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ABSTRACT 
 

THE AUGMENTATION, POTENTIAL, AND PRACTICALITY OF TWITTER DATA 
FOR PREDICTING INFLUENZA EMERGENCY ROOM ADMISSIONS 

 
By 

 
Joshua J. Vertalka 

 
Every year, millions of people become infected with one of the many seasonal influenza 

viruses. These infections may have dire consequences as local hospital Emergency Rooms 

(ERs) experience sudden surges of influenza patients, causing ambulance diversions and 

shortages of medical supplies. Current influenza surveillance techniques lack the necessary 

spatial and temporal fidelity to benefit local hospital systems. This dissertation helps correct 

that issue through three chapters. Chapter one identifies an approach to augment social media 

data using the Digital Interaction Program (DIP). DIP uses application program interfaces to 

digitally converse with and seek social media users' participation in an online questionnaire. 

This questionnaire is designed to collect spatial and temporal data and augment social media 

data, such as demographic information. Chapter two uses DIP to identify where and when 

influenza tweets posted across New York City and London at fine spatial and temporal scales. 

It was found that on average influenza tweets tend to occur closer to a user's home ZIP Code, 

in comparison to those users' non-influenza tweets. Therefore, this information suggests that 

influenza tweets can predict influenza cases at a finer geographic scale than current research 

suggests. Influenza tweets are most often posted when a user is experiencing peak symptoms, 

not symptom onset. Finally, Chapter three of this research tests if, when, and to what degree 

influenza tweets can predict local hospital ER admissions. It was found that most hospitals 

can use influenza tweets to predict influenza ER admissions on average of about eight days 



 
 

advanced. Chapter three speculates that influenza tweets have the potential to identify 

influenza propagation between the different age groups in New York City. Therefore, Twitter 

has the spatial and temporal potential to provide a more timely and spatially accurate 

influenza surveillance system that is focused on local hospital systems.   
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The primary research question this dissertation seeks to answer is, what is Twitter's role in 

predicting influenza ER admissions in New York City and London? This dissertation contains 

three chapters that each focus on a separate but interlocking theme to help answer that question.  

Chapter one proposes and develops a new approach that augments social media data sources by 

altering the way scholars interact with social media (SM) users. Unclear SM data, including 

Twitter, are being used in scientific research. Rather than using SMs' application program 

interfaces (API) solely to gather SM data, as current research employs, Chapter one introduces a 

new approach that uses SMs' API to send messages to users and ignite digital conversations 

between the scholar and the user. The digital conversation invites users to complete an online 

questionnaire with questions pertinent to the research objective. Therefore, this data is used to 

augment missing social media data, such as demographic information and help alleviate the 

undirected nature of users posting content. Chapter one focuses on gathering intellectual input 

from Volunteered Geographic Information (VGI) contributors, in this case SM users. 

Traditionally, SM as VGI involves SM users solely acting as passive sensors, gathering and 

reporting information of the world but not actively contributing to the scientific process. Chapter 

one provides an approach that gathers intellectual input from SM users, thus enhancing their role 

in VGI.  

Chapter One has two theoretical contributions. First, it provides a link between the traditional 

and modern world of surveys. Traditionally, surveys have been conducted through the mail or 

phone. As time passed, the invention of internet and mobile technology decreased mail and 

phone survey response rates and increased alternative survey modes. Most often the findings 

from these alternative approaches were not centered on the betterment of scientific knowledge. 

Chapter One represents a shift in the manner surveys are conducted with a very mobile 
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population that creates very unclear data since it views technology as not a barrier but rather a 

portal to communicate with people.  Second, this Chapter's theoretical focus centers on the role 

of the VGI contributor as it relates to scientific knowledge. The role of VGI contributors 

continues to evolve given that new undefined VGI data sources are constantly emerging. For 

instance, VGI was initially defined as untrained citizens collecting and sharing spatial data 

through OpenStreetMap. However, given the explosive growth of digital data, VGI definitions 

were quickly altered to include the different ranges of data users made. Chapter One seeks to 

expand the role of SM users in the scientific process. As evident below, several Twitter users 

provided survey-based insight in addition to their tweet for a scientific purpose.  bu   

Chapter Two focuses on identifying the space-time path differences between Twitter users 

experiencing influenza and users not experiencing influenza. Twitter represents a new data 

source to record activities of individuals through space and in time. Traditionally, measurements 

of space-time paths required individuals to record a diary of their spatial location at specific 

times and what activity they were doing. Chapter two uses the DIP framework to augment the 

use of Twitter data to identify when and where users' influenza tweets are posted to those same 

users’ non-influenza tweets in New York City and London. Research has yet to identify where 

influenza tweets tend to occur in relation to the author's residence. Prior research has generally 

assumed that users tweeted about their influenza symptoms from home. This assumption has yet 

to be scientifically explored. The findings of Chapter two suggests this assumption is correct as 

users tend to tweet about their symptoms closer to their home ZIP Code and Postal Code 

meaning that, Twitter can be used to predict influenza cases at neighborhood scales. Scholars 

have also assumed that Twitter users are more apt to tweet about their symptoms early in the 

infection period. However, Chapter two finds that users tend to tweet about their influenza 
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symptoms during periods of heightened symptoms. This also suggests that research using Twitter 

data to analyze space-time paths needs to account for the user's state of health as it will likely 

alter their typical space-time activity behavior.  

Chapter three focuses on contributing to the digital disease detection realm. Current digital 

disease detection has been spatially limited to broad regional or metropolitan scales. This broad 

unit of analysis paints a timely picture of national, state, or city-wide influenza activity but 

provides little benefit to individual hospitals at the local scale. Chapter three builds on the 

findings of Chapter two by testing if and to what spatial and temporal ability influenza tweets 

can predict influenza ER admissions at local hospitals in New York City (NYC). Not 

surprisingly, the relationship of influenza tweets predicting influenza ER admissions varies from 

hospital to hospital. Influenza ER admissions at a majority of the hospitals in NYC are best 

correlated with influenza tweets when influenza tweets are posted eight days before actual ER 

admissions. In some cases, influenza tweets are best correlated with ER admissions when 

influenza tweets occur three weeks before ER admissions. For other hospitals, influenza ER 

admissions proceed influenza tweets. No research has examined the relationship between 

influenza tweets and local influenza ER admissions. While the findings did not show a strong 

relationship, it is clear that there is some potential for Twitter to act as an augmenting data source 

to traditional influenza surveillance.  

The different correlation relationship between influenza tweets and influenza ER admissions 

represents a possible contagion effect of the influenza virus between different age groups. While 

Chapter three does not test the contagion effects between when a user posts influenza tweets and 

when local ER influenza admissions occurs it does provide a framework for future research to 

test.  
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Abstract 

Large quantities of public members on social media (SM) outlets discussing a wide range of 

topics popularized it as a data source for a variety of research topics. Much of this research treats 

SM users solely as passive sensors that gather information about the world around them much 

like weather stations or other nonhuman monitors. This research introduces and develops a 

method, called the Digital Interaction Program (DIP), that invites SM users to actively provide 

intellectual input for scientific purposes. DIP engages SM users into a digital conversation and 

augments their passively collected data (e.g., content, geographic location, time of posting). DIP 

first identifies potential research participants, then uses Application Program Interfaces (APIs) to 

recruit research participants to complete an online questionnaire. The online questionnaire asks 

research participants questions that augment the traditional sensory data provided by SM users. 

As a result, SM users become more than just sensors: they become contributors to a number of 

different applications including research, urban planning, disaster response, and other 

applications utilizing SM data. To showcase DIP, an example of its implementation is provided.  

Introduction 

As of 2016, over 65% of internet using adults are on one or more social media platforms such as 

Twitter, Facebook, Instagram, and Pinterest (Pew Research Center, 2016). Users are encouraged 

to post timely descriptions about themselves, others, and the world around them through text, 

pictures, videos, maps, and other communication medias. Users post these descriptions in real-

time and with self-reported location information or geographic coordinates provided by GPS 

enabled devices. In essence, these users are social sensors through space and time (Elwood, 

2008; M. F. Goodchild, 2007b; Sakaki, Okazaki, & Matsuo, 2010). For these reasons, 

researchers pair SM data with crowdsourcing tools (classification algorithms, natural language 
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processing, regressions, and other prediction or classification tools) for event predictions, 

modeling trends, and monitoring activities (Daume & Galaz, 2016). Table 1.1 lists some 

examples of applied SM research. 

Table 1.1: Different Research Topics using SM Data 

Prediction and Trends Monitoring Activities 

● stock market with Twitter 
(Bollen, Mao, & Zeng, 2011)  

● earthquakes through Twitter  
(Crooks, Croitoru, 
Stefanidis, & Radzikowski, 
2013)  

●  soccer matches with Twitter 
(Yu & Wang, 2015)  

● presidential elections 
through Twitter (Tumasjan, 
Sprenger, Sandner, & 
Welpe, 2010)  

● crime  with Twitter (Gerber, 
2014)  

● digitally detecting diseases 
Twitter (Bodnar & Salathé, 
2013; Salathe et al., 2012)   

● Advertising legacies with 
Twitter (E. Wright, Khanfar, 
Harrington, & Kizer, 2010) 

● the 2007 Virginia Tech shootings using 
Flickr, Facebook, Myspace, Second Life 
(Palen, Vieweg, Liu, & Hughes, 2009) ( 

● 2007 California Wildfires using , Flickr, 
personal blogs, and Twitter (Sutton, Palen, & 
Shklovski, 2008)  

● 2009 Red River floods Oklahoma City Fires 
using Twitter (Vieweg, Hughes, Starbird, & 
Palen, 2010)  

● 2010 Haiti Earthquake using Twitter 
(Sarcevic et al., 2012) 

● 2011 Egyptian uprisings using Twitter 
(Starbird & Palen, 2012)  

● 2011 UK riots using Twitter (Denef, Bayerl, 
& Kaptein, 2013)  

● 2011 Great Japan Earthquake used Sina (the 
parent company to Sina Weibo, a Twitter like 
service) (Yang, Wu, & Li, 2012) 

● 2012 Hurricane Sandy used Twitter, Nixle, 
and Facebook (Hughes, St Denis, Palen, & 
Anderson, 2014) 

● 2013 Boston Marathon Bombing used 
Twitter (Starbird, Maddock, Orand, 
Achterman, & Mason, 2014)  

 

This research begins by providing an overview of relevant literature on the uses and 

shortcomings of Volunteered Geographic Information and the participatory role of citizen 

scientists. Then SM Application Program Interfaces are described followed by a detailed 

description of Digital Interaction Program (DIP). To showcase the process, application, and 

challenges of DIP, an example is provided that applies DIP to augmenting influenza infected 
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Twitter users in New York City and London. Finally, this paper discusses how DIP changes the 

participatory role of SM citizen scientists, DIP's role in a range of SM applied research, 

limitations, and future progress of SM augmentation. 

Background 

Survey methods in the last Century can be binned into three different eras. The first era involved 

the basic components of survey design and collection methods. The second era was rapid 

development in survey use as the federal government begin using survey to help gather data on 

infrastructure investment. During the first two eras, surveys were mostly done through mail or 

phone calls with very high response rates. The third era of surveys began when technological 

advancements created the internet and mobile communication. These inventions caused a decline 

in survey response rates and weakening of sampling methods but caused a growth in unique 

forms of data collection and the collection of continuous data through technological mediums 

(Groves et al., 2011). For instance, Netflix, a popular online video streaming site, does not use a 

mail or phone survey to gain insight into which videos users enjoy. Instead, they focus on 

capturing users video preferences when a user ‘rates’ a video through a 1-5 system. This is 

similar to the Likert Scale where users gauge how well they enjoyed the video; where a 1 

represents the video was not enjoyable, 3 is average enjoyability, and 5 represents a very 

enjoyable video. The backbone of this paper rests on a digital survey that collects data from 

nontrained individuals for a scientific purpose.  

The collection, production, and dissemination of spatial data has traditionally been a top-down 

approach in which experts created datasets using highly precise and expensive measuring 

instruments. The accuracy, bias, precision, and error of this data are scientifically tested using a 

number of approaches (root mean square error, ground truth, cross-validation, etc.) (Feick & 
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Roche, 2013). In the end, this scientific process produced robust data, but only about very 

specific phenomenon within a small study area or very broad phenomenon in a large study area. 

An example of the latter case includes Census data production. Consequently, individuals could 

neither afford nor had the knowledge to create these datasets. Instead, data creation (field studies, 

surveys, measurement samples, etc.) responsibilities fell almost exclusively upon the scientific 

community or those considered experts in data construction (Connors, Lei, & Kelly, 2012; 

Haklay, 2013; Sui, Elwood, & Goodchild, 2012). 

Technological advancements, including the internet and telecommunications, introduced a 

bottom-up approach of spatial data creation by non-expert volunteers. This type of data has been 

referred to as Volunteered Geographic Information (M. F. Goodchild, 2007a). Affordable GPS 

enabled devices, such as smartphones allow non-experts to record spatial data about a number of 

different things. For instance, a non-expert might purposely collect the location and color of 

every fire hydrant on their street by using their smart phone. The non-expert, referred to as a 

citizen scientist, then contributes this data onto a community repository server that stores and 

shares VGI data with other citizen scientists. This process can be done with little to no scientific 

knowledge or data collection background (Elwood, 2008; M. F. Goodchild, 2007b; Sakaki et al., 

2010).  

Data quality issues arise, however, when citizen scientists are generating VGI. Since citizen 

scientists have little to no experience in data collection, the data they do collect may be prone to 

error. Citizen science driven data errors, however, are often corrected through crowdsourcing, or 

consensus of the masses. For example, one user may incorrectly label the location of a fire 

hydrant, but other VGI contributes will correctly record the fire hydrant’s location, correcting 
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any mislabeling. In some instances, VGI has been as accurate or nearly as accurate as traditional 

authoritarian data sources (M. F. Goodchild & Li, 2012). 

The advent and popularity of social media outlets established a need to revisit the definitions of 

VGI in late 2000s and early 2010s. Early definitions of VGI centered on an army of individuals 

volunteering their time to collect the location and attributes of earth’s features, mostly to create 

mapping-based projects, such as OSM. Eventually, SM outlets became a popular spatial data 

source for scientific research (see above in Table 1.1). SM data, on one hand, aligns well with 

traditional definitions of VGI. For instance, SM data (with its geographic attributes) is generated 

by non-expert users. Additionally, some social media outlets, such as Twitter, have an option to 

enable location data sharing. When such an option is enabled, users are volunteering their spatial 

data. For these reasons, SM may represent VGI-like data. However, unlike OSM data generated 

by users, SM users are unaware of their role in scientific research. For example, Twitter users 

unknowingly tweet about a variety of events which are then being captured (unbeknownst to 

Twitter users) for scientific studies in a variety of fields (see Table 1.1). This shift represents a 

divergence in defining VGI. The original VGI definition involved citizen scientists consciously 

producing spatial data for a collaborative scientific goal (OSM, Panaramio, iNaturalist). After the 

rise of SM, a new type of VGI definition was needed, one where volunteers contribute spatial 

data but lack a scientific direction and reason for contributing. This latter type of data is referred 

to as implicit VGI and traditional VGI approaches, such as OSM, as explicit VGI (Senaratne, 

Mobasheri, Ali, Capineri, & Haklay, 2017). 

Citizen scientists provide varying degrees of input into VGI data creation, similar to Arnstein's 

ladder of public participation in urban planning. Arnstein's ladder is composed of several 

different rungs that describe the degree to which the public engages in the planning process. For 
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example, public members who have delegated power to implement planning decisions have an 

increased participatory role when compared to public members who only provide input into a 

planning decisions (Arnstein, 1969). More engaged public members, such as the former case, are 

placed at a higher rung in Arnstein's ladder. Comparable to Arnstein’s ladder, Haklay (2013) 

describes a four rung ladder for citizen scientists participating in the VGI process. Stage one is 

the most basic level of participation, where citizen scientists record the world around them, but 

provide no intellectual contribution to science. In this case, the citizen scientist acts solely as a 

sensor. Stage one is where SM data is located. Stage two, distributed intelligence, involves 

citizen scientists learning basic approaches to collecting and interpreting data. Often, the citizen 

scientist is tested on knowledge learned, as produced quality assurance measure. Stage three 

refers to community science where the citizen scientists define the problem and collect the data in 

collaboration with experts but, data analysis is left solely to experts. The fourth is extreme citizen 

science. In this stage, the citizen scientist is involved in all aspects of scientific discovery and 

production.  

Stage one VGI data, in comparison to other stages, is the noisiest data type. Stage one citizen 

scientists are treated as if they are solely sensors of the world, cataloging their observations but 

for undirected and unknown scientific purposes. This is unsurprising that SM outlets are placed 

on this rung considering they were created with the intent to be an online platform for users to 

socially interact and not as data centers for scientific studies. Therefore, it is not surprising that 

SM data is littered with noise when it is used for scientific purposes since users are unaware of 

their inclusion in a scientific study. Below discusses how the noisy nature of SM data influences 

scientific studies. 
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Contextual Shortcomings: SM is unregulated and has little to no consequences for posting false 

messages. For instance, in the frantic hours and days following the April 15, 2013 bombing of 

the Boston Marathon, investigative units and news outlets sought suspect information and 

narrative stories from Twitter and Facebook. These outlets, however, were spreading 

misinformation about the Boston Marathon bombing (BMB) (Gupta & Kumaraguru, 2012; 

Starbird et al., 2014).Rumors on SM referenced two individuals as the potential suspects. These 

rumors were believed to be true until the FBI released the Tsarnaev brothers' names as the actual 

suspects. Though some newly opened Twitter accounts were suspended for spreading 

misinformation, no financial or otherwise imputing repercussions occurred. Furthermore, 

misinformation spread about Hurricane Sandy included photoshopped images, fake reports of the 

NYC stock exchange flooding, and sharks swimming the streets of NYC (Hill, 2012). News 

agencies began to report on one user purposely spreading false information, leading to the user 

issuing a public apology (Gross, 2012). Some of the aforementioned SM messages, such as 

sharks swimming the streets of NYC, are obviously false. Others are more difficult to identify, 

such as misidentifying the BMB suspect, requiring more intensive investigation. 

