers the effect of
resolved stresses on other planes and directions in predicting the yielding of materials. Since
more than one stress is used to calculate the yield criterion of non-Schmid crystal plasticity,
the yield behavior predicted by this model is different from the Schmid model. The non-
Schmid crystal plasticity model that was developed in this study successfully predicted the
deformation of ferrite micropillars, while the predictions of the Schmid model for this material
were less accurate.

The rate of hardening predicted by the Hill-type hardening rule, does not match with
the hardening rate of ferrite and niobium single crystals. Another way to increase the
accuracy of the classical crystal plasticity is to adjust the hardening rule. In this study two
novel hardening models were developed and verified for BCC materials. These two are the
Differential-Exponential hardening rule and the Dynamic hardening rule .

The Differential-Exponential hardening rule uses two different equations to define the
hardening rate of “easy glide” and “linear hardening” parts of the stress-strain curve for
ferrite micropillars. A criterion is used to distinguish the onset of stage II of the deformation.
This model accurately predicts the yielding behavior and the change in the hardening rate
of ferrite, which confirms the validity of the model and the criteria used for distinguishing
the onset of stage Il hardening.

The Hill-type hardening rule overestimates the hardening rate of niobium. The Dynamic

147



hardening rule reduces the hardening rate at early stages of the deformation, and increases
the hardening rate once multiple slip systems become activated. This hardening rule accu-
rately predicts the deformation of single crystal niobium.

A large grain niobium tube was hydroformed until it cracked. The deformation of the tube
was modeled with the Dynamic hardening crystal plasticity that was previously calibrated
with the tensile test of niobium single crystals. The predictions of the model qualitatively
matched with the experiments, which confirms the potential of this crystal plasticity model
as a useful tool in developing a large grain superconducting Nb cavity.

The models developed in this study can be used to predict the deformation behavior of
BCC materials. Some BCC materials like ferrite show a non-Schmid behavior. Deformation
of some other BCC materials like niobium is better explained with the Schmid law. In either
case the rate of hardening predicted by the Hill-type hardening rule is usually unsatisfac-
tory. The hardening models proposed in this study significantly increase the accuracy of the

Schmid and non-Schmid crystal plasticity models.

8.2 Recommendations for future work

Although Nb is a BCC material, the efforts to model the its behavior with the non-
Schmid crystal plasticity model was not successful. The experimental data used for the
calibrations was only from tensile experiments. Nb may show non-Schmid behavior under
other stress states, like compression or pure shear. Moreover, Christian [179] showed that
at room temperature the non-Schmid effect in Nb is very small. The non-Schmid behavior
becomes more pronounced as the temperature decreases [179]. Therefore, the deformation
behavior of Nb under other stress states and at lower temperatures needs to be investigated,
to be able to make a strong argument about the validity of non-Schmid behavior in Nb.

The Differential-Exponential hardening model that was developed in Chapter 4 was only
verified for ferrite micropillars. Some of the Nb tensile tests that were studied in this research

show the stage Il hardening. Future research should focus on verifying the Differential-
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Exponential hardening model for Nb.

The tube hydroforming of seamless large grain Nb tube needs to be further investigated.
Only one large grain tube was created for this study. Therefore, only one tube hydroforming
experiment was performed. Future hydroforming experiment could benefit from the experi-
ence gained from the experiment that was performed in this study. For instance, the loading
paths of future tests can be adjusted to capture a larger bulge.

The Dynamic hardening model was verified with the only available tube hydrofroming
experiment. The model should be verified with multiple hydroforming experiments to make
sure it can consistently predict the area of failure. Hydroforming and modeling more Nb
tubes can help improve the model and advance the understanding of deformation of large
grain structures.

The current mapping of the grain boundary on the tube is an approximation. Imple-

menting a more realistic grain map on the tube may increase the accuracy of the simulation.
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APPENDIX A

EINSTEIN NOTATION

Einstein notation, also known as index notation or indicial notation, is briefly reviewed
here. Familiarity of the reader with this subject is essential, because many of the equations
presented in this dissertation are written with this notation. This is a notation convention
that is often used in continuum mechanics to deal with mathematics and especially linear
algebra. Using this notation increases the brevity of the equations.

According to this convention, a summation is implied when an index is repeated (only)

twice in a single term. For example:
n
Y = Z C; Xy (A.l)
1=1

Under the Einstein notation the summation sign is removed and the above can be written

as:

Y = C; Xy (A.Q)
which means (for a known range of i, for instance i = 1...n):
Y =ci1x1 + o9 + c3x3 + - - + cpay (A.3)

Here no distinction is made between a subscript and a superscript, however, they can be
of significance in other contexts.
Next, some of the most common operations in linear algebra are presented in the index

notation.

