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ABSTRACT 

CONTEXT MATTERS FOR BLACK BEARS: EVALUATING SPATIALLY EXPLICIT 

DENSITY ESTIMATORS AND TRADE-OFFS IN RESOURCE SELECTION 

 

By 

 

Jennifer B. Smith 

 

Widespread urbanization, habitat fragmentation, and climate change drive significant, 

multi-scale variation in wildlife populations and their habitat use. As a result, effective 

management of wildlife require fine-scale quantification of population density and resource 

selection, particularly for wide-ranging species. In this thesis I address these needs for the 

American black bear (Ursus americanus) in the Lower Peninsula of Michigan, USA. In my first 

chapter, I evaluated factors affecting spatially explicit density estimates from repurposed black 

bear hair snare data. I fit these data to a spatial capture-recapture model and simulated outcomes 

under a suite of parameter scenarios. Results indicated that while this method produced cost-

effective bear density estimates, the accuracy of the estimates depended on scenario parameters. 

In my second chapter, I quantified functional relationships in black bear use of agriculture. I 

estimated a resource selection function from GPS telemetry data of 12 black bears. Both male 

and female bears were less likely to use agriculture as it increased in the landscape, and when 

they were located close to developed land covers. The odds of male bears using agriculture 

declined with increasing bear density. Comparatively, the odds of females using agriculture 

increased in areas of higher density. These relationships reflect the influence of environmental 

context on the trade-offs involved in black bears using agricultural habitat.  
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INTRODUCTION 

 

In the 21st century, management of wildlife populations requires a difficult balance of 

pursuing fundamental knowledge, such as accurate estimation of population size and distribution 

of species across landscapes, while simultaneously adapting to an era in which spatiotemporal 

ecological processes are increasingly stochastic (Corlett 2015). Climate change is altering basic 

ecological patterns, including species distributions (reviewed in Walther et al. 2002), while rates 

of urbanization and land conversion continue to increase and fragment habitat on both broad and 

fine-scales (Wilcove et al. 1998). The resultant patchwork of habitat fragments affects population 

dynamics, behavioral processes, and patterns of movement (reviewed in Fischer and 

Lindenmayer 2007). Highly heterogeneous landscapes drive variation in local densities, 

complicating species’ movement and resource selection, and challenge wildlife managers to 

predict how species will respond across a broad range of ecological conditions. Furthermore, 

habitat loss increases the overlap in space use between humans and wildlife, which often results 

in increased conflicts (Baruch-Mordo et al. 2008). Because of these challenges, spatially explicit 

estimations of population size and fine-scale quantification of species’ behavior are especially 

informative for management and conservation.  

In addition to rapid biotic changes, this century has seen rapid advances in quantitative 

and statistical tools. For instance, in the last 10 years spatial capture-recapture (SCR) models 

were developed (Borchers and Efford 2008, Royle and Young 2008) and statistical methods for 

quantifying functional relationships have diversified (Hebblewhite and Merrill 2008, Godvik et 

al. 2009, Matthiopoulos et al. 2011). SCR models incorporate the spatial information of a 

capture-mark-recapture dataset to estimate density of animal populations. Functional 

relationships quantify how probability of using a resource changes as a function of its availability 
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(Mysterud and Ims 1998). Both advancements provide tools to evaluate variation in population 

size and species’ behavior at finer-scales than traditional methods. Such information is 

particularly useful for management of widespread, generalist species.   

 American black bears (Ursus americanus) are one of the best-known generalist species in 

North America. Though typically associated with forests, black bears have a demonstrated ability 

to exist and even thrive in human-dominated landscapes. This flexibility, coupled with the 

impacts of shrinking contiguous forested habitat, contributes to the increasing frequency and 

magnitude of black bear-human conflicts (Beckman et al. 2004). Management of this species, 

though crucial, is complicated. Bears play an important ecological role as a widespread 

omnivore, especially in regions of the eastern United States where they may be the only large 

mammalian predator (Noss et al. 1996). Black bears are relatively tolerant of anthropogenic 

influences and are of interest to diverse public groups. Black bears are prominent in the history, 

culture, and beliefs of many First Nations in North America. Black bears are popular both as a 

game species and for wildlife-viewing. Yet the public may consider encounters with bears a 

threat, a nuisance, or a treasured experience. Because of these diverse interests, management is 

often defined by social desires for this species. Managing black bears in Michigan is a prime 

example of this complexity. 

The black bear population in Michigan has been increasing since the 1990s (Michigan 

Department of Natural Resources 2009). Bears have been managed by the state as a game 

species since 1925. Hunting regulations permit baiting, the use of archery and firearms, and the 

use of dogs, which have made bears a popular game species within Michigan’s hunting 

community. Black bears are primarily distributed in the Upper Peninsula and northern Lower 

Peninsula of Michigan. This landscape is highly heterogeneous: the northern half of the Lower 
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Peninsula is dominated by forested landscapes that transition to urban- and agriculture-

dominated landscapes in the southern half. As a result, local black bear densities vary greatly; 

bear densities are highest in the northern region and begin to decline as the landscape transitions 

from forest to agriculture. Due to this variation, managers were interested in estimating 

population density in a spatially explicit manner. Although still uncommon, occurrences of bears 

have increased in the southern Lower Peninsula during the past 5 years. This trend highlighted 

the need to understand how bears use resources when local densities and landscape composition 

are highly variable.  

In Chapter 1, I evaluated the performance of a spatially explicit density estimator for 

black bears in the northern Lower Peninsula of Michigan. I simulated capture-mark-recapture 

data (CMR) from an existing array of hair-snare traps and fit the data to a spatial capture-

recapture model. The hair-snare array was originally designed to provide an estimate of bear 

abundance for a large region (i.e., the northern Lower Peninsula); producing spatially explicit 

population estimates represented a repurposing of the data. To identify limitations to repurposing 

these data, I simulated data collection under 81 different scenarios and assessed variation in 

accuracy and precision of the density estimate. Density estimates were not robust across 

scenarios. Approximately 40% of simulated scenarios produced stable and reasonably accurate 

density estimates. Accuracy of the estimates were affected by all 4 simulated scenario 

characteristics. My results indicated it was essential to have supplemental information 

identifying the conditions under which the data were collected in order to repurpose CMR data 

from a trap array designed for non-spatial data analysis. 

In Chapter 2, I explored black bear use of agriculture along the southern edge of their 

distribution. In the Lower Peninsula of Michigan this area is the transitional zone from a forest-
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dominated to an agriculture-dominated landscape. I used GPS telemetry data from 12 radio 

collared black bears (n = 6 females, 6 males) to quantify how bear selection for agriculture was 

affected by a suite of covariates. Covariates included bear density, proportion of agriculture 

within the surrounding landscape, distance to developed land (e.g., roads, impervious surfaces), 

and distance to water. Use of agriculture was density-dependent for both male and female bears, 

but the direction of the relationship was sex-specific. Female bears were more likely to use 

agriculture in higher bear density areas, whereas males were less likely to use agriculture when 

bear densities were higher. In both sexes, use of agriculture varied as a function of distance to 

developments, and amount of agriculture in the surrounding landscape. These findings 

demonstrated the trade-offs involved in bear use of agriculture, the influence of environmental 

context on patterns of black bear resource selection, and suggested male and female bears 

perceived this context and the trade-offs it created differently.  

Each of these chapters is written for independent publication with coauthors. Therefore, 

text invokes the plural “we” instead of singular “I”.  
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CHAPTER 1: PERFORMANCE OF A SPATIAL CAPTURE-RECAPTURE MODEL 

FOR REPURPOSED BLACK BEAR HAIR SNARE DATA  

 

Introduction 

Accurate estimates of the size and distribution of animal populations are fundamental to 

effective management of wildlife. Capture-mark-recapture (CMR) studies and models have been 

used extensively to produce these estimates. However, non-spatial CMR models do not directly 

quantify the effective sampling area (Sun et al. 2014), requiring them to estimate density post 

hoc. In the past decade, spatial capture-recapture (SCR) models were developed that produce 

spatially explicit density estimates (Borchers and Efford 2008, Royle and Gardner 2011). These 

new methods incorporate the spatial information inherent to a CMR dataset (e.g., location of 

traps and of detections) to estimate not only density, but also the parameters constituting the 

spatial detection process. Unlike non-spatial capture-recapture models, SCR models define 

detection probability as a function of two parameters: g0, which reflects the probability of 

detecting an individual at a trap, and sigma (σ), a spatial scale parameter defining how detection 

changes as a function of the distance between an individual and a trap. Estimating both g0 and σ 

enables SCR models to estimate the locations of activity centers of detected animals. These 

characteristics allow SCR models to account for unequal exposure of individuals to traps, to 

quantify the effective sampling area, and therefore, the density of the studied population 

(Borchers and Efford 2008, Gardner et al. 2009, Royle and Gardner 2011).  

The rapid advancement of computer-processing abilities and quantitative methods in ecology 

and related fields has resulted in proliferation of widely available, free, and user-friendly 

computer programs to conduct innovative statistical modeling. These tools offer opportunities 

not only to improve our ability to manage and conserve wildlife but to maximize the amount of 

information garnered from existing datasets. However, when existing data are repurposed for use 



9 
 

in new analytical methods, it is crucial to understand the limitations and assumptions involved. 

Wildlife biologists have been collecting CMR datasets to estimate abundance for decades. These 

abundance estimates are often converted post hoc to density estimates because the latter is 

independent from observational scale (Howe et al. 2013). Thus, directly estimating density in a 

spatially explicit manner from existing CMR data is appealing. The development of SCR models 

made this retrospective repurposing possible. However, the sampling design used to collect 

existing CMR data was likely not customized for SCR models, which could limit effective 

parameter estimation.  

