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ABSTRACT

TIME-DOMAIN ANALYSIS OF FRACTIONAL WAVE EQUATIONS AND
IMPLEMENTATIONS OF PERFECTLY MATCHED LAYERS IN
NONLINEAR ULTRASOUND SIMULATIONS

By
Xiaofeng Zhao

The attenuation of ultrasound propagating in human tissue follows a power law with
respect to frequency that is modeled by several different fractional partial differential equa-
tions. These models for the power law attenuation of medical ultrasound have been developed
using fractional calculus, where each contains one or more time-fractional or space-fractional
derivatives. To demonstrate the similarities and differences in the solutions to causal and
noncausal fractional partial differential equations, time-domain Green’s functions are calcu-
lated numerically for the fractional wave equations. For three time-fractional wave equations,
namely the power law wave equation, the Szabo wave equation, and the Caputo wave
equation, these Green’s functions are evaluated for water with a power law exponent of
y = 2, liver with a power law exponent of y = 1.139, and breast with a power law exponent
of y = 1.5. Simulation results show that the noncausal features of the numerically calculated
time-domain response are only evident in the extreme nearfield region and that the causal and
the noncausal Green’s functions converge to the same time-domain waveform in the farfield.
When noncausal time-domain Green’s functions are convolved with finite-bandwidth signals,
the noncausal behavior in the time-domain is eliminated, which suggests that noncausal
time-domain behavior only appears in a very limited set of circumstances and that these
time-fractional models are equally effective for most numerical calculations.

For the calculation of space-fractional wave equations, time-domain Green’s functions are
numerically calculated for two space-fractional models, namely the Chen-Holm and Treeby-
Cox wave equations. Numerical results are computed for these in breast and liver. The

results show that these two space-fractional wave equations are causal everywhere. Away



from the origin, the time-domain Green’s function for the dispersive Treeby-Cox space-
fractional wave equation is very similar to the time-domain Green’s functions calculated for
the corresponding time-fractional wave equations, but the time-domain Green’s function for
the nondispersive Chen-Holm space-fractional wave equation is quite different. To highlight
the similarities and differences between these, time-domain Green’s functions are compared
and evaluated at different distances for breast and liver parameters. When time-domain
Green’s functions are convolved with finite-bandwidth signals, the phase velocity difference
in these two space-fractional wave equations is responsible for a time delay that is especially
evident in the farfield.

The power law wave equation is also utilized to implement a perfectly matched layer
(PML) for numerical calculations with the Khokhlov - Zabolotskaya - Kuznetsov (KZK)
equation. KZK simulations previously required a computational grid with a large radial dis-
tance relative to the aperture radius to delay the reflections from the boundary. To decrease
the size of the computational grid, an absorbing boundary layer derived from the power
law wave equation. Simulations of linear pressure fields generated by a spherically focused
transducer are evaluated for a short pulse. Numerical results for linear KZK simulations
with and without the absorbing boundary layer are compared to the numerical results with
a sufficiently large radial distance. Simulation results with and without the PML are also
evaluated, where these show that the absorbing layer effectively attenuates the wavefronts

that reach the boundary of the computational grid.
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Chapter 1

Introduction

1.1 Ultrasound attenuation in soft tissue

As sound waves propagate, the medium is temporarily displaced in a direction parallel
(longitudinal wave) or perpendicular (transverse wave) to the direction of energy transport
and then the medium returns to the equilibrium state. When ultrasound travels through
a medium, the intensity diminishes with distance. In a lossless medium, the amplitude is
only reduced by the spreading of the wave. However, when ultrasound propagates through
soft, tissue, the amplitude is reduced as a function of propagation distance, and the center
frequency of the signal is also downshifted by attenuation. As indicated by Laugier and Haiat
[1], Goss et al. [2], and Parker [3], the two main mechanisms that contribute to ultrasound
attenuation are absorption and scattering.

Absorption is the conversion of the sound energy to other forms of energy |4, 5], especially
heat as a result of friction between the vibrating particles that transmit the acoustic wave
within soft tissue. In homogeneous viscous media, the viscous forces between neighboring
particles moving with different velocities are the major source of acoustic wave absorption.
Acoustic wave attenuation is also caused by scattering, which describes the redirection of
the incident wave in multiple directions |6, 7]. In heterogeneous media, where the physical
properties such as density or sound speed are different from those of the surrounding medium,

scattering also redirects the acoustic energy.



In three-dimensional (3D) space, the amplitude decay and attenuation of ultrasound are

w for the attenuation given by a(f) = ag|f]’,

mathematically described by p(r) =
where p is the pressure, «q is the attenuation coefficient, r is the distance in 3D, f is the
frequency, and y is the power law exponent. For instance, in water, the power law exponent
y is equal to 2. However, in most biological tissues, the measured power law exponents y are
within the range of 0.7 < y < 1.5 for the range of frequencies utilized in medical ultrasound
[8]. For example, measured values for the power law exponent are y = 1.139 in human liver
[9] and y = 1.5 in human breast |10]. The power law exponents and attenuation coefficients

vary for different tissues, and measurements of these parameters have been widely evaluated

for medical ultrasound in human tissue [11, 12, 13].
1.2 Nonlinear ultrasound

The fundamental equations of nonlinear ultrasound are derived from the three constitu-
tive relations, namely the equation of motion, the continuity equation, and the equation of
state [14]. For small pressure amplitudes, the linearized versions of these three fundamental
equations are combined to produce a linear wave equation. However, when the pressure
amplitudes are sufficiently large, the second order terms in these fundamental equations
must be retained, and the combination of the three constitutive relations yields a nonlinear
wave equation. The amount of nonlinearity in a material through which a finite-amplitude
ultrasonic wave propagates is expressed by the nonlinearity parameter B/A. The values of A
and B are the coefficients of the first and second order terms of the Taylor series expansion
for the equation of state, which relates the pressure to the density. Some values of B/A in
biological tissues are given by Wells [15].

Some common models that describe nonlinear ultrasound propagation include the Wester-
velt equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and Burgers equation.
A general wave equation that accounts for nonlinearity up to second-order is given by the

Westervelt equation [16]. After a parabolic approximation is applied, the Westervelt equation



reduces to the KZK equation, which accounts for the combined effects of nonlinearity,
diffraction, and absorption in directional sound beams. Solutions to this equation are
commonly used to model problems in nonlinear acoustics. Several numerical approaches
that solve the KZK equation have been proposed by Lee and Hamilton [17], Cleveland [18],
and Berntsen [19]. When the diffraction term is discarded, the KZK equation reduces to
Burgers equation, which describes the combined effects of nonlinearity and attenuation on
the propagation of progressive plane waves. Solutions to Burgers equation can be obtained
with several different methods |20, 21].

Nonlinear wave propagation has been widely analyzed in the medical ultrasound field.
Two common applications include high intensity focused ultrasound (HIFU) in therapeutic
ultrasound |22, 23, 24| and harmonic imaging in diagnostic ultrasound |25, 26, 27|. HIFU
generates high intensity pressure fields in the focal zone to heat tumors or break up kidney
stones [28]. Compared to diagnostic ultrasound, HIFU uses higher energies and lower
frequencies. In harmonic imaging, since scattering and first reflections are reduced in
the second harmonic, the resulting images provide better contrast, better resolution, and

diminished effects of undesirable sidelobes.
1.3 Fractional derivative operators

Fractional derivative operators are applied widely in the field of fractional calculus. A
variety of fractional derivatives are defined to replace the integer order derivative, including
the Riemann-Liouville fractional derivative [29], the Caputo fractional derivative [30], the
Atangana-Baleanu derivative [31], the Katugampola fractional derivative |32|, and so on.
Two of these fractional derivative operators are utilized here, namely the Riemann—Liouville

fractional derivative and the Caputo fractional derivative [33]. The Riemann-Liouville



fractional derivative is defined by

m t T
ﬁi—nfa@_f)(%dﬂ n—1<y<ncN,

DY (t) = (1.1)

C‘ft—r; (t), y=mnCN,

where y > 0, t > a, and y,a,t C R. The gamma function, which frequently appears in

fractional calculus, is defined as

I'(z) = / t*~te~tdt. (1.2)
0
The Caputo fractional derivative takes the following form:

1 t
F(n—y) fa (t—7‘)y<+1>7" dT’ n-— 1 < ) <ncC Na

DYf (1) = (1.3)

C‘ft—r; (t), y=nCN.

These two fractional derivatives are similar, where the main difference is the order in which
the differentiation and integration operations are performed. For a fractional derivative
operator, the derivative of a function evaluated at a point is no longer a local property, so
additional knowledge of previous states is required in either time or space.

The properties of integer derivatives for Fourier and Laplace transforms are readily
extended to fractional derivatives |33]. The 1D Laplace transform for the integer derivative

is defined as

LU} = / T et (1) d (1.4)

This is extended to the fractional Riemann Liouville derivative as [29]
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and to the Caputo derivative as [30]

LADLF (1) = S'F (s) = 3 75140 (1.6)
k=0

For the Fourier transform in 1D

Flmy= [ foera (1.7)
both Riemann- Liouville and Caputo derivatives are the same [34, 33]:

FDLF 1)) = ()’ F (@), (1.8)

FADLE (0} = ()’ F (). (19)

1.4 Dispersion relations for fractional wave equations

When the effects of attenuation are included through the term €L, ; (p), the wave equation

becomes
1 0%p
2
- L L, =0, 1.10
256~ <L o) (110
where the fractional operator €L,; (p) may be either time-fractional or space-fractional or

both. After Fourier transforms are evaluated in both time and space domains, the dispersion

relation for Eq. 1.10 is given by

2
—k2+——eL(k; w) = 0. (1.11)
Co



When L, (p) contains only time-fractional derivatives, eL (k,w) = L (w), and the analytical

expression for the wavenumber is then represented by

k(W)= |2 — L (w). (1.12)

The relationship of phase velocity and attenuation is then obtained from the real and
imaginary parts of Eq. 1.12.
For the general case when the loss term e (k,w) contains at least one space-fractional

operator, the wavenumber in Eq. 1.11 is calculated with the binomial approximation

k(w)~ 2 |1 - % (k,w) — b o (k,w) — 4 s (k,w) + (1.13)
e 22 ’ 8w ’ 16w ’ Y '

The right-hand side of Eq. 1.13 includes several terms that contains L (k,w), which is a
function of k. To obtain an expression for the wavenumber k (w) that is independent of &k on

the right-hand side, further approximations are required.

1.4.1 First order approximation

If O (¢?) and higher order terms in Eq. 1.13 are discarded, and the first-order approxi-

mation for Eq. 1.13 is then given by
k(w)~ = — 22ef (kY w) (1.14)

where kT is obtained by setting L (k,w) = 0, which yields kt = <. This expression is

substituted back to Eq. 1.14 and the O (¢) terms are ignored, which yields

w ¢ = {w
k ~—— —¢el | — . 1.15
@~ d - e (20) (115



1.4.2 Second order approximation

To obtain a more accurate approximation for the wavenumber, third order and higher

terms are discarded from Eq. 1.13. Then, the second-order approximation is given by

Bw)~ = SOk (b w) — D202 (5 ). (1.16)
co 2w ’ Sw3 ’

Similarly, kT is approximated by substituting w/cy into Eq. 1.16

w Co > (W
kT — — —cL | = 1.17
Lo (w) (1.17)

and then terms that are third order or higher in ¢ are discarded.

1.5 Thesis structure

For certain time-fractional and space-fractional models, exact and approximate time-
domain Green’s functions have been derived and evaluated numerically. More accurate
expressions for the phase velocity and attenuation are also derived for several fractional
calculus models. To demonstrate some of the similarities and differences in these fractional
partial differential equations, causality is analyzed for each of these, the time-domain Green’s
functions are compared, and full width at half maximum (FWHM) values for each time-
domain Green’s function are evaluated for breast and liver models.

Chapter 2 numerically evaluates time-domain Green’s functions for three time-fractional
models, namely the power law wave equation, the Szabo wave equation, and the Caputo
wave equation. These Green’s functions are evaluated for water with a power law exponent
of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of
y = 1.139. The causality of each fractional wave equation is analyzed, and the time-domain
Green’s functions for these three time-fractional models are compared at different distances.

To demonstrate the effects of power law attenuation and dispersion on transient excitations, a



three-cycle Hanning-weighted pulse is also convolved with the time-domain Green’s functions
for these three time domain Green’s functions.

Chapter 3 evaluates improved approximations for the frequency-dependent phase velocity
and attenuation that were derived from two space-fractional models, namely the Chen-Holm
and Treeby-Cox space-fractional wave equations, and these are evaluated using parameters
for breast and liver. After the causality of the two space-fractional models is established, the
amplitudes and FWHM values of the time-domain Green’s functions are evaluated at short
distances from the origin. In addition, a three-cycle Hanning weighted pulse is convolved
with each time-domain Green’s function to show how differences in these Green’s functions
influence the results for a finite bandwidth excitation.

Chapter 4 introduces new expressions that describe perfectly matched layers (PML) for
numerical simulations with the transient KZK equation. Artificial attenuation in these new
PMLs is implemented through terms derived from the power law wave equation with y =0
and y = 2. These expressions are further simplified by retaining only one term, which is
sufficient to reduce reflections from the radial boundary. For a spherically focused transducer
with aperture radius @ = 1.5 cm and radius of curvature R = 6 cm, simulations in both
linear lossless and nonlinear media validate the effectiveness of these new PMLs. Similar
simulations are then evaluated for the continuous wave KZK equation in both linear lossless

and nonlinear media.



Chapter 2

Time fractional wave equations!

2.1 Introduction

The attenuation of compressional ultrasound waves in soft tissue is described by a power
law of the form a(f) = ag|f|”, where f is the frequency in MHz, oy is the attenuation
constant in Np/m/HzY or dB/m/HzY, and y is the power law exponent. Examples of
measured values for the power law exponent are y = 2 in water, y = 1.139 in human
liver [9], and y = 1.5 in human breast [10]. Additional values for mammalian tissues with
various power law exponents are tabulated in the book by Duck [8], and other attenuation
values are compiled in papers by Goss et al. [36, 37].

The corresponding wave equations that describe power law attenuation in soft tissue
utilize fractional derivatives, which are non-integer order derivatives. These fractional deriva-
tives are often time-fractional |38, 39, 40|, although space-fractional derivatives are also
used [41, 42]. Examples of time-fractional wave equations that model the attenuation and
dispersion of ultrasound in soft tissue include the Szabo wave equation [38], the Caputo
wave equation [30], and the power law wave equation [39]. The Szabo and power law
wave equations were developed for medical ultrasound applications, and the Caputo wave
equation [30] was originally defined for applications in geophysics and then independently

considered by Wismer as a model for attenuation and dispersion in soft tissue [40].

!Reproduced from X. Zhao and R. J. M Gough, Time-domain comparisons of power law attenuation
in causal and noncausal time-fractional wave equations, The Journal of the Acoustical Society of America,
139(5):30213031, 2016, with the permission of the Acoustical Society of America.
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These time-fractional wave equations are particularly amenable to analytical methods for
analyzing causality, including the Paley-Wiener criterion [43|, Kramers-Kronig analysis [44],
and a time causal theory [38]; however, inconsistent conclusions are often reached with
different methods, especially for power law exponents y > 1. In an effort to resolve some
of these apparent inconsistencies, time-domain Green’s functions are calculated numerically
for the Blackstock wave equation, the Stokes wave equation, the Szabo wave equation, the
Caputo wave equation, and the power law wave equation. In addition, a three-cycle Hanning-
weighted pulse is convolved with each of these to show the effects of causal and noncausal
Green’s functions on the calculated signals. The results show that noncausal behavior is
only evident very close to the source in time-domain Green’s function calculations, that
this noncausal behavior is no longer evident after convolution with a short pulse, and that
time-domain calculations with these causal and noncausal time-fractional models converge

a short distance from the source.
2.2 Power law attenuation and dispersion

The frequency-dependent attenuation «(w) of ultrasound in soft tissue is described by
the power law [45]

a(w) =aglw|”, (2.1)

where y is the power-law exponent, «y is the attenuation constant, and w is the angular fre-
quency in radians/second. The corresponding frequency-dependent sound speed (dispersion)

c(w) satisfies [45]

1 1 Y _1
— 4ot ( ) vl 2.2
c(w) ¢ dotalt 7y ! (22)

In Eq. 2.2, ¢y is the sound speed at w = 0 for 1 < y < 2, and ¢y is the sound speed at
w=o00for 0 <y < 1. When y = 2, Eq. 2.2 is nondispersive because the w dependence
in Eq. 2.2 disappears. For the numerical calculations that follow, the attenuation constant

o with units Np/cm/MHz? is multiplied by 100 and divided by 10% and (27) to convert
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cm into m, MHz into Hz, and frequency in Hz into angular frequency in radians/second,

respectively.
2.3 The Szabo wave equation

For an attenuation constant o with units Np/m/HzY, the Szabo wave equation [38] is

given by
o 1% 20 ovtp

e =0 2.3
2 ot2  cocos (my/2) Otvt! ’ (2:3)

where p represents the pressure in Pa and ¢ is the time in seconds. The Szabo wave equation
is a time-fractional extension of the Blackstock wave equation [46], where the third term
approximately describes the effects of power law attenuation and dispersion in Eqs. 2.1 and
2.2 over the range of frequencies where the smallness approximation |38] holds. There is
no known exact time-domain Green’s function for the Szabo wave equation, but the 3D

frequency-domain Green’s function for the Szabo wave equation is

o~V i )
G(r,w) = y- (2.4)

for frequencies w > 0, where r = /2 + 32 + 22 is the distance from a point source at the
origin to an observation point at (x,y, z).

The phase velocity and attenuation are derived by solving the dispersion relation

(A)2 2040

W= @ cocos (my/2) (=jw)’ (25)

for k. By taking the square root of Eq. 2.5 and utilizing the binomial approximation, an
approximate expression for the wave number is obtained

b~ 2 {1+ jaoeo [1— j tan (y/2)] wv~'} (2.6)

+@ [1 — j2tan (7ry/2) — tan? (7ry/2)] w1
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The approximate phase velocity is then extracted from the real part of the wavenumber

divided by w

1 1 1
) R~ o + tan (7y/2) apw? "' + 3 (1 — tan® (7y/2)) ageow™ > (2.7)

and the approximate attenuation is the imaginary part of the wavenumber
a (w) = auw? — tan (1y/2) agcow® . (2.8)

When the power law exponent y is equal to 2, the Szabo wave equation reduces to the

Blackstock equation
1 02 20 02
2p— = ]29 QIP _ 0, (2.9)
cg Ot co O3

where the 3D frequency-domain Green’s function for the Blackstock equation is given by

6_% —w2—2apco(jw)?

G(r,w) = (2.10)

A7y

2.4 The power law wave equation

The power-law wave equation [39], which is closely related to the Szabo wave equation,

is given by

102 9 gutt 2 o2
b_ a0 P___o P—o. (2.11)

V- =L
Aot cycos(my/2) Ottt cos? (my/2) Ot

The first three terms in the power law wave equation also appear in the Szabo wave equation,
where the fourth time-fractional term yields a complex wavenumber that exactly satisfies
Egs. 2.1 and 2.2 for all frequencies w. The 3D frequency-domain Green’s function for the

power law wave equation is

6—jwr/co e~ a0 (jw)¥r/ cos(my/2)
G(r,w) = pp- : (2.12)
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By expanding the argument of the second exponential function in Eq. 2.12 after applying
Euler’s formula with j¥ = /™2 and collecting real and imaginary terms, the attenuation
and dispersion relations in Eqs. 2.1 and 2.2 are exactly recovered. Furthermore, unlike the
other time-fractional wave equations evaluated here, the power law wave equation has an

exact closed form 3D time-domain Green’s function, which is

gty =1 fy[t_cl%]. (2.13)
(aor) /y
In Eq. 2.13, fy is the probability density function (pdf) for a maximally skewed stable
distribution [47| with parameter y. Since the power law wave equation exactly satisfies
Eq. 2.1 and Eq. 2.2, demonstrating whether the time-domain Green’s function in Eq. 2.13
is causal or noncausal is equivalent to demonstrating whether the combination of Eqs. 2.1
and 2.2 is causal or noncausal.

For the power law exponent y = 2, the 3D frequency-domain Green’s function in Eq. 2.12
reduces to

e—jwr/coe—aowzr

G(r,w) = : (2.14)

A7y

which is a Gaussian function multiplied by the 1/ (47r) geometric spreading factor and a
complex exponential delay term. The inverse Fourier transform of Eq. 2.14 is exactly equal

to the time-shifted Gaussian function

1 1 2

1) = —— e (I77/0)/theor) 2.15
900 = G maer (215)
which is equivalent to the time-domain Green’s function in Eq. 2.13 with the power law
exponent y = 2. Although the expressions in Eqgs. 2.14 and 2.15 are only applicable to a few
materials with frequency-squared attenuation such as water and air, these expressions are

nevertheless convenient for preliminary evaluations and comparisons.
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2.5 The Caputo wave equation

The Caputo wave equation [30], which is a time-fractional extension of the Stokes wave

equation [48], is given by

1 0% oyt
2 vl 2p =0 2.16
T (2.16)

where 7 is the fractional relaxation time. The Caputo wave equation approximately satisfies
the attenuation and dispersion relations in Egs. 2.1 and 2.2, respectively, and no exact closed
form time-domain Green’s function is available for the Caputo wave equation. However, there

is an exact 3D frequency-domain Green’s function for the Caputo wave equation, which is

_jwr 1
Gy = L e T 2.17)
rw) = — . .
1+ (jwr)’™ Arr

for frequencies w > 0.

