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ABSTRACT 

MAIZE PRODUCTION INTENSIFICATION IN KENYA 

By 

John Otieno Olwande 

Soil infertility is one of the major problems contributing to low and stagnated agricultural 

productivity in sub-Saharan Africa. In Kenya, this problem is manifested in maize where yields 

have remained low and stagnated over time despite increased use of inorganic fertilizers and 

improved seed varieties. More effective alternatives and/or complimentary actions to address this 

problem thus remains germane. This dissertation contributes to that endeavor through two broad 

objectives: to generate evidence that can support decisions to address the problem of low 

agricultural productivity in general and of maize in particular in Kenya; and to contribute to the 

body of knowledge about agricultural intensification in sub-Saharan Africa. 

The first essay uses household panel survey data from rural Kenya covering a period of 13 years 

(1997 – 2010) to examine trends and patterns in land and labor productivity of maize, measured 

as net returns to land and to family labor. Results show declining landholdings and farm sizes but 

maize occupied over one-half of cultivated land. Land productivity declined by 42% for 

households with at least 10 acres and by 33% in the most important maize producing regions. 

Labor productivity increased in areas with smaller landholdings and higher population density 

because of increase in land productivity, and declined or only marginally increased in areas with 

larger landholdings and lower population density because of a decline in land productivity. These 

results demonstrate that increasing maize production and returns to family labor in Kenya will rely 

on improving yields especially in the major maize growing areas where this has declined. 



 
 

The second essay uses data on maize production in five major maize growing counties in Kenya 

to compare maize farmers’ perceived soil fertility to measured soil fertility. It also investigates the 

influence of farmers’ perceptions of soil fertility on their adoption (use) of soil fertility 

management practices. Results show little agreement between farmers’ perceived and measured 

soil fertility, and farmers mostly judge the fertility status of soil by crop performance. Farmers 

apply management practices that may not match the fertility needs of soil on their plots, 

exemplified by the persistent application of an acidifying fertilizer (diammonium phosphate 

(DAP)) and low application of organic soil amendments even on plots with soils that are acidic 

and deficient in organic carbon. Farmers on average are more likely to apply inorganic fertilizer 

to plots they perceive to be infertile, and they treat manure or compost and inorganic fertilizers as 

serving substitute roles in soil fertility. These results suggest policy and extension information 

gaps regarding soil fertility management. 

The third essay uses the same dataset as in the second essay together with rainfall data to estimate 

technical efficiency of maize farmers and the effect of farmers’ soil fertility perception on technical 

efficiency. It also demonstrates the importance of including environmental production conditions 

and agronomic practices in agricultural productivity and efficiency analysis. Average technical 

efficiency level is 0.75 and 0.70, respectively, with and without environmental variables and 

agronomic practices in the model, indicating that scope for increasing maize yield through better 

management of inputs exits and that omission of environmental variables and agronomic practices  

underestimates technical efficiency. Farmers’ perception of soil fertility and the consistency of 

their perception with measured soil fertility both have significant effects on technical efficiency, 

underscoring the importance of information that can enhance farmers’ accurate understanding 

about soil fertility conditions on their farms to help them make better production decisions.
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INTRODUCTION 

Agriculture remains the major livelihood source for the majority of the population in sub-Saharan 

Africa and is essential for food security, poverty reduction and economic growth (The World Bank, 

2007). Despite this fundamental role, agricultural productivity in sub-Saharan Africa is generally 

low and its growth has stagnated (Haggblade & Hazell 2010; Otsuka & Larson, 2013). Among the 

factors responsible for the poor performance of Africa’s agriculture are land degradation, small 

and declining farm sizes because of population growth, reliance on rain-fed farming, low use of 

external inputs in production and poor market infrastructure (Barbier & Hochard, 2014; The 

Montpellier Panel, 2013; Haggblade & Hazell, 2010; Otsuka & Larson, 2013). Improving food 

security, reducing poverty and realizing faster economic growth in this part of the world requires 

accelerated and sustainable agricultural productivity growth (The World Bank, 2007; Diao et al, 

2007).  

The concern about low and stagnated agricultural productivity in sub-Saharan Africa applies to 

Kenya as well. This is most evident in maize, the most important staple grain and which is widely 

grown, where aggregate yield has exhibited a declining trend over the past quarter century. 

Surprisingly, the declining trend in yield has occurred despite impressive growth in inorganic 

fertilizer and improved seed use and remarkable public investments in rural infrastructure over the 

years (Ariga & Jayne, 2009; Chamberlin, 2013; Smale & Olwande, 2014). Maize consumption 

demand, on the other hand, has been on an upward trend due to sustained population growth, 

resulting in a widening gap between consumption demand and production and increasing import 

bill (Kirimi et al., 2011). 
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Because of its crucial role as the main staple food for a large section of the population, investment 

in achieving sustainable productivity growth in maize remains a key goal in the government’s 

policy and development strategies (Government of Kenya, 2010a, Government of Kenya, 2010b) 

and development organizations’ support agendas.  The government, international development 

agencies and non-governmental organizations (NGOs) have continued to implement a range of 

interventions, spanning the farm and input and output markets in efforts to boost maize production. 

Notable among the interventions are the state’s fertilizer subsidy programs and producer price 

support, alongside a strong establishment for seed research and development and investments in 

rural infrastructure.  

Clearly, we can expect these efforts to have enhanced maize production through faster growth in 

yield in Kenya. The lack of yield growth in maize despite the largest price support, input subsidies, 

and seed research efforts is puzzling. The scenario indicates existence of factors beyond what the 

current efforts are delivering that may be playing a significant role in stymied maize yield, and 

demonstrates the need for more effective alternatives and/or complimentary actions that can 

nurture investments in greater production intensification in a sustainable way.  

Smale & Olwande (2014) note that several explanations for the dismal performance in maize yield 

have been advanced, including degraded soils associated with land pressures arising from 

population density, reduced fallows and nutrient mining, resulting in poor crop response to 

fertilizer use. Some of the explanations, however, have not been corroborated by evidence from 

rigorous empirical investigation to understand the nature of the effects of these factors on maize 

yield and the extent to which they may be contributing to the observed low and stagnated 

productivity. Therefore, the search for strategies to address the problem of low and stagnated 

agricultural productivity in Kenya remains germane.   
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This dissertation contributes to addressing the aforementioned need. It pursues two overarching 

objectives. The first is to generate empirical evidence to support decisions that can address the 

problem of low agricultural productivity generally and of maize in particular in Kenya. The second 

is to contribute to the body of knowledge about agricultural intensification in sub-Saharan Africa, 

given the increasingly recognized fact by African governments that sustainable farm productivity 

growth is key to achieving sustainable economic growth and improving the livelihoods of hundreds 

of millions of their constituents. These overarching objectives are pursued through three separate 

but linked essays. 

The first essay (Chapter 1) is entitled “Trends and Patterns in Land and Labor Productivity in 

Kenya”. In addition to low and stagnating productivity, farm sizes in Kenya have been shrinking 

over time with rising rural population densities and sub-division. Moreover, the long-term low and 

stagnated agricultural productivity growth may have depressed the generation of dynamic farm-

nonfarm growth multipliers and shifts in the composition of the labor force that have been the 

foundation of economic transformation in other regions of the world (Mellor, 1976; Johnston & 

Mellor, 1961; Lipton, 2005). This essay seeks to determine whether Kenya’s agricultural sector is 

changing in ways that are promoting or retarding farm labor productivity, and to understand the 

association between farm labor productivity and population density, land scarcity and market 

access. Farm labor productivity is defined in terms of net returns to family labor, a measure that is 

deemed most appropriate for profitability of farming for agricultural households. 

The essay is focused on maize production and uses a nationwide five-wave (1997, 2000, 2004, 

2007 and 2010) panel survey dataset on a sample of about 1500 agricultural households in Kenya. 

Descriptive and bivariate analyses are conducted to examine trends and patterns in the size of 
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landholding, area planted and land allocation to maize using data for all the survey years, and in 

land and labor productivity using data for 2004, 2007 and 2010 for which labor data was available. 

Six key results emerge. First, average landholding declined by over 12% while average area 

planted declined by 11%. Maize occupied over 50% of total area planted. The average area of plots 

with maize for a household declined by 11% over time.  Second, long-term labor productivity 

(returns to family labor) increased by 38% overall, contributed by positive changes in land-labor 

ratio of 16% and land productivity of 21%. The increase in land-labor ratio was because of a 

decrease in family labor use rate on maize plots. Third, there was an inverse relationship between 

landholding and land productivity and landholding and family labor use rate. Average labor 

productivity increased for all households. However, the increase in labor productivity for those 

with 10 or above acres was entirely because of positive change in land-labor ratio rather than in 

land productivity, which declined by 42%. Fourth, average land productivity and family labor use 

rate had direct relationships with population density while labor productivity was inversely related 

with population density. Fifth, most remote households compared to their least remote counterparts 

had lower land productivity, higher family labor use rate and lower labor productivity, on average. 

Lastly, there was a remarkably small increase in labor productivity (0.7%) in the High Potential 

Maize zone (HPMZ), Kenya’s most important maize producing region, because of a 33% decline 

in land productivity. These results demonstrate that increasing maize production through land 

expansion is infeasible. Increasing production and labor productivity will have to rely on yield 

(land productivity) growth. This is especially urgent for the major maize growing areas where 

yield has declined yet they are the main suppliers of maize in the domestic market.   

The second essay (Chapter 2) is entitled “Farmers’ Perceptions and Adoption of Soil Fertility 

Improvement Practices”. The evidence of increased adoption of fertilizer and improved maize seed 
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over time without significant growth in maize yield implies that continued use of fertilizers and 

improved maize varieties on their own cannot achieve the needed growth in yield. There is need 

for sustainable management practices that add organic matter and ameliorate soil acidity to restore 

fertility and subsequently increase crop response to external inputs (Lal, 2006; Chivenge et al., 

2011; Kunhikrishnan et al., 2016; McCauley et al., 2017). We can expect that farmers’ perceptions 

about the fertility conditions of their soils bear on their decisions about adoption of technologies 

and agronomic practices to improve soil fertility. Few quantitative studies exist about the 

correspondence of farmers’ perceptions about the fertility conditions of their soils and measured 

soil fertility, and how those perceptions influence adoption (or use) of soil fertility management 

technologies and agronomic practices. This essay compares maize farmers’ perceptions about the 

fertility of their soils to soil fertility as measured by results from scientific test of soil chemical 

properties. It also investigates farmers’ adoption (use) of soil fertility management practices, with 

a focus on the influence of farmers’ perception about soil fertility. The essay makes a major 

contribution of incorporating farmers’ perception as a factor in quantitative assessment of their 

soil fertility management decisions.  

The essay uses two cross-sectional household- and plot-level survey data on maize production 

spanning five counties located in the major maize growing areas of Kenya. The first survey was 

conducted in 2014 from a sample of 650 farm households spread in five counties, while the second 

survey was conducted in 2016 on the same households as in the first survey, but the number 

reduced to 623 due to attrition. The maize plots that were cultivated in the 2014 survey were not 

necessarily targeted in the 2016 survey hence the non-panel nature of the plot-level data. Plot-level 

data include laboratory-tested soil physical and chemical properties. 
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The relationship between farmers’ perceived and measured soil fertility and adoption of soil 

fertility management practices are analyzed using three approaches. First, a chi-square test is used 

to examine statistical independence between farmers’ perceived and measured soil fertility.  

Second, interrater agreement technique (Fleiss et al. 2003) is used to estimate the degree of 

agreement between farmers’ perception of soil fertility and measured soil fertility. Third, a probit 

model is estimated to examine the relationship between farmers’ perceived and measured soil 

fertility in the presence of other relevant factors. Lastly, a multivariate probit model is estimated 

to identify the effect of farmers’ perception about soil fertility on their adoption of soil fertility 

management practices. 

Results show that there is little correspondence between farmers’ perceived and measured soil 

fertility, and farmers mostly rely on crop performance to judge the fertility status of their soil. Soil 

testing to understand the fertility condition of soil was a rare practice. These results imply that 

farmers’ management practices may not be compatible with the fertility needs of their soils, as 

exemplified by the persistent application of an acidifying fertilizer (DAP) and low application of 

organic soil amendments such as manure and compost even on soils that are acidic and low in 

organic carbon, potentially worsening the problem. Farmers’ soil fertility perception has a strong 

relationship with the decision to apply inorganic fertilizer, but not other soil fertility management 

practices such as applying manure or compost; the likelihood of applying inorganic fertilizer to a 

plot increases when a farmer perceives a plot to be infertile. Farmers also appear to treat 

manure/compost and inorganic fertilizers as substitutes. These results reflect gaps in policy and 

extension, exemplified by the state’s aggressive promotion of use of inorganic fertilizers, 

especially DAP, without accompanying concerted efforts to promote use of organic soil 

amendments.  
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The third essay (Chapter 3) is entitled “Technical Efficiency and Soil Fertility and Agronomic 

Practices in Maize Production in Kenya”. Lack of land for agricultural expansion in Kenya, and 

indeed Africa (Chamberlin, Jayne, & Headey, 2014), implies that increasing agricultural 

productivity is the feasible option that can spur broad-based economic growth, help reduce poverty 

and enhance food security. Increasing agricultural productivity can be achieved through 

technological change, increased efficiency in use of existing technology and productive resources 

or both. This essay estimates technical efficiency level of maize farmers to determine potential 

productivity gains possible through better management of production resources. It identifies 

factors that affect variations in technical efficiency across farms, with a focus on the effect of 

farmers’ soil fertility perception, and demonstrates the importance of including environmental 

production conditions and agronomic practices in agricultural productivity and efficiency analysis. 

Much of the literature on agricultural productivity and efficiency analysis have often ignored 

farmers’ perceptions of soil fertility, environmental production conditions and agronomic 

practices, in part due to data limitations, yet these factors can be expected to condition input choice 

and use decisions and subsequently productivity and efficiency. 

The data used in this essay is the same as in essay 2. In addition, the essay uses rainfall data 

extracted from the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset 

(Funk et al., 2015). The stochastic production frontier (SF) approach due to Meeusen & van Den 

Broeck (1977) and Aigner et al (1977) is used to estimate technical efficiency of maize farmers, 

with and without controlling for environmental conditions (soil fertility conditions and rainfall) 

and agronomic practices, and identify factors responsible for variation in technical efficiency 

across farms.  



8 
 

Three key results have emerged. First, average level of technical efficiency is 0.75 and 0.70, 

respectively, with and without controlling for environmental variables and agronomic practices. 

Inefficiency-induced foregone maize yield is 0.34 tonnes/acre when environmental variables and 

agronomic practices are controlled for and 0.45 tonnes/acre without controlling for them. The 

forgone output is substantial considering that the reported yield is only about 1.3 tonnes/acre.  

Secondly, omission of environmental production conditions and agronomic practices from the 

stochastic frontier model results in understated technical efficiency levels. Lastly, farmers that 

view their plots as fertile have, on average, 19% lower technical inefficiency than those who view 

their plots as infertile. In addition, those whose perceptions about the fertility status of their plots 

are consistent with measured soil fertility have 2.9% lower technical inefficiency than those whose 

perception is inconsistent with measured soil fertility, on average. These results indicate that scope 

for increasing maize yield through better management of inputs exists and underscore the necessity 

for farmers’ accurate understanding about soil fertility conditions on their farms to help them make 

better production decisions. Failure to account for environmental production conditions and 

agronomic practices in productivity and efficiency analysis may yield inaccurate results.  



9 
 

REFERENCES 

 



10 
 

REFERENCES 

 

Aigner, D., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and estimation of stochastic 
frontier production function models. Journal of Econometrics, 6, 21–37. 

Ariga, J., & Jayne, T. S. (2009). Private Sector Responses to Public Investments and Policy 
Reforms The Case of Fertilizer and Maize Market Development in Kenya (IFPRI Discussion 
Paper No. 921). 

Barbier, E. B., & Hochard, J. P. (2014). Land degradation, less favoured lands and the rural 
poor: A spatial and economic analysis. 

Chamberlin, J. (2013). Market access and smallholder development in Kenya and Zambia. 
Michigan State University. 

Chamberlin, J., Jayne, T. S., & Headey, D. (2014). Scarcity amidst abundance? Reassessing the 
potential for cropland expansion in Africa. Food Policy, 48(2014), 51–65. 
https://doi.org/10.1016/j.foodpol.2014.05.002 

Chivenge, P., Vanlauwe, B., & Six, J. (2011). Does the combined application of organic and 
mineral nutrient sources influence maize productivity ? A meta-analysis. Plant Soil, 342, 1–
30. 

Diao, X., Hazell, P., Resnick, D., & Thurlow, J. (2007). The Role of agriculture in development: 
Implications for sub-Saharan Africa. Washington, D.C., USA. https://doi.org/153 

Fleiss, J. L., Levine, B., & Paik, M. C. (2003). Statistical Methods for Rates and Proportions. 
John Wiley & Sons, Inc. 

