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ABSTRACT

ENVIRONMENTAL ADAPTIVE SAMPLING FOR MOBILE SENSOR
NETWORKS USING GAUSSIAN PROCESSES

By

Yunfei Xu

In recent years, due to significant progress in sensing, communication, and embedded-system

technologies, mobile sensor networks have been exploited in monitoring and predicting en-

vironmental fields (e.g., temperature, salinity, pH, or biomass of harmful algal blooms).

The conventional inverse problem approach based on physical transport models is computa-

tionally prohibitive for resource-constrained, multi-agent systems. In contrast, emphasizing

practicality and usefulness, this work relies extensively on the phenomenological and statisti-

cal modeling techniques, in particular, Gaussian processes. However, such statistical models

need to be carefully tailored such that they can be practical and usable for mobile sensor net-

works with limited resources. In this dissertation, we consider the problem of using mobile

sensor networks to estimate and predict environmental fields modeled by spatio-temporal

Gaussian processes.

In the first part of the dissertation, we first present robotic sensors that learn a spatio-

temporal Gaussian process and move in order to improve the quality of the estimated co-

variance function. For a given covariance function, we then theoretically justify the usage

of truncated observations for Gaussian process regression for mobile sensor networks with

limited resources. We propose both centralized and distributed navigation strategies for

resource-limited mobile sensing agents to move in order to reduce prediction error variances

at points of interest. Next, we formulate a fully Bayesian approach for spatio-temporal

Gaussian process regression such that multifactorial effects of observations, measurement



noise, and prior distributions of hyperparameters are all correctly incorporated in the pos-

terior predictive distribution. To cope with computational complexity, we design sequential

Bayesian prediction algorithms in which exact predictive distributions can be computed in

constant time as the number of observations increases. Under this formulation, we provide

an adaptive sampling strategy for mobile sensors, using the maximum a posteriori (MAP)

estimation to minimize the prediction error variances.

In the second part of the dissertation, we address the issue of computational complexity

by exploiting the sparsity of the precision matrix used in a Gaussian Markov random field

(GMRF). The main advantages of using GMRFs are: (1) the computational efficiency due

to the sparse structure of the precision matrix, and (2) the scalability as the number of

measurements increases. We first propose a new class of Gaussian processes that builds

on a GMRF with respect to a proximity graph over the surveillance region, and provide

scalable inference algorithms to compute predictive statistics. We then consider a discretized

spatial field that is modeled by a GMRF with unknown hyperparameters. From a Bayesian

perspective, we design a sequential prediction algorithm to exactly compute the predictive

inference of the random field. An adaptive sampling strategy is also designed for mobile

sensing agents to find the most informative locations in taking future measurements in

order to minimize the prediction error and the uncertainty in the estimated hyperparameters

simultaneously.
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Chapter 1

Introduction

In recent years, due to drastic global climate changes, it is necessary to monitor the changing

ecosystems over vast regions in lands, oceans, and lakes. For instance, for certain environ-

mental conditions, rapidly reproducing harmful algal blooms in the lakes can cause the death

of nearby fish and produce harmful conditions to aquatic life as well as human beings1. Be-

sides natural disasters, there exist growing ubiquitous possibilities of the release of toxic

chemicals and contaminants in the air, lakes, and public water systems. Hence, there are

strong motivations to monitor and predict the environmental field undergoing often complex

transport phenomena2.

In this dissertation, we consider the problem of using mobile sensor networks to estimate

and predict environmental fields that are modeled by spatio-temporal Gaussian processes.

1See http://www.glerl.noaa.gov/res/Centers/HABS/habs.html for more details.
2Common examples are diffusion, convection, and advection.
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1.1 Background

Due to the recent advances of micro-electro-mechanical systems technology, wireless commu-

nications and digital electronics, the concept of sensor networks has been made viable [2].

A sensor network consists of a collection of low-cost, low-power, multifunctional sensing de-

vices that are small in size and communicate in short distances. Endowing the nodes in a

sensor network with mobility increases the network’s capabilities drastically [7]. The sensor

networks which consist of mobile sensing agents are more flexible than the ones with only

static nodes. For example, the mobility allows the network to handle a large number of data

sources with a much smaller number of moving sensors that visit the sources over time.

In a mobile sensor network, the resource limited sensing agents are required to collaborate

in order to meet a specific objective. The cooperative control becomes essential. The most

popular applications are in networks of autonomous ground vehicles, underwater vehicles,

or aerial vehicles. Emerging technologies have been reported on the coordination of mobile

sensing agents [28,37,46,52,68,69]. The mobility of mobile agents can be designed in order to

perform the optimal sampling of the field of interest. Optimal sampling design is the process

of choosing where to take samples in order to maximize the information gained. Recently

in [35], Leonard et al. developed mobile sensor networks that optimize ocean sampling

performance defined in terms of uncertainty in a model estimate of a sampled field. However,

this approach optimized the collective patterns of mobile agents parameterized by a restricted

number of parameters rather than optimizing individual trajectories. In [10], distributed

learning and cooperative control were developed for multi-agent systems to discover peaks

of the unknown field based on the recursive estimation of an unknown field. A typical

sensor placement technique [16] that puts sensors at the locations where the entropy is high
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tends to place sensors along the borders of the area of interest [32]. In [32], Krause et al.

showed that seeking sensor placements that are most informative about unsensed locations

is NP-hard, and they presented a polynomial time approximation algorithm by exploiting

the submodularity of mutual information [14]. In a similar approach, in [58], Singh et al.

presented an efficient planning of informative paths for multiple robots that maximizes the

mutual information.

To find these locations that predict the phenomenon best, one needs a model of the spatio-

temporal phenomenon. To this end, we use the Gaussian processes (Gaussian random fields)

to model fields undergoing transport phenomena. Nonparametric Gaussian process regres-

sion (or Kriging in geostatistics) has been widely used as a nonlinear regression technique to

estimate and predict geostatistical data [15,23,38,51]. A Gaussian process is a natural gener-

alization of the Gaussian probability distribution. It generalizes a Gaussian distribution with

a finite number of random variables to a Gaussian process with an infinite number of random

variables in the surveillance region [51]. Gaussian process modeling enables us to predict

physical values, such as temperature, salinity, pH, or biomass of harmful algal blooms, at

any point with a predicted uncertainty level efficiently. For instance, near-optimal static

sensor placements with a mutual information criterion in Gaussian processes were proposed

in [31,32]. A distributed Kriged Kalman filter for spatial estimation based on mobile sensor

networks is developed in [13]. Multi-agent systems that are versatile for various tasks by

exploiting predictive posterior statistics of Gaussian processes were developed in [9] and [8].

However, Gaussian process regression, based on the standard mean and covariance functions,

requires an inversion of a covariance matrix whose size grows as the number of observations

increases.
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The advantage of a fully Bayesian approach is that the uncertainty in the model param-

eters are incorporated in the prediction [5]. In [22], Gaudard et al. presented a Bayesian

method that uses importance sampling for analyzing spatial data sampled from a Gaussian

random field whose covariance function was unknown. However, the solution often requires

Markov Chain Monte Carlo (MCMC) methods, which greatly increases the computational

complexity. In [25], an iterative prediction algorithm without resorting to MCMC methods

has been developed based on analytical closed-form solutions from results in [22], by assum-

ing that the covariance function of the spatio-temporal Gaussian random field is known up

to a constant.

Recently, there have been efforts to find a way to fit a computationally efficient Gaussian

Markov random field (GMRF) on a discrete lattice to a Gaussian random field on a continuum

space [17,27,56]. Such methods have been developed using a fitting with a weighted L2-type

distance [56], using a conditional-mean least-squares fitting [17], and for dealing with large

data by fast Kriging [27]. It has been demonstrated that GMRFs with small neighborhoods

can approximate Gaussian fields surprisingly well [56]. This approximated GMRF and its

regression are very attractive for the resource-constrained mobile sensor networks due to its

computational efficiency and scalability [34] as compared to the standard Gaussian process

and its regression, which is not scalable as the number of observations increases.

1.2 Contribution

Here, we summarize the specific contributions of this dissertation in the order of chapters.

In Chapter 3, we develop covariance function learning algorithms for the sensing agents

to perform nonparametric prediction based on a properly adapted Gaussian process for a

4



given spatio-temporal phenomenon. By introducing a generalized covariance function, we

expand the class of Gaussian processes to include the anisotropic spatio-temporal phenom-

ena. Maximum likelihood (ML) optimization is used to estimate hyperparameters for the

associated covariance function. The proposed optimal navigation strategy for autonomous

vehicles will maximize the Fisher information [30], improving the quality of the estimated

covariance function.

In Chapter 4, we first present a theoretical foundation of Gaussian process regression

with truncated observations. In particular, we show that the quality of prediction based

on truncated observations does not deteriorate much as compared to that of prediction

based on all cumulative data under certain conditions. The error bounds to use truncated

observations are analyzed for prediction at a single point of interest. A way to select the

temporal truncation size for spatio-temporal Gaussian processes is also introduced. Inspired

by the analysis, we then propose both centralized and distributed navigation strategies for

mobile sensor networks to move in order to reduce prediction error variances at points of

interest. In particular, we demonstrate that the distributed navigation strategy produces an

emergent, swarming-like, collective behavior to maintain communication connectivity among

mobile sensing agents.

In Chapter 5, we formulate a fully Bayesian approach for spatio-temporal Gaussian pro-

cess regression under practical conditions such as measurement noise and unknown hyper-

parmeters (particularly, the bandwidths). Thus, multifactorial effects of observations, mea-

surement noise and prior distributions of hyperparameters are all correctly incorporated

in the computed posterior predictive distribution. Using discrete prior probabilities and

compactly supported kernels, we provide a way to design sequential Bayesian prediction al-
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gorithms that can be computed (without using the Gibbs sampler) in constant time as the

number of observations increases. An adaptive sampling strategy for mobile sensors, using

the maximum a posteriori (MAP) estimation, has been proposed to minimize the prediction

error variances.

In Chapter 6, we propose a new class of Gaussian processes for resource-constrained mo-

bile sensor networks that builds on a Gaussian Markov random field (GMRF) with respect

to a proximity graph over the surveillance region. The main advantages of using this class

of Gaussian processes over standard Gaussian processes defined by mean and covariance

functions are its numerical efficiency and scalability due to its built-in GMRF and its ca-

pability of representing a wide range of non-stationary physical processes. The formulas for

predictive statistics are derived and a sequential field prediction algorithm is provided for

sequentially sampled observations. For a special case using compactly supported weight-

ing functions, we propose a distributed algorithm to implement field prediction by correctly

fusing all observations.

In Chapter 7, We then consider a discretized spatial field that is modeled by a GMRF

with unknown hyperparameters. From a Bayesian perspective, we design a sequential pre-

diction algorithm to exactly compute the predictive inference of the random field. The main

advantages of the proposed algorithm are: (1) the computational efficiency due to the sparse

structure of the precision matrix, and (2) the scalability as the number of measurements

increases. Thus, the prediction algorithm correctly takes into account the uncertainty in

hyperparameters in a Bayesian way and also is scalable to be usable for the mobile sensor

networks with limited resources. An adaptive sampling strategy is also designed for mobile

sensing agents to find the most informative locations in taking future measurements in or-
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der to minimize the prediction error and the uncertainty in the estimated hyperparameters

simultaneously.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we first introduce the basic math-

ematical notations that will be used throughout the thesis. Then, we describe the general

Gaussian processes and its usage in nonparametric regression problems. The notations for

mobile sensor networks are also introduced in Chapter 2. In Chapter 3, we deal with the

case where hyperparameters in the covariance function is deterministic but unknown. We

design an optimal sampling strategy to improve the maximum likelihood estimation of these

hyperparameters. In Chapter 4, we assume the hyperparameters in the covariance function

are given which can be obtained using the approach proposed in Chapter 3. We then analyze

the error bounds of prediction error using Gaussian process regression with truncated ob-

servations. Inspired by the analysis, we propose both centralized and distributed navigation

strategies for mobile sensor networks to move in order to reduce prediction error variances at

points of interest. In Chapter 5, we consider a fully Bayesian approach for Gaussian process

regression in which the hyperparameters are treated as random variables. Using discrete

prior probabilities and compactly supported kernels, we provide a way to design sequential

Bayesian prediction algorithms that can be computed in constant time as the number of ob-

servations increases. To cope with the computational complexity brought by using standard

Gaussian processes with covariance functions, in Chapter 6, we exploit the sparsity of the

precision matrix by using Gaussian Markov random fields (GMRF). We first introduce a new

class of Gaussian processes with built-in GMRF and show its capability of representing a
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wide range of non-stationary physical processes. We then derive the formulas for predictive

statistics and design sequential prediction algorithms with fixed complexity. In Chapter 7,

we consider a discretized spatial field that is modeled by a GMRF with unknown hyper-

parameters. From a Bayesian perspective, we design a sequential prediction algorithm to

exactly compute the predictive inference of the random field. An adaptive sampling strategy

is also designed for mobile sensing agents to find the most informative locations in taking

future measurements in order to minimize the prediction error and the uncertainty in the

estimated hyperparameters simultaneously.

1.4 Publication

In this section, I list journal articles and conference proceedings that have been published

(or will be published) related to the topic of this dissertation. Some of the work will be

described in the following chapters.
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(J4) Yunfei Xu, Jongeun Choi, “Stochastic adaptive sampling for mobile sensor networks

using kernel regression,” International Journal of Control, Automation and Systems,

(conditionally accepted, 2011).

(J5) Yunfei Xu, Jongeun Choi, “Adaptive sampling for learning Gaussian processes using

mobile sensor networks,” Sensors, vol. 11, no. 3, pp. 3051-3066, 2011.

(J6) Mahdi Jadaliha, Yunfei Xu, and Jongeun Choi, “Gaussian process regression for sensor

networks under localization uncertainty,” IEEE Transactions on Signal Processing, (in

review, 2011).

(J7) Jongeun Choi,Yunfei Xu, Justin Mrkva, Joonho Lee, and Songhwai Oh, “Navigation

strategies for swarm intelligence using spatio-temproal Gaussian processes,” Robotics

and Autonomous Systems, (in review, 2010).

1.4.2 Conference Proceedings

(C1) Yunfei Xu, Jongeun Choi, Sarat Dass, and Taps Maiti, “Efficient Bayesian spatial

prediction with mobile sensor networks using Gaussian Markov random fields,” in

Proceedings of the 2012 American Control Conference (ACC), June 27-29, Montréal,
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Chapter 2

Preliminaries

2.1 Mathematical Notation

Standard notation is used throughout this dissertation. Let R, R≥0, R>0, Z, Z≥0, Z>0

denote the sets of real numbers, non-negative real numbers, positive real numbers, integers,

non-negative integers, and positive integers, respectively.

Let E, Var, Corr, Cov denote the expectation operator, the variance operator, the corre-

lation operator, and the covariance operator, respectively.

Let AT ∈ Rm×n be the transpose of a matrix A ∈ Rn×m. Let tr(A) and det(A) denote

the trace and the determinant of a matrix A ∈ Rn×n, respectively. Let rowi(A) ∈ Rm and

colj(A) ∈ Rn denote the i-th row and the j-th column of a matrix A ∈ Rn×m, respectively.

The positive definiteness and the positive semi-definiteness of a square matrix A are

denoted by A � 0 and A � 0, respectively.

Let |x| denote the absolute value of a scalar x. Let ‖x‖ denote the standard Euclidean

norm (2-norm) of a vector x. The induced 2-norm of a matrix A is denoted by ‖A‖. Let
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‖x‖∞ denote the infinity norm of a vector x.

Let 1 denote the vector with all elements equal to one and I denote the identity matrix

with an appropriate size. Let ei be the standard basis vector of appropriate size with 1 on

the i-th element and 0 on all other elements.

The symbol ⊗ denotes the Kronecker product. The symbol ◦ denotes the Hadamard

product (also known as the entry-wise product and the Schur product).

A random variable x, which is distributed by a normal distribution of mean µ and covari-

ance matrix Σ, is denoted by x ∼ N (µ,Σ). The corresponding probability density function

is denoted by N (x;µ,Σ).

The relative complement of a set A in a set B is denoted by B \ A := B ∩Ac, where Ac

is the complement of A. For a set A ∈ I, we define zA = {zi | i ∈ A}. Let −A denote the

set I \ A.

An undirected graph G = (V , E) is a tuple consisting of a set of vertices V := {1, · · · , n}

and a set of edges E ⊂ V × V . The neighbors of i ∈ V in G are denoted by Ni :=

{j ∈ V | {i, j} ∈ E}.

Other notation will be explained in due course.

2.2 Physical Process Model

In this section, we review important notions on the Gaussian process which will be used

to model the physical phenomenon. In particular, we introduce a class of spatio-temporal

Gaussian process model with anisotropic covariance functions. The properties of Gaussian

Markov Random fields (GMRF) are also briefly reviewed.
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2.2.1 Gaussian process

A Gaussian process can be thought of a generalization of a Gaussian distribution over a finite

vector space to function space of infinite dimension. It is formally defined as follows [50,51]:

Definition 2.2.1. A Gaussian process (GP) is a collection of random variables, any finite

number of which have a consistent1 joint Gaussian distribution.

A Gaussian process

z(x) ∼ GP
(
µ(x), C(x, x′; θ)

)
(2.1)

is completely specified by its mean function µ(x) and covariance function C(x, x′; θ) which

are defined as

µ(x) = E [z(x)] ,

C(x, x′; θ) = E
[
(z(x)− µ(x)) (z(x′)− µ(x′))|θ

]
.

Although not needed to be done, we take the mean function to be zero for notational

simplicity2, i.e., µ(x) = 0. If the covariance function C(x, x′; θ) is invariant to transla-

tions in the input space, i.e., C(x, x′; θ) = C(x − x′; θ), we call it stationary. Further-

more, if the covariance function is a function of only the distance between the inputs, i.e.,

C(x, x′; θ) = C(
∥∥x− x′∥∥ ; θ), then it is called isotropic.

In practice, a parametric family of functions is used instead of fixing the covariance

1It is also known as the marginalization property. It means simply that the random
variables obey the usual rules of marginalization, etc.

2This is not a drastic limitation since the mean of the posterior process is not confined
to zero [51].
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function [5]. One common choice of a stationary covariance function is

C(x, x′; θ) = σ2
f exp

−
D∑
`=1

(
x` − x′`

)2
2σ2
`

 , (2.2)

where x` is the `-th element of x ∈ RD. From (2.2), it can be easily seen that the correlation

between two inputs decreases as the distance between them increases. This decreasing rate

depends on the choice of the length scales {σ`}. A very large length scale means that the

predictions would have little bearing on the corresponding input which is then said to be

insignificant. σ2
f gives the overall vertical scale relative to the mean of the Gaussian process in

the output space. These parameters play the role of hyperparameters since they correspond

to the hyperparameters in neural networks and in the standard parametric model. Therefore,

we define θ = (σ2
f , σ1, · · · , σD)T ∈ RD+1 as the hyperparameter vector. A realization of a

Gaussian process that is numerically generated is shown in Fig. 2.1.
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Figure 2.1: Realization of a Gaussian process. For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this dissertation.
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2.2.2 Spatio-temporal Gaussian process

In the first part of this dissertation, spatio-temporal Gaussian processes are of particular

interest. Consider a spatio-temporal Gaussian process

z(s, t) ∼ GP(µ(s, t), C(s, t, s′, t′; θ)),

which is a special case of the Gaussian process defined in (2.1), where x = (sT , t)T ∈

Rd ×R≥0. We consider the following generalized anisotropic covariance function C(x, x′; θ)

with a hyperparameter vector θ := (σ2
f , σ1, · · · , σd, σt)T ∈ Rd+2:

C(x, x′; θ) = σ2
f exp

− d∑
`=1

(s` − s′`)2

2σ2
`

 exp

(
−(t− t′)2

2σ2
t

)
, (2.3)

where s, s′ ∈ Q ⊂ Rd, t, t′ ∈ R≥0. {σ1, · · · , σd} and σt are kernel bandwidths for space

and time, respectively. (2.3) shows that points close in the measurement space and time

indices are strongly correlated and produce similar values. In reality, the larger temporal

distance two measurements are taken with, the less correlated they become, which strongly

supports our generalized covariance function in (2.3). This may also justify the truncation

(or windowing) of the observed time series data to limit the size of the covariance matrix

for reducing the computational cost. A spatially isotropic version of the covariance function

in (2.3) has been used in [35]. A realization of a spatio-temporal Gaussian process that is

numerically generated is shown in Fig. 2.2.
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Figure 2.2: Realization of Gaussian process at (a) t = 1, (b) t = 5, and (c) t = 10.

2.2.3 Gaussian Markov random field

The Gaussian Markov random field is formally defined as follows [54].

Definition 2.2.2. (GMRF, [54, Definition 2.1]) A random vector z = (z1, · · · , zn)T ∈ Rn is

called a GMRF with respect to a graph G = (V , E) with mean µ and precision matrix Q � 0,

if and only if its density has the form

π(z) =
|Q|1/2

(2π)n/2
exp

(
−1

2
(z − µ)TQ(z − µ)

)
,

and (Q)ij 6= 0 ⇔ {i, j} ∈ E for all i 6= j, where the precision matrix (or information matrix)

Q = C−1 is the inverse of the covariance matrix C, and |Q| denotes the determinant of Q.

The Markov property of a GMRF can be shown by the following theorem.

Theorem 2.2.3. ( [54, Theorem 2.4]) Let z be a GMRF with respect to G = (V , E). Then

the followings are equivalent.

1. The pairwise Markov property:

zi⊥zj | z−ij if {i, j} /∈ E and i 6= j,
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where ⊥ denotes conditional independence and z−ij := z−{i,j} = zI\{i,j}. This implies

that zi and zj are conditionally independent given observations at all other vertices

except {i, j} if i and j are not neighbors.

2. The local Markov property:

zi⊥z−{i,Ni} | zNi for every i ∈ I.

3. The global Markov property:

zA⊥zB | zC

for disjoint sets A, B, and C where C separates A and B, and A and B are non-empty.

If a graph G has small cardinalities of the neighbor sets, its precision matrix Q becomes

sparse with many zeros in its entries. This plays a key role in computation efficiency of a

GMRF which can be greatly exploited by the resource-constrained mobile sensor network.

For instance, some of the statistical inference can be obtained directly from the precision

matrix Q with conditional interpretations.

Theorem 2.2.4. ( [54, Theorem 2.3]) Let z be a GMRF with respect to G = (V , E) with

mean µ and precision matrix Q � 0, then we have

E(zi | z−i) = µi −
1

(Q)ii

∑
j∈Ni

(Q)ij(zj − µj),

Var(zi | z−i) =
1

(Q)ii
,

Corr(zi, zj | z−ij) = − (Q)ij√
(Q)ii(Q)jj

, ∀i 6= j.
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2.3 Mobile Sensor Network

In this section, we explain the sensor network formed by multiple mobile sensing agents and

present the measurement model used throughout the thesis.

Let N be the number of sensing agents distributed over the surveillance region Q ∈ Rd.

The identity of each agent is indexed by I := {1, 2, · · · , N}. Assume that all agents are

equipped with identical sensors and take noisy observations at time t ∈ Z>0. At time t, the

sensing agent i takes a noise-corrupted measurement yi(t) at its current location qi(t) ∈ Q,

i.e.,

yi(t) = z(qi(t), t) + εi, εi
i.i.d.∼ N (0, σ2

w),

where the sensor noise εi is considered to be an independent and identically distributed

Gaussian random variable. σ2
w > 0 is the noise level and we define the signal-to-noise ratio

as

γ =
σ2
f

σ2
w
.

Notice that when a static field is considered, we have z(s, t) = z(s).

For notational simplicity, we denote the collection of positions of all N agents at time t

as q(t), i.e.,

q(t) :=
(
q1(t)T , · · · , qN (t)T

)T
∈ QN .

The collective measurements from all N mobile sensors at time t is denoted by

yt := (y1(t), · · · , yN (t))T ∈ RN .
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The cumulative measurements from time t ∈ Z>0 to time t′ ∈ Z>0 is denoted by

yt:t′ :=
(
yTt , · · · , yTt′

)T
∈ RN(t′−t+1).

The communication network of mobile agents can be represented by an undirected graph.

Let G(t) := (I, E(t)) be an undirected communication graph such that an edge (i, j) ∈ E(t) if

and only if agent i can communicate with agent j 6= i at time t. We define the neighborhood

of agent i at time t by Ni(t) := {j ∈ I | (i, j) ∈ E(t)}. Similarly, let q[i](t) denote the vector

form of the collection of positions in
{
qj(t) | j ∈ {i} ∪ Ni(t)

}
. Let y

[i]
t denote vector form of

the collection of observations in
{
y(qj(t), t) | j ∈ {i} ∪ Ni(t)

}
. The cumulative measurements

of agent i from time t to time t′ as y
[i]

t:t′ .