To obtain an expression that relates the value of the power law attenuation constant g to
the fractional relaxation time 7, the power law wave equation and the Caputo wave equation
are Fourier-transformed in time and space. After solving for the square of the wavenumber
and taking the square root of both sides, the smallness approximation [38| is applied to the

expression obtained from the Caputo wave equation. The resulting conversion factor [41] is

71 = “2apc/ cos (my/2) . (2.18)

The expression in Eq. 2.18 is singular at y = 1, the Szabo and power law wave equations
are also singular at y = 1, and the Caputo wave equation is non-attenuating at y = 1, so
only values of the power law exponent that satisfy 1 < y < 2 are considered in the following

numerical evaluations.
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The phase velocity and attenuation are derived by solving the dispersion relation

w? 201Co

k2 = () K2 (2.19)

@ " cos(my/2)

A second order approximation for the wavenumber is given by collecting terms that contain
k? in Eq. 2.19 on the left side and then taking the square root, followed by the binomial

approximation

~ 2 {1 — jaeo [1 + jtan (my/2)] ¥~} (2.20)

398 [1 4 2 tan (my/2) — tan? (my/2)] w2,

The approximate phase velocity is then obtained from the real part of the wavenumber

divided by w,

1
c(w)

1 3

~ — + tan (my/2) agw? ! — 5 (1 — tan® (my/2)) agcow® > (2.21)
Co

and the approximate attenuation is the imaginary part of the wavenumber,

a (w) = agw? + 3tan (1y/2) adcow® . (2.22)

2.6 Methods

Time-domain Green’s functions for the power law wave equation are rapidly and ac-
curately evaluated in Matlab with the STABLE toolbox [47, 49]. In these calculations,
which numerically evaluate stable pdfs, the index parameter is defined as the power law
exponent y, the skewness parameter is equal to 1, the scale parameter is equal to (aor)l/y,
and the location parameter is equal to zero. The STABLE toolbox evaluates stable pdfs at

single points in time or limited ranges of time values without numerical artifacts, which is

advantageous for calculations of time-domain Green’s functions.
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The time-domain Green’s functions for the Blackstock, Stokes, Caputo, and Szabo wave
equations are computed in Matlab with inverse fast Fourier transforms (IFFTs). For these
calculations, a time window 7' is defined as an integer multiple of the scale factor (aor)l/y
such that the numerical error is 1% or less. The time window 7' is then extended as needed to
fill a larger display window for comparisons with other materials at the same distance. Other
parameters that are required for these calculations include the frequency sampling, which
is defined as Af = 1/T, and the center of each time window, which is located at t = r/c.
Each time-domain Green’s function is computed with 100 time samples per scale parameter,
which consistently yields smooth time-domain waveforms for each result. If the time window
defined for the time-domain Green’s function calculation is larger than the desired display
window, then the computed waveform is cropped after the IFFT is evaluated.

In calculations of time-domain Green’s functions for the Blackstock and Stokes wave
equations with the IFFT, the time window is defined as T > (aor)*/?, and even larger time
windows are needed for IFFT-based calculations of the time-domain Green’s functions for the
Caputo and Szabo wave equations to avoid problems with frequency-domain aliasing. Similar
to the time-domain Green’s functions for the power law wave equation, the time-domain
Green’s functions for the Caputo and Szabo wave equations have ‘heavy tails’ that decay
as 1/t¥*1 when 0 < y < 2. These ‘heavy tails’ cause undesirable wrap-around artifacts in
the time-domain unless the time window 7' is sufficiently large and the frequency sampling
Af = 1/T is sufficiently small. Also, for IFFT calculations with nonzero start time ¢,
the frequency-domain Green’s function is multiplied by e’“®. This accounts for start times

before t = 0 when noncausal results are shown close to the source and also for calculations

at larger distances with later start times.
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Figure 2.1: (a-d) Simulated time-domain Green’s functions of the Caputo, Szabo, and power
law wave equations calculated for water with y = 2, ap = 2.5328 x 10™* Np/cm/MHz?, and
co = 1500 m/s and scaled by 47r at (a) r = 1 nm, (b) » = 100 nm, (¢) r =1 cm, and
(d) r = 10 cm. (e-h) Simulated time-domain Green’s functions of the Caputo, Szabo, and
power law wave equations calculated for breast with y = 1.5, ay = 0.086 Np/cm/MHz'?,
and ¢y = 1450 m/s and scaled by 47r at (e) r = 10 nm, (f) » = Lum, (g) r = 1 cm, and
(h) r = 10 cm. (i-1) Simulated time-domain Green’s functions of the Caputo, Szabo, and
power law wave equations calculated for liver with y = 1.139, oy = 0.0459 Np/cm/MHz' 139,
and ¢y = 1540 m/s and scaled by 47r at (i) = 100 zm, (j) r = 100 am, (k) 7 = 1 cm, and
(1) r =10 cm.
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2.7 Results

2.7.1 Time-domain Green’s functions for acoustic propagation in

water

Time-domain Green’s functions multiplied by 477 are shown in Figs. 2.1(a-d) for acoustic
propagation in water with y = 2. The results in these figures are calculated with ¢y =
1500m/s and g = 2.5328 x 107* Np/cm/MHz*. In Figs. 2.1(a-d), the time-domain Green’s
function for the Stokes wave equation is indicated by a solid line, the time-domain Green’s
function for the Blackstock wave equation (Eq. 2.9) is represented by a dashed line, and the
time-domain Green’s function for the power law wave equation is indicated by a dash-dot line.
The time-domain Green’s function for the power law wave equation is directly calculated from
the Gaussian function in Eq. 2.15, and the time-domain Green’s functions for the Blackstock
and Stokes wave equations apply IFFTs to the values obtained from the frequency-domain
Green’s functions in Eqs. 2.4 and 2.17, respectively, with the power law exponent y = 2. A
thin dashed line is also included as a reference in each of the subfigures in Fig. 2.1 to indicate
the arrival time ¢ = r /¢y for a lossless medium with a constant sound speed c.

The time-domain Green’s functions for the Stokes, Blackstock, and power law wave
equations evaluated in water are shown in Figs. 2.1(a-d) at distances of = 1 nm, » = 100 nm,
r =1 cm, and r = 10 cm. The computed Green’s functions are multiplied by 47r so that the
spherical spreading contribution is eliminated and only the effects of propagation, dispersion,
and attenuation as a function of time are included in these plots. The units defined for the
horizontal axis are picoseconds, nanoseconds, or microseconds. Fig. 2.1(a) shows the result
evaluated at a distance r = 10" m for the smallest integer value of n, specifically n = 9,
that clearly demonstrates noncausal behavior in the time-domain Green’s functions for both
the Blackstock and power law wave equations. Fig. 2.1(b) shows the result at a distance

r = 107" m for the largest integer value of n, namely n = 7, where the noncausal behavior
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is not clearly evident in plots of the time-domain Green’s functions for the Blackstock and
power law wave equations when displayed on a linear vertical scale. Figs. 2.1(c-d) show
the results at 7 = 1 ¢m and r = 10 c¢m, respectively, which are representative distances for
applications of diagnostic and therapeutic ultrasound. The time-domain Green’s functions
for the Blackstock and Stokes wave equations define time windows T for IFFT calculations
as 40, 40, 300, and 500 times the scale factor (aor)/¥ calculated for each respective plot in
Figs. 2.1(a-d). The results in Figs. 2.1(a-d) are then cropped and displayed in time windows
that are approximately 25, 25, 197, and 312 scale factors wide, respectively. Figs. 2.1(a-d)
demonstrate that the time-domain Green’s functions for the Blackstock and power law wave
equations produce noncausal time-domain waveforms very close to the source and that these
transition over a short distance to waveforms that are difficult to distinguish from causal
waveforms in the time-domain.

Fig. 2.1(a) indicates that the time-domain Green’s functions for the Blackstock and power
law wave equations with y = 2 evaluated at » = 1 nm yield similar, yet distinct, results, where
both of these are clearly noncausal with significant nonzero contributions between t = —5 ps
and t = 0. Whereas the time-domain Green’s function for the power law wave equation
is a Gaussian function in time, the time-domain Green’s function for the Blackstock wave
equation is slightly skewed to the right in this location. The time-domain Green’s function
for the Stokes wave equation evaluated at » = 1 nm first demonstrates nonzero values after
time ¢ = 0, and the shape of the time-domain Green’s function for the Stokes wave equation
is clearly different from the other two time-domain Green’s functions.

The time-domain Green’s functions evaluated at r = 100 nm in Fig. 2.1(b) have nearly
converged to the same result. All three waveforms are now clearly offset from ¢t = 0, where
some small differences remain, and all three waveforms appear to be causal in these plots.
However, since the time-domain Green’s function for the power law wave equation is a
time-shifted Gaussian function, even though the result appears to be causal, the time-domain

result is nonzero for all values of ¢ < 0, so the Green’s function for the power law wave
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equation is noncausal. In Figs. 2.1(c-d), all three time-domain Green’s functions evaluated
at r = 1cm and at » = 10 cm agree closely, which indicates that as the distance r increases,
the time-domain Green’s functions for the Blackstock and Stokes wave equations converge

to the Gaussian function in Eq. 2.15.
2.7.2 Time-domain Green’s functions for acoustic propagation in

breast

Figs. 2.1(e-h) describe the time-domain Green’s functions multiplied by 47r for the
Caputo wave equation (solid line), the Szabo wave equation (dashed line), and the power law
wave equation (dot-dashed line) calculated for human breast with y = 1.5, ¢y = 1450 m/s,
and ap = 0.086 Np/cm/MHz5. The results are computed at r = 10 nm, r = 1 ym, r = 1 c¢m,
and r = 10 cm. The units defined for the horizontal axis in Figs. 2.1(e-h) are again
picoseconds, nanoseconds, or microseconds. Fig. 2.1(e) contains the result evaluated at
a distance r = 107" m for the smallest integer value of n, specifically n = 8, that clearly
demonstrates noncausal behavior in the time-domain Green’s functions for both the Szabo
and power law wave equations. Fig. 2.1(f) displays the result at a distance r = 107" m
for the largest integer value of n, namely n = 6, where the noncausal behavior is not
clearly evident in plots of the time-domain Green’s functions for both the Szabo and power
law wave equations when displayed on a linear vertical scale. Figs. 2.1(g-h) describe the
results at 7 = 1 cm and r = 10 cm. The time-domain Green’s functions for the Szabo and
Caputo wave equations define the time windows 7' for IFFT calculations as 300, 60, 30, and
30 times the scale factor (agr)'/¥ calculated at each distance r for each respective plot in
Figs. 2.1(e-h). The results in Figs. 2.1(e-h) are then cropped and displayed in time windows
that are approximately 23, 30, 16, and 17 scale factors wide, respectively.

Fig. 2.1(e), which shows the time-domain Green’s functions calculated for breast at r =
10 nm, indicates that the Szabo and power law wave equations are noncausal and that

the Caputo wave equation is causal. In this location, the time-domain Green’s functions
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for the Szabo and power law wave equations are clearly nonzero before time ¢t = 0, and
the time-domain Green’s function for the Caputo wave equation first demonstrates nonzero
values after time t = 0. The shapes of the three time-domain waveforms also demonstrate
significant differences at this distance.

Fig. 2.1(f), which is evaluated at = 1 um, shows that the three waveforms calculated for
breast are starting to converge at this distance. However, at » = 1 um, identifying noncausal
contributions, if present, is difficult in the time-domain when the Green’s functions are
plotted on a linear scale. Similar to the Gaussian function, the stable pdf in the numerator
of Eq. 2.13 is strictly positive [39] for all values of ¢ when y = 1.5, so the power law wave
equation is noncausal at all distances for y = 1.5.

Figs. 2.1(g-h), which are evaluated at » = 1 ¢cm and r = 10 cm, respectively, show that
the time-domain Green’s functions for the three time-fractional wave equations in Eqs. 2.3,
2.11, and 2.16 converge to the same result at these distances. Unlike the results shown in
Figs. 2.1(b-d), which are either approximately or exactly represented by symmetric, time-
shifted Gaussian functions, the time-domain Green’s functions in Figs. 2.1(f-h) are skewed
(asymmetric) with a ‘heavy tail,” which are characteristics of the maximally-skewed stable

probability distribution (pdf) in Eq. 2.13.
2.7.3 Time-domain Green’s functions for acoustic propagation in

liver

Figs. 2.1(i-1) show the simulated Green’s functions for the Caputo wave equation (solid
line), the Szabo wave equation (dashed line), and the power law wave equation (dot-dashed
line) for human liver with y = 1.139, ap = 0.0459 Np/cm/MHz"'% and ¢y = 1540 m/s.
In Figs. 2.1(i-1), the three time-domain Green’s functions are multiplied by 47r and then
evaluated at » = 100 zm, r = 100 am, » = 1 cm, and r = 10 ¢cm. The units defined for the
horizontal axis in Figs. 2.1(i-1) are yoctoseconds (ys or 1072* seconds), zeptoseconds (zs or

1072! seconds), or microseconds (us). Fig. 2.1(i) contains the result evaluated at a distance
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r = 107" m for the smallest integer value of n, specifically n = 19, that clearly demonstrates
noncausal behavior in the time-domain Green’s functions for both the Szabo and power law
wave equations, and Fig. 2.1(j) displays the result at a distance » = 10~" m for the largest
integer value of n, namely n = 16, where the noncausal behavior is not clearly evident in any
of the three time-domain Green’s functions when shown on a linear scale. Figs. 2.1(k-1) show
the results at » = 1 ¢cm and » = 10 c¢m, respectively. The time-domain Green’s functions
for the Szabo and Caputo wave equations define time windows 7' for IFFT calculations as
12000, 4000, 60, and 40 times the scale factor (aor)'/¥ calculated at each distance r for each
respective plot in Figs. 2.1(i-1). The results in Figs. 2.1(i-1) are then cropped and displayed
in windows that are approximately 55, 37, 47, and 31 scale factors wide, respectively.

Fig. 2.1(i) depicts the time-domain Green’s functions calculated for human liver at r =
100 zm (where 1 zeptometer = 1 zm = 102! m). In Fig. 2.1(i), the time-domain Green’s
functions for the Szabo and power law wave equations are clearly noncausal, and the time-
domain Green’s function for the Caputo wave equation begins a short time after t = 0. In
Fig. 2.1(j), which is evaluated at » = 100 am, the time-domain Green’s functions of all three
wave equations are still distinct, and all three appear to start after ¢ = 0.

Figs. 2.1(k-1) display the time-domain Green’s function calculated for human liver at
r =1 cm and at r = 10 cm, respectively. These figures indicate that the three time-domain
Green’s functions again converge to the same result as the distance increases. The waveforms
in Figs. 2.1(k-1) are clearly distinct from the waveforms shown in Figs. 2.1(g-h) in terms of
both the overall shape and the temporal extent. Also, the power law wave equation maintains
the same shape for the time-domain Green’s function at all distances, but the shapes of the
time-domain Green’s functions for the Szabo and Caputo wave equations are noticeably

different at shorter distances.

2.7.4 Vertical axis scaling

In each subfigure of Fig. 2.1, the maximum value of the vertical axis is determined by the

largest of the three peak values in that subfigure. The peak value of 47rg(r,t) for the power
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law wave equation when y = 2 is equal to 1/v/4magr. Similarly, the peak value of the scaled
stable pdf in Eq. 2.13 is approximately equal to 1/ [2ﬁ(a0r)1/y]. Thus, when the peaks of
the three time-domain Green’s functions start to converge, each decays as r=/¥. The limits
of the vertical axes are proportional to the peak of the scaled stable pdf, and before the peak

values converge, the axes are autoscaled.
2.7.5 Comparisons between time-domain Green’s functions for acous-
tic propagation

To enable comparisons between the time-domain Green’s functions calculated in water,
breast, and liver, Figs. 2.1(c), 2.1(g), and 2.1(k), which occupy the third column of Fig. 2.1,
are all calculated at » = 1 cm, and Figs. 2.1(d), 2.1(h), and 2.1(1), which occupy the fourth
column of Fig. 2.1, are all calculated at » = 10 cm. Figs. 2.1(a), 2.1(b), 2.1(e), 2.1(f), 2.1(i),
and 2.1(j) are all computed at different distances, so the figures in the first two columns of
Fig. 2.1 are not compared. Figs. 2.1(c), 2.1(g), and 2.1(k) are all shown in a 0.5 us wide
time window, and Figs. 2.1(d), 2.1(h), and 2.1(1) are all shown in a 2.5 us wide time window,
where the size of each time window is determined by the temporal extent of the time-domain
Green’s functions calculated for ultrasound parameters in breast.

When displayed in these two time windows, the time-domain Green’s function for acoustic
propagation in water exhibits nearly negligible dispersion, the time-domain Green’s function
for acoustic propagation in liver shows moderate dispersion, and the time-domain Green’s
function for acoustic propagation in breast is much more dispersive than water or liver.
Furthermore, the time-domain Green’s function for acoustic propagation in water is nearly
impulsive relative to breast and liver. Also, each figure in Fig. 2.1 exhibits different arrival
times. This is in part due to the different values for ¢y in water, breast, and liver, where the
thin dashed lines that indicate the arrival time for a lossless medium with sound speed ¢q each
occur at a different time, as observed along the third and the fourth columns of Fig. 2.1. The

time-domain Green’s functions for acoustic propagation in breast and liver also demonstrate
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Figure 2.2: a) The percent difference between the time-domain Green’s functions for the
Blackstock and Stokes wave equations and the time-domain Green’s function for the power
law wave equation as a function of distance calculated for water with y = 2, oy = 2.5328 x
10~* Np/cm/MHz?, with ¢y = 1500m/s. b-¢) The percent difference between the time-
domain Green’s functions for the Szabo and Caputo wave equation and the time-domain
Green’s functions for the power law wave equation as a function of distance calculated for
breast with y = 1.5, g = 0.086 Np/cm/MHz", and ¢y = 1450 m/s and calculated for liver
with y = 1.139, ap = 0.0459 Np/cm/MHz"'% and ¢q = 1540 m/s.

much earlier arrival times than the time t = r /¢y predicted for lossless propagation, where the
earlier arrival times in the lossy models are due to dispersion. Furthermore, the peak value
of the time-domain Green’s function for acoustic propagation is largest in water and smallest
in breast, as indicated by comparisons between the values on the vertical axes (noting the
exponents in the upper left hand corner of each subfigure) in Figs. 2.1(c), 2.1(g), and 2.1(k)
(r =1 cm) and Figs. 2.1(d), 2.1(h), and 2.1(1) (r = 10 cm). Comparisons along the third
and fourth columns of Fig. 2.1 also show that the shapes and extents of the time-domain
Green’s functions for acoustic propagation in water, breast, and liver differ significantly, as

determined by the values of the power law exponent y and the scale factor (aqgr)'/V.
2.7.6 Convergence of the Green’s functions for acoustic propagation

in the time domain

Figs. 2.1(a-d) demonstrate that the time-domain Green’s functions for the Blackstock and
Stokes wave equations multiplied by 477 converge to a Gaussian function, and Figs. 2.1(e-h)

and 2.1(i-1) show that the time-domain Green’s functions for the Szabo and Caputo wave
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equations multiplied by 47r converge to maximally skewed stable pdfs. This suggests that the
time-domain Green’s function for the power law wave equation is an effective approximation
for the time-domain Green’s functions of the Blackstock and Stokes wave equations when
y = 2 and the Szabo and Caputo wave equations when 1 < y < 2. To characterize the
convergence of these time-domain Green’s functions, the percent difference between g(r,t)
and a reference gy.¢(r,t) is defined as ||g(r,t) — gref (7, 1)||5 / ||gres (7, )|, x 100%, where g(r,t)
is the time-domain Green’s function calculated at a given distance r for the Blackstock,
Stokes, Szabo, or Caputo wave equation, and the reference time-domain Green’s function
Gref(r,t) for these calculations is the time-domain Green’s function for the power law wave
equation. In Fig. 2.2, these percent differences are calculated from » = 1 nm to r =1 m for
each material. Fig. 2.2(a) shows the convergence of the time-domain Green’s functions for
the Stokes and Blackstock wave equations to the time-domain Green’s function of the power
law wave equation calculated for water with y = 2, oy = 2.5328 x 10~* Np/cm/MHz?, and
co = 1500m/s. Fig. 2.2(b) shows the convergence of the time-domain Green’s functions
for the Szabo and Caputo wave equations to the time-domain Green’s function of the
power law wave equation calculated for breast with y = 1.5, ap = 0.086 Np/cm/MHz"?,
and ¢y = 1450 m/s. Fig. 2.2(c) shows the convergence of the time-domain Green’s func-
tions for the Szabo and Caputo wave equations to the time-domain Green’s function of
the power law wave equation calculated for liver with the power law exponent y = 1.139,
ap = 0.0459 Np/cm/MHz"'3 and ¢y = 1540 m/s.

