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ABSTRACT

FLUID ANIMATION ON DEFORMING SURFACE MESHES

By

Xiaojun Wang

We explore methods for visually plausible fluid simulation on deforming surfaces with inho-

mogeneous diffusion properties. While there are methods for fluid simulation on surfaces,

not much research effort focused on the influence of the motion of underlying surface, in

particular when it is not a rigid surface, such as knitted or woven textiles in motion. The

complexity involved makes the simulation challenging to account for the non-inertial local

frames typically used to describe the motion and the anisotropic effects in diffusion, ab-

sorption, adsorption. Thus, our primary goal is to enable fast and stable method for such

scenarios.

First, in preparation of the material properties for the surface domain, we describe

textiles with salient feature direction by bulk material property tensors in order to reduce the

complexity, by employing 2D homogenization technique, which effectively turns microscale

inhomogeneous properties into homogeneous properties in macroscale descriptions. We then

use standard texture mapping techniques to map these tensors to triangles in the curved

surface mesh, taking into account the alignment of each local tangent space with correct

feature directions of the macroscale tensor. We show that this homogenization tool is

intuitive, flexible and easily adjusted.

Second, for efficient description of the deforming surface, we offer a new geometry rep-

resentation for the surface with solely angles instead of vertex coordinates, to reduce stor-

age for the motion of underlying surface. Since our simulation tool relies heavily on long

sequences of 3D curved triangular meshes, it is worthwhile exploring such efficient rep-

resentations to make our tool practical by reducing the memory access during real-time

simulations as well as reducing the file sizes. Inspired by angle-based representations for



tetrahedral meshes, we use spectral method to restore curved surface using both angles

of the triangles and dihedral angles between adjacent triangles in the mesh. Moreover, in

many surface deformation sequences, it is often sufficient to update the dihedral angles while

keeping the triangle interior angles fixed.

Third, we propose a framework for simulating various effects of fluid flowing on deforming

surfaces. We directly applied our simulator on curved surface meshes instead of in parameter

domains, whereas many existing simulation methods require a parameterization on the

surface. We further demonstrate that fictitious forces induced by the surface motion can be

added to the surface-based simulation at a small additional cost. These fictitious forces can

be decomposed into different components. Only the rectilinear and Coriolis components

are relevant to our choice of local frames. Other effects, such as diffusion, adsorption,

absorption, and evaporation are also incorporated for realistic stain simulation.

Finally, we explore the extraction of Lagrangian Coherent Structure (LCS), which is

often referred to as the skeleton of fluid motion. The LCS structures are often described

by ridges of the finite time Lyapunov exponent (FTLE) fields, which describe the extremal

stretching of fluid parcels following the flow. We proposed a novel improvement to the ridge

marching algorithm, which extract such ridges robustly for the typically noisy FTLE esti-

mates even in well-defined fluid flows. Our results are potentially applicable to visualizing

and controlling fluid trajectory patterns. In contrast to current methods for LCS calcula-

tion, which are only applicable to flat 2D or 3D domains and sensitive to noise, our ridge

extraction is readily applicable to curved surfaces even when they are deforming.

The collection of these computational tools will facilitate generation of realistic and easy

to adjust surface fluid animation with various physically plausible effects on surface.
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CHAPTER 1

INTRODUCTION

Fluid simulation has been a long standing problem in computation. In fact, progress towards

a mathematical theory of the solution to Navier-Stokes equations, the governing equations of

fluid motion is listed as one of the unsolved six among the seven Millennium Prize Problems,

along side the “P=NP” problem [1]. Nevertheless, with the advent of graphics simulation

and Graphics Processing Unit (GPU) technologies, people nowadays may enjoy high quality

fluid animation even at interactive rates [2].

However, even if we focus only on these visually plausible results, not much research effort

has been directed towards the simulation of fluid motion on curved deforming surfaces. Such

motions are abundant in real world. For instance, coffee or milk spilled on one’s sweater

when walking along the aisle, painters painting on textiles, coloring of elastic products on

assembly lines, or blood or mud stains on characters in action packed scenes in movies.

Accurate simulation of such scenarios can be even harder to resolve than the basic

Navier-Stokes equations. Thus, we focus on creating physically plausible effects of such

motions, with an emphasis on the overall behavior. To this end, we propose a collection

of computational tools to simplify the problem, each focusing on a different aspect of it.

The first tool is the calculation of bulk anisotropic diffusion tensors, extracted from the

material property patterns (e.g., knitting pattern) based on the homogenization theory,

with which the highly inhomogeneous surface material can be expressed effectively as one

tensor for each patch with same patterns for the diffusion process. Next, we propose a

novel angle-based representation of surface meshes to reduce the storage for each frame

of the deforming surface, whose deformation drives the motion of the fluid flow on it.

Last, we propose a framework that handles fluid simulation using local reference frames

on vertices to extend typical 2D fluid simulation performed on regular grids to deforming
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(a) without Coriolis force (b) with Coriolis force

Figure 1.1 Fluid simulation on a rotating Bunny shape. The initial density field is a blob
on the back of the bunny. (a) Without the Coriolis effect, the stain develops under the
centrifugal force. (b) With the Coriolis effect, the stain turns into the more realistic spiral
shape.

surfaces. Absorption, adsorption and evaporation effects are also accounted for, following

their formulation in physics. The governing equations of motion are calculated directly on

deforming curved surface meshes for efficiency and robustness. The influence of the surface

motion on the shape of the stain developed in such motion is determined by using the

inertial forces experienced in comoving and corotating frames attached to the deforming

surface. Figure. 1.1 shows the effects of our treatment of inertial forces.

These tools make the targeted simulation tractable. Our numerical experiments demon-

strate the plausibility of our results in practical applications, e.g., stains on fabrics. In

future, we plan to use the concept of Lagrangian Coherent Structure to provide effective

control over the bulk motion of fluid simulation on surfaces.

We now provide a brief introduction to each of these three computational tools in the

following section.

1.1 Homogenization

In computer graphics, yarn-level modeling of the details of textiles has been used in phys-

ically based rendering and simulation [3]. While we also seek the effects of the knitting
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(a) diffusing fast vertically (b) diffusing fast horizontally

Figure 1.2 Simulation based on textile’s bulk diffusion properties.

pattern on the fluid motion, we focus on the efficiency of generating the bulk motion. See,

e.g., Figure. 1.2.

One popular method to achieve equivalent bulk motion with homogeneous material

replacing highly inhomogeneous material is through homogenization theory[4, 5], which re-

places the microscopic structures by an effective locally homogenous material with similar

macroscopic properties. Homogenization has aroused attention of applied mathematicians

when two-phase media, or disperse media, has been discovered to posses property that is sta-

ble and can be represented by simple matrices. Based on such an observation, we proposed

a homogenization procedure for evaluating bulk diffusion tensors of textiles with arbitrary

knitting patterns, as diffusion on knitting patterns can be approximated by spatially varying

diffusion tensor fields which are periodic. Most relevant to the diffusion process in our fluid

simulation is a homogenization technique of elliptic equations in divergence form proposed

by Owhadi et al. [6]. Our technique can be applied to curved surface meshes, while existing

methods are mostly restricted to 2D or 3D Euclidean space. While textiles and garments

made of textiles are indeed piecewise-flat, materials such as cured leather on the back of a

couch may need a homogenization procedure that can account for the curvature.

In animation, an elasticity homogenization [7] was introduced to approximate a de-

formable object made of arbitrary fine structures of various linear elastic materials with

a dynamically similar coarse model. We envision that our technique can potentially be

3



extended to handle thin-shell simulation with inhomogeneous elasticity.

1.2 Angle-based Representation for Triangle Meshes

One major delay in the simulation of fluid on deforming mesh is caused by loading the

updated locations of the vertices. Methods for compressing temporal sequences of meshes

exist [8]. However, in our case, the underlying surface often undergoes deformations that

are close to isometries, i.e., mapping under which the edge lengths are almost fixed. In the

discrete setting, it means that the dihedral angles of adjacent faces are the only updated

values. While the number of edges is roughly three times the number of vertices, which is the

same as the number of coordinates for the entire mesh. However, as noted in Angle Analyzer,

the distributions of angles, including triangle interior angles and dihedral angles typically

leads to more efficient entropy coding, leading to superior compression ratio both in terms

of the connectivity (how vertices are connected to form triangles) and the geometry (vertex

locations) for triangle, quadrilateral, or hybrid meshes [9]. For isometric mesh sequences,

the connectivity is fixed, and the majority of the angles (triangle interior angles) is also

fixed, which indicates the dihedral angles provide a highly efficient representation of the

vertex coordinates.

However inaccuracy in aggressive lossy compression can lead to noise in the mesh posi-

tion, which may have large impacts the acceleration, since it is the second order temporal

derivative of positions. As we depend on the acceleration of each vertex to calculate the

inertial force acting on the local fluid motion, we seek a stable reconstruction of mesh po-

sitions based on the angles. Inspired by a recent paper on dihedral angle-based tetrahedral

mesh representation [10], we propose a spectral method for the reconstruction of the mesh,

avoiding accumulated errors. This may seem like a simplification from 3D to 2D, but the

curved 2D turns out to be more complicated than 3D. In 3D, a vertex of a tetrahedron can

be expressed as a linear combination of vertices of an adjacent tetrahedron, with coefficients
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computed based solely on angles; on a surface, the 3D coordinates of a vertex cannot be

expressed linearly by 3 other vertices. Even if we include more vertices near a given vertex

to construct a linear map, it can be highly degenerate, since a fine smooth mesh would have

all nearby vertices nearly coplanar.

We address the issue by introducing one reference frame per triangle as intermediate

variables to turn the problem into a linear system, based on which we build an eigenvalue

problem to efficiently reconstruct the system without error accumulation. We show that

our method is robust even with large perturbation in the input angle data. An iterative

method is introduced to further reduce the error in reconstructed angles.

We propose a novel algorithm for determining the vertex coordinates of triangle meshes

from angles with given triangle connectivity. Our algorithm is capable of handling noise

interior and dihedral angles by employing spectral analysis. More precisely, we formulate

the shape reconstruction as an eigenvalue problem. The reconstructed shape is determined

up to an affine transformation. We fix the affine transformation through a simple voting

strategy. Finally, we offer an optional gradient descent for further reducing the deviation

of the reconstructed angle from the input. We show the efficiency and effectiveness of our

method in numerical tests.

1.3 Fluid Simulation on Moving Surfaces

Fluid simulation on moving surfaces, such as stain formation, relates to many research

efforts in computer graphics. We briefly cover the most relevant works here to motivate our

technique and its various components.

1.3.1 Ink Simulation over Planar Fibrous Medium

Over the years, researchers have developed numerous efficient techniques for 3D fluid sim-

ulation in graphics [11]. Recently, reduced models for fluid simulation on surfaces have
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received increased attention due to their efficiency compared to a full-blown simulation of

the 3D Navier-Stokes equations. In particular, work has been dedicated to simulate wa-

tercolor painting and Chinese ink painting, both of which involving diffusion of pigments

in paper. Curtis et al. [12] simulated watercolor effects such as dry-brushing, intentional

backruns, and flow patterns. Kunii et al. [13, 14] modeled the interactions between ink

and paper with partial differential equations, which are essentially Fick’s law of diffusion.

Chu et al. [15] simulated ink dispersion in absorbent paper by solving the lattice Boltz-

mann equation. Van Laerhoven et al. [16, 17] presented a physically based technique for

creating images with watery paint in real time. Simulating Chinese calligraphy and Chi-

nese landscape painting based on ink diffusion on paper has also been proposed by various

researchers [18, 19, 20, 21, 22]. Morimoto et al. [23] presented a method for visualization

of cloth dyeing. However, their method focused on simulating the dyeing process, and is

not suited for the stain formation on textile surfaces. Liu et al. [24] proposed a simulation

of stains on flat anisotropic media, including a simplified treatment of diffusion, infiltra-

tion, and evaporation. While all these methods can generate realistic simulation of pigment

distributions in flat 2D domains, they often use no or very simplified fluid advection, and

cannot be directly extended to model stain evolution on moving and deforming cloth.

