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ABSTRACT 

THE BAYESIAN PARADIGM OF ROBUSTNESS INDICES OF CAUSAL INFERENCES 

By 

Tenglong Li 

The validity of a causal inference hinges on a research design with both strong internal validity 

and strong external validity (Shadish et al. 2002). Unfortunately, such research is rare so that 

causality is typically inferred through a small-scale randomized experiment or a large-scale 

observational study (Schneider et al. 2007). In light of this gap, the robustness indices of causal 

inferences have been proposed by Frank et al. (2013) to measure the robustness of causal 

inference by quantifying the proportion of the observed sample that needs to be replaced with 

unfavorable unobserved cases.  

Drawing on the Bayesian discussion in Frank & Min (2007), this dissertation purposes 

developing the Bayesian framework of the robustness indices of causal inferences for causal 

research with either limited internal validity or limited external validity. This dissertation has two 

chapters: The first chapter lays the foundation of the Bayesian paradigm of robustness indices by 

formally defining prior as distribution built on an unobserved sample. For a particular family of 

prior and likelihood distributions, the posterior can be interpreted as distribution built on an ideal 

sample. The Bayesian paradigm of robustness indices of causal inferences focuses on the 

relationship between the posterior probability of invalidating an inference and the unobserved 

sample statistics and the central task is to locate the threshold of an unobserved sample statistics 

with regard to a given value of the posterior probability of invalidating an inference. Considering 

the first chapter targets the simple group-mean-difference estimator only, the second chapter 

extends the Bayesian paradigm of robustness indices to regression models. This dissertation 



  

  

promotes the scientific discourse of causality and critical thinking by linking the probability of 

invalidating an inference to detailed thought experiments characterized by the thresholds of 

sufficient statistics pertaining to an unobserved sample. 
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Chapter 1: The Bayesian paradigm of robustness indices of causal inferences 

1-Introduction 

1.1-The robustness indices of causal inferences 

The issues of reproducibility and generalizability have plagued the scientific community. For 

example, Open Science Collaboration (2015) has reported that a substantial proportion of the 

selected psychological studies failed to be replicated by other parties. To promote the 

replicability and possibly generalizability of published research, various scholars and 

organizations have called on enforcing higher standards and rigorous checks of the research 

designs and statistical analytical procedures.   

Particularly, when it comes to research which attempts to support causal inferences, the concerns 

about reproducibility and generalizability become even stronger since one has to wrestle with 

both the internal validity and external validity of his design. Due to the nature of causal 

inference, researchers can never rule out all possible threats to both internal validity and external 

validity. Therefore, oftentimes they are uncertain about the degrees to which they can justify or 

reject their conclusions. In light of such a headache, the analyses of robustness or sensitivity of 

causal inference have been proposed by different scholars. The robustness indices suggested by 

Frank et al. (2013) is of particular interest as it naturally arises from the context of the empirical 

research.  

The idea of the robustness indices is straightforward in Frank et al. (2013). There are three key 

quantities in this framework of the robustness indices, namely the estimated effect ̂ , the 

threshold #  and the population effect  . The estimated effect is the effect researchers estimate 

based on their obtained samples and research designs. The threshold is a fixed value 

predetermined by the researchers so that they can compare their estimated effect with the 
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thresholds they set. For an instance, in order to claim that attending Catholic high schools can 

enhance the academic achievement of students, one has to get an estimated effect of the 

attendance of Catholic schools on students’ test scores and prove it is larger than the threshold he 

set up in his research. Usually the aforementioned threshold is chosen to be the same as the 

threshold determining the statistical significance for specific research hypothesis and collected 

sample. The population effect will remain unknown as always in empirical research. 

According to Frank et al. (2013), the inference will be invalid if the following condition is 

satisfied:  

 
#̂       (1.1) 

Or equivalently, if   is used to denote the bias: 

 
#ˆ ˆ       (1.2) 

It is necessary to point out that the above formulae will only apply to the situations of inferring 

positive effects. The counterparts of formulae (1.1) and (1.2) for inferring the negative effects are 

easy to be derived as follows, from the same reasoning:  

 
#̂       (1.3) 

 
#ˆ ˆ       (1.4) 

The rest arguments of Frank et al. (2013) directly follow from the preceding rules, and by 

partitioning the sample into the parts with and without bias, the robustness indices could be 

expressed as the proportion of the sample to be replaced by the new data for which the treatment 

effect is zero. Such proportion is interpreted as the replacement that is necessary to invalidate the 

inference.  
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In an empirical context, the estimated effect ̂  is fixed and the true causal effect   is a 

parameter. The threshold #  could be a subjective choice based on policy implication or an 

objective choice based on level of significance, which means #  is not necessarily fixed. Given 

the natures of ̂  ,   and #  , it’s possible to simplify the decision rules in (1.2) and (1.4) further 

as follows: 

 

#

#

 for inferring a positive effect

 for inferring a negative effect

  

  
  (1.5) 

Frank et al. (2013) offered two examples, namely Hong & Raudenbush (2005) and Borman et al. 

(2008), to illustrate the procedure of quantifying necessary bias to invalidate an inference using 

the decision rules above.  

Hong & Raudenbush (2005) is a research whose goal was to evaluate the effect of kindergarten 

retention on academic achievement. In this example, it was impossible to randomly assign the 

sampled students to the conditions of being retained in kindergarten and being promoted to the 

first grade. According to Rubin Causal Model (RCM), every sampled student should have two 

potential outcomes, namely, one outcome under the condition of being retained and one outcome 

under the condition of being promoted. Draw on RCM, the only sample that will lead to true 

causal inference, is supposed to be composed of reading scores of all sampled students assuming 

they were all retained in kindergarten and reading scores of all sampled students assuming they 

were all promoted to the first grade. Such sample is very ideal since no students could be 

retained and promoted simultaneously. In this case, the bias is induced by gap between the ideal 

sample which consists of potential reading score of every sample student under both retention 

and promotion and the observed sample which only has reading score of every sampled student 

under either retention or promotion (but not both).  
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Borman et al. (2008) studied the effect of Open Court Reading (OCR) curriculum on students’ 

reading achievement by randomly drawing schools which showed strong interest in this program 

to the publisher of OCR and volunteered in their study. Particularly, Frank et al. (2013) pointed 

out that it would be questionable to generalize the inference made based on the observed sample 

to the population of schools that didn’t volunteer in this program in the first place, since it’s 

possible that the volunteered schools might benefit more from OCR because they had better 

plans and more experience comparing to the population of schools which were less attracted to 

this curriculum and didn’t volunteer in the OCR program in the first place. Consequently, the 

observe sample might not be well-represented of the entire population of schools, which includes 

both volunteered schools and non-volunteered schools. In this case bias is induced by the gap 

between a random sample of the entire population of schools and the observed sample which can 

only represents volunteered schools.  

Each of both examples epitomizes a distinguished scenario where a causal inference is prone to 

bias and invalidation. Specifically, Hong & Raudenbush (2005) typifies a scenario where 

external validity is strong because the observed sample is representative of the target population 

but internal validity is weak due to a lack of randomization. This scenario is referred to as “the 

first scenario” throughout this paper. On the other hand, Borman et al. (2008) exemplifies 

another scenario where internal validity is sound because of randomization but external validity 

is worrisome as the observed sample can only represents a part of the target population. This 

scenario is referred to as “the second scenario” henceforth.  

1.2-The conceptualization of unobserved sample 

The gist of the framework of robustness indices of causal inferences put forth by Frank & Min 

(2007) and Frank et al. (2013) is that bias   is induced by the gap between the observed sample 
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and the sample one is supposed to obtain for his inference and conclusion. In this study, I intend 

to address and fill this gap through the conceptualization of unobserved sample. Relying on 

Rubin Causal Model and especially its potential outcome framework, I have the following 

definitions: 

Definition 1.1: A real or non-counterfactual outcome refers to an outcome which is 

observable, i.e., an outcome of a controlled subject under the condition of control or an outcome 

of a treated subject under the condition of treatment.  

A real outcome in Hong & Raudenbush (2005) could either be a reading score of a retained child 

John under the condition of he was retained in kindergarten or a reading score of a promoted 

child Mary under the condition of she was promoted to first grade.  

Definition 1.2: A counterfactual outcome of a subject refers to an imaginary outcome that 

would be observed under a condition which is different from what this subject actually received. 

In Hong & Raudenbush (2005), the counterfactual outcome of John who was retained in the 

kindergarten would be his reading score had he been promoted to first grade. Likewise, the 

counterfactual outcome of Mary who was promoted to first grade would be her reading score had 

she been retained in kindergarten. 

Next, I define potential outcome for the first scenario based on definition 1.1 and 1.2:  

Definition 1.3.1: A potential outcome of a subject in the first scenario refers to either his/her 

real outcome or his/her counterfactual outcome.  

In Hong & Raudenbush (2005), every student had two potential outcomes. For example, John 

(who was actually retained) had two potential outcomes, which were his reading score (real 

outcome) under the condition of being retained in kindergarten and his reading score 

(counterfactual outcome) under the condition of being promoted to first grade. Similarly, Mary 
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(who was actually promoted) had two potential outcomes which were her reading score (real 

outcome) under the condition of being promoted to first grade and her reading score 

(counterfactual outcome) under the condition of being retained in kindergarten.  

Before I proceed to define a potential outcome for the second scenario, it’s vital to appreciate the 

difference between the first scenario and the second scenario: In the first scenario, the lack of 

randomization means that real outcomes and counterfactual outcomes are fundamentally 

different and therefore should not be treated as equals. In the second scenario, counterfactual 

outcomes can be considered to be equivalent to real outcomes in the long run due to 

randomization. This suggests the discussion and definition of potential outcomes in the second 

scenario can be confined to real outcomes only. Hence, I have the following definition of 

potential outcomes for the second scenario:  

Definition 1.3.2: A potential outcome in the second scenario refers to a real outcome which 

could be potentially drawn from the target population. 

Given the target population of Borman et al. (2008) consists of both volunteered and non-

volunteered schools, a potential outcome in Borman et al. (2008) could be either the mean 

reading score of a classroom which belonged to a volunteered school in their study or the mean 

reading score of a classroom that could be potentially drawn from non-volunteered schools. It’s 

remarkable that definition 1.3.2 implies a random assignment of classrooms to the groups of 

Open Court Reading and control in either volunteered schools or non-volunteered schools.  

Both the first scenario and the second scenario share the same definition of ideal population, 

which is provided next:  

Definition 1.4: An ideal population refers to the collection of all possible potential outcomes of 

the target population.  
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The ideal population of Hong & Raudenbush (2005) is the collection of reading scores of all U.S. 

kindergarten children under both conditions of retention and promotion. Likewise, the ideal 

population of Borman et al. (2008) is the collection of mean reading scores of all U.S. 

classrooms. I remark here that the ideal population of Hong & Raudenbush (2005) contains 

counterfactual outcomes while the ideal population of Borman et al. (2008) comprises real 

outcomes only.   

To fathom the bias invalidating causal inference in both scenarios and its creation, I further 

decompose an ideal population into two parts, namely the observed part and the unobserved part 

and distinguish them with the following two definitions: 

Definition 1.5.1: The unobserved part of an ideal population in the first scenario refers to 

the collection of all counterfactual outcomes of the target population. Naturally, the observed 

part of an ideal population in the first scenario refers to the collection of all real outcomes of 

the target population.  

Definition 1.5.2: The unobserved or non-representable part of an ideal population in the 

second scenario refers to the collection of all potential outcomes of the part of the target 

population that cannot be represented by the observed sample. Conversely, the observed or 

representable part of an ideal population in the second scenario refers to the collection of all 

potential outcomes of the part of the target population that was deemed to be logically 

represented by the observed sample.  

Again, I use Hong & Raudenbush (2005) and Borman et al. (2008) to concretize the above two 

definitions. The unobserved part of the ideal population of Hong & Raudenbush (2005) would be 

the collection of counterfactual reading scores of all U.S. kindergarten students, i.e., the reading 

scores of all U.S. kindergarten students under retention when they were all promoted to first 
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grade and the reading scores of all U.S. kindergarten students under promotion if they were all 

retained in kindergarten. The observed part of the ideal population of Hong & Raudenbush 

(2005) would be the collection of real reading scores of all U.S. kindergarten students, namely 

the reading scores of all U.S. kindergarten students under promotion when they were all 

promoted to first grade and the reading scores of all U.S. kindergarten students under retention if 

they were all retained in kindergarten. Furthermore, the unobserved (non-representable) part of 

the ideal population of Borman et al. (2008) would be the collection of the mean reading scores 

(real outcome) of all classrooms in the non-volunteered schools. The observed (representable) 

part of the ideal population of Borman et al. (2008) would be the collection of the mean reading 

scores (real outcome) of all classrooms in the volunteered schools.  

Equipped with all aforementioned definitions, it’s ready to conceptualize an unobserved sample 

as a random sample from the unobserved part of ideal population and formalize it with the 

following definitions:  

Definition 1.6.1: An unobserved sample in the first scenario refers to the collection of 

counterfactual outcomes of all sampled subjects. An unobserved treated sample in the first 

scenario refers to the collection of counterfactual outcomes of sampled subjects who actually 

received control, that is, the collection of outcomes of treated subjects had they participated in 

the control group instead. An unobserved control sample in the first scenario refers to the 

collection of counterfactual outcomes of sampled subjects who actually received treatment, i.e., 

the collection of outcomes of control subjects had they switched to the treatment group.   

Definition 1.6.2: An unobserved sample in the second scenario refers to an imaginary random 

sample which is drawn from the non-representable part of an ideal population and consists of 

real outcomes. I assume a subsequent randomization is carried out on this unobserved sample, 
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and resultantly the proportion of treated subjects in this unobserved sample is the same as the 

proportion of the treated subjects in the observed sample. An unobserved treated sample in the 

second scenario refers to the collection of real outcomes of subjects who were assigned to the 

treatment group in this imaginary random sample. An unobserved control sample in the 

second scenario refers to the collection of real outcomes of subjects who were assigned to the 

control group in this imaginary random sample. 

Definition 1.7: An ideal sample refers to the combination of the observed sample and an 

unobserved sample. An ideal treated sample refers to the combination of the observed treated 

sample and an unobserved treated sample. An ideal control sample refers to the combination of 

the observed control sample and an unobserved control sample.  

According to definition 1.6.1, an unobserved sample of Hong & Raudenbush (2005) is the 

collection of counterfactual reading scores of sampled students in their study. Specifically, this 

unobserved sample can be decomposed into an unobserved control sample which is the 

collection of reading scores of retained students had they all been promoted to first grade and an 

unobserved treated sample which is the collection of reading scores of promoted students had 

they all been retained in kindergarten. According to definition 1.6.2, an unobserved sample of 

Borman et al. (2008) is an imaginary sample of classrooms which were randomly drawn from 

non-volunteered schools and subsequently randomly assigned to the Open Court Reading (OCR) 

group or the control group. This unobserved sample comprises an unobserved treated sample 

which is the collection of mean reading scores of the sampled classrooms in the OCR group and 

an unobserved control sample which is the collection of mean reading scores of the sampled 

classrooms in the control group.  
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Figure 1.1 details the structure of ideal population in Hong & Raudenbush (2005). Notationally 

speaking, I use Y to denote the outcome. The subscript of Y has two parts separated by a comma: 

The first part is used to denote which group this outcome belongs to and the second part is used 

to denote which subject this outcome pertains to. The superscript of Y signals which kind of 

sample this outcome belongs to. For example, the reading score of John (or any other student 

who was retained in kindergarten) is symbolized by ,

ob

r iY  as John was observed as the ith retained 

student. The conceptualization of an unobserved sample (represented by the arrows with a label 

‘1’) requires to project his reading score had he been promoted to first grade, which is denoted 

by ,

un

p iY . In this case, ,

ob

r iY  becomes an element of the observed treated sample and ,

un

p iY  is a 

member of an unobserved control sample. The reading score of Mary (or any other student who 

was promoted to first grade) is symbolized by ,

ob

p jY  and the conceptualization of an unobserved 

sample demands a projection of his reading score had she been retained in kindergarten, which is 

symbolized by ,

un

r jY  . Consequently, ,

ob

p jY  is one element of the observed control sample and ,

un

r jY  

is one element of an unobserved treated sample.  
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Figure 1.1: The structure of ideal population in Hong & Raudenbush (2005) 

 

Figure 1.2 elaborates on the structure of ideal population in Borman et al. (2008). ,

ob

o iY  represents 

the mean reading score of an Open Court Reading classroom sampled from volunteered schools 

and it could be any single element of the observed treated sample. ,

ob

c jY  denotes the mean reading 

score of a control classroom sampled from volunteered schools and it could be any single 

element of the observed control sample. To generalize the conclusion of Borman et al. (2008) 

convincingly to non-volunteered schools, one needs the conceptualization of an unobserved 

sample (represented by the arrows with a label ‘2’) which is defined as an imaginary random 

sample of classrooms from non-volunteered schools. After an imaginary random assignment of 

classrooms in this unobserved sample to Open Court Reading or control, the mean reading score 

of an Open Court Reading classroom in this unobserved sample is ,

un

o kY  which could be any single 

element of an unobserved treated sample. The mean reading score of a control classroom in this 

unobserved sample is ,

un

c lY  which could be any single element of an unobserved control sample. 

As specified in definition 1.6.2, the proportion of OCR classrooms in this unobserved sample 

should be equal to the proportion of OCR classrooms in the observed sample. 
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Figure 1.2: The structure of ideal population in Borman et al. (2008) 

 

Figure 1.3 synthesizes above two figures and portrays the structure of ideal population in both 

scenarios. ,

ob

t iY  signifies the outcome belongs to the observed sample and subject i which is a 

member of the treatment group. In other words, ,

ob

t iY  could be associated with any member in the 

observed treated sample. In the first scenario, the conceptualization of an unobserved sample is 

tantamount to the projection of a counterfactual outcome (dashed circle) for each real outcome 

(blue-shaded circle) in the observed sample. For example, for treated outcome of subject i in the 

observed sample, it’s necessary to project this subject i’s counterfactual outcome had he 

participated in control group (i.e., ,

un

c iY , which is an element of an unobserved control sample). In 

the second scenario, the conceptualization of an unobserved sample is a process of projecting a 

random sample in the non-representable part of ideal population and conceptually forming 

treatment and control group within this random sample by random treatment assignment. In this 

case, the outcomes in the observed sample (blue-shaded circles) and the outcomes in an 

unobserved sample (solid unshaded circles) are both real outcomes as they pertain to different 

subjects (as manifested by their different subscripts i, j, k, l).  
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Figure 1.3: The structure of ideal population in both scenarios 

 

To summarize, it is worthy to point out that every study is associated with an ideal sample when 

its robustness of causal inference is of main concern. An ideal sample is thought to be comprised 

of the observed sample and an unobserved sample. The observed sample represents the observed 

part of ideal population while an unobserved sample is thought of as a random sample from the 

unobserved part of ideal population which cannot provide any real observed data even though it 

is essential for causal inference. Throughout this paper, the observed sample is considered as 

fixed while an unobserved sample must be varying instead of fixed. Holding the observed 

sample fixed, the estimate based on the observed sample will be “contaminated” when I expand 

the observed samples with an unobserved sample. As a result, it is this unobserved sample that 

alter the sample statistics (see Frank & Min, 2007) and induce bias which renders internal 

validity or external validity vulnerable. Therefore, the conceptualization and modeling of an 

unobserved sample is indispensable in quantifying the robustness of causal inference.  

1.3-Previous work on the Bayesian framework of the robustness indices 

A Bayesian framework of the robustness indices has been offered by Frank & Min (2007) in a 

slightly different setting than the robustness indices I have discussed so far. However, their 
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argument about the formation of this Bayesian framework is quite illuminating. Specifically, 

they defined the sampling distribution of the correlation computed based on an unobserved 

sample as the prior and modeled the sampling distribution of the correlation computed based on 

the observed sample as the likelihood. Therefore, the prior and likelihood can be combined to 

generate the posterior distribution in an ordinary Bayesian fashion. Most importantly, the 

generated posterior distribution could be interpreted as the sampling distribution of the 

correlation for an ideal sample, which is consisted of both observed sample and unobserved 

sample. Such interpretation is consistent with the fact that the posterior distribution is just the 

compromise between the prior and the likelihood. The Bayesian framework propounded by 

Frank & Min (2007) lays the foundation of construction and interpretation of the Bayesian 

paradigm of the robustness indices in this study.  

Fundamentally, the Bayesian framework of Frank & Min (2007) resides in the Bayesian causal 

inference world pioneered by Rubin (1978), which proposed to impute missing counterfactual 

outcomes based on their predictive posterior distribution(s) conditional on the assignment 

mechanism, real outcomes and covariate values. This procedure is implemented by sampling 

counterfactual outcomes from their predictive posterior distribution(s) and re-estimate average 

treatment effect as the mean of individual differences between real outcomes and imputed 

counterfactual outcomes. It’s noteworthy that, the Bayesian framework of Frank & Min (2007), 

just like other literature inheriting Rubin (1978)’s Bayesian perspective of addressing causal 

problems (Imbens & Rubin, 1997, 2015; Rubin & Zell, 2010; Zajonc, 2012; Espinosa et al., 

2016), considers counterfactual outcomes as missing data and imputes a sample of them through 

an underlying Bayesian model.  
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1.4-Purposes of this study 

The robustness indices are quite user-friendly and suitable for most empirical research since they 

inform the researchers about how robust their causal inference could be to the potential design 

and sampling bias, by making them think about the sample with no effect at all and the 

proportion of such sample is needed if it is used to replace the original sample to invalidate the 

inference. Nevertheless, it would be even more straightforward if one can manage to answer the 

question “How likely is my inference invalid” instead of the question “What is the proportion of 

my sample to be replaced to necessarily alter my conclusion”, since the previous question allow 

us to directly quantify the robustness of the causal inference as the probability of nullifying the 

inference. In fact, research on the probability of replicability/reproducibility of a specific study 

has been advanced and advocated in different fields, and the probability of invalidating an 

inference proposed in this paper is essentially a form of probability of replicability which has 

been becoming an advisable choice of statistic in scholarly publishing and reporting (See 

Greenwald et al., 1996; Thompson, 1996; Sohn, 1998; Killeen, 2005; Psychological Science 

editorial board, 2005; Miller, 2009; Iverson et al., 2010).   

To express the robustness indices probabilistically, I draw on the Bayesian framework provided 

by Frank & Min (2007) and extend it further to the robustness indices defined in Frank et al. 

(2013). It’s important to note here that Frank & Min only focused on the Bayesian models of the 

robustness indices for biased sampling and the correlation coefficient as the measurement of 

effect size. To make this Bayesian framework more comprehensive and applicable to the 

problems discussed in Frank et al. (2013), I first propose a unifying Bayesian framework of the 

robustness indices, which is logically identical to the framework put forth by Frank & Min 

(2007). I will show this unifying Bayesian framework will lead to the posterior distribution of the 
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bias, which allows one to calculate the probability that the bias exceeds its corresponding 

threshold for a certain study by utilizing the rules of overturning the inference as defined in (1.2) 

and (1.4). Given the motivations and mechanisms of the bias concerning the internal validity and 

external validity are different, separate Bayesian models for those two distinct kinds of bias are 

subsequently developed from the unifying Bayesian framework of the robustness indices.  

In the following section, I will first present the unifying framework of the robustness indices of 

causal inferences. This unifying framework contains two recipes of preparing robustness indices, 

namely a frequentist recipe and a Bayesian recipe. In the third section, I define the Bayesian 

models of robustness indices (the Bayesian recipe) specifically in terms of a research which has 

limited internal validity. Such Bayesian models typically will be applied to an 

observational/quasi-experimental study. In the fourth section, I particularly define the Bayesian 

models of robustness indices with regard to a research which has limited external validity. This 

set of Bayesian models have appropriate applications in randomized experiments. The fifth 

section discusses the appropriate statistical threshold #δ  for the Bayesian models of robustness 

indices as well as replacing observed cases with unobserved ones as an alternative sampling 

scenario. In the section of demonstrative examples, the robustness of the inferences made by 

Borman et al. (2008) as well as Hong & Raudenbush (2005), which has been evaluated by Frank 

et al. (2013), is reassessed within the corresponding Bayesian frameworks for external validity 

and internal validity provided in this paper. I conclude this study with a summary of the findings 

and point out the limitations and possibly their implications for the future research. 