In each medium, the percent differences calculated with the time-domain Green’s func-
tions for the Blackstock and Szabo wave equations are consistently smaller than those
calculated for the Stokes and Caputo wave equations, respectively. In Fig. 2.2(a), the
percent difference for the time-domain Green’s function of the Blackstock wave equation
calculated for water is 23% at » = 1 nm, and the percent difference for the time-domain
Green’s function of the Stokes wave equation calculated for water is 59% at » = 1 nm. Both

time-domain Green’s functions achieve rapid reductions in the percent difference calculated
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for water between 1 nm and 1pum. The percent difference for the time-domain Green’s
function of the Blackstock wave equation calculated for water reaches 0.0009% at r = 1 m,
and the percent difference for the time-domain Green’s function of the Stokes wave equation
calculated for water reaches 0.0024% at » = 1 m. In Fig. 2.2(b), the percent difference for
the time-domain Green’s function of the Szabo wave equation calculated for breast is 35%
at r = 1 nm, and the percent difference for the time-domain Green’s function of the Caputo
wave equation calculated for breast is 77% at » = 1 nm. The time-domain Green’s functions
calculated for breast converge more slowly than those calculated for water, where the percent
difference for the time-domain Green’s function of the Szabo wave equation calculated for
breast reaches 0.055% at » = 1 m, and the percent difference for the time-domain Green’s
function of the Caputo wave equation calculated for breast reaches 0.17% at r = 1 m.
In Fig. 2.2(c), the percent difference for the time-domain Green’s function of the Szabo
wave equation calculated for liver is 8% at r = 1 nm, and the percent difference for the
time-domain Green’s function of the Caputo wave equation calculated for liver is 24% at
r =1 nm. Although the percent differences evaluated at r = 1 nm are smaller in liver than
in water, the rate of convergence of these time-domain Green’s functions is slower in liver
than in water or breast, where the percent difference for the time-domain Green’s function
of the Szabo wave equation calculated for liver reaches 0.66% at » = 1 m, and the percent
difference for the time-domain Green’s function of the Caputo wave equation calculated for

breast reaches 2% at r = 1 m.
2.7.7 Characterizing the noncausal component of the time-domain
Green’s functions for the Blackstock, Szabo, and power law

wave equations

In numerical calculations with the Blackstock, Szabo, and power law wave equations,
there is a threshold distance above which the noncausal time-domain Green’s function is

very small for all times ¢ < 0. The distance beyond which the noncausal component of
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Figure 2.3: Relative noncausal contributions of the Blackstock, Szabo, and power law wave

equations characterized with 20log,, {g(r,t = 0)/ max[g(r, )]} as a function of distance 7.
This quantity is calculated for a) water with y = 1.139, ay = 0.0459 Np/cm/MHz"13% and
co = 1540 m/s from r = 1 nm to r = 1 m, b) breast with y = 1.5, ap = 0.086 Np/cm/MHz"?,
and ¢y =1450m/s from r = 1 nm to r = 1 m, and c¢) liver with y = 1.139,
ap = 0.0459 Np/em/MHz"'% and ¢y = 1540 m/s from 7 = 1 zm to r = 1 pm.

the time-domain Green’s functions for the Blackstock, Szabo, and power law wave equation
becomes negligible is characterized here with an approach similar to that in [38] by computing
the quantity 20log,, {g(r,t = 0)/ max [g(r,t)]}, which calculates the value of g(r, t) evaluated
at time ¢t = 0 divided by the maximum value of ¢(r,¢) in dB, where the time-domain Green’s
functions in the numerator and the denominator are each calculated with a fixed value of
r, and the maximum value of g(r,t) is evaluated with respect to the time ¢. In Fig. 2.3,
this expression is evaluated across nine decades at 10 equally spaced samples within each
decade. The time-domain Green’s functions for the Stokes and Caputo wave equations are
not characterized with this approach because both of these are always causal for the y values
considered here (i.e., 2, 1.5, and 1.139).

The results of this calculation are shown in Figs. 2.3(a-c) for water, breast, and liver.
Figs. 2.3(a) and 2.3(b) show that 201log;, {g(r,t = 0)/ max [g(r, )]} evaluated for water and
for breast with the time-domain Green’s function of the power law wave equation rapidly
drops from approximately 0 dB to -400 dB between r = 1 nm and 1 pm. Fig. 2.3(c) shows
that 20log,, {g(r,t =0)/ max [g(r,t)]} calculated for liver with the time-domain Green’s

function of the power law wave equation rapidly decays from approximately 0 dB to -400 dB
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between r = 10 am and 100 fm. Fig. 2.3(a) shows that 20log,, {g(r,t = 0)/ max [g(r,t)]}
calculated for water with the time-domain Green’s function of the Blackstock wave equation
closely tracks the same curve for the time-domain Green’s function of the power law wave
equation until a threshold between —200 and —300 dB is reached. Fig. 2.3(b) shows
that 201log,, {g(r,t = 0)/ max [g(r,t)]} calculated for breast with the time-domain Green’s
function of the Szabo wave equation follows the same trend as the corresponding curve for the
time-domain Green’s function of the power law wave equation until a threshold near —200 dB
is reached. Also, there is a greater difference between the two curves in Fig. 2.3(b) than in
Fig. 2.3(a). Fig. 2.3(c) shows that, for calculations with the time-domain Green’s function of
the Szabo wave equation evaluated for liver, the value of 20log,, {g(r,t = 0)/ max [g(r,t)]}
rapidly decays from approximately 0 dB to a value between —100 and —200 dB between
r=1am and 1 fm. There is a much larger difference between the values of 20 log,,{g(r,t =
0)/max [g(r,t)]} calculated for liver with the Szabo and power law wave equations than
for water or breast. In each calculation of 20logy, {g(r,t = 0)/ max [g(r,t)]} that evaluates
g(r,t) for the Blackstock and Szabo wave equations, the lower threshold is a limitation of
numerical calculations with the IFFT, whereas the STABLE toolbox avoids these problems

with a numerical approach that is optimized for calculations of stable pdfs [47].
2.7.8 Time-domain Green’s functions convolved with a three cycle

Hanning-weighted pulse

To demonstrate the effects of power law attenuation and dispersion on transient excita-
tions, three cycle Hanning-weighted pulses [50, 51| are convolved with time-domain Green’s
functions multiplied by 47r, and the results are shown in Fig. 2.4. In each medium, the
convolved waveforms are evaluated at (a) » = 100 ym, (b) » = 1 mm, (c¢) r = 1 cm, and

(d) r = 10 cm. In Fig. 2.4, the center frequency of the Hanning-weighted pulse is fo = 7.5 MHz,
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Figure 2.4: Simulated three-cycle Hanning-weighted pulse with a center frequency of
fo ="7.5 MHz convolved with time-domain Green’s functions multiplied by 47r calculated
for water at (a) 7 = 100 um, (b) 7 =1 mm, (¢) r = 1 cm, and (d) r = 10 cm, calculated for
breast at (e) r = 100 um, (f) » =1 mm, (g) » = 1 cm, and (h) » = 10 ¢cm, and calculated for
liver at (i) r= 100 ym, (j) r =1 mm, (k) » =1 cm, and (1) r = 10 cm.
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which is a representative frequency for medical ultrasound that highlights some of the
differences between the waveforms computed for these three materials.

In Figs. 2.4(a-d), which show the convolved waveforms for water, there is no attenuation
or dispersion of the pulse at all four distances, and the results obtained from the Stokes,
Blackstock, and power law wave equations are nearly identical. The only differences in
Figs. 2.4(a-d) are due to the differences in propagation delays and the different time scale that
is employed in Fig. 2.4(d) to facilitate comparisons with Figs. 2.4(h) and 2.4(1). Figs. 2.4(a-d)
demonstrate that, at these distances, the time-domain Green’s functions for the Blackstock,
Stokes, and power law wave equation are effectively delta functions for a three cycle Hanning-
weighted pulse with a 7.5 MHz center frequency and that dispersion in water is only observed
over much longer distances in water for this short pulse.

Figs. 2.4(e-h) describe the time-domain Green’s functions for acoustic propagation in
breast convolved with a three-cycle Hanning-weighted pulse with center frequency f, =
7.5 MHz evaluated at the same four distances. At r = 100 um, r = 1 mm, and at shorter
distances, the causal and noncausal time-domain Green’s functions evaluated at these dis-
tances are all effectively equivalent to delta functions in these convolutions, so at » = 100 pm,
r = 1 mm, and at shorter distances, there is minimal attenuation and dispersion of this
short pulse. In Fig. 2.4(g), there is a slight difference between the three waveforms at
r =1 cm, and some attenuation and dispersion is also observed in Fig. 2.4(g) at r = 1 cm.
Fig. 2.4(h) indicates that the three convolution results are approximately the same and that
the attenuation and dispersion are significant for breast at » = 10 cm. The signal amplitude
drops off considerably in Fig. 2.4(h), and there is also considerable filtering and spreading
of the signal in the time domain in Fig. 2.4(h) relative to Figs. 2.1(e-g). Fig. 2.4(h) also
shows that, unlike the result shown in water at » = 10 c¢cm in Fig. 2.4(d), the 7.5 MHz
center frequency has been completely removed by the effects of power law attenuation and

dispersion at the distance » = 10 cm.
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Figs. 2.4(i-1) show the results obtained when the time-domain Green’s functions for
acoustic propagation in liver are convolved with a three-cycle Hanning-weighted pulse with a
fo = 7.5 MHz center frequency. Figs. 2.4(i) and 2.4(j) demonstrate that the three convolution
results are nearly equivalent and that there is minimal attenuation or dispersion at r =
100 pm and at r = 1 mm. Fig. 2.4(k) indicates that there is a small difference between the
three waveforms at » = 1 cm, and there is minimal attenuation and dispersion observed in
Fig. 2.4(k) relative to Figs. 2.4(i-j). In Fig. 2.4(1), which is evaluated at » = 10 cm, some
differences are observed in the three convolution results because of the differences that are
observed at this distance in Fig. 2.2(c), and there is a moderate amount of attenuation and
dispersion relative to that observed at shorter distances in Figs. 2.4(i-k).

Some interesting trends are also observed when the waveforms evaluated at the same
distance are compared for different media. For example, the waveforms in Figs. 2.4(a),
2.4(e), and 2.4(i), which are calculated at » = 100 um, are all displayed within the same
time window. These three figures are all very similar, and no attenuation or dispersion
is evident in any of these. The waveforms in Figs. 2.4(b), 2.4(f), and 2.4(j), which are
calcuated at » = 1 mm, are also evaluated in the same time window. These three figures are
also very similar, again with no attenuation or dispersion, although the waveform locations
vary due to the differences in the sound speeds ¢y for the three media. The waveforms in
Figs. 2.4(c), 2.4(g), and 2.4(k), which are evaluated at » = 1 cm, are all shown in 0.6 us
wide time windows with different start times. These figures demonstrate more obvious
shifts in the waveform locations due to sound speed differences, show some variation in the
attenuation in the three media, and indicate the onset of dispersion in the signal calculated
for breast. The convolution results in Figs. 2.4(d), 2.4(h), and 2.4(1), which are evaluated
at r = 10 cm, are all shown in 2.5 us wide time windows with different start times. At
r = 10 cm, the waveform calculated for water still shows no evidence of attenuation and

dispersion, the waveform calculated for liver demonstrates some attenuation and dispersion,
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Figure 2.5: The FWHM of the envelope of v(t) x 4wrg(r, t) calculated for a) water, b) breast,
and c) liver, where v(?) is a three cycle Hanning-weighted pulse and g(r, t) is the time-domain
Green’s function for the Stokes, Blackstock, Caputo, Szabo, or power law wave equation.

and the waveform calculated for breast demonstrates the most attenuation and dispersion

of these three materials.
2.7.9 Characterizing the dispersion of v(t) x 4nrg(r,t) with the full

width at half maximum (FWHM) of the envelope

Fig. 2.5 characterizes the dispersion by evaluating the full width at half maximum
(FWHM) of the envelope of the convolution v(t) % 4wrg(r,t) for each time-domain Green’s
function. The FWHM are shown in Figs. 2.5(a-c) for water, breast, and liver, respectively,
where the results are evaluated for distances r between 100 um and 10 cm. The FWHM in
Fig. 2.5 is calculated by evaluating the Hilbert transform of v(t) x 4mwg(r,t) and taking the
absolute value of the result to obtain the envelope of the waveform. Then, the time at which
the peak value of the envelope occurs is determined, the times at which the half peak value
is reached are extracted, and then the difference between the largest and the smallest times
at which the half peak value occurs determines the FWHM.

In Figs. 2.5(a-c), the FWHM is calculated for the envelope of v(t) x 4mrg(r,t), where v(t)
is a 3 cycle Hanning-weighted pulse with a center frequency of 7.5 MHz, and g(r, t) represents
the time-domain Green’s function for the Stokes, Blackstock, Caputo, Szabo, or power law

wave equation. In Fig. 2.5(a), the FWHM values calculated with the time-domain Green’s
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functions of the Stokes, Blackstock, and power law wave equations for water are all equal to
200.42 ns at r = 100 pm and are all equal to 201.76 ns at » = 10 cm. The FWHM of the 3
cycle Hanning-weighted pulse with a center frequency of 7.5 MHz is equal to 200 ns, which
suggests that the dispersion is negligible in water for a pulse with 7.5 MHz center frequency
for all distances r between 100 pm and 10 cm. In Fig. 2.5(b), the FWHM values calculated
with the time-domain Green’s functions of the Caputo, Szabo, and power law wave equations
for breast are equal to 200.49 ns, 200.5 ns, and 200.5 ns, respectively, at » = 100 um and
are equal to 750.81 ns, 753.56 ns, and 752.82 ns, respectively, at 7 = 10 ¢cm. Thus, for all
three convolution calculations in breast, the dispersion is negligible at » = 100 pum, but there
is significant dispersion at r = 10 cm. In Fig. 2.5(c), the FWHM values calculated with
the time-domain Green’s functions of the Caputo, Szabo, and power law wave equations for
liver are equal to 200.46 ns, 200.44 ns, and 200.44 ns, respectively, at » = 100 um and are
equal to 311.28 ns, 318.23 ns, and 316.41 ns, respectively, at 7 = 10 cm. Thus, for all three
convolution calculations in liver, the dispersion is negligible at r = 100 um, and there is
moderate dispersion at 7 = 10 cm. Also, as indicated by the results shown in Figs. 2.5(a-c)
and by the FWHM values given above, the FWHM of the envelope of each convolution
calculation are in close agreement in all three materials and for all three time-domain Green’s

functions when v(t) is represented by a 7.5 MHz center frequency pulse.

2.8 Discussion

2.8.1 Causal and noncausal time-domain Green’s functions for acous-
tic propagation

Although the Blackstock wave equation is noncausal and the Szabo and power law wave
equations are noncausal for 1 < y < 2, clear demonstrations of noncausal behavior are chal-
lenging to find in locations far from the source, as shown in Fig. 2.1 for time-domain Green’s

functions calculations in water, breast, and liver, especially when the results are plotted on
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a linear scale. However, in locations very close to the source, i.e., for water with » < 1 nm,
for breast with » < 10 nm, and for liver with » < 100 zm, the noncausal contributions are
clearly evident in each of these time-domain Green’s function calculations. This suggests
that successfully observing obvious examples of noncausal time-domain behavior produced
by the Blackstock, Szabo, and power law wave equations primarily involves knowing where
to look.

Fig. 2.2(a) shows that the time-domain Green’s functions for the Stokes and Blackstock
wave equations converge to the time-domain Green’s function for the power law wave equa-
tion in calculations for water, and Figs. 2.2(a-b) show that the time-domain Green’s functions
for the Caputo and Szabo wave equations converge to the time-domain Green’s function for
the power law wave equation in calculations for breast and water, respectively, albeit at
different rates. Figs. 2.1(c-d) and Fig. 2.2(a) indicate that the time-domain Green’s function
for the Stokes and Blackstock wave equations converge to a Gaussian function, which is the
time-domain Green’s function for the power law wave equation when y = 2. Figs. 2.1(e-f)
and Fig. 2.2(b) indicate that the time-domain Green’s function for the Caputo and Szabo
wave equations converge to a maximally skewed stable distribution, and Figs. 2.1(k-1) and
Fig. 2.2(c) also indicate that the time-domain Green’s functions for the Caputo and Szabo
wave equations scaled by 47r converge to a maximally skewed stable distribution, which
is the time-domain Green’s function for the power law wave equation scaled by 47r when
0<y<lorl <y <2 These figures show that, beyond a certain small distance, the
time-domain Green’s function for the power law wave equation is an effective approximation
for the time-domain Green’s functions of the Stokes, Blackstock, Caputo, and Szabo wave
equations.

Fig. 2.3, which plots 20log;, {g(r,t = 0)/ max [g(r,t)]} for the Blackstock, Szabo, and
power law wave equations, demonstrates that the noncausal contributions to these non-
causal time-domain Green’s functions are miniscule beyond a certain distance. Fig. 2.3 also

demonstrates that calculations of time-domain Green’s functions at ¢ = 0 with the IFFT
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quickly reaches a lower limit beyond a certain distance that depends on the material and
on the simulation parameters. Our experience is that the STABLE toolbox achieves much
better accuracy than the IFFT and is much more convenient for calculating stable pdfs
and for calculating 20log,, {g(r,t = 0)/ max[g(r,t)]}, since there is no need to compute the

entire time-domain Green’s function for either of these with the STABLE toolbox.
2.8.2 Convolving time-domain Green’s functions with 3 cycle

Hanning-weighted pulses

In Fig. 2.4, noncausal time-domain contributions are not evident in any of the numerical
calculations performed with the noncausal time-domain Green’s functions. This suggests
that the noncausal contributions are effectively ‘filtered out’ by the 3 cycle Hanning-weighted
pulse with a center frequency of 7.5 MHz and that the causal and noncausal models for
4mrg(r,t) considered here are equally effective for these calculations. Fig. 2.5 also suggests
that convolutions between the 7.5 MHz center frequency pulse and the noncausal and the
causal models for 47rg(r,t) are all effectively represented by delta functions at the origin in
all three materials for distances » < 100 pum. Furthermore, Fig. 2.5 indicates that there is
very little difference between the FWHM of the envelope of 47wrg(r, t)*v(t) for the causal and
noncausal wave equations evaluated in these three materials, which suggests that convergence
of the FWHM is achieved in all materials at all distances shown. This is in contrast to
the results shown in Figs. 2.1 and 2.2, which suggest that convergence in the norm of the

difference is achieved near a value of 5%.

2.8.3 Causality in acoustic wave propagation

Fig. 2.1 indicates that the concept of causality, when applied as a distinction between
the time-domain Green’s functions for the Stokes, Blackstock, and power law wave equations
when y =2 and also for the Caputo, Szabo, and power law wave equations when 1 <
y < 2, is only important very close to the source. Elsewhere, establishing the absence

or presence of causality of these wave equations appears to be a purely academic exercise
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because the Stokes, Blackstock, and power law wave equations generate very similar results
for y = 2 and because the Caputo, Szabo, and power law wave equations generate very
similar results for 1 < y < 2 beyond a certain distance where the noncausal contributions are
negligible. However, causality is still a very important concept for acoustic wave propagation,
especially for distinguishing incoming noncausal Green’s functions from outgoing causal
Green’s functions and for maintaining consistency between the attenuation and dispersion in
acoustic wave propagation, which suggests that the importance of causality in acoustic wave
propagation depends on the context. The results presented in Figs. 2.1-2.5 suggest that,
except for locations very close to the source, the Stokes, Blackstock, and power law wave
equations are all effective models for acoustic propagation in water and that the Caputo,
Szabo, and power law wave equations are all effective models for acoustic propagation in soft
tissue that either exactly or approximately satisfy the attenuation and dispersion relations

in Egs. 2.1 and 2.2, respectively.
2.9 Conclusion

Time-domain Green’s functions for three time-fractional wave equations are numerically
evaluated and the results are compared at different distances for water, breast, and liver.
The results demonstrate that the Szabo and power law wave equations are noncausal and
that the Caputo wave equation is causal, where the Szabo wave equation is a time-fractional
extension of the noncausal Blackstock wave equation, and the Caputo wave equation is a
time-fractional extension of the causal Stokes wave equation. Examples of noncausal behavior
are observed in the time-domain Green’s functions for the Blackstock, Szabo, and power law
wave equations when these are evaluated very close to the source, i.e., at » < 1 nm for
water, at r < 10 nm for breast, and at » < 1 zm for liver, but at much larger distances, the
noncausal components of these time-domain Green’s functions are miniscule. Comparisons
also show that the time-domain Green’s functions for the Caputo, Szabo, and power law wave

equations with 1 < y < 2 converge to the same result and that the time-domain Green’s
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functions for the Stokes, Blackstock, and power law wave equation with y = 2 converge to
the same result. When these time-domain Green’s functions are convolved with a three-cycle
Hanning-weighted pulse, no noncausal behavior is observed in the time-domain results, and
the FWHMSs of the envelopes of the convolution results are all approximately the same,
which indicates that the Caputo, Szabo, and power law wave equations are equally effective

for these time-domain calculations.
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Chapter 3

Space fractional wave equations?

3.1 Introduction

For time-fractional models of power law attenuation, the close connection between power
law attenuation and fractional calculus is evident in the expression for the derivative op-
eration (jw)? in the frequency domain, which contains the power law term wY. Similar
expressions are also available for space-fractional models of power law attenuation after
some additional mathematical manipulations.