Spatial Shortcomings: Location data provided by SM outlets is sparse (approximately 1%) and 

present quality and reliability issues. First, users may provide factitious location information, 

such as "Candyland" or "The Matrix". Second, users may select ambiguous location information. 

For example, a user sets their location to "London" which may reference London, Canada or 

London, United Kingdom. Third, location settings can be geographically over-generalized such 

as "Michigan" or "United States". Fourth, users may post SM content outside of their declared 

location. For instance, a user may have declared Detroit as their home city but are posting 

content in New York City as they visit for a weekend. Fifth, location data derived from 'check-
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ins' is spatially biased (Hasan, Zhan, & Ukkusuri, 2013). Check-ins refer to when a user 

discloses their location based on an immediate feature such as, a business, landmark, park, or 

other point of interest. More popular features will represent higher check-in rates and therefore 

give the impression of a densely populated area.  

Temporal Shortcomings: The posting time of SM content also presents data quality issues. A 

user can post material at any time. For example, several research articles discuss how SM data 

can predict the occurrence of a disease before traditional surveillance methods (Achrekar, 

Gandhe, Lazarus, Yu, & Liu, 2011; Boyle et al., 2011; Santos & Matos, 2014). Digital disease 

detection research only estimates the likelihood of when a user experienced a disease or assumes 

that user has the disease at the time of posting. Contracting a disease, however, largely occurs in 

four sequential stages: incubation, initial onset of symptoms, peak symptoms, and dissipation of 

symptoms. Users may post their symptoms anytime during the latter three of these stages. 

Furthermore, it may be difficult to assign the SM post to any one stage based on context. For 

example, a user stating, "I want this flu to go away!" may be logically assigned to any influenza 

stage. Knowing exactly when the user experienced their initial or peak influenza symptoms 

would be useful knowledge in digital disease detection, but this information is not directly 

communicated through SM or a user's SM message. Therefore, in some cases, the time of a post 

cannot be definitely linked to a historical, current, or future tense. 

Demographic Shortcomings: SM outlets may collect demographic data from its users for 

purposes outlined in the user term agreement policies. The data collected by the outlets, 

however, are not publicly available. Therefore, much of the data collected from SM, contains no 

demographic variables about the user.  
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Privacy Shortcomings: Privacy concerns have been documented with geospatial surveillance 

data and VGI. Crampton et al., (2013) notes that geo-surveillance techniques have potentially 

ushered in a society in constant fear of being watched by authoritarian groups, similar to 

prisoners being watched in Bentham’s panopticon. Furthermore, there are scenarios where VGI 

participants might have good intentions to volunteer valuable and confidential information, such 

as an address, during a disaster (M. F. Goodchild, 2008). However, the public release of this data 

could result in the user experiencing future harassment. This problem becomes further 

complicated when VGI data is collected about personal or protected data such as, location 

information and medical wellbeing of users (Goranson, Thihalolipavan, & di Tada, 2013; J. F. 

Jones, Hook, Park, & Scott, 2011). 

Dangers of Misinformation: The potential dangers of unverified SM data will vary according to 

the research topic. For instance, wrong Ebola treatments were being spread on SM (Oyeyemi, 

Gabarron, & Wynn, 2014), although no scientific study was conducted on mortality rates caused 

by this misinformation, it begs wondering. Misinformation also spread about the Zika virus 

(Venkatraman, Mukhija, Kumar, & Nagpal, 2016) which may have introduced unnecessary 

public panic, but this claim has yet to be studied. Other SM research assumes a degree of 

misinformation and strictly rely on SM's natural crowdsourcing structure to alleviate this 

problem (Gao, Barbier, Goolsby, & Zeng, 2011). Below discusses current solutions to the above 

problems.  

Current Contextual Solution: Chicago Health officials in 2013 launched a privately developed 

application to track food poisoning episodes through tweets. Users expressing food poisoning 

symptoms in a tweet were sent a questionnaire asking them where they ate. The program was 

able to collect roughly 200 surveys indicating incidences of food poisoning at restaurants, 16% 
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of which subsequently failed a health inspection (“Twitter helps Chicago find sources of food 

poisoning | Reuters,” 2014).  

Current Spatial Solution: Sparse and misrepresented location data can be augmented by 

regional dialect within a user's post (Chang, Lee, Eltaher, & Lee, 2012; Cheng, Caverlee, & Lee, 

2010; Han, Cook, & Baldwin, 2013), the way users interact with other users, (Chandra, Khan, & 

Muhaya, 2011; Cheng et al., 2010) and, by the relationship types within a SM users’ social 

network (Jurgens, 2013). However, these approaches rely on indirect methods that can only 

predict the location of a user within 10km. 

Current Temporal Solution: Current Twitter research is able to identify the tense of the Twitter 

post as either historic, current, or future. Adding tense introduced more accurate prediction of 

users experiencing influenza-like symptoms (Lamb, Paul, & Dredze, 2013). However, their 

research is unable to match the tense of a post to when the author actually experienced influenza 

symptoms. 

Current Privacy Solution: Protecting confidential VGI can be difficult if not impossible. 

Currently, VGI does not have any agreed upon metadata standards including those for data 

protection. In some cases, VGI is considered public data despite that it may contain sensitive 

location information. Depending on the SM outlet, location data must be enabled for the spatial 

data of a user to be obtained. In such cases, the user is elected to protect or not protect their 

location information. Likewise, SM outlets allow users to select if their account is considered 

public or private. As this option implies, public accounts are viewable by any person and private 

accounts can only be viewed by the account's associated 'friends' or 'followers'.  



16 
 

Current Demographic Solution: Online web services gather individuals’ demographics, date of 

birth, contact information, and email and other commonly used web-based data by scraping web 

content from an individual’s digital footprint. Internet users will surf various websites and 

become members of a select few that, in essence, comprise their digital footprint. During this 

process a user may disclose various pieces of personal information such as their age, gender, or 

contact information to one or many websites that they frequent. Several online sites ‘scrape’ this 

information to create a database of web demographics. The data richness of this database is 

dependent on the size and detail of an individual’s digital footprint. However, the data within the 

database may be incomplete or outdated. For instance, the contact information of a individual 

may change several times in a short period. This information, however, is not updated on any 

website; therefore, the scrapped data may not be reliable. Other sources, such as the Pew 

Research Center periodically surveys SM outlets to gain user insight into membership, usage, 

and demographics. Pew Research Center's profile snapshots of SM outlets leads to unsurprising 

demographic conclusions; SM users are young, college educated, affluent, and reside in non-

rural areas (“Social Media Update,” 2016). However, as their own research has reported, the 

demographic profile of these outlets is quickly changing, potentially causing their surveys to be 

quickly outdated. 

Despite the current approaches to gaining value from SM data, new methods need to be 

introduced to augment the continued permissive nature of online data (Wilson & Graham, 2013). 

This research proposes a method for SM users to provide scholars with data to supplement 

current SM data fields and data that augments SM users' personal insight into a variety of 

themes. However, the scholars do not provide these users with scientific expertise. While most 

research focuses on using SM users as social sensors, this research introduces a method to 
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increase the participatory nature of SM users by placing them between rung one and two of 

Haklay’s (2013) ladder of citizen science participation. This method is called the Digital 

Interaction Program (DIP). DIP is a flexible approach for digitally interacting with SM users to 

collect intellectual data from SM users. In turn, this data can supplement and augment SM data. 

First, this research provides an overview of the DIP concept including APIs and traditional SM 

data collection processes. Then this research provides an example of the DIP by identifying 

Twitter users experiencing influenza-like illness. Finally, this research discusses the utility, 

shortcomings, and future research of augmenting SM data.  

Digital Interaction Program Concept 

Application Program Interfaces 

APIs are a set of protocols and tools that help people develop software applications that interact 

with computer servers. API functions and purposes are broad. In this research through, APIs are 

viewed as conduits for the transfer of data and messages between servers and personal 

computers. In this case, the server is designed to accept and respond to API requests from 

personal computers. The server then delivers data to or receives data from a personal computer. 

A program language (C++, Python, R, JavaScript, etc) is used to 'read’, ‘write’, or ‘edit’ data and 

messages across the API to the source computer server.  

Broadly speaking, SM APIs are used towards the commercialization of products or for collecting 

data. Commercial APIs require payment but in return, purchasers are afforded more flexibility to 

interact with the SM's server. Most often this freedom is geared toward purchasers advertising 

their services and products in creative ways. For example, 1-800-Flowers.com provides a 

Facebook application called "Gimme Love" where users can send flowers to other Facebook 
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users (Kaplan & Haenlein, 2010). Compared to commercial APIs, data capturing APIs are 

usually free of charge, but offer less flexibility to interact with the SM server. Both commercial 

and data capturing APIs restrict upload and download rates. API technical description, including 

bandwidth limitations are often documented online, such as 

Twitter(https://dev.twitter.com/overview/documentation). 

Traditional SM Participation 

SM data is traditionally collected retroactively or in real-time. Figure 1.1 describes real-time SM 

data collection. Here, SM users are posting content from their personal computers to the SM 

server concurrently as a computer program on a third-party computer receives SM data from a 

server via an API. In this traditional approach, the SM user is unaware that their data is being 

captured by a third party. This approach suggests that SM users are strictly sensors that gather 

information of the world around them and contribute that data for unknown scientific purposes 

(Haklay, 2013). 

Figure 1.1: Technical Architecture of Real-Time Approach to Collecting Social Media Data 

 

 

Digital Interaction Program (DIP) 

Traditional approaches to SM research underutilize the intellect of SM users and potential of SM 

APIs. SM users have valuable insight into local anomalies, personal circumstances, and a host of 
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other themes that may not be shared in an SM post. To gather SM users’ valuable insight, this 

research suggests digitally interacting with them through APIs. APIs have three main functions: 

read, write, and edit data on a server but current SM research ignores API write and edit 

functions. Using the API to write data to the server presents an opportunity for researchers to 

digitally connect with SM users and then recruit them into their research process. DIP allows 

researchers to gain knowledge from SM users by following four steps outlined in Figure 1.2:  

Step 1. Capture SM data (Grey). 

Step 2. Select research participants (Blue). 

Step 3. Digital Conversation and Questionnaire Design Data Merger (Red).  

Step 4. Data Merger and Verification (Orange). 
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Figure 1.2: Overview of DIP’s Technical Architecture 

 

Step 1: Capture SM Data 
 

This step collects SM data in a manner that is identical to Figure 1.1. SM data is collected in 

real-time through a computer program accessing the SM server via an API. The computer 

program may contain a subroutine that filters data by location, keywords, user handles (screen 

names), or other criteria. Each SM API will offer different types and ranges of freedom when it 

comes to applying API filters. For example, Twitter's API permits developers to filter tweets by 

language, keywords, location, and user. Facebook's API, on the other hand, restricts filtering to 

topical trends, such as 'Detroit Pistons Basketball' or 'The Grammys". As previously mentioned, 

SM outlets document their API protocols and filter limitations online. 
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Step 2: Select research participants 
 

Figure 1.3, outlines the selection of research participants. After the SM data is collected, a 

computer program filters through the data to identify research participants fitting the research 

criteria. Basic filters include context (keywords, phrases, hashtags, external links, emojis), 

location (bounding box of an area, cities, states, countries, regions), and time of posting (before, 

during, or after a specific time, within a period of time, etc) can be applied as criterions for 

selecting research participants. More advanced filters may include searching for specific 

pictures, videos, and reply messages. Filter options are limited to the availability of data 

variables found on SM outlets. For example, some SM outlets do not contain location 

information, others limit the amount of text in a post. No SM outlet provides demographic 

variables of their users.  

The above filtering options can identify research participants through a variety of sampling 

techniques. For example, researchers can use systematic sampling (every 10th user or every other 

user to post at a certain location), stratified sampling (100 random users from each of the five 

Buroughs of New York City), cluster sampling (all collected users from three random Buroughs 

in NYC), and random sampling. Clearly, the sampling method should align with the research’s 

data needs.  
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Figure 1.3: Overview of Technical Architecture for Selecting Research Candidates 

 

Step 3: Digital Conversation and Questionnaire Design  
 

A digital conversation is initiated with the research participants identified in step 2, using the 

write function of an SM’s API. This process is outlined in Figure 1.4. First, user names (or 

handles) of the research participants are collected. Second, a computer program sends a short 

message to research participants via the API. The message contains an external link to an online 

questionnaire and a request for the participant to complete said questionnaire. After receiving the 

message, the research participant has one of four options: 1.) ignore the message's request, never 

complete the questionnaire, and never engage in a digital conversation 2.) read the message's 

request, complete the questionnaire, and never engage in a digital conversation 3.) read the 

message's request, never complete the questionnaire, and engage in a digital conversation 4).read 

the message's request, complete the questionnaire, and never engage in a digital conversation. 

The online questionnaire acts as a database to record SM users’ intellectual input. 
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The questionnaire can be designed to supplement and clarify research assumptions or well-

known data inaccuracy issues such as, vague context, users' spatial whereabouts, and confirming 

when users post material. Additionally, it can be designed to augment SM data gaps, such as a 

user's demographic information. However, the SM user's handle (screen name, Twitter name, 

etc.) must be collected in the questionnaire since it is used as a common field to merge the 

questionnaire data to the user's SM data. At this stage of research, the questionnaire can be 

designed to provide SM users with scientific knowledge about why their data is collected and 

how their data is involved in scientific processes or theory. 

Figure 1.4: Overview of Technical Architecture for Digital Conversation 
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Step 4: Data Merger and Verification 
 

Step four merges the questionnaire dataset and SM dataset into a single dataset using the 

research participants' username. The merged dataset represents the research participants 

intellectual input (via the questionnaire) and their SM data. 

Figure 1.5: Overview of Technical Architecture for Data Merger and Verification 
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Figure 1.6: Example of Data Merge 

 

Application of DIP 

An example of DIP’s implementation is showcased below followed by a discussion of its 

benefits and weaknesses. In this example, DIP is applied to identify Twitter users likely 

experiencing influenza-like symptoms in NYC and London. Influenza is most prominent during 

fall and winter months from the beginning of October to the end of March with symptoms 

including fever, cough, sore throat, headache, vomiting, and diarrhea (CDC, 2016). 

Step 1: Data SM Capture 

Step one the DIP process involves capturing SM data. This research downloaded a 1% sample of 

Twitter activity using Twitter’s API from November 26, 2014 to March 17, 2015 with keyword 

filters applied within the bounding-box location of London and NYC. Keywords included 'flu', 

'cough', 'sore throat', and 'headache’. These words show a 95% correlation with national 

influenza statistics (A Culotta, 2013; Aron Culotta, 2010). This search resulted in roughly, 14 

million tweets each from NYC and London. However, this sample may not be random or 

representative of the population (Morstatter, Pfeffer, Liu, & Carley, 2013). 
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Step 2: Select Research Candidates 

Step two of the DIP process involves selecting research participants conducive for the study. 

This research selected both random and purposive research participants. The inclusion of random 

candidates rests on the possibility that users may experience influenza-like symptoms, but do not 

express their symptoms through a tweet. Purposive candidates include those only located within 

NYC or London and mentioned keywords related to influenza-like symptoms (A Culotta, 2013; 

Aron Culotta, 2010). Twitter's API loosely applies filters to its data searches in Step one. 

Therefore, location and keyword filters are again applied in Step two. A total of 8,696 purposive 

and 4,906 random research candidates were matched to the above criteria for NYC and 7,756 

purposive and 2,792 random research candidates for London. 

Step 3: Digital Conversation and Questionnaire Design 

Step three of the DIP process is designed to engage users in a digital conversation and then 

recruit them into participating in an online questionnaire. Research participants identified in Step 

two received a tweet containing an external link that directs users to an online close-ended 

questionnaire. This initial tweet is written as follows: “@*username* My name is Josh plz help 

researchers at MSU save lives from the flu by taking this short survey *survey link*”. This tweet 

was sent through Twitter's API write function and acts as a digital ice-breaker between the 

research participants and the researcher. It sparked polite, rude, sarcastic, and host of other 

responses from the research participants. Table 1.3 shows some of the responses. Many users 

were eager to provide additional input to the scholar including: homeopathic remedies to the flu, 

a link to the user’s blog about the flu, and how the flu has affected them personally. Research 

participants received informative and polite replies from the researcher. Replying to research 
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participants messages likely decreased their perception of the scholar’s intentions as being fake 

or fraudulent.  

Due to limitation on how many tweets can be sent over Twitter's API, research participants were 

not sent reminders to complete the questionnaire. Once the questionnaire was completed, no 

additional tweets were sent to that research participant asking them to complete the 

questionnaire. Research participants only received additional tweets to complete the 

questionnaire if they continued to tweet influenza-keywords. 

Table 1.2: Examples of Tweet Responses 
 

- ok no problem then  
- Again with the survey? I already 

told you I CAN'T READ!!! 
- completed best of luck. 
- i am the flu 
- Done :) 
- no I'm ok mate 
- F*** off. 
- Is water wet? 
- Plz go f*** urself thanks pal bye 

bye 

- @MSUFluResearch I filled out the survey but 
I don't live in New York so my zip code was 
not on the list. Its 06010 for CT. 

- do you mind if I don't . Sorry 
- no 
- Will do the survey ..in alittle later Thank You 
- I'll do it !! 
- We've done your survey. But others might 

like to... 
- my name is Jeff 
- can't do it 
 

 

Of the 13,602 NYC research participants, 275 completed the questionnaire (2%) and of the 

10,548 London research participants, 295 completed the questionnaire (3%). The questionnaire 

was designed to determine if a user experienced influenza, identify which symptoms were 

experienced, when those symptoms peaked, the user’s home ZIP Code, and basic demographic 

data. It also asks for the user's handle name. The questionnaire was powered by Google Forums 

and can be viewed in detail at http://goo.gl/ko3qvx and http://goo.gl/NPemrp for NYC and 

London, respectively. 

https://twitter.com/i/redirect?url=https%3A%2F%2Ftwitter.com%2FMSUFluResearch%3Fcn%3DcmVwbHk%253D%26refsrc%3Demail&t=1&cn=cmVwbHk%3D&sig=6c2d23b42abdd5ad4aa844d6a99a6bc9a4e7454e&iid=a8ce3e31bebb489a868f2a30aefc9578&uid=2829142398&nid=27+1271
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Step 4: Data Merger and Verification 

This research linked the Twitter dataset to the online questionnaire through the common field of 

username. This linked dataset represents the augmented social media dataset. 