Although SCR models are flexible to diverse sampling designs (Efford and Fewster 2013), 

the spatial configuration and spacing of traps directly influence the accuracy and precision of 

parameter estimates in SCR models (Sollman et al. 2012, Sun et al. 2014, Wilton et al. 2014). In 

any CMR study, the spatial arrangement of the trap array should reflect the movement ecology of 

the studied species (Pollock et al. 1990). SCR models rely on sufficient individual detections, 

non-spatial recaptures, and recaptures at multiple traps (i.e., spatial recaptures) to identify the 

location of activity centers and, by extension, accurately estimate model parameters (Sun et al. 

2014). If trap spacing is larger than the typical movements of individuals, it is unlikely the 

trapping array will collect the recaptures necessary for accurate parameter estimation. Thus, it is 

useful to consider the conditions (i.e., what true values of g0, σ, and density) under which SCR 

models based on existing CMR data may produce reliable estimates of density. 

Here we evaluated estimating black bear (Ursus americanus) density using existing hair 

snare data gathered from a trapping array that was not intended to inform an SCR model. The 

hair snare array was originally designed to collect data for a non-spatial CMR model, which 

estimated bear abundance over the northern Lower Peninsula (NLP) of Michigan, while abiding 
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within logistical and financial restrictions. Trap spacing was variable in the array and the 

distribution of traps was not uniform over the landscape. Our objective was to identify the 

conditions under which an SCR model of repurposed data reliably estimated density and to 

describe how estimator performance changed across the plausible parameter space. We used 

simulations to evaluate performance of density estimates from an SCR model across a suite of 

conditions reflecting plausible parameter and sampling efforts. Previous studies have described 

how estimation performance changes with different configurations and spacing of traps; our 

study describes how performance relates to differences in parameter combinations (population 

and sampling characteristics) for a fixed trapping array.  

Methods 

Data 

In 2003, biologists from the Michigan Department of Natural Resources deployed barbed-wire 

hair snares to estimate black bear abundance in the northern Lower Peninsula (NLP) of Michigan. 

Over 200 snares were distributed across 36,848 km2 (see Dreher et al. 2007 for data collection 

procedures). The spatial arrangement of the snare array was irregular but spatially clustered (Fig 

1.1). Capture data for 2003, 2005, 2009, and 2013 were each analyzed using non-spatial capture-

recapture models. Across these 4 years, the number of snares differed slightly but existing 

locations were reused. In 2003 and 2005, 239 snares were deployed; in 2009 and 2013, 257 snares 

were deployed. This analysis evaluated model performance based on the snare arrangement from 

2009. 

Simulations 

We designed 81 different scenarios that varied the values of SCR model parameters and the 

number of sampling occasions. The parameter space consisted of 3 values (a low, medium, and 
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high level) of density (D; 10, 50, and 100 bears per 100 km2), sigma (σ; 2, 5, and 12 km), 

detection probability at the trap (g0; 0.005, 0.02, and 0.2), and number of sampling occasions (k; 

3, 5, and 7 weeks). The simulated values of D, σ, and g0 encompassed the realistic value of each 

parameter for the NLP black bear population, as well as extreme lower and upper limits around 

that value. This range allowed us to quantify model performance broadly. Simulated sampling 

occasions represent the current protocol (5 weeks), as well as shortened and extended sampling 

options. These values allowed us to explore optimal sampling effort. Each scenario was 

simulated for 100 iterations, thereby generating 100 detection histories for each set of parameters 

and sampling frequencies.  

We conducted simulations in program R (R version 3.2.2, www.r-project.org, accessed 

01 Aug 2015) and used packages secr (version 3.1.0, http://CRAN.R-project.org/package=secr) 

and secrdesign (version 2.5.2, http://CRAN.R-project.org/package=secrdesign), which employ a 

maximum likelihood approach for parameter estimation. Simulated activity centers of individual 

bears were randomly distributed over the landscape according to a homogenous Poisson point 

process. Our spatial extent was defined by the boundaries of three Michigan Department of 

Natural Resources bear management units in the NLP (Fig 1.1). We assumed the population to 

be closed because the study area is bounded by Lake Michigan, Lake Huron, and heavy 

agriculture and urban land covers to the south. We assumed temporal closure because researchers 

sampled the population after bears emerged from hibernation, and sampling ended before 

hunting season began. We simulated a maximum number of 7 sampling weeks to maintain this 

assumption of temporal closure.  

Model performance was assessed by multiple metrics: we determined how many 

replicates of a scenario encountered maximization errors or failure to calculate variances, we 

http://www.r-project.org/
http://cran.r-project.org/package=secrdesign
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calculated median relative standard error (RSE) of density estimates as an indicator of precision 

(
𝑆𝐸 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
), median relative bias (RB) of density estimates as an indicator of accuracy  

( 
(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒−𝑡𝑟𝑢𝑡ℎ)

𝑡𝑟𝑢𝑡ℎ
), and variability in RB and RSE across simulation replicates (measured as 

median absolute deviation, MAD) as indicators of stability of estimates. 

Results 

In 60 of the 81 simulated scenarios, at least 1 of the 100 replicates in each scenario 

encountered a likelihood maximization error and/or failure to calculate variance, indicating 

model parameters were inestimable. Scenarios with low detectability (i.e., g0 = 0.005 and σ = 2 

km) were prone to high rates of failing to estimate parameters (27 – 81% of replicates) (Table 

1.1). 10 of these 60 scenarios that encountered failed replicates had such high failure rates  

( > 20%) that we considered estimates unstable and removed them from further analysis (Table 

1.1). Scenarios with 100% successful replicates (n= 21) consisted of diverse combinations of 

parameter values. However, 18 of these 21 scenarios were simulated with high detection 

probability at the trap, g0 = 0.2 (Table 1.2)  

Precision of density estimates and variation in the amount of error fluctuated across 

scenarios. However, estimates from most scenarios (54 out of 71) were reasonably precise  

(< 20% median RSE, Pollock et al. 1990) (Table 1.2). Median RSE and the median absolute 

deviation of the RSE declined with any increase in the value of g0, σ, density, or the number of 

sampling occasions (Figs 1.2a, 1.2b). The 17 scenarios with poor precision (median RSE > 20%) 

were simulated with low or moderate values of g0 (0.005 or 0.02), and σ was typically (15 out of 

17 scenarios) simulated as a low to medium distance (2 or 5 km) (Figs 1.2a, 1.2b). All three 

values of density and number of sampling occasions were equally represented in scenarios that 

imprecisely estimated density.  
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Compared to their lower detection probability counterparts, scenarios simulated with a 

higher g0 or larger σ generally reduced median RSE and MAD of RSE in the density estimate by 

a larger margin than did increasing density or number of weeks sampled. For example, in a 

scenario with σ = 5 km, D = 50 bears/100 km2 and sampled for 5 weeks, the precision of density 

estimates improved as the probability of detecting an animal at the trap increased; when g0 was 

simulated low (g0 = 0.005), median RSE was 0.320, which reduced by 97% to a median RSE of 

0.011 when g0 = 0.2. In comparison, median RSE reduced by 33% as the number of sampling 

occasions increased from 3 to 7 weeks within a scenario of go = 0.2, σ = 5 km, D = 50 bears/100 

km2 (Table 1.2). However, relative to their lower value counterpart scenarios, scenarios 

simulated with higher densities and sampled for longer periods of times did still estimate density 

with higher precision. For instance, the most precise density estimate was specific to a high-

density scenario; median RSE =0.005 when detection at the trap was high (g0 = 0.2), sigma was 

large (σ = 12 km) and density was high (D = 100 bears/100 km2), regardless of number of weeks 

sampled.  

  Within the 71 retained scenarios, median relative bias in the density estimate ranged from 

1–21% (Table 1.2). Median absolute deviation of RB ranged from 0.005 to 0.724. Unlike other 

metrics of performance, median relative bias in the estimation procedure was not consistently 

associated with the values of scenario parameters. Higher detection probability at a trap, larger σ, 

denser populations, and increasing sampling occasions reduced the MAD of relative bias, but not 

necessarily the median relative bias. Higher simulated density and g0 values reduced median bias 

in 50% of scenarios (Fig 1.3a), while increasing σ or the number of sampling occasions produced 

a less biased density estimate in ~ 30% of scenario comparisons (Fig 1.3b). Because median bias 

of the density estimate was not as predictable as other metrics of performance, less than half of 
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all simulated scenarios (n = 35) produced relatively accurate and precise estimates (defined as 

RB < 15 %, RSE < 0.2, MAD of both RB and RSE < 0.05, and 90% of iterations were 

successful). These 35 scenarios included low, medium, and high simulated values of all 4 

scenario parameters (D, g0, σ, and number of sampling occasions).  

Discussion 

Our findings demonstrated the importance of using simulations as a tool to evaluate 

limitations of confronting data collected for other purposes with new analytical techniques. 

Previous studies (Sollman et al. 2012, Sun et al. 2014, Wilton et al. 2014) used simulations to 

design trap layouts that were robust to heterogeneity in SCR model parameters, whereas we used 

simulations to quantify the performance of these models with the data from a single, existing, 

trap array under a variety of scenarios. We demonstrated that it is possible to obtain accurate and 

precise density estimates from a SCR model based on our repurposed data, but these results were 

not robust across our simulated parameter space. Of concern is how to proceed when an existing 

trap design is not robust, and simultaneously optimizing bias and precision is difficult and 

complicated by the interdependence of SCR model parameters. These challenges emphasize the 

need to assess usefulness of applying new methodology to existing data. Furthermore, our 

findings indicate additional sources of data are necessary to address these limitations.  