Dot product

The dot product of two vectors v and v produces a scalar.
U= uv; (A.4)
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Double dot products of matrices

This product operates on matrices and reduces the order of the product matrix by two.
Therefore, if double dot product operates on two second-order matrices, it produces a scalar.

This product is denoted with “:” and for matrices A;; and B;; is defined as below:

C = A : B = AZJBZJ (A5)

Cross product of vectors

Cross product of two vectors v and v produces a vector. In Einstein notation the cross
product is defined as:

U X V= UjURE L€ (A.6)

where ¢; is the basis and €; ;1 is the Levi-Civita symbol. In three dimensions, €;;, is 0 if any
of (i,j, k) is repeated, it is 1 if (4, j, k) is an even permutation of (1,2,3) like (3,1,2) and if

it is an odd permutation like (3,2, 1) then the value is -1.

Outer product of vectors

This is a product of two vectors which is denoted by ® and results in a matrix. For two

vectors u and v this product can be defined is as follows:

Cij=u®uv= w! = Ujv; (A.7)

Matrix multiplication

Matrix product of matrices A;; and Bjj, in index notation is shown as below:
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Trace of a matrix A;;

Trace of a of a matrix A4;; in index notation is defined as follows:

Trace(A) = Ay
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APPENDIX B

CRYSTAL PLASTICITY FINITE ELEMENT MODEL CALIBRATION
METHOD

This appendix explains the method that was used in Chapter 4 to fit the Schmid and non-
Schmid crystal plasticity models to the force-displacement curves of ferrite micropillar com-
pression experiments. A similar approach was taken in Chapter 5 to fit the Schmid-type
crystal plasticity model to the stress-strain curves of tensile tests of Nb single crystals. The
fitting of a model to the experimental data is called model calibration and is the process
through which the unknown parameters of the model are found.

To start, microscale experiments were conducted where the Focused lon Beam (FIB) was
used to carve out single crystal ferrite micropillars with different initial orientations from the
ferrite phase of a three-phase quenched and partitioned QP980 commercial steel sheet. These
micropillars were uniaxially compressed with a flat punch nanoindenter to determine their
force-displacement response. It was found that beyond a certain displacement, micropillars
were no longer deforming under uniaxial compression, rather they were experiencing a three-
dimensional deformation. This was an important observation since it became obvious that
the micropillar compression test has to be modeled with three-dimensional geometry and
boundary conditions.

Given there were 6 micropillar compression force-displacement experiments for QP980
ferrite with distinct initial orientations, the first question to answer was how many forces-
displacement curves would be sufficient to accurately calibrate the Crystal Plasticity Finite
Element (CPFE) model for the ferrite phase. In this section, the results from the non-Schmid
CPFE model calibrated with different number of force-displacement curves are qualitatively
and quantitatively compared. The approach taken is based on first calibrating parameters
of the CPFE model using a set number of force-displacement curves (e.g., 1, 2, 3), then

using the calibrated model to predict the force-displacement curves for remaining orien-
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tations. A quantitative measure of the quality of calibrations was determined based on
the normalized root-mean-square error (NRMSE) between the experimental and predicted

force-displacement data.

B.1 Calibrating the non-Schmid CPFE model with LS-OPT®

The calibration of crystal plasticity models presented in dissertation was done using
commercial design optimization and probabilistic analysis software LS-OPT®. This is a
standalone package developed as a part of LS—Dyna® family which can interface with many
other packages and user-defined codes.

The calibration was defined as an optimization problem to minimize the normalized mean-
square error (NMSE) between the values of force measured in the micropillar compression
experiments and those predicted by the CPFE model at specific displacements. The below

equation shows the objective function as implemented in LS-OPT® [180].
2
fn(u, ) — gn(x)
B.1
NZ{ ma g1 ()] B

In this equation, N is the number of experimental measurements, g, (x) (where n =1...N)

is the value of each measurement, f,(u, ) is the corresponding predicted value and w is the
vector of design parameters (in this case material parameters). g,(z) is independent of this
vector. z is an independent state variable and depending on the problem can represent time,
strain, or any other type of response. In this study x, represents the displacement. The
mean-square error is then normalized by max |gy,(x)| which is the maximum of the absolute
value of g, (x). The result e is a dimensionless scalar of order unity.