Discussion 

The objective of this research is to highlight the significance of DIP as a flexible approach to 

supplement and augment SM data by gaining additional insight and knowledge from SM users. 

This process represents a shift in participatory level of SM citizen scientists producing VGI. 

Haklay described four rungs on a ladder in which each rung ranks the participation level for 

citizen scientists creating VGI. Rung one, the least participatory, involves citizen scientists solely 

acting as sensors that gather information about the world around them with an unbeknownst role 

in the scientific process. This has been the traditional approach of using SM data in research. 

This research proposes an alternative approach called the Digital Interaction Program (DIP). DIP 

invites SM users to digitally engage scholars and complete an online questionnaire. As shown 

above, the digital interaction between users and the scholar ranges from humble discussions 

about the research topic to frightening insults. This type of interaction suggests that the citizen 

scientist participation ladder described by Haklay (2013) needs an additional rung situated 

between rung one and two. Here, citizen scientists are not viewed solely as sensors, but instead 

provide intellectual contributions through digitally conversing with scholars and through their 

answers on the online questionnaire. These intellectual contributions help provide context to a 

user's SM data and the any research questions. The DIP process does not provide VGI 

contributors with knowledge on how to collect, record, analyze, or disseminate data, as 

suggested by Haklay’s step two. Therefore, the DIP process suggests that an additional rung 

needs to be placed between the first and second rung in Haklay's ladder. 
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Benefits 

Supplementing and Augmenting SM Data  

SM data contains contextual, spatial, temporal, and demographic shortcomings (Elwood, 2008; 

M. F. Goodchild & Li, 2012; Sui et al., 2012; Tulloch, 2014). The DIP system helps identify and 

correct these shortcomings. DIP collects intellectual input from SM users through an online 

questionnaire. The questions should be designed to clarify the context and spatial-temporal 

content the SM user's post. However, the questionnaire can ask participants any question 

including those relating to demographics, socio-economic status, and other data and topics not 

available through SM websites. DIP can also be executed at a variety of spatial scales but only if 

the SM API allows data collection at different spatial scales.  For instance, Twitter's API allows 

searches to occur at a variety of spatial scales, some including global, national, state, county, and 

local. This research applied the DIP process to the metropolitan areas of New York City and 

London. However, some SM APIs do not have filter options for selecting geographic areas. 

As an example, this research used the DIP system to identify Twitter users experiencing 

influenza-like symptoms in NYC and London.  Figure 1.7 shows the frequency of influenza-like 

symptoms experienced by research participants in NYC and London. Many of the research 

participants experienced multiple symptoms. In most cases, Twitter users self-diagnosed 

themselves without describing their symptoms but instead focused on stating they ‘had the flu’. 

The additional information presented in Figure 1.7 would likely not be possible to identify unless 

interaction with SM users occurred.  
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Figure 1.7: Variety and Distribution of Influenza Symptoms Experienced by New York 

City and London Twitter Users 

 

The example provided above also demonstrates users’ willingness to engage with the scholar. As 

previously mentioned, Twitter users were excited to share approaches to lessen the likelihood of 

becoming infected with influenza, home remedies to decrease recovery time from infection, and 

links to other influenza documentation. It was not this research’s goal to examine the credibility 

of their ideas but the nature of people sharing ideas through DIP. At this time, it cannot be 

determined if this is a common side effect of DIP or not.  

Ranging Application 

DIP is an approach that can be used for a wide range of disciplines including researchers, 

demographic surveyors, urban planners, disaster managers, disease outbreak specialists and other 

fields that need to interact with SM users. For example, urban planners might find DIP useful 

because it is an approach that can be used to gain input from SM users discussing the urban 

environment. For instance, urban residence might be expressing their frustration with parking 

opportunities in a city through SM. DIP could be implemented so that context is added in order 
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to identify the specific reasons why SM users are frustrated with parking in the city. Is it too 

expensive? Is there not enough parking? Are parking garages (structures) located in unsafe 

areas? DIP provides the framework to probe SM users so that these questions can be answered.  

DIP could also be an alternative approach for disaster managers to identify the circumstances of 

potential disaster victims in a secure and centralized manner. During a disaster, disaster 

managers try to ascertain as much information about a disaster victim as possible; medical needs, 

location, accessibility, and other important pieces of information. Traditionally, SM provides a 

platform for disaster victims to share this information through a public post, tweet, or other 

message but users may reluctantly do so considering it can be viewed by anyone. Therefore, the 

privacy of sensitive information during a disaster crisis is important. DIP can collect and store 

sensitive data such as, address, medical needs, or other personal information on a private 

database. This may lead to more disaster victims sharing their sensitive data. Before and during a 

disaster, disaster managers seek to efficiently share the necessary data to mitigate negative 

effects of disaster. DIP stores SM users’ intellectual input in a centralized and easily accessible 

database. Therefore, disaster managers can quickly access and search the database for relevant 

data, rather than waiting for the data to be shared.  

DIP can also be a method applied by disease outbreak specialists mapping the near real-time 

spread of disease outbreaks. Disease outbreak specialists seek data sources that describe the 

when and where of a disease outbreak. Most current disease outbreak surveillance systems are 

not in real-time and offer a coarse spatial resolution either at the city or state scale. However, a 

more informative approach would be to describe the disease outbreak in near or real-time and 

with specific whereabouts of disease spread. The DIP approach can be applied in near-real time 

with survey questions that center on gaining clarification about users’ current state of health. 
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Similar to disaster managers' data privacy and storage predicament, disease outbreak specialists 

need to securely store and quickly access sensitive data. As previously mentioned, DIP provides 

these needed services.  

Privacy of Data 

Privacy issues with VGI have been well documented, as described above. The digital 

conversations initiated by DIP will be public if the engagement occurs through direct messages, 

such as tweets. The conversations will be considered private if the engagement occurs through a 

private message. However, the survey where SM users provide their intellectual input maybe 

stored privately or openly available to the public. Obviously, the level to which information from 

the questionnaire is shared will depend on the research at hand and the data content. The 

example provided in this paper privately stored Twitter users' responses that can only be 

accessed by the author of this paper. Privately storing questionnaire responses is especially 

important for the collection and storage of sensitive data, such as a user's influenza health status.  

Even though the questionnaire is stored privately does not mean it is immune to hacking efforts. 

Hackers could access the data by hacking into the services that provide them. Depending on the 

sensitivity of the data, any data breaches could lead to the publicly leaked data. This obviously 

presents ethical issues that future research can address.  

Limitations 

Questionnaire Limitations 

The self-completed questionnaire used in the DIP process presents limitations. First, users 

completing the questionnaire may report false information. Furthermore, it is difficult to 

impossible to ensure that any reported information is in fact true. Second, the length of the 
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survey, like many survey methods, may be a topic of concern. In the above example, some 

Twitter users described the length of the survey as too long, others thought it was too short (See 

Kaplowitz, Hadlock, & Levine, 2004; K. B. Wright, 2005 for more information for online 

participation rates.) Lastly, a questionnaire asking SM users to disclose personal data may 

decrease participation rates or may lead the participant to skip that question. Alternatively, 

though, SM users may be more willing to provide personal information during a disaster as a 

good Samaritan act. 

Surveys often contain response bias since survey propensity increases from users who have 

interest in the survey variables. This phenomenon is present with or without incentives. The 

online survey in DIP is also likely to contain a response bias since users completing the survey 

are likely to have some vested interest in the survey variables. Depending on the implementation 

of DIP, this may or may not be an issue (Groves, 2006). For instance, using DIP to identify 

parking issues in a large city is likely to have a survey propensity composed of people who 

excessively dislike or favor city parking. On the other hand, DIP might be employed to gather 

information on what teachers think of the education system. Since the target audience is teachers 

it is less likely to have a response bias.  

API Bandwidth Limitations 

The application of DIP is dependent on the limits of a SM's API write and read functions. The 

write function of a SM’s API allows personal messages or general posts to be sent to users. Often 

these limitations are based on a fixed rate, total number, or a combination of both. For instance, 

an API limits writing functions to 20 messages per hour, 400 messages per week, or a total of 

1,000,000 message. Exceeding these limits stops the sending of messages.SM outlets may not 

document their API bandwidth limits for the write functions. While this is unfortunate, it helps 
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stop SPAM messaging on SM. If the limits were published, a program (script) could be 

developed to throttle the rate of messages being sent through the API without exceeding the 

bandwidth limits. Therefore, not knowing the bandwidth limits makes automating DIP difficult, 

because the rate of messaging research participants can quickly outpace the API write function 

limits. In comparison to the write function, the read function of SM APIs are well documented 

but still have rate limits. 

API updates 

SM platforms periodically change their API's functions and permissions, sometimes without 

warning. Depending on the social media platform, the API functions and protocols may change 

frequently and/or drastically. A minor change, for instance, would involve the SM organization 

adding a new filter function to the API. On the opposite end of the spectrum, the SM outlet could 

change their opensource APIs to become proprietary therefore eliminating the availability of free 

data. Depending on the API changes, the DIP process might need to be altered or in some cases 

may become futile.  

Digital Dialogue Challenges 

Ideally, research participants complete the questionnaire after receiving the initial message from 

the researcher. However, this is usually not the case. Users often identified the initial message as 

automated SPAM, sent by a ‘robot’ SM account. Their thinking is reinforced by two notions. 

First, users receive a generic message from an unknown account, which immediately gives the 

impression of SPAM or 'junk' mail. Second, that initial message asks research participants to 

click on an unknown link that directs them to an unknown external website, which may increase 

their suspicion. It appeared that research participants were more likely to complete the 

questionnaire when their suspicion is eased. Digitally conversing, on a one-on-one basis, with 
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concerned research participants helps build trust between them and the researcher. Questions 

presented by the research participant should not be answered in an automated way. 

Message viewing 

Some SM outlets may strictly structure their API's write function to send messages solely under 

‘private’ viewership. For instance, Twitter’s API allows messages to be sent to a private inbox or 

through a public tweet. Facebook’s API, however, only allows messages to be sent to private 

inboxes. As the names suggests, the messages sent to a user’s private inbox are not considered 

public and therefore can only be viewed by the user. Private messaging through a SM’s API 

warns the recipient that the incoming message is outside of their network, which requires the 

user to 'accept' the message before it can be viewed. This acceptance process adds another hurdle 

to users viewing the message, potentially decreasing the chances of their participation in the 

online questionnaire.  

Conclusion 

The abundance of SM data coupled with the advent of SM APIs brings new opportunities to 

digitally interact with diverse SM users for a variety of research themes. As a response, the past 

decade has seen a prolific increase in research and applications centered on social media data 

(Kaplan & Haenlein, 2010). However, current research views SM APIs as a one-way street, 

whose only purpose is to gather data. Instead, social media APIs can digitally connect, converse, 

and recruit SM users to complete an online questionnaire. The questionnaire is used as a platform 

for users to provide their intellectual insight to supplement and augment SM data. When users 

complete the questionnaire they are participating as more than just sensors, suggesting they are 

not situated on the first rung of Haklay’s ladder for citizen science participation. However, DIP 

does not situate SM users on Haklay's second rung because SM users do not directly contribute 
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to the scientific process of the research. Rather, applying DIP to SM data situates SM users 

between rung one and two. In the example provided, Twitter users provided their intellectual 

input as users self-diagnosed themselves with influenza-like symptoms. Even though many of 

the users are not medical doctors, their intellectual input helps provide context to their current 

influenza situation. Without DIP, this added context would be absent.  

Future research needs to focus on applying DIP to crisis management and other disease 

surveillances. The DIP process is intended to capture intellectual data from SM users in addition 

to filling in missing SM data gaps. However, during a crisis event, the chances for DIP to capture 

misinformation may increase since survivors might overstate their current situation, such as 

exaggerating medical needs.  

As the media covers a particular event, SM media discussions are likely to increase, potentially 

causing an increase in the spread of misinformation. In cases such as this, DIP may become a 

process that helps filter out misinformation. On the other hand, DIP may become a repository for 

misinformation as participants purposely and incorrectly answer questions on the online 

questionnaire. The DIP process needs to be tested on a subject that has gained large media 

attention. 

The questionnaire response rate was about 2-3%, which is low compared to traditional 

questionnaire response rates. Given that users receive SPAM-like messages in the DIP process, it 

is not surprising that the questionnaire response rate was low. Research needs to focus on 

methods to increase the questionnaire response rate.  
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The previous chapter discussed an approach, called the Digital Interaction Program (DIP). DIP is 

designed to augment and/or supplement social media data by increasing the participatory role of 

SM users. Traditionally, social media users are viewed solely as social data 'sensors'; posting 

pieces of information of the world, their daily activities, and other events. This is evident in the 

numerous studies conducted about the role various SM outlets play in predicting certain events 

and its ability to create situational awareness about disaster scenarios. However, there are 

contextual shortcomings of SM acting as predictive and awareness data sources. Furthermore, 

most research utilizing SM has not fully understand ways to include SM users into the scientific 

process. DIP was designed so that SM users are not just unbeknownst data sensors for scientists 

but instead transform into a data sensor that has a more involved role in Science. Their 

contributions rest on providing additional data or intellectual input to scientists by completing an 

online questionnaire. This questionnaire seeks SM users' formal input about a scientific topic 

which helps scholars augment current and supplement any missing SM data. This dissertation 

uses Haklay’s (2013) ladder of citizen participation and Groves (2006 and 2011) survey methods 

as a framework to build the aforementioned theories.  

The next chapter uses DIP to spatially and temporally augment influenza related tweets. Chapter 

two compares a user's space-time distributions of their influenza tweets against their non-

influenza tweets, correcting two shortcomings. First, current research assumes the time an 

influenza tweet is posted indicates when the author experienced symptom onset. However, this is 

not always the case, as a user may tweet about their influenza symptoms days after initial 

symptoms. Second, digitally detecting influenza cases on Twitter is applied to a spatially broad 

national, state, and metropolitan levels. This Chapter identifies the location of influenza tweets in 

relationship to the user’s home ZIP Code.  Chapter two produces two findings. First, Chapter 
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Two suggests that research using Twitter data for space-time paths research will be dependent 

upon the health status of the user. This is an important aspect to consider as space-time path 

related datasets are growing in variety and velocity given the advent of Web 2.0 and the 

popularity of cellular devices. For example, using cellular location data to identify popular travel 

networks in a city might have very different results if a travel-heavy neighborhood is bedridden 

with sickness versus when that neighborhood is healthy. Second, Chapter Two suggests that 

influenza tweets might be a viable data source to help predict local influenza ER admissions 

since influenza tweets tend to occur at users' home ZIP or Postal Code. Moving forward, space-

time paths research needs to examine how people interact with different urban design spaces as it 

relates to a variety of different health issues. Do such research could have important implications 

on disease outbreak mitigation strategies such as, identifying corridors of disease propagation 

and areas likely to experience high concentrations of sick individuals.  
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THE GEOGRAPHY OF INFLUENZA TWEETS 
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Abstract 

Research on the use of Twitter to detect influenza outbreaks has generally assumed an influenza 

tweet is posted when initial symptoms develop. Furthermore, such research has generally been 

applied on spatially broad scales (nation, regional, or metropolitan) since the fine-scale spatial 

context of influenza tweets is unknown. This chapter sheds light on these spatial and temporal 

assumptions. This research uses Vertalka's (2017) Digital Interaction Program as a tool to 

digitally ask New York City and London influenza-ridden Twitter users when they experienced 

peak influenza symptoms and their ZIP or Postal Code of residency during the 2014-15 influenza 

season. Users expressing influenza symptoms tend to tweet about their symptoms during periods 

of heightened symptoms (days after symptom onset), suggesting the posting of influenza tweets 

succeed the occurrence of actual infection infections. Furthermore, tweets expressing influenza 

symptoms tend to originate within users' home ZIP or Postal Codes, implying influenza detection 

through Twitter can occur at finer geographic scales than current research indicates. 

Introduction and Background 

People’s daily activities occur in space and time. A straightforward example involves common 

activities such as work, school, social events, and rest that people experience during any given 

week (Hanson & Huff, 1988). All of these activities occur in a given space during a period of 

time and for the most part are fairly predictable. For example, many of us work in a location that 

is separate from where we sleep. Likewise, many of these activities do not overlap; we cannot 

sleep and work simultaneously. Many of us also know not to call anyone after a certain hour of 

the night, as that person is likely to be asleep and it would otherwise be rude to wake them. 

These activities are not consistent though as peoples’ schedules change. For instance, someone 

may be too sick to work during their scheduled work time, thus they are not in their work 
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location during their work time. Instead, during their work time they are likely in their home 

location resting or recovering.  

This research starts by discussing space-time paths then discusses Twitter's role as a data source 

in understanding people's space-time path in an urban setting. Twitter's role in detecting 

influenza cases is also discussed followed by stating two shortcomings of digitally detecting 

influenza cases. To correct these shortcomings, this research employees the Digital Interaction 

Program (DIP) which is briefly discussed below. Finally, the findings of this research are stated 

and its implication on space-time paths and digitally detecting influenza cases. 

The when and where people's activities have been referred to as the space-time trajectory or 

paths of individuals. Space-time paths are, geometrically speaking, composed of a 2D planar 

coordinate space with a temporal dimension as a third dimension. Points are established within 

the spatial field and the time is recorded when an activity occurred at any particular point 

(Hägerstraand, 1970). From this, a timeline can be built that categorizes where a person was and 

what activity occurred. In turn this timeline can characterize transportation networks, parks, 

shopping districts, and other urban features. Individual’s space-time path behavior will vary from 

day-to-day and week-to-week and consequently their spatial footprint will reflect that change. 