Time-fractional and space-fractional wave equations that describe power law attenuation
are often characterized through the attenuation and phase velocity, which are obtained
from the imaginary and real parts of the wavenumber k, respectively. Other methods
for analyzing time-fractional wave equations include the Kramers-Kronig relations [44],
the Paley-Wiener theorem [43], and time-causal theories [45|, and time-fractional wave
equations are also evaluated through time-domain analysis of the material impulse response
function (MIRF) |52] and time-domain Green’s functions [53, 39]. Much of this analysis
concentrates on the causality; however, the distinction between these is very subtle because
the attenuation is very similar in the fractional calculus models that are presently used for
medical ultrasound. Furthermore, all of the noncausal time-fractional models for power law

attenuation demonstrate causal behavior at the origin (r—0), where the effects of attenuation

2This article has been submitted to The Journal of the Acoustical Society of America. After this paper
is published, it will be found at http://asa.scitation.org/journal/jas.
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and dispersion vanish. When present, the noncausal components of power law attenuation
models are only evident in time-domain Green’s functions evaluated very close to the origin
[53]. For example, the noncausal components of the time-domain Green’s function for the
power law wave equation are only observed in the results of numerical calculations within 10
nm of the source for breast and only within 10 zm of the source for liver. Elsewhere, examples
of noncausal behavior in the time-domain are very difficult to identify because several of the
causal and noncausal time-fractional models for power law attenuation converge to the same
result a short distance from the origin [53].

Determining whether a space-fractional model is causal or noncausal requires a different
approach because the dispersion relations for space-fractional equations are transcendental
equations. This is further confounded by the various claims that appear in the literature,
where one paper indicates that the Chen-Holm space-fractional wave equation is causal [41],
two other papers claim that the Chen-Holm space-fractional wave equation is noncausal
[54, 55|, and another paper suggests that the Treeby-Cox space-fractional wave equation
is causal [42]. If these space-fractional wave equations are noncausal, then some evidence
of noncausal behavior is expected close to the origin, as demonstrated in [53| for two time-
fractional wave equations that are noncausal for power law exponents 1 < y < 2. Similarly, if
these space-fractional wave equations are causal, then the time-domain Green’s functions are
expected to consistently equal zero at all times ¢t < 0, including all locations very close to the
origin. Since these results have not yet been demonstrated for either of these space-fractional
wave equations, additional evaluations are needed.

To definitively establish whether the Chen-Holm and Treeby-Cox wave equations are
causal or noncausal and also to evaluate the similarities and differences in the time-domain
Green’s functions for both of these space-fractional wave equations, some new analytical
expressions and numerical results are introduced. These are developed and evaluated after
the fractional partial differential equations, the dispersion relations, and the time-domain

Green’s functions are presented for the Chen-Holm and the Treeby-Cox space-fractional
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wave equations. The power law wave equation, which is a time-fractional wave equation,
is also provided as a reference. Analytical expressions showing that the Chen-Holm and
the Treeby-Cox space-fractional wave equations are both causal are then introduced. Next,
a method is described for numerically calculating the time-domain Green’s functions for
these two space-fractional wave equations. Results are then presented showing that there
is a small but noticeable difference between numerically calculated values for the attenua-
tion and dispersion and the values predicted by previously published models and that the
discrepancy is eliminated when additional terms are included in the approximations for the
attenuation and dispersion. Results obtained from numerical evaluations of the time-domain
Green'’s functions also reinforce that both of these space-fractional wave equations are causal.
Although both of these space-fractional wave equations demonstrate similar attenuation as a
function of frequency, the phase velocities for the Chen-Holm and Treeby-Cox wave equations
are quite different. The results also show that the time-domain Green’s functions for the
Treeby-Cox wave equation and the power law wave equation yield approximately the same
result a short distance from the origin. When convolved with a short input pulse, the
time-domain Green’s functions for the Treeby-Cox wave equation and the power law wave
equation are also nearly identical, but the results obtained with the time-domain Green’s
function for the Chen-Holm wave equation are also different. Except for some very limited
circumstances, the Treeby-Cox space-fractional wave equation and the time-fractional power
law wave equation yield similar results, even though the former is causal and the latter is

noncausal for power law exponents 1 <y < 2.
3.2 The Chen-Holm space-fractional wave equation

The space-fractional wave equation developed by Chen and Holm [41] to describe power

law attenuation is given by

, 1% 0

2\¥/2
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where 7 = ancg_l is the fractional relaxation time [41]|, p represents the pressure in Pa,
and t is the time in seconds. The first two terms in Eq. 3.1 are recognized as the lossless
wave equation, and the third term, which contains a fractional Laplacian, produces power
law attenuation. There is no known exact analytical closed-form time-domain Green’s
function for the Chen-Holm wave equation, so numerical evaluations are required. To derive
an approximate expression for these numerical calculations, the transfer function for an
impulsive forcing function applied to the Chen-Holm wave equation is expressed in terms of

the spatial Fourier transform variable & and the Laplace transform variable s, which is

2

G(k,s) = 0 . (3.2)
(s + Thkvc2/2)" + k23 — T2k2vc} /4
The inverse Laplace transform of Eq. 3.2 then yields
- _ o —ThYRt/2 = c
gk, 1) = e /% sin <k:cot\/1 m TR 20(2)/4) k\/1—721:2y72c8/4u 0 (3.3)
+1 .
for k< ()
and
~ _ —TkYc? 3 — ¢
g(k,t)=e 0t/2 sinh <kcot\/7'2k2y 2¢2/4 — 1) k\/72k2y22c3/4—1u (t) 5.4

for k> ()"
At k= (2/7c)¥V ) Gk, t) = t2e 2 (t), so §(k,t) is continuous with respect to
k and t. In all three of these expressions for g(k,t), u (t) is the unit step function, which
guarantees that the time-domain response is equal to 0 for all times ¢t < 0 and that g(k,t) is
causal. The time-domain Green’s function is then obtained by evaluating

4 o0
T / Gk, 1) sin (kr) kdk, (3.5)
rJo

Q(T’t):W

where r = /22 + y? + 22 is the distance from a point source at the origin to an observation

point at (z,y, z). The integral in Eq. 3.5 also contains the unit step function w (t) through
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the expressions for g(k,t), so the time-domain Green’s function g(r,t) for the Chen-Holm

space-fractional wave equation is also causal. Although Eqs. 3.3 and 3.4 are analytical

expressions, the time-domain Green’s function g(r,t) in Eq. 3.5 is evaluated numerically.
Approximate expressions for the phase velocity and attenuation are derived from the

dispersion relation
2

k? = w_2 + jwTk? (3.6)
=0

with 7 = ancg_l. After taking the square root of both sides of Eq. 3.6, factoring out w/cq
on the right hand side, and keeping the first three terms in the binomial approximation,
the wavenumber is rewritten as k ~ w/co + jaochk? + adca? T'w ™'k /2. On the right hand
side, kY is replaced by the approximation (w/cg)” (1 + jyagcow?™t) and k% is replaced by
the approximation (w/ co)2y, respectively, and all third order and higher terms with respect

to o are discarded. The approximate phase velocity is then obtained from the real part of

the wavenumber divided by w,

1 1 1 2 2y—2
L , 3.7
c (CU) o (y 2) aOCOW ( )

The attenuation a (w) = apw?, which is obtained from the imaginary part of the resulting
approximation for k, is the same expression given in Eq. 2.1. In Treeby and Cox [42], the
attenuation for the Chen-Holm wave equation is also a (w) = apw?, but the approximate

phase velocity for the Chen-Holm wave equation is instead expressed as ¢ (w) = c.
3.3 The Treeby-Cox space-fractional wave equation

Treeby and Cox [42] recognized that the Chen-Holm space-fractional wave equation
correctly models the power law attenuation described by Eq. 2.1 but that the dispersion
for the Chen-Holm wave equation differs from the desired expression given in Eq. 2.2. To

address this problem, Treeby and Cox inserted a second space-fractional term that accounts
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for the dispersion, and the resulting expression is given by [42]

1 9%p

vy 2P
b ¢t ot?

o (T () o, 39

where 7 = 2a0cf™" and 7 = 2apc)tan (7y/2). In Eq. 3.8, the third and fourth terms
account for the effects of attenuation and dispersion, respectively. Similar to the Chen-
Holm wave equation, there is no known exact analytical closed-form time-domain Green’s
function for the Treeby-Cox wave equation, so numerical evaluations are required. To derive
an approximate expression for these numerical calculations, the transfer function for an
impulsive forcing function applied to the Treeby-Cox wave equation is expressed in terms of

the spatial Fourier transform variable £ and the Laplace transform variable s, which is

2
Gk, ) = 2 /9V2 4 1.2 260 2729 4 TR (3.9)
(S + Tkyc()/Q) + k Co— T k yCO/4 — ncok;y-l—
After the inverse Laplace transform of Eq. 3.9 is evaluated, the result is
Gk, t) = e ™Rbt/2 5in <kcot\/1 — T2k22c2 4 — nky_l)
(3.10)
k\/l—'rzk?yfozch—nkyflu (t) for k<r
and
g(kj’ t) = 6—TkyC(2)t/2 sinh <kcot\/7-2k2y—2cg/4 + nk,y_l — 1)
(3.11)

o
u(t) for k>«
ky/T2k2V=2¢Z [A+nky—1 1 () ’

where x = [<n+ V1P +T2C(2)) /2

expression for g(k,t) is continuous with respect to k and ¢. The unit step function w (t)

~1/-1) ) N
} . At k= K, g(k,t) = tc2e ™% (L), so the

in all three of these expressions for §(k,t) indicates that g(k,t) is causal. The time-domain
Green’s function for the Treeby-Cox space-fractional wave equation is calculated with Eq. 3.5

combined with the expressions for §(k,t), and due to the presence of u () in each expression
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for g(k,t), the time-domain Green’s function g(r, t) for the Treeby-Cox space-fractional wave
equation is also causal.
The phase velocity and attenuation for the Treeby-Cox space-fractional wave equation

are derived from the dispersion relation

2
k2 = w_g + j200cd ' wkY 4 200cl tan (my/2) KV, (3.12)
0

starting with the assumption that the attenuation and dispersion are both small relative to
w/cg. The binomial approximation is then applied to Eq. 3.12, and the first three terms are

retained, yielding

ka <+ agch (kY + tan (my/2) cow kYT
<4 ancf (5 (my/2) co ) (3.13)
a2 Wt (jkY + tan (my/2) cow kY1)

On the right hand side, k¥ is replaced with (w/c)? [1 + yagcow?™" (j + tan (ry/2))] and kv+?
is replaced with (w/co)? ' [1 4 (y + 1) apcow? ™! (j + tan (7y/2))], respectively, and all third
order and higher terms with respect to aq are discarded. The approximate phase velocity is

obtained from the real part of the wavenumber divided by w,

1 1 1 1
~ — + tan (1y/2) apw? ! + {—y + -+ (y + —) tan® (ﬁy/2)} agcow® 2 (3.14)
cw) ¢ 2

2

and the approximate attenuation is the imaginary part of the wavenumber,

o (w) ~ agw? + 2y tan (1y/2) aicow (3.15)

Treeby and Cox [42] instead express the approximate phase velocity and attenuation for
the Treeby-Cox wave equation as 1/c(w) ~ 1/cy + tan (my/2) apw?™! and o (w) ~ aw?,

respectively.
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3.4 Methods

3.4.1 Dispersion Relations

The attenuation and phase velocity of the power law wave equation are calculated with
Egs. 2.1 and 2.2, respectively. For the Chen-Holm and the Treeby-Cox space-fractional
wave equations, since there is no analytical solution, the phase velocity and attenuation
are both calculated using the “fsolve” routine in Matlab. This Matlab function applies the
Levenberg—Marquardt algorithm to numerically determine the complex value of k£ that solves

the dispersion relations in Eqs. 3.6 and 3.12 using the initial value k = w/c.

3.4.2 The Pantis Method

Numerical calculations of the time-domain Green’s functions for the Chen-Holm and
Treeby-Cox wave equations are challenging because Eq. 3.5 is a highly oscillatory improper
integral. When applied to this problem, most standard numerical integration techniques
perform poorly, so an alternative approach is required. The Pantis method [56, 57| provides
an ideal solution to this problem, where the improper integral in Eq. 3.5 is rewritten as the

sum of a proper integral and an improper integral according to

47 47

g(r,t) = W /000 kg(k,t)sin (kr) dk = 27r)3r (L (r,t) + I (r,t)], (3.16)
with
mm/r
L (rt) = / kg(k,t)sin (kr) dk, (3.17)
and
Iy(rt) = /OO kg(k,t)sin (kr) dk. (3.18)
mm/r

The integral I; (r,t) is evaluated with Filon’s method [58, 59, 60|, which approximates kg (k, t)

with a piecewise second order polynomial. Filon’s method is implemented within a Matlab
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routine |59, where the input parameters include the Matlab function handle, the lower and
upper limits of integration, and the number of points at which the integrand is evaluated.
Each numerical evaluation of I; (r,¢) with Filon’s method is calculated with 70,000 abscissas,
which is sufficient for convergence at all temporal and spatial points evaluated here for both
breast and liver. After integrating by parts and recognizing that [kg(k,t)] ‘ = 0, the

k=00

integral I (r,t) over the upper subinterval is rewritten as

o cos (kr) o sin (kr)
Iy (r,t) = kg(k, 1) r k=mm/r ok Rg(k, ) r k=mm /7
_/oo El kak. 0] sin (kr)dk‘ (3.19)
mm /T ok I 72 ‘ |

For these calculations, m is an odd integer, and only the first term in Eq. 3.19 is retained.
Thus, Iy (r,t) ~ —mzg(mm/r,t)/r? which is an effective approximation for these calcula-
tions when m is sufficiently large and when the contribution from I5 (r,t) is relatively small.
Also, when m is an odd integer, the second term in Eq. 3.19 disappears, and when m is
odd, I (r,t) is consistently positive for the expressions considered here. An odd value of
m is advantageous for these calculations because an even value of m can yield a negative
value for I (r,t), which is undesirable because g(r,t) > 0 for all values of r and ¢. The
value m = 1601 yields effective results for all (r,¢) pairs evaluated here. Also, to avoid
problems with numerical overflow when the argument of the sinh (-) function grows large,

exp (—a) sinh (b) is instead calculated using (e~ — e="7%) /2.
3.4.3 Time windows for computed time-domain Green’s functions

The start and end times for all time-domain Green’s function calculations are adjusted
manually for each location such that each waveform fills a significant portion of the time win-
dow. For both the Chen-Holm wave equation and the Treeby-Cox wave equation, g (r,t) =0
at t = 0 because g(k,t) = 0 for all values of & when ¢t = 0, which is the analytical result

obtained through direct substitution of ¢ = 0 into Eqgs. 3.3-3.4 and Eqs. 3.10-3.11. The unit
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Figure 3.1: Phase velocity and attenuation in breast and liver obtained from the dispersion
relation in Eq. 3.6 for the Chen-Holm wave equation (x) and two different approximations
(e and o) to the dispersion relation for the Chen-Holm wave equation.

step function w (t) also guarantees that g(k,¢) = 0 for all t < 0, so g (r,t) =0 for all t <0
in the Chen-Holm and Treeby-Cox wave equations. For the power law wave equation, the
time-domain Green’s function is calculated in Matlab with the STABLE toolbox (47, 53],
which numerically evaluates the expression for the stable pdf in Eq. 2.13. The time window
defined for time domain Green’s function calculations very close to the source includes
negative time values to capture the noncausal components of the response in these locations.
In all plots, the arrival time r/cy in a lossless medium is also indicated to provide a time

reference.

3.5 Results

3.5.1 Phase velocity and attenuation in breast and liver

Fig. 3.1 shows the exact and approximate frequency-dependent phase velocity and attenu-
ation for the Chen-Holm space-fractional wave equation using values for human breast with
y = 1.5, ap = 0.086 Np/cm/MHz'?, and ¢y = 1450 m/s and using values for human liver
with y = 1.139, ap = 0.0459 Np/cm/MHz'% and ¢y = 1540 m/s. The frequency range is
0.1 to 40 MHz, and the step size on the horizontal axis is A f = 0.3 MHz for each of the phase
velocity and attenuation plots. For the Chen-Holm wave equation, the result obtained with

the Matlab “fsolve” routine applied to Eq. 3.6 is indicated by dashed lines with star markers
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Figure 3.2: Phase velocity and attenuation in breast and liver obtained from the dispersion
relation in Eq. 3.12 for the Treeby-Cox wave equation (%), the approximations to the
dispersion relation for the Treeby-Cox wave equation given in Eqs. 3.14-3.15 (e), and the
attenuation and phase velocity for the power law wave equation given in Eqs. 2.1-2.2 (o).

(*), and the approximate solution from Eq. 3.7 is indicated by dot-dashed lines with solid
dot markers (o). The zero-order approximation to the phase velocity ¢ (w) = ¢ is indicated
by a solid line with circle markers (o) in Figs. 3.1(a) and 3.1(c). Figs. 3.1(a) and 3.1(c) show
that the approximation to ¢ (w) introduced in Eq. 3.7 demonstrates excellent agreement with
the numerical solution of Eq. 3.6. Figs. 3.1(a) and 3.1(c) also indicate that the phase velocity
of the Chen-Holm wave equation is not quite equal to ¢y because ¢ (w) increases slightly as
the frequency increases. In addition, Fig. 3.1(b) shows that the attenuation predicted by the
Chen-Holm wave equation follows the power law indicated by Eq. 2.1 very closely in breast.
Furthermore, Figs. 3.1(a) and 3.1(c) demonstrate that the change in the phase velocity in
liver over this frequency range is much less than the change in the phase velocity in breast,
and Figs. 3.1(b) and 3.1(d) indicate that the attenuation of liver is much smaller than that
of breast.

Fig. 3.2 shows the exact and approximate values for the phase velocity and attenuation of
the Treeby-Cox space-fractional wave equation and the exact phase velocity and attenuation
of the power law wave equation using the same parameters evaluated in Fig. 3.1. For the
Treeby-Cox wave equation, the numerical results obtained with the Matlab “fsolve” routine
applied to Eq. 3.12 are indicated by dashed lines with star markers (x), and the approximate

solution from Eq. 3.14 is indicated by dot-dashed lines with solid dot markers (o). For the
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power law wave equation, which exactly satisfies Eqs. 2.1 and 2.2, the results are indicated by
solid lines with circle markers (o). Figs. 3.2(a-d) show that the approximations introduced
in Eqgs. 3.14-3.15 closely match the numerical values obtained from Eq. 3.12. Fig. 3.2
also shows that the phase velocity and attenuation curves are similar for the power law
wave equation and the Treeby-Cox wave equation; however, there is a small but noticeable
difference between these curves that is associated with the higher order terms on the right
hand side of Egs. 3.14-3.15. Fig. 3.2(b) indicates that the difference between the attenuation
for the Treeby-Cox wave equation and the power law wave equation increases slightly as the
frequency grows larger. For example, at f = 40 MHz, the phase velocities obtained from
Eq. 3.12 (the dispersion relation for the Treeby-Cox wave equation) with the “fsolve” routine
in Matlab, Eqs. 3.14-3.15 (approximations to the phase velocity and the attenuation for
the Treeby-Cox wave equation), and Eqs. 2.1-2.2 (the exact attenuation and phase velocity
for the power law wave equation) in breast are 1468.2 m/s, 1468.2 m/s, and 1468.4 m/s,
and the corresponding attenuations are 2096.6 Np/m, 2093.7 Np/m, and 2175.6 Np/m,
respectively. At f = 40 MHz, the corresponding phase velocities in liver are 1553.0 m/s,
1553.0 m/s, and 1553.1 m/s, and the attenuations are 300.79 Np/m, 300.68 Np/m, and
306.59 Np/m, respectively. Thus, at f = 40 MHz and at all other frequencies evaluated
in Fig. 3.2, Egs. 3.14-3.15 are better approximations for the phase velocity and attenuation
of the Treeby-Cox wave equation than Eqs. 2.2 and 2.1, where the largest differences are
observed at f = 40 MHz. Also, the phase velocity and attenuation are slightly smaller for
the Treeby-Cox wave equation than for the power law wave equation. Figs. 3.2(a) and 3.2(c)
also demonstrate that the change in the phase velocity in liver over this frequency range is
smaller than the change in the phase velocity in breast, and Figs. 3.2(b) and 3.2(d) show
that the attenuation for liver is much less than that for breast over the range of frequencies
evaluated here. In Figs. 3.2(a) and 3.2(c), the differences in the phase velocities for the power
law wave equation and the Treeby-Cox wave equation are due to the contribution from the

third term in Eq. 3.14, and in Figs. 3.2(b) and 3.2(d), the differences in the attenuation for
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the power law wave equation and the Treeby-Cox wave equation are due to the contribution

from the second term in Eq. 3.15.

3.5.2 Time-domain Green’s functions calculated for breast
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Figure 3.3: Time-domain Green’s functions scaled by 47r calculated for breast with y = 1.5,
ap = 0.086 Np/cm/MHz'®, and ¢y = 1450 m/s at (a) 7 = 1 nm, (b) r = 10 nm, (c) r = 100
nm, (d) » = lum, (¢) r = 100 um, (f) r = 1 mm, (g) » = 1 cm, and (h) » = 10 cm
with the power law (solid line), Chen-Holm (dashed line), and Treeby-Cox (dot-dashed line)
wave equations. At all distances, the time-domain Green’s functions for the Chen-Holm and
Treeby-Cox wave equations evaluated for breast are causal while the time-domain Green’s
function for the power law wave equation is clearly non-causal for r = 1nm and » = 10 nm.
Beyond about r = 100 um, the time-domain Green’s functions for the power law wave
equation and the Treeby-Cox wave equation are nearly indistinguishable, while the time-
domain Green’s function for the Chen-Holm wave equation is distinct from the time-domain
Green’s functions for the time-fractional power law wave equation and the space-fractional

Treeby-Cox wave equation at all distances.

