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ABSTRACT

DIFFUSION FOR MARKOV WAVE EQUATIONS

By

Bernard Clark Musselman II

We consider the long time evolution of solutions to a Schrödinger-type wave equation on

a lattice, with a divergence-form, Markov, random generator. We show that solutions to this

problem diffuse. That is, the amplitude converges to the solution of a diffusion equation, in

the diffusive scaling limit.

Additionally, we expand upon a similar result due to Kang and Schenker for a Markov-

Schrödinger wave equation by computing higher moments of position, also in the diffusive

scaling limit.
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Chapter 1

Introduction to Diffusion for Markov

Wave Equations

In the classic study of deterministic partial differential equations, the phenomena of wave

propagation and diffusion are treated separately. The derivations of the heat and wave

equations are distinct and rely on observations of different physical behavior. Important

properties such as the maximum principle, regularity and the domain of dependence, also

called the wave cone [2], have no analog on the other side. While both models have ex-

istence/uniqueness theorems, the methods of proof are vastly different and a deep under-

standing of one does not necessarily provide any intuition about the other. Waves in nature,

however, do not satisfy such a distinction. Indeed, a vibrating guitar string will eventually

come to rest as do the waves on water’s surface, in the absence of wind or further vibration.

It is not the immediate goal here to include every aspect of nature in a particular wave

model. Instead, we show that when noise or disorder is included, one can see a departure

from the classic understanding of wave propagation. The resulting more natural model allows
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for the diffusion of wave packets. Specifically, we show that for two particular examples, if

the environment through which a wave packet propagates is governed by a Markov process,

then the wave packet will eventually diffuse.

Related to the above, the first question we address is “How does one detect diffusion?”.

In chapter 2, we develop a mathematical characterization of diffusion by beginning with the

diffusion equation. After all, whatever characterization we decide upon must be consistent

with the classic diffusion equation. From this, we derive a natural scaling and define diffusion

for a wave equation to be the convergence (under this scaling-limit) of its square-amplitude

to the solution of a diffusion equation.

In chapter 3 and with this understanding of diffusion, we discuss a model with a divergence-

form generator that includes randomness. This begins by studying the semi-group generated

by a Markov process and its underlying probability measure. This semi-group gives rise to

a generator which encapsulates the process in a maximally-dissipative operator on a Hilbert

space. A few further assumptions on the generator give us enough leverage to control the

spectrum of the overall problem: the Markov generator together with the divergence-form

generator. We then demonstrate the (slightly weakened) diffusion criterion by computing

the diffusive-scaling limit of norm-squared solutions.

The weakening of this criterion is essential to our method. (A procedure for strengthening

this weakened criterion, as well as a complete example, is given in chapter 4.) By averaging

the diffusive criterion over all realizations of the disorder, instead of computing the criterion

for arbitrary realizations, we reformulate it in terms of a particular matrix element of the

complete generator. This reduces the problem to controlling the spectrum. That is, we

write the semi-group in terms of its resolvent by way of the holomorphic functional calculus.
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We control the resolvent, in the diffusive scaling limit, by controlling its constituent parts

individually. This choice of a decomposition is motivated in a natural way by the generator

itself; we use the Schur complement (see Appendix E) according to the projections onto the

kernel and range.

In chapter 4, we elaborate on a similar problem addressed by Kang and Schenker [3].

In their paper, the weakened criterion is demonstrated for a Markov-Schrödinger equation.

We provide further evidence of diffusion by showing that higher moments of position also

possess a diffusive scaling limit and that this limit is a derivative of the heat kernel. We do

this by analytically continuing the diffusion criterion and recognizing that higher moments

are merely derivatives in the complex variable. Convergence then follows from the theory

of complex variables. It should be noted that this procedure will apply to the problem

considered in chapter 3 if sufficient control of the perturbed spectrum can be obtained. This

is a topic for further study.
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Chapter 2

A Mathematical Characterization of

Diffusion

To detect diffusion in solutions to a Markov wave equation, we require a rigorous charac-

terization of diffusion. For consistency, this characterization must also be a property of the

classic heat equation. That shall be our starting point.

Consider the solution to the classic heat equation with Dirac initial data:


∂tu(x, t) = ∆u(x, t), (x, t) ∈ Rd × R+

u(x, 0) = δ0(x), x ∈ Rd
,

which we may write explicitly as

u(x, t) =
1

(2πt)d/2
e
−|x|

2

4t .
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The function x 7→ cu(x, t) is then a probability density function on Rd, where we let

c =

(∫
Rd

u(x, t) dx

)−1
= 2d/2

be the normalizing constant. For p ∈ N, the pth moment of position is given by

∫
Rd
|x|pcu(x, t) dx =

cωd

(2πt)d/2

∫ ∞
0

rp+d−1e
−r

2
4t dr,

where we have switched to polar coordinates. Here, ωd is the surface area of the unit ball in

Rd. We then see that the integrand on the right-hand side obtains its maximum, regardless

of the value of p, when the position r is proportional to
√
t. This leads us to consider the

diffusive scaling


t 7→ t/η

x 7→ x/
√
η

,

in the small η limit, as in reference [3].

The models we wish to study are on the lattice, so we must find a way to apply this

scaling in a discretized context. To this end, we use a mollifier h ∈ C∞c (Rd) with
∫
h dx = 1

which we convolve with a lattice function to obtain a smooth approximation. Ultimately, our

characterization of diffusion should be independent of the choice of h. We may accomplish

this by using a Fourier transform. To see this, suppose ψt ∈ `2(Zd) satisfies


∂tψt(x) = Hω(t)ψt(x), x ∈ Zd, t ∈ R+

ψ0 = δ0

, (2.1)
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a wave equation with a random, time-dependent generator. We say ψt exhibits diffusion

(see [3]) if

h ∗ |ψt|
2(x) =

∑
ξ∈Zd

h(x− ξ)|ψt(ξ)|
2

satisfies

1

ηd/2

∫
Rd

h ∗ |ψt/η|
2(x/
√
η)φ(x) dx η→0

−→

∫
Rd

1

(πDt)d/2
e
−|x|

2

Dt φ(x) dx (2.2)

for all suitable test functions φ, and some D > 0. That is, under the diffusive scaling,

h ∗ |ψt|2 converges weakly to a solution of the heat equation. Using the Fourier transform,

we see that (2.2) is satisfied if

∑
x∈Zd

e−i
√
ηk·x|ψt/η(x)|2 η→0

−→ e−Dt|k|
2
.

This is the characterization we seek.

Note that the disorder parameter here is suppressed. The solution ψt ∈ `2(Zd) depends

implicitly on which realization of the disorder actually occurs. The method we establish in

chapter 3 and Kang and Schenker discuss in [3] require us to weaken this condition to

∑
x∈Zd

e−i
√
ηk·xE

(
|ψt/η(x)|2

)
η→0
−→ e−Dt|k|

2
, (2.3)

where we have averaged over all realizations of the disorder. Later, we will establish the

existence of a diffusive-scaling limit to higher moments of position (see chapter 4).
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Chapter 3

Diffusion for a Markov,

Divergence-form Generator

Here we demonstrate that the amplitude of the solution to a wave equation with a Markov,

Divergence-form generator satisfies the diffusion characterization (2.3). We begin with the

assumptions necessary to precisely state the wave model under consideration. These include

the construction of a Markov generator and differential operators on the lattice.

Having stated the theorem, we prove it in several steps. First, an equivalent problem is

derived which is more appropriate for the diffusion characterization (2.3). We then transform

(2.3) into a statement about the holomorphic functional calculus of a particular matrix

element of the generator. We then reduce the integral in the functional calculus to its

substantive part in the diffusive scaling limit. The remainder is then dissected by way of

the Schur Complement Formula and projections which are natural to the problem. The

components are then controlled by a spectral analysis and we are then free to compute the

diffusive scaling limit, establishing the theorem.
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3.1 Assumptions

For the purposes of this chapter, we assume that we are given a probability space (Ω, µ) and

a Markov Generator1 B with domain D(B) ⊆ L2(Ω). We assume that the numerical range2

of B is sectoral:

N (B) ⊆ {z = x+ iy ∈ C : x ≥ 0, |y| ≤ mx},

for some m > 0, and that B satisfies a gap condition. That is, if we restrict B to it’s range,

then the numerical range of this restriction is bounded away from zero:

Re〈ψ,Bψ〉 ≥ 1

T
||ψ||2

for some T > 0 and all ψ ∈ Rng(B). Also, assume that there are µ-measure preserving maps

σx : Ω→ Ω, for each x ∈ Zd, such that σx ◦ σy = σx+y. These maps shift the process by x

and will be used as part of a Fourier transform3 which partially diagonalizes the generator

for the overall problem.

Next, we construct the generator for the wave model. We start with “differential opera-

tors” on the lattice (finite difference operators) and include a function of a random variable

so that we may include the Markov process in the generator.