These changes maybe subtle, such as stopping at a new coffee shop on the way to work or more 

dramatic such as, moving to a new city. Therefore, long term studies into the space-time path of 

individuals is preferred as it provides a larger mosaic of an individual’s behavior and finer detail 

of events along numerous space-time points. However, individuals need to provide enough data 

points throughout a long enough time period for high spatial-temporal detail of the urban 

environment to be reached. When there are too few space-time data points of an individual, it 

becomes difficult to determine if a user is behaving in a normal capacity and consequently has 
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little interaction with the built environment (P. Jones & Clarke, 1988) or abnormally for 

whatever reason (Bayarma, Kitamura, & Susilo, 2007). Likewise, the more individuals included 

in space-time path studies, the easier large-scale patterns can be identified.  

Traditionally, this type of research relied on recruiting individuals to keep detailed diaries of 

where and when they partook in daily activities (Janelle, Goodchild, & Klinkenberg, 1988). This 

approach was expensive and only provided a small glimpse into the space-time path of 

individuals. The advent of space-time data embedded into social media outlets presented a shift 

in the amount and variety of space-time paths data. The last decade has seen a rise of real-time 

web-based data streams such as, social media outlets and search engine queries, that are acting as 

an augmented and implicit data sources for traditional and authoritarian data sources (M. 

Goodchild, 2009; Sui et al., 2012). Twitter, a micro-blogging website that limits users to 140-

character messages or tweets, has been a dominant data source for this type of research as it 

relates to urban form and function. Urban form references the city’s physical shape and size of 

buildings, streets, and other features. Urban function refers to activities that occur at but within 

different spaces (Crooks et al., 2015). From these descriptions, urban form and function are 

interrelated. For instance, Birkin & Malleson (2012) discuss the space-time path of Twitter users 

as a means to identify complex space-time path behavior of individuals. Their research focuses 

on when and where tweets are posted as it relates to land use patterns and travel behavior. They 

had several important findings. First, they identified that users tend to travel an average of 2.5 

km on any given day. Second, those that tweet most often do not tweet in residential areas. 

Third, the context of tweets does not always match their spatial location. A glaring drawback of 

their research rests on the fact that their data contained no ground truth. Therefore, the 

researchers were forced to make assumptions about where users reside. Cooks et al., (2015) 
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identify that Twitter can be used as a data source to monitor public activities across different 

spatial and temporal scales. They make note of tweets at voicing the diurnal nature of activities 

where users tweet about work during the day and night-life activities at night. Their research 

suggests that Twitter can be used as a proxy to help identify the form and function or urban 

areas. Furthermore, Golder & Macy (2011) identified changing moods of happiness as a result of 

diurnal and seasonal changes.  

Twitter has also emerged as one of the dominant digital data sources for scholars to detect 

influenza outbreaks. Scholars use the content in tweets to determine if users are experiencing 

influenza-like illness (fever of greater than 100°F, cough, sore throat, muscle aches, headaches, 

runny or stuffy nose, fatigue). The tweet's embedded timestamp and geographic information 

(user enabled location data or GPS coordinates) provide data on when and where a user is 

experiencing influenza-like illness. Ultimately, these embedded data fields allow scholars to use 

Twitter to predict the occurrence of influenza cases in certain locations. For instance, 

Broniatowski, Paul, & Dredze  (2013) demonstrate that influenza related tweets can predict 

national and local influenza rates two weeks before traditional surveillance. Paul, Dredze, & 

Broniatowski (2014) found a high correlation between Twitter users experiencing influenza-like 

illness and government influenza data for 10 English speaking countries. Achrekar et al (2011) 

found influenza tweets to be highly correlated with national influenza rates for age groups of 5-

24 and 25-49. They note, however, that this correlation likely reflects the demographic age range 

of Twitter users. Research further distinguished self-reported influenza cases on Twitter from 

users that are merely discussing the presence of influenza or describing an influenza infected 

person other than themselves by using machine learning algorithms (Lamb et al., 2013). Culotta 
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(2010) identified an ensemble of Twitter keywords that predict influenza rates while minimizing 

false-positives.  

All the aforementioned research does not account for the space-time path of influenza tweets as 

it relates to where and when users tweet about their flu symptoms. This is clearly important as 

Twitter users may post about their influenza symptoms from anywhere at anytime. Lamb et al., 

(2013) partially help overcome this issue by classifying influenza tweets based on whether the 

author is referencing their influenza symptoms in a present or past tense. For instance, the first 

and second sentences describes a user's past and current experiences with influenza, respectively. 

1.) That was a terrible flu! Those symptoms were awful! 

2.) I am sick with the flu! These symptoms are awful! 

Their approach rests on the idea that adding temporal context to influenza tweets results in more 

accurate digital disease detection. While their approach is straightforward, it does not entirely 

correct the research assumption that Twitter users post their influenza symptoms at symptom 

onset. It is clear that tweet one is written in past tense but it is unclear of what historic time 

period the author's influenza tweet is referencing (yesterday?, a week ago?, etc.). Furthermore, 

users can discuss their current influenza symptoms using temporally vague language. For 

example, a user tweeting that they "Never want to have the flu again" could be referencing their 

current or past influenza symptoms.  Therefore, it is difficult to accurately determine when a 

Twitter user may have experienced influenza symptoms based solely on the tweet's content. 

Not only have scholars yet to characterize the temporal timing of when Twitter users tweet about 

their influenza symptoms, but they have yet to identify where influenza ridden users tend to 

tweet. Digitally detecting influenza cases on Twitter has occurred on broad spatial scales 
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including national, state, and occasionally city levels. Research has not examined finer spatial 

scales of where influenza tweets tend to occur along a user’s space-time path. It is important to 

quantify this because digitally detecting influenza has yet to derive the spatial context of tweets 

relating to influenza-like illness. 

Therefore, this research seeks to answer two questions: 

Question 1: Where do Twitter users prefer to tweet about their influenza 

symptoms in comparison to their home ZIP or Postal Code?  

Question 2: At what stage of influenza infection do influenza-ridden Twitter users 

tweet about their influenza symptoms?  

This research seeks to answer these questions by introducing findings about where and when 

users tweet about their influenza symptoms compared to when and where those same users post 

non-influenza tweets. This research uses the Digital Interactive Program (DIP) to digitally 

engage and then encourage suspected influenza-ridden Twitter users to complete an online 

questionnaire (Vertalka, 2017). This questionnaire probes users about their spatial-temporal 

tweeting behavior. As a comparative, this research tests the above questions by engaging Twitter 

users from two global English speaking cities, New York City and London. Both of these cities 

offer a rich collection of geolocated tweets (City Metric, 2014) making them ideal in this type of 

study. This research starts by briefly describing the spaces in which Twitter usage occurs. Next, 

Vertalka's (2017) DIP is used to capture the spatial and temporal tweeting behavior of Twitter 

users experiencing influenza-like illness. Then this research analyzes the results from DIP to 

identify when and where influenza tweets commonly occur. Finally, theories are built about the 

spatial-temporal tweeting pattern of influenza-ridden Twitter users.  
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Data Collection 

This research uses Vertalka's 2017 four step approach to digitally interact with social media 

users through Application Program Interfaces (API). As described by Vertalka (2017), social 

media APIs can be viewed as a conduit that connects Twitter users to the scholar and vice versa. 

Therefore, APIs are used to digitally communicate with social media users. During the digital 

conversation, SM users are encouraged to discuss their influenza symptoms, when symptoms 

peaked, and their home location (ZIP/Postal code) in an online questionnaire. Below, the four 

steps are discussed in more detail. This research also added an additional step to Vertalka’s 

(2017) approach (discussed in detail below) which adds more tweets the study.  

Step 1: Data Twitter Capture 

Step one of Vertalka's (2017) approach involves collecting SM data. Using Twitter's Stream API, 

this research captured over 14 million tweets (a 1% sample) within the bounding box coordinates 

of each NYC and London from November 26, 2014 to March 17, 2015. Tweets were captured 

based on keywords relating to influenza-like illness: 'sore throat', 'cough', 'headache', and 'fever' 

(Cullota, 2010). However, the captured tweets may not be a representative sample of Twitter 

activity (Morstatter, Pfeffer, Liu, & Carley, 2013). Additionally, it is likely not representative of 

the population in NYC or London. 
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Figure 2.1: Technical Architecture for Data Capture of Influenza Tweets in NYC and 

London 

 
 

Step 2: Select Research Candidates 

Step two of Vertalka's DIP approach centers on selecting groups of SM users that fit a research 

objective. In this research, purposive Twitter users were selected based on whether they tweeted 

within NYC and London and mentioned influenza-like symptom key-words 'flu', 'cough', 'sore 

throat', and 'headache’. These keywords show a 95% correlation with national influenza statistics 

in the US (Aron Culotta, 2010, 2013). A total of 8,696 and 7,756 purposive research candidates 

were matched to the above criteria for NYC and London, respectively. Random research 

participants were not selected as this group represents those that did not tweet about any 

influenza symptoms. 

Step 3: Digital Conversation and Questionnaire Design 

Step three of Vertalka's DIP approach centers on engaging in a digital conversation with 

identified research participants. Research participants identified in Step two were sent a tweet 

containing an external link to an online close-ended questionnaire. These tweets were sent 

through Twitter's API. A countless number of Twitter users engaged in a conversation with the 

scholar by tweeting back and forth. Many of these users asked for clarification of the research 
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project and were curious about the authenticity of the scholar's account. All questions were met 

with appropriate responses.  

 The questionnaire was designed to identify which symptoms, if any, were experienced by the 

research participant, when those symptoms peaked, and the user’s home ZIP Code. It also asks 

for the user's handle name. The questionnaire did not ask for a user’s address as this is likely too 

personal of a question which will reduce response rates or increase the number of incomplete 

surveys. The questionnaire was powered by Google Forums and can be viewed in detail at 

http://goo.g/ko3qvx and http://goo.gl/NPemrp for NYC and London, respectively. Research 

participants were sent a link to the questionnaire three to five days after posting their influenza 

symptom since users may have tweeted about their influenza symptoms but have yet to 

experience peak influenza symptoms. Due to restrictions on how often Twitter's API can be 

accessed, research participants were not sent reminders to complete the questionnaire. Research 

participants only received additional tweets to complete the questionnaire if they continued to 

tweet influenza keywords. This was done because users might have experienced re-infection. 

Once the questionnaire was completed by the user, no additional request tweets were sent to that 

user. Of the 8,696 NYC potential research participants 275 completed the survey (2%) and of the 

7,756 London potential research participants, 295 completed the survey (3%).  

Step 4: Add Twitter Timeline Data 

Since Twitter's Stream API returns only a 1% sample, this research used Twitter's Timeline API 

to gather historical tweets posted by each research participant completing the questionnaire. 

Collecting this data increased the tweet coverage of each user that is otherwise missed by the 

Stream API 1% sample. However, this approach can also introduce too much data since a 

http://t.co/VCLojSmIAd


50 
 

Twitter user's timeline tweet data could reference years’ worth of tweets and consequently 

multiple episodes of influenza. This issue is corrected as stated in the analysis section below.  

Step 5: Data Merger 

Stream and Timeline tweets from each research participant were linked to their questionnaire 

answers by their username.  

Analysis  

This research used Vertalka's (2017) approach to add spatial and temporal context to Twitter 

users in NYC and London. This is accomplished by merging Twitter's Stream and Timeline data 

of identified research participants with their completed questionnaire. The below analysis is 

broken into a time and space component. 

Time 

The intention of this research is to identify the timetable of when influenza-ridden Twitter users 

most often tweet about their influenza symptoms. The questionnaire asked research participants 

when their influenza symptoms peaked. From this information, a timetable of when users tweet 

about their influenza can be built based on the schedule of influenza infection, shown in Figure 

2.2. Upon infection, the virus will undergo a 1-4 day (mean: 2 days) incubation period (Fiore et 

al., 2008). After incubation, symptoms will quickly develop after mild symptoms are 

experienced from 1-5 days (mean: 2 days) to where acute symptoms can last for 7-10 days 

(Taubenberger & Morens, 2008). After this period, symptoms tend to quickly subside.  
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Figure 2.2: Timeline of Influenza Symptoms 

 
Source: (Fiore et al., 2008 and Taubenberger and Morens, 2008). 

 
A similar timetable was constructed for research participants and their influenza symptoms. By 

comparing the time a user posted their first influenza tweet to when they self-reported the time of 

their peak symptoms, an infection timetable can be identified for each user. The time period the 

first influenza tweet was posted was used since, it suggests the earliest possible indicator of 

influenza infection. This research identified 58 New York City and 48 London Twitter users that 

tweet about their influenza symptoms no more than 15 days prior to reporting when their peak 

influenza symptoms. Fifteen days was set as the cutoff because this number represents the 

duration of influenza infection; three days of symptom onset, plus the period of acute symptoms 

(7-10 days), plus two days of symptoms residing (Taubenberger & Morens, 2008). Influenza 

related tweets occurring before 15 days of self-reporting peak influenza symptoms may suggest a 

different type of illness, multiple infections, or the rare possibility of reinfection. 

Space 

The survey asked research participants to select their home ZIP or Postal Code. This question is 

asked to cross-compare the research participants declared home ZIP or Postal Code in the 

questionnaire with the geotagged location data of the user's influenza and non-influenza tweets. 

This research identified 20 NYC and 53 London influenza-ridden Twitter users that reported 

influenza symptoms, provided their home ZIP or Postal Code in the questionnaire, and had 
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geotagged enabled influenza and non-influenza tweets. Similar to the above, these users might 

have tweeted multiple times about their influenza sickness during a single influenza episode, 

which would bias any analysis towards the spatial tweeting behavior of a user. To account for 

this, this research used a user's first influenza tweet posted at no more than 15 days before users 

experienced peak symptoms. The identified research participants also posted multiple non-

influenza tweets. This research kept only non-influenza tweets posted three months before and 

three months after the user's initial influenza tweet. Two metrics are used to compare the spatial 

distribution of influenza versus non-influenza tweets of the research participants. The first metric 

identified the percentage of influenza and non-influenza tweets originating within a research 

participant's home ZIP or Postal Code, outside their ZIP or Postal Code, and outside of the NYC 

or London Study area. To test for statistical differences between the mean rate of where 

influenza and non-influenza occur an Exact Test with a Poisson distribution was conducted. 

However, given that the occurrence of non-influenza tweets maybe dominated by only a few 

users, a second metric was used to gauge where influenza tweets tend to occur. The second 

metric identified the spatial pattern of where influenza tweets occur in comparison to non-

influenza tweets. For metric two, Euclidean distance was measured from research participants 

declared home ZIP or Postal Code in the questionnaire to the geotagged location of the user's 

influenza and non-influenza tweets. The spatial distribution of influenza and non-influenza 

tweets for each user were then averaged. Averaging the spatial distribution of influenza and non-

influenza tweets based on each research participant corrects the issue of any single research 

participant potentially dominating the distribution of where influenza tweets occur.  
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Results 

Time 

Figure 2.3 is a box and whiskers plot of the temporal distribution of when NYC and London 

users tend to tweet about their influenza symptoms. The box represents the days when 50% of 

users tweet about their symptoms. The solid line that divides the box represents the median time 

users tweet about their influenza symptoms. The whiskers or dashed lines above and below the 

box represent the upper and lower quartile, respectively. Points represent outliers.  Nearly all 

NYC and London research participants tweet about their influenza during the period of 

heightened symptoms, as shown in Figure 2.3. In comparison to London research participants, 

NYC research participants tend to tweet later in the course of their influenza sickness, as 

indicated by the upper whisker’s location in the reduced symptom boundary. Only one NYC user 

tweeted about their influenza symptoms after experiencing the worst of their symptoms. This 

user also represented an outlier. 
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Figure 2.3: Temporal Distribution of When Influenza Tweets were Posted 

 

Space 

Roughly, 76% of NYC and 72% of London influenza-ridden Twitter user's first tweet influenza 

symptoms in their self-reported ZIP or Postal Code. It cannot be determined if ZIP or Postal 

Code originating influenza tweets represents a user's home address or some other location the 

user frequents within their home ZIP or Postal Code. Of these same users, only 68% and 64% of 

their non-influenza tweets originate in their ZIP and Postal Code, respectively. In general users 

in both New York City and London tend to tweet about their influenza symptoms close to home, 

in comparison to their usual spatial pattern of tweeting. The Exact Test with a Poisson 

distribution suggests that there is a statistical significance in the difference between where NYC 

and London users tweet influenza and non-influenza tweets.  
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Table 2.1: Spatial Locations of Where Influenza and Non-Influenza Tweets are Posted 

Poisson 
Results 

Influenza Tweets  Non-Influenza Tweets City 

 Within 
ZIP/Postal 
Code 

Outside 
ZIP/Postal 
Code 

Outside 
of 
Study 
Area 

Within 
ZIP/Postal 
Code 

Outside 
ZIP/Postal 
Code 

Outside 
of 
Study 
Area 

 

p-value < 
2.2e-16 
Distribution 
is different 

22 (76%) 7 (24%) 0 (0%) 11625 (68 
%) 

4659 
(28%) 

630 
(4%) 

New 
York 
City 

p-value < 
2.2e-16 
Distribution 
is different 

36 (72%)  14 (28%) 0 (0%) 12596 
(64%) 

6489 
(33%) 

463 
(2%) 

London  

 

 
Both Figure 2.4 and 2.5 display the average spatial distributions of users' geolocated influenza 

tweets and their non-influenza tweets in NYC and London, respectively. The average user tends 

to tweet about their influenza symptoms closer to their self-reported home ZIP or Postal Code, in 

comparison to their non-influenza tweets. For both NYC and London, influenza tweets tend to 

occur within a one-kilometer radius of a user’s home ZIP or Postal Code. Whereas, these same 

users tend to tweet about their non-influenza symptoms around a two-kilometer radius of their 

home ZIP or Postal Code as suggested by the large spike of non-influenza tweets in Figure 2.4 

and Figure 2.5. This reinforces Birkin and Malleson (2012) findings where tweets tend to occur 

at about 2.5 km from the user's home. The large spikes in non-influenza tweets could be a result 

of many different urban forms and functions such as, public transportation stops, mean distance 

to work, and other common urban activity spaces that are near population clusters. They could 

also indicate the spatial relationship between residential and commercial areas. The spike near 
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kilometer zero represents residential areas whereas the spike near two kilometers represents a 

commercial district where users congregate and frequently tweet (Birkin and Malleson, 2012).  