2-The unifying framework of the robustness indices of causal inferences 

My discussion throughout this paper on the robustness indices of causal inferences is limited to 

the following setting: I assume there are only two groups in comparison, i.e., a treatment group 
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whose participants received a treatment of main interest (like OCR or kindergarten retention) and 

a control group of subjects who didn’t receive such treatment. I further assume that, contingent 

on the two-group design, the difference between the mean of all observed treated outcomes and 

the mean of all observed control outcomes is the estimate of average treatment effect ̂ .  

Throughout the text I adopt the following notations: un

t
Y  is an unobserved treated sample and 

un

c
Y  is an unobserved control sample. Moreover, the observed treated sample and the observed 

control sample are denoted by ob

t
Y  and ob

c
Y respectively. Likewise, the ideal treated sample and 

the ideal control sample are denoted by ideal

t
Y  and ideal

c
Y  respectively. The sample means of 

, , ,un un ob ob

t c t c
Y Y Y Y  are correspondingly represented by , , ,un un ob ob

t c t cY Y Y Y . Probabilistically, the 

value of a single outcome under the condition of treatment (we can call it a treated outcome) can 

be treated as a random variable tY  and the value of a single outcome under the condition of 

control (we can call it a control outcome) can be treated as a random variable 
cY . Furthermore, 

the value of a treated outcome which might appear in the observed sample is a random variable 

ob

tY and the value of a control outcome which might appear in the observed sample is also a 

random variable ob

cY . The expectations of the distributions of tY  and cY  are symbolized by t  

and c  respectively. Similarly, ob

t  and ob

c  stand for the expectations of the distributions of ob

tY  

and ob

cY . Finally, ideal

t  and ideal

c  are two random variables whose distribution are respectively 

conditional on an ideal treated sample and an ideal control sample. (so they are not expectations).  
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2.1-The frequentist recipe 

It is the definition of the bias that motivates construction of the Bayesian models of the 

robustness indices. (Frank et al. 2013 Appendix). The bias, according to Frank et al (2013), is 

uniformly defined as follows:  

 

ˆE[ ] E[ ] {E[ ] E[ ]} {E[ ] E[ ]}

( ) ( )

ob ob

t c t c

ob ob

t c t c

Y Y Y Y        

     
  (2.1) 

To elaborate on the definition above, (2.1) is partitioned into two series of differences. The first 

series of differences imply that the estimate of the treatment effect based on an observed sample, 

which is denoted as ̂  in (2.1), has an expectation equal to ob ob

t c  . The second series of 

differences suggest that the estimate of the treatment effect based on an ideal sample, which is 

represented by   in (2.1), should have an expectation equal to 
t c   which is the true treatment 

effect.  

The operationalization of the above definition of bias relies on the strategy of molding   as a 

random variable. First, given ̂  is supposed to be fixed when considering the bias associated 

with an estimate of causal effect, I simply use 
ob ob

t cY Y  to substitute ob ob

t c  in (2.1) at the 

cost of ignoring the random sampling error associated with the observed sample. Second, an 

unobserved sample needs to be taken into account as it is the source of the bias   as we 

discussed earlier. Third, the estimate of causal effect based on the observed sample, i.e., 

ob ob

t cY Y , should be compared with the true causal effect t c  . To achieve this purpose, I 

model the distributions of 
ideal

t  and 
ideal

c  conditional on an imaginary ideal sample, in order to 
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account for the uncertainty brought by an unobserved sample. Consequently, the bias   can be 

recast as a random variable conditional on 
ideal

t
Y  and 

ideal

c
Y :  

 | , ( )ob ob ideal ideal

t c t cY Y     ideal ideal

t c
Y Y   (2.2) 

It’s noteworthy that 
ob ob

t cY Y  is exactly the estimate of the treatment effect based on the 

observed sample, i.e., ̂ , and it is unbiased for 
ob ob

t c  .Here I treat 
ob ob

t cY Y as a fixed constant 

because the observed sample is fixed. The randomness of 
ideal

t  and 
ideal

c  is due to random 

sampling error of an ideal sample because of its imaginary nature.  

Comparing to the original definition of bias in (2.1), the new definition of bias (2.2) has two 

meaningful distinctions: First, the definition (2.2) is a frequentist version of bias which is built 

on finite samples rather than the whole populations. This permits us to ignore random sampling 

error of the observed samples and thereby focus on their nonrandom sampling error in the 

discussion of robustness indices henceforth. Additionally, a distribution of bias conditional on 

ideal samples is accessible through the definition (2.2) whereby quantifying the robustness 

indices as probabilities of invalidating an inference is feasible based on it.   

The decision rules in (1.5) could be restated conditional on imaginary ideal samples as rules of 

invalidating an inference as follows:  

 

#

#

 for inferring positive effects

 for inferring negative effects

ideal ideal

t c

ideal ideal

t c

   

      (2.3) 

given ˆ ob ob

t cY Y    is fixed and statistically significant. Finally, I propose the robustness indices 

of causal inferences as probabilities of invalidating an inference as below, according to (2.3):  
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#

#

( ) for inferring positive effects

( ) for inferring negative effects

ideal ideal

t c

ideal ideal

t c

P

P

   

      (2.4) 

2.2-The Bayesian recipe 

The frequentist approach is attractive only if unobserved samples becomes observable. However, 

this will never happen, which renders the frequentist recipe implausible. An alternative approach 

is conceptualizing and modeling unobserved samples in the prior distributions by Bayesian 

reasoning as introduced by Frank & Min (2007). For this purpose, the definition of bias in (2.2) 

is modified so that it adapts to Bayesian world:  

 | , ( | | )ob ob

t c t cY Y     ob ob ob ob

t c t c
Y Y Y Y   (2.5) 

The main difference between the Bayesian definition (2.5) and the frequentist definition (2.2) is 

that the former can and only can depend on the observed sample. It would be illegitimate to think 

a parameter is conditional on something unobservable like an ideal sample in Bayesian inference.  

Generically, the Bayesian models which are interpretatively equivalent to the Bayesian 

framework of Frank & Min (2007) can be formulated as follows:  

 

( )

| ( )

| ( )

Y

Prior: F

Likelihood: Y G

Posterior: Y F







 



0η

η
  (2.6) 

where ( )F 0η  is the prior distribution of the parameter   with prior parameters 
0

η  and ( )YG   is 

the likelihood function of the outcome Y with the parameter  . Hoff (2009) (also see Diaconis & 

Ylvisaker, 1979, 1985) has shown that when ( )YG   belongs to exponential family and ( )F 0η is 

conjugate to ( )YG  (i.e., the posterior distribution ( )F η  and the prior distribution ( )F 0η  are 

the same distribution with different parametric values) the prior distribution can be interpreted as 
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a distribution built on an unobserved sample whose sample size and sufficient statistics are 

considered as prior parameters. By construction, any member of exponential family (for 

example: normal, Poisson, exponential, binomial and multinomial) that has a conjugate prior is 

appropriate for the Bayesian paradigm of robustness indices of causal inferences and hereafter I 

only consider the case where likelihood function as well as prior distribution are normal. (Some 

common distributions that do not belong to exponential family include: T distribution, F 

distribution, Cauchy, Logistic, mixture models and compounded distributions like beta-binomial 

and Dirichlet-multinomial distribution). 

The construction of Bayesian paradigm of robustness indices begins with the formulation of 

likelihood functions, which are generally described as the distributions of the treated outcome 

and the control outcome of ideal population: 

 

2

2

~ ( , )

~ ( , )

t t t

c c c

Y N

Y N

 

    (2.7) 

The parameters of interest in the likelihood functions (2.7) are t  and c , which are defined as 

the expected value of the treated outcomes of ideal population and the expected value of the 

control outcomes of ideal population. The variances of both distributions, denoted by 
2

t  and 

2

c  , are assumed known. The likelihood functions can be thought of as distributions founded on 

the observed samples as argued by Frank & Min (2007) even though they are defined for the 

ideal populations, since practically they are what the real observed data is fitted to.  

The Bayesian theory stipulates that the parameters of interest, in this case t  and c , should 

follow some prior distributions and by the logic of Frank & Min (2007) these prior distributions 

could be conceived as representations of prior knowledge one would learn through unobserved 
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sample. Such prior knowledge is vital and indispensable in modeling the robustness indices of 

causal inferences as bias is engendered by an unobserved sample. To elaborate on this, it’s 

imperial to conceptualize an unobserved treated sample whose sample size is 
tn  and an 

unobserved control sample whose sample size is 
cn . Central limit theorem then suggests the 

following distributions for 
t  and 

c  conditional on such unobserved treated sample and such 

unobserved control sample:  

 

2

2

~ ( , )

~ ( , )

un t
t t

t

un c
c c

c

N Y
n

N Y
n







  (2.8) 

The distributions in (2.8) is what I am seeking for prior distributions, that is, prior knowledge 

which is founded on an unobserved sample. Consolidating the prior distributions (2.8) and the 

likelihood functions (2.7) gives the complete Bayesian models of robustness indices of causal 

inferences when the observed sample has tN  subjects in the treatment group and cN  subjects in 

the control group:  
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2

2

2

2

( , )

( , )

| ( , )

( , )

( , )

| ( , )

un t
t t

t

t t t

t t t

un c
c c

c

c c c

c c c

N Y
n

Y N

N

N Y
n

Y N

N


 

 

  




 

  

ob

t

ob

c

Y

Y

  (2.9) 

Where: 

 

2

2

un obt t
t t t

t t t t

t
t

t t

un obc c
c c c

c c c c

c
c

c c

n N
Y Y

N n N n

N n

n N
Y Y

N n N n

N n

  
 


 



  
 


 



  (2.10) 

To demonstrate the posterior distribution is identical to the distribution upon which the 

frequentist inference relies, it’s necessary to present the distribution of ideal

t  and ideal

c  when an 

ideal sample is available:  
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2

2

~ ( , )

~ ( , )

ideal un obt t t
t t t

t t t t t t

ideal un obc c c
c c c

c c c c c c

n N
N Y Y

N n N n N n

n N
N Y Y

N n N n N n


 

  


 

  

  (2.11) 

The derivation of distributions in (2.11) is straightforward by central limit theorem given the 

ideal treated and control sample means are:   

 

ideal un obt t
t t t

t t t t

ideal un obc c
c c c

c c c c

n N
Y Y Y

N n N n

n N
Y Y Y

N n N n

 
 

 
 

  (2.12) 

and variances associated with those means are:  

 

2

2

( )

( )

ideal t
t

t t

ideal c
c

c c

Var Y
N n

Var Y
N n











  (2.13) 

What (2.11) uncovers is that the posterior distribution in the Bayesian recipe (i.e., the distribution 

of |t
ob

t
Y  or |c

ob

c
Y ) and the distribution of parameter built on an ideal sample (i.e., the 

distribution of ideal

t  or ideal

c  ) in the frequentist recipe are identical when a normal likelihood 

function with the mean as the only parameter and normal prior are considered in the Bayesian 

paradigm. However, I caution readers that this result will remain valid only for a certain type of 

likelihood and prior (exponential family with conjugate prior) and in this case the Bayesian 

recipe and the frequentist recipe are still distinct in many aspects. 
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If the independence between the treated outcome 
tY  and the control outcome 

cY  is posited, the 

distributions of | |t c ob ob

t c
Y Y  and   have explicit forms:  

 

| | ~ ( , )

| , ( ( ), )

t c t c t c

ob ob

t c t c t c

N

N Y Y

      

       

ob ob

t c

ob ob

t c

Y Y

Y Y   (2.14) 

with  , , ,t c t c     quantified as in (2.10). An inference is invalidated if one of the following 

conditions are true:  

 

#

#

| |  for inferring positive effects

| |  for inferring negative effects

t c

t c

   

   

ob ob

t c

ob ob

t c

Y Y

Y Y   (2.15) 

Capitalize on the distribution of | |t c ob ob

t c
Y Y , the probability of invalidating an inference is 

defined as follows:  

 

#

#

( | | ) for inferring positive effects

( | | ) for inferring negative effects

t c

t c

P

P

   

   

ob ob

t c

ob ob

t c

Y Y

Y Y
  (2.16) 

Given the threshold of making an inference and the values of the parameters t  , c  , t  and c , 

this probability could be directly calculated as the function of those parameters and employed as 

the measurement of the robustness for any single study. Furthermore, one can calculate the 

probabilities of invalidating the inference for different but parallel studies and compare their 

robustness in terms of those probabilities.  

I caution readers here that the probability of invalidating an inference should not be confused 

with the p-value in hypothesis testing. Unfortunately, the overwhelming misinterpretations of p-

value often make researchers treat those two distinct indices as parallel ones even though they 

are in fact telling completely different stories. A particularly relevant misinterpretation in the 
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context is perceiving p-value as one indicator of the robustness or replicability of an inference, 

and this misinterpretation is scientifically detrimental and blurs the boundary between p-value 

and true robustness indices.  

It’s worthy to emphasize that p-value can never become an index of the robustness of any 

inferences for mainly two reasons. First, p-value only deals with random sampling error and it 

evaluates the degree to which a similar finding will occur in another equivalent random sample 

drawn by repeated random sampling. It largely quantifies the significance of a result when 

random sampling error is the only concern. Nonetheless, random sampling error has never been 

the focus of the analysis of robustness since it virtually exists in every study and every inference. 

Quite the opposite, robustness indices usually highlight the errors due to sources other than 

random sampling such as nonrandom sampling, nonrandom assignment and omission of 

important confounding variables. The probability of invalidating an inference is an index of 

robustness because it takes either nonrandom sampling error or nonrandom assignment error into 

account by considering prior distributions as ones built on unobserved samples.  

Equally importantly, p-value is unqualified for a measurement of robustness because it is only 

valid when the null hypothesis is true. In contrast, the robustness indices invented by Frank et al. 

(2013) and the probability of invalidating an inference are useful regardless of the condition 

specified in null hypothesis. For example, Frank et al. (2013) mentioned that one can change the 

null hypothesis and compute the corresponding robustness indices by modifying the threshold 

value accordingly. The same thing can be done in computing the posterior probability of 

invalidating an inference as it depends on not only the posterior distribution of average treatment 

effect but also the threshold. Testing null hypotheses of nonzero values can always be achieved 

by adjusting the threshold # . 
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The construction of the probability of invalidating an inference is built on three assumptions. 

First, the random sampling error associated with the observed sample is ignored in the Bayesian 

models so that researchers should be aware that this probability can only indicate how likely an 

inference will be invalidated due to bias induced by either nonrandom sampling or nonrandom 

assignment. Second, the distributions of the treated outcome and the control outcome are 

assumed to be normal. Third, the treated and the control outcome are assumed to be independent. 

In summary, the Bayesian recipe exemplifies the Bayesian framework raised in Frank & Min 

(2007). A prior distribution whose definition is the distribution carries the information of one’s 

belief about the parameters prior to observing the data, could be conceptualized as the 

distribution of a focal parameter conditional on an unobserved sample since it exactly reflects the 

belief about the inferred parameter and is solely motivated and shaped by such belief. Neither a 

distribution based on an unobserved sample nor a typical prior distribution in a Bayesian context 

contains any information about the observed sample. The likelihood function in the Bayesian 

models, which serves as a generic characterization of the ideal population, is in fact completely 

driven by the observed sample. Furthermore, the problem of checking the robustness of the 

inference by varying the mean and sample size of an unobserved sample is transformed into a 

problem of checking the influence of a prior on its corresponding posterior distribution while 

holding the observed sample and the likelihood function fixed. 

3-The Bayesian models of robustness indices for internal validity  

The unifying Bayesian framework of robustness indices of causal inferences can be recast as the 

Bayesian models of robustness indices particularly for internal validity, by deliberately define 

the observed (treated/control) sample and an unobserved (treated/control) sample in the 

following way:  
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 

 
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 

 

 

 
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t

un

t

ob

c

un

c

Y

Y

Y

Y

  (3.1) 

Definition (3.1) shows that the observed treated sample for the studies with questionable internal 

validity will be real outcomes of the subjects who indeed received the treatment. An unobserved 

treated sample in this case will be counterfactual outcomes of the subjects in the control group 

had they been assigned to the treatment group instead. Likewise, the observed control sample for 

the studies with questionable internal validity will be real outcomes of the subjects who actually 

received the control and an unobserved control sample for the same studies will be 

counterfactual outcomes of the subjects in the treatment group had they switched to the control 

group. Obviously, definition (3.1) just mathematically restates the definition 1.6.1 which 

formalizes the concepts of unobserved and observed sample in the first scenario where internal 

validity is limited. For example, to conceptualize an unobserved treated sample in the study of 

Hong & Raudenbush (2005), we need to ask a question like “what if a promoted child did not get 

promoted in the first place” and how it can affect his test score. Similarly, an unobserved control 

sample would answer a question like “what would the academic achievement of a retained 

student be if he had been promoted”.  

Aside from this definition, everything else of the Bayesian models of robustness indices for 

internal validity will remain the same as the unifying Bayesian framework. Draw on (3.1), this 

model has the identical definition of bias as in (2.5), identical Bayesian formulations as in (2.9) 

and (2.10), together with the identical distributions of | |t c ob ob

t c
Y Y  and   as in (2.14).  
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Moreover, as discussed earlier, the sample sizes of unobserved treat and control sample are fixed 

for the case of internal validity. The sample sizes of an unobserved treated sample and the 

observed control sample should be equal, and the sample sizes of an unobserved control sample 

and the observed treated sample should be equal as well. To impose the aforementioned 

restrictions on the models (2.9) and (2.10), a new set of models are proposed next with one 

additional parameter π defined as the proportion of subjects who get the treatment in the whole 

sample:  

 

2

2

2

2

( , )

( , )

| ( , )

( , )

( , )

| ( , )

un t
t t

t

t t t

t t t

un c
c c

c

c c c

c c c

N Y
n

Y N

N

N Y
n

Y N

N


 

 

  




 

  

ob

t

ob

c

Y

Y

  (3.2) 

Where: 

 

1

1

t t c

c c t

n N N

n N N

  
  

 

 
  

  

  (3.3) 

And: 
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2 2

(1 )

(1 )

(1 )

un ob

t t t

t t
t

t

un ob

c c c

c c
c

c

Y Y

N N

Y Y

N N

     

 
   

     

 
    

  (3.4) 

In the formula above, N is the total observed sample size, i.e., 
t cN N N  .The denominators in 

the second and fourth equations in (3.4) become N simply because   by definition is the ratio 

between tN  and N . Given a designated threshold # and a chosen decision rule in (2.15), the 

posterior distribution in (2.14) will naturally generate the probability of invalidating an inference 

due to limited internal validity, as a function of the parameters in (3.4). It’s imperative to keep in 

mind that this probability is built on three assumptions, namely the assumption of no random 

sampling error for the observed sample, the normality assumption for the distributions of treated 

and control outcome and the assumption of independence between treated outcome and control 

outcome.   

By introducing a new parameter α  as the ratio between un

tY  and un

cY , the relationship between 

the probability of invalidating an inference due to inadequate internal validity and the parameters 

mentioned in (3.2) through (3.4) is proven to be a probit function in the following form, for a 

targeted negative effect:  

 
#

2 2
( ) (1 ) ( )un ob ob un ob

c t c c c

t c

N
probit p Y Y Y Y Y         

 
  (3.5) 

For a targeted positive effect, we just need to reverse the signs of the coefficient of α  and 

constant presented in (3.5), which leads to the equation below:  
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#

2 2
( ) ( 1) ( )un ob ob un ob

c t c c c

t c

N
probit p Y Y Y Y Y          

 
  (3.6) 

p in (3.5) (or (3.6)) symbolizes the probability of invalidating an inference, which is computed as 

the probability that | |t c ob ob

t c
Y Y  is larger (or smaller, depends on the sign of inferred effect) 

than a threshold # . This probability should be straightforward as we have learned that the 

distribution of  | |t c ob ob

t c
Y Y  is normal with mean 

t c   and variance 
t c   described in 

(3.4).  

What (3.5) and (3.6) demonstrate is that the probit link function of the probability of invalidating 

an inference due to limited internal validity is a linear function of  . Therefore, given the values 

of 2 2, , , , , ,un ob ob

t c c t cN Y Y Y   and the threshold # , the probit link function of the probability of 

invalidating an inference due to limited internal validity can be explicitly expressed as a linear 

function of  . I will draw on this feature to elicit answers of some very meaningful questions, 

such as finding out the how large/small   could be conditional on a set of value of parameters 

2 2 #, , , , , , ,un ob ob

t c c t cN Y Y Y     that makes the probability of invalidating an inference smaller than 

a certain value (for example, 0.3). Normally, one would extract , ,ob ob

t cY Y N  from the observed 

sample and select some fixed constants for 2 2,t c  . un

cY , the mean of an unobserved control 

sample, is conceptualized as a number which are not necessarily fixed in this approach. Together 

with the variable  , un

cY  characterizes unobserved treated and control sample which of 

paramount concern in my Bayesian models.    

The Bayesian models (3.2)-(3.4) can be recast as Rubin Causal Model (RCM). Suppose in one 

observational study there are N subjects in total. Moreover, there are tN  participants in the 
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treatment group and 
cN  participants in the control group. In other words, we have 

tN  observed 

treated outcomes and 
cN  observed control outcomes. According to RCM, every participant in 

the treatment group would have had a counterfactual outcome if he had been assigned to the 

control group. Likewise, every participant in the control group would have had a counterfactual 

outcome if he had been assigned to the treatment group. This means there should be 
tN  

unobserved control outcomes and 
cN  unobserved treated outcomes in total. In the Bayesian 

models of robustness indices for internal validity, the ideal treated sample could be thought to be 

consisted of the tN  observed treated outcomes as the observed treated sample and 
cN  

unobserved treated outcomes as an unobserved treated sample. Similarly, the ideal control 

sample could be perceived as a composition of the 
cN  observed control outcomes as the 

observed control sample and tN  unobserved control outcomes as an unobserved control sample.  

To summarize the Bayesian models of robustness indices for internal validity that are presented 

in this section, it’s necessary now to review the perspective of Rubin Causal Model (RCM) 

associated with them. The Rubin Causal Model conceptualizes the observational studies as a 

missing data problem and the assignment mechanism as the mechanism of how the missing data 

is generated. Specifically, follow the logic of the Rubin Causal Model (RCM), every individual 

has one observed outcome and one missing outcome.  

4-The Bayesian models of robustness indices for external validity 

The Bayesian models of robustness indices for external validity, just like the Bayesian models of 

robustness indices for internal validity, is a descendant of the unifying Bayesian framework. 

There are two key differences between the models for external validity and the models for 

internal validity. The first key difference is that the models for external validity and internal 
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validity have distinct definitions regarding an unobserved (treated/control) sample and the 

observed (treated/control) sample. For research whose major concern is external validity, the 

observed (treated/control) sample and an unobserved (treated/control) sample are defined as 

follows:  

 

 

 

 

 
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 
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 
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t

un

t

ob

c

un

c

Y

Y

Y

Y

  (4.1) 

Definition (4.1) is just the mathematical equivalent of the definitions 1.6.2 that formalizes the 

concepts of unobserved sample and observed sample in the second scenario where research has 

limited external validity. Here I use R  to denote the representable part of ideal population and 

'R  to denote the non-representable part of ideal population. A pivotal difference between the 

models for external validity and internal validity is that one need a new parameter R  to 

operationalize the definition in (4.1). R  represents the proportion of the representable part of 

ideal population R  in the whole ideal population to which an inference is intended to generalize. 

To quantify the parameter R  one need judicious conceptualizations of the size of R  relative to 

its corresponding ideal population. For example, R  would be the proportion of volunteered 

schools (and arguably schools which are similar to volunteered schools) in Borman et al. (2008) 

in the population of all U.S. schools.    

By this logic, the expectations of ideal treated/control population (i.e., E[ ]tY and [ ]cE Y ) can be 

rewritten as functions of R  as below:  
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E[ ] E[ ] (1 ) E[ ]

E[ ] E[ ] (1 )E[ ]

ob un

t t R R t

ob un

c c R R c

Y Y Y

Y Y Y

    

       (4.2) 

Recall that the ideal treated and control sample means have been presented in (2.11) and their 

expected values need to match the expectations listed in (4.2), which leads to the following 

equations:  

 

(1 )

(1 )

ideal un ob ob unt t
t t t t R R t

t t t t

ideal un ob ob unc c
c c c c R R c

c c c c

n N
Y Y Y Y Y

N n N n

n N
Y Y Y Y Y

N n N n

      
 

      
 

  (4.3) 

Equation (4.3) reveals the following constraints for the unobserved sample sizes:  

 

1

1

R
t t

R

R
c c

R

n N

n N

  
  

 

  
  

 

  (4.4) 

An appropriate conceptualization of (4.1) through (4.4) would be envisaging that an unobserved 

sample of subjects is randomly drawn from the non-representable part of ideal population and 

subsequently a random assignment which results in the same proportion of treated subjects as in 

the observed sample is carried out for this unobserved sample. The treated outcomes of those 

treated subjects in this unobserved sample are therefore grouped as an unobserved treated 

sample, and the control outcomes of the remaining subjects in this unobserved sample (that is, 

people who receive control) will form an unobserved control sample. I warn readers about the 
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difference in the formation of unobserved treated/control sample between the scenarios of 

internal validity and external validity.  

