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ABSTRACT

TIME-DOMAIN ANALYSIS OF FRACTIONAL WAVE EQUATIONS AND

IMPLEMENTATIONS OF PERFECTLY MATCHED LAYERS IN

NONLINEAR ULTRASOUND SIMULATIONS

By

Xiaofeng Zhao

The attenuation of ultrasound propagating in human tissue follows a power law with

respe
t to frequen
y that is modeled by several di�erent fra
tional partial di�erential equa-

tions. These models for the power law attenuation of medi
al ultrasound have been developed

using fra
tional 
al
ulus, where ea
h 
ontains one or more time-fra
tional or spa
e-fra
tional

derivatives. To demonstrate the similarities and di�eren
es in the solutions to 
ausal and

non
ausal fra
tional partial di�erential equations, time-domain Green's fun
tions are 
al
u-

lated numeri
ally for the fra
tional wave equations. For three time-fra
tional wave equations,

namely the power law wave equation, the Szabo wave equation, and the Caputo wave

equation, these Green's fun
tions are evaluated for water with a power law exponent of

y = 2, liver with a power law exponent of y = 1.139, and breast with a power law exponent

of y = 1.5. Simulation results show that the non
ausal features of the numeri
ally 
al
ulated

time-domain response are only evident in the extreme near�eld region and that the 
ausal and

the non
ausal Green's fun
tions 
onverge to the same time-domain waveform in the far�eld.

When non
ausal time-domain Green's fun
tions are 
onvolved with �nite-bandwidth signals,

the non
ausal behavior in the time-domain is eliminated, whi
h suggests that non
ausal

time-domain behavior only appears in a very limited set of 
ir
umstan
es and that these

time-fra
tional models are equally e�e
tive for most numeri
al 
al
ulations.

For the 
al
ulation of spa
e-fra
tional wave equations, time-domain Green's fun
tions are

numeri
ally 
al
ulated for two spa
e-fra
tional models, namely the Chen-Holm and Treeby-

Cox wave equations. Numeri
al results are 
omputed for these in breast and liver. The

results show that these two spa
e-fra
tional wave equations are 
ausal everywhere. Away



from the origin, the time-domain Green's fun
tion for the dispersive Treeby-Cox spa
e-

fra
tional wave equation is very similar to the time-domain Green's fun
tions 
al
ulated for

the 
orresponding time-fra
tional wave equations, but the time-domain Green's fun
tion for

the nondispersive Chen-Holm spa
e-fra
tional wave equation is quite di�erent. To highlight

the similarities and di�eren
es between these, time-domain Green's fun
tions are 
ompared

and evaluated at di�erent distan
es for breast and liver parameters. When time-domain

Green's fun
tions are 
onvolved with �nite-bandwidth signals, the phase velo
ity di�eren
e

in these two spa
e-fra
tional wave equations is responsible for a time delay that is espe
ially

evident in the far�eld.

The power law wave equation is also utilized to implement a perfe
tly mat
hed layer

(PML) for numeri
al 
al
ulations with the Khokhlov - Zabolotskaya - Kuznetsov (KZK)

equation. KZK simulations previously required a 
omputational grid with a large radial dis-

tan
e relative to the aperture radius to delay the re�e
tions from the boundary. To de
rease

the size of the 
omputational grid, an absorbing boundary layer derived from the power

law wave equation. Simulations of linear pressure �elds generated by a spheri
ally fo
used

transdu
er are evaluated for a short pulse. Numeri
al results for linear KZK simulations

with and without the absorbing boundary layer are 
ompared to the numeri
al results with

a su�
iently large radial distan
e. Simulation results with and without the PML are also

evaluated, where these show that the absorbing layer e�e
tively attenuates the wavefronts

that rea
h the boundary of the 
omputational grid.
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Chapter 1

Introdu
tion

1.1 Ultrasound attenuation in soft tissue

As sound waves propagate, the medium is temporarily displa
ed in a dire
tion parallel

(longitudinal wave) or perpendi
ular (transverse wave) to the dire
tion of energy transport

and then the medium returns to the equilibrium state. When ultrasound travels through

a medium, the intensity diminishes with distan
e. In a lossless medium, the amplitude is

only redu
ed by the spreading of the wave. However, when ultrasound propagates through

soft tissue, the amplitude is redu
ed as a fun
tion of propagation distan
e, and the 
enter

frequen
y of the signal is also downshifted by attenuation. As indi
ated by Laugier and Haïat

[1℄, Goss et al. [2℄, and Parker [3℄, the two main me
hanisms that 
ontribute to ultrasound

attenuation are absorption and s
attering.

Absorption is the 
onversion of the sound energy to other forms of energy [4, 5℄, espe
ially

heat as a result of fri
tion between the vibrating parti
les that transmit the a
ousti
 wave

within soft tissue. In homogeneous vis
ous media, the vis
ous for
es between neighboring

parti
les moving with di�erent velo
ities are the major sour
e of a
ousti
 wave absorption.

A
ousti
 wave attenuation is also 
aused by s
attering, whi
h des
ribes the redire
tion of

the in
ident wave in multiple dire
tions [6, 7℄. In heterogeneous media, where the physi
al

properties su
h as density or sound speed are di�erent from those of the surrounding medium,

s
attering also redire
ts the a
ousti
 energy.
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In three-dimensional (3D) spa
e, the amplitude de
ay and attenuation of ultrasound are

mathemati
ally des
ribed by p(r) = p0e−α(f)r

r
for the attenuation given by α(f) = α0 |f |y,

where p is the pressure, α0 is the attenuation 
oe�
ient, r is the distan
e in 3D, f is the

frequen
y, and y is the power law exponent. For instan
e, in water, the power law exponent

y is equal to 2. However, in most biologi
al tissues, the measured power law exponents y are

within the range of 0.7 ≤ y ≤ 1.5 for the range of frequen
ies utilized in medi
al ultrasound

[8℄. For example, measured values for the power law exponent are y = 1.139 in human liver

[9℄ and y = 1.5 in human breast [10℄. The power law exponents and attenuation 
oe�
ients

vary for di�erent tissues, and measurements of these parameters have been widely evaluated

for medi
al ultrasound in human tissue [11, 12, 13℄.

1.2 Nonlinear ultrasound

The fundamental equations of nonlinear ultrasound are derived from the three 
onstitu-

tive relations, namely the equation of motion, the 
ontinuity equation, and the equation of

state [14℄. For small pressure amplitudes, the linearized versions of these three fundamental

equations are 
ombined to produ
e a linear wave equation. However, when the pressure

amplitudes are su�
iently large, the se
ond order terms in these fundamental equations

must be retained, and the 
ombination of the three 
onstitutive relations yields a nonlinear

wave equation. The amount of nonlinearity in a material through whi
h a �nite-amplitude

ultrasoni
 wave propagates is expressed by the nonlinearity parameter B/A. The values of A

and B are the 
oe�
ients of the �rst and se
ond order terms of the Taylor series expansion

for the equation of state, whi
h relates the pressure to the density. Some values of B/A in

biologi
al tissues are given by Wells [15℄.

Some 
ommon models that des
ribe nonlinear ultrasound propagation in
lude the Wester-

velt equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and Burgers equation.

A general wave equation that a

ounts for nonlinearity up to se
ond-order is given by the

Westervelt equation [16℄. After a paraboli
 approximation is applied, the Westervelt equation
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redu
es to the KZK equation, whi
h a

ounts for the 
ombined e�e
ts of nonlinearity,

di�ra
tion, and absorption in dire
tional sound beams. Solutions to this equation are


ommonly used to model problems in nonlinear a
ousti
s. Several numeri
al approa
hes

that solve the KZK equation have been proposed by Lee and Hamilton [17℄, Cleveland [18℄,

and Berntsen [19℄. When the di�ra
tion term is dis
arded, the KZK equation redu
es to

Burgers equation, whi
h des
ribes the 
ombined e�e
ts of nonlinearity and attenuation on

the propagation of progressive plane waves. Solutions to Burgers equation 
an be obtained

with several di�erent methods [20, 21℄.

Nonlinear wave propagation has been widely analyzed in the medi
al ultrasound �eld.

Two 
ommon appli
ations in
lude high intensity fo
used ultrasound (HIFU) in therapeuti


ultrasound [22, 23, 24℄ and harmoni
 imaging in diagnosti
 ultrasound [25, 26, 27℄. HIFU

generates high intensity pressure �elds in the fo
al zone to heat tumors or break up kidney

stones [28℄. Compared to diagnosti
 ultrasound, HIFU uses higher energies and lower

frequen
ies. In harmoni
 imaging, sin
e s
attering and �rst re�e
tions are redu
ed in

the se
ond harmoni
, the resulting images provide better 
ontrast, better resolution, and

diminished e�e
ts of undesirable sidelobes.

1.3 Fra
tional derivative operators

Fra
tional derivative operators are applied widely in the �eld of fra
tional 
al
ulus. A

variety of fra
tional derivatives are de�ned to repla
e the integer order derivative, in
luding

the Riemann�Liouville fra
tional derivative [29℄, the Caputo fra
tional derivative [30℄, the

Atangana�Baleanu derivative [31℄, the Katugampola fra
tional derivative [32℄, and so on.

Two of these fra
tional derivative operators are utilized here, namely the Riemann�Liouville

fra
tional derivative and the Caputo fra
tional derivative [33℄. The Riemann�Liouville
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fra
tional derivative is de�ned by

Dy
Lf (t) =















1
Γ(n−y)

dn

dtn

´ t

a
f(τ)

(t−τ)y+1−ndτ, n− 1 < y < n ⊂ N,

dn

dtn
f (t) , y = n ⊂ N,

(1.1)

where y > 0, t > a, and y, a, t ⊂ R. The gamma fun
tion, whi
h frequently appears in

fra
tional 
al
ulus, is de�ned as

Γ (z) =

ˆ

∞

0

tz−1e−tdt. (1.2)

The Caputo fra
tional derivative takes the following form:

Dy
Cf (t) =















1
Γ(n−y)

´ t

a
f(n)(τ)

(t−τ)y+1−ndτ, n− 1 < y < n ⊂ N,

dn

dtn
f (t) , y = n ⊂ N.

(1.3)

These two fra
tional derivatives are similar, where the main di�eren
e is the order in whi
h

the di�erentiation and integration operations are performed. For a fra
tional derivative

operator, the derivative of a fun
tion evaluated at a point is no longer a lo
al property, so

additional knowledge of previous states is required in either time or spa
e.

The properties of integer derivatives for Fourier and Lapla
e transforms are readily

extended to fra
tional derivatives [33℄. The 1D Lapla
e transform for the integer derivative

is de�ned as

L{f (t)} =

ˆ

∞

0

e−stf (t) dt. (1.4)

This is extended to the fra
tional Riemann Liouville derivative as [29℄

L{Dy
Lf (t)} = syF (s)−

n−1
∑

k=0

sk
[

Dy−k−1
L f (t)

]

t=0
(1.5)
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and to the Caputo derivative as [30℄

L{Dy
Cf (t)} = syF (s)−

n−1
∑

k=0

sy−k−1f (k) (0) . (1.6)

For the Fourier transform in 1D

F {f (t)} =

ˆ

∞

−∞

f (t) e−jωtdt, (1.7)

both Riemann�Liouville and Caputo derivatives are the same [34, 35℄:

F {Dy
Lf (t)} = (jω)y F (ω) , (1.8)

F {Dy
Cf (t)} = (jω)y F (ω) . (1.9)

1.4 Dispersion relations for fra
tional wave equations

When the e�e
ts of attenuation are in
luded through the term εLr,t (p), the wave equation

be
omes

∇2p− 1

c20

∂2p

∂t2
− εLr,t (p) = 0, (1.10)

where the fra
tional operator εLr,t (p) may be either time-fra
tional or spa
e-fra
tional or

both. After Fourier transforms are evaluated in both time and spa
e domains, the dispersion

relation for Eq. 1.10 is given by

−k2 + ω2

c20
− εL̃ (k, ω) = 0. (1.11)

5



When Lr,t (p) 
ontains only time-fra
tional derivatives, εL̃ (k, ω) = εL̃ (ω), and the analyti
al

expression for the wavenumber is then represented by

k (ω) =

√

ω2

c20
− εL̃ (ω). (1.12)

The relationship of phase velo
ity and attenuation is then obtained from the real and

imaginary parts of Eq. 1.12.

For the general 
ase when the loss term εL̃ (k, ω) 
ontains at least one spa
e-fra
tional

operator, the wavenumber in Eq. 1.11 is 
al
ulated with the binomial approximation

k (ω) ≈ ω

c0

[

1− c20
2ω2

εL̃ (k, ω)− c40
8ω4

ε2L̃2 (k, ω)− c60
16ω6

ε3L̃3 (k, ω) + . . .

]

. (1.13)

The right-hand side of Eq. 1.13 in
ludes several terms that 
ontains L̃ (k, ω), whi
h is a

fun
tion of k. To obtain an expression for the wavenumber k (ω) that is independent of k on

the right-hand side, further approximations are required.

1.4.1 First order approximation

If O (ε2) and higher order terms in Eq. 1.13 are dis
arded, and the �rst-order approxi-

mation for Eq. 1.13 is then given by

k (ω) ≈ ω

c0
− c0

2ω
εL̃

(

k+, ω
)

, (1.14)

where k+ is obtained by setting L̃ (k, ω) = 0, whi
h yields k+ ≈ ω
c0
. This expression is

substituted ba
k to Eq. 1.14 and the O (ε) terms are ignored, whi
h yields

k (ω) ≈ ω

c0
− c0

2ω
εL̃

(

ω

c0
, ω

)

. (1.15)
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1.4.2 Se
ond order approximation

To obtain a more a

urate approximation for the wavenumber, third order and higher

terms are dis
arded from Eq. 1.13. Then, the se
ond-order approximation is given by

k (ω) ≈ ω

c0
− c0

2ω
εL̃

(

k+, ω
)

− c30
8ω3

ε2L̃2
(

k+, ω
)

. (1.16)

Similarly, k+ is approximated by substituting ω/c0 into Eq. 1.16

k+ ≈ ω

c0
− c0

2ω
εL̃

(

ω

c0
, ω

)

, (1.17)

and then terms that are third order or higher in ε are dis
arded.

1.5 Thesis stru
ture

For 
ertain time-fra
tional and spa
e-fra
tional models, exa
t and approximate time-

domain Green's fun
tions have been derived and evaluated numeri
ally. More a

urate

expressions for the phase velo
ity and attenuation are also derived for several fra
tional


al
ulus models. To demonstrate some of the similarities and di�eren
es in these fra
tional

partial di�erential equations, 
ausality is analyzed for ea
h of these, the time-domain Green's

fun
tions are 
ompared, and full width at half maximum (FWHM) values for ea
h time-

domain Green's fun
tion are evaluated for breast and liver models.

Chapter 2 numeri
ally evaluates time-domain Green's fun
tions for three time-fra
tional

models, namely the power law wave equation, the Szabo wave equation, and the Caputo

wave equation. These Green's fun
tions are evaluated for water with a power law exponent

of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of

y = 1.139. The 
ausality of ea
h fra
tional wave equation is analyzed, and the time-domain

Green's fun
tions for these three time-fra
tional models are 
ompared at di�erent distan
es.

To demonstrate the e�e
ts of power law attenuation and dispersion on transient ex
itations, a
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three-
y
le Hanning-weighted pulse is also 
onvolved with the time-domain Green's fun
tions

for these three time domain Green's fun
tions.

Chapter 3 evaluates improved approximations for the frequen
y-dependent phase velo
ity

and attenuation that were derived from two spa
e-fra
tional models, namely the Chen-Holm

and Treeby-Cox spa
e-fra
tional wave equations, and these are evaluated using parameters

for breast and liver. After the 
ausality of the two spa
e-fra
tional models is established, the

amplitudes and FWHM values of the time-domain Green's fun
tions are evaluated at short

distan
es from the origin. In addition, a three-
y
le Hanning weighted pulse is 
onvolved

with ea
h time-domain Green's fun
tion to show how di�eren
es in these Green's fun
tions

in�uen
e the results for a �nite bandwidth ex
itation.

Chapter 4 introdu
es new expressions that des
ribe perfe
tly mat
hed layers (PML) for

numeri
al simulations with the transient KZK equation. Arti�
ial attenuation in these new

PMLs is implemented through terms derived from the power law wave equation with y = 0

and y = 2. These expressions are further simpli�ed by retaining only one term, whi
h is

su�
ient to redu
e re�e
tions from the radial boundary. For a spheri
ally fo
used transdu
er

with aperture radius a = 1.5 
m and radius of 
urvature R = 6 
m, simulations in both

linear lossless and nonlinear media validate the e�e
tiveness of these new PMLs. Similar

simulations are then evaluated for the 
ontinuous wave KZK equation in both linear lossless

and nonlinear media.
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Chapter 2

Time fra
tional wave equations

1

2.1 Introdu
tion

The attenuation of 
ompressional ultrasound waves in soft tissue is des
ribed by a power

law of the form α(f) = α0 |f |y, where f is the frequen
y in MHz, α0 is the attenuation


onstant in Np/m/Hz

y
or dB/m/Hz

y
, and y is the power law exponent. Examples of

measured values for the power law exponent are y = 2 in water, y = 1.139 in human

liver [9℄, and y = 1.5 in human breast [10℄. Additional values for mammalian tissues with

various power law exponents are tabulated in the book by Du
k [8℄, and other attenuation

values are 
ompiled in papers by Goss et al. [36, 37℄.

The 
orresponding wave equations that des
ribe power law attenuation in soft tissue

utilize fra
tional derivatives, whi
h are non-integer order derivatives. These fra
tional deriva-

tives are often time-fra
tional [38, 39, 40℄, although spa
e-fra
tional derivatives are also

used [41, 42℄. Examples of time-fra
tional wave equations that model the attenuation and

dispersion of ultrasound in soft tissue in
lude the Szabo wave equation [38℄, the Caputo

wave equation [30℄, and the power law wave equation [39℄. The Szabo and power law

wave equations were developed for medi
al ultrasound appli
ations, and the Caputo wave

equation [30℄ was originally de�ned for appli
ations in geophysi
s and then independently


onsidered by Wismer as a model for attenuation and dispersion in soft tissue [40℄.

1

Reprodu
ed from X. Zhao and R. J. M Gough, Time-domain 
omparisons of power law attenuation

in 
ausal and non
ausal time-fra
tional wave equations, The Journal of the A
ousti
al So
iety of Ameri
a,

139(5):30213031, 2016, with the permission of the A
ousti
al So
iety of Ameri
a.
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These time-fra
tional wave equations are parti
ularly amenable to analyti
al methods for

analyzing 
ausality, in
luding the Paley-Wiener 
riterion [43℄, Kramers-Kronig analysis [44℄,

and a time 
ausal theory [38℄; however, in
onsistent 
on
lusions are often rea
hed with

di�erent methods, espe
ially for power law exponents y ≥ 1. In an e�ort to resolve some

of these apparent in
onsisten
ies, time-domain Green's fun
tions are 
al
ulated numeri
ally

for the Bla
ksto
k wave equation, the Stokes wave equation, the Szabo wave equation, the

Caputo wave equation, and the power law wave equation. In addition, a three-
y
le Hanning-

weighted pulse is 
onvolved with ea
h of these to show the e�e
ts of 
ausal and non
ausal

Green's fun
tions on the 
al
ulated signals. The results show that non
ausal behavior is

only evident very 
lose to the sour
e in time-domain Green's fun
tion 
al
ulations, that

this non
ausal behavior is no longer evident after 
onvolution with a short pulse, and that

time-domain 
al
ulations with these 
ausal and non
ausal time-fra
tional models 
onverge

a short distan
e from the sour
e.

2.2 Power law attenuation and dispersion

The frequen
y-dependent attenuation α(ω) of ultrasound in soft tissue is des
ribed by

the power law [45℄

α (ω) = α0 |ω|y , (2.1)

where y is the power-law exponent, α0 is the attenuation 
onstant, and ω is the angular fre-

quen
y in radians/se
ond. The 
orresponding frequen
y-dependent sound speed (dispersion)

c(ω) satis�es [45℄

1

c (ω)
=

1

c0
+ α0 tan

(πy

2

)

|ω|y−1 . (2.2)

In Eq. 2.2, c0 is the sound speed at ω = 0 for 1 < y ≤ 2, and c0 is the sound speed at

ω = ∞ for 0 ≤ y < 1. When y = 2, Eq. 2.2 is nondispersive be
ause the ω dependen
e

in Eq. 2.2 disappears. For the numeri
al 
al
ulations that follow, the attenuation 
onstant

α0 with units Np/
m/MHz

y
is multiplied by 100 and divided by 106y and (2π)y to 
onvert
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m into m, MHz into Hz, and frequen
y in Hz into angular frequen
y in radians/se
ond,

respe
tively.

2.3 The Szabo wave equation

For an attenuation 
onstant α0 with units Np/m/Hz

y
, the Szabo wave equation [38℄ is

given by

∇2p− 1

c20

∂2p

∂t2
− 2α0

c0 cos (πy/2)

∂y+1p

∂ty+1
= 0, (2.3)

where p represents the pressure in Pa and t is the time in se
onds. The Szabo wave equation

is a time-fra
tional extension of the Bla
ksto
k wave equation [46℄, where the third term

approximately des
ribes the e�e
ts of power law attenuation and dispersion in Eqs. 2.1 and

2.2 over the range of frequen
ies where the smallness approximation [38℄ holds. There is

no known exa
t time-domain Green's fun
tion for the Szabo wave equation, but the 3D

frequen
y-domain Green's fun
tion for the Szabo wave equation is

G(r, ω) =
e
−

r
c0

√

−ω2+
2α0c0

cos(πy/2)
(jω)y+1

4πr
(2.4)

for frequen
ies ω ≥ 0, where r =
√

x2 + y2 + z2 is the distan
e from a point sour
e at the

origin to an observation point at (x, y, z).

The phase velo
ity and attenuation are derived by solving the dispersion relation

k2 =
ω2

c20
− 2α0

c0 cos (πy/2)
(−jω)y+1

(2.5)

for k. By taking the square root of Eq. 2.5 and utilizing the binomial approximation, an

approximate expression for the wave number is obtained

k ≈ ω
c0
{1 + jα0c0 [1− j tan (πy/2)]ωy−1}

+
α2
0c0
2

[1− j2 tan (πy/2)− tan2 (πy/2)]ω2y−1.
(2.6)

11



The approximate phase velo
ity is then extra
ted from the real part of the wavenumber

divided by ω

1

c (ω)
≈ 1

c0
+ tan (πy/2)α0ω

y−1 +
1

2

(

1− tan2 (πy/2)
)

α2
0c0ω

2y−2
(2.7)

and the approximate attenuation is the imaginary part of the wavenumber

α (ω) ≈ α0ω
y − tan (πy/2)α2

0c0ω
2y−1. (2.8)

When the power law exponent y is equal to 2, the Szabo wave equation redu
es to the

Bla
ksto
k equation

∇2p− 1

c20

∂2p

∂t2
+

2α0

c0

∂3p

∂t3
= 0, (2.9)

where the 3D frequen
y-domain Green's fun
tion for the Bla
ksto
k equation is given by

G(r, ω) =
e
−

r
c0

√
−ω2−2α0c0(jω)

3

4πr
. (2.10)

2.4 The power law wave equation

The power-law wave equation [39℄, whi
h is 
losely related to the Szabo wave equation,

is given by

∇2p− 1

c20

∂2p

∂t2
− 2α0

c0 cos (πy/2)

∂y+1p

∂ty+1
− α2

0

cos2 (πy/2)

∂2yp

∂t2y
= 0. (2.11)

The �rst three terms in the power law wave equation also appear in the Szabo wave equation,

where the fourth time-fra
tional term yields a 
omplex wavenumber that exa
tly satis�es

Eqs. 2.1 and 2.2 for all frequen
ies ω. The 3D frequen
y-domain Green's fun
tion for the

power law wave equation is

G(r, ω) =
e−jωr/c0e−α0(jω)

yr/ cos(πy/2)

4πr
. (2.12)
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By expanding the argument of the se
ond exponential fun
tion in Eq. 2.12 after applying

Euler's formula with jy = ejπy/2 and 
olle
ting real and imaginary terms, the attenuation

and dispersion relations in Eqs. 2.1 and 2.2 are exa
tly re
overed. Furthermore, unlike the

other time-fra
tional wave equations evaluated here, the power law wave equation has an

exa
t 
losed form 3D time-domain Green's fun
tion, whi
h is

g (r, t) =
1

4πr

1

(α0r)
1/y
f̃y

[

t− r
c0

(α0r)
1/y

]

. (2.13)

In Eq. 2.13, f̃y is the probability density fun
tion (pdf) for a maximally skewed stable

distribution [47℄ with parameter y. Sin
e the power law wave equation exa
tly satis�es

Eq. 2.1 and Eq. 2.2, demonstrating whether the time-domain Green's fun
tion in Eq. 2.13

is 
ausal or non
ausal is equivalent to demonstrating whether the 
ombination of Eqs. 2.1

and 2.2 is 
ausal or non
ausal.