1.3.2 Fluid and Droplet Simulation on Curved Surfaces

Fluid motion on non-flat surfaces was simulated by Stam [25] through the use of 2D parame-

terization, which can induce noticeable artifacts. Intrinsic (i.e., parameterization-free) meth-

ods were later proposed to simulate surface flows directly on triangle meshes[26, 27, 28], and

a model-reduced approach based on eigenvector bases has been recently offered as well [29].

Auer et al. [30] leveraged the Closet Point Method (CPM) to numerically approximate the

wave equation and the incompressible Navier-Stokes equations on arbitrary surfaces in real-

time on GPU. Wang et al. [31] presented a technique to simulate shallow water equations on

the surfaces, targeting surface tension driven effects, after introducing a simulation of water
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drops on hydrophobic or hydrophilic leaves [32]. Zhang et al. [33] offered a fast Lagrangian

method for such droplet simulations using triangle meshes to represent the drops, while

Jung and Behr [34] introduced GPU-based real-time simulation of droplet flows. Finally,

Djado et al. [35] simulated the motion of water drops on a surface, realistically capturing

condensation on a surface or human sweating in real time.

1.3.3 Flows on Deforming Surfaces

Angst et al. [36] proposed a method for wave simulations on deforming meshes. Neill [37]

developed a framework for simulation of fluid flow on interacting deformable surfaces, where

only the average acceleration of the underlying surface is considered for the calculation of

inertia force. Hegeman et al. [38] presented an approach to solve Navier-Stokes equations

on surfaces based on the unique properties of conformal cube maps. Recently, Jeong and

Kim [39] introduced a combustion model of heat transfer and fuel consumption for the

propagation of a fire front on a point cloud surface. They proposed angular Voronoi weights

for a discrete Laplace-Beltrami operator that shows better isotropic diffusion on the inho-

mogeneous distribution of point clouds than the cotangent or moving least-squares schemes.

All the above methods treat the curved surface composed of either homogeneous or isotropic

media, without accounting for the full inertial effects of the possibly deformation of the sur-

face, thus not directly applicable for stain formation on moving surfaces with inhomogeneous

and anisotropic materials.

1.3.4 Contributions

Figure 1.3 shows an overview of our framework. We preprocess the inhomogeneous (and

possibly anisotropic) material through the homogenization process to get effective diffusion

tensors. Then we specify the material type directly on curved surfaces on a per triangle

basis. The fluid motion is governed by a number of processes that are treated in a split step

7



Advection Diffusion Acceleration 

Absorption Adsorption Evaporation 

Homogenization 

Figure 1.3 Flowchart of the simulation.

(a) with Coriolis force (b) without Coriolis force

Figure 1.4 Stain on a waving flag. Visualized on the undeformed flag to avoid occlusion.

fashion as in semi-Lagrangian fluid simulation [40], including acceleration by fictitious forces

and gravity, advection, diffusion, infiltration, adsorption, and evaporation. We use a mixed

explicit-implicit time integration, in which only the parabolic diffusion process involves a

global implicit integration. The main contributions of our method include:

• A modified Laplacian to solve the diffusion process directly on curved surfaces.

• An efficient fictitious force evaluation induced by the one-way coupling from surface to

fluid, including the Coriolis effects, based on local comoving and corotational frames.

• A complete framework incorporating realistic physical staining processes, including

absorption, adsorption, and evaporation.

Figures. 1.4 and 1.5 show some of the effects produced by our framework.
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(a) without inertia forces (b) with only rectilinear force

(c) with both rectilinear force
and Coriolis force

Figure 1.5 Stain on dropping tablecloth.

1.4 Surface Lagrangian Coherence Structure Extraction

In computer animation, artistic guidance is often required to control the motion instead of

directly using purely physical simulation. While there are methods for artistic guidance for

smokes or even water-air interface, they do not apply to surface fluid simulations directly.

Toward that end, we propose to extract the Lagrangian Coherent Structure (LCS) that

serves as a coarse description of the fluid motion. One way to define LCS is through ridges

of the finite time Lyapunov exponent (FTLE) scalar field, which describes how stretched an

infinitesimal fluid parcel will become by following the flow. Such ridges are like watersheds

that divide the domain into regions that move with the fluid, but among which little ex-

change of fluid particles happens. LCS is, thus, often referred as skeleton of fluid dynamics.

It offers a coarse representation to observe fluid flows. As such, LCS has been used to allow

high resolution fluid motion to follow the overall motion of a low resolution simulation. We

present a robust method for calculating LCS on curved surfaces. Concrete applications in
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artistic guidance is beyond the scope of this dissertation. However, with the clean output

from our method, it is potentially easy to incorporate to existing LCS-preserving simulators.

1.5 Organization of Dissertation

The rest of document is organized as follows. We provide details of homogenization of

inhomogeneous materials, in particular, knitted patterns, in Chapter 2. We then discuss

the novel reconstruction of surfaces from angle data in Chapter 3. We describe the fluid

simulation framework with fictitious acceleration on deforming surface in Chapter 4. We

describe the robust Lagrangian Coherence Structure extraction method for triangle meshes

in Chapter 5, before we conclude in Chapter 6 with a summary of contributions and possible

future work.
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CHAPTER 2

HOMOGENIZATION

2.1 Introduction

Homogenization is a process that converts a region with repeated patterns highly diverse

material components into a region composed of a single type of material which exhibits

similar bulk physical behavior[4, 5]. The original region contains heterogeneous materials,

while the converted region is homogeneous with a single but often anisotropic material.

Often the homogenization plays an important role in computation, because it allows the

handling of material characteristics that are rapidly varying spatially as if it is its simplified

homogeneous counterpart. For instance, it is used in [41] as a method to analyze stress

variations in elastic fiber composites. Hollister and Kikuchi [42] show that homogenization

method outperforms standard mechanics of materials approaches even for locally periodic

material.

The procedure of homogenization method can be seen as solving for the homogeneous

material that best approximate the behavior of the original material, i.e., for some predefined

measurements, simulation in the homogeneous material and that in the original material

should exhibit minimum residual. For instance, Lukkassen et al. [41] outlined a typical

four-step procedure, assuming microscopic heterogeneous material distribution is periodic:

1. Within a cell (representative volume element) containing a few periods in each direc-

tion, solve the cell problem of strain tensor under periodic boundary conditions;

2. Obtain homogenization coefficients based on the solution from step 1;

3. Incorporate homogenization coefficients into macroscale equilibrium equations;
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Figure 2.1 Schematic drawing of the homogenization process.

4. Compute local fluctuation of strain field based on the average strain field obtained in

step 3.

Elasticity homogenization introduced to computer animation in [7] can be seen as using the

first three steps in the structure to get the bulk motion. In our case, we focus on obtaining

the bulk diffusion tensors based on knitting patterns or other material patterns that are

also periodic. Since diffusion equation is a typical elliptic equation, we use the a simplified

version of homogenization described in [6]. We essentially ignore the local fluctuation as

the microscale phenomena typically would not be salient. However, for applications such as

simulation of Chinese painting, the microscale fluctuation in the fourth step can and should

be applied.

2.2 Homogenization for Bulky Diffusion Property

We represent textile (or other inhomogeneous material) by patterns of microscale cells for

efficient simulation. As described in [23], weaving pattern in a textile model can be ap-

proximated by three types of cells, namely warp cell, weft cell, and gap cell. Figure 2.2b

shows an example distribution of different cells for a small piece of textile (Figure 2.2a).

A prescribed weaving pattern determines whether each warp (weft) cell is orientated up

or down. By changing the arrangement of warp cells and weft cells, we can approximate

the yarn/thread-level structure of textiles with different weaving styles such as plain weave,
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satin weave and twill weave. Gap cells denote the gaps among warps and wefts. The diffu-

sion of stain can be different between different pair of cells. For instance, with hydrophobic

fibers, stain may diffuse quickly between gap cells but slowly between warp cell and weft

cell.

We can thus describe the diffusion procedure by the following diffusion equation,

ḟ(u, v, t) = ∇ · [S(u, v)(∇f(u, v, t))], (2.1)

where f is a scalar or vector field being diffused, ḟ is its time derivative, and S(u, v) is the

highly oscillatory diffusion tensor field, which is piecewise constant with different types of

cells.

We seek a bulk diffusion tensor to effectively average the diffusion coefficients of different

cells on a piece of textile. Figure 2.2c gives the basic layout of an input diffusion tensor field.

A 2×2-matrix is used to denote the diffusion property of each cell. Each element in the

matrix can be obtained according to the layout of the cells and the diffusion characteristics

of the textile such as the tortuosity and porosity. In contrast to modelling the diffusion

using resolutions matching the numerous threads in textile, the homogenization technique

is efficient, but can still simulate the overall anisotropic diffusion of stains in textile. More

precisely, we seek an effective constant tensor Seff for each type of textile, such that the

solution f̃ of the following equation is an approximation of f ,

˙̃f(u, v, t) = ∇ · [Seff(∇f̃(u, v, t))]. (2.2)

2.2.1 Input Inhomogeneous Tensor

One method to obtain the input tensor field is to use the Weisz-Zollinger model (see, e.g.

[43]), which defines five types of connectivity based on cell positions and porosity: a) fibers in

different layers, b) perpendicular fibers in the same layer, c) fiber and gap, d) gap and gap,

and e) parallel fibers in the same layer. The permeability (diffusion) coefficient between

two textile cells is computed as D = KdiffT , where Kdiff is a coefficient determined by
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the properties of the both stain (dynamical viscosity) and textile (porosity), and T is the

tortuosity, which can be different for different types of cell connectivity. We allow the user

to choose specifying a pattern of diffusion tensors, or specifying cell pattern and D. In the

latter case, we average the boundary permeability to construct the diffusion tensor,

S = 1/2 [Dleft +Dright, 0; 0, Dtop +Dbottom].

2.2.2 Homogenization from Weaving Pattern

The original highly inhomogeneous material property can only be resolved with an extremely

high mesh resolution. By using the homogenization theory [4], we can simulate the long-time

behavior effectively and avoid the high frequency tensor field. We assume that the material

pattern is periodic, and the user input is one representative tile (or copies of several tiles).

We construct a mesh of a topological torus with the specified tensor field, i.e., we create a

mesh for a rectangular region, and then identify the vertices and edges on the left and right

boundaries at the same height and those on the top and bottom boundaries at the same

distance from the left boundary. An effective constant tensor, one capable of producing

similar diffusion in a region containing a large number of tiles, can be evaluated as

Seffij = 1/A
∫

Ω
[S(x, y)(ei +∇fi(x, y))] · ejdxdy, (2.3)

where A is the total area of the domain Ω, Seff is the effective bulk diffusion tensor, S(x, y)

is the diffusion tensor field, ei is the unit vector in i-th direction (i = 0, 1), and fi is the

solution to the following Poisson equation

∇ · [S(x, y)(∇fi(x, y) + ei)] = 0. (2.4)

Roughly speaking, (f1 +x, f2 +y) is a new (harmonic) parameterization of the domain, in

which the diffusion tensor is properly stretched, and can thus be directly averaged. In

1D, this is the same as taking a simple harmonic mean, but in 2D, it has to be evaluated
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(a) Weaving pattern. Weft: dark. Warp: light. (b) Cell-based approximation.
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(c) Layout of diffusion tensor for one block of the period domain.

Figure 2.2 Illustration of 2D homogenization.

numerically for various patterns in general. The discretization of Equation 2.4 is the same

as that of the diffusion process in Sec. 4.3.3.

