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ABSTRACT

TIME-DOMAIN ANALYSIS OF FRACTIONAL WAVE EQUATIONS AND

IMPLEMENTATIONS OF PERFECTLY MATCHED LAYERS IN

NONLINEAR ULTRASOUND SIMULATIONS

By

Xiaofeng Zhao

The attenuation of ultrasound propagating in human tissue follows a power law with

respet to frequeny that is modeled by several di�erent frational partial di�erential equa-

tions. These models for the power law attenuation of medial ultrasound have been developed

using frational alulus, where eah ontains one or more time-frational or spae-frational

derivatives. To demonstrate the similarities and di�erenes in the solutions to ausal and

nonausal frational partial di�erential equations, time-domain Green's funtions are alu-

lated numerially for the frational wave equations. For three time-frational wave equations,

namely the power law wave equation, the Szabo wave equation, and the Caputo wave

equation, these Green's funtions are evaluated for water with a power law exponent of

y = 2, liver with a power law exponent of y = 1.139, and breast with a power law exponent

of y = 1.5. Simulation results show that the nonausal features of the numerially alulated

time-domain response are only evident in the extreme near�eld region and that the ausal and

the nonausal Green's funtions onverge to the same time-domain waveform in the far�eld.

When nonausal time-domain Green's funtions are onvolved with �nite-bandwidth signals,

the nonausal behavior in the time-domain is eliminated, whih suggests that nonausal

time-domain behavior only appears in a very limited set of irumstanes and that these

time-frational models are equally e�etive for most numerial alulations.

For the alulation of spae-frational wave equations, time-domain Green's funtions are

numerially alulated for two spae-frational models, namely the Chen-Holm and Treeby-

Cox wave equations. Numerial results are omputed for these in breast and liver. The

results show that these two spae-frational wave equations are ausal everywhere. Away



from the origin, the time-domain Green's funtion for the dispersive Treeby-Cox spae-

frational wave equation is very similar to the time-domain Green's funtions alulated for

the orresponding time-frational wave equations, but the time-domain Green's funtion for

the nondispersive Chen-Holm spae-frational wave equation is quite di�erent. To highlight

the similarities and di�erenes between these, time-domain Green's funtions are ompared

and evaluated at di�erent distanes for breast and liver parameters. When time-domain

Green's funtions are onvolved with �nite-bandwidth signals, the phase veloity di�erene

in these two spae-frational wave equations is responsible for a time delay that is espeially

evident in the far�eld.

The power law wave equation is also utilized to implement a perfetly mathed layer

(PML) for numerial alulations with the Khokhlov - Zabolotskaya - Kuznetsov (KZK)

equation. KZK simulations previously required a omputational grid with a large radial dis-

tane relative to the aperture radius to delay the re�etions from the boundary. To derease

the size of the omputational grid, an absorbing boundary layer derived from the power

law wave equation. Simulations of linear pressure �elds generated by a spherially foused

transduer are evaluated for a short pulse. Numerial results for linear KZK simulations

with and without the absorbing boundary layer are ompared to the numerial results with

a su�iently large radial distane. Simulation results with and without the PML are also

evaluated, where these show that the absorbing layer e�etively attenuates the wavefronts

that reah the boundary of the omputational grid.
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Chapter 1

Introdution

1.1 Ultrasound attenuation in soft tissue

As sound waves propagate, the medium is temporarily displaed in a diretion parallel

(longitudinal wave) or perpendiular (transverse wave) to the diretion of energy transport

and then the medium returns to the equilibrium state. When ultrasound travels through

a medium, the intensity diminishes with distane. In a lossless medium, the amplitude is

only redued by the spreading of the wave. However, when ultrasound propagates through

soft tissue, the amplitude is redued as a funtion of propagation distane, and the enter

frequeny of the signal is also downshifted by attenuation. As indiated by Laugier and Haïat

[1℄, Goss et al. [2℄, and Parker [3℄, the two main mehanisms that ontribute to ultrasound

attenuation are absorption and sattering.

Absorption is the onversion of the sound energy to other forms of energy [4, 5℄, espeially

heat as a result of frition between the vibrating partiles that transmit the aousti wave

within soft tissue. In homogeneous visous media, the visous fores between neighboring

partiles moving with di�erent veloities are the major soure of aousti wave absorption.

Aousti wave attenuation is also aused by sattering, whih desribes the rediretion of

the inident wave in multiple diretions [6, 7℄. In heterogeneous media, where the physial

properties suh as density or sound speed are di�erent from those of the surrounding medium,

sattering also redirets the aousti energy.
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In three-dimensional (3D) spae, the amplitude deay and attenuation of ultrasound are

mathematially desribed by p(r) = p0e−α(f)r

r
for the attenuation given by α(f) = α0 |f |y,

where p is the pressure, α0 is the attenuation oe�ient, r is the distane in 3D, f is the

frequeny, and y is the power law exponent. For instane, in water, the power law exponent

y is equal to 2. However, in most biologial tissues, the measured power law exponents y are

within the range of 0.7 ≤ y ≤ 1.5 for the range of frequenies utilized in medial ultrasound

[8℄. For example, measured values for the power law exponent are y = 1.139 in human liver

[9℄ and y = 1.5 in human breast [10℄. The power law exponents and attenuation oe�ients

vary for di�erent tissues, and measurements of these parameters have been widely evaluated

for medial ultrasound in human tissue [11, 12, 13℄.

1.2 Nonlinear ultrasound

The fundamental equations of nonlinear ultrasound are derived from the three onstitu-

tive relations, namely the equation of motion, the ontinuity equation, and the equation of

state [14℄. For small pressure amplitudes, the linearized versions of these three fundamental

equations are ombined to produe a linear wave equation. However, when the pressure

amplitudes are su�iently large, the seond order terms in these fundamental equations

must be retained, and the ombination of the three onstitutive relations yields a nonlinear

wave equation. The amount of nonlinearity in a material through whih a �nite-amplitude

ultrasoni wave propagates is expressed by the nonlinearity parameter B/A. The values of A

and B are the oe�ients of the �rst and seond order terms of the Taylor series expansion

for the equation of state, whih relates the pressure to the density. Some values of B/A in

biologial tissues are given by Wells [15℄.

Some ommon models that desribe nonlinear ultrasound propagation inlude the Wester-

velt equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and Burgers equation.

A general wave equation that aounts for nonlinearity up to seond-order is given by the

Westervelt equation [16℄. After a paraboli approximation is applied, the Westervelt equation
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redues to the KZK equation, whih aounts for the ombined e�ets of nonlinearity,

di�ration, and absorption in diretional sound beams. Solutions to this equation are

ommonly used to model problems in nonlinear aoustis. Several numerial approahes

that solve the KZK equation have been proposed by Lee and Hamilton [17℄, Cleveland [18℄,

and Berntsen [19℄. When the di�ration term is disarded, the KZK equation redues to

Burgers equation, whih desribes the ombined e�ets of nonlinearity and attenuation on

the propagation of progressive plane waves. Solutions to Burgers equation an be obtained

with several di�erent methods [20, 21℄.

Nonlinear wave propagation has been widely analyzed in the medial ultrasound �eld.

Two ommon appliations inlude high intensity foused ultrasound (HIFU) in therapeuti

ultrasound [22, 23, 24℄ and harmoni imaging in diagnosti ultrasound [25, 26, 27℄. HIFU

generates high intensity pressure �elds in the foal zone to heat tumors or break up kidney

stones [28℄. Compared to diagnosti ultrasound, HIFU uses higher energies and lower

frequenies. In harmoni imaging, sine sattering and �rst re�etions are redued in

the seond harmoni, the resulting images provide better ontrast, better resolution, and

diminished e�ets of undesirable sidelobes.

1.3 Frational derivative operators

Frational derivative operators are applied widely in the �eld of frational alulus. A

variety of frational derivatives are de�ned to replae the integer order derivative, inluding

the Riemann�Liouville frational derivative [29℄, the Caputo frational derivative [30℄, the

Atangana�Baleanu derivative [31℄, the Katugampola frational derivative [32℄, and so on.

Two of these frational derivative operators are utilized here, namely the Riemann�Liouville

frational derivative and the Caputo frational derivative [33℄. The Riemann�Liouville
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frational derivative is de�ned by

Dy
Lf (t) =















1
Γ(n−y)

dn

dtn

´ t

a
f(τ)

(t−τ)y+1−ndτ, n− 1 < y < n ⊂ N,

dn

dtn
f (t) , y = n ⊂ N,

(1.1)

where y > 0, t > a, and y, a, t ⊂ R. The gamma funtion, whih frequently appears in

frational alulus, is de�ned as

Γ (z) =

ˆ

∞

0

tz−1e−tdt. (1.2)

The Caputo frational derivative takes the following form:

Dy
Cf (t) =















1
Γ(n−y)

´ t

a
f(n)(τ)

(t−τ)y+1−ndτ, n− 1 < y < n ⊂ N,

dn

dtn
f (t) , y = n ⊂ N.

(1.3)

These two frational derivatives are similar, where the main di�erene is the order in whih

the di�erentiation and integration operations are performed. For a frational derivative

operator, the derivative of a funtion evaluated at a point is no longer a loal property, so

additional knowledge of previous states is required in either time or spae.

The properties of integer derivatives for Fourier and Laplae transforms are readily

extended to frational derivatives [33℄. The 1D Laplae transform for the integer derivative

is de�ned as

L{f (t)} =

ˆ

∞

0

e−stf (t) dt. (1.4)

This is extended to the frational Riemann Liouville derivative as [29℄

L{Dy
Lf (t)} = syF (s)−

n−1
∑

k=0

sk
[

Dy−k−1
L f (t)

]

t=0
(1.5)
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and to the Caputo derivative as [30℄

L{Dy
Cf (t)} = syF (s)−

n−1
∑

k=0

sy−k−1f (k) (0) . (1.6)

For the Fourier transform in 1D

F {f (t)} =

ˆ

∞

−∞

f (t) e−jωtdt, (1.7)

both Riemann�Liouville and Caputo derivatives are the same [34, 35℄:

F {Dy
Lf (t)} = (jω)y F (ω) , (1.8)

F {Dy
Cf (t)} = (jω)y F (ω) . (1.9)

1.4 Dispersion relations for frational wave equations

When the e�ets of attenuation are inluded through the term εLr,t (p), the wave equation

beomes

∇2p− 1

c20

∂2p

∂t2
− εLr,t (p) = 0, (1.10)

where the frational operator εLr,t (p) may be either time-frational or spae-frational or

both. After Fourier transforms are evaluated in both time and spae domains, the dispersion

relation for Eq. 1.10 is given by

−k2 + ω2

c20
− εL̃ (k, ω) = 0. (1.11)
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When Lr,t (p) ontains only time-frational derivatives, εL̃ (k, ω) = εL̃ (ω), and the analytial

expression for the wavenumber is then represented by

k (ω) =

√

ω2

c20
− εL̃ (ω). (1.12)

The relationship of phase veloity and attenuation is then obtained from the real and

imaginary parts of Eq. 1.12.

For the general ase when the loss term εL̃ (k, ω) ontains at least one spae-frational

operator, the wavenumber in Eq. 1.11 is alulated with the binomial approximation

k (ω) ≈ ω

c0

[

1− c20
2ω2

εL̃ (k, ω)− c40
8ω4

ε2L̃2 (k, ω)− c60
16ω6

ε3L̃3 (k, ω) + . . .

]

. (1.13)

The right-hand side of Eq. 1.13 inludes several terms that ontains L̃ (k, ω), whih is a

funtion of k. To obtain an expression for the wavenumber k (ω) that is independent of k on

the right-hand side, further approximations are required.

1.4.1 First order approximation

If O (ε2) and higher order terms in Eq. 1.13 are disarded, and the �rst-order approxi-

mation for Eq. 1.13 is then given by

k (ω) ≈ ω

c0
− c0

2ω
εL̃

(

k+, ω
)

, (1.14)

where k+ is obtained by setting L̃ (k, ω) = 0, whih yields k+ ≈ ω
c0
. This expression is

substituted bak to Eq. 1.14 and the O (ε) terms are ignored, whih yields

k (ω) ≈ ω

c0
− c0

2ω
εL̃

(

ω

c0
, ω

)

. (1.15)
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1.4.2 Seond order approximation

To obtain a more aurate approximation for the wavenumber, third order and higher

terms are disarded from Eq. 1.13. Then, the seond-order approximation is given by

k (ω) ≈ ω

c0
− c0

2ω
εL̃

(

k+, ω
)

− c30
8ω3

ε2L̃2
(

k+, ω
)

. (1.16)

Similarly, k+ is approximated by substituting ω/c0 into Eq. 1.16

k+ ≈ ω

c0
− c0

2ω
εL̃

(

ω

c0
, ω

)

, (1.17)

and then terms that are third order or higher in ε are disarded.

1.5 Thesis struture

For ertain time-frational and spae-frational models, exat and approximate time-

domain Green's funtions have been derived and evaluated numerially. More aurate

expressions for the phase veloity and attenuation are also derived for several frational

alulus models. To demonstrate some of the similarities and di�erenes in these frational

partial di�erential equations, ausality is analyzed for eah of these, the time-domain Green's

funtions are ompared, and full width at half maximum (FWHM) values for eah time-

domain Green's funtion are evaluated for breast and liver models.

Chapter 2 numerially evaluates time-domain Green's funtions for three time-frational

models, namely the power law wave equation, the Szabo wave equation, and the Caputo

wave equation. These Green's funtions are evaluated for water with a power law exponent

of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of

y = 1.139. The ausality of eah frational wave equation is analyzed, and the time-domain

Green's funtions for these three time-frational models are ompared at di�erent distanes.

To demonstrate the e�ets of power law attenuation and dispersion on transient exitations, a
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three-yle Hanning-weighted pulse is also onvolved with the time-domain Green's funtions

for these three time domain Green's funtions.

Chapter 3 evaluates improved approximations for the frequeny-dependent phase veloity

and attenuation that were derived from two spae-frational models, namely the Chen-Holm

and Treeby-Cox spae-frational wave equations, and these are evaluated using parameters

for breast and liver. After the ausality of the two spae-frational models is established, the

amplitudes and FWHM values of the time-domain Green's funtions are evaluated at short

distanes from the origin. In addition, a three-yle Hanning weighted pulse is onvolved

with eah time-domain Green's funtion to show how di�erenes in these Green's funtions

in�uene the results for a �nite bandwidth exitation.

Chapter 4 introdues new expressions that desribe perfetly mathed layers (PML) for

numerial simulations with the transient KZK equation. Arti�ial attenuation in these new

PMLs is implemented through terms derived from the power law wave equation with y = 0

and y = 2. These expressions are further simpli�ed by retaining only one term, whih is

su�ient to redue re�etions from the radial boundary. For a spherially foused transduer

with aperture radius a = 1.5 m and radius of urvature R = 6 m, simulations in both

linear lossless and nonlinear media validate the e�etiveness of these new PMLs. Similar

simulations are then evaluated for the ontinuous wave KZK equation in both linear lossless

and nonlinear media.
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Chapter 2

Time frational wave equations

1

2.1 Introdution

The attenuation of ompressional ultrasound waves in soft tissue is desribed by a power

law of the form α(f) = α0 |f |y, where f is the frequeny in MHz, α0 is the attenuation

onstant in Np/m/Hz

y
or dB/m/Hz

y
, and y is the power law exponent. Examples of

measured values for the power law exponent are y = 2 in water, y = 1.139 in human

liver [9℄, and y = 1.5 in human breast [10℄. Additional values for mammalian tissues with

various power law exponents are tabulated in the book by Duk [8℄, and other attenuation

values are ompiled in papers by Goss et al. [36, 37℄.

The orresponding wave equations that desribe power law attenuation in soft tissue

utilize frational derivatives, whih are non-integer order derivatives. These frational deriva-

tives are often time-frational [38, 39, 40℄, although spae-frational derivatives are also

used [41, 42℄. Examples of time-frational wave equations that model the attenuation and

dispersion of ultrasound in soft tissue inlude the Szabo wave equation [38℄, the Caputo

wave equation [30℄, and the power law wave equation [39℄. The Szabo and power law

wave equations were developed for medial ultrasound appliations, and the Caputo wave

equation [30℄ was originally de�ned for appliations in geophysis and then independently

onsidered by Wismer as a model for attenuation and dispersion in soft tissue [40℄.

1

Reprodued from X. Zhao and R. J. M Gough, Time-domain omparisons of power law attenuation

in ausal and nonausal time-frational wave equations, The Journal of the Aoustial Soiety of Ameria,

139(5):30213031, 2016, with the permission of the Aoustial Soiety of Ameria.
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These time-frational wave equations are partiularly amenable to analytial methods for

analyzing ausality, inluding the Paley-Wiener riterion [43℄, Kramers-Kronig analysis [44℄,

and a time ausal theory [38℄; however, inonsistent onlusions are often reahed with

di�erent methods, espeially for power law exponents y ≥ 1. In an e�ort to resolve some

of these apparent inonsistenies, time-domain Green's funtions are alulated numerially

for the Blakstok wave equation, the Stokes wave equation, the Szabo wave equation, the

Caputo wave equation, and the power law wave equation. In addition, a three-yle Hanning-

weighted pulse is onvolved with eah of these to show the e�ets of ausal and nonausal

Green's funtions on the alulated signals. The results show that nonausal behavior is

only evident very lose to the soure in time-domain Green's funtion alulations, that

this nonausal behavior is no longer evident after onvolution with a short pulse, and that

time-domain alulations with these ausal and nonausal time-frational models onverge

a short distane from the soure.

2.2 Power law attenuation and dispersion

The frequeny-dependent attenuation α(ω) of ultrasound in soft tissue is desribed by

the power law [45℄

α (ω) = α0 |ω|y , (2.1)

where y is the power-law exponent, α0 is the attenuation onstant, and ω is the angular fre-

queny in radians/seond. The orresponding frequeny-dependent sound speed (dispersion)

c(ω) satis�es [45℄

1

c (ω)
=

1

c0
+ α0 tan

(πy

2

)

|ω|y−1 . (2.2)

In Eq. 2.2, c0 is the sound speed at ω = 0 for 1 < y ≤ 2, and c0 is the sound speed at

ω = ∞ for 0 ≤ y < 1. When y = 2, Eq. 2.2 is nondispersive beause the ω dependene

in Eq. 2.2 disappears. For the numerial alulations that follow, the attenuation onstant

α0 with units Np/m/MHz

y
is multiplied by 100 and divided by 106y and (2π)y to onvert
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m into m, MHz into Hz, and frequeny in Hz into angular frequeny in radians/seond,

respetively.

2.3 The Szabo wave equation

For an attenuation onstant α0 with units Np/m/Hz

y
, the Szabo wave equation [38℄ is

given by

∇2p− 1

c20

∂2p

∂t2
− 2α0

c0 cos (πy/2)

∂y+1p

∂ty+1
= 0, (2.3)

where p represents the pressure in Pa and t is the time in seonds. The Szabo wave equation

is a time-frational extension of the Blakstok wave equation [46℄, where the third term

approximately desribes the e�ets of power law attenuation and dispersion in Eqs. 2.1 and

2.2 over the range of frequenies where the smallness approximation [38℄ holds. There is

no known exat time-domain Green's funtion for the Szabo wave equation, but the 3D

frequeny-domain Green's funtion for the Szabo wave equation is

G(r, ω) =
e
−

r
c0

√

−ω2+
2α0c0

cos(πy/2)
(jω)y+1

4πr
(2.4)

for frequenies ω ≥ 0, where r =
√

x2 + y2 + z2 is the distane from a point soure at the

origin to an observation point at (x, y, z).

The phase veloity and attenuation are derived by solving the dispersion relation

k2 =
ω2

c20
− 2α0

c0 cos (πy/2)
(−jω)y+1

(2.5)

for k. By taking the square root of Eq. 2.5 and utilizing the binomial approximation, an

approximate expression for the wave number is obtained

k ≈ ω
c0
{1 + jα0c0 [1− j tan (πy/2)]ωy−1}

+
α2
0c0
2

[1− j2 tan (πy/2)− tan2 (πy/2)]ω2y−1.
(2.6)
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The approximate phase veloity is then extrated from the real part of the wavenumber

divided by ω

1

c (ω)
≈ 1

c0
+ tan (πy/2)α0ω

y−1 +
1

2

(

1− tan2 (πy/2)
)

α2
0c0ω

2y−2
(2.7)

and the approximate attenuation is the imaginary part of the wavenumber

α (ω) ≈ α0ω
y − tan (πy/2)α2

0c0ω
2y−1. (2.8)

When the power law exponent y is equal to 2, the Szabo wave equation redues to the

Blakstok equation

∇2p− 1

c20

∂2p

∂t2
+

2α0

c0

∂3p

∂t3
= 0, (2.9)

where the 3D frequeny-domain Green's funtion for the Blakstok equation is given by

G(r, ω) =
e
−

r
c0

√
−ω2−2α0c0(jω)

3

4πr
. (2.10)

2.4 The power law wave equation

The power-law wave equation [39℄, whih is losely related to the Szabo wave equation,

is given by

∇2p− 1

c20

∂2p

∂t2
− 2α0

c0 cos (πy/2)

∂y+1p

∂ty+1
− α2

0

cos2 (πy/2)

∂2yp

∂t2y
= 0. (2.11)

The �rst three terms in the power law wave equation also appear in the Szabo wave equation,

where the fourth time-frational term yields a omplex wavenumber that exatly satis�es

Eqs. 2.1 and 2.2 for all frequenies ω. The 3D frequeny-domain Green's funtion for the

power law wave equation is

G(r, ω) =
e−jωr/c0e−α0(jω)

yr/ cos(πy/2)

4πr
. (2.12)
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By expanding the argument of the seond exponential funtion in Eq. 2.12 after applying

Euler's formula with jy = ejπy/2 and olleting real and imaginary terms, the attenuation

and dispersion relations in Eqs. 2.1 and 2.2 are exatly reovered. Furthermore, unlike the

other time-frational wave equations evaluated here, the power law wave equation has an

exat losed form 3D time-domain Green's funtion, whih is

g (r, t) =
1

4πr

1

(α0r)
1/y
f̃y

[

t− r
c0

(α0r)
1/y

]

. (2.13)

In Eq. 2.13, f̃y is the probability density funtion (pdf) for a maximally skewed stable

distribution [47℄ with parameter y. Sine the power law wave equation exatly satis�es

Eq. 2.1 and Eq. 2.2, demonstrating whether the time-domain Green's funtion in Eq. 2.13

is ausal or nonausal is equivalent to demonstrating whether the ombination of Eqs. 2.1

and 2.2 is ausal or nonausal.