Figure 2.4: Spatial Distributions of Where Influenza and Non-Influenza Tweets are Posted 

from Home ZIP Codes in NYC 
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Figure 2.5: Spatial Distributions of Where Influenza and Non-Influenza Tweets are Posted 

from Home Postal Codes in London 

 

Discussion 

The goal of this research was to identify how Twitter user's space-time path alters when 

experiencing influenza-like symptoms. This was accomplished by using Vertalka's (2017) 

approach for augmenting social media data.  Traditionally, space-time paths of individuals were 

recorded by that individual keeping a detailed diary of where and when they did different 

activities. This process was time consuming and expensive for researchers. Twitter, and other 

social media outlets, are a new data source were space-time path data can be collected and 

analyzed inexpensively and quick.,  

Prior research focusing on space-time paths of Twitter users does not account for the user's state 

of health. As this research has shown, space-time paths of Twitter users are likely altered when 
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they are experiencing influenza-like illness. The user’s state of health is an important factor to 

consider because their day-to-day activities change which effects their spatial-temporal path. For 

instance, Twitter users who are cancer victims are likely to possess a unique space-time path. On 

one hand, these Twitter users will have a limited range around their residency as they maybe too 

tired to travel for daily errands or activities of live considering their health state. However, these 

Twitter users are likely traveling large distances to seek medical care for their cancer. In this 

case, cancer has a very different space-time path when compared to influenza.  

 Twitter users who tweet about their symptoms often do so when experiencing acute symptoms. 

One possible explanation to this may rest on the user experiencing maximum frustration or 

misery, and once that point is reached it is then expressed through a tweet. Another possible 

explanation is that a Twitter user is bored at home and has nothing better to do than tweet about 

their symptoms. It was identified that 76% of NYC and 72% London influenza-ridden tweets 

originate within the author's home ZIP or Postal Code. When not experiencing influenza 

symptoms 68% of NYC and 64% of London tweets originate in the authors home ZIP or Postal 

Code. Furthermore, on average influenza tweets are more concentrated near the user's self-

reported home ZIP or Postal Code in comparison to the spatial pattern of a user's non-influenza 

tweet, as shown in Figure 2.4 and 2.5. This indicates that a user's space-time path during 

influenza infection has less spatial variation. These influenza-ridden users might be experiencing 

a frustrating level of influenza symptoms and consequently are staying home. Users tweeting 

about their symptoms outside of their home ZIP or Postal Code suggests users are experiencing 

influenza symptoms at work, school, doctor's office, or other urban activity spaces that is not in 

their home ZIP or Postal Code. 
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The space-time path difference between New York City and London Twitter users may rest on 

several factors. Space-time paths are dependent on people’s interaction with the natural or built 

landscape. Therefore, the design or spatial arrangement of the different urban forms and 

functions of cities will influence where people are likely to tweet. For instance, research has 

already identified how population, job density, stores within a certain radius, and distance to the 

central business district, affect the way people interact with the urban landscape (Bhat & Misra, 

1999; Ettema, 2005; Yamamoto & Kitamura, 1999). Furthermore, the distance to which people 

interact with the urban environment decreases as the city becomes more compact, has higher 

degrees of mixed landuse, more options for public transportation, and is more connected 

(Boarnet & Crane, 2001; Handy, 2005; Khattak & Rodriguez, 2005; Kockelman, 1997). This is 

because individuals have more opportunity to interact with the spaces around them and do not 

need to travel for such opportunities. However, this relationship may also be symbiotic as 

individuals not only interact with the built landscape but mold it to their preferred needs and 

desires so their space-time paths become more convenient (Crooks et al., 2015). As mentioned in 

the above literature, Twitter has been used a proxy for mapping out the space-time paths of users. 

Therefore, it is not surprising that the location of influenza and non-influenza tweets in New 

York City and London differ, as they would differ between cities of varying urban form and 

function. Perhaps though future research can identify if a generalized spatial-temporal 

distribution pattern exists between cities that are composed of similar types of culture, 

economics, design, or built by similar planning theory and practices. 

Understanding a deeper context to the spatial-temporal pattern of influenza tweets corrects two 

assumptions of digitally detecting influenza cases through Twitter. The first assumption assumes 

that Twitter users experiencing influenza symptoms post such material as symptoms start. 
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However, this assumption is not entirely correct. This research identified that Twitter users 

experiencing influenza-like symptoms first tweet during periods of acute symptoms or2-12 days 

after symptom onset. Second, digital detection of influenza cases through Twitter assumes users 

tweet about their influenza symptoms at a coarse spatial scale, such as national or local scale. 

However, Twitter users stay closer to home during periods of infection, suggesting digitally 

detecting influenza cases through Twitter can occur at spatial scales finer than national, state, and 

metropolitan level. 

As shown in this research, the space-time path of individuals is affected by their influenza 

infection. Other health issues, such as cancer, diabetes, might also affect the space-time paths of 

individuals. While it remains unstudied in the fullest of scopes, researchers who use Twitter as a 

data source for understanding space-time paths should account for the health status of the user as 

it is likely to change the space-time path pattern of that user. 

Conclusion 

This research discusses significance and importance of examining the health status of a Twitter 

user when examining their space-time path.  Twitter has been used as a data source to distinguish 

between the diurnal activities of people and identify urban form and function such as, users 

preferring to tweet in commercial areas within 2.5 km from their home. However, no prior 

research has identified how a Twitter user's state of health will alter their space-time path. This 

research addresses that shortcoming and identifies two significant contributions to digitally 

detecting influenza cases. First, traditional digital influenza detection research assumes the time a 

user tweets about their symptoms reflects when they first experience symptoms. This research 

demonstrated that Twitter users tweeting about their influenza symptoms do so when their 

symptoms are acute. Second, this line of research does not include any literature for where an 
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influenza tweet originates. This research concludes that influenza-ridden Twitter users tweet 

about their symptoms in a more spatially confined area in comparison to users' typical tweeting 

area. Additionally, the location of influenza tweets tends to be within or very near a user's home 

ZIP or Postal Code. Those tweeting about their influenza symptoms outside of their home ZIP or 

Postal Code, tend to do so within three kilometers of their home ZIP or Postal Code.  

The findings of this research should not be universally applied to all cases of digitally detecting 

influenza cases. The tweeting behavior of individuals may vary based on many criteria some 

including health state of the user, demographics, cultural identify of user, availability of reliable 

internet, and other social-economic factors. Future research needs to focus on identifying factors 

that influence the spatial and temporal distribution of where and when influenza-ridden Twitter 

users tweet. One approach to solve this problem is to apply Vertalka's (2017) Digital Interaction 

Program (DIP). DIP allows scholars to digitally engage and recruit a wide variety of social media 

users (from diverse demographics, culture, etc) as research participants in scientific research. In 

turn, the spatial and temporal distributions of different populations can be identified.  

Furthermore, the severity of influenza varies from season to season as symptom intensity varies 

from person to person. It is expected that the Twitter user will remain more geographically 

confined during influenza outbreaks that present severe symptoms, as users are more likely to 

stay at home. However, this theory remains untested. Lastly, future research can be undertaken 

which examines how space-time paths are affected by different health issues within similar and 

different urban layouts, transportation networks, cultures.  

This research has several limitations. First, DIP questionnaire participants could report false 

information about their home ZIP or Postal Code and when they experienced their worst 

symptoms. Second, the findings presented in this research are not intended to be a generalized 
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rule. Rather, influenza tweets in different cities and influenza seasons are likely to create 

different spatial-temporal distributions. Third, this research contained a small number of research 

participants. Having a larger sample size would produce a more robust distribution of when and 

where influenza occur.  
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Chapter two identified spatial and temporal shortcomings of digitally detecting influenza cases 

through Twitter. Research on the digital detection of influenza through Twitter has traditionally 

focused on comparing influenza tweets with national or regional scale influenza prevalence. 

Research has assumed Twitter users tweet about their symptoms at the moment of onset and 

from their residency. Chapter two used the Digital Interaction Program (see Chapter one) to 

correct these assumptions by identifying the spatial and temporal distributions of influenza 

tweets. New York City and London Twitter users tend to tweet about their influenza symptoms 

from locations closer to their home ZIP or Postal Code, in comparison to where these same users 

tweet about their daily lives. People in both New York City and London tend to tweet about their 

influenza symptoms when they experience acute symptoms. It is expected that the results of 

Chapter two will vary according to city, influenza season, demographics, culture, and a host of 

other reasons.  

DIP not only asked questions relating to when users experienced peak influenza symptoms, 

home ZIP or Postal Code, and which influenza symptoms they experienced, but also asked about 

demographics, gender, age, and if the user received an influenza vaccine. Unfortunately, DIP had 

a low participation rate and therefore could not provide enough cases to stratify the findings 

presented in Chapter two by these factors.  

Chapter three builds on the findings presented in Chapter two. Influenza-ridden Twitter users 

tend to tweet about their influenza symptoms near their home ZIP or Postal Code. This suggests 

that correlating influenza tweets to actual influenza cases can occur at intra-metropolitan spatial 

scales. Chapter three explores that possibility by correlating influenza tweets with influenza 

Emergency Room (ER) admissions for each hospital in New York City. Chapter two also 

suggests that the occurrence of influenza tweets succeeds the actual time point of infection. This 
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may indicate that influenza tweets tend to be posted before the actual occurrence of influenza 

cases. Therefore, Chapter three explores when peak correlation occurs between influenza tweets 

and influenza emergency room admissions at each hospital in New York City. Being able to 

predict influenza cases at a finer geographic scale introduces the possibility of a local influenza 

surveillance approach for hospitals, which is a novel outcome in disease surveillance. This 

research is not intended to replace current surveillance approaches but rather to provide hospitals 

with added knowledge about local influenza prevalence and its impacts.   

The capabilities of Twitter as a reliable data source for influenza detection at individual hospitals 

varies. At some hospitals influenza tweets are able to predict influenza ER admissions and at 

other hospitals the opposite is true. Best cases involved influenza tweets predicting influenza ER 

admissions over two weeks in advance. Unfortunately, the correlations coefficients where 

relatively low. It is unknown as to what hospital characteristics contribute to influenza tweets 

predicting influenza ER admissions and correlation values.  Chapter three uses regression 

methods to dig deeper into identifying and understanding what socio-economic factors influence 

when influenza tweets predict influenza ER admissions.     

The analysis in Chapter three could not be conducted with the London dataset. Transferring the 

required data from London to the United States is near impossible since the United Kingdom 

Courts recently increased the security requirements of trans-Atlantic transfers of sensitive data. 

In fact, as of writing this dissertation, no academic institution has successfully applied to receive 

sensitive data from the United Kingdom since the increased security requirements. This 

dissertation was able to obtain influenza data for London, but it was a dataset that only included 

the number of broadly defined influenza patients entering a hospital on a specific date. For 

instance, eight people entered hospital 'X' on December1st, 2014. The diagnosis classification for 
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patients entering a hospital are coded as 'ears, nose, and throat'. This coding scheme covers a 

wide spectrum of diagnoses outside of the intended influenza diagnosis. However, there was no 

available option to receive patient data with more detailed diagnosis. Furthermore, the dataset 

provided suppressed daily hospital admissions with fewer than five patients. As a comparison, 

the New York City dataset does not suppress the raw data but the data use agreement requires the 

researcher to suppress the data when disseminating the results. Therefore, in its raw but 

suppressed state, the London dataset arrived without the necessary detail needed for a strong 

analysis. Additionally, the London dataset was missing patient Postal Codes, a necessary 

component to analyze the data. This data piece is important because it is used as spatial weights 

to identify the geographic extent of where influenza patients for each hospital reside. It is not 

feasible to generalize the spatial weights based on the catchment area of influenza patients for 

New York City hospitals.  
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Abstract 

Current research correlates influenza tweets to influenza cases at broad national or regional 

scales. This research harnesses Twitter as a contributed data source to identify when influenza 

tweets best correlate with influenza Emergency Room admissions at different local hospitals in 

New York City. Tweets were downloaded based on influenza keywords and geotagged within 

New York City. An ensemble of machine learning algorithms classified tweets based on the 

context of who is infected with influenza. Optimal lag and lead periods were identified of when 

self-diagnosed influenza tweets best correlate to influenza Emergency Room admissions. On 

average influenza admissions were predicted about 8.5 days in advance. This research also 

identified demographic and transportation factors having significant influence on when influenza 

tweets best correlate to influenza Emergency Room admissions in New York City. This research 

introduces a more spatially appropriate indicator to detect potential influenza Emergency Room 

admissions.  Which in turn may potentially provide warning to individual hospitals to prepare 

their facilities for incoming influenza patients.  

Introduction/Background 

Pandemic and seasonal influenza outbreak occurrences are expected to further stress hospital 

Emergency Rooms (ERs), despite modern intervention strategies and surveillance programs 

(Derlet, Richards, & Kravitz, 2001; Dugas et al., 2012; Trzeciak & Rivers, 2003). These stresses 

include: shortages of medical staff and supplies, rendering ERs less effective at patient treatment. 

In some cases, ambulances are diverted from ERs operating at or over patient capacity (Schull, 

Morrison, Vermeulen, & Redelmeier, 2003). Anti-viral interventions intended to limit the 

severity and scope of influenza outbreaks may not be an effective remedy for seasonal or 

pandemic influenza, and ultimately influenza ER admissions (Lessler, Reich, & Cummings, 
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2009). For instance, influenza antiviral drugs administered in 2009 and 2014 were 56% and 13% 

effective, respectively, at preventing influenza (“Center for Disease Control and Prevention,” 

2016).  Given these shortcomings, national and local surveillance programs are established to 

monitor influenza incidence and prevalence. For example, the Center for Disease Control (CDC) 

monitors influenza through five metrics: virology, healthcare outpatient illnesses, mortality, 

hospitalizations, and geographic spread as briefly defined below. 

Virology: Over 300 labs report the total count of tests for influenza and the number of respiratory 

specimens positive for influenza.  

Outpatient Influenza-like Illness Surveillance Network (ILINet): The number of patient visits to 

healthcare facilities where the patient presents influenza-like illness symptoms (headache, fever, 

cough, sore throat, vomiting, diarrhea). 

Mortality: Tracking influenza mortality through the National Center for Health Statistics and 

Influenza-Associated Pediatric Mortality Surveillance System. 

Hospitalizations: Monitoring laboratory confirmed influenza hospitalizations for adults and 

children through the Influenza Hospitalization Surveillance Program.  

Geographic Spread: Reporting on the state-wide geographic spread of influenza as either no 

activity, sporadic, local, regional, or widespread by state health departments. 

Results from these surveillance programs are published 1-2 weeks after the occurrence of 

influenza cases (Broniatowski et al., 2013; Ginsberg et al., 2009). Spatially speaking, the CDC 

reports their findings at the state level which provides little information to individual hospitals 

that typically serve immediate surrounding communities.  
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Some metropolitan areas also employ their own surveillance program. For instance, New York 

City's Department of Health and Mental Hygiene (NYCDOHMH) conduct their own version of 

influenza surveillance. However, their approach is somewhat similar to that of the CDC's as 

NYC monitors the following programs: 

Outpatient Influenza-like Illness Surveillance Network (ILINet): ILINet is monitored by the 

CDC, as discussed above. 

Syndromic Surveillance: Emergency Departments send electronic data to NYCDOHMH 

regarding influenza cases. This is used to analyze changes in the trend of influenza cases. 

ED ILI Visits versus ER ILI Admissions: NYCDOHMH identifies the proportion of influenza 

cases that require admissions. This is used to identify the severity of influenza. 

Laboratory Confirmed Influenza Cases: NYCDOHMH identifies laboratory confirmed influenza 

cases for more accurate determination of influenza severity.  

Traditional data sources, such as those by the CDC, are collected, analyzed, and disseminated by 

scientific experts. Health practitioners and researchers have looked at alternative sources by 

untrained people to monitor influenza activity including, Google FluTrends and Healthmap.com. 

In 2008, Google correlated influenza search queries with CDC influenza cases in an application 

called Google FluTrends (GFT). GFT provided influenza surveillance data at the state level and 

had begun testing at the city level (Ginsberg et al., 2009). For the better part of five years the 

application seemed accurate. In 2013, however, GFT over-estimated influenza prevalence due to 

sustained spikes of influenza media coverage, causing an increase in public concern. This in turn 

created an increase in influenza search queries and ultimately GFT overestimating influenza 

prevalence (Butler, 2013). Since the report of this miscalculation, GFT has remained offline. 
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Despite its hiccup, GFT has not published the necessary geographic detail of influenza cases to 

create local influenza insight for hospital ERs. Healthmap.com is another online surveillance 

program but unlike GFT, it offers high geographic resolution about the prevalence of several 

communicable diseases (Healthmap.com). This is accomplished by sophisticated algorithms 

identifying content found in media, social media, and official reports from international 

organizations associated with any given disease. However, the site has yet to correlate the 

occurrence of a disease to respected ER admissions.  

Given the shortcomings of GFT and Healthmap.org, researchers have sought to digitally detect 

influenza cases with Twitter. Twitter is a micro-blogging website that allows users to post 

messages (tweets) of up to 140 characters. Twitter users may post about a variety of topics that 

occur in their daily lives. Some tweets contain 'hashtags' (#) to indicate trending topics or emojis 

that act as ideograms. Twitter records the time a tweet is posted and, if user enabled, where the 

tweet was posted. As of 2016, roughly 303 million tweets are posted each day (Business Insider, 

2016).  