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., … Michaelsen, J. 
(2015). Climate Harzads Group. https://doi.org/10.1038/sdata.2015.66 

Haggblade, S., & Hazell, P. B. R. (Eds.). (2010). Successes in African agriculture: Lessons for 
the future. Baltimore: The Johns Hopkins University Press. 

Johnston, B. F., & Mellor, J. W. (1961). The role of agriculture in economic development. The 
American Economic Review, 51(4), 566–593. 

Kirimi, L., Sitko, N., Jayne, T. S., Karin, F., Muyanga, M., Sheahan, M., … Bor, G. (2011). A 
farm gate-to-consumer value chain analysis of Kenya’s maize marketing system (Working 
Paper No. 44). Nairobi. 

Kunhikrishnan, A., Thangarajan, R., Bolan, N. S., Xu, Y., Mandal, S., Gleeson, D. B., … Naidu, 
R. (2016). Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas 
Flux. Advances in Agronomy, 139, 1–71. https://doi.org/10.1016/bs.agron.2016.05.001 



11 
 

Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil 
organic carbon pool in agricultural lands. Land Degradation & Development, 209(August 
2005), 197–209. 

Lipton, M. (2005). The family farm in a globalizing world: The role of crop science in 
alleviating poverty (2020 Discussion Paper No. 40). Washington, DC. 

McCauley, A., Jones, C., & Olson-Rutz, K. (2017). Soil pH and organic matter. Nutrient 
Management, (8), 1–16. 

Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas 
production functions with composed error, 18(2), 435–444. 

Otsuka, K., & Larson, D. F. (Eds.). (2013). An African Green Revolution: Finding ways to boost 
productivity on small farms. Dordrecht Heidelberg New York London: Springer. 
https://doi.org/10.1007/978-94-007-5760-8 

Smale, M., & Olwande, J. (2014). Demand for maize hybrids and hybrid change on smallholder 
farms in Kenya. Agricultural Economics (United Kingdom), 45(4). 

The Montpellier Panel. (2013). Sustainable intensification: A new paradigm for African 
agriculture. London. 

The World Bank. (2007). World development report 2008: Agriculture for development. 
Washington, DC: The World Bank. 

 



12 
 

CHAPTER 1: TRENDS AND PATTERNS IN LAND AND LABOUR 

PRODUCTIVITY OF MAIZE IN KENYA 

 

1.1 Introduction  

Despite recent trends showing a shift in the labor force out of farming, the agricultural sector 

remains the single most important source of livelihoods for most people in Sub-Saharan Africa 

(Yeboah & Jayne, 2016). However, agricultural performance has been largely disappointing 

(Haggblade & Hazell, 2010). Land and labor productivity levels have remained low and stagnated 

and per capita food production has been declining (Otsuka & Larson, 2013). African agriculture is 

characterized by continued reliance on rain-fed and mostly low-input production; farms that are 

small and declining in size over time due to population growth; a trend toward increased land 

degradation (Barbier & Hochard, 2014; The Montpellier Panel, 2013); and marketing 

infrastructure that, while improving, remains underdeveloped and imposes high costs on 

participants in the agri-food system (Haggblade & Hazell, 2010; Otsuka & Larson, 2013).  

The underperformance of African agriculture and the recognition of the central role of agricultural 

productivity growth in development in the region has triggered a renewed interest in agriculture 

by African governments and in international development circles (Otsuka & Larson, 2013; The 

World Bank, 2008). While there is a broad consensus that an agricultural productivity revolution 

is necessary to foster economic growth in sub-Saharan Africa, Otsuka & Larson (2013) note that 

there is no consensus on how to realize that revolution. The authors suggest that debate on 

strategies to adopt to promote general agricultural growth revolves around whether to focus on 

small or large farms, to prioritize food staples or high value products, to promote production 
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practices that rely on fertilizers and modern seed varieties, and the extent that governments should 

get involved in markets. In their efforts to promote agricultural productivity, over the last decade 

many African governments have revived input subsidy programs to encourage the use of chemical 

fertilizers and modern seed varieties on food staples, and/or operated directly in food markets to 

raise producer prices for farmers (Jayne & Rashid, 2013). 

This description of the region’s general trends in agricultural productivity applies in most respects 

to Kenya.  Agricultural productivity is low and has generally stagnated over the long term. 

Specifically, yield of maize, the most important staple grain which is grown by virtually every 

agricultural household in the country, has shown a declining trend in the long term (Figure 1.1). 

The long-term picture is a result of sustained decline in yield witnessed in the period 1990-2003, 

which has not been offset by the slow rate of increase in yield observed between 2004 and 2015, 

and levels of which have remained lower than in early 1990s (Figure 1.2). The yield increase 

observed after 2004 is attributable to a range of efforts at revitalization of agriculture as part of the 

strategy to revive Kenya’s economy after decades of persistent decline. The efforts focused mainly 

on reviving collapsed and dysfunctional agricultural institutions that offer services to farmers, 

policy and regulatory reforms and investments that facilitate farmers’ access to input and output 

markets (Government of Kenya 2010).  

In addition to low and stagnated productivity, farm sizes have been shrinking over time with rural 

population densities and sub-division, with most affected areas being those with high agro-

ecological potential and where population densities are highest (Muyanga & Jayne, 2014). The 

pressure on farm land because of population increase is one of the factors responsible for soil 

degradation from nutrient mining, which is one of the main reasons for low and stagnated 

agricultural yields (Government of Kenya, 2014; Tittonell et al., 2008; Marenya & Barrett, 2007).  
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Rapidly rising population combined with stagnant agricultural productivity growth and limited 

potential for cropland expansion is making Kenya increasingly dependent on food imports for its 

national food security (FAOSTAT, 2014). Moreover, the country’s record of relatively low 

agricultural productivity growth over the past several decades has depressed the generation of 

dynamic farm-nonfarm growth multipliers and shifts in the composition of the labor force that 

have been the foundation of economic transformation in other regions of the world (Mellor, 1976; 

Johnston & Mellor, 1961; Lipton, 2005).  

Figure 1.1: Aggregate maize yield and production in Kenya over time, 1990-2016 

 
Source: Author’s compilation using data from the Ministry of Agriculture, Livestock and Fisheries (MoALF) 
Note: Yield is computed from production and area estimates by the MoALF. Area data includes those of mono-
cropped and inter-cropped maize plots. So, yield includes all plots with maize on them. 
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Figure 1.2: Locally weighted scatterplot smoother (lowess) of maize yield over time 

 
Source: Author’s computation using data from Ministry of Agriculture, Livestock and Fisheries (MoALF) 
 

The broad objectives of this study are to: (1) determine whether Kenya’s agricultural sector is 

changing in ways that are promoting or retarding farm labor productivity; and (2) understand the 

association between farm labor productivity and population density, land scarcity and market 

access. We define farm labor productivity in terms of net returns to family labor, a measure that 

we deem most appropriate for profitability of farming for agricultural households. We attempt to 
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 How are increased population density, smaller farm sizes and market access associated 

with labor productivity of maize? What does this mean for agricultural intensification in 

Kenya?  

1.2 Conceptual framework 

Boserup (1965) posited that rising population density exerts pressure on access to land, inducing 

farmers to adopt more intensive systems of land use. Farmers move away from extensive to 

permanent cultivation systems through a gradual transition from long fallow periods, involving 

shifting cultivation, to multiple cropping of land, where multiple successive crops are planted on 

the same area of land every cropping year. This change in land use system is accompanied by more 

intensive use of inputs, such as labor, compost, manure, improved seeds, inorganic fertilizers and 

irrigation, to increase production.  

The link between population density and labor productivity, defined as net returns to family labor, 

can be summarized through the following identity: 

𝑦 =
௒

௅
≡

௒

஺
×

஺

௅
          (1.1), 

where 𝑌is net revenue from output from a plot, 𝐿 is family labour days used in production on the 

plot, and 𝐴 is the area of the plot. The ratio 
௒

௅
 is labour productivity. It is identically a product of 

land productivity (yield), 
௒

௅
 , and land-labour ratio, 

஺

௅
, which can be considered as efficiency of 

family labour (Auer, 1966). Logarithmic transformation of (1.1) and differencing results in (1.2), 

which shows that family labor productivity growth is the sum of growth in yield and in land-family 

labor ratio: 
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∆ ln 𝑦 = ∆ ln ቀ
௒

௅
ቁ ≡ ∆ ln ቀ

௒

஺
ቁ + ∆ ln ቀ

஺

௅
ቁ      (1.2). 

Alternatively, we can express the identity in (1.2) as in (1.3): 

∆ ln 𝑦 = ∆ ln ቀ
௒

௅
ቁ ≡ ∆ ln ቀ

௒

஺
ቁ + ∆ ln(𝐴) − ∆ ln(𝐿)     (1.3). 

It is straightforward from (1.2) that when land expansion is infeasible, faster growth in land 

productivity is imperative to improving labor productivity. If population is rising and land sizes 

are shrinking, and if labor use is increasing in a manner that makes the land-labor ratio 
஺

௅
 to decline 

faster than growth in land productivity, we would expect labour productivity to decline. This would 

result in undesirable effects on the economic welfare of agricultural households and can lead to 

loss of incentives for households to produce maize. However, increase in population might not 

necessarily translate to increase in family labor use on maize. Households may allocate more of 

their labor to other farm and non-farm enterprises while maintaining labor use on maize at the 

same level or even reducing it altogether. If labor use in maize declines more than area under maize 

declines, then the land-labor ratio will increase. If the increase in land-labor ratio were sufficiently 

large to offset any decline in land productivity, then we would expect to see a rise in labor 

productivity. 

Therefore, on one hand we would expect a positive association between population density and 

labor productivity, driven by increased land productivity because of increased input use. On the 

other hand, an inverse relationship between population density and labor productivity would be 

possible and would mean that the increase in land productivity that would be expected from 

increased labor supply and capital inputs is not sufficiently large to compensate for the cost of 
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increased use of labor and the capital inputs. This would suggest an economically unsustainable 

path for agricultural intensification. 

We would expect a positive association between labor productivity and improved access to 

markets. Input and output market access influences output supply and input demand (Pingali et al, 

1987) and availability of relevant market information and transaction costs are key determinants 

of market access. High population density facilitates the flow of such information and reduces 

transaction costs (Chamberlin, 2013; Ricker-Gilbert et al, 2014). Thus, market access has a direct 

relationship with labor productivity. 

The relationship between population density and farm sizes is well grounded on the Boserup 

(1965) hypothesis. We would expect area planted to maize to decline over time as population 

increases. Similarly, we would expect the share of area planted to maize in total area planted to 

decline over time, as households are likely to gradually diversify or shift to farm enterprises with 

higher value, such as horticulture and dairy, in efforts to maximize output per unit of land. 

However, given the importance of maize in household food supply, we would not expect the share 

of maize area in total area planted to decline significantly. We would expect these changes to be 

larger in the least densely populated villages than in the most densely populated villages because 

in the most densely populated villages scope for further reduction of plot sizes and diversification 

may be reaching a limit since landholdings have already become very small on average. 

1.3 Data source and analysis 

We use a nationwide five-wave panel survey dataset covering 13 years on a sample of 1500 

agricultural households in Kenya, collected by Egerton University’s Tegemeo Institute of 

Agricultural Policy and Development. The data pertains to the 1996/97, 1999/00, 2003/04, 
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2006/07 and 2009/10 cropping years, hereafter referred to as 1997, 2000, 2004, 2007 and 2010, 

the years in which the data were collected.  While not considered nationally representative, the 

sample covers all eight of Kenya’s important agro ecological zones (AEZ) spread over 24 districts 

as defined in 1997. Argwings-Kodhek et al (1999) explain the sampling process in detail. The data 

contains a range of information about household farm and non-farm activities, including detailed 

information on cropping, livestock keeping and off-farm earning activities.  

First, we examine trends and patterns in the size of landholding, area planted and land allocation 

to maize using data for all the survey years (1997-2010). The pooled sample has 6,977 

observations, distributed across the years as shown in the second column of Table 1a. Because the 

sample contains only farm households, there are no landless households included in the sample. 

Landholding is self-reported household owned total land area. Total area planted by a household 

is calculated as the sum of area of individual plots planted in the main season.  The short season is 

not included to avoid double counting, since plots planted in the main season are often the very 

ones planted in the short season in two-season areas.  Likewise, only main season production is 

counted as output. Area under maize is measured as the sum of the size of each plot that contains 

maize.  Most plots containing maize in Kenya are inter-cropped, and hence we should interpret the 

area measure as the size of the plots on which maize was planted.  

We conduct a descriptive analysis of trends and patterns in labor productivity on plots with maize 

on them, as well as decomposed components and change over time.  This analysis uses data for 

the 2004, 2007 and 2010 survey years, which contain detailed information on production, input 

use, and hired and family labor used on households’ largest maize plot in the main season. On 

average, the share of the largest maize plot in households’ total planted maize area in the main 

season was 89% over the three years, and increased from 86% in 2004 to 91% in 2010. Therefore, 
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we are confident that this analysis captures the vast majority of maize produced by this nationwide 

sample of farm households.  

There are 3977 largest maize plots (observations) in the dataset. We exclude from the analysis the 

following: observations that do not have family labor use on the largest maize plot, because  our 

interest is in returns to family labor; observations that had less than 20% share of maize in the total 

value of crops produced on the largest plot with maize; observations with reported area of less than 

0.2 acres for the largest plot with maize, because of concerns about potentially large measurement 

error in computing productivity; and observations that had negative net value of crop production. 

The final number of observations used in the analysis is 3256, distributed as follows: 1153 in 2004; 

1098 in 2007; and 1005 in 2010. 

We measure labor productivity in terms of net returns to family labor-day, where a day is in terms 

of 6-hour farm-work day1. Because intercropping of maize with other crops is a common practice 

(2910 of the largest maize plots had more than one crop, with 66% of these having one or two 

other crops besides maize), we include the value of these crops in computing productivity. Net 

returns are computed as total gross value of all crops produced on the largest plot with maize net 

of the cost of variable inputs (land preparation, seeds, fertilizers, and hired labor) used on the plot. 

District median crop prices are used to value the crops. The cost of fertilizer is similarly computed 

for fertilizer applied on the largest plot with maize. For land preparation, seeds and hired labor, 

the actual expenditure incurred on these inputs on the largest plot with maize are used. Because 

more than one year of data is used, net returns are adjusted for inflation using the well-known 

                                                 
1 6 hours is the average of the number of hours of farm work in a day reported in the data. 
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Fisher’s ideal price index, with 2004 quantities and district median prices for the crops (maize and 

those intercropped with it) used as the base. 

Throughout, we disaggregate the analysis by quintiles of village population density, quintiles of 

distance to tarmac (paved) road (an indicator of market access), landholding categories and agro-

ecological zone. Village population density, an indicator of land pressure, is measured as village 

landholding, in square kilometers, per capita. It is computed as the ratio of the total number of 

residents to the sum of landholdings of the sample households in a village. For trends and patterns 

in labor productivity, we also separate between monocrop versus intercrop maize cropping 

systems, gender of household head, use of mechanized land preparation and use of hired labor in 

maize production.  

1.4 Results and discussion 

We first present trends and patterns in household landholdings, planted land size and land 

allocation to plots with maize. Trends and patterns in labor productivity and its components are 

discussed next. Change in labor productivity over time is decomposed into its components and 

results discussed.  

1.4.1 Patterns and trends in landholding and land allocation to maize production 

Trends in mean landholding, area planted, and planted area allocated to plots with maize is reported 

in Table 1.1. Over time, household average landholding reduced by 0.8 acres, representing a 

decline by over 12% in 13 years. The effect of reduced average landholding is reflected in the 

reduction in area planted by 11%, from an average of 3.5 acres in 1997 to 3.1 acres in 2010.  
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Smallholder farmers in Kenya are highly diversified in their production. The crops produced 

include cereals such as maize, sorghum, millet, beans; roots and tubers such as potatoes and 

cassava; industrial crops such as tea, coffee and sugarcane; and a range of fruits and vegetables. 

Mixed farming involving crops and livestock is also a common practice. Although agro-ecological 

conditions determine the specific crops and livestock species that can be profitably produced in 

each locality, maize production is supported to various extents in virtually all agro-ecological 

zones of Kenya. Maize is the single most important crop in terms of planted area allocation, with 

plots with maize occupying over 50% of the total area planted, on average (Table 1.1). Over time, 

the average area of plots with maize for a household declined by 11%, commensurate with the 

decline in average total area planted by a household.   

The trends and patterns in Table 1.1 have two important implications. First, the shrinking 

landholdings and the subsequent decline in area planted among smallholder farmers support 

evidence presented in Jayne et al (2014) that most farms in Kenya, and indeed the region, are 

declining in size as rural populations continue to rise with little or no potential for land expansion 

for agriculture.  Therefore, this puts the onus on strategies to achieve agricultural growth through 

agricultural intensification and productivity growth on existing farmland.  Secondly, maize 

remains fundamental to Kenyan agriculture.  Even with a small decline in the proportion of total 

planted area under maize, still over 50% of planted land in Kenya is devoted to maize and hence 

one of the most effective entry points for accelerating agricultural productivity growth in Kenya is 

to raise the yields and profitability of maize.   