For the power law exponent y = 2, the 3D frequeny-domain Green's funtion in Eq. 2.12

redues to

G(r, ω) =
e−jωr/c0e−α0ω2r

4πr
, (2.14)

whih is a Gaussian funtion multiplied by the 1/ (4πr) geometri spreading fator and a

omplex exponential delay term. The inverse Fourier transform of Eq. 2.14 is exatly equal

to the time-shifted Gaussian funtion

g (r, t) =
1

4πr

1√
4πα0r

e−(t−r/c0)
2/(4α0r), (2.15)

whih is equivalent to the time-domain Green's funtion in Eq. 2.13 with the power law

exponent y = 2. Although the expressions in Eqs. 2.14 and 2.15 are only appliable to a few

materials with frequeny-squared attenuation suh as water and air, these expressions are

nevertheless onvenient for preliminary evaluations and omparisons.

13



2.5 The Caputo wave equation

The Caputo wave equation [30℄, whih is a time-frational extension of the Stokes wave

equation [48℄, is given by

∇2p− 1

c20

∂2p

∂t2
+ τ y−1 ∂

y−1

∂ty−1
∇2p = 0 (2.16)

where τ is the frational relaxation time. The Caputo wave equation approximately satis�es

the attenuation and dispersion relations in Eqs. 2.1 and 2.2, respetively, and no exat losed

form time-domain Green's funtion is available for the Caputo wave equation. However, there

is an exat 3D frequeny-domain Green's funtion for the Caputo wave equation, whih is

G(r, ω) =
1

1 + (jωτ)y−1

e
−

jωr
c0

1√
1+(jωτ)y−1

4πr
. (2.17)

for frequenies ω ≥ 0.

To obtain an expression that relates the value of the power law attenuation onstant α0 to

the frational relaxation time τ , the power law wave equation and the Caputo wave equation

are Fourier-transformed in time and spae. After solving for the square of the wavenumber

and taking the square root of both sides, the smallness approximation [38℄ is applied to the

expression obtained from the Caputo wave equation. The resulting onversion fator [41℄ is

τ y−1 = −2α0c0/ cos (πy/2) . (2.18)

The expression in Eq. 2.18 is singular at y = 1, the Szabo and power law wave equations

are also singular at y = 1, and the Caputo wave equation is non-attenuating at y = 1, so

only values of the power law exponent that satisfy 1 < y ≤ 2 are onsidered in the following

numerial evaluations.
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The phase veloity and attenuation are derived by solving the dispersion relation

k2 =
ω2

c20
+

2α0c0
cos (πy/2)

(jω)y−1 k2. (2.19)

A seond order approximation for the wavenumber is given by olleting terms that ontain

k2 in Eq. 2.19 on the left side and then taking the square root, followed by the binomial

approximation

k ≈ ω
c0
{1− jα0c0 [1 + j tan (πy/2)]ωy−1}

−3α2
0c0
2

[1 + j2 tan (πy/2)− tan2 (πy/2)]ω2y−1.
(2.20)

The approximate phase veloity is then obtained from the real part of the wavenumber

divided by ω,

1

c (ω)
≈ 1

c0
+ tan (πy/2)α0ω

y−1 − 3

2

(

1− tan2 (πy/2)
)

α2
0c0ω

2y−2
(2.21)

and the approximate attenuation is the imaginary part of the wavenumber,

α (ω) ≈ α0ω
y + 3 tan (πy/2)α2

0c0ω
2y−1. (2.22)

2.6 Methods

Time-domain Green's funtions for the power law wave equation are rapidly and a-

urately evaluated in Matlab with the STABLE toolbox [47, 49℄. In these alulations,

whih numerially evaluate stable pdfs, the index parameter is de�ned as the power law

exponent y, the skewness parameter is equal to 1, the sale parameter is equal to (α0r)
1/y

,

and the loation parameter is equal to zero. The STABLE toolbox evaluates stable pdfs at

single points in time or limited ranges of time values without numerial artifats, whih is

advantageous for alulations of time-domain Green's funtions.
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The time-domain Green's funtions for the Blakstok, Stokes, Caputo, and Szabo wave

equations are omputed in Matlab with inverse fast Fourier transforms (IFFTs). For these

alulations, a time window T is de�ned as an integer multiple of the sale fator (α0r)
1/y

suh that the numerial error is 1% or less. The time window T is then extended as needed to

�ll a larger display window for omparisons with other materials at the same distane. Other

parameters that are required for these alulations inlude the frequeny sampling, whih

is de�ned as ∆f = 1/T , and the enter of eah time window, whih is loated at t = r/c.

Eah time-domain Green's funtion is omputed with 100 time samples per sale parameter,

whih onsistently yields smooth time-domain waveforms for eah result. If the time window

de�ned for the time-domain Green's funtion alulation is larger than the desired display

window, then the omputed waveform is ropped after the IFFT is evaluated.

In alulations of time-domain Green's funtions for the Blakstok and Stokes wave

equations with the IFFT, the time window is de�ned as T ≫ (α0r)
1/y

, and even larger time

windows are needed for IFFT-based alulations of the time-domain Green's funtions for the

Caputo and Szabo wave equations to avoid problems with frequeny-domain aliasing. Similar

to the time-domain Green's funtions for the power law wave equation, the time-domain

Green's funtions for the Caputo and Szabo wave equations have `heavy tails' that deay

as 1/ty+1
when 0 < y < 2. These `heavy tails' ause undesirable wrap-around artifats in

the time-domain unless the time window T is su�iently large and the frequeny sampling

∆f = 1/T is su�iently small. Also, for IFFT alulations with nonzero start time t0,

the frequeny-domain Green's funtion is multiplied by ejωt0 . This aounts for start times

before t = 0 when nonausal results are shown lose to the soure and also for alulations

at larger distanes with later start times.
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Figure 2.1: (a-d) Simulated time-domain Green's funtions of the Caputo, Szabo, and power

law wave equations alulated for water with y = 2, α0 = 2.5328× 10−4
Np/m/MHz

2
, and

c0 = 1500 m/s and saled by 4πr at (a) r = 1 nm, (b) r = 100 nm, () r = 1 m, and

(d) r = 10 m. (e-h) Simulated time-domain Green's funtions of the Caputo, Szabo, and

power law wave equations alulated for breast with y = 1.5, α0 = 0.086 Np/m/MHz

1.5
,

and c0 = 1450 m/s and saled by 4πr at (e) r = 10 nm, (f) r = 1µm, (g) r = 1 m, and

(h) r = 10 m. (i-l) Simulated time-domain Green's funtions of the Caputo, Szabo, and

power law wave equations alulated for liver with y = 1.139, α0 = 0.0459 Np/m/MHz

1.139
,

and c0 = 1540 m/s and saled by 4πr at (i) r = 100 zm, (j) r = 100 am, (k) r = 1 m, and

(l) r = 10 m.
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2.7 Results

2.7.1 Time-domain Green's funtions for aousti propagation in

water

Time-domain Green's funtions multiplied by 4πr are shown in Figs. 2.1(a-d) for aousti

propagation in water with y = 2. The results in these �gures are alulated with c0 =

1500m/s and α0 = 2.5328× 10−4
Np/m/MHz

2
. In Figs. 2.1(a-d), the time-domain Green's

funtion for the Stokes wave equation is indiated by a solid line, the time-domain Green's

funtion for the Blakstok wave equation (Eq. 2.9) is represented by a dashed line, and the

time-domain Green's funtion for the power law wave equation is indiated by a dash-dot line.

The time-domain Green's funtion for the power law wave equation is diretly alulated from

the Gaussian funtion in Eq. 2.15, and the time-domain Green's funtions for the Blakstok

and Stokes wave equations apply IFFTs to the values obtained from the frequeny-domain

Green's funtions in Eqs. 2.4 and 2.17, respetively, with the power law exponent y = 2. A

thin dashed line is also inluded as a referene in eah of the sub�gures in Fig. 2.1 to indiate

the arrival time t = r/c0 for a lossless medium with a onstant sound speed c0.

The time-domain Green's funtions for the Stokes, Blakstok, and power law wave

equations evaluated in water are shown in Figs. 2.1(a-d) at distanes of r = 1 nm, r = 100 nm,

r = 1 m, and r = 10 m. The omputed Green's funtions are multiplied by 4πr so that the

spherial spreading ontribution is eliminated and only the e�ets of propagation, dispersion,

and attenuation as a funtion of time are inluded in these plots. The units de�ned for the

horizontal axis are pioseonds, nanoseonds, or miroseonds. Fig. 2.1(a) shows the result

evaluated at a distane r = 10−n
m for the smallest integer value of n, spei�ally n = 9,

that learly demonstrates nonausal behavior in the time-domain Green's funtions for both

the Blakstok and power law wave equations. Fig. 2.1(b) shows the result at a distane

r = 10−n
m for the largest integer value of n, namely n = 7, where the nonausal behavior
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is not learly evident in plots of the time-domain Green's funtions for the Blakstok and

power law wave equations when displayed on a linear vertial sale. Figs. 2.1(-d) show

the results at r = 1 m and r = 10 m, respetively, whih are representative distanes for

appliations of diagnosti and therapeuti ultrasound. The time-domain Green's funtions

for the Blakstok and Stokes wave equations de�ne time windows T for IFFT alulations

as 40, 40, 300, and 500 times the sale fator (α0r)
1/y

alulated for eah respetive plot in

Figs. 2.1(a-d). The results in Figs. 2.1(a-d) are then ropped and displayed in time windows

that are approximately 25, 25, 197, and 312 sale fators wide, respetively. Figs. 2.1(a-d)

demonstrate that the time-domain Green's funtions for the Blakstok and power law wave

equations produe nonausal time-domain waveforms very lose to the soure and that these

transition over a short distane to waveforms that are di�ult to distinguish from ausal

waveforms in the time-domain.

Fig. 2.1(a) indiates that the time-domain Green's funtions for the Blakstok and power

law wave equations with y = 2 evaluated at r = 1 nm yield similar, yet distint, results, where

both of these are learly nonausal with signi�ant nonzero ontributions between t = −5 ps

and t = 0. Whereas the time-domain Green's funtion for the power law wave equation

is a Gaussian funtion in time, the time-domain Green's funtion for the Blakstok wave

equation is slightly skewed to the right in this loation. The time-domain Green's funtion

for the Stokes wave equation evaluated at r = 1 nm �rst demonstrates nonzero values after

time t = 0, and the shape of the time-domain Green's funtion for the Stokes wave equation

is learly di�erent from the other two time-domain Green's funtions.

The time-domain Green's funtions evaluated at r = 100 nm in Fig. 2.1(b) have nearly

onverged to the same result. All three waveforms are now learly o�set from t = 0, where

some small di�erenes remain, and all three waveforms appear to be ausal in these plots.

However, sine the time-domain Green's funtion for the power law wave equation is a

time-shifted Gaussian funtion, even though the result appears to be ausal, the time-domain

result is nonzero for all values of t < 0, so the Green's funtion for the power law wave
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equation is nonausal. In Figs. 2.1(-d), all three time-domain Green's funtions evaluated

at r = 1 m and at r = 10 m agree losely, whih indiates that as the distane r inreases,

the time-domain Green's funtions for the Blakstok and Stokes wave equations onverge

to the Gaussian funtion in Eq. 2.15.

2.7.2 Time-domain Green's funtions for aousti propagation in

breast

Figs. 2.1(e-h) desribe the time-domain Green's funtions multiplied by 4πr for the

Caputo wave equation (solid line), the Szabo wave equation (dashed line), and the power law

wave equation (dot-dashed line) alulated for human breast with y = 1.5, c0 = 1450 m/s,

and α0 = 0.086 Np/m/MHz

1.5
. The results are omputed at r = 10 nm, r = 1µm, r = 1 m,

and r = 10 m. The units de�ned for the horizontal axis in Figs. 2.1(e-h) are again

pioseonds, nanoseonds, or miroseonds. Fig. 2.1(e) ontains the result evaluated at

a distane r = 10−n
m for the smallest integer value of n, spei�ally n = 8, that learly

demonstrates nonausal behavior in the time-domain Green's funtions for both the Szabo

and power law wave equations. Fig. 2.1(f) displays the result at a distane r = 10−n
m

for the largest integer value of n, namely n = 6, where the nonausal behavior is not

learly evident in plots of the time-domain Green's funtions for both the Szabo and power

law wave equations when displayed on a linear vertial sale. Figs. 2.1(g-h) desribe the

results at r = 1 m and r = 10 m. The time-domain Green's funtions for the Szabo and

Caputo wave equations de�ne the time windows T for IFFT alulations as 300, 60, 30, and

30 times the sale fator (α0r)
1/y

alulated at eah distane r for eah respetive plot in

Figs. 2.1(e-h). The results in Figs. 2.1(e-h) are then ropped and displayed in time windows

that are approximately 23, 30, 16, and 17 sale fators wide, respetively.

Fig. 2.1(e), whih shows the time-domain Green's funtions alulated for breast at r =

10 nm, indiates that the Szabo and power law wave equations are nonausal and that

the Caputo wave equation is ausal. In this loation, the time-domain Green's funtions
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for the Szabo and power law wave equations are learly nonzero before time t = 0, and

the time-domain Green's funtion for the Caputo wave equation �rst demonstrates nonzero

values after time t = 0. The shapes of the three time-domain waveforms also demonstrate

signi�ant di�erenes at this distane.

Fig. 2.1(f), whih is evaluated at r = 1µm, shows that the three waveforms alulated for

breast are starting to onverge at this distane. However, at r = 1µm, identifying nonausal

ontributions, if present, is di�ult in the time-domain when the Green's funtions are

plotted on a linear sale. Similar to the Gaussian funtion, the stable pdf in the numerator

of Eq. 2.13 is stritly positive [39℄ for all values of t when y = 1.5, so the power law wave

equation is nonausal at all distanes for y = 1.5.

Figs. 2.1(g-h), whih are evaluated at r = 1 m and r = 10 m, respetively, show that

the time-domain Green's funtions for the three time-frational wave equations in Eqs. 2.3,

2.11, and 2.16 onverge to the same result at these distanes. Unlike the results shown in

Figs. 2.1(b-d), whih are either approximately or exatly represented by symmetri, time-

shifted Gaussian funtions, the time-domain Green's funtions in Figs. 2.1(f-h) are skewed

(asymmetri) with a `heavy tail,' whih are harateristis of the maximally-skewed stable

probability distribution (pdf) in Eq. 2.13.

2.7.3 Time-domain Green's funtions for aousti propagation in

liver

Figs. 2.1(i-l) show the simulated Green's funtions for the Caputo wave equation (solid

line), the Szabo wave equation (dashed line), and the power law wave equation (dot-dashed

line) for human liver with y = 1.139, α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s.

In Figs. 2.1(i-l), the three time-domain Green's funtions are multiplied by 4πr and then

evaluated at r = 100 zm, r = 100 am, r = 1 m, and r = 10 m. The units de�ned for the

horizontal axis in Figs. 2.1(i-l) are yotoseonds (ys or 10−24
seonds), zeptoseonds (zs or

10−21
seonds), or miroseonds (µs). Fig. 2.1(i) ontains the result evaluated at a distane
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r = 10−n
m for the smallest integer value of n, spei�ally n = 19, that learly demonstrates

nonausal behavior in the time-domain Green's funtions for both the Szabo and power law

wave equations, and Fig. 2.1(j) displays the result at a distane r = 10−n
m for the largest

integer value of n, namely n = 16, where the nonausal behavior is not learly evident in any

of the three time-domain Green's funtions when shown on a linear sale. Figs. 2.1(k-l) show

the results at r = 1 m and r = 10 m, respetively. The time-domain Green's funtions

for the Szabo and Caputo wave equations de�ne time windows T for IFFT alulations as

12000, 4000, 60, and 40 times the sale fator (α0r)
1/y

alulated at eah distane r for eah

respetive plot in Figs. 2.1(i-l). The results in Figs. 2.1(i-l) are then ropped and displayed

in windows that are approximately 55, 37, 47, and 31 sale fators wide, respetively.

Fig. 2.1(i) depits the time-domain Green's funtions alulated for human liver at r =

100 zm (where 1 zeptometer = 1 zm = 10−21
m). In Fig. 2.1(i), the time-domain Green's

funtions for the Szabo and power law wave equations are learly nonausal, and the time-

domain Green's funtion for the Caputo wave equation begins a short time after t = 0. In

Fig. 2.1(j), whih is evaluated at r = 100 am, the time-domain Green's funtions of all three

wave equations are still distint, and all three appear to start after t = 0.

Figs. 2.1(k-l) display the time-domain Green's funtion alulated for human liver at

r = 1 m and at r = 10 m, respetively. These �gures indiate that the three time-domain

Green's funtions again onverge to the same result as the distane inreases. The waveforms

in Figs. 2.1(k-l) are learly distint from the waveforms shown in Figs. 2.1(g-h) in terms of

both the overall shape and the temporal extent. Also, the power law wave equation maintains

the same shape for the time-domain Green's funtion at all distanes, but the shapes of the

time-domain Green's funtions for the Szabo and Caputo wave equations are notieably

di�erent at shorter distanes.

2.7.4 Vertial axis saling

In eah sub�gure of Fig. 2.1, the maximum value of the vertial axis is determined by the

largest of the three peak values in that sub�gure. The peak value of 4πrg(r, t) for the power
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law wave equation when y = 2 is equal to 1/
√
4πα0r. Similarly, the peak value of the saled

stable pdf in Eq. 2.13 is approximately equal to 1/
[

2
√
π(α0r)

1/y
]

. Thus, when the peaks of

the three time-domain Green's funtions start to onverge, eah deays as r−1/y
. The limits

of the vertial axes are proportional to the peak of the saled stable pdf, and before the peak

values onverge, the axes are autosaled.

2.7.5 Comparisons between time-domain Green's funtions for aous-

ti propagation

To enable omparisons between the time-domain Green's funtions alulated in water,

breast, and liver, Figs. 2.1(), 2.1(g), and 2.1(k), whih oupy the third olumn of Fig. 2.1,

are all alulated at r = 1 m, and Figs. 2.1(d), 2.1(h), and 2.1(l), whih oupy the fourth

olumn of Fig. 2.1, are all alulated at r = 10 m. Figs. 2.1(a), 2.1(b), 2.1(e), 2.1(f), 2.1(i),

and 2.1(j) are all omputed at di�erent distanes, so the �gures in the �rst two olumns of

Fig. 2.1 are not ompared. Figs. 2.1(), 2.1(g), and 2.1(k) are all shown in a 0.5µs wide

time window, and Figs. 2.1(d), 2.1(h), and 2.1(l) are all shown in a 2.5µs wide time window,

where the size of eah time window is determined by the temporal extent of the time-domain

Green's funtions alulated for ultrasound parameters in breast.

When displayed in these two time windows, the time-domain Green's funtion for aousti

propagation in water exhibits nearly negligible dispersion, the time-domain Green's funtion

for aousti propagation in liver shows moderate dispersion, and the time-domain Green's

funtion for aousti propagation in breast is muh more dispersive than water or liver.

Furthermore, the time-domain Green's funtion for aousti propagation in water is nearly

impulsive relative to breast and liver. Also, eah �gure in Fig. 2.1 exhibits di�erent arrival

times. This is in part due to the di�erent values for c0 in water, breast, and liver, where the

thin dashed lines that indiate the arrival time for a lossless medium with sound speed c0 eah

our at a di�erent time, as observed along the third and the fourth olumns of Fig. 2.1. The

time-domain Green's funtions for aousti propagation in breast and liver also demonstrate
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Figure 2.2: a) The perent di�erene between the time-domain Green's funtions for the

Blakstok and Stokes wave equations and the time-domain Green's funtion for the power

law wave equation as a funtion of distane alulated for water with y = 2, α0 = 2.5328×
10−4

Np/m/MHz

2
, with c0 = 1500m/s. b-) The perent di�erene between the time-

domain Green's funtions for the Szabo and Caputo wave equation and the time-domain

Green's funtions for the power law wave equation as a funtion of distane alulated for

breast with y = 1.5, α0 = 0.086 Np/m/MHz

1.5
, and c0 = 1450 m/s and alulated for liver

with y = 1.139, α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s.

muh earlier arrival times than the time t = r/c0 predited for lossless propagation, where the

earlier arrival times in the lossy models are due to dispersion. Furthermore, the peak value

of the time-domain Green's funtion for aousti propagation is largest in water and smallest

in breast, as indiated by omparisons between the values on the vertial axes (noting the

exponents in the upper left hand orner of eah sub�gure) in Figs. 2.1(), 2.1(g), and 2.1(k)

(r = 1 m) and Figs. 2.1(d), 2.1(h), and 2.1(l) (r = 10 m). Comparisons along the third

and fourth olumns of Fig. 2.1 also show that the shapes and extents of the time-domain

Green's funtions for aousti propagation in water, breast, and liver di�er signi�antly, as

determined by the values of the power law exponent y and the sale fator (α0r)
1/y

.

2.7.6 Convergene of the Green's funtions for aousti propagation

in the time domain

Figs. 2.1(a-d) demonstrate that the time-domain Green's funtions for the Blakstok and

Stokes wave equations multiplied by 4πr onverge to a Gaussian funtion, and Figs. 2.1(e-h)

and 2.1(i-l) show that the time-domain Green's funtions for the Szabo and Caputo wave
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equations multiplied by 4πr onverge to maximally skewed stable pdfs. This suggests that the

time-domain Green's funtion for the power law wave equation is an e�etive approximation

for the time-domain Green's funtions of the Blakstok and Stokes wave equations when

y = 2 and the Szabo and Caputo wave equations when 1 < y < 2. To haraterize the

onvergene of these time-domain Green's funtions, the perent di�erene between g(r, t)

and a referene gref(r, t) is de�ned as ||g(r, t)− gref(r, t)||2 / ||gref(r, t)||2×100%, where g(r, t)

is the time-domain Green's funtion alulated at a given distane r for the Blakstok,

Stokes, Szabo, or Caputo wave equation, and the referene time-domain Green's funtion

gref(r, t) for these alulations is the time-domain Green's funtion for the power law wave

equation. In Fig. 2.2, these perent di�erenes are alulated from r = 1 nm to r = 1 m for

eah material. Fig. 2.2(a) shows the onvergene of the time-domain Green's funtions for

the Stokes and Blakstok wave equations to the time-domain Green's funtion of the power

law wave equation alulated for water with y = 2, α0 = 2.5328× 10−4
Np/m/MHz

2
, and

c0 = 1500m/s. Fig. 2.2(b) shows the onvergene of the time-domain Green's funtions

for the Szabo and Caputo wave equations to the time-domain Green's funtion of the

power law wave equation alulated for breast with y = 1.5, α0 = 0.086 Np/m/MHz

1.5
,

and c0 = 1450 m/s. Fig. 2.2() shows the onvergene of the time-domain Green's fun-

tions for the Szabo and Caputo wave equations to the time-domain Green's funtion of

the power law wave equation alulated for liver with the power law exponent y = 1.139,

α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s.