2.4 Gaussian Processes for Regression

Suppose we have a data set D =
{

(x(i), y(i)) | i = 1, · · · , n
}

collected by mobile sensing

agents where x(i) denotes an input vector of dimension D and y(i) denotes a scalar value

of the noise corrupted output. The objective of probabilistic regression is to compute the

predictive distribution of the function values z∗ := z(x∗) at some test input x∗.

For notational simplicity, we define the design matrix X of dimension n × D as the

aggregation of n input vectors (i.e., rowi(X) := (x(i))T ), and the outputs are collected in a

vector y := (y(1), · · · , y(n))T . The corresponding vector of noise-free outputs is defined as

z := (z(x(1)), · · · , z(x(n)))T .

The advantage of the Gaussian process formulation is that the combination of the prior

and noise models can be carried out exactly via matrix operations [62]. The idea of Gaus-
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sian process regression is to place a GP prior directly on the space of functions without

parameterizing the function z(·), i.e.,

π(z|θ) = N (µ,K),

where µ ∈ Rn is the mean vector obtained by (µ)i = µ(x(i)), and K := Cov(z, z|θ) ∈ Rn×n

is the covariance matrix obtained by (K)ij = C(x(i), x(j); θ). Notice that the GP model and

all expressions are always conditional on the corresponding inputs. In the following, we will

always neglect the explicit conditioning on the input matrix X.

The inference in the Gaussian process model is as follows. First, we assume a joint GP

prior π(z, z∗|θ) over functions, i.e.,

π(z, z∗|θ) = N


 µ

µ(x∗)

 ,
K k

kT C(x∗, x∗; θ)


 , (2.4)

where k := Cov(z, z∗|θ) ∈ Rn is the covariance between z and z∗ obtained by (k)i =

C(x(i), x∗; θ). Then, the joint posterior is obtained using Bayes rule, i.e.,

π(z, z∗|θ, y) =
π(y|z)π(z, z∗|θ)

π(y|θ) ,

where we have used π(y|z, z∗) = π(y|z). Finally, the desired predictive distribution π(z∗|θ, y)

is obtained by marginalizing out the latent variables in z, i.e.,

π(z∗|θ, y) =

∫
π(z, z∗|θ, y)dz

=
1

π(y|θ)

∫
π(y|z)π(z, z∗|θ, y)dz.

(2.5)
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Since we have the joint Gaussian prior given in (2.4) and

y|z ∼ N
(
z, σ2

wI
)
,

the integral in (2.5) can be evaluated in closed-form and the predictive distribution turns

out to be Gaussian, i.e.,

z∗|θ, y ∼ N
(
µz∗|θ,y, σ

2
z∗|θ,y

)
, (2.6)

where

µz∗|θ,y = µ(x∗) + kT (K + σ2
wI)−1(y − µ), (2.7)

and

σ2
z∗|θ,y = C(x∗, x∗; θ)− kT (K + σ2

wI)−1k. (2.8)

For notational simplicity, we define the covariance matrix of the noisy observations as C :=

Cov(y, y|θ) = K + σ2
wI.
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Chapter 3

Learning the Covariance Function

Even though, there have been efforts to utilize Gaussian processes to model and predict

the spatio-temporal field of interest, most of recent papers assume that Gaussian processes

are isotropic implying that the covariance function only depends on the distance between

locations. Many studies also assume that the corresponding covariance functions are known

a priori for simplicity. However, this is not the case in general as pointed out in literature

[31,32,44], in which they treat the non-stationary process by fusing a collection of isotropic

spatial Gaussian processes associated with a set of local regions. Hence, our objective in

this Chapter is to develop theoretically-sound algorithms for mobile sensor networks to learn

the anisotropic covariance function of a spatio-temporal Gaussian process. Mobile sensing

agents can then predict the Gaussian process based on the estimated covariance function in

a nonparametric manner.

In Section 3.1, we introduce a covariance function learning algorithm for an anisotropic,

spatio-temporal Gaussian process. The covariance function is assumed to be deterministic

but unknown a priori and it is estimated by the maximum likelihood (ML) estimator. In
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Section 3.2, an optimal sampling strategy is proposed to minimize the Cramér-Rao lower

bound (CRLB) of the estimation error covariance matrix. In Section 3.3, simulation results

illustrate the usefulness of our proposed approach and its adaptability for unknown and/or

time-varying covariance functions.

3.1 Learning the Hyperparameters

Without loss of generality, we consider a zero-mean spatio-temporal Gaussian process

z(s, t) ∼ GP
(
0, C(s, t, s′, t′; θ)

)
,

with the covariance function

C(s, t, s′, t′; θ) = σ2
f exp

− ∑
`∈{x,y}

(s` − s′`)2

2σ2
`

 exp

(
−(t− t′)2

2σ2
t

)
,

where s, s′ ∈ Q ⊂ R2, t, t′ ∈ R≥0, for modeling the field undergoing a physical transport

phenomenon. θ = (σf , σx, σy, σt)
T ∈ Rm is the hyperparameter vector, where m = 4. The

assumption of zero-mean is not a strong limitation since the mean of the posterior process

is not confined to zero [51].

If the covariance function C(s, t, s′, t′; θ) of a Gaussian process is not known a priori, mo-

bile agents need to estimate parameters of the covariance function (i.e., the hyperparameter

vector θ ∈ Rm) based on the observed samples. In the case where measurement noise level

σw is also unknown, it can be incorporated in the hyperparameter vector and be estimated.

Thus, we have θ = (σf , σx, σy, σt, σw)T ∈ Rm where m = 5.
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Existing techniques for learning the hyperparamters are based on the likelihood function.

Given the observations y = (y(1), · · · , y(n))T ∈ Rn collected by mobile sensing agents, the

likelihood function is defined as

L(θ|y) = π(y|θ).

Notice that in this chapter, the hyperparameter vector θ is considered to be deterministic,

and hence π(y|θ) should not be considered as conditional distribution.

At time t, a point estimate of the hyperparameter vector θ can be made by maximiz-

ing the log likelihood function. The maximum likelihood (ML) estimate θ̂ ∈ Rm of the

hyperparameter vector is obtained by

θ̂ = arg max
θ∈Θ

logL(θ|y), (3.1)

where Θ is the set of all possible choices of θ. The log likelihood function is given by

logL(θ|y) = −1

2
yTC−1y − 1

2
log det(C)− n

2
ln 2π,

where C := Cov(y, y|θ) ∈ Rn×n is the covariance matrix, and n is the total number of obser-

vations. Maximization of the log likelihood function can be done efficiently using gradient-

based optimization techniques such as the conjugate gradient method [26, 43]. The partial

derivative of the log likelihood function with respect to a hyperparameter θi ∈ R, i.e., the

i-th entry of the hyperparameter vector θ, is given by

∂ lnL(θ|y)

∂θi
=

1

2
yTC−1∂C

∂θi
C−1y − 1

2
tr

(
C−1∂C

∂θi

)
=

1

2
tr

(
(ααT − C−1)

∂C

∂θi

)
,
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where α = C−1y ∈ Rn. In general, the log likelihood function is a non-convex function and

hence it can have multiple maxima.

As an alternative, when certain prior knowledge is available on the hyperparameters, a

prior distribution can be imposed on the hyperparameter vector, i.e., π(θ). Using Bayes’

rule, the posterior distribution π(θ|y) is proportional to the likelihood π(y|θ) times the prior

distribution π(θ), i.e.,

π(θ|y) ∝ π(y|θ)π(θ).

Then the maximum a posteriori (MAP) estimate θ̂ ∈ Rm of the hyperparameter vector can

be obtained similarly by

θ̂ = arg max
θ∈Θ

(logL(θ|y) + log π(θ)) . (3.2)

Notice that when no prior information is available, the MAP estimate is equivalent to the

ML estimate.

Once the estimate of the hyperparameter vector θ is obtained with confidence, it can

be used as the true one for the mobile sensor network to predict the field of interest using

Gaussian process regression in (2.6).

3.2 Optimal Sampling Strategy

Agents should find new sampling positions to improve the quality of the estimated covariance

function in the next iteration at time t+1. For instance, to precisely estimate the anisotropic

phenomenon, i.e., processes with different covariances along x and y directions, sensing

agents need to explore and sample measurements along different directions.

25



To this end, we consider a centralized scheme. Suppose that a central station (or a

leader agent) has access to all measurements collected by agents. Assume that at time t+ 1,

agent i moves to a new sampling position q̃i ∈ Q and make an observation yi(t+1) ∈ R. The

collection of the new sampling positions and new observations from all agents are denoted by

q̃ ∈ QN and ỹ ∈ RN , respectively. The objective of the optimal sampling strategy is to find

the best sampling positions q̃ such that the maximum likelihood (ML) estimate θ̂t+1 ∈ Rm

at time t+ 1 is as close to the true hyperparameter vector θ∗ ∈ Rm as possible.

Consider the Fisher information matrix (FIM) that measures the information produced

by y1:t ∈ RNt and ỹ ∈ RN for estimating the true hyperparameter vector θ∗ ∈ Rm at

time t + 1. The Cramér-Rao lower bound (CRLB) theorem states that the inverse of the

Fisher information matrix (denoted by M ∈ Rm×m) is a lower bound of the estimation error

covariance matrix [30,39]:

E
[
(θ̂t+1 − θ∗)(θ̂t+1 − θ∗)T

]
�M−1,

where θ̂t+1 ∈ Rm represents the ML estimate of θ∗ at time t + 1. The Fisher information

matrix (FIM) [30] is given by

(M)ij = −E

[
∂2 lnL(θ|ỹ, y1:t)

∂θi∂θj

]
,

where L(θ|ỹ, y1:t) is the likelihood function at time t+ 1, and the expectation is taken with

respect to π(y1:t, ỹ|θ). Notice that the likelihood is now a function of θ and ỹ. The analytical
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form of the FIM is given by

(M)ij =
1

2
tr

(
C̃−1∂C̃

∂θi
C̃−1 ∂C̃

∂θj

)
,

where C̃ ∈ RN(t+1)×N(t+1) is defined as

C̃ := Cov


y1:t

ỹ

 ,
y1:t

ỹ

 ∣∣∣∣∣θ∗
 .

Since the true value θ∗ is not available, we will evaluate the FIM at the currently best

estimate θ̂t.

We can expect that minimizing the Cramér-Rao lower bound results in a decrease of

uncertainty in estimating θ [41]. The most common optimality criterion is D-optimality [21,

49]. It corresponds to minimizing the volume of the ellipsoid which represents the maximum

confidence region for the maximum likelihood estimate of the unknown hyperparamters [21].

Using the D-optimality criterion [21,49], the objective function J(·) is given by

J(q̃) := det(M−1).

However, if one hyperparamter has a very large variance compared to the others, the ellipsoid

will be skinny and thus minimizing the volume may be misleading [21]. As an alternative,

A-optimality which minimizes the sum of the variances is often used. The objective function

J(·) based on A-optimality criterion is

J(q̃) := tr(M−1).
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Hence, a control law for the mobile sensor network can be formulated as follows:

q(t+ 1) = arg min
q̃∈QN

J(q̃). (3.3)

In (3.3), we only consider the constraint that robots should move within the region Q.

However, the mobility constraints, such as the maximum distance that a robot can move

between two time indices, or the maximum speed with which a robot can travel, can be

incorporated as additional constraints in the optimization problem [13].

The overall protocol for the sensor network is summarized as in Table 3.1.

Table 3.1: Centralized optimal sampling strategy at time t.

For i ∈ I, agent i performs:

1: make an observation at current position qi(t), i.e., yi(t)
2: transmit the observation yi(t) to the central station

The central station performs:

1: collect the observations from all N agents, i.e., yt
2: obtain the cumulative measurements, i.e., y1:t
3: compute the maximum likelihood estimate θ̂t based on

θ̂t = arg maxθ∈Θ lnL(θ|y1:t),

starting with the initial point θ̂t−1
4: compute the control in order to minimize the cost function J(q̃) via

q(t+ 1) = arg min
q̃∈QN J(q̃)

5: send the next sampling positions {qi(t+ 1) | i ∈ I} to all N agents

For i ∈ I, agent i performs:

1: receive the next sampling position qi(t+ 1) from the central station
2: move to qi(t+ 1) before time t+ 1
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3.3 Simulation

In this section, we evaluate the proposed approach for a spatio-temporal Gaussian process

(Section 3.3.1) and an advection-diffusion process (Section 3.3.3). For both cases, we compare

the simulation results using the proposed optimal sampling strategy with results using a

benchmark random sampling strategy. In this random sampling strategy, each agent was

initially randomly deployed in the surveillance region Q. At time t ∈ Z>0, the next sampling

position for agent i is generated randomly with the same mobility constraint, viz. a random

position within a square region with length 2 centered at the current position qi(t). For

fair comparison, the same values are used for all other conditions. In Section 3.3.2, our

approach based on truncated observations is applied to a Gaussian process with a time-

varying covariance function to demonstrate the adaptability of the proposed scheme.

3.3.1 Spatio-temporal Gaussian process

We apply our approach to a spatio-temporal Gaussian process. The Gaussian process was

numerically generated for the simulation [51]. The hyperparameters used in the simulation

were chosen such that θ = (σf , σx, σy, σt, σw)T = (5, 4, 2, 8, 0.5)T . Snap shots of the realized

Gaussian random field are shown in Fig. 3.1. In this case, N = 5 mobile sensing agents were

initialized at random positions in a surveillance region Q = [0, 20]× [0, 20]. The initial values

for the algorithm were given to be θ0 = (1, 10, 10, 1, 0.1)T . A prior of the hyperparameter

vector has been selected as

π(θ) = π(σf )π(σx)π(σy)π(σt)π(σw),
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where π(σf ) = π(σx) = π(σy) = π(σt) = Γ(5, 2), and π(σw) = Γ(5, 0.2). Γ(a, b) is a Gamma

distribution with mean ab and variance ab2 in which all possible values are positive. The

gradient method was used to find the MAP estimate of the hyperparameter vector.
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Figure 3.1: Snap shots of the realized Gaussian process at (a) t = 1, (b) t = 10, and (c)
t = 20.

For simplicity, we assumed that the global basis is the same as the model basis. We

considered a situation where at each time, measurements of agents are transmitted to a

leader (or a central station) that uses our Gaussian learning algorithm and sends optimal

control back to individual agents for next iteration to improve the quality of the estimated

covariance function. The maximum distance for agents to move in one time step was chosen

to be 1 for both x and y directions. The A-optimality criterion was used for optimal sampling.

For both proposed and random strategies, Monte Carlo simulations were run for 100

times and the statistical results are shown in Fig. 3.2. The estimates of the hyperparameters

(shown in circles and error bars) tend to converge to the true values (shown in dotted lines)

for both strategies. As can be seen, the proposed scheme (Fig. 3.2(a)) outperforms the

random strategy (Fig. 3.2(b)) in terms of the A-optimality criterion.

Fig. 3.3 shows the predicted field along with agents’ trajectories at time t = 1 and t = 20

for one trial. As shown in Fig. 3.1(a) and Fig. 3.3(a), at time t = 1, the predicted field is far
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Figure 3.2: Monte Carlo simulation results (100 runs) for a spatio-temporal Gaussian process
using (a) the random sampling strategy, and (b) the adaptive sampling strategy. The esti-
mated hyperparameters are shown in blue circles with error-bars. The true hyperparameters
that used for generating the process are shown in red dashed lines.

from the true field due to the inaccurate hyperparameters estimation and small number of

observations. As time increases, the predicted field will be closer to the true field due to the

improved quality of the estimated the covariance function and the cumulative observations.

As expected, at time t = 20, the quality of the predicted field is very well near the sampled

positions as shown in Fig. 3.3-(b). With 100 observations, the running time is around 30s

using Matlab, R2008a (MathWorks) in a PC (2.4 GHz Dual-Core Processor). No attempt

has been made to optimize the code. After converging to a good estimate of θ, agents can
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switch to a decentralized configuration and collect samples for other goals such as peak

tracking and prediction of the process [8–10].
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Figure 3.3: Predicted fields along with agents’ trajectories at (a) t = 1 and (b) t = 20.

3.3.2 Time-varying covariance functions

To illustrate the adaptability of the proposed strategy to time-varying covariance functions,

we introduce a Gaussian process defined by the following covariance function. The time-

varying covariance function is modeled by a time-varying weighted sum of two known co-

variance functions C1(·, ·) and C2(·, ·) such as

C(·, ·) = λ(t)C1(·, ·) + (1− λ(t))C2(·, ·), (3.4)

where λ(t) ∈ [0, 1] is a time-varying weight factor that needs to be estimated. In the

simulation study, C1(·, ·) is constructed with σf = 1, σx = 0.2, σy = 0.1, σt = 8, and

σw = 0.1; and C2(·, ·) is with σf = 1, σx = 0.1, σy = 0.2, σt = 8, and σw = 0.1.

This Gaussian process defined in (3.4) with theses particular C1 and C2 effectively models

hyperparameter changes in x and y directions.

32



To improve the adaptability, the mobile sensor network uses only observations sampled

during the last 20 iterations for estimating λ(t) online. The true λ(t) and the estimated λ(t)

are shown in Fig. 3.4(a), and (b), respectively. From Fig. 3.4, it is clear that the weighting

factor λ(t) can be estimated accurately after some delay about 5–8 iterations. The delay is

due to using the truncated observations that contain past observations since the time-varying

covariance function changes continuously in time.
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Figure 3.4: (a) Weighting factor λ(t) and (b) the estimated λ(t).

3.3.3 Advection-diffusion process

We apply our approach to a spatio-temporal process generated by physical phenomena (ad-

vection and diffusion). This work can be viewed as a statistical modeling of a physical

process, i.e., as an effort to fit a Gaussian process to a physical advection-diffusion process

in practice. The advection-diffusion model developed in [29] was used to generate the ex-

perimental data numerically. An instantaneous release of Qkg of gas occurs at a location

(x0, y0, z0). This is then spread by the wind with mean velocity u = (ux, 0, 0)T Assuming

that all measurements are recorded at a level z = 0, and the release occurs at a ground level

33



Table 3.2: Parameters used in simulation.
Parameter Notation Unit Value

Number of agents Ns - 5
Sampling time ts min 5

Initial time t0 min 100

Gas release mass Q kg 106

Wind velocity in x axis ux m/min 0.5

Eddy diffusivity in x axis Kx m2/min 20

Eddy diffusivity in y axis Ky m2/min 10

Eddy diffusivity in z axis Kz m2/min 0.2
Location of explosion x0 m 2
Location of explosion y0 m 5
Location of explosion z0 m 0

Sensor noise level σw kg/m3 0.1

(i.e., z0 = 0), the concentration C at an arbitrary location (x, y, 0) and time t is described

by the following analytical solution [11]:

C(x, y, 0, t) =

Q exp

(
− (∆x−u∆t)2

4Kx∆t − ∆y2

4Ky∆t

)
4π

3
2 (KxKyKz)

1
2 (∆t)

3
2

(3.5)

where ∆x = x − x0, ∆y = y − y0, and ∆t = 5(t − 1) + t0. The parameters used in the

simulation study are shown in Table 3.2. Notice that this process generates an anisotropic

concentration field with parameters Kx = 20m2/min and Ky = 10m2/min as in Table 3.2.

The fields at time t = 1 and t = 10 are shown in Fig. 3.5. Notice the center of the

concentration moved. In this case, N = 5 mobile sensing agents were initialized at random

positions in a surveillance region Q = [−50, 150]× [−100, 100].

The initial values for the algorithm was chosen to be θ0 = (100, 100, 100)T where we

assumed σf = 1 and σw = 0.1. For this application, we did not assume any prior knowledge

about the covariance function. Hence, the MAP estimator was the same as the ML estimator.
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Figure 3.5: Snap shots of the advection-diffusion process at (a) t = 1 and (b) t = 10.

The gradient method was used to find the ML estimate.

We again assumed that the global basis is the same as the model basis and assumed all

agents have the same level of measurement noises for simplicity. In our simulation study,

agents start sampling at t0 = 100min and take measurements at time t with a sampling

time of ts = 5min as in Table 3.2.

Monte Carlo simulations were run for 100 times, and Fig. 3.6 shows the estimated σx,

σy, and σt with (a) the random sampling strategy and (b) the optimal sampling strategy,

respectively. With 100 observations, the running time at each time step is around 20s

using Matlab, R2008a (MathWorks) in a PC (2.4 GHz Dual-Core Processor). No attempt

has been made to optimize the code. As can be seen in Fig. 3.6, the estimates of the

hyperparameters tend to converge to similar values for both strategies. Clearly, the proposed

strategy outperforms the random sampling strategy in terms of the estimation error variance.
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Figure 3.6: Simulation results (100 runs) for a advection-diffusion process. The estimated
hyperparameters with (a) random sampling and (b) optimal sampling.
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Chapter 4

Prediction with Known Covariance

Function

The main reason why the nonparametric prediction using Gaussian processes is not popular

for resource-constrained multi-agent systems is the fact that the optimal prediction must

use all cumulatively measured values in a non-trivial way [23, 38]. In this case, a robot

needs to compute the inverse of the covariance matrix whose size grows as it collects more

measurements. With this operation, the robot will run out of memory quickly. Therefore,

it is necessary to develop a class of prediction algorithms using spatio-temporal Gaussian

processes under a fixed memory size.

The space-time Kalman filter model proposed in [18,40] and utilized in [9] partially solved

this problem by modeling the spatio-temporal field as a sum of a zero-mean Gaussian process,

which is uncorrelated in time, and a time-varying mean function (see (6) and (12) in [18]).

The zero-mean Gaussian process represents a spatial structure that is independent from one

time point to the next as described in [18] by assuming that the dynamical environmental
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process is governed by a relatively large time scale. This formulation in turn provides the

Markov property in time, which makes the optimal prediction recursive in time. However,

the value of a temporal mean function at a point (realized by a stable linear system) consists

of a linear sum of colored white noises, and transient responses that converge to zero values

exponentially fast [9], which can not represent a wide range of spatio-temporal phenomena

in a fully nonparametric manner [51].

A simple way to cope with this dilemma is to design a robot so that it predicts a spatio-

temporal Gaussian process at the current (or future) time based on truncated observations,

e.g., the last m observations from a total of n of observations as shown in Fig. 4.1. This

seems intuitive in the sense that the last m observations are more correlated with the point of

interest than the other r = n−m observations (Fig. 4.1) in order to predict values at current

or future time. Therefore, it is very important to analyze the performance degradation and

trade-off effects of prediction based on truncated observations compared to the one based on

all cumulative observations.

The second motivation is to design and analyze distributed sampling strategies for resource-

constrained mobile sensor networks. Developing distributed estimation and coordination al-

gorithms for multi-agent systems using only local information from local neighboring agents

has been one of the most fundamental problems in mobile sensor networks [10, 13, 28, 46,

52, 68, 69]. Emphasizing practicality and usefulness, it is critical to synthesize and analyze

distributed sampling strategies under practical constraints such as measurement noise and

a limited communication range.

In Section 4.1, we propose to use only truncated observations to bound the computational

complexity. The error bounds in using truncated observations are analyzed for prediction at
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sy

sx

1 2 3 tt − η time

r = n − m observations m observations

x∗

Figure 4.1: Robot predicts a scalar value at x∗ (denoted by a red star) based on cumulative
n spatio-temporal observations (denoted by blue crosses). Near-optimal prediction can be
obtained using truncated observations, e.g., the last m observations. In this case, x =
(sx, sy, t)

T .

a single point in Section 4.1.1. A way of selecting a temporal truncation size is also discussed

in Section 4.1.2. To improve the prediction quality, centralized and distributed navigation

strategies for mobile sensor networks are proposed in Section 4.2. In Section 4.3, simulation

results illustrate the usefulness of our schemes under different conditions and parameters.

4.1 GPR with Truncated Observations

As mentioned in above, one drawback of Gaussian process regression is that its computa-

tional complexity and memory space increase as more measurements are collected, making

the method prohibitive for robots with limited memory and computing power. To overcome

this increase in complexity, a number of approximation methods for Gaussian process re-

gression have been proposed. In particular, the sparse greedy approximation method [59],

the Nystrom method [63], the informative vector machine [33], the likelihood approxima-
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tion [57], and the Bayesian committee machine [61] have been shown to be effective for many

problems. However, these approximation methods have been proposed without theoretical

justifications.