2.3 Results and Discussion

We tested the homogenization of the diffusion/permeability tensor on an inhomogeneous

rectangle. As shown in Figure. 2.3, the homogenized diffusion tensor produces diffusion

results that closely resemble the original tensor field, while the direct averaging of the

tensor fields in the original domain results in a completely different stain. We used the

knitting pattern to compute the tensor field in the top row with D set as 1 for gap to gap,

100 weft to weft, 500 warp to warp, 10 gap to weft, 50 gap to warp, and 200 for weft to
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(a) layout (b) simulation on original layout

(c) simulation with effective tensor (d) simulation with average tensor

Figure 2.3 Comparison between effective tensor and average tensor on an isotropic layout.
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(a) layout (b) simulation on original layout

(c) simulation with effective tensor (d) simulation with average tensor

Figure 2.4 Comparison between effective tensor and average tensor on an anisotropic layout.
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warp. The tensor field in Figure. 2.4 has alternating columns of isotropic material, one with

diffusion coefficient 1 and the other 100, the effective bulk tensor is anisotropic unlike the

average tensor.

As expected, the results produced by following the homogenization theory lead to the

correct behavior for the diffusion procedure. We expect our use of homogenization to be

applicable to the elastic properties of the textile, in which case, the cloth simulation of the

underlying surface can also become efficient without changing the overall motion.
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CHAPTER 3

ANGLE-BASED SURFACE REPRESENTATION

3.1 Introduction

Triangle angle meshes contain two sets of data, one for the geometry, i.e., vertex locations,

and the other for the connectivity, the triplets of the vertex indices denoting triangle faces.

Given fixed connectivity, the global coordinates of vertex locations provide a unique and

non-redundant description of the shape. However, such a representation is also coordinate

system dependent, which can be vastly different with even a simple rotation and translation.

It also does not directly provide the local description of surface shape, such as the principal

curvatures. Proper choice on the use of coordinate system independent descriptions can

often facilitate the specific applications, such as parametrization, deformation, animation,

and compression[10].

Although convenient for the target application, these angle, metric, or curvature based

representations are often redundant as shape descriptions, and it is necessary to establish

the mapping from them to a closest vertex coordinates for embedding in 3D Euclidean

space. We propose a fast spectral surface reconstruction from triangle angles and dihedral

angles, inspired by the dihedral angle-based maps of tetrahedral meshes[10].

While seemingly simpler than the 3D case, the curved 2D case is actually more challeng-

ing. In the tet mesh case, each vertex can be expressed as a linear combination of vertices

of the tet incident to the opposite face but not incident to the vertex itself. This linear

combination forms the basis of the spectral method that assembles all these mappings. For

the triangle mesh case, such a linear combination does not exist, so we introduce local

frames as intermediate variables. In addition, the final map still contains a global affine

transformation, which we resolve using a simple voting strategy.
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Contributions Our main contributions include:

• a spectral framework that extract the 12 dimensional null space satisfying the linear

relations between each vertex and its 2-ring triangles;

• an affine transformation correction by voting on each pair of triangles;

• and an optional gradient descent method that further reduces reconstruction error

within the 12D space.

Our angle-based reconstruction can be potentially attractive for near isometry deformation,

shape retrieval and analysis, and compression.

3.2 Related Work

Inferring local shape descriptors from global vertex coordinates can be performed in a neigh-

borhood as in the definitions of their continuous counterparts in most cases, for instance,

the computation of curvature as in [44]. See [45] for a survey on the link to the continuous

differential theory on polygonal meshes.

The other way around is typically nontrivial. In fact, the fundamental theory in classical

differential geometry theory of surfaces deals with the determining the shape of a surface

from the first and second fundamental forms[46]. Mimicking this theory, a number of ge-

ometry processing methods establish this mapping, e.g., [47, 48, 49]. In particular, [49] is

using a linear construction very similar to ours by introducing the frames associated with

triangles as intermediate variables. However, they rely on edge lengths to construct the first

fundamental form, while we use only triangle angles and allow the scaling to be left flexible.

Functional characterization that are independent of the triangulation also exists[50], when

the fine details are not required.

In some applications such as shape classification, only intrinsic lengths, angles, and/or

areas are used as local shape descriptors, which do not determine a unique embedding in
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3D. In such cases, ideas similar to multidimensional scaling[51] can be used to reconstruct

a “most stretch” shape, as in[52]. Our method focuses on the cases when the extrinsic

dihedral angles are available, which is desirable for constructing unique shapes within the

same isometry class.

Triangle angles and dihedral angles in theory determines the shape up to a global scaling,

thus they can be used to encode the geometry part of the surface. In fact, the angle

analyzer[9] does use these angles to sequentially assemble the entire mesh, it also uses the

geometry as a cue to encode the connectivity of triangle, quadrilateral, or hybrid meshes.

Since angle values have a distribution that is easier to encode than the global coordinates,

this encoding can be used in compression despite the much larger number of angles than

the vertex coordinates (dihedral angles alone would need the degrees of freedom equaling

three times the vertex count). 3D mesh compression has a vast literature. See recent survey

in, e.g., [53]. In most systems, geometry of a mesh is represented by vertex locations.

Compared to vertex-based methods like Deering [54], Lee et al. [9] with a single-rate

compression algorithm for triangle-quad hybrid mesh was able to accomplished an average

of 40% better result. Methods for compressing temporal sequences of meshes also exist [8].

We speculate that angle based method can further lower the compression rate by encoding

only the dihedral angles for near-isometry cases like cloth and thin-shell simulation.

Inaccuracy in aggressive lossy compression can lead to noise in the mesh position, which

makes the sequential assembly impossible to avoid drifting in the vertex locations for those

traversed later in the sequence and produces visible artifacts. We extend the spectral method

proposed by Paillé et al. [10], which proposes a map from dihedral angles in a tet mesh to

vertex locations. Similar spectral methods have also been used in parameterization[55],

deformation[56], mesh processing[57], vector field design[58], etc. We differ from these

methods in that we use the space spanned by multiple eigenvectors associated with the lowest

eigenvalues and reduce the angle deviation by a gradient descent in this low dimensional

space.
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Figure 3.1 Illustration of local construction through triangle angles and a dihedral angle.
This pair of adjacent triangles contains 4 vertices v1, ... v4. The left figure shows that
we can fix the location of v1 = (0, 0, 0)> and v2 = (1, 0, 0)>, the vertices v3 (v̄4) can be
constructed in the XY-plane using angles α123 and α312 (angles α214 and α421 respectively).
The right figure shows that the last vertex position v4 can be adjusted to get the correct
dihedral angle θij between the two triangle normals.

3.3 Angle-based Shape Construction

We assume the connectivity of a surface triangle mesh is given as T containing triples of

vertex indices (i, j, k) with its cyclic order indicating counterclockwise orientation. The

mesh is assumed to be an orientable 2-manifold (non-degenerate surface), i.e., a consistent

unit normal direction can be assigned to all the triangles, typically the outward pointing

normal for the closed boundary surface of a non-degenerate 3D object.

The orientability implies that we can assume that each edge (i, j) shared by two triangles

appears as (i, j) in one triangle, and as (j, i) in the other. Given the interior angle αijk

of triangle (i, j, k) at j, and dihedral angle θij denoting the angle between the normals of

the triangles (i, j, k) and (j, i, l) for each nonboundary edge, we compute xi, the position

of vertex i, such that the mesh with these vertex positions will reproduce the given angles.

Note that we only need two angles for each triangle, with the third angle determined by

αjki = π − αkij − αijk. (3.1)

As angles are rotation, translation and uniform scaling invariant, the solution can only

be determined up to a rotation R, a translation t and a scaling factor s. One straightforward

way of constructing the mesh would then be to choose xi for an arbitrary vertex i as the

origin (0, 0, 0)>, and the other end of one edge (i, j) incident to vertex i as xj = (1, 0, 0)>,
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and one triangle (i, j, k) incident to that edge to have the counterclockwise unit normal

aligned to Z-axis, i.e., that triangle lies in XY -plane. Given the interior angles of that

triangle, we can uniquely determine position of the other vertex xk in the oriented triangle.

See Figure. 3.1.

Following a breadth-first search of the dual graph, formed by the dual graph of the mesh,

i.e., a graph with triangles as nodes and triangle adjacency (defined as triangles sharing two

vertices) as edges, we can traverse all the triangles. Each time we go from a visited triangle

to another, if the opposite vertex k across edge (i, j) does not have a known position, we

can first determine the plane containing the unvisited triangle (i, j, k) through the dihedral

angle θij and the normal of the visited triangle also incident to (i, j), and then compute

the vertex location xk based on the interior angles. When the traversal is complete, all the

vertex positions are determined.

However, the straightforward sequential approach would only work if the angles are not

noisy or inaccurate (e.g., due to quantization in compression). Otherwise, the deviation in

the vertex position would accumulate as we move away from the starting vertex. We show

in Sec. 4.6 that the resulting mesh of the straightforward reconstruction based on angle data

with very little noise already leads to huge distortion for the Stanford Bunny model. The

distortion is minimal near the starting triangle, but deteriorates quickly as the traversal

proceeds.

Angle Analyzer [9] essentially follows the sequential approach. Angle Analyzer has shown

that the angle-based representation can benefit the encoding of connectivity, through a front

advancing strategy prioritizing the traversal order based on eliminating sharp angles of the

active front, and benefit the encoding of geometry as the interior angles have distribution

concentrated around π/3, and dihedral angle concentrated around 0. We, instead, focus

on the geometric part given noisy or incompatible input angles. We intend to make our

method capable of pushing the average bit per vertex in the representation to be lower than

Angle Analyzer, which can benefit applications such as encoding deforming meshes with
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fixed connectivity.

Inspired by a recent dihedral angle-based tetrahedral mesh representation [10], we pro-

pose to solve for the vertex positions simultaneously through a global approach. First, we

build a system of linear equations that a mesh with the prescribed angles have to satisfy.

Second, we solve for eigenvectors of the least-squares quadratic energy of the linear system.

Finally, we use the eigenvectors to assemble the vertex positions, which produce minimal

distortion of the angles. This way, we can avoid the accumulation of error in regions far

from the beginning vertex in sequential approach. Our approach also removes the bias in

regions far from constraints in least-squares with constraints on the initial triangle(s).

3.3.1 Linear System

We build a linear system based on the local reconstruction of triangle pairs. However, this

is not as straightforward as in the tetrahedral case, because vertex positions of a triangle do

not span the 3D space, which means that given the positions of one triangle, the non-shared

vertex in the other triangle cannot be expressed as a linear combination of the vertices in

the given triangle.

Figure 3.2 Non-

orthonormal frame

We introduce a non-orthonormal frame for each triangle to

address the problem. See inset figure. Our choice of frame is

similar to that of [59], where the first axis is aligned to one edge

of the triangle, and the second axis is aligned to the reverse

direction of the previous edge, and the last axis is the normal

of the triangle with the norm being the square root of the

area to keep the construction scaling-invariant. For a triangle

t = (i, j, k), the associated frame is the following 3×3 matrix,

Ft =
(

eij , eik,
√
Atnt

)
,

where eij is the vector along edge (i, j), At is the area of triangle t, and nt is its unit normal.
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We can then formulate the linear map in two parts. The first part is the relation between

the frames of adjacent triangles ti and tj . They must satisfy the affine transformation Rji

uniquely determined by the interior angles of these two triangles and the dihedral angle

between them,

Fti − FtjRji = 0. (3.2)

This matrix can be constructed by first creating a local reconstruction for the 4 vertices

of ti and tj based on angles as in Figure 3.1, then evaluating F̄ti and F̄tj in the local

reconstruction, and finally Rji = F̄tiF̄
−1
tj

.