Let Ed be the space of directed edges connecting nearest neighbors in Zd and ∇ :

`2(Zd) → `2(Ed) be the discrete gradient ∇f(x, e) = f(x + e) − f(x). It’s adjoint is

given by ∇†f(x) =
∑
e

(f(x + e,−e) − f(x, e)). Suppose that θ : Ed × Ω → R is positive,

1See appendix B for the complete construction of B.
2See appendix A for the definition of the numerical range and its implications.
3See section 3.4.1 for the Fourier transform and the operator to be partially diagonalized.
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bounded, non-constant, and translation covariant: θ(x, e, ω) = θ(x− ξ, e, σξ(ω)). That is, θ

is invariant under shifts of the process in Zd. Further assume that ||θ − θ̄||
L2(Ed×Ω)

6= 0

where θ̄ is the average

θ̄(e) :=

∫
Ω
θ(x, e, ω)dµ(ω) =

∫
Ω
θ(0, e, ω)dµ(ω),

independent of x since θ is translation covariant and σx is µ-measure preserving. Lastly,

assume that θ is constant across directions on a given edge: θ(x, e, ω) = θ(x+ e,−e, ω).

We are now able to state the initial-value problem under consideration and make the goal

of this chapter explicit. Before doing so, we give a brief example of such a Markov process.

3.2 The Flip Process

A particular example of the Markov process constructed above is the so-called “flip process”,

similar to [3]. For this process, we envision each (non-directed) edge in Ed as the site for a

process which takes values in {1, 2}. Let Ẽd be the space of edges, irrespective of direction,

connecting nearest neighbors in Zd. Then, the probability space is Ω = Ẽd ⊗ {1, 2}. Now,

suppose that for each site (x, e) ∈ Ẽd, 0 ≤ t1(x, e) ≤ t2(x, e) ≤ . . . is a collection of random

times given by independent, identically distributed Poisson processes. At each of these times,

the process at the corresponding site will change sign. The Markov process ω is then a point

in the path space Ω[0,∞). With this process, we may choose θ to be point evaluation of the

process at the given edge. That is, θ(x, e, ω(t)) ∈ {1, 2}, the value the process takes at time

t on the edge (x, e).
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3.3 Statement of the Problem

The goal is to show that mean-squared solutions to −i∂tψt = ∇†θω(t)∇ψt on the lattice,

diffuse. That is, under the diffusive scaling limit,


x 7→ x/

√
η

t 7→ t/η

as η → 0+, (3.1)

the quantity E(|ψt|2) converges to the solution of a heat equation. A criterion for diffusion

was derived in chapter 2, however, we use an equivalent statement. We establish the criterion

on the Fourier transform side as this allows for the partial diagonalization of the key generator

for the problem. The task before us is stated in the following theorem.

Theorem 1. If ψt ∈ `2(Zd) is a solution to the discrete Schrödinger initial-value problem


i∂tψt(x) = ∇†θω(t)∇ψt(x), t > 0, x ∈ Zd

ψ0(x) = δ0(x), x ∈ Zd
, (3.2)

then there exists a symmetric matrix D such that

lim
η→0+

∑
x∈Zd

ei
√
ηk·xE

(
|ψt/η(x)|2

)
= e−t〈k,Dk〉 (3.3)

for k ∈ Td.
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3.4 Proof of the Theorem

First, we derive an equivalent problem which is more appropriate to our goal. We then

reformulate (3.3) in terms of a particular matrix element of the resolvent of the semigroup

generator by using a Feynman-Kac-Pillet formula. A symmetry in the new formulation

allows us to bound the resolvent and take the limit.

3.4.1 A More Appropriate Problem

Since the diffusion criterion (3.3) requires only information about the amplitude of the so-

lution, a linear problem for |ψt|2 is more suitable. We will use a random density matrix

ρ(x, y) = ψt(x)ψt(y)∗ so that |ψt(x)|2 = ρt(x, x). It follows that ρt defined in this way

satisfies


i∂tρt(x, y) = L(ω)ρt(x, y), t > 0, (x, y) ∈ Zd × Zd

ρ0(x, y) = δ0(x)⊗ δ0(y) (x, y) ∈ Zd × Zd

where L(ω) = ∇†xθx,ω∇x−∇
†
yθy,ω∇y. For each ω ∈ Ω, L(ω) is then a bounded, symmetric

operator on `2(Zd × Zd). Now, the Fourier transform

Ff(x, ω, k) =
∑
ξ∈Zd

e−ik·ξf(x− ξ,−ξ, σξ(ω)), (3.4)
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acting on the augmented space L2(Zd × Zd × Ω), partially diagonalizes L. That is, the

transformed operator, which we will refer to as L̂k, depends on k as a parameter.

L̂kψ(x, ω) = 2
∑
e
θ(x, e, ω) (ψ(x, ω)− ψ(x+ e, ω))

−2
∑
e
θ(0, e, ω)

(
ψ(x, ω)− e−ik·eψ(x− e, σe(ω))

)

In light of this observation, we will now operate solely on the space L2(Zd×Ω) for arbitrary

k ∈ Td.

3.4.2 The Resolvent of the Generator

To reduce the problem to a resolvent analysis, we will need a Feynman-Kac-Pillet formula [6],

derived as follows. The conditional expectation we wish to understand can be differentiated

and thus can be seen as the solution to an initial-value problem. The derivative invokes

both the Markov generator and the wave model generator. So it follows that the conditional

expectation – that is, the solution to the initial value problem – can be written as an

exponential of this operator.

∂tE(ρt : ω(t) = α) = lim
h→0+

1

h
(E(ρt+h : ω(t+ h) = α)− E(ρt : ω(t) = α))

= lim
h→0+

1

h
(E(ρt+h : ω(t+ h) = α)− E(ρt : ω(t+ h) = α))

+ lim
h→0+

1

h
(E(ρt : ω(t+ h) = α)− E(ρt : ω(t) = α))

= E(∂tρt : ω(t) = α)−BE(ρt : ω(t) = α)

= (−iL(α)−B)E(ρt : ω(t) = α))

12



That B is the derivative of a conditional expectation is illustrated in appendix B. This is

the deterministic Cauchy problem with exponential solution

E(ρt : ω(t) = α)) = e−t(iL(α)+B)ρ0,

since the initial data is assumed to be non-random. Integrating over α ∈ Ω, we may now

express the left-hand side of (3.3) as a particular matrix element of the semigroup generated

by the Markov process and the revised problem.

E(ρt(x, y)) =

∫
Ω
e−t(iL(α)+B)ρ0 ⊗ 1(x, y) dµ(α)

= 〈δx ⊗ δy ⊗ 1, e−t(iL+B)ρ0 ⊗ 1〉
L2(Zd×Zd×Ω)

(3.5)

Using the unitarity of the Fourier transform, we will exploit the partial diagonalization of

L. That is, we are fortunate that the matrix element under consideration is the one which

corresponds to the function δ0 ⊗ 1 on Zd × Ω and that this function is in the kernel of L̂k.

This will allow us to pick projections according to the kernel of L̂k, allowing us to decompose

L̂k in a natural way. This is the subject of section 3.4.4. For a brief tutorial on these ideas,

see section E.2. With this in mind, and using the fact that Fρ0 = δ0, we write:

E(ρt(x, x)) = 〈δx ⊗ δx ⊗ 1, e−t(iL+B)ρ0 ⊗ 1〉
L2(Zd×Zd×Ω)

= 〈Fδx ⊗ δx ⊗ 1,
(
Fe−t(iL+B)F†

)
Fρ0 ⊗ 1〉

L2(Zd×Ω×Td)

= 〈eik·xδ0 ⊗ 1, e−t(iL̂k+B)δ0 ⊗ 1〉
L2(Zd×Ω×Td)

=

∫
Td

e−ik·x〈δ0 ⊗ 1, e−t(iL̂k+B)δ0 ⊗ 1〉
L2(Zd×Ω)

d`(k) (3.6)

13



Im(z)

Re(z)
−η

||L||

−||L||

N (iL̂√ηk +B)

Γ1

Γ2

Γ3

ε
δ − ε

Figure 3.1: The contour Γ in (3.7) and the numerical range of iL̂√ηk +B.

and we interpret the exponential of an unbounded operator by using the holomorphic func-

tional calculus in [5]. This will allow us to write the semigroup in terms of the resolvent of

its generator. Under the diffusive scaling (3.1), we arrive at

e
−(t/η)(iL̂√ηk+B)

=
1

2πi

∫
Γ
e
−1
η tz 1

z − (iL̂√ηk +B)
dz. (3.7)
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Our motivation for the particular choice of the contour Γ = Γ1 ∪ Γ2 ∪ Γ3,

Γ1 := {z = x+ iy ∈ C : y = 1 + ||L||+ cot(δ − ε)(x+ η) }

Γ2 := {z = −η + iy ∈ C : |y| ≤ 1 + ||L|| }

Γ3 := {z = x+ iy ∈ C : y = −1− ||L||+ cot(δ − ε)(x+ η) }

with ε ∈ (0, δ), subject to the constraints in [5], is as follows. By bounding the resolvent

in terms of the distance to the numerical range, we will show that in the small η limit,

the integral along Γ1 ∪ Γ3 vanishes. The substantive part of the integral is then along Γ2.

We will show that this contribution is exactly what was stated in (3.3). To this end, we

apply the functional calculus (3.7) to (3.6). In doing so, we have reduced the problem to

understanding the limiting behavior of one matrix element of the resolvent.