In eah medium, the perent di�erenes alulated with the time-domain Green's fun-

tions for the Blakstok and Szabo wave equations are onsistently smaller than those

alulated for the Stokes and Caputo wave equations, respetively. In Fig. 2.2(a), the

perent di�erene for the time-domain Green's funtion of the Blakstok wave equation

alulated for water is 23% at r = 1 nm, and the perent di�erene for the time-domain

Green's funtion of the Stokes wave equation alulated for water is 59% at r = 1 nm. Both

time-domain Green's funtions ahieve rapid redutions in the perent di�erene alulated
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for water between 1 nm and 1µm. The perent di�erene for the time-domain Green's

funtion of the Blakstok wave equation alulated for water reahes 0.0009% at r = 1 m,

and the perent di�erene for the time-domain Green's funtion of the Stokes wave equation

alulated for water reahes 0.0024% at r = 1 m. In Fig. 2.2(b), the perent di�erene for

the time-domain Green's funtion of the Szabo wave equation alulated for breast is 35%

at r = 1 nm, and the perent di�erene for the time-domain Green's funtion of the Caputo

wave equation alulated for breast is 77% at r = 1 nm. The time-domain Green's funtions

alulated for breast onverge more slowly than those alulated for water, where the perent

di�erene for the time-domain Green's funtion of the Szabo wave equation alulated for

breast reahes 0.055% at r = 1 m, and the perent di�erene for the time-domain Green's

funtion of the Caputo wave equation alulated for breast reahes 0.17% at r = 1 m.

In Fig. 2.2(), the perent di�erene for the time-domain Green's funtion of the Szabo

wave equation alulated for liver is 8% at r = 1 nm, and the perent di�erene for the

time-domain Green's funtion of the Caputo wave equation alulated for liver is 24% at

r = 1 nm. Although the perent di�erenes evaluated at r = 1 nm are smaller in liver than

in water, the rate of onvergene of these time-domain Green's funtions is slower in liver

than in water or breast, where the perent di�erene for the time-domain Green's funtion

of the Szabo wave equation alulated for liver reahes 0.66% at r = 1 m, and the perent

di�erene for the time-domain Green's funtion of the Caputo wave equation alulated for

breast reahes 2% at r = 1 m.

2.7.7 Charaterizing the nonausal omponent of the time-domain

Green's funtions for the Blakstok, Szabo, and power law

wave equations

In numerial alulations with the Blakstok, Szabo, and power law wave equations,

there is a threshold distane above whih the nonausal time-domain Green's funtion is

very small for all times t ≤ 0. The distane beyond whih the nonausal omponent of
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Figure 2.3: Relative nonausal ontributions of the Blakstok, Szabo, and power law wave

equations haraterized with 20 log10 {g(r, t = 0)/max [g(r, t)]} as a funtion of distane r.
This quantity is alulated for a) water with y = 1.139, α0 = 0.0459 Np/m/MHz

1.139
, and

c0 = 1540 m/s from r = 1 nm to r = 1m, b) breast with y = 1.5, α0 = 0.086 Np/m/MHz

1.5
,

and c0 = 1450 m/s from r = 1 nm to r = 1 m, and ) liver with y = 1.139,
α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s from r = 1 zm to r = 1 pm.

the time-domain Green's funtions for the Blakstok, Szabo, and power law wave equation

beomes negligible is haraterized here with an approah similar to that in [38℄ by omputing

the quantity 20 log10 {g(r, t = 0)/max [g(r, t)]}, whih alulates the value of g(r, t) evaluated

at time t = 0 divided by the maximum value of g(r, t) in dB, where the time-domain Green's

funtions in the numerator and the denominator are eah alulated with a �xed value of

r, and the maximum value of g(r, t) is evaluated with respet to the time t. In Fig. 2.3,

this expression is evaluated aross nine deades at 10 equally spaed samples within eah

deade. The time-domain Green's funtions for the Stokes and Caputo wave equations are

not haraterized with this approah beause both of these are always ausal for the y values

onsidered here (i.e., 2, 1.5, and 1.139).

The results of this alulation are shown in Figs. 2.3(a-) for water, breast, and liver.

Figs. 2.3(a) and 2.3(b) show that 20 log10 {g(r, t = 0)/max [g(r, t)]} evaluated for water and

for breast with the time-domain Green's funtion of the power law wave equation rapidly

drops from approximately 0 dB to -400 dB between r = 1 nm and 1µm. Fig. 2.3() shows

that 20 log10 {g(r, t = 0)/max [g(r, t)]} alulated for liver with the time-domain Green's

funtion of the power law wave equation rapidly deays from approximately 0 dB to -400 dB
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between r = 10 am and 100 fm. Fig. 2.3(a) shows that 20 log10 {g(r, t = 0)/max [g(r, t)]}

alulated for water with the time-domain Green's funtion of the Blakstok wave equation

losely traks the same urve for the time-domain Green's funtion of the power law wave

equation until a threshold between −200 and −300 dB is reahed. Fig. 2.3(b) shows

that 20 log10 {g(r, t = 0)/max [g(r, t)]} alulated for breast with the time-domain Green's

funtion of the Szabo wave equation follows the same trend as the orresponding urve for the

time-domain Green's funtion of the power law wave equation until a threshold near −200 dB

is reahed. Also, there is a greater di�erene between the two urves in Fig. 2.3(b) than in

Fig. 2.3(a). Fig. 2.3() shows that, for alulations with the time-domain Green's funtion of

the Szabo wave equation evaluated for liver, the value of 20 log10 {g(r, t = 0)/max [g(r, t)]}

rapidly deays from approximately 0 dB to a value between −100 and −200 dB between

r = 1 am and 1 fm. There is a muh larger di�erene between the values of 20 log10{g(r, t =

0)/max [g(r, t)]} alulated for liver with the Szabo and power law wave equations than

for water or breast. In eah alulation of 20 log10 {g(r, t = 0)/max [g(r, t)]} that evaluates

g(r, t) for the Blakstok and Szabo wave equations, the lower threshold is a limitation of

numerial alulations with the IFFT, whereas the STABLE toolbox avoids these problems

with a numerial approah that is optimized for alulations of stable pdfs [47℄.

2.7.8 Time-domain Green's funtions onvolved with a three yle

Hanning-weighted pulse

To demonstrate the e�ets of power law attenuation and dispersion on transient exita-

tions, three yle Hanning-weighted pulses [50, 51℄ are onvolved with time-domain Green's

funtions multiplied by 4πr, and the results are shown in Fig. 2.4. In eah medium, the

onvolved waveforms are evaluated at (a) r = 100µm, (b) r = 1 mm, () r = 1 m, and

(d) r = 10 m. In Fig. 2.4, the enter frequeny of the Hanning-weighted pulse is f0 = 7.5 MHz,
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Figure 2.4: Simulated three-yle Hanning-weighted pulse with a enter frequeny of

f0 = 7.5 MHz onvolved with time-domain Green's funtions multiplied by 4πr alulated

for water at (a) r = 100µm, (b) r = 1 mm, () r = 1 m, and (d) r = 10 m, alulated for

breast at (e) r = 100µm, (f) r = 1 mm, (g) r = 1 m, and (h) r = 10 m, and alulated for

liver at (i) r= 100µm, (j) r = 1 mm, (k) r = 1 m, and (l) r = 10 m.
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whih is a representative frequeny for medial ultrasound that highlights some of the

di�erenes between the waveforms omputed for these three materials.

In Figs. 2.4(a-d), whih show the onvolved waveforms for water, there is no attenuation

or dispersion of the pulse at all four distanes, and the results obtained from the Stokes,

Blakstok, and power law wave equations are nearly idential. The only di�erenes in

Figs. 2.4(a-d) are due to the di�erenes in propagation delays and the di�erent time sale that

is employed in Fig. 2.4(d) to failitate omparisons with Figs. 2.4(h) and 2.4(l). Figs. 2.4(a-d)

demonstrate that, at these distanes, the time-domain Green's funtions for the Blakstok,

Stokes, and power law wave equation are e�etively delta funtions for a three yle Hanning-

weighted pulse with a 7.5MHz enter frequeny and that dispersion in water is only observed

over muh longer distanes in water for this short pulse.

Figs. 2.4(e-h) desribe the time-domain Green's funtions for aousti propagation in

breast onvolved with a three-yle Hanning-weighted pulse with enter frequeny f0 =

7.5 MHz evaluated at the same four distanes. At r = 100µm, r = 1 mm, and at shorter

distanes, the ausal and nonausal time-domain Green's funtions evaluated at these dis-

tanes are all e�etively equivalent to delta funtions in these onvolutions, so at r = 100µm,

r = 1 mm, and at shorter distanes, there is minimal attenuation and dispersion of this

short pulse. In Fig. 2.4(g), there is a slight di�erene between the three waveforms at

r = 1 m, and some attenuation and dispersion is also observed in Fig. 2.4(g) at r = 1 m.

Fig. 2.4(h) indiates that the three onvolution results are approximately the same and that

the attenuation and dispersion are signi�ant for breast at r = 10 m. The signal amplitude

drops o� onsiderably in Fig. 2.4(h), and there is also onsiderable �ltering and spreading

of the signal in the time domain in Fig. 2.4(h) relative to Figs. 2.1(e-g). Fig. 2.4(h) also

shows that, unlike the result shown in water at r = 10 m in Fig. 2.4(d), the 7.5 MHz

enter frequeny has been ompletely removed by the e�ets of power law attenuation and

dispersion at the distane r = 10 m.
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Figs. 2.4(i-l) show the results obtained when the time-domain Green's funtions for

aousti propagation in liver are onvolved with a three-yle Hanning-weighted pulse with a

f0 = 7.5 MHz enter frequeny. Figs. 2.4(i) and 2.4(j) demonstrate that the three onvolution

results are nearly equivalent and that there is minimal attenuation or dispersion at r =

100µm and at r = 1 mm. Fig. 2.4(k) indiates that there is a small di�erene between the

three waveforms at r = 1 m, and there is minimal attenuation and dispersion observed in

Fig. 2.4(k) relative to Figs. 2.4(i-j). In Fig. 2.4(l), whih is evaluated at r = 10 m, some

di�erenes are observed in the three onvolution results beause of the di�erenes that are

observed at this distane in Fig. 2.2(), and there is a moderate amount of attenuation and

dispersion relative to that observed at shorter distanes in Figs. 2.4(i-k).

Some interesting trends are also observed when the waveforms evaluated at the same

distane are ompared for di�erent media. For example, the waveforms in Figs. 2.4(a),

2.4(e), and 2.4(i), whih are alulated at r = 100µm, are all displayed within the same

time window. These three �gures are all very similar, and no attenuation or dispersion

is evident in any of these. The waveforms in Figs. 2.4(b), 2.4(f), and 2.4(j), whih are

aluated at r = 1 mm, are also evaluated in the same time window. These three �gures are

also very similar, again with no attenuation or dispersion, although the waveform loations

vary due to the di�erenes in the sound speeds c0 for the three media. The waveforms in

Figs. 2.4(), 2.4(g), and 2.4(k), whih are evaluated at r = 1 m, are all shown in 0.6µs

wide time windows with di�erent start times. These �gures demonstrate more obvious

shifts in the waveform loations due to sound speed di�erenes, show some variation in the

attenuation in the three media, and indiate the onset of dispersion in the signal alulated

for breast. The onvolution results in Figs. 2.4(d), 2.4(h), and 2.4(l), whih are evaluated

at r = 10 m, are all shown in 2.5µs wide time windows with di�erent start times. At

r = 10 m, the waveform alulated for water still shows no evidene of attenuation and

dispersion, the waveform alulated for liver demonstrates some attenuation and dispersion,
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Figure 2.5: The FWHM of the envelope of v(t)∗4πrg(r, t) alulated for a) water, b) breast,

and ) liver, where v(t) is a three yle Hanning-weighted pulse and g(r, t) is the time-domain

Green's funtion for the Stokes, Blakstok, Caputo, Szabo, or power law wave equation.

and the waveform alulated for breast demonstrates the most attenuation and dispersion

of these three materials.

2.7.9 Charaterizing the dispersion of v(t) ∗ 4πrg(r, t) with the full

width at half maximum (FWHM) of the envelope

Fig. 2.5 haraterizes the dispersion by evaluating the full width at half maximum

(FWHM) of the envelope of the onvolution v(t) ∗ 4πrg(r, t) for eah time-domain Green's

funtion. The FWHM are shown in Figs. 2.5(a-) for water, breast, and liver, respetively,

where the results are evaluated for distanes r between 100µm and 10 m. The FWHM in

Fig. 2.5 is alulated by evaluating the Hilbert transform of v(t) ∗ 4πg(r, t) and taking the

absolute value of the result to obtain the envelope of the waveform. Then, the time at whih

the peak value of the envelope ours is determined, the times at whih the half peak value

is reahed are extrated, and then the di�erene between the largest and the smallest times

at whih the half peak value ours determines the FWHM.

In Figs. 2.5(a-), the FWHM is alulated for the envelope of v(t) ∗ 4πrg(r, t), where v(t)

is a 3 yle Hanning-weighted pulse with a enter frequeny of 7.5 MHz, and g(r, t) represents

the time-domain Green's funtion for the Stokes, Blakstok, Caputo, Szabo, or power law

wave equation. In Fig. 2.5(a), the FWHM values alulated with the time-domain Green's
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funtions of the Stokes, Blakstok, and power law wave equations for water are all equal to

200.42 ns at r = 100µm and are all equal to 201.76 ns at r = 10 m. The FWHM of the 3

yle Hanning-weighted pulse with a enter frequeny of 7.5 MHz is equal to 200 ns, whih

suggests that the dispersion is negligible in water for a pulse with 7.5 MHz enter frequeny

for all distanes r between 100µm and 10 m. In Fig. 2.5(b), the FWHM values alulated

with the time-domain Green's funtions of the Caputo, Szabo, and power law wave equations

for breast are equal to 200.49 ns, 200.5 ns, and 200.5 ns, respetively, at r = 100µm and

are equal to 750.81 ns, 753.56 ns, and 752.82 ns, respetively, at r = 10 m. Thus, for all

three onvolution alulations in breast, the dispersion is negligible at r = 100µm, but there

is signi�ant dispersion at r = 10 m. In Fig. 2.5(), the FWHM values alulated with

the time-domain Green's funtions of the Caputo, Szabo, and power law wave equations for

liver are equal to 200.46 ns, 200.44 ns, and 200.44 ns, respetively, at r = 100µm and are

equal to 311.28 ns, 318.23 ns, and 316.41 ns, respetively, at r = 10 m. Thus, for all three

onvolution alulations in liver, the dispersion is negligible at r = 100µm, and there is

moderate dispersion at r = 10 m. Also, as indiated by the results shown in Figs. 2.5(a-)

and by the FWHM values given above, the FWHM of the envelope of eah onvolution

alulation are in lose agreement in all three materials and for all three time-domain Green's

funtions when v(t) is represented by a 7.5 MHz enter frequeny pulse.

2.8 Disussion

2.8.1 Causal and nonausal time-domain Green's funtions for aous-

ti propagation

Although the Blakstok wave equation is nonausal and the Szabo and power law wave

equations are nonausal for 1 < y ≤ 2, lear demonstrations of nonausal behavior are hal-

lenging to �nd in loations far from the soure, as shown in Fig. 2.1 for time-domain Green's

funtions alulations in water, breast, and liver, espeially when the results are plotted on
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a linear sale. However, in loations very lose to the soure, i.e., for water with r ≤ 1 nm,

for breast with r ≤ 10 nm, and for liver with r ≤ 100 zm, the nonausal ontributions are

learly evident in eah of these time-domain Green's funtion alulations. This suggests

that suessfully observing obvious examples of nonausal time-domain behavior produed

by the Blakstok, Szabo, and power law wave equations primarily involves knowing where

to look.

Fig. 2.2(a) shows that the time-domain Green's funtions for the Stokes and Blakstok

wave equations onverge to the time-domain Green's funtion for the power law wave equa-

tion in alulations for water, and Figs. 2.2(a-b) show that the time-domain Green's funtions

for the Caputo and Szabo wave equations onverge to the time-domain Green's funtion for

the power law wave equation in alulations for breast and water, respetively, albeit at

di�erent rates. Figs. 2.1(-d) and Fig. 2.2(a) indiate that the time-domain Green's funtion

for the Stokes and Blakstok wave equations onverge to a Gaussian funtion, whih is the

time-domain Green's funtion for the power law wave equation when y = 2. Figs. 2.1(e-f)

and Fig. 2.2(b) indiate that the time-domain Green's funtion for the Caputo and Szabo

wave equations onverge to a maximally skewed stable distribution, and Figs. 2.1(k-l) and

Fig. 2.2() also indiate that the time-domain Green's funtions for the Caputo and Szabo

wave equations saled by 4πr onverge to a maximally skewed stable distribution, whih

is the time-domain Green's funtion for the power law wave equation saled by 4πr when

0 ≤ y < 1 or 1 < y ≤ 2. These �gures show that, beyond a ertain small distane, the

time-domain Green's funtion for the power law wave equation is an e�etive approximation

for the time-domain Green's funtions of the Stokes, Blakstok, Caputo, and Szabo wave

equations.

Fig. 2.3, whih plots 20 log10 {g(r, t = 0)/max [g(r, t)]} for the Blakstok, Szabo, and

power law wave equations, demonstrates that the nonausal ontributions to these non-

ausal time-domain Green's funtions are minisule beyond a ertain distane. Fig. 2.3 also

demonstrates that alulations of time-domain Green's funtions at t = 0 with the IFFT
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quikly reahes a lower limit beyond a ertain distane that depends on the material and

on the simulation parameters. Our experiene is that the STABLE toolbox ahieves muh

better auray than the IFFT and is muh more onvenient for alulating stable pdfs

and for alulating 20 log10 {g(r, t = 0)/max [g(r, t)]}, sine there is no need to ompute the

entire time-domain Green's funtion for either of these with the STABLE toolbox.

2.8.2 Convolving time-domain Green's funtions with 3 yle

Hanning-weighted pulses

In Fig. 2.4, nonausal time-domain ontributions are not evident in any of the numerial

alulations performed with the nonausal time-domain Green's funtions. This suggests

that the nonausal ontributions are e�etively `�ltered out' by the 3 yle Hanning-weighted

pulse with a enter frequeny of 7.5 MHz and that the ausal and nonausal models for

4πrg(r, t) onsidered here are equally e�etive for these alulations. Fig. 2.5 also suggests

that onvolutions between the 7.5 MHz enter frequeny pulse and the nonausal and the

ausal models for 4πrg(r, t) are all e�etively represented by delta funtions at the origin in

all three materials for distanes r ≤ 100µm. Furthermore, Fig. 2.5 indiates that there is

very little di�erene between the FWHM of the envelope of 4πrg(r, t)∗v(t) for the ausal and

nonausal wave equations evaluated in these three materials, whih suggests that onvergene

of the FWHM is ahieved in all materials at all distanes shown. This is in ontrast to

the results shown in Figs. 2.1 and 2.2, whih suggest that onvergene in the norm of the

di�erene is ahieved near a value of 5%.

2.8.3 Causality in aousti wave propagation

Fig. 2.1 indiates that the onept of ausality, when applied as a distintion between

the time-domain Green's funtions for the Stokes, Blakstok, and power law wave equations

when y = 2 and also for the Caputo, Szabo, and power law wave equations when 1 <

y < 2, is only important very lose to the soure. Elsewhere, establishing the absene

or presene of ausality of these wave equations appears to be a purely aademi exerise
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beause the Stokes, Blakstok, and power law wave equations generate very similar results

for y = 2 and beause the Caputo, Szabo, and power law wave equations generate very

similar results for 1 < y < 2 beyond a ertain distane where the nonausal ontributions are

negligible. However, ausality is still a very important onept for aousti wave propagation,

espeially for distinguishing inoming nonausal Green's funtions from outgoing ausal

Green's funtions and for maintaining onsisteny between the attenuation and dispersion in

aousti wave propagation, whih suggests that the importane of ausality in aousti wave

propagation depends on the ontext. The results presented in Figs. 2.1-2.5 suggest that,

exept for loations very lose to the soure, the Stokes, Blakstok, and power law wave

equations are all e�etive models for aousti propagation in water and that the Caputo,

Szabo, and power law wave equations are all e�etive models for aousti propagation in soft

tissue that either exatly or approximately satisfy the attenuation and dispersion relations

in Eqs. 2.1 and 2.2, respetively.

2.9 Conlusion

Time-domain Green's funtions for three time-frational wave equations are numerially

evaluated and the results are ompared at di�erent distanes for water, breast, and liver.

The results demonstrate that the Szabo and power law wave equations are nonausal and

that the Caputo wave equation is ausal, where the Szabo wave equation is a time-frational

extension of the nonausal Blakstok wave equation, and the Caputo wave equation is a

time-frational extension of the ausal Stokes wave equation. Examples of nonausal behavior

are observed in the time-domain Green's funtions for the Blakstok, Szabo, and power law

wave equations when these are evaluated very lose to the soure, i.e., at r ≤ 1 nm for

water, at r ≤ 10 nm for breast, and at r ≤ 1 zm for liver, but at muh larger distanes, the

nonausal omponents of these time-domain Green's funtions are minisule. Comparisons

also show that the time-domain Green's funtions for the Caputo, Szabo, and power law wave

equations with 1 < y < 2 onverge to the same result and that the time-domain Green's
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funtions for the Stokes, Blakstok, and power law wave equation with y = 2 onverge to

the same result. When these time-domain Green's funtions are onvolved with a three-yle

Hanning-weighted pulse, no nonausal behavior is observed in the time-domain results, and

the FWHMs of the envelopes of the onvolution results are all approximately the same,

whih indiates that the Caputo, Szabo, and power law wave equations are equally e�etive

for these time-domain alulations.
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Chapter 3

Spae frational wave equations

2

3.1 Introdution

For time-frational models of power law attenuation, the lose onnetion between power

law attenuation and frational alulus is evident in the expression for the derivative op-

eration (jω)y in the frequeny domain, whih ontains the power law term ωy
. Similar

expressions are also available for spae-frational models of power law attenuation after

some additional mathematial manipulations.

Time-frational and spae-frational wave equations that desribe power law attenuation

are often haraterized through the attenuation and phase veloity, whih are obtained

from the imaginary and real parts of the wavenumber k, respetively. Other methods

for analyzing time-frational wave equations inlude the Kramers-Kronig relations [44℄,

the Paley-Wiener theorem [43℄, and time-ausal theories [45℄, and time-frational wave

equations are also evaluated through time-domain analysis of the material impulse response

funtion (MIRF) [52℄ and time-domain Green's funtions [53, 39℄. Muh of this analysis

onentrates on the ausality; however, the distintion between these is very subtle beause

the attenuation is very similar in the frational alulus models that are presently used for

medial ultrasound. Furthermore, all of the nonausal time-frational models for power law

attenuation demonstrate ausal behavior at the origin (r=0), where the e�ets of attenuation

2

This artile has been submitted to The Journal of the Aoustial Soiety of Ameria. After this paper

is published, it will be found at http://asa.sitation.org/journal/jas.
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and dispersion vanish. When present, the nonausal omponents of power law attenuation

models are only evident in time-domain Green's funtions evaluated very lose to the origin

[53℄. For example, the nonausal omponents of the time-domain Green's funtion for the

power law wave equation are only observed in the results of numerial alulations within 10

nm of the soure for breast and only within 10 zm of the soure for liver. Elsewhere, examples

of nonausal behavior in the time-domain are very di�ult to identify beause several of the

ausal and nonausal time-frational models for power law attenuation onverge to the same

result a short distane from the origin [53℄.