The second part is the relation between the vertices in a triangle (i, j, k) and its frame

Fijk,

[
xj − xi xk − xj xi − xk

]
− Fijk


1 −1 0

0 1 −1

0 0 0

 = 0. (3.3)

Note that with accurate angle data, the system of linear equations of the above two

types is underconstrained, since it can be satisfied not just by the original mesh, but also

by an affine transformation of the original mesh. In other words, the linear system has a

kernel with 12 degrees of freedom, 9 for linear transformation, and 3 for translation.

As mentioned above, if we have boundary constraints, the system is typically overcon-

strained and can produce a reasonable result in the least-squares sense. However, when

noise is present, the regions far from the constraints may still suffer from numerical errors

and drift far from the original shape. Thus, we propose to use a spectral method similar to

[10].

3.3.2 Spectral Method

We first assemble the linear system as Lx̃ = 0, where x̃ is a column vector of dimension

3|V|+9|T |, containing the coordinates for all |V| vertices, and frames for all |T | triangles,

and L contains the coefficients for the above two types of equations. The original mesh
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would thus minimize the least-squares error

x̃>Ax̃,

where A = L>L.

Since the kernel is 12 dimensional, we cannot use only the eigenvector associated with

the lowest eigenvalue as the solution for noisy input angle data. Instead, we build a 12

dimensional space spanned by the eigenvectors associated to the lowest 12 eigenvalues

Span{ei}i=1...12.

Even in the ideal case, the result is in the invariant space of A spanned by the 12

eigenvectors of eigenvalue 0. So we need a method to find the right linear combination such

that the position part of x̃ actually corresponds to a mesh with the prescribed angles.

Without loss of generality, we start with a random initialization (or the mean of the

12 eigenvectors) x̄ = ∑12
i=1 λiei. While it is possible that the vertex positions in this

initialization is degenerate (e.g., inside a plane, along a line), the possibility is low compared

to using a single eigenvector e1.

However, the linear system does not prevent the vertex positions and frames from un-

dergoing an arbitrary affine transformation. Thus, we need to estimate a translation and a

linear transformation Tij that can restore one of the adjacent triangle pair ti and tj to their

local reconstruction with the correct angles. For noise-free angle data that originate from a

real mesh, we can simply apply Tij to the whole mesh to get all angles restored.

However, for noisy angle data, Tij may be different for different pairs of adjacent tri-

angles. It is highly nonlinear to solve for the best global linear transformation T that

minimizes the sum of angle deviations. In practice, we found that voting for a best linear

transformation is sufficient to produce a reasonable guess, which can be further improved

by gradient descents if necessary.

However, there is one necessary preprocessing before each pair of triangles can cast a

vote. This is because Tij is computed as the map from the pair of triangles in x̄ to a local
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reconstruction based on angle, which can be rotated and rescaled. So the direct average

of Tij for all triangle pairs is likely to be rather random since each vote favors a different

rotation and scaling. This issue can be resolved if we remove the scaling and the rotation

by first perform a polar decomposition, Tij = RijSij , where Rij is a rotation and Sij is a

symmetric matrix. We then normalize Sij by its Frobenius norm ‖ · ‖ to remove the bias

introduced by scaling for each triangle pair,

Sij ←
1
‖Sij‖

Sij .

We then take the sum of the normalized Sij ,

S =
∑

ti∩tj=e∈E
Sij ,

where E is the set of all edges. The normalized version T = (1/‖S‖)S is practically a global

linear transformation that restores the original angles as much as possible. In our tests,

employing further gradient descent in the 9D space of 3×3-matrices does not introduce

much improvements.

With ideal input angles, any randomly initialized point Λ = (λ1, . . . , λ12)> in the 12D

space has a near 1 probability of producing the original mesh up to a rigid transformation

and a scaling. With noisy data, it is not necessarily the shape with the smallest angle

distortion. So we offer an optional step of gradient descent in the 12D space of all possible

Λ by using squared angle residuals as the energy to minimize.

3.3.3 Gradient Descent in 12D

We restrict our gradient descent in the space spanned by the eigenvectors associated with

the lowest 12 eigenvalues, as we assume that this model has the right capacity to prevent

underfitting to the input data, and avoid overfitting to the angles when they are not com-

patible with an actual mesh. We show in the next section, that numerical evidence seems

to validate this assumption empirically.
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We formulate the problem as the optimizing l2-distance between the angles of the re-

sulting mesh and the corresponding input angles.

Λ̂ = arg min
Λ,T

[
∑

(i,j,k)or(j,k,i)or(k,i,j)∈T
(αijk(Λ, T )− ᾱijk)2 +

∑
(i,j)∈E

(θij(Λ, T )− θ̄ij)2],

where Λ is the vector containing the 12 coefficients in x̄ = ∑12
i=1 λiei, T is an arbitrary linear

transformation, αijk(Λ, T ) and θij(Λ, T ) are the corresponding triangle angle and dihedral

angles of the mesh determined by x̄ under transformation T , respectively, ᾱ and θ̄ are the

input angles, T is the set of triangles, and E is the set of edges.

We use block cyclic descent for the optimization, i.e., we first find the best T given Λ, then

we fix T and perform gradient descent on Λ, and we iterate the procedure until convergence.

We can use the above described voting method to find the linear transformation T , with an

optional gradient descent in 9D space containing T . Gradients of the target function with

respect to T and to Λ depend on the derivative of triangle angles and dihedral angles with

respect to vertex coordinates, which can be found in physically based thin-shell simulation

algorithms, such as [60]. The final gradients can then be assembled by chain rule. The

derivative of vertex coordinates with respect to either T or Λ are straightforward, since they

are linear functions of T and Λ.

3.3.4 Implementation Details

Preprocessing of angle data. With noisy input, angles can be degenerate. We first

clamp all triangle interior angles to be in [ε, π − ε], and all dihedral angles to be in [−π +

ε, π − ε], where ε = 0.02. If the angle of the triangle not in input that is evaluated through

Eq. 3.1 is not in the range, we clamp it and then rescale all three angles to make the sum

π.

Quadratic energy construction. The target function representing the error in recon-

struction can be formulated as the total penalty of violating the relation between adjacent
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faces Eq. 3.2 and the relation between an edge and its incident face Eq. 3.3,

∑
ti∩tj=e∈E

∥∥∥∥Fti − FtjRji
∥∥∥∥2

+
∑

(i,j,k)∈T

∥∥∥∥∥∥∥∥∥∥∥∥
[

xj − xi xk − xj xi − xk
]
− Ftijk


1 −1 0

0 1 −1

0 0 0



∥∥∥∥∥∥∥∥∥∥∥∥

2

,

where Rji is completely determined by the angle input data. With xi’s and Ft’s stacked

into a vector x̃, the quadratic energy above can be rewritten as x̃>Ax̃.

Pseudocode. The overall implementation can be summarized in the following pseu-

docode.
Data: Inner and Dihedral Angles αijk and θij

Result: Vertex Location xi

Preprocess input angles;

Construct Transition Matrices Rij for each edge;

Assemble quadratic form A of penalty function for construction error;

Evaluate lowest 12 eigenvectors of A;

Construct a linear combination x̃;

for each pair of adjacent triangles ti and tj do

Perform local construction of the four vertices;

Evaluate frames F̄i and F̄j in local construction;

Find the best linear transformation from Fi and Fj in x̃ to the local

construction through Tij = [F̄iF̄j ][FiFj ]>([FiFj ][FiFj ]>)−1;

Perform polar decomposition Tij = UijSij ;

T+ = Sij/‖Sij‖;

end

Apply T/‖T‖ to all vertex positions in x̃ to produce output;

Optional Gradient Descent in 12D for further reduce angle deviation;
Algorithm 1: Angle-based Shape Evaluation
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3.4 Results

We tested our procedure on various shapes including closed meshes and open meshes with

noisy input angles. Figure 3.3 top row shows reconstruction results with different level of

noises in dihedral angle. In this test we add a random noise uniformly distributed within

[−n%, n%] with a given percentage of the magnitude of the angle to simulate quantization

error and other noises in deformation algorithms. Figure 3.3 second row shows reconstruc-

tion results with different level of noises in triangle interior angles. The behavior is similar

when we add noises to both interior and dihedral angles as shown in Figure 3.3 bottom row.

We confirm that our spectral method combined with affine correction leads to robust

reconstruction results for closed mesh. We also found that noises in triangle angles can have

a larger impact than those in dihedral angles. In our test, the effect of noise level of n/4%

for triangle interior angles seems to be similar to the effect of noise level of n% in dihedral

angles.

For open meshes, such as the flags shown in Figure 3.6, our method is, however, more

sensitive to noise than the closed mesh case. The reconstruction result will deviate far when

the noise level is larger than 2%. Nevertheless, it is far better than sequential construction.

We assembled a gallery of reconstruction results for closed mesh models of various types

in Figure 3.5. The approach is capable of handling meshes with high curvature regions, and

those with high genus.

Results for gradient descent. We also tested the further optimization through gradient

descent in the 12D space spanned by the eigenvectors. It is shown that the total angle

deviation indeed decreases as shown in Figure. 3.7, although the improvement does not lead

to much difference visually when the meshes are rendered. We have also performed tests on

multiple random initialization, and found that they may lead to different local minima in

terms of total angle deviation, but the impact on mesh coordinates seems hardly discernable.

We postulate that the information about the shape signal is already lost with large noise, so
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3 Top: Results for adding different levels of noises to dihedral angles. Middle:
Results for adding different levels of noises to triangle interior angles. Bottom: Results for
adding different levels of noises to both angles. From left to right: the maximum random
noise magnitude is at the level of 0%, 10%, 20%, and 30%, respectively. The result in this
example is resilient to such noises. Distortion only becomes obvious when interior angles
reached 30% noise level.

further improving the fitting to the noisy input does not improve the shape quality much.

Comparison to sequential construction. We follow a similar strategy to Angle

Analyzer in this test, i.e., we sequentially construct the vertex locations by starting from

a seed triangle, fix its translation, rotation, and scaling, and traverse the entire mesh by

moving from the visited triangles to adjacent unvisited triangles.
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Figure 3.4 Ran-

dom 0.01% noise

level

As seen in the inset figure, random noise with a maximum of just

0.01% leads to discrepancy when faraway vertices are reached following

different paths in the dual graph. In contrast, our method will distribute

noise evenly through the whole mesh, making the reconstructed shape

continuous. For the result in the comparison figure, we traversed the

mesh by breadth first search, and our results with depth first search led

to even worse artifacts on the reconstructed shapes.

Performance. The step with the highest time complexity in our

approach is solving the eigenvalue problem. We simply use the eigen-

solver in Matlab for sparse symmetric matrices. For a mesh with a few

thousands of vertices, it takes less than a minute to produce the lowest

12 eigenvectors. The assembly of A and the voting for the affine transformation are both

linear time complexity in terms of vertex count. However, even though the complexity is

linear, for large meshes, the voting for best affine correction matrix can take a few minutes

due to our unoptimized implementation. The optional gradient descent in the 12D space

depends on convergence criterion, as it determines the number of iterations, but for each

iteration, the evaluation of all the derivatives is with linear time complexity as well.

Discussion and Limitations Our method can robustly reconstruct closed surfaces with

large noises (up to 40% on some models). With such noises, the simple sequential reconstruc-

tion will lead to meshes distorted beyond recognition. For open surfaces that are isomorphic

to a flat region, noises larger than 2% can already lead to visible distortions (still better

than the 0.01% noise for sequential construction though). We postulate that the problem

is with the lack of boundary constraints, on the other hand, our linear system combined

with boundary constraints could be used if such constraints are available, and the frame

variables can even be used to specify Neumann or Cauchy types of boundary constraints.
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Another limitation of our approach is the large number of additional variables 9|F| ≈

27|V|. We leave it as future work to see if the linear map can be modified to use only

the normal. The basic idea is that the vertices of one triangle together with its normal is

sufficient to span the 3D space and be used to represent the vertices in adjacent triangles.