To demonstrate some of the similarities and differences between these three fractional
wave equations evaluated at various distances, Fig. 3.3 shows the time-domain Green’s
functions multiplied by 47r for the power law wave equation (solid line), the Chen-Holm
wave equation (dashed line), and the Treeby-Cox wave equation (dot-dashed line) calculated
for human breast with y = 1.5, ¢ = 1450 m/s, and ap = 0.086 Np/cm/MHz'5. The results

are computed at » = 1 nm, r = 10 nm, » = 100 nm, » = 1 pym, » = 100 gm, r = 1 mm,
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r = 1cm, and r = 10 cm. The units defined for the horizontal axis in Fig. 3.3 are picoseconds,
nanoseconds, or microseconds. The vertical dashed line describes the time t = r/cq in each
subfigure. Figs. 3.3(a) and 3.3(b) show that the Green’s function for the power law wave
equation is noncausal at » = 1 nm and » = 10 nm since the Green’s function for the power
law wave equation is clearly nonzero before time ¢ = 0 in these two subfigures. However, the
Green’s functions for the Chen-Holm wave equation and the Treeby-Cox wave equation are
both causal as these two Green’s functions are always equal to zero for all times ¢ < 0, as
demonstrated in sections 3.2 and 3.3, respectively. The amplitudes of the Green’s functions
for these three wave equations are similar in each individual subfigure, and the amplitudes
change by a significant amount in each successive subfigure. For example, the values of

1 and the values of the peaks in

the peaks in Fig. 3.3(a) are all approximately 4 x 10" s~
Fig. 3.3(b) are all around 9 x 10!° s7'. Three distinct peaks are observed in Figs. 3.3(a)
and 3.3(b), and then the peaks of the time-domain Green’s functions for the power law wave
equation and the Treeby-Cox wave equation start to move much closer together in Figs. 3.3(c)
and 3.3(d) while the peak for the Chen-Holmm wave equation remains distinct from the peaks
for the other two fractional wave equations in each subfigure. In Figs. 3.3(e)-3.3(h), the
waveforms for the Chen-Holm wave equation are comnsistently quite different from those
obtained with the power law and Treeby-Cox wave equations. This is expected because
the phase velocity for the Chen-Holm wave equation is approximately equal to ¢y for all
frequency components; however, the phase velocity demonstrates much greater variation as
a function of frequency in the power law and Treeby-Cox wave equations. Furthermore, in
Figs. 3.3(e)-3.3(h), the time-domain Green’s functions for the power law wave equation and
the Treeby-Cox wave equation are nearly indistinguishable, which suggests that these two
time-domain Green’s functions are converging to the same result. Fig. 3.3 shows that the
shape of the time-domain Green’s function is the same in all eight subfigures for the power law

wave equation, where the amplitude and time-scaling is different in each subfigure. However,

the shapes of the time-domain Green’s functions for the other two fractional wave equations
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change as a function of distance. For instance, Fig. 3.3(a) shows that the waveforms for
the Chen-Holm and Treeby-Cox wave equations both experience abrupt changes at ¢t = 0,
whereas the corresponding waveforms for these two fractional wave equations are smooth at

all time points shown in Fig. 3.3(e).

3.5.3 Time-domain Green’s functions calculated for liver
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Figure 3.4: Time-domain Green’s functions scaled by 47r calculated for liver with y = 1.139,
ap = 0.0459 Np/cm/MHz'"'¥ and ¢y = 1540 m/s at (a) r = 100 zm, (b) r = 1 am,
(¢) r = 10 am, (d) » = 100 am, (e¢) r = 100 um, (f) » = 1 mm, (g) » = 1 c¢m, and
(h) r = 10 cm with the power law (solid line), Chen-Holm (dashed line), and Treeby-Cox
(dot-dashed line) wave equations. At all distances, the time-domain Green’s functions for
the Chen-Holm and Treeby-Cox wave equations evaluated for liver are causal while the
time-domain Green’s function for the power law wave equation is clearly non-causal for
r = 100 zm. Beyond about r = 100 um, the time-domain Green’s functions for the power
law wave equation and the Treeby-Cox wave equation are nearly indistinguishable, while the
time-domain Green’s function for the Chen-Holm wave equation is consistently distinct from
the time-domain Green’s functions for the time-fractional power law wave equation and the
space-fractional Treeby-Cox wave equation at all distances.

Fig. 3.4 shows the time-domain Green’s functions multiplied by 47r for the power law
wave equation (solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox
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wave equation (dot-dashed line) calculated for human liver with y = 1.139, ¢p = 1540 m/s,
and ag = 0.0459 Np/cm/MHz"'3. In Fig. 3.4, the three time-domain Green’s functions
are evaluated at » = 100 zm, r = 1 am, » = 10 am, » = 100 am, » = 100 um, r = 1
mm, r = 1 cm, and r = 10 cm. The units defined for the horizontal axis in Fig. 3.4 are
yoctoseconds (ys or 1072* seconds), zeptoseconds (zs or 107! seconds), nanoseconds (ns), or
microseconds (us). The vertical dashed line describes the time ¢ = r/¢j in each subfigure. In
Fig. 3.4, the first row of subfigures shows that at relatively short distances, the time-domain
Green’s functions for the power law wave equation, the Chen-Holm wave equation, and the
Treeby-Cox wave equation are again all noticeably different. Fig. 3.4(a) shows that the
time-domain Green’s function for the power law wave equation is noncausal at » = 100
zm since this time-domain Green’s function is clearly nonzero before time ¢t = 0. However,
the time-domain Green’s functions for the Chen-Holm wave equation and the Treeby-Cox
wave equation are both causal as these are consistently equal to zero for all times ¢t < 0.
Figs. 3.4(a)-3.4(d) show that, compared to the results calculated for breast, a much shorter
distance is required to show the noncausal behavior of the power law wave equation in liver.
The amplitudes of the Green’s functions for these three wave equations are again similar in
each individual subfigure, and the amplitudes again decrease by a significant amount in each
successive subfigure. For instance, the values of the peaks in Fig. 3.4(a) are all approximately
2x 10?2 57! and the values of the peaks in Fig. 3.4(b) are all near 3 x 10?! s7*. Three distinct
peaks are observed in Figs. 3.4(a)-3.4(d), while the peaks for the power law wave equation
and the Treeby-Cox wave equation are very close together in Figs. 3.4(e)-3.4(h). In each
subfigure, the location of the peak for the Chen-Holm wave equation is distinct from the
peak locations for the other two wave equations. Furthermore, in Figs. 3.4(e)-3.4(h), the
time-domain Green’s functions for the power law wave equation and the Treeby-Cox wave
equation are nearly indistinguishable, and with increasing distance, these two time-domain

Green’s functions are converging to the same result.
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3.5.4 Amplitude and full width at half maximum (FWHM) values

in breast and liver
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Figure 3.5: The (a,c) amplitudes and (b,d) FWHM values of the time-domain Green’s
functions calculated for the power law, Chen-Holm, and Treeby-Cox wave equations in (a,b)
breast and (c,d) liver. The amplitudes of all three time-domain Green’s functions decrease
as the distance increases while the FWHM values of all three time-domain Green’s functions
increase as the distance increases. The amplitudes of the time-domain Green’s functions for
all three of these fractional wave equations are very similar at each distance, and the FWHM
values are all approximately the same at longer distances, although there is a small difference
in the FWHM values at shorter distances that diminishes with increasing distance.

Fig. 3.5 shows the amplitudes and full width at half maximum (FWHM) values for the
time-domain Green’s functions multiplied by 477 in breast and liver for the power law wave
equation (solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave
equation (dot-dashed line), where these four subfigures summarize the effects of attenuation
and dispersion in the time-domain. The initial distances are » = 100 nm for breast and
r = 100 am for liver, and each plot ends at » = 10 cm. Figs. 3.5(a) and 3.5(c) indicate that the
amplitudes of the time-domain Green’s functions for these three fractional wave equations,
which are plotted on a log-log scale, decrease with frequency as the distance increases due
to the effect of attenuation. Also, the amplitudes of the time-domain Green’s functions for
three wave equations are all very similar at all distances for both breast and liver. The slopes
of the amplitudes in Fig. 3.5(a) and 3.5(c) are —0.6677 and —0.8790, respectively, where the
absolute values of these two quantities are approximately equal to the reciprocals of the power

law exponents in breast and liver, respectively. Figs. 3.5(b) and 3.5(d), which are plotted
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on a log-log scale, show that the FWHM values of the time-domain Green’s functions for
these three fractional wave equations increase with distance due to the effect of dispersion.
In Figs. 3.5(b) and 3.5(d), the FWHM values of the time-domain Green’s functions for these
three fractional wave equations differ slightly close to the source. For example, the FWHM
values of the time-domain Green’s functions for the power law, Chen-Holm, and Treeby-Cox
wave equations are 4.4 x 107 s, 4.1 x 107 s, and 3.3 x 107 s at r = 100 nm in breast,
respectively, and 2.0 x 1072t s, 1.7 x 1072!' s, and 9.4 x 10722 s at » = 100 am in liver,
respectively. At larger distances, the FWHM values of the time-domain Green’s functions
for all three wave equations yield nearly the same result even though the shape of the
time-domain Green’s function for the Chen-Holm wave equation is distinct from the shapes
of the time-domain Green’s functions for the power law and Treeby-Cox wave equations.
Figs. 3.5(b) and 3.5(d) also show that, at » = 10 cm, the FWHM values of the time-domain
Green’s functions for the power law, Chen-Holm, and Treeby-Cox wave equations are equal
to 4.4 x 107" s, 4.1 x 1077 s, and 4.4 x 1077 s in breast, respectively, and 2.2 x 1077 s,
1.9 x 1077 s, and 2.2 x 1077 s in liver, respectively. In Fig. 3.5(b) and 3.5(d), the slopes of
the FWHM values are 0.6711 and 0.8825, which are approximately equal to the reciprocals

of the power law exponents in breast and liver, respectively.

3.5.5 Time-domain Green’s functions convolved with a three cycle

Hanning-weighted pulse

Fig. 3.6 shows the waveforms obtained when a three cycle Hanning-weighted pulse [50, 51|
is convolved with the time-domain Green’s functions for the power law wave equation
(solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave equa-
tion (dot-dashed line) multiplied by 47r evaluated at » = 1 c¢m in breast with y = 1.5,
ap = 0.086 Np/cm/MHz'?, and ¢y = 1450 m/s. This figure shows how power law attenua-

tion and phase velocity influence the shape of a short pulse. In Fig. 3.6, input pulses with two
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Figure 3.6: Simulated three-cycle Hanning-weighted pulses with center frequencies (a) fo =
7.5 MHz and (b) fo = 29 MHz convolved with time-domain Green’s functions for the power
law, Chen-Holm, and Treeby-Cox wave equations multiplied by 4nr evaluated for breast
at r = 1 cm. The convolution results for the power law wave equation and the Treeby-Cox
wave equation are very similar while the convolution result for the Chen-Holm wave equation
clearly shows a time delay. Significant attenuation and waveform spreading are observed for
all three signals in (b) produced by inputs with fo = 29 MHz, whereas a moderate amount
of attenuation and waveform spreading is observed for all three signals in (a) produced by
inputs with fy = 7.5 MHz.

different center frequencies, fo = 7.5 MHz and fy = 29 MHz, are evaluated to highlight the
differences in the resulting waveforms. Fig. 3.6 indicates that the convolution results for the
power law wave equation and the Treeby-Cox wave equation are nearly indistinguishable for
pulses with fo = 7.5 MHz and fy = 29 MHz while the convolution results for the Chen-Holm
wave equation evaluated at these two frequencies contain a significant time delay because of
the substantial difference in the phase velocity. In particular, when the time delay is defined
as the time between the peaks, the time delay between the convolution results for the power
law wave equation and the Chen-Holm wave equation is 35 ns in Fig. 3.6(a), and the time
delay between the convolution results for the power law wave equation and the Chen-Holm
wave equation is 41 ns in Fig. 3.6(b), whereas the time delay between the convolution results

for the power law wave equation and the Treeby-Cox wave equation is less than 1 ns in
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Figs. 3.6(a) and 3.6(b). In Fig. 3.6(a), the amplitudes of all three waveforms are comparable
and the waveform shapes are also similar. This indicates that the attenuation is nearly the
same in all three waveforms and that the amount of waveform spreading (dispersion) for the
propagating waveforms is also approximately the same. In Fig. 3.6(b), the amplitudes are
again similar and the amount of spreading is similar for all three waveforms. The convolution
results for the power law wave equation and the Treeby-Cox wave equation are again nearly
indistinguishable, but the waveform shape for the Chen-Holm wave equation convolution
result is somewhat different from the other two, where the source of this difference is again
the phase velocity. Also, relative to Fig. 3.6(a), the signal amplitude drops off considerably
in Fig. 3.6(b), and the filtering and spreading of the signal in the time domain is much
more significant in Fig. 3.6(b), where the initial duration of the three cycle 29 MHz pulse
is 0.103 us. Since the FWHM values are approximately equal to 0.09 us for all three of
these at r = 1 cm, which is larger than one period of the 29 MHz center frequency, namely
0.035 s, the attenuation and waveform spreading are more significant in Fig. 3.6(b) than
in Fig. 3.6(a). In contrast, one period of the 7.5 MHz center frequency is 0.133 us, which is
larger than the FWHM values 0.09 ps of all three time-domain Green’s functions at r = 1 cm,
so there is much less attenuation and waveform spreading in Fig. 3.6(a).

Fig. 3.7 shows the results obtained when a three cycle Hanning-weighted pulse is con-
volved with the time-domain Green’s functions for the power law wave equation (solid
line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave equation
(dot-dashed line) multiplied by 47r evaluated at r = 1 cm for liver with y = 1.139,
ap = 0.0459 Np/cm/MHz'% and ¢y = 1540 m/s. The center frequencies are again equal
to fo = 7.5 MHz and fy = 29 MHz. As indicated in Fig. 3.7(a), the convolution results for
the power law wave equation and the Treeby-Cox wave equation also track very closely
for both pulses while the convolution result for the Chen-Holm wave equation contains a
noticeable time delay. For example, the time delay between the convolution results for

the power law wave equation and the Chen-Holm wave equation is 44 ns in Fig. 3.7(a),
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Figure 3.7: Simulated three-cycle Hanning-weighted pulses with center frequencies (a) fo =
7.5 MHz and (b) fo = 29 MHz convolved with time-domain Green’s functions for the power
law, Chen-Holm, and Treeby-Cox wave equations multiplied by 47r evaluated for liver at
r = 1 cm. The convolution results for the power law wave equation and the Treeby-Cox wave
equation are very similar while the convolution result for the Chen-Holm wave equation
clearly shows a time delay. A moderate amount of attenuation and waveform spreading
are observed for all three signals in (b) produced by inputs with f, = 29 MHz, whereas a
smaller amount of attenuation and waveform spreading is observed for all three signals in
(a) produced by inputs with f, = 7.5 MHz.

and the time delay between the convolution results for the power law wave equation and
the Chen-Holm wave equation is 52 ns in Fig. 3.7(b), whereas the time delay between the
convolution results for the power law wave equation and the Treeby-Cox wave equation is
again less than 1 ns in Figs. 3.7(a) and 3.7(b). Fig. 3.7(a) also shows that the amplitudes
of all three waveforms are almost the same and the shapes of these waveforms are again
similar, which indicates that the amount of attenuation and dispersion is nearly the same
in all three waveforms. Fig. 3.7 shows that there is more attenuation and dispersion for the
29 MHz signal in Fig. 3.7(b) relative to the 7.5 MHz signal in Fig. 3.7(a) and that the shape

of the three cycle Hanning-weighted input pulse is still recognizable in Fig. 3.7(b).
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3.6 Discussion

3.6.1 Numerical evaluations of the inverse 3D Fourier transform

Numerical evaluations of improper integrals with highly oscillatory integrands are often
challenging. Certain methods, such as the Matlab “quadgk” routine, which is based on
adaptive Gauss-Kronrod quadrature, and the Matlab “integral” routine, which is based on
global adaptive quadrature, are able to evaluate some improper integrals. Unfortunately,
neither of these methods consistently converge to the correct result when applied to Eq. 3.5.
Although Filon’s formula provides an effective method for evaluating integrals with highly
oscillatory integrands, Filon’s formula yields inconsistent results when applied to Eq. 3.5
because the upper limit of integration is infinite. However, the Pantis method [56, 57]
solves this problem by applying Filon’s formula to the integral I; (r,¢) with finite limits of
integration, and then the first term of an infinite sum approximates the contribution from
the remaining improper integral I (r,t). To determine whether numerical convergence is
achieved at a given distance, the result is compared to the result obtained with twice as
many Filon abscissas and to a value for m that is twice as large. If the Euclidean norm of
the difference between the two results is within 1 x 1073, then the two results are sufficiently
close and convergence is achieved. For instance, at » = 1 nm for breast and r = 100 zm
for liver, 900 Filon abscissas and m = 21 are sufficient to achieve convergence at all time
points in Figs. 3.3(a) and 3.4(a). However, at r = 100 pum for liver, convergence at all time
points is achieved with 35,000 Filon abscissas and m = 801. Convergence is achieved at all
values of r and ¢ for calculations in breast and liver with 70,000 abscissas and m = 1601,
so instead of specifying these values at each distance for each material, these two values are
used throughout.

Fig. 3.8 describes the time-domain Green’s functions scaled by 4mr calculated with

the Pantis method at r = 1 c¢m with different numbers of Filon abscissas and values of

29



6 r=1cm
15 x10

«10° r=1cm

—Treeby and Cox wave egn

10

Aqr g(r,t)
(6]

Aqr g(r,t)

6.7 6.8 6.9 7 71 7.2
time (uS)

(a)

15

—Treeby and Cox wave eqgn

10

N

Aqr g(r,t)

6.8 6.9 7 71 7.2
time (us)

(b)

«10° r=1cm

\—Treeby and Cox wave eqn\

6.7 6.8 6.9 7 71 72 73
time (us)

()

Figure 3.8: Computed time-domain Green’s function scaled by 4mr evaluated for breast at
r = 1 cm computed with the Pantis method using (a) 2,000 Filon abscissas and m = 401,
(b) 2,000 Filon abscissas and m = 101, and (c) 500 Filon abscissas and m = 401.
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Figure 3.9: Computed time-domain Green’s functions scaled by 47r evaluated for breast at
r =1 nm using 500 Filon abscissas and m =5 (a) without and (b) with the Pantis term.

m. A comparison between Figs. 3.8(a) and 3.8(b) indicates that when m is too small,

artificial oscillations appear in the computed Green’s function. This problem is addressed

by increasing the value of m. Also, a comparison between Figs. 3.8(a) and 3.8(c) shows that

when the number of abscissas is insufficient, the amplitude of the waveform is diminished

by a significant amount relative to the correct result for the computed time-domain Green’s

function.

Fig. 3.9 shows the time-domain Green’s functions scaled by 47r calculated before (a) and

after (b) the Pantis method is applied at » = 1 nm with 500 Filon abscissas and m = 5.
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These two waveforms match closely for larger values of . As indicated in Fig. 3.9, the
contribution from I (r,t) is particularly important at shorter distances, especially when ¢ is
close to 0. For t < 0.5 ps at = 1 nm in breast, the contribution from I, (r,t) is larger than
1% of the peak value of the time-domain Green’s function. If the I (r,¢) term is omitted and
only the contribution from I (r,t) calculated with the Filon’s formula is included, artificial

oscillations appear in the computed Green’s function for small values of ¢.
3.6.2 Improved approximations for the attenuation and phase ve-
locity

Figs. 3.1 and 3.2 show that the attenuation of the Chen-Holm wave equation is ac-
curately represented by a power law and that the attenuation of the Treeby-Cox wave
equation is very close to a power law. Figs. 3.1 and 3.2 also show that a more accurate
representation for the attenuation of the Treeby-Cox wave equation is achieved when the
second term in Eq. 3.15 is included. In addition, Figs. 3.1 and 3.2 demonstrate that
more accurate representation for the phase velocities of the Chen-Holm and Treeby-Cox
wave equations are obtained when a second (Chen-Holm) or a third (Treeby-Cox) term is
included in the expression for ¢ (w). The similarities and differences between these phase
velocities are further reinforced when binomial approximations are evaluated for each ex-
pression. For instance, the phase velocity obtained from the binomial approximation to
Eq. 3.7 is ¢(w) =~ co + (y — 1/2) adcdw® 2 for the Chen-Holm wave equation when w <
[(y — 1/2) a2 ™ | which yields ¢ (w) ~ 1450 + 9.0899 x 10~% when w < 1.5952 x
10'? radians/second (or f < 2.5388 x 10! Hz) for breast. Thus, c¢(w) increases linearly
as a function of frequency when the Chen-Holm wave equation is evaluated for breast, as
indicated in Fig. 3.1(a). In Fig. 3.1(c), the phase velocity of the Chen-Holm wave equation is
approximately ¢ (w) =~ 1540 + 1.6049 x 10~°w®2™ which holds when w < 5.1587 x 10?® radi-
ans/second (or f < 8.2103 x 10?7 Hz) for liver. When plotted on the same axes, the results

obtained from these approximations are indistinguishable from Eq. 3.7 and are therefore not
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shown. When the binomial approximation is applied to Eq. 3.14, this yields ¢ (w) ~ ¢y —
tan (my/2) apcdw?=t + [tan? (7y/2) — (—y + 1/2+ (y + 1/2) tan? (7y/2))] adciw® =2 for the

]—1/(y—1

Treeby-Cox wave equation when w < [|tan (7y/2)| apco ) , and similarly, the binomial

approximation applied to the phase velocity for the power law wave equation in Eq. 2.2 yields
c(w) & co—tan (my/2) apciw? ! +tan? (ry/2) adcgw?~? when the angular frequency satisfies
w < [[tan (7ry/2)|aoco]_l/(y_l). In Fig. 3.2(a), the frequency-dependent phase velocities
of both the Treeby-Cox wave equation and the power law wave equation for breast are
represented by the approximate expressions ¢ (w) ~ 1450+1.1481 x 103w%5—4.0367x 10~ w
for the Treeby-Cox wave equation and ¢ (w) ~ 1450 + 1.1481 x 1073w%® + 9.0899 x 10~ 0w
for the power law wave equation, which hold when w < 1.5952 x 10'? radians/second (or
[ < 2.5388 x 10" Hz). In Fig. 3.2(c), the phase velocities of the Treeby-Cox wave equation
and the power law wave equation for liver are represented by the approximate expressions
c(w) = 1540 + 0.8864w%13 — 3.0994 x 10~%w%%™ for the Treeby-Cox wave equation and
c(w) ~ 1540+0.8864w"1394+5.1016 x 10~4w?2™ for the power law wave equation, respectively,
when w < 2.0356 x 10 radians/second (or f < 3.2398 x10?2 Hz). When plotted on the same
axes, the results obtained from these two approximations for ¢ (w) are also indistinguishable
from Eq. 3.14 and are therefore not shown. The first two terms in these two binomial
expressions for the phase velocity of the Treeby-Cox and power law wave equations are
the same, and the first term in the expression for the attenuation of the Treeby-Cox wave
equation in Eq. 3.15 is also the same as that for the power law wave equation. Thus, although
Figs. 3.1 and 3.2 indicate that there is a small but noticeable difference in a (w) and ¢ (w) for
the Treeby-Cox and power law wave equations over the frequency range from 0.1 to 40 MHz,
much closer agreement in « (w) and ¢ (w) for the Treeby-Cox and power law wave equations
is expected for smaller values of w. Furthermore, the first terms in the series expansions for
both the attenuation and the phase velocity are the same for all three of these fractional
wave equations. However, the second term in the binomial approximation for the phase

velocity ¢ (w) of the Chen-Holm wave equation is quite different from the second terms in
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the binomial approximations for the other two fractional wave equations, where these terms
are responsible for the significant differences between the phase velocities shown in Fig. 3.1

and Fig. 3.2.