LS-OPT®was used to loop through the iterative process of running simulations, extract-
ing the force-displacement, finding the mean-square error and refining input parameters.
To do so a user-defined script was developed to run the simulations and extract the force-
displacement data. In each iteration, depending on the size of the problem (number of
parameters to optimize), a number of designs were evaluated. LS-OPT®then compared the

NMSE for all designs within the iteration, chose the best design, made a new set of designs
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for the next iteration and started the simulations over. The termination criteria were either
reaching a maximum number of iterations or when the difference between the two consecutive
designs was less than a tolerance and the change in the two consecutive objective functions
was less than another tolerance [180)].

The NMSE gives the square of error. The metric used in Chapter 4 to quantify the
quality of calibrations is the signed normalized root-mean-square error (S-NRMSE) which is
defined by the following equation.

IR ol ) gn< )2
es = sgn Nﬂz:l[fn(u,:c)—gn(:c)] NZ{ ] } x 100 (B.2)

max |gp (¢

The term in the sign function is the average error between the model prediction and the
experiment. A positive value means the model overestimates the force, while a negative
value implies the model underestimates the force. The term inside the square root is the
NMSE as defined by equation (B.1). Taking the square root and multiplying it by 100 gives
the percentage error for each prediction and makes the results easier to understand. When
the signs are neglected, results of equations (B.1) and (B.2) are consistent

In calibrations presented in Chapter 5, however, the absolute value of equation B.2 is
used. This absolute value is referred to as normalized root-mean-square error (NRMSE)

throughout Chapter 5.

B.2 Comparing model calibrations with different sets of experi-
mental data

In the non-Schmid model, there are seven material parameters (7g, 79, hg, 1, a1, a2
and ag) that can be fitted. In this study, hg = 10 and n = 3 were kept constants and the
remaining five parameters were found from the calibrations.

At first, the non-Schmid CPFE model was calibrated with only one micropillar at a time.
The material parameters for each individual calibration are shown in Table B.1. Table B.2
shows the matrix of S-NRMSE values calculated based on this calibration. For example,

the value of 37.68 appearing at the intersection of row 3 and column 1 implies that there
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was a 37.68% error when the CPFE model calibrated with micropillar 1 was used to predict
the force-displacement of micropillar 3. The positive sign of S-NRMSE implies that the
predicted force-displacement curve overestimated the experimental curve (see Figure B.2).

Figure B.1 shows the non-Schmid model calibrated to QP980 ferrite micropillar 1. Al-
though the model closely predicts the behavior of micropillar 1, Table B.2 shows that its
prediction for micropillars 3, 5 and 6 are inaccurate. Figure B.2 shows the predictions of the
non-Schmid CPFE model for QP980 ferrite micropillars 3 and 4 when the model is calibrated
with micropillar 1. As can be seen in Table B.2, the same model has the largest S-NRMSE
for micropillar 3 (i.e., 37.68%), and the second smallest S-NRMSE for micropillar 4 (i.e.,
8.36%).

The last row of Table B.2 shows the sum of absolute error (SAE) for each calibration.
This sum was used as a criterion to compare the quality of calibrations. According to
Table B.2, calibration of the non-Schmid CPFE model using micropillar 4 results in the best
total performance, since it has the smallest SAE of 26.95. While using only one micropillar
to calibrate the CPFE model might seem ideal, according to Table B.2, only 1 out of 6
calibrations resulted in the accurate prediction of other force-displacement curves, which is
statistically insignificant.

Given the low rate of success when using just one micropillar, it was decided to cali-
brate the non-Schmid CPFE model with two and three micropillars. Table B.3 shows the
material parameters found for a select number of calibrations using combinations of 2 and 3
micropillar force-displacement curves. Table B.4 shows the matrix of S-NRMSE values when
the calibrated non-Schmid CPFE model was used to predict the force-displacement curves
of the remaining micropillars. By inspecting Table B.4, it is apparent that calibrations with
2 and 3 micropillars consistently produce small errors, with the smallest error being for
micropillar 2, and the largest error being for micropillar 5. Figure B.3 shows the result of
the non-Schmid CPFE model simultaneously calibrated to QP980 ferrite micropillar 1 and

4. Figure B.4 shows the force-displacement predictions of the same calibrated non-Schmid

157



CPFE model for micropillars 2 (best) and 5 (worse).

Figure B.5 shows the calibration of the non-Schmid CPFE model with several distinct
pairs. These figures show how closely each calibration matches with the experiments and
present the best and worst predictions of each calibration.