Density estimates were not robust across scenarios and within scenario estimates were 

unstable across random realizations of the capture histories (i.e., among replicates of the same 

scenario). Certain patterns of improvement were obvious, but performance was conditional on all 

4 characteristics of a scenario: population density (D), detection probability at the trap (g0), the 

distance from the trap at which detection declines (σ), and the number of sampling occasions (k). 

This resulted in highly sensitive model performance across the parameter space. This limitation 



15 
 

was the true challenge of repurposing the hair snare data; reliable estimates only occurred when 

data are collected under specific conditions. Thus, although numerous scenarios produced 

defensible density estimates, the acceptable conditions for repurposing were rigid and did not 

allow for generalization.  

For example, scenarios that minimized bias were not the same scenarios that optimized 

precision. This is reasonable considering bias and error measure different aspects of the 

estimation procedure, but it is also concerning because it can result in high confidence in 

estimates that are poor representations of truth and vice versa. Most scenarios estimated density 

with relatively low bias (+/- 15% median RB). If bias was consistent across simulated scenarios, 

then correction factors could be incorporated to account for this bias in density estimates, but this 

was generally not the case. Moreover, individual estimates from replicates were sensitive to 

random realizations of the detection history. Replicates of a single scenario estimated density 

with as little as 0.005% or as much as 190% difference between the point estimate and truth, yet 

median relative bias of the estimation procedure was 1.3% (Appendix II Fig 1.42). This is 

alarming because it indicates instability in the estimation procedure, even when median bias is 

negligible.  

The parameters σ and g0 influenced the estimation of density most strongly because they 

jointly define the detection process. The g0 parameter is the intercept of the half-normal detection 

function. Therefore, it scales the magnitude of the probability of detecting an animal when its 

activity center is located at the trap (Reppucci et al. 2011). Detection probability declines as the 

distance between a trap and an individual’s activity center increases, and σ defines the rate of this 

decline. A larger σ value slows the rate of decline in detection probability as distance from the 

trap increases; thus, detection remains higher over longer distances (Royle et al. 2014). The fact 
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that both parameters govern the detection process means the values of both parameters must be 

relatively high for accurate parameter estimation.  

Due to the observed variable model performance, confidence in SCR density estimates 

generated from repurposed data is only possible with additional information about the studied 

population. Specifically, we require information to identify where the population and sampling 

design exists relative to the simulated parameter space. Sigma can be estimated from the 

movement ecology of the study species; the 95% home range radius = σ * sqrt (5.99) (Reppucci 

et al. 2011, Sollmann et al. 2011). We can use VHF or GPS telemetry data to estimate home 

ranges, and therefore, σ. Population estimates from harvest or trail-camera data can approximate 

density (Rooseberry and Woolf 1991, Karanth and Nichols 1998) and the number of sampling 

weeks is predetermined. 

For instance, in the NLP of Michigan, 15 black bears were outfitted with GPS radio 

collars during 2011 – 2015. We used these location data to calculate the average 95% home 

range radius of male and female bears. Radii were calculated from kernel density estimation 

determined by a least-squares cross validation smoothing bandwidth. The average 95% home 

range radius was 5 km for female bears, and 12 km for male bears (Smith 2018, Chapter 2). 

These distances convert to σ = 2 and 4.9 km respectively; average σ of all bears was ~ 3.25 km. 

In 2009, non-spatial CMR models estimated bear abundance as 1,500 bears over 36,848 km2. 

Therefore, we can estimate a minimum black bear density of ~ 4 bear/100 km2. The non-spatial 

CMR study estimated detection at the trap = 0.02 – 0.14 (Dreher et al. 2007). This supplemental 

information indicated CMR data collection from the hair snare trapping array in 2009 in the NLP 

occurred in a scenario with low density, moderate σ, moderate g0, and was sampled for 5 weeks. 

According to our simulations, density estimation under this scenario is consistently moderately 
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precise (median RSE < 0.2 and MAD of RSE = 0.02) with low median relative bias (5%). 

However, estimates were not stable among replicates (MAD of RB = 0.23). This instability 

cautions against its use for this trap layout and bear population. Although the central tendency of 

the estimation procedure has low bias, the method may fail due to a random difference in the 

realization of the capture history. When this is the case, an alternative for estimating density 

from this repurposed data is to directly integrate supplemental information about the population 

into the SCR model. 

One of the major advantages of SCR models is the ability to incorporate multiple kinds of 

data into parameter estimation. In addition to capture-recapture data, SCR models can combine 

telemetry, spatial harvest, occupancy, or mark-resight data to improve estimation of parameters 

(Sollman et al. 2013, Chandler and Clark 2014). However, this pooling of data does not change 

the scenario in which data collection occurred, and our simulations do not provide inference 

about the performance of SCR models informed by multiple sources of data. 

 The simulated distribution of the bear population was based on a uniform Poisson 

process. This distribution assumes a uniform density of bears across the state space, which is not 

realistic (Brown 1984). Furthermore, hair snares in the 2009 array were distributed to reflect this 

recognized heterogeneity (Dreher et al. 2007). Future analyses should assess the implications of 

this mismatch by comparing simulated model performance from multiple distributions. 

Alternatively, future efforts could use a buffer around each hair snare to define the state space of 

the simulation. This may reduce the spatial mismatch between snare and bear locations, though it 

still would not reflect heterogeneous distribution of bears. 

 The existing hair snare trap array is irregularly distributed, which created variable trap 

spacing. However, on average traps were spaced 6 km apart. Trap spacing is recommended to be 
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< 2σ (Sollman et al. 2012). If traps are farther apart than this recommendation, they may not 

collect adequate data for effective SCR parameter estimation (Sun et al. 2014). According to our 

home range estimates, the average σ of this population was ~ 3.25 km. Therefore, average trap 

spacing of this array only slightly exceeded the recommendation (2*3.25 km = 6.5 km), 

suggesting the spacing should allow for effective estimation when σ > 3 km. We might expect 

scenarios that simulated σ = 2 km to perform moderately well; however, in our simulations, 

nearly all scenarios that accurately and precisely estimated density required a minimum sigma of 

5 km. Thus, our simulations suggest the guideline of spacing traps < 2σ is a strict maximum. 

Alternatively, the variable trap spacing in this array resulted in an uneven generation of spatial 

data across the study area. The recommendation may not apply under these conditions. This 

emphasizes the importance of consistent trap spacing and discourages using an average distance 

to estimate if trap spacing is reflective of animal movement for non-uniform trap layouts.  

Management implications 

Repurposing an existing CMR hair snare dataset for SCR models is discouraged without 

knowledge of the population parameters and sampling design. This information is necessary to 

determine the conditions under which data collection occurred relative to the parameter space 

simulated in this analysis. For future sampling efforts in the NLP of Michigan, if, on average, the 

95% home range radius of individuals is > 4 km, managers can implement sampling 

modifications that will produce reasonably accurate density estimates. Accuracy can be 

improved by sampling snares for 7 weeks and by improving detection probability at the trap. The 

latter can be increased by baiting traps, and by collecting camera footage of bear behavior at 

snares to determine if modifications to the snare design are necessary to address behaviors. 



19 
 

 

APPENDICES



20 
 

APPENDIX I: 

 

 

 

Tables



21 
 

Table 1.1. Percentage of iterations with maximization or failure to calculate variance errors, median percent relative bias (%RB), 

median absolute deviation of the relative bias (MAD RB), median relative standard error (RSE), and median absolute deviation of the 

RSE (MAD RSE) of the density estimate for simulated scenarios of spatial capture-recapture models that experienced > 20% failed 

iterations (n=10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario   Metric 

D g0 σ k   

% failed 

iterations %RB MAD RB RSE MAD RSE 

10 0.005 2 3  81 2.92E+07 434000 1.42 1.48 

   5  78 -79.24 0.16 1.32 0.25 

   7  70 -70.16 0.14 1.34 0.19 

  5 3  36 -1.73 0.74 1.32 0.3 

  0.02 2 3   47 -37.77 0.26 1.35 0.14 

50 0.005 2 3   71 -72.1 0.27 1.34 0.28 

   5  56 -41 0.39 1.37 0.22 

      7   27 -23.58 0.46 0.95 0.46 

100 0.005 2 3   58 -59.19 0.22 1.34 0.17 

      5   28 -18.24 0.48 0.88 0.43 
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Table 1.2. Percentage of iterations with maximization or failure to calculate variance errors, 

median percent relative bias (%RB), median absolute deviation of the relative bias (MAD RB), 

median relative standard error (RSE), and median absolute deviation of the RSE (MAD RSE) of 

the density estimator for 71 simulated scenarios of spatial capture-recapture models. Rows with  

“---“represent scenarios that were removed from further analysis because > 20% of replicates 

were unsuccessful. 