Now I construct the Bayesian models of robustness indices for external validity, by utilizing the 

likelihood function listed in (2.7) and the prior distribution advanced in (2.8). This too will yield 

the same form as the Bayesian formulation suggested in (2.9) and (2.10), as we have already 

seen in the previous section. The Bayesian models below again rely on the assumptions of no 

random sampling error for the observed samples, normality, and independence between treated 

and control outcomes:  
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  (4.5) 

Where:   

 

2

2

(1 )

(1 )

un ob

t R t R t

t
t R

t

un ob

c R c R c

c
c R

c

Y Y

N

Y Y

N

     


  

     


  

  (4.6) 
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As always, the Bayesian models in (4.5) and (4.6) will effectuate the posterior distributions 

displayed in (2.14) and the probability of invalidating an inference due to limited external 

validity as a function of the parameters presented in (4.6), once a threshold and a preselected 

decision rule are set up.  

Again by defining   as the ratio between un

tY  and un

cY , the probit link function of the probability 

of invalidating an inference due to limited external validity is shown to be a nonlinear function of 

  and R , depending on the signs of the focal treatment effect. When inferring a negative effect, 

the probit model is:  

 

1 1 1 1

2 2 2 2#

2 2

1
( ) ( ) ( )un ob ob un un un

c R t c c R c R c R

t c

t c

probit p Y Y Y Y Y Y

N N

             
   


 

 (4.7) 

And when inferring a positive effect, the probit model becomes:  

 

1 1 1 1

2 2 2 2#

2 2

1
( ) ( ) ( )un un ob ob un un

c R c R t c c R c R

t c

t c

probit p Y Y Y Y Y Y

N N

             
   


 

 (4.8) 

The probit models in (4.7) and (4.8) share the same feature and notations as their counterparts in 

the case of internal validity. For example, p in (4.7) and (4.8) denotes the probability of 

invalidating an inference, which is simply calculated based on the distribution of 

| |t c ob ob

t c
Y Y  with mean t c   and variance t c   listed in (4.6) as the probability of 

| |ob ob

t t c cY Y  is larger than a threshold # . Typically, 2 2,t c   are predetermined and  
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, , ,ob ob

t c t cN N Y Y  are information contained in the observed sample. Most importantly, I 

distinguish and summarize unobserved treated and control sample with ob

cY  and  .  

The probit models (4.7) and (4.8) can be employed to answer questions like “how large/small   

has to be conditional on a value of R  such that the probability of invalidating an inference is 

smaller than 0.3?” or “how large/small R  has to be conditional on a value of   such that the 

probability of invalidating an inference is smaller than 0.2?”, as soon as the values of parameters 

2 2, , , , , ,un ob ob

t c t c c t cN N Y Y Y   and the threshold #  are chosen by the researcher.  

From a sampling perspective, the Bayesian models of robustness indices for external validity is 

tantamount to the following sampling process: The observed sample is first drawn from the 

representable part of ideal population and fixed henceforth. Then an unobserved sample is 

thought to be drawn from the non-representable part of ideal population and it is not necessarily 

to be fixed. The unobserved sample size, i.e., t cn n n   is determined by the observed sample 

size t cN N N   and πR , i.e., 
1 R

R

n N
 




. All subjects in this unobserved sample will be then 

randomly assigned to a treatment group or control group, and I do maintain that the proportion of 

treated subjects in this unobserved sample will be equal to the proportion of treated subjects in 

the observed sample, that is, t tn N

n N
 .   

I again emphasize the difference between the Bayesian models concerning the internal validity 

and external validity is that they address different central questions. For the internal validity, the 

unobserved part of ideal population is the collection of counterfactuals brought by the 

assignment mechanism. In this case, one does not seek to generalize his inference to other 

populations of subjects that are not accessible. For example, the data from Early Childhood 
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Longitudinal Study Kindergarten (ECLS-K) used by Hong & Raudenbush (2005) is nationally 

representative and the paramount concern of this study is the lack of random assignment of 

kindergarten students to the conditions of being retained or promoted, in this case the Bayesian 

models of the robustness indices for the internal validity will be quite appropriate to employ. 

Nonetheless, for the external validity, the unobserved (non-representable) part of ideal 

population is not the counterfactuals, which though exist but does not affect the inference. 

Rather, it is occasioned by the overgeneralization, that is, the researchers attempt to generalize 

their conclusions beyond the populations they have sampled from. For an instance, Borman et al. 

(2008) conducted a cluster randomized trial to examine the efficacy of OCR curriculum in the 

six schools they randomly sampled from the schools that volunteered in this curriculum and the 

results pertaining to this experiment is intended for students across the whole nation. The 

unobserved (non-representable) part of ideal population for Borman et al. (2008) would be the 

schools in the U.S. which did not volunteer in this research. The Bayesian models of the 

robustness indices for the external validity takes this unobserved (non-representable) part of ideal 

population into consideration and modify the inference accordingly.  

In spite of the important distinctions between those two classes of Bayesian models I just 

discussed, it is pivotal to appreciate the commonness shared by the both sets of Bayesian models 

when learning and utilizing them. First, the definition of the bias and the rules of judging the 

inference invalid are the same for both sets of models, and they are the starting points of the 

construction of the both kinds of Bayesian models as they form the base of calculating the 

probability of invalidating an inference. Second, both sets of models share the same model 

structure and the same group of parameters. Specifically, the distribution of t  based on an 

unobserved treated sample and the distribution of c  based on an unobserved control sample are 
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the priors and the generic descriptions of treated outcome 
tY  and control outcome 

cY  are the 

likelihood functions in both kinds of models. The parameters in the Bayesian models include 

unobserved treated and control sample means, observed treated and control sample means, and 

the variances of 
tY  and 

cY  . In addition, one parameter symbolizing the relative size of an 

unobserved sample in an ideal sample will be needed and its definition does depend on the 

context of whether internal validity or external validity is the focus. Third, the interpretations of 

those two classes of Bayesian models are in nearly the same fashion. That is, we conceptualize 

one unobserved samples is randomly drawn from the unobserved part of ideal population, and 

this unobserved sample is then integrated with the observed sample to form an ideal sample. The 

ideal treated (control) sample mean are just the weighted average of unobserved treated (control) 

sample mean and the observed treated (control) sample mean, where the weights are just the 

proportions of these samples in an ideal sample. Therefore, the Bayesian models of robustness 

indices assume one can augment the observed sample with an unobserved sample and update the 

inference over this augmented sample.  

5-Statistical threshold and Bayesian models for replacing observed cases 

An empirical researcher who tries to decide whether an inference is invalidated based on his 

observed sample and chosen statistical threshold #δ  could be easily entrapped in an inferential 

pitfall about Bayesian models of robustness indices. This occurs when one compute the statistical 

threshold with the variance of average treatment effect estimate based on the observed sample 

instead of with the variance of average treatment effect estimate based on an ideal sample, and is 

unaware of the key difference between those two types of variances. In fact, the Bayesian models 

of robustness indices of causal inferences I have discussed so far assume one obtain an 

unobserved sample and incorporate this unobserved sample into his observed sample to form an 
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ideal sample. Given the standard deviation of average treatment effect estimate computed from 

an ideal sample has taken the sample sizes and observations of both unobserved and observed 

sample into consideration, it becomes more appropriate than its counterpart extracted from the 

observed sample in quantifying a statistical threshold. 

There are two ways of addressing this issue: The first way is to calculate the statistical threshold 

#δ  as a product of the chosen critical value of standard normal distribution (by convention it is 

1.96) and the standard error of this average treatment effect estimate based on an ideal sample. 

The second approach redefines an ideal sample as a sample furnished by replacing a proportion 

of observed cases with an unobserved sample so as to keep the ideal sample size identical to the 

observed sample size. Consequently, this approach requires an utter shift in sampling perspective 

from adding unobserved cases (to the observed sample) to replacing a part of the observed 

sample with unobserved cases. Such shift in sampling perspective further necessitates some 

modifications of the Bayesian framework.  

5.1-Appropriate statistical threshold #δ  for Bayesian models of robustness indices 

Identifying the ideal sample variance of the average treatment effect estimate is a prerequisite for 

the calculation of appropriate statistical threshold for Bayesian models of robustness indices. 

Recall that in (2.14) I have presented the distribution of  | |t c ob ob

t c
Y Y  which is equivalent to 

the distribution of average treatment effect estimate based on an ideal sample, and therefore the 

ideal sample variance of the average treatment effect estimate is informed by this distribution as 

t c  .   

For the Bayesian models of robustness indices for internal validity, t c   equals: 

 

2 2

t c
t c

N

 
      (5.1) 
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For the Bayesian models of robustness indices for external validity, 
t c   becomes: 

 

2 2

t c
t c R

t cN N

  
      

 
  (5.2) 

Draw on (5.1), the appropriate statistical threshold #  for the Bayesian models of robustness 

indices for internal validity should be computed as follows: 

 

2 2
#

2 2
#

1.96*  for inferring a positive effect

1.96*  for inferring a negative effect

t c

t c

N

N

 
 

 
  

  (5.3) 

Likewise, the following statistical threshold #  is recommended for the Bayesian models of 

robustness indices for external validity: 

 

2 2
#

2 2
#

1.96*  for inferring a positive effect

1.96*  for inferring a negative effect

t c
R

t c

t c
R

t c

N N

N N

  
    

 

  
     

 

  (5.4) 

Based on (5.3), the probit models for the probability of invalidating an inference due to limited 

internal validity are rewritten as follows:  

For inferring a negative effect: 

 2 2
( ) (1 ) ( ) 1.96un ob ob un ob

c t c c c

t c

N
probit p Y Y Y Y Y         

 
  (5.5) 

For inferring a positive effect: 
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 2 2
( ) ( 1) ( ) 1.96un ob ob un ob

c t c c c

t c

N
probit p Y Y Y Y Y         

 
  (5.6) 

Similarly, plugging the appropriate statistical thresholds in (5.4) will update the probit models 

for the probability of invalidating an inference due to limited external validity as below:  

For inferring a negative effect: 

 

1 1 1 1

2 2 2 2

2 2

1
( ) ( ) 1.96un ob ob un un un

c R t c c R c R c R

t c

t c

probit p Y Y Y Y Y Y

N N

            
   


 

 (5.7) 

For inferring a positive effect: 

 

1 1 1 1

2 2 2 2

2 2

1
( ) ( ) 1.96un un ob ob un un

c R c R t c c R c R

t c

t c

probit p Y Y Y Y Y Y

N N

            
   


 

 (5.8) 

I do recognize that the threshold #  could be a non-statistical one rather than a statistical one, as 

typically empirical researchers would set the threshold through a multifaceted and pragmatic 

decision-making process. The threshold #  tends to be non-statistical when, for example, a 

benchmark in effect size is available through literature review or research synthesis. Therefore, 

the formulae of (5.1) through (5.4) can only serve as the guidelines of determining the threshold 

#  based solely on statistical significance. A more general guidance has been offered by Frank et 

al. (2013) to shed a light on choosing a threshold based on the transaction costs of proposed 

actions.  
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5.2-The Bayesian models of robustness indices for replacing observed cases 

Up to now we have delved into the Bayesian models of robustness indices where an unobserved 

sample is modeled by a prior distribution and correspondingly an ideal sample is formed and 

represented by the posterior distribution. Such Bayesian models are tantamount to a sampling 

procedure where one first obtains an observed sample and then adds an unobserved sample to 

this observed sample to construct an ideal sample. However, I point out that adding unobserved 

cases is not the only way of generating an ideal sample considering an ideal sample can also be 

shaped by replacing a proportion of the observed sample with an unobserved sample, as 

proposed by Frank & Min (2007).  

To articulate Bayesian models concerning replacing a part of the observed sample with an 

unobserved sample, I introduce following notations for the sampling scheme of replacing 

observed cases:  

For an individual who joined the treatment group, t

iI  is an indicator of whether he is retained in 

an ideal sample (and thus he is not replaced with an unobserved case). Therefore, when 1t

iI   

this individual i (say his name is Tom) is not replaced with an unobserved case and when 0t

iI   

Tom belongs to the part of the observed sample which is to be replaced with an unobserved 

sample. Likewise, 
c

jI  is a binary indicator of whether an individual j (say her name is Ashley) 

who participates in the control group (symbolized by the superscript ‘c’) is remained in an ideal 

sample (so she is not replaced with an unobserved case either).  

Next, I define ts  as an ideal treated sample and cs  as an ideal control sample. Operationally, ts  

can be represented by a collection of ,  1,2, ,t

i tI i N  and cs  can be represented by a collection 
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of ,  1, 2, ,c

j cI j N  , as the collections of t

iI  and 
c

jI  would inform us which observations are 

kept in an ideal sample and which ones are to be replaced with an unobserved sample.  

Finally, I define 
r  as the proportion of cases to be replaced with an unobserved sample in the 

observed sample and thus unobserved sample size becomes the product between observed 

sample size and 
r : 

 

t r t

c r c

n N

n N

 

    (5.9) 

Upon the sampling outlook and definitions, the Bayesian models of robustness indices of causal 

inferences for replacing observed cases is formalized here:  
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where: 
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and: 
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Precaution is needed when one chooses the above Bayesian models since the posterior 

distribution is conditional not only on the observed sample but also on which observations are 

kept and which ones are exchanged with unobserved cases in an ideal sample. To derive a 

posterior distribution which depends solely on the observed sample, the expectations of the 

posterior distributions | ,t ts ob

t
Y  and | ,c cs ob

c
Y  can be computed over the distributions of ts  

and 
cs respectively, which results in the following posterior distributions: 
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where the posterior means and variances are now become: 
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  (5.14) 

Guided by the posterior distributions in (5.13) and (5.14), the probability of invalidating an 

inference is readily accessible through (2.16).  

6-Demonstrative examples  

6.1-The Bayesian robustness indices of the effect of OCR on reading achievement 

According to Borman et al. (2008), the Open Court Reading (OCR) curriculum “has been widely 

used since 1960s and offers a phonics-based K-6 curriculum that is grounded in the research-

based practices cited in the National Reading Panel report (National Reading Panel, 2000).” 

Therefore, Borman et al. (2008) argued that the OCR program had a potential to enhance 

instructional quality and thus reading achievement as it was rooted in research-based practices 

that had been advanced by federal educational programs like Reading First and No Child Left 

Behind. To arrive at a reliable inference for the effect of OCR program on the reading 

achievement of elementary school students, Borman et al. (2008) designed a multisite, cluster-

randomized controlled trial, considering “OCR has never been evaluated rigorously through a 

randomized trial”. 

Borman et al. (2008) randomly drew 6 schools from the schools had contacted and shown their 

interest to SRA/McGraw Hill, the publisher of OCR curriculum. Those 6 schools came from six 

different states (Florida, Georgia, Idaho, Indiana, North Carolina and Texas) and they were 

considered to be geographically, ethnically and socioeconomically representative of the schools 
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in US. Within each school and each grade level, classrooms were randomly assigned to the group 

that was treated with OCR program or the control group. With strong confidence in the internal 

validity of the design, Borman et al. (2008) estimated the effect of OCR curriculum on student 

reading composite scores as 7.95, which is statistically significant with an effect size equal to 

0.16. Based on the result and design, Borman et al. (2008) went on and concluded that “the 

outcomes from these analyses provided not only evidence of the promising 1-year effects of 

OCR on students’ reading outcomes but also suggest that these effects may be replicated across 

varying contexts with rather consistent and positive results”.  

Nevertheless, the strong internal validity endowed by randomization cannot preempt the debate 

about external validity, especially when a conclusion is hinged on strong external validity as the 

one made by Borman et al. (2008). As pointed out by Frank et al. (2013), the study population of 

Borman et al. (2008) are essentially schools which were volunteered in their research on the 

effect of OCR program since Borman et al. (2008) only sampled schools from the list of schools 

that had reached out to the publisher of OCR curriculum. However, it would be suspicious to 

think the effect of OCR program is the same as the one reported by Borman et al. (2008) when 

their study is conducted in non-volunteered schools, possibly because volunteered schools were 

more experienced and capable to carry out programs like OCR and therefore might think OCR 

program was advantageous for them in particular. In this case, the effect of OCR curriculum was 

apparently overestimated and the conclusion drawn by Borman et al. (2008) may not be 

warranted for non-volunteered schools. I will apply the Bayesian model of robustness indices for 

external validity to Borman et al. (2008) next to quantify the robustness of its inference as well 

as identify the situations where this inference becomes intolerably fragile.  
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The analysis of the inferential robustness of Borman et al. (2008) starts with the following 

sampling process. First, Borman et al. (2008) had 27 classrooms randomly sampled and assigned 

to the OCR group and 22 classrooms randomly sampled and assigned to the control group, as I 

described earlier. In addition, the Bayesian models of robustness indices require one to 

conceptualize the proportion of the relative size of the population of volunteered schools in the 

population of all US schools, which is denoted as 
R . Suppose 

R  is thought to be 0.5, that is, 

roughly half of the US schools were fundamentally different from the volunteered schools, which 

is the observed part of ideal population in the study of Borman et al. (2008).  Furthermore, an 

imaginary sampling process took place in the non-representable part of ideal population for 

Borman et al. (2008), i.e., the half of US schools that were considerably distinct from the 

volunteered schools. This imaginary sampling process should be mostly identical to the observed 

sampling process in Borman et al. (2008), namely drawing 5 or 6 schools (or equivalently 49 

classrooms) from its non-representable part of ideal population and then randomly assigning 27 

classrooms to the OCR group and 22 classrooms to the control group in those unobserved 

sampled schools. In general, for a given R  I conceptualize that 
1

49* R

R

 


 classrooms were 

drawn from the non-representable part of ideal population of Borman et al. (2008) and 

subsequently roughly 
1

27* R

R

 


 classrooms were randomly assigned to the OCR group. (so 

there should be 
1

22* R

R

 


 classrooms in the control group).  

Draw on this imaginary sampling procedure, I conceptualize the mean reading composite scores 

for the classrooms randomly assigned to the control group and randomly sampled from the US 

schools that were fundamentally different from the volunteered ones in Borman et al. (2008) as 
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611.5. I further conceptualize the mean reading composite scores for the classrooms randomly 

assigned to the OCR group and randomly drawn from the US schools that were fundamentally 

different from the volunteered ones in Borman et al. (2008) as 611.5*α. The value of 611.5 is 

chosen as it is the overall of mean of the whole sample in Borman et al. (2008) and the case of 

1   typifies the null hypothesis which states the average treatment effect is 0.  

The prior and the likelihood functions for Borman et al. (2008) are built based on the information 

of unobserved treated and control sample and Frank et al. (2013) (see pg. 444):  
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  (6.1) 

Where the unobserved treated sample size tn  and the unobserved control sample size cn  are:  
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  (6.2) 

Next, I capitalize on the probit function established in (5.8) to inform the thresholds of R  or   

for the probability of invalidating the inference made by Borman et al. (2008) to be smaller than 

a desired level. The following list of parameters are contained in the Bayesian model (6.1) and 

(6.2) and to be plugged into the probit model (4.8) (Also see Frank et al. (2013)):  



  

  

50 

 

 

2

2

611.5

615

607

45

45

27

22

un

c

ob

t

ob

c

t

c

t

c

Y

Y

Y

N

N







 

 





  (6.3) 

The final step is to quantify an appropriate statistical threshold to account for the added 

unobserved samples. By plugging the parametric values in (6.3) into the generic expression in 

(5.4), this threshold is obtained as 
45 45

1.96*  
27 22

R

 
  

 
.  

The probit model corresponds to the parametric values assumed in (6.3) is:  

 

1 1 1 1

2 2 2 2( ) 317.38 317.38 321.54 317.38 1.96R R R Rprobit p
 

           (6.4) 

The above probit function is utilized in the following fashion: first, one needs to set up a desired 

level of probability of invalidating the inference made by Borman et al. (2008), for example, as 

0.5. This means he would like to find out the threshold for   or R  such that the probability of 

invalidating the inference of Borman et al. (2008) is smaller than 0.5. Moreover, the threshold 

for   is conditional on the value of R  and vice versa. Specifically, the threshold for   is first 

calculated as a function of R  based on the desired level of probability of invalidating the 

inference and subsequently instantiated with some selected values of R  so that it could be 

quantified as numbers instead of as a function. The threshold for R  is approached with the same 

procedure except that it is contingent on the value of  .   
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From (6.4), the boundary line that separates the area within which probability of invalidating the 

inference is larger than 0.5 and the area within which probability of invalidating the inference is 

smaller than 0.5 is:  

 

1 1 1 1

2 2 2 2317.38 317.38 321.54 317.38 1.96R R R R

 
           (6.5) 

More importantly, the inequality (6.5) leads to the following quadratic inequality for 0.5

R  when 

  is a given fixed number:  

 
0.5(317.38 321.54) 1.96 (317.38 317.38 ) 0R R          (6.6) 

Assuming 1  , the quadratic inequality (6.6) will generate the following lower bound for R  in 

order to keep the probability of invalidating the inference of Borman et al. (2008) lower than 0.5:  

 0.22R    (6.7) 

which suggests that the proportion of the observed sample in an ideal sample should be larger 

than 0.22 so as to keep the probability of invalidating the inference of Borman et al. (2008) 

smaller than 0.5.  

 From the boundary function (6.5), the inequality for   can be derived as follows:  

 

0.5 0.5

0.5 0.5

321.54 317.38 1.96

317.38( )

R R

R R

 


 





 



  (6.8) 

For an instance, conditional on 0.46R   the above inequality suggests α should be larger than 

0.9966 in order to make the probability of invalidating the inference of Borman et al. (2008) 

smaller than 0.5.  

The inequality (6.6) reveals that the bounds of R  can be computed through (6.6) as long as a 

value of   is given, for the purpose of keeping the probability of invalidating the inference of 
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Borman et al. (2008) under 0.5. Conditional on 1  , which means the mean reading composite 

scores of both unobserved treated and control sample is 611.5, 
R  needs to be larger than 0.22 

for the probability of invalidating the inference made by Borman et al. (2008) to be smaller than 

0.5. An interpretation of this lower bound 0.22 would be that one can add an unobserved sample 

potentially drawn from the non-volunteered schools to the observed sample but this unobserved 

sample can contain at most 95 OCR classrooms and 78 control classrooms assuming the effect of 

Open Court Reading is absolutely zero for those unobserved classrooms, i.e., the mean reading 

scores of those 95 unobserved OCR classrooms and of those 78 unobserved control classrooms 

are both 611.5. 

Equally meaningful, the inequality (6.8) suggests that   must be larger than the ratio on the 

right-hand side, which is a function of R  only, so as to keep the probability of invalidating the 

inference made by Borman et al. (2005) under 0.5. This threshold of   can be evaluated at every 

given number of R . For example, one can fix the value of R  at 0.46 and the resultant lower 

bound for   is 0.9966 in order to make the probability of invalidating the inference made by 

Borman et al. (2008) smaller than 0.5, which requires the mean reading score of the classrooms 

which were randomly assigned to the Open Court Reading classrooms and randomly sampled 

from the non-volunteered schools to be at least 609.42. This is about two points lower than the 

mean reading score of the students in the classrooms which were randomly assigned to the 

control classrooms and randomly drawn from the non-volunteered schools. 

The threshold of R  (or  ) can be repeatedly calculated for the desired probability of 

invalidating the inference of your choice conditional on any fixed sensible value of    (or R ). 