Determining whether a spae-frational model is ausal or nonausal requires a di�erent

approah beause the dispersion relations for spae-frational equations are transendental

equations. This is further onfounded by the various laims that appear in the literature,

where one paper indiates that the Chen-Holm spae-frational wave equation is ausal [41℄,

two other papers laim that the Chen-Holm spae-frational wave equation is nonausal

[54, 55℄, and another paper suggests that the Treeby-Cox spae-frational wave equation

is ausal [42℄. If these spae-frational wave equations are nonausal, then some evidene

of nonausal behavior is expeted lose to the origin, as demonstrated in [53℄ for two time-

frational wave equations that are nonausal for power law exponents 1 < y < 2. Similarly, if

these spae-frational wave equations are ausal, then the time-domain Green's funtions are

expeted to onsistently equal zero at all times t < 0, inluding all loations very lose to the

origin. Sine these results have not yet been demonstrated for either of these spae-frational

wave equations, additional evaluations are needed.

To de�nitively establish whether the Chen-Holm and Treeby-Cox wave equations are

ausal or nonausal and also to evaluate the similarities and di�erenes in the time-domain

Green's funtions for both of these spae-frational wave equations, some new analytial

expressions and numerial results are introdued. These are developed and evaluated after

the frational partial di�erential equations, the dispersion relations, and the time-domain

Green's funtions are presented for the Chen-Holm and the Treeby-Cox spae-frational
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wave equations. The power law wave equation, whih is a time-frational wave equation,

is also provided as a referene. Analytial expressions showing that the Chen-Holm and

the Treeby-Cox spae-frational wave equations are both ausal are then introdued. Next,

a method is desribed for numerially alulating the time-domain Green's funtions for

these two spae-frational wave equations. Results are then presented showing that there

is a small but notieable di�erene between numerially alulated values for the attenua-

tion and dispersion and the values predited by previously published models and that the

disrepany is eliminated when additional terms are inluded in the approximations for the

attenuation and dispersion. Results obtained from numerial evaluations of the time-domain

Green's funtions also reinfore that both of these spae-frational wave equations are ausal.

Although both of these spae-frational wave equations demonstrate similar attenuation as a

funtion of frequeny, the phase veloities for the Chen-Holm and Treeby-Cox wave equations

are quite di�erent. The results also show that the time-domain Green's funtions for the

Treeby-Cox wave equation and the power law wave equation yield approximately the same

result a short distane from the origin. When onvolved with a short input pulse, the

time-domain Green's funtions for the Treeby-Cox wave equation and the power law wave

equation are also nearly idential, but the results obtained with the time-domain Green's

funtion for the Chen-Holm wave equation are also di�erent. Exept for some very limited

irumstanes, the Treeby-Cox spae-frational wave equation and the time-frational power

law wave equation yield similar results, even though the former is ausal and the latter is

nonausal for power law exponents 1 < y ≤ 2.

3.2 The Chen-Holm spae-frational wave equation

The spae-frational wave equation developed by Chen and Holm [41℄ to desribe power

law attenuation is given by

∇2p− 1

c20

∂2p

∂t2
− τ

∂

∂t

(

−∇2
)y/2

p = 0, (3.1)
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where τ = 2α0c
y−1
0 is the frational relaxation time [41℄, p represents the pressure in Pa,

and t is the time in seonds. The �rst two terms in Eq. 3.1 are reognized as the lossless

wave equation, and the third term, whih ontains a frational Laplaian, produes power

law attenuation. There is no known exat analytial losed-form time-domain Green's

funtion for the Chen-Holm wave equation, so numerial evaluations are required. To derive

an approximate expression for these numerial alulations, the transfer funtion for an

impulsive foring funtion applied to the Chen-Holm wave equation is expressed in terms of

the spatial Fourier transform variable k and the Laplae transform variable s, whih is

G(k, s) =
c20

(s+ τkyc20/2)
2
+ k2c20 − τ 2k2yc40/4

. (3.2)

The inverse Laplae transform of Eq. 3.2 then yields

ĝ(k, t) = e−τkyc20t/2 sin
(

kc0t
√

1− τ 2k2y−2c20/4
)

c0

k
√

1−τ2k2y−2c20/4
u (t)

for k <
(

2
τc0

)
1

y−1

(3.3)

and

ĝ(k, t) = e−τkyc20t/2 sinh
(

kc0t
√

τ 2k2y−2c20/4− 1
)

c0

k
√

τ2k2y−2c20/4−1
u (t)

for k >
(

2
τc0

)
1

y−1
.

(3.4)

At k = (2/τc0)
1/(y−1)

, ĝ(k, t) = tc20e
−τkyc20t/2u (t), so ĝ(k, t) is ontinuous with respet to

k and t. In all three of these expressions for ĝ(k, t), u (t) is the unit step funtion, whih

guarantees that the time-domain response is equal to 0 for all times t < 0 and that ĝ(k, t) is

ausal. The time-domain Green's funtion is then obtained by evaluating

g(r, t) =
4π

(2π)3 r

ˆ

∞

0

ĝ(k, t) sin (kr) kdk, (3.5)

where r =
√

x2 + y2 + z2 is the distane from a point soure at the origin to an observation

point at (x, y, z). The integral in Eq. 3.5 also ontains the unit step funtion u (t) through
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the expressions for ĝ(k, t), so the time-domain Green's funtion g(r, t) for the Chen-Holm

spae-frational wave equation is also ausal. Although Eqs. 3.3 and 3.4 are analytial

expressions, the time-domain Green's funtion g(r, t) in Eq. 3.5 is evaluated numerially.

Approximate expressions for the phase veloity and attenuation are derived from the

dispersion relation

k2 =
ω2

c20
+ jωτky (3.6)

with τ = 2α0c
y−1
0 . After taking the square root of both sides of Eq. 3.6, fatoring out ω/c0

on the right hand side, and keeping the �rst three terms in the binomial approximation,

the wavenumber is rewritten as k ≈ ω/c0 + jα0c
y
0k

y + α2
0c

2y+1
0 ω−1k2y/2. On the right hand

side, ky is replaed by the approximation (ω/c0)
y (1 + jyα0c0ω

y−1) and k2y is replaed by

the approximation (ω/c0)
2y
, respetively, and all third order and higher terms with respet

to α0 are disarded. The approximate phase veloity is then obtained from the real part of

the wavenumber divided by ω,

1

c (ω)
≈ 1

c0
−

(

y − 1

2

)

α2
0c0ω

2y−2. (3.7)

The attenuation α (ω) = α0ω
y
, whih is obtained from the imaginary part of the resulting

approximation for k, is the same expression given in Eq. 2.1. In Treeby and Cox [42℄, the

attenuation for the Chen-Holm wave equation is also α (ω) = α0ω
y
, but the approximate

phase veloity for the Chen-Holm wave equation is instead expressed as c (ω) ≈ c0.

3.3 The Treeby-Cox spae-frational wave equation

Treeby and Cox [42℄ reognized that the Chen-Holm spae-frational wave equation

orretly models the power law attenuation desribed by Eq. 2.1 but that the dispersion

for the Chen-Holm wave equation di�ers from the desired expression given in Eq. 2.2. To

address this problem, Treeby and Cox inserted a seond spae-frational term that aounts
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for the dispersion, and the resulting expression is given by [42℄

∇2p− 1

c20

∂2p

∂t2
+

{

−τ ∂
∂t

(

−∇2
)y/2

+ η
(

−∇2
)(y+1)/2

}

p = 0, (3.8)

where τ = 2α0c
y−1
0 and η = 2α0c

y
0 tan (πy/2). In Eq. 3.8, the third and fourth terms

aount for the e�ets of attenuation and dispersion, respetively. Similar to the Chen-

Holm wave equation, there is no known exat analytial losed-form time-domain Green's

funtion for the Treeby-Cox wave equation, so numerial evaluations are required. To derive

an approximate expression for these numerial alulations, the transfer funtion for an

impulsive foring funtion applied to the Treeby-Cox wave equation is expressed in terms of

the spatial Fourier transform variable k and the Laplae transform variable s, whih is

G(k, s) =
c20

(s+ τkyc20/2)
2
+ k2c20 − τ 2k2yc40/4− ηc20k

y+1
. (3.9)

After the inverse Laplae transform of Eq. 3.9 is evaluated, the result is

ĝ(k, t) = e−τkyc20t/2 sin
(

kc0t
√

1− τ 2k2y−2c20/4− ηky−1
)

c0

k
√

1−τ2k2y−2c20/4−ηky−1
u (t) for k < κ

(3.10)

and

ĝ(k, t) = e−τkyc20t/2 sinh
(

kc0t
√

τ 2k2y−2c20/4 + ηky−1 − 1
)

c0

k
√

τ2k2y−2c20/4+ηky−1−1
u (t) for k > κ,

(3.11)

where κ =
[(

η +
√

η2 + τ 2c20

)

/2
]−1/(y−1)

. At k = κ, ĝ(k, t) = tc20e
−τκyc20t/2u (t), so the

expression for ĝ(k, t) is ontinuous with respet to k and t. The unit step funtion u (t)

in all three of these expressions for ĝ(k, t) indiates that ĝ(k, t) is ausal. The time-domain

Green's funtion for the Treeby-Cox spae-frational wave equation is alulated with Eq. 3.5

ombined with the expressions for ĝ(k, t), and due to the presene of u (t) in eah expression
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for ĝ(k, t), the time-domain Green's funtion g(r, t) for the Treeby-Cox spae-frational wave

equation is also ausal.

The phase veloity and attenuation for the Treeby-Cox spae-frational wave equation

are derived from the dispersion relation

k2 =
ω2

c20
+ j2α0c

y−1
0 ωky + 2α0c

y
0 tan (πy/2)k

y+1, (3.12)

starting with the assumption that the attenuation and dispersion are both small relative to

ω/c0. The binomial approximation is then applied to Eq. 3.12, and the �rst three terms are

retained, yielding

k ≈ ω
c0
+ α0c

y
0 (jk

y + tan (πy/2) c0ω
−1ky+1)

−1
2
α2
0c

2y+1
0 ω−1 (jky + tan (πy/2) c0ω

−1ky+1)
2
.

(3.13)

On the right hand side, ky is replaed with (ω/c0)
y [1 + yα0c0ω

y−1 (j + tan (πy/2))] and ky+1

is replaed with (ω/c0)
y+1 [1 + (y + 1)α0c0ω

y−1 (j + tan (πy/2))], respetively, and all third

order and higher terms with respet to α0 are disarded. The approximate phase veloity is

obtained from the real part of the wavenumber divided by ω,

1

c (ω)
≈ 1

c0
+ tan (πy/2)α0ω

y−1 +

[

−y + 1

2
+

(

y +
1

2

)

tan2 (πy/2)

]

α2
0c0ω

2y−2, (3.14)

and the approximate attenuation is the imaginary part of the wavenumber,

α (ω) ≈ α0ω
y + 2y tan (πy/2)α2

0c0ω
2y−1. (3.15)

Treeby and Cox [42℄ instead express the approximate phase veloity and attenuation for

the Treeby-Cox wave equation as 1/c (ω) ≈ 1/c0 + tan (πy/2)α0ω
y−1

and α (ω) ≈ α0ω
y
,

respetively.
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3.4 Methods

3.4.1 Dispersion Relations

The attenuation and phase veloity of the power law wave equation are alulated with

Eqs. 2.1 and 2.2, respetively. For the Chen-Holm and the Treeby-Cox spae-frational

wave equations, sine there is no analytial solution, the phase veloity and attenuation

are both alulated using the �fsolve� routine in Matlab. This Matlab funtion applies the

Levenberg�Marquardt algorithm to numerially determine the omplex value of k that solves

the dispersion relations in Eqs. 3.6 and 3.12 using the initial value k = ω/c0.

3.4.2 The Pantis Method

Numerial alulations of the time-domain Green's funtions for the Chen-Holm and

Treeby-Cox wave equations are hallenging beause Eq. 3.5 is a highly osillatory improper

integral. When applied to this problem, most standard numerial integration tehniques

perform poorly, so an alternative approah is required. The Pantis method [56, 57℄ provides

an ideal solution to this problem, where the improper integral in Eq. 3.5 is rewritten as the

sum of a proper integral and an improper integral aording to

g(r, t) =
4π

(2π)3 r

ˆ

∞

0

kĝ(k, t) sin (kr) dk =
4π

(2π)3 r
[I1 (r, t) + I2 (r, t)] , (3.16)

with

I1 (r, t) =

ˆ mπ/r

0

kĝ(k, t) sin (kr) dk, (3.17)

and

I2 (r, t) =

ˆ

∞

mπ/r

kĝ(k, t) sin (kr) dk. (3.18)

The integral I1 (r, t) is evaluated with Filon's method [58, 59, 60℄, whih approximates kĝ(k, t)

with a pieewise seond order polynomial. Filon's method is implemented within a Matlab
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routine [59℄, where the input parameters inlude the Matlab funtion handle, the lower and

upper limits of integration, and the number of points at whih the integrand is evaluated.

Eah numerial evaluation of I1 (r, t) with Filon's method is alulated with 70,000 absissas,

whih is su�ient for onvergene at all temporal and spatial points evaluated here for both

breast and liver. After integrating by parts and reognizing that [kĝ(k, t)]
k=∞

= 0, the

integral I2 (r, t) over the upper subinterval is rewritten as

I2 (r, t) = kĝ(k, t)
cos (kr)

r k=mπ/r

− ∂

∂k
[kĝ(k, t)]

sin (kr)

r2 k=mπ/r

−
ˆ

∞

mπ/r

∂

∂k
[kĝ(k, t)]

sin (kr)

r2
dk. (3.19)

For these alulations, m is an odd integer, and only the �rst term in Eq. 3.19 is retained.

Thus, I2 (r, t) ≈ −mπĝ(mπ/r, t)/r2, whih is an e�etive approximation for these alula-

tions when m is su�iently large and when the ontribution from I2 (r, t) is relatively small.

Also, when m is an odd integer, the seond term in Eq. 3.19 disappears, and when m is

odd, I1 (r, t) is onsistently positive for the expressions onsidered here. An odd value of

m is advantageous for these alulations beause an even value of m an yield a negative

value for I1 (r, t), whih is undesirable beause g(r, t) ≥ 0 for all values of r and t. The

value m = 1601 yields e�etive results for all (r, t) pairs evaluated here. Also, to avoid

problems with numerial over�ow when the argument of the sinh (·) funtion grows large,

exp (−a) sinh (b) is instead alulated using

(

eb−a − e−b−a
)

/2.

3.4.3 Time windows for omputed time-domain Green's funtions

The start and end times for all time-domain Green's funtion alulations are adjusted

manually for eah loation suh that eah waveform �lls a signi�ant portion of the time win-

dow. For both the Chen-Holm wave equation and the Treeby-Cox wave equation, g (r, t) = 0

at t = 0 beause ĝ(k, t) = 0 for all values of k when t = 0, whih is the analytial result

obtained through diret substitution of t = 0 into Eqs. 3.3-3.4 and Eqs. 3.10-3.11. The unit
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Figure 3.1: Phase veloity and attenuation in breast and liver obtained from the dispersion

relation in Eq. 3.6 for the Chen-Holm wave equation (∗) and two di�erent approximations

(• and ◦) to the dispersion relation for the Chen-Holm wave equation.

step funtion u (t) also guarantees that ĝ(k, t) = 0 for all t < 0, so g (r, t) = 0 for all t < 0

in the Chen-Holm and Treeby-Cox wave equations. For the power law wave equation, the

time-domain Green's funtion is alulated in Matlab with the STABLE toolbox [47, 53℄,

whih numerially evaluates the expression for the stable pdf in Eq. 2.13. The time window

de�ned for time domain Green's funtion alulations very lose to the soure inludes

negative time values to apture the nonausal omponents of the response in these loations.

In all plots, the arrival time r/c0 in a lossless medium is also indiated to provide a time

referene.

3.5 Results

3.5.1 Phase veloity and attenuation in breast and liver

Fig. 3.1 shows the exat and approximate frequeny-dependent phase veloity and attenu-

ation for the Chen-Holm spae-frational wave equation using values for human breast with

y = 1.5, α0 = 0.086 Np/m/MHz

1.5
, and c0 = 1450 m/s and using values for human liver

with y = 1.139, α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s. The frequeny range is

0.1 to 40MHz, and the step size on the horizontal axis is ∆f = 0.3MHz for eah of the phase

veloity and attenuation plots. For the Chen-Holm wave equation, the result obtained with

the Matlab �fsolve� routine applied to Eq. 3.6 is indiated by dashed lines with star markers
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Figure 3.2: Phase veloity and attenuation in breast and liver obtained from the dispersion

relation in Eq. 3.12 for the Treeby-Cox wave equation (∗), the approximations to the

dispersion relation for the Treeby-Cox wave equation given in Eqs. 3.14-3.15 (•), and the

attenuation and phase veloity for the power law wave equation given in Eqs. 2.1-2.2 (◦).

(∗), and the approximate solution from Eq. 3.7 is indiated by dot-dashed lines with solid

dot markers (•). The zero-order approximation to the phase veloity c (ω) ≈ c0 is indiated

by a solid line with irle markers (◦) in Figs. 3.1(a) and 3.1(). Figs. 3.1(a) and 3.1() show

that the approximation to c (ω) introdued in Eq. 3.7 demonstrates exellent agreement with

the numerial solution of Eq. 3.6. Figs. 3.1(a) and 3.1() also indiate that the phase veloity

of the Chen-Holm wave equation is not quite equal to c0 beause c (ω) inreases slightly as

the frequeny inreases. In addition, Fig. 3.1(b) shows that the attenuation predited by the

Chen-Holm wave equation follows the power law indiated by Eq. 2.1 very losely in breast.

Furthermore, Figs. 3.1(a) and 3.1() demonstrate that the hange in the phase veloity in

liver over this frequeny range is muh less than the hange in the phase veloity in breast,

and Figs. 3.1(b) and 3.1(d) indiate that the attenuation of liver is muh smaller than that

of breast.

Fig. 3.2 shows the exat and approximate values for the phase veloity and attenuation of

the Treeby-Cox spae-frational wave equation and the exat phase veloity and attenuation

of the power law wave equation using the same parameters evaluated in Fig. 3.1. For the

Treeby-Cox wave equation, the numerial results obtained with the Matlab �fsolve� routine

applied to Eq. 3.12 are indiated by dashed lines with star markers (∗), and the approximate

solution from Eq. 3.14 is indiated by dot-dashed lines with solid dot markers (•). For the
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power law wave equation, whih exatly satis�es Eqs. 2.1 and 2.2, the results are indiated by

solid lines with irle markers (◦). Figs. 3.2(a-d) show that the approximations introdued

in Eqs. 3.14-3.15 losely math the numerial values obtained from Eq. 3.12. Fig. 3.2

also shows that the phase veloity and attenuation urves are similar for the power law

wave equation and the Treeby-Cox wave equation; however, there is a small but notieable

di�erene between these urves that is assoiated with the higher order terms on the right

hand side of Eqs. 3.14-3.15. Fig. 3.2(b) indiates that the di�erene between the attenuation

for the Treeby-Cox wave equation and the power law wave equation inreases slightly as the

frequeny grows larger. For example, at f = 40 MHz, the phase veloities obtained from

Eq. 3.12 (the dispersion relation for the Treeby-Cox wave equation) with the �fsolve� routine

in Matlab, Eqs. 3.14-3.15 (approximations to the phase veloity and the attenuation for

the Treeby-Cox wave equation), and Eqs. 2.1-2.2 (the exat attenuation and phase veloity

for the power law wave equation) in breast are 1468.2 m/s, 1468.2 m/s, and 1468.4 m/s,

and the orresponding attenuations are 2096.6 Np/m, 2093.7 Np/m, and 2175.6 Np/m,

respetively. At f = 40 MHz, the orresponding phase veloities in liver are 1553.0 m/s,

1553.0 m/s, and 1553.1 m/s, and the attenuations are 300.79 Np/m, 300.68 Np/m, and

306.59 Np/m, respetively. Thus, at f = 40 MHz and at all other frequenies evaluated

in Fig. 3.2, Eqs. 3.14-3.15 are better approximations for the phase veloity and attenuation

of the Treeby-Cox wave equation than Eqs. 2.2 and 2.1, where the largest di�erenes are

observed at f = 40 MHz. Also, the phase veloity and attenuation are slightly smaller for

the Treeby-Cox wave equation than for the power law wave equation. Figs. 3.2(a) and 3.2()

also demonstrate that the hange in the phase veloity in liver over this frequeny range is

smaller than the hange in the phase veloity in breast, and Figs. 3.2(b) and 3.2(d) show

that the attenuation for liver is muh less than that for breast over the range of frequenies

evaluated here. In Figs. 3.2(a) and 3.2(), the di�erenes in the phase veloities for the power

law wave equation and the Treeby-Cox wave equation are due to the ontribution from the

third term in Eq. 3.14, and in Figs. 3.2(b) and 3.2(d), the di�erenes in the attenuation for
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the power law wave equation and the Treeby-Cox wave equation are due to the ontribution

from the seond term in Eq. 3.15.

3.5.2 Time-domain Green's funtions alulated for breast
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Figure 3.3: Time-domain Green's funtions saled by 4πr alulated for breast with y = 1.5,
α0 = 0.086 Np/m/MHz

1.5
, and c0 = 1450 m/s at (a) r = 1 nm, (b) r = 10 nm, () r = 100

nm, (d) r = 1µm, (e) r = 100µm, (f) r = 1 mm, (g) r = 1 m, and (h) r = 10 m

with the power law (solid line), Chen-Holm (dashed line), and Treeby-Cox (dot-dashed line)

wave equations. At all distanes, the time-domain Green's funtions for the Chen-Holm and

Treeby-Cox wave equations evaluated for breast are ausal while the time-domain Green's

funtion for the power law wave equation is learly non-ausal for r = 1nm and r = 10nm.

Beyond about r = 100µm, the time-domain Green's funtions for the power law wave

equation and the Treeby-Cox wave equation are nearly indistinguishable, while the time-

domain Green's funtion for the Chen-Holm wave equation is distint from the time-domain

Green's funtions for the time-frational power law wave equation and the spae-frational

Treeby-Cox wave equation at all distanes.