 

  Scenario  
 

  Metric   

D g0 σ k 

 
%.  

failed 

iterations %RB 

MAD 

RB RSE 

MAD 

RSE 

10 0.005 2 3 

 

--- --- --- --- --- 

   5  --- --- --- --- --- 

   7  --- --- --- --- --- 

  5 3  --- --- --- --- --- 

   5  9 8.30 0.724 0.808 0.325 

   7  5 21.01 0.571 0.537 0.149 

  12 3  1 12.85 0.312 0.238 0.028 

   5  0 8.00 0.151 0.140 0.012 

   7  0 6.13 0.100 0.097 0.006 

 0.02 2 3  --- --- --- --- --- 

   5  11 -8.95 0.544 0.829 0.275 

   7  2 -7.10 0.561 0.575 0.142 

  5 3  3 4.83 0.357 0.298 0.056 

   5  3 4.91 0.228 0.171 0.018 

   7 
 

1 3.82 0.148 0.122 0.010 

  12 3  1 7.47 0.058 0.059 0.002 

   5  5 6.85 0.038 0.037 0.001 

   7  2 7.87 0.032 0.029 0.001 

 
0.2 2 3  0 -2.72 0.160 0.144 0.011 

 

 
  5  0 -4.99 0.099 0.091 0.004 

 
  7  0 -5.31 0.085 0.070 0.003 

 
 5 3  1 3.21 0.032 0.033 0.000 

 
  5  0 3.14 0.030 0.025 0.000 

 
  7  1 3.35 0.022 0.022 0.000 
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Table 1.2. (cont’d) 

 

 
 12 3  16 10.83 0.016 0.016 0.000 

 
  5  0 12.23 0.017 0.015 0.000 

 
  7  0 13.35 0.014 0.015 0.000 

50 0.005 2 3  --- --- --- --- --- 

   5  --- --- --- --- --- 

   7  --- --- --- --- --- 

  5 3  9 8.67 0.528 0.554 0.145 

   5  2 11.78 0.439 0.319 0.054 

   7  2 4.74 0.255 0.224 0.030 

  12 3  0 6.18 0.106 0.102 0.006 

   5  3 5.91 0.071 0.061 0.003 

   7  1 6.91 0.041 0.044 0.001 

 0.02 2 3  9 4.43 0.603 0.658 0.257 

   5  1 1.02 0.363 0.376 0.074 

   7  2 -2.68 0.240 0.270 0.038 

  5 3  1 5.37 0.116 0.130 0.007 

   5  3 3.49 0.078 0.077 0.003 

   7  0 4.29 0.058 0.055 0.001 

  12 3  4 6.99 0.029 0.026 0.000 

   5  6 7.29 0.019 0.016 0.000 

   7  7 7.26 0.015 0.013 0.000 

 0.2 2 3  0 -4.07 0.062 0.065 0.003 

   5  0 -5.11 0.047 0.041 0.001 

   7  1 -6.14 0.029 0.032 0.001 

  5 3  5 2.71 0.014 0.015 0.000 

   5  4 2.92 0.011 0.011 0.000 

   7  3 3.00 0.009 0.010 0.000 

  12 3  14 10.69 0.007 0.007 0.000 

   5  0 12.01 0.007 0.007 0.000 

   7  0 13.34 0.008 0.007 0.000 

100 0.005 2 3  --- --- --- --- --- 

   5  --- --- --- --- --- 

   7 

 

14 

-

10.46 0.499 0.684 0.223 

  5 3  4 10.72 0.399 0.387 0.082 

   5  8 5.99 0.211 0.220 0.025 

   7  1 3.40 0.186 0.154 0.015 
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Table 1.2. (cont’d) 

 

  12 3  1 6.46 0.075 0.073 0.003 

   5  7 7.16 0.052 0.043 0.001 

   7  1 6.93 0.032 0.031 0.001 

 0.02 2 3  4 4.11 0.454 0.475 0.085 

   5  1 1.30 0.262 0.266 0.032 

   7  0 -3.34 0.188 0.191 0.018 

  5 3  4 4.63 0.090 0.091 0.004 

   5  1 3.21 0.047 0.054 0.002 

   7  0 3.38 0.032 0.039 0.001 

  12 3  2 6.46 0.020 0.018 0.000 

   5  8 7.39 0.012 0.012 0.000 

   7  3 7.57 0.009 0.009 0.000 

 0.2 2 3  0 -4.96 0.046 0.046 0.001 

   5  0 -5.53 0.030 0.029 0.001 

   7  0 -6.13 0.019 0.022 0.000 

  5 3  9 3.05 0.010 0.011 0.000 

   5  9 3.16 0.008 0.008 0.000 

   7  2 3.31 0.007 0.007 0.000 

  12 3  13 10.75 0.006 0.005 0.000 

   5  0 12.14 0.006 0.005 0.000 

   7  0 13.33 0.006 0.005 0.000 
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Figure 1.1. Locations of hair snare traps in the northern Lower Peninsula of Michigan in 2009. 

Shaded polygons represent the three bear management units in this region. 
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Figure 1.2a. Distribution of relative standard error of the density estimate for simulated scenarios of spatial capture-recapture models. 

Scenarios are grouped by combinations of g0, σ, and density and are aggregated across number of sampling occasions. Only scenarios 

that did not encounter maximization or variance calculation warnings in > 80% of iterations are represented (n=71). Grey “X” symbols 

are placeholders for the missing groups of scenarios, which were removed from further analysis because > 20% of iterations failed. 

The red, dashed, line is RSE = 0. 
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Figure 1.2b. Distribution of relative standard error of the density estimate for simulated scenarios of spatial capture-recapture models. 

Scenarios are grouped by combinations of g0, σ, and number of sampling occasions and are aggregated across density values. Only 

scenarios that did not encounter maximization or variance calculation warnings in > 80% of iterations are represented (n=71). Grey 

“X” symbols are placeholders for the missing groups of scenarios, which were removed from further analysis because > 20% of 

iterations failed. The red, dashed, line is RSE = 0. 
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Figure 1.3a. Distribution of relative bias of the density estimate for simulated scenarios of spatial capture-recapture models. Scenarios 

are grouped by combinations of g0, σ, and density and are aggregated across number of sampling occasions. Only scenarios that did 

not encounter maximization or variance calculation warnings in > 80% of iterations are represented (n=71). Grey “X” symbols are 

placeholders for the missing groups of scenarios, which were removed from further analysis because > 20% of iterations failed. The 

red, dashed, line is RSE = 0. 
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Figure 1.3b. Distribution of relative bias of the density estimate for simulated scenarios of spatial capture-recapture models. Scenarios 

are grouped by combinations of g0, σ, and number of sampling occasions and are aggregated across density values. Only scenarios that 

did not encounter maximization or variance calculation warnings in > 80% of iterations are represented (n=71). Grey “X” symbols are 

placeholders for the missing groups of scenarios, which were removed from further analysis because > 20% of iterations failed. The 

red, dashed, line is RSE = 0. 
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Figure 1.4. Distribution of relative bias (left boxplot) and 

relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 10 bears/100 km2, sigma = 2 km, g0 

= 0.005, and sampling occurred over 3 weeks). 

Figure 1.5. Distribution of relative bias (left boxplot) and 

relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 50 bears/100 km2, sigma = 2 km, g0 

= 0.005, and sampling occurred over 3 weeks) 
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Figure 1.6. Distribution of relative bias (left boxplot) and 

relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 100 bears/100 km2, sigma = 2 km, 

g0 = 0.005, and sampling occurred over 3 weeks). 

Figure 1.7. Distribution of relative bias (left boxplot) and 

relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 10 bears/100 km2, sigma = 5 km, g0 

= 0.005, and sampling occurred over 3 weeks). 
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Figure 1.8. Distribution of relative bias (left boxplot) and 

relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 50 bears/100 km2, sigma = 5 km, g0 

= 0.005, and sampling occurred over 3 weeks). 

 

Figure 1.9. Distribution of relative bias (left boxplot) and 

relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 100 bears/100 km2, sigma = 5 km, 

g0 = 0.005, and sampling occurred over 3 weeks). 
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Figure 1.11. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 50 bears/100 km2, sigma = 12 km, 

g0 = 0.005, and sampling occurred over 3 weeks). 

 

Figure 1.10. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the density 

estimate for a simulated scenario of a spatial capture-

recapture model (D = 10 bears/100 km2, sigma = 12 km, 

g0 = 0.005, and sampling occurred over 3 weeks). 
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Figure 1.12. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.005, and sampling occurred 

over 3 weeks). 

Figure 1.13. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.02, and sampling occurred over 3 

weeks). 
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Figure 1.14. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.02, and sampling occurred over 3 

weeks). 

Figure 1.15. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.02, and sampling occurred over 3 

weeks). 
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Figure 1.16. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.02, and sampling occurred over 3 

weeks). 

Figure 1.17. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.02, and sampling occurred over 3 

weeks). 
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Figure 1.18. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.02, and sampling occurred over 3 

weeks). 

Figure 1.19. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.02, and sampling occurred over 3 

weeks). 
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Figure 1.20. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.02, and sampling occurred over 3 

weeks). 

Figure 1.21. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.02, and sampling occurred over 

3 weeks). 
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Figure 1.22. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.2, and sampling occurred over 3 

weeks). 

Figure 1.23. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.2, and sampling occurred over 3 

weeks). 
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Figure 1.24. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.2, and sampling occurred over 3 

weeks). 

Figure 1.25. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.2, and sampling occurred over 3 

weeks). 
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Figure 1.26. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.2, and sampling occurred over 3 

weeks). 

Figure 1.27. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.2, and sampling occurred over 3 

weeks). 
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Figure 1.28. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.2, and sampling occurred over 3 

weeks). 

Figure 1.29. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.2, and sampling occurred over 3 

weeks). 
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Figure 1.30. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.2, and sampling occurred over 3 

weeks). 

Figure 1.31. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.005, and sampling occurred over 5 

weeks). 
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Figure 1.32. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.005, and sampling occurred over 5 

weeks). 