3.5 Conclusion and Future work

We propose a spectral method for mapping triangle angles and dihedral angles, as one

type of local shape descriptors, to the global shape, vertex locations of a surface. For

this purpose, we construct a quadratic energy measuring the deviation from a local linear

reconstruction relation determined by these angles. The quadratic energy function is then

optimized with a spectral method to prevent bias in the presence of noise, as well as to

prevent collapsing of the surface to a single point due to the rescaling invariance of the

angle-based representation. An affine correction is obtained by voting from each pair of

triangles, where each vote restores the angles in the triangle pair from the distortion due

to the invariance of the local linear reconstruction relation. We offer an optional step of

gradient descent to further reduce reconstruction angle deviation.

While we tested the robustness of our reconstruction under high levels of noise or com-

pression loss (far higher than the level that can be tolerated by sequential construction),

we did not explore the coding of connectivity with noisy angle data. In future, we plan to

incorporate a strategy similar to angle analyzer, and test the effectiveness of our represen-

tation through common metrics, such as L2-distance and Hausdorff distance, and to use an

actual entropy coder to measure the bit rate per vertex.

33



(20,5)

(5,1.25)

(5,1.25)

(5,1.25)

(5,1.25)(7,1.75)

(5,1.25)

Figure 3.5 We show in this collection of reconstructed models a variety of shapes, including
surfaces with high curvature regions, with high genus (22), or with irregular sampling. The
first number is the percentage of max dihedral angle noise, and the second number is that
of interior angle noise.
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(a) (b) (c) (d)

Figure 3.6 The results for deforming flags with 1% noises added to both dihedral and interior
angles. The reconstruction produces large deviation from the original shape if larger noises
are added, especially for interior angles. We postulate that the deviation from isometry as
the original embedding curvature can have a large impact when the mesh has a boundary.
The boundary vertex positions are determined only from their relation to the neighbors
from certain directions, whereas in the closed mesh case the vertex positions are determined
by neighbors from all directions.

(a)
(b) before (c) after (d) original

Figure 3.7 The angle deviation decreases over iteration in our 12D gradient descent. How-
ever, the result after gradient descent remains quite similar to the original guess. The noise
level on dihedral angle is at 20%.
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CHAPTER 4

FLUID SIMULATION

4.1 Introduction

Despite the large number of physically-based methods for both cloth animation and fluid

simulation, very limited effort has been devoted to the simulation of stain formation on

cloth in motion: the complexity in accounting for inertial forces and anisotropic effects that

the absorption, adsorption, and diffusion of a liquid on knitted or woven textiles involve

has thwarted their efficient simulation. However, with the rapid improvement in computing

power and the advent of virtual worlds, simulating the formation and evolution of stains on

moving cloth could have a wide range of applications in computer games, special effects in

movies, digital arts, and augmented reality.

Stains on fabric, textile, or even paper are formed when a fluid such as ink, wine, or water

gets into the fibers of the medium, starting a process of diffusion, absorption, adsorption,

and evaporation. Since knitted or woven cloth materials are often highly anisotropic and

inhomogeneous, the evolution of a stain in time depends heavily on the pattern of threads

or yarns of the textile. Moreover, the motion of the cloth itself can have a dramatic effect on

the stain formation: inertial forces (be they centrifugal or Coriolis) that the fluid experiences

will bias the propagation of the stain, adding further complexity to the phenomenon.

We present a simple physically-based approach to capture the evolution of a fluid density

(i.e., stain) over a moving and deforming cloth. Using homogenization theory, we construct

the bulk anisotropic diffusion tensor based on the composition and the weaving pattern of

the fabric. The resulting diffusion tensor is mapped onto the cloth by specifying the local

alignment of the fabric. The fluid motion is then calculated directly on the mesh by storing

the velocity field as a tangent vector field. The velocity field is influenced by the movement
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(a) without fictitious force (b) without Coriolis forces (c) with both translation and
rotational forces

Figure 4.1 Stain on a bunny rotating around a vertical axis.

of the deforming cloth through locally estimated inertia forces. Interactions between stain

and textile including absorption, adsorption and evaporation are also modeled by keeping

track of the density fields of various components of the solute and solvent. Our approach

generates realistic visual simulation of stains, which we demonstrate by showing complex

stain evolutions on deforming cloth made of a variety of inhomogeneous and anisotropic

materials.

4.2 Semi-Lagrangian Fluid Simulation

In a typical simulator for particles, both particle locations and particle velocities need to

be updated. The particle coordinates x = (x1, x2, x3)> and velocity u = (u1, u2, u3)> are

expressed through components in an inertial orthonormal frame in 3D Euclidean space. If

we map 2D surface to a parameter domain, we can do our computation in 2D space.
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4.2.1 Eulerian vs Lagrangian representations

Eulerian and Lagrangian representations are widely used in simulating fluids in computa-

tional science. The former assumes that we set an observer at a fixed point, or grid point, to

keep tracking the fluid variables, while the latter track single fluid particle. In other words,

in Eulerian representation, u is expressed as a function of x, and are sampled at grid points

x = (ih, jh, kh)>, where i, j, k are integers and h is the grid spacing; while in Lagrangian

representation, both position and velocity for each particle representing a parcel of fluid are

kept as xi,vi for particle i.

As all particles are deemed as the same, in Eulerian representation, only the velocity

field needs to be updated for the dynamics. For our purposes, the Eulerian representation is

more efficient. In updating the velocity, a semi-Lagrangian method is often used, it updates

the velocity by following the particle along its path backward within each step to perform

a stable update.

The Navier-Stokes equation can be seen as directly the result of an Eulerian repre-

sentation of the field u(x) based on Newton’s second law. Since acceleration du/dt =

∂u/∂t+ u · ∇u, we conclude that

∂u
∂t

+ u · ∇u = 1
ρ

(−∇p+ µ∇2u + f),

∇ · u = 0,

where ρ is the mass density, p is the pressure, µ is the dynamic viscosity, and f is body

force density, such as gravity. The divergence freeness comes from the assumption that

the characteristic velocity in the simulation is much lower than the speed of sound. These

equations have 4 components to update the 4 numbers in u and p.
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4.2.2 Fictitious Force

For Eulerian representation on deforming surfaces, we note that Newton’s second law has

to be modified as the grid on the surface is deforming over time, and cannot serve as

inertial frames. However, it is still convenient to use coordinate frames attached to each

vertex, which is comoving with the vertex, and corotating with the one-ring neighborhood

of the vertex. However, the inertia forces are often ignored in many existing fluid dynamic

system for easier implementation either entirely, or with only rectilinear acceleration being

considered.

We show that this challenging problem for fluid flow on deforming mesh with Coriolis

and rectilinear forces can be solved with the registration of the comoving corotating frame

aligned with the tangent space. The difference is not to be neglected if there is non-trivial

relative acceleration or rotation between the global frame and the local frame.

4.3 Simulation on 3D Surface

The motion of the solution fluid on surface is governed by restricted Navier-Stokes equations,

in which the normal velocity can be ignored, i.e., the normal acceleration is balanced by the

constraint for the fluid to stay on the surface:

u̇+ u · ∇u = ∇ · (Sv∇u)−∇pext/ρ+ aext, (4.1)

σ̇f +∇ · (σfu) = ∇ · (Sf∇σf ) + interactf , (4.2)

σ̇s +∇ · (σsu) = ∇ · (Sf∇σs) + interacts, (4.3)

where ẋ = ∂x/∂t denotes the time derivative, u is the tangential velocity field, ρ is the den-

sity of the incompressible fluid, pext is the external pressure (ignored in our tests), aext is the

external body force (including tangential components of the gravity and inertial forces de-

tailed in Sec. 4.4), σf is the solvent fluid density (per unit area), σs is the solute density, and

interactf (interacts) is the interaction terms detailed later (Sec. 4.5). Aside from the solute
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density, the above equation is equivalent to the generalized shallow wave equations in [31]

with σf = Hρ, where H is the height of the solvent in the normal direction. We also assume

that the motion of the solvent is not influenced by the solute, and the viscosity/permeability

tensors are different for the tangent velocity field (Sv) and the densities(Sf ). These tensors

are evaluated through the aforementioned homogenization procedure, as we assume that

the fluid is partially flowing on the surface and partially permeating through the porous

media.

As shown in Figure 1.3, we follow a typical split step time integration as in [40]. In

each iteration, we first compute the external forces (Sec. 4.4); then, we advect the veloc-

ity and solvent and solute densities (Sec. 4.3.1); next, we perform the diffusion processes

(Sec. 4.3.3); and finally, we handle the additional interaction terms, adsorption and evapo-

ration (Sec. 4.5).

4.3.1 Advection

Our velocity advection essentially follows the procedure in [37]. The surface is triangulated

and the velocity field is discretized as one 2D vector ui = (uxi , u
y
i )T per vertex in the XY-

plane of the tangent frame Fi stored at vertex i. Fi is defined by setting zi to area-weighted

average unit normal of the one-ring, yi = (zi×eij)/|zi×eij |, where eij is one of the incident

edges of vertex i, and xi = yi × zi.

The key issue in the velocity advection is the calculation of ∇u, which, on a curved

surface, is the covariant derivative of u. It provides a way to compare ui and uj for ad-

jacent vertices, since a direct differencing of the components would not produce the true

coordinate-frame independent “vector gradient”. One approximation of∇u is to map the 2D

tangent field to 3D through Fi for comparison. However, much numerical diffusion would

be introduced as long as the edges are not infinitesimal. Thus, we follow the practice in

[37] and use a 2×2 rotation matrix Rij to align the vector expressed in Fj to Fi.

The 2×2 rotation matrix Rij can be regarded as parallel transporting a vector from
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vertex j to vertex i along the edge connecting the two. Thus Rijuj − ui produces the

covariant derivative ∇u integrated along the edge. To obtain the rotation angle for the 2D

rotation matrix, we map the 1-ring of vertex i to a flat 2D topological disk through the

geodesic polar map by rescaling the sum of tip angles to 2π. If the local edge eik is the

chosen edge to construct Fi, the direction of the edge eij can be represented by the angle

αij that it forms with the chosen x-axis in the 2D domain. Assuming the sum of tip angles

for all the triangles adjacent to vertex i is γi, αij is the sum of all the tip angles of the

triangles between eik and eij in the counterclockwise order rescaled by 2π/γi. Likewise, eji

makes an angle αji with the x-axis in the local frame of vertex j. Thus, the rotation matrix

Rij can be expressed through the angle θij = αij − αji + π,

Rij =

 cos θij − sin θij

sin θij cos θij

 . (4.4)

Following the semi-Lagrangian advection method [40] on the surface, we first backtrack

from vertex i in its flattened one-ring using ui by a time step h, evaluating the barycentric

coordinates (λi, λj , λk) within the triangle tijk, and update the velocity ui by

ut+hi = λiu
t
i + λjRiju

t
j + λkRiku

t
k.

It is possible to extend the method to include the case when the backtracked point is outside

the one-ring by following the strip of the triangles traversed.

For density field advection, we use a finite-volume approach instead for mass conservation

of both solvent and solute. Since σf and σs advect in the same fashion, we use σs to illustrate

the process. We discretize the solute density by assigning a value σs,i for the Voronoi region

of vertex i, and we update it by

σt+hs,i = σts,i − h/Ai
∑

j∈N(i)
Fij ,

where N(i) is one-ring of vertex i, Ai is the Voronoi region area, and Fij is the flux through
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the interface between the Voronoi regions of i and j,

Fij = σ
↑
ij(uij · eij)wij ,

where uij = 1/2(uxi xi + u
y
i yi + uxj xj + u

y
jyj), with (xi, yi) denoting the local tangent plane

in frame Fi, σ
↑
ij is the upwind density, i.e., it is σs,i if uij · eij > 0 and σs,j otherwise, and

wij is the usual cotan weights, ratio between the dual Voronoi edge length and |eij |,

wij = −1
2(cotα + cot β), (4.5)

where α and β are the opposite angles of eij in the two incident triangles.