Table 1.1 and Table 1.2 provide thresholds of   and thresholds of R  when the desired level of 

probability of invalidating the inference is from 0.1 to 0.9. It further provides the threshold of 
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average treatment effect based on an ideal sample, which is just 
t c   in (4.6), to help 

researchers interpret those levels of probability of invalidating the inference as the desired levels 

of the estimate of average treatment effect. For an instance,   needs to be larger than 1.0017 for 

the probability of nullifying the inference in Borman et al. (2008) to be smaller than 0.1 holding 

R  constant as 0.46. Meanwhile, this threshold of   suggests the estimate of average treatment 

effect of OCR in an ideal sample should be larger than 4.24, for the probability of nullifying 

Borman et al. (2008)’s inference to be lower than 0.1. Choosing a desired level of probability of 

invalidating an inference, just as choosing a threshold related to a decision about an intervention 

or policy or program discussed in Frank et al. (2013), should be based on the features and the 

specific context of a research design.  

Figure 1.4 illustrates the relationship of testing null hypothesis and the posterior probability of 

invalidating Borman et al. (2008)’s inference when we iteratively plug in the thresholds of   

tabulated in table 1 into the probit model (6.4) conditional on 0.46R  . It’s evident that as the 

threshold of   decreases the posterior distribution (red curve) moves towards the distribution 

corresponding to null hypothesis (black curve). As a result, the posterior probability of 

invalidating Borman et al. (2008)’s inference is growing. Essentially, the posterior probability of 

invalidating the inference of Borman et al. (2008) is type II error of retesting null hypothesis: 

0t c    against the alternative hypothesis: t c   follows the posterior distribution in (2.13), 

when an unobserved sample randomly drawn from the non-volunteered schools is available and 

added to their observed sample. Figure 1.5 unfolds the same relationship between testing null 

hypothesis and posterior probability of invalidating the inference of Borman et al. (2008), except 

that it is built on the thresholds tabulated in table 1.2 and conditional on 1  . In figure 2.5, the 

statistical threshold as well as the posterior variance decreases when R  decreases, which 
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indicates the unobserved sample size as well as the ideal sample size is enlarging. We also 

observe the posterior distribution is shifting towards the distribution corresponding to null 

hypothesis when 
R  is decreasing.  
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Table 1.1: Thresholds of α when 
R  is fixed as 0.46 

Level of 

probability 
Threshold of α 

Threshold of the 

mean of an 

unobserved 

treated sample 

The estimate of 

average 

treatment effect 

based on an ideal 

sample 

0.1 1.0017 612.54 4.24 

0.2 0.9999 611.44 3.65 

0.3 0.9987 610.71 3.25 

0.4 0.9976 610.03 2.89 

0.5 0.9966 609.42 2.56 

0.6 0.9956 608.81 2.23 

0.7 0.9945 608.14 1.86 

0.8 0.9933 607.4 1.47 

0.9 0.9915 606.3 0.87 
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Table 1.2: Thresholds of 
R  when α is fixed as 1 

Level of probability Threshold for πR 

The estimate of 

average treatment 

effect based on an 

ideal sample 

0.1 0.6095 4.88 

0.2 0.4553 3.64 

0.3 0.358 2.86 

0.4 0.284 2.27 

0.5 0.2228 1.78 

0.6 0.1689 1.35 

0.7 0.1195 0.96 

0.8 0.0725 0.58 

0.9 0.0267 0.21 
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Figure 1.4: The relationship between testing null hypothesis and the posterior probability of 

invalidating the inference of Borman et al. (2008) (
R  is fixed as 0.46) 
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Figure 1.5: The relationship between testing null hypothesis and the posterior probability of 

invalidating the inference of Borman et al. (2008) (  is fixed as 1) 
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6.2-The Bayesian robustness indices of the effect of kindergarten retention on reading 

achievement 

Hong & Raudenbush (2005) and Frank et al. (2013) have pointed out that kindergarten retention 

is a widespread phenomenon in the US and its impact could be profound for both promoted 

children and retained children, and therefore it has long been a controversial issue. To resolve 

such controversy, Hong & Raudenbush (2005) conducted the analysis which combined the 

multilevel model controlling for propensity scores and additional propensity score stratification 

to evaluate the effects of kindergarten retention policy and actual kindergarten retention on 

students’ academic achievement. Such analysis is necessary and possibly effective for the 

purpose of reducing the selection bias due to the lack of randomization in this kind of studies. 

Draw on this method, Hong & Raudenbush (2005) estimated the effect of kindergarten retention 

on students’ reading achievement as -9.01 and its standard error as 0.68, which is tantamount to a 

significant effect whose size is about 0.67. In light of this considerable effect, Hong & 

Raudenbush (2005) concluded that “children who were retained would have learned more had 

they been promoted” and therefore “kindergarten retention treatment leaves most retainees even 

further behind”.  

Nevertheless, the method proposed by Hong & Raudenbush (2005) does not prevent the 

selection bias from persisting for two reasons: First, propensity score analysis is built on the 

assumption of igorability, which basically says all confounding variables are able to be observed 

and controlled in the causal model. However, as argued by Frank et al. (2013), some 

confounding variables such as motivation of a child may not be measured and controlled in the 

causal model of Hong & Raudenbush (2005), and this will result in violation of the assumption 

of ignorability and incur the selection bias of their estimate. Second, to ensure that quasi-
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experimental design is a plausible approximation of randomized experiment, the estimated 

propensity scores need to be good balancing scores, which means most if not all controlled 

covariates have to be balanced conditional on the estimated propensity score. Even though Hong 

& Raudenbush (2005) reported 97% of the covariates had achieved balance and argued that the 

existence of the remaining imbalanced covariates “could largely be attributed to the Type I error 

related to sampling fluctuation”, there is little evidence to show that such imbalance of those 3% 

of the covariates is due to sampling error and not consequential. Most importantly, the credibility 

of quasi-experimental design will be greatly undermined if the imbalanced covariates are 

happened to be the most influential covariates. (See the draft of Maroulis, Frank & Duong). In 

cases such that motivation was negatively correlated with kindergarten retention and positively 

correlated with reading achievement and promoted children had significantly higher pretest 

readings scores than retained children did in some propensity score strata, the negative effect of 

kindergarten retention could be mitigated or even reversed.  

The aforementioned innate limitations of quasi-experimental design prompt us to capitalize on 

the Bayesian model of robustness indices for internal validity to express the robustness of the 

inference made by Hong & Raudenbush (2005) as the probability of invalidating their inference. 

Furthermore, for a chosen desired level of this probability (say 0.5), a threshold characterizing an 

unobserved sample can be computed to determine when the probability of invalidating their 

inference will exceed this desired level. As in the example of Borman et al. (2008), the 

underlying sampling process of the Bayesian model of robustness indices for the internal validity 

of Hong & Raudenbush (2005) is conceptualized as follows: 

1-The observed treated sample is constituted of 471 retained children and the observed control 

sample is constituted of 7168 promoted children, according to Hong & Raudenbush (2005).  
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2-From Rubin Causal Model (RCM), the unobserved part of treated population is the collection 

of the reading scores of promoted children had they all been retained instead and the reading 

scores of retained children had they all been promoted instead. In the terminology of RCM, the 

unobserved part of ideal population contains all possible values of the counterfactuals for the 

promoted students and all possible values of the counterfactuals for the retained students.  

3-An unobserved sample should be randomly drawn from the unobserved part of ideal 

population. Furthermore, it can be decomposed into an unobserved treated sample and an 

unobserved control sample. This unobserved treated sample is a group of reading scores of all 

sampled promoted children had they been retained instead, and therefore its sample size should 

be 7168. Likewise, this unobserved control sample is a group of reading scores of all sampled 

retained children had they been promoted instead, and thus its sample size should be 471.  

Dependent on the above sampling procedure, I assume the mean reading test scores of an 

unobserved control sample and an unobserved treated sample are 45.2 and 45.2*α respectively. 

As mentioned earlier, the case of 1   corresponds to the null hypothesis that asserts the 

average treatment effect of kindergarten retention is 0.  

Again, the prior and likelihood functions are constructed based on those unobserved samples, 

Hong & Raudenbush (2005) (pg.216) and Frank et al. (2013) (pg.448):  
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  (6.9) 

Where: 
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To find out the threshold of α such that it is a switching point of whether the probability of 

invalidating the inference of Hong & Raudenbush (2005) is smaller than a preselected desired 

value (say 0.5), I utilize the probit model (3.5) and extract following parametric values from 

Hong & Raudenbush (2005) and Frank et al. (2013):  
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  (6.11) 

Guided by (5.3) and parametric values above, the appropriate statistical threshold is determined 

as 
143.26 138.83

1.96
7639


  which equals -0.38.  

Based on (6.11), the probit model can be explicitly written as this:  

 ( ) 221.49 225.09probit p      (6.12) 

From (6.12), the threshold of α can be located conditional on the parametric values as assumed in 

(6.11), once the desired level of probability is given. I note here that the threshold of α can surely 

repeatedly calculated contingent on various desired levels of probability of invalidating the 

inference of Hong & Raudenbush (2005) while holding values in (6.11) fixed.  



  

  

63 

 

Again, when the desired value of probability is set to be 0.5, the boundary line separating the 

region where the probability of invalidating the inference of Hong & Raudenbush (2005) is 

larger than 0.5 and the region where the probability of invalidating the inference of Hong & 

Raudenbush (2005) is smaller than 0.5 should be:  

 221.49 225.09 0    (6.13) 

It could be learned from (6.13) that α needs to be smaller than 1.0162 so as to make the 

probability of invalidating an inference smaller than 0.5, assuming π is 0.0617 and the mean 

reading score of the retained children had all of them been promoted instead is 45.2. 

Equivalently, this means un

tY , i.e., the mean reading score of the promoted children had all of 

them been retained instead, has to be smaller than 45.93 for the probability of invalidating an 

inference lower than 0.5. Moreover, this threshold of un

t  can be recast as the threshold of 

average treatment effect based on an ideal sample, i.e., 
t c  , since it is a function of un

tY  and 

the parametric values in (6.11). In the setting of current example, the threshold of average 

treatment effect based on an ideal sample is -0.38, which is exactly the appropriate statistical 

threshold.    

The threshold of α can be obtained for any given desired level of the probability of invalidating 

the inference. Table 1.3 tabulates the thresholds of α, un

t  and 
t c   when the desired level of 

the probability of invalidating the inference of Hong & Raudenbush (2005) is 0.1, 0.2, …, 0.9. 

For example, α could be at most as large as 1.0138 for the sake of keeping the probability of 

invalidating their inference under 0.3, which indicates that the mean reading score of promoted 

students had they all been retained needs to be smaller than 45.82 and the estimate of average 

treatment effect acquired from an ideal sample should be even more extreme than -0.48, given π 
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as 0.0617 and the mean reading score of retained students had they all been promoted as 45.2. 

However, in an empirical research, decision about the desired level of the probability of 

nullifying its inference should be a rational choice based on its cost and policy/behavioral 

implications as argued by Frank et al. (2013) rather than a haphazard choice.  

One may notice that the thresholds for   in table 1.3 are all very close to 1, which means for 

almost any level of probability of invalidating the inference of Hong & Raudenbush (2005) the 

means of unobserved treated and control sample should be roughly equal. This may appear to be 

unintuitive, however, is not surprising in the case of Hong & Raudenbush (2005) as their sample 

size is considerable. Ordinarily, the probability of invalidating an inference will be quite 

sensitive and jumps/drops sharply within a certain range of   as to a study with questionable 

internal validity and large sample size, as depicted in figure 1.6. 

Again, one main research goal is to learn the relationship between testing null hypothesis and the 

posterior probability of invalidating the inference of Hong & Raudenbush (2005). For this 

purpose, figure 1.7 is presented. The general pattern is, when   increases the posterior 

distribution moves toward the distribution corresponding to the null hypothesis and therefore the 

posterior probability of invalidating the inference of Hong & Raudenbush (2005) becomes 

larger. As discussed earlier, such relationship parallels the relationship between testing null 

hypothesis versus alternative hypothesis and type II error. The posterior probability of 

invalidating the inference of Hong & Raudenbush, is tantamount to type II error of retesting null 

hypothesis: 0t c    when an unobserved sample (i.e., a collection of counterfactual outcomes 

of all their sampled students) is actualized and added to their observed sample. 
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Table 1.3: Thresholds of α when π is fixed as 0.0617 

Level of 

probability 
Threshold for α 

Threshold for the 

mean of an 

unobserved 

treated sample 

The estimate of 

average treatment 

effect based on an 

ideal sample 

0.1 1.0104 45.67 -0.62 

0.2 1.0124 45.76 -0.54 

0.3 1.0138 45.82 -0.48 

0.4 1.015 45.88 -0.43 

0.5 1.0162 45.93 -0.38 

0.6 1.0174 45.99 -0.33 

0.7 1.0186 46.04 -0.28 

0.8 1.02 46.1 -0.22 

0.9 1.022 46.19 -0.13 
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Figure 1.6: The relationship between   and the probability of invalidating the inference of Hong 

& Raudenbush (2005) 
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Figure 1.7: The relationship between testing null hypothesis and the posterior probability of 

invalidating the inference of Hong & Raudenbush (2005) 
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7-Discussion and conclusion  

7.1-Features of the Bayesian paradigm of robustness indices  

The Bayesian paradigm proposed in this paper has some remarkable characteristics. First, it 

treats the problem of causal inference as a missing data issue, which exactly is the essence of 

causal inference according to RCM. Specifically, I define the “missing data” as an unobserved 

sample which could be thought as a sample randomly drawn from the unobserved part of ideal 

population. The definition of unobserved sample depends on which one of internal and external 

validity is of central concern for researchers. For example, it could be a random sample from the 

schools which didn’t show interest in the study of OCR curriculum when the external validity of 

Borman et al (2008) is challenged or the counterfactuals of the test scores of kindergarten 

students in the study of kindergarten retention when the internal validity of Hong & Raudenbush 

(2005) is disputable. An ideal sample is formed by adding an unobserved sample to the observed 

one and this ideal sample should be able to lead to an unbiased estimate of the treatment effect. 

Following Frank & Min (2007), the posterior distribution can be interpreted as the distribution of 

the estimate based on an ideal sample, by treating the distribution of the estimate based on an 

unobserved sample as prior distribution and constructing likelihood function which should 

contain information of the observed sample. I have demonstrated that, it is posterior distribution 

that yields the probability of invalidating the inference and express this probability as a function 

of the parameters in prior and likelihood distribution.  

Another notable feature of the Bayesian paradigm is that it is in fact Bayesian sensitivity analysis 

which manipulates the posterior distribution by inputting different informative priors while 

holding the observed data and likelihood function fixed. Defining distribution of the imaginary 

unobserved sample statistic as prior distribution is totally legitimate in the Bayesian world. 
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Recall that a Bayesian model typically requires the prior distribution to be based on one’s belief 

about the parameter before he actually collects and analyzes the data. My Bayesian models 

demand a reasonable conjecture about the unobserved part of ideal population such that it is 

possible to be true if the unobserved part of ideal population can somehow be reached. This 

requires, in Bayesian language, prior is subjective (or objective and informative) instead of 

noninformative because an noninformative prior will make the probability of invalidating an 

inference noninformative as well. By this logic, the prior mean is usually a meaningful quantity 

and the prior variance is usually relatively small in practice. Essentially, the Bayesian paradigm 

of robustness indices is about checking the influence of the parameters of prior distribution on 

posterior distribution, i.e., how the changes in prior distribution affect posterior distribution and 

the inference built on it. This is exactly the spirit of Bayesian sensitivity analysis. I propose the 

probability of invalidating the inference as a new index of the robustness of causal inference in 

this paper since it quantifies the condition under which (prior) and the degree to which 

(probability) a particular inference is robust.  

Furthermore, the Bayesian paradigm enhances the interpretability of the framework of robustness 

indices. First of all, the underlying sampling process of the Bayesian paradigm could be 

conceptualized as follows: conditional on the fixed observed sample, one sample can be 

randomly drawn from the unobserved part of ideal population and merged into the observed 

sample to construct an imaginary ideal sample. This procedure can be implemented many 

different times and thus it can generate many different ideal samples, with the observed sample 

being the same and fixed. Equally importantly, the expression of the mean of the ideal sample in 

(2.10) evidence that the ideal sample mean can be interpreted as the weighted average between 

the unobserved sample mean and observed sample mean, which is consistent with the arguments 
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made by Frank & Min (2007). Specifically, those weights will solely rely on the sample sizes of 

unobserved and observed sample. As a result, the Bayesian paradigm itself could be interpreted 

as a sampling scheme where one ideal sample is comprised of heterogeneous subsamples with 

different sample sizes.  

7.2-Comparisons with other similar approaches  

7.2.1-The robustness indices in Frank et al. (2013)  

By asking the question “what would it take to change your inference”, Frank et al. (2013) 

initiated the robustness indices which were the proportion of the original data that was necessary 

to be replaced with the hypothetical data of zero treatment effect, for the purpose of invalidating 

the inference. The Bayesian paradigm has three basic distinctions from the robustness indices in 

Frank et al. (2013): First, the robustness indices in Frank et al. (2013) and the Bayesian paradigm 

are quantified in different forms. Specifically, the robustenss indices in the Bayesian paradigm 

are posterior probabilities of invalidating an inference rather than a proportion of data need to be 

replaced in Frank et al (2013). Second, the derivation of robustness indices is different in those 

two frameworks. My Bayesian approach adopts a distributional thinking, i.e., it demands a 

distribution built on an unobserved sample randomly drawn from the unobserved part of ideal 

population for its expected value. On the contrary, Frank et al. (2013) usually focuses on the 

estimate of average treatment effect in the unobserved part of ideal population and directly 

assumes it to be a certain value. Third, the sampling mechanisms implied by those two kinds of 

robustness indices are dissimilar. The Bayesian paradigm, as explained in the last section, is 

actually drawing and including an unobserved sample into the observed sample, instead of 

replacing a portion of the observed sample with a hypothetical unobserved sample, which is 

embeded in Frank et al. (2013). Still, it is noteworthy that, both kinds of robustness indices are 
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cognate in that they share the same definition of bias, both consider modeling of the unobserved 

population to be central and quantify the robustness of an inference as a threshold when it is 

likely to be overturned.  

7.2.2-The robustness indices in Frank & Min (2007)  

There are two major differences between my Bayesian paradigm and the robustness indices in 

Frank & Min (2007). One is that the Bayesian paradigm of robustness indices addressess both 

questions about internal validity and external validity while the paper of Frank & Min is only 

intended for the question about external validity. Additionally, Frank & Min proposed two 

sampling schemes that can explain the induction of bias and derivation of robustness indices, 

namely neutralization by replacement and neutralization by addition. The robustness indices of 

Frank et al. (2013) is well situated in the former one while the Bayesian paradigm is well situated 

in the latter one.  

7.2.3-The bounds on treatment effect in Manski (1990) and Lee (2009) 

As robustness indices of causal inferences, the bounds on treatment effect proposed by Manski 

(1990) and Lee (2009) target the potential bias associated with the point estimate of treatment 

effect and highlight the identification issue of such point estimate due to confounded sample 

selection. However, the approach of bounding effect is different from the robustness indices of 

causal inferences in three main aspects: First, the robustness indices are rooted in pragmatism 

and decision-making while the bounds of treatment effect are intended for the estimation 

problem. Specifically, the purpose of judging whether an effect is significant (or equivalently 

whether a null hypothesis should be rejected) and whether a decision should be made thereupon 

is better served by the robustness indices of causal inferences. The bounds on treatment effect 

may better inform researchers about what data and assumptions can do and what they cannot do. 
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Second, the robustness indices of causal inferences rely on thought experiments, i.e., 

conceptualizations of unobserved samples while the bounds on treatment effect do not. Third, the 

robustness of causal inferences is quantified through thresholds of invalidating an inference by 

the robustness indices rather than bounds on treatment effect offered by Manski (1990) or Lee 

(2009).  

7.3-Limitations 

Although the Bayesian paradigm of robustness indices is an useful tool as to quantifying the 

robustness of a causal inference, I caution the readers about its limitations here so that one can 

decide how to implement it by weighing the gains and risks. First, my Bayesian paradigm has 

focused exclusively on the estimate of average treatment effect. With that being said, the 

Bayesian paradigm is not intended for the bias in the estimates of average treatment effect for the 

treated and average treatment effect for the control, and consequently, it should not be used to 

quantify the robustness of causal inferences due to such kind of bias. Generally speaking, the 

Bayesian paradigm will not be suitable for modeling the robustness of causal inferences 

occasioned by the bias of estimate of any differential causal effect, i.e., the treatment effect 

conditional on any covariates. For example, it would be inappropriate to employ the Bayesian 

paradigm of robustness indices on the inference of the average treatment effect of OCR 

curriculum for students with high social-econimical status or the average treatment effect of 

kindergarten retention for girls. Second, there are other sources of bias that can undermine causal 

inferences besides insufficient internal validity and external validity, such as measurement error 

and violation of SUTVA. I emphasize here that the Bayesian paradigm is designated only for 

measuring the degree to which a causal inference is affected by its debatable internal validity or 

external validity.  
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7.4-Conclusion  

The Bayesian paradigm of robustness indices is an addition to the current literature of robustness 

indices of causal inferences, which purpose to bridge statistical inference and causal inference by 

guiding researchers when their inferences are too delicate to uphold as the conceptualization of 

unobserved sample is varying. Cohen (1990) pointed out that “A successful piece of research 

doesn’t conclusively settle an issue, it just makes some theoretical proposition to some degree 

more likely. Only successful future replication in the same and different settings provides an 

approach to settling the issue”. (pg.1311). Indeed, even a statistical inference based on a careful 

design like Borman et al. (2008) or Hong & Raudenbush (2005) should not be deemed as a 

established causal inference without further inquiry into the sources of bias. Starting at the 

definition of bias due to limited internal validity or external validity, the Bayesian paradigm of 

robustness indices is managed to ask and answer the question “What would an unobserved 

sample have to be for the probability of invalidating my inference is small enough (than a 

predetermined desired value of mine)?”, or equivalently “How different can I afford for an 

unobserved sample to be from the observed one so that the probability of invalidating my 

inference is small enough?”.  

Essentially, the Bayesian paradigm of robustness indices is consistent with the argument of 

Cohen (1990) in that it quantifies the robustness through the modeling of unobserved sample and 

thereby simulates the replications of the same study in various contexts and the probability of an 

replication is successful. It is my hope that through the Bayesian paradigm of robustness indices 

proposed in this paper, researchers are able to cast their conclusions in terms of the degree to 

which their inferences will be valid under what circumstances and therefore contribute to the 

scientific discourse of a particular causal relationship.  
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Chapter 2: The Bayesian paradigm of robustness indices of causal inferences for regression 

models 

1-Introduction 

1.1-Regression-based causal inference 

A causal question is nearly impossible to be convincingly resolved unless a research raising such 

a question is deemed to have both indisputable internal and external validity. Empirically this 

means that a randomized experiment with a representative sample is a prerequisite for answering 

any causal question. Under this ideal condition, extensive literature has justified the usage of 

regression-based causal inference, i.e., the approach of treating the outcome as the dependent 

variable and an binary treatment indicator as an independent variable in regression. According to 

Imbens & Rubin (2015), regression-based causal inference, when subjects are randomly assigned 

to the treatment and control group, can generate consistent and efficient estimate of a true 

average treatment effect. Some simulation studies have also indicated that regression-based 

causal inference is as good as any other methodologies in causal inference under certain 

assumptions (Morgan & Winships, 2007; Shadish et al., 2008; Steiner et al, 2010; Imbens & 

Rubin, 2015). 

While regression-based causal inference and its offshoots have been predominant in addressing 

causal questions, critics of regression-based causal inference have questioned the validity of 

inference brought by this approach (Shadish, Cook and Campbell, 2002). Specifically, when 

randomization is lacked in a research design, the validity of regression-based causal inference is 

solely built on the assumption of strong ignorability (Rosenbaum & Rubin, 1983) that is not 

justifiable or testable (Morgan & Winship, 2007). In this case, it is natural to suspect the internal 

validity of regression-based causal inference. Moreover, the validity of regression-based causal 
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inference can even be shattered in a randomized experiment, when a research conclusion targets 

a population of which the observed sample is not fully representative. The cases where 

regression-based causal inference is potentially invalid can be categorized into two scenarios, 

which I elaborate next.   