3.6.3 Time-domain Green’s functions

Figs. 3.3 and 3.4 show several examples of time-domain Green’s functions for the Chen-
Holm and Treeby-Cox fractional wave equations, which are causal for all values of the power
law exponent 1 < y < 2. Figs. 3.3 and 3.4 also show that the time-domain Green’s function
for the power law wave equation is noncausal for 1 < y < 2, which is only evident in the
time-domain at very short distances. At longer distances, Figs. 3.3 and 3.4 suggest that
the time-domain Green’s functions for the Treeby-Cox wave equation and the power law
wave equation converge to the same result. Figs. 3.3 and 3.4 also show that amplitudes are
similar for all three Green’s functions in each subfigure. The amplitudes for all three of these

1% which was also demonstrated

Green’s functions are proportional to the scale factor (agr)
for the three time-fractional wave equations evaluated in Zhao and McGough [53|. The peak
values are all about the same for each subplot in Figs. 3.3 and 3.4, which is confirmed by
the results in Figs. 3.5(a) and 3.5(c) showing the amplitudes calculated for the time-domain
Green’s functions of all three fractional wave equations. Figs. 3.5(a) and 3.5(c) therefore
demonstrate that the attenuations are all about the same for all three of these fractional
wave equations, which is expected since the attenuations of all three fractional wave equations
either exactly or approximately follow the power law described by Eq. 2.1. Figs. 3.3 and 3.4
indicate that three distinct peaks are observed in the time-domain Green’s functions at
shorter distances, and then the peak locations for the time-domain Green’s functions of the
power law wave equation and the Treeby-Cox wave equation converge at larger distances.
In Figs. 3.3 and 3.4, temporal spreading is observed in all three waveforms. The amount of

)1/y, which appears in the denominator of the

temporal spreading is also determined by (agr
argument for the stable distribution in Eq. 2.13. The temporal spreading is also about the

same for all three of these fractional wave equations, as shown in Figs. 3.5(b) and 3.5(d).
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These plots, which describe the FWHMs of the three fractional wave equations, all match
very closely. Thus, the amplitude peaks, the temporal spreading, and the first terms in the
series expansions for « (w) and ¢ (w) are nearly the same for all three of these fractional
wave equations, but the remaining terms in the expressions for the phase velocity ¢ (w) of
the Chen-Holm wave equation are distinct from the corresponding terms in the expressions
for the phase velocities of the other two fractional wave equations. This suggests that the
attenuation « (w) is primarily responsible for both the decay in the peak values and the
temporal waveform spreading in these three fractional wave equations. The phase velocity
¢ (w), particularly the first non-constant term in the binomial approximation for ¢ (w), is
responsible for the ‘skew’ or symmetry/asymmetry of the time-domain Green’s functions

shown in Figs. 3.3 and 3.4.

3.6.4 Dispersion

The Chen-Holm wave equation is ‘dispersionless’ in the sense that the phase velocity
¢ (w) is nearly equal to a constant, which yields the symmetric time-domain Green’s functions
depicted in Figs. 3.3 and 3.4, where the axis of symmetry is defined as t = r/c in each subplot.
Two other examples of ‘dispersionless’ wave equations are the Stokes and Blackstock wave
equations. Both of these also have nearly constant phase velocity ¢ (w), and the time-domain
Green'’s functions for both of these in the far field are approximately represented by Gaussian
functions that are centered at ¢ = r/c. When y = 2 in the power law wave equation, Eq. 2.2
reduces to ¢ (w) = ¢o, which is also dispersionless. Also, the time-domain Green’s function
for the power law wave equation with y = 2 is a Gaussian centered at ¢ = r/c. Thus, these
four examples of ‘dispersionless’ lossy wave equations all possess exactly or approximately
symmetric time-domain Green’s functions.

In acoustics and medical ultrasound, the term ‘dispersion’ has two different meanings. In
some contexts, the dispersion refers to the temporal spreading, and in others, the dispersion
describes the frequency-dependent phase velocity ¢(w). However, the contribution from

the attenuation « (w), not the phase velocity, is responsible for the waveform spreading in
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all three of these fractional wave equations. Thus, these two meanings for the dispersion
interestingly refer to two completely different aspects of ultrasound propagation in soft
tissue. In particular, the Chen-Holm wave equation, which is dispersionless in the sense
that ¢ (w) is nearly constant, demonstrates a considerable amount of waveform spreading as
the propagation distance increases in the time-domain Green’s functions shown in Figs. 3.3
and 3.4 and in the FWHM values shown in Figs. 3.5(b) and 3.5(d). This is in contrast to
the Treeby-Cox and power law wave equations, which are also dispersive in the sense that
the phase velocity ¢ (w) varies with frequency. However, all three of these fractional wave
equations have approximately the same amount of dispersion in terms of the FWHM values

shown in Figs. 3.5(b) and 3.5(d).

3.6.5 Convolving time-domain Green’s functions with short pulses

Figs. 3.6 and 3.7 describe the waveforms obtained when a three cycle Hanning-weighted
pulse is convolved with the time-domain Green’s functions for the three fractional wave
equations evaluated in breast and liver. Although Figs. 3.1 and 3.2 indicate that there is a
slight difference in the phase velocity for the Treeby-Cox and the power law wave equations
at 7.5 MHz and 29 MHz, the time-domain Green’s functions for the Treeby-Cox and the
power law wave equations are nearly identical in Figs. 3.3(g) and 3.4(g) at r = 1 cm, so the
results obtained in Figs. 3.6 and 3.7 with the Treeby-Cox and power law wave equation are
less sensitive to the differences in the attenuation, which are filtered out after propagating
1 ecm. Also, the first two terms in the binomial expansions for the phase velocities of the
Treeby-Cox and the power law wave equations are identical. These observations, along with
the results shown in Figs. 3.3 and 3.4, suggest that the Treeby-Cox and the power law wave
equations exhibit very similar behaviors at distances r > 100 pm, but at very short distances
and for very high frequency excitations, some differences are observed. In addition, the
differences between the time-domain Green’s function for the Chen-Holm wave equation and

the time-domain Green'’s functions for the other two wave equations shown in Figs. 3.3(g)
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and 3.4(g) are also reflected in Figs. 3.6 and 3.7, which is reflected in the differences in the

phase velocities.
3.6.6 Comparisons with time-domain Green’s functions calculated

with 3D FFTs

Time-domain Green’s functions are also calculated with 3D fast Fourier transforms
(FFTs) using the approach described in Treeby and Cox [61] and compared to the Green’s
functions results computed with the Pantis method shown in Figs. 3.3 and 3.4. Although
the analytical expressions evaluated with each approach are similar, the numerical perfor-
mance of these two methods is quite different. For example, a single calculation with the
Pantis method was completed in 35 seconds on a Microsoft Surface Pro with an Intel Core
m3-6Y30 CPU @ 0.90 GHz, whereas the calculation using the same parameters with 3D
FFTs required compute servers (Dual Intel Xeon E5-26xx @ 2.3 GHz, 2.4 GHz, and 2.7
GHz) with 48-88 cores and 384-768 GB RAM, which took anywhere between 15 minutes and
a few hours depending on a variety of factors including the number of processors available
and memory/CPU usage of other jobs running on the compute servers. The calculations
with the Pantis method were performed serially, whereas the calculations with 3D FFTs
were performed in parallel using ‘parfor’ calculations in Matlab using up to 36 ‘workers.’
Reasonably accurate results were obtained when calculations with 3D FF'Ts were performed
with 512 x 512 x 512 spatial points (i.e., 512 points in each direction). When 3D FFTs with
more points were evaluated (only radix 2 FFTs were considered here), Matlab either crashed
or ran out of memory, and when 3D FF'Ts with fewer points were evaluated, the computed
result usually demonstrated severe nonphysical oscillations or other undesirable numerical
artifacts.

We also found that time-domain Green’s function calculations with 3D FF'Ts are very sen-
sitive to the grid spacing. For instance, Gibbs oscillations (which often include nonphysical

negative values for the time-domain Green’s function) were commonly observed in the results
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Figure 3.10: Time-domain Green’s functions scaled by 47r calculated for breast with y = 1.5,
oo = 0.086 Np/cm/MHz"5, and ¢y = 1450 m/s evaluated at (a) r = 10 nm, (b) r = 100 nm,
and (c¢) r = 1 pm with the Pantis method (solid line) and the 3D FFT approach (dot-dashed
line) using do = dy = dz = 0.5 nm in (a), (b), and (c).
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Figure 3.11: Time-domain Green’s functions scaled by 47 calculated for liver with y = 1.139,
ap = 0.0459 Np/cm/MHz!13 and ¢y = 1540 m/s evaluated at (a) r = 100 zm, (b) r = 1 am,
and (c) r = 10 am with the Pantis method (solid line) and 3D FFT approach (dot-dashed
line) using dx = dy = dz = 50 zm in (a), (b), and (c).

obtained with 3D FFTs. These oscillations were reduced by decreasing the spacing between
adjacent points in the computational grid (i.e., by decreasing dz, dy, and dz). However, if
the grid spacing is too small in calculations with 3D FE'Ts, then this causes problems with
frequency-domain aliasing, which introduces errors in the ‘heavy tail’ of the time-domain
Green’s function. If the grid spacing is too small by a small amount, then a small to moderate
offset from the correct value is observed in the ‘tail’. If the grid spacing is too small by a
larger amount, the ‘tail’ grows with increasing time instead of slowly decaying to zero as

shown in Figs. 3.3 and 3.4. In extreme cases, when the value of the grid spacing is much too
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large, most if not all values in the computed time-domain Green’s function are much larger
than the correct values. Usually, Gibbs oscillations or errors in the ‘heavy tail’ or both are
observed in time-domain Green’s function calculations with 3D FF'Ts, although we were often
able to manually select appropriate parameters that achieve a reasonable trade-off between
these two types of numerical artifacts for the results shown in Figs. 3.3(a-h) and 3.4(a-d).
Examples of typical results obtained after some parameter tuning are shown in Fig. 3.10(b)
and 3.11(b), which contain Gibbs oscillations at the very beginning and good agreement with
the Pantis results elsewhere. Interestingly, when the grid spacing is selected to reduce both
types of numerical artifacts for one value of r, the time-domain Green’s function calculated
with 3D FFTs in other locations (e.g., /10 and 10r) consistently yield significant errors.
This effect is shown in Fig. 3.10 with three different time-domain Green’s functions calculated
with 3D FFTs evaluated for breast at » = 10 nm, » = 100 nm, and » = 1 gm with the same
value for the grid spacing, namely de = dy = dz = 0.5 nm. Fig. 3.10(b) (center panel)
shows some Gibbs oscillations in the result computed with 3D FFTs near ¢ = 0 and also
good agreement in the heavy tail. In Fig. 3.10(a) (left panel), the grid spacing is too large.
When the grid spacing is reduced to dxr = dy = dz = 0.2 nm or dv = dy = dz = 0.1 nm in
Fig. 3.10(a) (assuming that the number of spatial points is fixed and equal to 512 x 512 x
512), the agreement is much better (not shown), although some small Gibbs oscillations still
remain in the result obtained with 3D FFTs near ¢ = 0. In Fig. 3.10(c¢) (right panel), errors
in the heavy tail are produced by frequency-domain aliasing. The errors in Fig. 3.10(c) are
alleviated by increasing the grid spacing to approximately 5 nm, which also introduces a
small amount of ringing at time ¢ = 0. Similar results are also observed in Green’s function
calculations evaluated for liver at » = 100 zm, » = 1 am, and » = 10 am, which are shown

in Fig. 3.11. Although time-domain Green’s functions calculated with 3D FFTs produce a
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Figure 3.12: Time-domain Green’s functions scaled by 4mr calculated for liver with y =
1.139, ap = 0.0459 Np/cm/MHz"13 and ¢y = 1540 m/s evaluated at » = 10 ¢cm with
the Pantis method (solid line) and with 3D FFTs (dot-dashed line) using (a) dz = /100,
(b) dz = /200, (¢) dz = /300, (d) de = /400, and (e) dx = r/500. In all simulations with
3D FFTs evaluated here, dr = dy = dz.
large grid of values, the results are only accurate in certain locations where the grid spacing
is selected to avoid problems with Gibbs oscillations and with frequency-domain aliasing.
We also found that the time-domain Green’s function calculations with 3D FFTs failed
to converge for the results shown in Figs. 3.4(e-h). This is demonstrated in Fig. 3.12 using
a time-domain Green’s function calculated with 3D FFTs evaluated for liver at r = 10 cm
with grid spacings (dx = dy = dz) of 1 mm, 500 pm, 333 pm, 250 gm, and 200 gm. The same
types of problems are also observed for » = 100 um, » = 1 mm, and » = 1 cm. Thus, the

Pantis method is also useful for determining which parameter combinations yield reasonable

results in time-domain Green’s function calculations with 3D FFTs.
3.7 Conclusion

Phase velocities and attenuation values were evaluated over a range of ultrasound frequen-
cies, and time-domain Green’s functions were calculated for the Chen-Holm, Treeby-Cox,
and power law wave equations in breast and liver. In addition, the amplitudes and FWHM
values of the time-domain Green’s functions for these three fractional wave equations were
calculated, and three-cycle Hanning-weighted pulses at two different center frequencies were
convolved with the time-domain Green’s functions for three fractional wave equations. An

additional term was derived for the power series that describes ¢ (w) for the Chen-Holm
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wave equation and additional terms were derived for the power series that describe ¢ (w) and
a (w) for the Treeby-Cox wave equation, where these new power series more closely match
the results obtained by numerically evaluating the dispersion relation than the previous
approximations. Causality was also demonstrated analytically in the time domain for both
the Chen-Holm and Treeby-Cox wave equations. The Pantis method was introduced as
an effective approach for evaluating the highly oscillatory improper integrals that arise
in numerical calculations of the time-domain Green’s functions for the Chen-Holm and
Treeby-Cox space-fractional wave equations. The time-domain Green’s functions for all three
time-domain Green’s functions show a similar amount of temporal spreading and amplitude
reduction, but the time-domain Green’s functions for the Treeby-Cox and power law wave
equations are skewed whereas the time-domain Green’s function for the Chen-Holm wave
equation is symmetric. The Chen-Holm space-fractional wave equation is non-dispersive
in the sense that the phase velocity is nearly constant, but the Chen-Holm wave equation
is also dispersive in the sense that waveform spreading is clearly evident in the computed
time-domain Green’s functions. The Treeby-Cox wave equation is dispersive in the sense that
the phase velocity is non-constant and also in the sense that waveform spreading is clearly
evident in the computed time-domain Green’s functions. The Chen-Holm and Treeby-Cox
space-fractional wave equations demonstrate approximately the same amount of attenuation
and waveform spreading, but the phase velocities, time-domain Green’s functions, and convo-
lution results obtained with these time-domain Green’s functions all differ significantly. Also,
although the attenuation and phase velocity for the Treeby-Cox and power law wave equation
differ slightly, the time-domain Green’s functions and the convolution results obtained with

the Green’s functions for these two fractional wave equations converge to the same result.
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Chapter 4

Perfectly matched layers for nonlinear ul-
trasound simulations with the KZK equa-

tion

4.1 Introduction

High intensity pulses are often used in applications of therapeutic ultrasound. Linear
assumptions do not always predict the correct results in these cases. The attenuation and
diffraction are also important in models of nonlinear ultrasound propagation. Thus, a model
combining diffraction, attenuation, and nonlinearity is needed to analyze the propagation of
ultrasonic waves.

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [62, 63| is a parabolic approx-
imation to the Westervelt equation. Lee and Hamilton [17] propose an operator-splitting
based numerical algorithm to solve the transient KZK equation numerically in the time do-
main, using a circular or spherically focused traducer. Cleveland [18] expands the application
of this model by including the effect of relaxation. An approach for simulating nonlinear
continuous wave (CW) pressure fields with the KZK equation is presented by Berntsen [19].
The validation of the KZK equation for axisymmetric ultrasound beams is evaluated by
Soneson [64]. Curra and Filonenko |65, 66] numerically calculate solutions for the CW KZK

equation to model heat deposition in biological tissue. Huijssen [67] compares the Iterative
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Nonlinear Contrast Source (INCS) method with the KZK model for the computation of
nonlinear, wide-angle, pulsed acoustic fields.

Attempts to calculate solutions to the KZK equation with finite difference simulations,
however, are limited by the implementation of the boundary conditions. Since there is no
absorbing boundary layer implemented in the KZK models of Berntsen [19] or Lee [17], large
grids are needed for these calculations. In electromagnetics, this problem is addressed with
absorbing boundary conditions or perfectly matched layers. For example, Mur [68] proposes
an accurate absorbing boundary condition for both 2D and 3D time-domain electromagnetic-
field equations. Berenger [69] introduces a perfectly matched layer (PML) for finite difference
time domain (FDTD) simulations of electromagnetic waves, which is validated by Katz [70]
in the 2D case and then extended to the 3D case. The PML is applied to acoustic models with
different coordinate systems by Yuan and Liu [71, 72, 73|. Abarbanel and Hu [74, 75| have
developed PML equations for 2D linearized Euler equations. Sheu [76] applies a PML to a
photoacoustics model in axisymmetric cylindrical coordinates. Based on first-order auxiliary
differential equations, Ma [77] proposes an unsplit PML for a second-order acoustic wave
equation in 3D Cartesian coordinates. Ehrlich |78] combines the acoustic wave propagator
and a PML to model acoustic propagation in the time domain. Pinton [79] implements
a PML for a 3D nonlinear attenuating full-wave model in the time domain. Research on
3D acoustic scattering problems has also been performed in both the time and frequency
domains by Kaltenbacher [80], Chen [81], Alles [82], and Katsibas [83]. Duru [84] also uses
a PML in a 2D scalar wave equation for heterogeneous and layered media.