∑
x∈Zd

ei
√
ηk·xE

(
|ψt/η(x)|2

)

=
∑
x∈Zd

ei
√
ηk·x

∫
Td

e−ik̃·x〈δ0 ⊗ 1, e
−(t/η)(iL̂

k̃
+B)

δ0 ⊗ 1〉
L2(Zd×Ω)

d`(k̃)

=

∫
Td

∑
x∈Zd

ei(
√
ηk−k̃)·x〈δ0 ⊗ 1, e

−(t/η)(iL̂
k̃

+B)
δ0 ⊗ 1〉

L2(Zd×Ω)
d`(k̃)

=

∫
Td

δ0(
√
ηk − k̃)〈δ0 ⊗ 1, e

−(t/η)(iL̂
k̃

+B)
δ0 ⊗ 1〉

L2(Zd×Ω)
d`(k̃)

=

〈
δ0 ⊗ 1, e

−(t/η)(iL̂√ηk+B)
δ0 ⊗ 1

〉
L2(Zd×Ω)

= − 1

2πi

∫
Γ
e
−1
η tz

〈
δ0 ⊗ 1,

1

iL̂√ηk +B − z
δ0 ⊗ 1

〉
dz

We proceed by showing that the contribution to the integral from the unbounded portion of
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the contour is small.

3.4.3 The Substantive Part of the Integral

Given our sectorality assumption on the Markov generator B, our choice of the contours

Γ1 and Γ3, and the above lemma, it is easy to see the integral over Γ1 ∪ Γ3 vanishes. For

z = x + iy ∈ Γ1, the distance from z to N (iL̂√ηk + B) is at least 1. Let ` = 1 + ||L|| and

m = cot(δ − ε). Then y = `+m(x+ η) for −η < x <∞.

∥∥∥∥∥∥ 1

2πi

∫
Γ1

e
− tη z 1

z − (iL̂√ηk +B)
dz

∥∥∥∥∥∥
=

∥∥∥∥∥∥−(1 + im)

2πi

∫ ∞
−η

e
− tη (x+iy) 1

x+ iy − (iL̂√ηk +B)
dx

∥∥∥∥∥∥
≤

√
1 +m2

2π

∫ ∞
−η

e
− tηx 1

dist(x+ iy, N (iL̂√ηk +B))
dx

≤

√
1 +m2

2π

∫ ∞
−η

e
− tηx dx = O(η)

Likewise for Γ3. We then have

∑
x∈Zd

ei
√
ηk·xE

(
|ψt/η(x)|2

)
= − 1

2πi

∫
1
ηΓ2

(3.8)

e−tw
〈
δ0 ⊗ 1,

η

iL̂√ηk +B − ηw
δ0 ⊗ 1

〉
dw +O(η)

after the substitution z = ηw.

To proceed, we wish to take the small η limit of the resolvent. It is unlikely that this

limit exists as a bounded operator, given that heuristically, L is a second order derivative.
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Indeed, L will map large, slowly varying functions to functions with small norm. However,

we need not address the entire resolvent. We will be satisfied with the particular matrix

element in (3.8). We continue by dissecting the resolvent according to projections which are

natural to the generator.

3.4.4 Natural Projections and the Schur Complement Formula

Let P0 be the orthogonal projection on L2(Ω) to non-random functions: P0f =
∫
Ω f dµ.

Then P⊥0 is the projection onto mean-zero functions. Also, let Q0 = (δ0 ⊗ 1)〈δ0 ⊗ 1, ·〉.

We will use these projections with the Schur complement (see appendix E.2) to estimate

the resolvent in (3.8). These projections are the natural choice for the resolvent in question,

given that Ker(L̂0) = Rng(Q0), Ker(B) = Rng(P0), and the gap condition on the Markov

generator gives us that B−1P⊥0 is norm bounded by 1/T (see appendix D).

A first iteration of the Schur complement formula yields

〈
δ0 ⊗ 1, Q0

η

iL̂√ηk +B − ηw
Q0 δ0 ⊗ 1

〉
(3.9)

=

〈
δ0 ⊗ 1,

[
− w +

Q0

L̂√ηk
√
η
Q⊥0

 1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0Q⊥0 L̂√ηk

√
η
Q0

]−1

δ0 ⊗ 1

〉

=

[
− w +Bigg〈δ0 ⊗ 1,

Q0

L̂√ηk
√
η
Q⊥0

 1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0Q⊥0 L̂√ηk

√
η
Q0

 δ0 ⊗ 1

〉]−1

.

The last equality follows from the fact the operator has a one-dimensional domain and range
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and thus may be treated as scalar multiplication. The factor on either side of the resolvent

in (3.9) will play a special role (see (3.12) below and appendix C). This leads us to define

fη,k := P0

L̂√ηk
√
η

δ0 ⊗ 1 (3.10)

= e
−i
√
ηk
2 ·x

(
−2iθ̄
√
η

) ∑
|e|=1

sin

(√
ηk

2
· e
)

(δe − δ−e).

We now apply the Schur complement a second time. In this instance, we apply it to

the resolvent in (3.9) according to the projection P0. We will then take the limit of the

P0 · · ·P0 term in (3.9) and later we will use this to compute the other three terms, P0 · · ·P⊥0 ,

P⊥0 · · ·P0, and P⊥0 · · ·P
⊥
0 . A second iteration of the Schur complement gives us:

P0
1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P0 (3.11)

=

[
iP0Q

⊥
0 L̂
√
ηkQ
⊥
0 P0 − ηwQ

⊥
0 P0

+ (P0Q
⊥
0 L̂
√
ηkP
⊥
0 )

1

iP⊥0 L̂√ηkP
⊥
0 +BP⊥0 − ηwP

⊥
0

(P⊥0 L̂√ηkQ
⊥
0 P0)

]−1

.

Note that the validity of these two applications of the Schur complement formula hinge on

the inversion in the right-hand side of (3.11). Indeed, the inner-most resolvent on the right

hand side of (3.11) is norm bounded by 1/T , so by the Schur complement formula, the left

hand side is a bounded operator if the right hand side is invertible. Therefore, to proceed,

we must find a lower bound for operator being inverted on the right hand side of (3.11).

It is important to note that we need not compute the limit of (3.11) in its entirety. We

need only compute the limit of the particular matrix element 〈fη,k, (P0 · · ·P0)fη,k〉 because

18



of the factor

Q⊥0 L̂√ηk√
η
Q0

 in (3.9).

3.4.5 In Search of a Lower Bound

For simplicity, we define

C√ηk = (P⊥0 L̂√ηkQ
⊥
0 P0)

Fη,k(w) = iP⊥0 L̂√ηkP
⊥
0 +BP⊥0 − ηwP

⊥
0

Mη,k(w) = iP0Q
⊥
0 L̂
√
ηkQ
⊥
0 P0 − ηwQ

⊥
0 P0 + C

†√
ηk

1

Fη,k
C√ηk.

A reasonable next step might be to show that ReMη,k(w) is bounded below, away from

zero, uniformly in η. We could then take the limit of a uniformly bounded sequence of

operators. In attempting to compute this lower bound, we find instead that ReMη,k(w) is

bounded below by another operator, which we will call R√ηk/2, and that this operator has

spectrum near zero. While the ideal lower bound does not exist, we may show nonetheless

that R
−1/2√
ηk/2

ReMη,k(w)R
−1/2√
ηk/2

is uniformly bounded below on the range of R
1/2√
ηk/2

. To

show that R
−1/2√
ηk/2

Mη,k(w)R
−1/2√
ηk/2

is appropriate for our problem, we must also show that

fη,k is in the domain of R
−1/2√
ηk/2

. This compels us to find a more explicit representation for

R√ηk/2.

As a first step to this goal, define

Dk := (B−1P⊥0 L̂kP0Q
⊥
0 )†(B−1P⊥0 L̂kP0Q

⊥
0 ) (3.12)
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for k ∈ Td, a bounded operator on L2(Zd × Ω). This operator has the more explicit form

Dk = 8χ4N0 + 8χ4Nk + 4χ
∑
e

(δe − eik·eδ−e)〈δe − eik·eδ−e, ·〉, (3.13)

the derivation of which is the subject of Appendix C. Here ∆N0 is the “Neumann Laplacian”

4N0 ψ(x) = (1− δ0(x))
∑

x+e6=0
|e|=1

(ψ(x)− ψ(x+ e))

and ∆Nk is it’s Gauge transform:

4Nk = e−ik·X4N0 eik·X

4Nk ψ(x) = (1− δ0(x))
∑

x+e6=0
|e|=1

(
ψ(x)− eik·eψ(x+ e)

)
.

We shall soon see that D√ηk is a lower bound for the operator in question. However fη,k,

the function which forms the key matrix element, also varies with η. This makes some of

the required calculations difficult. To remedy this, we use a Gauge transform to “push” the

k and η dependence from the function to the operator. To see this, we first transform the

finite-rank part of Dk,

4χe
ik2 ·x

∑
|e|=1

(δe − eik·eδ−e)〈δe − eik·eδ−e, ψ〉 = 4χ
∑
|e|=1

(δe − δ−e)〈δe − δ−e, e
ik2 ·Xψ〉
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so that we may write

Dk = 8χe
−ik2 ·X

(
4N−k/2 +4Nk/2 +

1

2

∑
e

(δe − δ−e)〈δe − δ−e, ·〉

)
e
ik2 ·X.