Figure B.6 shows the calibration with micropillars 1, 4 and 5, and. Figure B.7 shows
the predictions of the same model for micropillars 2 and 3, which show very good agreement
with the experiment. Finally, according to Table B.4, calibration to micropillars 1, 3 and
5 produced results similar to calibration with 1, 4 and 5, with a slightly smaller sum of
absolute error.

The total sum of absolute error in calibrating the non-Schmid model with only one
micropillar varies between 27% and 114% (Table B.2). The accuracy of the calibration
highly depends on the orientation of the material used for the calibration. On the other
hand, using two micropillars for calibration of the CPFE model produces maximum total
error of about 28%, regardless of which pair is used for calibration (Table B.4). Adding a
third micropillar to the calibration only negligibly improves the results (Table B.4).

The same process was repeated for the Schmid modeling of QP980 ferrite micropillars.
Tables B.5 and B.7 show the calibrated material parameters. According to Table B.6, the
total prediction error when the Schmid model was calibrated with only one micropillar ranged
from 58.4% to 109.29%. Table B.8 shows that the range of the sum of absolute error for
calibrating with pairs of micropillars was improved 60.62% to 79.54%, and for sets of three
micropillars, the errors were 63.46% and 67.17%. It can be concluded that the accuracy of
the Schmid model calibrated with sets of three micropillars did not improve as much as it

did for the non-Schmid model.
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Figure B.1: Calibrating the non-Schmid model with QP980 ferrite micropillar 1. The
circles show the force-displacement values measured in the micropillar compression test.
The line shows the fitting of the model to the experiment.

Table B.1: Material parameters found for the non-Schmid modeling of QP980 ferrite
micropillar when the model was calibrated with one micropillar. In these calibrations
hg =10 and n = 3.

Material Calibration of the non-Schmid model to micropillar

Parameters 1 9 3 4 5 6
Ts 562 716 1000 945 814 886
70 224 261 204 294 395 383
ai 0.1931 0.4109 0.8736 0.1343 0.5092 0.0821
a9 0.0062 0.5261 0.3319 0.9585 0.7091 0.4543
as 0.2432 0.4841 0.4157 0.0718 0.1441 0.9938
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Figure B.2: The best and worst predictions of the non-Schmid model calibrated with
QP980 micropillar 1. The circles show the force-displacement values measured in the
experiments. The yellow and purple lines show the predictions of the model for
deformation micropillar 3 and 4, respectively.
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Figure B.3: Calibration of the non-Schmid model simultaneously to micropillars 1 and 4.
The circles show the force-displacement values measured in the experiments, and the solid
lines represent the fitting of the models.
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Figure B.4: The best and worst predictions of the non-Schmid model calibrated with
micropillars 1 and 4. The circles show the experimental measurements, and the solid lines
show the force-displacement predictions of the model.

Table B.2: S-NRMSE for non-Schmid model calibrated to a single micropillar experiment
at a time. A negative number represents the underestimation and a positive number
indicates the overestimation of experimental data.

S-NRMSE for calibration of the non-Schmid model

Predicting . .
Micropillar to micropillar (%)

1 2 3 4 5 6
1 297 -485 -19.88  4.09 12.19 14.63
2 8.50 3.02 -16.84 -4.13 &.79 18.09
3 37.68 15.29 -2.57 443 23.82 44.73
4 8.36 243 -17.13 -2.07 10.95 27.59
5 -16.51 -18.43 -29.40 -9.62 2.93 -6.85
6 -13.31 -14.48 -27.68 -2.61 8.00 2.10
Sum of absolute error 87.33 58.50 113.49 26.95 66.68 114.00
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Figure B.5: a) The non-Schmid model simultaneously calibrated to micropillars 1 and 6, b)
the best and worst predictions with this calibration. ¢) The non-Schmid model
simultaneously calibrated to micropillar 2 and 5, d) the best and worst predictions with
this calibration. e) The non-Schmid model simultaneously calibrated to micropillar 4 and
5, f) the best and worst predictions with this calibration.
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Figure B.6: Calibration of the non-Schmid model simultaneously to micropillars 1, 4 and 5.
The circles show the force-displacement values measured in the experiments and the solid
lines represent the fitting of the models.
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Figure B.7: The best and worst predictions of the non-Schmid model calibrated with
micropillars 1, 4 and 5. The circles show the experimental measurements and the solid
lines show the force-displacement predictions of the model.

165



Table B.3: Material parameters found for the non-Schmid modeling of QP980 ferrite
micropillar when the model was simultaneously calibrated with multiple micropillars. In
these calibrations hg = 10 and n = 3.