Figure 1.33. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.005, and sampling occurred over 

5 weeks). 
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Figure 1.34. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.005, and sampling occurred over 5 

weeks). 

Figure 1.35. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.005, and sampling occurred over 5 

weeks). 
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Figure 1.36. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.005, and sampling occurred over 

5 weeks). 

Figure 1.37. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.005, and sampling occurred over 5 

weeks). 
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Figure 1.38. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.005, and sampling occurred over 5 

weeks). 

Figure 1.39. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.005, and sampling occurred 

over 5 weeks). 
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Figure 1.40. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.02, and sampling occurred over 5 

weeks). 

Figure 1.41. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.02, and sampling occurred over 5 

weeks). 
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Figure 1.42. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.02, and sampling occurred over 5 

weeks). 

Figure 1.43. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.02, and sampling occurred over 5 

weeks). 
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Figure 1.44. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.02, and sampling occurred over 5 

weeks). 

Figure 1.45. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.02, and sampling occurred over 5 

weeks). 



52 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.46. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.02, and sampling occurred over 5 

weeks). 

Figure 1.47. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.02, and sampling occurred over 5 

weeks). 
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Figure 1.48. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.02, and sampling occurred over 

5 weeks). 

Figure 1.49. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.2, and sampling occurred over 5 

weeks). 
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Figure 1.50. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.2, and sampling occurred over 5 

weeks). 

Figure 1.51. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.2, and sampling occurred over 5 

weeks). 
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Figure 1.52. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.2, and sampling occurred over 5 

weeks). 

Figure 1.53. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.2, and sampling occurred over 5 

weeks). 
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Figure 1.54. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.2, and sampling occurred over 5 

weeks). 

Figure 1.55. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.2, and sampling occurred over 5 

weeks). 
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Figure 1.56. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.2, and sampling occurred over 5 

weeks). 

Figure 1.57. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.2, and sampling occurred over 5 

weeks). 
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Figure 1.58. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.005, and sampling occurred over 7 

weeks). 

Figure 1.59. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.005, and sampling occurred over 7 

weeks). 
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Figure 1.60. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.005, and sampling occurred over 

7 weeks). 

Figure 1.61. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.005, and sampling occurred over 7 

weeks). 
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Figure 1.62. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.005, and sampling occurred over 7 

weeks). 

Figure 1.63. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.005, and sampling occurred over 

7 weeks). 
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Figure 1.64. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.005, and sampling occurred over 7 

weeks). 

Figure 1.65. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.005, and sampling occurred over 7 

weeks). 
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Figure 1.66. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.005, and sampling occurred 

over 7 weeks). 

Figure 1.67. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.02, and sampling occurred over 7 

weeks). 
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Figure 1.68. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.02, and sampling occurred over 7 

weeks). 

Figure 1.69. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.02, and sampling occurred over 7 

weeks). 
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Figure 1.70. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.02, and sampling occurred over 7 

weeks). 

Figure 1.71. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.02, and sampling occurred over 7 

weeks). 



65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.72. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.02, and sampling occurred over 7 

weeks). 

Figure 1.73. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.02, and sampling occurred over 7 

weeks). 
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Figure 1.74. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.02, and sampling occurred over 7 

weeks). 

Figure 1.75. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.02, and sampling occurred over 

7 weeks). 
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Figure 1.76. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 2 km, g0 = 0.2, and sampling occurred over 7 

weeks). 

Figure 1.77. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 2 km, g0 = 0.2, and sampling occurred over 7 

weeks). 
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Figure 1.78. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 2 km, g0 = 0.2, and sampling occurred over 7 

weeks). 

Figure 1.79. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 5 km, g0 = 0.2, and sampling occurred over 7 

weeks). 
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Figure 1.80. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 5 km, g0 = 0.2, and sampling occurred over 7 

weeks). 

Figure 1.81. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 5 km, g0 = 0.2, and sampling occurred over 7 

weeks). 
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Figure 1.82. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 10 bears/100 km2, sigma 

= 12 km, g0 = 0.2, and sampling occurred over 7 

weeks). 

Figure 1.83. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 50 bears/100 km2, sigma 

= 12 km, g0 = 0.2, and sampling occurred over 7 

weeks). 
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Figure 1.84. Distribution of relative bias (left boxplot) 

and relative standard error (right boxplot) in the 

density estimate for a simulated scenario of a spatial 

capture-recapture model (D = 100 bears/100 km2, 

sigma = 12 km, g0 = 0.2, and sampling occurred over 7 

weeks). 
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CHAPTER 2: CONTEXT MATTERS: VARIATION IN BLACK BEAR USE OF 

AGRICULTURAL LANDSCAPES  

 

Introduction 

Resource selection is a process in which individuals move across landscapes in pursuit of 

resources (Manly et al. 2002). This movement affects genetic diversity, spread of diseases, and 

population viability (Tilman 1994, Hess 1996). Quantifying patterns of resource selection allows 

inference on ecological processes and helps predict distribution of individuals on the landscape 

(Boyce and Macdonald 1999). Behaviorally, resource selection often results from trade-off 

decisions; individuals must weigh the perceived costs and benefits of using a resource relative to 

what is available (Mysterud and Ims 1998).  

Those trade-off decisions are made in, and driven by, a specific ecological context, which 

varies as individuals move across the landscape. Ecological context can refer to a suite of 

environmental covariates, including landscape composition and configuration, anthropogenic 

features, climate, or population size. Such covariates often drive how species respond to and use 

resources (e.g., Morris 1989, Apps et al. 2001, Sawyer et al. 2006, Chetkiewicz and Boyce 

2009). Many studies, though not all (for example, Hebblewhite and Merrill 2008, Clark et al. 

2015), describe selection of a resource as constant across space (Carter et al. 2010, Latham et al. 

2011, Tri et al. 2016). Such approaches are important for understanding general patterns of 

resource selection, but they fail to account for changes in selection behavior as a function of 

variation in the covariates over space and time. Mysterud and Ims (1998) first proposed that 

selection is not constant but is instead a function of availability of a given resource (i.e., a 

functional response). Recent research has provided more flexible analytical methodologies for 

modeling functional responses of selection across diverse ecological contexts (Gillies et al. 2006, 

Hebblewhite and Merrill 2008, Godvik et al. 2009, Matthiopoulos et al. 2011).  
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Evaluating variation in patterns of resources selection across different contexts can 

provide more robust predictions of resource selection and population distributions (Godvik et al. 

2009). These predictions can be used to minimize human-wildlife conflicts and identify critical 

habitat for conservation (Carter et al. 2010). Furthermore, understanding how selection varies 

with local context will allow us to better predict how species will respond to new or changing 

landscapes. This knowledge is especially important as habitat fragmentation, urbanization, and 

climate change continue to alter the landscape and shift distributions of wildlife populations 

(Pearson and Dawson 2003, Austin and Niel 2011).  

Resource selection patterns of black bears (Ursus americanus) can be complex (Hiller et 

al. 2015), in part because this widespread generalist can thrive in a range of ecological contexts, 

including human-dominated landscapes (Powell et al. 1997, Lyons 2005, Baruch-Mordo et al. 

2008). Decades of research have established a few consistent patterns of black bear resource 

selection behavior, such as preferring forested to open habitats (Wooding and Hardisky 1992, 

Lyons et al. 2003, Sadeghpour and Ginnett 2011, Tri et al. 2016). However, patterns of selection 

of agriculture are more variable (Jones and Pelton 2003, Kindall and van Manen 2007, Ditmer 

2014).  

Agricultural crops offer a valuable source of calories for bears (Ditmer et al. 2016), but 

the benefit of consuming them is weighed against multiple risks. Agricultural fields lack escape 

cover (e.g., trees (Fecske et al. 2002)), are associated with humans, and as a concentrated food 

source, may increase despotic behavior among conspecifics (Ben-David et al. 2004). These 

characteristics create a complex trade-off situation for black bear use of agriculture and are 

particularly likely to be influenced by variation in context (Hebblewhite and Merrill 2008).  
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In Michigan, we know little about black bear resource selection in regions where 

agriculture is the dominant land use. Black bear populations typically are distributed in the 

Upper Peninsula and the northern Lower Peninsula (NLP), which are dominated by forested 

landscapes. However, over the past 5 years, reports of bears have increased in the southern 

Lower Peninsula, where the landscape is dominated by agriculture and increased urbanization. 

Complaints from the public and anecdotal knowledge suggest bears occasionally use agricultural 

fields in the Lower Peninsula. However, the only habitat selection study of black bears in the 

Lower Peninsula of Michigan found that bears avoided agricultural lands (Carter et al. 2010). 

That research was based on VHF telemetry from bears that occupied the forested region of the 

NLP and had limited ability to assess how bears respond to agriculture in other landscape 

contexts. The uncertainty surrounding use of agriculture by bears in the Lower Peninsula could 

be explained by uncommon incidences of use, shifts in patterns of resource selection, or context-

dependent use of agriculture, which has yet to be quantified. Given the paucity of information 

and the potential for bear-human conflicts in the southern Lower Peninsula, we investigated 

resource selection by black bears in the Lower Peninsula of Michigan. Our specific objectives 

were to 1) identify predictive variables of black bear use of agricultural landscapes and 2) 

quantify how use of agriculture varies as a function of context. 