4.3.2 Momentum Advection

An alternative approach is to use momentum advection instead. First, we update fluid

density through advection, then we can update the momentum in the same fashion as

density, from which we get the velocity of next time step using the updated momentum.

Assume A is the dual area. Define flowij to be how much fluid across the border, We

have the following discretized update equation:

flowij = ρ ∗ (eij · vij(t)) ∗ cotan() ∗ h

ρ(t+ h) = ρ(t)− flowij/A

M(t+ h) = v(t) ∗ ρ(t) ∗ A+ v(t) ∗ flowij(t)

v(t+ h) = M(t+h)
ρ(t+h)∗A

The pseudo-code can be formulated as:

Algorithm: Momentum Advection

FOR EACH vertexi DO

FOR each vertex j around vertex i DO

velocityij ← eij · (vi + vj)/2

IF flow will move from vertex i to vertex j

flowij ← densityi × velocityij × cotan()ij × δt
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ELSE

flowij ← densityj × velocityij × cotan()ij × δt

densityi ← densityi − flowij/A

momentumi ← velocityi × densityi × A+ velcityi × flowij

velocityi ← momentumi/(densityi × A)

4.3.3 Diffusion

As our diffusion is performed directly on the curved surface, we need to specify the material

(the homogenized diffusion tensors) on the triangle mesh. The textile can be specified with

weft and warp directions, so we partition the surface into a few patches, each with a smooth

weft direction field e, which induces the warp direction as its 90◦ rotation e⊥. We delay the

discussion on the calculation of these fields to the end of this section, since it is essentially

using the same discretized operators involved in the diffusion process. The main operator

in this process is the modified Laplacian operator ∇ · S∇, which, in piecewise linear finite

element method, can be discretized as a linear operator (matrix) LS ,

LS,ij =
∑
eij∈T

∫
T
∇φi · (ST∇φj),

where φi is the linear basis function for vertex i, where ST = (e, e⊥)S(e, e⊥)T is the diffusion

tensor aligned to the specified direction field within triangle T . For S equals to identity, LS

reduces to the usual cotan formula.

The temporal discretization of the diffusion process is performed using an implicit inte-

gration,

M(σt+h − σt)/h = LSσ
t+h,

where M is the mass matrix with Mij = ∑
eij∈T

∫
T φiφj , which is often simplified through

mass lumping to just a diagonal matrix with Mii = Ai, with Ai being one third of the

one-ring area for vertex i. Thus, the above process is turned into a linear system (M +

hLS)σt+h = Mσt.

43



The diffusion process of the velocity field involves the covariant derivative ∇u as the

one described in the advection process. However, using the same discretization of covariant

derivative through the use of Rij for aligning the tangent vectors at vertices i and j, we can

create essentially the Bochner Laplacian in the metric of Sv by replacing each entry in the

N×N -matrix (N is the number of vertices in the patch) LS,ij with a 2×2-matrix LS,ijRij

with Rii set to the identity matrix, and obtain a 2N×2N -matrix. The implicit integration

results in the following linear equations

Ai(ut+hi − uti) = h
∑

j∈N(i)
LSv,ij (Rij ut+hj − ut+hi ). (4.6)

In order to obtain the smooth direction field, we simply use (at least one) user specified

direction for each patch, and solve the discretized ∇·∇e = 0 under the user constraint.

4.3.4 Diffusion for Anisotropic Material

Assume we have tent functions at vertices of triangle ijk, denoted as

Oφi and Oφj , A =
|ekj ||eki|sin(a)

2

We incorporate the tensor matrix T into the dot product of the two tent functions.

Algorithm: Computation of new cotangents

FOR EACH halfedgeij DO
~e′ki ← Rpi/2 × eki
~e′kj ← Rpi/2 × ekj

Oφi ←
|ekj |
2A

~e′kj

Oφj ←
|eki|
2A

~e′ki

sij ← 2AOφTi TOφj
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Figure 4.2 The comparison shows that both translational (missing in a) and rotational
(missing in a and b) inertia forces are necessary for the comoving and corotational frames.
A solid ball is indicates the motion of the center of mass (without diffusion) in an inertial
coordinate system.

4.4 Fictitious Forces

For a deforming underlying surface, each frame Fi attached to vertex i can be time depen-

dent. It can be seen as a comoving and corotating frame for the one-ring neighborhood.

Similar to [61], we find Fi = UiF̄i by calculating the best rotation aligning the original

one-ring to the deformed one-ring Ui, where F̄i denotes the original frame at vertex i,

Ui = argminR∈SO(3)
∑

j∈N(i)
[(vj − vi)−R(v̄j − v̄i)]2,

where SO(3) is the set of all 3D rotations, vi and v̄i are respectively the current and original

locations of vertex i. Instead of performing a polar decomposition as [61], we directly find

the minimum using the Kabsch procedure in [62]. Assuming that the position of vertex i

is pi, the inertial force (acceleration) experienced by a moving object at location r in the

frame Fi centered at pi can be expressed in this frame as the tangential components of

ainertia,i = −FTi p̈i − FTi F̈ir − 2FTi Ḟiṙ,

where the second term (the sum of the centrifugal force and the Euler force) on the right

hand side vanishes since the fluid velocity is measured at the vertex r = 0, the first term is

called the linear inertia force due to the translation of the local frame, and the last term is
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the Coriolis force due to the rotation of the local frame and the local velocity ṙ = u. The

total body force is given by

aext = ainertia + (g − (g ·n)n),

where g is the gravitational acceleration and n is the surface normal.

Given the motion of the mesh stored in a sequence of vertex locations, we can easily

calculate the linear inertia force by centered differencing,

p̈ti =
pt+hi − 2pti + pt−hi

h2 .

As FT Ḟ for F in the rotation group SO(3) is in the Lie algebra so(3), i.e., antisymmetric

3×3 matrices, we evaluate the Coriolis force as 2ω × ui, where ω is evaluated by


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 = (F t)TF t+h − (F t+h)TF t
2h .

Here, to get a proper angular velocity ω, we antisymmetrize the estimate of FT Ḟ ≈

(F t)T (F t+h − F t)/h.

The pseudo-code for fictitious force calculation is given below:

Algorithm: Fictitious Force

Input: Mesh deforming data p(t− δt), p(t), p(t+ δt), p(0), and local frame (U)

Output: Acceleration in local frame a

FOR EACH vertexi DO

x← pj(t)− pi(j)

y ← pj(0)− pi(0)

Generate transformation that is best match(x, y), B ← match(x, y)

C ← B × U

ω ← CT × (C(t)− (Ct− δt))/δT
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CoriolisAcceration← −2× ω × velocityi

RectilinearAccerlation← CT × (2× p(t)− p(t− δt)− p(t+ δt))/(δt)2

a = CoriolisAcceration+RectilinearAccerlation

4.5 Stain-Surface Interaction

In addition to diffusion, the solution is influenced by the surface through penetration, ad-

sorption and evaporation. Both solvent and solute are involved. The solute is separated into

three parts, one dissolved in the solution, one absorbed by the textile fibers, and the other

deposited in the fibers. The solvent is partially absorbed by the textile, and it evaporates.

In the process of the textile absorbing the solution, the penetration depth and the

absorption speed can be evaluated through the Lucas-Washburn equation [63], which shows

that the speed is inversely proportional to the penetration depth. We use a simplified

formula with the absorption speed dependent on how far the surface is becoming saturate,

assuming that the surface is thin and thus reaches the saturation capacity σsat quickly. We

calculate the absorbed solvent density σp as

σ̇p = Kp(σsat − σp),

where Kp is the absorption speed constant.We can use a simple implicit scheme at each

vertex,

σt+hp = σtp + min(Kph/(1 +Kph)(σsat − σtp), σtf ),

where σf is the maximum amount of solvent left to be absorbed. We also maintain the

absorbed solute density σs,p, which evolves as

σ̇s,p = Kp(σsat − σp)σs/σf .

The absorbed solvent and solute go through the same adsorption and evaporation process

as their free flowing counterparts, but they are assumed to be held in place and not diffusing

much.
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Figure 4.3 The stain induced by various initial fluid velocities.

Adsorption is the process of solute gradually being deposited into the textile fibers and

becoming difficult to be dissolved again by the solvent. We model it by the Langmuir

adsorption theory [64], which assumes monolayer adsorption, so the adsorbent will not

adsorb further after the adsorbate is covered. Before reaching adsorption equilibrium, the

adsorption rate is proportional to the area of the blank surface, while the desorption rate is

proportional to the coverage. We can calculate the adsorption rate and the desorption rate as

KaVd(1−θ)C andKdVdθC resp., where Vd is the total adsorption capacity determined by the

material and porosity, θ denotes the coverage of the surface, C represents the concentration

of the single layer adsorbed solute, Ka and Kd are the adsorption rate and desorption rate,

respectively. When the adsorption is balanced with desorption, we obtain the maximum

adsorption capacity Ad = VdK/(1 + K), where K = Ka/Kd. We calculate the change of

adsorbed solute σs,a as the difference between adsorption and desorption, which is equal to

σ̇s,a = Kd(Ad − σs,a), (4.7)

which can be discretized exactly as in the absorption process.

The solvent in the solution evaporates. The change of the amount of solvent is directly

proportional to the surface area, σ̇p = −Kevap, where Kevap is the evaporate coefficient.

However, the effective exposed area of the boundary cells is greater than that of the inside

cells. So the evaporation of the boundary cell will be faster, and the above calculation

should be changed as

σ̇f = −aevapKevap, (4.8)
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Figure 4.4 Simulation on a waving flag.

where aevap is boundary coefficient (we use 1.2 in our tests). Note that the amount evapo-

rated in each step is bounded by the total amount left.

The combined effects can be formulated as

interactf = −Kp(σsat − σp)− aevapKevap (4.9)

interacts = −Kp(σsat − σp)σs/σf −Kd(Ad − σs,a). (4.10)

The entire state of the system includes the velocity field, solvent and solute on surface,

absorbed solvent, absorbed solute, and adsorbed solute, all of which is updated in each time

step.

4.6 Results

In the rotating planar region test (Figure 4.2), we show that without fictitious force, the fluid

motion is not influenced by the motion of the underlying mesh. If we ignore the influence

of rotation, as was often done in graphics, the fluid still deviates far from the trajectory

without the Coriolis effects.

When the bunny model undergoes rigid motion (Figure 4.1a), our procedure leads to

realistic fluid motion, taking inertia force as well as gravity into account. When the un-
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Figure 4.5 Stain on a dropping tablecloth.

Figure 4.6 Anisotropic diffusion without (a) and with (b,c) the influence of absorption,
adsorption, and evaporation.

derlying surface is deforming, we can still capture the translation and rotation of the local

frames, as shown in Figures 4.1b, 4.1c, and 4.5. In the flag example, we also tested the

influence of the initial velocity (random outgoing velocity fields to simulate a splash) has

on the stain shape.

In Figure 4.6, we can also see the necessity of absorption, adsorption, and evaporation

for the halo ring-like effects of staining common in certain materials . We implemented

our framework and performed our tests on a Windows 7 system with Intel Core i7@2.8GHz

and 12GB RAM. The cloth simulation are loaded as a dynamic sequence of meshes with
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the same connectivity. While our code is not optimized for speed, the tests can run at

interactive rates, as with most other 2D surface flow simulations.