We then obtain a lower bound as follows. For |k| < 2π
3 , 2 cos

(
k
2 · e

)
> 1 and

〈
ψ,
(
4N−k/2 +4Nk/2

)
ψ
〉

=
∑
x 6=0

ψ∗(x)
∑

x+e6=0
|e|=1

(
2ψ(x)−

(
e
−ik2 ·e + e

ik2 ·e
)
ψ(x+ e)

)

≥
∑
x 6=0

ψ∗(x)
∑

x+e6=0
|e|=1

(
2 cos

(
k

2
· e
)
ψ(x)− 2 cos

(
k

2
· e
)
ψ(x+ e)

)

≥
∑
x 6=0

ψ∗(x)
∑

x+e 6=0
|e|=1

(ψ(x)− ψ(x+ e))

=
〈
ψ,4N0 ψ

〉

and thus 4N−k/2 + 4N
k/2

≥ 4N0 and Dk ≥ e
−ik2 ·XR0e

ik2 ·X =: Rk/2, where we have

defined

R0 = 8χ4N0 + 4χ
∑
e

(δe − δ−e)〈δe − δ−e, ·〉. (3.14)

Notice that the factor δe − δ−e appears in (3.14). Also, the same function is present in

the definition (3.10) of fη,k which was inspired by the P0 · · ·P0 term of (3.9). With the

following lemma, we may conclude that fη,k is in the domain of R
−1/2√
ηk/2

which means that

R
−1/2√
ηk/2

Mη,k(w)R
−1/2√
ηk/2

is indeed appropriate for our problem.
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Lemma 2. Let A ≥ 0 on a Hilbert space H and let f ∈ H. Then, for α > 0, f ∈

D
(
A
−1/2
α

)
where Aα = A+ αf〈f, ·〉.

Proof. First note that the following three statements are equivalent. Here Q
(
A−1
α

)
is the

form domain of A−1
α .

f ∈ D
(
A
−1/2
α

)
f ∈ Q

(
A−1
α

)
lim

λ→0+
〈f, (Aα + λ)−1f〉 <∞

Using the resolvent identity we see that

(A+ λ)−1 = (Aα + λ)−1 + (Aα + λ)−1αf〈f, ·〉(A+ λ)−1

〈f, (A+ λ)−1f〉 = 〈f, (Aα + λ)−1f〉+ α〈f, (Aα + λ)−1f〉〈f, (A+ λ)−1f〉

and

〈f, (Aα + λ)−1f〉 =
1

1
〈f,(A+λ)−1f〉

+ α
≤ 1

α

since A ≥ 0 and thus (A+ λ)−1 > 0.

By the above lemma, δe − δ−e is in the domain of R
−1/2
0 . From this, it follows that
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fη,k is in the domain of R
−1/2√
ηk
2

. Indeed,

ϕη,k := R
−1/2√
ηk
2

fη,k

=

(
−2iθ̄
√
η

) ∑
|e|=1

sin

(√
ηk

2
· e
)
e
−i
√
ηk
2 ·XR−1/2

0 (δe − δ−e)

and

ϕ0,k := lim
η→0

R
−1/2√
ηk
2

fη,k

= −iθ̄
∑
|e|=1

(k · e)R−1/2
0 (δe − δ−e).

Now, it remains to examine the invertibility of Mη,k(w).

3.4.6 Bounding the Resolvent

Recall that for w ∈ 1
ηΓ2, Rew = −1 and note that

ReMη,k ≥ Re

(
C
†√
ηk

1

Fη,k
C√ηk

)
ReFη,k ≥ 1

T

D√ηk = (B−1C√ηk)†(B−1C√ηk).
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Suppose f ∈ D
(
D
−1/2√
ηk

)
with |f | = 1. It follows that

Re

〈
f, C
†√
ηk

1

Fη,k
C√ηkf

〉
=

〈
C√ηkf, Re

(
1

Fη,k

)
C√ηkf

〉

=

〈
C√ηkf,

1

F
†
η,k

ReFη,k
1

Fη,k
C√ηkf

〉

=

〈
1

Fη,k
C√ηkf, ReFη,k

1

Fη,k
C√ηkf

〉

≥ 1

T

∥∥∥∥∥ 1

Fη,k
C√ηkf

∥∥∥∥∥
2

=
1

T

∥∥∥∥∥ 1

B−1Fη,k
B−1C√ηkf

∥∥∥∥∥
2

≥ 1

T

∥∥∥B−1Fη,k

∥∥∥−2
‖B−1C√ηkf‖

2

=
1

T
‖B−1Fη,k‖

−2〈f, D√ηkf〉

> c0〈f, D√ηkf〉

where we have defined

c0 =
1

2T
lim

η→0+
‖B−1Fη,k‖

−2

=
1

2T
lim

η→0+
‖iB−1P⊥0 L̂√ηkP

⊥
0 + P⊥0 − ηwB

−1P⊥0 ‖
−2

=
1

2T
‖iB−1P⊥0 L̂0P

⊥
0 + P⊥0 ‖

−2.
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Thus, we have shown

Re

(
C
†√
ηk

1

Fη,k
C√ηk

)
≥ c0D

√
ηk ≥ c0R

√
ηk
2

,

Re

R−1/2√
ηk
2

C
†√
ηk

1

Fη,k
C√ηkR

−1/2√
ηk
2

 ≥ c0,

and finally

∥∥∥∥∥∥R1/2√
ηk
e

M−1R
1/2√
ηk
2

∥∥∥∥∥∥ ≤ 1

c0
.

With this bound, we may compute the small η limit of the P0 · · ·P0 term in (3.9).

3.4.7 The Diffusive-Scaling Limit

Recall that fη,k ∈ D

R−1/2√
ηk
2

 and we have defined ϕη,k = R
−1/2√
ηk
2

fη,k. The P0 · · ·P0

term in the inner product in (3.9) is then

〈
δ0 ⊗ 1,

Q0

L̂√ηk
√
η
Q⊥0

P0
1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P0

Q⊥0 L̂√ηk
√
η
Q0


δ0 ⊗ 1

〉

=

〈
fη,k, P0

1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P0 fη,k

〉

=

〈
R

1/2√
ηk
2

ϕη,k, Mη,k(w)−1R
1/2√
ηk
2

ϕη,k

〉

=

〈
ϕη,k, R

1/2√
ηk
2

Mη,k(w)−1R
1/2√
ηk
2

ϕη,k

〉
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which tends to

〈
ϕ0,k, R

1/2
0

[
(P0Q

⊥
0 L̂0P

⊥
0 )

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

(P⊥0 L̂0Q
⊥
0 P0)

]−1

R
1/2
0 ϕ0,k

〉

in the small η limit. It is now a simple matter to compute the P0 · · ·P⊥0 , P⊥0 · · ·P0, and

P⊥0 · · ·P
⊥
0 terms of (3.9).

Using the Schur complement formula, the P0 · · ·P⊥0 term in the inner product in (3.9)

is

〈
δ0 ⊗ 1,

Q0

L̂√ηk
√
η
Q⊥0

P0
1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P⊥0

Q⊥0 L̂√ηk
√
η
Q0


δ0 ⊗ 1

〉

=

〈
fη,k, P0

1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P⊥0
L̂√ηk
√
η
δ0 ⊗ 1

〉

=

〈
fη,k, −Mη,k(w)−1(iP0Q

⊥
0 L̂
√
ηkP
⊥
0 )

1

iP⊥0 L̂√ηkP
⊥
0 +BP⊥0 − ηwP

⊥
0

L̂√ηk
√
η

δ0 ⊗ 1

〉

which tends to

〈
f0,k,

(
C
†
0

1

F0,0
C0

)−1

(iP0Q
⊥
0 L̂0P

⊥
0 )

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

(
2i
∑
e
θ(0, e, ω)(k · e)δe

)〉

since δ0 ⊗ 1 ∈ Ker(L̂0) and

lim
η→0+

L̂√ηk
√
η
δ0 ⊗ 1 = lim

η→0+

L̂√ηk − L̂0
√
η

δ0 ⊗ 1 = −2i
∑
e
θ(0, e, ω)(k · e)δe.
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The P⊥0 · · ·P0 term in the inner product in (3.9) is then

〈
δ0 ⊗ 1,

Q0

L̂√ηk
√
η
Q⊥0

P⊥0
1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P0

Q⊥0 L̂√ηk
√
η
Q0


δ0 ⊗ 1

〉

=

〈
L̂√ηk
√
η
δ0 ⊗ 1, P⊥0

1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P0 fη,k

〉

=

〈
L̂√ηk
√
η
δ0 ⊗ 1, − 1

iP⊥0 L̂√ηkP
⊥
0 +BP⊥0 − ηwP

⊥
0

(iP⊥0 L̂√ηkQ
⊥
0 P0)Mη,k(w)−1

fη,k

〉

which tends to

〈(
2i
∑
e
θ(0, e, ω)(k · e)δe

)
,

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

(iP⊥0 L̂0Q
⊥
0 P0)

(
C
†
0

1

F0,0
C0

)−1

f0,k

〉
.

Lastly, we compute the limit of the P⊥0 · · ·P
⊥
0 term.

P⊥0
1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

P⊥0 =

1

iP⊥0 L̂√ηkP
⊥
0 +BP⊥0 − ηwP

⊥
0

− 1

iP⊥0 L̂√ηkP
⊥
0 +BP⊥0 − ηwP

⊥
0

(iP⊥0 L̂√ηkQ
⊥
0 P0)

·Mη,k(w)−1(iP0Q
⊥
0 L̂
√
ηkP
⊥
0 )

1

iP⊥0 L̂√ηkP
⊥
0 +BP⊥0 − ηwP

⊥
0
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and the appropriate matrix element tends to

〈(
2i
∑
e
θ(0, e, ω)(k · e)δe

)
,

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

− 1

iP⊥0 L̂0P
⊥
0 +BP⊥0

(iP⊥0 L̂0Q
⊥
0 P0)

·

(
C
†
0

1

F0,0
C0

)−1

(iP0Q
⊥
0 L̂0P

⊥
0 )

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

(
2i
∑
e
θ(0, e, ω)(k · e)δe

)〉
.