Methods 

Study area 

Our study area was defined by a 12 km buffer around all used and available points. This 

boundary encompassed 7,030 km2 across seven counties in the west-central Lower Peninsula of 

Michigan (Fig 2.1). This region of the NLP contains both relatively high bear abundance and 

presence of agriculture. The region is a northern Laurentian mixed forest (Bailey 1995), 
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characterized by a mix of dry sand prairies, northern hardwood and oak forests, pine barrens, and 

multiple large rivers (Albert 1995). Elevation ranged from 175 to 526 m and average annual 

precipitation was 86 cm (data collected between 1971 – 2000, Natural Resources Conservation 

Service 2008). Land cover composition included 51% forest, 19% agriculture, 13% wetlands, 

and 7% developed (NLCD 2011). Habitat patch size distribution was strongly right-skewed  

(x̅ = 0.12 km2, sd = 7.12 km2, median = 0.012 km2); 66% of patches in the study area were 0.01 – 

0.02 km2. Black bears are hunted in the Lower Peninsula from mid-September until late October. 

In our study area, approximately 300 bears were harvested from 2011 – 2015. 

Black bear location data 

Between 2011 and 2015, the Michigan Department of Natural Resources captured 15 black bears 

(7 females, 8 males) in the study area and each bear was equipped with 1 of 2 types of GPS 

store-on-board collars (LoTek, New Market, Ontario, Canada; Sirtrack, Havelock North, Hawkes 

Bay, New Zealand). Collar data were retrieved during winter den checks or after collars dropped 

off an individual. The 2 types of collars were programmed to calculate and store location 

information at different intervals; however, a majority of fix schedules were every 30 – 40 

minutes. Our analysis only used data collected on a 30 – 40 min fix schedule. To balance data 

reduction and location accuracy we discarded GPS fixes with a dilution of precision greater than 

12 (D’eon and Delparte 2005), positional outliers, and any locations recorded post-mortem or 

after collar drop-off. We restricted our analysis to locations collected between 01 April and 02 

November, an active (non-hibernating) period for bears in Lower Michigan (Carter et al. 2010). 

Finally, 2 male bears made abnormally long-distance movements; these distances were much 

longer than the typical home range radius for males in this population. These outliers likely 

represent distinct movement states, with specific motivations and behavioral states (Nathan et al. 
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2008). To ensure our analysis represented a single movement state, we removed these 2 

individuals. After this screening, our dataset consisted of locations for 12 individuals (6 females, 

6 males) over the course of 21 bear-years of data (12 female, 9 male).  

Availability 

One of the perennial challenges of studying resource selection is appropriately defining 

availability (Johnson 1980, Porter and Church 1987, McClean et al. 1998, Buskirk and 

Millspaugh 2006). We used a step-selection analysis (Fortin et al. 2005) to define availability in 

our analysis. Step-selection analyses compare characteristics of used and available steps. A step 

is defined as the straight-line segment connecting consecutive locations of an individual. The 

angle between three consecutive fix locations is called the turning angle, which reflects the 

direction of the animal’s movement relative to the previous step (Coulon et al. 2008). In step-

selection analyses, the locations and directions defining available steps are randomly drawn from 

the distribution of observed steps and turning angles. Thus, availability is informed and 

constrained by the movement patterns of the population of interest. For each observed step in our 

dataset, five step lengths and turning angles were randomly selected from the empirical 

distributions to define the five available steps. To avoid issues of circularity, we followed Fortin 

et al. (2005), in which the step length and turning angle of the available steps for an observed 

individual are sampled from the distribution of all other individuals (Coulon et al. 2008). 

Covariates  

We considered 7 covariates in our analysis; all 7 covariates have previously been identified as 

influential in resource selection patterns of black bears (Kindall and Van Manen 2007, Lewis et 

al. 2011, Hiller et al. 2015). These covariates included a categorical land cover variable, density 

of edge between forest and agriculture (m/ha), percent agriculture in the surrounding landscape 
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(defined below), distance to high-intensity and low-intensity developed covers (km), distance to 

water (km), and black bear density (bears/100 km2). We tested for multicollinearity in covariates 

using Spearman’s rank correlation and tolerated correlation of < 0.5 (Zuur et al. 2009). Percent 

of agriculture was highly correlated with forest: agriculture edge density (0.99 and 0.67, 

respectively), so we removed the latter from our considered covariates. 

We obtained land cover data from the National Land Cover Database (NLCD) 2011 

(Homer et al. 2015), which provides 30 m data resolution. We reclassified land cover into 5 

categories relevant to black bears and our objectives: forest (deciduous, evergreen, and mixed), 

agriculture (cultivated crops, pasture and hay), developed (open developed space, low, medium 

and high intensity), shrubs and grasslands, and wetlands (emergent and wooded). We used forest 

as the reference category in our models. Percent agriculture in the surrounding landscape was 

derived from the land cover using FRAGSTATS  

(version 4, http://www.umass.edu/landeco/research/fragstats/fragstats.html, accessed 01 January 

2017). We defined the surrounding landscape as the area within the mean home range radius for 

females and males. These radii were based on 95% kernel density estimation, and were estimated 

as 5 and 12 km, for female and male bears respectively. Thus, percent agriculture was calculated 

at a 30 m resolution using a 5 and 12 km moving window.  

We mapped water features using the Michigan Geographic Framework’s hydrographic 

line database, which included all lakes, ponds, rivers, creeks, and drain features on the landscape 

(Center for Shared Solutions and Technology Partnerships 2014). Distance to developed covers 

and to water features were estimated using Euclidean distance at a 30 m resolution in ArcMap 

10.3.1 (Environmental Systems Research Institute, Inc., Redlands, CA, USA). Distance to 

developed covers was subset into distance to low-intensity development or distance to high-

http://www.umass.edu/landeco/research/fragstats/fragstats.html
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intensity development. Low-intensity developed covers were defined as land cover that consisted 

of < 50% impervious surfaces, whereas high-intensity developments consisted of > 50% 

impervious surfaces. 

Black bear density estimates were derived from a spatially explicit capture-recapture 

model based on hair snare and harvest data of black bears in the northern Lower Peninsula 

(David Williams, unpublished data). This model produced a 16 km2 (4 km x 4 km) grid of bear 

densities in the northern Lower Peninsula.  

Autocorrelation 

We evaluated model residuals for evidence of spatiotemporal autocorrelation. When present, 

autocorrelation violates the assumption of independence (Johnson et al. 2008) and creates bias in 

the standard errors of the beta estimates (Nielson et al. 2002). We generated space and time 

spline correlograms, as outlined by Zuur et al. (2009). Model residuals indicated two patterns of 

spatial autocorrelation: positive correlation from 0 – 30 m, and minor negative  

(< -0.1) correlation from 30 – 100 m. However, the positive correlation reflected the 30 m 

resolution of our land cover data. The observed negative correlation likely reflected the patch 

structure and classification in our study area; most (75%) patches were < 100 m radius, meaning 

patch type changed every 30 – 100 m. Thus, we evaluated spatiotemporal autocorrelation in 

model residuals but did not identify any patterns relevant to this analysis (Appendix II). 

Modeling framework 

We estimated a resource selection function (RSF) via a use-availability design in a binomial 

logistic regression for male and female bears separately. We pooled individuals within each sex 

and evaluated selection within home ranges (third-order selection (Johnson et al. 1980)). We 

considered two random intercepts for the random effect structure of our models. One intercept 
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was on individual. The second intercept accounted for the mismatch of scale in our covariates; 

bear density was quantified at a coarser scale than other covariates. Therefore, we numbered 

each cell within the grid of bear density and placed a random intercept on the cell number. 

Likelihood ratio tests supported using a generalized linear modeling (GLM) framework for 

female bears (no random effects) and a generalized linear mixed effects modeling (GLMM) 

framework for male bears (Boyce et al. 2002, Manly et al. 2002). For the male RSF, likelihood 

ratio tests supported a random intercept on the density grid cell. Thus, relative probability of use 

was estimated by the function 𝑤(𝑥) = exp(𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛).  

We estimated β coefficients and random effects from the logistic regression equation 

𝑃𝑢𝑠𝑒 =  
exp(𝐵0+ 𝐵1𝑥1+⋯+ 𝐵𝑛𝑥𝑛+ 𝛾𝑗)

1+exp (𝐵0+ 𝐵1𝑥1+⋯+ 𝐵𝑛𝑥𝑛+ 𝛾𝑗)
, 

where probability of use is a function of the fixed effect (𝛽̂1𝑥1 + 𝛽̂2𝑥2 + ⋯ +  𝛽̂𝑛𝑥𝑛) coefficient 

estimates and, in the male model, 𝛾𝑗 , the random intercept on density grid cell. Models were fit 

using the lme4 package (version 1.1, https://cran.r-project.org/package=lme4, accessed 8 August 

2016), in program R (version 3.4.1, www.r-project.org, accessed 8 August 2015). The output of 

each model consisted of the log-odds ratio (expβ) of selection. The odds ratio of land cover 

variables was relative to the reference land cover category of forest. An odds ratio > 1 indicated 

selection of that resource, while an odds ratio < 1 indicated avoidance. To model the odds of use, 

relative to availability, across the range of a covariate (i.e., functional responses), we included 

four interaction terms (Godvik et al. 2009, Beest et al. 2016). Plotting statistically significant 

interaction terms allowed us to evaluate variation in selection (e.g., odds of use varied between 

avoidance and selection over the range of covariate values). We modeled interactions between 

land cover and one of four covariates: distance to low-intensity development, distance to high-

intensity development, bear density, and percent agriculture within the surrounding landscape 

https://cran.r-project.org/package=lme4
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(Table 2.1). Thus, the global RSF for females included land cover (categorical variable with five 

levels), step length, which has been shown to reduce bias in coefficient estimates (Forester et al. 