In general, if measurements are taken from nearby locations (or space-time locations),

correlation between measurements is strong and correlation exponentially decays as the

distance between locations increases. If the correlation function of a Gaussian process has

this property, intuitively, we can make a good prediction at a point of interest using only

measurements nearby. In the next subsection, we formalize this idea and provide a theoretical

foundation for justifying Gaussian process regression with truncated observations proposed

in this chapter.

4.1.1 Error bounds in using truncated observations

Consider a zero-mean Gaussian process

z(x) ∼ GP(0, σ2
fC(x, x′)). (4.1)

Notice that we denote the covariance function as σ2
fC(x, x′) in which C(x, x′) := Corr(z(x), z(x′))

is the correlation function. Recall that the predictive distribution of z∗ := z(x∗) at a point

of interest x∗ given observations y = (y(1), · · · , y(n))T is Gaussian, i.e.,

z∗|y ∼ N
(
µz∗|y, σ

2
z∗|y
)
, (4.2)

where

µz∗|y = kTC−1y, (4.3a)
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and

σ2
z∗|y = σ2

f (1− kTC−1k). (4.3b)

In (4.3a) and (4.3b), we have defined C := Corr(y, y) ∈ Rn×n, and k := Corr(y, z∗) ∈ Rn.

Notice that in this chapter, we assume the hyperparameter vector θ ∈ Rm is given, and

hence we neglect the explicit conditioning on θ.

Without loss of generality, we assume that the first m out of n observations are used to

predict z∗. Let r = n − m, ym = (y(1), · · · , y(m))T , yr = (y(m+1), · · · , y(n))T . Then the

covariance matrix K ∈ Rn×n and k ∈ Rn can be represented as

K =

Km Kmr

KT
mr Kr

 , k =

km
kr

 .

Using truncated observations, we can predict the value z∗ as

µz∗|ym = kTmC
−1
m ym, (4.4)

with a prediction error variance given by

σ2
z∗|ym = σ2

f (1− kTmC−1
m km), (4.5)

where Cm = Km + σ2
wI ∈ Rm×m.

The following result shows the gap between predicted values using truncated measure-

ments and all measurements.
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Theorem 4.1.1. Consider a Gaussian process z(x) ∼ GP(0, σ2
fC(x, x′)), we have

µz∗|y − µz∗|ym = (kr −KT
mrC

−1
m km)T (Cr −KT

mrC
−1
m Kmr)

−1(yr −KT
mrC

−1
m ym), (4.6a)

and

σ2
z∗|y − σ

2
z∗|ym = −σ2

f (kr −KT
mrC

−1
m km)T (Cr −KT

mrC
−1
m Kmr)

−1(kr −KT
mrC

−1
m km) < 0.

(4.6b)

Proof. We can rewrite (4.3a) as

µz∗|y =

km
kr


T  Cm Kmr

KT
mr Cr


−1 ym

yr

 , (4.7a)

and (4.3b) as

σ2
z∗|y = σ2

f

1−

km
kr


T  Cm Kmr

KT
mr Cr


−1 km

kr


 . (4.7b)

Using the identity based on matrix inversion lemma (see Appendix A.2), (4.7a) and (4.7b)

become

µz∗|y = kTmC
−1
m ym

+ (kr −KT
mrC

−1
m km)T (Cr −KT

mrC
−1
m Kmr)

−1(yr −KT
mrC

−1
m ym),
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and

σ2
z∗|y = σ2

f

(
1− kTmC−1

m km

)
− σ2

f (kr −KT
mrC

−1
m km)T (Cr −KT

mrC
−1
m Kmr)

−1(kr −KT
mrC

−1
m km).

Hence, by the use of (4.4) and (4.5), we obtain (4.6a) and 4.6b.

Corollary 4.1.2. The prediction error variance σ2
z∗|ym is a non-increasing function of m.

Proof. The proof is straightforward from Theorem 4.1.1 by letting n = m+ 1.

Considering an ideal case in which the measurements ym are not correlated with the

remaining measurements yr, we have the following result.

Proposition 4.1.3. Under the assumptions used in Theorem 4.1.1 and for given yr ∼

N (0, Cr), if Kmr = 0, then µz∗|y−µz∗|ym = kTr C
−1
r yr and σ2

z∗|y−σ
2
z∗|ym = −σ2

fk
T
r C
−1
r kr.

In addition, we also have

∣∣∣µz∗|y − µz∗|ym∣∣∣ ≤ ∥∥∥kTr C−1
r

∥∥∥√rȳ(p1)

with a non-zero probability p1. For a desired p1, we can find ȳ(p1) by solving

p1 =
∏

1≤i≤r

1− 2Φ

− ȳ(p1)

λ
1/2
i

 , (4.8)

where Φ is the cumulative normal distribution and {λi | i = 1, · · · , r} are the eigenvalues of

Cr = UΛUT with a unitary matrix U , i.e., Λ = diag(λ1, · · · , λr).

Proof. The first statement is straightforward from Theorem 4.1.1.
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For the second statement, we can represent yr as yr = C
1/2
r u = UΛ1/2u = Uỹ, where u

is a vector of independent standard normals and Cr = UΛUT and C
1/2
r = UΛ1/2. By using

the Cauchy-Schwarz inequality and norm inequalities, we have

∣∣∣µz∗|y − µz∗|ym∣∣∣ =
∣∣∣kTr C−1

r yr

∣∣∣ =
∣∣∣kTr C−1

r Uỹ
∣∣∣

≤
∥∥∥kTr C−1

r

∥∥∥ ‖Uỹ‖ =
∥∥∥kTr C−1

r

∥∥∥ ‖ỹ‖
≤
∥∥∥kTr C−1

r

∥∥∥√r ‖ỹ‖∞ ≤ ∥∥∥kTr C−1
r

∥∥∥√rȳ.
Recall that we have u ∼ N (0, I) and ỹ ∼ N (0,Λ), where Λ = diag(λ1, · · · , λr). Then we

can compute the probability p1 = Pr(‖ỹ‖∞ ≤ ȳ) as follows.

p1 = Pr

(
max

1≤i≤r

∣∣∣ỹ(i)
∣∣∣ ≤ ȳ

)
= Pr

(
max

1≤i≤r

∣∣∣λ1/2
i ui

∣∣∣ ≤ ȳ

)

=
∏

1≤i≤r
Pr
(
λ

1/2
i |ui| ≤ ȳ

)
=

∏
1≤i≤r

Pr

|ui| ≤ ȳ

λ
1/2
i


=

∏
1≤i≤r

1− 2Φ

− ȳ

λ
1/2
i

 ,

where Φ(·) is the cumulative standard normal distribution.

Hence, if the magnitude of Kmr is small, then the truncation error from using truncated

measurements will be close to kTr C
−1
r kr. Furthermore, if we want to reduce this error, we

want kr to be small, i.e., when the covariance between z∗ and the remaining measurements

yr is small. In summary, if the following two conditions are satisfied: (1) the correlation be-

tween measurements ym and the remaining measurements yr is small and (2) the correlation

between z∗ and the remaining measurements yr is small, then the truncation error is small

and µz∗|ym can be a good approximation to µz∗|y. This idea is formalized in a more general
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setting in the following theorem.

Theorem 4.1.4. Consider a zero-mean Gaussian process z(x) ∼ N (0, σ2
fC(x, x′)) with the

correlation function

C(x, x′) = exp

{
−
∥∥x− x′∥∥2

2`2

}
, (4.9)

and assume that we have collected n observations, y(1), · · · , y(n). Suppose that Kmr is small

enough such that
∥∥∥KT

mrC
−1
m km

∥∥∥ ≤ ‖kr‖, and
∥∥∥KT

mrC
−1
m ym

∥∥∥ ≤ δ2 ‖yr‖ and for some δ2 > 0.

Given 0 < p2 < 1, choose ȳ(p2) such that maxni=m+1

∣∣∣y(i)
∣∣∣ < ȳ(p2) with probability p2 and

ε > 0 such that ε < 2γr(1 + δ2)ȳ(p2) where γ is the signal-to-noise ratio. For x∗, if the last

r = n−m data points satisfy

∥∥∥x(i) − x∗
∥∥∥2

> 2σ2
` log

(
2γ

1

ε
r(1 + δ2)ȳ(p2)

)
,

then, with probability p2, we have

∣∣∣µz∗|y − µz∗|ym∣∣∣ < ε.

Proof. Let A = C−1
m Kmr and B = KT

mrC
−1
m Kmr for notational convenience. Then

∣∣∣µz∗|y − µz∗|ym∣∣∣ =
∥∥∥(kTr − kTmA)(Cr −B)−1(yr − AT ym)

∥∥∥
≤
∥∥∥kTr − kTmA∥∥∥∥∥∥(Cr −B)−1(yr − AT ym)

∥∥∥
≤
∥∥∥kTr − kTmA∥∥∥× (

∥∥∥(Cr −B)−1yr

∥∥∥+
∥∥∥(Cr −B)−1AT ym

∥∥∥)

≤ 2 ‖kr‖
(∥∥∥(Cr −B)−1yr

∥∥∥+
∥∥∥(Cr −B)−1AT ym

∥∥∥)
Since Kr is positive semi-definite, and Cm is positive definite, we haveKr − B is positive
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semi-definite. Then we have

(Cr −B)−1 = (Kr + 1/γI −B)−1 � γI.

Combining this result, we get

∣∣∣µz∗|y − µz∗|ym∣∣∣ ≤ 2γ ‖kr‖ (‖yr‖+
∥∥∥AT ym∥∥∥)

≤ 2γ(1 + δ2) ‖kr‖ ‖yr‖

≤ 2γ(1 + δ2)
√
rCmax ‖yr‖ ,

where C(x(i), x∗) ≤ Cmax for i ∈ {m+ 1, · · · , n}. Define ȳ(p2) such that maxni=m+1

∣∣∣y(i)
∣∣∣ ≤

ȳ(p2) with probability p2. Then, with probability p2, we have

∣∣∣µz∗|y − µz∗|ym∣∣∣ ≤ 2γr(1 + δ2)Cmaxȳ(p2).

Hence, for ε > 0, if

Cmax <
ε

2γr(1 + δ2)ȳ(p2)
(4.10)

with probability p2, we have ∣∣∣µz∗|y − µz∗|ym∣∣∣ < ε.

Let l2 = min
∥∥∥x(i) − x∗

∥∥∥2
for any i ∈ {m+ 1, · · · , n}. Then (4.10) becomes, with probability
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p2,

exp

(
− l2

2σ2
`

)
≤ Cmax <

ε

2γr(1 + δ2)ȳ(p2)

l2 > −2σ2
` log

(
ε

2γr(1 + δ2)ȳ(p2)

)

For ε < 2γr(1 + δ2)ȳ(p2), we have

l2 > 2σ2
` log

(
2γ

1

ε
r(1 + δ2)ȳ(p2)

)
,

and this completes the proof.

Remark 4.1.5. The last part of Proposition 4.1.3 and Theorem 4.1.4 seek a bound for

the difference between predicted values using all and truncated observations with a given

probability since the difference is a random variable.

Example 4.1.6. We provide an illustrative example to show how to use the result of The-

orem 4.1.4 as follows. Consider a Gaussian process defined in (4.1) and (4.9) with σ2
f = 1,

σ` = 0.2, and γ = 100. If we have any randomly chosen 10 samples (m = 10) within (0, 1)2

and we want to make prediction at x∗ = (1, 1)T . We choose ȳ(p2) = 2σf = 2 such that

maxni=m+1

∣∣∣y(i)
∣∣∣ < ȳ(p2) with probability p2 = 0.95. According to Theorem 4.1.4, if we have

an extra sample x(11) (r = 1) at (2.5, 2.5)T , which satisfies the condition
∥∥∥x(11) − x∗

∥∥∥ > 0.92,

then the difference in prediction using with and without the extra sample is less than ε = 0.01

with probability p2 = 0.95.

Example 4.1.7. Motivated by the results presented, we take a closer look at the usefulness

of using a subset of observations from a sensor network for a particular realization of the

Gaussian process. We consider a particular realization shown in Fig. 4.2, where crosses
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represent the sampling points of a Gaussian process defined in (4.1) and (4.9) with σ2
f = 1,

σ` = 0.2, and γ = 100 over (0, 1)2. We have selected ym as the collection of observations

(blue crosses) within the red circle of a radius R = 2σ` = 0.4 centered at a point (a red star)

located at x∗ = (0.6, 0.4)T . If a measurement is taken outside the red circle, the correlation

between this measurement and the value at x∗ decreases to 0.135. The rest of observations

(blue crosses outside of the red circle) are selected as yr. The prediction results are shown

in Table 4.1. In this particular realization, we have z∗ = 1.0298. It can be seen that the

prediction means and variances using only ym are close to the one using all observations.

We also compute the prediction at x∗ with yr which is far from the true value with a large

variance.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.2: Example of the selection of truncated observations. The parameters used in the
example are: σ2

f = 1, σ` = 0.2, σw = 0.1.

Table 4.1: Prediction means and variances using y, ym, and yr.

n = 20 m = 12 r = 8

µz∗|y 1.0515 1.0633 0.3491

σ2
z∗|y 0.0079 0.0080 0.9364
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The result of Theorem 4.1.4 and Examples 4.1.6 and 4.1.7 all suggest the usage of obser-

vations that are highly correlated with the point of interest.

4.1.2 Selecting temporal truncation size

In previous subsection, we have obtained the error bounds for the prediction at a single

point. In general, the observations made close to that point are more informative than the

others.

Consider a zero-mean spatio-temporal Gaussian process

z(s, t) ∼ GP(0, σ2
fC(s, t, s, t′)), (4.11)

with covariance function

C(x, x′) = Cs(s, s
′)Ct(t, t′)

= exp

− ∑
`∈{x,y}

(s` − s′`)2

2σ2
`

 exp

(
−(t− t′)2

2σ2
t

)
.

(4.12)

We define η as the truncation size, and our objective is to use only the observations made

during the last η time steps, i.e., from time t− η+ 1 to time t, to make prediction at time t.

In general, a small η yields faster computation but lower accuracy and a large η yields slower

computation but higher accuracy. Thus, the truncation size η should be selected according

to a trade-off relationship between accuracy and efficiency.

Next, we show an approach to select the truncation size η in an averaged performance

sense. Given the observations and associated sampling locations and times (denoted by D

which depends on η), the generalization error εx∗,D at a point x∗ = (sT∗ , t∗)T is defined as
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the prediction error variance σ2
z∗|D [60, 64]. For a given t∗ not knowing user specific s∗ a

priori, we seek to find η that guarantees a low prediction error variance uniformly over the

entire space Q, i.e., we want εD = Es∗ [σ2
z∗|D] to be small [60, 64]. Here Es∗ denotes the

expectation with respect to the uniform distribution of s∗.

According to Mercer’s Theorem, we know that the kernel function Cs can be decomposed

into

Cs(s, s
′) =

∞∑
i=1

λiφi(s)φi(s
′),

where {λi} and {φi(·)} are the eigenvalues and corresponding eigenfunctions, respectively

[60]. In a similar way shown in [60], the input dependent generalization error εD for our

spatio-temporal Gaussian process can be obtained as

εD = Es∗
[
σ2
f

(
1− tr

(
kkT (K + 1/γI)−1

))]
= σ2

f

(
1− tr

(
Es∗ [kk

T ](K + 1/γI)−1
))

.

(4.13)

We have

Es∗ [kk
T ] = ΨΛ2ΨT ◦ ktkTt , (4.14)

and

K = ΨΛΨT ◦KtKT
t , (4.15)

where (Ψ)ij = φj(si), (kt)j = Ct(t
(j), t∗), (Kt)ij = Ct(t

(i), t(j)), and (Λ)ij = λiδij . δij

denotes the Dirac delta function. ◦ denotes the Hadamard (element-wise) product [60].

Hence, the input-dependent generalization error εD can be computed analytically by plugging

(4.14) and (4.15) into (4.13). Notice that εD is a function of inputs (i.e., the sampling

locations and times). To obtain an averaged performance level without the knowledge of the
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algorithmic sampling strategy a priori, we use an appropriate sampling distribution which

models the stochastic behavior of the sampling strategy. Thus, further averaging over the

observation set D with the samping distribution yields ε(η) = ED[εD] which is a function of

the truncation size η only. This averaging process can be done using Monte Carlo methods.

Then η can be chosen based on the averaged performance measure ε(η) under the sampling

distribution.

An alternative way, without using the eigenvalues and eigenfunctions, is to directly and

numerically compute εD = Es∗ [σ2
z∗|D] uniformly over the entire space Q with random sam-

pling positions at each time step. An averaged generalization error with respect to the

temporal truncation size can be plotted by using such Monte Carlo methods. Then the tem-

poral truncation size η can be chosen such that a given level of the averaged generalization

error is achieved.

Example 4.1.8. Consider a problem of selecting a temporal truncation size η for spatio-

temporal Gaussian process regression using observations from 9 agents. The spatio-temporal

Gaussian process is defined in (4.1) and (4.9) with σ2
f = 1, σx = σy = 0.2, σt = 5, and

γ = 100 over (0, 1)2. The Monte Carlo simulation result is shown in Fig. 4.3. The achieved

generalization error εD are plotted in blue circles with error-bars with respect to the temporal

truncation size η. As can be seen, an averaged generalization error (in blue circles) under

0.1 can be achieved by using observations taken from last 10 time steps.

Notice that the prediction error variances can be significantly minimized by optimally

selecting the sampling positions. Hence, the selected η guarantees at least the averaged

performance level of the sensor network when the optimal sampling strategy is used.

By using a fixed truncation size η, the computational complexity and memory space
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Figure 4.3: Example of selecting a temporal truncation size η. The parameters used in the
example are: σ2

f = 1, σx = σy = 0.2, σt = 5, γ = 100.

required for making prediction (i.e., evaluating (4.3a) and (4.3b)) do not increase as more

measurements are collected. Our next objective is to improve the quality of the prediction

by carefully selecting the future sampling positions for the mobile sensor network.

4.2 Optimal Sampling Strategies

At time t, the goal of the mobile sensor network is to make prediction at pre-specified points of

interest
{
pj = (vj , τj) | j ∈ J

}
indexed by J := {1, · · · ,M}. From here on, points of interest

will be referred to as target points. The introduction of target points is motivated by the fact

that the potential environmental concerns should be frequently monitored. For instance, the

target points can be assigned at the interface of a factory and a lake, sewage systems, or

polluted beaches. Thus, the introduction of target points, which can be arbitrarily specified

by a user, provides a flexible way to define a geometrical shape of a subregion of interest in

a surveillance region. Notice that the target points can be changed by a user at any time.

In particular, we allow that the number of target points M can be larger than that of agents
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N , which is often the case in practice. The prediction of zj := z(pj) of the Gaussian process

at a target point pj can be obtained as in (4.3a) and (4.3b).

4.2.1 Centralized navigation strategy

Consider the case in which a central station receives collective measurements from all N

mobile sensors and performs the prediction. Let the central station discard the oldest set of

measurements yt−η+1 after making the prediction at time t. At the next time index t + 1,

using the remained observations yt−η+2:t in the memory along with new measurements yt+1

from all N agents at time t+ 1, the central station will predict z(s∗, t∗) evaluated at target

points
{
pj | j ∈ J

}
. Hence, agents should move to the most informative locations for taking

measurements at time t+ 1 [32].

For notational simplicity, let ȳ ∈ RN(η−1) be the remained observations, i.e., ȳ :=

yt−η+2:t, and ỹ ∈ RN be the measurements that will be taken at positions q̃ = (q̃T1 , · · · , q̃TN )T ∈

QN and time t+ 1. In contrast to the information-theoretic control strategies using the con-

ditional entropy or the mutual information criterion [14, 32], in this chapter, the mobility

of the robotic sensors will be designed such that they directly minimize the average of the

prediction error variances over target points, i.e.,

Jc(q̃) =
1

|J |
∑
j∈J

σ2
zj |ȳ,ỹ(q̃), (4.16)

where |J | = M is the cardinality of J . The prediction error variance at each of M target

points is given by

σ2
zj |ȳ,ỹ(q̃) = σ2

f

(
1− kj(q̃)TC(q̃)−1kj(q̃)

)
, ∀j ∈ J ,
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where kj(q̃) and C(q̃) are defined as

kj(q̃) =

Corr(ȳ, zj)

Corr(ỹ, zj)

 , C(q̃) =

Corr(ȳ, ȳ) Corr(ȳ, ỹ)

Corr(ỹ, ȳ) Corr(ỹ, ỹ)

 .

In order to reduce the average of prediction error variances over target points
{
pj | j ∈ J

}
,

the central station solves the following optimization problem

q(t+ 1) = arg min
q̃∈QN

Jc(q̃). (4.17)

Notice that in this problem set-up, we only consider the constraint that robots should move

within the region Q. However, the mobility constraints such as the maximum distance a

robot can move between two time indices or the maximum speed a robot can travel, can be

incorporated as additional constraints in the optimization problem [13].

The sensor network configuration q(t) can be controlled by a gradient descent algorithm

such that q(t) can move to a local minimum of Jc for the prediction at time t + 1. The

gradient descent control algorithm is given by

dq(τ)

dτ
= −∇qJc(q(τ)), (4.18)

where ∇xJc(x) denotes the gradient of Jc(x) at x. A critical point of Jc(q) obtained in (4.18)

will be q(t + 1). The analytical form of ∂σ2
zj |ȳ,ỹ

(q̃)/∂q̃i,`, where q̃i,` is the `-th element in

q̃i ∈ Q, can be obtained by

∂σ2
zj |ȳ,ỹ

(q̃)

∂q̃i,`
= kTj C

−1

(
∂C

∂q̃i,`
C−1kj − 2

∂kj
∂q̃i,`

)
, ∀i ∈ I, ` ∈ {1, 2} .
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Other more advanced non-linear optimization techniques may be applied to solve the opti-

mization problem in (4.17) [3].

The centralized sampling strategy for the mobile sensor network with the cost function Jc

in (4.16) is summarized in Table 4.2. Notice that the prediction in the centralized sampling

strategy uses temporally truncated observations. A decentralized version of the centralized

sampling strategy in Table 4.2 may be developed using the approach proposed in [42] in

which each robot incrementally refines its decision while intermittently communicating with

the rest of the robots.

4.2.2 Distributed navigation strategy

Now, we consider a case in which each agent in the sensor network can only communicate with

other agents within a limited communication range R. In addition, no central station exists.

In this section, we present a distributed navigation strategy for mobile agents that uses only

local information in order to minimize a collective network performance cost function.

The communication network of mobile agents can be represented by an undirected graph.

Let G(t) := (I, E(t)) be an undirected communication graph such that an edge (i, j) ∈ E(t)

if and only if agent i can communicate with agent j at time t. We define the neighborhood

of agent i at time t by Ni(t) := {j ∈ I | (i, j) ∈ E(t)}. In particular, we have

Ni(t) =
{
j ∈ I |

∥∥qi(t)− qj(t)∥∥ < R, j 6= i
}
.

Note that in our definition above, “ < ” is used instead of “ ≤ ” in deciding the communi-

cation range.

At time t ∈ Z>0, agent i collects measurements
{
yj(t) | j ∈ {i} ∪ Ni(t)

}
sampled at

55



Table 4.2: Centralized sampling strategy at time t.

Input:
(1) Number of agents N
(2) Positions of agents {qi(t) | i ∈ I}
(3) Hyperparameters of the Gaussian process θ = (σ2

f , σx, σy, σt)
T

(4) Target points
{
pj | j ∈ J

}
(5) Truncation size η
Output:

(1) Prediction at target points
{
µzj |yt−η+1:t

| j ∈ J
}

(2) Prediction error variance at target points

{
σ2
zj |yt−η+1:t

| j ∈ J
}

For i ∈ I, agent i performs:

1: make an observation at current position qi(t), i.e., yi(t)
2: transmit the observation yi(t) to the central station

The central station performs:

1: collect the observations from all N agents, i.e., yt = (y1(t), · · · , yN (t))T

2: obtain the cumulative measurements, i.e., yt−η+1:t = (yTt−η+1, · · · , yTt )T

3: for j ∈ J do
4: make prediction at a target point pj

µzj |yt−η+1:t
= kTC−1y,

with a prediction error variance given by
σ2
zj |yt−η+1:t

= σ2
f (1− kTC−1k),

where y = yt−η+1:t, k = Corr(y, zj), and C = Corr(y, y)
5: end for
6: if t ≥ η then
7: discard the oldest set of measurements taken at time t− η + 1, i.e., yt−η+1
8: end if
9: compute the control with the remained data yt−η+2:t

q(t+ 1) = arg min
q̃∈QN Jc(q̃),

via
dq(τ)
dτ = −∇qJc(q(τ))

10: send the next sampling positions {qi(t+ 1)}Ni=1 (a critical point of Jc(q̃)) to all
N agents

For i ∈ I, agent i performs:

1: receive the next sampling position qi(t+ 1) from the central station
2: move to qi(t+ 1) before time t+ 1
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{
qj(t) | j ∈ {i} ∪ Ni(t)

}
from its neighbors and itself. The collection of these observations

and the associated sampling positions in vector forms are denoted by y
[i]
t and q

[i]
t , respectively.