For the power law exponent y = 2, the 3D frequen
y-domain Green's fun
tion in Eq. 2.12

redu
es to

G(r, ω) =
e−jωr/c0e−α0ω2r

4πr
, (2.14)

whi
h is a Gaussian fun
tion multiplied by the 1/ (4πr) geometri
 spreading fa
tor and a


omplex exponential delay term. The inverse Fourier transform of Eq. 2.14 is exa
tly equal

to the time-shifted Gaussian fun
tion

g (r, t) =
1

4πr

1√
4πα0r

e−(t−r/c0)
2/(4α0r), (2.15)

whi
h is equivalent to the time-domain Green's fun
tion in Eq. 2.13 with the power law

exponent y = 2. Although the expressions in Eqs. 2.14 and 2.15 are only appli
able to a few

materials with frequen
y-squared attenuation su
h as water and air, these expressions are

nevertheless 
onvenient for preliminary evaluations and 
omparisons.
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2.5 The Caputo wave equation

The Caputo wave equation [30℄, whi
h is a time-fra
tional extension of the Stokes wave

equation [48℄, is given by

∇2p− 1

c20

∂2p

∂t2
+ τ y−1 ∂

y−1

∂ty−1
∇2p = 0 (2.16)

where τ is the fra
tional relaxation time. The Caputo wave equation approximately satis�es

the attenuation and dispersion relations in Eqs. 2.1 and 2.2, respe
tively, and no exa
t 
losed

form time-domain Green's fun
tion is available for the Caputo wave equation. However, there

is an exa
t 3D frequen
y-domain Green's fun
tion for the Caputo wave equation, whi
h is

G(r, ω) =
1

1 + (jωτ)y−1

e
−

jωr
c0

1√
1+(jωτ)y−1

4πr
. (2.17)

for frequen
ies ω ≥ 0.

To obtain an expression that relates the value of the power law attenuation 
onstant α0 to

the fra
tional relaxation time τ , the power law wave equation and the Caputo wave equation

are Fourier-transformed in time and spa
e. After solving for the square of the wavenumber

and taking the square root of both sides, the smallness approximation [38℄ is applied to the

expression obtained from the Caputo wave equation. The resulting 
onversion fa
tor [41℄ is

τ y−1 = −2α0c0/ cos (πy/2) . (2.18)

The expression in Eq. 2.18 is singular at y = 1, the Szabo and power law wave equations

are also singular at y = 1, and the Caputo wave equation is non-attenuating at y = 1, so

only values of the power law exponent that satisfy 1 < y ≤ 2 are 
onsidered in the following

numeri
al evaluations.
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The phase velo
ity and attenuation are derived by solving the dispersion relation

k2 =
ω2

c20
+

2α0c0
cos (πy/2)

(jω)y−1 k2. (2.19)

A se
ond order approximation for the wavenumber is given by 
olle
ting terms that 
ontain

k2 in Eq. 2.19 on the left side and then taking the square root, followed by the binomial

approximation

k ≈ ω
c0
{1− jα0c0 [1 + j tan (πy/2)]ωy−1}

−3α2
0c0
2

[1 + j2 tan (πy/2)− tan2 (πy/2)]ω2y−1.
(2.20)

The approximate phase velo
ity is then obtained from the real part of the wavenumber

divided by ω,

1

c (ω)
≈ 1

c0
+ tan (πy/2)α0ω

y−1 − 3

2

(

1− tan2 (πy/2)
)

α2
0c0ω

2y−2
(2.21)

and the approximate attenuation is the imaginary part of the wavenumber,

α (ω) ≈ α0ω
y + 3 tan (πy/2)α2

0c0ω
2y−1. (2.22)

2.6 Methods

Time-domain Green's fun
tions for the power law wave equation are rapidly and a
-


urately evaluated in Matlab with the STABLE toolbox [47, 49℄. In these 
al
ulations,

whi
h numeri
ally evaluate stable pdfs, the index parameter is de�ned as the power law

exponent y, the skewness parameter is equal to 1, the s
ale parameter is equal to (α0r)
1/y

,

and the lo
ation parameter is equal to zero. The STABLE toolbox evaluates stable pdfs at

single points in time or limited ranges of time values without numeri
al artifa
ts, whi
h is

advantageous for 
al
ulations of time-domain Green's fun
tions.
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The time-domain Green's fun
tions for the Bla
ksto
k, Stokes, Caputo, and Szabo wave

equations are 
omputed in Matlab with inverse fast Fourier transforms (IFFTs). For these


al
ulations, a time window T is de�ned as an integer multiple of the s
ale fa
tor (α0r)
1/y

su
h that the numeri
al error is 1% or less. The time window T is then extended as needed to

�ll a larger display window for 
omparisons with other materials at the same distan
e. Other

parameters that are required for these 
al
ulations in
lude the frequen
y sampling, whi
h

is de�ned as ∆f = 1/T , and the 
enter of ea
h time window, whi
h is lo
ated at t = r/c.

Ea
h time-domain Green's fun
tion is 
omputed with 100 time samples per s
ale parameter,

whi
h 
onsistently yields smooth time-domain waveforms for ea
h result. If the time window

de�ned for the time-domain Green's fun
tion 
al
ulation is larger than the desired display

window, then the 
omputed waveform is 
ropped after the IFFT is evaluated.

In 
al
ulations of time-domain Green's fun
tions for the Bla
ksto
k and Stokes wave

equations with the IFFT, the time window is de�ned as T ≫ (α0r)
1/y

, and even larger time

windows are needed for IFFT-based 
al
ulations of the time-domain Green's fun
tions for the

Caputo and Szabo wave equations to avoid problems with frequen
y-domain aliasing. Similar

to the time-domain Green's fun
tions for the power law wave equation, the time-domain

Green's fun
tions for the Caputo and Szabo wave equations have `heavy tails' that de
ay

as 1/ty+1
when 0 < y < 2. These `heavy tails' 
ause undesirable wrap-around artifa
ts in

the time-domain unless the time window T is su�
iently large and the frequen
y sampling

∆f = 1/T is su�
iently small. Also, for IFFT 
al
ulations with nonzero start time t0,

the frequen
y-domain Green's fun
tion is multiplied by ejωt0 . This a

ounts for start times

before t = 0 when non
ausal results are shown 
lose to the sour
e and also for 
al
ulations

at larger distan
es with later start times.
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Figure 2.1: (a-d) Simulated time-domain Green's fun
tions of the Caputo, Szabo, and power

law wave equations 
al
ulated for water with y = 2, α0 = 2.5328× 10−4
Np/
m/MHz

2
, and

c0 = 1500 m/s and s
aled by 4πr at (a) r = 1 nm, (b) r = 100 nm, (
) r = 1 
m, and

(d) r = 10 
m. (e-h) Simulated time-domain Green's fun
tions of the Caputo, Szabo, and

power law wave equations 
al
ulated for breast with y = 1.5, α0 = 0.086 Np/
m/MHz

1.5
,

and c0 = 1450 m/s and s
aled by 4πr at (e) r = 10 nm, (f) r = 1µm, (g) r = 1 
m, and

(h) r = 10 
m. (i-l) Simulated time-domain Green's fun
tions of the Caputo, Szabo, and

power law wave equations 
al
ulated for liver with y = 1.139, α0 = 0.0459 Np/
m/MHz

1.139
,

and c0 = 1540 m/s and s
aled by 4πr at (i) r = 100 zm, (j) r = 100 am, (k) r = 1 
m, and

(l) r = 10 
m.
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2.7 Results

2.7.1 Time-domain Green's fun
tions for a
ousti
 propagation in

water

Time-domain Green's fun
tions multiplied by 4πr are shown in Figs. 2.1(a-d) for a
ousti


propagation in water with y = 2. The results in these �gures are 
al
ulated with c0 =

1500m/s and α0 = 2.5328× 10−4
Np/
m/MHz

2
. In Figs. 2.1(a-d), the time-domain Green's

fun
tion for the Stokes wave equation is indi
ated by a solid line, the time-domain Green's

fun
tion for the Bla
ksto
k wave equation (Eq. 2.9) is represented by a dashed line, and the

time-domain Green's fun
tion for the power law wave equation is indi
ated by a dash-dot line.

The time-domain Green's fun
tion for the power law wave equation is dire
tly 
al
ulated from

the Gaussian fun
tion in Eq. 2.15, and the time-domain Green's fun
tions for the Bla
ksto
k

and Stokes wave equations apply IFFTs to the values obtained from the frequen
y-domain

Green's fun
tions in Eqs. 2.4 and 2.17, respe
tively, with the power law exponent y = 2. A

thin dashed line is also in
luded as a referen
e in ea
h of the sub�gures in Fig. 2.1 to indi
ate

the arrival time t = r/c0 for a lossless medium with a 
onstant sound speed c0.

The time-domain Green's fun
tions for the Stokes, Bla
ksto
k, and power law wave

equations evaluated in water are shown in Figs. 2.1(a-d) at distan
es of r = 1 nm, r = 100 nm,

r = 1 
m, and r = 10 
m. The 
omputed Green's fun
tions are multiplied by 4πr so that the

spheri
al spreading 
ontribution is eliminated and only the e�e
ts of propagation, dispersion,

and attenuation as a fun
tion of time are in
luded in these plots. The units de�ned for the

horizontal axis are pi
ose
onds, nanose
onds, or mi
rose
onds. Fig. 2.1(a) shows the result

evaluated at a distan
e r = 10−n
m for the smallest integer value of n, spe
i�
ally n = 9,

that 
learly demonstrates non
ausal behavior in the time-domain Green's fun
tions for both

the Bla
ksto
k and power law wave equations. Fig. 2.1(b) shows the result at a distan
e

r = 10−n
m for the largest integer value of n, namely n = 7, where the non
ausal behavior
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is not 
learly evident in plots of the time-domain Green's fun
tions for the Bla
ksto
k and

power law wave equations when displayed on a linear verti
al s
ale. Figs. 2.1(
-d) show

the results at r = 1 
m and r = 10 
m, respe
tively, whi
h are representative distan
es for

appli
ations of diagnosti
 and therapeuti
 ultrasound. The time-domain Green's fun
tions

for the Bla
ksto
k and Stokes wave equations de�ne time windows T for IFFT 
al
ulations

as 40, 40, 300, and 500 times the s
ale fa
tor (α0r)
1/y


al
ulated for ea
h respe
tive plot in

Figs. 2.1(a-d). The results in Figs. 2.1(a-d) are then 
ropped and displayed in time windows

that are approximately 25, 25, 197, and 312 s
ale fa
tors wide, respe
tively. Figs. 2.1(a-d)

demonstrate that the time-domain Green's fun
tions for the Bla
ksto
k and power law wave

equations produ
e non
ausal time-domain waveforms very 
lose to the sour
e and that these

transition over a short distan
e to waveforms that are di�
ult to distinguish from 
ausal

waveforms in the time-domain.

Fig. 2.1(a) indi
ates that the time-domain Green's fun
tions for the Bla
ksto
k and power

law wave equations with y = 2 evaluated at r = 1 nm yield similar, yet distin
t, results, where

both of these are 
learly non
ausal with signi�
ant nonzero 
ontributions between t = −5 ps

and t = 0. Whereas the time-domain Green's fun
tion for the power law wave equation

is a Gaussian fun
tion in time, the time-domain Green's fun
tion for the Bla
ksto
k wave

equation is slightly skewed to the right in this lo
ation. The time-domain Green's fun
tion

for the Stokes wave equation evaluated at r = 1 nm �rst demonstrates nonzero values after

time t = 0, and the shape of the time-domain Green's fun
tion for the Stokes wave equation

is 
learly di�erent from the other two time-domain Green's fun
tions.

The time-domain Green's fun
tions evaluated at r = 100 nm in Fig. 2.1(b) have nearly


onverged to the same result. All three waveforms are now 
learly o�set from t = 0, where

some small di�eren
es remain, and all three waveforms appear to be 
ausal in these plots.

However, sin
e the time-domain Green's fun
tion for the power law wave equation is a

time-shifted Gaussian fun
tion, even though the result appears to be 
ausal, the time-domain

result is nonzero for all values of t < 0, so the Green's fun
tion for the power law wave
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equation is non
ausal. In Figs. 2.1(
-d), all three time-domain Green's fun
tions evaluated

at r = 1 
m and at r = 10 
m agree 
losely, whi
h indi
ates that as the distan
e r in
reases,

the time-domain Green's fun
tions for the Bla
ksto
k and Stokes wave equations 
onverge

to the Gaussian fun
tion in Eq. 2.15.

2.7.2 Time-domain Green's fun
tions for a
ousti
 propagation in

breast

Figs. 2.1(e-h) des
ribe the time-domain Green's fun
tions multiplied by 4πr for the

Caputo wave equation (solid line), the Szabo wave equation (dashed line), and the power law

wave equation (dot-dashed line) 
al
ulated for human breast with y = 1.5, c0 = 1450 m/s,

and α0 = 0.086 Np/
m/MHz

1.5
. The results are 
omputed at r = 10 nm, r = 1µm, r = 1 
m,

and r = 10 
m. The units de�ned for the horizontal axis in Figs. 2.1(e-h) are again

pi
ose
onds, nanose
onds, or mi
rose
onds. Fig. 2.1(e) 
ontains the result evaluated at

a distan
e r = 10−n
m for the smallest integer value of n, spe
i�
ally n = 8, that 
learly

demonstrates non
ausal behavior in the time-domain Green's fun
tions for both the Szabo

and power law wave equations. Fig. 2.1(f) displays the result at a distan
e r = 10−n
m

for the largest integer value of n, namely n = 6, where the non
ausal behavior is not


learly evident in plots of the time-domain Green's fun
tions for both the Szabo and power

law wave equations when displayed on a linear verti
al s
ale. Figs. 2.1(g-h) des
ribe the

results at r = 1 
m and r = 10 
m. The time-domain Green's fun
tions for the Szabo and

Caputo wave equations de�ne the time windows T for IFFT 
al
ulations as 300, 60, 30, and

30 times the s
ale fa
tor (α0r)
1/y


al
ulated at ea
h distan
e r for ea
h respe
tive plot in

Figs. 2.1(e-h). The results in Figs. 2.1(e-h) are then 
ropped and displayed in time windows

that are approximately 23, 30, 16, and 17 s
ale fa
tors wide, respe
tively.

Fig. 2.1(e), whi
h shows the time-domain Green's fun
tions 
al
ulated for breast at r =

10 nm, indi
ates that the Szabo and power law wave equations are non
ausal and that

the Caputo wave equation is 
ausal. In this lo
ation, the time-domain Green's fun
tions
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for the Szabo and power law wave equations are 
learly nonzero before time t = 0, and

the time-domain Green's fun
tion for the Caputo wave equation �rst demonstrates nonzero

values after time t = 0. The shapes of the three time-domain waveforms also demonstrate

signi�
ant di�eren
es at this distan
e.

Fig. 2.1(f), whi
h is evaluated at r = 1µm, shows that the three waveforms 
al
ulated for

breast are starting to 
onverge at this distan
e. However, at r = 1µm, identifying non
ausal


ontributions, if present, is di�
ult in the time-domain when the Green's fun
tions are

plotted on a linear s
ale. Similar to the Gaussian fun
tion, the stable pdf in the numerator

of Eq. 2.13 is stri
tly positive [39℄ for all values of t when y = 1.5, so the power law wave

equation is non
ausal at all distan
es for y = 1.5.

Figs. 2.1(g-h), whi
h are evaluated at r = 1 
m and r = 10 
m, respe
tively, show that

the time-domain Green's fun
tions for the three time-fra
tional wave equations in Eqs. 2.3,

2.11, and 2.16 
onverge to the same result at these distan
es. Unlike the results shown in

Figs. 2.1(b-d), whi
h are either approximately or exa
tly represented by symmetri
, time-

shifted Gaussian fun
tions, the time-domain Green's fun
tions in Figs. 2.1(f-h) are skewed

(asymmetri
) with a `heavy tail,' whi
h are 
hara
teristi
s of the maximally-skewed stable

probability distribution (pdf) in Eq. 2.13.

2.7.3 Time-domain Green's fun
tions for a
ousti
 propagation in

liver

Figs. 2.1(i-l) show the simulated Green's fun
tions for the Caputo wave equation (solid

line), the Szabo wave equation (dashed line), and the power law wave equation (dot-dashed

line) for human liver with y = 1.139, α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s.

In Figs. 2.1(i-l), the three time-domain Green's fun
tions are multiplied by 4πr and then

evaluated at r = 100 zm, r = 100 am, r = 1 
m, and r = 10 
m. The units de�ned for the

horizontal axis in Figs. 2.1(i-l) are yo
tose
onds (ys or 10−24
se
onds), zeptose
onds (zs or

10−21
se
onds), or mi
rose
onds (µs). Fig. 2.1(i) 
ontains the result evaluated at a distan
e
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r = 10−n
m for the smallest integer value of n, spe
i�
ally n = 19, that 
learly demonstrates

non
ausal behavior in the time-domain Green's fun
tions for both the Szabo and power law

wave equations, and Fig. 2.1(j) displays the result at a distan
e r = 10−n
m for the largest

integer value of n, namely n = 16, where the non
ausal behavior is not 
learly evident in any

of the three time-domain Green's fun
tions when shown on a linear s
ale. Figs. 2.1(k-l) show

the results at r = 1 
m and r = 10 
m, respe
tively. The time-domain Green's fun
tions

for the Szabo and Caputo wave equations de�ne time windows T for IFFT 
al
ulations as

12000, 4000, 60, and 40 times the s
ale fa
tor (α0r)
1/y


al
ulated at ea
h distan
e r for ea
h

respe
tive plot in Figs. 2.1(i-l). The results in Figs. 2.1(i-l) are then 
ropped and displayed

in windows that are approximately 55, 37, 47, and 31 s
ale fa
tors wide, respe
tively.

Fig. 2.1(i) depi
ts the time-domain Green's fun
tions 
al
ulated for human liver at r =

100 zm (where 1 zeptometer = 1 zm = 10−21
m). In Fig. 2.1(i), the time-domain Green's

fun
tions for the Szabo and power law wave equations are 
learly non
ausal, and the time-

domain Green's fun
tion for the Caputo wave equation begins a short time after t = 0. In

Fig. 2.1(j), whi
h is evaluated at r = 100 am, the time-domain Green's fun
tions of all three

wave equations are still distin
t, and all three appear to start after t = 0.

Figs. 2.1(k-l) display the time-domain Green's fun
tion 
al
ulated for human liver at

r = 1 
m and at r = 10 
m, respe
tively. These �gures indi
ate that the three time-domain

Green's fun
tions again 
onverge to the same result as the distan
e in
reases. The waveforms

in Figs. 2.1(k-l) are 
learly distin
t from the waveforms shown in Figs. 2.1(g-h) in terms of

both the overall shape and the temporal extent. Also, the power law wave equation maintains

the same shape for the time-domain Green's fun
tion at all distan
es, but the shapes of the

time-domain Green's fun
tions for the Szabo and Caputo wave equations are noti
eably

di�erent at shorter distan
es.

2.7.4 Verti
al axis s
aling

In ea
h sub�gure of Fig. 2.1, the maximum value of the verti
al axis is determined by the

largest of the three peak values in that sub�gure. The peak value of 4πrg(r, t) for the power
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law wave equation when y = 2 is equal to 1/
√
4πα0r. Similarly, the peak value of the s
aled

stable pdf in Eq. 2.13 is approximately equal to 1/
[

2
√
π(α0r)

1/y
]

. Thus, when the peaks of

the three time-domain Green's fun
tions start to 
onverge, ea
h de
ays as r−1/y
. The limits

of the verti
al axes are proportional to the peak of the s
aled stable pdf, and before the peak

values 
onverge, the axes are autos
aled.

2.7.5 Comparisons between time-domain Green's fun
tions for a
ous-

ti
 propagation

To enable 
omparisons between the time-domain Green's fun
tions 
al
ulated in water,

breast, and liver, Figs. 2.1(
), 2.1(g), and 2.1(k), whi
h o

upy the third 
olumn of Fig. 2.1,

are all 
al
ulated at r = 1 
m, and Figs. 2.1(d), 2.1(h), and 2.1(l), whi
h o

upy the fourth


olumn of Fig. 2.1, are all 
al
ulated at r = 10 
m. Figs. 2.1(a), 2.1(b), 2.1(e), 2.1(f), 2.1(i),

and 2.1(j) are all 
omputed at di�erent distan
es, so the �gures in the �rst two 
olumns of

Fig. 2.1 are not 
ompared. Figs. 2.1(
), 2.1(g), and 2.1(k) are all shown in a 0.5µs wide

time window, and Figs. 2.1(d), 2.1(h), and 2.1(l) are all shown in a 2.5µs wide time window,

where the size of ea
h time window is determined by the temporal extent of the time-domain

Green's fun
tions 
al
ulated for ultrasound parameters in breast.

When displayed in these two time windows, the time-domain Green's fun
tion for a
ousti


propagation in water exhibits nearly negligible dispersion, the time-domain Green's fun
tion

for a
ousti
 propagation in liver shows moderate dispersion, and the time-domain Green's

fun
tion for a
ousti
 propagation in breast is mu
h more dispersive than water or liver.

Furthermore, the time-domain Green's fun
tion for a
ousti
 propagation in water is nearly

impulsive relative to breast and liver. Also, ea
h �gure in Fig. 2.1 exhibits di�erent arrival

times. This is in part due to the di�erent values for c0 in water, breast, and liver, where the

thin dashed lines that indi
ate the arrival time for a lossless medium with sound speed c0 ea
h

o

ur at a di�erent time, as observed along the third and the fourth 
olumns of Fig. 2.1. The

time-domain Green's fun
tions for a
ousti
 propagation in breast and liver also demonstrate
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Figure 2.2: a) The per
ent di�eren
e between the time-domain Green's fun
tions for the

Bla
ksto
k and Stokes wave equations and the time-domain Green's fun
tion for the power

law wave equation as a fun
tion of distan
e 
al
ulated for water with y = 2, α0 = 2.5328×
10−4

Np/
m/MHz

2
, with c0 = 1500m/s. b-
) The per
ent di�eren
e between the time-

domain Green's fun
tions for the Szabo and Caputo wave equation and the time-domain

Green's fun
tions for the power law wave equation as a fun
tion of distan
e 
al
ulated for

breast with y = 1.5, α0 = 0.086 Np/
m/MHz

1.5
, and c0 = 1450 m/s and 
al
ulated for liver

with y = 1.139, α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s.

mu
h earlier arrival times than the time t = r/c0 predi
ted for lossless propagation, where the

earlier arrival times in the lossy models are due to dispersion. Furthermore, the peak value

of the time-domain Green's fun
tion for a
ousti
 propagation is largest in water and smallest

in breast, as indi
ated by 
omparisons between the values on the verti
al axes (noting the

exponents in the upper left hand 
orner of ea
h sub�gure) in Figs. 2.1(
), 2.1(g), and 2.1(k)

(r = 1 
m) and Figs. 2.1(d), 2.1(h), and 2.1(l) (r = 10 
m). Comparisons along the third

and fourth 
olumns of Fig. 2.1 also show that the shapes and extents of the time-domain

Green's fun
tions for a
ousti
 propagation in water, breast, and liver di�er signi�
antly, as

determined by the values of the power law exponent y and the s
ale fa
tor (α0r)
1/y

.

2.7.6 Convergen
e of the Green's fun
tions for a
ousti
 propagation

in the time domain

Figs. 2.1(a-d) demonstrate that the time-domain Green's fun
tions for the Bla
ksto
k and

Stokes wave equations multiplied by 4πr 
onverge to a Gaussian fun
tion, and Figs. 2.1(e-h)

and 2.1(i-l) show that the time-domain Green's fun
tions for the Szabo and Caputo wave
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equations multiplied by 4πr 
onverge to maximally skewed stable pdfs. This suggests that the

time-domain Green's fun
tion for the power law wave equation is an e�e
tive approximation

for the time-domain Green's fun
tions of the Bla
ksto
k and Stokes wave equations when

y = 2 and the Szabo and Caputo wave equations when 1 < y < 2. To 
hara
terize the


onvergen
e of these time-domain Green's fun
tions, the per
ent di�eren
e between g(r, t)

and a referen
e gref(r, t) is de�ned as ||g(r, t)− gref(r, t)||2 / ||gref(r, t)||2×100%, where g(r, t)

is the time-domain Green's fun
tion 
al
ulated at a given distan
e r for the Bla
ksto
k,

Stokes, Szabo, or Caputo wave equation, and the referen
e time-domain Green's fun
tion

gref(r, t) for these 
al
ulations is the time-domain Green's fun
tion for the power law wave

equation. In Fig. 2.2, these per
ent di�eren
es are 
al
ulated from r = 1 nm to r = 1 m for

ea
h material. Fig. 2.2(a) shows the 
onvergen
e of the time-domain Green's fun
tions for

the Stokes and Bla
ksto
k wave equations to the time-domain Green's fun
tion of the power

law wave equation 
al
ulated for water with y = 2, α0 = 2.5328× 10−4
Np/
m/MHz

2
, and

c0 = 1500m/s. Fig. 2.2(b) shows the 
onvergen
e of the time-domain Green's fun
tions

for the Szabo and Caputo wave equations to the time-domain Green's fun
tion of the

power law wave equation 
al
ulated for breast with y = 1.5, α0 = 0.086 Np/
m/MHz

1.5
,

and c0 = 1450 m/s. Fig. 2.2(
) shows the 
onvergen
e of the time-domain Green's fun
-

tions for the Szabo and Caputo wave equations to the time-domain Green's fun
tion of

the power law wave equation 
al
ulated for liver with the power law exponent y = 1.139,

α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s.