2009), distance to water, bear density, percent agriculture, distance to low-intensity development, 

distance to high-intensity development, and the interactions. The global model for males 

consisted of the same fixed-effects structure and a random intercept on density grid number. We 

used Aikake’s Information Criterion model selection on 27 candidate models to identify the top-

supported model for each sex (Burnham and Anderson 2004). We considered models within  

< 2 ΔAIC to be competing. We present the top-supported models for explaining black bear use 

of agriculture. 

Results 

GPS collars provided 63,385 use locations for analysis (46,408 from females, 16,979 

from males) including 13 years of female location data and 12 years of male location data. 

Number of locations per female bear-year ranged from 223 to 8,282 (x̅ = 3,867; sd = 2,375). The 

number of locations across male bear-years ranged from 130 to 5,620 points (x̅ = 1,886; sd = 

1,774). Female collars recorded data for 6 months on average, while male collard recorded 

locations for 5 months on average.  

We identified 2 competing models (< 2 Δ AIC) for both female and male bears; the two 

top models for females accounted for 88% of the weight of evidence among the model set, the 

two top models for male bears accounted for 78% of the weight of evidence (Table 2.2). The top 

model for females included distance to water and three interaction terms: interactions between 

land cover and the percent of agriculture within 5 km, land cover and the distance to highly-

developed land covers, and land cover and bear density (Table 2.2). The top model for male 

black bears included distance to water, and interactions between land cover and the percent of 
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agriculture within 12 km, land cover and the distance to low-intensity developed land covers, and 

land cover and bear density. The competing model for both sexes did not include distance to 

water but was otherwise identical to the respective top model. Because distance to water was not 

predicted to affect bear use of agriculture, and because coefficient estimates and standard errors 

for all common covariates were virtually identical, we did not average these competing models. 

All interaction terms between agriculture land cover and covariates in the top model for both 

sexes were significant (p < 0.05) (Tables 2.3 and 2.4). 

We observed functional responses in use of agricultural habitat by bears. Odds of using 

this land cover varied across values of bear density and multiple landscape characteristics. Both 

male and female bears displayed a density-dependent use of agriculture (Fig 2.2). However, the 

direction of the functional response was sex-specific. Females avoided agriculture when bear 

densities were < 3.2 bears/100 km2. In locations with relatively higher densities, females shifted 

from avoiding agricultural lands to selecting for these land covers (Table 2.3 and Fig 2.2;  

β = 0.359, SE = 0.058, OR = 1.43, p < 0.001). Comparatively, male black bears displayed a 

negative functional relationship (Table 2.4 and Fig 2.2; β = -0.632, SE = 0.108, OR = 0.531,  

p < 0.001); males selected for agriculture in areas with relatively low bear densities (< 3.5 

bears/100 km2). In areas of relatively high bear density, males shifted from selecting for to 

avoiding agricultural land covers.  

Bears did not use agriculture in proportion to its representation on the landscape. Both 

females and males were less likely to use agriculture as its representation in the surrounding 

landscape increased (females: Table 2.3; β = -0.290, SE = 0.066, OR = 0.75, p < 0.001; males: 

Table 2.4; β = -0.250, SE = 0.056, OR = 0.779, p < 0.001). Although more agriculture in the 
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surrounding landscape had an overall negative impact on probability of use, black bears did 

select for agriculture when it made up < 10% of the area within 5 or 12 km (Fig 2.3). 

 Both sexes were more likely to use agriculture as the distance between the used location 

and the nearest anthropogenic development increased (Fig 2.4). Both sexes selected for 

agriculture when they were > 1 km from developed land covers. However, male use of 

agriculture was predicted by distance to the nearest low-intensity anthropogenic development 

(Table 2.4; β = 0.369, SE = 0.051, OR = 1.45, p < 0.001), whereas distance to high-intensity 

development predicted use of agriculture by females (Table 2.3; β = 0.241, SE = 0.057, OR = 

1.27, p = 0.004). 

Discussion 

The benefits to black bears of using agricultural fields are conceivably balanced against 

multiple risks, including threats from humans (e.g., nuisance wildlife harvest (Hristienko and 

McDonald 2007)), increased stress from traversing non-forested areas (Ditmer et al. 2015), and 

encountering conspecifics. Our findings for black bears in the northern Lower Peninsula of 

Michigan reveal variation in how bears respond to agriculture, and that this response is a 

function of multiple covariates. In our study area, the probability of black bears using agriculture 

is a function of bear density within a 16 km2 area, the amount of agriculture in the surrounding 

landscape, and the distance to anthropogenic developments.  

 Male and female black bears exhibited different density-dependent responses to use of 

agriculture (Fig 2.2). The sex-specific responses suggest males and females in this study perceive 

the suitability and the trade-off of using agricultural habitat differently. Female black bears with 

cubs (n = 11 bear-years) face heightened threats from conspecifics (Barber and Lindzey 1983, 

Garrison et al. 2007), and generally are believed to be more risk averse (Martin et al. 2010, 
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Ditmer et al. 2015). Infanticide and despotic behavior increase in populations with higher 

densities and in areas of concentrated food resources (Beckmann and Berger 2003, Ben-David et 

al. 2004). Thus, when densities are relatively low, intra-specific competition and risk of cub 

mortality are lower, thereby allowing female bears to select the most suitable habitats.  

Absent the pressures of competition or risk of infanticide, female bears avoided 

agricultural fields, suggesting they perceived agriculture as less suitable than other habitats in our 

study. This is supported by studies in Minnesota; females with cubs disproportionately avoided 

foraging in crop fields, and when they crossed these fields, their heart rates indicated acute stress 

(Ditmer et al. 2015). However, as bear density increases, competition and risk from conspecifics 

increase, which in turn influences the suitability of the habitat (Fretwell 1972). Our findings 

suggest relatively higher density areas create an overall context in which suitability of 

agricultural patches is higher for female bears in this study, which explains the observed shift 

from avoidance to selection of this resource as density increased.  

Areas with relatively lower bear densities create a context in which male bears are less 

likely to encounter a larger, or more aggressive, conspecific. In this context, it is conceivable the 

trade-off for male bears of consuming crops, and benefiting from the high caloric intake, 

outweighed the risk of using exposed habitat. However, in areas of relatively higher bear density, 

competition increases, and we found the odds of male bears using agriculture declined 

dramatically. Such patterns of switching habitats are predicted by ideal-free distribution and 

density-dependent selection theories (Fretwell and Lucas 1970, Rosenzweig 1981), and have 

been observed in other wildlife species (Beest et al. 2016).  

 The odds of black bears using agriculture also depended on the amount of agriculture in 

the surrounding area, and distance to anthropogenic developments. Variation in each of these 
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characteristics reflects variation in the cost to a black bear of using an agricultural field. 

Therefore, the covariate values in which avoidance shifts to selection may reflect the landscape 

composition and configuration that optimizes the cost-benefit of bears using agriculture in this 

region. For instance, we found males and females increasingly avoided agriculture when it 

represented > 10% of the surrounding landscape. Yet bears selected for agriculture when it 

constituted < 10% of the cover in the defined radius. In our study area, the remaining landscape 

is likely composed of forest or wetland cover types. This landscape composition likely not only 

attracts more bears (McFadden-Hiller et al. 2016), which in itself may increase the chances of a 

bear using an agriculture patch, but may also buffer the risk of venturing into an exposed habitat 

patch (Jones and Pelton 2003, Kindall and Van Manen 2007).  

 Finally, male bears in this study shifted from avoiding to selecting for agriculture as 

distance to high-intensity human development increased. Females exhibited a similar functional 

relationship but with distance to low-intensity, rather than high-intensity, human development. 

High-intensity developments refer to locations with high concentrations of impervious surfaces 

while low-intensity developments included roads and sparser human structures. Proximity to 

human developments can stress bears (Støen et al. 2015) and hunted populations often avoid 

roads to reduce vulnerability to harvest (Brody and Pelton 1989, Fecske et al. 2002, Prokopenko 

et al. 2017). Although we did not measure stress response, it is possible bears in our study area 

were not as likely to venture into agricultural covers when travelling relatively close to 

developed areas because doing so would incur additional risk and stress. It is less obvious why 

male and female bears respond to different types of development. One possible explanation is 

due to the spatial structure of our data; male and female bears may be spatially segregated such 

that distance between males and high-intensity development does not vary enough to influence 
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probability of use. Mattson (1990) found female bears often foraged closer to human-dominated 

landscapes because adult males defended more secure foraging areas. 

A primary focus of this analysis was quantifying functional responses in selection of 

agricultural cover types. Hebblewhite and Merrill (2008) noted functional responses are 

especially common in selection behavior when trade-offs are present. Crops within agricultural 

fields offer valuable, concentrated, calories (a “high reward”) but consuming them requires 

moving away from the protection of forested covers, and possibly competing with conspecifics 

(“high risk”). Thus, the trade-off of using agriculture changes and drives the observed functional 

responses. Our findings emphasize the importance of quantifying variation in probability of 

using a resource as a function of predictive environmental variables. 

Management implications 

Black bear use of agriculture depends on multiple landscape characteristics. Importantly, 

both male and female black bears demonstrated variation in both selection and use across the 

range of predictive covariates. In this study, male bears are more likely to use agriculture in areas 

> 1 km away from low-intensity human developments and with densities < 3 bears/100 km2. 