In the following section, a perfectly matched layer implemented through terms from the
power law wave equation with y = 0 and y = 2 is derived for the transient and CW KZK
equations. Artificial attenuation is introduced to reduce reflections from the radial boundary.
Numerical validations are demonstrated for both linear and nonlinear media. With these
new PML implementations, the size of the computational grid is reduced, which accelerates

numerical solutions of the KZK equation.
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4.2 Theory

4.2.1 The 2D wave equation with power law attenuation

The linear lossless wave equation in a two-dimensional cylindrical coordinate system is

0p Pp 10 op
o (822 T ror (rﬁ)) ’ (4.1)

When the effect of attenuation is introduced through the power law wave equation, the wave

expressed as

equation in 2D cylindrical coordinates becomes

(82]9 L1 10 ( 8p)) 1 0% 20y ovtip al 0¥p

gp S I - —0. (42
922 ror \ or 2 ot?  cocos(my/2) Otvtl  cos? (wy/2) Ot 0 (42)

For power law exponents y = 0 and y = 2, the power law wave equation in Eq. 4.2 is

expressed as

0?p Pp 10 ([ Op dp

o = (55 o (75y) ) ~ 2y —cido w=0 (43)
and

Po (P 10 ( O Pp L0

ot =8 (55 v (757) ) ooy —odir v Y

4.2.2 Coordinate stretching

The analytical expressions that describe perfectly matched layers are often derived from

an augmented model for the gradient that stretches each coordinate according to

1 8 1 8 1 0
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where s,, s,, and s, describe the effects of coordinate stretching in all three directions. In

the x- direction, the coordinate stretching variable is defined as

) 0

and similar expressions are defined in the y- and z- directions. The lossless Helmholtz

equation in axisymmetric cylindrical coordinates is expressed as

10 ( oP 0*P 2p
7‘87"( 8T)+W+k (4.7)

where the wavenumber is k = # and P is the pressure field. Applying coordinate stretching
0

to Eq. 4.7 in both the radial and axial directions,

r <1+o;£r)> or’ r <1+0;g))r’ 0z (1+Uz()> 02’ .
e 1 L0P | 0P L PP, )
<1+M)2 <7“ 87, 07“2) (1_'_02 )2 82’2 + —O, ( 9)
Jw

which becomes

(4.10)

2 2
after each term is multiplied by <1 + U;—fj)> <1 + 0;—&”) . Multiplying Eq. 4.10 by (jw)? and

inverse Fourier transforming in time, the result is the lossy time-domain wave equation
(4.11)

which attenuates wave propagation in the radial and axial directions.
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4.2.3 The KZK equation

The Westervelt equation is a full wave nonlinear model that combines the effects of
diffraction, attenuation, and nonlinearity

o LPp 2000 B Pp?

e = - =0. 4.12
b 2ot o O poct Ot? (412)

After applying a parabolic approximation and a change of variables, Eq. 4.12 reduces to the
KZK equation, which is defined in cylindrical coordinates (r, z) as
Pp _ a Fp B PP

=—Vip+a + ,
9207 2 PTG 2p0c8 012

(4.13)

where p is the pressure, ¢y is the sound speed, py is the density, aq is the attenuation
constant, and [ is the nonlinearity parameter. The propagation direction of the sound beam
is aligned with the z-axis, and V2 = g—fz + %% is the radial component of the Laplacian
operator in cylindrical coordinates. A detailed derivation of the KZK wave equation is given
in Appendix A. Due to axial symmetry, the spatial variables for the KZK equation are (r, z)
in the cylindrical coordinate system. On the right-hand side of Eq. 4.13, the three terms from
left to right represent the effects of diffraction, attenuation, and nonlinearity. Similar to the
Westervelt equation, there is no analytical solution for the KZK equation. Thus, the KZK
model is evaluated numerically. Although the KZK equation is only valid in the far field of
the paraxial region, this model is still commonly applied to simulations of medical ultrasound
due to the computational advantages of the parabolic approximation. As developed by Lee
and Hamilton [17] and implemented in the KZK Texas code [17], the finite difference method

numerically solves the transient KZK equation with operator splitting to separately account

for these three effects at each step.
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4.2.4 PML derivation for the KZK equation

Stretched coordinates for the nonlinear lossy KZK equation

Since waves propagate in the positive z direction but not in the negative z direction with
the KZK model, there is no need for a PML in the axial direction. Eq. 4.13 in the frequency

domain is given by

(jw)® P? (4.14)

. Co 2 . 3
—=—=V*P P
Jjw . 5 V1 + ap (jw)” P + 20

and when coordinate stretching is applied to the KZK equation for a PML in the radial

direction, this yields

WP (14 o0\ Zw (02 10)p
JWaz + 5 2 8r2+7’8 +

AN ST (115)
(1+92) a0 ()’ P+ (14 42) 525 (jw)* P?
After expanding and inverse Fourier transforming with respect to time, the result is
02 3 2 (7 9 c 2
Lo 20 () 2o () [T 2dr =2 (& +12)p )

83 82 29 82 2 ) 2 2
+ao5E +20 (r) aogh + oo () 5 + Sl Gl 4+ TR0 o SRy,

which is a chanllenging to evaluate with finite difference calculations, in part due to the
integral on the left-hand side.

Stretched coordinates for the lossless linear KZK equation

When only the contributions from the diffraction terms are considered, the lossless linear

KZK equation is expressed in the frequency domain as

P
jwaa—z - %vip (4.17)
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If coordinate stretching for a PML is applied in the radial direction, Eq. 4.17 then becomes

. OP c(m)\° e (0 19

After expanding and inverse Fourier transforming,

0?p Op o [T O, , (O 10
a287_+20(7“)&+0(7’) /_oo@dT_E W—I—;E D, (4.19)
which also contains an integral on the left-hand side.

Combining the power law equation with the KZK equation

When Eq. 4.6 is applied to the 1D wave equation,

Pp 18 20(x)0p o(x)
o aw T @ e P (4.20)

which, after substituting apy, = ¢ o (), is recognized as the 1D power law wave equation
with y = 0. This suggests that there is another possible approach for implementing a PML
that utilizes the power law equation. The 3D power law wave equation for the y = 0 case is
expressed as

o 19%p  2apyOp

2
= —=— — . 4.21
¢t ot? co Ot +APuLP (4.21)

After applying a parabolic approximation and a change of variables in an axisymmetric

cylindrical coordinate system, Eq. 4.21 becomes

82]9 Co op Co
= _—Vip— = — Zab,p- 4.22
0z0r 2 LT or 2 ApyLP ( )

Similarly, the 3D power law wave equation for the y = 2 case is expressed as

O'p
o

1 3217 200parr 83]9
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(4.23)
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and the corresponding expression that is obtained from a parabolic approximation and a
change of variables in an axisymmetric cylindrical coordinate system is
agp Co o 84])

02]3 €0 —2
520 = SVLP + OéPMLﬁ - EO‘PMLﬁ‘ (4.24)

Eqgs. 4.22 and 4.24 provide two related yet different approaches for defining a perfectly
matched layer for the transient KZK equation, where the distribution of apy;;, values can
vary spatially.

Using the power law wave equation with y = 0 (two terms) for the

PML

Since the KZK equation is a one-way wave equation in the axial direction, a PML is only
needed in the radial direction. This suggests that stretched coordinates are not required for
the derivation of the PML and that the power law wave equation with y = 0 or y = 2 in
the radial direction provide effective expressions for PMLs. This indicates that the stretched
coordinate system is not central to the derivation of an effective PML. The power law wave
equation is all that is required, combined with the concept introduced by Berenger [69] that
the PML should be several cells thick with a slowly varying lossy impedance that attenuates
the incident wave with minimal reflections. By applying é% — %% + apy, to the wave
equation in the time domain and utilizing the parabolic approximation in retarded time, one
such PML for the transient KZK equation is obtained from

(9]9 Co o

0201 2

0p o

for y = 0. For numerical calculations, the expression in Eq. 4.25 is solved with the Thomas

algorithm.
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Using the Telegrapher’s equation y = 0 (one term) for the PML

For the y = 0 case, the second term La3,,,p can be neglected when the value of La%,),,

is small. Thus, another expression that describes a PML for the transient KZK is given by
dp

82]9 Co 2
_ _ 4.2
0z0T 2 Vip = apue or’ (4.26)

which is the retarded time parabolic approximation to the 3D Telegrapher’s equation.

Using the power law wave equation with y = 2 (two terms) for the

PML

The key to an effective absorbing boundary layer appears to be independent of the
stretched coordinate system and is much more strongly influenced by other factors such
as the slowly increasing attenuation that minimizes reflections at the interface between any
two adjacent cells in the computational grid. This motivates the construction of a third
PML based on the retarded time parabolic approximation to the power law wave equation
with y = 2, which is given by
Pp e 5 O

02]3 €0 —2
A S el S (4.27)

Numerically, the first term on the right hand side combined with the original attenuation
term is solved with the Thomas algorithm. The addition of the second attenuation term
requires a penta-diagonal matrix algorithm.

Using the Blackstock wave equation with y = 2 (one term) for the

PML

Similar to the y = 0 case, the second attenuation term is negligible for small apy;p when

y = 2, which enables a fourth PML that is very closely related to the KZK equation. This
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PML evaluates a straightforward modification of the KZK equation,

0229 €0 —2 agp
_ag 4.2
900 2 tP +arur or3’ (4.28)

which is the retarded time parabolic approximation to the Blackstock wave equation.

4.3 Methods

4.3.1 Error calculations

To validate these PMLs for the KZK equation, comparisons between simulations with
and without PMLs that increase the radial boundary limit to avoid reflections are evaluated.

The formula for calculating the difference between these two results is
D(’/’, ) _ mCLZIJ|p(’F, Z) _pref(r> Z)|

z) = ) 4.29
mazx|pref| ( )

where the denominator is the maximum value of the reference pressure evaluated at all spatial
and temporal points, and the numerator is the maximum value of the difference between the
reference and simulation results evaluated at one spatial point for all time points. The

difference D(r, z) is dependent on both radial and axial coordinates.

4.3.2 Finite difference calculations with the KZK equation

Numerical calculations with the KZK equation are often evaluated with the finite differ-
ence method. The pressure field is first discretized in both the radial and axial directions,
after which finite difference calculations are evaluated layer-by-layer in the axial direction.
Within each layer, the effects of diffraction, attenuation, and nonlinearity are calculated
separately through operator splitting. For these calculations, two types of finite difference
calculations are evaluated. For the first several iterations, the implicit backward Euler finite
difference method (IBFD) is used, after which the Crank-Nicolson finite difference method

(CNFD) is applied. Both of these methods are numerically stable, and the CNFD method
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results in a smaller local truncation error than the IBFD method with the same step size.
However, the CNFD method is sensitive to oscillations, which means that the computed
result can contain spurious oscillations, especially in the region close to the edge of the
transducer where there is a discontinuity in pressure amplitude. Thus, the IBFD method
is applied as a low pass filter in this region. For these reasons, these two finite difference
methods are combined for the numerical evaluations of the KZK equation.

For the transient KZK equation, three effects are calculated separately within one spatial

step using operator splitting. Diffraction effects are modeled by

Op T [0 10

— = — = +-=) pdr’ 4.30

0z /_m2(8r2+rar par (4:30)
which is obtained after the nonlinear and loss terms are neglected and the remaining terms
are integrated on both sides. The indicies of the finite difference calculation in the temporal,

radial, and axial directions are 7, j, and k. Thus, finite difference approximations for Eq. 4.30

are defined as
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When only the effect of attenuation is considered, Eq. 4.13 becomes
P _ 0y 0P (4.34)
— == .
0z 0072
Similarly, the finite difference approximations for Eq. 4.34 are defined as
T 2 I
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When only the nonlinear effect is considered, Eq. 4.13 reduces to

op _ B Op
— = ——=P=- 4.36
Dz pocgpaf (4.36)
As indicated by Lee and Hamilton [17|, the solution to Eq. 4.36 is given by
i Pjx i
Pjk+1 = i i \ y Pk >0 (437)
P [~ phe) /AT B (D) (pech)
and
Pkt = i i—1 i 3 Pl <0. (4.38)
1 - [(pj,k — Pk ) /A7) B(D2), [ (pocd)

For continuous wave propagation, the acoustic pressure is often described as series expansion

of different harmonics

Nmaac

p(rorz)= Y Cy(rz)e/"r, (4.39)

n=—Nmaz
where fj is the fundamental frequency, Ny, is the total number of harmonics, and C,, (r, 2) is
the complex amplitude of the n-th harmonic. When Eq. 4.39 is combined with the transient

KZK equation, the amplitudes are expressed as

Tz . ¢ 2Ch(r,z (7,2
Lnlrz) J T <8 On(rz) 1 100ml )> — ag(2mnf)?C,, (1, 2)
—IBE N o (r,2) G (1, 2) (4.40)

m=—Nmaz

n==4142 ... +N, .

In Eq. 4.40, all of the harmonics interact through nonlinear mixing. The derivatives in

Eq. 4.40 are also defined in Eq. 4.31, as for the transient KZK equation.

4.3.3 Muir’s method

To establish the accuracy of the numerical results calculated with linear finite difference

implementations of the KZK wave equation, Muir’s method is utilized as a reference. Other
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methods for validation are given in Appendix B. Muir’s method, which is valid for small
aperture angle and large ka, is effective for calculating the linear pressure field generated by
a spherically focused continuous-wave source. Muir’s formula for the pressure distribution

in cylindrical coordinates predicted by the linear lossless KZK equation is given by

ik " kﬁ a . N2
P(r, Z) _ J poexp(J zZ+) QZ) /61’]9 []k(r) <l _ %) JO (k‘%) v dr! (Z 7& R),
0

z 2 R
(4.41)
P(O,z)zzwzéx—é(ifz){l—ezp[‘% <£—%)]} (z # R), (4.42)
P(r,R) = —j];—j;poexp (jkz +jk%) %C%R) (4.43)
PO R) = — 5% poeap GkR) . (4.44)

T9R
where py is the pressure at the source, k = w/c is the wavenumber, a is the aperture radius,
R is the radius of curvature, and Jy (-) and J; (-) are Bessel functions of the first kind of
order 0 and 1, respectively.

Muir’s method evaluates a single integral when calculating the off-axis pressure. For
transient calculations, a Fourier transform operation is required before applying Muir’s
method. When calculating the transient pressure, the input pulse on the surface of the

N
transducer is expressed as po(t) = > P,e’™°" where P, is the pressure for frequency sample

n=1
n, wo is the fundamental frequency, and N is the number of frequency samples. Thus, for
frequency sample n with wavenumber £,, Muir’s method in Eqs. 4.41-4.44 calculates the

pressure distribution in 2D space for each frequency component with

P,(r,z)=P(r,z,k,) n=123..N. (4.45)
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Then, after evaluating the inverse Fourier transform in time, the solution in the time domain
is
N
p(r, z,t) = ZPH(T, 2)el ot (4.46)

n=1
Compared to finite difference KZK calculations, Muir’s method is more time-consuming
for transient calculations because of the large number of frequencies that are necessary
to reconstruct the waveforms at each spatial point. However, Muir’s method provides an
accurate reference for validating solutions to the linear lossless KZK equation, which is useful

for debugging finite difference calculations.
4.4 Results

These simulations were performed on a compute server (Dual Intel Xeon E5-2670 @ 2.5
GHz) with 256 GB RAM. The KZK simulation evaluates a finite difference code written in
C-++/Mex that runs on 64-bit MATLAB R2017a. Simulations for both linear and nonlinear
media are evaluated. The transient input pressure, which is a one-cycle Gaussian weighted
sine wave, is generated by a spherically focused transducer. The input pressure on the
surface of the transducer is Py = 1.5 MPa, the aperture radius is a = 1.5 c¢cm, the radius of
curvature is R = 6 cm, the density is p = 1000 kg/m3, and the sound speed is ¢y = 1500 m/s.
The center frequency of the input pressure is f = 1MHz, and the wavelength at the center
frequency is A = 0.15 cm. The sampling frequency is f; = 200 MHz. The finite difference
KZK calculation that is employed as a reference utilizes a radial boundary at r,,,, = 9 cm,
and the spatial step size is A/40. The KZK simulation with a PML utilizes a radial boundary
at 4. = 3 cm. For the KZK simulation with the PML, the PML starts at » = 2.25 cm and

ends at 7,,., = 3 cm. The thickness of the layer is therefore equal to 0.75 cm.

4.4.1 KZK simulations for a linear lossless medium

KZK simulations are first performed without attenuation or nonlinearity. Fig. 4.1 com-

pares two on-axis waveforms at z = 6 cm, where one is produced by KZK finite difference
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Figure 4.1: Comparison of simulated on-axis waveforms obtained from finite difference KZK
calculations (solid line) and Muir’s method (dashed line) evaluated in a linear lossless medium
at z =6 cm.

calculations (red solid line) and the other is generated by Muir’s method (blue dashed line).
Fig. 4.1 demonstrates that the results obtained with these two methods match closely at all
temporal points in this location. Also, the direct wave and the edge wave have merged in
this location.

Fig. 4.2(a) contains the on-axis waveforms evaluated at z = 6 cm using finite difference
KZK calculations without a PML for a radial boundary at r,,,, = 6a and the KZK simulation
without a PML for a radial boundary at 7,,,, = 2a. These two waveforms match closely
for t < 48 us. Near t = 50 us, the reflection from the radial boundary at 7,,,. = 2a arrives,
which indicates that either the boundary at 7,,.,. = 2a is too close or that a PML is needed.
Fig. 4.2(b) compares two other on-axis waveforms evaluated at z = 6 cm calculated with
two different PMLs that start at » = 2.25 cm to the result without a PML that defines the
radial boundary at 7,,,, = 6a. The blue solid line describes the result calculated with a PML

(y = 0 with one term) and the green solid line gives the result calculated with another PML
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Figure 4.2: Comparison between on-axis waveforms generated by finite difference KZK
calculations in a linear lossless medium at z = 6 cm with and without a PML using different
radial boundaries. (a) KZK simulation without a PML that defines a radial boundary at
Tmaz = 2a (black solid line) and at 7,4, = 6a (red dashed line). (b) KZK simulation without
a PML that defines a radial boundary at 7, = 6a (red dashed line), with a y = 0 single
term PML that defines a radial boundary at r,,,, = 2a (blue solid line), and with a y = 2
single term PML that defines a radial boundary at r,,,, = 2a (green solid line).
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Figure 4.3: Simulated 2D pressure field and differences between KZK calculations without
and with PMLs, where the radial boundaries are located at 7,,,, = 9 cm and at 7,,,, = 3 cm
in a linear lossless medium. (a) The peak pressure distribution for the KZK simulation
without a PML that defines a radial boundary at r,,,, = 9 cm. (b) The difference between
the KZK simulation without a PML that defines a radial boundary at 7,,,, = 9 ¢m and the
KZK simulation without a PML that defines a radial boundary at 7,4 = 3 cm. (¢) The
difference between the KZK simulation without a PML that defines a radial boundary at
Tmae = 9 cm and the KZK simulation with a y = 0 single term PML that defines a radial
boundary at 7,4, = 3 cm. (d) The difference between the KZK simulation without a PML
that defines a radial boundary at r,,,, = 9 ¢cm and the KZK simulation with a y = 2 single
term PML that defines a radial boundary at r,,,, = 3 cm.
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(y = 2 with one term). Fig. 4.2(b) shows that the reflection from the boundary is removed
by each of these PMLs.

Fig. 4.3(a) shows the 2D peak pressure distribution calculated with finite difference KZK
calculations without a PML that defines a radial boundary at r,., = 9 cm (r,.,. = 6a),
which is sufficiently large so that radial reflections are avoided in most locations. The
on-axis focal peak is located at about z = 6 cm. The maximum pressure value is equal to
12 MPa. Fig. 4.3(b) shows the 2D difference between the finite difference KZK calculation
without a PML for a radial boundary defined at 7,,,. = 9 ¢m and the finite difference KZK
calculation without a PML for a radial boundary defined at r,,,, = 3 cm. The peak value
of the difference, which is about 10%, is located on-axis in the far field region. Off-axis, the
difference is much smaller. Fig. 4.3(c) shows the 2D difference between the finite difference
KZK calculation without a PML that defines a radial boundary at r,,,, = 9 cm and the finite
difference KZK calculation with a y = 0 single term PML that defines a radial boundary at
Tmaz = 3 ¢cm. The peak value of the difference, which is now only about 0.3%, is again located
on-axis in the far field region. There is also some difference off-axis in the far field region in
Fig. 4.3(c) due to reflections that arrive later and /or a small amount of mismatch in the PML.
Fig. 4.3(d) shows the 2D difference between the finite difference KZK calculation without a
PML for a radial boundary defined at 7,,,, = 9 cm and the finite difference KZK calculation
with a single term y = 2 PML that defines a radial boundary defined at r,,,, = 3 cm. The
peak value of the difference, which is about 0.5% for this PML, is also located on-axis in
the far field region. Also, some small differences appear on-axis and off-axis in the far field.
Comparisons between Fig. 4.3(c) and Fig. 4.3(d) indicate slightly better performance for the
y = 0 single term PML.

4.4.2 KZK simulations for a nonlinear lossy medium

Simulations are also performed with the attenuation and nonlinearity values for water,
which are ap = 2.2 x 107® dB/em/MHz? and 8 = 3.5. Fig. 4.4(a) shows a comparison

between the on-axis waveforms evaluated at z = 6 cm obtained from the finite difference
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Figure 4.4: Comparison between on-axis waveforms generated by finite difference KZK
calculations in a nonlinear medium at z = 6 cm with and without a PML for different
radial boundaries. The attenuation parameter is a = 2.2 x 1073 dB/cm/MHz?, and the
nonlinearity parameter is § = 3.5. (a) KZK simulation without a PML that defines a radial
boundary at 7., = 2a (black solid line) and at 7. = 6a (red dashed line). (b) KZK
simulation without a PML that defines a radial boundary at 7,,,,, = 6a (red dashed line),
with a y = 0 single term PML that defines a radial boundary at r,,,, = 2a (blue solid line),
and with a y = 2 single term PML that defines a radial boundary at r,,,, = 2a (green solid
line).
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KZK simulation without a PML that defines a radial boundary at 7., = 6a (red dashed
line) and the finite difference KZK simulations without a PML that defines a radial boundary
at Tmae = 2a. When nonlinearity is included, the waveforms are tilted where a shockwave
is formed in the focal zone. The small difference near ¢t = 50 us in the finite difference
KZK simulation without the PML is again caused by the reflection at the radial boundary.
Fig. 4.4(b) shows a comparison between the on-axis waveforms at z = 6 cm for the finite
difference KZK simulation without a PML that defines a radial boundary at r,,,, = 6a and
the finite difference KZK simulation with two different PMLs that define a radial boundary
at 7mae = 2a. The blue solid line shows the result with a y = 0 single term PML and the
green solid line describes the result with a y = 2 single term PML. Fig. 4.4(b) indicates that
the reflection from the boundary is removed by each of these PMLs.