In ea
h medium, the per
ent di�eren
es 
al
ulated with the time-domain Green's fun
-

tions for the Bla
ksto
k and Szabo wave equations are 
onsistently smaller than those


al
ulated for the Stokes and Caputo wave equations, respe
tively. In Fig. 2.2(a), the

per
ent di�eren
e for the time-domain Green's fun
tion of the Bla
ksto
k wave equation


al
ulated for water is 23% at r = 1 nm, and the per
ent di�eren
e for the time-domain

Green's fun
tion of the Stokes wave equation 
al
ulated for water is 59% at r = 1 nm. Both

time-domain Green's fun
tions a
hieve rapid redu
tions in the per
ent di�eren
e 
al
ulated
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for water between 1 nm and 1µm. The per
ent di�eren
e for the time-domain Green's

fun
tion of the Bla
ksto
k wave equation 
al
ulated for water rea
hes 0.0009% at r = 1 m,

and the per
ent di�eren
e for the time-domain Green's fun
tion of the Stokes wave equation


al
ulated for water rea
hes 0.0024% at r = 1 m. In Fig. 2.2(b), the per
ent di�eren
e for

the time-domain Green's fun
tion of the Szabo wave equation 
al
ulated for breast is 35%

at r = 1 nm, and the per
ent di�eren
e for the time-domain Green's fun
tion of the Caputo

wave equation 
al
ulated for breast is 77% at r = 1 nm. The time-domain Green's fun
tions


al
ulated for breast 
onverge more slowly than those 
al
ulated for water, where the per
ent

di�eren
e for the time-domain Green's fun
tion of the Szabo wave equation 
al
ulated for

breast rea
hes 0.055% at r = 1 m, and the per
ent di�eren
e for the time-domain Green's

fun
tion of the Caputo wave equation 
al
ulated for breast rea
hes 0.17% at r = 1 m.

In Fig. 2.2(
), the per
ent di�eren
e for the time-domain Green's fun
tion of the Szabo

wave equation 
al
ulated for liver is 8% at r = 1 nm, and the per
ent di�eren
e for the

time-domain Green's fun
tion of the Caputo wave equation 
al
ulated for liver is 24% at

r = 1 nm. Although the per
ent di�eren
es evaluated at r = 1 nm are smaller in liver than

in water, the rate of 
onvergen
e of these time-domain Green's fun
tions is slower in liver

than in water or breast, where the per
ent di�eren
e for the time-domain Green's fun
tion

of the Szabo wave equation 
al
ulated for liver rea
hes 0.66% at r = 1 m, and the per
ent

di�eren
e for the time-domain Green's fun
tion of the Caputo wave equation 
al
ulated for

breast rea
hes 2% at r = 1 m.

2.7.7 Chara
terizing the non
ausal 
omponent of the time-domain

Green's fun
tions for the Bla
ksto
k, Szabo, and power law

wave equations

In numeri
al 
al
ulations with the Bla
ksto
k, Szabo, and power law wave equations,

there is a threshold distan
e above whi
h the non
ausal time-domain Green's fun
tion is

very small for all times t ≤ 0. The distan
e beyond whi
h the non
ausal 
omponent of
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Figure 2.3: Relative non
ausal 
ontributions of the Bla
ksto
k, Szabo, and power law wave

equations 
hara
terized with 20 log10 {g(r, t = 0)/max [g(r, t)]} as a fun
tion of distan
e r.
This quantity is 
al
ulated for a) water with y = 1.139, α0 = 0.0459 Np/
m/MHz

1.139
, and

c0 = 1540 m/s from r = 1 nm to r = 1m, b) breast with y = 1.5, α0 = 0.086 Np/
m/MHz

1.5
,

and c0 = 1450 m/s from r = 1 nm to r = 1 m, and 
) liver with y = 1.139,
α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s from r = 1 zm to r = 1 pm.

the time-domain Green's fun
tions for the Bla
ksto
k, Szabo, and power law wave equation

be
omes negligible is 
hara
terized here with an approa
h similar to that in [38℄ by 
omputing

the quantity 20 log10 {g(r, t = 0)/max [g(r, t)]}, whi
h 
al
ulates the value of g(r, t) evaluated

at time t = 0 divided by the maximum value of g(r, t) in dB, where the time-domain Green's

fun
tions in the numerator and the denominator are ea
h 
al
ulated with a �xed value of

r, and the maximum value of g(r, t) is evaluated with respe
t to the time t. In Fig. 2.3,

this expression is evaluated a
ross nine de
ades at 10 equally spa
ed samples within ea
h

de
ade. The time-domain Green's fun
tions for the Stokes and Caputo wave equations are

not 
hara
terized with this approa
h be
ause both of these are always 
ausal for the y values


onsidered here (i.e., 2, 1.5, and 1.139).

The results of this 
al
ulation are shown in Figs. 2.3(a-
) for water, breast, and liver.

Figs. 2.3(a) and 2.3(b) show that 20 log10 {g(r, t = 0)/max [g(r, t)]} evaluated for water and

for breast with the time-domain Green's fun
tion of the power law wave equation rapidly

drops from approximately 0 dB to -400 dB between r = 1 nm and 1µm. Fig. 2.3(
) shows

that 20 log10 {g(r, t = 0)/max [g(r, t)]} 
al
ulated for liver with the time-domain Green's

fun
tion of the power law wave equation rapidly de
ays from approximately 0 dB to -400 dB
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between r = 10 am and 100 fm. Fig. 2.3(a) shows that 20 log10 {g(r, t = 0)/max [g(r, t)]}


al
ulated for water with the time-domain Green's fun
tion of the Bla
ksto
k wave equation


losely tra
ks the same 
urve for the time-domain Green's fun
tion of the power law wave

equation until a threshold between −200 and −300 dB is rea
hed. Fig. 2.3(b) shows

that 20 log10 {g(r, t = 0)/max [g(r, t)]} 
al
ulated for breast with the time-domain Green's

fun
tion of the Szabo wave equation follows the same trend as the 
orresponding 
urve for the

time-domain Green's fun
tion of the power law wave equation until a threshold near −200 dB

is rea
hed. Also, there is a greater di�eren
e between the two 
urves in Fig. 2.3(b) than in

Fig. 2.3(a). Fig. 2.3(
) shows that, for 
al
ulations with the time-domain Green's fun
tion of

the Szabo wave equation evaluated for liver, the value of 20 log10 {g(r, t = 0)/max [g(r, t)]}

rapidly de
ays from approximately 0 dB to a value between −100 and −200 dB between

r = 1 am and 1 fm. There is a mu
h larger di�eren
e between the values of 20 log10{g(r, t =

0)/max [g(r, t)]} 
al
ulated for liver with the Szabo and power law wave equations than

for water or breast. In ea
h 
al
ulation of 20 log10 {g(r, t = 0)/max [g(r, t)]} that evaluates

g(r, t) for the Bla
ksto
k and Szabo wave equations, the lower threshold is a limitation of

numeri
al 
al
ulations with the IFFT, whereas the STABLE toolbox avoids these problems

with a numeri
al approa
h that is optimized for 
al
ulations of stable pdfs [47℄.

2.7.8 Time-domain Green's fun
tions 
onvolved with a three 
y
le

Hanning-weighted pulse

To demonstrate the e�e
ts of power law attenuation and dispersion on transient ex
ita-

tions, three 
y
le Hanning-weighted pulses [50, 51℄ are 
onvolved with time-domain Green's

fun
tions multiplied by 4πr, and the results are shown in Fig. 2.4. In ea
h medium, the


onvolved waveforms are evaluated at (a) r = 100µm, (b) r = 1 mm, (
) r = 1 
m, and

(d) r = 10 
m. In Fig. 2.4, the 
enter frequen
y of the Hanning-weighted pulse is f0 = 7.5 MHz,
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Figure 2.4: Simulated three-
y
le Hanning-weighted pulse with a 
enter frequen
y of

f0 = 7.5 MHz 
onvolved with time-domain Green's fun
tions multiplied by 4πr 
al
ulated

for water at (a) r = 100µm, (b) r = 1 mm, (
) r = 1 
m, and (d) r = 10 
m, 
al
ulated for

breast at (e) r = 100µm, (f) r = 1 mm, (g) r = 1 
m, and (h) r = 10 
m, and 
al
ulated for

liver at (i) r= 100µm, (j) r = 1 mm, (k) r = 1 
m, and (l) r = 10 
m.
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whi
h is a representative frequen
y for medi
al ultrasound that highlights some of the

di�eren
es between the waveforms 
omputed for these three materials.

In Figs. 2.4(a-d), whi
h show the 
onvolved waveforms for water, there is no attenuation

or dispersion of the pulse at all four distan
es, and the results obtained from the Stokes,

Bla
ksto
k, and power law wave equations are nearly identi
al. The only di�eren
es in

Figs. 2.4(a-d) are due to the di�eren
es in propagation delays and the di�erent time s
ale that

is employed in Fig. 2.4(d) to fa
ilitate 
omparisons with Figs. 2.4(h) and 2.4(l). Figs. 2.4(a-d)

demonstrate that, at these distan
es, the time-domain Green's fun
tions for the Bla
ksto
k,

Stokes, and power law wave equation are e�e
tively delta fun
tions for a three 
y
le Hanning-

weighted pulse with a 7.5MHz 
enter frequen
y and that dispersion in water is only observed

over mu
h longer distan
es in water for this short pulse.

Figs. 2.4(e-h) des
ribe the time-domain Green's fun
tions for a
ousti
 propagation in

breast 
onvolved with a three-
y
le Hanning-weighted pulse with 
enter frequen
y f0 =

7.5 MHz evaluated at the same four distan
es. At r = 100µm, r = 1 mm, and at shorter

distan
es, the 
ausal and non
ausal time-domain Green's fun
tions evaluated at these dis-

tan
es are all e�e
tively equivalent to delta fun
tions in these 
onvolutions, so at r = 100µm,

r = 1 mm, and at shorter distan
es, there is minimal attenuation and dispersion of this

short pulse. In Fig. 2.4(g), there is a slight di�eren
e between the three waveforms at

r = 1 
m, and some attenuation and dispersion is also observed in Fig. 2.4(g) at r = 1 
m.

Fig. 2.4(h) indi
ates that the three 
onvolution results are approximately the same and that

the attenuation and dispersion are signi�
ant for breast at r = 10 
m. The signal amplitude

drops o� 
onsiderably in Fig. 2.4(h), and there is also 
onsiderable �ltering and spreading

of the signal in the time domain in Fig. 2.4(h) relative to Figs. 2.1(e-g). Fig. 2.4(h) also

shows that, unlike the result shown in water at r = 10 
m in Fig. 2.4(d), the 7.5 MHz


enter frequen
y has been 
ompletely removed by the e�e
ts of power law attenuation and

dispersion at the distan
e r = 10 
m.
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Figs. 2.4(i-l) show the results obtained when the time-domain Green's fun
tions for

a
ousti
 propagation in liver are 
onvolved with a three-
y
le Hanning-weighted pulse with a

f0 = 7.5 MHz 
enter frequen
y. Figs. 2.4(i) and 2.4(j) demonstrate that the three 
onvolution

results are nearly equivalent and that there is minimal attenuation or dispersion at r =

100µm and at r = 1 mm. Fig. 2.4(k) indi
ates that there is a small di�eren
e between the

three waveforms at r = 1 
m, and there is minimal attenuation and dispersion observed in

Fig. 2.4(k) relative to Figs. 2.4(i-j). In Fig. 2.4(l), whi
h is evaluated at r = 10 
m, some

di�eren
es are observed in the three 
onvolution results be
ause of the di�eren
es that are

observed at this distan
e in Fig. 2.2(
), and there is a moderate amount of attenuation and

dispersion relative to that observed at shorter distan
es in Figs. 2.4(i-k).

Some interesting trends are also observed when the waveforms evaluated at the same

distan
e are 
ompared for di�erent media. For example, the waveforms in Figs. 2.4(a),

2.4(e), and 2.4(i), whi
h are 
al
ulated at r = 100µm, are all displayed within the same

time window. These three �gures are all very similar, and no attenuation or dispersion

is evident in any of these. The waveforms in Figs. 2.4(b), 2.4(f), and 2.4(j), whi
h are


al
uated at r = 1 mm, are also evaluated in the same time window. These three �gures are

also very similar, again with no attenuation or dispersion, although the waveform lo
ations

vary due to the di�eren
es in the sound speeds c0 for the three media. The waveforms in

Figs. 2.4(
), 2.4(g), and 2.4(k), whi
h are evaluated at r = 1 
m, are all shown in 0.6µs

wide time windows with di�erent start times. These �gures demonstrate more obvious

shifts in the waveform lo
ations due to sound speed di�eren
es, show some variation in the

attenuation in the three media, and indi
ate the onset of dispersion in the signal 
al
ulated

for breast. The 
onvolution results in Figs. 2.4(d), 2.4(h), and 2.4(l), whi
h are evaluated

at r = 10 
m, are all shown in 2.5µs wide time windows with di�erent start times. At

r = 10 
m, the waveform 
al
ulated for water still shows no eviden
e of attenuation and

dispersion, the waveform 
al
ulated for liver demonstrates some attenuation and dispersion,
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Figure 2.5: The FWHM of the envelope of v(t)∗4πrg(r, t) 
al
ulated for a) water, b) breast,

and 
) liver, where v(t) is a three 
y
le Hanning-weighted pulse and g(r, t) is the time-domain

Green's fun
tion for the Stokes, Bla
ksto
k, Caputo, Szabo, or power law wave equation.

and the waveform 
al
ulated for breast demonstrates the most attenuation and dispersion

of these three materials.

2.7.9 Chara
terizing the dispersion of v(t) ∗ 4πrg(r, t) with the full

width at half maximum (FWHM) of the envelope

Fig. 2.5 
hara
terizes the dispersion by evaluating the full width at half maximum

(FWHM) of the envelope of the 
onvolution v(t) ∗ 4πrg(r, t) for ea
h time-domain Green's

fun
tion. The FWHM are shown in Figs. 2.5(a-
) for water, breast, and liver, respe
tively,

where the results are evaluated for distan
es r between 100µm and 10 
m. The FWHM in

Fig. 2.5 is 
al
ulated by evaluating the Hilbert transform of v(t) ∗ 4πg(r, t) and taking the

absolute value of the result to obtain the envelope of the waveform. Then, the time at whi
h

the peak value of the envelope o

urs is determined, the times at whi
h the half peak value

is rea
hed are extra
ted, and then the di�eren
e between the largest and the smallest times

at whi
h the half peak value o

urs determines the FWHM.

In Figs. 2.5(a-
), the FWHM is 
al
ulated for the envelope of v(t) ∗ 4πrg(r, t), where v(t)

is a 3 
y
le Hanning-weighted pulse with a 
enter frequen
y of 7.5 MHz, and g(r, t) represents

the time-domain Green's fun
tion for the Stokes, Bla
ksto
k, Caputo, Szabo, or power law

wave equation. In Fig. 2.5(a), the FWHM values 
al
ulated with the time-domain Green's
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fun
tions of the Stokes, Bla
ksto
k, and power law wave equations for water are all equal to

200.42 ns at r = 100µm and are all equal to 201.76 ns at r = 10 
m. The FWHM of the 3


y
le Hanning-weighted pulse with a 
enter frequen
y of 7.5 MHz is equal to 200 ns, whi
h

suggests that the dispersion is negligible in water for a pulse with 7.5 MHz 
enter frequen
y

for all distan
es r between 100µm and 10 
m. In Fig. 2.5(b), the FWHM values 
al
ulated

with the time-domain Green's fun
tions of the Caputo, Szabo, and power law wave equations

for breast are equal to 200.49 ns, 200.5 ns, and 200.5 ns, respe
tively, at r = 100µm and

are equal to 750.81 ns, 753.56 ns, and 752.82 ns, respe
tively, at r = 10 
m. Thus, for all

three 
onvolution 
al
ulations in breast, the dispersion is negligible at r = 100µm, but there

is signi�
ant dispersion at r = 10 
m. In Fig. 2.5(
), the FWHM values 
al
ulated with

the time-domain Green's fun
tions of the Caputo, Szabo, and power law wave equations for

liver are equal to 200.46 ns, 200.44 ns, and 200.44 ns, respe
tively, at r = 100µm and are

equal to 311.28 ns, 318.23 ns, and 316.41 ns, respe
tively, at r = 10 
m. Thus, for all three


onvolution 
al
ulations in liver, the dispersion is negligible at r = 100µm, and there is

moderate dispersion at r = 10 
m. Also, as indi
ated by the results shown in Figs. 2.5(a-
)

and by the FWHM values given above, the FWHM of the envelope of ea
h 
onvolution


al
ulation are in 
lose agreement in all three materials and for all three time-domain Green's

fun
tions when v(t) is represented by a 7.5 MHz 
enter frequen
y pulse.

2.8 Dis
ussion

2.8.1 Causal and non
ausal time-domain Green's fun
tions for a
ous-

ti
 propagation

Although the Bla
ksto
k wave equation is non
ausal and the Szabo and power law wave

equations are non
ausal for 1 < y ≤ 2, 
lear demonstrations of non
ausal behavior are 
hal-

lenging to �nd in lo
ations far from the sour
e, as shown in Fig. 2.1 for time-domain Green's

fun
tions 
al
ulations in water, breast, and liver, espe
ially when the results are plotted on
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a linear s
ale. However, in lo
ations very 
lose to the sour
e, i.e., for water with r ≤ 1 nm,

for breast with r ≤ 10 nm, and for liver with r ≤ 100 zm, the non
ausal 
ontributions are


learly evident in ea
h of these time-domain Green's fun
tion 
al
ulations. This suggests

that su

essfully observing obvious examples of non
ausal time-domain behavior produ
ed

by the Bla
ksto
k, Szabo, and power law wave equations primarily involves knowing where

to look.

Fig. 2.2(a) shows that the time-domain Green's fun
tions for the Stokes and Bla
ksto
k

wave equations 
onverge to the time-domain Green's fun
tion for the power law wave equa-

tion in 
al
ulations for water, and Figs. 2.2(a-b) show that the time-domain Green's fun
tions

for the Caputo and Szabo wave equations 
onverge to the time-domain Green's fun
tion for

the power law wave equation in 
al
ulations for breast and water, respe
tively, albeit at

di�erent rates. Figs. 2.1(
-d) and Fig. 2.2(a) indi
ate that the time-domain Green's fun
tion

for the Stokes and Bla
ksto
k wave equations 
onverge to a Gaussian fun
tion, whi
h is the

time-domain Green's fun
tion for the power law wave equation when y = 2. Figs. 2.1(e-f)

and Fig. 2.2(b) indi
ate that the time-domain Green's fun
tion for the Caputo and Szabo

wave equations 
onverge to a maximally skewed stable distribution, and Figs. 2.1(k-l) and

Fig. 2.2(
) also indi
ate that the time-domain Green's fun
tions for the Caputo and Szabo

wave equations s
aled by 4πr 
onverge to a maximally skewed stable distribution, whi
h

is the time-domain Green's fun
tion for the power law wave equation s
aled by 4πr when

0 ≤ y < 1 or 1 < y ≤ 2. These �gures show that, beyond a 
ertain small distan
e, the

time-domain Green's fun
tion for the power law wave equation is an e�e
tive approximation

for the time-domain Green's fun
tions of the Stokes, Bla
ksto
k, Caputo, and Szabo wave

equations.

Fig. 2.3, whi
h plots 20 log10 {g(r, t = 0)/max [g(r, t)]} for the Bla
ksto
k, Szabo, and

power law wave equations, demonstrates that the non
ausal 
ontributions to these non-


ausal time-domain Green's fun
tions are minis
ule beyond a 
ertain distan
e. Fig. 2.3 also

demonstrates that 
al
ulations of time-domain Green's fun
tions at t = 0 with the IFFT
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qui
kly rea
hes a lower limit beyond a 
ertain distan
e that depends on the material and

on the simulation parameters. Our experien
e is that the STABLE toolbox a
hieves mu
h

better a

ura
y than the IFFT and is mu
h more 
onvenient for 
al
ulating stable pdfs

and for 
al
ulating 20 log10 {g(r, t = 0)/max [g(r, t)]}, sin
e there is no need to 
ompute the

entire time-domain Green's fun
tion for either of these with the STABLE toolbox.

2.8.2 Convolving time-domain Green's fun
tions with 3 
y
le

Hanning-weighted pulses

In Fig. 2.4, non
ausal time-domain 
ontributions are not evident in any of the numeri
al


al
ulations performed with the non
ausal time-domain Green's fun
tions. This suggests

that the non
ausal 
ontributions are e�e
tively `�ltered out' by the 3 
y
le Hanning-weighted

pulse with a 
enter frequen
y of 7.5 MHz and that the 
ausal and non
ausal models for

4πrg(r, t) 
onsidered here are equally e�e
tive for these 
al
ulations. Fig. 2.5 also suggests

that 
onvolutions between the 7.5 MHz 
enter frequen
y pulse and the non
ausal and the


ausal models for 4πrg(r, t) are all e�e
tively represented by delta fun
tions at the origin in

all three materials for distan
es r ≤ 100µm. Furthermore, Fig. 2.5 indi
ates that there is

very little di�eren
e between the FWHM of the envelope of 4πrg(r, t)∗v(t) for the 
ausal and

non
ausal wave equations evaluated in these three materials, whi
h suggests that 
onvergen
e

of the FWHM is a
hieved in all materials at all distan
es shown. This is in 
ontrast to

the results shown in Figs. 2.1 and 2.2, whi
h suggest that 
onvergen
e in the norm of the

di�eren
e is a
hieved near a value of 5%.

2.8.3 Causality in a
ousti
 wave propagation

Fig. 2.1 indi
ates that the 
on
ept of 
ausality, when applied as a distin
tion between

the time-domain Green's fun
tions for the Stokes, Bla
ksto
k, and power law wave equations

when y = 2 and also for the Caputo, Szabo, and power law wave equations when 1 <

y < 2, is only important very 
lose to the sour
e. Elsewhere, establishing the absen
e

or presen
e of 
ausality of these wave equations appears to be a purely a
ademi
 exer
ise
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be
ause the Stokes, Bla
ksto
k, and power law wave equations generate very similar results

for y = 2 and be
ause the Caputo, Szabo, and power law wave equations generate very

similar results for 1 < y < 2 beyond a 
ertain distan
e where the non
ausal 
ontributions are

negligible. However, 
ausality is still a very important 
on
ept for a
ousti
 wave propagation,

espe
ially for distinguishing in
oming non
ausal Green's fun
tions from outgoing 
ausal

Green's fun
tions and for maintaining 
onsisten
y between the attenuation and dispersion in

a
ousti
 wave propagation, whi
h suggests that the importan
e of 
ausality in a
ousti
 wave

propagation depends on the 
ontext. The results presented in Figs. 2.1-2.5 suggest that,

ex
ept for lo
ations very 
lose to the sour
e, the Stokes, Bla
ksto
k, and power law wave

equations are all e�e
tive models for a
ousti
 propagation in water and that the Caputo,

Szabo, and power law wave equations are all e�e
tive models for a
ousti
 propagation in soft

tissue that either exa
tly or approximately satisfy the attenuation and dispersion relations

in Eqs. 2.1 and 2.2, respe
tively.

2.9 Con
lusion

Time-domain Green's fun
tions for three time-fra
tional wave equations are numeri
ally

evaluated and the results are 
ompared at di�erent distan
es for water, breast, and liver.

The results demonstrate that the Szabo and power law wave equations are non
ausal and

that the Caputo wave equation is 
ausal, where the Szabo wave equation is a time-fra
tional

extension of the non
ausal Bla
ksto
k wave equation, and the Caputo wave equation is a

time-fra
tional extension of the 
ausal Stokes wave equation. Examples of non
ausal behavior

are observed in the time-domain Green's fun
tions for the Bla
ksto
k, Szabo, and power law

wave equations when these are evaluated very 
lose to the sour
e, i.e., at r ≤ 1 nm for

water, at r ≤ 10 nm for breast, and at r ≤ 1 zm for liver, but at mu
h larger distan
es, the

non
ausal 
omponents of these time-domain Green's fun
tions are minis
ule. Comparisons

also show that the time-domain Green's fun
tions for the Caputo, Szabo, and power law wave

equations with 1 < y < 2 
onverge to the same result and that the time-domain Green's
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fun
tions for the Stokes, Bla
ksto
k, and power law wave equation with y = 2 
onverge to

the same result. When these time-domain Green's fun
tions are 
onvolved with a three-
y
le

Hanning-weighted pulse, no non
ausal behavior is observed in the time-domain results, and

the FWHMs of the envelopes of the 
onvolution results are all approximately the same,

whi
h indi
ates that the Caputo, Szabo, and power law wave equations are equally e�e
tive

for these time-domain 
al
ulations.
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Chapter 3

Spa
e fra
tional wave equations

2

3.1 Introdu
tion

For time-fra
tional models of power law attenuation, the 
lose 
onne
tion between power

law attenuation and fra
tional 
al
ulus is evident in the expression for the derivative op-

eration (jω)y in the frequen
y domain, whi
h 
ontains the power law term ωy
. Similar

expressions are also available for spa
e-fra
tional models of power law attenuation after

some additional mathemati
al manipulations.

Time-fra
tional and spa
e-fra
tional wave equations that des
ribe power law attenuation

are often 
hara
terized through the attenuation and phase velo
ity, whi
h are obtained

from the imaginary and real parts of the wavenumber k, respe
tively. Other methods

for analyzing time-fra
tional wave equations in
lude the Kramers-Kronig relations [44℄,

the Paley-Wiener theorem [43℄, and time-
ausal theories [45℄, and time-fra
tional wave

equations are also evaluated through time-domain analysis of the material impulse response

fun
tion (MIRF) [52℄ and time-domain Green's fun
tions [53, 39℄. Mu
h of this analysis


on
entrates on the 
ausality; however, the distin
tion between these is very subtle be
ause

the attenuation is very similar in the fra
tional 
al
ulus models that are presently used for

medi
al ultrasound. Furthermore, all of the non
ausal time-fra
tional models for power law

attenuation demonstrate 
ausal behavior at the origin (r=0), where the e�e
ts of attenuation

2

This arti
le has been submitted to The Journal of the A
ousti
al So
iety of Ameri
a. After this paper

is published, it will be found at http://asa.s
itation.org/journal/jas.
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and dispersion vanish. When present, the non
ausal 
omponents of power law attenuation

models are only evident in time-domain Green's fun
tions evaluated very 
lose to the origin

[53℄. For example, the non
ausal 
omponents of the time-domain Green's fun
tion for the

power law wave equation are only observed in the results of numeri
al 
al
ulations within 10

nm of the sour
e for breast and only within 10 zm of the sour
e for liver. Elsewhere, examples

of non
ausal behavior in the time-domain are very di�
ult to identify be
ause several of the


ausal and non
ausal time-fra
tional models for power law attenuation 
onverge to the same

result a short distan
e from the origin [53℄.