Females are more likely to use agriculture that is over 4 km away from high-intensity 

development, and in areas with densities > 3.5 bears/100 km2. Both sexes select for agriculture 

when it is < 10 % of the surrounding landscape. We can use the explicit quantification of these 

patterns to generate a predictive probability map of bears using agriculture within a region. This 

knowledge can assist managers in preemptively identifying high-risk areas for conflict between 

bears and landowners.
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Table 2.1. Variables used to develop a resource selection function for black bears from 2011 – 2015 in the Lower Peninsula of 

Michigan.  

Variable  Description (units) Type Source Estimation procedure 

LC Land cover categorical 
2011 National Land Cover 

Database 

Reclassified into five 

categories:  forest, shrub and 

grassland, agriculture, 

developed, and wetland 

step 

 

Euclidean distance between 

two consecutive locations (m) 

continuous empirical data 
Quantified the distance 

between consecutive locations 

PercentAg 

 

Amount of agriculture within 

average home range (%) 

continuous 
2011 National Land Cover 

Database 

FRAGSTAS software; moving 

window radius = 5 km for 

females and 12 km for males 

Dist_HighDev 

 

Distance to high-intensity 

developed cover (km) 

continuous 
2011 National Land Cover 

Database 

Calculated minimum Euclidian 

distance to nearest cover with 

50 - 100% impervious surfaces 

Dist_LowDev 

 

Distance to low-intensity 

developed cover (km) 

continuous 
2011 National Land Cover 

Database 

Calculated minimum Euclidian 

distance to nearest cover with < 

50 % impervious surfaces 

Dist_water Distance to water (km) continuous 

Michigan Geographic 

Framework; hydrographic line 

database 

Calculated minimum Euclidian 

distance to nearest water 

feature 

Density 

 

Black bear density (bears/100 

km2) 

continuous 
David Williams, unpublished 

data 

SECR model estimates 

informed by hair-snare mark-

recapture data and harvest data 
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Table 2.1. (cont’d) 

 

  

LC x percentAg 

 

interaction 
  

 LC x dist_Highdev interaction   

 LC x  dist_Lowdev interaction   

 LC x density interaction   



93 
 

Table 2.2. Fixed-effects structure of candidate logistic regression models of female and male black bear resource selection from  

2011 – 2015 in the Lower Peninsula, Michigan that are < 10 Δ AIC of the top model. Amount of support (Akaike’s information 

criterion (AIC and Δ AIC) and model weight (wi) are shown for each model. 

Note: for variable abbreviations see Table 2.1. 

 

Sex Model AIC Δ AIC wi 

 

Female step + dist_water + LC * PercentAg + LC *Dist_HighDev +  LC*Density 250462 0 0.55 

Female step + LC * PercentAg + LC *Dist_HighDev +  LC*Density 250463 1 0.33 

Female step +dist_water + LC * PercentAg + LC * Dist_LowDev + LC *Dist_HighDev + LC * 

Density 250466 4 0.07 

Female step +LC * PercentAg + LC * Dist_LowDev + LC *Dist_HighDev + LC * Density 250467 5 0.05 

     

Male step +dist_water + LC * PercentAg + LC * Dist_LowDev + LC *Density 91507 0 0.40 

Male step +LC * PercentAg + LC * Dist_LowDev + LC *Density 91507 0 0.38 

Male step +dist_water + LC * PercentAg + LC * Dist_LowDev + LC *Dist_HighDev + LC * 

Density 91510 3 0.11 

Male step +LC * PercentAg + LC * Dist_LowDev + LC *Dist_HighDev + LC * Density 91510 3 0.10 
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Table 2.3. Summary of the generalized linear logistic regression model for predicting use of agriculture in 12 bear-years of female 

black bear data from 2011 – 2015 in Lower Peninsula, Michigan. 

Fixed Effects β 

Odds 

Ratio SE p-value  

(Intercept) -1.614 0.20 0.006 < 0.001 

step 0.015 1.01 0.005 0.004 

Distance to nearest water feature 0.009 1.01 0.005 0.092 

Shrub and grassland 0.012 1.01 0.019 0.541 

Agriculture -0.043 0.96 0.044 0.323 

Developed -0.549 0.58 0.051 < 0.001 

Wetlands 0.115 1.12 0.014 < 0.001 

Percent Ag (5km) -0.003 1.00 0.006 0.588 

Distance to nearest high-intensity development -0.018 0.98 0.006 0.004 

Bear density 0.002 1.00 0.006 0.711 

Shrubgrassland x Percent Ag (5km) -0.018 0.98 0.020 0.385 

Agriculture x Percent Ag (5km) -0.290 0.75 0.066 < 0.001 

Developed  x Percent Ag (5km) 0.286 1.33 0.053 < 0.001 

Wetland x Percent Ag (5km) 0.046 1.05 0.014 0.001 

Shrubgrassland x distance to nearest high-intensity development 0.028 1.03 0.021 0.187 

Agriculture  x distance to nearest high-intensity development 0.241 1.27 0.057 < 0.001 

Developed x distance to nearest high-intensity development 0.237 1.27 0.049 < 0.001 

Wetland x distance to nearest high-intensity development -0.005 0.99 0.016 0.746 

Shrubgrassland x bear density 0.015 1.02 0.018 0.394 

Agriculture x bear density 0.359 1.43 0.058 < 0.001 

Developed x bear density -0.070 0.93 0.064 0.275 

Wetland x bear density 0.002 1.00 0.015 0.889 
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 Table 2.4. Summary of the generalized linear mixed effect logistic regression model for predicting use of agriculture in 9 bear-years 

of male black bear data from 2011 – 2015 in Lower Peninsula, Michigan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fixed Effects β 

Odds 

Ratio SE p-value 

(Intercept) -1.688 0.18 0.014 < 0.001 

step 0.005 1.01 0.009 0.544 

Distance to nearest water feature 0.014 1.01 0.010 0.137 

Shrub and grassland 0.067 1.07 0.030 0.025 

Agriculture -0.120 0.89 0.053 0.023 

Developed -117.400 0.00 871.700 0.893 

Wetlands 0.250 1.28 0.022 < 0.001 

Percent Ag (12km) 0.013 1.01 0.016 0.428 

Distance to nearest low-intensity develoment 0.018 1.02 0.014 0.174 

Bear density -0.002 1.00 0.018 0.907 

Shrubgrassland x Percent Ag (12km) 0.036 1.04 0.038 0.337 

Agriculture x Percent Ag (12km) -0.250 0.78 0.056 < 0.001 

Developed  x Percent Ag (12km) -0.058 0.94 0.131 0.656 

Wetland x Percent Ag (12km) 0.012 1.01 0.027 0.649 

Shrubgrassland x distance to nearest low-intensity developed cover 0.062 1.06 0.029 0.032 

Agriculture  x distance to nearest low-intensity developed cover 0.369 1.45 0.051 < 0.001 

Developed x distance to nearest low-intensity developed cover -80.970 0.00 604.400 0.893 

Wetland x distance to nearest low-intensity developed cover -0.052 0.95 0.021 0.012 

Shrubgrassland x bear density 0.058 1.06 0.039 0.133 

Agriculture x bear density -0.632 0.53 0.108 < 0.001 

Developed x bear density 0.082 1.09 0.130 0.530 

Wetland x bear density 0.018 1.02 0.026 0.469 

Random Effect Variance SD   

Grid cell 0.00143 0.04   
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Figure 2.1. Map of the study area (inset) and land covers in which black bear GPS locations 

occurred in the northern Lower Peninsula of Michigan from 2011 – 2015. Land cover types 

were reclassified from the 2011 National Land Cover Database.  
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Figure 2.2. Functional response in use of agriculture for female (top) and male (bottom) black 

bears as bear density varied in the Lower Peninsula of Michigan from 2011 – 2015. The colored 

ribbons represent the 95% confidence interval around the estimated response (solid black line) 

for females (orange) and males (blue). The red dashed line indicates odds ratio=1, which is 

interpreted as having no effect on use.  
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Males 

Females 

Figure 2.3. Functional response in use of agriculture for female (top) and male (bottom) black 

bears as the percent agriculture varied within the average sex-specific home range radius (5 km 

radius for females and 12 km radius for males). GPS locations were collected in the Lower 

Peninsula of Michigan from 2011 – 2015. The colored ribbons represent the 95% confidence 

interval around the estimated response (solid black line) for females (orange) and males (blue). 

The red dashed line indicates odds ratio=1, which is interpreted as having no effect on use.  
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Females 

Males 

Figure 2.4. Functional response in use of agriculture for female (top) and male (bottom) black 

bears as distance to high-intensity (top) or low-intensity (bottom) human development varied in 

the Lower Peninsula of Michigan from 2011 – 2015. The colored ribbons represent the 95% 

confidence interval around the estimated response (solid black line) for females (orange) and 

males (blue). The red dashed line indicates odds ratio=1, which is interpreted as having no effect 

on use.  
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Figure 2.5. Spline correlograms of spatial correlation, with 95% bootstrap confidence intervals, of the residuals from a logistic 

regression model of female black bear location data and all explanatory variables. 
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Figure 2.6. Spline correlograms of temporal correlation, with 95% bootstrap confidence intervals 

of the residuals, from a logistic regression model of female black bear location data and all 

explanatory variables. 
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Figure 2.7. Spline correlograms of spatial correlation, with 95% bootstrap confidence intervals, of the residuals from a logistic 

regression model of male black bear location data and all explanatory variables.
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Figure 2.8. Spline correlograms of temporal correlation, with 95% bootstrap confidence intervals 

of the residuals, from a logistic regression model of male black bear location data and all 

explanatory variables.
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