The first scenario typically refers to an observational study or quasi-experiment with a 

representative sample of the target population. Such research shall be labeled as one with strong 

external validity and yet limited internal validity. The validity of regression-based causal 

inference hinges on the assumption of strong ignorability. That is, one need to conjecture and do 

his best to justify the independence between the treatment and the outcome conditional on a set 

of measured covariates. In addition, the probabilities of selecting/being assigned to the treatment 

of all subjects have to be strictly smaller than 1 and bigger than 0 conditional on the same set of 

measured covariates, in order to identify the average treatment effect. The potential pitfall of 

conducting regression-based causal inference under the strong ignorability assumption, is that 

one can never prove or disprove this assumption and thus can never completely legitimize using 

regression-based causal inference under it. Some practical issues, such as checking the overlap of 

distributions of propensity scores (or logits of them) and the balance of covariates conditional on 

propensity score, can still exist and potentially compromise the validity of regression-based 

causal inference even if the strong ignorability assumption is plausible (Gelman & Hill, 2007). 

Hong & Raudenbush (2005), which evaluated the impact of kindergarten retention on academic 

achievement, exemplifies this scenario as a random assignment of kindergarten children to 

retention and promotion groups was impossible while a nationally representative sample from 

ECLS-K study was available in this research. 



  

  

76 

 

The second scenario features any randomized experiment with a nonrandom sample drawn from 

its target population. A nonrandom sample, as discussed in Wooldridge (2010, 2013), can bias 

estimates of regression coefficients and therefore make regression-based causal inference 

inconsistent and biased for true average treatment effect. Gelman & Hill (2007) argued that, in 

this case “causal inferences are still justified but inferences no longer generalize to the entire 

population”. They suggested that regression-based causal inference is only valid for an 

imaginary subpopulation and “further modeling is needed to generalize to any other population”. 

I will illustrate this scenario by discussing Borman et al. (2008), which conducted a multisite 

cluster randomized trial to examine the effect of Open Court Reading (OCR) curriculum with a 

random sample from the schools which volunteered in this study. Apparently, Borman et al. 

(2008) enjoyed strong internal validity brought by randomized assignment to OCR and control 

groups and yet suffered from limited external validity since they attempted to generalize their 

conclusions to both volunteered and non-volunteered schools.  

1.2-The philosophy of robustness indices 

The robustness indices proposed by Frank & Min (2007) and Frank et al. (2013) are built on a 

philosophy that there exists, at least conceptually, an ideal population for any single study 

planning a causal inference. To elaborate, the following definitions for the first scenario is 

needed: 

Definition 1.1: A real or non-counterfactual observation refers to an observation which is 

observable, i.e., an observation of a controlled subject under the condition of control or an 

observation of a treated subject under the condition of treatment.  

A real or non-counterfactual observation in Hong & Raudenbush (2005) could be an observation 

of John who was retained in kindergarten or an observation of Mary who was promoted to first 
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grade. It’s noteworthy here that those observations are real since one can only obtain John’s 

observation when he was retained and Mary’s observation when she was promoted.  

Definition 1.2: A counterfactual observation of a subject refers to an imaginary observation 

where his outcome is counterfactual, his membership is different than what is actually observed 

and his covariates’ values are identical to the ones in his real observation. 

In Hong & Raudenbush (2005), a counterfactual observation of John who was retained in the 

kindergarten would be the observation where the outcome was John’s potential reading score had 

he been promoted to first grade, the binary indicator of treatment status was 0 (since he is 

imagined as a promoted student) and the covariates were remained the same as the ones in his 

real observation. Likewise, the counterfactual of Mary who was promoted to first grade would be 

the observation where the outcome was Mary’s potential reading score had she been retained in 

kindergarten, the binary indicator of treatment status was 1 (since she is imagined as a retained 

student) and the covariates were identical to the ones in her real observation. 

Definition 1.3.1: A potential observation of a subject in the first scenario refers to either 

his/her real observation or his/her counterfactual observation.  

In Hong & Raudenbush (2005), every student had two potential observations. For example, John 

had two potential observations, namely his real observation under the condition of being retained 

in kindergarten and his counterfactual observation under the condition of being promoted to first 

grade. Similarly, Mary had two potential observations which were her real observation under the 

condition of being promoted to first grade and her counterfactual observation under the condition 

of being retained in kindergarten.  

With regard to the second scenario, definitions and conceptualizations about real and 

counterfactual observations are unnecessary since in the long run randomization would guarantee 
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the equivalence between real observations and counterfactual observations. Still, it’s 

instrumental to offer a different version of the definition of potential observations for the second 

scenario as follows:  

Definition 1.3.2: A potential observation in the second scenario refers to a real observation 

which could be potentially drawn from the target population. 

Given the target population of Borman et al. (2008) is both volunteered and non-volunteered 

schools, a potential observation in Borman et al. (2008) could be either an observation of a 

classroom (along with the observations of students sat in it) which belonged to a volunteered 

school in their study or an observation of a classroom (along with the observations of students sat 

in it) which could be potentially drawn from non-volunteered schools.  

Built on previous definitions, the definition of ideal population is formalized next for both the 

first scenario and the second scenario:  

Definition 1.4: An ideal population refers to the collection of all possible potential observations 

of the target population.  

The operationalization of this definition depends on the specific context of the research and the 

scenarios that are discussed earlier. For example, the ideal population of Hong & Raudenbush 

(2005) is the collection of potential observations of all kindergarten students in the U.S. 

Likewise, the ideal population of Borman et al. (2008) is the collection of observations of all 

classrooms in the volunteered and non-volunteered schools.  

To understand the bias which invalidates regression-based causal inference in those two 

scenarios, it’s necessary to decompose an ideal population into an unobserved part and an 

observed part and differentiate between them. For this purpose, I have the following two 

definitions:  
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Definition 1.5.1: The unobserved part of an ideal population in the first scenario refers to 

the collection of all counterfactual observations of the target population. Naturally, the observed 

part of an ideal population in the first scenario refers to the collection of all real observations 

of the target population.  

Definition 1.5.2: The unobserved or non-representable part of an ideal population in the 

second scenario refers to the collection of all potential observations of the part of the target 

population that cannot be represented by the observed sample. Conversely, the observed or 

representable part of an ideal population in the second scenario refers to the collection of all 

potential observations of the part of the target population that was deemed to be logically 

represented by the observed sample.  

According to definition 1.5.1, the unobserved part of ideal population of Hong & Raudenbush 

(2005) is the collection of counterfactual observations of all kindergarten students in the U.S. and 

the observed part of ideal population of Hong & Raudenbush (2005) is the collection of real 

observations of all kindergarten students in the U.S. According to definition 1.5.2, the non-

representable part of the ideal population of Borman et al. (2008) would be the collection of 

observations of all classrooms in the non-volunteered schools and the representable part of the 

ideal population of Borman et al. (2008) would be the collection of observations of all 

classrooms in the volunteered schools. More importantly, a random sample of the unobserved 

(non-representable) part of ideal population is the main target of the Bayesian framework and it 

is defined as an unobserved sample as follows: 

Definition 1.6.1: An unobserved sample in the first scenario refers to the collection of 

counterfactual observations of sampled subjects. 
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Definition 1.6.2: An unobserved sample in the second scenario refers to an imaginary random 

sample which is drawn from the non-representable part of an ideal population and consists of 

real observations. I assume a subsequent randomization is carried out on this unobserved sample.  

Definition 1.7: An ideal sample refers to the combination of the observed sample and an 

unobserved sample.  

Based on definition 1.6.1, an unobserved sample of Hong & Raudenbush (2005) is the collection 

of all counterfactual observations of their sampled kindergarten students. Even though Hong & 

Raudenbush (2005) did get a random sample from their target population, i.e., the kindergarten 

students in America, this unobserved sample were still missing and not ignorable since their 

sampled students were not randomly retained in kindergarten or promoted to first grade. 

Furthermore, as argued by Frank et al. (2013), although Hong & Raudenbush (2005) has 

measured and controlled most relevant covariates, such as kindergarten children’s pretest scores, 

demographical features, psychological qualities, and family backgrounds, they still might leave 

some significant confounders unmeasured, such as their cognitive abilities and motivations. As a 

result, this unobserved sample that were missing in Hong & Raudenbush (2005) might not be 

ignorable conditional on their measured covariates, which equivalently disproves the strong 

ignorability assumption and poses a threat to its internal validity.  

Moreover, based on definition 1.6.2, an unobserved sample of Borman et al. (2008) is an 

imaginary sample of classrooms which were randomly drawn from the non-volunteered schools. 

By assumption, classrooms in this unobserved sample had been already randomly assigned to 

either Open Court Reading group or the control group. I note here that the observed sample of 

Borman et al. (2008) can only represent the volunteered schools since it came from six schools 

which were randomly drawn from volunteered schools in their study. The non-volunteered 
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schools, which is an indispensable part of their target population, would be represented by this 

unobserved sample rather than the observed sample of Borman et al. (2008) and exhibits the 

discrepancy between their target population of schools and the population of schools can be 

represented by their sample. Due to this missing unobserved sample, this discrepancy constitutes 

a nonrandom sampling from their target population and poses a threat to its external validity.   

Figure 2.1 shows that the observed sample in Hong & Raudenbush (2005) had two groups: 

retention group (students who were retained in kindergarten) and promotion group (students who 

were promoted to first grade). For every retained student (the blue-shaded circle Ri), there is a 

counterfactual observation of his in an unobserved sample (the dashed circle Pi) had he been 

promoted instead. Similarly, an unobserved sample also keeps the counterfactual observation of 

every promoted student (the blue-shaded circle Pj) had he been retained instead. An ideal sample 

is represented by the rectangle formed by conjoining the small rectangle with dashed circles (an 

unobserved sample) and the small rectangle with solid blue-shaded circles (the observed 

sample), and it consists of real and counterfactual observations of all sampled students in Hong 

& Raudenbush (2005).  It’s remarkable that those two small rectangles adjoin each other, which 

indicates the observed sample and an unobserved sample refer to the same group of subjects and 

share the same values of the covariates for those subjects in the first scenario. 
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Figure 2.1: The structure of ideal population in Hong & Raudenbush (2005) 

 

What figure 2.2 displays is that the ideal population of Borman et al. (2008) is the collection of 

all real observations of classrooms that could be potentially drawn from American schools. The 

representable part of this ideal population is the collection of classrooms of schools which 

volunteered in their research, since the observed sample is the classrooms of schools which were 

randomly drawn from the volunteered schools. Automatically, the non-representable part of this 

ideal population is the collection of classrooms of schools which didn’t volunteer in this 

research. An unobserved sample in this case is thought of as a random sample from the non-

representable part of this ideal population. Classrooms of this unobserved sample are thought to 

be subsequently randomly assigned to the Open Court Reading group or the control group. An 

ideal sample is the combination of the small rectangle with solid blue-shaded circles (the 

observed sample) and the small rectangle with solid unshaded circles (an unobserved sample), 

and it is composed of real observations of classrooms drawn from volunteered and non-

volunteered schools. In figure 3 those two small rectangles do not adjoin each other, which 

reveals that the observed sample and an unobserved sample pertain to different groups of 

subjects in the second scenario.  
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Figure 2.2: The structure of ideal population in Borman et al. (2008) 

 

Figure 2.3 synthesizes above two figures and presents the structure of an ideal population in both 

scenarios. The rectangle which contains two small blue-shaded circles is the observed sample 

whose upper part is the treatment group (denoted by ‘T’ in the upper-right corner) and lower part 

is the control group (denoted by ‘C’ in the lower-right corner). In the first scenario, one needs to 

conceptualize the counterfactual observation of a treated subject Ti as his observation had he 

participated in the control group, which is represented by a dashed circle Ci. Similarly, the 

counterfactual observation of a controlled subject Cj is symbolized as a dashed circle Tj which 

would have been this subject’s observation had he participated in the treatment group. The 

rectangle contains the dashed circles Ci and Tj is an unobserved sample in the first scenario, and 

the arrows with a label ‘1’ symbolize the conceptualization of an unobserved sample in the first 

scenario. The second scenario implicates that the scope of ideal population can be narrowed from 

both real and counterfactual observations to real observations only because of strong internal 

validity. Due to limited external validity in the second scenario, the same observed sample with 

blue-shaded circles Ti and Cj is still problematic as it can only represent the representable part of 

ideal population. Therefore, we need another conceptualization, symbolized by the arrows with a 
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label ‘2’, to envision an unobserved sample drawn from the non-representable part of ideal 

population. This unobserved sample is thought to be formed by first randomly drawing a sample 

from the non-representable part of ideal population and then randomly assigning subjects to 

treatment group and control group. In figure 1, a treated subject in this unobserved sample is 

represented by the solid unshaded circle Tk and a controlled subject in this unobserved sample is 

represented by the solid unshaded circle Cl.  

Figure 2.3: The structure of ideal population in both scenarios 

 

The above definitions and arguments have demonstrated that a missing unobserved sample is 

mainly responsible for the bias that invalidates regression-based causal inference in the first and 

second scenarios. To quantify the robustness of regression-based causal inference, it’s inevitable 

to conceptualize an unobserved sample and shape this conceptualization into a proper statistical 

model.  

1.3-Research objectives 

This research is motivated by Frank & Min (2007), which first proposed a Bayesian framework 

to address the concern of limited external validity, by defining a prior distribution in terms of an 

unobserved sample and a likelihood in terms of the observed sample. They suggested that, 
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defining a Bayesian model in this fashion would lead to a posterior distribution that is built upon 

an ideal sample which is just the combination of an unobserved sample and the observed sample. 

Following their argument, I develop a comprehensive Bayesian framework to address both 

concerns of limited internal validity and limited external validity for regression-based causal 

inference, as have been summarized as the two scenarios. Grounded in the philosophy of 

robustness indices, this Bayesian framework of robustness indices considers a prior as if it is 

built on an unobserved sample and then purposes a posterior probability of invalidating an 

inference conditional on the observed sample.  

This paper is structured as follows: The second section I formalize a unifying framework of 

robustness indices, which has a frequentist recipe and a Bayesian recipe, for regression-based 

causal inference. In the third section, I discuss in general and in depth how to fit the Bayesian 

framework of robustness indices to raw data for regression-based causal inference. In the fourth 

section, I demonstrate that the Bayesian framework of robustness indices can be greatly 

simplified for centered and standardized data. The fifth section addresses an issue of adjusting 

the statistical threshold #  to the sampling perspective of adding an unobserved sample to the 

observed sample, by identifying the standard deviation of estimate based on an ideal sample or 

by considering replacing a portion of the observed sample with an unobserved sample rather than 

simply adding an unobserved sample to the observed sample. The sixth section provides the 

detailed applications of my framework to Borman et al. (2008) as well as Hong & Raudenbush 

(2005). The seventh section concludes this paper with a review of the Bayesian framework of 

robustness indices for regression-based causal inference and other comparable approaches and a 

conclusion.  
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2-The unifying framework of robustness indices for regression-based causal inference 

2.1-Setting and notation 

The entire discussion in this paper is restricted to the following setting: Every sample, regardless 

of whether it’s observed or not, should contain a vector of outcomes denoted by Y and a matrix 

of predictors denoted by X. X should have p+2 columns and this means the number of predictors 

is p+2. Among those p+2 predictors, there is one variable containing all 1s in its data entry to 

represent the intercept and a treatment indicator denoted by W. All remaining p predictors are 

pure covariates, and I label them as 1 2, , , pZ Z Z  respectively. Moreover, W=1 means a subject 

receives/selects the treatment, for example, the Open Court Reading curriculum or kindergarten 

retention. Accordingly, W=0 refers to the case that a subject receives or selects the control group. 

There are only two possible groups in this setting, i.e., treatment and control groups. The 

outcome Y should be continuous, or at least not a categorical variable. When a data of such 

structure is available to researchers, I assume they conduct regression-based causal inference to 

estimate the average treatment effect, which is parameterized as the regression coefficient of W 

in the regression of Y on X. For example, this regression can be written as 

0i w i iY W      i ZZ γ  for every individual i in the sample and w  is the regression coefficient 

of W as well as the estimate of average treatment effect. 

Under this setting, an ideal population, as well as its unobserved and observed parts, is consisted 

of observations which all have one value for the outcome Y and p+2 values for the predictors. It 

follows that the observed sample and an unobserved sample are both collections of observations 

which all have one values for the outcome value and p+2 values for the predictors as well.  

The first notation rule I adhere to throughout this paper is that I use a superscript to inform 

readers about which sample a statistic pertains to. A statistic or a part of data has a superscript as 
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“ob” signifies that it comes from the observed sample, while a superscript “un” indicates that it 

comes from an unobserved sample. A statistic or a part of data that belongs to an ideal sample, 

which is just an integration of the observed sample and an unobserved sample and thus can be 

thought of as a random sample from ideal population, will be labeled with a superscript “id”. For 

example, 
ob un id

Y ,Y ,Y refer to the outcomes Y in the observed sample, an unobserved sample 

and an ideal sample respectively. However, there are some exceptions: A true parameter will not 

have a superscript. For example, the true regression coefficient of W is symbolized by w . The 

threshold of regression coefficient W for making an inference is denoted by 
#

w . The second 

notation rule is that a subscript of a sample statistic is used to describe the variable(s) which this 

sample statistic pertaining to. For an instance, the sample covariance between the treatment 

indicator W and the outcome Y in the observed sample is denoted by ˆ ob

WY  and its counterpart in 

an unobserved sample is denoted by ˆ un

WY .  

2.2-The frequentist recipe 

The logical flow of any robustness indices always starts at the definition of bias for causal 

inference. The formal definition of bias for regression-based causal inference, i.e., the regression 

coefficient representing an estimate of the average treatment effect, is:  

 

ˆ ˆβ E[ ] E[ ] {E[ | Z, 1] E[ | Z, 0] }

{E[ | Z, 1] E[ | Z, 0] }

ob id ob ob

w w

id id

Y W Y W

Y W Y W

      

      (2.1) 

In the above definition, ˆob

w  is the estimated regression coefficient of the treatment indicator W 

based on the observed sample and ˆid

w  is the estimated regression coefficient of the treatment 

indicator W based on an ideal sample. Since the observed sample is random sampled from the 
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observed part of ideal population, ˆob

w  should be unbiased for the average treatment effect 

conditional on the covariates X in the observed part of ideal population, which is represented by 

the difference within the first curly bracket. Furthermore, as an ideal sample is conceptualized as 

a random sample from ideal population, ˆid

w  should be unbiased for the average treatment effect 

conditional on the covariates X in the whole ideal population, which is represented by the 

difference within the second curly bracket.    

The next stage is adjusting the definition (2.1) to an empirical research setting where only the 

observed sample is available. This implies that the observed sample should be treated as fixed. In 

addition, I assume an ideal sample and an unobserved sample are both known for this frequentist 

recipe. In light of this principle, the bias for regression-based causal inference becomes as 

follows:  

 ˆβ| ( | )ob

w w  id id id id
Y ,X Y ,X   (2.2) 

The first term appears in the definition (2.2) is ˆob

w  which should be fixed and reported by most 

empirical research conducting regression-based causal inference. The second term in (2.2) is a 

random variable characterizing the conditional distribution of regression coefficient of W based 

on a known ideal sample ( )id id
Y , X . This random variable has taken the random sampling error 

associated with this known ideal sample into consideration, just like one can derive the 

distribution of any regression coefficient from a given observed sample to reflect the uncertainty 

in sampling and thereby conduct a T-test. The randomness of this ideal variable is mostly due to 

the imaginary nature of an unobserved sample.  

According to (2.2) and Frank et al. (2013), an inference will be invalid if:  
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#

#

ˆ ˆβ ( | )   for inferring a positive effect

ˆ ˆβ ( | )   for inferring a negative effect

ob ob

w w w w

ob ob

w w w w

   

   

   

   

id id

id id

Y , X

Y , X  

 (2.3) 

Or equivalently because both ˆob

w  and 
#

w  are constants:  

 

#

#

|  for inferring a positive effect

|  for inferring a negative effect

w w

w w

 

 





id id

id id

Y , X

Y , X   (2.4) 

Draw on the decision rules (2.4) and the distribution of 
id

w , I propose the following probabilities 

of invalidating an inference as the robustness indices of regression-based causal inference:  

 

#

#

( | )  for inferring a positive effect

( | )  for inferring a negative effect

w w

w w

P

P

 

 





id id

id id

Y , X

Y , X   (2.5) 

To express the distribution of w  conditional on an ideal sample and the probability of 

invalidating an inference explicitly, I formulate the classical linear regression model (CLRM) for 

the observed sample next:  

 2
obn



ob ob ob

ob

Y = X γ +ε

ε ~ N(0, I )   (2.6) 

The CLRM in (2.6) should look familiar for most empirical researchers. For (2.6), the residuals 

are denoted as ob
ε  and the observed sample size is obn . Moreover, the residual variance is 2  and 

assumed to be estimated in this context. Based on the CLRM displayed in (2.6), the least square 

estimates of regression coefficients (i.e., ˆ ob
γ ) and a multivariate distribution of regression 

coefficients conditional on this observed sample (i.e., | ,ob ob
γ X Y ) can be shown as follows:  
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 2

ˆ

| , ~ ( , ( )N 

ob ob T ob -1 ob T ob

ob ob ob T ob -1 ob T ob ob T ob -1

γ = ((X ) X ) (X ) Y

γ X Y ((X ) X ) (X ) Y (X ) X )   (2.7) 

Analogously, the CLRM for an unobserved sample, the least square estimates of regression 

coefficients for this unobserved sample and the distribution of regression coefficients conditional 

on this unobserved sample are formulated as below:  

 

2

2

ˆ

~ ( , )

unn

N





un un un

un

un un T un -1 un T un

un un un T un -1 un T un un T un -1

Y = X γ +ε

ε ~ N(0, I )

γ = ((X ) X ) (X ) Y

γ | X ,Y ((X ) X ) (X ) Y ((X ) X )

  (2.8) 

It’s remarkable that this unobserved sample has a sample size unn  which is likely to be different 

from the observed sample size. However, the residual variance for this CLRM is still 2 , which 

hints that the residual variances in CLRMs for both observed sample and unobserved sample are 

equal. This is a core assumption for the derivation of robustness indices and therefore maintained 

throughout this paper.  

Finally, the ideal sample is formed by combining the observed and unobserved samples 

mentioned in above CLRMs and again the CLRM with regard to this ideal sample can be defined 

similarly as in (2.6) through (2.8):  

 

2

( )

2

ˆ

~ ( , )

un obn n

N







id id id

id

id id T id -1 id T id

id id id T id -1 id T id id T id -1

Y = X γ +ε

ε ~ N(0, I )

γ = ((X ) X ) (X ) Y

γ | X ,Y ((X ) X ) (X ) Y ((X ) X )

   (2.9) 
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where the data matrices of id
Y  and id

X  can be understood as block matrices which have the 

following structures:  

 

( ) (p 2)

( ) 1

un ob

un ob

n n

n n

  

 

 
 
 

 
 
 

un

id

ob

un

id

ob

X
X =

X

Y
Y =

Y

  (2.10) 

Therefore, the probability of invalidating an inference can be readily computed from the 

distribution of 
id id

γ | Y ,X  in (2.9), provided one can randomly draw an unobserved sample from 

the unobserved part of ideal population. Unfortunately, a robustness index is useful only when an 

unobserved sample is unapproachable, and this contradicts the premise of the frequentist recipe. 

For this reason, I turn to the Bayesian recipe next.  