Determining whether a spa
e-fra
tional model is 
ausal or non
ausal requires a di�erent

approa
h be
ause the dispersion relations for spa
e-fra
tional equations are trans
endental

equations. This is further 
onfounded by the various 
laims that appear in the literature,

where one paper indi
ates that the Chen-Holm spa
e-fra
tional wave equation is 
ausal [41℄,

two other papers 
laim that the Chen-Holm spa
e-fra
tional wave equation is non
ausal

[54, 55℄, and another paper suggests that the Treeby-Cox spa
e-fra
tional wave equation

is 
ausal [42℄. If these spa
e-fra
tional wave equations are non
ausal, then some eviden
e

of non
ausal behavior is expe
ted 
lose to the origin, as demonstrated in [53℄ for two time-

fra
tional wave equations that are non
ausal for power law exponents 1 < y < 2. Similarly, if

these spa
e-fra
tional wave equations are 
ausal, then the time-domain Green's fun
tions are

expe
ted to 
onsistently equal zero at all times t < 0, in
luding all lo
ations very 
lose to the

origin. Sin
e these results have not yet been demonstrated for either of these spa
e-fra
tional

wave equations, additional evaluations are needed.

To de�nitively establish whether the Chen-Holm and Treeby-Cox wave equations are


ausal or non
ausal and also to evaluate the similarities and di�eren
es in the time-domain

Green's fun
tions for both of these spa
e-fra
tional wave equations, some new analyti
al

expressions and numeri
al results are introdu
ed. These are developed and evaluated after

the fra
tional partial di�erential equations, the dispersion relations, and the time-domain

Green's fun
tions are presented for the Chen-Holm and the Treeby-Cox spa
e-fra
tional
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wave equations. The power law wave equation, whi
h is a time-fra
tional wave equation,

is also provided as a referen
e. Analyti
al expressions showing that the Chen-Holm and

the Treeby-Cox spa
e-fra
tional wave equations are both 
ausal are then introdu
ed. Next,

a method is des
ribed for numeri
ally 
al
ulating the time-domain Green's fun
tions for

these two spa
e-fra
tional wave equations. Results are then presented showing that there

is a small but noti
eable di�eren
e between numeri
ally 
al
ulated values for the attenua-

tion and dispersion and the values predi
ted by previously published models and that the

dis
repan
y is eliminated when additional terms are in
luded in the approximations for the

attenuation and dispersion. Results obtained from numeri
al evaluations of the time-domain

Green's fun
tions also reinfor
e that both of these spa
e-fra
tional wave equations are 
ausal.

Although both of these spa
e-fra
tional wave equations demonstrate similar attenuation as a

fun
tion of frequen
y, the phase velo
ities for the Chen-Holm and Treeby-Cox wave equations

are quite di�erent. The results also show that the time-domain Green's fun
tions for the

Treeby-Cox wave equation and the power law wave equation yield approximately the same

result a short distan
e from the origin. When 
onvolved with a short input pulse, the

time-domain Green's fun
tions for the Treeby-Cox wave equation and the power law wave

equation are also nearly identi
al, but the results obtained with the time-domain Green's

fun
tion for the Chen-Holm wave equation are also di�erent. Ex
ept for some very limited


ir
umstan
es, the Treeby-Cox spa
e-fra
tional wave equation and the time-fra
tional power

law wave equation yield similar results, even though the former is 
ausal and the latter is

non
ausal for power law exponents 1 < y ≤ 2.

3.2 The Chen-Holm spa
e-fra
tional wave equation

The spa
e-fra
tional wave equation developed by Chen and Holm [41℄ to des
ribe power

law attenuation is given by

∇2p− 1

c20

∂2p

∂t2
− τ

∂

∂t

(

−∇2
)y/2

p = 0, (3.1)
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where τ = 2α0c
y−1
0 is the fra
tional relaxation time [41℄, p represents the pressure in Pa,

and t is the time in se
onds. The �rst two terms in Eq. 3.1 are re
ognized as the lossless

wave equation, and the third term, whi
h 
ontains a fra
tional Lapla
ian, produ
es power

law attenuation. There is no known exa
t analyti
al 
losed-form time-domain Green's

fun
tion for the Chen-Holm wave equation, so numeri
al evaluations are required. To derive

an approximate expression for these numeri
al 
al
ulations, the transfer fun
tion for an

impulsive for
ing fun
tion applied to the Chen-Holm wave equation is expressed in terms of

the spatial Fourier transform variable k and the Lapla
e transform variable s, whi
h is

G(k, s) =
c20

(s+ τkyc20/2)
2
+ k2c20 − τ 2k2yc40/4

. (3.2)

The inverse Lapla
e transform of Eq. 3.2 then yields

ĝ(k, t) = e−τkyc20t/2 sin
(

kc0t
√

1− τ 2k2y−2c20/4
)

c0

k
√

1−τ2k2y−2c20/4
u (t)

for k <
(

2
τc0

)
1

y−1

(3.3)

and

ĝ(k, t) = e−τkyc20t/2 sinh
(

kc0t
√

τ 2k2y−2c20/4− 1
)

c0

k
√

τ2k2y−2c20/4−1
u (t)

for k >
(

2
τc0

)
1

y−1
.

(3.4)

At k = (2/τc0)
1/(y−1)

, ĝ(k, t) = tc20e
−τkyc20t/2u (t), so ĝ(k, t) is 
ontinuous with respe
t to

k and t. In all three of these expressions for ĝ(k, t), u (t) is the unit step fun
tion, whi
h

guarantees that the time-domain response is equal to 0 for all times t < 0 and that ĝ(k, t) is


ausal. The time-domain Green's fun
tion is then obtained by evaluating

g(r, t) =
4π

(2π)3 r

ˆ

∞

0

ĝ(k, t) sin (kr) kdk, (3.5)

where r =
√

x2 + y2 + z2 is the distan
e from a point sour
e at the origin to an observation

point at (x, y, z). The integral in Eq. 3.5 also 
ontains the unit step fun
tion u (t) through
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the expressions for ĝ(k, t), so the time-domain Green's fun
tion g(r, t) for the Chen-Holm

spa
e-fra
tional wave equation is also 
ausal. Although Eqs. 3.3 and 3.4 are analyti
al

expressions, the time-domain Green's fun
tion g(r, t) in Eq. 3.5 is evaluated numeri
ally.

Approximate expressions for the phase velo
ity and attenuation are derived from the

dispersion relation

k2 =
ω2

c20
+ jωτky (3.6)

with τ = 2α0c
y−1
0 . After taking the square root of both sides of Eq. 3.6, fa
toring out ω/c0

on the right hand side, and keeping the �rst three terms in the binomial approximation,

the wavenumber is rewritten as k ≈ ω/c0 + jα0c
y
0k

y + α2
0c

2y+1
0 ω−1k2y/2. On the right hand

side, ky is repla
ed by the approximation (ω/c0)
y (1 + jyα0c0ω

y−1) and k2y is repla
ed by

the approximation (ω/c0)
2y
, respe
tively, and all third order and higher terms with respe
t

to α0 are dis
arded. The approximate phase velo
ity is then obtained from the real part of

the wavenumber divided by ω,

1

c (ω)
≈ 1

c0
−

(

y − 1

2

)

α2
0c0ω

2y−2. (3.7)

The attenuation α (ω) = α0ω
y
, whi
h is obtained from the imaginary part of the resulting

approximation for k, is the same expression given in Eq. 2.1. In Treeby and Cox [42℄, the

attenuation for the Chen-Holm wave equation is also α (ω) = α0ω
y
, but the approximate

phase velo
ity for the Chen-Holm wave equation is instead expressed as c (ω) ≈ c0.

3.3 The Treeby-Cox spa
e-fra
tional wave equation

Treeby and Cox [42℄ re
ognized that the Chen-Holm spa
e-fra
tional wave equation


orre
tly models the power law attenuation des
ribed by Eq. 2.1 but that the dispersion

for the Chen-Holm wave equation di�ers from the desired expression given in Eq. 2.2. To

address this problem, Treeby and Cox inserted a se
ond spa
e-fra
tional term that a

ounts
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for the dispersion, and the resulting expression is given by [42℄

∇2p− 1

c20

∂2p

∂t2
+

{

−τ ∂
∂t

(

−∇2
)y/2

+ η
(

−∇2
)(y+1)/2

}

p = 0, (3.8)

where τ = 2α0c
y−1
0 and η = 2α0c

y
0 tan (πy/2). In Eq. 3.8, the third and fourth terms

a

ount for the e�e
ts of attenuation and dispersion, respe
tively. Similar to the Chen-

Holm wave equation, there is no known exa
t analyti
al 
losed-form time-domain Green's

fun
tion for the Treeby-Cox wave equation, so numeri
al evaluations are required. To derive

an approximate expression for these numeri
al 
al
ulations, the transfer fun
tion for an

impulsive for
ing fun
tion applied to the Treeby-Cox wave equation is expressed in terms of

the spatial Fourier transform variable k and the Lapla
e transform variable s, whi
h is

G(k, s) =
c20

(s+ τkyc20/2)
2
+ k2c20 − τ 2k2yc40/4− ηc20k

y+1
. (3.9)

After the inverse Lapla
e transform of Eq. 3.9 is evaluated, the result is

ĝ(k, t) = e−τkyc20t/2 sin
(

kc0t
√

1− τ 2k2y−2c20/4− ηky−1
)

c0

k
√

1−τ2k2y−2c20/4−ηky−1
u (t) for k < κ

(3.10)

and

ĝ(k, t) = e−τkyc20t/2 sinh
(

kc0t
√

τ 2k2y−2c20/4 + ηky−1 − 1
)

c0

k
√

τ2k2y−2c20/4+ηky−1−1
u (t) for k > κ,

(3.11)

where κ =
[(

η +
√

η2 + τ 2c20

)

/2
]−1/(y−1)

. At k = κ, ĝ(k, t) = tc20e
−τκyc20t/2u (t), so the

expression for ĝ(k, t) is 
ontinuous with respe
t to k and t. The unit step fun
tion u (t)

in all three of these expressions for ĝ(k, t) indi
ates that ĝ(k, t) is 
ausal. The time-domain

Green's fun
tion for the Treeby-Cox spa
e-fra
tional wave equation is 
al
ulated with Eq. 3.5


ombined with the expressions for ĝ(k, t), and due to the presen
e of u (t) in ea
h expression
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for ĝ(k, t), the time-domain Green's fun
tion g(r, t) for the Treeby-Cox spa
e-fra
tional wave

equation is also 
ausal.

The phase velo
ity and attenuation for the Treeby-Cox spa
e-fra
tional wave equation

are derived from the dispersion relation

k2 =
ω2

c20
+ j2α0c

y−1
0 ωky + 2α0c

y
0 tan (πy/2)k

y+1, (3.12)

starting with the assumption that the attenuation and dispersion are both small relative to

ω/c0. The binomial approximation is then applied to Eq. 3.12, and the �rst three terms are

retained, yielding

k ≈ ω
c0
+ α0c

y
0 (jk

y + tan (πy/2) c0ω
−1ky+1)

−1
2
α2
0c

2y+1
0 ω−1 (jky + tan (πy/2) c0ω

−1ky+1)
2
.

(3.13)

On the right hand side, ky is repla
ed with (ω/c0)
y [1 + yα0c0ω

y−1 (j + tan (πy/2))] and ky+1

is repla
ed with (ω/c0)
y+1 [1 + (y + 1)α0c0ω

y−1 (j + tan (πy/2))], respe
tively, and all third

order and higher terms with respe
t to α0 are dis
arded. The approximate phase velo
ity is

obtained from the real part of the wavenumber divided by ω,

1

c (ω)
≈ 1

c0
+ tan (πy/2)α0ω

y−1 +

[

−y + 1

2
+

(

y +
1

2

)

tan2 (πy/2)

]

α2
0c0ω

2y−2, (3.14)

and the approximate attenuation is the imaginary part of the wavenumber,

α (ω) ≈ α0ω
y + 2y tan (πy/2)α2

0c0ω
2y−1. (3.15)

Treeby and Cox [42℄ instead express the approximate phase velo
ity and attenuation for

the Treeby-Cox wave equation as 1/c (ω) ≈ 1/c0 + tan (πy/2)α0ω
y−1

and α (ω) ≈ α0ω
y
,

respe
tively.
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3.4 Methods

3.4.1 Dispersion Relations

The attenuation and phase velo
ity of the power law wave equation are 
al
ulated with

Eqs. 2.1 and 2.2, respe
tively. For the Chen-Holm and the Treeby-Cox spa
e-fra
tional

wave equations, sin
e there is no analyti
al solution, the phase velo
ity and attenuation

are both 
al
ulated using the �fsolve� routine in Matlab. This Matlab fun
tion applies the

Levenberg�Marquardt algorithm to numeri
ally determine the 
omplex value of k that solves

the dispersion relations in Eqs. 3.6 and 3.12 using the initial value k = ω/c0.

3.4.2 The Pantis Method

Numeri
al 
al
ulations of the time-domain Green's fun
tions for the Chen-Holm and

Treeby-Cox wave equations are 
hallenging be
ause Eq. 3.5 is a highly os
illatory improper

integral. When applied to this problem, most standard numeri
al integration te
hniques

perform poorly, so an alternative approa
h is required. The Pantis method [56, 57℄ provides

an ideal solution to this problem, where the improper integral in Eq. 3.5 is rewritten as the

sum of a proper integral and an improper integral a

ording to

g(r, t) =
4π

(2π)3 r

ˆ

∞

0

kĝ(k, t) sin (kr) dk =
4π

(2π)3 r
[I1 (r, t) + I2 (r, t)] , (3.16)

with

I1 (r, t) =

ˆ mπ/r

0

kĝ(k, t) sin (kr) dk, (3.17)

and

I2 (r, t) =

ˆ

∞

mπ/r

kĝ(k, t) sin (kr) dk. (3.18)

The integral I1 (r, t) is evaluated with Filon's method [58, 59, 60℄, whi
h approximates kĝ(k, t)

with a pie
ewise se
ond order polynomial. Filon's method is implemented within a Matlab
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routine [59℄, where the input parameters in
lude the Matlab fun
tion handle, the lower and

upper limits of integration, and the number of points at whi
h the integrand is evaluated.

Ea
h numeri
al evaluation of I1 (r, t) with Filon's method is 
al
ulated with 70,000 abs
issas,

whi
h is su�
ient for 
onvergen
e at all temporal and spatial points evaluated here for both

breast and liver. After integrating by parts and re
ognizing that [kĝ(k, t)]
k=∞

= 0, the

integral I2 (r, t) over the upper subinterval is rewritten as

I2 (r, t) = kĝ(k, t)
cos (kr)

r k=mπ/r

− ∂

∂k
[kĝ(k, t)]

sin (kr)

r2 k=mπ/r

−
ˆ

∞

mπ/r

∂

∂k
[kĝ(k, t)]

sin (kr)

r2
dk. (3.19)

For these 
al
ulations, m is an odd integer, and only the �rst term in Eq. 3.19 is retained.

Thus, I2 (r, t) ≈ −mπĝ(mπ/r, t)/r2, whi
h is an e�e
tive approximation for these 
al
ula-

tions when m is su�
iently large and when the 
ontribution from I2 (r, t) is relatively small.

Also, when m is an odd integer, the se
ond term in Eq. 3.19 disappears, and when m is

odd, I1 (r, t) is 
onsistently positive for the expressions 
onsidered here. An odd value of

m is advantageous for these 
al
ulations be
ause an even value of m 
an yield a negative

value for I1 (r, t), whi
h is undesirable be
ause g(r, t) ≥ 0 for all values of r and t. The

value m = 1601 yields e�e
tive results for all (r, t) pairs evaluated here. Also, to avoid

problems with numeri
al over�ow when the argument of the sinh (·) fun
tion grows large,

exp (−a) sinh (b) is instead 
al
ulated using

(

eb−a − e−b−a
)

/2.

3.4.3 Time windows for 
omputed time-domain Green's fun
tions

The start and end times for all time-domain Green's fun
tion 
al
ulations are adjusted

manually for ea
h lo
ation su
h that ea
h waveform �lls a signi�
ant portion of the time win-

dow. For both the Chen-Holm wave equation and the Treeby-Cox wave equation, g (r, t) = 0

at t = 0 be
ause ĝ(k, t) = 0 for all values of k when t = 0, whi
h is the analyti
al result

obtained through dire
t substitution of t = 0 into Eqs. 3.3-3.4 and Eqs. 3.10-3.11. The unit
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Figure 3.1: Phase velo
ity and attenuation in breast and liver obtained from the dispersion

relation in Eq. 3.6 for the Chen-Holm wave equation (∗) and two di�erent approximations

(• and ◦) to the dispersion relation for the Chen-Holm wave equation.

step fun
tion u (t) also guarantees that ĝ(k, t) = 0 for all t < 0, so g (r, t) = 0 for all t < 0

in the Chen-Holm and Treeby-Cox wave equations. For the power law wave equation, the

time-domain Green's fun
tion is 
al
ulated in Matlab with the STABLE toolbox [47, 53℄,

whi
h numeri
ally evaluates the expression for the stable pdf in Eq. 2.13. The time window

de�ned for time domain Green's fun
tion 
al
ulations very 
lose to the sour
e in
ludes

negative time values to 
apture the non
ausal 
omponents of the response in these lo
ations.

In all plots, the arrival time r/c0 in a lossless medium is also indi
ated to provide a time

referen
e.

3.5 Results

3.5.1 Phase velo
ity and attenuation in breast and liver

Fig. 3.1 shows the exa
t and approximate frequen
y-dependent phase velo
ity and attenu-

ation for the Chen-Holm spa
e-fra
tional wave equation using values for human breast with

y = 1.5, α0 = 0.086 Np/
m/MHz

1.5
, and c0 = 1450 m/s and using values for human liver

with y = 1.139, α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s. The frequen
y range is

0.1 to 40MHz, and the step size on the horizontal axis is ∆f = 0.3MHz for ea
h of the phase

velo
ity and attenuation plots. For the Chen-Holm wave equation, the result obtained with

the Matlab �fsolve� routine applied to Eq. 3.6 is indi
ated by dashed lines with star markers

47



0.1 10 20 30 40
Frequency (MHz)

1450

1455

1460

1465

1470

1475
P

ha
se

 v
el

oc
ity

 (m
/s

)
breast

(a)

Treeby-Cox (Eq. 14)
Treeby-Cox approx. (Eq. 16)
power law wave eqn (Eq. 2)

0.1 10 20 30 40
Frequency (MHz)

0

500

1000

1500

2000

2500

3000

A
tte

nu
at

io
n 

(N
p/

m
)

breast

(b)

Treeby-Cox (Eq. 14)
Treeby-Cox approx. (Eq. 17)
power law wave eqn (Eq. 1)

0.1 10 20 30 40
Frequency (MHz)

1545

1550

1555

1560

P
ha

se
 v

el
oc

ity
 (m

/s
)

liver

(c)

Treeby-Cox (Eq. 14)
Treeby-Cox approx. (Eq. 16)
power law wave eqn (Eq. 2)

0.1 10 20 30 40
Frequency (MHz)

0

100

200

300

400

A
tte

nu
at

io
n 

(N
p/

m
)

liver

(d)

Treeby-Cox (Eq. 14)
Treeby-Cox approx. (Eq. 17)
power law wave eqn (Eq. 1)

Figure 3.2: Phase velo
ity and attenuation in breast and liver obtained from the dispersion

relation in Eq. 3.12 for the Treeby-Cox wave equation (∗), the approximations to the

dispersion relation for the Treeby-Cox wave equation given in Eqs. 3.14-3.15 (•), and the

attenuation and phase velo
ity for the power law wave equation given in Eqs. 2.1-2.2 (◦).

(∗), and the approximate solution from Eq. 3.7 is indi
ated by dot-dashed lines with solid

dot markers (•). The zero-order approximation to the phase velo
ity c (ω) ≈ c0 is indi
ated

by a solid line with 
ir
le markers (◦) in Figs. 3.1(a) and 3.1(
). Figs. 3.1(a) and 3.1(
) show

that the approximation to c (ω) introdu
ed in Eq. 3.7 demonstrates ex
ellent agreement with

the numeri
al solution of Eq. 3.6. Figs. 3.1(a) and 3.1(
) also indi
ate that the phase velo
ity

of the Chen-Holm wave equation is not quite equal to c0 be
ause c (ω) in
reases slightly as

the frequen
y in
reases. In addition, Fig. 3.1(b) shows that the attenuation predi
ted by the

Chen-Holm wave equation follows the power law indi
ated by Eq. 2.1 very 
losely in breast.

Furthermore, Figs. 3.1(a) and 3.1(
) demonstrate that the 
hange in the phase velo
ity in

liver over this frequen
y range is mu
h less than the 
hange in the phase velo
ity in breast,

and Figs. 3.1(b) and 3.1(d) indi
ate that the attenuation of liver is mu
h smaller than that

of breast.

Fig. 3.2 shows the exa
t and approximate values for the phase velo
ity and attenuation of

the Treeby-Cox spa
e-fra
tional wave equation and the exa
t phase velo
ity and attenuation

of the power law wave equation using the same parameters evaluated in Fig. 3.1. For the

Treeby-Cox wave equation, the numeri
al results obtained with the Matlab �fsolve� routine

applied to Eq. 3.12 are indi
ated by dashed lines with star markers (∗), and the approximate

solution from Eq. 3.14 is indi
ated by dot-dashed lines with solid dot markers (•). For the
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power law wave equation, whi
h exa
tly satis�es Eqs. 2.1 and 2.2, the results are indi
ated by

solid lines with 
ir
le markers (◦). Figs. 3.2(a-d) show that the approximations introdu
ed

in Eqs. 3.14-3.15 
losely mat
h the numeri
al values obtained from Eq. 3.12. Fig. 3.2

also shows that the phase velo
ity and attenuation 
urves are similar for the power law

wave equation and the Treeby-Cox wave equation; however, there is a small but noti
eable

di�eren
e between these 
urves that is asso
iated with the higher order terms on the right

hand side of Eqs. 3.14-3.15. Fig. 3.2(b) indi
ates that the di�eren
e between the attenuation

for the Treeby-Cox wave equation and the power law wave equation in
reases slightly as the

frequen
y grows larger. For example, at f = 40 MHz, the phase velo
ities obtained from

Eq. 3.12 (the dispersion relation for the Treeby-Cox wave equation) with the �fsolve� routine

in Matlab, Eqs. 3.14-3.15 (approximations to the phase velo
ity and the attenuation for

the Treeby-Cox wave equation), and Eqs. 2.1-2.2 (the exa
t attenuation and phase velo
ity

for the power law wave equation) in breast are 1468.2 m/s, 1468.2 m/s, and 1468.4 m/s,

and the 
orresponding attenuations are 2096.6 Np/m, 2093.7 Np/m, and 2175.6 Np/m,

respe
tively. At f = 40 MHz, the 
orresponding phase velo
ities in liver are 1553.0 m/s,

1553.0 m/s, and 1553.1 m/s, and the attenuations are 300.79 Np/m, 300.68 Np/m, and

306.59 Np/m, respe
tively. Thus, at f = 40 MHz and at all other frequen
ies evaluated

in Fig. 3.2, Eqs. 3.14-3.15 are better approximations for the phase velo
ity and attenuation

of the Treeby-Cox wave equation than Eqs. 2.2 and 2.1, where the largest di�eren
es are

observed at f = 40 MHz. Also, the phase velo
ity and attenuation are slightly smaller for

the Treeby-Cox wave equation than for the power law wave equation. Figs. 3.2(a) and 3.2(
)

also demonstrate that the 
hange in the phase velo
ity in liver over this frequen
y range is

smaller than the 
hange in the phase velo
ity in breast, and Figs. 3.2(b) and 3.2(d) show

that the attenuation for liver is mu
h less than that for breast over the range of frequen
ies

evaluated here. In Figs. 3.2(a) and 3.2(
), the di�eren
es in the phase velo
ities for the power

law wave equation and the Treeby-Cox wave equation are due to the 
ontribution from the

third term in Eq. 3.14, and in Figs. 3.2(b) and 3.2(d), the di�eren
es in the attenuation for
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the power law wave equation and the Treeby-Cox wave equation are due to the 
ontribution

from the se
ond term in Eq. 3.15.

3.5.2 Time-domain Green's fun
tions 
al
ulated for breast
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Figure 3.3: Time-domain Green's fun
tions s
aled by 4πr 
al
ulated for breast with y = 1.5,
α0 = 0.086 Np/
m/MHz

1.5
, and c0 = 1450 m/s at (a) r = 1 nm, (b) r = 10 nm, (
) r = 100

nm, (d) r = 1µm, (e) r = 100µm, (f) r = 1 mm, (g) r = 1 
m, and (h) r = 10 
m

with the power law (solid line), Chen-Holm (dashed line), and Treeby-Cox (dot-dashed line)

wave equations. At all distan
es, the time-domain Green's fun
tions for the Chen-Holm and

Treeby-Cox wave equations evaluated for breast are 
ausal while the time-domain Green's

fun
tion for the power law wave equation is 
learly non-
ausal for r = 1nm and r = 10nm.