In the above, we have computed

Jη,k(w) :=〈
δ0 ⊗ 1,

Q0

L̂√ηk
√
η
Q⊥0

 1

iQ⊥0 L̂
√
ηkQ
⊥
0 +BQ⊥0 − ηwQ

⊥
0

Q⊥0 L̂√ηk
√
η
Q0

 δ0 ⊗ 1

〉
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and

Jk := lim
η→0+

Jη,k(w) (3.15)

=

〈
ϕ0,k, D

1/2
0

[
(P0Q

⊥
0 L̂0P

⊥
0 )

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

(P⊥0 L̂0Q
⊥
0 P0)

]−1

D
1/2
0 ϕ0,k

〉

+

〈
f0,k,

(
C
†
0

1

F0,0
C0

)−1

(iP0Q
⊥
0 L̂0P

⊥
0 )

1

iP⊥0 L̂0P
⊥
0 +BP⊥0(

2i
∑
e
θ(0, e, ω)(k · e)δe

)〉

+

〈(
2i
∑
e
θ(0, e, ω)(k · e)δe

)
,

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

(iP⊥0 L̂0Q
⊥
0 P0)

(
C
†
0

1

F0,0
C0

)−1

f0,k

〉

+

〈(
2i
∑
e
θ(0, e, ω)(k · e)δe

)
,

1

iP⊥0 L̂0P
⊥
0 +BP⊥0

− 1

iP⊥0 L̂0P
⊥
0 +BP⊥0

·(iP⊥0 L̂0Q
⊥
0 P0)

(
C
†
0

1

F0,0
C0

)−1

(iP0Q
⊥
0 L̂0P

⊥
0 )

1

iP⊥0 L̂0P
⊥
0 +BP⊥0(

2i
∑
e
θ(0, e, ω)(k · e)δe

)〉

Although it is not obvious from (3.15) above, Jk is of the form 〈k,Dk〉Cd with D symmetric.

To see this, we must compute Jk a different way.

Let D(η) be the matrix of time-averaged second moments:

D
(η)
i,j := −η2

∫ ∞
0

∑
x∈Zd

xixjE
(
|ψt(x)|2

)
e−ηt dt.

This is just a time-averaged second derivative, evaluated at k = 0, of the left-hand side of

the diffusion criterion (3.3). It is clear that this matrix is symmetric. Now by using the
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Feynman-Kac-Pillet formula (3.5), we see that

D
(η)
i,j = η

〈
δ0 ⊗ 1,

 ∂

∂ki

∂

∂kj

1

iL̂√ηk +B + η

∣∣∣∣∣
k=0

δ0 ⊗ 1

〉
.

But, by computing the derivatives, we see that 〈k,D(η)k〉 is the inner-product on the right

hand side of (3.9), which we have already named Jη,k. Thus, Jk is of the form 〈k,Dk〉 with

D symmetric.

All that remains is to compute the limit of the integral in (3.8).

− 1

2πi

∫
1
ηΓ2

e−tw 1

−w + Jη,k
dw

= − 1

2πi

∫
1
ηΓ2

e−tw
(

1

−w + Jη,k
− 1

−w + Jk

)
dw − 1

2πi

∫
1
ηΓ2

e−tw 1

−w + Jk
dw

For the first integral, the difference decays like c/w2 so 1
2π

cet

w2 is an integrable upper

bound for the integrand. Thus, by the Lebesgue convergence theorem, the first integral goes

to zero as η → 0.

We will use the residue theorem to compute the final integral. The path

γ =
{
w = −1 +Reiθ : −π

2
< θ <

π

2

}
, R =

1 + ||L||
η

,

together with 1
ηΓ2, forms a closed loop. For η sufficiently small, this path encloses Jk. The

residue at this pole is e−tJk .
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On the curve γ,

∣∣∣∣∣ 1

2πi

∫
γ
e−tw 1

w − Jk
dw

∣∣∣∣∣ =

∣∣∣∣∣ 1

2πi

∫ π
2

−π2
e−t(−1+Reiθ) 1

−1 +Reiθ − Jk
iReiθdθ

∣∣∣∣∣
≤ 1

2π

∫ π
2

−π2
e−t(−1+R cos θ)

∣∣∣∣∣ R

−1 +Reiθ − Jk

∣∣∣∣∣ dθ
≤ cet

2π

∫ π
2

−π2
e−tR cos θ dθ,

which goes to zero as η → 0+ by the bounded convergence theorem.

Therefore,

lim
η→0+

∑
x∈Zd

ei
√
ηk·xE

(
|ψt/η(x)|2

)
= e−tJk ,

Jk is of the form
∑
e1,e2

(k · e1)(k · e2)De1,e2 as seen above, and the theorem is proven.
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Chapter 4

Higher Moments for a

Markov-Schrödinger Equation

4.1 Statement of the Problem

The problem we consider here is that of computing moments of the position variable with

respect to the probability density function E(|ψt|2) on Zd. Here ψt is the solution to a

Markov-Schrödinger equation on the lattice and the expectation is an average over all real-

izations of the process. Specifically, ψt ∈ `2(Zd) satisfies


i∂tψt(x) =

∑
y
hω(x, y, t)ψt(y), x ∈ Zd, t > 0

ψ0(x) = δ0(x), x ∈ Zd
(4.1)

with ω a Markov process and hw(·, ·, t) ∈ `2(Zd × Zd). By way of a gauge transform, this

problem is seen to be equivalent to the wave model in [3] and their result is crucial to the one

presented here. We begin by giving the necessary details for diffusion in [3] and by showing
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the equivalence of the two models. A few further assumptions will be made, giving us a

ballistic upper bound on solutions thus allowing for the computation of moments.

4.2 Diffusion for a Markov-Schrödinger Wave Equa-

tion

Here we will provide the minimum details from [3] to define the original problem and state

their main result. For further details, the reader should consult [3].

Suppose h̃ is a function on Zd with
∑
x∈Zd |x|

2|h̃(x)| < ∞ and h̃(−x) = h̃(x)∗ for all

x ∈ Zd. Further suppose that for k ∈ Rd, h̃(x) 6= 0 and k · x 6= 0 for some x ∈ Zd. We may

then define T̃ψ(x) =
∑
y h̃(x, y)ψ(y). The assumptions on h̃ imply that T is a bounded,

self-adjoint operator from `2(Zd) to itself.

Let λ > 0 be constant, t 7→ ω(t) be a Markov process on a probability space (Ω, µ), and

for x ∈ Zd, suppose vx : Ω → R is measurable. Given |ψ0|`2(Zd)
= 1, the problem under

consideration is that of finding ψ̃t ∈ `2(Zd) for t > 0, such that

i∂tψ̃t(x) = T̃ ψ̃t(x) + λvx(ω(t))ψ̃t(x), x ∈ Zd. (4.2)

In the case when ψ0 = δ0, their main result is

lim
τ→∞

∑
x∈Zd

e
−i k√

τ
·x
E(|ψτt(x)|2) = e

−t
∑
i,j Di,j(λ)kikj , (4.3)

for k in the torus Td and D = D(λ) a positive definite matrix. The result presented here

is that we may differentiate (4.3) term-by-term, at k = 0, which will allow us to compute
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higher moments in the diffusive scaling limit. We do this by analytically continuing (4.3) in

the variable k to a neighborhood of the origin in Cd. But first, we must draw an equivalence

between the models (4.1) and (4.2).

4.3 Equivalence of Models

The result in [3] that is crucial to the result here, is stated in terms of the solution to (4.2).

To derive the bounds we need to compute moments, we would prefer to work in terms of

(4.1). These two are easily seen to be equivalent. Moreover, the corresponding probability

density functions, and hence moments, are equal: E(|ψt|2) = E(|ψ̃t|2). To see this, define

the following gauge transformation.

φω(x, t) = λ

∫ t

0
vx(ω(s)) ds

hω(x, y, t) = eiφω(x,t)h̃(x, y)e−iφω(y,t) (4.4)

ψt(x) = eiφω(x,t)ψ̃t(x)

Now hω in (4.1) is fully defined and hω inherits the assumptions placed on h̃ in [3]. We

then see that ψt satisfies (4.1) if and only if ψ̃t is a solution to (4.2). It follows that the

probability density functions are equal, as claimed. For the extended result here, we require

some additional assumptions on h̃ and ψ̃0. Namely, those conditions that will guarantee a

ballistic upper bound on solutions to (4.2) and equivalently to (4.1). This is the topic of the

next section.
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4.4 A Ballistic Upper Bound

We assume the following decay conditions on h̃ and the initial condition ψ̃0. Equivalent

assumptions on hω and ψ0 are then inherited and are also stated here.