Similarly, for notational simplicity, we also define the cumulative measurements that have

been collected by agent i from time t− η + 1 to t as

y
[i]
t−η+1:t =

(
(y

[i]
t−η+1)T , · · · , (y[i]

t )T
)T

.

In contrast to the centralized scheme, in the distributed scheme, each agent determines

the sampling points based on the local information from neighbors. After making the predic-

tion at time t, agent i discards the oldest set of measurements y
[i]
t−η+1. At time t+1, using the

remained observations y
[i]
t−η+2:t in the memory along with new measurements y

[i]
t+1 from its

neighbors in Ni(t+ 1), agent i will predict z(s∗, t∗) evaluated at target points
{
pj | j ∈ J

}
.

For notational simplicity, let ȳ[i] be the remained observations of agent i, i.e., ȳ[i] :=

y
[i]
t−η+2:t. Let ỹ[i] be the new measurements that will be taken at positions of agent i and its

neighbors q̃[i] ∈ Q|Ni(t+1)|+1, and at time t+1, where |Ni(t+1)| is the number of neighbors

of agent i at time t + 1. The prediction error variance obtained by agent i at each of M

target points (indexed by J ) is given by

σ2

zj |ȳ[i],ỹ[i](q̃
[i]) = σ2

f

(
1− k[i]

j (q̃[i])TC [i](q̃[i])−1k
[i]
j (q̃[i])

)
, ∀j ∈ J ,

where k
[i]
j (q̃[i]) and C [i](q̃[i]) are defined as

k
[i]
j (q̃[i]) =

Corr(ȳ[i], zj)

Corr(ỹ[i], zj)

 , C [i](q̃[i]) =

Corr(ȳ[i], ȳ[i]) Corr(ȳ[i], ỹ[i])

Corr(ỹ[i], ȳ[i]) Corr(ỹ[i], ỹ[i])

 . (4.19)
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The performance of agent i can be evaluated by the average of the prediction error variances

over target points, i.e.,

J [i](q̃[i]) =
1

|J |
∑
j∈J

σ2

zj |ȳ[i],ỹ[i](q̃
[i]), ∀i ∈ I.

One criterion to evaluate the network performance is the average of individual performance,

i.e.,

J(q̃) =
1

|I|
∑
i∈I

J [i](q̃[i]). (4.20)

However, the discontinuity of the function J occurs at the moment of gaining or losing

neighbors, e.g., at the set {
q̃ |
∥∥q̃i − q̃j∥∥ = R

}
.

A gradient decent algorithm for mobile robots that minimizes such J may produce hybrid

system dynamics and/or chattering behaviors when robots lose or gain neighbors.

Therefore, we seek to minimize an upper-bound of J that is continuously differentiable.

Consider the following function

σ̄2

zj |ȳ[i],ỹ[i](q̃
[i]) = σ2

f

(
1− k[i]

j (q̃[i])T C̄ [i](q̃[i])−1k
[i]
j (q̃[i])

)
, ∀j ∈ J , (4.21)

where C̄ [i](q̃[i]) is defined as

C̄ [i](q̃[i]) =

Corr(ȳ[i], ȳ[i]) Corr(ȳ[i], ỹ[i])

Corr(ỹ[i], ȳ[i]) Corr(ỹ[i], ỹ[i]) + C̃ [i](q̃[i])

 .

Notice that C̄ [i](q̃[i]) is obtained by adding a positive semi-definite matrix C̃ [i](q̃[i]) to the
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lower right block of C [i](q̃[i]) in (4.19), where

C̃ [i](q̃[i]) = diag
(

Φ(di1)−1, · · · ,Φ(di(|Ni(t+1)|+1))
−1
)
− 1

γ
I,

where dij :=
∥∥q̃i − q̃j∥∥ is the distance between agent i and agent j,∀j ∈ {i} ∪ Ni(t + 1).

Φ : [0, R) 7→ (0, γ] is a continuously differentiable function defined as

Φ(d) = γφ

(
d+ d0 −R

d0

)
, (4.22)

where

φ(h) =


1, h ≤ 0,

exp
(
−h2

1−h2

)
, 0 < h < 1.

An example of Φ(d) where γ = 100, R = 0.4, and d0 = 0.1 is shown in the red dotted

line in Fig. 4.4. Notice that if Φ(d) = γ is used (the blue solid line in Fig. 4.4), we have

C̄ [i](q̃[i]) = C [i](q̃[i]). We then have the following result.

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

d

Φ
(d

)

Figure 4.4: Function Φ(d) in (4.22) with γ = 100, R = 0.4, and d0 = 0.1 is shown in a red
dotted line. The function Φ(d) = γ is shown in a blue solid line.
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Proposition 4.2.1. σ̄2

zj |ȳ[i],ỹ[i]
(q̃[i]) is an upper-bound of σ2

zj |ȳ[i],ỹ[i]
(q̃[i]), ∀i ∈ I.

Proof. Let A := C [i](q̃[i]) and B := diag(0, C̃ [i](q̃[i])). The result follows immediately from

the fact that (A+B)−1 � A−1 for any A � 0 and B � 0.

Hence, we construct a new cost function as

Jd(q̃) =
1

|I|
∑
i∈I

1

|J |
∑
j∈J

σ̄2

zj |ȳ[i],ỹ[i](q̃
[i]). (4.23)

By Proposition 4.2.1, Jd in (4.23) is an upper-bound of J in (4.20).

Next, we show that Jd is continuously differentiable when agents gain or lose neighbors.

In doing so, we compute the partial derivative of Jd with respect to q̃i,`, where q̃i,` is the

`-th element in q̃i ∈ Q, as follows.

∂Jd(q̃)

∂q̃i,`
=

1

|I|
∑
k∈I

1

|J |
∑
j∈J

∂σ̄2

zj |ȳ[k],ỹ[k]
(q̃[k])

∂q̃i,`

=
1

|I|
∑

k∈{i}∪Ni

1

|J |
∑
j∈J

∂σ̄2

zj |ȳ[k],ỹ[k]
(q̃[k])

∂q̃i,`
, ∀i ∈ I, ` ∈ {1, 2} .

(4.24)

We then have the following.

Proposition 4.2.2. The cost function Jd in (4.23) is of class C1, i.e., it is continuously

differentiable.

Proof. We need to show that the partial derivatives of Jd with respect to q̃i,`,∀i ∈ I, ` ∈

{1, 2} exist and are continuous. Without loss of generality, we show that ∂Jd/∂q̃i,`, ∀` ∈
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{1, 2} is continuous at any point q̃∗ in the following boundary set defined by

Sik := {q̃ | dik = ‖q̃i − q̃k‖ = R} .

First, we consider a case in which q̃ /∈ Sik and dik < R, i.e., k ∈ Ni and i ∈ Nk. By

the construction of σ̄2

zj |ȳ[i],ỹ[i]
in (4.21) using (4.22), when we take the limit of the partial

derivative, as dik approaches R from below (as q̃ approaches q̃∗), we have that

lim
dik→R−

∂σ̄2

zj |ȳ[i],ỹ[i]
(q̃[i])

∂q̃i,`
=

∂σ̄2

zj |ȳ[i],ỹ[i]
(q̃[i]\q̃k)

∂q̃i,`
,

lim
dik→R−

∂σ̄2

zj |ȳ[k],ỹ[k]
(q̃[k])

∂q̃i,`
=

∂σ̄2

zj |ȳ[k],ỹ[k]
(q̃[k]\q̃i)

∂q̃i,`
= 0,

where q̃[a]\q̃b denotes the collection of locations of agent a and its neighbors excluding q̃b.

Hence we have

lim
dik→R−

∂Jd(q̃)

∂q̃i,`
=
∂Jd(q̃

∗)
∂q̃i,`

. (4.25)

Consider the other case in which q̃ /∈ Sik and dik > R, i.e., k /∈ Ni and i /∈ Nk. When dik

approaches R from above (as q̃ approaches q̃∗), we have

lim
dik→R+

∂σ̄2

zj |ȳ[i],ỹ[i]
(q̃[i])

∂q̃i,`
=

∂σ̄2

zj |ȳ[i],ỹ[i]
(q̃[i])

∂q̃i,`
,
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and hence

lim
dik→R+

∂Jd(q̃)

∂q̃i,`
=
∂Jd(q̃

∗)
∂q̃i,`

. (4.26)

Therefore, from (4.25) and (4.26), we have

lim
dik→R−

∂Jd(q̃)

∂q̃i,`
= lim
dik→R+

∂Jd(q̃)

∂q̃i,`
=
∂Jd(q̃

∗)
∂q̃i,`

.

This completes the proof due to Theorem 4.6 in [53].

By using Jd in (4.23), a gradient descent algorithm can be used to minimize the network

performance cost function Jd in (4.23) for the prediction at t+ 1.

dq(τ)

dτ
= −∇qJd(q(τ)). (4.27)

Note that the partial derivative in (4.24), which builds the gradient flow in (4.27), is a func-

tion of positions in ∪j∈Ni(t)Nj(t) only. This makes the algorithm distributed. A distributed

sampling strategy for agent i with the network cost function Jd in (4.23) is summarized in

Table 4.3. In this way, each agent with the distributed sampling strategy uses spatially and

temporally truncated observations.

4.3 Simulation

In this section, we apply our approach to a spatio-temporal Gaussian process with a covari-

ance function in (4.12). The Gaussian process was numerically generated through circulant
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embedding of the covariance matrix for the simulation [20]. The hyperparameters used in

the simulation were chosen to be θ = (σ2
f , σx, σy, σt)

T = (1, 0.2, 0.2, 5)T . The surveillance

region Q is given by Q = (0, 1)2. The signal-to-noise ratio γ = 100 is used throughout the

simulation which is equivalent to a noise level of σw = 0.1. In our simulation, N = 9 agents

sample at time t ∈ Z>0. The initial positions of the agents are randomly selected. The trun-

cation size η = 10 is chosen using the approach introduced in Section 4.1.2 that guarantees

the averaged performance level ε(η = 10) < 0.1 under a uniform sampling distribution (see

Example 4.1.8).

In the figures of simulation results, the target positions, the initial positions of agents,

the past sampling positions of agents, and the current positions of agents are represented by

white stars, yellow crosses, pink dots, and white circles with agent indices, respectively.

4.3.1 Gradient-based algorithm vs. exhaustive search algorithm

To evaluate the performance of the gradient-based algorithm presented in Section 4.2, we

compare it with the exhaustive search algorithm over sufficiently many grid points, which

guarantees the near-optimum. Due to the exponential complexity of the grid-based exhaus-

tive search algorithm as the number of agents increases, its usage for multiple robots is

prohibitive. Hence, we consider a simple case in which only one mobile agent samples and

makes prediction on 21 × 21 target points over Q. The grid points used in the exhaustive

search are the same as the target points, i.e., 21 × 21 grid points. The initial positions of

the agents for both cases were set to (0.2, 0.3)T . The prediction error variances at t = 5 for

the proposed algorithm and the exhaustive search algorithm are shown in Figs. 4.5-(a) and

(b), respectively. At time t = 5, the averaged prediction error variance over target points is
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0.636 which is close to 0.613 achieved by the exhaustive search. Therefore, this simulation

study shows that the performance of the gradient-based algorithm is comparable to that of

the exhaustive search algorithm for the given problem.

(a) Gradient-based algorithm (b) Exhaustive search algorithm

Figure 4.5: Prediction error variances at t = 5 achieved by (a) using the gradient-based
algorithm, and (b) using the exhaustive search algorithm. The trajectories of the agent are
shown in solid lines.

4.3.2 Centralized sampling scheme

Consider a situation where a central station has access to all measurements collected by

agents. At each time, measurements sampled by agents are transmitted to the central

station that uses the centralized navigation strategy and sends control commands back to

individual agents.

Case 1: First, we consider a set of fixed target points, e.g., 6 × 6 grid points on Q

at a fixed time t = 10. At each time step, the cost function Jc in (4.16), which is the

average of prediction error variances at target points, is minimized due to the proposed

centralized navigation strategy in Section 4.2.1. As a benchmark strategy, we consider
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a random sampling scheme in which a group of 9 agents takes observations at randomly

selected positions within the surveillance region Q.

In Fig. 4.6-(a), the blue circles represent the average of prediction error variances over

target points achieved by the centralized scheme, and the red squares indicate the average

of prediction error variances over target points achieved by the benchmark strategy. Clearly,

the proposed scheme produces lower averaged prediction error variances at target points as

time increases, which demonstrates the usefulness of our scheme.

Case 2: Next, we consider the same 6 × 6 grid points on Q as in case 1. However, at

time t, we are now interested in the prediction at the next sampling time t + 1. At each

time step, the cost function Jc is minimized. Fig. 4.6-(b) shows the average of prediction

error variances over target points achieved by the centralized scheme with truncation (in red

squares) and without truncation (in blue circles). With truncated observations, i.e., with

only observations obtained from latest η = 10 time steps, we are able to maintain the same

level of the averaged prediction error variances (around 0.05 in Fig. 4.6-(b)).

Fig. 4.7-(a), (c), and (e) show the true field, the predicted field, and the prediction

error variance at time t = 1, respectively. To see the improvement, the counterpart of the

simulation results at time t = 5 are shown in Fig. 4.7-(b), (d), and (f). At time t = 1, agents

have little information about the field and hence the prediction is far away from the true

field, which produces a large prediction error variance. As time increases, the prediction

becomes close to the true field and the prediction error variances are reduced due to the

proposed navigation strategy.

Case 3: Now, we consider another case in which 36 target points (plotted in Fig. 4.8 as

white stars) are evenly distributed on three concentric circles to form a ring shaped subregion
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of interest. As in case 2, we are interested in the prediction at the next time iteration t+ 1.

The average of prediction error variances over these target points at each time step achieved

by the centralized scheme with truncation (in red squares) and without truncation (in blue

circles) are shown in Fig. 4.6-(c). The prediction error variances at time t = 1 and t = 5 are

shown in Fig. 4.8-(a) and (b), respectively. It is shown that agents are dynamically covering

the ring shaped region to minimize the average of prediction error variances over the target

points.

4.3.3 Distributed sampling scheme

Consider a situation in which the sensor network has a limited communication range R,

i.e., Ni(t) :=
{
j ∈ I |

∥∥qi(t)− qj(t)∥∥ < R, j 6= i
}

. At each time t ∈ Z>0, agent i collects

measurements from itself and its neighbors Ni(t) and makes prediction in a distributed

fashion. The distributed strategy is used to navigate itself to move to the next sampling

position. To be comparable with the centralized scheme, the same target points as in case 2

of Section 4.3.2 are considered.

Fig. 4.9 shows that the cost function, which is an upper-bound of the averaged prediction

error variance over target points and agents, deceases smoothly from time t = 1 to t = 2 by

the gradient descent algorithm with a communication range R = 0.4. Significant decreases

occur whenever one of the agent gains a neighbor. Notice that the discontinuity of minimizing

J in (4.20) caused by gaining or losing neighbors is eliminated due to the construction of Jd

in (4.23). Hence, the proposed distributed algorithm is robust to gaining or losing neighbors.

The following study shows the effect of different communication range. Intuitively, the

larger the communication range is, the more information can be obtained by the agent and
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hence the better prediction can be made. Figs. 4.10-(a) and (b) show the average of prediction

error variances over all target points and agents in blue circles with error-bars indicating the

standard deviation among agents for the case R = 0.3 and R = 0.4, respectively. In both

cases, d0 = 0.1 in (4.22) was used. The average of prediction error variances is minimized

quickly to a certain level. It can be seen that the level of achieved averaged prediction error

variance with R = 0.4 is lower than the counterpart with R = 0.3.

Now, assume that each agent only predict the field at target points within radius R (local

target points). The average of prediction error variances, over only local target points and

agents, are also plotted in Fig. 4.10 in red squares with the standard deviation among agents.

As can be seen, the prediction error variances at local target points (the red squares) are

significantly lower than those for all target points (the blue circles).

Fig. 4.11 shows the prediction error variances obtained by agent 1 along with the edges

of the communication network for different communication range R and different time step

k. In Fig. 4.11, the target positions, the initial positions, and the current positions are

represented by white stars, yellow crosses, and white circles, respectively. Surprisingly, the

agents under the distributed navigation algorithm produce an emergent, swarm-like behavior

to maintain communication connectivity among local neighbors. Notice that this collective

behavior emerged naturally and was not generated by the flocking or swarming algorithm as

in [10].

This interesting simulation study (Fig. 4.11) shows that agents won’t get too close each

other since the average of prediction error variances at target points can be reduced by

spreading over and covering the target points that need to be sampled. However, agents

won’t move too far away each other since the average of prediction error variances can be
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reduced by collecting measurements from a larger population of neighbors. This trade-off is

controlled by the communication range. With the intertwined dynamics of agents over the

proximity graph, as shown in Fig. 4.11, mobile sensing agents are coordinated in each time

iteration in order to dynamically cover the target positions for better collective prediction

capability.
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Table 4.3: Distributed sampling strategy at time t.

Input:
(1) Number of agents N
(2) Positions of agents {qi(t) | i ∈ I}
(3) Hyperparameters of the Gaussian process θ = (σ2

f , σx, σy, σt)
T

(4) Target points
{
pj | j ∈ J

}
(5) Truncation size η
Output:

(1) Prediction at target points

{
µ
zj |y

[i]
t−η+1:t

| i ∈ I, j ∈ J
}

(2) Prediction error variances at target points

σ2

zj |y
[i]
t−η+1:t

| i ∈ I, j ∈ J


For i ∈ I, agent i performs:

1: make an observation at qi(t), i.e., yi(t)
2: transmit the observation to the neighbors in Ni(t)
3: collect the observations from neighbors in Ni(t), i.e., y[i](t)

4: obtain the cumulative measurements, i.e., y
[i]
t−η+1:t =(

(y
[i]
t−η+1)T , · · · , (y[i]

t )T
)T

5: for j ∈ J do
6: make prediction at a target point pj

µ
zj |y

[i]
t−η+1:t

= kTC−1y,

with a prediction error variance given by
σ2

zj |y
[i]
t−η+1:t

= σ2
f (1− kTC−1k),

where y = y
[i]
t−η+1:t, k = Corr(y, zj), and C = Corr(y, y)

7: end for
8: if t ≥ η then

9: discard the oldest set of measurements taken at time t− η + 1, i.e., y
[i]
t−η+1

10: end if
11: while t ≤ τ ≤ t+ 1 do

12: compute ∇q`J
[i] with the remained data y

[i]
t−η+2

13: send ∇q`J
[i] to agent ` in Ni(τ)

14: receive ∇qiJ
[`] from all neighbors in Ni(τ)

15: compute the gradient ∇qiJd =
∑
`∈Ni(τ)∇qiJ

[`]/|I|
16: update position according to qi(τ +δt) = qi(τ)−α∇qiJd for a small step size

α
17: end while
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(a) Case 1
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(b) Case 2
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(c) Case 3

Figure 4.6: Average of prediction error variances over target points (in blue circles) achieved
by the centralized sampling scheme using all collective observations for (a) case 1, (b) case
2, and (c) case 3. In (a), the target points are fixed at time t = 10, and the counterpart
achieved by the benchmark random sampling strategy is shown in red squares with error-
bars. In (b) and (c), the target points are at t + 1 and change over time. The counterpart
achieved by using truncated observations are shown in red squares.
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(a) True field at t = 1 (b) True field at t = 5

(c) Predicted field at t = 1 (d) Predicted field at t = 5

Figure 4.7: Simulation results at t = 1 and t = 5 obtained by the centralized sampling
scheme for case 2.
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(e) Prediction error variance at t = 1 (f) Prediction error variance at t = 5

Figure 4.7: Simulation results at t = 1 and t = 5 obtained by the centralized sampling
scheme for case 2 (cont’d).

(a) Prediction error variance at t = 1 (b) Prediction error variance at t = 5

Figure 4.8: Simulation results obtained by the centralized sampling scheme for case 3. The
trajectories of agents are shown in solid lines.
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Figure 4.9: Cost function Jd(q̃) from t = 1 to t = 2 with a communication range R = 0.4.
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(a) R = 0.3
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(b) R = 0.4

Figure 4.10: Average of prediction error variances over all target points and agents achieved
by the distributed sampling scheme with a communication range (a) R = 0.3, and (b)
R = 0.4. The average of prediction error variances over all target points and agents are
shown in blue circles. The average of prediction error variance over local target points and
agents are shown in red squares. The error-bars indicate the standard deviation among
agents.
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(a) R = 0.3, t = 1 (b) R = 0.3, t = 2

(c) R = 0.3, t = 5 (d) R = 0.3, t = 20

Figure 4.11: Simulation results obtained by the distributed sampling scheme with different
communication ranges. The edges of the graph are shown in solid lines.
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(e) R = 0.4, t = 1 (f) R = 0.4, t = 2

(g) R = 0.4, t = 5 (h) R = 0.4, t = 20

Figure 4.11: Simulation results obtained by the distributed sampling scheme with different
communication ranges (cont’d). The edges of the graph are shown in solid lines.
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Chapter 5

Fully Bayesian Approach

Recently, there has been an increasing exploitation of mobile sensor networks in environ-

mental monitoring [10, 13, 35, 37]. Gaussian process regression (or kriging in geostatistics)

has been widely used to draw statistical inference from geostatistical and environmental

data [15,51]. For example, near-optimal static sensor placements with a mutual information

criterion in Gaussian processes were proposed in [32]. A distributed kriged Kalman filter

for spatial estimation based on mobile sensor networks was developed in [13]. Multi-agent

systems that are versatile for various tasks by exploiting predictive posterior statistics of

Gaussian processes were developed in [8, 9].

The significant computational complexity in Gaussian process regression due to the grow-

ing number of observations (and hence the size of covariance matrix) has been tackled in

different ways. In [67], the authors analyzed the conditions under which near-optimal predic-

tion can be achieved using only truncated observations. This motivates the usage of sparse

Gaussian process proposed in [45]. However, they both assumed the covariance function is

known a priori, which is unrealistic in practice. On the other hand, unknown parameters in
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the covariance function can be estimated by the maximum likelihood (ML) estimator. Such

ML estimates may be regarded as the true parameters and then used in the prediction [65].

However, the point estimate itself needs to be identified using sufficient amount of measure-

ments. Instead, a maximum a posterior (MAP) estimate can use the prior to provide the

point estimate with a small number of measurements. However, it fails to incorporate the

uncertainty in the estimate into the prediction.

The advantage of a fully Bayesian approach, which will be adopted in this work, is that the

uncertainty in the model parameters are incorporated in the prediction [5]. In [22], Gaudard

et al. presented a Bayesian method that uses importance sampling for analyzing spatial data

sampled from a Gaussian random field whose covariance function was unknown. However,

the assumptions made in [22], such as noiseless observations and time-invariance of the field,

limit the applicability of the approach on mobile sensors in practice. The computational

complexity of a fully Bayesian prediction algorithm has been the main hurdle for applications

in resource-constrained robots. In [25], an iterative prediction algorithm without resorting

to Markov Chain Monte Carlo (MCMC) methods has been developed based on analytical

closed-form solutions from results in [22], by assuming that the covariance function of the

spatio-temporal Gaussian random field is known up to a constant. Our work builds on such

Bayesian approaches used in [22,25] and explores new ways to synthesize practical algorithms

for mobile sensor networks under more relaxed conditions.

In Section Section 5.1, we provide fully Bayesian approaches for spatio-temporal Gaussian

process regression under more practical conditions such as measurement noise and the un-

known covariance function . In Section 5.2, using discrete prior probabilities and compactly

supported kernels, we provide a way to design sequential Bayesian prediction algorithms in
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which the exact predictive distributions can be computed in constant time as the number of

observations increases. In particular, a centralized sequential Bayesian prediction algorithm

is developed in Section 5.2.1, and its distributed implementation among sensor groups is

provided for a special case in Section 5.2.2. An adaptive sampling strategy for mobile sen-

sors, utilizing the maximum a posteriori (MAP) estimation of the parameters, is proposed

to minimize the prediction error variances in Section 5.2.3. In Section 5.3, the proposed se-

quential Bayesian prediction algorithms and the adaptive sampling strategy are tested under

practical conditions for spatio-temporal Gaussian processes.