The declining landholding and farm sizes is largely a result of increasing population. We would 

expect decline in landholding and farm sizes to be larger in least densely populated villages than 

in most densely populated villages because in most densely populated villages landholdings and 
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farm sizes may have already become so small that land cannot be feasibly subdivided; in such 

areas, we would expect high rates of migration of youth out of the area and/or shifts in the local 

labor force from farm to non-farm activities. Indeed, our data shows that outmigration rate of youth 

is positively correlated with population density (see Figure A1.1 in the Appendix). The analysis in 

Table 1.2 shows that overall, average landholdings and area planted, both total and allocated to 

plots with maize were significantly larger in the least densely populated villages than in the most 

densely populated villages. The proportion of area of plots with maize to total area planted was 

also significantly larger in the least densely populated villages.  

Table 1.1: Levels of and changes in mean landholding, total area planted, and area allocated to 
plots with maize 1997-2010 

Year N 
Total 

landholding 
(acres) 

Total area 
planted (acres) 

 
Area planted 
with maize 

(acres) 

Proportion 
of maize 

area in total 
area planted 

1997 1499 6.1 3.5 1.8 0.59 
2000 1441 6.0 4.1 2.1 0.57 
2004 1396 6.3 3.9 1.9 0.54 
2007 1335 6.1 3.6 1.9 0.54 
2010 1306 5.3 3.1 1.6 0.54 
Total 6977 5.9 3.7 1.9 0.56 

Change (1997-2010)  -0.8** -0.4* -0.2* -0.05*** 
% change  -12.53 -11.11 -11.25  

* p<0.10, ** p<0.05, *** p<0.01 
 

Table 1.2: Mean landholding, total area planted and area allocated to plots with maize, by village 
population density (pooled sample – 1997-2010) 

Quintile of village 
population density 

N 
Total 

landholding 
(acres) 

Total area 
planted in main 
season (acres) 

Maize 
Area planted 

(acres) 
Proportion of 

total area planted 
1st (lowest) 1426 14.5 7.3 3.9 0.64 

2 1394 5.67 3.6 1.7 0.53 
3 1400 4.0 2.9 1.4 0.53 
4 1418 3.2 2.5 1.2 0.52 

5th (highest) 1339 2.2 1.9 1.0 0.56 
Difference in mean 

(5th - 1st) 
  

-12.3*** -5.4*** -2.9*** -0.07*** 
* p<0.10, ** p<0.05, *** p<0.01 
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As hypothesized, average landholding declined over the 13-year period by a higher percentage in 

the least than in the most densely populated villages (Table 1.3). This, however, was not the case 

for total area planted and area of plots with maize.  

Table 1.3: Changes in mean landholding, total area planted and area allocated to plots with 
maize, by population density, (1997-2010) 

Quintile of village 
population density 

Total landholding 
(acres) 

Total area 
planted in main 
season (acres) 

Maize 
Area planted 

(acres) 
Proportion of total 

area planted 
 Absolute change (1997-2010) 

1st (lowest) -2.5 -1.0 -0.5 -0.02 
2 -1.0 -0.5 0.1 0.07 
3 -0.1 0.0 -0.4 -0.16 
4 0.0 -0.3 -0.1 -0.04 

5th (highest) -0.2 -0.2 -0.2 -0.08 

 % change      
1st (lowest) -16.6 -13.6 -11.9  

2 -16.3 -14.2 9.6  
3 -3.2 0.8 -24.6  
4 -1.1 -10.9 -12.9  

5th (highest) -8.2 -13.5 -17.3   

In Table 1.4, we categorize farm households into three groups according to landholding; less than 

5 acres, 5-10 acres, and above 10 acres, and examine trends and changes in mean landholding, 

total area planted and area allocated to plots with maize. The average landholding in the <5 acres 

category increased by 12% overall, although between 2000 and 2010 average landholding 

consistently declined. Total area planted for this category also increased overall, but a consistent 

decline is observed between 2000 and 2010. Both average area of plots with maize and its share 

in total area planted declined over time. For the >10 acres category of landholding, total planted 

area and area of plots with maize increased marginally (by 7% and 9%, respectively). These results 

indicate that increasing maize production can only be through increased productivity even in areas 

where average landholding may be larger; there is little scope for area expansion for maize 

production.   
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Table 1.4: Levels of and changes in mean landholding, total area planted and area allocated to plots with maize, by landholding 
categories, 1997-2010 

Landholding Year N 
Total landholding 

(acres) 

Total area 
planted in 

main season 
(acres) 

Maize 

Area planted 
(acres) 

Proportion of total 
area planted 

<5 acres 1997 968 2.0 2.0 1.1 0.60 
 2000 931 2.4 2.4 1.3 0.56 
 2004 868 2.3 2.1 1.0 0.54 
 2007 878 2.3 1.9 1.0 0.54 
 2010 915 2.2 1.8 0.9 0.53 
 Pooled 4,560 2.2 2.0 1.1 0.56 
 Change (1997-2010)  0.2 0.1 0.0 -0.05 
 % change    12.4 3.4 -0.5   
       
5-10 acres 1997 330 6.8 4.0 2.0 0.56 
 2000 319 6.8 4.5 2.4 0.55 
 2004 359 7.0 5.0 2.5 0.52 
 2007 286 6.9 4.4 2.3 0.55 
 2010 263 6.7 4.0 2.1 0.57 
 Pooled  1,557 6.8 4.4 2.3 0.55 
 Change (1997-2010)  0.0 0.1 0.1 0.01 
  % change    -0.6 1.9 4.8         
>10 acres 1997 201 24.4 10.4 5.0 0.55 
 2000 191 22.3 11.6 5.9 0.59 
 2004 169 25.2 10.7 5.0 0.55 
 2007 171 24.0 11.2 5.9 0.57 
 2010 128 24.1 11.1 5.4 0.55 
 Pooled 860 24.0 11.0 5.4 0.57 
 Change (1997-2010)  -0.3 0.7 0.4 0.01 
  % change    -1.2 6.6 8.6  
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A wide variation obtained in the land variables across agro-ecological zones (Table 1.5). Overall, 

average landholding was largest in the High potential maize (HPM) zone and smallest in the 

Western Highlands (WH) and Central Highlands (CH), the most densely populated of the zones. 

This pattern is also reflected in total area planted. It is worth noting that despite having the lowest 

yield levels of maize (shown later) among the agro-ecological zones, the Lowlands had among the 

highest average share of area of plots with maize in total area planted.  

Over time, average landholding declined in all the zones except in WH, while average total area 

planted declined in most of the zones (Table 1.6). Average area of plots with maize also declined 

in all the zones except in the CL. Positive but small changes in the average share of plots with 

maize in total area planted were registered only in the HPM, CL and Western Transitional (WT) 

zones.  

The patterns and trends in the land variables across agro-ecological zones provide an important 

insight to agricultural intensification. Because most rural households attempt to meet their own 

staple maize consumption needs through own production, maize production remains important to 

most smallholder farmers even in agro-ecological settings where maize productivity is relatively 

low. With declining farm sizes even in these agro-ecologies, it remains a question of whether 

efforts should be directed at increasing maize yield, or whether it would be more worthwhile to 

encourage higher value enterprises such as horticulture in such areas. 
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Table 1.5: Mean landholding, total area planted and area allocated to plots with maize, by zone 
(pooled sample –    1997 - 2010) 

Zone N 
Total 

landholding 
(acres) 

Total area 
planted in main 
season (acres) 

Maize 
Area 

planted 
(acres) 

Proportion of 
total area 
planted 

Coastal Lowlands 379 5.5 3.4 2.3 0.63 
Eastern Lowlands 780 5.8 3.5 2.4 0.68 
Western Lowlands 850 3.7 2.6 1.3 0.60 
Western Transitional 792 5.6 4.1 1.5 0.42 
High Potential Maize Zone 1,905 10.9 6.0 3.2 0.65 
Western Highlands 742 2.3 1.9 0.9 0.53 
Central Highlands 1,273 2.8 2.2 0.7 0.37 
Marginal Rain Shadow 256 5.0 1.8 1.2 0.70 
Overall 6,977 5.9 3.7 1.9 0.56 

 

Table 1.6: Changes in mean landholding, total area planted and area allocated to plots with 
maize, by zone, 1997-2010 

Zone 
Total 

landholding 
(acres) 

Total area planted 
in main season 

(acres) 

Maize 
Area 

planted 
(acres) 

Proportion of 
total area 
planted 

 Absolute change (1997-2010) 
Coastal Lowlands -0.2 0.0 0.2 0.04 
Eastern Lowlands -2.0 -0.5 -0.6 -0.07 
Western Lowlands 0.0 0.5 -0.1 -0.14 
Western Transitional -0.9 -1.1 -0.2 0.03 
High Potential Maize Zone -0.8 -0.5 0.0 0.01 
Western Highlands 0.4 0.1 -0.1 -0.11 
Central Highlands -0.8 -0.6 -0.3 -0.07 
Marginal Rain Shadow -0.7 -0.2 -0.2 -0.05 
Overall -0.1 0.1 0.1 -0.03 

 % change 
Coastal Lowlands -4.2 1.4 9.6  
Eastern Lowlands -31.0 -17.8 -27.3  
Western Lowlands -1.0 22.9 -5.7  
Western Transitional -15.6 -25.3 -16.4  
High Potential Maize Zone -7.0 -8.8 -1.1  
Western Highlands 17.4 7.5 -13.8  
Central Highlands -28.1 -24.7 -39.9  
Marginal Rain Shadow -13.8 -10.8 -14.9  
Overall -12.5 -11.1 -11.3  
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It is a common practice among smallholder farmers in Kenya to plant maize together with other 

crops such as beans on the same plot. As shown in Table 1.7, planting maize alone on a plot was 

a rare practice overall; a maize plot was generally intercropped with at least one other crop. 

Besides, the average share of plots with intercropped maize in total maize area increased over time 

(by 6 percentage points). This would be expected since declining landholdings impose constraints 

on land available for production and encourages farmers to mix crops on the available cultivable 

land. While intercropping is generally a good agronomic practice, it has little benefits to maize 

yield if there are no beneficial interactions between maize and the other crop(s). Intercropping 

maize with legumes, such as is common in Kenya, is beneficial to maize as legumes are nitrogen 

fixers in the soil. 

Table 1.7: Average share of monocropped and intercropped maize plots in total area planted and 
in total area of plots with maize, 1997 - 2010 

Year N 

Monocropped maize 
area as  % of … 

 Intercropped maize area 
as % of … No. of other 

crops on 
intercropped 
maize plots 

Total area 
planted 

Area 
under 
maize 

 Total area 
planted 

Area 
under 
maize 

1997 1,499 7.54 14.85  51.70 85.15 1.6 
2000 1,441 4.35 8.54  52.74 91.46 2.8 
2004 1,396 4.40 9.05  50.03 90.95 2.4 
2007 1,335 6.23 10.70  48.82 89.30 2.5 
2010 1,306 4.30 8.12  50.30 91.88 2.2 
Total 6,977 5.39 10.33  50.77 89.67 2.3 

Change (1997 - 
2010) 

 -3.23 -6.73  -1.40 6.73 0.7 

1.4.2 Patterns and trends in land and labor productivity in maize production 

In this section, we present and discuss patterns and trends in land productivity, family labor use 

rate and labor productivity (returns to family labor) in maize production. As explained earlier, the 

analysis is on the households’ largest plots planted with maize (monocrop or intercrop) and for the 

years 2004, 2007 and 2010 for which labor data is available. We measure labor productivity in 
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terms of net returns to family labor-day, adjusted for inflation. Net returns is computed as gross 

value of output for all crops planted with maize on the largest plot less the cost of variable inputs 

used on the plot, and adjusted for inflation using Fisher’s ideal price index with 2004 quantities 

and district median prices as the base. We disaggregate the analysis by various household and 

spatial attributes to tease out relationships that might otherwise be masked by pooling the data.  

Over time, average land productivity (net returns per acre) increased by 26% while family labor 

average use rate declined by 16% between 2004 and 2010 (Table 1.8). Average labor productivity 

(net returns to family labor) increased by 40%, a result of a combination of the increase in average 

land productivity and a decline in family labor average use rate. It is important to note that the 

decline in family labor average use rate was larger relative to the decline in the average planted 

plot size, indicating an increase in average land-labor ratio. The reduction in family labor use rate 

was compensated in part by increased use of hired labor, from an average of 17 to 19 person-days 

per acre, representing an increase of about 12% between 2004 and 2010. 

Table 1.8: Land and labor productivity and family labor use rate on maize plots (both monocrop 
and intercrop) over time (mean) 

Year N 
Planted plot 
size (acres) 

Land 
productivity 
(Net revenue 

per acre (Ksh)) 

Family labor 
(Person-days 

per acre) 

Labor 
productivity 
(Net revenue 

per family 
labor-day 

(Ksh)) 
2004 1153 1.5 10744 49.0 609 
2007 1098 1.5 11484 39.1 933 
2010 1005 1.3 13565 41.2 854 
Total 3256 1.4 11864 43.2 794 

% change (2004 - 2010)  -17.1 26.3 -16.0 40.3 
Note: Net revenue values are in real terms  

Across categories of landholding, average land productivity increased in the <5 acres and 5-10 

acres categories but declined in the >10 acres category, while family labor average use rate 
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declined for all the categories (Table 1.9). Average labor productivity also increased for all 

categories of landholding. The driving factor in the increase in average labor productivity for the 

5-10 and >10 acres categories of landholding is the decline in family labor use rate rather than 

positive changes in land productivity. 

Table 1.9: Land and labor productivity and family labor use rate on maize plots (both monocrop 
and intercrop) by landholding (mean) 

Landholding 
category 

Year 

N 

Land 
productivity 
(Net revenue 

per acre (Ksh)) 
Family labor 
(Person-days 

per acre) 

Labor 
productivity 
(Net revenue 

per family 
labor-day 

(Ksh)) 

<5 acres 

2004 698 11489 58.8 379 
2007 726 12488 46.1 578 
2010 719 15016 46.5 601 
Total 2143 13011 50.4 521 

% change (2004 - 
2010)   30.7 -20.8 58.7 

5-10 acres 

2004 307 9057 38.3 788 
2007 239 9957 29.2 1392 
2010 205 10302 31.9 1063 
Total 751 9683 33.6 1055 

% change (2004 - 
2010)   13.8 -16.8 34.9 

>10 acres 

2004 148 10727 25.0 1325 
2007 133 8747 18.7 2047 
2010 81 8947 17.0 2574 
Total 362 9601 20.9 1870 

% change (2004 - 
2010)   -16.6 -31.9 94.3 

Note: Net revenue values are in real terms  

Levels of and changes in average land and labor productivity and family labor use rate 

disaggregated by quintiles of population density are presented in Table 1.10. We observe several 

patterns. First, total average land productivity generally increased as population density increased. 

This relationship is much clearer in the non-parametric locally weighted scatterplot smoothing 

(lowess) regression analysis presented in Figure 1.3. It shows a concave relationship between land 

productivity and population density, indicating land productivity gains from agricultural 
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intensification efforts by households as population increases and landholdings become smaller up 

to some point after which productivity gains diminish as population density increases (Muyanga 

& Jayne, 2014) . Over time, average land productivity increased for households in all the villages 

except those in the 1st quintile, mirroring the pattern observed in the disaggregation by landholding 

categories above.  

Table 1.10: Land and labor productivity and family labor use rate on maize plots (both monocrop 
and intercrop) by population density (mean) 

Quintile of 
population 
density 

Year 

N 

Land 
productivity 
(Net revenue 

per acre (Ksh)) 

Family labor 
(Person-days 

per acre) 

Labor productivity 
(Net revenue per 
family labor-day 

(Ksh)) 

1st (lowest) 

2004 227 12449 32.0 1173 
2007 218 9419 23.8 1881 
2010 208 10475 27.3 1711 
Total 653 10809 27.8 1581 

% change 
(2004 - 2010)   -15.9 -15.0 45.8 

2 

2004 236 8947 43.9 519 
2007 219 11295 34.9 771 
2010 200 12442 40.9 733 
Total 655 10799 40.0 669 

% change 
(2004 - 2010)   39.1 -6.9 41.3 

3 

2004 226 9524 55.6 524 
2007 222 13119 42.9 814 
2010 198 13336 46.3 498 
Total 646 11928 48.4 615 

% change 
(2004 - 2010)   40.0 -16.7 -5.0 

4 

2004 231 10223 52.4 403 
2007 227 11551 42.9 770 
2010 206 15924 46.7 677 
Total 664 12446 47.4 614 

% change 
(2004 - 2010)   55.8 -11.0 67.9 

5th (highest) 

2004 233 12602 60.9 437 
2007 212 12017 50.9 425 
2010 193 15777 45.4 611 
Total 638 13368 52.9 486 

% change 
(2004 - 2010)   25.2 -25.5 39.7 

Note: Net revenue values are in real terms 
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Secondly, as expected, family labor total average use rate increased with increase in population 

density. Over time, family labor average use rate declined in all the quintiles of population density, 

with the 2nd quintile registering the least and the 5th quintile the largest decline. The decline over 

time in family labor average use rate even in most densely populated villages suggests that 

households were devoting more labor to other activities, either/both farm or/and non-farm 

activities. 