Beyond about r = 100µm, the time-domain Green's fun
tions for the power law wave

equation and the Treeby-Cox wave equation are nearly indistinguishable, while the time-

domain Green's fun
tion for the Chen-Holm wave equation is distin
t from the time-domain

Green's fun
tions for the time-fra
tional power law wave equation and the spa
e-fra
tional

Treeby-Cox wave equation at all distan
es.

To demonstrate some of the similarities and di�eren
es between these three fra
tional

wave equations evaluated at various distan
es, Fig. 3.3 shows the time-domain Green's

fun
tions multiplied by 4πr for the power law wave equation (solid line), the Chen-Holm

wave equation (dashed line), and the Treeby-Cox wave equation (dot-dashed line) 
al
ulated

for human breast with y = 1.5, c0 = 1450 m/s, and α0 = 0.086 Np/
m/MHz

1.5
. The results

are 
omputed at r = 1 nm, r = 10 nm, r = 100 nm, r = 1µm, r = 100µm, r = 1 mm,
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r = 1 
m, and r = 10 
m. The units de�ned for the horizontal axis in Fig. 3.3 are pi
ose
onds,

nanose
onds, or mi
rose
onds. The verti
al dashed line des
ribes the time t = r/c0 in ea
h

sub�gure. Figs. 3.3(a) and 3.3(b) show that the Green's fun
tion for the power law wave

equation is non
ausal at r = 1 nm and r = 10 nm sin
e the Green's fun
tion for the power

law wave equation is 
learly nonzero before time t = 0 in these two sub�gures. However, the

Green's fun
tions for the Chen-Holm wave equation and the Treeby-Cox wave equation are

both 
ausal as these two Green's fun
tions are always equal to zero for all times t ≤ 0, as

demonstrated in se
tions 3.2 and 3.3, respe
tively. The amplitudes of the Green's fun
tions

for these three wave equations are similar in ea
h individual sub�gure, and the amplitudes


hange by a signi�
ant amount in ea
h su

essive sub�gure. For example, the values of

the peaks in Fig. 3.3(a) are all approximately 4 × 1011 s

−1
, and the values of the peaks in

Fig. 3.3(b) are all around 9 × 1010 s

−1
. Three distin
t peaks are observed in Figs. 3.3(a)

and 3.3(b), and then the peaks of the time-domain Green's fun
tions for the power law wave

equation and the Treeby-Cox wave equation start to move mu
h 
loser together in Figs. 3.3(
)

and 3.3(d) while the peak for the Chen-Holm wave equation remains distin
t from the peaks

for the other two fra
tional wave equations in ea
h sub�gure. In Figs. 3.3(e)-3.3(h), the

waveforms for the Chen-Holm wave equation are 
onsistently quite di�erent from those

obtained with the power law and Treeby-Cox wave equations. This is expe
ted be
ause

the phase velo
ity for the Chen-Holm wave equation is approximately equal to c0 for all

frequen
y 
omponents; however, the phase velo
ity demonstrates mu
h greater variation as

a fun
tion of frequen
y in the power law and Treeby-Cox wave equations. Furthermore, in

Figs. 3.3(e)-3.3(h), the time-domain Green's fun
tions for the power law wave equation and

the Treeby-Cox wave equation are nearly indistinguishable, whi
h suggests that these two

time-domain Green's fun
tions are 
onverging to the same result. Fig. 3.3 shows that the

shape of the time-domain Green's fun
tion is the same in all eight sub�gures for the power law

wave equation, where the amplitude and time-s
aling is di�erent in ea
h sub�gure. However,

the shapes of the time-domain Green's fun
tions for the other two fra
tional wave equations
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hange as a fun
tion of distan
e. For instan
e, Fig. 3.3(a) shows that the waveforms for

the Chen-Holm and Treeby-Cox wave equations both experien
e abrupt 
hanges at t = 0,

whereas the 
orresponding waveforms for these two fra
tional wave equations are smooth at

all time points shown in Fig. 3.3(e).

3.5.3 Time-domain Green's fun
tions 
al
ulated for liver
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Figure 3.4: Time-domain Green's fun
tions s
aled by 4πr 
al
ulated for liver with y = 1.139,
α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s at (a) r = 100 zm, (b) r = 1 am,

(
) r = 10 am, (d) r = 100 am, (e) r = 100µm, (f) r = 1 mm, (g) r = 1 
m, and

(h) r = 10 
m with the power law (solid line), Chen-Holm (dashed line), and Treeby-Cox

(dot-dashed line) wave equations. At all distan
es, the time-domain Green's fun
tions for

the Chen-Holm and Treeby-Cox wave equations evaluated for liver are 
ausal while the

time-domain Green's fun
tion for the power law wave equation is 
learly non-
ausal for

r = 100 zm. Beyond about r = 100µm, the time-domain Green's fun
tions for the power

law wave equation and the Treeby-Cox wave equation are nearly indistinguishable, while the

time-domain Green's fun
tion for the Chen-Holm wave equation is 
onsistently distin
t from

the time-domain Green's fun
tions for the time-fra
tional power law wave equation and the

spa
e-fra
tional Treeby-Cox wave equation at all distan
es.

Fig. 3.4 shows the time-domain Green's fun
tions multiplied by 4πr for the power law

wave equation (solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox
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wave equation (dot-dashed line) 
al
ulated for human liver with y = 1.139, c0 = 1540 m/s,

and α0 = 0.0459 Np/
m/MHz

1.139
. In Fig. 3.4, the three time-domain Green's fun
tions

are evaluated at r = 100 zm, r = 1 am, r = 10 am, r = 100 am, r = 100µm, r = 1

mm, r = 1 
m, and r = 10 
m. The units de�ned for the horizontal axis in Fig. 3.4 are

yo
tose
onds (ys or 10−24
se
onds), zeptose
onds (zs or 10−21

se
onds), nanose
onds (ns), or

mi
rose
onds (µs). The verti
al dashed line des
ribes the time t = r/c0 in ea
h sub�gure. In

Fig. 3.4, the �rst row of sub�gures shows that at relatively short distan
es, the time-domain

Green's fun
tions for the power law wave equation, the Chen-Holm wave equation, and the

Treeby-Cox wave equation are again all noti
eably di�erent. Fig. 3.4(a) shows that the

time-domain Green's fun
tion for the power law wave equation is non
ausal at r = 100

zm sin
e this time-domain Green's fun
tion is 
learly nonzero before time t = 0. However,

the time-domain Green's fun
tions for the Chen-Holm wave equation and the Treeby-Cox

wave equation are both 
ausal as these are 
onsistently equal to zero for all times t ≤ 0.

Figs. 3.4(a)-3.4(d) show that, 
ompared to the results 
al
ulated for breast, a mu
h shorter

distan
e is required to show the non
ausal behavior of the power law wave equation in liver.

The amplitudes of the Green's fun
tions for these three wave equations are again similar in

ea
h individual sub�gure, and the amplitudes again de
rease by a signi�
ant amount in ea
h

su

essive sub�gure. For instan
e, the values of the peaks in Fig. 3.4(a) are all approximately

2×1022 s−1
, and the values of the peaks in Fig. 3.4(b) are all near 3×1021 s−1

. Three distin
t

peaks are observed in Figs. 3.4(a)-3.4(d), while the peaks for the power law wave equation

and the Treeby-Cox wave equation are very 
lose together in Figs. 3.4(e)-3.4(h). In ea
h

sub�gure, the lo
ation of the peak for the Chen-Holm wave equation is distin
t from the

peak lo
ations for the other two wave equations. Furthermore, in Figs. 3.4(e)-3.4(h), the

time-domain Green's fun
tions for the power law wave equation and the Treeby-Cox wave

equation are nearly indistinguishable, and with in
reasing distan
e, these two time-domain

Green's fun
tions are 
onverging to the same result.
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3.5.4 Amplitude and full width at half maximum (FWHM) values

in breast and liver

Figure 3.5: The (a,
) amplitudes and (b,d) FWHM values of the time-domain Green's

fun
tions 
al
ulated for the power law, Chen-Holm, and Treeby-Cox wave equations in (a,b)

breast and (
,d) liver. The amplitudes of all three time-domain Green's fun
tions de
rease

as the distan
e in
reases while the FWHM values of all three time-domain Green's fun
tions

in
rease as the distan
e in
reases. The amplitudes of the time-domain Green's fun
tions for

all three of these fra
tional wave equations are very similar at ea
h distan
e, and the FWHM

values are all approximately the same at longer distan
es, although there is a small di�eren
e

in the FWHM values at shorter distan
es that diminishes with in
reasing distan
e.

Fig. 3.5 shows the amplitudes and full width at half maximum (FWHM) values for the

time-domain Green's fun
tions multiplied by 4πr in breast and liver for the power law wave

equation (solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave

equation (dot-dashed line), where these four sub�gures summarize the e�e
ts of attenuation

and dispersion in the time-domain. The initial distan
es are r = 100 nm for breast and

r = 100 am for liver, and ea
h plot ends at r = 10 
m. Figs. 3.5(a) and 3.5(
) indi
ate that the

amplitudes of the time-domain Green's fun
tions for these three fra
tional wave equations,

whi
h are plotted on a log-log s
ale, de
rease with frequen
y as the distan
e in
reases due

to the e�e
t of attenuation. Also, the amplitudes of the time-domain Green's fun
tions for

three wave equations are all very similar at all distan
es for both breast and liver. The slopes

of the amplitudes in Fig. 3.5(a) and 3.5(
) are −0.6677 and −0.8790, respe
tively, where the

absolute values of these two quantities are approximately equal to the re
ipro
als of the power

law exponents in breast and liver, respe
tively. Figs. 3.5(b) and 3.5(d), whi
h are plotted
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on a log-log s
ale, show that the FWHM values of the time-domain Green's fun
tions for

these three fra
tional wave equations in
rease with distan
e due to the e�e
t of dispersion.

In Figs. 3.5(b) and 3.5(d), the FWHM values of the time-domain Green's fun
tions for these

three fra
tional wave equations di�er slightly 
lose to the sour
e. For example, the FWHM

values of the time-domain Green's fun
tions for the power law, Chen-Holm, and Treeby-Cox

wave equations are 4.4 × 10−11
s, 4.1 × 10−11

s, and 3.3 × 10−11
s at r = 100 nm in breast,

respe
tively, and 2.0 × 10−21
s, 1.7 × 10−21

s, and 9.4 × 10−22
s at r = 100 am in liver,

respe
tively. At larger distan
es, the FWHM values of the time-domain Green's fun
tions

for all three wave equations yield nearly the same result even though the shape of the

time-domain Green's fun
tion for the Chen-Holm wave equation is distin
t from the shapes

of the time-domain Green's fun
tions for the power law and Treeby-Cox wave equations.

Figs. 3.5(b) and 3.5(d) also show that, at r = 10 
m, the FWHM values of the time-domain

Green's fun
tions for the power law, Chen-Holm, and Treeby-Cox wave equations are equal

to 4.4 × 10−7
s, 4.1 × 10−7

s, and 4.4 × 10−7
s in breast, respe
tively, and 2.2 × 10−7

s,

1.9 × 10−7
s, and 2.2 × 10−7

s in liver, respe
tively. In Fig. 3.5(b) and 3.5(d), the slopes of

the FWHM values are 0.6711 and 0.8825, whi
h are approximately equal to the re
ipro
als

of the power law exponents in breast and liver, respe
tively.

3.5.5 Time-domain Green's fun
tions 
onvolved with a three 
y
le

Hanning-weighted pulse

Fig. 3.6 shows the waveforms obtained when a three 
y
le Hanning-weighted pulse [50, 51℄

is 
onvolved with the time-domain Green's fun
tions for the power law wave equation

(solid line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave equa-

tion (dot-dashed line) multiplied by 4πr evaluated at r = 1 
m in breast with y = 1.5,

α0 = 0.086 Np/
m/MHz

1.5
, and c0 = 1450 m/s. This �gure shows how power law attenua-

tion and phase velo
ity in�uen
e the shape of a short pulse. In Fig. 3.6, input pulses with two
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Figure 3.6: Simulated three-
y
le Hanning-weighted pulses with 
enter frequen
ies (a) f0 =
7.5 MHz and (b) f0 = 29 MHz 
onvolved with time-domain Green's fun
tions for the power

law, Chen-Holm, and Treeby-Cox wave equations multiplied by 4πr evaluated for breast

at r = 1 
m. The 
onvolution results for the power law wave equation and the Treeby-Cox

wave equation are very similar while the 
onvolution result for the Chen-Holm wave equation


learly shows a time delay. Signi�
ant attenuation and waveform spreading are observed for

all three signals in (b) produ
ed by inputs with f0 = 29 MHz, whereas a moderate amount

of attenuation and waveform spreading is observed for all three signals in (a) produ
ed by

inputs with f0 = 7.5 MHz.

di�erent 
enter frequen
ies, f0 = 7.5 MHz and f0 = 29 MHz, are evaluated to highlight the

di�eren
es in the resulting waveforms. Fig. 3.6 indi
ates that the 
onvolution results for the

power law wave equation and the Treeby-Cox wave equation are nearly indistinguishable for

pulses with f0 = 7.5 MHz and f0 = 29 MHz while the 
onvolution results for the Chen-Holm

wave equation evaluated at these two frequen
ies 
ontain a signi�
ant time delay be
ause of

the substantial di�eren
e in the phase velo
ity. In parti
ular, when the time delay is de�ned

as the time between the peaks, the time delay between the 
onvolution results for the power

law wave equation and the Chen-Holm wave equation is 35 ns in Fig. 3.6(a), and the time

delay between the 
onvolution results for the power law wave equation and the Chen-Holm

wave equation is 41 ns in Fig. 3.6(b), whereas the time delay between the 
onvolution results

for the power law wave equation and the Treeby-Cox wave equation is less than 1 ns in
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Figs. 3.6(a) and 3.6(b). In Fig. 3.6(a), the amplitudes of all three waveforms are 
omparable

and the waveform shapes are also similar. This indi
ates that the attenuation is nearly the

same in all three waveforms and that the amount of waveform spreading (dispersion) for the

propagating waveforms is also approximately the same. In Fig. 3.6(b), the amplitudes are

again similar and the amount of spreading is similar for all three waveforms. The 
onvolution

results for the power law wave equation and the Treeby-Cox wave equation are again nearly

indistinguishable, but the waveform shape for the Chen-Holm wave equation 
onvolution

result is somewhat di�erent from the other two, where the sour
e of this di�eren
e is again

the phase velo
ity. Also, relative to Fig. 3.6(a), the signal amplitude drops o� 
onsiderably

in Fig. 3.6(b), and the �ltering and spreading of the signal in the time domain is mu
h

more signi�
ant in Fig. 3.6(b), where the initial duration of the three 
y
le 29 MHz pulse

is 0.103µs. Sin
e the FWHM values are approximately equal to 0.09µs for all three of

these at r = 1 
m, whi
h is larger than one period of the 29 MHz 
enter frequen
y, namely

0.035µs, the attenuation and waveform spreading are more signi�
ant in Fig. 3.6(b) than

in Fig. 3.6(a). In 
ontrast, one period of the 7.5 MHz 
enter frequen
y is 0.133µs, whi
h is

larger than the FWHM values 0.09µs of all three time-domain Green's fun
tions at r = 1 
m,

so there is mu
h less attenuation and waveform spreading in Fig. 3.6(a).

Fig. 3.7 shows the results obtained when a three 
y
le Hanning-weighted pulse is 
on-

volved with the time-domain Green's fun
tions for the power law wave equation (solid

line), the Chen-Holm wave equation (dashed line), and the Treeby-Cox wave equation

(dot-dashed line) multiplied by 4πr evaluated at r = 1 
m for liver with y = 1.139,

α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s. The 
enter frequen
ies are again equal

to f0 = 7.5 MHz and f0 = 29 MHz. As indi
ated in Fig. 3.7(a), the 
onvolution results for

the power law wave equation and the Treeby-Cox wave equation also tra
k very 
losely

for both pulses while the 
onvolution result for the Chen-Holm wave equation 
ontains a

noti
eable time delay. For example, the time delay between the 
onvolution results for

the power law wave equation and the Chen-Holm wave equation is 44 ns in Fig. 3.7(a),
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Figure 3.7: Simulated three-
y
le Hanning-weighted pulses with 
enter frequen
ies (a) f0 =
7.5 MHz and (b) f0 = 29 MHz 
onvolved with time-domain Green's fun
tions for the power

law, Chen-Holm, and Treeby-Cox wave equations multiplied by 4πr evaluated for liver at

r = 1 
m. The 
onvolution results for the power law wave equation and the Treeby-Cox wave

equation are very similar while the 
onvolution result for the Chen-Holm wave equation


learly shows a time delay. A moderate amount of attenuation and waveform spreading

are observed for all three signals in (b) produ
ed by inputs with f0 = 29 MHz, whereas a

smaller amount of attenuation and waveform spreading is observed for all three signals in

(a) produ
ed by inputs with f0 = 7.5 MHz.

and the time delay between the 
onvolution results for the power law wave equation and

the Chen-Holm wave equation is 52 ns in Fig. 3.7(b), whereas the time delay between the


onvolution results for the power law wave equation and the Treeby-Cox wave equation is

again less than 1 ns in Figs. 3.7(a) and 3.7(b). Fig. 3.7(a) also shows that the amplitudes

of all three waveforms are almost the same and the shapes of these waveforms are again

similar, whi
h indi
ates that the amount of attenuation and dispersion is nearly the same

in all three waveforms. Fig. 3.7 shows that there is more attenuation and dispersion for the

29 MHz signal in Fig. 3.7(b) relative to the 7.5 MHz signal in Fig. 3.7(a) and that the shape

of the three 
y
le Hanning-weighted input pulse is still re
ognizable in Fig. 3.7(b).
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3.6 Dis
ussion

3.6.1 Numeri
al evaluations of the inverse 3D Fourier transform

Numeri
al evaluations of improper integrals with highly os
illatory integrands are often


hallenging. Certain methods, su
h as the Matlab �quadgk� routine, whi
h is based on

adaptive Gauss-Kronrod quadrature, and the Matlab �integral� routine, whi
h is based on

global adaptive quadrature, are able to evaluate some improper integrals. Unfortunately,

neither of these methods 
onsistently 
onverge to the 
orre
t result when applied to Eq. 3.5.

Although Filon's formula provides an e�e
tive method for evaluating integrals with highly

os
illatory integrands, Filon's formula yields in
onsistent results when applied to Eq. 3.5

be
ause the upper limit of integration is in�nite. However, the Pantis method [56, 57℄

solves this problem by applying Filon's formula to the integral I1 (r, t) with �nite limits of

integration, and then the �rst term of an in�nite sum approximates the 
ontribution from

the remaining improper integral I2 (r, t). To determine whether numeri
al 
onvergen
e is

a
hieved at a given distan
e, the result is 
ompared to the result obtained with twi
e as

many Filon abs
issas and to a value for m that is twi
e as large. If the Eu
lidean norm of

the di�eren
e between the two results is within 1×10−3
, then the two results are su�
iently


lose and 
onvergen
e is a
hieved. For instan
e, at r = 1 nm for breast and r = 100 zm

for liver, 900 Filon abs
issas and m = 21 are su�
ient to a
hieve 
onvergen
e at all time

points in Figs. 3.3(a) and 3.4(a). However, at r = 100µm for liver, 
onvergen
e at all time

points is a
hieved with 35,000 Filon abs
issas and m = 801. Convergen
e is a
hieved at all

values of r and t for 
al
ulations in breast and liver with 70,000 abs
issas and m = 1601,

so instead of spe
ifying these values at ea
h distan
e for ea
h material, these two values are

used throughout.

Fig. 3.8 des
ribes the time-domain Green's fun
tions s
aled by 4πr 
al
ulated with

the Pantis method at r = 1 
m with di�erent numbers of Filon abs
issas and values of
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Figure 3.8: Computed time-domain Green's fun
tion s
aled by 4πr evaluated for breast at

r = 1 
m 
omputed with the Pantis method using (a) 2,000 Filon abs
issas and m = 401,
(b) 2,000 Filon abs
issas and m = 101, and (
) 500 Filon abs
issas and m = 401.
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Figure 3.9: Computed time-domain Green's fun
tions s
aled by 4πr evaluated for breast at

r = 1 nm using 500 Filon abs
issas and m = 5 (a) without and (b) with the Pantis term.

m. A 
omparison between Figs. 3.8(a) and 3.8(b) indi
ates that when m is too small,

arti�
ial os
illations appear in the 
omputed Green's fun
tion. This problem is addressed

by in
reasing the value of m. Also, a 
omparison between Figs. 3.8(a) and 3.8(
) shows that

when the number of abs
issas is insu�
ient, the amplitude of the waveform is diminished

by a signi�
ant amount relative to the 
orre
t result for the 
omputed time-domain Green's

fun
tion.

Fig. 3.9 shows the time-domain Green's fun
tions s
aled by 4πr 
al
ulated before (a) and

after (b) the Pantis method is applied at r = 1 nm with 500 Filon abs
issas and m = 5.
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These two waveforms mat
h 
losely for larger values of t. As indi
ated in Fig. 3.9, the


ontribution from I2 (r, t) is parti
ularly important at shorter distan
es, espe
ially when t is


lose to 0. For t ≤ 0.5 ps at r = 1 nm in breast, the 
ontribution from I2 (r, t) is larger than

1% of the peak value of the time-domain Green's fun
tion. If the I2 (r, t) term is omitted and

only the 
ontribution from I1 (r, t) 
al
ulated with the Filon's formula is in
luded, arti�
ial

os
illations appear in the 
omputed Green's fun
tion for small values of t.

3.6.2 Improved approximations for the attenuation and phase ve-

lo
ity

Figs. 3.1 and 3.2 show that the attenuation of the Chen-Holm wave equation is a
-


urately represented by a power law and that the attenuation of the Treeby-Cox wave

equation is very 
lose to a power law. Figs. 3.1 and 3.2 also show that a more a

urate

representation for the attenuation of the Treeby-Cox wave equation is a
hieved when the

se
ond term in Eq. 3.15 is in
luded. In addition, Figs. 3.1 and 3.2 demonstrate that

more a

urate representation for the phase velo
ities of the Chen-Holm and Treeby-Cox

wave equations are obtained when a se
ond (Chen-Holm) or a third (Treeby-Cox) term is

in
luded in the expression for c (ω). The similarities and di�eren
es between these phase

velo
ities are further reinfor
ed when binomial approximations are evaluated for ea
h ex-

pression. For instan
e, the phase velo
ity obtained from the binomial approximation to

Eq. 3.7 is c (ω) ≈ c0 + (y − 1/2)α2
0c

3
0ω

2y−2
for the Chen-Holm wave equation when ω ≪

[(y − 1/2)α2
0c

2
0]
−1/(2y−2)

, whi
h yields c (ω) ≈ 1450 + 9.0899 × 10−10ω when ω ≪ 1.5952 ×

1012 radians/se
ond (or f ≪ 2.5388 × 1011 Hz) for breast. Thus, c (ω) in
reases linearly

as a fun
tion of frequen
y when the Chen-Holm wave equation is evaluated for breast, as

indi
ated in Fig. 3.1(a). In Fig. 3.1(
), the phase velo
ity of the Chen-Holm wave equation is

approximately c (ω) ≈ 1540+1.6049×10−5ω0.278
, whi
h holds when ω ≪ 5.1587×1028 radi-

ans/se
ond (or f ≪ 8.2103× 1027 Hz) for liver. When plotted on the same axes, the results

obtained from these approximations are indistinguishable from Eq. 3.7 and are therefore not
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shown. When the binomial approximation is applied to Eq. 3.14, this yields c (ω) ≈ c0 −

tan (πy/2)α0c
2
0ω

y−1 + [tan2 (πy/2)− (−y + 1/2 + (y + 1/2) tan2 (πy/2))]α2
0c

3
0ω

2y−2
for the

Treeby-Cox wave equation when ω ≪ [|tan (πy/2)|α0c0]
−1/(y−1) , and similarly, the binomial

approximation applied to the phase velo
ity for the power law wave equation in Eq. 2.2 yields

c (ω) ≈ c0−tan (πy/2)α0c
2
0ω

y−1+tan2 (πy/2)α2
0c

3
0ω

2y−2
when the angular frequen
y satis�es

ω ≪ [|tan (πy/2)|α0c0]
−1/(y−1)

. In Fig. 3.2(a), the frequen
y-dependent phase velo
ities

of both the Treeby-Cox wave equation and the power law wave equation for breast are

represented by the approximate expressions c (ω) ≈ 1450+1.1481×10−3ω0.5−4.0367×10−25ω

for the Treeby-Cox wave equation and c (ω) ≈ 1450 + 1.1481× 10−3ω0.5 + 9.0899 × 10−10ω

for the power law wave equation, whi
h hold when ω ≪ 1.5952 × 1012 radians/se
ond (or

f ≪ 2.5388× 1011 Hz). In Fig. 3.2(
), the phase velo
ities of the Treeby-Cox wave equation

and the power law wave equation for liver are represented by the approximate expressions

c (ω) ≈ 1540 + 0.8864ω0.139 − 3.0994 × 10−4ω0.278
for the Treeby-Cox wave equation and

c (ω) ≈ 1540+0.8864ω0.139+5.1016×10−4ω0.278
for the power law wave equation, respe
tively,

when ω ≪ 2.0356×1023 radians/se
ond (or f ≪ 3.2398×1022 Hz). When plotted on the same

axes, the results obtained from these two approximations for c (ω) are also indistinguishable

from Eq. 3.14 and are therefore not shown. The �rst two terms in these two binomial

expressions for the phase velo
ity of the Treeby-Cox and power law wave equations are

the same, and the �rst term in the expression for the attenuation of the Treeby-Cox wave

equation in Eq. 3.15 is also the same as that for the power law wave equation. Thus, although

Figs. 3.1 and 3.2 indi
ate that there is a small but noti
eable di�eren
e in α (ω) and c (ω) for

the Treeby-Cox and power law wave equations over the frequen
y range from 0.1 to 40 MHz,

mu
h 
loser agreement in α (ω) and c (ω) for the Treeby-Cox and power law wave equations

is expe
ted for smaller values of ω. Furthermore, the �rst terms in the series expansions for

both the attenuation and the phase velo
ity are the same for all three of these fra
tional

wave equations. However, the se
ond term in the binomial approximation for the phase

velo
ity c (ω) of the Chen-Holm wave equation is quite di�erent from the se
ond terms in
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the binomial approximations for the other two fra
tional wave equations, where these terms

are responsible for the signi�
ant di�eren
es between the phase velo
ities shown in Fig. 3.1

and Fig. 3.2.