5.1 Fully Bayesian Prediction Approach

In this chapter, we consider a spatio-temporal Gaussian process denoted by

z(x) ∼ GP
(
µ(x), σ2

fC(x, x′; θ)
)
,

where z(x) ∈ R and x := (sT , t)T ∈ Q × Z>0 contains the sampling location s ∈ Q ⊂ RD

and the sampling time t ∈ Z>0. The mean function is assumed to be

µ(x) = f(x)Tβ,

where f(x) := (f1(x), · · · , fp(x))T ∈ Rp is a known regression function, and β ∈ Rp is an

unknown vector of regression coefficients. The correlation between z(x) and z(x′) is taken

as

C(x, x′; θ) = Cs

(∥∥s− s′∥∥
σs

)
Ct

(∣∣t− t′∣∣
σt

)
, (5.1)
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which is governed by spatial and temporal distance functions Cs(·) and Ct(·). We assume

that Cs(·) and Ct(·) are decreasing kernel functions over space and time, respectively, so

that the correlation between two inputs decreases as the distance between spatial locations

(respectively, time indices) increases. The decreasing rate depends on the spatial bandwidth

σs (respectively, the time bandwidth σt) for given fixed time indices (respectively, spatial

locations). The signal variance σ2
f gives the overall vertical scale relative to the mean of

the Gaussian process in the output space. We define θ := (σs, σt)
T ∈ R2 for notational

simplicity.

Given the collection of noise corrupted observations from mobile sensing agents up to

time t, we want to predict z(s∗, t∗) at a prespecified location s∗ ∈ S ⊂ Q and current

(or future) time t∗. To do this, suppose we have a collection of n observations D ={
(x(i), y(i)) | i = 1, . . . , n

}
from N mobile sensing agents up to time t. Here x(i) denotes

the i-th input vector of dimension D + 1 (i.e., the sampling position and time of the i-th

observation) and y(i) denotes the i-th noise corrupted measurement. If all observations are

considered, we have n = Nt. Notice that the number of observations n grows with the time

t. For notational simplicity, let y := (y(1), · · · , y(n))T ∈ Rn denote the collection of noise

corrupted observations. Based on the spatio-temporal Gaussian process, the distribution of

the observations given the parameters β, σ2
f , and θ is Gaussian, i.e.,

y|β, σ2
f , θ ∼ N (Fβ, σ2

fC)
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with F and C defined as

F :=
(
f(x(1)), · · · , f(x(n))

)T
∈ Rn×p,

C := Corr(y, y|θ) =

[
C(x(i), x(j); θ) +

1

γ
δij

]
∈ Rn×n,

(5.2)

where δij is the Kronecker delta which equals to one when i = j, and zero, otherwise.

5.1.1 Prior selection

To infer the unknown parameters β, σ2
f , and θ in a Bayesian framework, the collection of

them is considered to be a random vector with a prior distribution reflecting the a priori

belief of uncertainty for them. In this chapter, we use the prior distribution given by

π(β, σ2
f , θ) = π(β|σ2

f )π(σ2
f )π(θ), (5.3)

where

β|σ2
f ∼ N (β0, σ

2
fT ).

The prior for π(σ2
f ) is taken to be the inverse gamma distribution, chosen to guarantee

positiveness of σ2
f and a closed-form expression for the posterior distribution of σ2

f for com-

putational ease of the proposed algorithms. To cope with the case where no prior knowledge

on β is available, which is often the case in practice, we propose to use a noninformative

prior. In particular, we take β0 = 0, T = αI, and subsequently, let α → ∞. Any proper

prior π(θ) that correctly reflects the priori knowledge of θ can be used.
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5.1.2 MCMC-based approach

According to the Bayes rule, the posterior distribution of β, σ2
f , and θ is given by

π(β, σ2
f , θ|y) =

π(y|β, σ2
f , θ)π(β, σ2

f , θ)∫∫∫
π(y|β, σ2

f , θ)π(β, σ2
f , θ)dβdσ

2
fdθ

. (5.4)

When a proper prior is used, the posterior distribution can be written as

π(β, σ2
f , θ|y) ∝ π(y|β, σ2

f , θ)π(β, σ2
f , θ).

The inference on β, σ2
f , and θ can be carried out by sampling from the posterior distribution

in (5.4) via the Gibbs sampler. Table 5.1 gives the steps based on the following proposition.

Table 5.1: Gibbs sampler.

Input: initial samples β(1), σ2
f

(1)
, and θ(1)

Output: samples
{
β(i), σ2

f
(i)
, θ(i)

}m
i=1

from joint distribution π(β, σ2
f , θ|y)

1: initialize β(1), σ2
f

(1)
, θ(1)

2: for i = 1 to m do
3: sample β(i+1) from π(β|σ2

f
(i)
, θ(i), y)

4: sample σ2
f

(i+1)
from π(σ2

f |β(i+1), θ(i), y)

5: sample θ(i+1) from π(θ|β(i+1), σ2
f

(i+1)
, y)

6: end for

Proposition 5.1.1. For a prior distribution given in (5.3) with the noninformative prior

on β, the conditional posteriors are given by
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1. β|σ2
f , θ, y ∼ N

(
β̂, σ2

fΣ
β̂

)
, where

Σ
β̂

= (FTC−1F )−1,

β̂ = Σ
β̂

(FTC−1y),

2. σ2
f |β, θ, y ∼ IG

(
ā, b̄
)
, where

ā = a+
n+ p

2
,

b̄ = b+
1

2
(y − Fβ)TC−1(y − Fβ),

3. and

π(θ|β, σ2
f , y) ∝ det(C)−1/2 exp

(
−(y − Fβ)TC−1(y − Fβ)

2σ2
f

)
π(θ).

Proof. Since the noninformative prior is chosen, the posterior distribution shall be computed

with T = αI and then let α→∞.

i) For given σ2
f , θ, and y, we have

π(β|σ2
f , θ, y) = lim

α→∞
π(y|β, σ2

f , θ)π(β|σ2
f )∫

π(y|β, σ2
f , θ)π(β|σ2

f )dβ
.
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Let

num1 = π(y|β, σ2
f , θ)π(β|σ2

f )

=

exp

{
− 1

2σ2
f

(y − Fβ)TC−1(y − Fβ)

}
(2πσ2

f )n/2 det(C)1/2

exp

{
− 1

2σ2
f

βTT−1β

}
(2πσ2

f )p/2 det(T )1/2

=

exp

{
− 1

2σ2
f

RSS

}
(2πσ2

f )(n+p)/2 det(C)1/2 det(T )1/2
exp

{
− 1

2σ2
f

(β − β̂)T (FTC−1F + T−1)(β − β̂)

}
,

and

den1 =

exp

{
− 1

2σ2
f

RSS

}
(2πσ2

f )(n+p)/2 det(C)1/2 det(T )1/2

∫
exp

{
− 1

2σ2
f

(β − β̂)T (FTC−1F + T−1)(β − β̂)

}
dβ

=

exp

{
− 1

2σ2
f

RSS

}
(2πσ2

f )(n+p)/2 det(C)1/2 det(T )1/2
(2πσ2

f )p/2 det(FTC−1F + T−1)−1/2

where

RSS = yT
(
C−1 − C−1F (FTC−1F + T−1)−1FTC−1

)
y

= yT (C + FTFT )−1y.
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Then we have

π(β|σ2
f , θ, y) = lim

α→∞
num1

den1

= lim
α→∞

exp

{
− 1

2σ2
f

(β − β̂)T (FTC−1F + T−1)(β − β̂)

}
(2πσ2

f )p/2 det(FTC−1F + T−1)−1/2

=

exp

{
− 1

2σ2
f

(β − β̂)TΣ−1
β̂

(β − β̂)

}
(2πσ2

f )p/2 det(Σ
β̂

)1/2
.

Therefore, we have β|σ2
f , θ, y ∼ N (β̂, σ2

fΣ
β̂

).

ii) For given β, θ, and y, we have

π(σ2
f |β, θ, y) = lim

α→∞
π(y|β, σ2

f , θ)π(σ2
f |β)∫

π(y|β, σ2
f , θ)π(σ2

f |β)dσ2
f

= lim
α→∞

π(y|β, σ2
f , θ)π(β|σ2

f )π(σ2
f )∫

π(y|β, σ2
f , θ)π(β|σ2

f )π(σ2
f )dσ2

f

.

Let

num2 = π(y|β, σ2
f , θ)π(β|σ2

f )π(σ2
f )

=

exp

{
− 1

2σ2
f

(y − Fβ)TC−1(y − Fβ)

}
(2πσ2

f )n/2 det(C)1/2

exp

{
− 1

2σ2
f

βTT−1β

}
(2πσ2

f )p/2 det(T )1/2

ba exp

{
− b
σ2
f

}
Γ(a)(σ2

f )a+1

=
ba

Γ(a)(2π)ā+1 det(C)1/2 det(T )1/2

1

(σ2
f )ā+1

exp

{
− b̄+ 1

2β
TT−1β

σ2
f

}
,
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and

den2 =
ba

Γ(a)(2π)ā+1 det(C)1/2 det(T )1/2

∫
1

(σ2
f )ā+1

exp

{
− b̄+ 1

2β
TT−1β

σ2
f

}
dσ2
f

=
ba

Γ(a)(2π)ā+1 det(C)1/2 det(T )1/2
Γ(ā)b̄−ā.

Then we have

π(σ2
f |β, θ, y) = lim

α→∞
num2

den2

= lim
α→∞

b̄ā

Γ(ā)(σ2
f )ā+1

exp

{
− b̄+ 1

2β
TT−1β

2σ2
f

}

=
b̄ā

Γ(ā)(σ2
f )ā+1

exp

{
− b̄

2σ2
f

}
.

Therefore, we have σ2
f |β, θ, y ∼ IG

(
ā, b̄
)
.

iii) For given β, σ2
f , and y, we have

π(θ|β, σ2
f , y) = lim

α→∞
π(y|β, σ2

f , θ)π(θ)∫
π(y|β, σ2

f , θ)π(θ)dθ

∝ det(C)−1/2 exp

(
−(y − Fβ)TC−1(y − Fβ)

2σ2
f

)
π(θ).

The posterior predictive distribution of z∗ := z(s∗, t∗) at location s∗ and time t∗ can be

obtained by

π(z∗|y) =

∫∫∫
π(z∗|y, β, σ2

f , θ)π(β, σ2
f , θ|y)dβdσ2

fdθ, (5.5)

where in (5.5), the conditional distribution π(z∗|β, σ2
f , θ, y), is integrated with respect to the

posterior of β, σ2
f , and θ given observations y. The conditional distribution of z∗ is Gaussian,
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i.e.,

z∗|β, σ2
f , θ, y ∼ N (µ

z∗|β,σ2
f
,θ,y

, σ2
z∗|β,σ2

f
,θ,y

),

with

µ
z∗|β,σ2

f
,θ,y

= E(z∗|β, σ2
f , θ, y) = f(x∗)Tβ + kTC−1(y − Fβ),

σ2
z∗|β,σ2

f
,θ,y

= Var(z∗|β, σ2
f , θ, y) = σ2

f (1− kTC−1k),

where k := Corr(y, z∗|θ) = [K(x(i), x∗; θ)] ∈ Rn. To obtain numerical values of π(z∗|y), we

draw m samples
{
β(i), σ2

f
(i)
, θ(i)

}m
i=1

from the posterior distribution π(β, σ2
f , θ|y) using the

Gibbs sampler presented in Table 5.1, and then obtain the predictive distribution in (5.5)

by

π(z∗|y) ≈ 1

m

m∑
i=1

π(z∗|y, β(i), σ2
f

(i)
, θ(i)).

It follows that the predictive mean and variance can be obtained numerically by

µz∗|y = E(z∗|y) ≈ 1

m

m∑
i=1

µ
z∗|β(i),σ2

f
(i)
,θ(i),y

,

σ2
z∗|y = Var(z∗|y) ≈ 1

m

m∑
i=1

σ2

z∗|β(i),σ2
f

(i)
,θ(i),y

+
1

m

m∑
i=1

(
µ
z∗|β(i),σ2

f
(i)
,θ(i),y

− µz∗|y

)2

.

Remark 5.1.2. The Gibbs sampler presented in Table 5.1 may take long time to converge,

which implies that the number of samples required could be quite large depending on the initial

values. This convergence rate can be monitored from a trace plot (a plot of sampled values v.s.

iterations for each variable in the chain). Moreover, since C is a complicated function of σs

and σt, sampling from π(θ|β, σ2
f , y) in Proposition 5.1.1 is difficult. An inverse cumulative

distribution function (CDF) method [19] needs to be used to generate samples, which requires
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griding on a continuous parameter space. Therefore, high computational power is needed to

implement the MCMC-based approach.

In the next subsection, we present an alternative Bayesian approach which only requires

drawing samples from the prior distribution π(θ) using a similar approach to one used in [22].

5.1.3 Importance sampling approach

The posterior predictive distribution of z∗ := z(s∗, t∗) can be written as

π(z∗|y) =

∫
π(z∗|θ, y)π(θ|y)dθ, (5.6)

where

π(θ|y) =
π(y|θ)π(θ)∫
π(y|θ)π(θ)dθ

,

is the posterior distribution of θ, by integrating out analytically the parameters β and σ2
f .

We have the following proposition.

Proposition 5.1.3. For a prior distribution given in (5.3) with the noninformative prior

on β, we have

1. π(θ|y) ∝ w(θ|y)π(θ) with

logw(θ|y) = −1

2
log det(C)− 1

2
log det(FTC−1F )− ã log b̃, (5.7)
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where

ã = a+
n

2
,

b̃ = b+
1

2
yTC−1y − 1

2
(FTC−1y)T (FTC−1F )−1(FTC−1y).

2. π(z∗|θ, y) is a shifted student’s t-distribution with location parameter µ, scale parameter

λ, and ν degrees of freedom, i.e.,

π(z∗|θ, y) =
Γ
(
ν+1

2

)
Γ
(ν

2

) (
λ

πν

)1
2
(

1 +
λ(z∗ − µ)2

ν

)−ν+1
2

, (5.8)

where ν = 2ã, and

µ = kTC−1y + (f(x∗)− FTC−1k)T (FTC−1F )−1(FTC−1y),

λ =
b̃

ã

(
(1− kTC−1k) + (f(x∗)− FTC−1k)T (FTC−1F )−1(f(x∗)− FTC−1k)

)
.

Proof. i) For given θ, we have

π(y|θ) =

∫∫
π(y|β, σ2

f , θ)π(β, σ2
f )dβdσ2

f

=

∫∫
π(y|β, σ2

f , θ)π(β|σ2
f )π(σ2

f )dβdσ2
f

=
ba

Γ(a)(2π)n/2 det(C)1/2 det(T )1/2 det(FTC−1F + T−1)1/2

∫ exp

{
−b+

RSS
2

σ2
f

}
(σ2
f )n/2+a+1

dσ2
f

=
Γ(n+2a

2 )ba

Γ(a)(2π)n/2 det(C)1/2 det(T )1/2 det(FTC−1F + T−1)1/2

(
b+

RSS

2

)−n+2a
2
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where

RSS = yT
(
C−1 − C−1F (FTC−1F + T−1)−1FTC−1

)
y.

As α→∞, we have

π(θ|y) = lim
α→∞

π(y|θ)π(θ)∫
π(y|θ)π(θ)dθ

∝ det(C)−1/2 det(FTC−1F )−1/2
(
b+

1

2
yTΣy

)−n+2a
2

,

where Σ = C−1 − C−1F (FTC−1F )−1FTC−1.

ii) For given θ and y, we have

π(z∗|θ, y) =

∫∫
π(z∗|y, β, σ2

f , θ)π(β, σ2
f |θ, y)dβdσ2

f

=

∫∫
π(z∗|y, β, σ2

f , θ)π(β|σ2
f , θ, y)π(σ2

f |θ, y)dβdσ2
f ,

where

z∗|y, β, σ2
f , θ ∼ N

(
f(x∗)Tβ + kTC−1(y − Fβ), σ2

f (1− kTC−1k)
)
,

β|σ2
f , θ, y ∼ N (β̂, σ2

fΣ
β̂

),

σ2
f |θ, y ∼ IG

(
a+

n

2
, b+

RSS

2

)
.

Then, it can be shown that

π(z∗|θ, y) =
Γ
(
ν+1

2

)
Γ
(ν

2

) (
λ

πν

)1
2
(

1 +
λ(z∗ − µ)2

ν

)−ν+1
2

,
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when α→∞.

The results in Proposition 5.1.3 are different from those obtained in [22] by using a

noninformative prior on β. For a special case where β and σ2
f are known a priori, we have

the following corollary which will be exploited to derive a distributed implementation among

sensor groups in Section 5.2.2.

Corollary 5.1.4. In the case where β and σ2
f are known a priori, (5.7) and (5.8) can be

simplified as

logw(θ|y) = −1

2
log det(C)− 1

2
(y − Fβ)TC−1(y − Fβ),

z∗|θ, y ∼ N
(
f(x∗)Tβ + kTC−1(y − Fβ), σ2

f (1− kTC−1k)
)
.

If we draw m samples
{
θ(i)
}m
i=1

from the prior distribution π(θ), the posterior predictive

distribution in (5.6) can then be approximated by

π(z∗|y) ≈
∑
w(θ(i)|y)π(z∗|θ(i), y)∑

w(θ(i)|y)
.

It follows that the predictive mean and variance can be obtained by

µz∗|y = E(z∗|y) ≈
∑
w(θ(i)|y)µ

z∗|θ(i),y∑
w(θ(i)|y)

,

σ2
z∗|y = Var(z∗|y) ≈

∑
w(θ(i)|y)σ2

z∗|θ(i),y∑
w(θ(i)|y)

+

∑
w(θ(i)|y)

(
µ
z∗|θ(i),y

− µz∗|y
)2

∑
w(θ(i)|y)

,
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where the mean and variance of the student’s t-distribution π(z∗|θ, y) are given by

µz∗|θ,y = E(z∗|θ, y) = µ,

σ2
z∗|θ,y = Var(z∗|θ, y) =

ã

ã− 1
λ.

5.1.4 Discrete prior distribution

To further reduce the computational demands from the Monte Carlo approach, we assign

discrete uniform probability distributions to σs and σt as priors instead of continuous prob-

ability distributions. Assume that we know the range of parameters in θ, i.e.,

σs ∈ [σs, σs] and σt ∈ [σt, σt],

where σ and σ denote the known lower-bound and upper-bound of the random variable σ,

respectively. We constrain the possible choices of θ on a finite set of grid points denoted by

Θ. Hence, π(θ) is now a probability mass function (i.e.,
∑
θ∈Θ π(θ) = 1) as opposed to a

probability density. The integration in (5.6) is reduced to the following summation

π(z∗|y) =
∑
θ∈Θ

π(z∗|θ, y)π(θ|y), (5.9)

where the posterior distribution of θ is evaluated on the grid points in Θ by

π(θ|y) =
w(θ|y)π(θ)∑
θ∈Θw(θ|y)π(θ)

. (5.10)

In order to obtain the posterior predictive distribution in (5.9), the computation of π(z∗|θ, y)

and w(θ|y) for all θ ∈ Θ using the results from Proposition 5.1.3 (or Corollary 5.1.4 for a
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special case) are necessary. Note that these quantities are available in closed-form which

reduces the computational burden significantly.

5.2 Sequential Bayesian Prediction

Although the aforementioned efforts in Sections 5.1.3 and 5.1.4 reduce the computational

cost significantly, the number of observations (that mobile sensing agents collect) n increases

with the time t. For each θ ∈ Θ, an n × n positive definite matrix C needs to be inverted

which requires time O(n3) using standard methods. This motivates us to design scalable

sequential Bayesian prediction algorithms by using subsets of observations.

5.2.1 Scalable Bayesian prediction algorithm

The computation of π(z∗|y1:t) soon becomes infeasible as t increases. To overcome this draw-

back while maintaining the Bayesian framework, we propose to use subsets of all observations

y1:t ∈ RNt. However, instead of using truncated local observations only as in [67], Bayesian

inference will be drawn based on two sets of observations:

• First, a set of local observations near target points ỹ which will improve the quality of

the prediction, and

• second, a cumulative set of observations ȳ which will minimize the uncertainty in the

estimated parameters.

Taken together, they improve the quality of prediction as the number of observations in-

creases. We formulate this idea in detail in the following paragraph. For notational simplic-

ity, we define y ∈ RNt as a subset of all observations y1:t which will be used for Bayesian
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prediction. We partition y into two subsets, namely ȳ and ỹ. Let F̄ and F̃ be the coun-

terparts of F defined in (5.2) for ȳ and ỹ, respectively. The following lemma provides the

conditions under which any required function of y in Proposition 5.1.3 can be decoupled.

Lemma 5.2.1. For a given θ ∈ Θ, let C = Corr(y, y|θ), C̄ = Corr(ȳ, ȳ|θ), C̃ = Corr(ỹ, ỹ|θ),

k = Corr(y, z∗|θ), k̄ = Corr(ȳ, z∗|θ), and k̃ = Corr(ỹ, z∗|θ). If the following conditions are

satisfied

C1: Corr(ỹ, ȳ|θ) = 0, i.e., ỹ and ȳ are uncorrelated, and

C2: Corr(ȳ, z∗|θ) = 0, i.e., ȳ and z∗ are uncorrelated,

then we have the following results:

FTC−1F = F̄T C̄−1F̄ + F̃T C̃−1F̃ ∈ Rp×p,

FTC−1y = F̄T C̄−1ȳ + F̃T C̃−1ỹ ∈ Rp,

yTC−1y = ȳT C̄−1ȳ + ỹT C̃−1ỹ ∈ R,

log detC = log det C̄ + log det C̃ ∈ R,

FTC−1k = F̃T C̃−1k̃ ∈ Rp,

kTC−1k = k̃T C̃−1k̃ ∈ R.

Proof. The results follow by noting the correlation matrix C can be decoupled such that

C = diag(C̄, C̃) and k̄ = 0.

Remark 5.2.2. In order to compute the posterior predictive distribution π(z∗|y) (or the

predictive mean and variance) in (5.9), π(z∗|θ, y) and π(θ|y) for all θ ∈ Θ need to be cal-

culated. Notice that the posterior distribution of θ can be obtained by computing w(θ|y) in
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(5.7). Suppose F̄T C̄−1F̄ ∈ Rp×p, F̄T C̄−1ȳ ∈ Rp, ȳT C̄−1ȳ ∈ R, and log det C̄ ∈ R are

known for all θ ∈ Θ. If F̃T C̃−1F̃ ∈ Rp×p, F̃T C̃−1ỹ ∈ Rp, ỹT C̃−1ỹ ∈ R, and log det C̃ ∈ R

for all θ ∈ Θ have fixed computation times, then (5.7) and (5.8) can be computed in constant

time due to decoupling results of Lemma 5.2.1.

The following theorem provides a way to design scalable sequential Bayesian prediction

algorithms.

Theorem 5.2.3. Consider the discrete prior probability π(θ) and the compactly supported

kernel function φt(·). If we select η ≥ bσtc ∈ Z>0, ∆ ∈ Z>0 and define

ct := max

(⌊
t−∆

∆ + η

⌋
, 0

)
∈ R,

ξj := y(j−1)(∆+η)+1:(j−1)(∆+η)+∆ ∈ R∆N ,

ȳ := (ξT1 , · · · , ξTct)
T ∈ R∆Nct ,

ỹ := yt−∆+1:t ∈ R∆N ,

(5.11)

where b·c is the floor function defined by bxc := max {m ∈ Z |m ≤ x}, then the posterior

predictive distribution in (5.9) can be computed in constant time (i.e., does not grow with the

time t).

Proof. By construction, conditions C1-2 in Lemma 5.2.1 are satisfied. Hence, it follows

from Remark 5.2.2 that the posterior predictive distribution can be computed in constant

time.

Remark 5.2.4. In Theorem 5.2.3, η ≥ bσtc guarantees the time distance between ξj and

ξj+1 is large enough such that the conditions in Lemma 5.2.1 are satisfied. Notice that ∆

is a tuning parameter for users to control the trade-off between the prediction quality and
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the computation efficiency. A large value for ∆ yields a small predictive variance but long

computation time, and vice versa. An illustrative example with three agents sampling the

spatio-temporal Gaussian process in 1-D space is shown in Fig. 5.1.

10

(s∗, t∗)

t = 15

σt

1 2 · · · · · ·
time

sp
ac

e

13

Figure 5.1: Example with three agents sampling the spatio-temporal Gaussian process in
1-D space and performing Bayesian inference. In this example, σt = 2.5, η = 2, ∆ = 3,
t = 15, ct = 2, ȳ = (yT1:3, y

T
6:8)T and ỹ = y13:15.