Lastly, there was an inverse relationship between total average labor productivity and population 

density, as also shown in the lowess regression analysis results in Figure1.4, indicating the need 

for faster growth in land productivity to sustain growth in returns to family labor as landholdings 

shrink due to increasing population. 

Figure 1.3: Locally weighted scatterplot smoother (lowess) of land productivity of maize and 
village population density 
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Figure 1.4: Locally weighted scatterplot smoother (lowess) of labor productivity of maize and 
village population density 
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generally has an inverse relationship with distance from a household to a tarmac road. This 

indicates that better transport infrastructure implies better access to both input and output markets, 

which may facilitate efficient use of inputs and family labor allocation, resulting in greater 

productivity of both land and family labor. 

Table 1.11: Land and labor productivity and family labor use rate on maize plots (both monocrop 
and intercrop) by gender of household head (mean) 

Gender of 
household head 

Year 

N 

Land 
productivity 
(Net revenue 

per acre 
(Ksh)) 

Family labor 
(Person-
days per 

acre) 

Labor 
productivity 

(Net 
revenue per 

family 
labor-day 

(Ksh)) 

Female 

2004 223 10085 45.5 507 
2007 263 10238 35.9 784 
2010 257 12131 39.3 732 
Total 743 10847 39.9 683 

% change (2004 - 
2010)   20.3 -13.6 44.2 

Male 

2004 930 10902 49.8 633 
2007 835 11876 40.1 980 
2010 748 14058 41.8 896 
Total 2513 12165 44.2 827 

% change (2004 - 
2010)   28.9 -16.1 41.5 

Note: Net revenue values are in real terms 

Table 1.12: Land and labor productivity and family labor use rate on maize plots (both monocrop 
and intercrop) by distance to tarmac road (mean) (pooled sample – 2004 – 2007) 

Quintile of distance to 
tarmac road 

N 
Land productivity 

(Net revenue per acre 
(Ksh)) 

Family labor 
(Person-days per 

acre) 

Labor productivity 
(Net revenue per 
family labor-day 

(Ksh)) 
1st (shortest) 828 12057 39.1 896 

2 547 11821 43.7 804 
3 689 12738 43.8 887 
4 582 13073 44.0 894 

5th (longest) 610 9502 47.1 446 
Difference (5th-1st)   -2555 8.0 -450 

Note: Net revenue values are in real terms 

 



35 
 

Figure 1.5: Locally weighted scatterplot smoother (lowess) of land productivity and distance to 
tarmac road 

 

Figure 1.6: Locally weighted scatterplot smoother (lowess) of labor productivity and distance to 
tarmac road 
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productivity increased. It is worth noting that intercropped plots were significantly smaller than 

monocropped plots, on average. These patterns mirror the results observed previously that 

households with smaller landholdings had greater land productivity than those with larger 

landholding, and labor productivity was greater for households with larger landholding. 

Intensification of maize production involving intercropping with especially legumes may be useful 

in increasing land productivity. 

Table 1.13: Land and labor productivity and family labor use rate on maize intercrop and 
monocrop plot (mean) 

Cropping 
system of 
maize on plot 

Year N 

Land 
productivity 
(Net revenue 

per acre 
(Ksh)) 

Family 
labor 

(Person-
days per 

acre) 

Labor 
productivity 

(Net 
revenue per 

family 
labor-day 

(Ksh)) 

Intercrop 

2004 1059 10938 49.4 602 
2007 959 11994 39.8 893 
2010 892 14343 42.3 745 
Total 2910 12329 44.0 742 

% change (2004 - 
2010)   31.1 -14.4 23.8 

Monocrop 

2004 94 8560 44.8 691 
2007 139 7967 34.0 1209 
2010 113 7430 32.5 1715 
Total 346 7953 36.5 1234 

% change (2004 - 
2010)   -13.2 -27.5 148.2 

Note: Net revenue values are in real terms 

There were wide variations in average land and labor productivity and family labor use rate across 

agro-ecological zones (Table 1.14). The total average land productivity was highest in the CH, one 

of the most densely populated of the zones, and lowest in the CL. Family labor average use rate 

was in the WH and CH zones, which had the highest population density. Total average labor 

productivity was highest in the HPM zone, where family labor average use rate was also lowest, 

and lowest in CL.  
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Over time, average land productivity increased in all the zones except HPM, CL and MRS, while 

labor productivity declined only in CL. Family labor average use rate increased in all the zones 

except the EL.  

These results have important implications. First, the reduction in average land productivity in the 

HPM zone, the most important maize producing region and where fertilizer and improved seed 

variety adoption on maize is nearly complete, implies a problem in low response of maize to input 

use. Research has shown that soil degradation is a major problem in Kenya’s agriculture, and soil 

mining is a widespread concern not only in Kenya but in the entire Africa (Stoorvogel et al, 1993; 

The Montpellier Panel, 2013). Increasing maize production on degraded soils is not feasible 

without restoring soil fertility. 

Secondly, both land and labor productivity were quite low in some zones, especially the Lowlands 

where, coincidentally, use of external inputs such as fertilizer and improved maize varieties is 

generally low. While it might be tempting to suggest that strategies to encourage widespread use 

of external inputs in these zones would be beneficial in raising maize productivity, it is more 

critical to recognize the necessity of agronomic practices that raise soil quality. Without building 

soil fertility through proper agronomic practices, encouraging use of external inputs such as 

fertilizers and improved seed varieties in these zones, despite their lower use rates, may not achieve 

the needed productivity growth. 
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Table 1.14: Land and labor productivity and family labor use rate on maize plots (both monocrop 
and intercrop) by agro-regional zone (mean) 

Agro-ecological zone Year N 

Land 
productivity 
(Net revenue 

per acre 
(Ksh)) 

Family 
labor 

(Person-
days per 

acre) 

Labor 
productivity 
(Net revenue 

per family 
labor-day 

(Ksh))       
Coastal Lowlands 2004 48 5603 59.7 194 

 2007 57 8144 35.8 350 
 2010 55 4724 40.5 151 
 Total 160 6206 44.6 235 

  
% change (2004 - 

2010)   -15.7 -32.2 -22.6       
Eastern Lowlands 2004 129 6049 44.8 303 

 2007 123 9950 28.8 684 
 2010 127 13141 51.3 487 
 Total 379 9692 41.8 489 

  
% change (2004 - 

2010)   117.3 14.5 60.6       
Western Lowlands 2004 117 4439 45.6 160 

 2007 146 9280 33.6 793 
 2010 140 7529 32.4 458 
 Total 403 7267 36.7 493 

  
% change (2004 - 

2010)   69.6 -29.0 186.5       
Western Transitional 2004 149 9358 52.5 340 

 2007 141 9839 54.4 352 
 2010 143 13513 48.1 549 
 Total 433 10887 51.7 413 

  
% change (2004 - 

2010)   44.4 -8.4 61.5       
High Potential Maize Zone 2004 361 13194 40.3 1134 

 2007 309 10672 33.0 1552 
 2010 215 11466 32.7 1654 
 Total 885 11894 35.9 1406 

  
% change (2004 - 

2010)   -13.1 -19.0 45.9 
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Table 1.14 (Cont’d) 

Agro-ecological zone Year N 

Land 
productivity 
(Net revenue 

per acre 
(Ksh)) 

Family 
labor 

(Person-
days per 

acre) 

Labor 
productivity 
(Net revenue 

per family 
labor-day 

(Ksh))       
Western Highlands 2004 129 8992 58.9 282 

 2007 136 11741 51.3 573 
 2010 126 13249 41.8 729 
 Total 391 11320 50.8 527 

  
% change (2004 - 

2010)   47.3 -29.1 159.0       
Central Highlands 2004 180 16817 58.5 664 

 2007 151 19207 39.4 1158 
 2010 173 25673 47.3 1025 
 Total 504 20573 48.9 936 

  
% change (2004 - 

2010)   52.7 -19.2 54.3       
Marginal Rain Shadow 2004 40 11871 49.9 481 

 2007 35 10976 46.2 653 
 2010 26 5452 29.2 796 
 Total 101 9909 43.3 621 

  
% change (2004 - 

2010)   -54.1 -41.4 65.6 
Note: Net revenue values are in real terms 

Lastly, the high and increasing average land productivity in the WH and CH, the most densely 

populated zones, and WT and EL may suggest that sustainable intensification is taking place in 

the zones. It is important to note that average plot sizes in WH and CH zones are the smallest and 

a number of crops are intercropped with maize, which could also be among the reasons for the 

high average land productivity levels. All the same, strategies to ensure sustained momentum in 

increasing land productivity in these zones would be desirable, and lessons from these zones could 

inform the design of appropriate strategies for increasing land productivity in other less densely 

populated zones. It is also worth noting that there would be population density threshold beyond 

which no land productivity gains would be realized or there would be a decline in land productivity 

altogether (Josephson et al, 2014; Muyanga & Jayne, 2014; Ricker-Gilbert et al., 2014). Therefore, 
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strategies to stimulate growth in non-farm sectors would certainly be necessary to ease population 

pressure on agricultural land. 

Land and labor productivity (returns to land and to family labor) are also functions of use of other 

inputs and agricultural technologies. We would expect productivity of family labor to increase 

when farm operations are mechanized and when use of hired labor increases, if production 

increases thereof are high enough to offset mechanization and labor hiring costs. We explore these 

relationships in Tables 1.15 and 1.16. Total average land productivity and family labor use rate 

were higher for households that did not at all use hired labor than for those that used (Table 1.15). 

Average returns to family labor, on the other hand, was significantly higher for households that 

also used hired labor than for those that did not at all use, indicating that returns to family labor is 

much higher when a household is able to substitute hired for family labor. This implies that on 

average, households who can afford to hire labor for maize production may benefit from 

reallocating their labor from maize cultivation to activities with higher returns. Over time, both 

groups of households had increased average land productivity, with the group that did not use hired 

labor experiencing a larger increase. Average labor productivity increased more for households 

that did not use hired labor than for those that used hired labor. 

In Table 1.16 are patterns and trends in land and labor productivity and family labor use rate by 

mechanized land preparation, a labor-saving technology. Data showed that mechanized land 

preparation was more common on larger plots, on average. While total average land productivity 

was significantly higher where land preparation was manual, total average labor productivity was 

higher where land preparation was mechanized. This indicates that mechanized land preparation 

does not really affect land productivity of maize but raises returns to family labor through reducing 

family labor requirement. Indeed, family labor average use rate was higher where mechanization 
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was not used and much lower where it was used. Over time, average land and labor productivity 

increased for both groups of households. However, average land productivity increased only 

slightly for households that used mechanized land preparation. Family labor average use rate 

declined for both groups of households, but the percentage decline was larger for those that did 

not use mechanized land preparation. 

1.15: Land and labor productivity and family labor use rate on maize plots (both monocrop and 
intercrop) by hired labor use (mean) 

Use of hired 
labor  

Year N 
Land productivity 
(Net revenue per 

acre (Ksh)) 

Family labor 
(Person-days 

per acre) 

Labor productivity 
(Net revenue per 
family labor-day 

(Ksh)) 

Not used 

2004 462 9709 67.6 200 
2007 446 12393 60.0 283 
2010 390 13835 56.8 296 
Total  1298 11871 61.7 257 

% change (2004 
- 2010) 

  42.5 -16.0 47.9 
      

Used 

2004 691 11436 36.6 882 
2007 652 10862 24.8 1378 
2010 615 13394 31.3 1208 
Total 1958 11860 31.0 1150 

% change (2004 
- 2010) 

  17.1 -14.5 36.9 

Note: Net revenue values are in real terms 
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Table 1.16: Land and labor productivity and land-labor ratio on maize plots (both monocrop and 
intercrop) by mechanized land preparation (mean) 

Use of 
mechanized 
land preparation  

Year N 

Land 
productivity 
(Net revenue 

per acre (Ksh)) 

Family 
labor 

(Person-
days per 

acre) 

Labor productivity 
(Net revenue per 
family labor-day 

(Ksh)) 

Not used 

2004 584 11335 63.0 386 
2007 583 13693 48.1 656 
2010 565 16017 50.0 633 
Total 1732 13656 53.7 558 

% change (2004 - 
2010) 

  41.3 -20.6 64.0 
      

Used 

2004 569 10137 34.6 838 
2007 515 8983 28.9 1247 
2010 440 10418 29.8 1138 
Total 1524 9828 31.3 1063 

% change (2004 - 
2010) 

  2.8 -13.9 35.8 

Note: Net revenue values are in real terms 

We use expression (1.3) in the conceptual framework section to decompose percentage change in 

labor productivity into its components – percentage change in land productivity and in land-labor 

ratio – between two data points; 2004 and 2010 (Table 1.17). Overall, long-term labor productivity 

increased by 36% on average, resulting from a combination of an increase in land productivity of 

21% and in land-labor ratio of 16%. The increase in land-labor ratio was because of a decline in 

family labor use rate. The fact that a little below half of the increase in returns to family labor is 

contributed by increase in land-labor ratio due to reduced family labor use rate attests to the need 

for faster growth in land productivity in Kenya’s maize sector, and in agricultural sector in general. 
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Table 1.17: Mean percentage change in labor productivity of maize (both monocrop and 
intercrop) as the sum of percentage changes in land productivity and land-labor ratio, 2004-2010 

    
Land 

productivity 

Land-
labor 
ratio 

Labor 
productivity 

    
Overall   21.1 16.3 37.5      

Farm size 
<5 acres 31.8 21.3 53.1 
5-10 acres 4.5 19.0 23.5 
>10 acres -42.2 65.8 23.6      

Population density 
quintile 

1st (lowest) -34.5 26.7 -7.8 
2 34.9 2.8 37.7 
3 41.6 12.9 54.5 
4 45.6 4.8 50.5 
5th (highest) 19.1 31.2 50.3      

Gender of household 
head 

Female 26.0 19.8 45.8 
Male 20.7 15.2 35.9      

Quintile of distance to 
tarmac road 

1st (shortest) 11.4 12.4 23.8 
2 16.3 21.3 37.5 
3 29.0 15.5 44.5 
4 32.2 32.4 64.7 
5th (longest) 15.4 2.0 17.4      

Cropping system 
Intercrop 27.1 9.7 36.9 
Monocrop -18.2 65.1 47.0      

Agro-regional zone 

Coastal Lowlands -21.5 32.0 10.5 
Eastern Lowlands 83.6 -34.8 48.8 
Western Lowlands 59.4 38.3 97.7 
Western Transitional 41.1 4.5 45.6 
High Potential Maize Zone -33.2 33.9 0.7 
Western Highlands 40.4 46.9 87.3 
Central Highlands 57.0 13.6 70.6 
Marginal Rain Shadow -88.2 55.4 -32.8      

Hired labor use 
Not used 33.8 11.4 45.2 
Used 12.8 17.7 30.5      

Mechanized land 
preparation 

Not used 37.4 18.3 55.7 
Used -0.3 22.0 21.8 

The overall picture about the sources of change in labor productivity can mask important details 

regarding dynamics in the growth components across categories of farmers. For this reason, we 

disaggregate labor productivity change and its components by the various categories of households 

as in the analyses presented previously. By landholding, labor productivity increased for <5 acres 

category, contributed by positive change in land productivity (32%) and in land-labor ratio (21%). 

Again, it is important to note that the increase in land-labor ratio was because of a decline in family 
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labor use rate. For the 5-10 acres category of landholding, labor productivity increased by 24%, 

contributed by 19% increase in land-labor ratio and only 5% increase in land productivity. Labor 

productivity also increased for the >10 acres category of landholding, because of an increase in 

land-labor ratio which outweighed the large decline in land productivity of 42%. These results 

indicate encouraging gains in production intensification by households with smaller landholdings, 

but a cause for concern about the lack of yield gains on larger farms, which are often relied upon 

for producing marketable surpluses. Therefore, it should not be a surprise that there is an increasing 

deficit in domestic supply of maize in Kenya (Kirimi et al., 2011). 

The patterns in labor productivity changes observed across landholding categories are reflected in 

the quintiles of population density. Households in the least densely populated villages had a decline 

of 8% in labor productivity, contributed by a decline in land productivity of 35% and positive 

change of 27% in land-labor ratio. On average, labor productivity increased for households in the 

second to fourth quintiles of village population density, more because of positive change in land 

productivity and less because of increase in land-labor ratio. For the fifth quintile of population 

density, the increase in labor productivity was largely contributed by positive change in land-labor 

ratio. It is important to keep in mind that the positive change we observe in land-labor ratio was 

because of a decline in family labor use rate on maize plots and not increase in area planted with 

maize, which declined over time. 