4.7 Conclusion

We present an efficient framework for the simulation of the evolution of solution fluid that

creates stains on textile surface. Instead of resorting to the computationally intensive direct

simulation using the threads or yarns, we analyze the pattern of the textile, and use effective

bulk diffusion tensors on the surface to replace the actually highly inhomogeneous material.

Our system handles the resulting anisotropic diffusion process with a simple modification

to the (Bochner) connection Laplacian. The one-way coupling form the mesh motion to the

fluid is modeled by fitting the one-ring neighborhoods to create comoving and corotating

frames with inertia forces (including acceleration of the frame and the Coriolis effects of

the rotation of the frame). We also examine the absorption, adsorption, and evaporation

processes, and model them as independent ODEs for each vertex. The resulting stain

simulation is visually plausible.

In future, we wish to explore multi-layered textile model for diffusion, the effects of

possible chemical reaction, two-way coupling, wetting, possible use of dynamical texture for

adding back high frequencies taken out during homogenization, and learning parameters

from real stains on textile.
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CHAPTER 5

SURFACE LAGRANGIAN COHERENT STRUCTURE

5.1 Introduction

Due to the inherent complexity of fluid dynamics, the overall motion of fluid flow are difficult

to analyze, predict, or control—even in flat 2 dimensional space. The trajectory of individual

fluid particle or parcel is sensitive to initial conditions, noise in data, and error accumulated

as simulation proceeds. In fact, these trajectories are often chaotic, i.e., a small perturbation

in the initial positions of a fluid particle can lead to vastly different end positions in a finite

amount of time. The concept of Lagrangian Coherent Structures (LCSs) was proposed to

describe the transport of particles within and between different regions, which avoids the

need to determine accurate locations of individual particles [65]. LCS describes regions that

are coherent, or equivalently it describes the boundary between such regions. Across such

boundaries, the particle trajectories diverge quickly (see, e.g., Figure 5.1).

These structures are called Lagrangian because these regions or boundaries evolve over

time, so they are not fixed regions in space. Unlike watersheds, which are fixed topographical

ridges separating neighboring drainage basis, LCS moves with fluid flow over time. That is

why LCS is sometimes called the skeleton of fluid motion, in analogy to the skeleton used in

the character animation, which is the deformation of character skin controlled by the motion

of an underlying articulated rigid body. Skeletons are ubiquitously used in robot, human

or animal motion. With LCS serving as a skeleton, the qualitative motion of the fluid in a

domain involving the movement of these regions can be visualized and analyzed. Since fluid

particles do not cross the boundaries of these regions, salient features of the coherent sets

of particle trajectories can be identified and the overall flow geometry becomes predictable.

While the mathematical conditions for a point to be on LCS are well-defined, such ridges
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Figure 5.1 Spiral eddies containing both hyperbolic and elliptic Lagrangian Coherent Struc-
tures. Image by Paul Scully-Power/NASA

are actually visualized often through simple thresholding of the underlying scalar field. This

simple thresholding results in noisy sets of grid points, which indicate the region containing

the ridge, but not a curve separating fluid particles nearby into two disjoint sets. Direct

ridge detection using image processing also leads to noisy output. Moreover, these methods

do not extend to curved surface meshes straightforwardly.

We propose a novel robust framework to extract LCS, which works both in flat 2D and

curved or even deforming surfaces. If our LCS extraction is used in conjunction with LCS-

preserving fluid animation software, fine simulation can be made to have the same LCS as a

coarse preview, enabling fast animation adjustment necessary for efficient artistic guidance.

5.2 Mathematical Background

Given a dynamical velocity field v(x, t) that depends on spatial location x and time t, the

flow map φtt0 : D → D, where D is the domain for fluid motion, is defined as through the
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Figure 5.2 Attracting and repelling LCSs in space-time (left), and one time slice (right).
Image by George Haller.

solution of the ordinary differential equation:

dφtt0(x)
dt

= v(φtt0(x), t).

Given the flow map, a layer of fluid particles M0 (a surface in 3D fluid or a curve

in 2D fluid) advected by the fluid motion can be computed as M(t) = φtt0(M0), which

is called a material surface. Lagrangian coherent structures can be seen as exceptional

material surfaces inducing strong coherent patterns, such as attracting towards the surface

or repelling from the surface. See Figure 5.2.

Other types of LCSs also exist, such as elliptic LCSs, which form the boundary of
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Figure 5.3 Hyperbolic LCS (attracting red curves and repelling blue curves) and elliptic LCS
(green region boundaries) in a 2D turbulence simulation. Image by Mohammad Farazmand

vortices, i.e, rotation-dominated regions with homogeneous material rotations[66]. See Fig-

ure 5.3. Even for hyperbolic (attracting/repelling) and shearing LCSs, different definitions

exist. A thorough survey of various definitions is beyond the scope of this dissertation.

Interested readers can refer to [65].

Here, we focus on the definition of LCS based on Finite-Time Lyapunov Exponent

(FTLE) ridges. The intuition is based on computing the stretching of a small fluid parcel

over a fixed time window [t0, t0 + T ] with a span of T . the maximum stretching induced by
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the flow map is the maximum eigenvalue λmax,T of the Cauchy-Green deformation tensor

C = (∇φt0+T
t0 )>∇φt0+T

t0 .

The above formula can be derived from the fact that a small perturbation δ in M(t0) is

mapped to a perturbation ∇φt0+T
t0 δ in M(t0 + T ). The latter perturbation has the length√

|∇φt0+T
t0 δ| =

√
δ>Cδ, which means the length ratio

√
δ>Cδ/

√
δ>δ is has a maximum

λmax,T .

In a static velocity field, λmax grows approximately exponentially with T . The limit

σ∞ = limT→∞
1
T ln

√
λmax,T is called the Lyapunov exponent. For a time dependent

velocity field, such a number is only useful for a finite time window T . Thus, the finite time

Lyapunov exponent is defined as

σ = 1
T

ln
√
λmax,T .

In time-independent velocity fields, separatrices between coherent regions are given by

the stable and unstable manifolds of hyperbolic singularities, and they are typically the

ridges in the Lyapunov fields. Extending to the time-dependent case, the ridges of the

FTLE field σ are often used as one definition of LCS, as the point on such ridges reaches

the local maximum stretching in any transverse directions of the ridges. An injective curve

c : I → D, where I = (a, b) ⊂ R is an interval, is a ridge whenever the following two

conditions are satisfied:
dc(s)
ds
×∇σ(c(s)) = 0, (5.1)

and

n>Hn = min
|u|=1

u>Hu, (5.2)

where n is a unit normal to the curve c(s), and H = ∇∇>σ is the Hessian of FTLE

σ. Intuitively, the first condition means that the ridge should be parallel to the gradient

direction right along the edge, and the second condition means that across the ridge, height

drops rapidly on both sides.
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This LCS is, however, not technically a material surface, since sliding the time window

by changing t0 typically does not lead to ridges advected from ridges from previous time

windows[67]. However, it is shown that the material flux over such ridges is small[68]. We

follow this commonly used definition of LCS in our approach for its simplicity and efficiency.

5.3 Related Work

There are several different existing approaches to extraction of LCSs. As mentioned above,

even the mathematical definitions in these methods may differ significantly. We only review

often used categories of these LCS definitions and extraction algorithms, with a focus on

those closely related to our approach.

5.3.1 FTLE Ridges

One of the most highly cited methods is to extract ridges of finite-time Lyapunov exponent

(FTLE) fields[68, 69]. As described in the previous section, an FTLE field is a scalar field

that characterizes the amount of stretching experienced by a fluid parcel along the trajectory

determined by the fluid flow over a given time interval. Such ridges are similar to watersheds

separating flows to different eventual locations (drainage basins).

In analogy to image segmentation in computer vision, extraction methods of LCS de-

fined as such ridges are similar to edge detection rather than clustering of coherent regions

bounded by them. On the other hand, for time-dependent velocity fields, FTLE ridges

do not necessarily form closed loops, so fluid particles on different sides of the ridges can

actually mix, but they do not mix in the neighborhood across the ridges. Thus, LCSs based

on FTLE ridges are more flexible than those based on regions. See, e.g., the open ended

ridges in Figure 5.4.

The visualization in Figure 5.4 is a rendering of the graph of 2D FTLE as a terrain

map, with FTLE serving as the elevation [70]. Similar LCS visualization was also used in
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Figure 5.4 Attracting (red) and repelling (blue) LCSs visualized through height field with
FTLE as the height for a von Karman vortex street. Image by Jens Kasten.

computer vision for crowd flows such as the pilgrims in Mecca[71]. The vision paper also

proposed a pairwise measurement similar to FTLE, which is called the Lyapunov divergence,

to segment the flow regions.

We differ from these existing FTLE ridge extraction algorithms in that we try to find

a thin curve along the true FTLE ridges instead of the pixelated discrete set description

through thresholding FTLE. We also want our method to be as robust as the marching

cubes algorithm in level set extraction[72].

For this purpose, we adapted the Marching Ridges algorithm[73]. Our algorithm differs

from the original Marching Ridges method in a number of ways. First, we adapted it for

triangle meshes instead of regular grid so that we can apply it to surface meshes. Second,

we have an estimate of the transverse direction to the ridges following the definition in

[69], instead of the estimate based on local sampling density functions. Last, we created

an improved edge intersection detection criterion, that precisely mimics the marching cubes

algorithm in regions with coherent transverse direction, while allowing open curves to be

formed.

The definition of ridge structures of scalar fields, whether used for FTLE fields in LCS

or other scalar fields. For example, two of the ridge definitions by Eberly and Lindeberg
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can be altered to narrow down the set of raw feature points [74]. In such a process, the

explicit calculation of eigenvalues and eigenvectors of the Hessian of the scalar fields can be

avoided to further enhance the efficiency.

One major drawback of using FTLE to extract LCS is the low performance due to the

need for computation of a large number of sample flow trajectories in space-time to obtain

the Cauchy-Green tensor. Sadlo et al. [75] proposed to alleviate the problem by searching

for LCS only in predefined regions such as the boundaries, related to flow attachment and

flow separation.

Although LCS is mostly computed in flat 2D domains represented by time-dependent

boundary curves, extensions of the method were proposed to calculate LCSs in 3D volumes,

where they are described by evolving 2D surfaces. Sulman et al. [76] presented a reduced

LCS form in 3d volume to improve accuracy for 2D LCS surfaces. Raben et al. [77] further

improved the reliability and accuracy from noisy image data by using pathline flow map

(PFM) and flow map compilation(FMC).

5.3.2 Other LCS Definitions

Even if we restrict our discussion to hyperbolic LCSs, there are various definitions other

than FTLE ridges. Most notably the definition based on stretch (and strain) lines, which

in 2D are along the maximum (and minimum, respectively) eigenvector directions of the

above mentioned Cauchy-Green tensors, which encode the pointwise length distortion in

every direction. Starting form seeds located of local maximum and minimum points, one

can solve ordinary differential equations by following those eigenvector directions to find

such LCSs. This analytic criterion can be applied to high precision data sets for find precise

LCSs [67]. Sadlo and Peikert [78] have employed adaptive mesh refinements on variants of

the definition and sped up the process by avoiding seeding regions with no ridges. However,

even with analytic expressions for velocity fields, the Cauchy-Green tensors following rank-

4 Runge-Kutta (RK4) integration can still be noisy. Seeding on a uniform grid is often
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necessary. In comparison, FTLE ridges are less rigorous definitions of LCSs in terms of

material surfaces, but they can be found more efficiently without seeding for noisy input

data. Thus, we follow the FTLE ridges definition in our calculation.

5.4 Overview

In this section, we provide an overview of our pipeline in producing ridges for a scalar

field stored on a triangle mesh. Our rationale behind our design is that the scalar field is

as noisy as an FTLE field, and that it usually contain ridge structures. We provide the

implementation details and the reasons for the design decision in the next section.