∑
y
eµ|x−y||hω(x, y, t)| =

∑
y
eµ|x−y||h̃(x, y)| ≤ A (4.5)

c0 := sup
x
eµ|x||ψ0(x)| = sup

x
eµ|x||ψ̃0(x)| <∞

To compute a ballistic upper bound, we first integrate equation (4.1) and iterate the result

to arrive at

ψt(x) = ψ0(x) +

∫ t

0
H

(ω)
r1

ψ0 dr1 +
∞∑
n=2

∫ t

0

∫ r1

0
· · ·
∫ rn−1

0
H

(ω)
r1

. . . H
(ω)
rn ψ0 drn · · · dr1,

where H
(ω)
t ψ(x) =

∑
y hω(x, y, t)ψt(y). Now we multiply by the exponential

eµ|x|ψt(x) = eµ|x|ψ0(x) +

∫ t

0
eµ|x|Hr1ψ0 dr1

+
∞∑
n=2

∫ t

0

∫ r1

0
· · ·
∫ rn−1

0
eµ|x|Hr1 . . . Hrnψ0 drn · · · dr1

and notice that if we write

eµ|x| ≤ eµ|x−y1|eµ|y1−y2| · · · eµ|yn|,
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and understand that Hrj provides a sum over yj ∈ Zd, then the decay conditions (4.5) give

us

eµ|x||ψt(x)| ≤ c0 +

∫ t

0
c0Adr1 +

∞∑
n=2

∫ t

0

∫ r1

0
· · ·
∫ rn−1

0
c0A

n drn · · · dr1.

But this is just the integral over the simplex Γn(t) = {(r1, . . . , rn) : rn ≤ rn−1 ≤ · · · ≤

r1 ≤ t} which has Rn-Lebesgue measure t
n

n!
. This gives us

eµ|x||ψt(x)| ≤ c0 + c0At+
∞∑
n=2

c0A
nt
n

n!
= c0e

At

and |ψt(x)| ≤ c0e
At−µ|x| is the bound we seek.

4.5 Moments by Analytic Continuation

To show that (4.3) can be analytically continued, we require some notation. For t > 0,

τ � 1, and z ∈ Cd with |z| < µ, define

Ft,τ (z) =
∑
x∈Zd

e

z·x√
τ E(|ψτt(x)|2) and (4.6)

Ft(z) = e
t
∑
i,j Di,j(λ)zizj ,

where ψt is a solution to (4.1) and Di,j(λ) is given by (4.3). Equation (4.3) is the motivation

for these definitions since, in this notation, the main result in [3] is that limτ→∞ Ft,τ (−ik) =

Ft(−ik) for all k ∈ Td.

To begin, we wish to show that limτ→∞ Ft,τ ≡ Ft. Since Ft is clearly analytic, this is a
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result of the identity theorem if we first show that limτ→∞ Ft,τ is analytic. Moreover, we

also wish to show that the derivatives of Ft,τ converge to the corresponding derivatives of

Ft. From this, it is a simple matter to compute any moment of the position. One may just

differentiate (4.3) with respect to k ∈ Td and substitute k = 0.

That these derivatives converge appropriately, is a consequence of the fact that the ana-

lytic functions (on regions in C with the sup norm) form a closed subset of the continuous

functions (see [1]). Therefore, it remains only to show that Ft,τ and limτ→∞ Ft,τ are

analytic.

For the remainder of this chapter, when we discuss convergence or analyticity, it is un-

derstood that the domain under consideration is {z ∈ Cd : |z| < µ0}, for some µ0 ∈ (0, µ).

This extra space between µ0 and µ will allow us to conclude uniform convergence for the

series rather than mere point-wise convergence.

4.6 Convergence and Analyticity

First we show that the series in (4.6) converges uniformly and absolutely. We then show

that (4.6) and its limit are analytic. This will complete the argument laid out in section 4.5.

Let ωd be the surface area of the unit ball in Rd.

Lemma 1. The series in (4.6) is uniformly and absolutely convergent with

∑
x∈Zd

e

|z||x|√
τ E(|ψτt(x)|2) ≤ c0e

Aτtωd(d− 1)!

(µ− µ0)d
.

Moreover, Ft,τ defined in (4.6) is analytic.
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Proof. The partial sums of the series are analytic and approximate Ft,τ . So, to show ana-

lyticity, we need only show uniform convergence of the series. Since

∣∣∣∣∣∣∣
∑
x∈Zd

e

z·x√
τ E(|ψτt(x)|2)

∣∣∣∣∣∣∣ ≤
∑
x∈Zd

e

µ0|x|√
τ E(|ψτt(x)|2),

it suffices to show
∑
x∈Zd e

µ0|x|√
τ E(|ψτt(x)|2) converges.

For all x0 ∈ Zd, there exists a unique closed unit hypercube Cx0 ⊆ Rd with x0, the

unique point in the hypercube furthest from 0. The union of all such cubes is Rd. Although

they are not disjoint, the intersection of any two cubes has Lebesgue measure zero. For

k > 0, it follows that

e−k|x0| = e−k|x0|
∫
Cx0

dx ≤
∫
Cx0

e−k|x| dx,

and we sum over x0 ∈ Zd to arrive at

∑
x∈Zd

e−k|x| ≤
∫
Rd

e−k|x| dx =
ωd(d− 1)!

kd
.

From section 4.4, we have |ψt(x)|2 ≤ c0e
At−µ|x|. Note that |ψt(x)| ≤ 1 since the

solution generator is unitary and the initial condition is a unit vector. With this, we may
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conclude that the series converges absolutely and with constant bound as follows.

∑
x∈Zd

e

|z||x|√
τ |ψτt(x)|2 ≤

∑
x∈Zd

eµ0|x|c0e
Aτt−µ|x|

= c0e
Aτt

∑
x∈Zd

e−(µ−µ0)|x|

≤ c0e
Aτtωd(d− 1)!

(µ− µ0)d

Lemma 2. lim
τ→∞Ft,τ is analytic.

Proof. From [3],

∑
x∈Zd

e

z·x√
τ |ψτt(x)|2 =

〈
δ0 ⊗ 1, e

−tτ L̂−iz/
√
τ δ0 ⊗ 1

〉

and so it suffices to show

lim
τ→∞

〈
δ0 ⊗ 1, e

−tτ L̂−iz/
√
τ δ0 ⊗ 1

〉

is analytic. As L̂−iz/
√
τ is a perturbation of L̂0 on the order of 1/

√
τ , the estimates

on the spectral gap in [3] hold. In particular, E(z) is an isolated eigenvalue of L̂z with

|E(z)| < c/
√
τ . The rest of the numerical range is contained in a sector of the form

Σ+ =

{
z = x+ iy ∈ C : x > δλ −

c√
τ
, |y| ≤ mx

}
.

We may then choose a contour Γ = Γ1 ∪ Γ2, with index 1 around the numerical range.
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Im(z)

Re(z)

τ
−1

3
δλ −

c√
τ

Σ+

Γ2

Γ1

E

(
−iz√
τ

)

c√
τ

Figure 4.1: The contour Γ and the perturbed numerical range.
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Γ1 is the circle centered at the origin, with radius c/
√
τ . Then we choose Γ2 winding once

around Σ+, maintaining a distance at least on the order of τ−1/3 from Σ+. We will use

the fact that

dist(τΓ2, τΣ+) = O
(
τ − τ2/3

)

and so an integral of the resolvent of τL̂−iz/
√
τ over τΓ2 is small (see Appendix A). With

this contour, we may use the holomorphic functional calculus (see [5]).

〈
δ0 ⊗ 1, e

−tτ L̂−iz/
√
τ δ0 ⊗ 1

〉
=

1

2πi

∫
Γ
e−tτw

〈
δ0 ⊗ 1,

1

w − L̂−iz/
√
τ

δ0 ⊗ 1

〉
dw

To make use of the resolvent estimate above and to avoid an asymptotic integral, we make

a linear change of variables to arrive at

1

2πi

∫
τΓ

e−tw
〈
δ0 ⊗ 1,

1

w − τL̂−iz/
√
τ

δ0 ⊗ 1

〉
dw

=
1

2πi

∫
τΓ1

e−tw
〈
δ0 ⊗ 1,

1

w − τL̂−iz/
√
τ

δ0 ⊗ 1

〉
dw +O

(
1

τ

)
,

and the resulting integral over τΓ1 is an exponential times a Riesz projection. Indeed, if

Ψ(z) is a unit vector satisfying L̂zΨ(z) = E(z)Ψ(z) then

Qz =
1

2πi

∫
Γ1

1

w − L̂z
dw
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is the projection onto the span of Ψ(z) and L̂zQz = E(z)Qz . It follows that

∑
x∈Zd

e

z·x√
τ |ψτt(x)|2 = e−tτE(−iz/

√
τ)
〈
δ0 ⊗ 1, Q−iz/

√
τ δ0 ⊗ 1

〉
+O

(
1

τ

)
.

It is clear that
〈
δ0 ⊗ 1, Q−iz/

√
τ δ0 ⊗ 1

〉
tends to 1. From [3] we have an expansion for

E(z) near zero with E(0) = 0 and ∇E(0) = 0 from which we may conclude

lim
τ→∞

∑
x∈Zd

e

z·x√
τ |ψτt(x)|2 = e−th(z)

with h(z) = limτ→∞ τE(−iz/
√
τ) holomorphic.
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Appendix A

The Numerical Range of a Linear

Operator

Definition 1. The numerical range [8] of an operator on a Hilbert space is defined by

N (A) = {〈x,Ax〉 : x ∈ D(A), |x| = 1}.

Lemma 2. Suppose H is a Hilbert space, D(A) ⊆ H is dense, and A : D(A) → H. Then

the norm of the resolvent is bounded by the inverse of the distance to the numerical range:

∥∥∥∥ 1

z − A

∥∥∥∥ ≤ 1

dist(z,N (A))
.