Based on Theorem 5.2.3, we provide the centralized sequential Bayesian prediction algo-

rithm as shown in Table 5.2.

5.2.2 Distributed implementation for a special case

In this subsection, we will show a distributed way (among agent groups) to implement the

proposed algorithm for a special case in which β and σ2
f are assumed to be known a priori.

The assumption for this special case is the exact opposite of the one made in [25] where β

and σ2
f are unknown and θ is known a priori.

To develop a distributed scheme among agent groups for data fusion in Bayesian statistics,

we exploit the compactly supported kernel for space. Let Cs(h) in (5.1) also be a compactly

supported kernel function as Ct(h) so that the correlation vanishes when the spatial distance

between two inputs is larger than σs, i.e., Cs(h) = 0,∀h > 1.
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Consider a case in which M groups of spatially distributed agents sample a spatio-

temporal Gaussian process over a large region Q. Each group is in charge of its sub-region

of Q. The identity of each group is indexed by V := {1, · · · ,M}. Each agent in group i is

indexed by I [i] := {1, · · · , N}. The leader of group i is referred to as leader i, which imple-

ments the centralized scheme to make prediction on its sub-region using local observations

and the globally updated posterior distribution of θ. Therefore, the posterior distribution of

θ shall be updated correctly using all observations from all groups (or agents) in a distributed

fashion.

Let G(t) := (V , E(t)) be an undirected communication graph such that an edge (i, j) ∈

E(t) if and only if leader i can communicate with leader j at time t. We define the neigh-

borhood of leader i at time t by Ni(t) := {j ∈ V | (i, j) ∈ E(t), j 6= i}. Let a[i] denote the

quantity as a in the centralized scheme for group i. We then have the following theorem.

Theorem 5.2.5. Assume that ȳ[i] and ỹ[i] for leader i are selected accordingly to The-

orem 5.2.3 in time-wise. Let ỹ defined by ỹ := ((ỹ[1])T , · · · , (ỹ[M ])T )T . If the following

condition is satisfied

C3: ‖q[i]
` (t)− q[j]

ν (t′)‖ ≥ σs,∀i 6= j, ∀` ∈ I [i],∀ν ∈ I [j],

in the spatial domain, then the weights w(θ|y), based on all observations from all agents, can

be obtained from

logw(θ|y) = logw(θ|ȳ) +
M∑
i=1

logw(θ|ỹ[i]). (5.12)

Proof. The result follows by noting Corr(ỹ[i], ỹ[j]|θ) = 0,∀i 6= j, when the condition C3 is

satisfied.

An exemplary configuration of agents which satisfies C3 is shown in Fig. 5.2.
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σs

σs

σs

Figure 5.2: Example with three group of agents sampling the spatio-temporal Gaussian
process in 2-D space and performing Bayesian prediction. The symbol ‘o’ denotes the position
of a leader for a group and the symbol ‘x’ denotes the position of an agent. Distance between
any two sub-regions is enforced to be greater than σs which enables the distributed Bayesian
prediction.

Suppose that the communication graph G(t) is connected for all time t. Then the aver-

age 1
M

∑M
i=1 logw(θ|ỹ[i]) can be achieved asymptotically via discrete-time average-consensus

algorithm [48]:

logw(θ|ỹ[i])← logw(θ|ỹ[i]) + ε
∑
j∈Ni

(
logw(θ|ỹ[j])− logw(θ|ỹ[i])

)
,

with 0 < ε < 1/∆(G) that depends on the maximum node degree of the network ∆(G) =

maxi |Ni|.

5.2.3 Adaptive sampling

At time t, the goal of the navigation of agents is to improve the quality of prediction of the

field Q at the next sampling time t + 1. Therefore, mobile agents should move to the most
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informative sampling locations q(t+1) = (q1(t+1)T , · · · , qN (t+1)T )T at time t+1 in order

to reduce the prediction error [32].

Suppose at time t + 1, agents move to a new set of positions q̃ = (q̃T1 , · · · , q̃TN )T . The

mean squared prediction error is defined as

J(q̃) =

∫
s∈S

E
[
(z(s, t+ 1)− ẑ(s, t+ 1))2

]
ds, (5.13)

where ẑ(s, t + 1) is obtained as in (5.9). Due to the fact that θ has a distribution, the

evaluation of (5.13) becomes computationally prohibitive. To simplify the optimization, we

propose to utilize a maximum a posteriori (MAP) estimate of θ at time t, denoted by θ̂t,

i.e.,

θ̂t = arg max
θ∈Θ

π(θ|y),

where y is the subset of all observations used up to time t. The next sampling positions can

be obtained by solving the following optimization problem

q(t+ 1) = arg min
q̃i⊂Q

∫
s∈S

Var(z(s, t+ 1)|y, θ̂t)ds. (5.14)

This problem can be solved using standard constrained nonlinear optimization techniques

(e.g., the conjugate gradient algorithm), possibly taking into account mobility constraints of

mobile sensors.

Remark 5.2.6. The proposed control algorithm in (5.14) is truly adaptive in the sense that

the new sampling positions are functions of all collected observations. On the other hand, if

all parameters are known, the optimization in (5.14) can be performed offline without taking

98



any measurements.

5.3 Simulation

In this section, we apply the proposed sequential Bayesian prediction algorithms to spatio-

temporal Gaussian processes with a correlation function in (5.1). The Gaussian process

was numerically generated through circulant embedding of the covariance matrix for the

simulation study [20]. This technique allows us to numerically generate a large number of

realizations of the Gaussian process.

5.3.1 MCMC-based approach on a 1-D scenario

We consider a scenario in which N = 5 agents sample the spatio-temporal Gaussian process

in 1-D space and the central station performs Bayesian prediction. The surveillance region

Q is given by Q = [0, 10]. We consider the squared exponential function

Cs(h) = exp(−1

2
h2),

for space correlation and a compactly supported correlation function [24] for time as

Ct(h) =


(1−h) sin(2πh)

2πh +
1−cos(2πh)
π×2πh , 0 ≤ h ≤ 1,

0, otherwise,

(5.15)

The signal-to-noise ratio γ is set to be 26dB which corresponds to σw = 0.158. The true val-

ues for the parameters used in simulating the Gaussian process are given by (β, σ2
f , σs, σt) =

(0, 1, 2, 8). Notice that the mean function is assumed to be an unknown random variable,
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i.e., the dimension of the regression coefficient β is 1. We assume that β|σ2
f has the nonin-

formative prior and σ2
f ∼ IG(3, 20). The Gibbs sampler in Table 5.1 was used to generate

samples from the posterior distribution of the parameters. A random sampling strategy was

used in which agents make observations at random locations at each time t ∈ Z>0. The

prediction was evaluated at each time step for 51 uniform grid points within Q.

The histograms of the samples at time t = 1 and t = 10 are shown in Fig. 5.3-(a) and

Fig. 5.3-(b), respectively. It is clear that the distributions of the parameters are centered

around the true values with 100 observations at time t = 20. The prediction results at time

t = 1 and t = 20 are shown in Fig. 5.4-(a) and Fig. 5.4-(b), respectively. However, with only

100 observations, the running time using the full Bayesian approach is about several minutes

which will soon become intractable.
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Figure 5.3: Posterior distribution of β, σ2
f , σs, and σt at (a) t = 1, and (b) t = 20.

5.3.2 Centralized scheme on 1-D scenario

We consider the same scenario in which N = 5 agents sample the spatio-temporal Gaussian

process in 1-D space and the central station performs Bayesian prediction. The true values
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Figure 5.4: Prediction at (a) t = 1, and (b) t = 20 using the MCMC-based approach. The
true fields are plotted in blue solid lines. The predicted fields are plotted in red dash-dotted
lines. The area between red dotted lines indicates the 95% confidence interval.

for the parameters used in simulating the Gaussian process are given by (β, σ2
f , σs, σt) =

(20, 10, 2, 8). Notice that the mean function is assumed to be an unknown random variable,

i.e., the dimension of the regression coefficient β is 1. We assume that β|σ2
f has the non-

informative prior and σ2
f ∼ IG(3, 20). We also assume the bounds of θ, viz. σs ∈ [1.6, 2.4]

and σt ∈ [4, 12] are known. ∆ = 12 is used and η = 11 is selected satisfying the condition

in Theorem 5.2.3. We use a discrete uniform probability distribution for π(θ) as shown in

Fig. 5.6-(a). The adaptive sampling strategy was used in which agents make observations

at each time t ∈ Z>0. The prediction was evaluated at each time step for 51 uniform grid

points within Q.

Fig. 5.5 shows the comparison between predictions at time t = 1 using (a) the maximum

likelihood (ML) based approach, and (b) the proposed fully Bayesian approach. The ML

based approach first generates a point estimate of the hyperparameters and then uses them as

true ones for computing the prediction and the prediction error variance. In this simulation,

a poor point estimate on θ was achieved by maximizing the likelihood function. As a result,
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the prediction and the associated prediction error variance are incorrect and are far from

being accurate for a small number of observations. On the other hand, the fully Bayesian

approach which incorporates the prior knowledge of θ and uncertainties in θ provides a more

accurate prediction and an exact confidence interval.

Using the proposed sequential Bayesian prediction algorithm along with the adaptive

sampling strategy, the prior distribution was updated in a sequential manner. At time

t = 100, the posterior distribution of θ is shown in Fig. 5.6-(b). With a larger number of

observations, the support for the posterior distribution of θ becomes smaller and the peak

gets closer to the true value. As shown in Fig. 5.7-(a), the quality of the prediction at

time t = 100 is significantly improved. At time t = 300, the prior distribution was further

updated which is shown in Fig. 5.6-(c). At this time, θ = (2, 8)T , which is the true value,

has the highest probability. The prediction is also shown in Fig. 5.7-(b). This demonstrates

the usefulness and correctness of our algorithm. The running time at each time step is

fixed, which is around 12s using Matlab, R2008a (MathWorks) in a PC (2.4GHz Dual-Core

Processor).

5.3.3 Distributed scheme on 2-D scenario

Finally, we consider a scenario in which there are 4 groups, each of which contain 10 agents

sampling the spatio-temporal Gaussian process in 2-D space. The surveillance region Q is

given by Q = [0, 10]× [0, 10]. The parameter values used in simulating the Gaussian process

are given by θ = (σs, σt)
T = (2, 8)T , β = 0, and σ2

f = 1, last two values of which are assumed

to be known a priori. To use the distributed scheme, we only consider compactly supported

kernel functions for both space and time. In particular, we consider Cs(h) = Ct(h) as in
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Figure 5.5: Prediction at t = 1 using (a) the maximum likelihood based approach, and
(b) the proposed fully Bayesian approach. The true fields are plotted in blue solid lines.
The predicted fields are plotted in red dash-dotted lines. The area between red dotted lines
indicates the 95% confidence interval.

(5.15). We also assume the fact that σs ∈ [1.6, 2.4] and σt ∈ [4, 12] are known a priori.

∆ = 12 is used and η = 11 is selected satisfying the condition in Theorem 5.2.3. The

region Q is divided into 4 square sub-regions with equal size areas as shown in Fig. 5.9-(a).

Distance between any two sub-regions is enforced to be greater than σ̄s = 2.4, satisfying the

condition in Theorem 5.2.5, which enables the distributed Bayesian prediction. The same

uniform prior distribution for θ as in the centralized version (see Fig. 5.6-(a)) is used.

The globally updated posterior distribution of θ at time t100 is shown in Fig. 5.8. It

has a peak near the true θ, which shows the correctness of the distributed algorithm. The

predicted field compared with the true field at time t100 is shown in Fig. 5.9. Due to

the construction of sub-regions, the interface areas between any of two sub-regions are not

predicted. Notice that the prediction is not as good as in the 1-D scenario due to the effect

of curse of dimensionality when we move from 1-D to 2-D spaces. The prediction quality

can be improved by using more number of sensors at the cost of computational time. The

running time of the distributed algorithm in this scenario is about several minutes due to

103



1.6
1.8

2
2.2

2.4

4
6

8
10

12

0

0.005

0.01

0.015

σs

σt

(a)

1.6
1.8

2
2.2

2.4

4
6

8
10

12

0

0.05

0.1

0.15

0.2

σs

σt

(b)

1.6
1.8

2
2.2

2.4

4
6

8
10

12

0

0.2

0.4

0.6

0.8

σs

σt

(c)

Figure 5.6: (a) Prior distribution θ, (b) posterior distribution of θ at time t = 100, (c)
posterior distribution of θ at time t = 300.

the complexity of the 2-D problem under the same computational environment as the one

used for the 1-D scenario. However, thanks to our proposed sequential sampling schemes,

the running time does not grow with the number of measurements.
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Figure 5.7: Prediction at (a) t = 100, and (b) t = 300 using the centralized sequential
Bayesian approach. The true fields are plotted in blue solid lines. The predicted fields
are plotted in red dash-dotted lines. The area between red dotted lines indicates the 95%
confidence interval.
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Figure 5.8: Posterior distribution of θ at time t = 100 using the distributed algorithm.
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Table 5.2: Centralized Bayesian prediction algorithm.

Input:
(1) prior distribution on σ2

f , i.e., π(σ2
f ) = IG(a, b)

(2) prior distribution on θ ∈ Θ, i.e., π(θ)
(3) tuning variables ∆ and η
(4) number of agents N
(5) M(θ).A = 0 ∈ Rp×p, M(θ).B = 0 ∈ R, M(θ).C = 0 ∈ Rp, M(θ).D = 0 ∈ R,
M0(θ) =M(θ), ∀θ ∈ Θ
Output:
(1) The predictive mean at location s∗ ∈ S and time t∗ = t, i.e., µz∗|y
(2) The predictive variance at location s∗ ∈ S and time t∗ = t, i.e., σ2

z∗|y
At time t, the central station does:

1: receive observations yt from agents, set ỹ = yt−∆+1:t and n = N∆

2: compute F̃ = (f(x̃(1)), · · · , f(x̃(n)))T where x̃(i) is the input of the i-th element in ỹ
3: for each θ ∈ Θ do
4: compute C̃ = Corr(ỹ, ỹ) ∈ Rn×n
5: compute the key values

FTC−1F =M(θ).A+ F̃T C̃−1F̃ ∈ Rp×p, yTC−1y =M(θ).B + ỹT C̃−1ỹ ∈ R,
FTC−1y =M(θ).C + F̃T C̃−1ỹ ∈ Rp, log detC =M(θ).D + log det C̃ ∈ R

6: compute ã = a+ n
2 and

b̃ = b+ 1
2y
TC−1y − 1

2(FTC−1y)T (FTC−1F )−1(FTC−1y)
7: update weights via

logw(θ|y) = −1
2 log detC − 1

2 log det(FTC−1F )− ã log b̃
8: for each s∗ ∈ S do
9: compute f(x∗) ∈ Rp, k̃ = Corr(ỹ, z∗) ∈ Rn

10: compute predictive mean and variance for given θ
µz∗|θ,y = k̃C̃−1ỹ + (f(x∗)− F̃T C̃−1k̃)T (FTC−1F )−1(FTC−1y),

σ2
z∗|θ,y =

b̃
ã−1

(
(1− k̃T C̃−1k̃) + (f(x∗)− F̃T C̃−1k̃)T (FTC−1F )−1(f(x∗)− F̃T C̃−1k̃)

)
11: end for
12: if mod(t,∆ + η) = ∆ then
13: set M(θ) =M0(θ), then M0(θ).A = FTC−1F , M0(θ).B = yTC−1y, M0(θ).C =

FTC−1y, and M0(θ).D = log detC
14: end if
15: end for
16: compute the posterior distribution

π(θ|y) =
w(θ|y)π(θ)∑
θ w(θ|y)π(θ)

17: compute the predictive mean and variance

µz∗|y =
∑
θ µz∗|θ,yπ(θ|y),

σ2
z∗|y =

∑
θ σ

2
z∗|θ,yπ(θ|y) +

∑
θ

(
µz∗|θ,y − µz∗|y

)2
π(θ|y).
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(a) (b)

Figure 5.9: Comparison of (a) the true field at t = 100 and (b) the predicted field at t = 100
using the distributed algorithm.
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Chapter 6

Gaussian Process with Built-in

GMRF

Recently, there have been efforts to find a way to fit a computationally efficient Gaussian

Markov random field (GMRF) on a discrete lattice to a Gaussian random field on a continuum

space [17,27,56]. Such methods have been developed using a fitting with a weighted L2-type

distance [56], using a conditional-mean least-squares fitting [17], and for dealing with large

data by fast Kriging [27]. It has been demonstrated that GMRFs with small neighborhoods

can approximate Gaussian fields surprisingly well [56]. This approximated GMRF and its

regression are very attractive for the resource-constrained mobile sensor networks due to its

computational efficiency and scalability [34] as compared to the standard Gaussian process

and its regression, which is not scalable as the number of observations increases.

Mobile sensing agents form an ad-hoc wireless communication network in which each

agent usually operates under a short communication range, with limited memory and com-

putational power. For resource-constrained mobile sensor networks, developing distributed
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prediction algorithms for robotic sensors using only local information from local neighboring

agents has been one of the most fundamental problems [4, 6, 10,13,25,47].

In Section 6.1.1, a new class of Gaussian processes is proposed for resource-constrained

mobile sensor networks. Such a Gaussian process builds on a GMRF [54] with respect to

a proximity graph, e.g., the Delaunay graph of a set of vertices over a surveillance region.

The formulas for predictive statistics are derived in Section 6.1.2. We propose a sequential

prediction algorithm which is scalable to deal with sequentially sampled observations in

Section 6.1.3. In Section 6.2, we develop a distributed and scalable statistical inference

algorithm for a simple sampling scheme by applying the Jacobi over-relaxation and discrete-

time average consensus algorithms. Simulation and experimental study demonstrate the

usefulness of the proposed model and algorithms in Section 6.3.

6.1 Spatial Prediction

In this section, we first propose a new class of Gaussian random fields with built-in Gaussian

Markov random fields (GMRF) [54]. Then we show how to compute the prediction at

any point of interest based on Gaussian process regression, and provide a sequential field

prediction algorithm for mobile sensor networks.

6.1.1 Spatial model based on GMRF

Let γ := (γ(p1), · · · , γ(pm))T ∼ N (0, Q−1) be a zero-mean GMRF [54] with respect to

an undirected graph G = (V , E), where the location of vertex i is denoted by pi in the

surveillance region Q. Such locations of vertices will be referred to as generating points. The

inverse covariance matrix (precision matrix) Q � 0 has the property (Q)ij 6= 0⇔ {i, j} ∈ E .
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If the graph G has small cardinalities of the neighbor sets, its precision matrix Q becomes

sparse with many zeros in its entries. This plays a key role in computation efficiency of a

GMRF which can be greatly exploited by the resource-constrained mobile sensor network.

The spatial field is modeled by a Gaussian process with a built-in GMRF defined as

z(s) = µ(s) +
m∑
j=1

λ(s, pj)γ(pj), (6.1)

where λ(·, ·) is a weighting function. The new class of Gaussian processes is capable of

representing a wide range of non-stationary Gaussian fields, by selecting

1. different number of generating points m,

2. different locations of generating points
{
pj | j = 1, · · · ,m

}
over Q,

3. a different structure of the precision matrix Q, and

4. different weighting functions
{
λ(·, pj) | j = 1, · · · ,m

}
.

Remark 6.1.1. The number of generating points could be determined by a model selection

criterion such as the Akaike information criterion [1]. Similar to hyperparameter estimation

in the standard Gaussian process regression, one can estimate all other parameters using

maximum likelihood (ML) optimization [51,65]. This is non-convex optimization and so the

initial conditions need to be chosen carefully to avoid local minima. In our approach, we use

basic structures for weighting functions and the precision matrix, however, we make them as

functions of the locations of generating points. Different spatial resolutions can be obtained

by a suitable choice of locations of generating points. As an example shown in Fig. 6.1, higher

resolution can be obtained by higher density of generating points (see lower left corner). In
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this way, we only need to determine the locations of generating points. This approach will be

demonstrated with real-world data in Section 6.3.4.
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Figure 6.1: (a) Generating points in blue dots and the associated Delaunay graph with edges
in red dotted lines. The Voronoi partition is also shown in blue solid lines. (b) Gaussian
random field with a built-in GMRF with respect to the Delaunay graph in (a).

6.1.2 Gaussian process regression

Suppose we have a collection of observations y := (y1, · · · , yn)T whose entries are sampled

at the corresponding points s1, · · · , sn. The noise corrupted measurement yi ∈ R is given

by

yi = z(si) + εi,

where εi
i.i.d.∼ N (0, σ2

w) is an independent and identically distributed (i.i.d.) Gaussian white

noise. We then have the following results.

Proposition 6.1.2. Let Λ ∈ Rn×m be a matrix obtained by (Λ)ij = λ(si, pj) and let λ ∈ Rm

be a vector obtained by (λ)i = λ(s0, pi), where s0 is a point of interest. Then the covariance
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matrix of y and the covariance between y and z(s0) are given by

C := E[(y − E y)(y − E y)T ] = ΛQ−1ΛT + σ2
wI,

k := E[(y − E y)z(s0)] = ΛQ−1λ,

where Q ∈ Rm×m is the precision matrix of the GMRF γ ∈ Rm.

Proof. The (i, j)-th element of the covariance matrix C, i.e., the covariance between yi and

yj , can be obtained by

Cij = Cov(z(si), z(sj)) + σ2
wδij

= E(z(si)− µ(si))(z(sj)− µ(sj)) + σ2
wδij

= E

(∑
k

λ(si, pk)γ(pk)

)(∑
l

λ(sj , pl)γ(pl)

)
+ σ2

wδij

= E

∑
k,l

λ(si, pk)γ(pk)γ(pl)λ(sj , pl)

+ σ2
wδij

=
∑
k,l

λ(si, pk) E(γ(pk)γ(pl))λ(sj , pl) + σ2
wδij

=
∑
k,l

λ(si, pk)(Q−1)klλ(sj , pl) + σ2
wδij .

The i-th element of the covariance vector k, i.e., the covariance between yi and z(s0),
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can be obtained by

ki = Cov(z(si), z(s0))

= E(z(si)− µ(si))(z(s0)− µ(s0))

= E

(∑
k

λ(si, pk)γ(pk)

)(∑
l

λ(s0, pl)γ(pj)

)

= E

∑
k,l

λ(si, pk)γ(pk)γ(pl)λ(s0, pl)


=
∑
k,l

λ(si, pk) E(γ(pk)γ(pl))λ(s0, pl)

=
∑
k,l

λ(si, pk)(Q−1)klλ(s0, pl),

whose matrix form completes the proof.

By Propositions 6.1.2, we can make prediction at the point of interest s0 using Gaussian

process regression [51]. This is summarized by the following theorem.

Theorem 6.1.3. For given y, the prediction of z0 := z(s0) at any location s0 ∈ Q is given

by the conditional distribution

z0|y ∼ N
(
µz0|y, σ

2
z0|y
)
,

where the predictive mean and variance are obtained by

µz0|y = µ(s0) + λT Q̂−1ŷ,

σ2
z0|y = λT Q̂−1λ,

(6.2)
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with

Q̂ = Q+ σ−2
w ΛTΛ ∈ Rm×m,

ŷ = σ−2
w ΛT (y − µ) ∈ Rm.

Proof. By using the Woodbury matrix identity (see Appendix A.2.1), the prediction mean

can be obtained by

µz0|y = µ(s0) + kTC−1(y − µ)

= µ(s0) + (ΛQ−1λ)T (ΛQ−1ΛT + σ2
wI)−1(y − µ)

= µ(s0) + λTQ−1ΛT (ΛQ−1ΛT + σ2
wI)−1(y − µ)

= µ(s0) + λTQ−1ΛT (σ−2
w I−

σ−2
w Λ(Q+ σ−2

w ΛTΛ)−1ΛTσ−2
w )(y − µ)

= µ(s0) + λT (σ−2
w Q−1−

σ−4
w Q−1ΛTΛ(Q+ σ−2

w ΛTΛ)−1)ΛT (y − µ)

= µ(s0) + λTΞΛT (y − µ),
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where

Ξ = σ−2
w Q−1 − σ−4

w Q−1ΛTΛ(Q+ σ−2
w ΛTΛ)−1

= σ−2
w Q−1(Q+ σ−2

w ΛTΛ)(Q+ σ−2
w ΛTΛ)−1

− σ−4
w Q−1ΛTΛ(Q+ σ−2

w ΛTΛ)−1

= (σ−2
w I + σ−4

w Q−1ΛTΛ)(Q+ σ−2
w ΛTΛ)−1

− σ−4
w Q−1ΛTΛ(Q+ σ−2

w ΛTΛ)−1

= σ−2
w (Q+ σ−2

w ΛTΛ)−1.