3.6.3 Time-domain Green's fun
tions

Figs. 3.3 and 3.4 show several examples of time-domain Green's fun
tions for the Chen-

Holm and Treeby-Cox fra
tional wave equations, whi
h are 
ausal for all values of the power

law exponent 1 < y ≤ 2. Figs. 3.3 and 3.4 also show that the time-domain Green's fun
tion

for the power law wave equation is non
ausal for 1 < y ≤ 2, whi
h is only evident in the

time-domain at very short distan
es. At longer distan
es, Figs. 3.3 and 3.4 suggest that

the time-domain Green's fun
tions for the Treeby-Cox wave equation and the power law

wave equation 
onverge to the same result. Figs. 3.3 and 3.4 also show that amplitudes are

similar for all three Green's fun
tions in ea
h sub�gure. The amplitudes for all three of these

Green's fun
tions are proportional to the s
ale fa
tor (α0r)
−1/y

, whi
h was also demonstrated

for the three time-fra
tional wave equations evaluated in Zhao and M
Gough [53℄. The peak

values are all about the same for ea
h subplot in Figs. 3.3 and 3.4, whi
h is 
on�rmed by

the results in Figs. 3.5(a) and 3.5(
) showing the amplitudes 
al
ulated for the time-domain

Green's fun
tions of all three fra
tional wave equations. Figs. 3.5(a) and 3.5(
) therefore

demonstrate that the attenuations are all about the same for all three of these fra
tional

wave equations, whi
h is expe
ted sin
e the attenuations of all three fra
tional wave equations

either exa
tly or approximately follow the power law des
ribed by Eq. 2.1. Figs. 3.3 and 3.4

indi
ate that three distin
t peaks are observed in the time-domain Green's fun
tions at

shorter distan
es, and then the peak lo
ations for the time-domain Green's fun
tions of the

power law wave equation and the Treeby-Cox wave equation 
onverge at larger distan
es.

In Figs. 3.3 and 3.4, temporal spreading is observed in all three waveforms. The amount of

temporal spreading is also determined by (α0r)
1/y

, whi
h appears in the denominator of the

argument for the stable distribution in Eq. 2.13. The temporal spreading is also about the

same for all three of these fra
tional wave equations, as shown in Figs. 3.5(b) and 3.5(d).
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These plots, whi
h des
ribe the FWHMs of the three fra
tional wave equations, all mat
h

very 
losely. Thus, the amplitude peaks, the temporal spreading, and the �rst terms in the

series expansions for α (ω) and c (ω) are nearly the same for all three of these fra
tional

wave equations, but the remaining terms in the expressions for the phase velo
ity c (ω) of

the Chen-Holm wave equation are distin
t from the 
orresponding terms in the expressions

for the phase velo
ities of the other two fra
tional wave equations. This suggests that the

attenuation α (ω) is primarily responsible for both the de
ay in the peak values and the

temporal waveform spreading in these three fra
tional wave equations. The phase velo
ity

c (ω), parti
ularly the �rst non-
onstant term in the binomial approximation for c (ω), is

responsible for the `skew' or symmetry/asymmetry of the time-domain Green's fun
tions

shown in Figs. 3.3 and 3.4.

3.6.4 Dispersion

The Chen-Holm wave equation is `dispersionless' in the sense that the phase velo
ity

c (ω) is nearly equal to a 
onstant, whi
h yields the symmetri
 time-domain Green's fun
tions

depi
ted in Figs. 3.3 and 3.4, where the axis of symmetry is de�ned as t = r/c in ea
h subplot.

Two other examples of `dispersionless' wave equations are the Stokes and Bla
ksto
k wave

equations. Both of these also have nearly 
onstant phase velo
ity c (ω), and the time-domain

Green's fun
tions for both of these in the far �eld are approximately represented by Gaussian

fun
tions that are 
entered at t = r/c. When y = 2 in the power law wave equation, Eq. 2.2

redu
es to c (ω) = c0, whi
h is also dispersionless. Also, the time-domain Green's fun
tion

for the power law wave equation with y = 2 is a Gaussian 
entered at t = r/c. Thus, these

four examples of `dispersionless' lossy wave equations all possess exa
tly or approximately

symmetri
 time-domain Green's fun
tions.

In a
ousti
s and medi
al ultrasound, the term `dispersion' has two di�erent meanings. In

some 
ontexts, the dispersion refers to the temporal spreading, and in others, the dispersion

des
ribes the frequen
y-dependent phase velo
ity c (ω). However, the 
ontribution from

the attenuation α (ω), not the phase velo
ity, is responsible for the waveform spreading in
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all three of these fra
tional wave equations. Thus, these two meanings for the dispersion

interestingly refer to two 
ompletely di�erent aspe
ts of ultrasound propagation in soft

tissue. In parti
ular, the Chen-Holm wave equation, whi
h is dispersionless in the sense

that c (ω) is nearly 
onstant, demonstrates a 
onsiderable amount of waveform spreading as

the propagation distan
e in
reases in the time-domain Green's fun
tions shown in Figs. 3.3

and 3.4 and in the FWHM values shown in Figs. 3.5(b) and 3.5(d). This is in 
ontrast to

the Treeby-Cox and power law wave equations, whi
h are also dispersive in the sense that

the phase velo
ity c (ω) varies with frequen
y. However, all three of these fra
tional wave

equations have approximately the same amount of dispersion in terms of the FWHM values

shown in Figs. 3.5(b) and 3.5(d).

3.6.5 Convolving time-domain Green's fun
tions with short pulses

Figs. 3.6 and 3.7 des
ribe the waveforms obtained when a three 
y
le Hanning-weighted

pulse is 
onvolved with the time-domain Green's fun
tions for the three fra
tional wave

equations evaluated in breast and liver. Although Figs. 3.1 and 3.2 indi
ate that there is a

slight di�eren
e in the phase velo
ity for the Treeby-Cox and the power law wave equations

at 7.5 MHz and 29 MHz, the time-domain Green's fun
tions for the Treeby-Cox and the

power law wave equations are nearly identi
al in Figs. 3.3(g) and 3.4(g) at r = 1 
m, so the

results obtained in Figs. 3.6 and 3.7 with the Treeby-Cox and power law wave equation are

less sensitive to the di�eren
es in the attenuation, whi
h are �ltered out after propagating

1 
m. Also, the �rst two terms in the binomial expansions for the phase velo
ities of the

Treeby-Cox and the power law wave equations are identi
al. These observations, along with

the results shown in Figs. 3.3 and 3.4, suggest that the Treeby-Cox and the power law wave

equations exhibit very similar behaviors at distan
es r ≥ 100µm, but at very short distan
es

and for very high frequen
y ex
itations, some di�eren
es are observed. In addition, the

di�eren
es between the time-domain Green's fun
tion for the Chen-Holm wave equation and

the time-domain Green's fun
tions for the other two wave equations shown in Figs. 3.3(g)
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and 3.4(g) are also re�e
ted in Figs. 3.6 and 3.7, whi
h is re�e
ted in the di�eren
es in the

phase velo
ities.

3.6.6 Comparisons with time-domain Green's fun
tions 
al
ulated

with 3D FFTs

Time-domain Green's fun
tions are also 
al
ulated with 3D fast Fourier transforms

(FFTs) using the approa
h des
ribed in Treeby and Cox [61℄ and 
ompared to the Green's

fun
tions results 
omputed with the Pantis method shown in Figs. 3.3 and 3.4. Although

the analyti
al expressions evaluated with ea
h approa
h are similar, the numeri
al perfor-

man
e of these two methods is quite di�erent. For example, a single 
al
ulation with the

Pantis method was 
ompleted in 35 se
onds on a Mi
rosoft Surfa
e Pro with an Intel Core

m3-6Y30 CPU � 0.90 GHz, whereas the 
al
ulation using the same parameters with 3D

FFTs required 
ompute servers (Dual Intel Xeon E5-26xx � 2.3 GHz, 2.4 GHz, and 2.7

GHz) with 48-88 
ores and 384-768 GB RAM, whi
h took anywhere between 15 minutes and

a few hours depending on a variety of fa
tors in
luding the number of pro
essors available

and memory/CPU usage of other jobs running on the 
ompute servers. The 
al
ulations

with the Pantis method were performed serially, whereas the 
al
ulations with 3D FFTs

were performed in parallel using `parfor' 
al
ulations in Matlab using up to 36 `workers.'

Reasonably a

urate results were obtained when 
al
ulations with 3D FFTs were performed

with 512 x 512 x 512 spatial points (i.e., 512 points in ea
h dire
tion). When 3D FFTs with

more points were evaluated (only radix 2 FFTs were 
onsidered here), Matlab either 
rashed

or ran out of memory, and when 3D FFTs with fewer points were evaluated, the 
omputed

result usually demonstrated severe nonphysi
al os
illations or other undesirable numeri
al

artifa
ts.

We also found that time-domain Green's fun
tion 
al
ulations with 3D FFTs are very sen-

sitive to the grid spa
ing. For instan
e, Gibbs os
illations (whi
h often in
lude nonphysi
al

negative values for the time-domain Green's fun
tion) were 
ommonly observed in the results
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Figure 3.10: Time-domain Green's fun
tions s
aled by 4πr 
al
ulated for breast with y = 1.5,
α0 = 0.086 Np/
m/MHz

1.5
, and c0 = 1450 m/s evaluated at (a) r = 10 nm, (b) r = 100 nm,

and (
) r = 1µm with the Pantis method (solid line) and the 3D FFT approa
h (dot-dashed

line) using dx = dy = dz = 0.5 nm in (a), (b), and (
).

Figure 3.11: Time-domain Green's fun
tions s
aled by 4πr 
al
ulated for liver with y = 1.139,
α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s evaluated at (a) r = 100 zm, (b) r = 1 am,

and (
) r = 10 am with the Pantis method (solid line) and 3D FFT approa
h (dot-dashed

line) using dx = dy = dz = 50 zm in (a), (b), and (
).

obtained with 3D FFTs. These os
illations were redu
ed by de
reasing the spa
ing between

adja
ent points in the 
omputational grid (i.e., by de
reasing dx, dy, and dz). However, if

the grid spa
ing is too small in 
al
ulations with 3D FFTs, then this 
auses problems with

frequen
y-domain aliasing, whi
h introdu
es errors in the `heavy tail' of the time-domain

Green's fun
tion. If the grid spa
ing is too small by a small amount, then a small to moderate

o�set from the 
orre
t value is observed in the `tail'. If the grid spa
ing is too small by a

larger amount, the `tail' grows with in
reasing time instead of slowly de
aying to zero as

shown in Figs. 3.3 and 3.4. In extreme 
ases, when the value of the grid spa
ing is mu
h too
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large, most if not all values in the 
omputed time-domain Green's fun
tion are mu
h larger

than the 
orre
t values. Usually, Gibbs os
illations or errors in the `heavy tail' or both are

observed in time-domain Green's fun
tion 
al
ulations with 3D FFTs, although we were often

able to manually sele
t appropriate parameters that a
hieve a reasonable trade-o� between

these two types of numeri
al artifa
ts for the results shown in Figs. 3.3(a-h) and 3.4(a-d).

Examples of typi
al results obtained after some parameter tuning are shown in Fig. 3.10(b)

and 3.11(b), whi
h 
ontain Gibbs os
illations at the very beginning and good agreement with

the Pantis results elsewhere. Interestingly, when the grid spa
ing is sele
ted to redu
e both

types of numeri
al artifa
ts for one value of r, the time-domain Green's fun
tion 
al
ulated

with 3D FFTs in other lo
ations (e.g., r/10 and 10r) 
onsistently yield signi�
ant errors.

This e�e
t is shown in Fig. 3.10 with three di�erent time-domain Green's fun
tions 
al
ulated

with 3D FFTs evaluated for breast at r = 10 nm, r = 100 nm, and r = 1µm with the same

value for the grid spa
ing, namely dx = dy = dz = 0.5 nm. Fig. 3.10(b) (
enter panel)

shows some Gibbs os
illations in the result 
omputed with 3D FFTs near t = 0 and also

good agreement in the heavy tail. In Fig. 3.10(a) (left panel), the grid spa
ing is too large.

When the grid spa
ing is redu
ed to dx = dy = dz = 0.2 nm or dx = dy = dz = 0.1 nm in

Fig. 3.10(a) (assuming that the number of spatial points is �xed and equal to 512 x 512 x

512), the agreement is mu
h better (not shown), although some small Gibbs os
illations still

remain in the result obtained with 3D FFTs near t = 0. In Fig. 3.10(
) (right panel), errors

in the heavy tail are produ
ed by frequen
y-domain aliasing. The errors in Fig. 3.10(
) are

alleviated by in
reasing the grid spa
ing to approximately 5 nm, whi
h also introdu
es a

small amount of ringing at time t = 0. Similar results are also observed in Green's fun
tion


al
ulations evaluated for liver at r = 100 zm, r = 1 am, and r = 10 am, whi
h are shown

in Fig. 3.11. Although time-domain Green's fun
tions 
al
ulated with 3D FFTs produ
e a
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Figure 3.12: Time-domain Green's fun
tions s
aled by 4πr 
al
ulated for liver with y =
1.139, α0 = 0.0459 Np/
m/MHz

1.139
, and c0 = 1540 m/s evaluated at r = 10 
m with

the Pantis method (solid line) and with 3D FFTs (dot-dashed line) using (a) dx = r/100,
(b) dx = r/200, (
) dx = r/300, (d) dx = r/400, and (e) dx = r/500. In all simulations with

3D FFTs evaluated here, dx = dy = dz.

large grid of values, the results are only a

urate in 
ertain lo
ations where the grid spa
ing

is sele
ted to avoid problems with Gibbs os
illations and with frequen
y-domain aliasing.

We also found that the time-domain Green's fun
tion 
al
ulations with 3D FFTs failed

to 
onverge for the results shown in Figs. 3.4(e-h). This is demonstrated in Fig. 3.12 using

a time-domain Green's fun
tion 
al
ulated with 3D FFTs evaluated for liver at r = 10 
m

with grid spa
ings (dx = dy = dz) of 1 mm, 500µm, 333µm, 250µm, and 200µm. The same

types of problems are also observed for r = 100µm, r = 1 mm, and r = 1 
m. Thus, the

Pantis method is also useful for determining whi
h parameter 
ombinations yield reasonable

results in time-domain Green's fun
tion 
al
ulations with 3D FFTs.

3.7 Con
lusion

Phase velo
ities and attenuation values were evaluated over a range of ultrasound frequen-


ies, and time-domain Green's fun
tions were 
al
ulated for the Chen-Holm, Treeby-Cox,

and power law wave equations in breast and liver. In addition, the amplitudes and FWHM

values of the time-domain Green's fun
tions for these three fra
tional wave equations were


al
ulated, and three-
y
le Hanning-weighted pulses at two di�erent 
enter frequen
ies were


onvolved with the time-domain Green's fun
tions for three fra
tional wave equations. An

additional term was derived for the power series that des
ribes c (ω) for the Chen-Holm
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wave equation and additional terms were derived for the power series that des
ribe c (ω) and

α (ω) for the Treeby-Cox wave equation, where these new power series more 
losely mat
h

the results obtained by numeri
ally evaluating the dispersion relation than the previous

approximations. Causality was also demonstrated analyti
ally in the time domain for both

the Chen-Holm and Treeby-Cox wave equations. The Pantis method was introdu
ed as

an e�e
tive approa
h for evaluating the highly os
illatory improper integrals that arise

in numeri
al 
al
ulations of the time-domain Green's fun
tions for the Chen-Holm and

Treeby-Cox spa
e-fra
tional wave equations. The time-domain Green's fun
tions for all three

time-domain Green's fun
tions show a similar amount of temporal spreading and amplitude

redu
tion, but the time-domain Green's fun
tions for the Treeby-Cox and power law wave

equations are skewed whereas the time-domain Green's fun
tion for the Chen-Holm wave

equation is symmetri
. The Chen-Holm spa
e-fra
tional wave equation is non-dispersive

in the sense that the phase velo
ity is nearly 
onstant, but the Chen-Holm wave equation

is also dispersive in the sense that waveform spreading is 
learly evident in the 
omputed

time-domain Green's fun
tions. The Treeby-Cox wave equation is dispersive in the sense that

the phase velo
ity is non-
onstant and also in the sense that waveform spreading is 
learly

evident in the 
omputed time-domain Green's fun
tions. The Chen-Holm and Treeby-Cox

spa
e-fra
tional wave equations demonstrate approximately the same amount of attenuation

and waveform spreading, but the phase velo
ities, time-domain Green's fun
tions, and 
onvo-

lution results obtained with these time-domain Green's fun
tions all di�er signi�
antly. Also,

although the attenuation and phase velo
ity for the Treeby-Cox and power law wave equation

di�er slightly, the time-domain Green's fun
tions and the 
onvolution results obtained with

the Green's fun
tions for these two fra
tional wave equations 
onverge to the same result.
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Chapter 4

Perfe
tly mat
hed layers for nonlinear ul-

trasound simulations with the KZK equa-

tion

4.1 Introdu
tion

High intensity pulses are often used in appli
ations of therapeuti
 ultrasound. Linear

assumptions do not always predi
t the 
orre
t results in these 
ases. The attenuation and

di�ra
tion are also important in models of nonlinear ultrasound propagation. Thus, a model


ombining di�ra
tion, attenuation, and nonlinearity is needed to analyze the propagation of

ultrasoni
 waves.

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [62, 63℄ is a paraboli
 approx-

imation to the Westervelt equation. Lee and Hamilton [17℄ propose an operator-splitting

based numeri
al algorithm to solve the transient KZK equation numeri
ally in the time do-

main, using a 
ir
ular or spheri
ally fo
used tradu
er. Cleveland [18℄ expands the appli
ation

of this model by in
luding the e�e
t of relaxation. An approa
h for simulating nonlinear


ontinuous wave (CW) pressure �elds with the KZK equation is presented by Berntsen [19℄.

The validation of the KZK equation for axisymmetri
 ultrasound beams is evaluated by

Soneson [64℄. Curra and Filonenko [65, 66℄ numeri
ally 
al
ulate solutions for the CW KZK

equation to model heat deposition in biologi
al tissue. Huijssen [67℄ 
ompares the Iterative
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Nonlinear Contrast Sour
e (INCS) method with the KZK model for the 
omputation of

nonlinear, wide-angle, pulsed a
ousti
 �elds.

Attempts to 
al
ulate solutions to the KZK equation with �nite di�eren
e simulations,

however, are limited by the implementation of the boundary 
onditions. Sin
e there is no

absorbing boundary layer implemented in the KZK models of Berntsen [19℄ or Lee [17℄, large

grids are needed for these 
al
ulations. In ele
tromagneti
s, this problem is addressed with

absorbing boundary 
onditions or perfe
tly mat
hed layers. For example, Mur [68℄ proposes

an a

urate absorbing boundary 
ondition for both 2D and 3D time-domain ele
tromagneti
-

�eld equations. Berenger [69℄ introdu
es a perfe
tly mat
hed layer (PML) for �nite di�eren
e

time domain (FDTD) simulations of ele
tromagneti
 waves, whi
h is validated by Katz [70℄

in the 2D 
ase and then extended to the 3D 
ase. The PML is applied to a
ousti
 models with

di�erent 
oordinate systems by Yuan and Liu [71, 72, 73℄. Abarbanel and Hu [74, 75℄ have

developed PML equations for 2D linearized Euler equations. Sheu [76℄ applies a PML to a

photoa
ousti
s model in axisymmetri
 
ylindri
al 
oordinates. Based on �rst-order auxiliary

di�erential equations, Ma [77℄ proposes an unsplit PML for a se
ond-order a
ousti
 wave

equation in 3D Cartesian 
oordinates. Ehrli
h [78℄ 
ombines the a
ousti
 wave propagator

and a PML to model a
ousti
 propagation in the time domain. Pinton [79℄ implements

a PML for a 3D nonlinear attenuating full-wave model in the time domain. Resear
h on

3D a
ousti
 s
attering problems has also been performed in both the time and frequen
y

domains by Kaltenba
her [80℄, Chen [81℄, Alles [82℄, and Katsibas [83℄. Duru [84℄ also uses

a PML in a 2D s
alar wave equation for heterogeneous and layered media.

In the following se
tion, a perfe
tly mat
hed layer implemented through terms from the

power law wave equation with y = 0 and y = 2 is derived for the transient and CW KZK

equations. Arti�
ial attenuation is introdu
ed to redu
e re�e
tions from the radial boundary.

Numeri
al validations are demonstrated for both linear and nonlinear media. With these

new PML implementations, the size of the 
omputational grid is redu
ed, whi
h a

elerates

numeri
al solutions of the KZK equation.
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4.2 Theory

4.2.1 The 2D wave equation with power law attenuation

The linear lossless wave equation in a two-dimensional 
ylindri
al 
oordinate system is

expressed as

∂2p

∂t2
= c20

(

∂2p

∂z2
+

1

r

∂

∂r

(

r
∂p

∂r

))

. (4.1)

When the e�e
t of attenuation is introdu
ed through the power law wave equation, the wave

equation in 2D 
ylindri
al 
oordinates be
omes

(

∂2p

∂z2
+

1

r

∂

∂r

(

r
∂p

∂r

))

− 1

c20

∂2p

∂t2
− 2α0

c0 cos (πy/2)

∂y+1p

∂ty+1
− α2

0

cos2 (πy/2)

∂2yp

∂t2y
= 0. (4.2)

For power law exponents y = 0 and y = 2, the power law wave equation in Eq. 4.2 is

expressed as

∂2p

∂t2
= c20

(

∂2p

∂z2
+

1

r

∂

∂r

(

r
∂p

∂r

))

− 2α0c0
∂p

∂t
− α2

0c
2
0p y = 0, (4.3)

and

∂2p

∂t2
= c20

(

∂2p

∂z2
+

1

r

∂

∂r

(

r
∂p

∂r

))

+ 2α0c0
∂3p

∂t3
− α2

0c
2
0

∂4p

∂t4
y = 2. (4.4)

4.2.2 Coordinate stret
hing

The analyti
al expressions that des
ribe perfe
tly mat
hed layers are often derived from

an augmented model for the gradient that stret
hes ea
h 
oordinate a

ording to

∇ = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
, (4.5)
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where sx, sy, and sz des
ribe the e�e
ts of 
oordinate stret
hing in all three dire
tions. In

the x- dire
tion, the 
oordinate stret
hing variable is de�ned as

sx =

(

1 +
σ (x)

jω

)

, (4.6)

and similar expressions are de�ned in the y- and z- dire
tions. The lossless Helmholtz

equation in axisymmetri
 
ylindri
al 
oordinates is expressed as

1

r

∂

∂r

(

r
∂P

∂r

)

+
∂2P

∂z2
+ k2P = 0, (4.7)

where the wavenumber is k = ω
c0
and P is the pressure �eld. Applying 
oordinate stret
hing

to Eq. 4.7 in both the radial and axial dire
tions,

∂

∂r
→ 1

(

1 + σr(r)
jω

)

∂

∂r
,

1

r
→ 1

(

1 + σr(r)
jω

)

1

r
,

∂

∂z
→ 1

(

1 + σz(z)
jω

)

∂

∂z
, (4.8)

yields

1
(

1 + σr(r)
jω

)2

(

1

r

∂P

∂r
+
∂2P

∂r2

)

+
1

(

1 + σz(z)
jω

)2

∂2P

∂z2
+ k2P = 0, (4.9)

whi
h be
omes

(

1 + σz(z)
jω

)2 (
1
r
∂P
∂r

+ ∂2P
∂r2

)

+
(

1 + σr(r)
jω

)2
∂2P
∂z2

+
(

1 + σr(r)
jω

)2 (

1 + σz(z)
jω

)2

k2P = 0
(4.10)

after ea
h term is multiplied by

(

1 + σz(z)
jω

)2 (

1 + σr(r)
jω

)2

. Multiplying Eq. 4.10 by (jω)2 and

inverse Fourier transforming in time, the result is the lossy time-domain wave equation

(

∂
∂t
+ σz (z)

)2
(

1
r
∂p
∂r

+ ∂2p
∂r2

)

+
(

∂
∂t
+ σr (r)

)2 ∂2p
∂z2

−
(

∂
∂t
+ σr (r)

)2 ( ∂
∂t
+ σz (z)

)2 1
c20
p = 0,

(4.11)

whi
h attenuates wave propagation in the radial and axial dire
tions.
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4.2.3 The KZK equation

The Westervelt equation is a full wave nonlinear model that 
ombines the e�e
ts of

di�ra
tion, attenuation, and nonlinearity

∇2p− 1

c20

∂2p

∂2t
+

2α0

c0

∂3p

∂t3
+

β

ρ0c40

∂2p2

∂t2
= 0. (4.12)

After applying a paraboli
 approximation and a 
hange of variables, Eq. 4.12 redu
es to the

KZK equation, whi
h is de�ned in 
ylindri
al 
oordinates (r, z) as

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p+ α0

∂3p

∂τ 3
+

β

2ρ0c30

∂2p2

∂τ 2
, (4.13)

where p is the pressure, c0 is the sound speed, ρ0 is the density, α0 is the attenuation


onstant, and β is the nonlinearity parameter. The propagation dire
tion of the sound beam

is aligned with the z-axis, and ∇2
⊥

= ∂2

∂r2
+ 1

r
∂
∂r

is the radial 
omponent of the Lapla
ian

operator in 
ylindri
al 
oordinates. A detailed derivation of the KZK wave equation is given

in Appendix A. Due to axial symmetry, the spatial variables for the KZK equation are (r, z)

in the 
ylindri
al 
oordinate system. On the right-hand side of Eq. 4.13, the three terms from

left to right represent the e�e
ts of di�ra
tion, attenuation, and nonlinearity. Similar to the

Westervelt equation, there is no analyti
al solution for the KZK equation. Thus, the KZK

model is evaluated numeri
ally. Although the KZK equation is only valid in the far �eld of

the paraxial region, this model is still 
ommonly applied to simulations of medi
al ultrasound

due to the 
omputational advantages of the paraboli
 approximation. As developed by Lee

and Hamilton [17℄ and implemented in the KZK Texas 
ode [17℄, the �nite di�eren
e method

numeri
ally solves the transient KZK equation with operator splitting to separately a

ount

for these three e�e
ts at ea
h step.
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4.2.4 PML derivation for the KZK equation

Stret
hed 
oordinates for the nonlinear lossy KZK equation

Sin
e waves propagate in the positive z dire
tion but not in the negative z dire
tion with

the KZK model, there is no need for a PML in the axial dire
tion. Eq. 4.13 in the frequen
y

domain is given by

jω
∂P

∂z
=
c0
2
∇2

⊥
P + α0 (jω)

3 P +
β

2ρ0c
3
0

(jω)2 P 2
(4.14)

and when 
oordinate stret
hing is applied to the KZK equation for a PML in the radial

dire
tion, this yields

jω ∂P
∂z

(

1 + σ(r)
jω

)2

= c0
2

(

∂2

∂r2
+ 1

r
∂
∂r

)

P+
(

1 + σ(r)
jω

)2

α0 (jω)
3 P +

(

1 + σ(r)
jω

)2
β

2ρ0c30
(jω)2 P 2.