2.3-The Bayesian recipe 

The Bayesian recipe starts with a modified version of the definition of bias, which defines the 

bias for regression-based causal inference as the difference between least square estimate of 

regression coefficient of treatment indicator W and the random variable that follows the posterior 

distribution of the regression coefficient of W:  

 ˆβ ( | )ob

w w   ob ob
Y ,X   (2.11) 

The decision rules in the Bayesian recipe for deciding whether an inference is invalid are almost 

the same as their parallels in the frequentist recipe. An inference will be invalid if one of the 

following conditions is true:  
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#

#

ˆ ˆβ ( | )   for inferring a positive effect

ˆ ˆβ ( | )   for inferring a negative effect

ob ob

w w w w

ob ob

w w w w

   

   

   

   

ob ob

ob ob

Y , X

Y , X   (2.12) 

Consequently, the probability of invalidating an inference is accessible through the posterior 

distribution |w
ob ob

Y ,X  and generally they should be:  

 

#

#

( | )  for inferring a positive effect

( | )  for inferring a negative effect

w w

w w

P

P

 

 





ob ob

ob ob

Y , X

Y , X   (2.13) 

In the Bayesian recipe, the bias for regression-based causal inference is built on the observed 

sample solely. This doesn’t result in a discrepancy between the frequentist recipe and Bayesian 

recipe, so long as one choose to model the prior as the distribution of a focal parameter based on 

an unobserved sample. To demonstrate this relationship between the two recipes as well as 

formalize the posterior distribution, the Bayesian model of regression-based causal inference is 

provided as follows: 

 

2

2

~ ( , )

| , ~ ( , )

| ~ ( , )

i

N

Y N

N





un T un -1 un T un un T un -1

i i

ob ob

γ γ

γ ((X ) X ) (X ) Y ((X ) X )

γ X X γ

γ Y ,X θ Φ
  (2.14) 

where: 

 2





un T un ob T ob -1 un T un ob T ob

γ

un T un ob T ob -1

γ

θ ((X ) X + (X ) X ) ((X ) Y + (X ) Y )

Φ ((X ) X + (X ) X )
  (2.15) 

There is nothing special about the formulation of this Bayesian model except the 

parameterization of the prior distribution. The prior distribution in (2.14) is identical to the 

distribution of regression coefficients conditional on an unobserved sample, as specified in (2.8). 
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This is in accordance with the Bayesian framework propounded by Frank & Min (2007), given 

that the prior is defined as a distribution of regression coefficients conditional on an unobserved 

sample and the likelihood function will only be fit to the observed sample. The term 2  which 

denotes residual variance appears in both prior and likelihood function, which reflects the 

assumption that the classical linear regression models underlying the prior and likelihood 

function are restricted to have the same known residual variance. Most interestingly, the 

following equations are established inasmuch as (2.10) uncovers that the data matrices contained 

in an ideal sample can be written as block matrices:  

 

id T id un T un ob T ob

id T id un T un ob T ob

(X ) X = (X ) X + (X ) X

(X ) Y = (X ) Y + (X ) Y
  (2.16) 

Once the results in (2.16) are plugged into the expressions of posterior mean and variance in 

(2.15), the posterior distribution becomes:  

 
2~ ( , )N ob ob id T id -1 id T id id T id -1

γ | X ,Y ((X ) X ) (X ) Y ((X ) X )   (2.17) 

What (2.17) uncovers is that the posterior distribution will be identical to the distribution of 

regression coefficients conditional on an ideal sample when one parameterizes the prior 

distribution as if it is a distribution of regression coefficients conditional on an unobserved 

sample. However, I caution readers that the frequentist recipe and the Bayesian recipe are 

conceptually and empirically distinct even though they both arrive at the same model of 

robustness indices. Conceptually, the frequentist recipe requires an unobserved sample to be a 

real one while the Bayesian recipe only considers an unobserved sample as one’s belief which is 

subjective and shapes this belief into a prior distribution. Empirically, the frequentist approach is 

unfeasible since no unobserved sample is available whereas the Bayesian approach is practical in 

the sense that one only needs to transform his belief about an unobserved sample into a prior 
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distribution so as to make the corresponding posterior distribution qualified as a distribution 

based on an imaginary ideal sample. It’s remarkable that oftentimes a belief about an unobserved 

sample should be constantly changing instead of fixed, and in this case the learning goal of the 

Bayesian recipe is to determine the relationship between the probability of invalidating an 

inference and the prior parameters, which will be the theme of subsequent sections.  

3-Bayesian models of robustness indices for raw data  

3.1-Data and the sample statistics  

This section primarily focuses on the derivation of posterior distribution discussed earlier in the 

unifying Bayesian framework as if we have collected raw data for both unobserved sample and 

observed sample. By saying “raw data is collected for an unobserved sample”, I point to the 

construction of prior distribution which is conceptualized as the distribution of regression 

coefficients conditional on the imaginary raw data for this unobserved sample. The target is to 

express the posterior mean and variance as functions of sample statistics built on either an 

imaginary unobserved sample or the observed sample. To be aligned with the settings of earlier 

discussion, the raw data for the observed sample should be in the following form:  

 

1 ( 2)

1 ( 1)

1

ob ob

ob ob

ob ob

ob

n n p

n n p

n p n

n p

  

  

 



ob

ob

ob

ob

1 2 p

D = [Y , X ]

X = [1 , V ]

V = [Z , W ]

Z = [Z , Z , ..., Z ]

  (3.1) 

Some notations need explanations in (3.1): D refers to the whole data and it is composed of a 

data vector of outcome Y and a data matrix of all the predictors X. The data matrix X has two 

parts: The first part is a constant vector 1 and the second part is the group of predictors V. I 
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further decompose V into a data matrix Z which only includes the pure covariates and the vector 

of treatment indicators W. The matrix Z will have p columns, which symbolizes that there are p 

pure covariates in the raw data.  

By analogy, the raw data for an imaginary unobserved sample is structured as follows:  

 

1 ( 2)

1 ( 1)

1

un un

un un

un un

un

n n p

n n p

n p n

n p

  

  

 



un

un

un

un

1 2 p

D = [Y , X ]

X = [1 , V ]

V = [Z , W ]

Z = [Z , Z , ..., Z ]

  (3.2) 

Finally, the observed sample and an imaginary unobserved sample are consolidated to create an 

ideal sample which is styled as below (see (2.10) for a reference):  

 

( ) 1 ( ) ( 2)

( ) 1 ( ) ( 1)

( ) ( ) 1

( )

un ob un ob

un ob un ob

un ob un ob

un ob

n n n n p

n n n n p

n n p n n

n n p

    

    

   

 

id

id

id

id

1 2 p

D = [Y , X ]

X = [1 ,V ]

V = [Z , W ]

Z = [Z ,Z , ..., Z ]

  (3.3) 

Next some key sample statistics are introduced based on aforementioned raw data forms for 

unobserved, observed and ideal samples. First, I define the sample mean vectors for unobserved, 

observed and ideal samples as:  
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1 2 1 ( 2)

1 2 1

1 2 1 ( 2)

1 2 1

1 2 1 ( 2)

1 2 1

[1, , , , , ]

[Z , Z , , Z ]

[1, , , , , ]

[Z , Z , , Z ]

[1, , , , , ]

[Z , Z , , Z ]

id id id id

p p

id id id

p p

un un un un

p p

un un un

p p

ob ob ob ob

p p

ob ob ob

p p

Z Z Z W

Z Z Z W

Z Z Z W

 



 



 















id

id

un

un

ob

ob

X

Z

X

Z

X

Z

  (3.4) 

Recall that my notation rule specifies that a superscript of a statistical term is used to denote the 

kind of sample which it is computed based on and a subscript of a statistical term is used to 

denote the variable(s) it pertains to. To abide by this notation rule, the variance-covariance 

matrix of all the predictors in V for an ideal sample will be fashioned as follows:  

 
( 1) ( 1)

ˆ id

WW p p  

 
  

 

id id

id ZZ ZW

VV id

WZ

S S
S

S   (3.5) 

where: 

 

 

1 1 1

1

1

1

1

1

ˆ ˆ

ˆ ˆ

ˆ

ˆ

ˆ ˆ

p

p p p

p

p

id id

Z Z Z Z

id id

Z Z Z Z
p p

id

Z W

id

Z W
p

id id

Z W Z W
p







  
 

  
 
  
 

 
 

  
  
 

  

id

ZZ

id

ZW

id

WZ

S

S

S

  (3.6) 
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Likewise, the vector of covariances between predictors in V and the outcome Y for an ideal 

sample is generically written as below: 

 
( 1) 1

ˆ id

WY p 

 
    

id

ZYid

VY

S
S

  (3.7) 

where: 

 

1

1

ˆ

ˆ
p

id

Z Y

id

Z Y
p

 
 

  
  
 

id

ZYS
  (3.8) 

All aforementioned sample covariances and variances are supposed to be computed according to 

the following formula:  

 

1

2

1

1
ˆ ( )( )

1
ˆ ( )

n

xy i i

i

n

xx i

i

x x y y
n

x x
n





   

  




  (3.9) 

I emphasize here that the small x, small y and small n in (3.9) are all symbolic and their numeric 

values depend on the actual context. The small x could represent any variable in D except the 

constant vector 1 and the small y, when calculating a covariance, could be any variable in D 

other than the actual variable represented by small x. The small n is the size of a sample, which 

could possibly be an unobserved one, the observed one, or combinatively an ideal one. For 

example, the treatment indicator W could be the small x and the outcome Y could be the small y 

and consequently one would obtain the covariances between W and Y for an ideal sample, by 

replacing the sample size n with the actual ideal sample size ob unn n .   
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In summary, the notation rule will generally guide readers about the interpretation of a statistical 

term, especially a sample variance or covariance, that later appears in this paper. Although only 

the variance-covariance matrix of V and covariance vector between V and Y for an ideal sample 

is discussed in (3.5) through (3.8), one should recognize that he can write down the variance-

covariance matrix of V and covariances between V and Y almost identically for an unobserved 

sample or the observed sample and the only change he needs is to modify the superscript of 

every variance and covariance term.  

3.2-The posterior distribution of w  for raw data  

The posterior distribution of w , i.e., the regression coefficient of the treatment indicator W, is of 

paramount value for regression-based causal inference since it is the ground on which the 

inference of a true average treatment effect is carried out. The following theorem will bridge this 

posterior distribution and the sample statistics by recasting its mean and variance as functions of 

sample variances and covariances for unobserved and observed samples:  

Theorem 1. Suppose the CLRMs for unobserved, observed and ideal samples as presented in 

(2.6) through (2.9) are true and the raw data is in the same format as what I have outlined in (3.1) 

through (3.3), the posterior distribution of w  within the Bayesian framework proposed in (2.14) 

through (2.17) will be as follows:  

 

2ˆ
ˆ| ~ ( , )

ˆ

id
idWY

w WWid un ob

WW

N
n n

 
 






 

id id -1 id
ob ob id id -1 id -1WZ ZZ ZY

WZ ZZ ZWid id -1 id

WZ ZZ ZW

S (S ) S
X ,Y ( S (S ) S )

S (S ) S
  (3.10) 

where: 
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ˆ ˆ
ˆ   for 1, 2, ,  

ˆ ˆ
ˆ   for 1, 2, ,

ˆ
ˆ

i j i j

i j

i i

i

un un ob ob un un un ob ob ob
Z Z Z Z i j i jid id id

Z Z i jun ob un ob

un un ob ob un un un ob ob ob
WZ WZid id idi i

WZ iun ob un ob

un u
id WW
WW

n n n Z Z n Z Z
Z Z i j p

n n n n

n n n W Z n W Z
W Z i p

n n n n

n

 


 





 
    

 

 
   

 


2 2

2ˆ ( ) ( )
( )

ˆ ˆ
ˆ   for 1, 2, ,

ˆ ˆ
ˆ

i i

i

n ob ob un un ob ob
idWW

un ob un ob

un un ob ob un un un ob ob ob
Z Y Z Yid id idi i

Z Y iun ob un ob

un un ob ob un un un ob ob ob
id WY WY
WY un ob un ob

n n W n W
W

n n n n

n n n Z Y n Z Y
Z Y i p

n n n n

n n n W Y n W Y

n n n n



 


 


 
 

 

 
   

 

 
 

 

id idW Y

  (3.11) 

(Proof in Appendix A; Additional proof of the equivalence between theorem 1 and some 

common expressions of regression coefficients is provided in Appendix B, to demonstrate how 

the Bayesian paradigm of robustness indices is connected to regression coefficients, semi-

correlations and partial correlations). 

The equation below will serve as the instruction of computing the ideal sample means appear in 

(3.11):  

 

 for 1,  2,...,
un un ob ob

id i i
i un ob

un un ob ob
id

un ob

un un ob ob
id

un ob

n Z n Z
Z i p

n n

n W n W
W

n n

n Y n Y
Y

n n


 













  (3.12) 

The formula in (3.11) will have a tidier form, as described next (see details in Frank & Min 

(2007) Appendix): 
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2

ˆ ˆ ˆ(1 ) (1 ) ( )( )  for 1, 2, ,  

ˆ ˆ ˆ(1 ) (1 ) ( )( )  for 1, 2, ,  

ˆ ˆ ˆ(1 ) (1 ) ( )

ˆ

i j i j i j

i i i

i

id un ob ob un ob un

Z Z Z Z Z Z i i j j

id un ob ob un ob un

WZ WZ WZ i i

id un ob ob un

WW WW WW

i

Z Y

Z Z Z Z i j p

W W Z Z i p

W W

     

     

     



        

       

     

ˆ ˆ(1 ) (1 ) ( )( )  for 1, 2, ,  

ˆ ˆ ˆ(1 ) (1 ) ( )( )

i i

d un ob ob un ob un

Z Y Z Y i i

id un ob ob un ob un

WY WY WY

Z Z Y Y i p

W W Y Y

    

     

       

      

 

 (3.13) 

where: 

 

un

un ob

n

n n
 


  (3.14) 

The above formula, equations and distribution constitute the entire theorem 1, which unveils a 

cardinal perspective on the evaluation of robustness of regression-based causal inference: First, 

as suggested by (2.17), the posterior distribution of w  could be conceptualized as a distribution 

of w  when a whole ideal sample is available. However, such conceptualization is hinged on two 

assumptions. The first one is that a CLRM assumption could be made for observed, unobserved 

and ideal samples. The second one is the residual variances in the CLRMs for observed, 

unobserved and ideal samples are all equal and known. Theorem 1 shows that, the mean and 

variance of the posterior distribution of w  are functions of sample variances and covariances for 

an ideal sample, which can be further expressed as functions of sample means, variances and 

covariances for observed and unobserved samples. Ultimately, by fixing the observed sample 

statistics (means, variances, covariances and sample size) as well as the residual variance, the 

posterior mean and variance of w  should be functions of unobserved sample statistics, such as 

the size, means, variances and covariances for an unobserved sample. Essentially, those 
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unobserved sample statistics are all parameters of the prior distribution of the unifying Bayesian 

framework proposed in the last section, and changing values of the unobserved sample statistics 

will result in variations in the posterior distribution. Such logic of the analysis of robustness is in 

line with Bayesian sensitivity analysis which purposes checking the influence of prior 

distribution on posterior distribution.  

3.3-Probit models for the probability of invalidating an inference 

I propound the probability of invalidating an inference, which is based on the posterior 

distribution of w  offered by theorem 1, as the robustness index for regression-based causal 

inference. Recall that the probability of invalidating an inference is either the posterior 

probability of 
#

w w   when inferring a positive effect or the posterior probability of 
#

w w   

when inferring a negative effect. Given the posterior distribution of w  is normal with mean and 

variance as definitive functions of sample statistics, the probability of invalidating an inference is 

expected to be a probit function of the sample statistics that shows in (3.10). For this reason, I 

turn to the next theorem:  

Theorem 2. Assume the CLRMs for unobserved, observed and ideal samples that are shown in 

(2.6) through (2.9) are true and the raw data conforms to the structure defined in (3.1) through 

(3.3). Moreover, I assume both the threshold of making a decision 
#

w  and the common residual 

variance 2  shared by all CLRMs are given. Then the following probit models are true for the 

probability of invalidating an inference (denoted by p):  

For inferring a positive effect:  
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# ˆ ˆ( ) [ ( ) ( )]

ˆ

un ob
id id

w WW WY
id

WW

n n
probit p   

 


   



id id -1 id id id -1 id

WZ ZZ ZW WZ ZZ ZY
id id -1 id

WZ ZZ ZW

S (S ) S S (S ) S
S (S ) S

 

 (3.15) 

For inferring a negative effect:  

 
#ˆ ˆ( ) [( ) ( )]

ˆ

un ob
id id

WY w WW
id

WW

n n
probit p   

 


   



id id -1 id id id -1 id

WZ ZZ ZY WZ ZZ ZW
id id -1 id

WZ ZZ ZW

S (S ) S S (S ) S
S (S ) S

 

 (3.16) 

(Proof in Appendix).  

Although the sample variances and covariances in the probit models above are all based on an 

ideal sample, they are in fact functions of sample means, variances and covariances based on 

unobserved and observed samples, as manifested by (3.13). The analytical strategy for the probit 

models above is that I only isolate a small number of unobserved sample statistics as focal 

parameters in the analysis of robustness while holding all other observed and unobserved sample 

statistics as fixed. The probit models above may turn out to be a linear or nonlinear function of 

the focal parameters, depending on the choice of focal parameters. For example, the probit 

models are linear functions of ˆ un

WY  if all other unobserved and observed sample statistics are 

held constant. An exemplary question to ask in this case would be “what does ˆ un

WY  need to be in 

order to make the probability of invalidating an inference smaller than a certain number (say 

0.5), holding all other unobserved and observed sample statistics as fixed?”. The ensuing 

subsection will detail this analytical strategy and discuss its implications for the two scenarios 

described at the beginning.  
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3.4-External validity and internal validity  

It’s important to choose a small but appropriate subset of parameters (as focal parameters) from 

all the terms of sample statistics in the probit models. There are three main reasons for doing so: 

First, in some cases, some unobserved sample statistics are more meaningful and therefore more 

suitable choices as focal parameters than other unobserved sample statistics. For example, we 

might be more interested in the covariance between pretest scores and Open Court Reading 

(OCR) curriculum as well as the covariance between posttest scores and OCR in a possibly 

sample of classrooms randomly drawn from the non-volunteered schools, as pretest is the main 

covariate in the model and posttest is the outcome. We might, instead, focus on the parameter  , 

i.e., the proportion of unobserved classrooms in an ideal sample of classrooms, while assuming 

the covariances between posttest scores and OCR as well as between pretest scores and OCR are 

both 0, which mimics a research question addressed by Frank et al. (2013). Second, one should 

recognize that the number of possible parameters (unobserved sample statistics) will 

quadratically increase as the number of variables increase. I must point out, that my approach 

requires one to analyze one focal parameter at a time while holding all others as fixed and to 

subsequently report the thresholds of invalidating an inference at some levels of probabilities for 

this focal parameter. Therefore, it’s impossible to learn all possible unobserved sample statistics 

as focal parameters as it will make this analysis too complex to conduct and understand.  

The last reason is about the preferences and constraints on parameters in the two scenarios where 

regression-based causal inference likely fails. In the first scenario, a targeted research is usually a 

quasi-experiment or observational study which lacks randomized assignment to groups. Recall 

that an unobserved sample in this scenario is defined as the collection of counterfactual 

observations of all the subjects in the observed sample. A counterfactual observation, according 
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to definition 1.2, should be an observation in which everything is the same as the original 

observation except its values of the treatment indicator and the outcome. Therefore, an 

unobserved sample has a distinctive structure as shown below:  

If the observed sample in the first scenario has the following structure:  

 

1 ( 2)

1 ( 1)

1

ob ob

ob ob

ob ob

ob

n n p

n n p

ob ob

n p n

n p

  

  

 



ob

ob

ob

ob

1 2 p

D = [Y , X ]

X = [1 , V ]

V = [Z , W ]

Z = [Z , Z , ..., Z ]

  (3.17) 

An unobserved sample will be in the following form:  

 

1 ( 2)

1 ( 1)

1 1

ob ob

ob ob

ob ob ob

ob

n n p

n n p

ob ob

n p n n

n p

  

  

  





un

un

un

ob

1 2 p

D = [Y , X ]

X = [1 , V ]

V = [Z ,1 W ]

Z = [Z , Z , ..., Z ]

  (3.18) 

As a result, an ideal sample is formed by stacking the data matrix of unobserved sample over the 

data matrix of observed sample:  
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2 1 2 ( 2)

2 1 2 ( 1)

1 1

1

ob ob

ob ob

ob ob ob

ob ob

ob

n n p

n n p

ob ob

n p n n

ob ob

n p n

n p

  

  

  

 



 
 
 
 

id

id

id

ob

1 2 p

D = [Y , X ]

X = [1 ,V ]

Z ,1 W
V =

Z , W

Z = [Z ,Z , ...,Z ]

  (3.19) 

The data format defined in (3.17) through (3.19) has a notable difference from the format defined 

earlier: The data matrix of Z and vector of W now have a superscript “ob”, which signals both 

are now fixed as portions of the observed sample. For example, the values of covariates in Z for 

an unobserved sample in this case will be identical to ob

ob

n p
Z , i.e., the observed values of 

covariates in Z. What 
1 1ob ob

ob

n n 
1 W  indicates is that every treated subject in the observed sample 

will choose the control group and every control subject in the observed sample will choose the 

treatment group, in an unobserved sample. The raw data defined by this fashion will have the 

following properties:  

 

1

0.5

id un ob

WW WW WW

un ob

un ob

id

n n

W W

W

   





 



id un ob

ZZ ZZ ZZ

id

WZ

id un ob

S = S = S

S 0

Z = Z = Z   (3.20) 
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The above constraints on the parameters in the probit models impart an insight that the probit 

models will be greatly simplified when the analysis of robustness is applied to a research with 

limited internal validity, due to the nature of an unobserved sample that is composed of 

counterfactuals of actual observations. Specifically, the probit models (3.15) and (3.16) will be 

reduced in the first scenario as follows:  

For inferring a positive effect:  

 
#2

ˆ ˆ ˆ( ) [ 0.5 0.5 (0.5 0.25)( )]
ˆ

ob
ob un ob ob ob un

w WW WY WY
ob

WW

n
probit p W Y Y   

 
        (3.21) 

For inferring a negative effect:  

 
#2

ˆ ˆ ˆ( ) [0.5 0.5 (0.5 0.25)( ) ]
ˆ

ob
un ob ob ob un ob

WY WY w WW
ob

WW

n
probit p W Y Y   

 
        (3.22) 

The above probit models are intended for research with limited internal validity and it’s 

remarkable that the only existing parameters are the covariance between the outcome Y and the 

treatment indicator W in an unobserved sample (i.e., ˆ un

WY ) and the unobserved sample mean for 

the outcome Y (i.e., unY ). The probit link of the probability of invalidating an inference is now a 

linear function of unY  and ˆ un

WY . The analytical strategy regarding those probit models then 

becomes straightforward: one can either assume unY  is fixed and identify the threshold of ˆ un

WY  

that makes the probability of invalidating an inference smaller than a certain number (say 0.5), or 

locate the threshold of unY  that makes the probability of invalidating an inference smaller than a 

certain number (say 0.5) conditional on a value of ˆ un

WY .  

In contrast to the first scenario where probit models have been greatly simplified comparing to 

(3.15) and (3.16), probit models will remain the same as presented in (3.15) and (3.16) in the 
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second scenario where a research design has strong internal validity but limited external validity. 

This means the pool of the candidates of focal parameters in the subsequent analysis of 

robustness could be large and therefore the choice of focal parameters is important and 

necessary. It’s worthy of stressing here that, a reasonable conceptualization of a possible 

unobserved sample is the preliminary for an analysis of robustness. In the example of Borman et 

al. (2008), an enlightening model of conceptualization would be asking questions such as “what 

would the covariance between the posttest scores and OCR have been had they drawn a random 

sample of classrooms from the non-volunteered schools” or “what would the mean pretest and 

posttest scores have been had they drawn a random sample of classrooms from the non-

volunteered schools”. Ideally, one should extrapolate the unobserved sample size and means, 

variances and covariances for all relevant variables in an unobserved sample. In practice, as 

illustrated later, an unobserved sample statistic will be restricted to be equal to its counterpart in 

the observed sample except that it is of particular interest to a researcher in his analysis of 

robustness or some strong evidence has suggested that it should be different from its counterpart 

in the observed sample.  