Proof. Suppose z ∈ C such that dist(z,N (A)) > 0 and let ψ ∈ H be a unit vector. Define
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c =
∣∣∣ 1
z−Aψ

∣∣∣−1
and ϕ = c 1

z−Aψ.1 Then

dist(z,N (A)) ≤ |〈ϕ, (z − A)ϕ〉| = c2
∣∣∣∣〈 1

z − A
ψ,ψ

〉∣∣∣∣ ≤ c

and the result follows by inverting the inequality and taking the supremum over {|ψ| =

1}.

As a consequence of this lemma, the spectrum of an operator is contained in the closure

of its numerical range. Indeed, if dist(z,N (A)) > 0 then Ker(z − A) = {0} and z ∈ ρ(A).

So, if z ∈ σ(A), then dist(z,N (A)) = 0 and z ∈ CloN (A).

1At this point, one should verify that ϕ is well-defined; that the domain of the resolvent is the
entire Hilbert space. To do this, it suffices to show that the resolvent is bounded. One approach,
and perhaps the simplest, is to define it to be so. In [7] for example, the resolvent set is defined
to be those complex numbers such that the resolvent is a bounded operator, defined on the entire
space. Alternatively, [4] defines the resolvent set such that the resolvent need only be a bijection
on H. Then, the closed graph theorem asserts that the resolvent is bounded.
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Appendix B

The Markov Generator

Here we construct the semigroup and generator corresponding to a Markov process. The

generator will be an unbounded operator, defined on a subset of L2-functions on a probability

space. This semigroup structure encapsulates the process in the generator, allowing us to

reduce the problem of understanding the Markov dynamics (in an averaged sense, see 2.3)

to a spectral analysis of the generator. We may focus on the generator itself, and not the

process it represents, because of a Feynman-Kac formula due to Pillet [6]. This formula

allows us to write the amplitude of a wave-form in terms of a particular matrix element of

the overall generator – the generator for the wave model together with the Markov generator.

Hence, a detailed study of the Markov process and its underlying probability space is limited

to this section, allowing us to concentrate our focus in chapter 3 solely on the generator.

We begin by defining the underlying probability space, a path-space for the Markov pro-

cess, and the appropriate semigroups. Several assumptions are placed on these spaces so that

we indeed have a semigroup, and that this semigroup is a strongly continuous contraction.

With this, we may write down its generator and, with a few additional assumptions, derive

46



the key aspects which are required in chapter 3. The development below is nearly identi-

cal to [3], except that we construct a collection of processes, independent and identically

distributed, and indexed by the space through which our wave solution will propagate.

Let Ed denote the space of directed edges between nearest-neighbor pairs in Zd. That is,

(x, e) ∈ Ed if x ∈ Zd and e is a unit vector with x+ e ∈ Zd. We call the points x and x+ e

in Zd, nearest neighbors. Each of these directed edges may be thought of as a site at which

a Markov process runs.

For each (x, e) ∈ Ed, we will construct a Markov process as follows. It is assumed that

the collection of processes constructed in this way are i.i.d. Let (Ω, µ) be a probability space

and suppose we have a collection {Pα : α ∈ Ω} of probability measures on the path space

P = Ω[0,∞) and that each measure Pα is supported on those processes which start at α.

That is,

Pα({ω(·) ∈ P : ω(0) 6= α}) = 0.

Further, we assume that each path ω(·) ∈ P is right-continuous – Pα-a.s. With these

probability measures in mind, we assume that µ is invariant:

∫
Ω
Pα(ω(t) ∈ A) dµ(α) = µ(A)

for measurable sets A ⊆ Ω.

Let St be the backward shift on P , Stω(·) = ω(·+ t), so that S−1
t (A) = {ω(·) : ω(·+ t) ∈
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A} for measureable sets A ⊆ P . Finally, we suppose that the Markov property holds:

∫
P
Pω(t)(A) dPα(ω(·)) = Pα(S−1

t (A)).

We then define

Stf(α) = Eα(f(ω(t))), St : L2(Ω)→ L2(Ω),

and the above assumptions imply that {St}t≥0 is a strongly continuous, contraction semi-

group on L2(Ω). It follows that the adjoint S
†
t is also a strongly continuous, contraction

semigroup given by

S
†
t f(α) = E(f(ω(0))|ω(t) = α).

Let B denote the generator of S
†
t ,

Bψ = − lim
t→0+

1

t

(
S
†
t ψ − ψ

)

so that e−tB = S
†
t . The generator B is defined on D(B) – those L2(Ω) functions for which

the limit exists. The exponential of an unbounded operator may be interpreted using the

holomorphic functional calculus [5]:

e−tB =
1

2πi

∫
Γ

e−tz

z −B
dz.

To ensure convergence of the functional calculus, and to further control the spectrum of the
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Im(z)

Re(z)

N (B)Γ

Figure B.1: The contour Γ and the numerical range of the Markov Generator.

overall generator in chapter 3, we assume that the numerical range (see appendix A) of B

is sectoral. That is, if z = x+ iy ∈ N (B), then |y| ≤ mx for some m ≥ 0. This condition is

easily satisfied if B happens to be self-adjoint.
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Appendix C

Another Realization of Dk

The operator Dk plays a special role in showing diffusion for the divergence-form model in

chapter 3. Here we derive another useful formulation for Dk.

For k ∈ Cd, let Dk be the bounded, self-adjoint operator defined in section 3.4.4 by

Dk = (B−1P⊥0 L̂kP0Q
⊥
0 )†(B−1P⊥0 L̂kP0Q

⊥
0 ). (C.1)

At the present time, we are only concerned with k ∈ Td, however the full generality of

k ∈ Cd will be useful when computing higher moments of position.

Consider (x, e) ∈ Ed, a directed edge connecting nearest neighbors in Zd. The opposing

direction on the same edge is given by (x+ e,−e). Due to translation covariance, θ does not

distinguish between these two directions. Indeed, θ(x, e, ω) = θ(x + e,−e, ω). Moreover, if
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(x, e) and (x′, e′) are distinct edges,

〈B−1(θ(x, e, ω)− θ̄), B−1(θ(x′, e′, ω)− θ̄)〉
L2(Ω)

=

∫
Ω

(B−1(θ(x, e, ω)− θ̄))∗B−1(θ(x′, e′, ω)− θ̄)dµ(ω)

=

∫
Ω

(B−1(θ(x, e, ω)− θ̄))∗dµ(ω)

∫
Ω
B−1(θ(x′, e′, ω)− θ̄)dµ(ω)

= 0

since the Markov processes on each edge are independent and the set of mean-zero functions

are invariant under B. Thus, for any pair of edges (x, e) and (x′, e′) we may write

〈B−1(θ(x, e, ω)− θ̄), B−1(θ(x′, e′, ω)− θ̄)〉
L2(Ω)

= χ(δx(x′)δe(e′) + δx(x′ + e′)δe(−e′))

where χ = ||B−1(θ(x, e, ·)− θ̄)||2
L2(Ω)

. Note that χ is independent of (x, e) since the Markov

processes on edges in Ed are i.i.d. We will use this equality to evaluate matrix elements of

Dk. Let ϕ ∈ `2(Zd) with ϕ = P0Q
⊥
0 ϕ. That is, ϕ is non-random and ϕ(0) = 0. Also, define

θ̃(x, e, ω) := P⊥0 θ(x, e, ω) = θ(x, e, ω)− θ̄. Matrix elements of Dk are evaluated as follows.
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〈ϕ,Dkϕ〉L2(Zd×Ω)
= ||B−1P⊥0 L̂kϕ||

2
L2(Zd×Ω)

=
∑
x∈Zd

∫
Ω

(B−1P⊥0 L̂kϕ(x, ω))∗B−1P⊥0 L̂kϕ(x, ω) dµ(ω)

= 4
∑
x∈Zd

∫
Ω(

B−1P⊥0
∑
e

[
θ(x, e, ω) (ϕ(x)− ϕ(x+ e)) + θ(0, e, ω)

(
e−ik·eϕ(x− e)− ϕ(x)

)])∗
B−1P⊥0

∑
e′

[
θ(x, e′, ω)

(
ϕ(x)− ϕ(x+ e′)

)
+ θ(0, e′, ω)

(
e−ik·e

′
ϕ(x− e′)− ϕ(x)

)]
dµ(ω)

We now may evaluate the integral by using the definition of χ. That is, by making use of

the assumption that the Markov processes at each site are i.i.d.
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〈ϕ,Dkϕ〉L2(Zd×Ω)

= 4
∑
x,e,e′

∫
Ω
dµ(ω)

B−1θ̃(x, e, ω)(ϕ∗(x)− ϕ∗(x+ e)) · B−1θ̃(x, e′, ω)(ϕ(x)− ϕ(x+ e′))

+B−1θ̃(x, e, ω)(ϕ∗(x)− ϕ∗(x+ e)) · B−1θ̃(0, e′, ω)(e−ik·e
′
ϕ(x− e′)− ϕ(x))

+B−1θ̃(0, e, ω)(eik̄·eϕ∗(x− e)− ϕ∗(x)) · B−1θ̃(x, e′, ω)(ϕ(x)− ϕ(x+ e′))