(4.15)

After expanding and inverse Fourier transforming with respe
t to time, the result is

∂2p
∂z∂τ

+ 2σ (r) ∂p
∂z

+ σ (r)2
´ τ

−∞

∂p
∂z
dτ ′ = c0

2

(

∂2

∂r2
+ 1

r
∂
∂r

)

p

+α0
∂3p
∂τ3

+ 2σ (r)α0
∂2p
∂τ2

+ α0σ (r)
2 ∂p
∂τ

+ β
2ρ0c30

∂2p2

∂τ2
+ σ(r)β

ρ0c30

∂p2

∂τ
+ σ(r)2β

2ρ0c30
p2,

(4.16)

whi
h is a 
hanllenging to evaluate with �nite di�eren
e 
al
ulations, in part due to the

integral on the left-hand side.

Stret
hed 
oordinates for the lossless linear KZK equation

When only the 
ontributions from the di�ra
tion terms are 
onsidered, the lossless linear

KZK equation is expressed in the frequen
y domain as

jω
∂P

∂z
=
c0
2
∇2

⊥
P. (4.17)
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If 
oordinate stret
hing for a PML is applied in the radial dire
tion, Eq. 4.17 then be
omes

jω
∂P

∂z

(

1 +
σ (r)

jω

)2

=
c0
2

(

∂2

∂r2
+

1

r

∂

∂r

)

P. (4.18)

After expanding and inverse Fourier transforming,

∂2p

∂z∂τ
+ 2σ (r)

∂p

∂z
+ σ (r)2

ˆ τ

−∞

∂p

∂z
dτ ′ =

c0
2

(

∂2

∂r2
+

1

r

∂

∂r

)

p, (4.19)

whi
h also 
ontains an integral on the left-hand side.

Combining the power law equation with the KZK equation

When Eq. 4.6 is applied to the 1D wave equation,

∂2p

∂x2
=

1

c20

∂2p

∂t2
+

2σ (x)

c20

∂p

∂t
+
σ (x)2

c20
p, (4.20)

whi
h, after substituting αPML = c0 σ (x), is re
ognized as the 1D power law wave equation

with y = 0. This suggests that there is another possible approa
h for implementing a PML

that utilizes the power law equation. The 3D power law wave equation for the y = 0 
ase is

expressed as

∇2p =
1

c20

∂2p

∂t2
+

2αPML

c0

∂p

∂t
+ α2

PMLp. (4.21)

After applying a paraboli
 approximation and a 
hange of variables in an axisymmetri



ylindri
al 
oordinate system, Eq. 4.21 be
omes

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p− αPML

∂p

∂τ
− c0

2
α2
PMLp. (4.22)

Similarly, the 3D power law wave equation for the y = 2 
ase is expressed as

∇2p =
1

c20

∂2p

∂t2
− 2αPML

c0

∂3p

∂t3
+ α2

PML

∂4p

∂t4
, (4.23)
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and the 
orresponding expression that is obtained from a paraboli
 approximation and a


hange of variables in an axisymmetri
 
ylindri
al 
oordinate system is

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p+ αPML

∂3p

∂τ 3
− c0

2
α2
PML

∂4p

∂τ 4
. (4.24)

Eqs. 4.22 and 4.24 provide two related yet di�erent approa
hes for de�ning a perfe
tly

mat
hed layer for the transient KZK equation, where the distribution of αPML values 
an

vary spatially.

Using the power law wave equation with y = 0 (two terms) for the

PML

Sin
e the KZK equation is a one-way wave equation in the axial dire
tion, a PML is only

needed in the radial dire
tion. This suggests that stret
hed 
oordinates are not required for

the derivation of the PML and that the power law wave equation with y = 0 or y = 2 in

the radial dire
tion provide e�e
tive expressions for PMLs. This indi
ates that the stret
hed


oordinate system is not 
entral to the derivation of an e�e
tive PML. The power law wave

equation is all that is required, 
ombined with the 
on
ept introdu
ed by Berenger [69℄ that

the PML should be several 
ells thi
k with a slowly varying lossy impedan
e that attenuates

the in
ident wave with minimal re�e
tions. By applying

1
c0

∂
∂t

→ 1
c0

∂
∂t

+ αPML to the wave

equation in the time domain and utilizing the paraboli
 approximation in retarded time, one

su
h PML for the transient KZK equation is obtained from

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p− αPML

∂p

∂τ
− c0

2
α2
PMLp (4.25)

for y = 0. For numeri
al 
al
ulations, the expression in Eq. 4.25 is solved with the Thomas

algorithm.
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Using the Telegrapher's equation y = 0 (one term) for the PML

For the y = 0 
ase, the se
ond term

c0
2
α2
PMLp 
an be negle
ted when the value of

c0
2
α2
PML

is small. Thus, another expression that des
ribes a PML for the transient KZK is given by

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p− αPML

∂p

∂τ
, (4.26)

whi
h is the retarded time paraboli
 approximation to the 3D Telegrapher's equation.

Using the power law wave equation with y = 2 (two terms) for the

PML

The key to an e�e
tive absorbing boundary layer appears to be independent of the

stret
hed 
oordinate system and is mu
h more strongly in�uen
ed by other fa
tors su
h

as the slowly in
reasing attenuation that minimizes re�e
tions at the interfa
e between any

two adja
ent 
ells in the 
omputational grid. This motivates the 
onstru
tion of a third

PML based on the retarded time paraboli
 approximation to the power law wave equation

with y = 2, whi
h is given by

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p+ αPML

∂3p

∂τ 3
− c0

2
α2
PML

∂4p

∂τ 4
. (4.27)

Numeri
ally, the �rst term on the right hand side 
ombined with the original attenuation

term is solved with the Thomas algorithm. The addition of the se
ond attenuation term

requires a penta-diagonal matrix algorithm.

Using the Bla
ksto
k wave equation with y = 2 (one term) for the

PML

Similar to the y = 0 
ase, the se
ond attenuation term is negligible for small αPML when

y = 2, whi
h enables a fourth PML that is very 
losely related to the KZK equation. This
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PML evaluates a straightforward modi�
ation of the KZK equation,

∂2p

∂z∂τ
=
c0
2
∇2

⊥
p+ αPML

∂3p

∂τ 3
, (4.28)

whi
h is the retarded time paraboli
 approximation to the Bla
ksto
k wave equation.

4.3 Methods

4.3.1 Error 
al
ulations

To validate these PMLs for the KZK equation, 
omparisons between simulations with

and without PMLs that in
rease the radial boundary limit to avoid re�e
tions are evaluated.

The formula for 
al
ulating the di�eren
e between these two results is

D(r, z) =
max|p(r, z)− pref(r, z)|

max|pref |
, (4.29)

where the denominator is the maximum value of the referen
e pressure evaluated at all spatial

and temporal points, and the numerator is the maximum value of the di�eren
e between the

referen
e and simulation results evaluated at one spatial point for all time points. The

di�eren
e D(r, z) is dependent on both radial and axial 
oordinates.

4.3.2 Finite di�eren
e 
al
ulations with the KZK equation

Numeri
al 
al
ulations with the KZK equation are often evaluated with the �nite di�er-

en
e method. The pressure �eld is �rst dis
retized in both the radial and axial dire
tions,

after whi
h �nite di�eren
e 
al
ulations are evaluated layer-by-layer in the axial dire
tion.

Within ea
h layer, the e�e
ts of di�ra
tion, attenuation, and nonlinearity are 
al
ulated

separately through operator splitting. For these 
al
ulations, two types of �nite di�eren
e


al
ulations are evaluated. For the �rst several iterations, the impli
it ba
kward Euler �nite

di�eren
e method (IBFD) is used, after whi
h the Crank-Ni
olson �nite di�eren
e method

(CNFD) is applied. Both of these methods are numeri
ally stable, and the CNFD method
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results in a smaller lo
al trun
ation error than the IBFD method with the same step size.

However, the CNFD method is sensitive to os
illations, whi
h means that the 
omputed

result 
an 
ontain spurious os
illations, espe
ially in the region 
lose to the edge of the

transdu
er where there is a dis
ontinuity in pressure amplitude. Thus, the IBFD method

is applied as a low pass �lter in this region. For these reasons, these two �nite di�eren
e

methods are 
ombined for the numeri
al evaluations of the KZK equation.

For the transient KZK equation, three e�e
ts are 
al
ulated separately within one spatial

step using operator splitting. Di�ra
tion e�e
ts are modeled by

∂p

∂z
=

ˆ τ

−∞

c0
2

(

∂2

∂r2
+

1

r

∂

∂r

)

pdτ ′, (4.30)

whi
h is obtained after the nonlinear and loss terms are negle
ted and the remaining terms

are integrated on both sides. The indi
ies of the �nite di�eren
e 
al
ulation in the temporal,

radial, and axial dire
tions are i, j, and k. Thus, �nite di�eren
e approximations for Eq. 4.30

are de�ned as

∂p

∂z
→

pij,k+1 − pij,k
(△z)k

,
1

r

∂p

∂r
→

pij+1,k+1 − pij−1,k+1

2j (△r)2
, (4.31)

∂2p

∂r2
→

pij+1,k+1 − 2pij,k+1 + pij−1,k+1

(△r)2
, (4.32)

ˆ τ

τmin

f(τ ′)dτ ′ → (△τ)
[

i−1
∑

m=1

fm +
1

2
(f0 + fi)

]

. (4.33)

When only the e�e
t of attenuation is 
onsidered, Eq. 4.13 be
omes

∂p

∂z
= α0

∂2p

∂τ 2
. (4.34)

Similarly, the �nite di�eren
e approximations for Eq. 4.34 are de�ned as

∂p

∂z
→

pij,k+1 − pij,k
(△z)k

,
∂2p

∂τ 2
→

pi+1
j,k+1 − 2pij,k+1 + pi−1

j,k+1

(△τ)2
. (4.35)
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When only the nonlinear e�e
t is 
onsidered, Eq. 4.13 redu
es to

∂p

∂z
=

β

ρ0c30
p
∂p

∂τ
. (4.36)

As indi
ated by Lee and Hamilton [17℄, the solution to Eq. 4.36 is given by

pij,k+1 =
pij,k

1−
[(

pi+1
j,k − pij,k

)

/△τ
]

β (△z)k / (ρ0c30)
, pij,k ≥ 0 (4.37)

and

pij,k+1 =
pij,k

1−
[(

pij,k − pi−1
j,k

)

/△τ
]

β (△z)k / (ρ0c30)
, pij,k ≤ 0. (4.38)

For 
ontinuous wave propagation, the a
ousti
 pressure is often des
ribed as series expansion

of di�erent harmoni
s

p (τ, r, z) =

Nmax
∑

n=−Nmax

Cn (r, z) e
−jn2πf0τ , (4.39)

where f0 is the fundamental frequen
y, Nmax is the total number of harmoni
s, and Cn (r, z) is

the 
omplex amplitude of the n-th harmoni
. When Eq. 4.39 is 
ombined with the transient

KZK equation, the amplitudes are expressed as

dCn(r,z)
dz

= j c0
4πnf0

(

∂2Cn(r,z)
∂r2

+ 1
r
∂Cn(r,z)

∂r

)

− α0(2πnf0)
2Cn (r, z)

− jn2πf0β
2ρ0c30

Nmax
∑

m=−Nmax

Cm (r, z)Cn−m (r, z) ,

n = ±1,±2, ...,±Nmax.

(4.40)

In Eq. 4.40, all of the harmoni
s intera
t through nonlinear mixing. The derivatives in

Eq. 4.40 are also de�ned in Eq. 4.31, as for the transient KZK equation.

4.3.3 Muir's method

To establish the a

ura
y of the numeri
al results 
al
ulated with linear �nite di�eren
e

implementations of the KZK wave equation, Muir's method is utilized as a referen
e. Other
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methods for validation are given in Appendix B. Muir's method, whi
h is valid for small

aperture angle and large ka, is e�e
tive for 
al
ulating the linear pressure �eld generated by

a spheri
ally fo
used 
ontinuous-wave sour
e. Muir's formula for the pressure distribution

in 
ylindri
al 
oordinates predi
ted by the linear lossless KZK equation is given by

P (r, z) =
−jkp0exp(jkz + jk r2

2z
)

z

a
ˆ

0

exp

[

jk (r′)2

2

(

1

R
− 1

z

)

]

J0

(

k
rr′

z

)

r′dr′ (z 6= R) ,

(4.41)

P (0, z) =
p0Rexp(jkz)

(R− z)

{

1− exp

[

j
ka2

2

(

1

z
− 1

R

)]}

(z 6= R) , (4.42)

P (r, R) = −j ka
2

2R
p0exp

(

jkz + jk
r2

2R

)

2J1 (kar/R)

kar/R
, (4.43)

P (0, R) = −j ka
2

2R
p0exp (jkR) , (4.44)

where p0 is the pressure at the sour
e, k = ω/c is the wavenumber, a is the aperture radius,

R is the radius of 
urvature, and J0 (·) and J1 (·) are Bessel fun
tions of the �rst kind of

order 0 and 1, respe
tively.

Muir's method evaluates a single integral when 
al
ulating the o�-axis pressure. For

transient 
al
ulations, a Fourier transform operation is required before applying Muir's

method. When 
al
ulating the transient pressure, the input pulse on the surfa
e of the

transdu
er is expressed as p0(t) =
N
∑

n=1

Pne
jnω0t

, where Pn is the pressure for frequen
y sample

n, ω0 is the fundamental frequen
y, and N is the number of frequen
y samples. Thus, for

frequen
y sample n with wavenumber kn, Muir's method in Eqs. 4.41-4.44 
al
ulates the

pressure distribution in 2D spa
e for ea
h frequen
y 
omponent with

Pn(r, z) = P (r, z, kn) n = 1, 2, 3..N. (4.45)

83



Then, after evaluating the inverse Fourier transform in time, the solution in the time domain

is

p(r, z, t) =
N
∑

n=1

Pn(r, z)e
jnω0t. (4.46)

Compared to �nite di�eren
e KZK 
al
ulations, Muir's method is more time-
onsuming

for transient 
al
ulations be
ause of the large number of frequen
ies that are ne
essary

to re
onstru
t the waveforms at ea
h spatial point. However, Muir's method provides an

a

urate referen
e for validating solutions to the linear lossless KZK equation, whi
h is useful

for debugging �nite di�eren
e 
al
ulations.

4.4 Results

These simulations were performed on a 
ompute server (Dual Intel Xeon E5-2670 � 2.5

GHz) with 256 GB RAM. The KZK simulation evaluates a �nite di�eren
e 
ode written in

C++/Mex that runs on 64-bit MATLAB R2017a. Simulations for both linear and nonlinear

media are evaluated. The transient input pressure, whi
h is a one-
y
le Gaussian weighted

sine wave, is generated by a spheri
ally fo
used transdu
er. The input pressure on the

surfa
e of the transdu
er is P0 = 1.5 MPa, the aperture radius is a = 1.5 
m, the radius of


urvature is R = 6 
m, the density is ρ = 1000 kg/m3
, and the sound speed is c0 = 1500 m/s.

The 
enter frequen
y of the input pressure is f = 1MHz, and the wavelength at the 
enter

frequen
y is λ = 0.15 
m. The sampling frequen
y is fs = 200 MHz. The �nite di�eren
e

KZK 
al
ulation that is employed as a referen
e utilizes a radial boundary at rmax = 9 
m,

and the spatial step size is λ/40. The KZK simulation with a PML utilizes a radial boundary

at rmax = 3 
m. For the KZK simulation with the PML, the PML starts at r = 2.25 
m and

ends at rmax = 3 
m. The thi
kness of the layer is therefore equal to 0.75 
m.

4.4.1 KZK simulations for a linear lossless medium

KZK simulations are �rst performed without attenuation or nonlinearity. Fig. 4.1 
om-

pares two on-axis waveforms at z = 6 
m, where one is produ
ed by KZK �nite di�eren
e
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Figure 4.1: Comparison of simulated on-axis waveforms obtained from �nite di�eren
e KZK


al
ulations (solid line) and Muir's method (dashed line) evaluated in a linear lossless medium

at z = 6 
m.


al
ulations (red solid line) and the other is generated by Muir's method (blue dashed line).

Fig. 4.1 demonstrates that the results obtained with these two methods mat
h 
losely at all

temporal points in this lo
ation. Also, the dire
t wave and the edge wave have merged in

this lo
ation.

Fig. 4.2(a) 
ontains the on-axis waveforms evaluated at z = 6 
m using �nite di�eren
e

KZK 
al
ulations without a PML for a radial boundary at rmax = 6a and the KZK simulation

without a PML for a radial boundary at rmax = 2a. These two waveforms mat
h 
losely

for t < 48µs. Near t = 50µs, the re�e
tion from the radial boundary at rmax = 2a arrives,

whi
h indi
ates that either the boundary at rmax = 2a is too 
lose or that a PML is needed.

Fig. 4.2(b) 
ompares two other on-axis waveforms evaluated at z = 6 
m 
al
ulated with

two di�erent PMLs that start at r = 2.25 
m to the result without a PML that de�nes the

radial boundary at rmax = 6a. The blue solid line des
ribes the result 
al
ulated with a PML

(y = 0 with one term) and the green solid line gives the result 
al
ulated with another PML
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Figure 4.2: Comparison between on-axis waveforms generated by �nite di�eren
e KZK


al
ulations in a linear lossless medium at z = 6 
m with and without a PML using di�erent

radial boundaries. (a) KZK simulation without a PML that de�nes a radial boundary at

rmax = 2a (bla
k solid line) and at rmax = 6a (red dashed line). (b) KZK simulation without

a PML that de�nes a radial boundary at rmax = 6a (red dashed line), with a y = 0 single

term PML that de�nes a radial boundary at rmax = 2a (blue solid line), and with a y = 2
single term PML that de�nes a radial boundary at rmax = 2a (green solid line).
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(a) (b)

(
) (d)

Figure 4.3: Simulated 2D pressure �eld and di�eren
es between KZK 
al
ulations without

and with PMLs, where the radial boundaries are lo
ated at rmax = 9 
m and at rmax = 3 
m
in a linear lossless medium. (a) The peak pressure distribution for the KZK simulation

without a PML that de�nes a radial boundary at rmax = 9 
m. (b) The di�eren
e between

the KZK simulation without a PML that de�nes a radial boundary at rmax = 9 
m and the

KZK simulation without a PML that de�nes a radial boundary at rmax = 3 
m. (
) The

di�eren
e between the KZK simulation without a PML that de�nes a radial boundary at

rmax = 9 
m and the KZK simulation with a y = 0 single term PML that de�nes a radial

boundary at rmax = 3 
m. (d) The di�eren
e between the KZK simulation without a PML

that de�nes a radial boundary at rmax = 9 
m and the KZK simulation with a y = 2 single

term PML that de�nes a radial boundary at rmax = 3 
m.
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(y = 2 with one term). Fig. 4.2(b) shows that the re�e
tion from the boundary is removed

by ea
h of these PMLs.

Fig. 4.3(a) shows the 2D peak pressure distribution 
al
ulated with �nite di�eren
e KZK


al
ulations without a PML that de�nes a radial boundary at rmax = 9 
m (rmax = 6a),

whi
h is su�
iently large so that radial re�e
tions are avoided in most lo
ations. The

on-axis fo
al peak is lo
ated at about z = 6 
m. The maximum pressure value is equal to

12 MPa. Fig. 4.3(b) shows the 2D di�eren
e between the �nite di�eren
e KZK 
al
ulation

without a PML for a radial boundary de�ned at rmax = 9 
m and the �nite di�eren
e KZK


al
ulation without a PML for a radial boundary de�ned at rmax = 3 
m. The peak value

of the di�eren
e, whi
h is about 10%, is lo
ated on-axis in the far �eld region. O�-axis, the

di�eren
e is mu
h smaller. Fig. 4.3(
) shows the 2D di�eren
e between the �nite di�eren
e

KZK 
al
ulation without a PML that de�nes a radial boundary at rmax = 9 
m and the �nite

di�eren
e KZK 
al
ulation with a y = 0 single term PML that de�nes a radial boundary at

rmax = 3 
m. The peak value of the di�eren
e, whi
h is now only about 0.3%, is again lo
ated

on-axis in the far �eld region. There is also some di�eren
e o�-axis in the far �eld region in

Fig. 4.3(
) due to re�e
tions that arrive later and/or a small amount of mismat
h in the PML.

Fig. 4.3(d) shows the 2D di�eren
e between the �nite di�eren
e KZK 
al
ulation without a

PML for a radial boundary de�ned at rmax = 9 
m and the �nite di�eren
e KZK 
al
ulation

with a single term y = 2 PML that de�nes a radial boundary de�ned at rmax = 3 
m. The

peak value of the di�eren
e, whi
h is about 0.5% for this PML, is also lo
ated on-axis in

the far �eld region. Also, some small di�eren
es appear on-axis and o�-axis in the far �eld.

Comparisons between Fig. 4.3(
) and Fig. 4.3(d) indi
ate slightly better performan
e for the

y = 0 single term PML.

4.4.2 KZK simulations for a nonlinear lossy medium

Simulations are also performed with the attenuation and nonlinearity values for water,

whi
h are α0 = 2.2 × 10−3
dB/
m/MHz

2
and β = 3.5. Fig. 4.4(a) shows a 
omparison

between the on-axis waveforms evaluated at z = 6 
m obtained from the �nite di�eren
e
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Figure 4.4: Comparison between on-axis waveforms generated by �nite di�eren
e KZK


al
ulations in a nonlinear medium at z = 6 
m with and without a PML for di�erent

radial boundaries. The attenuation parameter is α = 2.2 × 10−3
dB/
m/MHz

2
, and the

nonlinearity parameter is β = 3.5. (a) KZK simulation without a PML that de�nes a radial

boundary at rmax = 2a (bla
k solid line) and at rmax = 6a (red dashed line). (b) KZK

simulation without a PML that de�nes a radial boundary at rmax = 6a (red dashed line),

with a y = 0 single term PML that de�nes a radial boundary at rmax = 2a (blue solid line),

and with a y = 2 single term PML that de�nes a radial boundary at rmax = 2a (green solid

line).
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KZK simulation without a PML that de�nes a radial boundary at rmax = 6a (red dashed

line) and the �nite di�eren
e KZK simulations without a PML that de�nes a radial boundary

at rmax = 2a. When nonlinearity is in
luded, the waveforms are tilted where a sho
kwave

is formed in the fo
al zone. The small di�eren
e near t = 50µs in the �nite di�eren
e

KZK simulation without the PML is again 
aused by the re�e
tion at the radial boundary.

Fig. 4.4(b) shows a 
omparison between the on-axis waveforms at z = 6 
m for the �nite

di�eren
e KZK simulation without a PML that de�nes a radial boundary at rmax = 6a and

the �nite di�eren
e KZK simulation with two di�erent PMLs that de�ne a radial boundary

at rmax = 2a. The blue solid line shows the result with a y = 0 single term PML and the

green solid line des
ribes the result with a y = 2 single term PML. Fig. 4.4(b) indi
ates that

the re�e
tion from the boundary is removed by ea
h of these PMLs.