4-Bayesian models of robustness indices for centered and standardized data 

4.1-For centered data 

The purpose of this section is to demonstrate that, although the Bayesian models of robustness 

indices may seem complicated and difficult to work with, they can be simplified by considering 

data in observed and unobserved samples as centered (or standardized), rather as raw. The 

centered data in observed, unobserved and ideal samples will be in the identical form as 

presented in (3.1) through (3.3) except that the means of all variables will be zero now.  
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Consequently, the posterior distribution of w  will remain unchanged for centered data with the 

following instructions for calculating the sample variances and covariances in an ideal sample:  

 

ˆ ˆ ˆ(1 )   for 1, 2, ,  

ˆ ˆ ˆ(1 )   for 1, 2, ,  

ˆ ˆ ˆ(1 )

ˆ ˆ ˆ(1 )    for 1, 2, ,  

ˆ ˆ ˆ(1 )

i j i j i j

i i i

i i i

id un ob

Z Z Z Z Z Z

id un ob

WZ WZ WZ

id un ob

WW WW WW

id un ob

Z Y Z Y Z Y

id un ob

WY WY WY

i j p

i p

i p

   

   

   

   

   

    

   

  

   

  

  (4.1) 

Obviously, (4.1) is a reduced form of its counterpart for raw data as displayed in (3.13). The rest 

of analysis of robustness for centered data is the same as the analysis of robustness for raw data: 

Built on the probit models derived in (3.15) and (3.16), one can pinpoint the threshold of a focal 

parameter for the probability of invalidating an inference to be smaller than a certain value (say 

0.5), conditional on some values of all other unobserved and observed sample statistics. I 

comment here that, as a special case of the probit models in (3.15) and (3.16), the probit models 

for research that lacks internal validity can be further reduced as follows:  

For inferring a positive effect:  

 
#2

ˆ ˆ ˆ( ) [ 0.5 0.5 ]
ˆ

ob
ob un ob

w WW WY WY
ob

WW

n
probit p    

 
     (4.2) 

For inferring a negative effect:  

 
#2

ˆ ˆ ˆ( ) [0.5 0.5 ]
ˆ

ob
un ob ob

WY WY w WW
ob

WW

n
probit p    

 
     (4.3) 
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4.2-For standardized data 

If one has the raw data and chooses to standardize all the variables, or if he can assume or infer 

the standardized coefficients from the results of a research, the data in observed, unobserved and 

ideal samples might be thought of as being standardized and resultantly the posterior mean and 

variance of w  as well as the probit models will be functions of sample correlation matrices 

defined below:  

 

 

1 1 1

1

1

1

1

1

1

1

p

p p p

p

p

p

id id

Z Z Z Z

id id

Z Z Z Z
p p

id

Z W

id

Z W
p

id id

Z W Z W
p

id

Z Y

id

Z Y
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r r

r r

r

r

r r

r

r









 
 

  
 
 
 

 
 

  
  
 



 
 

  
  
 

id

ZZ

id

ZW

id

WZ

id

ZY

R

R

R

R

  (4.4) 

where r is used to denote the sample correlation between two variables. For example, 
id

WYr  is the 

sample correlation between the treatment indicator W and the outcome Y in an ideal sample.  

Theorem 3. The posterior distribution of w  could be rewritten as follows, providing all 

assumptions of theorem 1 can be upheld, for standardized data:  

 

2

| ~ ( , 1 )
1

id

WY
w un ob

r
N

n n







 

id id -1 id
ob ob id id -1 id -1WZ ZZ ZY

WZ ZZ ZWid id -1 id

WZ ZZ ZW

R (R ) R
X ,Y ( R (R ) R )

R (R ) R
  (4.5) 
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where: 

 

* *
(1 )

* *
(1 )

* *
(1 )

* *
(1 )

un ob

un ob

un ob

un ob

un ob

un ob

un un ob ob
id un obWY WY

WY WY WYun ob

n n

n n

n n

n n

n n

n n

n r n r
r r r

n n

 

 

 

 


   




   




   




   



un ob
id un obZZ ZZ
ZZ ZZ ZZ

un ob
id un obWZ WZ
WZ WZ WZ

un ob
id un obZY ZY
ZY ZY ZY

R R
R R R

R R
R R R

R R
R R R   (4.6) 

Proof:  

The proof of theorem 3 should be straightforward once ˆ id

WW  is plugged in as 1 and every 

covariance term as its corresponding correlation term (i.e., a covariance matrix equal to its 

corresponding correlation matrix, a covariance equal to its corresponding correlation) into the 

distribution proposed by theorem 1.  

Theorem 4. The probit models for the probability of invalidating an inference (p) could be 

rewritten as follows, providing all assumptions of theorem 2 are met, for standardized data:  

For inferring a positive effect: 

 
#( ) [ (1 ) ( )]

1

un ob
id

w WY

n n
probit p r




   



id id -1 id id id -1 id

WZ ZZ ZW WZ ZZ ZY
id id -1 id

WZ ZZ ZW

R (R ) R R (R ) R
R (R ) R

 

 (4.7) 

For inferring a negative effect:  

 
#( ) [( ) (1 )]

1

un ob
id

WY w

n n
probit p r 




   



id id -1 id id id -1 id

WZ ZZ ZY WZ ZZ ZW
id id -1 id

WZ ZZ ZW

R (R ) R R (R ) R
R (R ) R

 

 (4.8) 
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Proof:  

Just as the proof of theorem 3, I plug ˆ id

WW  as 1 and every covariance term as its corresponding 

correlation term (i.e., a covariance matrix equal to its corresponding correlation matrix, a 

covariance equal to its corresponding correlation) into the probit models proposed by theorem 2. 

Finally, the probit models for a research with limited internal validity have quite simple and tidy 

forms as below:  

For inferring a positive effect:  

 
#2

( ) [ 0.5 0.5 ]
ob

un ob

w WY WY

n
probit p r r


     (4.9) 

For inferring a negative effect:  

 
#2

( ) [0.5 0.5 ]
ob

un ob

WY WY w

n
probit p r r 


     (4.10) 

5-Appropriate statistical threshold and Bayesian models for replacing observed cases 

5.1-Appropriate statistical threshold 

The analysis of robustness of causal inferences I have discussed so far can be perceived as a 

procedure of retesting the hypothesis for a conceptualized ideal sample. Such hypothesis testing 

procedure entails a statistical threshold which is a product of the chosen critical value 

(traditionally it’s 1.96) and the standard error of the estimate of treatment effect based on an 

ideal sample (i.e., ˆ id

w  ). I emphasize that, unlike the standard error of ˆ ob

w  (the estimate of 

treatment effect based on the observed sample) which only considers the observed sample, the 

standard error of ˆ id

w  accounts for observations of both observed sample and unobserved sample 

and thus becomes the appropriate choice.  
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The standard error of ˆ id

w  has been given by theorem 1 as follows:  

 

2

ˆ ˆ( )id id

w WWun ob
se

n n


   



id id -1 id -1

WZ ZZ ZW
( S (S ) S )   (5.1) 

where the computations of ˆ , ,id

WW id id

WZ ZZ
S S  are guided by (3.11) through (3.14). Furthermore, the 

statistical threshold of ˆ id

w  is calculated as below, for testing the null hypothesis of 0w   with 

level of significance as 0.05: 

 

2
#

2
#

ˆ1.96*  for inferring a positive effect

ˆ1.96*  for inferring a negative effect

id

w WWun ob

id

w WWun ob

n n
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
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

id id -1 id -1

WZ ZZ ZW

id id -1 id -1

WZ ZZ ZW

( S (S ) S )

( S (S ) S )
 

 (5.2) 

With the threshold 
#

w  given in (5.2), the probit models of the probabilities of invalidating an 

inference turn out to be as follows:  

For inferring a positive effect:  

 ˆ( ) 1.96 ( )
ˆ

un ob
id

WY
id

WW

n n
probit p 

 


  



id id -1 id

WZ ZZ ZY
id id -1 id

WZ ZZ ZW

S (S ) S
S (S ) S

  (5.3) 

For inferring a negative effect: 

 ˆ( ) 1.96 ( )
ˆ

un ob
id

WY
id

WW

n n
probit p 

 


  



id id -1 id

WZ ZZ ZY
id id -1 id

WZ ZZ ZW

S (S ) S
S (S ) S

  (5.4) 

The thresholds offered in (5.2) will remain instructive as long as the decision about threshold 
#

w  

is a pure statistical one. However, other factors such as transaction cost of proposed action may 
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come into play in determining 
#

w  and a relevant discussion about non-statistical threshold has 

been offered by Frank et al. (2013).  

5.2-The Bayesian models of robustness indices for replacing observed cases 

Frank & Min (2007) has proposed two mechanisms of forming an ideal sample: The first one is 

neutralization by addition, which creates an ideal sample by adding an unobserved sample to the 

existent observed sample. Until now the Bayesian models of robustness indices of causal 

inferences have exclusively centered on this mechanism. The other one is neutralization by 

replacement, which generates an ideal sample by replacing a part of the observed sample with an 

unobserved sample. In this case, an ideal sample will have the same size as the observed sample 

and it has both observations inherited from the observed sample and observations introduced by 

an unobserved sample. In this subsection, a new set of Bayesian models of robustness indices 

will be devoted to neutralization by replacement, as they are supplementary to the existing 

Bayesian models and provides alternative conceptualizations and interpretations to the 

robustness indices.  

To parameterize the mechanism of neutralization by replacement, the following notations are 

defined: iI  is the binary indicator of whether ith observed case (say his name is Tom) is kept in 

an ideal sample (equivalently, this means Tom is not replaced with an unobserved case). s 

represents the collection of all iI  i=1, 2, …, obn  . Therefore, every s is a subsample of the 

observed sample and it will be kept in an ideal sample.  

The Bayesian models of robustness indices of causal inferences for replacing observed cases are 

defined as follows: 
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2
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~ ( , )

| , , ~ ( , )
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ob ob
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
  (5.5) 

where: 

 2

s

s





un T un ob|s T ob|s -1 un T un ob|s T ob|s

γ

un T un ob|s T ob|s -1

γ

θ ((X ) X + (X ) X ) ((X ) Y + (X ) Y )

Φ ((X ) X + (X ) X )   (5.6) 

In (5.6), ob|s
X  and ob|s

Y  refer to the matrix of covariates and vector of outcomes respectively for 

the observed cases which are not replaced with unobserved ones (so they are retained in an ideal 

sample). To obtain the target posterior distribution | ob ob
γ Y ,X  , one should take the expectation 

of the probability density function of | ,ob ob
γ Y ,X s  over the distribution of subsample s. This 

could be practically done through a Monte Carlo simulation.  

A closed theoretical form of | ob ob
γ Y ,X  may not be straightforward for most cases. Fortunately, 

for a random sampling procedure, any sample statistics of s should center around the same 

sample statistic of the whole observed sample. Consequently, the distribution of | ob ob
γ Y ,X  can 

be approximated by assuming the sample statistics of the retained observed cases are identical to 

the sample statistics of the whole observed sample.  

Resultantly, based on theorem 1, I have:  
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w WWid ob
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where: 
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 (5.8) 

and: 

 

un

ob

n

n
   (5.9) 

  symbolizes the proportion of observed sample to be replaced with an unobserved sample. 

Draw on the Bayesian models of robustness indices for replacing observed cases, as formalized 

in (5.5) through (5.9), we can quantify the probabilities of invalidating an inference and 

formulate their corresponding probit models which are identical to (3.15) and (3.16) except the 

expression of  .  

6-Illustrative examples 

6.1-The Bayesian robustness indices of the effect of Open Court Reading on reading 

achievement 

Open Court Reading (OCR) program is a curriculum that is rooted in research-based practices 

and has been in the market for a long time and widely adopted by many districts and schools. 

Although OCR is potentially a beneficial program because it responds to recommendations from 

research that focused on developing early reading skills, its effect has never been assessed and 

confirmed by a randomized experiment. Seeing this, Borman et al. (2008) designed a multisite 

cluster randomized experiment and randomly drew six schools from those who volunteered in 
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their study. Subsequently, they define a block as a single grade of one sampled school and within 

each block classrooms were randomly assigned to the OCR group or the control group. 

Controlling for the pretest scores and block membership, Borman et al. (2008) estimated the 

effect of OCR as 7.95 (on reading composite scores) which was statistically significant and went 

on to conclude that “the outcomes from these analyses provided not only evidence of the 

promising 1-year effects of OCR on students’ reading outcomes but also suggest that these 

effects may be replicated across varying contexts with rather consistent and positive results”. 

Ideally, the findings of Borman et al. (2008) implicate that, the estimated effect of OCR would 

be around 7.95 if one were to conduct a large-scale completely randomized experiment, 

controlling for the pretest scores. In other words, regression-based causal inference based on a 

design where a large random sample of classrooms from the entire U.S. is available and all 

sampled classrooms are randomly assigned to the OCR group and the control group, would lead 

to an estimate of the effect of OCR as nearly 7.95 with the mean posttest scores of sampled 

classrooms as the outcome and the mean pretest scores of sampled classrooms as the covariate. 

Comparing Borman et al. (2008) to the regression-based causal inference built on this imaginary 

large-scale completely randomized experiment is a necessary starting point of the analysis of 

robustness in this paper. Nevertheless, such comparison isn’t necessarily plausible as Borman et 

al. (2008) only had a random sample of classrooms from the volunteered schools instead of a 

nationwide random sample of classrooms and thus Borman et al. (2008) actually had a 

nonrandom sample from its target population, i.e., the classrooms in the entire U.S.. Therefore, 

Borman et al. (2008) fits the description of the second scenario and we can proceed with its 

analysis of robustness.  
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Conforming to my notation rules, data structure and formulations proposed earlier, the pretest 

score, OCR and the posttest score are the covariate Z, the treatment indicator W and the outcome 

Y respectively. Furthermore, the sample statistics of the observed sample in Borman et al. (2008) 

should be fixed as follows:  

Means of Z, W and Y and observed sample size: 

 576.62,  0.55,   609.96,  49ob ob ob obZ W Y n      (6.1) 

Covariance matrix of [Z, W, Y]: 

 

2079.36 0.39 1832.2

0.39 0.25 2.33

1832.2 2.33 2401

 
 
 
 
 

  (6.2) 

Next step is crucial: we need to present our research questions and make assumptions about an 

unobserved sample. The purpose of presenting our research questions in analysis of robustness is 

to isolate the focal parameters that are required by the answer of research questions. In this 

example, I decide to follow the logic of Frank et al. (2013) and wonder the number of classrooms 

randomly drawn from non-volunteered schools we need to add to the observed sample of 

Borman et al. (2008) such that the probability of invalidating their inference is smaller than a 

prespecified benchmark (say 0.5), assuming the covariance between OCR and posttest is 0 in 

those classrooms sampled from non-volunteered schools. The meaning of this research question 

is three-fold: First, an unobserved sample which in this context is a random sample of classrooms 

drawn from non-volunteered schools is needed and to be added to the observed sample so that an 

ideal sample is constructed. My robustness index, i.e., the probability of invalidating an inference 

is computed based on this imaginary ideal sample. Two, this research question involves an 

assumption that the sample covariance between OCR (W) and the posttest scores (Y) is zero in 
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this unobserved sample. Three, the focal parameter for this research question is the unobserved 

sample size unn . Particularly, I am interested in the relationship between unn  and the probability 

of invalidating the inference of Borman et al. (2008), holding all other unobserved and observed 

sample statistics fixed.  

To fix every unobserved sample statistic other than the focal parameters, it’s inevitable to impose 

some constraints on them. As discussed earlier, an unobserved sample statistic can be quantified 

as a number whenever it’s defensible to do so. More often, an unobserved sample statistic is 

constrained to be its observed counterpart. In this case, every unobserved statistic other than the 

focal parameter unn  and ˆ un

WY  (which is assumed to be 0) is thought to be identical to its observed 

counterpart. The constraints imposed on all unobserved sample statistics as well as the 

assumptions about the observed sample statistics and residual variance (i.e., 2 ) are summarized 

below:  
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Assuming the statistical threshold in (5.2) is adopted, the parametric values provided in (6.3) 

lead to the following probit model of the probability of invalidating the inference for Borman et 

al. (2008): 

 

40.36
( ) 1.96 0.12 49

49

un

un
probit p n

n
   


  (6.4) 

Drawing on the probit model in (6.4), the main analytical strategy is to pinpoint the threshold of 

unn  that makes the probability of invalidating the inference of Borman et al. (2008) smaller than a 

desired value. For an example, if we would like to find the threshold of unn  corresponding to a 

probability smaller than 0.5, the probit model (6.4) needs to be transformed as an inequality with 

regard to unn  as follows:  

 

40.36
1.96 0.12 49 0

49

un

un
n

n
   


  (6.5) 

The above inequality suggests that the probability of invalidating the inference of Borman et al. 

(2008) would be smaller than 0.5 as long as unn  is not greater than 91, which means the 

probability of invalidating the inference of Borman et al. (2008) is smaller than 0.5 when 91 or 

less classrooms are randomly sampled from the non-volunteered schools assuming the 

covariance between OCR and the posttest scores is 0 among those sampled classrooms and all 

other parameters are fixed as in (6.3). Furthermore, the estimated regression coefficient of the 

treatment indicator W based on an ideal sample is calculable with the parametric values in (6.3) 

and the threshold value of unn  as follows:  

 

456.68
ˆ 1.375

49

id

w unn
 


   (6.6) 

whose general form is the following:  
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It turns out that the threshold of 91unn   corresponds to the estimated regression coefficient of 

W based on an ideal sample as 1.89, which further corresponds to the probability of invalidating 

the inference of Borman et al. (2008) as 0.5. To gain comprehensive knowledge about the one-

to-one relationships among the probability of invalidating Borman et al. (2008)’s inference, the 

threshold of unn  and the estimated regression coefficient of W in an ideal sample, it’s strongly 

recommended that the threshold of unn  and the estimated regression coefficient of W are 

repeatedly calculated regarding various desired values of the probability of invalidating the 

inference of Borman et al. (2008). Below are a table and a graph illustrate those relationships. 

Table 2.1 tabulates the thresholds of unn  and associated estimated regression coefficients of W 

that make the probability of invalidating the inference of Borman et al. (2008) lower than 0.1, 

0.2, …, 0.9 respectively. For example, at most 64 classrooms which are randomly drawn from 

the non-volunteered schools and have a zero sample correlation between OCR and posttest 

reading scores can be added to the observed sample so as to keep the probability of invalidating 

the inference of Borman et al. (2008) under 0.3, given the parametric values in (6.3). The 

relationship between unn  and the probability of invalidating the inference of Borman et al. (2008) 

is further delineated in figure 2.4, and as expected they are positively correlated, which means 

adding more sampled classrooms with zero correlation between OCR and posttest scores in the 

non-volunteered schools to the observed sample will weaken the inference of Borman et al. 

(2008). 

In figure 2.5, I intend to present the posterior probability of invalidating the inference of Borman 

et al. (2008) in a context of testing null hypothesis. The black curves in figure 5 are distributions 
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corresponding to null hypothesis 0w   and the red curves are distributions of w  conditional 

on a given ideal sample. Figure 2.5 depicts the same pattern as manifested in Table 2.1: as the 

unobserved sample size becomes larger the distribution corresponding to null hypothesis and the 

distribution of w  will get closer, and therefore the probability of invalidating the inference of 

Borman et al. (2008) will be larger as well. The appropriate statistical threshold will, in this case, 

keep dropping because the ideal sample size keeps growing. The knowledge of paramount 

importance imparted by figure 2.5 is that the posterior probability of invalidating the inference of 

Borman et al. (2008) can be conceptualized as type II error with regard to retesting the null 

hypothesis: 0w   versus the alternative hypothesis when an unobserved sample can be 

randomly drawn from the non-volunteered schools and merged to the observed sample of 

Borman et al. (2008).  
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Table 2.1: Thresholds of unn  assuming ˆ 0un

WY   

Level of probability Threshold of nun 

The estimated 

regression coefficient of 

W based on an ideal 

sample 

0.1 36 4.00 

0.2 51 3.19 

0.3 64 2.67 

0.4 77 2.25 

0.5 91 1.89 

0.6 107 1.55 

0.7 126 1.23 

0.8 152 0.90 

0.9 195 0.50 

 

 

 

 

 

 



  

  

123 

 

Figure 2.4: The relationship between unn  and the probability of invalidating the inference of 

Borman et al. (2008) 
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Figure 2.5: The relationship between testing null hypothesis and the posterior probability of 

invalidating the inference of Borman et al. (2008) 
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Alternatively, the inference of Borman et al. (2008) could be conceived as it’s built on 

standardized data instead of raw data as discussed earlier. For standardized data, the correlation 

matrix needs to be specified for the observed sample, and in this case it is:  

 

1 0.017 0.82

0.017 1 0.095

0.82 0.095 1

 
 
 
 
 

  (6.8) 

for variables [Z, W, Y], where Z refers to the pretest scores, W refers to the OCR curriculum and 

Y refers to the posttest scores.  

The same research question raised for raw data could now be asked again for standardized data, 

i.e., how many sampled classrooms do we need from the non-volunteered schools such that the 

probability of invalidating the inference of Borman et al. (2008) is lower than 0.5 assuming the 

correlation between OCR and posttest scores is 0 for those sampled classrooms? Again, I assume 

all unobserved sample correlations are equal to their observed counterparts except the 

unobserved sample correlation between OCR and posttest scores. The assumptions about the 

parameters are formally written as follows:  
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 
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  (6.9) 

The probit model for the probability of invalidating the inference of Borman et al. (2008) then 

becomes explicit:  

 

40.36
( ) 1.96 0.12 49

49
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
  (6.10) 
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It shouldn’t be surprising to observe the probit model for standardized data (as in (6.10)) is 

exactly same as the probit model for raw data (as in (6.4)), just as standardizing variables in a 

regression model won’t change the t-ratio and p-value of every estimated regression coefficient. 

The equality between (6.4) and (6.10) is not a coincidence: For any given set of parametric 

values, research question and focal parameter(s) the probit model for the probability of 

invalidating an inference will remain the same regardless of whether the data is raw, centered or 

standardized. This further implies that, for any given set of parametric values, research question 

and focal parameter(s), the analysis and results will be identical as well for raw, centered or 

standardized data. For this reason, I omit the results pertaining to the probit model for 

standardized data as they have already been generated and presented as a product of the probit 

model for raw data.  

6.2-The Bayesian robustness indices of the effect of kindergarten retention on reading 

achievement 

Kindergarten retention is an educational issue which has been long and vehemently debated. As 

an attempt to settle this issue, Hong & Raudenbush (2005) analyzed a nationally representative 

sample which contained about 7639 students and 1070 schools and conducted a multilevel 

modeling with additional controls of the logits of estimated propensity scores and the propensity 

score strata. Their estimate of the effect of kindergarten retention on reading achievement was 

about -9, which was negatively significant. Such estimate, according to Hong & Raudenbush 

(2005), evidenced that “children who were retained would have learned more had they been 

promoted”.  

Suppose the finding of Hong & Raudenbush is indeed the truth, we would have expected a 

regression-based causal inference to generate a similar result if we had been able to randomly 
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assign those sampled students in Hong & Raudenbush (2005) to retention group and promotion 

group. This means the estimated regression coefficient of kindergarten retention should be 

around -9 in a regression where the outcome, the treatment and the covariate are the reading 

scores, kindergarten retention and the logits of estimated propensity scores respectively. 

However, this is not the case as such random assignment to retention and promotion groups is 

unrealizable. Therefore, a regression-based causal inference corresponding to Hong & 

Raudenbush (2005) would be problematic as it is based on a quasi-experiment with a 

representative sample, and clearly it falls into the first scenario I introduced in the beginning.  

To recognize the potential of the bias associated with the analysis of Hong & Raudenbush (2005) 

and profile the robustness of their inference, we need to first define a potential unobserved 

sample and its data form for Hong & Raudenbush (2005). As explained in the section 3.4, an 

unobserved sample in the first scenario should be the counterfactuals of the observed sample. 

Therefore, a potential unobserved sample for Hong & Raudenbush (2005) should be the 

counterfactuals of all the observed students. By definition, a counterfactual of a retained student 

would be an observation where the outcome is his/her reading score had he/she been promoted 

instead and his/her treatment status is promotion instead of retention. Likewise, a counterfactual 

of a promoted student would be an observation where the outcome is his/her reading score had 

he/she been retained instead and his/her treatment status is retention instead of promotion. For 

simplicity, I further assume that the data has been standardized for both the observed sample and 

an unobserved sample (counterfactuals) since standardized data will produce the same results as 

raw data does.  
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Due to the special data structures of unobserved sample and ideal sample for research with 

limited internal validity, as I have covered in (3.18) and (3.19), the following constraints are 

automatically imposed on the sample sizes and correlations: 

 

7639

0

un ob

id

WZ

n n

r

 


  (6.11) 

My research question for the analysis of robustness of Hong & Raudenbush (2005) is “what 

would the sample correlation between kindergarten retention and the reading scores have to be in 

the counterfactuals in order to make the probability of invalidating the inference of Hong & 

Raudenbush smaller than a desired value (say 0.5)”. Apparently, the focal parameter suggested 

by this research question is the unobserved sample correlation between kindergarten retention 

and the reading scores. Constructing the probit model between the probability of invalidating the 

inference of Hong & Raudenbush (2005) and this focal parameter will be especially simple, as 

manifested by (4.10), and all relevant parametric values and assumptions are listed here:  

 

7639
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un ob
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WY

n n

r

 

 


  (6.12) 

Furthermore, I choose the threshold 
#

w  purely based on statistical significance, and in this case 

#

w  is proven to be 1.96
2 obn


 , which equals -0.0127.  