Disaggregation by gender of the head of household shows positive change in labor productivity 

for both male and female-headed households, because of increase in both land productivity and 

land-labor. 
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Across quintiles of distance to paved road, an indicator of market access, labor productivity 

increased for all the households but the increase was smallest for households furthest from paved 

roads. This was due to a 15% increase in land productivity and 2% increase in land-labor ratio. 

While intercropped plots registered positive change in labor productivity due to increases in land 

productivity and land-labor ratio, monocropped maize plots had labor productivity increase 

because of a large increase in land-labor ratio that outweighed the negative change in land 

productivity. 

A remarkable result across agro-ecological zones is the decline or small increase in labor 

productivity in the HPM, CL and MRS zones, because of a decline in land productivity. Being the 

most important maize producing region of Kenya, the dwindling maize yield in HPM zone 

indicates the urgent need for ways to address the problems associated with low land productivity. 

Both households that used and those that did not use hired labor on maize production had positive 

change in labor productivity, because of positive change in land productivity and in land-labor 

ratio. Disaggregation by type of land preparation shows that households that used mechanized land 

preparation had a smaller increase in labor productivity because of a decline in land productivity. 

It is worth noting that mechanized land preparation, larger landholdings and low population 

density are highly correlated hence similar patterns in labor and land productivity changes. 

  



46 
 

1.5 Conclusions and implications for policy 

Kenya’s agricultural productivity has generally been low and has stagnated over time. Aggregate 

yield of maize, the most important staple crop, although showing a gradual upward trend in the 

recent past, has a general downward trend over the past two and a half decades. In addition, farm 

sizes have been shrinking over time as rural population densities rise and land sub-division occurs. 

These have made Kenya increasingly dependent on food imports for its national food security. The 

country is also foregoing opportunities to generate strong farm-nonfarm growth multipliers and 

shifts in the composition of the labor force for economic transformation. This study focused on 

maize and aimed to determine whether Kenya’s agricultural sector is changing in ways that are 

promoting or retarding farm labor productivity and to understand the association between farm 

labor productivity and population density, land scarcity and market access. We measured labor 

productivity in terms of returns to family labor, which we consider most appropriate for 

profitability of farming for agricultural households.  

Six key results have emerged. First, average landholding declined by over 12% in 13 years while 

average area planted declined by 11%. Maize is the single most important crop, occupying over 

50% of total area planted. Over time, the average area of plots with maize for a household declined 

by 11%.  

Second, long-term labor productivity (returns to family labor) increased by 38% overall, 

contributed by positive changes in land-labor ratio of 16% and land productivity of 21%. The 

increase in land-labor ratio was because of a decrease in family labor use rate on maize plots. The 

decline in family labor use rate was accompanied by increased use of hired labor. While many 

factors that the scope of the analysis in this paper is incapable of identifying could explain the 
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decline in family labor use rate, one plausible explanation is that farm and non-farm activities of 

higher returns might be attracting labor of smallholder farm families, making them to reduce their 

labor in lower-value maize production. 

Third, there was an inverse relationship between landholding and land productivity. The inverse 

relationship was also observed between landholding and family labor use rate. Over time, labor 

productivity increased substantially for the <5 acres category of landholding, contributed by 

increase in land productivity (32%) and in land-labor ratio (21%). The labor productivity increase 

for the 5-10 and >10 acres categories of landholding was mainly because of increase in land-labor 

ratio rather than in land productivity. In fact, land productivity declined by 42% for the >10 acres 

category of landholding. 

Fourth, average land productivity and family labor use rate had direct relationships with population 

density while labor productivity was inversely related with population density. Households in the 

1st quintile of population density (least densely populated villages) had a decline of 8% in labor 

productivity, contributed by a decline of 35% in land productivity and an increase of 27% in land-

labor ratio. Labor productivity increased for households in all the other quintiles, more because of 

increase in land productivity than the increase in land-labor ratio, except for the 5th quintile (most 

densely populated) where the contribution of land productivity increase was lower than that of 

land-labor ratio increase. 

Fifth, most remote households, in terms of distance to a paved road, compared to their least remote 

counterparts had lower land productivity, higher family labor use rate and lower labor productivity, 

on average. Although labor productivity increased for both households over time, the increase was 
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smallest for the households furthest from paved roads, because of smaller increases in land 

productivity and land-labor ratio. 

Lastly, there was a remarkably small increase in labor productivity (0.7%) in the HPM zone, 

Kenya’s most important maize producing region, because of a 33% decline in land productivity. 

These results provide important insights about Kenya’s farming sector in general and smallholder 

agriculture in particular. First, the shrinking landholdings and the subsequent decline in area 

planted among smallholder farmers puts the onus on strategies to achieve agricultural growth 

through agricultural intensification and productivity growth. The sheer amount of area under maize 

means that the crop remains fundamental to Kenyan agriculture and economy and land 

productivity of maize will need to go up substantially for overall agricultural labor productivity to 

rise appreciably over time.  This means that we cannot just focus on diversifying into other crops 

– that may be necessary but certainly not sufficient. Kenyan policy makers must also figure out 

how to raise maize yield to raise the returns to labor in Kenyan agriculture overall. One of the 

major causes of low and stagnated agricultural yields in Kenya is soil infertility (Government of 

Kenya, 2014; Tittonell et al., 2008; Marenya & Barrett, 2007). Therefore, raising maize yield will 

require addressing the soil infertility problem. 

Secondly, we have shown that labor productivity increased in areas with smaller landholdings and 

higher population density because of increase in land productivity, and declined or only slightly 

increased in areas with larger landholdings and lower population density because of a decline in 

land productivity. This suggests encouraging gains in production intensification by households 

with smaller landholdings, but a cause for concern about the lack of productivity gains on larger 
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farms, which are often relied upon for producing marketable surpluses. Therefore, addressing 

causes of declining yield on larger farms should be a priority.  

Lastly, land-labor ratio increased even in villages with high population densities because 

households reduced family labor use rate on maize. On one hand this suggests that households 

may be devoting more labor to other activities, either/both farm or/and non-farm, that potentially 

provide much higher returns to their labor than cultivating maize. Shifting of the labor force 

involving movement of labor from farm to non-farm activities over time and accompanied by 

increased land productivity can be viewed as part of structural transformation process, which will 

by construct raise labor productivity in agriculture. This process appears to be taking place in some 

high densely populated villages where both land-labor ratio and maize yield increased. On the 

other hand, reduction of family labor in maize production might be based on “push” factors. 

Haggblade et al (2005) note that labor can move from agriculture to rural non-farm sector 

characterized by low-return activities because of low labor productivity in agriculture, low 

opportunity cost of labor and declining real income of households. In the light of this argument, 

reduction in family labor use rate on maize production may also be because of low or declining 

maize yield. In such scenario, it is essential that underlying causes of low land productivity be 

addressed to raise labor productivity. 

 



50 
 

APPENDIX 

 



51 
 

Figure A1.1 shows the relationship between village outmigration rate of the population 15 – 40 

years of age. Outmigration rate is computed as the ratio of the number of persons aged 15- 40 years 

that migrated out of the village to the number of village residents in that age bracket, multiplied 

by 1000. The rate is thus interpreted in terms of number of out-migrants per 1000 population in 

the 15 – 40 years age bracket in a village. The figure shows a general positive association between 

village outmigration rate and population density. Marginal effects from a simple OLS regression 

of village outmigration rate on population density and its quadratic term shows that on average, 

and without accounting for other factors that might affect outmigration rate, additional population 

density of 100 persons per square kilometer in a village is associated with an increase in migration 

rate of 5 persons per 1000 population in the 15 - 40 years age bracket. 

Figure A1.1: Relationship between youth outmigration rate and village population density 
(lowess regression using pooled sample – 2000-2010) 
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CHAPTER 2: FARMERS’ PERCEPTIONS OF SOIL FERTILITY AND 

ADOPTION OF SOIL FERTILITY IMPROVEMENT PRACTICES 

 

2.1 Introduction and Study Objectives 

Soil infertility has been identified as a fundamental cause of low agricultural productivity in sub-

Saharan Africa (Stoorvogel & Smaling, 1998; Sanchez et al., 1997), with nutrient depletion cited 

as the major cause for the widespread soil infertility (The Montepellier Panel, 2013; Smaling et 

al., 1997; Stoorvogel & Windmeijer, 1993). Stoorvogel & Windmeijer (1993) point out that 

cropping intensity and land management are significant determinants of the rate of nutrient 

depletion in soils once land use changes from natural vegetation to agriculture.  

It is widely acknowledged that continuous cultivation of land without soil amendments in form of 

nutrient replenishment and organic matter addition degrades soils and lowers crops response to 

external inputs such as fertilizers (Sanchez et al., 1997; Lal, 2006; Tittonell & Giller, 2013). 

Extractive land management practices deplete soil organic carbon (Lal, 2006), the main component 

of soil organic matter. Soil organic carbon is essential for a range of soil chemical, physical, and 

biological properties and is an overall indicator of soil health  (Okalebo, Gathua, & Woomer, 

2002;Lal, 2006; Horneck et al., 2011). Not least, soil organic carbon influences soil moisture and 

nutrient holding capacities, microbiological activity, and soil structure and other physical 

properties (Okalebo, Gathua, & Woomer, 2002; Lal, 2006; Horneck et al., 2011). Soil pH, an 

important chemical property that influences soil nutrient availability to plants  (McCauley, Jones, 

& Olson-Rutz, 2017; IIASA/FAO, 2012) and is a measure of soil acidity, is also influenced by 

land management practices. Although it is a naturally occurring process, Kunhikrishnan et al 
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(2016) point out that soil acidification on farms is mainly due to inappropriate use of chemical 

fertilizers, in addition to improper management of organic materials on the farm. Continued 

application of acidifying fertilizers such as DAP to soils with low pH and low organic matter can 

further degrade the soil. When soils are degraded, raising productivity can be possible only through 

management practices that add organic matter and nutrients and ameliorate soil acidity to restore 

fertility (Lal, 2006; Chivenge et al., 2011; Kunhikrishnan et al., 2016). 

In Kenya, studies have shown a remarkable increase in farmer adoption of fertilizer and improved 

maize seed over time (e.g. Ariga & Jayne, 2009; Smale & Olwande, 2014), yet no growth in maize 

yield has been visible over the last quarter century. Soil degradation because of continuous 

cultivation without sufficient replenishment of soil nutrients, organic matter or both is one of the 

main reasons for low agricultural productivity in general and poor maize yield in particular 

(Government of Kenya, 2014; Tittonell et al., 2008; Marenya & Barrett, 2007). This implies that 

continued use of fertilizers and improved maize varieties on their own cannot achieve the needed 

growth in yield. It requires change of the current disproportionate emphasis by the government, 

development agencies and non-governmental organizations on promoting chemical fertilizer use 

to increase maize yield. There is a need to correct for the deficiency in soil fertility through 

encouraging use of sustainable soil management practices.  

Lal (2006) emphasizes the importance of sustainable management of soil resources to enhancing 

soil fertility. Sustainable management includes agronomic practices that protect soil from erosion 

and conserve moisture (e.g. zero and minimum tillage, mulching, terracing, contour farming, use 

of soil bunds), and that recycle organic matter and add nutrients into the soil (e.g. use of manure, 

compost and crops residues, and judicious application of chemical fertilizers). These practices, 

apart from relying only on chemical fertilizers, enhance soil fertility by adding organic matter to 
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the soil, which increases soil organic carbon and, depending on some other factors, buffers soil pH 

change (McCauley et al., 2017). They also improve water and nutrient use efficiency. Therefore, 

encouraging widespread and sustained use of sustainable management practices that enhance soil 

fertility should be a priority in Kenya if agricultural productivity growth is to be realized.  

Many studies have explored factors that influence farmers’ adoption and use of agricultural 

technologies and agronomic practices in Kenya. For example, Wainaina et al. (2016) used a 

multivariate probit model to study factors that affect adoption of high yielding varieties of maize 

seed, inorganic fertilizers and a range of soil management technologies (zero tillage, use of crop 

residues, manure use and terracing and soil bunds). Using a similar analytical approach, Kamau et 

al. (2014) studied adoption of soil conservation practices, inorganic fertilizers and a combination 

of other soil fertility management practices (mulching, manure use, use of compost and planting 

legumes). Marenya & Barrett (2009) applied a switching regression model to study factors that 

affect use of inorganic fertilizer. Switching regression was used to determine how the factors affect 

fertilizer use below and above a certain threshold level of soil carbon content.  In another study, 

Marenya & Barrett (2007) analyzed factors that affect adoption and dis-adoption of inorganic 

fertilizer, manure, maize crop residue and agroforestry. Odendo et al. (2009) applied a logit model 

to analyze adoption of inorganic fertilizer, manure, compost, and a combination of all three. These 

studies have a common feature that they applied econometric methods to household- and/or plot-

level data to identify variables that explain adoption of agricultural technologies and agronomic 

practices. They emphasize quantitative factors that affect adoption to inform policy prescriptions 

for farmers’ adoption of agricultural technologies and agronomic practices. The often-considered 

factors include social, demographic and economic characteristics of the farmer, institutional and 

market conditions and environmental factors. 
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We can expect that farmers’ decisions regarding adoption of technologies and agronomic practices 

that improve soil fertility may be influenced by, among other factors, what they think or know 

about the fertility condition of their soil, their perceptions and knowledge about the technologies 

and practices, and their ability to access the technologies and apply the practices. Few quantitative 

studies exist about the correspondence of farmers’ perceptions about the fertility conditions of 

their soils and measured soil fertility, and how those perceptions influence adoption (or use) of 

soil fertility management technologies and agronomic practices. Two studies that have conducted 

such analysis are Marenya et al (2008) and Berazneva et al. (2016). In an econometric framework 

using data on a sample of  plots in a region in Western Kenya, Marenya et al (2008) analysed the 

relationship between farmers’ perceptions about soil fertility and laboratory measure of soil 

carbon, which they used as a measure of soil fertility. The study also analyzed the relationship 

between farmers’ subjective perceptions about impacts of fertilizer and statistically derived 

marginal product of nitrogen use on maize and beans. The study concluded that observed crop 

yields influenced farmers’ perceptions about soil fertility and impacts of fertilizer. The study by 

Berazneva et al. (2016) used data from two locations in western Kenya and a nationally 

representative sample in Tanzania to identify correlates of farmers’ reported perceptions about soil 

quality and compare the perceptions with measured soil fertility. Similar to Marenya et al (2008), 

Berazneva et al. (2016) found that farmers’ perceptions about soil quality was driven by crop 

yields. Despite the dearth of studies in this area, it remains germane to understand farmers’ 

perceptions about soil fertility conditions and their influence on use of soil management practices 

to support policy and extension efforts to address the acute problem of soil infertility and attendant 

low agricultural productivity in Kenya. 
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This study has two objectives. The first is to assess maize farmers’ perceptions about the fertility 

of their soils and compare these with measured soil fertility based on results from scientific test of 

soil chemical properties. The second is to investigate farmers’ adoption (use) of soil fertility 

management practices, with a focus on the influence of their perception of soil fertility. The 

research questions guiding the study are as follows: 

(a) What are farmers’ perceptions about the fertility of their soils? How do farmers’ perceived 

and measured soil fertility compare? What informs farmers’ subjective judgement of soil 

fertility?  

(b) What is the relationship between farmers’ perceptions about soil fertility and their adoption 

of soil fertility management practices? 

This study differs in several ways from Marenya et al (2008), Berazneva et al. (2016) and the 

studies highlighted above that analyzed factors that affect farmers’ adoption and use of agricultural 

technologies and agronomic practices in Kenya. First, in the adoption analysis, we account for 

cognitive aspects underlying farmers’ decision to apply various soil fertility management practices 

by including their perception about the fertility condition of their soils among the explanatory 

variables. Secondly, different from Marenya et al (2008), we use a soil fertility measure that 

combines soil organic carbon, nitrogen and pH, based on recommended thresholds for optimal 

maize growth in Kenya.  While Berazneva et al. (2016) also used the three soil chemical properties 

to construct measured soil fertility index, the threshold values they used to construct the index 

were not based  on recommended thresholds for optimal maize growth in Kenya despite the study’s 

focus on maize plots. Thirdly, different from Marenya et al (2008), we analyze not only the 

relationship between farmers’ perceptions and measured soil fertility, but also the relationship 
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between farmers’ perceptions and individual measured chemical and physical attributes of the soil. 

This is important for identifying soil properties that might be underlying farmers’ perceived soil 

fertility status. Lastly, our sample covers the primary maize growing areas of Kenya, making the 

study most relevant to search for potential solutions to the problem of low and stagnated maize 

productivity because of soil infertility.  