Alternative data sources such as, Twitter and other SM outlets, represent a different type of data 

that is permissive in nature. This type of data has been referred to as implicit Volunteer 

Geographic Information (VGI) (Senaratne et al., 2017). VGI refers to non-experts collecting 

spatial data about the world and uploading that data onto a community computer. Early VGI 

involved non-experts to contribute data to create OpenStreetMap or Wikimapedia (Sui et al., 

2012; Tulloch, 2014). This type of VGI data has an explicit role. For instance, users who upload 

data on OpenStreetMap do so with an intended purpose of being active contributors. Twitter and 

many SM data outlets, however, are not driven by the scientific contribution purpose of 

OpenStreetMap or Wikimapedia. Therefore, SM data outlets used in scientific research are often 
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more littered with irrelevant data observations when compared to early forms of VGI. Despite its 

permissive nature, Twitter has been effective at predictive research including earthquake 

detection (Sakaki et al., 2010), stock market trends (Bollen et al., 2011), grass fires in western 

US (Vieweg et al., 2010), and use or misuse of antibiotics (Scanfeld, Scanfeld, & Larson, 2010). 

Twitter has even been used for detecting influenza cases. In such cases, research has focused on 

identifying keywords associated with influenza tweets (Aron Culotta, 2010), linking influenza 

related tweets to national news stories (Chew & Eysenbach, 2010), correlating influenza tweets 

with national influenza rates (Achrekar, Gandhe, Lazarus, Yu, & Liu, 2011) or regional influenza 

rates (Bodnar & Salathé, 2013), and even correlating influenza rates in New York City with 

influenza tweets (Broniatowski et al., 2013). The scholars detecting influenza cases were able to 

do so with correlation rates between 0.70 and 0.97 and have focused on national or metropolitan 

scales. However, Vertalka (2017) identified that influenza tweets tend to occur in spatial pockets 

near a user’s home ZIP or Postal Code, suggesting that digitally detecting influenza outbreaks 

can occur at finer spatial scales, such as local hospitals. 

This research seeks to identify when and where influenza tweets can best correlate with influenza 

ER admissions in New York City and then examines the factors that influence the correlation 

values. This article first discusses the process of collecting and cleaning hospital and Twitter data 

located in New York City. Next, it temporally finds the optimal time to which influenza tweets 

are best correlated with influenza ER admissions. This research uses multiple regression methods 

to then identify demographic, economic, and transportation factors that influence the 

correlations. The results of this paper indicate that Twitter may timely and local insight for 

several hospitals in NYC.  
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Hospital Data 

This research collected inpatient and outpatient ER hospital admissions in New York City from 

Statewide Planning and Research Cooperative System (SPARCS) from November 26th, 2014 to 

March 17th, 2015. Inpatient and outpatient influenza cases were selected based on ICD-9-CM 

codes that are indicative of influenza-like illness (Appendix 3.1) (Marsden-Haug et al., 2007). 

Family doctors and house-call doctors treating influenza patients were not selected since these 

types of clinics do not offer medical emergency services. Over 66,000 influenza ER admissions 

occurred in NYC during this period. Roughly 90% of these admissions occurred as outpatient 

cases. As expected, the burden of influenza cases affected the very young and very old, as shown 

in Table 3.1. 

Table 3.1: Age Adjusted Influenza Cases per 1,000 People 

Total Influenza Cases (Age Adjusted 

rate* per 1,000 People) 

Age Range 

13,577 (23.25) Persons Less Than 5  

14,928 (11.41) Persons Between 5 and 18  

17,365 (5.69) Persons Between 18 and 39  

13,485 (4.82) Persons Between 40 and 64  

6,909 (6.06) Persons Over 64  

 
*denominator represents population total of each age range  
 
Twitter Data 
 
This research downloaded roughly 14 million tweets from Twitter's Application Program 

Interface (API) with location filters based on the bounding box of New York City and its 
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surrounding Boroughs from November 26th, 2014 to March 17th, 2015. Twitter's stream API 

returned a 1% sample of all tweeting activity within this area and time period.  

It should be noted that captured tweets may not be a representative sample of all Twitter activity 

(Morstatter et al., 2013). Additionally, it may not representative of the population at hand. 

Roughly 25% of adults use Twitter but that percent is predominantly young, affluent, educated, 

and non-rural (Pew Research Center, 2015). These statistics can be further broken down based 

on the number of Twitter accounts versus who frequently tweets. For example, 20 and 30-year 

olds represent over 50% of all Twitter accounts but makeup less than 40% of all Twitter activity. 

However, teenagers account for about half of all Twitter activity but makeup roughly 15% of all 

Twitter accounts. Furthermore, there are more males than females on Twitter. Females, however, 

tweet more frequently. While there are more white Twitter users, black Twitter users are 

overrepresented (Murthy, Gross, & Pensavalle, 2016). The demographic over and 

underrepresentation of Twitter users will spatially vary (Mislove, Lehmann, Ahn, Onnela, & 

Rosenquist, 2011). The demographic skewness is likely to affect the outcome of this research. 

However, the goal of this research is to use influenza tweets as a proxy for understanding 

influenza activity for individual hospitals and not to predict whether a person tweeting about 

influenza will enter an ER. 

Methods  

Prior research was limited to applying influenza tweets to predict influenza cases at broad scales. 

The purpose of this research is to identify the role Twitter plays in acting as proxy to understand 

ER influenza activity for ER hospitals in NYC. To accomplish this, a four-step data analysis 

process was developed. Part one centers on cleaning the downloaded Twitter data to identify 

tweets focusing on users self-diagnosing themselves with influenza-like symptoms. Part two 
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discusses when influenza tweets are best correlated with influenza activity in NYC. Part three 

focuses on when and where influenza tweets are best correlated with influenza ER admissions at 

individual ER hospitals. Part four discusses the socio-economic factors that influence the 

correlation value of where and when influenza tweets coincide with influenza ER admissions.  

Part 1: Tweet Data Cleaning 

Part 1 of the methods portion contains five steps. Step one removes retweets. Step two identifies 

tweets with keywords associated with influenza-like symptoms. Step three examines the content 

of an influenza tweet to identify self-diagnosed influenza case. Step four describes a lapse period 

where influenza infected Twitter users are not allowed to have two influenza episodes within a 

specified window. Finally, Step five removes all tweets that are not GPS enabled and located 

outside of NYC. 

Step 1: Data Cleaning - Removing Retweets 

Retweets, or reposts, were removed from the dataset to eliminate unnecessary tweet redundancy. 

For example, international music pop star Justin Bieber may have tweeted about his influenza 

sickness, “The show can’t go on. I’m sick w/ the flu!! Sorry fans” and subsequently a firestorm 

of retweets might follow given his popularity on Twitter. Therefore, removing retweets also 

helps eliminate over counting influenza cases.  

Step 2: Data Cleaning - Identifying Tweets with influenza key-words 

This research used two approaches to ensure accurate selection of influenza related tweets. First, 

this research selected tweets containing the following key-words: influenza, flu, headache, 

cough, and sore throat  as these keywords show a 95% correlation with influenza activity (A 
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Culotta, 2013; Aron Culotta, 2010). However, selecting tweets based solely on influenza 

keywords would indicate that the following two tweets are equally important:  

1.) "Well, I have a sore throat, headache, and cough....flu?"  

2.) "I guess the flu is bad this year...at least according to the CDC."  

These two tweets are contextually different but contain at least one influenza keyword. Tweet 

one is a primary influenza case where the user has self-diagnosed themself with the flu. Tweet 

two, suggests that a user is posting a public service announcement potentially warning other 

users about flu activity.  

Step 3: Data Cleaning – Identifying self-diagnosed influenza tweets based on context 

Using influenza key-words does not account for contextual differences between tweets. To 

correct this issue, the contextual differences between different tweet context are identified using 

an ensemble of machine learning algorithms (MLA).  

An ensemble of machine learning algorithms (MLA) was used to distinguish between the above 

self-diagnosed tweets, public service announcement tweets, and non-influenza tweets. An 

ensemble of MLAs provides more robust analytical results compared to running individual 

MLAs. MLAs are a type of artificial intelligence where computers learn how to perform a task or 

make a decision. For instance, linear regression is a machine learning method where the 

computer learns the trend of a dataset and then using that trend can make future predictions. 

MLAs have been used to classify a Twitter user's political affiliation (Pennacchiotti & Popescu, 

2011) and sentiment (Go, Bhayani, & Huang, 2009). This research uses R Statistical Software's 

"RTextTools" package (Jurka, Collingwood, Boydstun, Grossman, & van Atteveldt, 2013) to 
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train Support Vector Machine, Logit Boosting, Bagging, Random Forests, Artificial Neural Net, 

and Decision Tree models on the three tweet categories (non-influenza, self-diagnosed influenza, 

and public service announcement). Each of these models then independently classifies a tweet 

based on what the model has learned about the context of the different tweet categories. After all 

the models classify a tweet, a democratic vote occurs between the different models to reach a 

consensus on the classification of a tweet as either a self-diagnosed case, PSA, or non-influenza 

tweet.  

For the MLAs to classify different tweets, an independent training dataset from Twitter's API 

was coded to detect the difference between self-diagnosed influenza tweets, influenza public 

service announcement (PSA) tweets, and non-influenza tweets. Over 2,000 tweets were read and 

coded by the author and a colleague in a double-blind method; 1,286 for self-diagnosed influenza 

tweets, 802 for secondary influenza tweets, and 103 for PSA. Any coding discrepancies between 

the two coders were either corrected or eliminated from the study if consensus could not be 

reached. The training dataset is built on the co-occurrence of non-sparse terms 

𝑥𝑥11
𝑥𝑥21
𝑥𝑥𝑛𝑛1

𝑥𝑥12 … 𝑥𝑥1𝑝𝑝 … 𝑦𝑦1
𝑥𝑥22 … 𝑥𝑥2𝑝𝑝 … 𝑦𝑦2
𝑥𝑥𝑛𝑛2 … 𝑥𝑥𝑛𝑛𝑝𝑝 … 𝑦𝑦𝑛𝑛

 where 𝑥𝑥 equals a single variable term and 𝑦𝑦 equals the classified code for 

each tweet. The ensemble of MLAs was calibrated and validated using the above training dataset 

and K-folds cross validation. K-folds cross validation is a method where the training dataset is 

split into K number of parts. One of those parts is used to train the MLAs and the other K-1 parts 

are used to test the MLAs. This process is repeated until every single split has trained the MLAs 

and predicted the K-1 remaining parts. This research used ten folds to detect influenza tweets 

(Bodnar & Salathé, 2013; Kohavi, 1995).  
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Step 4: Data Cleaning - Syndrome Elapse Time 

According to the CDC (2016), influenza-like symptoms may occur for two weeks and 

consequently users may tweet about their influenza symptoms within this period (initial 

symptoms, peak symptoms, missing work/school/social activity, visiting a doctor, and recovery). 

See Table 3.2 for examples. While influenza tweets are often posted during periods of 

heightened symptoms (Vertalka, 2017), continuous tweeting of influenza-symptoms by an 

individual will overestimate influenza activity. To account for this behavior, a six day window is 

typically created around the account holder's first influenza tweet (Achrekar, Gandhe, Lazarus, 

Yu, & Liu, 2011). However, this research used a 14-day window because influenza symptoms 

typically last up to 14 days. Any influenza tweet within that window is discarded, except for the 

user's first influenza tweet. Any tweet outside of that window is treated as a separate influenza 

case for that individual.  

Table 3.2: Influenza-like Tweets According to Syndrome Elapse Timeline 

Example Tweet Influenza Activity 
"Headache and a sore throat…this might be the flu." Initial Symptoms 
"I feel like death. Everything hurts. #IHateFlu" Peak Symptoms 
"Calling into work sick….again b/c of flu." Missing Activity 
"Coughing in the Doctor's waiting room is like coughing on a cough" Visiting a Doctor 
"Finally starting to feel better. I never want the flu again!!!!" Recovery 

 

Step 5: Data Cleaning - Select tweets that are posted within NYC 

Step 5 spatially selects tweets that are posted within NYC and its five Buroughs using the GPS 

coordinates of the tweet and not the user declared location data. The difference between these 

two is important. GPS coordinates of tweets represents the location of where the tweet originated 

from. On the other hand, user declared location data is supposed to represent where a user lives. 

This latter case presents several issues as users can falsely describe their location (declare their 
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home is in NYC but actually live in London), fictitiously describe their location (Candyland, 

Jurassic Park, etc), or broadly define their location (New York State instead of Brooklyn). Given 

these shortcomings only GPS enabled tweets posted in NYC were used in this research.  

Part 2: Optimally Identifying when Influenza Tweets Predict ER Admissions in 

NYC 

Previous research has shown that influenza related tweets can predict the actual occurrence of 

influenza cases by 14 days (Aramaki, Maskawa, & Morita, 2011; Broniatowski et al., 2013; 

Aron Culotta, 2010).  Pearson's correlation coefficient is used to identify when influenza tweets 

best correlate with influenza cases in NYC. Where X equals all ER influenza cases in NYC, Y 

equals daily influenza tweets as a proportion of daily tweeting activity (Lamb et al., 2013) for all 

of NYC, and r equals the correlation value between 0 and 1. Normalizing influenza tweets by 

overall tweeting activity corrects issues of Twitter activity varying on certain days of the week, 

month, or year. 

𝑟𝑟 =  
Σxy − ΣxΣy

N

�(Σ𝑥𝑥2 − (Σ𝑥𝑥)2

𝑁𝑁
) + �(Σ𝑦𝑦2 − (Σy)2

𝑁𝑁
)
 

There are many advantages to using this method such as, the ease of interpretation. However, 

one of the drawbacks with this method, and any correlation method, is that it does not indicate 

causality. Therefore, the occurrence of influenza tweets may not directly influence influenza ER 

admissions. While this may be true, it is not the intention of this research to directly link 

influenza tweets to influenza ER admissions. Rather this research's goal is to identify when 

influenza tweets best correlate with influenza activity at local ERs. Pearson's correlation 

coefficient was repeated to identify the maximum correlation value to when either influenza 
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tweets best predicted influenza ER admissions or vice versa. In economics, this process is often 

referred to as lag and lead indicators. Lagging indicators look back at some number of rows by 

temporally shifting the data to down or to the right, which moves it forward in time. Leading 

indicators look ahead some number of rows by temporally shifting the data to the down or to the 

left, which moves it back in time. Table 3.3 shows an example how lag and leads shift.  

Table 3.3: Lag and Lead Shifting Example  

Time Value Lag Value Lead Value 
10/01/2017 100 NA 99 
10/02/2017 99 100 98 
10/03/2017 98 98 97 
10/04/2017 97 97 NA 
 

This research shifts influenza tweets to the right (lag) to identify when influenza tweets best 

correlate with influenza ER admissions and shift influenza tweets to the left (lead) to identify 

when influenza ER admissions correlate with influenza tweets. 

Part 3: Identifying when Influenza Tweets Optimally Predict Influenza ER 

Admissions on a Hospital by Hospital Basis 

This research identifies a finer geographic scale of where and when influenza tweets best 

correlate with influenza ER admissions for each hospital in NYC. The time influenza tweets 

optimally correlate with influenza ER admissions is likely to be different for each hospital. This 

research uses two steps to spatially and temporally correlate when influenza tweets will 

optimally coincide with influenza ER admissions. 

 Step 1 - Create Spatial Weights 

ER admissions are geographically influenced (Peköz et al., 2003; Wennberg, 1979). Many 

hospitals operate under a 'catchment' type of system, where their services influence patient 
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arrivals by geography, hospital size (number of beds, resources, and other measures), and 

proximity to competing hospitals (Delamater, 2013). Large hospitals near patients but far from 

competing hospitals are likely to experience more patients in comparison to nearby hospitals that 

compete for patients. In the latter example, people will likely seek medical attention at the 

closest hospital. The hospital data provided by New York State’s Department of Health SPARCS 

includes data fields of the patient's ZIP Code of residence and name of the ER facility the patient 

entered. Given these two data fields, the spatial distribution of where influenza patients reside 

can be calculated for each hospital. 

The proportion of influenza patients in each ZIP Code by hospital indicates the catchment area 

respective to each hospital. This is calculated based on ranking the distance of influenza patients 

home ZIP Code centroid to the hospital of interest. This was done for every hospital in NYC. 

The cumulative sum of the proportion of influenza ER admissions is then calculated based on the 

ranked distance of ZIP Codes for each hospital. This proportion of influenza patients in each ZIP 

Code for each hospital represents the spatial weights for that hospital, which is applied in the 

below Step two. 

This research also determines if influenza tweets are spatially concentrated near a hospital. 

Similar to the above approach, this identifies the proportion of influenza tweets in each ZIP Code 

of NYC. Then this research ranked all ZIP Codes based on the distance of their centroid to each 

hospital. Cumulative sum of the proportion of influenza tweets is then calculated based on the 

ranked distance of ZIP Codes for each hospital. 
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 Step 2 - Identify Lag and Lead Values for Each Hospital 

Similar to Part 2, this step uses Pearson's correlation coefficient to identify when influenza 

tweets best correlate with influenza ER admissions for each hospital. Where X equals all 

influenza ER admissions at a single NYC hospital, Y equals daily influenza tweets as a 

proportion of daily influenza activity (Lamb et al., 2013) and spatially weighted by the ZIP Code 

proportion of influenza cases for a single hospital, and r equals the correlation value between 0 

and 1. The below formula is executed on a hospital by hospital basis. The spatial weights 

identified in the above step are applied to influenza tweets. This spatially adjusts influenza 

tweets to be aligned with the spatial catchment area of influenza ER admissions and 

consequently a more robust temporal comparison can be made between these two datasets. (see 

results section).  