The probit model for Hong & Raudenbush (2005) should then become straightforward upon 

(6.12) is given:  

 ( ) 77.25 26.62un

wyprobit p r    (6.13) 
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This indicates that, for example, the threshold of 
un

wyr  to make the probability of invalidating the 

inference of Hong & Raudenbush (2005) lower than 0.5 would be identified by the following 

inequality:  

 77.25 26.62 0un

WYr     (6.14) 

which pinpoints this threshold as 0.3446. The proper interpretation of this threshold would be the 

unobserved sample correlation between kindergarten retention and the reading scores in the 

counterfactuals need to be smaller than 0.3446 such that the probability of invalidating the 

inference of Hong & Raudenbush (2005) stays below 0.5. This threshold in the meantime 

corresponds to an ideal sample correlation between kindergarten retention and the reading scores 

as -0.0127, which is exactly the threshold of statistical significance calculated based on an ideal 

sample. In general, for a research with questionable internal validity, the ideal sample correlation 

between the treatment indicator W and the outcome Y symbolizes the regression coefficient 

estimate of treatment indicator W if data is standardized, since the correlation between any 

covariate and W in an ideal sample is 0. The computation of the ideal sample correlation 

between W and Y is as follows:  

 
2

un ob
id WY WY

WY

r r
r


   (6.15) 

A scrutiny of the relationship between the probability of invalidating the inference of Hong & 

Raudenbush (2005) and the unobserved sample correlation between kindergarten retention and 

reading scores entails repeat calculations of thresholds of 
un

WYr  as well as 
id

WYr  for other selected 

desired values. Table 2.2 lists those thresholds for a desired value of this probability ranging 

from 0.1 to 0.9. For an instance, the correlation between kindergarten retention and reading 
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scores in the counterfactuals needs to be smaller than 0.3378 in order to keep the probability of 

invalidating the inference of Hong & Raudenbush (2005) under 0.3, conditional on the 

parametric values provided in (6.12). Figure 2.6 unearths that this probability will ascend from 0 

to 1 abruptly when 
un

WYr  is in the range between 0.32 and 0.36. Why would this probability be so 

sensitive to a minute change of 
un

WYr  in the range [0.32, 0.36]? It is most likely due to the large 

sample size and effect size in Hong & Raudenbush (2005). The large sample size of Hong & 

Raudenbush (2005) amplifies the slope of 
un

WYr  in the probit model, and a strong positive 

correlation (stronger than 0.32) is needed in an unobserved sample so as to mitigate the large 

negative effect of kindergarten retention found in their observed sample.  

Figure 2.7 depicts the relationship between posterior probability of invalidating Hong & 

Raudenbush (2005)’s inference and null hypothesis testing. As the correlation between 

kindergarten retention (W) and reading scores (Y) stay increasing, the gap between the 

distribution corresponding to null hypothesis (black curve) and the distribution of w  based on 

an ideal sample (red curve) will stay shrinking and consequently the posterior probability of 

invalidating the inference of Hong & Raudenbush (2005) will stay growing. The appropriate 

statistical threshold in this case is fixed as 0.0127 since the ideal sample size is constant 

(7639*2=15278). Most importantly, figure 2.7 uncovers that the posterior probability of 

invalidating the inference of Hong & Raudenbush (2005) can be interpreted as type II error in the 

context of retesting null hypothesis: 0w   against the alternative hypothesis when an 

unobserved sample (i.e., the set of counterfactual observations of all sampled students) is 

realized and added to their observed sample.  
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Table 2.2: Thresholds of 
un

WYr  

Level of probability Threshold of 𝑟𝑊𝑌
𝑢𝑛  Threshold of 𝑟𝑊𝑌

𝑖𝑑  

0.1 0.328 -0.021 

0.2 0.3337 -0.0182 

0.3 0.3378 -0.0161 

0.4 0.3413 -0.0144 

0.5 0.3446 -0.0127 

0.6 0.3479 -0.0111 

0.7 0.3514 -0.0093 

0.8 0.3555 -0.0073 

0.9 0.3612 -0.0044 
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Figure 2.6: The relationship between 
un

WYr  and the probability of invalidating the inference of 

Hong & Raudenbush (2005) 
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Figure 2.7: The relationship between testing null hypothesis and the posterior probability of 

invalidating the inference of Hong & Raudenbush (2005) 
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7-Discussion  

7.1-A summary of the Bayesian paradigm of robustness indices for regression-based causal 

inference 

To summarize, the Bayesian paradigm of robustness indices for regression-based causal 

inference centers on a probit model of the probability of invalidating an inference. It is a thought 

experiment built on the observed data. The observed sample and sample statistics pertaining to it 

are fixed throughout the analysis. Doing so is logical because the object of analysis of robustness 

is supposed to be a single analysis and its observed sample ought to be fixed, and this is 

consistent with the Bayesian reasoning that the same observed sample is fed to likelihood 

function irrespective of prior distribution. The analysis of robustness is a thought experiment as 

it impels a thorough and detailed conceptualization of an unobserved sample, which is thought of 

as a random sample from the unobserved part of ideal population and to be expressed by a prior. 

To accomplish this, a clear definition about the unobserved part of ideal population is firstly 

needed based on the research context. Moreover, possibly with a good knowledge about what a 

random sample of this unobserved part of ideal population would look like, assumptions about 

sample statistics of an unobserved sample are made and whenever plausible they are assumed to 

be equal to their observed counterparts. Most importantly, a few unobserved sample statistics are 

chosen as focal parameters based on a research question, and the probability of invalidating an 

inference is in an explicit probit relationship with focal parameters given all assumed parametric 

values and observed sample statistics. The learning goal of the analysis of robustness is to 

identify the thresholds of focal parameters that make the probability of invalidating an inference 

just below a desired value. It’s worth emphasizing here that a comprehensive knowledge about 

the robustness of any single research cannot be gained without repeatedly computing the 



  

  

135 

 

thresholds of focal parameters for a series of desired values and describing the probit curve 

between the probability of invalidating an inference and a focal parameter.  

The Bayesian paradigm of robustness indices is consistent with the argument made by Frank & 

Min (2007), which proposed to treat prior as a distribution of parameter based on an unobserved 

sample. This indeed is how I frame the Bayesian paradigm of robustness indices for regression-

based causal inference in this paper: The prior is defined as a distribution of regression 

coefficients based on an imaginary unobserved sample whose data structure has been formalized. 

The likelihood function is defined as a parametric distribution for the outcomes of target 

population and fit to the observed sample. Consequently, the posterior distribution of regression 

coefficients generated by this fashion has a form that is identical to the distribution of regression 

coefficients based on an ideal sample, which is just the consolidation of an unobserved sample 

and the observed sample. Built on such posterior distribution, the probit link of the probability of 

invalidating an inference is a function of prior parameters such as unobserved sample size, 

unobserved sample means and elements in unobserved sample variance-covariance matrix. 

Intrinsically, the analysis of robustness is an exploratory Bayesian sensitivity analysis where 

prior parameters are manipulated and thus their impacts on the probability of invalidating an 

inference can be learned.  

Just as the frequentist recipe, the Bayesian paradigm of robustness indices could be interpreted as 

a two-phase sampling approach: The first phase refers to the analysis where the observed sample 

is randomly drawn from the observed part of ideal population and regression is carried out for 

the observed sample. The second phase refers to the analysis where an unobserved sample is 

randomly drawn from the unobserved part of ideal population and subsequently regression is 

performed for this unobserved sample. The distribution of regression coefficients in the second 
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phase is equivalent to the prior in the Bayesian recipe and the distribution of regression 

coefficients for an ideal sample produced by this two-phase sampling is equivalent to the 

posterior in the Bayesian recipe.  

7.2-Comparisons with other similar approaches 

7.2.1-The impact thresholds in Frank (2000) 

The impact of an unmeasured variable, defined as the product of the correlation between this 

variable and the focal predictor and the correlation between this variable and the outcome, is 

often the subject of a discussion about the robustness of a causal research. Frank (2000) derived 

the impact threshold for an unmeasured confounder or suppressor in a multiple regression. The 

logic is that, given the observed correlation between a focal variable (like the treatment indicator 

W) and the outcome, sample size and level of significance, the impact threshold can inform 

researchers that how large the impact of an unmeasured confounder/suppressor needs to be so 

that it can make an inference invalid. By definition, the impact threshold of an unmeasured 

confounder defines the boundary beyond which an original significant regression coefficient 

becomes insignificant. Moreover, the impact threshold of an unmeasured suppressor defines the 

boundary beyond which either an original significant regression coefficient becomes significant 

in the opposite direction or an original insignificant regression coefficient turns to be significant 

in either direction. The impact threshold helps conceptualization of the robustness of a causal 

research since it can be naturally extended to cases where a regression model has multiple 

covariates and multiple unmeasured confounders/suppressors and can be evaluated through a 

reference distribution (see Pan & Frank 2003, 2004 as well).  

Logically, I approach the problem of causal inference and its robustness essentially the same way 

as Frank (2000) did. I perceive disputable causal inference as an inference based on insufficient 
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information. In Frank (2000), the missing piece is the uncontrolled confounders/suppressors 

which have the potential to invalidate a regression-based causal inference. In the Bayesian 

paradigm of robustness indices, the missing piece is actually the missing data, which could be 

either a potential random sample from the unobserved part of ideal population or counterfactuals 

defined in Rubin Causal Model. Both approaches ask the same question “what would this 

missing piece have to be such that the current inference is no longer established?” By this logic, 

the threshold of a sufficient statistic or a parameter of main interest characterizing the missing 

piece will be pursued.  

Even though both the impact threshold and the Bayesian paradigm of robustness indices reside in 

the context of regression, there a key difference between their perspectives: Bayesian paradigm 

of robustness indices emphasizes a sampling or missing data perspective, like discussed earlier. 

By defining and differentiating the observed and unobserved parts of ideal population, an 

unobserved sample can be conceptualized as a random sample from the unobserved part of ideal 

population. My robustness index, the probability of invalidating an inference, is built on this 

unobserved sample. Frank (2000) accentuates the variable selection problem for observational 

studies and quasi-experiments when the assumption of unconfoundedness is questioned. This is 

exactly the theme of the first scenario and Bayesian paradigm of robustness indices has offered a 

solution for it, though from a different perspective. Statistically speaking, Frank (2000) is a pure 

frequentist framework while Bayesian paradigm of robustness indices is a Bayesian framework 

with a supplementary frequentist viewpoint. 
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7.2.2-The robustness indices in Frank & Min (2007) 

The Bayesian paradigm of robustness indices is a detailed and comprehensive expansion of the 

Bayesian framework proposed by Frank & Min (2007). The main principle of Frank & Min 

(2007) has been maintained throughout this paper: I treat prior as it is based on an unobserved 

sample and likelihood as it is shaped by the observed sample. The posterior distribution in 

Bayesian paradigm of robustness indices is proven to be a distribution based on an ideal sample, 

just as theorized in Frank & Min (2007). The Bayesian paradigm of robustness indices has a 

broader scope than Frank & Min (2007): It appeals to both research with limited internal validity 

and research with limited external validity, whereas the robustness indices of Frank & Min 

(2007) is designated for the research with limited external validity only.  

7.2.3-The robustness indices in Frank et al. (2013) 

The Bayesian paradigm of robustness indices could be deemed as a Bayesian version of Frank et 

al. (2013) as they share the same goal of assessing the robustness of research with strong internal 

validity but weak external validity as well as research with strong external validity but weak 

internal validity. Some key concepts of the Bayesian paradigm of robustness indices, such as the 

threshold for making an inference and the decision rule of invalidating an inference, are inherited 

from Frank et al. (2013). However, the Bayesian paradigm of robustness indices is more 

probabilistically oriented and requires a more precise and detailed modeling of an unobserved 

sample than Frank et al. (2013). The robustness index in Frank et al. (2013) is the proportion of 

the observed sample a research can afford to be replaced with an unobserved sample where the 

treatment effect is zero, without nullifying an inference. On the contrary, the robustness index in 

this paper is the probability of invalidating an inference, which is built on an imaginary ideal 
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sample. This ideal sample is not formed by replacing a portion of the observed sample with an 

unobserved sample but by adding this unobserved sample to the existing observed sample.  

7.3-Limitations  

Contributory insights about the robustness of regression-based causal inference can be elicited by 

the proper application of Bayesian paradigm of robustness indices. Conversely, Bayesian 

paradigm of robustness indices can lead to misguiding results and baffling conclusions if 

researchers are unaware of its pitfalls and limitations. I warn readers of two major limitations of 

the Bayesian paradigm of robustness indices: First, the Bayesian paradigm of robustness indices 

demonstrated throughout this paper is well situated in the regression-based causal inference, 

which by definition is an approach of treating the estimated regression coefficient of the 

treatment indicator W as the estimate of average treatment effect, in a multiple regression where 

the outcome Y should be continuous (or at least not categorical). This makes the Bayesian 

paradigm of robustness indices inappropriate for statistical methods such as logistic regression, 

multinomial logistic regression or any other non-regression methods. It is also counterproductive 

to apply the Bayesian paradigm of robustness indices to research questions which cannot be 

answered by the regression coefficient of W. For example, a research seeking answers about the 

treatment effect for the treated or for the control cannot be simply satisfied with the regression 

coefficient of W. In general, the Bayesian paradigm of robustness indices is best applied to those 

two research scenarios, i.e., research with strong internal validity but weak external validity and 

research with weak internal validity but strong external validity, as long as they intend to find out 

the average treatment effect only.  

Another limitation of the Bayesian paradigm of robustness indices is that it has no power 

assessing the robustness of a causal research that could be biased by factors other than weak 
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internal validity or weak external validity. Factors such as measurement error and violation of 

the SUTVA assumption can and often jeopardize a causal inference. Nevertheless, they are 

beyond the scope of the Bayesian paradigm of robustness indices.  

7.4-Conclusion 

A causal relationship can never be established by merely one research. Rather, to confirm a 

causal relationship and accept it as gained scientific knowledge, much more assessments need to 

be done by experts in the substantive field and those assessments are typically “more demanding 

and meaningful than that of a one-time, stand-alone test of scientific value” (Sohn, 1998). It’s my 

wish that the Bayesian paradigm of robustness indices can equip causal researchers a framework 

which allows the assessments of the robustness of a causal inference to be done in a systematic, 

informative and organized fashion. I believe that the Bayesian paradigm of robustness indices 

has reflected an important and frequently mentioned recommendation emerged from the 

discussion of replicability/reproducibility, i.e., the consideration of the prior probabilities of 

hypotheses. This is exactly the spirit of analysis of robustness. By treating the prior distribution 

as a distribution built on an unobserved sample, the regression estimate of average treatment 

effect can be repeatedly evaluated and thereby the belief about a causal inference is updated, 

conditional on different hypotheses about an unobserved sample. As many researchers pointed 

out, assigning prior probabilities to all possible hypotheses is likely to be unavoidable in the 

journey from the long-criticized p-value to a meaningful index of replicability.  
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Appendix A: Proofs of Theorem 1 and Theorem 2 

Proof of Theorem 1:  

My goal is to derive the formula for least square estimate of regression coefficient for W (i.e., 

ˆ
w ) based on an ideal sample since it is the posterior mean and the variance of ˆ

w  given it is 

identical to the posterior variance, as manifested by (2.17).  

First, I need to define the following ordered data matrices for an ideal sample:   

 

( ) 1 ( ) ( 2)

( ) 1 ( ) ( 1)

( ) ( ) 1

( )

un ob un ob

un ob un ob

un ob un ob

un ob

n n n n p

n n n n p

n n p n n

n n p

    

    

   

 1 2 p

D = [Y , X ]

X = [1 ,V ]

V = [Z , W ]

Z = [Z ,Z , ...,Z ]

                                    

and ordered mean vectors: 

 

1 ( 1)

1 2 1

[ , ]

[Z , Z , , Z ]

id

p

id id id

p p

W  







id id

id

V Z

Z   

The matrix T
X X  for an ideal sample could then be molded as the following block matrix:  

 

( )

( )

un ob un ob

un ob

n n n n

n n

  
  

 

id

T

id T T

V
X X

(V ) V V   

It turns out that, the inverse of T
X X  has the following form:  
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1 1 1

1 1

un ob un ob un ob

un ob un ob

n n n n n n

n n n n

 
    

  
  

  

id id -1 id T id id -1

VV VV
T -1

id -1 id T id -1

VV VV

V (S ) (V ) V (S )

(X X)

(S ) (V ) (S )
  

It should be clear now that, to determine the definite form of 
T -1

(X X)  I need to find out what  

id -1

VV
(S )  is. As a variance-covariance matrix for the vector of predictors V, 

id

VV
S  can be expressed 

as the block matrix in (3.5) whose elements is formalized in (3.6) through (3.8). Consequently, 

the inverse of 
id

VV
S  can be formulated here:  

 
ˆ ˆ

ˆ ˆ

id id

WW WW

id id

WW WW



  

 

id -1

VV

id -1 id -1 id id id -1 id -1 id id -1 id -1 id id id -1 id -1

ZZ ZZ ZW WZ ZZ ZW WZ ZZ ZZ ZW WZ ZZ ZW

id id -1 id -1 id id -1 id id -1 id -1

WZ ZZ ZW WZ ZZ WZ ZZ ZW

(S )

(S ) + (S ) S ( - S (S ) S ) S (S ) -(S ) S ( - S (S ) S )

-( - S (S ) S ) S (S ) ( - S (S ) S )


 



  

Plugging the above matrix of 
id -1

VV
(S )  into the block matrix of 

T -1
(X X)  will give us the complete 

definite form of matrix 
T -1

(X X) , whose elements are all ideal sample statistics such as ideal 

sample variances, ideal sample covariances and ideal sample means. To isolate the estimated 

regression coefficient for W, I only need to use the elements in the last row of 
T -1

(X X) , which 

are provided next:

( 2)1

( 2)2 ( 2)( 1)

1
ˆ ˆ[ ( ) ]

1
ˆ[ , , ]

id id id

p WW WWun ob

id

p p p WWun ob

W
n n

n n



  

   


  


T -1 id id -1 id -1 id id -1 id T id id -1 id -1

WZ ZZ ZW WZ ZZ WZ ZZ ZW

T -1 T -1 id id -1 id -1 id id -1

WZ ZZ ZW WZ ZZ

T

(X X) ( - S (S ) S ) S (S ) Z ( - S (S ) S )

(X X) (X X) ( - S (S ) S ) S (S )

(X ( 2)( 2)

1
ˆ id

p p WWun obn n
   



-1 id id -1 id -1

WZ ZZ ZW
X) ( - S (S ) S )

  



  

  

144 

 

Because the estimated regression coefficient for W is the last element of 
T -1 T

(X X) X Y which is 

the dot product between the last row of 
T -1

(X X)  and T
X Y , the expression of T

X Y is also 

needed here:  

 

( )un ob idn n Y 
 

  
 
 

T T

T

X Y Z Y

W Y
  

where:  

 

( ) ( )

ˆ( ) ( )

un ob un ob id

un ob id un ob id id

WY

n n n n Y

n n n n W Y

   

   

T id id T

ZY

T

Z Y S (Z )

W Y 
  

Now I can calculate the estimated regression coefficient for W as the dot product between the 

last row of 
T -1

(X X)  and the vector T
X Y . The result is presented below:  

 

ˆ
ˆ

ˆ

id

WY
w id

WW

 
 

 

id id -1 id

WZ ZZ ZY

id id -1 id

WZ ZZ ZW

S (S ) S

S (S ) S   

The variance of ˆ
w  should be straightforward: it is just the product of the known residual 

variance 2  and the element in the p+2th row and the p+2th column of 
T -1

(X X) :  

 

2

ˆ ˆ( ) id

w WWun ob
Var

n n


  



id id -1 id -1

WZ ZZ ZW( - S (S ) S )
  

Taken together, the posterior distribution of w conditional on the observed sample is given by:  

 

2ˆ
ˆ| ~ ( , )

ˆ

id
idWY

w WWid un ob

WW

N
n n




 

id id -1 id
ob ob id id -1 id -1WZ ZZ ZY

WZ ZZ ZWid id -1 id

WZ ZZ ZW

S (S ) S
X ,Y ( S (S ) S )

S (S ) S

 
 

   
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The derivations of ideal variances/covariances as functions of observed and unobserved sample 

statistics follow the same reasoning. Here I just take the covariance between W and Y in an ideal 

sample as an example. First of all, I have:  

 
1

1
ˆ ( )( )

un obn n
id id id

WY i iun ob
i

W W Y Y
n n





   


   

The above equation can be rearranged and reexpressed as follows:  

    
1 1 1

ˆ

un ob un obn n n n
un ob id un ob id id

i i WY i i i i

i i i

WY n n n n W Y WY WY


  

           

Similarly, the following equations are true for the observed sample and an unobserved sample:  

 

1

1

ˆ

ˆ

un

ob

n
un un un un un

i i WY

i

n
ob ob ob ob ob

i i WY

i

WY n n W Y

WY n n W Y





  

  




  

The last three equations could be consolidated into an expanded one as follows:  

    ˆ ˆ ˆun ob id un ob id id un un ob ob un un un ob ob ob

WY WY WYn n n n W Y n n n W Y n W Y            

Finally, the expression of ˆ id

WY  as a function of unobserved and observed sample statistics could 

be deduced from the equation above:  
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   
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where: 

 

un

un ob

n

n n





  

Proof of Theorem 2:  

For inferring a positive effect, the probability of invalidating an inference is:  

 
#( | )w wP    ob ob

X ,Y   

To recast this probability of invalidating an inference in terms of the cumulative distribution 

function of the standard normal distribution, I need to standardize the random variable 

|w
ob ob

X ,Y :  
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Given the probit function is just the inverse of the cumulative distribution function of the 

standard normal distribution, plugging either side of the above equation into the probit function 

will lead to the following result:  
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For inferring a negative effect, the probability of invalidating an inference generally becomes: 

 
#( | )w wP    ob ob
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By the same logic, the probit function of this probability is approached by deriving its 

corresponding cumulative function of the standard normal distribution first:  
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Apparently, taking probit operation on both sides of the equation above will generate the 

following probit function of the probability of invalidating an inference when inferring a 

negative effect:
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This completes the proof of theorem 2.  
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Appendix B: The Algebraic Equivalence Between Theorem 1 and Common Expressions of 

Regression Coefficients 

In this appendix, I will demonstrate the algebraic equivalence between theorem 1 and the 

common expressions of ordinary least square (OLS) estimates of simple regression coefficient as 

well as standardized multiple regression coefficients (for two covariates).   

The common expression of simple regression coefficient is provided below:  
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
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Now I show how theorem 1 is connected to the expression above: First, the distribution in 

theorem 1 can be treated as the distribution of any single regression coefficient. Therefore, for a 

predictor x its OLS estimate of regression coefficient is provided by theorem 1 as follows:  
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However, there is no covariates Z in a simple regression model and thus any sample variance-

covariance matrices (or vectors) involves Z will be cancelled, which means the matrices and 

vectors 
id id id id

ZZ XZ ZY ZX
S ,S ,S ,S  are all cancelled and the above expression of ˆ

x  becomes:  
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Based on the formulae of computing sample variances and sample covariances in (3.9), the 

following equations can be derived:  
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This establishes the algebraic equivalence between theorem 1 and the common expression of 

OLS estimate of simple regression coefficient. I note here in this case un obn n n   because all 

sample statistics pertain to an ideal sample.  

Next, I prove the algebraic equivalence between theorem 1 and the expressions of the OLS 

estimates of standardized multiple regression coefficients, through an example of regressing y on 

x1 and x2. It is well known that, the OLS estimates of standardized regression coefficients of x1 

and x2 have the following forms:  
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The OLS estimate of any single standardized multiple regression coefficient has been offered by 

theorem 3 (which is the standardized version of theorem 1) as follows:  
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To isolate the expression of OLS estimate of regression coefficient of x1 from the above formula, 

one needs to treat x1, x2 and y as x, Z and y in the context of theorem 1 (or theorem 3) and 

consequently the facts below are learned:  
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With the above facts, the OLS estimate of regression coefficient of x1 offered by theorem 3 can 

be rewritten as:  
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Similarly, one should treat x1, x2 and y as Z, x and y in the context of theorem 1 (or theorem 3) 

and subsequently acknowledge the following facts in order to derive the OLS estimate of 

regression coefficient of x2 from theorem 3:  
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The OLS estimate of regression coefficient of x2 is then straightforward:  
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Now I observe that the derived expressions of 
1

ˆ
x  and 

2
ˆ

x  based on theorem 3 are identical to 

their common expressions. Therefore, I can confirm the algebraic equivalence between theorem 

3 (also theorem 1) and common expressions of standardized multiple regression coefficients.  
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