2.2 Methods and Data 

2.2.1 Conceptual Framework 

Econometric methods have dominated studies about farmers’ use of soil fertility management 

technologies and practices to generate explanations regarding factors that hinder or promote their 

use. The adoption studies highlighted in the previous section for Kenya and many others have 

often used farmer attributes such as gender and education, plot and farm level characteristics, and 

institutional (market and policy) and environmental contexts as covariates in regression analyses 

to arrive at the explanations. While the analyses are certainly useful in understanding farmer 

adoption behavior, a limitation in many of them is lack of information about cognitive aspects that 

underlie farmers’ decision-making regarding use of technologies and practices. Yet, it is hardly 

disputable that farmers respond to a phenomenon, in this case soil fertility condition, based on, 

among other factors, what they know or believe about it. 

Although not common in studies about what influences farmers’ agricultural decisions, there is 

increasing recognition and evidence that farmers’ values, perceptions and beliefs influence 

decisions concerning soil conservation and fertility management (e.g. Pender & Kerr, 1998; 

Enyong et al., 1999; Eckert & Bell, 2005; Asafu-Adjaye, 2008; Vignola et al., 2010; and Turner 

et al., 2014). The research in this paper considers farmers’ perception about soil fertility and its 
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influence on decisions to apply selected fertility management practices. It uses two separate 

analyses, but in a way that generates a unified understanding of the importance of farmers’ 

perception to soil fertility management in maize production in Kenya. 

We suggest that a range of factors may influence farmers’ perceptions about the fertility of their 

soils (Figure 2.1). Such factors may include socio-cultural influence (e.g. accumulated experience 

in farming), environmental conditions (e.g. soil properties) and economic outcomes (e.g. crop 

yield) (Halbrendt et al., 2014; Marenya et al., 2008; Desbiez et al., 2004; Corbeels et al., 2000). 

These perceptions inform decisions regarding soil management practices to apply to influence 

fertility for a desired production outcome (yield). The resulting outcome may then feedback to 

inform future perceptions through economic outcomes and socio-cultural influence. 

Figure 2.1: Conceptual framework for understanding farmers’ perceptions about soil fertility and 
its influence on fertility management practices (Adapted from Halbrendt et al. (2014)) 
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fertility condition of their soils might significantly differ from measured soil fertility. When this 

happens, it would have undesirable implications about farmer knowledge of the fertility needs of 

their soils and the appropriateness of soil management practices that they prioritize. 

The second analysis examines the relationship between farmers’ perceived soil fertility and their 

adoption (use) of soil fertility management practices. It applies an econometric modelling 

framework for agricultural technology adoption. 

Choice of soil fertility management practices is largely an economic decision. We motivate the 

analysis using the agricultural household model originally developed by Singh et al. (1986) and 

later extended by de Janvry et al. (1991) to explain farm household’s decision-making in settings 

with semi-subsistence production and market failures. We assume non-separability of household 

production and consumption decisions because agricultural households in Kenya are generally 

semi-subsistent and often face numerous market imperfections. Input markets, for example for 

inorganic fertilizers, are imperfect while markets for organic materials such as manure, compost 

and crops residues are generally missing. Because of this, prices that guide farmers’ choices of 

management practices are endogenously determined and depend on both household-specific 

characteristics and characteristics of markets. Therefore, farmers’ objective is assumed to be utility 

maximization rather than profit maximization. 

We conceptualize adoption of fertility management practices in the context of random utility 

framework as explained in Ben-Akiva and Lerman (1985) and applied in Marenya & Barrett 

(2007), Ali & Abdulai (2010) and Kassie et al. (2011). Using the explanation in Ben-Akiva and 

Lerman (1985) as the basis, we argue that when a farmer is faced with a feasible set of discrete 

alternative management practices to choose from, the farmer will select that which generates the 
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greatest perceived utility. Assuming a linear utility function for practice 𝑔 for household 𝑖, utility 

is represented as a function of observed and measured characteristics specific to a household and 

plot, institutional factors, and environmental conditions ( 𝑽௜௚), and a stochastic term (𝜀௜௡). The 

stochastic term captures the difference between the estimated and actual utility and accounts for 

unobserved and unmeasured factors not in 𝑽௜௚ that affect utility. The probability of household 𝑖 

adopting practice 𝑔 among a set of 𝐺௜ alternative practices available to it is equal to the probability 

that the utility of practice 𝑔, 𝑈௜௚, is at least as great as the utility of all other alternative practices 

in 𝐺௜. That is,  

𝑃(௜௚) = 𝑃൫𝑈௜௚ ≥ 𝑈௝௚, ∀𝑗 ∈ 𝐺௜൯ = 𝑃൫𝑽௜௚ + 𝜀௜௚ ≥ 𝑽௝௚ + 𝜀௝௚, ∀𝑗 ∈ 𝐺௜൯  (2.1). 

The farmer faces a discrete choice of a soil fertility management practice that yields the greatest 

utility, but we cannot observe the utility. What we do observe is whether a farmer has implemented 

a practice. We thus proceed by specifying a latent variable function for practice 𝑔 for household 𝑖 

as: 

𝑇௜௚
∗ = 𝑽𝒊𝒈𝜷 + 𝜀௜௚ ,        𝑇௜௚ = 1[𝑇௜௚

∗ > 0]     (2.2), 

where the latent variable 𝑇௜௚
∗  represents net benefit to household 𝑖 from adopting practice 𝑔, 𝑇௜௚ is 

an indicator variable that equals 1 if household  𝑖 adopts practice 𝑔 and 0 if not, and 𝑽 is a vector 

of household, farmer and plot characteristics, institutional factors and environmental conditions 

that explain heterogeneity in adoption of the practice. The vector 𝜷 represents parameters to be 

estimated and 𝜀௜௚ is idiosyncratic error term. Among the farmer characteristics is our variable of 

interest: farmer’s perception about the fertility of soil of the plot in question. 
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Literature on adoption of the ‘Green Revolution’ technologies, for example inorganic fertilizers, 

high yielding seed varieties and pesticides, have comprehensively documented factors that affect 

adoption, including risk and uncertainty, capital constraints, credit constraints, farm size, 

constraints in supply of complementary inputs and land tenure arrangement (Feder et al., 1985; 

Kelly et al., 2003; Foster & Rosenzweig, 2010; Udry, 2010; Jack, 2011) . A distinctive feature of 

this literature is that it does not explicitly include farmers’ perceptions among the variables deemed 

to explain technology adoption decisions. 

Another strand of literature has focused on adoption of soil management practices. The practices 

include those that conserve water and soil and those that improve soil fertility, which may include 

use of green revolution technologies, specifically mineral fertilizers. For example, Knowler & 

Bradshaw (2007) review studies on adoption of conservation agriculture, which is a package of 

soil and water conservation practices. They group the explanatory variables used in the studies into 

characteristics of the farmer, household and farm, and exogenous factors (e.g. market prices, 

extension services, and social capital). Farmer characteristics include perceived risk and attitudes 

towards conservation. Studies by Kamau et al. (2014), Marenya & Barrett (2009) and Odendo et 

al. (2009) examine factors that affect adoption of a range of soil management technologies, such 

as zero tillage, use of crop residues, mulching, manure use, use of compost, use of inorganic 

fertilizers, planting legumes, terracing, soil bunds and agroforestry. These studies use in the 

adoption equations a range of explanatory variables, including plot biophysical characteristics, 

farm household socio-economic characteristics, institutional factors such as proximity to markets, 

and environmental conditions. However, the studies as well as those reviewed by Knowler & 

Bradshaw (2007) do not take into account the role of farmers’ perceptions about the condition of 
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their soils, yet these would be expected to influence their decisions about adoption of soil 

management practices. 

As explained at the beginning of this section, there is increasing recognition that farmers’ 

perceptions matter in their decisions concerning soil fertility management and conservation (e.g. 

Pender & Kerr, 1998; Enyong et al., 999; Eckert & Bell, 2005; Asafu-Adjaye, 2008; Vignola et 

al., 2010; Turner et al., 2014). Failure to incorporate farmers’ perceptions in adoption decisions 

might provide an incomplete account of important factors affecting those decisions. This is 

especially important for Kenya, where there is urgent need for soil fertility improvement to raise 

the generally low and stagnated or declining agricultural productivity. 

2.2.2 Analytical Strategy 

2.2.2.1 Farmers’ perceived and measured soil fertility  

We use three approaches to compare farmers’ perceived and measured soil fertility. First, we apply 

chi-square test for independence to determine whether there is a relationship between farmers’ 

perceived and measured soil fertility. Secondly, we use interrater agreement technique, as 

explained in Fleiss et al. (2003) and applied by Kerr & Pender (2005) to farmers’ perceptions about 

soil erosion in villages in India, to estimate the degree of agreement between farmers’ perception 

about and measured soil fertility. The interrater agreement is measured using Cohen’s kappa 

coefficient (Cohen, 1960). Kappa measures the degree of agreement beyond that which could be 

expected by chance (Fleiss et al. 2003). It measures the degree of agreement between raters in 

instances where the scales of ratings are categorical. To illustrate, consider dummy Table 1.1 

below of data on agreement in ratings of soil fertility by farmers’ perception and by measurement. 

Each of the cells, i.e. a, b, c and d, contains the proportion of all maize plots categorized as either 
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fertile or infertile by farmers and fertile or infertile by measurement. For example, cell a contains 

the proportion of plots that are considered fertile according to both farmers’ perception and 

measurement, while cell b contains the proportion of plots which the farmers assess as fertile but 

are measured to be infertile. The kappa statistic is expressed as in (2.3) and ranges from -1 to +1: 

𝜅̂ =
ଶ(௔ௗି௕ )

௣భ௤మା௣మ௤భ
       (2.3) 

Table 2.1: Dummy table of data measuring agreement between farmers’ perception and 
measured soil fertility 

Rater A (Farmers’ 
perception) 

Rater B (Measured fertility) 
Total 

Category 1 (Fertile) Category 2 (Infertile) 
Category 1 (Fertile) a b p1 
Category 2 (Infertile) c d q1 
Total p2 q2 1 

Landis & Koch (1977) and Fleiss et al. (2003) have suggested the following interpretations of 

kappa ranges for degree of agreement:  

Kappa (𝜅̂) value range: Degree of agreement beyond chance: 

Landis & Koch (1977):  

𝜅̂ < 0.00 poor  

0.00 < 𝜅̂ ≤ 0.20 slight 

0.20 < 𝜅̂ ≤ 0.40 fair 

0.40 < 𝜅̂ ≤ 0.60 moderate 

0.60 < 𝜅̂ ≤ 0.80 substantial 

𝜅̂ > 0.80 almost perfect 

Fleiss et al. (2003):  

𝜅̂ < 0.40 poor 

0.40 < 𝜅̂ ≤ 0.75 fair to good 

𝜅̂ > 0.75 excellent 
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Although useful in gauging the extent of agreement between two raters, the suggested ranges of 

kappa and the agreement levels they represent are certainly arbitrary. We use both scales of 

agreement in interpreting our results. 

Lastly, we apply a probit model to estimate the association between farmers’ perception about and 

measured soil fertility as well as measured individual physical and chemical properties of soil. The 

aim is to explore whether there is a significant relationship between farmers’ perceived and 

measured soil fertility and whether such a relationship holds when we account for the effects of 

other relevant factors. The model takes the following form:  

𝑌 = 𝑓(𝑀, 𝐹),       (2.4) 

where 𝑀 represents measured soil fertility and 𝐹 represents other factors deemed to influence 

farmers’ perceptions. 𝑌 is farmer’s perception about soil fertility and is a binary variable for the 

probability of a farmer’s perception of the soil on a plot as fertile. We define for farmer 𝑖 a latent 

measure of perceived soil fertility on a plot as 𝑌∗, such that  

𝑌∗
௜ = 𝒁𝒊𝜷 + 𝜀௜ ,       (2.5) 

where 𝑖 = 1, … . , 𝑁, 𝒁 is a row vector of explanatory variables (𝑀, 𝐹) hypothesized to influence 

farmer’s perception, 𝜷 is a column vector of parameters to be estimated, and  is a random error 

term, here assumed to be distributed normal with a constant variance (i.e. 𝜀~𝑁(0, 𝜎ଶ) ).  

In this latent variable setting, we observe only 𝑌௜ (i.e. whether a farmer indicates that a plot is 

fertile or infertile): 

𝑌௜ = ൜
1 𝑖𝑓 𝑌∗

௜ > 0 (𝑓𝑒𝑟𝑡𝑖𝑙𝑒) 
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑖𝑛𝑓𝑒𝑟𝑡𝑖𝑙𝑒) 
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𝑌∗
௜ > 0 ⇒ 𝒁𝒊𝜷 + 𝜀௜ > 0 ⇒ 𝜀௜ > −𝒁𝒊𝜷   (2.6) 

So, in the probit model (Wooldridge, 2010) 𝑃(𝑌௜ = 1|𝒁𝒊) = 𝑃(𝑌∗
௜

> 0|𝒁𝒊) = 𝑃(𝜀௜ > −𝒁𝒊𝜷) =

𝑃 ቀ
ఌ೔

ఙ
>

ି𝒁𝒊𝜷

ఙ
ቁ = Φ ቀ

ି𝒁𝒊𝜷

ఙ
ቁ = 𝐺(𝒁𝒊𝜷), where we set 𝜎=1 and effectively make the distribution of 

the error term, 𝜀, standard normal density. 𝐺(. ) is a cumulative normal distribution function for 

some continuous variable with a density 𝑔(. ).  𝑃(𝑌௜ = 0|𝒁𝒊) = 1 − Φ ቀ
ି𝒁𝒊𝜷

ఙ
ቁ = 1 − 𝐺(𝒁𝒊𝜷) is 

similarly derived. We obtain the estimates of 𝜷 using maximum likelihood estimation procedure. 

The average partial effect of a continuous explanatory variable j, on the response probability (in 

this case the probability of a farmer indicating that the soil on a plot is fertile) is derived as: 

𝐴𝑃𝐸ఫ
෣ = 𝛽ఫ

෡ ൣ𝑁ିଵ ∑ 𝑔(𝒁𝒊𝜷෡)ே
௜ ൧     (2.7) 

For a binary explanatory variable k, the average partial effect on the response probability is 

derived as follows: 

𝐴𝑃𝐸௞
෣ = 𝑁ିଵ ∑ ൣ𝐺൫𝒁𝒊(௞)𝜷(௞)

෢ + 𝛽௞
෢൯ − 𝐺൫𝒁𝒊(𝒌)𝜷(௞)

෢ ൯൧ே
௜ ,   (2.8) 

where 𝒁𝒊(௞)is 𝒁𝒊 excluding the explanatory variable k. 

We augment these analyses with mean comparison test of a range of soil physical and chemical 

properties, plot attributes, input use, agronomic management practices, plot manager attributes, 

and maize yield between farmers grouped according to their perceptions about soil fertility. 

2.2.2.2 Adoption of soil fertility management practices 

A number of studies on adoption of soil fertility management practices have found simultaneity of 

adoption decisions of different practices by farmers (e.g. Marenya & Barrett, 2007;  Kamau et al., 
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2014; Kassie et al., 2015; Wainaina et al., 2016; Koppmair et al., 2017). Failure to account for 

such simultaneity in econometric analysis of adoption decisions may compromise efficiency of the 

estimates and make inferences inaccurate. Therefore, this analysis applies a multivariate probit 

model because there are multiple soil fertility management practices for which adoption variable 

is binary and farmers’ adoption decisions may be jointly made.   

Multivariate probit model is like a seemingly unrelated regression for binary response variables. 

We express the system of equations to be estimated as a series of equation (2.2) that match the 

number of soil fertility management practices: 

𝑇௜ଵ
∗ = 𝑽௜ଵ𝜷𝟏 + 𝜀௜ଵ              

𝑇௜ଶ
∗ = 𝑽௜ଶ𝜷𝟐 + 𝜀௜ଶ          

⋮    

𝑇௜ீ
∗ = 𝑽௜ீ𝜷𝑮 + 𝜀௜ீ ,          (2.9) 

with 𝑇௜௚ = 1[𝑇௜௚
∗ > 0]  and 𝜺௜|𝑽௜~𝑁𝑜𝑟𝑚𝑎𝑙 (𝟎, 𝛀) with unit variances. This means that the 

marginal distributions conditional on 𝑽 are assumed to follow probit: 

𝑃(𝑇௚ = 1|𝑽) = 𝚽൫𝑿௚𝜷௚൯, 𝑔 = 1, … , 𝐺 

2.2.3 Data sources and variables 

2.2.3.1 Data sources 

The study uses household- and plot-level survey data on maize production in Kenya. The data 

were collected by the Department of Agricultural, Food and Resource Economics at Michigan 

State University under the Guiding Investments in Sustainable Agricultural Intensification in 
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Africa (GISAIA) research project implemented in seven countries in Africa. The project aimed to 

influence policy environment to improve sustainable intensification of cereal crop production and 

contribute to sustainable growth of agricultural productivity in Africa. In Kenya, the project 

activities focused on efficiency and profitability of use of inorganic fertilizer and hybrid seed, and 

agricultural land constraints and changing farm structure. 