Our framework assume that FTLE is given as an input computed on a triangulated

domain for a certain time t0 over a period of time T , which can be positive or negative.

Such an input is typically noisy even when the time-dependent velocity field is smooth.

We first apply a thresholding of FTLE as typically done in visualization of LCS as FTLE

ridges[69]. The thin set of vertices with FTLE above the threshold is indicated by a binary

scalar field S on the triangle mesh,

S(v) = σ(v) > σ0? 1000 : 0, (5.3)

for each vertex v.

We then smooth the scalar field S through Laplacian smoothing by implicit integration

of the diffusion equation identical to the approach described in Chapter 4. We treat the

regions with S > S0, where S0 is a threshold as the candidate locations for detecting a ridge

structure.

Next, we evaluate the Hessian of the S,

H = ∇∇>S.

We again smooth the resultingH field before we extract the two eigenvectors nmax and nmin

of this symmetric matrix associated with the maximum eigenvalue λmax and the minimum
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eigenvalue λmin. We extract the ridge by finding the zero crossings of∇σ·nmin on each edge,

since the minimum eigenvalues λmin is typically less than 0, in regions satisfying S > S0,

and nmin is transverse to the ridge direction. Note that ±nmin are both eigenvectors of H,

so we flip one of the nmin if the two minimum eigenvectors have a negative dot product

before checking for zero crossing.

Once the zero crossing are found, we proceed with an improved version of ridge marching

(similar to marching cubes) that is straightforward on triangle meshes, i.e., connect the

possible two or three intersection points on the three edges of each triangle containing edges

with zero crossings.

Finally, we perform a clean-up on the resulting ridge structures to produce an LCS

output that can be used in downstream applications, such as visualization or LCS-preserving

animations[79].

5.5 Implementation Details

5.5.1 FTLE Evaluation

While our main task is to extract LCS from input FTLE, we need to prepare the data

ourselves since we are using it on triangle meshes. As done in Chapter 4, we trace the

particle located at a vertex at time t by an amount of time T either forward (T > 0) or

backward (T < 0). For simplicity, we trace the vertex first inside the one-ring flattened

through geodesic polar map if it is not flat along the velocity direction to determine which

triangle the particle will first enter. When tracking inside each triangle, we use a constant

velocity formed by averaging the velocity stored at the vertex and projecting to the tangent

plane containing the triangle. When crossing an edge to an adjacent triangle, we switch to

a new velocity. It is possible to use Runge-Kutta or simple mid-point rules to get a better

trajectory, but either way, the produced FTLE fields are still typically noisy.
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Figure 5.5 From left to right: FTLE calculated from the double gyre velocity field, S field
computed by second derivative-based ridge conditions, and S computed based on thresh-
olding followed by smoothing.

5.5.2 Candidate Ridge Regions

FTLE can be optionally smoothed through an implicit integration of the diffusion equation

as in Chapter 4. We then use Eq. 5.3 to find potential ridge regions. We compute the

threshold σ0 based on the maximum and minimum simply as σ0 = 0.75σmax + 0.25σmin.

A better threshold can be automatically selected based on the histogram as often used in

computer vision.

Note that using the second derivative-based ridge conditions directly on the noisy data

on a mesh does not work, probably due to the matching of directions cannot be achieved

precisely on any vertices. To test the direct use of the two ridge conditions, we reformulated

Eqs. 5.1 and 5.2 into the following equivalent conditions for the ridge region indicator

function S:

S = λmin < 0? 1/(ε2 + ∇σ
|∇σ|

· nmin) : 0,

where ε is a small number to prevent division by 0, λmin is the minimum eigenvalue of

Hessian of FTLE field σ and nmin is the associated eigenvector. As seen in Figure. 5.5,

given the same FTLE field, the simple thresholding yields much better indicator S field

after smoothing.
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5.5.3 Marching Triangle Ridge Extraction

We actually believe the second ridge condition given in [69] are overly strong. Since ridge

point is a local maximum across the ridge, so the first derivative along the direction normal

n to the ridge should be 0. Thus, the first ridge condition for the gradient to be parallel to

tangential to the ridge is reasonable, and we can formulate it equivalently as ∇σ · n = 0.

However, the second derivative along n only needs to be negative, i.e., n>∇∇>σn < 0, and

there is no need for n to align to the eigenvector associated with the smallest eigenvalue of

∇∇>σ.

Thus, we propose to estimate the transverse direction from eigenvectors of Hessian of

the indicator function H = ∇∇>S instead of that of Hessian of σ. Assuming the FTLE

contains strong stretching or shearing LCS structures, the ridges of FTLE tend to be sharp

and the thresholding can produce an S with similar but smooth values for points near the

ridges, which means its first derivatives tend to be similar along the ridge. This behavior

of the first derivatives forces the second derivatives to have an eigenvalue across the ridge

direction to be negative with a large absolute value. Thus we assume nmin of H to represent

the normal direction to the ridge.

Next, we flag the candidate edge (between vertices vi and vj) that contains an intersec-

tion point with the ridge based on the following condition:

(ni · (∇σ)i)(nj · (∇σ)j)(ni · nj) < 0, (5.4)

where the third factor is checking the consistency between the choice on the eigenvector

orientations at the two end vertices. The intersection point is marked to be location
(nj · (∇σ)j)vi + (ni · (∇σ)i)vj

(ni · (∇σ)i) + (nj · (∇σ)j)
.

If the normals can be made consistent in a region, we are indeed extracting the 0 level set

of n · ∇σ.

Our estimate of the normal direction is smoother than the transverse direction proposed

in the marching ridge algorithm[73], which essentially uses the covariance matrix of Voronoi
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regions around sample points on the ridge to determine the normal direction. We also differ

from their intersection point detection, where they used (∇σ)>i nn> (∇σ)j < 0, with nn>

being the average of nin>i and njn
>
j , which is less like level set in our test for the noisy

FTLE fields.

We also note that true level set finding algorithms do not work for ridge detection, since

level set can only find closed curves or curves that end on the boundary of the computational

domain. In fact, we tried the algorithm in [80], which uses a variational approach to minimize

the oscillation of the level set and the deviation from the sample points while maximizing the

alignment to the estimated normal direction. We found that the level set finding algorithm

always forces the ridges to deviate from the open curve in the attempt to form closed loops,

which is equivalent to finding a globally consistent orientation to the unsigned normal field.

In contrast, our method only needs to check the local consistency between the normals.

Once the intersection points are dumped. We “march” through each triangle as in

marching cubes to store the ridges as a graph with the intersection points as its nodes. If

we have only one candidate edge, no edge (a pair of intersection point indices) is produced.

If we have two candidate edges, one edge is added. If there are three candidate edges, (which

cannot happen in level set method) we produce two edges with the largest angle in between,

among the three possible edges.

We also tried to use ∇S instead of ∇σ in the estimate of ridge field, and found that

using the FTLE gradient produces more accurate results. See Figure. 5.6.

Optionally, we can force local maxima of FTLE to appear on the ridges we detect.

This way, three or more ridges may join at a local maximum. In order to do that, we

output the local maximum vertices along with the intersection points. Then, we shortcut

the intersection points on the boundary of the one ring of the local maximum vertex to

connect to that vertex instead of the intersection points on the edges incident to the local

maximum vertex. As a postprocessing, we shift the location of these local maxima to the

average of their neighbors in the graph.
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Figure 5.6 Left: ridges (black curves) generated from the gradient of the FTLE field. Right:
ridges generated from the gradient of the indicator function S.

5.5.4 Cleanup of Noisy Ridges

With noisy input data, even after smoothing, there are artifacts in the detected ridge edges.

We employ a simple strategy to remove these artifacts.

We first use union-find on the ridge graph to find connected components, and remove

any connected components containing fewer than a preselected number of edges (in our test,

we use 20 as the threshold).

Next, we find T-junctions with one of the branches short. If there are two short curves

connecting the same two T-junctions, we remove the larger curve. We also remove short

loops connecting a T-junction to itself.

See Figure. 5.7 for a comparison before and after cleanup.

5.5.5 Spurious Valleys

While thresholding σ restricts us to regions most likely to contain ridges instead of valley.

With the noisy input, valleys are occasionally detected by Eq. 5.4. We provide an option

to remove these valleys by checking the following conditions: if the normals are making a

65



Figure 5.7 Left: before cleanup based on the graph structure. Right: after the cleanup.

small angle with the edge itself, we ask the projections of the gradients along the normal

direction to point towards the interior of the edge.

((∇σ)i · ni)(ni · eij) > 0.

Another optional criterion we use for intersection candidate edge is to see whether H

has two similar negative eigenvalues, which indicates the vicinity of a local maximum, and

we try both eigenvectors of H as n to find potential intersections.

5.6 Numerical Experimental Results

Our first simple test data is the GLAS-II airfoil data from [69]. With the 50x25 grid size,

we can already detect the LCS ridge, with the FTLE evaluated from t = 8 to t = 7. See

Figure. 5.8.The color indicates FTLE value.

Next, we tested our algorithm on the double gyre [69], described by the velocity field

u = −πA sin(πf(x)) cos(πy),

v = πA cos(πf(x)) sin(πy) df
dx
,
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Figure 5.8 Air flow above an airfoil forms a vortex behind the LCS ridge line.

where f(x, t) = a(t)x2 + b(t)x, a(t) = ε sin(ωt), b(t) = 1− 2ε sin(ωt).

Over the domain [0, 2] × [0, 1], two gyres form. Figure. 5.9 shows our results for A =

0.1, ω = 2π/10, ε = 0.25.

Extending the domain to [0, 2]× [−1, 1], we can find four gyres. See Figure. 5.10.

We tested also on the Bickley jet, fequently used as a model of zonal jets in the Earth’s

atmosphere[81]. See Figure. 5.11

Since we did not have standard test data for LCS on surfaces, we created the octuple

gyre by mirror imaging of quad gyre from left to right to form a periodic velocity field and

mapped it onto a torus. We ran our algorithm on the torus mesh to produce the LCS in

Figure. 5.12

5.7 Conclusion and Future Work

The existing methods for LCS curve extraction even in flat 2D domains are often based on

discrete samples or seeds, akin to highlighted pixels in images based on FTLE fields. While

it is possible to fit curves to these detected ridge pixels, the resulting curves are not robust

and may contain duplicates. We propose to use an improved marching ridges algorithm

that is applicable to triangle mesh to extract local level set-like clean ridge structures.
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Figure 5.9 LCS for double gyre flow at various starting times.
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Figure 5.10 LCS for quad gyre flow at various starting times.69



Figure 5.11 LCS on the Bickley jet.

Our test results are promising, but are limited to the often used LCS illustration exam-

ples. We leave further evaluation of our method on real-time incompressible surface flow on

deforming surfaces as future work. Other applications of our ridge detection algorithm is

also worth exploring.
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Figure 5.12 LCS on the torus octuple gyre.
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CHAPTER 6

CONCLUSION

In this dissertation, we provided a collection of computational tools for flow simulation on

possibly moving and deforming surfaces. These tools are shown to be effective for various

tasks in the context of surface fluid simulation. However, they can potentially be applied

in other related domains.

For instance, the homogenization for textile materials can potentially be useful for 3D

printing of thin shell objects for fast evaluation of printed inhomogeneous micro-structures.

The stain simulation may be extended for efficient atmospheric simulations. The angle-based

representations can be used in elasticity or shape analysis. The LCS extraction algorithm

can essentially be directly used where ridges of scalar fields are needed, including shape

features used in shape analysis.

Various parts of these tools have plenty of room for improvement and extensions. We

believe artistic guidance for surface fluid simulation is worth exploring. Extending ridge

features of codimension-1 for 3D domains can also be promising by switching from marching

triangles to marching tetrahedra.
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