Material Calibration of the non-Schmid model to micropillar

Parameters 3¢5 1 ¢4 1&6 3&5 4&5 1&3&5 1&4&5
Ts 570 760 880 400 555 537 445
70 257 280 276 300 306 249 269
ai 0.0034 0.1454 0.0297 0 0.0045 0.0103 0.0618
a9 0.8814 0.9204 0.9993 1 0.9646 0.5748 0.7022
as 0.3442 0.2546 0.1250 0 0.0127 0.0007 0.0084

Table B.4: S-NRMSE for non-Schmid model simultaneously calibrated to multiple
micropillar experiments at a time. A negative number indicates the underestimation and a
positive number represents the overestimation of experimental data.

S-NRMSE for calibration of the non-Schmid model

Predicting . .
Micropillar to micropillars (%)

1&3 1&4 1&6 3&5 4&5 1&3&5 1&4&5
1 -4.18 3.52 3.74 536 6.58 3.80 4.74
2 -593 -392 -536 -3.74 3.26 -4.86 3.15
3 -2.56 4.50 2.52 6.78  6.09 2.79 8.30
4 -3.89  -1.96 -3.29 1.85 241 -2.81 2.52
5 -11.09 -10.97 -9.30 -7.28 -5.35 -8.98 -5.67
6 -3.72  -3.72 -327 287 565 -2.69 3.16
Sum of absolute error 31.38 28.59 27.48 27.88 29.35 25.92 27.54

Table B.5: Material parameters found from calibration of the Schmid model to single
micropillars of QP980 ferrite. In these calibrations hgl = hg2 = hg3 and n; =19 =n3 = 3.

Calibration of the Schmid model

Material to micropillar
Parameters

1 2 3 4 5 6
Tsl 615 400 881 400 944 557
T2 615 400 881 400 944 557
Ts3 685 470 951 470 1014 627
T01 185 191 113 183 260 238
T02 195 201 123 193 270 248
703 305 311 233 303 380 358
ho1 272 10 66 10 98 66

166



Table B.6: S-NRMSE for Schmid model calibrated to one micropillar experiment at a time.
A negative number represents the underestimation and a positive number indicates the
overestimation of experimental data.

S-NRMSE for calibration of the Schmid model

;ﬁif&;ﬁ?ﬁ to micropillars (%)

1 2 3 4 ) 6
1 2,71 -3.26 -20.15 -4.34 15.56 10.29
2 4.52 3.80 -16.83 3.17  15.62 11.76
3 28.18  24.56 2.56  22.14  47.75 39.57
4 2.46 2.54 -16.28 -2.36 17.37 1217
) -12.35 -13.85 -27.43 -15.25 259 -5.33
6 -9.35 -10.39 -26.04 -11.97 5.66  2.13

Sum of absolute error 59.56 58.40 109.29 59.22 104.56 81.26

Table B.7: Material parameters found from calibration of the Schmid model to single
micropillars of QP980 ferrite. In these calibrations hgy = hga = hgg and 11 = 72 = 13 = 3.

Material Calibration of the Schmid model to micropillars

Parameters 7 ¢ 3 164 146 3&5 4&5 1&3&5 1&4&5
Tsl 400 650 751 400 1000 400 1000
T2 400 650 751 400 1000 400 1000
Ts3 470 720 821 470 1070 470 1070
T01 150 195 207 159 200 173 185
T02 160 205 217 169 210 183 195
703 270 330 327 279 320 293 330
hot 10 110 154 10 400 10 400

Table B.8: S-NRMSE for Schmid model simultaneously calibrated to multiple micropillar
experiments at a time. A negative number indicates the underestimation and a positive
number represents the overestimation of experimental data.

Predicting S-NRMSE for calibration of the Schmid model to micropillars (%)
Micropillar 1&3 1&4 1&6 3&5 4&5 1&3&5 1&4&5
1 -11.70 3.23 5.34 -9.49 6.84 -6.36 4.47
2 -7.91 5.18 7.56 -H.87 8.42 3.68 6.56
3 10.82 2793 33.01 1391 38.35 18.37 34.53
4 -8.55 3.84 6.81 -6.47 7.85 -3.70 491
5 -21.49 -11.93 -9.11 -19.73 -7.41 -17.18 -9.75
6 -19.07 -851 -5.54 -17.08 -4.56 -14.17 -6.95
Sum of absolute error 79.54 60.62 67.36 7255 73.42 63.46 67.17
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