To demonstrate some of the similarities and di�erenes between these three frational

wave equations evaluated at various distanes, Fig. 3.3 shows the time-domain Green's

funtions multiplied by 4πr for the power law wave equation (solid line), the Chen-Holm

wave equation (dashed line), and the Treeby-Cox wave equation (dot-dashed line) alulated

for human breast with y = 1.5, c0 = 1450 m/s, and α0 = 0.086 Np/m/MHz

1.5
. The results

are omputed at r = 1 nm, r = 10 nm, r = 100 nm, r = 1µm, r = 100µm, r = 1 mm,
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r = 1 m, and r = 10 m. The units de�ned for the horizontal axis in Fig. 3.3 are pioseonds,

nanoseonds, or miroseonds. The vertial dashed line desribes the time t = r/c0 in eah

sub�gure. Figs. 3.3(a) and 3.3(b) show that the Green's funtion for the power law wave

equation is nonausal at r = 1 nm and r = 10 nm sine the Green's funtion for the power

law wave equation is learly nonzero before time t = 0 in these two sub�gures. However, the

Green's funtions for the Chen-Holm wave equation and the Treeby-Cox wave equation are

both ausal as these two Green's funtions are always equal to zero for all times t ≤ 0, as

demonstrated in setions 3.2 and 3.3, respetively. The amplitudes of the Green's funtions

for these three wave equations are similar in eah individual sub�gure, and the amplitudes

hange by a signi�ant amount in eah suessive sub�gure. For example, the values of

the peaks in Fig. 3.3(a) are all approximately 4 × 1011 s

−1
, and the values of the peaks in

Fig. 3.3(b) are all around 9 × 1010 s

−1
. Three distint peaks are observed in Figs. 3.3(a)

and 3.3(b), and then the peaks of the time-domain Green's funtions for the power law wave

equation and the Treeby-Cox wave equation start to move muh loser together in Figs. 3.3()

and 3.3(d) while the peak for the Chen-Holm wave equation remains distint from the peaks

for the other two frational wave equations in eah sub�gure. In Figs. 3.3(e)-3.3(h), the

waveforms for the Chen-Holm wave equation are onsistently quite di�erent from those

obtained with the power law and Treeby-Cox wave equations. This is expeted beause

the phase veloity for the Chen-Holm wave equation is approximately equal to c0 for all

frequeny omponents; however, the phase veloity demonstrates muh greater variation as

a funtion of frequeny in the power law and Treeby-Cox wave equations. Furthermore, in

Figs. 3.3(e)-3.3(h), the time-domain Green's funtions for the power law wave equation and

the Treeby-Cox wave equation are nearly indistinguishable, whih suggests that these two

time-domain Green's funtions are onverging to the same result. Fig. 3.3 shows that the

shape of the time-domain Green's funtion is the same in all eight sub�gures for the power law

wave equation, where the amplitude and time-saling is di�erent in eah sub�gure. However,

the shapes of the time-domain Green's funtions for the other two frational wave equations
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hange as a funtion of distane. For instane, Fig. 3.3(a) shows that the waveforms for

the Chen-Holm and Treeby-Cox wave equations both experiene abrupt hanges at t = 0,

whereas the orresponding waveforms for these two frational wave equations are smooth at

all time points shown in Fig. 3.3(e).

3.5.3 Time-domain Green's funtions alulated for liver
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Figure 3.4: Time-domain Green's funtions saled by 4πr alulated for liver with y = 1.139,
α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s at (a) r = 100 zm, (b) r = 1 am,

() r = 10 am, (d) r = 100 am, (e) r = 100µm, (f) r = 1 mm, (g) r = 1 m, and

(h) r = 10 m with the power law (solid line), Chen-Holm (dashed line), and Treeby-Cox

(dot-dashed line) wave equations. At all distanes, the time-domain Green's funtions for

the Chen-Holm and Treeby-Cox wave equations evaluated for liver are ausal while the

time-domain Green's funtion for the power law wave equation is learly non-ausal for

r = 100 zm. Beyond about r = 100µm, the time-domain Green's funtions for the power

law wave equation and the Treeby-Cox wave equation are nearly indistinguishable, while the

time-domain Green's funtion for the Chen-Holm wave equation is onsistently distint from

the time-domain Green's funtions for the time-frational power law wave equation and the

spae-frational Treeby-Cox wave equation at all distanes.

Fig. 3.4 shows the time-domain Green's funtions multiplied by 4πr for the power law

wave equation (solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox
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wave equation (dot-dashed line) alulated for human liver with y = 1.139, c0 = 1540 m/s,

and α0 = 0.0459 Np/m/MHz

1.139
. In Fig. 3.4, the three time-domain Green's funtions

are evaluated at r = 100 zm, r = 1 am, r = 10 am, r = 100 am, r = 100µm, r = 1

mm, r = 1 m, and r = 10 m. The units de�ned for the horizontal axis in Fig. 3.4 are

yotoseonds (ys or 10−24
seonds), zeptoseonds (zs or 10−21

seonds), nanoseonds (ns), or

miroseonds (µs). The vertial dashed line desribes the time t = r/c0 in eah sub�gure. In

Fig. 3.4, the �rst row of sub�gures shows that at relatively short distanes, the time-domain

Green's funtions for the power law wave equation, the Chen-Holm wave equation, and the

Treeby-Cox wave equation are again all notieably di�erent. Fig. 3.4(a) shows that the

time-domain Green's funtion for the power law wave equation is nonausal at r = 100

zm sine this time-domain Green's funtion is learly nonzero before time t = 0. However,

the time-domain Green's funtions for the Chen-Holm wave equation and the Treeby-Cox

wave equation are both ausal as these are onsistently equal to zero for all times t ≤ 0.

Figs. 3.4(a)-3.4(d) show that, ompared to the results alulated for breast, a muh shorter

distane is required to show the nonausal behavior of the power law wave equation in liver.

The amplitudes of the Green's funtions for these three wave equations are again similar in

eah individual sub�gure, and the amplitudes again derease by a signi�ant amount in eah

suessive sub�gure. For instane, the values of the peaks in Fig. 3.4(a) are all approximately

2×1022 s−1
, and the values of the peaks in Fig. 3.4(b) are all near 3×1021 s−1

. Three distint

peaks are observed in Figs. 3.4(a)-3.4(d), while the peaks for the power law wave equation

and the Treeby-Cox wave equation are very lose together in Figs. 3.4(e)-3.4(h). In eah

sub�gure, the loation of the peak for the Chen-Holm wave equation is distint from the

peak loations for the other two wave equations. Furthermore, in Figs. 3.4(e)-3.4(h), the

time-domain Green's funtions for the power law wave equation and the Treeby-Cox wave

equation are nearly indistinguishable, and with inreasing distane, these two time-domain

Green's funtions are onverging to the same result.
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3.5.4 Amplitude and full width at half maximum (FWHM) values

in breast and liver

Figure 3.5: The (a,) amplitudes and (b,d) FWHM values of the time-domain Green's

funtions alulated for the power law, Chen-Holm, and Treeby-Cox wave equations in (a,b)

breast and (,d) liver. The amplitudes of all three time-domain Green's funtions derease

as the distane inreases while the FWHM values of all three time-domain Green's funtions

inrease as the distane inreases. The amplitudes of the time-domain Green's funtions for

all three of these frational wave equations are very similar at eah distane, and the FWHM

values are all approximately the same at longer distanes, although there is a small di�erene

in the FWHM values at shorter distanes that diminishes with inreasing distane.

Fig. 3.5 shows the amplitudes and full width at half maximum (FWHM) values for the

time-domain Green's funtions multiplied by 4πr in breast and liver for the power law wave

equation (solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave

equation (dot-dashed line), where these four sub�gures summarize the e�ets of attenuation

and dispersion in the time-domain. The initial distanes are r = 100 nm for breast and

r = 100 am for liver, and eah plot ends at r = 10 m. Figs. 3.5(a) and 3.5() indiate that the

amplitudes of the time-domain Green's funtions for these three frational wave equations,

whih are plotted on a log-log sale, derease with frequeny as the distane inreases due

to the e�et of attenuation. Also, the amplitudes of the time-domain Green's funtions for

three wave equations are all very similar at all distanes for both breast and liver. The slopes

of the amplitudes in Fig. 3.5(a) and 3.5() are −0.6677 and −0.8790, respetively, where the

absolute values of these two quantities are approximately equal to the reiproals of the power

law exponents in breast and liver, respetively. Figs. 3.5(b) and 3.5(d), whih are plotted
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on a log-log sale, show that the FWHM values of the time-domain Green's funtions for

these three frational wave equations inrease with distane due to the e�et of dispersion.

In Figs. 3.5(b) and 3.5(d), the FWHM values of the time-domain Green's funtions for these

three frational wave equations di�er slightly lose to the soure. For example, the FWHM

values of the time-domain Green's funtions for the power law, Chen-Holm, and Treeby-Cox

wave equations are 4.4 × 10−11
s, 4.1 × 10−11

s, and 3.3 × 10−11
s at r = 100 nm in breast,

respetively, and 2.0 × 10−21
s, 1.7 × 10−21

s, and 9.4 × 10−22
s at r = 100 am in liver,

respetively. At larger distanes, the FWHM values of the time-domain Green's funtions

for all three wave equations yield nearly the same result even though the shape of the

time-domain Green's funtion for the Chen-Holm wave equation is distint from the shapes

of the time-domain Green's funtions for the power law and Treeby-Cox wave equations.

Figs. 3.5(b) and 3.5(d) also show that, at r = 10 m, the FWHM values of the time-domain

Green's funtions for the power law, Chen-Holm, and Treeby-Cox wave equations are equal

to 4.4 × 10−7
s, 4.1 × 10−7

s, and 4.4 × 10−7
s in breast, respetively, and 2.2 × 10−7

s,

1.9 × 10−7
s, and 2.2 × 10−7

s in liver, respetively. In Fig. 3.5(b) and 3.5(d), the slopes of

the FWHM values are 0.6711 and 0.8825, whih are approximately equal to the reiproals

of the power law exponents in breast and liver, respetively.

3.5.5 Time-domain Green's funtions onvolved with a three yle

Hanning-weighted pulse

Fig. 3.6 shows the waveforms obtained when a three yle Hanning-weighted pulse [50, 51℄

is onvolved with the time-domain Green's funtions for the power law wave equation

(solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave equa-

tion (dot-dashed line) multiplied by 4πr evaluated at r = 1 m in breast with y = 1.5,

α0 = 0.086 Np/m/MHz

1.5
, and c0 = 1450 m/s. This �gure shows how power law attenua-

tion and phase veloity in�uene the shape of a short pulse. In Fig. 3.6, input pulses with two
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Figure 3.6: Simulated three-yle Hanning-weighted pulses with enter frequenies (a) f0 =
7.5 MHz and (b) f0 = 29 MHz onvolved with time-domain Green's funtions for the power

law, Chen-Holm, and Treeby-Cox wave equations multiplied by 4πr evaluated for breast

at r = 1 m. The onvolution results for the power law wave equation and the Treeby-Cox

wave equation are very similar while the onvolution result for the Chen-Holm wave equation

learly shows a time delay. Signi�ant attenuation and waveform spreading are observed for

all three signals in (b) produed by inputs with f0 = 29 MHz, whereas a moderate amount

of attenuation and waveform spreading is observed for all three signals in (a) produed by

inputs with f0 = 7.5 MHz.

di�erent enter frequenies, f0 = 7.5 MHz and f0 = 29 MHz, are evaluated to highlight the

di�erenes in the resulting waveforms. Fig. 3.6 indiates that the onvolution results for the

power law wave equation and the Treeby-Cox wave equation are nearly indistinguishable for

pulses with f0 = 7.5 MHz and f0 = 29 MHz while the onvolution results for the Chen-Holm

wave equation evaluated at these two frequenies ontain a signi�ant time delay beause of

the substantial di�erene in the phase veloity. In partiular, when the time delay is de�ned

as the time between the peaks, the time delay between the onvolution results for the power

law wave equation and the Chen-Holm wave equation is 35 ns in Fig. 3.6(a), and the time

delay between the onvolution results for the power law wave equation and the Chen-Holm

wave equation is 41 ns in Fig. 3.6(b), whereas the time delay between the onvolution results

for the power law wave equation and the Treeby-Cox wave equation is less than 1 ns in
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Figs. 3.6(a) and 3.6(b). In Fig. 3.6(a), the amplitudes of all three waveforms are omparable

and the waveform shapes are also similar. This indiates that the attenuation is nearly the

same in all three waveforms and that the amount of waveform spreading (dispersion) for the

propagating waveforms is also approximately the same. In Fig. 3.6(b), the amplitudes are

again similar and the amount of spreading is similar for all three waveforms. The onvolution

results for the power law wave equation and the Treeby-Cox wave equation are again nearly

indistinguishable, but the waveform shape for the Chen-Holm wave equation onvolution

result is somewhat di�erent from the other two, where the soure of this di�erene is again

the phase veloity. Also, relative to Fig. 3.6(a), the signal amplitude drops o� onsiderably

in Fig. 3.6(b), and the �ltering and spreading of the signal in the time domain is muh

more signi�ant in Fig. 3.6(b), where the initial duration of the three yle 29 MHz pulse

is 0.103µs. Sine the FWHM values are approximately equal to 0.09µs for all three of

these at r = 1 m, whih is larger than one period of the 29 MHz enter frequeny, namely

0.035µs, the attenuation and waveform spreading are more signi�ant in Fig. 3.6(b) than

in Fig. 3.6(a). In ontrast, one period of the 7.5 MHz enter frequeny is 0.133µs, whih is

larger than the FWHM values 0.09µs of all three time-domain Green's funtions at r = 1 m,

so there is muh less attenuation and waveform spreading in Fig. 3.6(a).

Fig. 3.7 shows the results obtained when a three yle Hanning-weighted pulse is on-

volved with the time-domain Green's funtions for the power law wave equation (solid

line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave equation

(dot-dashed line) multiplied by 4πr evaluated at r = 1 m for liver with y = 1.139,

α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s. The enter frequenies are again equal

to f0 = 7.5 MHz and f0 = 29 MHz. As indiated in Fig. 3.7(a), the onvolution results for

the power law wave equation and the Treeby-Cox wave equation also trak very losely

for both pulses while the onvolution result for the Chen-Holm wave equation ontains a

notieable time delay. For example, the time delay between the onvolution results for

the power law wave equation and the Chen-Holm wave equation is 44 ns in Fig. 3.7(a),
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Figure 3.7: Simulated three-yle Hanning-weighted pulses with enter frequenies (a) f0 =
7.5 MHz and (b) f0 = 29 MHz onvolved with time-domain Green's funtions for the power

law, Chen-Holm, and Treeby-Cox wave equations multiplied by 4πr evaluated for liver at

r = 1 m. The onvolution results for the power law wave equation and the Treeby-Cox wave

equation are very similar while the onvolution result for the Chen-Holm wave equation

learly shows a time delay. A moderate amount of attenuation and waveform spreading

are observed for all three signals in (b) produed by inputs with f0 = 29 MHz, whereas a

smaller amount of attenuation and waveform spreading is observed for all three signals in

(a) produed by inputs with f0 = 7.5 MHz.

and the time delay between the onvolution results for the power law wave equation and

the Chen-Holm wave equation is 52 ns in Fig. 3.7(b), whereas the time delay between the

onvolution results for the power law wave equation and the Treeby-Cox wave equation is

again less than 1 ns in Figs. 3.7(a) and 3.7(b). Fig. 3.7(a) also shows that the amplitudes

of all three waveforms are almost the same and the shapes of these waveforms are again

similar, whih indiates that the amount of attenuation and dispersion is nearly the same

in all three waveforms. Fig. 3.7 shows that there is more attenuation and dispersion for the

29 MHz signal in Fig. 3.7(b) relative to the 7.5 MHz signal in Fig. 3.7(a) and that the shape

of the three yle Hanning-weighted input pulse is still reognizable in Fig. 3.7(b).

58



3.6 Disussion

3.6.1 Numerial evaluations of the inverse 3D Fourier transform

Numerial evaluations of improper integrals with highly osillatory integrands are often

hallenging. Certain methods, suh as the Matlab �quadgk� routine, whih is based on

adaptive Gauss-Kronrod quadrature, and the Matlab �integral� routine, whih is based on

global adaptive quadrature, are able to evaluate some improper integrals. Unfortunately,

neither of these methods onsistently onverge to the orret result when applied to Eq. 3.5.

Although Filon's formula provides an e�etive method for evaluating integrals with highly

osillatory integrands, Filon's formula yields inonsistent results when applied to Eq. 3.5

beause the upper limit of integration is in�nite. However, the Pantis method [56, 57℄

solves this problem by applying Filon's formula to the integral I1 (r, t) with �nite limits of

integration, and then the �rst term of an in�nite sum approximates the ontribution from

the remaining improper integral I2 (r, t). To determine whether numerial onvergene is

ahieved at a given distane, the result is ompared to the result obtained with twie as

many Filon absissas and to a value for m that is twie as large. If the Eulidean norm of

the di�erene between the two results is within 1×10−3
, then the two results are su�iently

lose and onvergene is ahieved. For instane, at r = 1 nm for breast and r = 100 zm

for liver, 900 Filon absissas and m = 21 are su�ient to ahieve onvergene at all time

points in Figs. 3.3(a) and 3.4(a). However, at r = 100µm for liver, onvergene at all time

points is ahieved with 35,000 Filon absissas and m = 801. Convergene is ahieved at all

values of r and t for alulations in breast and liver with 70,000 absissas and m = 1601,

so instead of speifying these values at eah distane for eah material, these two values are

used throughout.

Fig. 3.8 desribes the time-domain Green's funtions saled by 4πr alulated with

the Pantis method at r = 1 m with di�erent numbers of Filon absissas and values of
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Figure 3.8: Computed time-domain Green's funtion saled by 4πr evaluated for breast at

r = 1 m omputed with the Pantis method using (a) 2,000 Filon absissas and m = 401,
(b) 2,000 Filon absissas and m = 101, and () 500 Filon absissas and m = 401.
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Figure 3.9: Computed time-domain Green's funtions saled by 4πr evaluated for breast at

r = 1 nm using 500 Filon absissas and m = 5 (a) without and (b) with the Pantis term.

m. A omparison between Figs. 3.8(a) and 3.8(b) indiates that when m is too small,

arti�ial osillations appear in the omputed Green's funtion. This problem is addressed

by inreasing the value of m. Also, a omparison between Figs. 3.8(a) and 3.8() shows that

when the number of absissas is insu�ient, the amplitude of the waveform is diminished

by a signi�ant amount relative to the orret result for the omputed time-domain Green's

funtion.

Fig. 3.9 shows the time-domain Green's funtions saled by 4πr alulated before (a) and

after (b) the Pantis method is applied at r = 1 nm with 500 Filon absissas and m = 5.
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These two waveforms math losely for larger values of t. As indiated in Fig. 3.9, the

ontribution from I2 (r, t) is partiularly important at shorter distanes, espeially when t is

lose to 0. For t ≤ 0.5 ps at r = 1 nm in breast, the ontribution from I2 (r, t) is larger than

1% of the peak value of the time-domain Green's funtion. If the I2 (r, t) term is omitted and

only the ontribution from I1 (r, t) alulated with the Filon's formula is inluded, arti�ial

osillations appear in the omputed Green's funtion for small values of t.

3.6.2 Improved approximations for the attenuation and phase ve-

loity

Figs. 3.1 and 3.2 show that the attenuation of the Chen-Holm wave equation is a-

urately represented by a power law and that the attenuation of the Treeby-Cox wave

equation is very lose to a power law. Figs. 3.1 and 3.2 also show that a more aurate

representation for the attenuation of the Treeby-Cox wave equation is ahieved when the

seond term in Eq. 3.15 is inluded. In addition, Figs. 3.1 and 3.2 demonstrate that

more aurate representation for the phase veloities of the Chen-Holm and Treeby-Cox

wave equations are obtained when a seond (Chen-Holm) or a third (Treeby-Cox) term is

inluded in the expression for c (ω). The similarities and di�erenes between these phase

veloities are further reinfored when binomial approximations are evaluated for eah ex-

pression. For instane, the phase veloity obtained from the binomial approximation to

Eq. 3.7 is c (ω) ≈ c0 + (y − 1/2)α2
0c

3
0ω

2y−2
for the Chen-Holm wave equation when ω ≪

[(y − 1/2)α2
0c

2
0]
−1/(2y−2)

, whih yields c (ω) ≈ 1450 + 9.0899 × 10−10ω when ω ≪ 1.5952 ×

1012 radians/seond (or f ≪ 2.5388 × 1011 Hz) for breast. Thus, c (ω) inreases linearly

as a funtion of frequeny when the Chen-Holm wave equation is evaluated for breast, as

indiated in Fig. 3.1(a). In Fig. 3.1(), the phase veloity of the Chen-Holm wave equation is

approximately c (ω) ≈ 1540+1.6049×10−5ω0.278
, whih holds when ω ≪ 5.1587×1028 radi-

ans/seond (or f ≪ 8.2103× 1027 Hz) for liver. When plotted on the same axes, the results

obtained from these approximations are indistinguishable from Eq. 3.7 and are therefore not
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shown. When the binomial approximation is applied to Eq. 3.14, this yields c (ω) ≈ c0 −

tan (πy/2)α0c
2
0ω

y−1 + [tan2 (πy/2)− (−y + 1/2 + (y + 1/2) tan2 (πy/2))]α2
0c

3
0ω

2y−2
for the

Treeby-Cox wave equation when ω ≪ [|tan (πy/2)|α0c0]
−1/(y−1) , and similarly, the binomial

approximation applied to the phase veloity for the power law wave equation in Eq. 2.2 yields

c (ω) ≈ c0−tan (πy/2)α0c
2
0ω

y−1+tan2 (πy/2)α2
0c

3
0ω

2y−2
when the angular frequeny satis�es

ω ≪ [|tan (πy/2)|α0c0]
−1/(y−1)

. In Fig. 3.2(a), the frequeny-dependent phase veloities

of both the Treeby-Cox wave equation and the power law wave equation for breast are

represented by the approximate expressions c (ω) ≈ 1450+1.1481×10−3ω0.5−4.0367×10−25ω

for the Treeby-Cox wave equation and c (ω) ≈ 1450 + 1.1481× 10−3ω0.5 + 9.0899 × 10−10ω

for the power law wave equation, whih hold when ω ≪ 1.5952 × 1012 radians/seond (or

f ≪ 2.5388× 1011 Hz). In Fig. 3.2(), the phase veloities of the Treeby-Cox wave equation

and the power law wave equation for liver are represented by the approximate expressions

c (ω) ≈ 1540 + 0.8864ω0.139 − 3.0994 × 10−4ω0.278
for the Treeby-Cox wave equation and

c (ω) ≈ 1540+0.8864ω0.139+5.1016×10−4ω0.278
for the power law wave equation, respetively,

when ω ≪ 2.0356×1023 radians/seond (or f ≪ 3.2398×1022 Hz). When plotted on the same

axes, the results obtained from these two approximations for c (ω) are also indistinguishable

from Eq. 3.14 and are therefore not shown. The �rst two terms in these two binomial

expressions for the phase veloity of the Treeby-Cox and power law wave equations are

the same, and the �rst term in the expression for the attenuation of the Treeby-Cox wave

equation in Eq. 3.15 is also the same as that for the power law wave equation. Thus, although

Figs. 3.1 and 3.2 indiate that there is a small but notieable di�erene in α (ω) and c (ω) for

the Treeby-Cox and power law wave equations over the frequeny range from 0.1 to 40 MHz,

muh loser agreement in α (ω) and c (ω) for the Treeby-Cox and power law wave equations

is expeted for smaller values of ω. Furthermore, the �rst terms in the series expansions for

both the attenuation and the phase veloity are the same for all three of these frational

wave equations. However, the seond term in the binomial approximation for the phase

veloity c (ω) of the Chen-Holm wave equation is quite di�erent from the seond terms in
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the binomial approximations for the other two frational wave equations, where these terms

are responsible for the signi�ant di�erenes between the phase veloities shown in Fig. 3.1

and Fig. 3.2.