Similarly, the prediction error variance can be obtained by

σ2
z0|y = λTQ−1λ− kTC−1k

= λTQ−1λ− (ΛQ−1λ)T (ΛQ−1ΛT + σ2
wI)−1(ΛQ−1λ)

= λT
(
Q−1 −Q−1ΛT (ΛQ−1ΛT + σ2

wI)−1ΛQ−1
)
λ

= λT (Q+ σ−2
w ΛTΛ)−1λ,

where Cov(z(s0), z(s0)) = λTQ−1λ is obtained similarly as in Proposition 6.1.2.

Remark 6.1.4. When the generating points {p1, p2, · · · , pm} are not known a priori, they

can be estimated by maximizing the likelihood function. Given n observations y = (y1, y2, · · · , yn)T

sampled at {s1, s2, · · · , sn}, the log likelihood of y is given by

log π(y) = −1

2
(y − µ)TC−1(y − µ)− 1

2
log detC − n

2
log 2π,

where C = ΛQ−1ΛT + σ2
wI is the covariance matrix of y. the maximum likelihood estimate
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of the generating points can be obtained via solving the following optimization problem.

p̂ML = arg max
p

log π(y). (6.3)

Remark 6.1.5. Note that the number of generating points m is fixed and the number of

observations n may grow in time, and so in general we consider m� n. Theorem 6.1.3 shows

that only the inversion of an m×m matrix Q̂ = Q+σ−2
w ΛTΛ is required in order to compute

the predictive distribution of the field at any point. The computational complexity grows

linearly with the number of observations, i.e., O(nm2), compare to the standard Gaussian

process regression which requires O(n3). Moreover, it enables a scalable prediction algorithm

for sequential measurements.

In what follows, we present a sequential field prediction algorithm for sequential obser-

vations by exploiting the results of Theorem 6.1.3.

6.1.3 Sequential prediction algorithm

Consider a sensor network consisting of N mobile sensing agents distributed in the surveil-

lance region Q. The index of the robotic sensors is denoted by I := {1, · · · , N}. The sensing

agents sample the environmental field at time t ∈ Z>0 and send the observations to a central

station which is in charge of the data fusion.

At time t, agent i makes an observation yi(t) at location si(t). Denote the collection of

observations at time t by yt := (y1(t), · · · , yN (t))T . We have the following proposition.

Proposition 6.1.6. At time t ∈ Z>0, the predictive mean and variance at any point of
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interest can be obtained via (6.2) with

Q̂t = Q̂t−1 + σ−2
w ΛTt Λt, Q̂0 = Q

ŷt = ŷt−1 + σ−2
w ΛTt (yt − µt), ŷ0 = 0,

where (Λt)ij = λ(si(t), sj(t)), and (µt)i = µ(si(t)).

Proof. The result can be obtained easily by noting that ATA = AT1 A1 + AT2 A2, where

A = (AT1 , A
T
2 )T .

Based on Proposition 6.1.6, we present a sequential field prediction algorithm using mobile

sensor networks in Table 6.1.

Table 6.1: Sequential algorithm for field prediction.

Input:
a set of target points S
Output:
(1) prediction mean {ẑ(s0) | s0 ∈ S}
(2) prediction error variance

{
σ2(s0) | s0 ∈ S

}
Assumption:
(1) the central station knows p, Q, and λ(·, ·)
(2) the central station initially has Q̂← Q, ŷ ← 0

At time t, agent i ∈ I in the network does:

1: take measurement yi from its current location si
2: send the measurement (si, yi) to the central station

At time t, the central station does:

1: obtain measurements {(s`, y`) | ∀` ∈ I} from mobile sensors
2: compute Λ via (Λ)ij = λ(si, pj)

3: update Q̂← Q̂+ σ−2
w ΛTΛ

4: update ŷ ← ŷ + σ−2
w ΛT (y − µ), where µi = µ(si)

5: for s0 ∈ S do
6: compute (λ)i via λ(s0, pi)
7: compute ẑ(s0) = µ(s0) + λT Q̂−1ŷ
8: compute σ2(s0) = λT Q̂−1λ
9: end for
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6.2 Distributed Spatial Prediction

In this section, we propose a distributed approach, in which robotic sensors exchange only

local information between neighbors, to implement the field prediction effectively fusing all

observations collected by all sensors correctly. This distributed approach can be implemented

for a class of weighting functions λ(·, ·) in (6.1) that have compact supports. In particular,

we consider the weighting function defined by

λ(s, pj) = λ(
∥∥s− pj∥∥ /r), (6.4)

where

λ(h) :=


(1− h) cos(πh) + 1

π sin(πh), h ≤ 1,

0, otherwise.

Notice that the weighting function λ(·, ·) in (6.4) has a compact support, i.e., λ(s, pj) is

non-zero if and only if the distance
∥∥s− pj∥∥ is less than the support r ∈ R>0.

6.2.1 Distributed computation

We first briefly introduce distributed algorithms for solving linear systems and computing the

averages. They will be used as major tools for distributed implementation of field prediction.

• Jacobi over-relaxation method: The Jacobi over-relaxation (JOR) [4] method pro-

vides an iterative solution of a linear system Ax = b, where A ∈ Rn×n is a nonsingular

matrix and x, b ∈ Rn. If agent i knows the rowi(A) ∈ Rn and bi, and aij = (A)ij = 0
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if agent i and agent j are not neighbors, then the recursion is given by

x
(k+1)
i = (1− h)x

(k)
i +

h

aii

bi − ∑
j∈Ni

aijx
(k)
j

 . (6.5)

This JOR algorithm converges to the solution of Ax = b from any initial condition if

h < 2/n [13]. At the end of the algorithm, agent i knows the i-th element of x = A−1b.

• Discrete-time average consensus: The Discrete-time average consensus (DAC)

provides a way to compute the arithmetic mean of elements in the a vector c ∈ Rn.

Assume the graph is connected. If agent i knows the i-th element of c, the network

can compute the arithmetic mean via the following recursion [47]

x
(k+1)
i = x

(k)
i + ε

∑
j∈Ni

aij(x
(k)
j − x

(k)
i ), (6.6)

with initial condition x(0) = c, where aij = 1 if j ∈ Ni and 0 otherwise, 0 < ε < 1/∆,

and ∆ = maxi(
∑
j 6=i aij) is the maximum degree of the network. After the algorithm

converges, all node in the network know the average of c, i.e.,
∑n
i=1 ci/n.

6.2.2 Distributed prediction algorithm

Consider a GMRF with respect to a proximity graph G = (V , E) that generates a Gaussian

random field in (6.1). The index of the generating points is denoted by V := {1, · · · , n}.

The location of the i-th generating point is pi. The edges of the graph are considered to be

E :=
{
{i, j} |

∥∥pi − pj∥∥ ≤ R
}

, where R is a constant that ensures the graph is connected.

Consider a mobile sensor network consisting of N mobile sensing agents distributed in

the surveillance region Q. For simplicity, we assume that the number of agents is equal to
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the number of generating points, i.e., N = m. The index of the robotic sensors is denoted

by I := {1, · · · ,m}. The location of agent i is denoted by si.

The assumptions made for the resource-constrained mobile sensor networks are listed as

follows.

A.1 Agent i is in charge of sampling at point si within a r-disk centered at pi, i.e., ‖si−pi‖ <

r.

A.2 r is the radius of the support of the weighting function in (6.4) and also satisfies that

0 < r < R
2 .

A.3 Agent i can only locally communicate with neighbors in Ni := {j ∈ I | {i, j} ∈ E}

defined by the connected proximity graph G = (V , E).

A.4 Agent i knows rowi(Q), i.e., the i-th row ofQ, where (Q)ij 6= 0 if and only if j ∈ {i}∪Ni.

Remark 6.2.1. As in A.1, it is reasonable to have at least one agent collect measurements

that are correlated with a random variable from a single generating point. This sampling rule

may be modified such that a single agent dynamically samples for multiple generating points

or more number of agents samples for a generating point depending on available resources.

Since there is at least one agent in charge of a generating point by A.1, it is natural to have

A.3 and A.4 taking advantage of the proximity graph for the GMRF. Notice that each agent

only knows local information of Q as described in A.4.

An illustration of agent ` sampling a measurement at point s` in the intersection of the

supports of the weighting functions of pi and pj is shown in Fig. 6.2.

From A.1 and A.2, since R > 2r, we have λ(s`, pi) = 0 if ` /∈ Ni. Thus the matrix

Q̂ = Q+ σ−2
w ΛTΛ ∈ Rm×m and the vector ŷ = σ−2

w ΛT (y− µ) ∈ Rm can be obtained in the
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Figure 6.2: Example of computing (ΛTΛ)ij = λ(s`, pi)λ(s`, pj).

following form.

(Q̂)ij = (Q)ij + σ−2
w

∑
`∈{{i}∪Ni}∩

{
{j}∪Nj

}λ(s`, pi)λ(s`, pj),

(ŷ)i = σ−2
w

∑
`∈{i}∪Ni

λ(s`, pi)(y` − µ`).
(6.7)

Notice that Q̂ has the same sparsity as Q. From (6.7), A.3 and A.4, agent i can compute

rowi(Q̂) and (ŷ)i by using only local information from neighbors. Using rowi(Q̂) and (λ)i,

agent i can obtain the i-th element in the vector Q̂−1λ = (Q+σ−2
w ΛTΛ)−1λ via JOR by using

only local information. Finally, using (ŷ)i and (λ)i the prediction mean and variance can

be obtained via the discrete-time average consensus algorithm. Notice that the sequential

update of Q̂ and ŷ for sequential observations proposed in Section 6.1.3 can be also applied

to the distributed algorithm. The distributed algorithm for sequential field prediction under

assumptions A.1-4 is summarized in Table 6.2.

The number of robotic sensors and the sampling rule can be modified or optimized to

maintain a better quality of the prediction and the corresponding distributed algorithm may
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Table 6.2: Distributed algorithm for sequential field prediction.

Input:
(1) a set of target points S
(2) the topology of sensor network G = (I, E) in which E :=

{
{i, j} |

∥∥pi − pj∥∥ ≤ R
}

Output:

(1) prediction mean
{
µz0|y | s0 ∈ S

}
(2) prediction error variance

{
σ2
z0|y
| s0 ∈ S

}
Assumption:
(A1) agent i ∈ I is in charge of sampling at point si within a r-disk centered at pi, i.e.,
‖si − pi‖ < r

(A2) the radius of the support of the weighting function satisfies 0 < r < R
2

(A3) agent i ∈ I can only locally communicate with neighbors Ni := {j ∈ I | {i, j} ∈ E}
defined by the connected graph G = (V , E)
(A4) agent i ∈ I initially has rowi(Q̂)← rowi(Q), (ŷ)i ← 0

At time t, agent i ∈ I in the network does the following concur-
rently:

1: take measurement yi from its current location si
2: update rowi(Q̂)← rowi(Q̂) + rowi(σ

−2
w ΛTΛ) by exchanging information from neighbors

Ni
3: update (ŷ)i ← (ŷ)i + (σ−2

w ΛT (y − µ))i by exchanging information from neighbors Ni
4: for s0 ∈ S do
5: compute (λ)i = λ(s0, pi)
6: compute (Q̂−1λ)i via JOR
7: compute µz0|y = µ(s0) + λT Q̂−1ŷ via DAC

8: compute σ2
z0|y

= λT Q̂−1λ via DAC

9: end for

be derived in a same way accordingly.

6.3 Simulation and Experiment

In this section, we apply the proposed schemes to both simulation and experimental study.
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6.3.1 Simulation

We first apply our proposed prediction algorithms to a numerically generated Gaussian

random field z(·) based on a GMRF with respect to a graph G = (V , E) defined in (6.1).

The mean function µ(·) is assumed to be constant and µ = 5 is used in the simulation. We

assume the generating points of the GMRF, indexed by V = {1, · · · , n} where n = 30, are

located at {p1, · · · , pn} in a 2-D unit area Q. The edges of the graph are assumed to be

E :=
{
{i, j} |

∥∥pi − pj∥∥ ≤ R
}

, where R = 0.4.

The GMRF γ = (γ(p1), · · · , γ(pn))T has a zero-mean and the precision matrix Q is given

by

(Q)ij =


|N (i)|+ c0, if j = i,

−1, if j ∈ N (i),

0, otherwise,

where |N (i)| denotes the degree of node i, i.e., the number of connections it has to other

nodes, c0 = 0.1 is used to ensure Q is positive definite since a Hermitian diagonally dominant

matrix with real non-negative diagonal entries is positive semi-definite [54]. We use com-

pactly supported weighting functions defined in (6.4) for both centralized and distributed

schemes with different support r. The sensor noise level is given by σw = 0.5. Since the

optimal sampling is beyond the scope of this chapter, in the simulation, we use a random

sampling strategy in which robotic sensors sample at random locations at each time instance.

6.3.2 Centralized scheme

We first consider a scenario in which N = 5 agents take samples in the surveillance region

D at certain time instance t ∈ Z>0 and send the observations to a central station in which
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the prediction of the field is made.

The Gaussian random field z(·) is shown in Fig. 6.3-(a) with the n = 30 generating

points of the built-in GMRF shown in black circles. The predicted field at times t = 1,

t = 5, and t = 20 are shown in Figs. 6.3-(b), (c), and (d), respectively. The sampling

locations are shown in black crosses. Clearly, the predicted field gets closer to the true field

as the number of observations increases. The computational time for field prediction at each

time instance remains fixed due to the nice structure of the proposed Gaussian field in (6.1)

and its consequent results from Theorem 6.1.3.

6.3.3 Distributed scheme

Next, we consider a scenario in which prediction is implemented in a distributed fashion

(Table 6.2) under assumptions A.1-4 for the resource-constrained mobile sensor network in

Section 6.2.2. In particular, N = 30 robotic sensors are distributed according to the graph

G = (V , E), which is connected. Agent i is in charge of the sampling with in a r-disk

centered at pi, where the support r = 0.2 is used. Agent i has a fixed neighborhood, i.e.,

N (i) = {j | {i, j} ∈ E}. In the simulation, h = 0.02 in (6.5) and ε = 0.02 in (6.6) are chosen

to ensure the convergence of the JOR algorithm and the DAC algorithm.

Fig. 6.4-(a) shows the underlying graph G = (V , E) for the GMRF with the generating

points denoted by black circles and the edges in red lines. The sparsity of the precision

matrix Q is shown in Fig. 6.4-(b). Notice that only 316 out of 900 elements in Q are non-

zero which enables the efficient distributed computation. The true and the predicted fields

at time t = 5 are shown in Figs. 6.5-(a) and (b), respectively. The normalized RMS error

computed over about 10000 grid points at time t = 5 is 7.8%. The computational time at
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Figure 6.3: Simulation results for the centralized scheme. (a) The true field, (b) the predicted
field at time t = 1, (c) the predicted field at time t = 5, (d) the predicted field at time t = 20.
The generating points are shown in black circles, and the sampling locations are shown in
black crosses.

each time instance remains fixed due to the nice structure of the proposed Gaussian field in

(6.1) and its consequent results from Theorem 6.1.3.
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Figure 6.4: (a) Graph G = (V , E). (b) Sparsity structure of the precision matrix Q.
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Figure 6.5: Simulation results for the distributed scheme. (a) The true field, (b) the predicted
field at time t = 5. The generating points are shown in circles, and the sampling locations
are shown in crosses.

6.3.4 Experiment

In order to show the practical usefulness of the proposed approach, we apply the centralized

scheme in Theorem 6.1.3 on an experimentally obtained observations. We first measured
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depth values of a terrain on grid points by using a Microsoft Kinect sensor [12] as shown in

Fig. 6.6-(a). As pointed out in Remark 6.1.1, we make the structures of weighting functions

and the precision matrix as functions of the locations of generating points. In particular,

two generating points are neighbors if and only if their corresponding Voronoi cells intersect.

The individual weighting function takes the same form as in (6.4) and its support size ri is

selected to be the largest distrance between the generating point i and it’s neighbors. We

then predict the field by our model with 20 estimated generating points given by the ML

estimator in (6.3) using a subset of experimental observations, i.e., 200 randomly sampled

observations denoted by crosses in Fig. 6.6-(a). The estimated positions of generating points

along with the predicted field are shown in Fig. 6.6-(b). In this experiment, it is clear to

see that our approach effectively produces the predicted field, which is very close to the true

field for the case of unknown generating points.
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Figure 6.6: (a) True field on grid positions obtained by the Kinect sensor and randomly
sampled positions indicated in black crosses. (b) The fitted Gaussian random field with a
build-in GMRF with respect to the Delaunay graph.
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Chapter 7

Bayesian Spatial Prediction Using

GMRF

In this chapter, we consider the problem of predicting a large scale spatial field using suc-

cessive noisy measurements obtained by mobile sensing agents. The physical spatial field

of interest is discretized and modeled by a Gaussian Markov random field (GMRF) with

unknown hyperparameters. From a Bayesian perspective, we design a sequential prediction

algorithm to exactly compute the predictive inference of the random field. The main ad-

vantages of the proposed algorithm are: (1) the computational efficiency due to the sparse

structure of the precision matrix, and (2) the scalability as the number of measurements

increases. Thus, the prediction algorithm correctly takes into account the uncertainty in

hyperparameters in a Bayeisan way and also is scalable to be usable for the mobile sensor

networks with limited resources. An adaptive sampling strategy is also designed for mobile

sensing agents to find the most informative locations in taking future measurements in order

to minimize the prediction error and the uncertainty in hyperparameters. The effectiveness
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of the proposed algorithms is illustrated by a numerical experiment.

In Chapter 5, we designed a sequential Bayesian prediction algorithm to deal with un-

known bandwidths by using a compactly supported kernel and selecting a subset of collected

measurements. In this Chapter, we instead seek a fully Bayesian approach over a discretized

surveillance region such that the Bayesian spatial prediction utilizes all collected measure-

ments in a scalable fashion.

In Section 7.1, we model the physical spatial field as a GMRF with unknown hyperparam-

eters and formulate the estimation problem from a Bayesian point of view. In Section 7.2,

we design an sequential Bayesian estimation algorithm to effectively and efficiently compute

the exact predictive inference of the spatial field. The proposed algorithm often takes only

seconds to run even for a very large spatial field, as will be demonstrated in this chapter.

Moreover, the algorithm is scalable in the sense that the running time does not grow as the

number of observations increases. In particular, the scalable prediction algorithm does not

rely on the subset of samples to obtain scalability (as was done in Chapter 5), correctly fusing

all collected measurements. In Section 7.4, an adaptive sampling strategy for mobile sensor

networks is designed to largely improve the quality of prediction and to reduce the uncer-

tainty in the hyperparameter estimation simultaneously. We demonstrate the effectiveness

through a simulation study in Section 7.5.

7.1 Problem Setup

In what follows, we specify the models for the spatial field and the mobile sensor network.

Notice that in this Chapter, we slightly change notation for notational simplicity.
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7.1.1 Spatial field model

Let Q∗ ⊂ RD denote the spatial field of interest. We discretize the field into n∗ spatial sites

S∗ := {s1, · · · , sn∗} and let z∗ = (z1, · · · , zn∗)T ∈ Rn∗ be the value of the field (e.g., the

temperature). Due to the irregular shape a spatial field may have, we extend the field such

that n ≥ n∗ sites denoted by S := {s1, · · · , sn} are on a regular grid. The latent variable

zi := z(si) ∈ R is modeled by

zi = µ(si) + ηi, ∀1 ≤ i ≤ n, (7.1)

where si ∈ S ⊂ RD is the i-th site location. The mean function µ : RD → R is defined as

µ(si) = f(si)
Tβ,

where f(si) = (f1(si), · · · , fp(si))T ∈ Rp is a known regression function, and β = (β1, · · · , βp)T ∈

Rp is an unknown vector of regression coefficients. We define η = (η1, · · · , ηn)T ∈ Rn as a

zero-mean Gaussian Markov random field (GMRF) [54] denoted by

η ∼ N
(

0, Q−1
η|θ
)
,

where the inverse covariance matrix (or precision matrix) Qη|θ ∈ Rn×n is a function of a

hyperparameter vector θ ∈ Rm.

There exists many different choices of the GMRF (i.e., the precision matrix Qη|θ) [54].

For instance, we can choose one with the full conditionals in (7.2) (with obvious notation as

shown in [54]).
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E(ηi|η−i, θ) =
1

4 + a2


2a

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦

◦ • ◦ • ◦

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

− 2

◦ ◦ ◦ ◦ ◦

◦ • ◦ • ◦

◦ ◦ ◦ ◦ ◦

◦ • ◦ • ◦

◦ ◦ ◦ ◦ ◦

− 1

◦ ◦ • ◦ ◦

◦ ◦ ◦ ◦ ◦

• ◦ ◦ ◦ •

◦ ◦ ◦ ◦ ◦

◦ ◦ • ◦ ◦


,

Var(ηi|η−i, θ) = (4 + a2)κ.

(7.2)

Fig. 7.1 displays the elements of the precision matrix related to a single location that

explains (7.2). The hyperparameter vector is defined as θ = (κ, α)T ∈ R2
>0, where α =

a− 4. The resulting GMRF accurately represents a Gaussian random field with the Matérn

covariance function [36]

C(r) = σ2
f

21−ν

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)
,

where Kν(·) is a modified Bessel function [51], with order ν = 1, a bandwidth ` = 1/
√
α, and

vertical scale σ2
f = 1/4πακ. The hyperparameter α > 0 guarantees the positive definiteness

of the precision matrix Qη|θ. In the case where α = 0, the resulting GMRF is a second-

order polynomial intrinsic GMRF [54, 55]. Notice that the precision matrix is sparse which

contains only small number of non-zero elements. This property will be exploited for fast

computation in the following sections.

Example 7.1.1. Consider a spatial field of interest Q∗ ∈ [0, 100] × [0, 50]. We first divide
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Figure 7.1: Elements of the precision matrix Q related to a single location.

the spatial field into a 100 × 50 regular grid with equal areas 1, which makes n∗ = 5000.

We then extend the the field such that 120 × 70 grids (i.e., n = 8400) are constructed on

the extended field Q = [−10, 110]× [−10, 60]. The precision matrix Qη|θ introduced above is

chosen with the regular lattices wrapped on a torus [54]. In this case, only 0.15% elements in

the sparse matrix Qη|θ are non-zero. The numerically generated fields with the mean function

µ(si) = β = 20, and the hyperparameter vector θ = (κ, α)T being different values are shown

in Fig. 7.2.

7.1.2 Mobile sensor network

Consider N spatially distributed mobile sensing agents indexed by i ∈ I = {1, · · · , N}

sampling from n∗ spatial sites in S∗. Agents are equipped with identical sensors and sample

at time t ∈ Z>0. At time t, agent i takes a noisy corrupted measurement at it’s current
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Figure 7.2: Numerically generated spatial fields defined in (7.1) with µ(si) = β = 20,
and Qη|θ constructed using (7.2) with hyperparameters being (a) θ = (4, 0.0025)T , (b)

θ = (1, 0.01)T , and (c) θ = (0.25, 0.04)T .

location qt,i ∈ S∗, i.e.,

yt,i = z(qt,i) + εt,i, εt,i
i.i.d.∼ N (0, σ2

w),
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where measurement errors are assumed to be independent and identically distributed (i.i.d.).

The noise level σ2
w > 0 is assumed to be known. For notational simplicity, we denote

all agents’ locations at time t by qt = (qTt,1, · · · , qTt,N )T and the observations made by all

agents at time t by yt = (yt,1, · · · , yt,N )T . Furthermore, we denote the collection of agents’

locations and the collective observations from time 1 to t by q1:t = (qT1 , · · · , qTt )T , and

y1:t = (y1, · · · , yN )T , respectively.

7.2 Bayesian Predictive Inference

In this section, we propose a Bayesian inference approach to make predictive inferences of a

spatial field z∗ ∈ Rn∗ .

First, we assign the vector of regression coefficients β ∈ Rp with a Gaussian prior, namely

β ∼ N
(
0, T−1

)
, where the precision matrix T ∈ Rp×p is often chosen as a diagonal matrix

with small diagonal elements when no prior information is available. Hence, the distribution

of latent variables z given β and the hyperparameter vector θ is Gaussian, i.e.,

z|β, θ ∼ N
(
Fβ,Q−1

η|θ
)
,

where F = (f(s1), · · · , f(sn))T ∈ Rn×p. For notational simplicity, we denote the full latent

field of dimension n + p by x = (zT , βT )T . Then, for a given hyperparameter vector θ, the
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distribution π(x|θ) is Gaussian obtained by

π(x|θ) = π(z|β, θ)π(β)

∝ exp

(
−1

2
(z − Fβ)TQη|θ(z − Fβ)− 1

2
βTTβ

)
= exp

(
−1

2
xTQx|θx

)
,

where the precision matrix Qx|θ ∈ R(n+p)×(n+p) is defined by

Qx|θ =

 Qη|θ −Qη|θF

−FTQη|θ FTQη|θF + T

 .