𝑟𝑟 =  
Σxy − ΣxΣy

N

�(Σ𝑥𝑥2 − (Σ𝑥𝑥)2

𝑁𝑁
) + �(Σ𝑦𝑦2 − (Σy)2

𝑁𝑁
)
 

 Step 3 - Identify Lag and Lead Values for Each ZIP Code 

This research used inverse distance weighted (IDW) method to spatially interpolate lag and lead 

values between the location of hospitals. Here, 𝑉𝑉�  is the value to be estimated. 𝑉𝑉𝑖𝑖 is the known lag 

or lead value at a hospital. 𝑑𝑑𝑖𝑖𝑜𝑜 … .𝑑𝑑𝑛𝑛𝑜𝑜 is the distances from the hospitals to the power of p of the 

point estimate. 
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 The distance to which IDW operates will dictate the interpolation values within each ZIP Code. 

A distance based approach was used that roughly mimics the spatial clustering of influenza ER 

admissions near a hospital. 

Part 4: Identify Variable that Influenza Lag and Lead of Influenza Tweets 

Predicting Influenza ER Admissions  

This research used multiple regression methods to identify and understand variables driving the 

lag and lead values of ZIP Codes in NYC. Data from the 2015 Census including: race, age, 

education, median household income, and travel behavior data in addition to influenza ER 

admissions, influenza tweet frequencies, and tweet frequencies were examined as predictors for 

determining a ZIP Code's lag or lead value. All independent variables were aggregated at the ZIP 

Code level (N=229) and normalized by ZIP Code population. This research also examined the 

possibility of any spatial relationships amongst the independent variables associated with the 

dependent variable but found no relationship.  

Three regression models were fitted where Y equals the lag or lead value in each ZIP Code, X 

equals the independent variables normalized by population, and b equals the parameter estimates 

of each variable.  

𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏1 + 𝑋𝑋1 + 𝑏𝑏2 + 𝑋𝑋2 … + 𝑏𝑏𝑝𝑝 + 𝑋𝑋𝑝𝑝 

All of the following models presented had fairly normal distributions, independence among the 

error terms, and possessed little multicollinearity. 
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Results 

Part 1: Tweet Data Cleaning 

Step 1: Data Cleaning - Removing Retweets 

Of the 14 million tweets captured, nearly 400,000 retweets were removed (about 2.8%).  

Step 2: Data Cleaning - Identifying tweets with influenza keywords 

Once retweets were removed, 439,796 tweets were identified as containing influenza keywords 

of flu, sore throat, cough, and headache (Aron Culotta, 2010).  

Step 3: Data Cleaning - Identifying influenza tweets based on tweet context 

Step 3 involves using MLAs to classify influenza keyword tweets into three categories: self-

diagnosed influenza tweets (primary tweets), non-influenza tweets, and PSA tweets. The 

ensemble of MLA models produced a classification accuracy of about 93% (95% C.I. -  92.5% to 

93.7%). Table 3.4 summarizes the cross-validation classification of the ensemble of MLAs. 

Table 3.4: Cross-Validation Summary of Ensemble MLAs 

 Primary Flu Tweets 
(N=1286) 

Non-Influenza Tweets 
(N=802) 

PSA Tweets 
(N=103) 

Sensitivity             93.4% 92.8% 90.5% 
Specificity             93.5% 99.2% 96.1% 
Positive Predictive 
Value          95.7% 98.6% 21.1% 

Negative Predictive 
Value          90.4% 95.7% 99.8% 

 
For all three influenza categories the sensitivity, specificity, and negative predictive values are 

high. Sensitivity refers to how well the MLAs correctly classify the tweet when it is positive 



85 
 

(true positive rate). Specificity refers to how well the MLAs correctly classify the tweet when it 

is negative (true negative rate). For example, the sensitivity in Figure 3.3 indicates that on 

average the ensemble of MLAs correctly classified about 93% of the primary flu tweets. Positive 

and negative predictive values reference the probability that a tweet is positive when the MLAs 

indicate positive, and the probability that the tweet is negative when the MLAs indicate negative 

(Bradley, 1997). The positive predictive value, for example, would state that there is about a 

93% probability that a tweet is a primary flu case when MLAs say it is a primary flu case. These 

performance metrics are widely used in MLAs with predictive classification. 

Positive predictive values are high for all influenza categories except for public service 

announcement influenza tweets. However, this is expected as the training sample size for PSA 

influenza tweets is smaller than the sample size of the other two influenza categories. This is 

calculated according to the proportion of PSA tweets versus all positive outcomes. It is also 

likely that the MLAs had a difficult time distinguishing between self-diagnosed influenza tweets 

and influenza public service announcement tweets because the content of these two tweet 

categories are similar. 

It should be noted that MLAs' accuracy is dependent on the uniqueness of the categories in the 

training dataset. The MLAs used above had a high degree of accuracy, suggesting that it can 

successfully distinguish the difference between all three flu cases. However, there are tweets that 

are misclassified by the ensemble of MLAs. Therefore, the presence of unwanted false-positives 

will be found. Likewise, the ensemble of MLAs will discard some influenza related tweets 

(false-negatives). The inclusion of false-positives and exclusion of false-negatives may skew the 

below research results. However, given the high accuracy of the ensemble of MLAs as a 
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classifier, it is unlikely that any misclassified data will significantly change the results presented 

in this paper.  

About 18,000 tweets were identified as self-diagnosed influenza cases using the above training 

dataset and MLAs. 

Step 4: Data Cleaning - Syndrome Elapse Time 

Of the 18,000 tweets identified as self-diagnosed influenza tweets, roughly 8,700 tweets were 

removed as users tweeted about their symptoms multiple times in a two-week window. 

Therefore, about 9,300 tweets were unique cases of influenza.  

Step 5: Data Cleaning - Remove tweets outside of study area 

The last step is to ensure that single episodes of self-diagnosed influenza cases were occurring in 

NYC. Any tweet that did not contain GPS enabled coordinates or was posted outside of NYC 

was removed. This resulted in 2,447 tweets that contain influenza keywords, are self-diagnosed 

influenza cases, and were posted in NYC. 

Part 2: Optimally Identifying when Influenza Tweets Predict ER Admissions in 

NYC 

Step two identified the optimal time to when influenza tweets are best correlated with influenza 

ER admissions in NYC. Figure 3.1 displays the lag or lead days influenza tweets predict 

influenza ER admissions in all of NYC and each day's correlation value up to 25 days.  
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Figure 3.1: Correlations of Influenza Tweets Lags and Leads on ER Hospitalizations 

 
 

The vertical dashed line at zero separates the lead and lag shifts of influenza tweets where each 

x-axis value represents the number of days influenza tweets lag or lead influenza ER admissions. 

The y-axis represents Pearson's correlation coefficient value. The correlation of influenza tweets 

for each shift is calculated against temporally stationary influenza ER admissions. Figure 3.1 

indicates that influenza ER admissions are best correlated with influenza tweets when influenza 

tweets are temporally shifted to the left suggesting that influenza tweets succeed influenza ER 

admissions. The highest correlation value is over 0.40, which occurred at a lead value of 15 days. 

This indicates that influenza tweets precede influenza ER admissions by 15 days.  
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Part 3: Identifying when Influenza Tweets Optimally Predict Influenza ER 

Admissions on a Hospital by Hospital Basis 

Step 1 - Create Spatial Weights 

Figure 3.2 illustrates the average cumulative percentage of the proportion of influenza ER 

admissions and influenza tweets found in distance ranked ZIP Codes from NYC hospitals. The 

red dashed line represents a theoretical pattern where the average cumulative percentage of 

influenza ER admissions and influenza tweets are proportionally even in all NYC ZIP Codes. 

Lines above the red dashed line represent spatial clustering around the hospital since higher 

proportion of cases are occurring in shorter distances from the hospital. Lines below the red 

dashed line represent spatial clustering far from the hospital. In Figure 3.2, the black solid line 

represents the average cumulative percentage rate of influenza ER admissions. On average, 

nearly 75% of influenza ER admissions occur within 31 out of 229 ZIP Codes surrounding the 

hospital. This suggests that influenza ER admissions are spatially clustered around hospitals, 

considering the remaining 25% of influenza ER admissions occur in the next 32 through 120 

distance ranked ZIP Codes. The solid blue lines represent confidence intervals at 99%. 

Confidence intervals were calculated because not all hospitals mimic this spatial relationship as 

some hospitals' influenza patients do not come from adjacent ZIP Codes.  

Figure 3.2 also displays the average cumulative percentage of the proportion of influenza tweets 

in distance ranked ZIP Codes from the hospital, as shown by the dashed black line. This line 

follows a similar shape and slope to the red dashed line, suggesting that influenza tweets, on 

average, are not spatially clustered around hospitals. On average, 75% of influenza cases occur 

within the closest 118 ZIP Codes of a hospital in comparison to 75% of influenza ER admissions 

occurring within the closest 31 ZIP Codes of a hospital. Confidence intervals at 99% were also 
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calculated for influenza tweets, as some influenza tweets may be more spatially clustered around 

certain hospitals.  

Figure 3.2: Average Cumulative Percentage of Influenza ER Admissions and Influenza 

Tweets by Distance Ranked ZIP Codes from all Hospitals in NYC with 99% Confidence 

Intervals 

 

Step 2 - Identify Lag and Lead Values for Each Hospital  

Table 3.5, shows the optimal lag and lead values for each hospital in NYC ordered by when 

influenza tweets correlate with influenza ER admissions.  
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Table 3.5: Optimal Lag and Lead Values for Emergency Room Hospitals in New York City 

Hospital Lag or 
Lead 

Days Correlation 

Mount Sinai Hospital - Mount Sinai Hospital of Queens Lag 24 0.13 
Metropolitan Hospital Center Lag 23 0.25 

St. Johns Episcopal Hospital So Shore Lag 23 0.15 
SBH Health System Lag 22 0.12 

Mount Sinai Beth Israel Brooklyn Lag 20 0.15 
Mount Sinai Brooklyn Lag 20 0.24 

New York Community Hospital of Brooklyn, Inc Lag 18 0.29 
University Hospital of Brooklyn Lag 18 0.25 

Lincoln Medical & Mental Health Center Lag 10 0.13 
North Central Bronx Hospital Lag 10 0.24 

Forest Hills Hospital Lag 9 0.22 
Jacobi Medical Center Lag 9 0.23 

Montefiore Medical Center-Wakefield Hospital Lag 9 0.27 
Mount Sinai Hospital Lag 9 0.19 

New York-Presbyterian/Lawrence Hospital Lag 8 0.24 
New York Presbyterian Hospital - Columbia Presbyterian 

Center 
Lag 8 0.21 

Staten Island University Hosp-North Lag 7 0.23 
Lenox Hill Hospital Lag 5 0.26 

New York Presbyterian Hospital - New York Weill Cornell 
Center 

Lag 3 0.21 

Queens Hospital Center Lag 3 0.15 
Bronx-Lebanon Hospital Center - Concourse Division Lag 1 0.25 

Brookdale Hospital Medical Center Lag 1 0.22 
Brooklyn Hospital Center - Downtown Campus Lag 1 0.24 

Coney Island Hospital Lag 1 0.28 
Elmhurst Hospital Center Lag 1 0.28 

Jamaica Hospital Medical Center Lag 1 0.20 
New York Hospital Medical Center of Queens Lag 1 0.21 

New York Methodist Hospital Lag 1 0.24 
New York Presbyterian Hospital - Allen Hospital Lag 1 0.34 

Richmond University Medical Center Lag 1 0.26 
Staten Island University Hosp-South Lag 1 0.25 

Lutheran Medical Center -- 0 0.23 
Kings County Hospital Center Lead 2 0.16 
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Table 3.5 (cont’d). 

Maimonides Medical Center Lead 2 0.22 
Mount Sinai Beth Israel Lead 12 0.30 

Montefiore Medical Center - Henry & Lucy Moses 
Division 

Lead 13 0.11 

Kingsbrook Jewish Medical Center Lead 20 0.27 
Montefiore Med Center - Jack D Weiler Hosp of A 

Einstein College Division 
Lead 20 0.33 

Woodhull Medical & Mental Health Center Lead 21 0.19 
Bellevue Hospital Center Lead 24 0.19 

Flushing Hospital Medical Center Lead 24 0.18 
Harlem Hospital Center Lead 24 0.25 

New York-Presbyterian/Lower Manhattan Hospital Lead 24 0.27 
 

Table 3.5 shows when influenza tweets optimally correlate with influenza ER admissions. For 

example, the lag value for Mount Sinai Hospital of Queens (row 1) is 24 days. This means the 

highest correlation between influenza tweets and influenza ER admissions at this hospital 

occurred when influenza tweets were posted 24 days before ER admissions occurred. Influenza 

tweets correlate with influenza ER admissions at 74 of hospitals when influenza tweets are 

lagged one to 24 days (mean ~ 8.5 days). Conversely, influenza tweets correlate with influenza 

ER admissions at 25% of NYC hospitals when influenza tweets are leaded two to 24 days (mean 

~ 17 days). All correlation values presented in Table 3.5 are relatively low. 

Next, inverse distance weighted (IDW) function was applied to interpolate lag and lead values 

throughout NYC's ZIP codes. Figure 3.3 is the result of the IDW function applied to the lag and 

lead values of hospitals in NYC. Roughly 82% of IDW values represent lags (18% represent 

leads). The lag and lead values interpolated for each ZIP Code are used in the regression analysis 

below. 
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Figure 3.3: Spatial Representation of Lag and Lead Values for New York City 

 

Part 4: Identify Variables that Influence Lag and Lead values of Influenza Tweets 

Predicting Influenza ER Admissions  

Regression Model 1: Demographic Composition 

This research used regression models to identify factors that influence influenza tweets 

temporally correlating with influenza ER admissions. First, this research regressed demographic, 

age, education, and median household income (independent) variables onto lag and lead 

(dependent) values for NYC. This model identifies key variables about the composition of 

people in NYC ZIP Codes and their influence on lag and lead values. Age, age by gender, race, 

and education attainment were used as independent variables because tweeting activity tends to 

be from young, affluent, and non-rural (“Social Media Update,” 2016) populations but influenza 

ER admissions are skewed toward populations that are either very young or old. Table 3.6 shows 

the output of this regression function. 
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Table 3.6: Results of Regression Model 1: Demographic Composition 

P-Value T-Value Standard Error Estimates (CI at 99%) Variable per 1,000 people 

0.000890 3.37 0.86    2.90 (0.66 to 5.14) Intercept    

0.199 -1.29 0.002   -0.0020 (-0.006 to 0.002) Race: White 

0.07 -1.82 0.003   -0.006 (-0.015 to 0.003) Race: Other              

0.02 -2.3 0.02  -0.05 (-0.11 to 0.01) Associates Degree  

0.03 -2.18 0.03   - 0.075 (-0.165 to 0.0143) Doctorate Degree    

0.0002 -3.71 0.006   -0.022 (-0.038 to -0.007) Persons less than 18          

0.00004 4.19 0.003    0.014 (0.005 to 0.022) Persons 18 to 39          

 Adjusted R2: 0.19; Spatial Correlation of Residuals: 0.02; AIC: 1399 
 

In Table 3.6, only four variables have significant influence (p-value at 0.05) at predicting the lag 

and lead values of when influenza tweets best coincide with influenza ER admissions. 

Examining the estimates of each variable sheds light onto that variable's relationship with the lag 

and lead values. Positive estimates indicate a decrease in time when influenza tweets best 

correlate with influenza ER admission, and vice versa.  Examining the 'Persons less than 18' 

variable's estimate, for instance, indicates that an increase of one 'Person less than 18' per 1000 

people will decrease the time when influenza tweets best correlate with influenza ER admissions 

by about 0.022 days. Therefore, ZIP Codes that have populations less than 18, have advanced 

education, and are composed of minority groups will increase the amount of time influenza 

tweets best correlate with influenza ER admissions. White populations were not significant in the 

model, this could be because Twitter is disproportionately black (“Social Media Update,” 2016). 

Persons 18 to 39 decrease the amount of time influenza tweets can best predict influenza ER 

admissions. The Persons 18 to 39 variable has the opposite relationship when compared to the 
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Persons less than 18. This could be a result of the young populations (less than 18) 

disproportionately tweeting more and older populations (18 to 39) disproportionately tweeting 

less (Pew Research Center, 2016). This model was able to explain roughly 20% of the variance 

of what drives lag and lead values in NYC ZIP Codes. The model's residuals were not spatially 

autocorrelated. 

Regression Model 2: Transportation behavior 

Second, this research examined travel behavior variables that determine when influenza tweets 

best correlate with influenza ER admissions. Travel characteristics were chosen as variables 

because influenza ER admissions are spatially clustered near the hospital. The mode of 

transportation may influence the lag and lead values since it represents people’s ability to 

physically access the hospital. Table 3.7 shows the output of several transportation factors role in 

predicting lag and lead values. 

Table 3.7: Results of Regression Model 2: Transportation behavior 

P-Value T-
Value 

Standard 
Error 

Estimates (CI at 
99%) 

Variable per 1,000 people 

0.45 0.76    0.66    0.5 (-1.2 to 2.2) Intercept                                   

0.000002 -4.8 0.0044   -0.02 (-0.03 to -0.01) Drive Alone: Car, Truck, or Van 

0.91 -0.11    0.025   -0.003 (-0.066 to 
0.061) 

Public Trans: Excluding Taxicab 
and Railroad  

0.09 1.68    0.66    1.11 (-0.6 to 2.82) Motorcycle  

0.24 1.17    0.0064    0.0075 (-0.0091 to 
0.024) 

Walked  

Adjusted R2: 0.156; Spatial Correlation of Residuals: -0.005; AIC: 1410 
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The transportation model, similar to the demographic composition model, explains less than 20% 

of the variance that causes the temporal variation of influenza tweets on influenza ER admissions 

in NYC ZIP Codes. ZIP Codes with higher rates of people that drive alone to work tend to 

increase the amount of time by which influenza tweets can predict influenza ER admissions, as 

indicated by negative estimates. ZIP Codes with higher populations that drive a motorcycle 

suggest that influenza ER admissions increasingly precede influenza tweets, as indicated by 

positive estimates. These two variables showed statistical significance at the 0.05 level.  