3.6.3 Time-domain Green's funtions

Figs. 3.3 and 3.4 show several examples of time-domain Green's funtions for the Chen-

Holm and Treeby-Cox frational wave equations, whih are ausal for all values of the power

law exponent 1 < y ≤ 2. Figs. 3.3 and 3.4 also show that the time-domain Green's funtion

for the power law wave equation is nonausal for 1 < y ≤ 2, whih is only evident in the

time-domain at very short distanes. At longer distanes, Figs. 3.3 and 3.4 suggest that

the time-domain Green's funtions for the Treeby-Cox wave equation and the power law

wave equation onverge to the same result. Figs. 3.3 and 3.4 also show that amplitudes are

similar for all three Green's funtions in eah sub�gure. The amplitudes for all three of these

Green's funtions are proportional to the sale fator (α0r)
−1/y

, whih was also demonstrated

for the three time-frational wave equations evaluated in Zhao and MGough [53℄. The peak

values are all about the same for eah subplot in Figs. 3.3 and 3.4, whih is on�rmed by

the results in Figs. 3.5(a) and 3.5() showing the amplitudes alulated for the time-domain

Green's funtions of all three frational wave equations. Figs. 3.5(a) and 3.5() therefore

demonstrate that the attenuations are all about the same for all three of these frational

wave equations, whih is expeted sine the attenuations of all three frational wave equations

either exatly or approximately follow the power law desribed by Eq. 2.1. Figs. 3.3 and 3.4

indiate that three distint peaks are observed in the time-domain Green's funtions at

shorter distanes, and then the peak loations for the time-domain Green's funtions of the

power law wave equation and the Treeby-Cox wave equation onverge at larger distanes.

In Figs. 3.3 and 3.4, temporal spreading is observed in all three waveforms. The amount of

temporal spreading is also determined by (α0r)
1/y

, whih appears in the denominator of the

argument for the stable distribution in Eq. 2.13. The temporal spreading is also about the

same for all three of these frational wave equations, as shown in Figs. 3.5(b) and 3.5(d).
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These plots, whih desribe the FWHMs of the three frational wave equations, all math

very losely. Thus, the amplitude peaks, the temporal spreading, and the �rst terms in the

series expansions for α (ω) and c (ω) are nearly the same for all three of these frational

wave equations, but the remaining terms in the expressions for the phase veloity c (ω) of

the Chen-Holm wave equation are distint from the orresponding terms in the expressions

for the phase veloities of the other two frational wave equations. This suggests that the

attenuation α (ω) is primarily responsible for both the deay in the peak values and the

temporal waveform spreading in these three frational wave equations. The phase veloity

c (ω), partiularly the �rst non-onstant term in the binomial approximation for c (ω), is

responsible for the `skew' or symmetry/asymmetry of the time-domain Green's funtions

shown in Figs. 3.3 and 3.4.

3.6.4 Dispersion

The Chen-Holm wave equation is `dispersionless' in the sense that the phase veloity

c (ω) is nearly equal to a onstant, whih yields the symmetri time-domain Green's funtions

depited in Figs. 3.3 and 3.4, where the axis of symmetry is de�ned as t = r/c in eah subplot.

Two other examples of `dispersionless' wave equations are the Stokes and Blakstok wave

equations. Both of these also have nearly onstant phase veloity c (ω), and the time-domain

Green's funtions for both of these in the far �eld are approximately represented by Gaussian

funtions that are entered at t = r/c. When y = 2 in the power law wave equation, Eq. 2.2

redues to c (ω) = c0, whih is also dispersionless. Also, the time-domain Green's funtion

for the power law wave equation with y = 2 is a Gaussian entered at t = r/c. Thus, these

four examples of `dispersionless' lossy wave equations all possess exatly or approximately

symmetri time-domain Green's funtions.

In aoustis and medial ultrasound, the term `dispersion' has two di�erent meanings. In

some ontexts, the dispersion refers to the temporal spreading, and in others, the dispersion

desribes the frequeny-dependent phase veloity c (ω). However, the ontribution from

the attenuation α (ω), not the phase veloity, is responsible for the waveform spreading in
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all three of these frational wave equations. Thus, these two meanings for the dispersion

interestingly refer to two ompletely di�erent aspets of ultrasound propagation in soft

tissue. In partiular, the Chen-Holm wave equation, whih is dispersionless in the sense

that c (ω) is nearly onstant, demonstrates a onsiderable amount of waveform spreading as

the propagation distane inreases in the time-domain Green's funtions shown in Figs. 3.3

and 3.4 and in the FWHM values shown in Figs. 3.5(b) and 3.5(d). This is in ontrast to

the Treeby-Cox and power law wave equations, whih are also dispersive in the sense that

the phase veloity c (ω) varies with frequeny. However, all three of these frational wave

equations have approximately the same amount of dispersion in terms of the FWHM values

shown in Figs. 3.5(b) and 3.5(d).

3.6.5 Convolving time-domain Green's funtions with short pulses

Figs. 3.6 and 3.7 desribe the waveforms obtained when a three yle Hanning-weighted

pulse is onvolved with the time-domain Green's funtions for the three frational wave

equations evaluated in breast and liver. Although Figs. 3.1 and 3.2 indiate that there is a

slight di�erene in the phase veloity for the Treeby-Cox and the power law wave equations

at 7.5 MHz and 29 MHz, the time-domain Green's funtions for the Treeby-Cox and the

power law wave equations are nearly idential in Figs. 3.3(g) and 3.4(g) at r = 1 m, so the

results obtained in Figs. 3.6 and 3.7 with the Treeby-Cox and power law wave equation are

less sensitive to the di�erenes in the attenuation, whih are �ltered out after propagating

1 m. Also, the �rst two terms in the binomial expansions for the phase veloities of the

Treeby-Cox and the power law wave equations are idential. These observations, along with

the results shown in Figs. 3.3 and 3.4, suggest that the Treeby-Cox and the power law wave

equations exhibit very similar behaviors at distanes r ≥ 100µm, but at very short distanes

and for very high frequeny exitations, some di�erenes are observed. In addition, the

di�erenes between the time-domain Green's funtion for the Chen-Holm wave equation and

the time-domain Green's funtions for the other two wave equations shown in Figs. 3.3(g)
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and 3.4(g) are also re�eted in Figs. 3.6 and 3.7, whih is re�eted in the di�erenes in the

phase veloities.

3.6.6 Comparisons with time-domain Green's funtions alulated

with 3D FFTs

Time-domain Green's funtions are also alulated with 3D fast Fourier transforms

(FFTs) using the approah desribed in Treeby and Cox [61℄ and ompared to the Green's

funtions results omputed with the Pantis method shown in Figs. 3.3 and 3.4. Although

the analytial expressions evaluated with eah approah are similar, the numerial perfor-

mane of these two methods is quite di�erent. For example, a single alulation with the

Pantis method was ompleted in 35 seonds on a Mirosoft Surfae Pro with an Intel Core

m3-6Y30 CPU � 0.90 GHz, whereas the alulation using the same parameters with 3D

FFTs required ompute servers (Dual Intel Xeon E5-26xx � 2.3 GHz, 2.4 GHz, and 2.7

GHz) with 48-88 ores and 384-768 GB RAM, whih took anywhere between 15 minutes and

a few hours depending on a variety of fators inluding the number of proessors available

and memory/CPU usage of other jobs running on the ompute servers. The alulations

with the Pantis method were performed serially, whereas the alulations with 3D FFTs

were performed in parallel using `parfor' alulations in Matlab using up to 36 `workers.'

Reasonably aurate results were obtained when alulations with 3D FFTs were performed

with 512 x 512 x 512 spatial points (i.e., 512 points in eah diretion). When 3D FFTs with

more points were evaluated (only radix 2 FFTs were onsidered here), Matlab either rashed

or ran out of memory, and when 3D FFTs with fewer points were evaluated, the omputed

result usually demonstrated severe nonphysial osillations or other undesirable numerial

artifats.

We also found that time-domain Green's funtion alulations with 3D FFTs are very sen-

sitive to the grid spaing. For instane, Gibbs osillations (whih often inlude nonphysial

negative values for the time-domain Green's funtion) were ommonly observed in the results
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Figure 3.10: Time-domain Green's funtions saled by 4πr alulated for breast with y = 1.5,
α0 = 0.086 Np/m/MHz

1.5
, and c0 = 1450 m/s evaluated at (a) r = 10 nm, (b) r = 100 nm,

and () r = 1µm with the Pantis method (solid line) and the 3D FFT approah (dot-dashed

line) using dx = dy = dz = 0.5 nm in (a), (b), and ().

Figure 3.11: Time-domain Green's funtions saled by 4πr alulated for liver with y = 1.139,
α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s evaluated at (a) r = 100 zm, (b) r = 1 am,

and () r = 10 am with the Pantis method (solid line) and 3D FFT approah (dot-dashed

line) using dx = dy = dz = 50 zm in (a), (b), and ().

obtained with 3D FFTs. These osillations were redued by dereasing the spaing between

adjaent points in the omputational grid (i.e., by dereasing dx, dy, and dz). However, if

the grid spaing is too small in alulations with 3D FFTs, then this auses problems with

frequeny-domain aliasing, whih introdues errors in the `heavy tail' of the time-domain

Green's funtion. If the grid spaing is too small by a small amount, then a small to moderate

o�set from the orret value is observed in the `tail'. If the grid spaing is too small by a

larger amount, the `tail' grows with inreasing time instead of slowly deaying to zero as

shown in Figs. 3.3 and 3.4. In extreme ases, when the value of the grid spaing is muh too
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large, most if not all values in the omputed time-domain Green's funtion are muh larger

than the orret values. Usually, Gibbs osillations or errors in the `heavy tail' or both are

observed in time-domain Green's funtion alulations with 3D FFTs, although we were often

able to manually selet appropriate parameters that ahieve a reasonable trade-o� between

these two types of numerial artifats for the results shown in Figs. 3.3(a-h) and 3.4(a-d).

Examples of typial results obtained after some parameter tuning are shown in Fig. 3.10(b)

and 3.11(b), whih ontain Gibbs osillations at the very beginning and good agreement with

the Pantis results elsewhere. Interestingly, when the grid spaing is seleted to redue both

types of numerial artifats for one value of r, the time-domain Green's funtion alulated

with 3D FFTs in other loations (e.g., r/10 and 10r) onsistently yield signi�ant errors.

This e�et is shown in Fig. 3.10 with three di�erent time-domain Green's funtions alulated

with 3D FFTs evaluated for breast at r = 10 nm, r = 100 nm, and r = 1µm with the same

value for the grid spaing, namely dx = dy = dz = 0.5 nm. Fig. 3.10(b) (enter panel)

shows some Gibbs osillations in the result omputed with 3D FFTs near t = 0 and also

good agreement in the heavy tail. In Fig. 3.10(a) (left panel), the grid spaing is too large.

When the grid spaing is redued to dx = dy = dz = 0.2 nm or dx = dy = dz = 0.1 nm in

Fig. 3.10(a) (assuming that the number of spatial points is �xed and equal to 512 x 512 x

512), the agreement is muh better (not shown), although some small Gibbs osillations still

remain in the result obtained with 3D FFTs near t = 0. In Fig. 3.10() (right panel), errors

in the heavy tail are produed by frequeny-domain aliasing. The errors in Fig. 3.10() are

alleviated by inreasing the grid spaing to approximately 5 nm, whih also introdues a

small amount of ringing at time t = 0. Similar results are also observed in Green's funtion

alulations evaluated for liver at r = 100 zm, r = 1 am, and r = 10 am, whih are shown

in Fig. 3.11. Although time-domain Green's funtions alulated with 3D FFTs produe a

68



Figure 3.12: Time-domain Green's funtions saled by 4πr alulated for liver with y =
1.139, α0 = 0.0459 Np/m/MHz

1.139
, and c0 = 1540 m/s evaluated at r = 10 m with

the Pantis method (solid line) and with 3D FFTs (dot-dashed line) using (a) dx = r/100,
(b) dx = r/200, () dx = r/300, (d) dx = r/400, and (e) dx = r/500. In all simulations with

3D FFTs evaluated here, dx = dy = dz.

large grid of values, the results are only aurate in ertain loations where the grid spaing

is seleted to avoid problems with Gibbs osillations and with frequeny-domain aliasing.

We also found that the time-domain Green's funtion alulations with 3D FFTs failed

to onverge for the results shown in Figs. 3.4(e-h). This is demonstrated in Fig. 3.12 using

a time-domain Green's funtion alulated with 3D FFTs evaluated for liver at r = 10 m

with grid spaings (dx = dy = dz) of 1 mm, 500µm, 333µm, 250µm, and 200µm. The same

types of problems are also observed for r = 100µm, r = 1 mm, and r = 1 m. Thus, the

Pantis method is also useful for determining whih parameter ombinations yield reasonable

results in time-domain Green's funtion alulations with 3D FFTs.

3.7 Conlusion

Phase veloities and attenuation values were evaluated over a range of ultrasound frequen-

ies, and time-domain Green's funtions were alulated for the Chen-Holm, Treeby-Cox,

and power law wave equations in breast and liver. In addition, the amplitudes and FWHM

values of the time-domain Green's funtions for these three frational wave equations were

alulated, and three-yle Hanning-weighted pulses at two di�erent enter frequenies were

onvolved with the time-domain Green's funtions for three frational wave equations. An

additional term was derived for the power series that desribes c (ω) for the Chen-Holm
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wave equation and additional terms were derived for the power series that desribe c (ω) and

α (ω) for the Treeby-Cox wave equation, where these new power series more losely math

the results obtained by numerially evaluating the dispersion relation than the previous

approximations. Causality was also demonstrated analytially in the time domain for both

the Chen-Holm and Treeby-Cox wave equations. The Pantis method was introdued as

an e�etive approah for evaluating the highly osillatory improper integrals that arise

in numerial alulations of the time-domain Green's funtions for the Chen-Holm and

Treeby-Cox spae-frational wave equations. The time-domain Green's funtions for all three

time-domain Green's funtions show a similar amount of temporal spreading and amplitude

redution, but the time-domain Green's funtions for the Treeby-Cox and power law wave

equations are skewed whereas the time-domain Green's funtion for the Chen-Holm wave

equation is symmetri. The Chen-Holm spae-frational wave equation is non-dispersive

in the sense that the phase veloity is nearly onstant, but the Chen-Holm wave equation

is also dispersive in the sense that waveform spreading is learly evident in the omputed

time-domain Green's funtions. The Treeby-Cox wave equation is dispersive in the sense that

the phase veloity is non-onstant and also in the sense that waveform spreading is learly

evident in the omputed time-domain Green's funtions. The Chen-Holm and Treeby-Cox

spae-frational wave equations demonstrate approximately the same amount of attenuation

and waveform spreading, but the phase veloities, time-domain Green's funtions, and onvo-

lution results obtained with these time-domain Green's funtions all di�er signi�antly. Also,

although the attenuation and phase veloity for the Treeby-Cox and power law wave equation

di�er slightly, the time-domain Green's funtions and the onvolution results obtained with

the Green's funtions for these two frational wave equations onverge to the same result.
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Chapter 4

Perfetly mathed layers for nonlinear ul-

trasound simulations with the KZK equa-

tion

4.1 Introdution

High intensity pulses are often used in appliations of therapeuti ultrasound. Linear

assumptions do not always predit the orret results in these ases. The attenuation and

di�ration are also important in models of nonlinear ultrasound propagation. Thus, a model

ombining di�ration, attenuation, and nonlinearity is needed to analyze the propagation of

ultrasoni waves.

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [62, 63℄ is a paraboli approx-

imation to the Westervelt equation. Lee and Hamilton [17℄ propose an operator-splitting

based numerial algorithm to solve the transient KZK equation numerially in the time do-

main, using a irular or spherially foused traduer. Cleveland [18℄ expands the appliation

of this model by inluding the e�et of relaxation. An approah for simulating nonlinear

ontinuous wave (CW) pressure �elds with the KZK equation is presented by Berntsen [19℄.

The validation of the KZK equation for axisymmetri ultrasound beams is evaluated by

Soneson [64℄. Curra and Filonenko [65, 66℄ numerially alulate solutions for the CW KZK

equation to model heat deposition in biologial tissue. Huijssen [67℄ ompares the Iterative
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Nonlinear Contrast Soure (INCS) method with the KZK model for the omputation of

nonlinear, wide-angle, pulsed aousti �elds.

Attempts to alulate solutions to the KZK equation with �nite di�erene simulations,

however, are limited by the implementation of the boundary onditions. Sine there is no

absorbing boundary layer implemented in the KZK models of Berntsen [19℄ or Lee [17℄, large

grids are needed for these alulations. In eletromagnetis, this problem is addressed with

absorbing boundary onditions or perfetly mathed layers. For example, Mur [68℄ proposes

an aurate absorbing boundary ondition for both 2D and 3D time-domain eletromagneti-

�eld equations. Berenger [69℄ introdues a perfetly mathed layer (PML) for �nite di�erene

time domain (FDTD) simulations of eletromagneti waves, whih is validated by Katz [70℄

in the 2D ase and then extended to the 3D ase. The PML is applied to aousti models with

di�erent oordinate systems by Yuan and Liu [71, 72, 73℄. Abarbanel and Hu [74, 75℄ have

developed PML equations for 2D linearized Euler equations. Sheu [76℄ applies a PML to a

photoaoustis model in axisymmetri ylindrial oordinates. Based on �rst-order auxiliary

di�erential equations, Ma [77℄ proposes an unsplit PML for a seond-order aousti wave

equation in 3D Cartesian oordinates. Ehrlih [78℄ ombines the aousti wave propagator

and a PML to model aousti propagation in the time domain. Pinton [79℄ implements

a PML for a 3D nonlinear attenuating full-wave model in the time domain. Researh on

3D aousti sattering problems has also been performed in both the time and frequeny

domains by Kaltenbaher [80℄, Chen [81℄, Alles [82℄, and Katsibas [83℄. Duru [84℄ also uses

a PML in a 2D salar wave equation for heterogeneous and layered media.

In the following setion, a perfetly mathed layer implemented through terms from the

power law wave equation with y = 0 and y = 2 is derived for the transient and CW KZK

equations. Arti�ial attenuation is introdued to redue re�etions from the radial boundary.

Numerial validations are demonstrated for both linear and nonlinear media. With these

new PML implementations, the size of the omputational grid is redued, whih aelerates

numerial solutions of the KZK equation.
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4.2 Theory

4.2.1 The 2D wave equation with power law attenuation

The linear lossless wave equation in a two-dimensional ylindrial oordinate system is

expressed as

∂2p

∂t2
= c20

(

∂2p

∂z2
+

1

r

∂

∂r

(

r
∂p

∂r

))

. (4.1)

When the e�et of attenuation is introdued through the power law wave equation, the wave

equation in 2D ylindrial oordinates beomes

(

∂2p

∂z2
+

1

r

∂

∂r

(

r
∂p
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))

− 1

c20

∂2p

∂t2
− 2α0

c0 cos (πy/2)

∂y+1p

∂ty+1
− α2

0

cos2 (πy/2)

∂2yp

∂t2y
= 0. (4.2)

For power law exponents y = 0 and y = 2, the power law wave equation in Eq. 4.2 is

expressed as

∂2p
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= c20

(

∂2p
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+

1
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∂
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(

r
∂p
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− α2

0c
2
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and

∂2p

∂t2
= c20

(

∂2p

∂z2
+

1

r

∂

∂r

(

r
∂p

∂r
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+ 2α0c0
∂3p

∂t3
− α2

0c
2
0

∂4p

∂t4
y = 2. (4.4)

4.2.2 Coordinate strething

The analytial expressions that desribe perfetly mathed layers are often derived from

an augmented model for the gradient that strethes eah oordinate aording to

∇ = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
, (4.5)
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where sx, sy, and sz desribe the e�ets of oordinate strething in all three diretions. In

the x- diretion, the oordinate strething variable is de�ned as

sx =

(

1 +
σ (x)

jω

)

, (4.6)

and similar expressions are de�ned in the y- and z- diretions. The lossless Helmholtz

equation in axisymmetri ylindrial oordinates is expressed as

1

r

∂

∂r

(

r
∂P

∂r

)

+
∂2P

∂z2
+ k2P = 0, (4.7)

where the wavenumber is k = ω
c0
and P is the pressure �eld. Applying oordinate strething

to Eq. 4.7 in both the radial and axial diretions,

∂
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1 + σr(r)
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)
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∂r
,

1
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,
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∂
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, (4.8)

yields

1
(
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)2

(
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+
∂2P
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)

+
1

(

1 + σz(z)
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∂2P
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+ k2P = 0, (4.9)

whih beomes
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(4.10)

after eah term is multiplied by

(

1 + σz(z)
jω

)2 (

1 + σr(r)
jω

)2

. Multiplying Eq. 4.10 by (jω)2 and

inverse Fourier transforming in time, the result is the lossy time-domain wave equation

(

∂
∂t
+ σz (z)

)2
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1
r
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+ ∂2p
∂r2
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+ σz (z)

)2 1
c20
p = 0,

(4.11)

whih attenuates wave propagation in the radial and axial diretions.
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4.2.3 The KZK equation

The Westervelt equation is a full wave nonlinear model that ombines the e�ets of

di�ration, attenuation, and nonlinearity

∇2p− 1

c20

∂2p

∂2t
+

2α0

c0

∂3p

∂t3
+

β

ρ0c40

∂2p2

∂t2
= 0. (4.12)

After applying a paraboli approximation and a hange of variables, Eq. 4.12 redues to the

KZK equation, whih is de�ned in ylindrial oordinates (r, z) as

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p+ α0

∂3p

∂τ 3
+

β

2ρ0c30

∂2p2

∂τ 2
, (4.13)

where p is the pressure, c0 is the sound speed, ρ0 is the density, α0 is the attenuation

onstant, and β is the nonlinearity parameter. The propagation diretion of the sound beam

is aligned with the z-axis, and ∇2
⊥

= ∂2

∂r2
+ 1

r
∂
∂r

is the radial omponent of the Laplaian

operator in ylindrial oordinates. A detailed derivation of the KZK wave equation is given

in Appendix A. Due to axial symmetry, the spatial variables for the KZK equation are (r, z)

in the ylindrial oordinate system. On the right-hand side of Eq. 4.13, the three terms from

left to right represent the e�ets of di�ration, attenuation, and nonlinearity. Similar to the

Westervelt equation, there is no analytial solution for the KZK equation. Thus, the KZK

model is evaluated numerially. Although the KZK equation is only valid in the far �eld of

the paraxial region, this model is still ommonly applied to simulations of medial ultrasound

due to the omputational advantages of the paraboli approximation. As developed by Lee

and Hamilton [17℄ and implemented in the KZK Texas ode [17℄, the �nite di�erene method

numerially solves the transient KZK equation with operator splitting to separately aount

for these three e�ets at eah step.
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4.2.4 PML derivation for the KZK equation

Strethed oordinates for the nonlinear lossy KZK equation

Sine waves propagate in the positive z diretion but not in the negative z diretion with

the KZK model, there is no need for a PML in the axial diretion. Eq. 4.13 in the frequeny

domain is given by

jω
∂P

∂z
=
c0
2
∇2

⊥
P + α0 (jω)

3 P +
β

2ρ0c
3
0

(jω)2 P 2
(4.14)

and when oordinate strething is applied to the KZK equation for a PML in the radial

diretion, this yields
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(4.15)

After expanding and inverse Fourier transforming with respet to time, the result is
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(4.16)

whih is a hanllenging to evaluate with �nite di�erene alulations, in part due to the

integral on the left-hand side.