Fig. 4.5 shows the simulated 2D pressure field and the differences between KZK calcula-
tions without and with PMLs in a nonlinear medium. Fig. 4.5(a) shows the 2D peak pressure
distribution calculated with the finite difference implementation of the KZK equation without
a PML that defines a radial boundary at r,,,, = 9 cm. The focal peak is located at about
z = 6 ¢cm on axis, and the maximum pressure value is equal to 12 MPa. Fig. 4.5(b) shows
the 2D difference between the finite difference KZK calculation without a PML that defines
a radial boundary at r,,,, = 9 cm and the finite difference KZK calculation without a PML
that defines a radial boundary at 7,,,. = 3 ¢cm. The peak value of the difference, which is
about 10%, is located on-axis in the far field region. Fig. 4.5(c) shows the 2D difference
between the finite difference KZK calculation without a PML that defines a radial boundary
at Tmae = 9 cm and the finite difference KZK calculation with the y = 0 single term PML
that defines a radial boundary at r,,,, = 3 cm. The peak value of the difference, which
is about 0.3%, is again located on-axis in the far region. There is also some difference in
the far off-axis region in Fig. 4.5(c). Fig. 4.5(d) shows the 2D difference between the finite
difference KZK calculation without a PML that defines a radial boundary at r,,,. = 9 ¢m

and the finite difference KZK calculation with the y = 2 single term PML that defines a
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Figure 4.5: Simulated 2D pressure field and differences between KZK calculations without
and with PMLs, where the radial boundaries are located at 7., = 9 cm and at 7,4, = 3 cm
in a nonlinear medium. The attenuation parameter is a = 2.2 x 1072 dB/cm/MHz? and the
nonlinearity parameter is 5 = 3.5. (a) The peak pressure distribution for the KZK simulation
without a PML that defines a radial boundary at r,,,, = 9 cm. (b) The difference between
the KZK simulation without a PML that defines a radial boundary at 7,,,, = 9 ¢m and the
KZK simulation without a PML that defines a radial boundary at 7,4, = 3 cm. (¢) The
difference between the KZK simulation without a PML that defines a radial boundary at
Tmae = 9 cm and the KZK simulation with a y = 0 single term PML that defines a radial
boundary at 7,4, = 3 cm. (d) The difference between the KZK simulation without a PML
that defines a radial boundary at r,,,, = 9 ¢cm and the KZK simulation with a y = 2 single
term PML that defines a radial boundary at r,,,, = 3 cm.
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radial boundary at 7,,,, = 3 ¢cm. The peak value of the difference, which is about 0.5%
for this PML, is also located on-axis in the far field region. Again, a smaller difference is
observed in Fig. 4.5(d) than in Fig. 4.5(c), which indicates slightly better performance for
the y = 0 single term PML.

4.5 Discussion

4.5.1 Computation time

Figs. 4.3 and 4.5 indicate that, for both linear and nonlinear KZK simulations, the PMLs
with y = 0 and y = 2 are effective in suppressing reflections from the radial boundary,
especially in the focal zone. The choice of ap,/r, balances the effect of impedance mismatch
when apyr is large versus the effect of boundary reflections when apy,r is too small. For
each type of PML, our experience is that there is no significant difference in the PML when
only one or two terms are considered in the power law wave equation. Thus, to further
accelerate these KZK simulations, only one term is included in each simulation for the y =0
and y = 2 PMLs. The computation time for the KZK finite difference calculation without
a PML that defines a radial boundary at 7,,,, = 9 cm shown in Fig. 4.3 is 2807s. For KZK
simulations using a y = 0 single term PML that defines a radial boundary at 7,,,, = 3 cm,
the computation time is 913s. For KZK simulations using a y = 2 single term PML that

defines a radial boundary at 7,,,. = 3 cm, the computation time is 1028s.

4.5.2 Continuous wave (CW) KZK calculations

The same approach for defining a PML is also applicable to continuous-wave KZK
simulations, as described in Appendix A. For the continuous wave KZK equation, a PML
is only necessary in the radial direction. The strength of the PML, as implemented here,
increases proportionally to the radial direction cubed. The effectiveness of the y = 0 and y =
2 single term PMLs is also demonstrated for CW calculations with the spherically-focused

transducer evaluated in section 4.4. The input pressure on the surface of the transducer
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Figure 4.6: On-axis comparisons between continuous wave finite difference KZK simulations
with the results calculated with Muir’s method evaluated in a linear lossless medium. (a) The
result obtained with Muir’s method (red solid line) and the finite difference KZK simulation
results without a PML that defines a radial boundary at 7,4, = 10.5 cm (blue dashed line).
(b) The result with Muir’s method (red solid line) and the finite difference KZK simulation
results with a y = 0 PML that defines a radial boundary at r,,,, = 3 cm (blue dashed line).
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is Py = 0.5 MPa. The density is p = 1000 kg/m?, and the sound speed is ¢ = 1500 m/s.
The excitation frequency is f = 1 MHz, which corresponds to a wavelength of A = 0.15 cm.
For the finite difference KZK simulation without a PML, the radial boundary is located at
Tmaz = 10.5 cm. For the finite difference KZK simulation with a y = 0 single term PML, the
PML starts at r = 2.25 cm and ends at r,,,, = 3 cm, so the thickness of the PML is equal
to 0.75 cm.

The finite difference solution to the continuous-wave KZK equation is first computed
in a linear lossless medium. Only the first harmonic is computed in the simulation, where
the spatial step size is equal to A/40 in both directions. Fig. 4.6 describes the on-axis
results for the continuous wave KZK simulations with and without a PML, which are
compared to the results calculated with Muir’s method. As shown in Fig. 4.6(a), the on-axis
pressure waveform obtained from the finite difference KZK simulation without a PML closely
matches the waveform computed with Muir’s method in the focal zone; however, there is
some difference in the far field region, even for the large radial boundary that is defined
at rmee = 10.5 cm. Fig. 4.6(b) describes the on-axis waveform obtained from the finite
difference KZK simulation with a y = 0 PML that defines a radial boundary at r,,,, = 3 ¢m,
which closely matches the result obtained with Muir’s method both in the focal zone and in
the far field region. This indicates that the reflection from the boundary is removed by the
PML.

Fig. 4.7 shows the continuous-wave 2D pressure distribution for a spherically-focused
transducer with @ = 1.5 cm, R = 6 ¢cm, and f = 1 MHz calculated in a linear lossless
medium with Muir’s method. In Fig. 4.7, the peak pressure in the focal zone is approximately
4.3 MPa. Fig. 4.8(a) describes the difference between the finite difference KZK numerical
calculation without a PML that defines a radial boundary at 7,,,, = 10.5 cm and the results
obtained with Muir’s method. The reflection from the radial boundary is clearly evident
in Fig. 4.8(a), which starts at the edge near z = 16.5 cm. The peak difference is about

0.5 MPa in the on-axis far field region. Fig. 4.8(b) shows that, after introducing a y = 0
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Figure 4.7: The continuous-wave 2D pressure distribution for a spherically-focused trans-
ducer with a = 1.5 cm, R = 6 cm, and f = 1 MHz calculated in a linear lossless medium
with Muir’s method.

PML that defines a radial boundary at 7,,,, = 3 cm, the on-axis difference is much smaller
than the on-axis difference without a PML in Fig. 4.8(a). The largest difference that occurs
in Fig. 4.8(b) is observed where the PML is applied.

Simulations are then evaluated for the same transducer geometry using the attenuation
and nonlinearity values of water, which are oy = 2.2 x 107® dB/cm/MHz? and 8 = 3.5,
respectively. The number of harmonics computed in this simulation is Nygmn = 50, and
the spatial step size is \/Nparm/40. Fig. 4.9(a) shows the first four harmonics of the on-axis
finite difference simulation results for the continuous wave KZK equation evaluated in water.
This simulation defines a radial boundary at r,,,, = 10.5 cm without a PML. In Fig. 4.9(a),
there is a very strong oscillation in the fundamental due to reflections from the boundary.
However, no such oscillations appear in the higher harmonics. Fig. 4.9(b) shows the first four
harmonics evaluated on-axis for the continuous-wave KZK equation in water with a y = 0

PML that defines a radial boundary at 7., = 3 cm. In Fig. 4.9(b), no oscillations appear
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Figure 4.8: The 2D pressure difference between linear lossless finite difference KZK numerical
results for a spherically-focused transducer with a = 1.5 cm, R = 6 cm, and f = 1 MHz
and the results for the same configuration evaluated with Muir’s method. (a) The difference
between the finite difference KZK simulation without a PML that defines a radial boundary
at Tmax = 10.5 cm and the results obtained with Muir’s method. (b) The difference between
the finite difference KZK simulation with a y = 0 PML that defines a radial boundary at

Tmaz = o cm and the results obtained with Muir’s method.
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Figure 4.9: The first four harmonics generated by a spherically-focused transducer with
a =15cm, R =06 cm, and f = 1 MHz for on-axis finite difference simulations of the
continuous wave KZK equation in water. The attenuation parameter is o = 2.2 x 1073
dB/cm/MHz?, and the nonlinearity parameter is 3 = 3.5. (a) The finite difference KZK
simulation results without a PML that defines a radial boundary at r,,,, = 10.5 cm. (b)

The finite difference KZK simulation results with a y = 0 PML that defines a radial boundary
at ez = 3 CIL.
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Figure 4.10: The 2D pressure difference between the finite difference KZK numerical results
with and without a y = 0 PML in water with oy = 2.2 x 1072 dB/cm/MHz? and 8 = 3.5
evaluated for first four harmonics produced by a spherically-focused transducer with a =
1.5cm, R=6 cm, and f =1 MHz.

in the fundamental or in any of the higher harmonics. For the higher harmonics, the finite
difference solution to the continuous-wave KZK equation with or without a PML produces
exactly the same on-axis result.

Fig. 4.10 shows the first four harmonics of the difference between the finite difference
KZK numerical calculation without a PML that defines a radial boundary at r,,,, = 10.5 cm
and the KZK numerical calculation with a y = 0 PML that defines a radial boundary at
Tmaz = 3 ¢cm. Fig. 4.10(a) indicates the main difference in the first harmonic occurs close to
the central axis, where the source of this difference is the reflection from the radial boundary
at Tmer = 10.5 cm. Figs. 4.10(b-d) indicate that, for higher harmonics, the difference
is negligible since the reflection from the radial boundary is much smaller for the higher

frequency components.
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4.6 Conclusion

A new perfectly matched layer was implemented for simulations of nonlinear wave propa-
gation based on the Khokhlov-Zabolotskaya-Kuznetsov equation. Instead of deriving a PML
with stretched coordinates, the power law wave equation is introduced as an alternative model
for the attenuation that occurs within the PML. For each value of the power law exponent
considered here, the two terms that are responsible for the attenuation are reduced to a single
term, which yields the Telegrapher’s equation within the PML when y = 0 and the Blackstock
viscous wave equation when y = 2. Numerical simulations are evaluated in both linear
lossless and nonlinear lossy media for inputs generated by a spherically focused transducer.
The simulation results are compared to Muir’s formula and to finite difference KZK solutions
with a very large radial boundary. Comparisons show that the PMLs effectively eliminate the
reflections from the radial boundary. In addition, the formulas for implementing PMLs are
readily integrated into existing KZK simulation programs. With these new PMLs, reflections
from the radial boundary are eliminated, which enables a considerable reduction in the

computation time for finite difference simulations of the KZK equation.
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Chapter 5

Conclusion

Chapter 2 numerically evaluates time-domain Green’s functions for three time-fractional
wave equations, and the results are compared at various distances for water, breast, and
liver. At larger distances, the time-domain Green’s functions for all three fractional wave
equations converge to the same result in the water, breast, and liver models. The results
also demonstrate that the Szabo and power law wave equations are noncausal and that
the Caputo wave equation is causal, where the distinction between these is clearly evident
at distances very close to the source. However, beyond a certain distance, the noncausal
contributions are negligible for both the Szabo and power law wave equations. When these
time-domain Green’s functions are convolved with a three-cycle Hanning-weighted pulse, no
noncausal behavior is observed in the time-domain results, and the FWHMs of the envelopes
of the convolution results are all approximately the same.

In Chapter 3, improved approximations for the attenuation and phase velocity are derived
for the Chen-Holm and Treeby-Cox wave equations. Numerical calculations of the attenua-
tion and phase velocity for the Chen-Holm, Treeby-Cox, and power law wave equations in
breast and liver are evaluated over a range of ultrasound frequencies. New expressions for
power series match the results obtained by numerically evaluating the dispersion relation
more closely than previous approximations. The time-domain Green’s functions for these
three fractional wave equations are calculated at various distances, and the amplitudes and
FWHM values of the time-domain Green’s functions are also evaluated. The results show

some similarities and differences between these three fractional wave equations. For instance,
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the attenuation terms in all three fractional wave equations are very similar, while the phase
velocity for the Chen-Holm wave equation is nearly constant. Causality is demonstrated
analytically and numerically in the time domain for both the Chen-Holm and Treeby-Cox
wave equations. At much larger distances, the time-domain Green’s functions for the
Treeby-Cox and power law wave equations converge to the same result while the time-domain
Green’s function for the Chen-Holm wave equation clearly differs from the other two. The
Pantis method is introduced as an effective approach for evaluating the highly oscillatory
improper integrals that arise in numerical calculations of the time-domain Green’s functions
for the Chen-Holm and Treeby-Cox space-fractional wave equations. The Pantis method
provides an accurate result when the number of Filon abscissas and the value of m are
sufficiently large. Three-cycle Hanning-weighted pulses with two different center frequencies
are convolved with the time-domain Green’s functions for three fractional wave equations.
The convolution results for the power law wave equation and the Treeby-Cox wave equation
are very similar while the convolution result for the Chen-Holm wave equation clearly shows
a time delay. The convolution results also indicate that there is more attenuation and
waveform spreading in signals with higher center frequencies.

In Chapter 4, a new PML, which is based on the power law wave equation with y = 0 or
y = 2, is implemented to accelerate nonlinear ultrasound simulations with the KZK equation.
For each power law exponent, a single attenuation term is sufficient to avoid radial reflections.
In addition, the finite difference structure of the KZK equation is also described. Numerical
simulations for the transient and continuous-wave KZK equations are then evaluated for
both linear lossless and nonlinear media, where the inputs are generated by a spherically
focused transducer. These results are compared to Muir’s formula and to finite difference
KZK calculations with a large radial boundary. The comparisons indicate that the new PML
effectively eliminates the reflections from the radial boundary, which subsequently reduces

the computation time.
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APPENDIX A

Derivation of the nonlinear wave equa-

tions

The Westervelt equation

A wave equation that describes nonlinear wave propagation is derived from three fundamental

equations, namely the equation of motion, the continuity equation, and the equation of state.
The equation of motion is given by

D
T VP =0, (A1)

where p = py + p, is the total density, P = ) + p is the total pressure, u is the velocity, and
% = % +u- ? Acoustic quantities are usually very small compared to the static values.

The continuity equation is expressed as

Dp
— -u=0. A2
oy TPV u (A.2)
The equation of state is given by
oP 1 /0?°P
P:P()—l—(—) pa+—<—2) p2+ (A?))
0P/ pos” 2NO0* ) s
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For all three constitutive equations, all terms up to second order accuracy are retained with
respect to p,, p, and u, which are sufficient for most applications of nonlinear acoustics in

fluids. Accordingly, Eqs. A.1-A.3 are rewritten as

?p Po (u : ?) u, (A.4)

p“&t
aapta ?-u:—pag-u—u-?pa, (A.5)
p B p?
JEE PO A.
Ry P (A.6)

where A = pg <%_1;> and B = p? (82P> . The right hand sides of Eqs. A.4-A.6 contain
p0,S 00,8

the second order terms. Combining Eqs. A.4-A.6 yields the Westervelt equation
o 1 0*p 5 Pp B 0*p?

T R b (A1)

where 0 and f = 14 B/2A are the attenuation and nonlinearity parameters.
The KZK equation

To obtain an approximate nonlinear wave equation that describes one way wave motion in
the axial direction, let z represent the direction of propagation, where (x,y) indicates the
coordinates perpendicular to the z axis. Assuming that, for a source with radius a, ka > 1
and z > 0.5ka® are both satisfied, the effects of diffraction are O(¢?) in each direction are

scaled by different amounts according to

p=plxiy, 2. t),  (v1,y1,2) = (7%2,8%y,82), ' =t—2/c. (A.8)

The Laplacian that appears in the Westervelt equation is then rewritten as

2 2P 1P
2 - ~2 “ -
v (a 2 ¥ 52 ) T T amor | dor (4.9)
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If only O(€) terms are retained, the left side of the Westervelt equation becomes

2 2 2 2
1 0%p ~(0 0) .2 P (A.10)

Vo ool (L T, a2 TP
b ¢t ot? ox?  Oy? co Oz 0t

Let V, = 8m2 + a; and replace (z1,y1,21) with (z,y,2) to obtain the KZK (Khokhlov-

Zabolotskaya-Kuznetsov) equation

*p _ Gy 5 Op B 0*p?

= — — . A1l
gzor 2 T 2¢3 0t 2pocd Ot (A-11)

This yields a simplified model that includes the effects of diffraction, attenuation, and
nonlinearity. When the source is a circular transducer, the pressure field is symmetric in the

radial direction. In axisymmetric cylindrical coordinates, the KZK equation is given by

2 2 3 2,2
0p:c_0(0p 10p) 5 Pp B Op (A12)

D=0 o T rar) Tadom o a2

Burgers’ equation

Burgers’ equation, which is a one dimensional nonlinear equation, can be derived directly

from the Westervelt equation. After the operators in Eq. A.7 are factored, this yields

0z oot 2—00@ pocoﬁt

o 19 6@  ppa o 19 09 ppo\
( ) (@ oot 2c00t2  pocd 8t)p_0' (A.13)

0

£ and 36t

In Eq. A.13 are higher order terms, and the product of these are discarded

’2c 8t

when transforming Eq. A.13 back to Eq. A.7. Assuming one way approximation and retaining

only the forward propagation terms gives

op 10p 5 P*p  fBp Op
g9 _ 1% 0 9P, PpOp_ A4
0z ¢y Ot + 2¢ Ot? + pocs Ot 0 ( )
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applying the change of variables 2’ = z — ¢gt , Burgers’ equation is obtained

op 6 Pp  PBpdp

— 4 ——— 4+ ——=0. A.15
0z 2c9 Ot2  pocd Ot ( )
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APPENDIX B

Simulations of ultrasound wave propaga-

tion

The fast nearfield method

The fast nearfield method (FNM) simulates the linear lossless pressure field generated by
transducers of various shapes. In time domain, the pressure field produced by a circular

piston is given by:

poca [T rcosy —a
1) = t—m7)—v(t—1)ld B.1
plrczst) = 28 [ O ot =) — (= mlav, (B

T = \/22 + 12+ a2 — 2arcos/c, ™ = z/c, (B.2)

where a is the radius of the circular piston, 7, and 75 are the delay times, and v is the normal
velocity for source points on the piston. The fast nearfield method is an accurate method

for computing pressures in both the near field and the far field.
The Cole-Hopf Model

The Cole-Hopf model gives an exact solution to Burgers’ equation for given values of the

nonlinearity and attenuation coefficients. For an arbitrary source pressure on the piston,

p(0,1) = poF'(1), (B.3)
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the Cole-Hopf solution including both nonlinearity and attenuation is given by

ffooo F(t//>€E< e_EG dt”

p(z,t") =po (T (B.4)
tll
Ee(t") = % / F(E"ydt", (B.5)

Cg(t/ _ t//)2
Eg=-""——" B.6
“ 226 (B:6)

where t' =t — 2 /¢y is retarded time, (3 is the nonlinearity coefficient, and 0 is the attenuation
coefficient. When [ equals zero, E; equals zero, and the Cole-Hopf solution simplifies to
the linear case. For each frequency w, the amplitude is attenuated by exp(—w?28/2¢3) after
a distance z. Thus, for a single frequency excitation, the linear Cole-Hopf solution with

attenuation only is given by

p(z,t) = poe™ #/ %% sin (wt') . (B.7)

Fay and Fubini Model

When only nonlinearity is considered in the simulation, the Fay and Fubini solutions can be
used for comparison. For periodic waves, the expression for the pressure can be expanded as a
Fourier series, which clearly shows how the harmonics grow as the periodic waves propagate.

In Fubini’s model, the source pressure is given by

p(0,t) = posin (wt). (B.8)

For this input, the Fubini solution for a single frequency source is
plo,t') = poiiJn(na) sin (nwt') (B.9)
“—~no
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where o is a dimensionless distance. The Fubini solution is only valid in the pre-shock
region o < 1. In this region, when o increases, the amplitude of the fundamental component
decreases and the energy is transferred to higher harmonic components.

After the shock wave is fully developed, the Fay solution is chosen instead of the Fubini
solution since the Fay solution is valid for larger values of o. When both attenuation and

nonlinearity are included, the Fay solution is expressed as

plo.t') = po%ZSm[S:(ll(T:)) Ik (B.10)

n=1

where I' is a parameter that describes the attenuation. When only the effects of nonlinearity

are included, the Fay solution simplifies to a sawtooth wave

2 f:sin (mut’)7 (B.11)

t) =
p(o,t) p01+<7n:1 n

which is valid for the region where o > 3. Thus, by combining the Fubini and Fay solutions,
results obtained with Burgers’ equation can be validated. If additional comparisons are

needed in the region 1 < o < 3, the solution in the transition region is needed [85|.
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