By the matrix inversion lemma, the covariance matrix Σx|θ ∈ R(n+p)×(n+p) can be obtained

by

Σx|θ = Q−1
x|θ =

Q−1
η|θ + FT−1FT FT−1

(FT−1)T T−1

 .
At time t ∈ Z>0, we have a collection of observational data y1:t ∈ RNt obtained by

the mobile sensing agents over time. Let A1:t = (A1, · · · , At) ∈ R(n+p)×Nt, where Aτ ∈

R(n+p)×N is defined by

(Aτ )ij =


1, if si = qτ,j ,

0, otherwise.

Then the covariance matrix of y1:t can be obtained by

R1:t = AT1:tΣx|θA1:t + P1:t,

where P1:t = σ2
wI ∈ RNt×Nt. By Gaussian process regression [51], the full conditional
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distribution of x is also Gaussian, i.e.,

x|θ, y1:t ∼ N (µx|θ,y1:t
,Σx|θ,y1:t

),

where

Σx|θ,y1:t
= Σx|θ − Σx|θA1:tR

−1
1:tA

T
1:tΣx|θ,

µx|θ,y1:t
= Σx|θA1:tR

−1
1:t y1:t.

(7.3)

The posterior distribution of the hyperparameter vector θ can be obtained via

π(θ|y1:t) ∝ π(y1:t|θ)π(θ),

where the log likelihood function is defined by

log π(y1:t|θ) = −1

2
yT1:tR

−1
1:t y1:t −

1

2
log detR1:t −

Nt

2
log 2π. (7.4)

If a discrete prior on the hyperparameter vector θ is chosen with a support Θ = {θ1, · · · , θL},

the posterior predictive distribution π(x|y1:t) can be obtained by

π(x|y1:t) =
∑
`

π(x|θ`, y1:t)π(θ`|y1:t). (7.5)
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The predictive mean and variance then follow as

µxi|y1:t
=
∑
`

µxi|θ`,y1:t
π(θ`|y1:t),

σ2
xi|y1:t

=
∑
`

σ2
xi|θ`,y1:t

π(θ`|y1:t) +
∑
`

(µxi|θ`,y1:t
− µxi|y1:t

)2π(θ`|y1:t),

(7.6)

where µxi|θ`,y1:t
is the i-th element in µx|θ`,y1:t

, and σ2
xi|θ`,y1:t

is the i-th diagonal element

in Σx|θ`,y1:t
.

Remark 7.2.1. The discrete prior π(θ) greatly reduced the computational complexity in that

it enables summation in (7.5) instead of numerical integration which has to be performed with

a choice of continuous prior distribution. However, the computation of the full conditional

distribution π(x|θ, y1:t) in (7.3) and the likelihood π(y1:t|θ) (7.4) requires the inversion of the

covariance matrix R1:t, whose size grows as the time t increases. Thus, the running time

grows fast as new observations are collected and it will soon become intractable.

7.3 Sequential Bayesian Inference

In this section, we exploit the sparsity of the precision matrix, and propose a sequential

Bayesian prediction algorithm which can be performed in constant time and fast enough

even for a very large spatial field.

7.3.1 Update full conditional distribution

First, we rewrite the full conditional distribution π(x|θ, y1:t) in terms of the sparse precision

matrix Qx|θ as follows

x|θ, y1:t ∼ N (µx|θ,y1:t
, Q−1

x|θ,y1:t
),
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where

Qx|θ,y1:t
= Qx|θ + A1:tP

−1
1:t A

T
1:t

µx|θ,y1:t
= Q−1

x|θ,y1:t
A1:tP

−1
1:t y1:t.

(7.7)

From here on, we will use Qt|θ = Qx|θ,y1:t
and µt|θ = µx|θ,y1:t

, for notational simplicity.

Notice that (7.7) can be represented by the following recursion

Qt|θ = Qt−1|θ +
1

σ2
w

N∑
i=1

ut,iu
T
t,i,

bt = bt−1 +
1

σ2
w

N∑
i=1

ut,iyt,i,

(7.8)

where bt = Qt|θµt|θ with initial conditions

Q0|θ = Qx|θ,y1:0
= Qx|θ, and b0 = 0.

In (7.8), we have defined ut,i ∈ Rn+p as

(ut,i)j =


1, if sj = qt,i,

0, otherwise.

Lemma 7.3.1. For a given θ ∈ Θ, the full conditional mean and variance, i.e., µt|θ and

Qt|θ, can be updated in short constant time given Qt−1|θ and bt−1.

Proof. The update of Qt|θ and bt can be obviously computed in constant time. Hence µt|θ

can be obtained by solving a linear equation Qt|θµt|θ = bt. Due to the sparse structure of

Qt|θ, this operation can be done in a very short time. Moreover, notice that Qt|θ and Qt−1|θ
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have the same sparsity structure and hence the computational complexity remains fixed.

From Lemma 7.3.1, we can compute µxi|θ,y1:t
in (7.6) in constant time. In order to find

σ2
xi|θ,y1:t

in (7.6), we need to compute Σx|θ,y1:t
which requires the inversion of Qt|θ. The

inversion of a big matrix (even a sparse matrix) is undesirable. However, notice that only

the diagonal elements in Q−1
t|θ are needed. Following the Sherman-Morrison formula (see

Appendix A.2.2) and using (7.8), σ2
xi|θ,y1:t

can be obtained exactly via

diag(Q−1
t|θ ) = diag


Qt−1|θ +

N∑
i=1

ut,iu
T
t,i

−1


= diag(Q−1
t−1|θ)−

N∑
i=1

ht,i|θ ◦ ht,i|θ
σ2
w + uTt,iht,i|θ

,

ht,i|θ = B−1
t,i|θut,i,

Bt,i|θ = Qt−1|θ +
1

σ2
w

i∑
j=1

ut,ju
T
t,j ,

(7.9)

where ◦ denotes the element-wise produce. By this way, the computation can be done

efficiently in constant time.

7.3.2 Update likelihood

Next, we derive the update rule for the log likelihood function. We have the following

proposition.

Proposition 7.3.2. The log likelihood function log π(y1:t|θ) in (7.4) can be obtained by

log π(y1:t|θ) = ct + gt,θ +
1

2
bTt µt|θ −

Nt

2
log(2πσ2

w) (7.10)
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where

ct = ct−1 −
1

2σ2
w

N∑
i=1

y2
t,i, c0 = 0,

gt|θ = gt−1|θ −
1

2

N∑
i=1

log

(
1 +

1

σ2
w
uTt,iht,i|θ

)
, g0|θ = 0,

with ht,i|θ defined in (7.9).

Proof. The inverse of the covariance matrix R1:t can be obtained by

R−1
1:t = (AT1:tQ

−1
0|θA1:t + P1:t)

−1

= P−1
1:t − P−1

1:t A
T
1:t(Q0|θ + A1:tP

−1
1:t A

T
1:t)
−1A1:tP

−1
1:t

= P−1
1:t − P−1

1:t A
T
1:tQ

−1
t|θA1:tP

−1
1:t .

Similarly, the log determinant of the covariance matrix Σ1:t can be obtained by

log detR1:t = log det(AT1:tQ
−1
0|θA1:t + P1:t)

= log det(I +
1

σ2
w
AT1:tQ

−1
0|θA1:t) +Nt log σ2

w

= log det(Q0|θ +
1

σ2
w

t∑
τ=1

N∑
i=1

uτ,iu
T
τ,i)− log det(Q0|θ) +Nt log σ2

w

=
t∑

τ=1

log(1 + uTτ Q
−1
τ−1|θuτ ) +Nt log σ2

w.
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Hence, we have

log π(y1:t|θ)

= −1

2
yT1:tR

−1
1:t y1:t −

1

2
log detR1:t −

Nt

2
log 2π

= −1

2
yT1:tP

−1
1:t y1:t +

1

2
bTt µt|θ −

1

2

t∑
τ=1

N∑
i=1

log(1 + uTτ,iB
−1
τ,i|θuτ,i)−

Nt

2
log(2πσ2

w).

Lemma 7.3.3. For a given θ ∈ Θ, the log likelihood function, i.e., log π(y1:t|θ) can be

computed in short constant time.

Proof. The result follows directly from Proposition 7.3.2.

7.3.3 Update predictive distribution

Combining the results in Lemmas 7.3.1, 7.3.3, and (7.5), (7.6), we summarize our results in

the following theorem.

Theorem 7.3.4. The predictive distribution in (7.5) (or the predictive mean and variance

in (7.6)) can be obtained in constant time as time t increases.

We summarize the proposed sequential Bayesian prediction algorithm in Table 7.1.

7.4 Adaptive Sampling

In the previous section, we have designed a sequential Bayesian prediction algorithm for

estimating the scalar field at time t. In this section, we propose an adaptive sampling

strategy for finding most informative sampling locations at time t + 1 for mobile sensing
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agents in order to improve the quality of prediction and reduce the uncertainty in hyper

parameters simultaneously.

In our previous work [66], we have proposed to use the conditional entropy H(z∗|θ =

θ̂t, y1:t+1) as an optimality criterion, where

θ̂t = arg max
θ

π(θ|y1:t),

is the maximum a posterior (MAP) estimate based on the cumulative observations up to

current time t. Although this approach greatly simplifies the computation, it does not count

for the uncertainty in estimating the hyperparameter vector θ.

In this chapter, we propose to use the conditional entropy H(z∗, θ|yt+1, y1:t) which rep-

resents the uncertainty remained in both random vectors z∗ and θ by knowing future mea-

surements in the random vector yt+1. Notice that the measurements y1:t have been observed

and treated as constants. It can be obtained by

H(z∗, θ|yt+1, y1:t) = H(z∗|θ, yt+1, y1:t) +H(θ|yt+1, y1:t)

= H(z∗|θ, yt+1, y1:t) +H(yt+1|θ, y1:t) +H(θ|y1:t)−H(yt+1|y1:t).

Notice that we have the following Gaussian distributions (the means will not be exploited

and hence not shown here):

z∗|θ, yt+1, y1:t ∼ N (·,Σx∗|θ,y1:t+1
),

yt+1|θ, y1:t ∼ N (·,Σyt+1|θ,y1:t
+ σ2

wI),

yt+1|y1:t
approx∼ N (·,Σyt+1|y1:t

+ σ2
wI),

142



in which the last one is approximated using (7.6). Notice that the approximation is used here

to avoid numerical integration over the random vector yt+1 which needs to be done using

Monte Carlo methods. Moreover, the entropy H(θ|y1:t) = c is a constant since y1:t is known.

Since the entropy for a multivariate Gaussian distribution has a closed-from expression [14],

we have

H(z∗, θ|yt+1, y1:t) =
∑
`

1

2
log
(

(2πe)n∗ det(Σx∗|θ`,y1:t+1
)
)
π(θ`|y1:t)

+
∑
`

1

2
log
(

(2πe)N det(Σqt+1|θ`,y1:t
)
)
π(θ`|y1:t)

− 1

2
log
(

(2πe)N det(Σqt+1|y1:t
)
)

+ c.

It can also be shown that

log det(Σx∗|θ`,y1:t+1
) = log det(Q−1

t+1|θ`
)(S∗)

= log det(Qt+1|θ`)(−S∗) − log det(Qt+1|θ`),

where A(S∗) denotes the submatrix of A formed by the first 1 to n∗ rows and columns

(recall that S∗ = {s1, · · · , sn∗}). Notice that the term log det(Qt+1|θ`)(−S∗) is a constant

since agents only sample at S∗. Hence, the optimal sampling locations at time t+ 1 can be

determined by solving the following optimization problem

q∗t+1 = arg min{
qt+1,i∈Rt,i

}H(z∗, θ|yt+1, y1:t)

= arg min{
qt+1,i∈Rt,i

}∑
`

− log det(Qt+1|θ`)π(θ`|y1:t)

+
∑
`

log det(Σyt+1|θ`,y1:t
)π(θ`|y1:t)− log det(Σyt+1|y1:t

),
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where Rt,i =
{
s |
∥∥s− qt,i∥∥ ≤ r, s ∈ S∗

}
(in which r ∈ R>0 is the maximum distance an

agent can move between time instances) is the reachable set at time t. This combinatorial

optimization problem can be solved using a greedy algorithm, i.e., finding the sub-optimal

sampling locations for agents in sequence.

7.5 Simulation

In this section, we demonstrate the effectiveness of the proposed sequential Bayesian inference

algorithm and the adaptive sampling strategy through a numerical experiment.

Consider a spatial field introduced in Example 7.1.1. The mean function is a constant

β = 20. We choose the precision matrix Qx|θ with hyperparameters α = 0.01 equivalent to a

bandwidth ` = 1/
√
α = 10, and κ = 1 equivalent to a vertical scale σ2

f = 1/4πακ ≈ 8. The

numerically generated field is shown in Fig. 7.2-(b). The precision matrix T of β is chosen to

be 10−4. The measurement noise level σw = 0.2 is assumed to be known. A discrete uniform

distribution is selected with a support shown in Fig. 7.3. N = 5 mobile sensing agents take

measurements at time t ∈ Z>0, starting from locations shown in Fig. 7.4-(b) (in white dots).

The maximum distance each agent can travel between time instances is chosen to be r = 5.

Fig. 7.4 shows the predicted fields and the prediction error variances at times t =

1, 5, 10, 20. The trajectories of agents are shown in white circles with the current loca-

tions shown in white dots. It can be seen that agents try to cover the field of interest as

time evolves. The predicted field (the predictive mean) gets closer to the true field (see

Fig. 7.2-(b)) and the prediction error variances become smaller as more observations are

collected. Fig. 7.3 shows the posterior distribution of the hyperparameters in θ. Clearly,

as more measurements are obtained, this posterior distribution becomes peaked at the true
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Figure 7.3: Posterior distributions of θ, i.e., π(θ|y1:t), at (a) t = 1, (b) t = 5, (c) t = 10, and
(d) t = 20.

value (1, 0.01). Fig. 7.5-(a) shows the predicted distribution of the estimated mean β as time

evolves. In Fig. 7.5-(b), we can see that the RMS error computed via

rms(t) =

√√√√ 1

n∗

n∗∑
i=1

(µzi|y1:t
− zi)2,
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decreases as time increases, which shows the effectiveness of the proposed scheme.

The most important contribution is that the computation time at each time step does

not grow as the number of measurements increases. This fixed running time using Matlab,

R2009b (MathWorks) in a Mac (2.4 GHz Intel Core 2 Duo Processor) is about 10 seconds

which is fast enough for real-world implementation.
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Table 7.1: Sequential Bayesian predictive inference.

Input:
(1) prior distribution of θ ∈ Θ, i.e., π(θ)
Output:

(1) predictive mean
{
µxi|y1:t

}n∗
i=1

(2) predictive variance
{
σ2
xi|y1:t

}n∗
i=1

Initialization:

1: initialize b = 0, c = 0
2: for θ ∈ Θ do
3: initialize Qθ, gθ = 0
4: compute diag(Q−1

θ )
5: end for

At time t ∈ Z>0, do:

1: for 1 ≤ i ≤ N do
2: obtain new observations yt,i collected at current locations qt,i
3: find the index k corresponding to qt,i, and set u = ek

4: update b = b+
yt,i

σ2
w
u

5: update c = c− 1
2σ2
w
y2
t,i

6: for θ ∈ Θ do
7: compute hθ = Q−1

θ u

8: update diag(Q−1
θ ) = diag(Q−1

θ )− hθ◦hθ
σ2
w+uT hθ

9: update Qθ via Qθ = Qθ + 1
σ2
w
uuT

10: update gθ = gθ − 1
2 log(1 + 1

σ2
w
uTh)

11: end for
12: end for
13: for θ ∈ Θ do
14: compute µθ = Q−1

θ b
15: compute the likelihood via

log π(θ|y1:t) = c+ gθ + 1
2b
Tµθ

16: end for
17: compute the posterior distribution via

π(θ|y1:t) ∝ π(y1:t|θ)π(θ)

18: compute the predictive mean via

µxi|y1:t
=
∑
`(µθ`

)iπ(θ`|y1:t)

19: compute the predictive variance via

σ2
xi|y1:t

=
∑
`

(
(diag(Qθ`

))i + ((µθ`
)i − µxi|y1:t

)2
)
π(θ`|y1:t)
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Figure 7.4: Predicted fields at (a) t = 1, (c) t = 5, (e) t = 10, and (g) t = 20. Prediction
error variances at (b) t = 1, (d) t = 5, (f) t = 10, and (h) t = 20.
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Figure 7.4: Predicted fields at (a) t = 1, (c) t = 5, (e) t = 10, and (g) t = 20. Prediction
error variances at (b) t = 1, (d) t = 5, (f) t = 10, and (h) t = 20 (cont’d).
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Figure 7.5: (a) Estimated β, and (b) root mean square error.
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Chapter 8

Conclusion and Future Work

In this chapter, we briefly summarize the key contributions presented in this dissertation

and propose some promising directions for future work.

8.1 Conclusion

In Chapter 3, we presented a novel class of self-organizing sensing agents that learn an

anisotropic, spatio-temporal Gaussian process using noisy measurements and move in order

to improve the quality of the estimated covariance function. The ML estimator was used

to estimate the hyperparameters in the unknown covariance function and the prediction

of the field of interest was obtained based on the ML estimates. An optimal navigation

strategy was proposed to minimize the information-theoretic cost function of the Fisher

Information Matrix for the estimated hyperparameters. The proposed scheme was applied

to both a spatio-temporal Gaussian process and a true advection-diffusion field. Simulation

study indicated the effectiveness of the proposed scheme and the adaptability to time-varying

covariance functions.
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In Chapter 4, for spatio-temporal Gaussian processes, we justified prediction based on

truncated observations for mobile sensor networks. In particular, we presented a theoretical

foundation of Gaussian processes with truncated observations. Centralized and distributed

navigation strategies were proposed to minimize the average of prediction error variances at

target points that can be arbitrarily chosen by a user. Simulation results demonstrated that

mobile sensing agents under the distributed navigation strategy produce an emergent, col-

lective behavior for communication connectivity, and are coordinated to improve the quality

of the collective prediction capability.

In Chapter 5, we formulated a fully Bayesian approach for spatio-temporal Gaussian

process regression under practical conditions. We designed sequential Bayesian prediction

algorithms to compute exact predictive distributions in constant time as the number of

observations increases. An adaptive sampling strategy was also provided to improve the

quality of prediction. Simulation results showed the practical usefulness of the proposed

theoretically-correct algorithms in the context of environmental monitoring by mobile sensor

networks.

In Chapter 6, we introduced a new class of Gaussian processes with built-in GMRFs

for modeling a wide range of environmental fields. The Gaussian process regression for the

predictive statistics at any point of interest was provided and a sequential field prediction

algorithm with fixed complexity was proposed to deal with sequentially sampled observations.

For a special case with compactly supported weighting functions, we proposed a distributed

field prediction algorithm in which the prediction can be computed via Jacobi over-relaxation

algorithm and discrete-time average consensus.

In Chapter 7, we have discussed the problem of predicting a large scale spatial field
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using successive noisy measurements obtained by a multi-agent system. We modeled the

spatial field of interest using a GMRF and designed a sequential prediction algorithm for

computing the exact predictive inference from a Bayesian point of view. The proposed

algorithm is computationally efficient and scalable as the number of measurements increases.

We also designed an adaptive sampling algorithm for agents to find the sub-optimal locations

in order to minimize the prediction error and reduce the uncertainty in hyperparameters

simultaneously.

8.2 Future Work

In the long term, we plan to expanding our current work and exploring on the following

directions:

• consider the optimal sampling strategies for mobile sensing agents with complicated

vehicle dynamics;

• consider the optimal coordination of the mobile senor network subject to energy con-

straints;

• develop the approximated Bayesian prediction algorithms for resource-constraint mo-

bile robots, such as using integrated nested Laplace approximations;

• expand the work on spatial modeling using GMRF to deal with the more general

spato-temporal process;

• consider the effects of localization error on the posterior predictive distribution;
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• implement the developed algorithms in experiments using robotic boats under devel-

opment.
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Appendix A

Mathematical Background

A.1 Gaussian Identities

The multivariate Gaussian distribution of a random vector x ∈ Rn (i.e., x ∼ N (µ,Σ)) has a

joint probability density function (pdf) given by

p(x;µ,Σ) =
1

(2π)−n/2|Σ|−1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where µ ∈ Rn is the mean vector, and Σ ∈ Rn×n is the covariance matrix.

Now, suppose x consists of two disjoint subsets xa and xb, i.e.,

x =

xa
xb

 .
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The corresponding mean vector µ and covariance matrix Σ can be written as

µ =

µa
µb

 , Σ =

Σaa Σab

Σba Σbb

 ,

where Σab = ΣTba due to the symmetry of Σ. Then, the marginal distribution of xa is given

by

xa ∼ N (µa,Σaa),

and the conditional distribution of xa given xb is given by

xa|xb ∼ N (µa|b,Σa|b),

where

µa|b = µa + ΣabΣ
−1
bb (xb − µb)

Σa|b = Σaa − ΣabΣ
−1
bb Σba.

A.2 Matrix Inversion Lemma

Matrices can be inverted blockwise by using the following analytic inversion formula:

 A B

BT C


−1

=

A−1 + A−1B(C −BTA−1B)−1BTA−1 −A−1B(C −BTA−1B)−1

−(C −BTA−1B)−1BTA−1 (C −BTA−1B)−1

 ,

where A, B and C are matrix sub-blocks of arbitrary size. Matrices A and C − BTA−1B

must be non-singular.
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A.2.1 Woodbury identity

The Woodbury matrix identity is

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1,

where A, U , C and V denote matrices with appropriate size.

A.2.2 Sherman-Morrison formula

Suppose A ∈ Rn×n is invertible and u ∈ Rn, v ∈ Rn are vectors. Assume that 1+vTA−1u 6=

0, the Sherman-Morrison formular states that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

A.3 Generating Gaussian processes

In order to implement algorithms in simulation studies, we need to generate multivariate

Gaussian samples from N (µ,Σ) with arbitrary mean µ and covariance matrix Σ. In what

follows, we introduce two approaches.

A.3.1 Cholesky decomposition

Given an arbitrary mean µ and a positive definite covariance matrix Σ, the algorithm gen-

erates multivariate Gaussian samples is shown in Tab. A.1.

157



Table A.1: Generating multivariate Gaussian samples by Cholesky decomposition.

1: compute the Cholesky decomposition of the positive definite symmetric covariance matrix
Σ = LLT , where L is a lower triangular matrix

2: generate u ∼ N (0, I) by multiple separate calls to the scalar Gaussian generator
3: compute x = µ+ Lu which has desired normal distributed with mean µ and covariance

matrix LE[uuT ]LT = LLT = Σ

A.3.2 Circulant embedding

Consider a 1-D zero-mean stationary Gaussian process z(x) with a covariance function

C(x, x′). The covariance matrix Σ of z(x) sampled on the equispaced grids Ω =
{
x(1), · · · , x(n)

}
has entries (Σ)pq = C(|x(p) − x(q)|). Notice that the covariance matrix Σ is a positive semi-

definite symmetric Toeplitz matrix which can be characterized by its first row r = row1(Σ).

The key idea behind circulant embedding method is to construct a circulant matrix S that

contains Σ as its upper-left submatrix. The reason for seeking a circulant embedding is the

fact that, being a m×m circulant matrix, S has an eigendecomposition S = (1/m)FΛFH ,

where F is the standard FFT matrix of size m with entries (F )pq = exp(2πipq/m), FH is

the conjugate transpose of F , and Λ is a diagonal matrix whose diagonal entries form the

vector s̃ = Fs (s is the first row of S).

Given a positive semi-definite circulant extension S of Σ, the algorithm generates the

realization of z(x) sampled on Ω is shown in Tab. A.2. Extension to multidimensional cases

can be found in [20].
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Table A.2: Generating multivariate Gaussian samples by circulant embedding.

1: compute via the FFT the discrete Fourier transform of s̃ = Fs and form the vector
(s̃/m)1/2

2: generate a vector ε = ε1 + iε2 of dimension m with ε1 ∼ N (0, I) and ε2 ∼ N (0, I) being
independent and real random variables

3: compute a vector ẽ = ε ◦ (s̃/m)1/2

4: compute via FFT the discrete Fourier transform e = F ẽ. The real and imaginary parts
of the first n entries in e yield two independent realizations of z(x) on Ω
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