Strethed oordinates for the lossless linear KZK equation

When only the ontributions from the di�ration terms are onsidered, the lossless linear

KZK equation is expressed in the frequeny domain as

jω
∂P

∂z
=
c0
2
∇2

⊥
P. (4.17)
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If oordinate strething for a PML is applied in the radial diretion, Eq. 4.17 then beomes
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After expanding and inverse Fourier transforming,
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whih also ontains an integral on the left-hand side.

Combining the power law equation with the KZK equation

When Eq. 4.6 is applied to the 1D wave equation,
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whih, after substituting αPML = c0 σ (x), is reognized as the 1D power law wave equation

with y = 0. This suggests that there is another possible approah for implementing a PML

that utilizes the power law equation. The 3D power law wave equation for the y = 0 ase is

expressed as

∇2p =
1

c20

∂2p

∂t2
+
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c0

∂p

∂t
+ α2

PMLp. (4.21)

After applying a paraboli approximation and a hange of variables in an axisymmetri

ylindrial oordinate system, Eq. 4.21 beomes
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Similarly, the 3D power law wave equation for the y = 2 ase is expressed as

∇2p =
1

c20

∂2p

∂t2
− 2αPML

c0

∂3p

∂t3
+ α2

PML

∂4p

∂t4
, (4.23)
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and the orresponding expression that is obtained from a paraboli approximation and a

hange of variables in an axisymmetri ylindrial oordinate system is

∂2p

∂z∂τ
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c0
2
∇2

⊥
p+ αPML

∂3p

∂τ 3
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2
α2
PML

∂4p

∂τ 4
. (4.24)

Eqs. 4.22 and 4.24 provide two related yet di�erent approahes for de�ning a perfetly

mathed layer for the transient KZK equation, where the distribution of αPML values an

vary spatially.

Using the power law wave equation with y = 0 (two terms) for the

PML

Sine the KZK equation is a one-way wave equation in the axial diretion, a PML is only

needed in the radial diretion. This suggests that strethed oordinates are not required for

the derivation of the PML and that the power law wave equation with y = 0 or y = 2 in

the radial diretion provide e�etive expressions for PMLs. This indiates that the strethed

oordinate system is not entral to the derivation of an e�etive PML. The power law wave

equation is all that is required, ombined with the onept introdued by Berenger [69℄ that

the PML should be several ells thik with a slowly varying lossy impedane that attenuates

the inident wave with minimal re�etions. By applying

1
c0

∂
∂t

→ 1
c0

∂
∂t

+ αPML to the wave

equation in the time domain and utilizing the paraboli approximation in retarded time, one

suh PML for the transient KZK equation is obtained from

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p− αPML

∂p

∂τ
− c0

2
α2
PMLp (4.25)

for y = 0. For numerial alulations, the expression in Eq. 4.25 is solved with the Thomas

algorithm.
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Using the Telegrapher's equation y = 0 (one term) for the PML

For the y = 0 ase, the seond term

c0
2
α2
PMLp an be negleted when the value of

c0
2
α2
PML

is small. Thus, another expression that desribes a PML for the transient KZK is given by

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p− αPML

∂p

∂τ
, (4.26)

whih is the retarded time paraboli approximation to the 3D Telegrapher's equation.

Using the power law wave equation with y = 2 (two terms) for the

PML

The key to an e�etive absorbing boundary layer appears to be independent of the

strethed oordinate system and is muh more strongly in�uened by other fators suh

as the slowly inreasing attenuation that minimizes re�etions at the interfae between any

two adjaent ells in the omputational grid. This motivates the onstrution of a third

PML based on the retarded time paraboli approximation to the power law wave equation

with y = 2, whih is given by

∂2p

∂z∂τ
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c0
2
∇2

⊥
p+ αPML

∂3p

∂τ 3
− c0

2
α2
PML

∂4p

∂τ 4
. (4.27)

Numerially, the �rst term on the right hand side ombined with the original attenuation

term is solved with the Thomas algorithm. The addition of the seond attenuation term

requires a penta-diagonal matrix algorithm.

Using the Blakstok wave equation with y = 2 (one term) for the

PML

Similar to the y = 0 ase, the seond attenuation term is negligible for small αPML when

y = 2, whih enables a fourth PML that is very losely related to the KZK equation. This
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PML evaluates a straightforward modi�ation of the KZK equation,

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p+ αPML

∂3p

∂τ 3
, (4.28)

whih is the retarded time paraboli approximation to the Blakstok wave equation.

4.3 Methods

4.3.1 Error alulations

To validate these PMLs for the KZK equation, omparisons between simulations with

and without PMLs that inrease the radial boundary limit to avoid re�etions are evaluated.

The formula for alulating the di�erene between these two results is

D(r, z) =
max|p(r, z)− pref(r, z)|

max|pref |
, (4.29)

where the denominator is the maximum value of the referene pressure evaluated at all spatial

and temporal points, and the numerator is the maximum value of the di�erene between the

referene and simulation results evaluated at one spatial point for all time points. The

di�erene D(r, z) is dependent on both radial and axial oordinates.

4.3.2 Finite di�erene alulations with the KZK equation

Numerial alulations with the KZK equation are often evaluated with the �nite di�er-

ene method. The pressure �eld is �rst disretized in both the radial and axial diretions,

after whih �nite di�erene alulations are evaluated layer-by-layer in the axial diretion.

Within eah layer, the e�ets of di�ration, attenuation, and nonlinearity are alulated

separately through operator splitting. For these alulations, two types of �nite di�erene

alulations are evaluated. For the �rst several iterations, the impliit bakward Euler �nite

di�erene method (IBFD) is used, after whih the Crank-Niolson �nite di�erene method

(CNFD) is applied. Both of these methods are numerially stable, and the CNFD method
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results in a smaller loal trunation error than the IBFD method with the same step size.

However, the CNFD method is sensitive to osillations, whih means that the omputed

result an ontain spurious osillations, espeially in the region lose to the edge of the

transduer where there is a disontinuity in pressure amplitude. Thus, the IBFD method

is applied as a low pass �lter in this region. For these reasons, these two �nite di�erene

methods are ombined for the numerial evaluations of the KZK equation.

For the transient KZK equation, three e�ets are alulated separately within one spatial

step using operator splitting. Di�ration e�ets are modeled by

∂p

∂z
=

ˆ τ

−∞

c0
2

(

∂2

∂r2
+

1

r

∂

∂r

)

pdτ ′, (4.30)

whih is obtained after the nonlinear and loss terms are negleted and the remaining terms

are integrated on both sides. The indiies of the �nite di�erene alulation in the temporal,

radial, and axial diretions are i, j, and k. Thus, �nite di�erene approximations for Eq. 4.30

are de�ned as

∂p

∂z
→

pij,k+1 − pij,k
(△z)k

,
1

r

∂p

∂r
→

pij+1,k+1 − pij−1,k+1

2j (△r)2
, (4.31)

∂2p

∂r2
→

pij+1,k+1 − 2pij,k+1 + pij−1,k+1

(△r)2
, (4.32)

ˆ τ

τmin

f(τ ′)dτ ′ → (△τ)
[

i−1
∑

m=1

fm +
1

2
(f0 + fi)

]

. (4.33)

When only the e�et of attenuation is onsidered, Eq. 4.13 beomes

∂p

∂z
= α0

∂2p

∂τ 2
. (4.34)

Similarly, the �nite di�erene approximations for Eq. 4.34 are de�ned as

∂p

∂z
→

pij,k+1 − pij,k
(△z)k

,
∂2p

∂τ 2
→

pi+1
j,k+1 − 2pij,k+1 + pi−1

j,k+1

(△τ)2
. (4.35)
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When only the nonlinear e�et is onsidered, Eq. 4.13 redues to

∂p

∂z
=

β

ρ0c30
p
∂p

∂τ
. (4.36)

As indiated by Lee and Hamilton [17℄, the solution to Eq. 4.36 is given by

pij,k+1 =
pij,k

1−
[(

pi+1
j,k − pij,k

)

/△τ
]

β (△z)k / (ρ0c30)
, pij,k ≥ 0 (4.37)

and

pij,k+1 =
pij,k

1−
[(

pij,k − pi−1
j,k

)

/△τ
]

β (△z)k / (ρ0c30)
, pij,k ≤ 0. (4.38)

For ontinuous wave propagation, the aousti pressure is often desribed as series expansion

of di�erent harmonis

p (τ, r, z) =

Nmax
∑

n=−Nmax

Cn (r, z) e
−jn2πf0τ , (4.39)

where f0 is the fundamental frequeny, Nmax is the total number of harmonis, and Cn (r, z) is

the omplex amplitude of the n-th harmoni. When Eq. 4.39 is ombined with the transient

KZK equation, the amplitudes are expressed as

dCn(r,z)
dz

= j c0
4πnf0

(

∂2Cn(r,z)
∂r2

+ 1
r
∂Cn(r,z)

∂r

)

− α0(2πnf0)
2Cn (r, z)

− jn2πf0β
2ρ0c30

Nmax
∑

m=−Nmax

Cm (r, z)Cn−m (r, z) ,

n = ±1,±2, ...,±Nmax.

(4.40)

In Eq. 4.40, all of the harmonis interat through nonlinear mixing. The derivatives in

Eq. 4.40 are also de�ned in Eq. 4.31, as for the transient KZK equation.

4.3.3 Muir's method

To establish the auray of the numerial results alulated with linear �nite di�erene

implementations of the KZK wave equation, Muir's method is utilized as a referene. Other
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methods for validation are given in Appendix B. Muir's method, whih is valid for small

aperture angle and large ka, is e�etive for alulating the linear pressure �eld generated by

a spherially foused ontinuous-wave soure. Muir's formula for the pressure distribution

in ylindrial oordinates predited by the linear lossless KZK equation is given by

P (r, z) =
−jkp0exp(jkz + jk r2

2z
)

z

a
ˆ

0

exp

[

jk (r′)2

2

(

1

R
− 1

z

)

]

J0

(

k
rr′

z

)

r′dr′ (z 6= R) ,

(4.41)

P (0, z) =
p0Rexp(jkz)

(R− z)

{

1− exp

[

j
ka2

2

(

1

z
− 1

R

)]}

(z 6= R) , (4.42)

P (r, R) = −j ka
2

2R
p0exp

(

jkz + jk
r2

2R

)

2J1 (kar/R)

kar/R
, (4.43)

P (0, R) = −j ka
2

2R
p0exp (jkR) , (4.44)

where p0 is the pressure at the soure, k = ω/c is the wavenumber, a is the aperture radius,

R is the radius of urvature, and J0 (·) and J1 (·) are Bessel funtions of the �rst kind of

order 0 and 1, respetively.

Muir's method evaluates a single integral when alulating the o�-axis pressure. For

transient alulations, a Fourier transform operation is required before applying Muir's

method. When alulating the transient pressure, the input pulse on the surfae of the

transduer is expressed as p0(t) =
N
∑

n=1

Pne
jnω0t

, where Pn is the pressure for frequeny sample

n, ω0 is the fundamental frequeny, and N is the number of frequeny samples. Thus, for

frequeny sample n with wavenumber kn, Muir's method in Eqs. 4.41-4.44 alulates the

pressure distribution in 2D spae for eah frequeny omponent with

Pn(r, z) = P (r, z, kn) n = 1, 2, 3..N. (4.45)
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Then, after evaluating the inverse Fourier transform in time, the solution in the time domain

is

p(r, z, t) =
N
∑

n=1

Pn(r, z)e
jnω0t. (4.46)

Compared to �nite di�erene KZK alulations, Muir's method is more time-onsuming

for transient alulations beause of the large number of frequenies that are neessary

to reonstrut the waveforms at eah spatial point. However, Muir's method provides an

aurate referene for validating solutions to the linear lossless KZK equation, whih is useful

for debugging �nite di�erene alulations.

4.4 Results

These simulations were performed on a ompute server (Dual Intel Xeon E5-2670 � 2.5

GHz) with 256 GB RAM. The KZK simulation evaluates a �nite di�erene ode written in

C++/Mex that runs on 64-bit MATLAB R2017a. Simulations for both linear and nonlinear

media are evaluated. The transient input pressure, whih is a one-yle Gaussian weighted

sine wave, is generated by a spherially foused transduer. The input pressure on the

surfae of the transduer is P0 = 1.5 MPa, the aperture radius is a = 1.5 m, the radius of

urvature is R = 6 m, the density is ρ = 1000 kg/m3
, and the sound speed is c0 = 1500 m/s.

The enter frequeny of the input pressure is f = 1MHz, and the wavelength at the enter

frequeny is λ = 0.15 m. The sampling frequeny is fs = 200 MHz. The �nite di�erene

KZK alulation that is employed as a referene utilizes a radial boundary at rmax = 9 m,

and the spatial step size is λ/40. The KZK simulation with a PML utilizes a radial boundary

at rmax = 3 m. For the KZK simulation with the PML, the PML starts at r = 2.25 m and

ends at rmax = 3 m. The thikness of the layer is therefore equal to 0.75 m.

4.4.1 KZK simulations for a linear lossless medium

KZK simulations are �rst performed without attenuation or nonlinearity. Fig. 4.1 om-

pares two on-axis waveforms at z = 6 m, where one is produed by KZK �nite di�erene
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Figure 4.1: Comparison of simulated on-axis waveforms obtained from �nite di�erene KZK

alulations (solid line) and Muir's method (dashed line) evaluated in a linear lossless medium

at z = 6 m.

alulations (red solid line) and the other is generated by Muir's method (blue dashed line).

Fig. 4.1 demonstrates that the results obtained with these two methods math losely at all

temporal points in this loation. Also, the diret wave and the edge wave have merged in

this loation.

Fig. 4.2(a) ontains the on-axis waveforms evaluated at z = 6 m using �nite di�erene

KZK alulations without a PML for a radial boundary at rmax = 6a and the KZK simulation

without a PML for a radial boundary at rmax = 2a. These two waveforms math losely

for t < 48µs. Near t = 50µs, the re�etion from the radial boundary at rmax = 2a arrives,

whih indiates that either the boundary at rmax = 2a is too lose or that a PML is needed.

Fig. 4.2(b) ompares two other on-axis waveforms evaluated at z = 6 m alulated with

two di�erent PMLs that start at r = 2.25 m to the result without a PML that de�nes the

radial boundary at rmax = 6a. The blue solid line desribes the result alulated with a PML

(y = 0 with one term) and the green solid line gives the result alulated with another PML
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Figure 4.2: Comparison between on-axis waveforms generated by �nite di�erene KZK

alulations in a linear lossless medium at z = 6 m with and without a PML using di�erent

radial boundaries. (a) KZK simulation without a PML that de�nes a radial boundary at

rmax = 2a (blak solid line) and at rmax = 6a (red dashed line). (b) KZK simulation without

a PML that de�nes a radial boundary at rmax = 6a (red dashed line), with a y = 0 single

term PML that de�nes a radial boundary at rmax = 2a (blue solid line), and with a y = 2
single term PML that de�nes a radial boundary at rmax = 2a (green solid line).
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(a) (b)

() (d)

Figure 4.3: Simulated 2D pressure �eld and di�erenes between KZK alulations without

and with PMLs, where the radial boundaries are loated at rmax = 9 m and at rmax = 3 m
in a linear lossless medium. (a) The peak pressure distribution for the KZK simulation

without a PML that de�nes a radial boundary at rmax = 9 m. (b) The di�erene between

the KZK simulation without a PML that de�nes a radial boundary at rmax = 9 m and the

KZK simulation without a PML that de�nes a radial boundary at rmax = 3 m. () The

di�erene between the KZK simulation without a PML that de�nes a radial boundary at

rmax = 9 m and the KZK simulation with a y = 0 single term PML that de�nes a radial

boundary at rmax = 3 m. (d) The di�erene between the KZK simulation without a PML

that de�nes a radial boundary at rmax = 9 m and the KZK simulation with a y = 2 single

term PML that de�nes a radial boundary at rmax = 3 m.
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(y = 2 with one term). Fig. 4.2(b) shows that the re�etion from the boundary is removed

by eah of these PMLs.

Fig. 4.3(a) shows the 2D peak pressure distribution alulated with �nite di�erene KZK

alulations without a PML that de�nes a radial boundary at rmax = 9 m (rmax = 6a),

whih is su�iently large so that radial re�etions are avoided in most loations. The

on-axis foal peak is loated at about z = 6 m. The maximum pressure value is equal to

12 MPa. Fig. 4.3(b) shows the 2D di�erene between the �nite di�erene KZK alulation

without a PML for a radial boundary de�ned at rmax = 9 m and the �nite di�erene KZK

alulation without a PML for a radial boundary de�ned at rmax = 3 m. The peak value

of the di�erene, whih is about 10%, is loated on-axis in the far �eld region. O�-axis, the

di�erene is muh smaller. Fig. 4.3() shows the 2D di�erene between the �nite di�erene

KZK alulation without a PML that de�nes a radial boundary at rmax = 9 m and the �nite

di�erene KZK alulation with a y = 0 single term PML that de�nes a radial boundary at

rmax = 3 m. The peak value of the di�erene, whih is now only about 0.3%, is again loated

on-axis in the far �eld region. There is also some di�erene o�-axis in the far �eld region in

Fig. 4.3() due to re�etions that arrive later and/or a small amount of mismath in the PML.

Fig. 4.3(d) shows the 2D di�erene between the �nite di�erene KZK alulation without a

PML for a radial boundary de�ned at rmax = 9 m and the �nite di�erene KZK alulation

with a single term y = 2 PML that de�nes a radial boundary de�ned at rmax = 3 m. The

peak value of the di�erene, whih is about 0.5% for this PML, is also loated on-axis in

the far �eld region. Also, some small di�erenes appear on-axis and o�-axis in the far �eld.

Comparisons between Fig. 4.3() and Fig. 4.3(d) indiate slightly better performane for the

y = 0 single term PML.

4.4.2 KZK simulations for a nonlinear lossy medium

Simulations are also performed with the attenuation and nonlinearity values for water,

whih are α0 = 2.2 × 10−3
dB/m/MHz

2
and β = 3.5. Fig. 4.4(a) shows a omparison

between the on-axis waveforms evaluated at z = 6 m obtained from the �nite di�erene
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Figure 4.4: Comparison between on-axis waveforms generated by �nite di�erene KZK

alulations in a nonlinear medium at z = 6 m with and without a PML for di�erent

radial boundaries. The attenuation parameter is α = 2.2 × 10−3
dB/m/MHz

2
, and the

nonlinearity parameter is β = 3.5. (a) KZK simulation without a PML that de�nes a radial

boundary at rmax = 2a (blak solid line) and at rmax = 6a (red dashed line). (b) KZK

simulation without a PML that de�nes a radial boundary at rmax = 6a (red dashed line),

with a y = 0 single term PML that de�nes a radial boundary at rmax = 2a (blue solid line),

and with a y = 2 single term PML that de�nes a radial boundary at rmax = 2a (green solid

line).
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KZK simulation without a PML that de�nes a radial boundary at rmax = 6a (red dashed

line) and the �nite di�erene KZK simulations without a PML that de�nes a radial boundary

at rmax = 2a. When nonlinearity is inluded, the waveforms are tilted where a shokwave

is formed in the foal zone. The small di�erene near t = 50µs in the �nite di�erene

KZK simulation without the PML is again aused by the re�etion at the radial boundary.

Fig. 4.4(b) shows a omparison between the on-axis waveforms at z = 6 m for the �nite

di�erene KZK simulation without a PML that de�nes a radial boundary at rmax = 6a and

the �nite di�erene KZK simulation with two di�erent PMLs that de�ne a radial boundary

at rmax = 2a. The blue solid line shows the result with a y = 0 single term PML and the

green solid line desribes the result with a y = 2 single term PML. Fig. 4.4(b) indiates that

the re�etion from the boundary is removed by eah of these PMLs.