+B−1θ̃(0, e, ω)(eik̄·eϕ∗(x− e)− ϕ∗(x)) · B−1θ̃(0, e′, ω)(e−ik·e
′
ϕ(x− e′)− ϕ(x))

= 4χ
∑
x,e,e′

(ϕ∗(x)− ϕ∗(x+ e))(ϕ(x)− ϕ(x+ e′))δe(e′)

+ (ϕ∗(x)− ϕ∗(x+ e))(e−ik·e
′
ϕ(x− e′)− ϕ(x))(δ0(x)δe(e

′) + δ
e′(x)δe(−e′))

+ (eik̄·eϕ∗(x− e)− ϕ∗(x))(ϕ(x)− ϕ(x+ e′))(δ0(x)δe(e
′) + δe(x)δe(−e′))

+ (eik̄·eϕ∗(x− e)− ϕ∗(x))(e−ik·e
′
ϕ(x− e′)− ϕ(x))δe(e

′)
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Evaluating the Kronecker delta functions give us

= 4χ
∑
x,e

(ϕ∗(x)− ϕ∗(x+ e))(ϕ(x)− ϕ(x+ e))

−4χ
∑
e
e−ik·eϕ∗(e)ϕ(−e) + ϕ∗(−e)ϕ(−e)

−4χ
∑
e
eik̄·eϕ∗(−e)ϕ(e) + ϕ∗(e)ϕ(e)

+4χ
∑
x,e

(eik̄·eϕ∗(x− e)− ϕ∗(x))(e−ik·eϕ(x− e)− ϕ(x)).

In the case when k is real,

〈ϕ,Dkϕ〉L2(Zd×Ω)
= 8χ

∑
x
ϕ∗(x)

∑
e

[ϕ(x)− ϕ(x+ e)]

+8χ
∑
x
ϕ∗(x)

∑
e

[
ϕ(x)− eik·eϕ(x+ e)

]
−8χ

∑
e
ϕ∗(e)

(
e−ik·eϕ(−e) + ϕ(e)

)

and we will examine each of these three terms separately. The first term is

8χ
∑
|x|>1

ϕ∗(x)
∑
e

[ϕ(x)− ϕ(x+ e)] + 8χ
∑
e
ϕ∗(e)

∑
e′ 6=−e

[
ϕ(e)− ϕ(e+ e′)

]
+8χ

∑
e
|ϕ(e)|2

= 8χ〈ϕ, 4N0 ϕ〉+ 8χ
∑
e
|ϕ(e)|2
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where 4N0 is the “Neumann Laplacian”:

4N0 ψ(x) = (1− δ0(x))
∑
y 6=0
|x−y|=1

(ψ(x)− ψ(y))

This new “Laplacian” is just the traditional discrete Laplacian with Neumann boundary

conditions near zero. With the substitution e = y − x, the second term is then

8χ
∑
|x|>1

ϕ∗(x)e−ik·x
∑
y∈Zd
|x−y|=1

[
eik·xϕ(x)− eik·yϕ(y)

]

+8χ
∑
e
ϕ∗(e)e−ik·e

∑
y 6=0
|e−y|=1

[
eik·eϕ(e)− eik·yϕ(y)

]

+8χ
∑
e
|ϕ(e)|2

= 8χ〈ϕ, 4Nk ϕ〉+ 8χ
∑
e
|ϕ(e)|2

where 4Nk is the Gauge transformation of the Neumann Laplacian,

4Nk = e−ik·X4N0 eik·X

4Nk ψ(x) = (1− δ0(x))
∑
y 6=0
|x−y|=1

(
ψ(x)− eik·(y−x)ψ(y)

)

= (1− δ0(x))
∑

x+e 6=0
|e|=1

(
ψ(x)− eik·eψ(x+ e)

)

Lastly, we take the third term along with the non-Laplacian terms from above. These
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may be written as:

4χ

〈
ϕ,
∑
e

(
δe − eik·eδ−e

)
〈δe − eik·eδ−e, ·〉ϕ

〉
.

Combining these three terms, we have our alternate representation of Dk:

Dk = 8χ4N0 + 8χ4Nk + 4χ
∑
e

(δe − eik·eδ−e)〈δe − eik·eδ−e, ·〉. (C.2)

Note that we have only shown the equivalence of diagonal matrix elements of the operators

in (C.1) and (C.2). However, each of these operators is non-negative. By applying the

polarization identity [7] to the operator’s square root, one sees that this is sufficient to

conclude equality of (C.1) and (C.2). Indeed, if A ≥ 0 on a Hilbert Space, and 〈x,Ax〉 = 0

for all x ∈ D(A), then the polarization identity says

〈x,Ay〉 = 〈A1/2x,A1/2y〉

=
1

4
(‖A1/2(x+ y)‖2 − ‖A1/2(x− y)‖2 + i‖A1/2(x− iy)‖2 − i‖A1/2(x+ iy)‖2)

=
1

4
(〈x+ y, A(x+ y)〉 − 〈x− y, A(x− y)〉+ i〈x− iy, A(x− iy)〉

−i〈x+ iy, A(x+ iy)〉)

= 0.
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Appendix D

Inversion of Linear Operators

Lemma 3. Suppose A is a linear operator on a Hilbert space and ε = infz∈N (A) |z| > 0.

Then A is boundedly invertible and ‖A−1‖ ≤ 1/ε.

Proof. It is clear that A is invertible, since zero is not in the numerical range, thus not in

the spectrum. Suppose ‖A−1‖ > 1/ε. Then there is a unit vector y, in the domain of A−1,

such that |A−1y| > 1/ε. Let x = A−1y so that 1/|x| < ε.

∣∣∣∣〈 x

|x|
, A

x

|x|

〉∣∣∣∣ ≤ 1

|x|

∣∣∣∣〈 x

|x|
, y

〉∣∣∣∣ < ε

This contradicts our assumption on the numerical range of A.

Indeed, what we have shown is that if an invertible operator fails to be boundedly in-

vertible, then zero is in the closure of the numerical range. Another conclusion we may

draw is that, to show an operator is boundedly invertible, it suffices to show that its real

(or imaginary) part is bounded away from zero. By the real part of an operator, we mean

〈x, Re(A)x〉 = Re〈x, Ax〉 and we may extend this definition, by way of the polarization
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identity, to 〈x, Re(A)y〉. The imaginary part is then Im(A) = −i(A−Re(A)) as expected.
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Appendix E

The Schur Complement Formula

The Schur complement [9] is a generalization of the notion of the determinate of a 2x2

matrix, in the case when the entries do not commute. A formal statement of this fact is

given here and the proof is given in section E.1. The formula is particularly useful when

used in conjunction with projections that are natural to the operator being inverted, as

demonstrated in section E.2.

Lemma 4. (The Schur Complement Formula) Suppose A,B,C and D are linear operators

from a vector space to itself and that D is invertible. Then

 A B

C D

 is invertible if and

only if (A−BD−1C) is invertible. In the affirmative case, we also have

 A B

C D


−1

(E.1)

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 .

59



Definition 5. Equation (E.1) is known as the Schur complement formula whereas (A −

BD−1C)−1 is known as the Schur complement.

E.1 Proof and a Corollary

Proof. If (A−BD−1C)−1 exists, then we may define

X =

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1


and use matrix multiplication to conclude

 A B

C D

X = X

 A B

C D

 = I.

Conversely, we may factor

 A B

C D

 =

 I BD−1

0 I


 A−BD−1C 0

0 D


 I 0

D−1C I


to conclude

 A−BD−1C 0

0 D

 =

 I BD−1

0 I


−1 A B

C D


 I 0

D−1C I


−1

,

which is clearly invertible.
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Corollary 6. In the affirmative case, if A is also invertible, then

 A B

C D


−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

 .

Proof. Apply the lemma to

 D C

B A

 and take the (1,1) matrix element.

E.2 Using the Schur Complement Formula

To see the utility of the Schur complement formula, consider the following. Let η > 0 and

suppose L and B are linear maps from a Hilbert space to itself. Suppose further that L

is bounded and self-adjoint and that the numerical range of B satisfies a gap condition:

N (B) ⊆ {0} ∪ {Rez ≥ c} for some c > 0. Let P be the projection onto the kernel of B and

suppose that the range of P⊥ is invariant under both B and B†. When we write BP⊥, it

is understood that we mean the restriction to the range of B, and thus, BP⊥ is invertible.

This is exactly the scenario that we encounter in section 3.4.4.

We may now identify the operator iL+B + η with its block matrix form:

(iL+B + η)ψ ∼

 P (iL+B + η)P P (iL+B + η)P⊥

P⊥(iL+B + η)P P⊥(iL+B + η)P⊥


 Pψ

P⊥ψ



=

 iPLP + ηP iPLP⊥

iP⊥LP P⊥(iL+B + η)P⊥


 Pψ

P⊥ψ

 .
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The Schur complement applies here since

Re(P⊥(iL+B + η)P⊥) > Re(P⊥BP⊥) ≥ c

and P⊥(iL+B + η)P⊥ is invertible. The Schur complement is then:

P
1

iL+B + η
P =

(
iPLP + ηP − iPLP⊥ 1

iP⊥LP⊥ + P⊥BP⊥ + ηP⊥
iP⊥LP

)−1
.

If another appropriate projection is chosen, we may apply the Schur complement a second

time, further reducing the operator in question into its constitute parts. While the resulting

equations are more cumbersome, the difficulty in analyzing the original operator is greater

than the sum of the difficulties of its parts.
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