The first survey was conducted in 2014 from a sample of 650 farm households spread in five 

counties. Sample selection followed a multistage procedure. Five counties were purposively 

selected in the first stage based on two criteria: counties that are most important in maize 

production to study maize yield response to inorganic fertilizer use; and highly densely populated 

counties to study population density-intensification relationship. Uasin Gishu, Kakamega and 

Trans Nzoia counties were selected for maize yield response study while Machakos and Kisii 

counties were selected for population density-intensification relationship study. In the second 

stage, two sub-counties were selected in Uasin Gishu, Kakamega and Trans Nzoia counties, with 

one in each representing a locality perceived to be of low and the other of high maize yield response 

to fertilizer. In Machakos and Kisii, two and three sub-counties, respectively, with highest 

population densities within the county were selected. In the third and subsequent stages, Locations, 

Sub-locations, villages and farm households in that order were randomly selected. The sample 

distribution across the administrative units is shown in Table 2.2. 

The second survey was conducted in 2016 on the same households as in the first survey, but the 

number reduced to 623 because some of the households could not be reached for re-interview for 

various reasons, including migration. This survey, however, did not necessarily target the same 

maize plots that were cultivated in the 2014 survey. This means that the household-level data is 

panel while plot-level data is not necessarily panel. While there was a question in the 2016 survey 
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questionnaire asking whether the largest maize plot (which is used in this study) was the same as 

in the 2014 survey, the responses in the affirmative were not consistent with plot sizes compared 

between 2016 and 2014. For that reason and because plot-level data is central in this study, the 

data from the two surveys are treated as pooled cross sections rather than panel.  

Plot-level data includes crop output, types and amounts of inputs used, soil management practices, 

farmer’s perception about soil fertility, and soil physical and chemical properties and were 

obtained for the largest maize plot cultivated by each household in the main season of 2013/2014 

and 2015/2016 cropping years2. Willy, Muyanga, & Jayne (2016) document details about soil 

sampling and testing procedures. On average, the share of the largest maize plot in a household’s 

total area of plots that had maize in them in the main season was 83%, indicating that this analysis 

captures the vast majority of maize produced by the farm households in the sample. 

Table 2.2: Distribution of sample households across administrative units, 2014 

County  Sub-county Number of Sub-
locations 

Number of 
Villages 

Number of 
households 

Uasin Gishu Wareng 2 8 60 
 Eldoret West  2 5 60 
Trans Nzoia Kwanza  1 4 60 
 Saboti  2 4 60 
Kakamega Kakamega North  2 4 60 
 Lugari 1 4 60 
Kisii Bobasi  2 5 60 
 Marani  2 5 60 
Machakos Kangundo  1 5 85 
 Kathiani  1 3 51 
 Machakos  1 2 34 
  17 49 650 

 

 

                                                 
2 Agricultural production data collected in 2014 and 2016 pertain to 2013/2014 and 2015/2016 cropping year, 
respectively.  
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2.2.3.2 Variables  

Farmers’ perceived and measured soil fertility 

Farmers’ beliefs and/or knowledge about the fertility condition of soil on their farms can partly 

influence how they manage their agricultural production on the farm. However, such beliefs may 

not necessarily reflect the actual soil fertility condition and thus may result in management 

practices that mismatch the fertility needs of the soil. Farmers were asked to rate the fertility of 

soil on their maize plots on a Likert scale of 1 (very infertile) to 4 (very fertile) based on their own 

perceptions. Because of very low responses on the two extreme categories (1 and 4) we reduce the 

scale to two categories - infertile (combining 1 and 2) and fertile (combining 3 and 4) to generate 

a binary variable of farmer perceived soil fertility.  

From the soil test data, we measure the fertility of soil on a plot using three chemical properties of 

soil – total carbon (C), total nitrogen (N) and pH. IIASA/FAO (2012) suggest soil nutrient 

availability and retention capacity as among seven soil qualities that affect crop performance. 

Others are oxygen availability to roots, rooting conditions, toxicities, salinity and sodicity and 

workability. The authors suggest that natural nutrient availability in the soil is essential for low to 

medium input cropping, while nutrient retention capacity is especially important for effectiveness 

of inorganic fertilizer use. Therefore, these two soil qualities are most relevant in the context of 

maize production in Kenya where external input use is not that high and inorganic fertilizer use 

appears not to generate significant yield gains. As explained earlier, soil organic carbon influences 

a range of soil properties, including soil moisture and nutrient holding capacities, microbiological 

activity, and soil structure and other physical properties and is often used as an indicator for soil 

health  (Okalebo, Gathua, & Woomer, 2002; Lal, 2006; Horneck et al., 2011). Soil pH influences 
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nutrient availability and serves as an indicator for micro-nutrient deficiencies (IIASA/FAO, 2012).  

Together, IIASA/FAO (2012) suggest, soil organic carbon and pH are the best simple gauge for 

soil health. Nitrogen is the nutrient required by plants in largest amounts and is often the limiting 

nutrient in the soil.  

We use threshold values for the properties as obtained from recommendations by the Kenya 

government on critical levels of various soil nutrients and pH for maize growth (Government of 

Kenya, 2014). A plot is measured as fertile if the soil has C≥ 2.7%, N≥ 0.2% and 5.5 ≤ pH ≤

7.0 and infertile if it does not meet at least one of these three thresholds. We compare the farmer’s 

subjective rating (fertile or infertile) against the measured fertility rating (fertile or infertile) as per 

these threshold values. 

Correlates of farmer perception about soil fertility 

For the probit model of the relationship between farmers’ perception about soil fertility and 

individual soil physical and chemical properties, we use as explanatory variables a range of 

measured soil properties. In addition, we control for other relevant plot and plot manager 

characteristics. Texture is the only information about soil physical properties available in the data. 

We classify soil texture based on relative percentages of sand, silt and clay and according to the 

classification in (IIASA/FAO, 2012). Thus, we have four texture classes; sandy, loamy coarse, 

loamy moderate, loamy fine and clayey soils. Among the soil chemical properties proposed by 

Doran & Parkin (1994) as indicators that can be used to assess soil fertility include total organic 

carbon, total nitrogen, soil pH, electrical conductivity and extractable (or plant-available) 

macronutrients (P, K). Because total carbon and total nitrogen are highly correlated, we excluded 

total nitrogen in the estimation. Soil pH measures acidity or alkalinity and its level affects 



75 
 

biological and chemical activity in the soil and affects availability of nutrients to plants. Lower pH 

levels indicate greater acidity while higher values indicate alkalinity. Most crops require near 

neutral levels of pH to grow best. Soil electrical conductivity is a measure of the amount of soluble 

(salt) ions in the soil and is strongly correlated with many soil properties, particularly texture 

(Grisso et al, 2009). We thus do not include it in the model. We include plant-available phosphorus 

among the macronutrients because it is particularly important for crop growth and is sensitive to 

soil acidity level.  

The plot characteristics we include are farmer-reported slope, measured in categories – flat, 

moderate and steep, and the number of years during the last decade the plot was in cultivation. We 

include distance (in walking minutes) of plot from the homestead and plot manager’s education, 

farming experience and gender to capture the effects of plot manager’s characteristics. To test 

whether perception is correlated with information access, we include variables that measure area 

physical infrastructure – distance to extension service provider, distance to town and distance to 

paved road. 

Determinants of adoption of soil fertility management practices 

We consider five soil fertility management practices in the adoption analysis: inorganic fertilizer, 

manure/compost, crops residue, legume intercrop and soil erosion control. Adoption of each of the 

practices is measured as a binary variable, taking the value of 1 if a practice was implemented on 

a plot and 0 if not. It is important to recognize that the variable for soil erosion control is not really 

a measure of whether the farmer invested in soil erosion control during the cropping season but 

whether there were soil erosion structures on the plot irrespective of when they were established. 

This is because measures for soil erosion control such as terraces, grass strips and cut-off drains 
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tend to be relatively permanent, with regular or occasional maintenance. However, the data does 

not have information about whether the farmer carried out any maintenance on the soil erosion 

structures on the plot. 

Adoption rates of the practices are presented in Table 2.3. Inorganic fertilizer is the most important 

external inputs into maize production and which is accorded much attention by both the 

government and farmers in efforts to raise maize productivity. It is important to note that adoption 

rate of inorganic fertilizer is that high because a large part of the sample is concentrated in the 

major maize growing regions – Uasin Gishu, Trans Nzoia and Kakamega. Because of their role as 

the country’s grain basket areas, these regions have had a history of concerted promotion by both 

the government and development agencies of adoption of fertilizers and improved maize varieties.  

Manure and compost, in addition to supplying nutrients into the soil, increase soil organic matter, 

and therefore organic carbon, which is beneficial for soil fertility as explained in the introduction. 

Crops residue also add organic matter in the soil, and if used as mulch conserve moisture in the 

soil and protect the topsoil from erosion that may result from direct impact of rain. Intercropping 

maize with legumes, such as common beans, groundnuts and pigeon peas, enrich the soil with 

nitrogen because they can fix atmospheric nitrogen into the soil. Soil erosion control, through 

structures such as terraces, grass strips and cut-off drains, is beneficial in preventing soil loss and 

loss of soil nutrients with it. It is our hypothesis that farmers may make joint decision regarding 

adoption of some of these practices hence the need for simultaneous estimation of adoption 

equations to ensure efficiency of estimated parameters. 
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Table 2.3: Adoption rates of various soil fertility management practices (N=1268) 

Management practice Mean SD 
Inorganic fertilizer (1=yes, 0 otherwise) 0.93 0.26 
Manure/compost (1=yes, 0 otherwise) 0.46 0.50 
Crops residue (1=yes, 0 otherwise) 0.41 0.49 
Legume intercrop (1=yes, 0 otherwise) 0.71 0.45 
Soil erosion control (1=yes, 0 otherwise) 0.51 0.50 

Literature on adoption of soil fertility management practices have found a range of factors that 

influences adoption (e.g. Marenya & Barrett, 2007; Odendo et al., 2009; Kamau et al., 2014; Kassie 

et al., 2015;  Wainaina et al., 2016; Arslan et al., 2017; Koppmair et al., 2017). We present the 

descriptive statistics of the factors included in this analysis in Table 2.4. The factor of interest in 

this study is farmer’s soil fertility perception, which most adoption studies do not include among 

explanatory variables that explain technology adoption decisions. We include plot characteristics 

among the factors since the condition of a plot, such as slope, may make particular practices better 

suited to and necessary on it. The characteristics we include are slope and number of years within 

the last decade the plot has been on cultivation. Plot manager characteristics include walking time 

to the plot, whether the plot is owned, which is a measure of tenure security, and plot manager’s 

education, gender and farming experience.  

Three measures of household capital are included. Number of adults in a household represents 

human capital in terms of labor, while group membership represents social capital. Group 

membership may also act as a mechanism for access to information and credit, both of which have 

been found to be important to technology adoption. Whether a household has non-farm income 

may be an indicator of working capital, which is important for acquisition of external inputs such 

as inorganic fertilizers and hired labor. The ability to hire labor may be important to adoption of 

labor-intensive soil management practices such as manure/compost and crops residue use.  
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Table 2.4: Summary statistics of explanatory variables in the adoption estimation (N=1268) 

Explanatory variables Mean SD 
Soil fertility perception (1=fertile, 0 otherwise) 0.59 0.49 
Years of plot cultivation 9.56 1.55 
Plot slope (1=moderate, 0 otherwise)a 0.54 0.50 
Plot slope (1=steep, 0 otherwise)a 0.10 0.30 
Plot size (acres) 1.11 2.19 
Walking time to plot (mins) 4.73 10.85 
Plot owned (1=yes, 0 otherwise) 0.90 0.30 
Plot manager education (yrs) 8.02 3.86 
Plot manager is female (1=yes, 0 otherwise) 0.35 0.48 
Farming experience (yrs) 27.52 16.22 
Active adults (#) 2.99 1.75 
Group membership (1=yes, 0 otherwise) 0.72 0.45 
HH has non-farm income (1=yes, 0 otherwise) 0.72 0.45 
Livestock value (KES) (log) 9.72 3.13 
HH landholding (acres) 2.47 25.81 
Asset index 0.02 0.07 
Distance to extension (km) 5.69 5.07 
Distance to paved road (km) 6.92 6.87 
Fertilizer price (KES/kg) 64.31 18.09 

a Base category: flat 

We measure household wealth using value of livestock, landholding and asset index. On one hand, 

livestock are important because they produce manure and, therefore, may motivate manure use. 

On the other hand, ruminants are often fed crops residue and thus presence of livestock may have 

a negative effect on the adoption of the practice.  Size of landholding may determine a household’s 

motivation for agricultural intensification, with those having smaller landholdings having higher 

propensity to apply intensification practices in a bid to maximize yield. Asset index, and indicator 

of the capacity for access to resources, such as credit, is computed from a list of household assets 

(agricultural and household) using principal component analysis. The index is based on the score 

for the first principal component, which accounts for the largest variation in the data. 
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Information and market access conditions are proxied by distance to extension information and 

distance to paved road. These variables are generally expected to have negative effects on adoption 

of soil fertility management practices. Fertilizer price is included and is expected to be negatively 

correlated with adoption of fertilizer and practices for which adoption is complementary to that of 

fertilizer.  

2.3 Results 

2.3.1 Farmers’ perceived versus measured soil fertility 

As explained in the previous section, farmers were asked to rate the fertility of soil on their largest 

maize plots on a Likert scale of 1 (very infertile) to 4 (very fertile) based on their own perceptions. 

Because of very low responses on the two extreme categories (6% for very infertile and 5% for 

very fertile), we reduced the scale to two categories - infertile (combining 1 and 2) and fertile 

(combining 3 and 4) thus resulting into a binary variable indicating farmers’ perception about the 

fertility status of their plots as either fertile or infertile. Results show that overall, 59% of the plots 

were perceived to be fertile while 41% were perceived to be infertile. Across regions (counties), 

higher percentages of plots in Kakamega and Kisii were perceived to be infertile compared to those 

in the other counties (Figure 2.2).  

Using data from the laboratory test of physical and chemical properties of soil from the same plots 

of which farmers subjectively rated fertility, we constructed a measure of fertility for each plot. As 

explained in the preceding section, a plot was measured to be fertile if the soil had total C≥ 2.7%, 

N≥ 0.2% and 5.5 ≤ pH ≤ 7.0 and infertile if at least one of these conditions was not met. Based 

on this index, results show that 14% of the plots were measured to be fertile while 86% were 

infertile. Figure 2.3 shows that incidence of soil infertility according to this measure was highest 
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in Kakamega, Machakos and Kisii in that order and lowest in Trans Nzoia and Uasin Gishu. It is 

worth noting that population densities are higher in Machakos, Kisii and Kakamega than in Uasin 

Gishu and Trans Nzoia, indicating that soil infertility problem could be worse in areas where land 

scarcity is more acute. 

Overall, farmer-perceived and measured fertility status of 46% of plots were consistent, about half 

of the plots were rated as fertile by farmers but measured to be infertile, and less than 5% of the 

plots were perceived as infertile but measured to be fertile. 

Figure 2.2: Percentages of farmer-perceived fertile and infertile plots across regions 

 
 

Figure 2.3: Percentages of measured fertile and infertile plots across regions 
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Using the chi-square test of independence between farmers’ perceived and measured soil fertility, 

results show that overall, the two soil fertility ratings are not statistically independent at the 95% 

confidence level (Table 2.5). However, the analysis separated by region rejects (at the 95% 

confidence level) the null hypothesis of independence only in Machakos county. This suggests that 

perceived and measured soil fertility are largely misaligned for majority of the plots, reflecting the 

earlier description that 54% of the plots had farmers’ perceived inconsistent with measured soil 

fertility. 