Fig. 4.5 shows the simulated 2D pressure �eld and the di�erenes between KZK alula-

tions without and with PMLs in a nonlinear medium. Fig. 4.5(a) shows the 2D peak pressure

distribution alulated with the �nite di�erene implementation of the KZK equation without

a PML that de�nes a radial boundary at rmax = 9 m. The foal peak is loated at about

z = 6 m on axis, and the maximum pressure value is equal to 12 MPa. Fig. 4.5(b) shows

the 2D di�erene between the �nite di�erene KZK alulation without a PML that de�nes

a radial boundary at rmax = 9 m and the �nite di�erene KZK alulation without a PML

that de�nes a radial boundary at rmax = 3 m. The peak value of the di�erene, whih is

about 10%, is loated on-axis in the far �eld region. Fig. 4.5() shows the 2D di�erene

between the �nite di�erene KZK alulation without a PML that de�nes a radial boundary

at rmax = 9 m and the �nite di�erene KZK alulation with the y = 0 single term PML

that de�nes a radial boundary at rmax = 3 m. The peak value of the di�erene, whih

is about 0.3%, is again loated on-axis in the far region. There is also some di�erene in

the far o�-axis region in Fig. 4.5(). Fig. 4.5(d) shows the 2D di�erene between the �nite

di�erene KZK alulation without a PML that de�nes a radial boundary at rmax = 9 m

and the �nite di�erene KZK alulation with the y = 2 single term PML that de�nes a
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(a) (b)

() (d)

Figure 4.5: Simulated 2D pressure �eld and di�erenes between KZK alulations without

and with PMLs, where the radial boundaries are loated at rmax = 9 m and at rmax = 3 m
in a nonlinear medium. The attenuation parameter is α = 2.2× 10−3

dB/m/MHz

2
and the

nonlinearity parameter is β = 3.5. (a) The peak pressure distribution for the KZK simulation

without a PML that de�nes a radial boundary at rmax = 9 m. (b) The di�erene between

the KZK simulation without a PML that de�nes a radial boundary at rmax = 9 m and the

KZK simulation without a PML that de�nes a radial boundary at rmax = 3 m. () The

di�erene between the KZK simulation without a PML that de�nes a radial boundary at

rmax = 9 m and the KZK simulation with a y = 0 single term PML that de�nes a radial

boundary at rmax = 3 m. (d) The di�erene between the KZK simulation without a PML

that de�nes a radial boundary at rmax = 9 m and the KZK simulation with a y = 2 single

term PML that de�nes a radial boundary at rmax = 3 m.
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radial boundary at rmax = 3 m. The peak value of the di�erene, whih is about 0.5%

for this PML, is also loated on-axis in the far �eld region. Again, a smaller di�erene is

observed in Fig. 4.5(d) than in Fig. 4.5(), whih indiates slightly better performane for

the y = 0 single term PML.

4.5 Disussion

4.5.1 Computation time

Figs. 4.3 and 4.5 indiate that, for both linear and nonlinear KZK simulations, the PMLs

with y = 0 and y = 2 are e�etive in suppressing re�etions from the radial boundary,

espeially in the foal zone. The hoie of αPML balanes the e�et of impedane mismath

when αPML is large versus the e�et of boundary re�etions when αPML is too small. For

eah type of PML, our experiene is that there is no signi�ant di�erene in the PML when

only one or two terms are onsidered in the power law wave equation. Thus, to further

aelerate these KZK simulations, only one term is inluded in eah simulation for the y = 0

and y = 2 PMLs. The omputation time for the KZK �nite di�erene alulation without

a PML that de�nes a radial boundary at rmax = 9 m shown in Fig. 4.3 is 2807s. For KZK

simulations using a y = 0 single term PML that de�nes a radial boundary at rmax = 3 m,

the omputation time is 913s. For KZK simulations using a y = 2 single term PML that

de�nes a radial boundary at rmax = 3 m, the omputation time is 1028s.

4.5.2 Continuous wave (CW) KZK alulations

The same approah for de�ning a PML is also appliable to ontinuous-wave KZK

simulations, as desribed in Appendix A. For the ontinuous wave KZK equation, a PML

is only neessary in the radial diretion. The strength of the PML, as implemented here,

inreases proportionally to the radial diretion ubed. The e�etiveness of the y = 0 and y =

2 single term PMLs is also demonstrated for CW alulations with the spherially-foused

transduer evaluated in setion 4.4. The input pressure on the surfae of the transduer
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Figure 4.6: On-axis omparisons between ontinuous wave �nite di�erene KZK simulations

with the results alulated with Muir's method evaluated in a linear lossless medium. (a) The

result obtained with Muir's method (red solid line) and the �nite di�erene KZK simulation

results without a PML that de�nes a radial boundary at rmax = 10.5 m (blue dashed line).

(b) The result with Muir's method (red solid line) and the �nite di�erene KZK simulation

results with a y = 0 PML that de�nes a radial boundary at rmax = 3 m (blue dashed line).
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is P0 = 0.5 MPa. The density is ρ = 1000 kg/m

3
, and the sound speed is c = 1500 m/s.

The exitation frequeny is f = 1 MHz, whih orresponds to a wavelength of λ = 0.15 m.

For the �nite di�erene KZK simulation without a PML, the radial boundary is loated at

rmax = 10.5 m. For the �nite di�erene KZK simulation with a y = 0 single term PML, the

PML starts at r = 2.25 m and ends at rmax = 3 m, so the thikness of the PML is equal

to 0.75 m.

The �nite di�erene solution to the ontinuous-wave KZK equation is �rst omputed

in a linear lossless medium. Only the �rst harmoni is omputed in the simulation, where

the spatial step size is equal to λ/40 in both diretions. Fig. 4.6 desribes the on-axis

results for the ontinuous wave KZK simulations with and without a PML, whih are

ompared to the results alulated with Muir's method. As shown in Fig. 4.6(a), the on-axis

pressure waveform obtained from the �nite di�erene KZK simulation without a PML losely

mathes the waveform omputed with Muir's method in the foal zone; however, there is

some di�erene in the far �eld region, even for the large radial boundary that is de�ned

at rmax = 10.5 m. Fig. 4.6(b) desribes the on-axis waveform obtained from the �nite

di�erene KZK simulation with a y = 0 PML that de�nes a radial boundary at rmax = 3 m,

whih losely mathes the result obtained with Muir's method both in the foal zone and in

the far �eld region. This indiates that the re�etion from the boundary is removed by the

PML.

Fig. 4.7 shows the ontinuous-wave 2D pressure distribution for a spherially-foused

transduer with a = 1.5 m, R = 6 m, and f = 1 MHz alulated in a linear lossless

medium with Muir's method. In Fig. 4.7, the peak pressure in the foal zone is approximately

4.3 MPa. Fig. 4.8(a) desribes the di�erene between the �nite di�erene KZK numerial

alulation without a PML that de�nes a radial boundary at rmax = 10.5 m and the results

obtained with Muir's method. The re�etion from the radial boundary is learly evident

in Fig. 4.8(a), whih starts at the edge near z = 16.5 m. The peak di�erene is about

0.5 MPa in the on-axis far �eld region. Fig. 4.8(b) shows that, after introduing a y = 0
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Figure 4.7: The ontinuous-wave 2D pressure distribution for a spherially-foused trans-

duer with a = 1.5 m, R = 6 m, and f = 1 MHz alulated in a linear lossless medium

with Muir's method.

PML that de�nes a radial boundary at rmax = 3 m, the on-axis di�erene is muh smaller

than the on-axis di�erene without a PML in Fig. 4.8(a). The largest di�erene that ours

in Fig. 4.8(b) is observed where the PML is applied.

Simulations are then evaluated for the same transduer geometry using the attenuation

and nonlinearity values of water, whih are α0 = 2.2 × 10−3
dB/m/MHz

2
and β = 3.5,

respetively. The number of harmonis omputed in this simulation is Nharm = 50, and

the spatial step size is λ/Nharm/40. Fig. 4.9(a) shows the �rst four harmonis of the on-axis

�nite di�erene simulation results for the ontinuous wave KZK equation evaluated in water.

This simulation de�nes a radial boundary at rmax = 10.5 m without a PML. In Fig. 4.9(a),

there is a very strong osillation in the fundamental due to re�etions from the boundary.

However, no suh osillations appear in the higher harmonis. Fig. 4.9(b) shows the �rst four

harmonis evaluated on-axis for the ontinuous-wave KZK equation in water with a y = 0

PML that de�nes a radial boundary at rmax = 3 m. In Fig. 4.9(b), no osillations appear
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(a)

(b)

Figure 4.8: The 2D pressure di�erene between linear lossless �nite di�erene KZK numerial

results for a spherially-foused transduer with a = 1.5 m, R = 6 m, and f = 1 MHz

and the results for the same on�guration evaluated with Muir's method. (a) The di�erene

between the �nite di�erene KZK simulation without a PML that de�nes a radial boundary

at rmax = 10.5 m and the results obtained with Muir's method. (b) The di�erene between

the �nite di�erene KZK simulation with a y = 0 PML that de�nes a radial boundary at

rmax = 3 m and the results obtained with Muir's method.
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Figure 4.9: The �rst four harmonis generated by a spherially-foused transduer with

a = 1.5 m, R = 6 m, and f = 1 MHz for on-axis �nite di�erene simulations of the

ontinuous wave KZK equation in water. The attenuation parameter is α = 2.2 × 10−3

dB/m/MHz

2
, and the nonlinearity parameter is β = 3.5. (a) The �nite di�erene KZK

simulation results without a PML that de�nes a radial boundary at rmax = 10.5 m. (b)

The �nite di�erene KZK simulation results with a y = 0 PML that de�nes a radial boundary

at rmax = 3 m.
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Figure 4.10: The 2D pressure di�erene between the �nite di�erene KZK numerial results

with and without a y = 0 PML in water with α0 = 2.2 × 10−3
dB/m/MHz

2
and β = 3.5

evaluated for �rst four harmonis produed by a spherially-foused transduer with a =
1.5 m, R = 6 m, and f = 1 MHz.

in the fundamental or in any of the higher harmonis. For the higher harmonis, the �nite

di�erene solution to the ontinuous-wave KZK equation with or without a PML produes

exatly the same on-axis result.

Fig. 4.10 shows the �rst four harmonis of the di�erene between the �nite di�erene

KZK numerial alulation without a PML that de�nes a radial boundary at rmax = 10.5 m

and the KZK numerial alulation with a y = 0 PML that de�nes a radial boundary at

rmax = 3 m. Fig. 4.10(a) indiates the main di�erene in the �rst harmoni ours lose to

the entral axis, where the soure of this di�erene is the re�etion from the radial boundary

at rmax = 10.5 m. Figs. 4.10(b-d) indiate that, for higher harmonis, the di�erene

is negligible sine the re�etion from the radial boundary is muh smaller for the higher

frequeny omponents.
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4.6 Conlusion

A new perfetly mathed layer was implemented for simulations of nonlinear wave propa-

gation based on the Khokhlov-Zabolotskaya-Kuznetsov equation. Instead of deriving a PML

with strethed oordinates, the power law wave equation is introdued as an alternative model

for the attenuation that ours within the PML. For eah value of the power law exponent

onsidered here, the two terms that are responsible for the attenuation are redued to a single

term, whih yields the Telegrapher's equation within the PML when y = 0 and the Blakstok

visous wave equation when y = 2. Numerial simulations are evaluated in both linear

lossless and nonlinear lossy media for inputs generated by a spherially foused transduer.

The simulation results are ompared to Muir's formula and to �nite di�erene KZK solutions

with a very large radial boundary. Comparisons show that the PMLs e�etively eliminate the

re�etions from the radial boundary. In addition, the formulas for implementing PMLs are

readily integrated into existing KZK simulation programs. With these new PMLs, re�etions

from the radial boundary are eliminated, whih enables a onsiderable redution in the

omputation time for �nite di�erene simulations of the KZK equation.
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Chapter 5

Conlusion

Chapter 2 numerially evaluates time-domain Green's funtions for three time-frational

wave equations, and the results are ompared at various distanes for water, breast, and

liver. At larger distanes, the time-domain Green's funtions for all three frational wave

equations onverge to the same result in the water, breast, and liver models. The results

also demonstrate that the Szabo and power law wave equations are nonausal and that

the Caputo wave equation is ausal, where the distintion between these is learly evident

at distanes very lose to the soure. However, beyond a ertain distane, the nonausal

ontributions are negligible for both the Szabo and power law wave equations. When these

time-domain Green's funtions are onvolved with a three-yle Hanning-weighted pulse, no

nonausal behavior is observed in the time-domain results, and the FWHMs of the envelopes

of the onvolution results are all approximately the same.

In Chapter 3, improved approximations for the attenuation and phase veloity are derived

for the Chen-Holm and Treeby-Cox wave equations. Numerial alulations of the attenua-

tion and phase veloity for the Chen-Holm, Treeby-Cox, and power law wave equations in

breast and liver are evaluated over a range of ultrasound frequenies. New expressions for

power series math the results obtained by numerially evaluating the dispersion relation

more losely than previous approximations. The time-domain Green's funtions for these

three frational wave equations are alulated at various distanes, and the amplitudes and

FWHM values of the time-domain Green's funtions are also evaluated. The results show

some similarities and di�erenes between these three frational wave equations. For instane,
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the attenuation terms in all three frational wave equations are very similar, while the phase

veloity for the Chen-Holm wave equation is nearly onstant. Causality is demonstrated

analytially and numerially in the time domain for both the Chen-Holm and Treeby-Cox

wave equations. At muh larger distanes, the time-domain Green's funtions for the

Treeby-Cox and power law wave equations onverge to the same result while the time-domain

Green's funtion for the Chen-Holm wave equation learly di�ers from the other two. The

Pantis method is introdued as an e�etive approah for evaluating the highly osillatory

improper integrals that arise in numerial alulations of the time-domain Green's funtions

for the Chen-Holm and Treeby-Cox spae-frational wave equations. The Pantis method

provides an aurate result when the number of Filon absissas and the value of m are

su�iently large. Three-yle Hanning-weighted pulses with two di�erent enter frequenies

are onvolved with the time-domain Green's funtions for three frational wave equations.

The onvolution results for the power law wave equation and the Treeby-Cox wave equation

are very similar while the onvolution result for the Chen-Holm wave equation learly shows

a time delay. The onvolution results also indiate that there is more attenuation and

waveform spreading in signals with higher enter frequenies.

In Chapter 4, a new PML, whih is based on the power law wave equation with y = 0 or

y = 2, is implemented to aelerate nonlinear ultrasound simulations with the KZK equation.

For eah power law exponent, a single attenuation term is su�ient to avoid radial re�etions.

In addition, the �nite di�erene struture of the KZK equation is also desribed. Numerial

simulations for the transient and ontinuous-wave KZK equations are then evaluated for

both linear lossless and nonlinear media, where the inputs are generated by a spherially

foused transduer. These results are ompared to Muir's formula and to �nite di�erene

KZK alulations with a large radial boundary. The omparisons indiate that the new PML

e�etively eliminates the re�etions from the radial boundary, whih subsequently redues

the omputation time.
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APPENDIX A

Derivation of the nonlinear wave equa-

tions

The Westervelt equation

A wave equation that desribes nonlinear wave propagation is derived from three fundamental

equations, namely the equation of motion, the ontinuity equation, and the equation of state.

The equation of motion is given by

ρ
Du

Dt
+
−→∇P = 0, (A.1)

where ρ = ρ0+ ρa is the total density, P = P0+ p is the total pressure, u is the veloity, and

D
Dt

= ∂
∂t

+ u · −→∇ . Aousti quantities are usually very small ompared to the stati values.

The ontinuity equation is expressed as

Dρ

Dt
+ ρ∇ · u = 0. (A.2)

The equation of state is given by

P = P0 +

(

∂P

∂ρ

)

ρ0,s

ρa +
1

2

(

∂2P

∂ρ2

)

ρ0,s

ρ2a + . . . .. (A.3)
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For all three onstitutive equations, all terms up to seond order auray are retained with

respet to ρa, p, and u, whih are su�ient for most appliations of nonlinear aoustis in

�uids. Aordingly, Eqs. A.1-A.3 are rewritten as

ρ0
∂u

∂t
+
−→∇p = −ρa

∂u

∂t
− ρ0

(

u · −→∇
)

u, (A.4)

∂ρa
∂t

+ ρ0
−→∇ · u = −ρa

−→∇ · u− u · −→∇ρa, (A.5)

ρa −
p

c20
≈ − B

2A

p2

ρ0c40
, (A.6)

where A = ρ0

(

∂P
∂ρ

)

ρ0,s
and B = ρ20

(

∂2P
∂ρ2

)

ρ0,s
. The right hand sides of Eqs. A.4-A.6 ontain

the seond order terms. Combining Eqs. A.4-A.6 yields the Westervelt equation

∇2p− 1

c20

∂2p

∂t2
= − δ

c40

∂3p

∂t3
− β

ρ0c40

∂2p2

∂t2
, (A.7)

where δ and β = 1 +B/2A are the attenuation and nonlinearity parameters.

The KZK equation

To obtain an approximate nonlinear wave equation that desribes one way wave motion in

the axial diretion, let z represent the diretion of propagation, where (x, y) indiates the

oordinates perpendiular to the z axis. Assuming that, for a soure with radius a, ka ≫ 1

and z > 0.5ka2 are both satis�ed, the e�ets of di�ration are O(ε̃2) in eah diretion are

saled by di�erent amounts aording to

p = p(x1, y1, z1, t
′), (x1, y1, z1) = (ε̃1/2x, ε̃1/2y, ε̃z), t′ = t− z/c0. (A.8)

The Laplaian that appears in the Westervelt equation is then rewritten as

∇2 = ε̃

(

∂2

∂x21
+

∂2

∂y21

)

+ ε̃2
∂2

∂z21
− ε̃

2

c0

∂2p

∂z1∂t′
+

1

c20

∂2

∂t′2
. (A.9)
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If only O(ε̃) terms are retained, the left side of the Westervelt equation beomes

∇2p− 1

c20

∂2p

∂t2
= ε̃

(

∂2

∂x21
+

∂2

∂y21

)

p− ε̃
2

c0

∂2p

∂z1∂t′
. (A.10)

Let ∇⊥ = ∂2

∂x2 + ∂2

∂y2
and replae (x1, y1, z1) with (x, y, z) to obtain the KZK (Khokhlov-

Zabolotskaya-Kuznetsov) equation

∂2p

∂z∂t′
=
c0
2
∇⊥p +

δ

2c30

∂3p

∂t′3
+

β

2ρ0c
3
0

∂2p2

∂t′2
. (A.11)

This yields a simpli�ed model that inludes the e�ets of di�ration, attenuation, and

nonlinearity. When the soure is a irular transduer, the pressure �eld is symmetri in the

radial diretion. In axisymmetri ylindrial oordinates, the KZK equation is given by

∂2p

∂z∂t′
=
c0
2

(

∂2p

∂r2
+

1

r

∂p

∂r

)

+
δ

2c30

∂3p

∂t′3
+

β

2ρ0c30

∂2p2

∂t′2
. (A.12)

Burgers' equation

Burgers' equation, whih is a one dimensional nonlinear equation, an be derived diretly

from the Westervelt equation. After the operators in Eq. A.7 are fatored, this yields

(

∂

∂z
− 1

c0

∂

∂t
+

δ

2c0

∂2

∂t2
+

βp

ρ0c30

∂

∂t

)(

∂

∂z
+

1

c0

∂

∂t
− δ

2c0

∂2

∂t2
− βp

ρ0c30

∂

∂t

)

p = 0. (A.13)

In Eq. A.13,

δ
2c0

∂2

∂t2
and

βp
ρ0c30

∂
∂t
are higher order terms, and the produt of these are disarded

when transforming Eq. A.13 bak to Eq. A.7. Assuming one way approximation and retaining

only the forward propagation terms gives

∂p

∂z
− 1

c0

∂p

∂t
+

δ

2c0

∂2p

∂t2
+

βp

ρ0c
3
0

∂p

∂t
= 0. (A.14)
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applying the hange of variables z′ = z − c0t , Burgers' equation is obtained

∂p

∂z′
+

δ

2c0

∂2p

∂t2
+

βp

ρ0c30

∂p

∂t
= 0. (A.15)
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APPENDIX B

Simulations of ultrasound wave propaga-

tion

The fast near�eld method

The fast near�eld method (FNM) simulates the linear lossless pressure �eld generated by

transduers of various shapes. In time domain, the pressure �eld produed by a irular

piston is given by:

p(r, z; t) =
ρ0ca

π

ˆ π

0

r cosψ − a

r2 + a2 − 2ar cosψ
× [v(t− τ1)− v(t− τ2)]dψ, (B.1)

τ1 =
√

z2 + r2 + a2 − 2ar cosψ/c, τ2 = z/c, (B.2)

where a is the radius of the irular piston, τ1 and τ2 are the delay times, and v is the normal

veloity for soure points on the piston. The fast near�eld method is an aurate method

for omputing pressures in both the near �eld and the far �eld.

The Cole-Hopf Model

The Cole-Hopf model gives an exat solution to Burgers' equation for given values of the

nonlinearity and attenuation oe�ients. For an arbitrary soure pressure on the piston,

p(0, t) = p0F (t), (B.3)
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the Cole-Hopf solution inluding both nonlinearity and attenuation is given by

p(z, t′) = p0

´

∞

−∞
F (t′′)eEζe−EGdt′′
´

∞

−∞
eEζe−EGdt′′

, (B.4)

Eζ(t
′′) =

βp0
ρ0δ

ˆ t′′

−∞

F (t′′′)dt′′′, (B.5)

EG =
c30(t

′ − t′′)2

2zδ
, (B.6)

where t′ = t−z/c0 is retarded time, β is the nonlinearity oe�ient, and δ is the attenuation

oe�ient. When β equals zero, Eζ equals zero, and the Cole-Hopf solution simpli�es to

the linear ase. For eah frequeny ω, the amplitude is attenuated by exp(−ω2zδ/2c30) after

a distane z. Thus, for a single frequeny exitation, the linear Cole-Hopf solution with

attenuation only is given by

p(z, t′) = p0e
−ω2zδ/2c30 sin (ωt′) . (B.7)

Fay and Fubini Model

When only nonlinearity is onsidered in the simulation, the Fay and Fubini solutions an be

used for omparison. For periodi waves, the expression for the pressure an be expanded as a

Fourier series, whih learly shows how the harmonis grow as the periodi waves propagate.

In Fubini's model, the soure pressure is given by

p(0, t) = p0 sin (ωt) . (B.8)

For this input, the Fubini solution for a single frequeny soure is

p(σ, t′) = p0

∞
∑

n=1

2

nσ
Jn(nσ) sin (nωt

′) , (B.9)
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where σ is a dimensionless distane. The Fubini solution is only valid in the pre-shok

region σ ≤ 1. In this region, when σ inreases, the amplitude of the fundamental omponent

dereases and the energy is transferred to higher harmoni omponents.

After the shok wave is fully developed, the Fay solution is hosen instead of the Fubini

solution sine the Fay solution is valid for larger values of σ. When both attenuation and

nonlinearity are inluded, the Fay solution is expressed as

p(σ, t′) = p0
2

Γ

∞
∑

n=1

sin (nωt′)

sin[n(1 + σ)/Γ]
, (B.10)

where Γ is a parameter that desribes the attenuation. When only the e�ets of nonlinearity

are inluded, the Fay solution simpli�es to a sawtooth wave

p(σ, t′) = p0
2

1 + σ

∞
∑

n=1

sin (nωt′)

n
, (B.11)

whih is valid for the region where σ > 3. Thus, by ombining the Fubini and Fay solutions,

results obtained with Burgers' equation an be validated. If additional omparisons are

needed in the region 1 < σ ≤ 3, the solution in the transition region is needed [85℄.
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