Regression Model 3: Combined Demographic and Transportation 

Next, this research combined the demographic and transportation models but also included 

influenza ER admissions, influenza tweets, and overall Twitter activity as variables for 

influencing when influenza tweets best predict influenza ER admissions. These three variables 

were also normalized based on ZIP Code populations but did not add any explanatory power to 

the model and hence were not included in the final model. As indicated in Table 3.8, the 

combined model has 10-15% more explanatory power than previous models as indicated by an 

adjusted R-squared value of 0.28. Furthermore, the AIC values for the combined model are 

(marginally) lower than the two previous models. This suggests that the final model is a better fit 

for categorizing which factors influence when influenza tweets best correlate with influenza ER 

admission. This last model suggests that demographic and transportations variables are 

important. 

 

 



96 
 

Table 3.8: Results of Regression Model 3: Combined Demographic and Transportation 

P-Value T-
Value 

Standard 
Error 

Estimates (CI at 99%) Variable per 1,000 people 

0.00011 3.94 0.81    3.21 (1.09 to 5.32) Intercept   

0.0012 3.29 0.004    0.013 (0.003 to 0.023)  Total Housing Units  

0.003 -3.03 0.004   -0.014 (-0.025 to -0.002)  Drive Alone: Car, Truck, or 
Van 

0.02 2.36 0.62    1.46 (-0.15 to 3.06) Motorcycle     

0.01 -2.56 0.5   -1.27 (-2.55 to 0.018)  1st Graders 

0.002 -3.12 0.01   -0.033 (-0.06 to -0.006) Masters Degree  

0.005 -2.86 0.011   -0.031 (-0.059 to -0.003) Male Persons Greater than 64  

0.000015 -4.43 0.011   -0.05(-0.08 to -0.022) Female Persons less than18  

0.047 2 0.003   0.0051 (-0.0015 to 
0.0117) 

Race: Asian  

Adjusted R2: 0.28; Spatial Correlation of Residuals: -0.005; AIC: 1372 
 

Combining the demographic and transportation models lead to all variables, as shown in Table 

3.8, to be significant at the 0.05 level. This model suggests that ZIP Codes with a population 

increase in males greater than 64, females less than 18, Masters degrees, 1st graders, and drive 

alone increase the time influenza tweets predict influenza ER admissions. When total housing 

units, Asian populations, and the number of people driving motorcycle to work increases, the 

amount of time influenza tweets predict influenza ER admissions decreases. 

Discussion  

Traditional approaches to influenza surveillance, such as the CDC, provide little temporal and 

spatial information to inform hospitals about nearby influenza cases. Likewise, current novel 

digital techniques to monitor influenza activity, such as GFT provide little benefit to individual 
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hospitals given the lack of geographic detail. To fill this gap, this research uses Twitter as a 

potential real-time data source to identify the optimal time when influenza tweets best correlate 

with actual ER influenza admissions at local hospitals in NYC. This geographic scale of analysis 

is strikingly different and more beneficial than traditional approaches that analyze influenza 

activity at broad geographic scales (e.g., state or metropolitan) that provide little knowledge 

about local influenza activity to ERs. This research demonstrated that influenza tweets are 

correlated with influenza ER admissions on a hospital-by-hospital basis. Table 3.4, lists the 

optimal number days influenza tweets best correlate with each NYC hospital. Therefore, the 

novelty of this research may allow health officials a more timely glimpse into local influenza 

activity so they can prepare their staff and facilities for a possible surge of influenza patients. 

Research shows that influenza tweets can predict influenza ER admissions up to 14 days in 

advance at national and metropolitan scales (Broniatowski et al., 2013; Paul et al., 2014; 

Signorini, Segre, & Polgreen, 2011). As Table 3.4 shows, the optimal correlation between 

influenza ER admissions and influenza tweets varies by hospital. For 31 hospitals (~75%), 

influenza tweets best correlate with influenza ER admissions 14 days (~mean of 8.5 days) in 

advanced. According to previous research, this range is expected and suggests that on average 

influenza tweets originate roughly a week before ER admissions occur. Influenza tweets 

correlate with influenza ER admissions at eight hospitals more than 14 days in advance. Six of 

these eight hospitals have influenza tweets correlating with influenza ER admissions about three 

weeks in advance. This is longer than previous research indicates. Through it remains untested, 

influenza propagation may explain this relationship. Influenza infection commonly starts in 

young school age populations then is transmitted to older populations (Hsieh, 2010). Tweets are 

commonly generated by younger populations (Murthy et al., 2016) who are usually the first 
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infected with influenza. However, in 11 hospitals, influenza ER admissions correlate with 

influenza tweets on average of about 17 days in advance. This is suggesting that ER admissions 

are occurring before influenza tweets are posted. In this case, it could mean that the very young 

(under five years of age) are entering a hospital’s ER considering they are often the first age 

group that is infected. From this point, the young child infects a person who frequently tweets. 

These active Twitter users tweet about their influenza symptoms on average 17 days after the 

young child’s ER admission. Again though, this remains untested. These results are only 

applicable to these hospitals. This research found no generalized connection with lag and lead 

values and hospital characteristics such as, number of beds and estimated income. 

Some of the differences between what drives the correlation between influenza tweets and ER 

admissions and vice versa rests on demographic, transportation, and economic variables as 

shown in the above multiple regression models. Demographic variables are important to consider 

because it is people who tweet and people who seek medical care. But not all people frequently 

tweet or seek medical care. Young, educated, non-rural, and affluent populations tend to do the 

majority of tweeting (“Social Media Update,” 2016) while the very young and very old often 

seek medical care for their influenza symptoms (Hsieh, 2010). The demographic regression 

model highlighted this behavior as the coefficient parameter for young populations (18-39) 

tweeting about their influenza symptoms increased the amount of time influenza tweets can best 

predict influenza ER admissions. Populations 18 to 39 had the opposite effect on lag and lead 

values.  

The final regression model presented in this research contains demographic and transportation 

variables. Demographic variables may represent a temporal propagation effect between the 

different age groups. There is an opposing relationship with age's ability to increase the time 
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when influenza tweets can predict influenza ER admissions. This may indicate that lag and lead 

values for hospitals are a product of influenza propagation amongst the different age groups. ZIP 

Codes with younger female populations are going to increase the amount of time influenza 

tweets can predict influenza ER admissions, whereas older males decrease the amount of time. 

This may indicate that young females are tweeting about influenza symptoms before actual 

influenza ER admissions are occurring, indicating that people in these ZIP Codes become 

infected with influenza before influenza ER admissions occur. ZIP Codes with older male 

populations tend to have less time to when influenza tweets predict influenza ER admissions. 

This is not surprising considering initial influenza infection occurs in young children (Earn et al., 

2012). While the regression results may indicate a demographic propagation affect influencing 

the lag and lead values of influenza tweets correlating with influenza ER admissions, it remains 

largely untested. Future research needs to be conducted that robustly tests this possibility.  

 As shown above, influenza ER admissions are spatially clustered near a hospital. Therefore, 

transportation variables were examined as predictors to lag and lead values because these 

variables represent the spatial mobility of users to access a hospital. The final model indicates the 

combination of demographic and transportation variables increase the model’s explanatory 

power compared to models that solely use demographic or transportation variables. Therefore, 

people's mode of transportation influences the lag and lead values found in each ZIP Code. The 

combined model only identified two significant transportation variables, 'populations that drive 

alone' and those that 'drive a motorcycle to work'. These variables have opposing relationships, 

such as the aforementioned young female's and old male's variables. ZIP Codes with higher 

proportions of people that drive a car alone to work tend to increase the time when influenza 

tweets can predict influenza ER admissions. However, ZIP Codes where people prefer to ride a 
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motorcycle to work decrease the amount of time between influenza tweets and influenza ER 

admissions. One possible explanation to this opposing relationship is based on seasonality and 

transportation flexibility. Motorcycles are not typically used during cold winter months in NYC 

when influenza season peaks. During these colder periods motorcycle users are likely to use 

alternative transportation such as bus or subway lessening their transportation flexibility. Having 

less transportation flexibility during the winter months may influence motorcycle drivers to seek 

medical care more quickly than those with more flexible transportation options, such as a car.  

The adjusted R-squared values in all the regression models are somewhat small indicating that 

there are unexplored variables that explain lag and lead values. Some of these unexplored 

variables could include average family size, family structure/network, type of employment, 

health insurance status, influenza vaccination rates, preexisting medical conditions, and other 

demographic and public health factors such as, propensity to washing hands, number of contacts, 

and exposure to sick populations. As with the above model, this model’s findings need to be 

further explored with more robust research.  

Several hospital variables did not influence lag and lead values but this research had limited 

hospital variables to test. Future research needs to test more hospital variables that influence lag 

and lead values. Identifying key hospital and social variables will create a more robust approach 

to understanding what influences lag and lead values without having to rely on comparing 

influenza tweets to influenza ER admissions.  

Some of the differences presented in the lag and lead values of influenza tweets correlating with 

influenza ER admissions and the directionality of coefficients may be an indication of influenza 

propagation. However, this theory not directly tested in this research. Future research should 
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explore this relationship in more detail. A possible approach would be to use Vertalka’s (2017) 

DIP approach but include questionnaire elements that ask about possible contagion effects.  

Conclusion 

The intention of this research was to examine when influenza related tweets best correlate with 

influenza ER admissions at specific hospitals in NYC. Prior research has demonstrated the utility 

of influenza tweets at predicting influenza infections up to 14 days in advance, but at broad 

geographical scales. This research introduces finer geographic scope of where and to what 

degree influenza tweets are associated with influenza rates at individual hospitals through four 

parts. Step one identifies Twitter users that are likely experiencing influenza-like illness through 

influenza keywords and by using MLA to distinguish non-influenza, self-diagnosed influenza, 

and public service announcement influenza tweets. Step two identifies the spatial dispersion of 

where influenza ER admissions and influenza tweets occur. Step three uses Pearson's correlation 

coefficient to identify the optimal lag or lead time when spatially weighted influenza tweets 

correlate with influenza ER admissions. Step four uses inverse distance weighted to interpolate 

the lag and lead values between hospital locations. Finally, Step fives uses multiple regression 

models to classify demographic, economic, education, and transportation variables that can 

predict the lag and lead values NYC ZIP Codes.  

Using these steps, this research demonstrated, influenza tweets correlate with influenza ER 

admissions for over 75% of the hospitals in NYC.  The average time influenza tweets are 

associated with influenza ER admissions is about 8.5 days. This figure aligns with other 

researchers' using influenza tweets as indicators for influenza cases at broader geographic scales. 

This paper also shows that in some cases hospitals experience influenza ER admissions before 

influenza tweets occur.  Surveillance systems can use the above approach to monitor and 
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characterize influenza activity for local hospitals. No prior research has examined how influenza 

tweets are associated with influenza ER admissions at local hospital scales. Examining this 

relationship is important as Twitter has the potential to be used as an additional surveillance data 

source that helps warn hospitals when local influenza activity is increasing.  

The findings from this research suggest that there is potential for Twitter to act as a proxy for 

influenza ER admissions. As of right now, Twitter data should not be used to replace current 

influenza surveillance approaches. While current influenza approaches are outdated and provide 

little benefit to hospital systems, they still act as a source of truth for influenza activity. This 

research only tested the feasibility of Twitter as a proxy for influenza ER admissions in one city 

and for a single influenza season. Therefore, a generalized and well-built theory of Twitter’s 

potential to be a proxy for influenza ER admissions remains largely unexplored.  

While it remains untested, the potential for Twitter to act as a surveillance system that monitors 

the propagation of influenza activity may shed light onto the severity of influenza spread.  

However, understanding how influenza is shifting to and from different age groups by using 

Twitter is not feasible without comparing influenza tweets to influenza ER admission. From the 

comparison of these two datasets, it can be determined whether influenza tweets precede or 

succeed influenza hospital ER admissions. Not surprisingly, several hospitals could benefit from 

using Twitter as a data source to identify more localized influenza activity.  

Future research needs to focus on several aspects. First, future research needs to use this 

approach to identify when influenza tweets best predict influenza ER admissions at hospitals in 

different cities. Most cities will possess similar demographic trends when it comes to tweeting 

activity and influenza ER admissions. Therefore, it is expected, but unknown, as to what 
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demographic, economic, and transportation factors will be significant at predicting lag and lead 

values in cities other than NYC. While this research found no spatial influence for demographic, 

economic, and transportation factors predicting lag and lead values, changing the study site to 

another city might introduce a significant spatial component. Furthermore, future research needs 

to identify hospital characteristics that influence the lag and lead values of influenza tweets 

predicting influenza ER admissions. Doing so will give an indication as to whether the lag and 

lead values are strongly associated with a particular feature of a hospital. Second, this research 

predicted influenza ER admissions at hospitals during seasonal influenza. Future research needs 

to focus on predicting influenza ER admissions with influenza tweets outside of seasonal 

influenza and during pandemic influenza. Third, future research needs to address Twitter’s 

ability to monitor and predict influenza propagation between different age groups. While this 

research did not directly test this relationship, there are findings presented in this research that 

may suggest such a relationship exists.  
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Table A 3.1: Influenza-Like Illness ICD-9 Codes 

ICD-9 code Description 
79.89 Viral infection NEC* 
79.99 Viral infection NOS* 
460 Nasopharyngitis, acute 
462 Pharyngitis, acute 
464 Laryngitis, acute, without obstruction 
464.1 Tracheitis, acute, without obstruction 
464.2 Laryngotracheitis, acute without obstruction 
465 Laryngopharyngitis, acute 
465.8 Infectious upper respiratory, multiple sites, acute NEC 
465.9 Infectious upper respiratory, multiple sites, acute NOS 
466 Bronchitis, acute 
466.11 Bronchiolitis due to respiratory syncytial virus 
466.19 Bronchiolitis, acute, due to other infectious organism 
478.9 Disease, upper respiratory NEC/NOS 
480 Pneumonia due to adenovirus 
480.1 Pneumonia due to respiratory syncytial virus 
480.2 Pneumonia due to parainfluenza 
480.8 Pneumonia due to virus NEC 
480.9 Viral pneumonia unspecified 
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This dissertation contains three chapters. The first chapter introduces and discusses a novel 

approach to engage social media users to participate in scientific research. Traditionally, scholars 

have viewed social media users as data sources that were unknowingly contributing to scientific 

discovers. This approach is apparent in research that highlights social media’s ability to predict 

stock market trends and earthquakes. It is also evident in cases were social media data is used to 

gather situational awareness during disasters, such as the Boston Marathon Bombing. Chapter 

one focuses on building a more intimate relationship with social media users so that they become 

more than just social sensors cataloging the world around them. Instead, Chapter one discusses 

an approach so that social media users become sensors that are more involved in the scientific 

research process. This is accomplished by using Application Program Interfaces as a conduit to 

send messages to the social media user.  These messages act a form of digital interaction where 

the research and social media user can engage in relevant scientific inquiry or discussions. In the 

case of this research, the digital interaction involved sending users a link to an online 

questionnaire which was designed to gather insight about their demographic and state of health.  

Completed questionnaires contained data elements that would otherwise be unobtainable through 

social media APIs. Therefore, research projects employing the DIP system can gain additional 

information about their social media subjects and the information they produce on social media.  

 Chapter two of this dissertation focuses on correcting temporal and spatial shortcomings of 

digitally detecting influenza cases through Twitter. Current research that digitally detects 

influenza cases through Twitter makes two assumptions. First, it assumes that influenza related 

tweets are posted when the author first experiences symptoms. Second, it assumes that influenza 

tweets are posted at the author's home. Chapter two uses the DIP approach, introduced and 

discussed in Chapter one, to gain additional temporal and spatial information about London and 
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New York influenza-ridden Twitter users. Chapter two of this dissertation found that influenza 

tweets are most often posted when the author experiences peak symptoms. This might be due to 

the author’s frustration with the flu or boredom as they recover at home without entertainment. 

Chapter two also found that influenza infected Tweets were posted closer to the author's home. 

This might be a consequent of the author experiencing a severe level of influenza symptoms 

causing them to be confined to the house or even bedridden. The fact that influenza tweets are 

occurring near a user’s home ZIP or Postal Code is suggestive that digitally detecting influenza 

cases can occur at local neighborhood scales.  

Chapter three explores the possibility of using Twitter to detect influenza cases at a finer 

geographic scale. Research has typically focused on correlating influenza tweets with influenza 

cases at broad scales such as, Country, Regional, or Metropolitan levels. As identified in Chapter 

two, influenza tweets occur near the authors declared home ZIP or Postal Code. This suggests 

that an influenza tweet is spatially representative of an actual influenza case. Therefore, Chapter 

three focuses on predicting influenza ER admissions at individual hospitals in New York City. 

Conducting this analysis at the hospital scale provides medical professionals with timely 

information to prepare their facilities and staff for the potential of surge of influenza patients. 

However, not all hospitals are fortunate to have this insight as several hospitals’ influenza ER 

admissions proceed the occurrence of influenza tweets. Future research needs to examine what 

hospital factors influence the effectiveness of influenza tweets at predicting influenza ER 

admissions. For instance, do the number of beds in the ER influence the number of nearby 

influenza tweets? Furthermore, Chapter three introduces a possible theory of demographic 

propagation that might be influencing the different lag and lead values of influenza tweets 
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correlating with influenza ER admissions. However, this remains largely untested. Future 

research needs to address this possible theory in more detail. 

One of the main themes of this research is understanding the behavior of humans as it relates to 

their interaction with their cell phone and Twitter when experiencing influenza-like symptoms. 

The advent of the internet and mobile technology changed the way people interact with each 

other and their surroundings. Prior to this technological shift, people were confined to 

communicate through landline phones which also produced very limited data. Cell phones and 

social media outlets, on the other hand, produce terabytes to even petabytes of data every day. 

The insight that can be obtained from this vast amount of data is still largely unexplored and 

discussed among scholars and therefore, the possibilities of this data to build an understanding of 

human behavior remains largely unexplored. Future research needs to start exploring the 

possibilities of this data in helping solve not only undesired influenza ER surges but a host of 

other issues. 
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