Fig. 4.5 shows the simulated 2D pressure �eld and the di�eren
es between KZK 
al
ula-

tions without and with PMLs in a nonlinear medium. Fig. 4.5(a) shows the 2D peak pressure

distribution 
al
ulated with the �nite di�eren
e implementation of the KZK equation without

a PML that de�nes a radial boundary at rmax = 9 
m. The fo
al peak is lo
ated at about

z = 6 
m on axis, and the maximum pressure value is equal to 12 MPa. Fig. 4.5(b) shows

the 2D di�eren
e between the �nite di�eren
e KZK 
al
ulation without a PML that de�nes

a radial boundary at rmax = 9 
m and the �nite di�eren
e KZK 
al
ulation without a PML

that de�nes a radial boundary at rmax = 3 
m. The peak value of the di�eren
e, whi
h is

about 10%, is lo
ated on-axis in the far �eld region. Fig. 4.5(
) shows the 2D di�eren
e

between the �nite di�eren
e KZK 
al
ulation without a PML that de�nes a radial boundary

at rmax = 9 
m and the �nite di�eren
e KZK 
al
ulation with the y = 0 single term PML

that de�nes a radial boundary at rmax = 3 
m. The peak value of the di�eren
e, whi
h

is about 0.3%, is again lo
ated on-axis in the far region. There is also some di�eren
e in

the far o�-axis region in Fig. 4.5(
). Fig. 4.5(d) shows the 2D di�eren
e between the �nite

di�eren
e KZK 
al
ulation without a PML that de�nes a radial boundary at rmax = 9 
m

and the �nite di�eren
e KZK 
al
ulation with the y = 2 single term PML that de�nes a
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Figure 4.5: Simulated 2D pressure �eld and di�eren
es between KZK 
al
ulations without

and with PMLs, where the radial boundaries are lo
ated at rmax = 9 
m and at rmax = 3 
m
in a nonlinear medium. The attenuation parameter is α = 2.2× 10−3

dB/
m/MHz

2
and the

nonlinearity parameter is β = 3.5. (a) The peak pressure distribution for the KZK simulation

without a PML that de�nes a radial boundary at rmax = 9 
m. (b) The di�eren
e between

the KZK simulation without a PML that de�nes a radial boundary at rmax = 9 
m and the

KZK simulation without a PML that de�nes a radial boundary at rmax = 3 
m. (
) The

di�eren
e between the KZK simulation without a PML that de�nes a radial boundary at

rmax = 9 
m and the KZK simulation with a y = 0 single term PML that de�nes a radial

boundary at rmax = 3 
m. (d) The di�eren
e between the KZK simulation without a PML

that de�nes a radial boundary at rmax = 9 
m and the KZK simulation with a y = 2 single

term PML that de�nes a radial boundary at rmax = 3 
m.
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radial boundary at rmax = 3 
m. The peak value of the di�eren
e, whi
h is about 0.5%

for this PML, is also lo
ated on-axis in the far �eld region. Again, a smaller di�eren
e is

observed in Fig. 4.5(d) than in Fig. 4.5(
), whi
h indi
ates slightly better performan
e for

the y = 0 single term PML.

4.5 Dis
ussion

4.5.1 Computation time

Figs. 4.3 and 4.5 indi
ate that, for both linear and nonlinear KZK simulations, the PMLs

with y = 0 and y = 2 are e�e
tive in suppressing re�e
tions from the radial boundary,

espe
ially in the fo
al zone. The 
hoi
e of αPML balan
es the e�e
t of impedan
e mismat
h

when αPML is large versus the e�e
t of boundary re�e
tions when αPML is too small. For

ea
h type of PML, our experien
e is that there is no signi�
ant di�eren
e in the PML when

only one or two terms are 
onsidered in the power law wave equation. Thus, to further

a

elerate these KZK simulations, only one term is in
luded in ea
h simulation for the y = 0

and y = 2 PMLs. The 
omputation time for the KZK �nite di�eren
e 
al
ulation without

a PML that de�nes a radial boundary at rmax = 9 
m shown in Fig. 4.3 is 2807s. For KZK

simulations using a y = 0 single term PML that de�nes a radial boundary at rmax = 3 
m,

the 
omputation time is 913s. For KZK simulations using a y = 2 single term PML that

de�nes a radial boundary at rmax = 3 
m, the 
omputation time is 1028s.

4.5.2 Continuous wave (CW) KZK 
al
ulations

The same approa
h for de�ning a PML is also appli
able to 
ontinuous-wave KZK

simulations, as des
ribed in Appendix A. For the 
ontinuous wave KZK equation, a PML

is only ne
essary in the radial dire
tion. The strength of the PML, as implemented here,

in
reases proportionally to the radial dire
tion 
ubed. The e�e
tiveness of the y = 0 and y =

2 single term PMLs is also demonstrated for CW 
al
ulations with the spheri
ally-fo
used

transdu
er evaluated in se
tion 4.4. The input pressure on the surfa
e of the transdu
er
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Figure 4.6: On-axis 
omparisons between 
ontinuous wave �nite di�eren
e KZK simulations

with the results 
al
ulated with Muir's method evaluated in a linear lossless medium. (a) The

result obtained with Muir's method (red solid line) and the �nite di�eren
e KZK simulation

results without a PML that de�nes a radial boundary at rmax = 10.5 
m (blue dashed line).

(b) The result with Muir's method (red solid line) and the �nite di�eren
e KZK simulation

results with a y = 0 PML that de�nes a radial boundary at rmax = 3 
m (blue dashed line).
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is P0 = 0.5 MPa. The density is ρ = 1000 kg/m

3
, and the sound speed is c = 1500 m/s.

The ex
itation frequen
y is f = 1 MHz, whi
h 
orresponds to a wavelength of λ = 0.15 
m.

For the �nite di�eren
e KZK simulation without a PML, the radial boundary is lo
ated at

rmax = 10.5 
m. For the �nite di�eren
e KZK simulation with a y = 0 single term PML, the

PML starts at r = 2.25 
m and ends at rmax = 3 
m, so the thi
kness of the PML is equal

to 0.75 
m.

The �nite di�eren
e solution to the 
ontinuous-wave KZK equation is �rst 
omputed

in a linear lossless medium. Only the �rst harmoni
 is 
omputed in the simulation, where

the spatial step size is equal to λ/40 in both dire
tions. Fig. 4.6 des
ribes the on-axis

results for the 
ontinuous wave KZK simulations with and without a PML, whi
h are


ompared to the results 
al
ulated with Muir's method. As shown in Fig. 4.6(a), the on-axis

pressure waveform obtained from the �nite di�eren
e KZK simulation without a PML 
losely

mat
hes the waveform 
omputed with Muir's method in the fo
al zone; however, there is

some di�eren
e in the far �eld region, even for the large radial boundary that is de�ned

at rmax = 10.5 
m. Fig. 4.6(b) des
ribes the on-axis waveform obtained from the �nite

di�eren
e KZK simulation with a y = 0 PML that de�nes a radial boundary at rmax = 3 
m,

whi
h 
losely mat
hes the result obtained with Muir's method both in the fo
al zone and in

the far �eld region. This indi
ates that the re�e
tion from the boundary is removed by the

PML.

Fig. 4.7 shows the 
ontinuous-wave 2D pressure distribution for a spheri
ally-fo
used

transdu
er with a = 1.5 
m, R = 6 
m, and f = 1 MHz 
al
ulated in a linear lossless

medium with Muir's method. In Fig. 4.7, the peak pressure in the fo
al zone is approximately

4.3 MPa. Fig. 4.8(a) des
ribes the di�eren
e between the �nite di�eren
e KZK numeri
al


al
ulation without a PML that de�nes a radial boundary at rmax = 10.5 
m and the results

obtained with Muir's method. The re�e
tion from the radial boundary is 
learly evident

in Fig. 4.8(a), whi
h starts at the edge near z = 16.5 
m. The peak di�eren
e is about

0.5 MPa in the on-axis far �eld region. Fig. 4.8(b) shows that, after introdu
ing a y = 0
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Figure 4.7: The 
ontinuous-wave 2D pressure distribution for a spheri
ally-fo
used trans-

du
er with a = 1.5 
m, R = 6 
m, and f = 1 MHz 
al
ulated in a linear lossless medium

with Muir's method.

PML that de�nes a radial boundary at rmax = 3 
m, the on-axis di�eren
e is mu
h smaller

than the on-axis di�eren
e without a PML in Fig. 4.8(a). The largest di�eren
e that o

urs

in Fig. 4.8(b) is observed where the PML is applied.

Simulations are then evaluated for the same transdu
er geometry using the attenuation

and nonlinearity values of water, whi
h are α0 = 2.2 × 10−3
dB/
m/MHz

2
and β = 3.5,

respe
tively. The number of harmoni
s 
omputed in this simulation is Nharm = 50, and

the spatial step size is λ/Nharm/40. Fig. 4.9(a) shows the �rst four harmoni
s of the on-axis

�nite di�eren
e simulation results for the 
ontinuous wave KZK equation evaluated in water.

This simulation de�nes a radial boundary at rmax = 10.5 
m without a PML. In Fig. 4.9(a),

there is a very strong os
illation in the fundamental due to re�e
tions from the boundary.

However, no su
h os
illations appear in the higher harmoni
s. Fig. 4.9(b) shows the �rst four

harmoni
s evaluated on-axis for the 
ontinuous-wave KZK equation in water with a y = 0

PML that de�nes a radial boundary at rmax = 3 
m. In Fig. 4.9(b), no os
illations appear
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(a)

(b)

Figure 4.8: The 2D pressure di�eren
e between linear lossless �nite di�eren
e KZK numeri
al

results for a spheri
ally-fo
used transdu
er with a = 1.5 
m, R = 6 
m, and f = 1 MHz

and the results for the same 
on�guration evaluated with Muir's method. (a) The di�eren
e

between the �nite di�eren
e KZK simulation without a PML that de�nes a radial boundary

at rmax = 10.5 
m and the results obtained with Muir's method. (b) The di�eren
e between

the �nite di�eren
e KZK simulation with a y = 0 PML that de�nes a radial boundary at

rmax = 3 
m and the results obtained with Muir's method.
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Figure 4.9: The �rst four harmoni
s generated by a spheri
ally-fo
used transdu
er with

a = 1.5 
m, R = 6 
m, and f = 1 MHz for on-axis �nite di�eren
e simulations of the


ontinuous wave KZK equation in water. The attenuation parameter is α = 2.2 × 10−3

dB/
m/MHz

2
, and the nonlinearity parameter is β = 3.5. (a) The �nite di�eren
e KZK

simulation results without a PML that de�nes a radial boundary at rmax = 10.5 
m. (b)

The �nite di�eren
e KZK simulation results with a y = 0 PML that de�nes a radial boundary

at rmax = 3 
m.
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Figure 4.10: The 2D pressure di�eren
e between the �nite di�eren
e KZK numeri
al results

with and without a y = 0 PML in water with α0 = 2.2 × 10−3
dB/
m/MHz

2
and β = 3.5

evaluated for �rst four harmoni
s produ
ed by a spheri
ally-fo
used transdu
er with a =
1.5 
m, R = 6 
m, and f = 1 MHz.

in the fundamental or in any of the higher harmoni
s. For the higher harmoni
s, the �nite

di�eren
e solution to the 
ontinuous-wave KZK equation with or without a PML produ
es

exa
tly the same on-axis result.

Fig. 4.10 shows the �rst four harmoni
s of the di�eren
e between the �nite di�eren
e

KZK numeri
al 
al
ulation without a PML that de�nes a radial boundary at rmax = 10.5 
m

and the KZK numeri
al 
al
ulation with a y = 0 PML that de�nes a radial boundary at

rmax = 3 
m. Fig. 4.10(a) indi
ates the main di�eren
e in the �rst harmoni
 o

urs 
lose to

the 
entral axis, where the sour
e of this di�eren
e is the re�e
tion from the radial boundary

at rmax = 10.5 
m. Figs. 4.10(b-d) indi
ate that, for higher harmoni
s, the di�eren
e

is negligible sin
e the re�e
tion from the radial boundary is mu
h smaller for the higher

frequen
y 
omponents.
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4.6 Con
lusion

A new perfe
tly mat
hed layer was implemented for simulations of nonlinear wave propa-

gation based on the Khokhlov-Zabolotskaya-Kuznetsov equation. Instead of deriving a PML

with stret
hed 
oordinates, the power law wave equation is introdu
ed as an alternative model

for the attenuation that o

urs within the PML. For ea
h value of the power law exponent


onsidered here, the two terms that are responsible for the attenuation are redu
ed to a single

term, whi
h yields the Telegrapher's equation within the PML when y = 0 and the Bla
ksto
k

vis
ous wave equation when y = 2. Numeri
al simulations are evaluated in both linear

lossless and nonlinear lossy media for inputs generated by a spheri
ally fo
used transdu
er.

The simulation results are 
ompared to Muir's formula and to �nite di�eren
e KZK solutions

with a very large radial boundary. Comparisons show that the PMLs e�e
tively eliminate the

re�e
tions from the radial boundary. In addition, the formulas for implementing PMLs are

readily integrated into existing KZK simulation programs. With these new PMLs, re�e
tions

from the radial boundary are eliminated, whi
h enables a 
onsiderable redu
tion in the


omputation time for �nite di�eren
e simulations of the KZK equation.
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Chapter 5

Con
lusion

Chapter 2 numeri
ally evaluates time-domain Green's fun
tions for three time-fra
tional

wave equations, and the results are 
ompared at various distan
es for water, breast, and

liver. At larger distan
es, the time-domain Green's fun
tions for all three fra
tional wave

equations 
onverge to the same result in the water, breast, and liver models. The results

also demonstrate that the Szabo and power law wave equations are non
ausal and that

the Caputo wave equation is 
ausal, where the distin
tion between these is 
learly evident

at distan
es very 
lose to the sour
e. However, beyond a 
ertain distan
e, the non
ausal


ontributions are negligible for both the Szabo and power law wave equations. When these

time-domain Green's fun
tions are 
onvolved with a three-
y
le Hanning-weighted pulse, no

non
ausal behavior is observed in the time-domain results, and the FWHMs of the envelopes

of the 
onvolution results are all approximately the same.

In Chapter 3, improved approximations for the attenuation and phase velo
ity are derived

for the Chen-Holm and Treeby-Cox wave equations. Numeri
al 
al
ulations of the attenua-

tion and phase velo
ity for the Chen-Holm, Treeby-Cox, and power law wave equations in

breast and liver are evaluated over a range of ultrasound frequen
ies. New expressions for

power series mat
h the results obtained by numeri
ally evaluating the dispersion relation

more 
losely than previous approximations. The time-domain Green's fun
tions for these

three fra
tional wave equations are 
al
ulated at various distan
es, and the amplitudes and

FWHM values of the time-domain Green's fun
tions are also evaluated. The results show

some similarities and di�eren
es between these three fra
tional wave equations. For instan
e,
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the attenuation terms in all three fra
tional wave equations are very similar, while the phase

velo
ity for the Chen-Holm wave equation is nearly 
onstant. Causality is demonstrated

analyti
ally and numeri
ally in the time domain for both the Chen-Holm and Treeby-Cox

wave equations. At mu
h larger distan
es, the time-domain Green's fun
tions for the

Treeby-Cox and power law wave equations 
onverge to the same result while the time-domain

Green's fun
tion for the Chen-Holm wave equation 
learly di�ers from the other two. The

Pantis method is introdu
ed as an e�e
tive approa
h for evaluating the highly os
illatory

improper integrals that arise in numeri
al 
al
ulations of the time-domain Green's fun
tions

for the Chen-Holm and Treeby-Cox spa
e-fra
tional wave equations. The Pantis method

provides an a

urate result when the number of Filon abs
issas and the value of m are

su�
iently large. Three-
y
le Hanning-weighted pulses with two di�erent 
enter frequen
ies

are 
onvolved with the time-domain Green's fun
tions for three fra
tional wave equations.

The 
onvolution results for the power law wave equation and the Treeby-Cox wave equation

are very similar while the 
onvolution result for the Chen-Holm wave equation 
learly shows

a time delay. The 
onvolution results also indi
ate that there is more attenuation and

waveform spreading in signals with higher 
enter frequen
ies.

In Chapter 4, a new PML, whi
h is based on the power law wave equation with y = 0 or

y = 2, is implemented to a

elerate nonlinear ultrasound simulations with the KZK equation.

For ea
h power law exponent, a single attenuation term is su�
ient to avoid radial re�e
tions.

In addition, the �nite di�eren
e stru
ture of the KZK equation is also des
ribed. Numeri
al

simulations for the transient and 
ontinuous-wave KZK equations are then evaluated for

both linear lossless and nonlinear media, where the inputs are generated by a spheri
ally

fo
used transdu
er. These results are 
ompared to Muir's formula and to �nite di�eren
e

KZK 
al
ulations with a large radial boundary. The 
omparisons indi
ate that the new PML

e�e
tively eliminates the re�e
tions from the radial boundary, whi
h subsequently redu
es

the 
omputation time.
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APPENDIX A

Derivation of the nonlinear wave equa-

tions

The Westervelt equation

A wave equation that des
ribes nonlinear wave propagation is derived from three fundamental

equations, namely the equation of motion, the 
ontinuity equation, and the equation of state.

The equation of motion is given by

ρ
Du

Dt
+
−→∇P = 0, (A.1)

where ρ = ρ0+ ρa is the total density, P = P0+ p is the total pressure, u is the velo
ity, and

D
Dt

= ∂
∂t

+ u · −→∇ . A
ousti
 quantities are usually very small 
ompared to the stati
 values.

The 
ontinuity equation is expressed as

Dρ

Dt
+ ρ∇ · u = 0. (A.2)

The equation of state is given by

P = P0 +

(

∂P

∂ρ

)

ρ0,s

ρa +
1

2

(

∂2P

∂ρ2

)

ρ0,s

ρ2a + . . . .. (A.3)
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For all three 
onstitutive equations, all terms up to se
ond order a

ura
y are retained with

respe
t to ρa, p, and u, whi
h are su�
ient for most appli
ations of nonlinear a
ousti
s in

�uids. A

ordingly, Eqs. A.1-A.3 are rewritten as

ρ0
∂u

∂t
+
−→∇p = −ρa

∂u

∂t
− ρ0

(

u · −→∇
)

u, (A.4)

∂ρa
∂t

+ ρ0
−→∇ · u = −ρa

−→∇ · u− u · −→∇ρa, (A.5)

ρa −
p

c20
≈ − B

2A

p2

ρ0c40
, (A.6)

where A = ρ0

(

∂P
∂ρ

)

ρ0,s
and B = ρ20

(

∂2P
∂ρ2

)

ρ0,s
. The right hand sides of Eqs. A.4-A.6 
ontain

the se
ond order terms. Combining Eqs. A.4-A.6 yields the Westervelt equation

∇2p− 1

c20

∂2p

∂t2
= − δ

c40

∂3p

∂t3
− β

ρ0c40

∂2p2

∂t2
, (A.7)

where δ and β = 1 +B/2A are the attenuation and nonlinearity parameters.

The KZK equation

To obtain an approximate nonlinear wave equation that des
ribes one way wave motion in

the axial dire
tion, let z represent the dire
tion of propagation, where (x, y) indi
ates the


oordinates perpendi
ular to the z axis. Assuming that, for a sour
e with radius a, ka ≫ 1

and z > 0.5ka2 are both satis�ed, the e�e
ts of di�ra
tion are O(ε̃2) in ea
h dire
tion are

s
aled by di�erent amounts a

ording to

p = p(x1, y1, z1, t
′), (x1, y1, z1) = (ε̃1/2x, ε̃1/2y, ε̃z), t′ = t− z/c0. (A.8)

The Lapla
ian that appears in the Westervelt equation is then rewritten as

∇2 = ε̃

(

∂2

∂x21
+

∂2

∂y21

)

+ ε̃2
∂2

∂z21
− ε̃

2

c0

∂2p

∂z1∂t′
+

1

c20

∂2

∂t′2
. (A.9)
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If only O(ε̃) terms are retained, the left side of the Westervelt equation be
omes

∇2p− 1

c20

∂2p

∂t2
= ε̃

(

∂2

∂x21
+

∂2

∂y21

)

p− ε̃
2

c0

∂2p

∂z1∂t′
. (A.10)

Let ∇⊥ = ∂2

∂x2 + ∂2

∂y2
and repla
e (x1, y1, z1) with (x, y, z) to obtain the KZK (Khokhlov-

Zabolotskaya-Kuznetsov) equation

∂2p

∂z∂t′
=
c0
2
∇⊥p +

δ

2c30

∂3p

∂t′3
+

β

2ρ0c
3
0

∂2p2

∂t′2
. (A.11)

This yields a simpli�ed model that in
ludes the e�e
ts of di�ra
tion, attenuation, and

nonlinearity. When the sour
e is a 
ir
ular transdu
er, the pressure �eld is symmetri
 in the

radial dire
tion. In axisymmetri
 
ylindri
al 
oordinates, the KZK equation is given by

∂2p

∂z∂t′
=
c0
2

(

∂2p

∂r2
+

1

r

∂p

∂r

)

+
δ

2c30

∂3p

∂t′3
+

β

2ρ0c30

∂2p2

∂t′2
. (A.12)

Burgers' equation

Burgers' equation, whi
h is a one dimensional nonlinear equation, 
an be derived dire
tly

from the Westervelt equation. After the operators in Eq. A.7 are fa
tored, this yields

(

∂

∂z
− 1

c0

∂

∂t
+

δ

2c0

∂2

∂t2
+

βp

ρ0c30

∂

∂t

)(

∂

∂z
+

1

c0

∂

∂t
− δ

2c0

∂2

∂t2
− βp

ρ0c30

∂

∂t

)

p = 0. (A.13)

In Eq. A.13,

δ
2c0

∂2

∂t2
and

βp
ρ0c30

∂
∂t
are higher order terms, and the produ
t of these are dis
arded

when transforming Eq. A.13 ba
k to Eq. A.7. Assuming one way approximation and retaining

only the forward propagation terms gives

∂p

∂z
− 1

c0

∂p

∂t
+

δ

2c0

∂2p

∂t2
+

βp

ρ0c
3
0

∂p

∂t
= 0. (A.14)
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applying the 
hange of variables z′ = z − c0t , Burgers' equation is obtained

∂p

∂z′
+

δ

2c0

∂2p

∂t2
+

βp

ρ0c30

∂p

∂t
= 0. (A.15)
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APPENDIX B

Simulations of ultrasound wave propaga-

tion

The fast near�eld method

The fast near�eld method (FNM) simulates the linear lossless pressure �eld generated by

transdu
ers of various shapes. In time domain, the pressure �eld produ
ed by a 
ir
ular

piston is given by:

p(r, z; t) =
ρ0ca

π

ˆ π

0

r cosψ − a

r2 + a2 − 2ar cosψ
× [v(t− τ1)− v(t− τ2)]dψ, (B.1)

τ1 =
√

z2 + r2 + a2 − 2ar cosψ/c, τ2 = z/c, (B.2)

where a is the radius of the 
ir
ular piston, τ1 and τ2 are the delay times, and v is the normal

velo
ity for sour
e points on the piston. The fast near�eld method is an a

urate method

for 
omputing pressures in both the near �eld and the far �eld.

The Cole-Hopf Model

The Cole-Hopf model gives an exa
t solution to Burgers' equation for given values of the

nonlinearity and attenuation 
oe�
ients. For an arbitrary sour
e pressure on the piston,

p(0, t) = p0F (t), (B.3)
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the Cole-Hopf solution in
luding both nonlinearity and attenuation is given by

p(z, t′) = p0

´

∞

−∞
F (t′′)eEζe−EGdt′′
´

∞

−∞
eEζe−EGdt′′

, (B.4)

Eζ(t
′′) =

βp0
ρ0δ

ˆ t′′

−∞

F (t′′′)dt′′′, (B.5)

EG =
c30(t

′ − t′′)2

2zδ
, (B.6)

where t′ = t−z/c0 is retarded time, β is the nonlinearity 
oe�
ient, and δ is the attenuation


oe�
ient. When β equals zero, Eζ equals zero, and the Cole-Hopf solution simpli�es to

the linear 
ase. For ea
h frequen
y ω, the amplitude is attenuated by exp(−ω2zδ/2c30) after

a distan
e z. Thus, for a single frequen
y ex
itation, the linear Cole-Hopf solution with

attenuation only is given by

p(z, t′) = p0e
−ω2zδ/2c30 sin (ωt′) . (B.7)

Fay and Fubini Model

When only nonlinearity is 
onsidered in the simulation, the Fay and Fubini solutions 
an be

used for 
omparison. For periodi
 waves, the expression for the pressure 
an be expanded as a

Fourier series, whi
h 
learly shows how the harmoni
s grow as the periodi
 waves propagate.

In Fubini's model, the sour
e pressure is given by

p(0, t) = p0 sin (ωt) . (B.8)

For this input, the Fubini solution for a single frequen
y sour
e is

p(σ, t′) = p0

∞
∑

n=1

2

nσ
Jn(nσ) sin (nωt

′) , (B.9)
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where σ is a dimensionless distan
e. The Fubini solution is only valid in the pre-sho
k

region σ ≤ 1. In this region, when σ in
reases, the amplitude of the fundamental 
omponent

de
reases and the energy is transferred to higher harmoni
 
omponents.

After the sho
k wave is fully developed, the Fay solution is 
hosen instead of the Fubini

solution sin
e the Fay solution is valid for larger values of σ. When both attenuation and

nonlinearity are in
luded, the Fay solution is expressed as

p(σ, t′) = p0
2

Γ

∞
∑

n=1

sin (nωt′)

sin[n(1 + σ)/Γ]
, (B.10)

where Γ is a parameter that des
ribes the attenuation. When only the e�e
ts of nonlinearity

are in
luded, the Fay solution simpli�es to a sawtooth wave

p(σ, t′) = p0
2

1 + σ

∞
∑

n=1

sin (nωt′)

n
, (B.11)

whi
h is valid for the region where σ > 3. Thus, by 
ombining the Fubini and Fay solutions,

results obtained with Burgers' equation 
an be validated. If additional 
omparisons are

needed in the region 1 < σ ≤ 3, the solution in the transition region is needed [85℄.
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