The test results for the extent of agreement between farmers’ perceived and measured soil fertility 

using the interrater agreement technique is presented in Table 2.6. Using the Landis & Koch (1977) 

and Fleiss et al. (2003) scales of degree of agreement, the overall kappa value of 0.037, although 

statistically significant, indicates only slight (Landis & Koch, 1977) or poor (Fleiss et al., 2003) 

agreement beyond that which could be expected by chance between farmer perceived and 

measured soil fertility. This conclusion also generally obtains in each of the five regions. 
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Table 2.5: Chi-square test of independence between farmer perceived and measured soil fertility  

Overall sample    

Farmer perceived fertility 
Measured fertility 

Infertile Fertile Total 
Infertile 463 59 522 
Fertile 630 116 746 
Total 1093 175 1268 
Pearson chi2(1) =   4.656   Pr = 0.031 ; Fisher’s exact = 0.032   
    
Uasin Gishu    

Farmer perceived fertility 
Measured fertility 

Infertile Fertile Total 
Infertile 66 20 86 
Fertile 118 30 148 
Total 184 50 234 
Pearson chi2(1) =   0.289   Pr = 0.591;  Fisher’s exact = 0.622   
    
Trans Nzoia    

Farmer perceived fertility 
Measured fertility 

Infertile Fertile Total 
Infertile 60 30 90 
Fertile 81 64 145 
Total 141 94 235 
Pearson chi2(1) =   2.701   Pr = 0.100;  Fisher’s exact = 0.132   
    
Kakamega    

Farmer perceived fertility 
Measured fertility 

Infertile Fertile Total 
Infertile 105 2 107 
Fertile 123 2 125 
Total 228 4 232 
Pearson chi2(1) =   0.0246   Pr = 0.875; Fisher’s exact = 1.000        
Kisii    

Farmer perceived fertility 
Measured fertility 

Infertile Fertile Total 
Infertile 103 6 109 
Fertile 115 10 125 
Total 218 16 234 
Pearson chi2(1) =   0.569   Pr = 0.451; Fisher’s exact = 0.605   
    
Machakos    

Farmer perceived fertility 
Measured fertility 

Infertile Fertile Total 
Infertile 129 1 130 
Fertile 193 10 203 
Total 322 11 333 
Pearson chi2(1) =   4.287   Pr = 0.038; Fisher’s exact = 0.056    
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Table 2.6: Kappa statistic measuring degree of agreement between perceived and measured soil 
fertility 

County % agreement 
% expected 
agreement 

Kappa Std. Error Z Prob>Z 

Uasin Gishu 41.03 42.41 -0.024 0.045 -0.54 0.7044 
Trans Nzoia 52.77 47.66 0.098 0.059 1.64 0.0501 
Kakamega 46.12 46.25 -0.003 0.016 -0.16 0.5624 
Kisii 48.29 47.05 0.024 0.031 0.75 0.2253 
Machakos 41.74 39.76 0.033 0.016 2.07 0.0192 
Overall sample 45.66 43.61 0.037 0.017 2.16 0.0155 

It is useful to understand how farmers’ perceived soil fertility correlates with measured fertility, 

measured individual physical and chemical soil properties and other plot and farm characteristics. 

Such information is helpful in identifying factors that contribute to heterogeneity in individual 

farmers’ perceptions about soil fertility. As explained earlier, we explore this by estimating a probit 

model where the dependent variable is the binary indicator of farmer’s perception about soil 

fertility, and explanatory variables are measured soil fertility, selected soil physical and chemical 

properties, other plot, plot-manager and area characteristics and maize yield. Before discussing the 

probit model estimation results, we explore difference in means of a range of variables between 

plots farmers perceived to be fertile and those perceived as infertile (Table 2.7). 

On average, plots farmers perceived to be fertile were significantly richer in organic carbon and 

nitrogen, had higher concentration of potassium and were less acidic (had higher soil pH) (Table 

2.7). Perception about soil fertility, however, appears not to be associated with soil texture in a 

significant way, as can be seen in the difference in the means of sand, silt and clay content between 

perceived fertile and infertile plots. These statistics suggest that on average, farmers’ soil fertility 

perception have some alignment with levels of individual soil chemical properties that influence 

soil nutrient availability and retention capacity, and hence fertility. We revisit this conjecture when 

discussing the probit model estimation results. 
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Table 2.7: Mean comparison test of selected variables according to farmers’ perception about 
soil fertility status 

Attributes 
Farmer perception of soil 

fertility status Difference in 
mean (F-I) 

Fertile (F) Infertile (I) 
Plot characteristics    
Total organic carbon (%) 2.180 2.050 0.130** 
Total Nitrogen % 0.188 0.178 0.00935** 
Phosphorus (ppm) 19.776 17.870 1.906 
Potassium (meq %) 0.820 0.748 0.0718* 
Soil pH  5.727 5.665 0.0626** 
Sand (%) 48.879 49.171 -0.293 
Silt (%) 12.244 12.482 -0.238 
Clay (%) 38.745 38.137 0.609 
No. of years of plot cultivation in the past 10 years  9.507 9.638 -0.131 
Plot slope (1=flat, 2=moderate, 3=steep) 1.728 1.770 -0.0422 
    
Input use on plot    
Inorganic fertilizer use (1=yes, 0 otherwise) 0.913 0.948 -0.0354** 
Fertilizer rate (kg/acre) [users only] 81.723 80.741 0.982 
Improved seed variety (1=yes, 0 otherwise) 0.928 0.927 0.000411 
Mechanized land preparation (1=yes, 0 otherwise) 0.532 0.450 0.0820*** 
    
Agronomic practices on plot    
Manure/compost use (1=yes, 0 otherwise) 0.472 0.454 0.0178 
Crops residue use (1=yes, 0 otherwise) 0.401 0.427 -0.0264 
Maize-legume intercrop (1=yes, 0 otherwise) 0.685 0.757 -0.0717*** 
Soil erosion prevention (1=yes, 0 otherwise) 0.504 0.519 -0.0151 
    
Maize production    
Maize yield (kg/acre) 1398.683 1183.586 215.1*** 
    
Local infrastructure    
Distance to extension (km) 5.434 6.059 -0.625** 
Distance to town (km) 13.460 13.868 -0.408 
Distance to paved road (km) 7.009 6.783 0.226 
    
Plot manager characteristics    
Plot manager education (yrs) 8.059 7.962 0.0973 
Plot manager is female (1=yes, 0 otherwise) 0.336 0.358 -0.0218 
Farming experience (yrs) 27.657 27.316 0.341 
Walking time to plot (mins) 5.288 3.925 1.362** 
Plot owned (1=yes) 0.883 0.916 -0.0323* 
Observations 746 522 1268 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Plots perceived to be fertile were on average located further from the homestead than those 

perceived to be infertile. In addition, incidence of ownership (rather than renting) was lower for 

plots perceived to be fertile than for those perceived to be infertile. This indicates that rented plots, 

which the data show are on average located farther from the homestead than are owned plots, are 

on average more likely to be rated fertile. It implies that, as would be expected, farmers who rent 

plots for maize production have a higher likelihood to go for those they perceive to be fertile. 

While inorganic fertilizer use was generally high (about 93% of the plots in total), results show 

some association between the binary decision to use inorganic fertilizer and perception about soil 

fertility: inorganic fertilizer use was more likely on plots perceived to be infertile than on those 

perceived to be fertile. Whether this reflects conscious efforts by farmers to address perceived soil 

infertility through use of inorganic fertilizer is a question deserving investigation. We explore the 

possibility of this in the discussion of results on adoption of soil fertility management practices. 

Conditional on use, however, mean application rates of inorganic fertilizer were statistically the 

same between the two groups of plots. Incidence of mechanized land preparation was higher on 

plots that were perceived to be fertile. Among agronomic practices, we only observe significantly 

higher incidence of maize-legume intercrop on plots perceived to be infertile than on those 

perceived to be fertile, while with regards to area infrastructure mean distance from extension 

advice was shorter for plots that were perceived to be fertile than those that were perceived to be 

infertile. As would be expected, the mean yield of maize was significantly higher on plots 

perceived to be fertile than on those perceived to be infertile. 

In summary, plots farmers perceived as fertile relative to those perceived to be infertile had, on 

average, higher levels of individual soil chemical attributes that influence nutrient availability and 

were less likely to have inorganic fertilizer applied. In addition, they were more likely to be 
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intercropped with legumes and had higher maize yield. Further, such plots were located farther 

away from the homestead, suggesting that farmers viewed rented plots as more fertile. 

Estimated marginal effects from a sequence of probit models of farmers’ perception about soil 

fertility are presented in Tables 2.8 and 2.9.  In Table 2.8 are the marginal effects of measured soil 

fertility, along with other covariates, while in Table 2.9 are marginal effects of individual soil 

properties, along with other covariates. The tables each has a sequence of five models to show the 

behavior of the effects of measured soil fertility and individual soil properties when other 

covariates are included. The other covariates are plot characteristics, maize yield, plot manager 

characteristics, and area infrastructure. In all the specifications, regional effects are controlled for 

using regional (county) dummy variables. A squared term for the soil pH variable was included in 

the estimation of models in Table 2.9 to account for nonlinearity of soil pH, since in actual sense 

extreme values of soil pH are associated with suboptimal conditions for plant growth.  

In Table 2.8, model 1 shows that there is a positive but statistically weak correlation between 

farmers’ perceived and measured soil fertility status, holding other things constant. Compared to 

a plot measured to be infertile, a plot that is measured to be fertile has, on average, 7% higher 

chance of being rated as fertile by a farmer. The small magnitude of the marginal effect of 

measured soil fertility combined with its weak statistical significance strengthens the findings from 

the interrater agreement through the Cohen’s kappa statistic and the chi-square test of 

independence between farmers’ perceived and measured soil fertility. When we control for maize 

yield, however, the weak significance of the association between farmers’ perceived and measured 

soil fertility vanishes and the marginal effect of maize yield is positive and strongly significant 

(model 2), a result that also obtains in models 3, 4 and 5, which have plot characteristics, plot-

manager characteristics and area infrastructure, respectively. The negative and significant 
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marginal effects of steep slope dummy variable in models 3-5 is evidence that plot slope is 

significantly associated with farmers’ perception about soil fertility. In addition, the negative and 

significant marginal effect of distance to extension service provider indicates that access to 

extension information may have influence on farmers’ perception about the fertility of their soils. 

Table 2.8: Probit marginal effect estimates of the relationship between farmers’ perceived and 
measured soil fertility 

 (1) (2) (3) (4) (5) 
Dep var: Soil fertility 
perception (1=fertile)   

Measured 
fertility 

Maize yield Plot 
characteristics 

Plot manager 
characteristics 

Area 
infrastructure 

Measured fertility 
(1=fertile) 

0.0732* 0.0707 0.0711 0.0698 0.0719 

 (0.0443) (0.0441) (0.0444) (0.0443) (0.0456) 
      
Maize yield (kg/acre)  0.0000513*** 0.0000512*** 0.0000510*** 0.0000497*** 
  (0.0000146) (0.0000146) (0.0000147) (0.0000147) 
      
Moderateb   -0.0252 -0.0230 -0.0243 
   (0.0309) (0.0310) (0.0310) 
      
Steepb   -0.104* -0.111** -0.0991* 
   (0.0556) (0.0557) (0.0562) 
      
No. of years of plot 
cultivation  

  -0.0107 -0.00630 -0.00673 

   (0.00917) (0.00955) (0.00953) 
      
Plot manager education 
(yrs) 

   0.000548 0.000563 

    (0.00399) (0.00398) 
      
Plot manager is female 
(1=yes) 

   -0.0168 -0.0168 

    (0.0301) (0.0301) 
      
Farming experience 
(yrs) 

   0.000749 0.000667 

    (0.000948) (0.000950) 
      
Plot owned (1=yes)    -0.0558 -0.0619 
    (0.0487) (0.0487) 
      
Walking time to plot 
(mins) 

   0.00256 0.00241 

    (0.00158) (0.00158) 
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Table 2.8 (cont’d) 

 (1) (2) (3) (4) (5) 
Dep var: Soil fertility 
perception (1=fertile)   

Measured 
fertility 

Maize yield Plot 
characteristics 

Plot manager 
characteristics 

Area 
infrastructure 

      
Distance to extension 
(km) 

    -0.00473* 

     (0.00276) 
      
Distance to paved road 
(km) 

    -0.000476 

     (0.00298) 
      
Regional dummies Yes Yes Yes Yes Yes 
      
Observations 1268 1268 1268 1268 1268 
LR 𝜒ଶ 11.19 23.35 28.22 34.19 38.72 
Prob > 𝜒ଶ 0.0477 0.0007 0.0009 0.0019 0.0020 
Pseudo Rଶ 0.0065 0.0136 0.0164 0.0199 0.0225 

Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 

Results in Table 2.9 are largely similar to those in Table 2.8. In model 1 of Table 2.9 where the 

only covariates – apart from regional dummies – are individual soil properties, the marginal effects 

of soil organic carbon and pH are positive and significant (albeit weakly). A unit increase in soil 

pH is associated with 5% higher chance of the plot being rated as fertile by a farmer, while a one-

percentage point increase in soil organic carbon content is associated with 3% higher chance of a 

plot being rated as fertile by a farmer. These results strengthen the findings in Table 4 that farmers’ 

soil fertility perceptions have some reflection of levels of individual soil chemical properties that 

influence soil nutrient availability. However, the statistical significance of the marginal effects of 

soil organic carbon vanishes when we introduce other covariates in models 2-5, while that of soil 

pH remains significant only in model 4. Like in Table 8, the marginal effect of maize yield remains 

positive and significant in models 2-5 and that of the steep slope dummy is negative and significant 

in models 3-5.  

The evidence that the marginal effects of measured soil fertility (Table 2.8) and those of soil 
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organic carbon and pH (Table 2.9) become insignificant when other covariates are introduced is 

evidence that farmers’ perceptions about soil fertility are based on factors other than measurable 

soil attributes. The important factors that appear to influence farmers’ perception about soil fertility 

are maize yield and plot slope, with maize yield showing a strong statistical correlation in all the 

models in which it is included. This finding is consistent with that of Marenya et al (2008), who 

suggested that famers may be prone to error in their soil fertility assessment given the many factors, 

in addition to soil conditions, that influence yield. When observed yield levels is the primary 

information on which farmers base their assessment of soil fertility status, they are likely to apply 

soil fertility management practices that may not match the soil fertility needs and this can lead to 

further soil degradation. The data in this research show that 39% of the plots in the sample had soil 

pH values below the lower bound of the recommended optimal range of 5.5-7.0 while 52% had 

values below the sample average of 5.7, which is barely above the lower bound of the range. In 

the contrary, only 35% of the farmers acknowledged that their plots had soil acidity problems, 

38% indicated there were no soil acidity problems on their plots, while the remaining 27% had no 

idea regarding whether their plots had soil acidity problems. Therefore, it is not surprising that 

majority of the farmers in the sample apply DAP, an acidifying fertilizer, in efforts to raise maize 

yield.  

Figure 2.4 shows that among the plots that had soil pH<5.5 (39% of plots), 44% had DAP applied 

without manure or compost while 11% had neither DAP nor manure/compost application. About 

35% had both DAP and manure/compost while 12% had manure/compost without DAP. A similar 

pattern is observed on plots that had low organic carbon (<2.7%) (75% of plots), where majority 

(44%) had DAP applied without manure/compost while 9% had neither DAP nor manure 

application (Figure 2.5). About one-third of the plots had both DAP and manure/compost applied 
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while 17% had manure/compost only. The scenario in Figure 2.6 is most illuminating. Out of the 

plots that had both low soil pH (<5.5) and low organic carbon (<2.7%), 46% had DAP applied 

without manure/compost. These statistics show that even on plots that are low in soil pH and 

organic carbon, and on which less-acidifying fertilizers and organic soil amendments should be 

most appropriate, use of DAP without manure/compost is still the most common. But surprisingly, 

despite producing a report that shows that soil acidity and low soil organic carbon levels are 

widespread on farms in the major maize growing areas and providing recommendations for 

appropriate types and amounts of fertilizer and manure to apply (Government of Kenya, 2014), 

the government continues to subsidize DAP for maize production. These indicate deficiencies in 

extension information and policy and exacerbates poor management of soil fertility. 

Figure 2.4: Frequency distribution of DAP and manure use on plots with low soil pH (<5.5) 
(39% of plots) 
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Figure 2.5: Frequency distribution of DAP and manure use on plots with low organic carbon 
(<2.7%) (75% of plots) 

 

Figure 2.6: Frequency distribution of DAP and manure use on plots with both low organic 
carbon (<2.7%) and low soil pH (30% of plots) 
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Table 2.9: Probit marginal effect estimates of the relationship between farmers’ perception about 
soil fertility and measured soil properties 

 (1) (2) (3) (4) (5) 

Dep var: Soil fertility 
perception (1=fertile)   

Individual 
soil 

properties 
Maize yield 

Plot 
characteristics 

Plot manager 
characteristics 

Area 
infrastructure 

      
Total carbon (%) 0.0325* 0.0297 0.0305 0.0292 0.0305 
 (0.0196) (0.0196) (0.0198) (0.0198) (0.0202) 
      
pH (value) 0.0506* 0.0445 0.0472 0.0496* 0.0448 
 (0.0298) (0.0298) (0.0298) (0.0301) (0.0303) 
      
Phosphorus (ppm) 0.000783 0.000775 0.000589 0.000531 0.000554 
 (0.000752) (0.000746) (0.000752) (0.000752) (0.000752) 
      
Loamy coarsea -0.0976 -0.0960 -0.0971 -0.0812 -0.0791 
 (0.0971) (0.0970) (0.0964) (0.0978) (0.0974) 
      
Loamy mediuma -0.172 -0.158 -0.176 -0.160 -0.159 
 (0.190) (0.190) (0.188) (0.188) (0.187) 
      
Loamy finea -0.0160 -0.0149 -0.0119 -0.000341 -0.00123 
 (0.0910) (0.0910) (0.0903) (0.0916) (0.0912) 
      
Clayeya -0.0329 -0.0346 -0.0350 -0.0193 -0.0223 
 (0.0926) (0.0925) (0.0919) (0.0932) (0.0928) 
      
Maize yield (kg/acre)  0.0000484*** 0.0000484*** 0.0000477*** 0.0000467*** 
  (0.0000146) (0.0000146) (0.0000147) (0.0000147) 
      
Moderateb    -0.0355 -0.0331 -0.0338 
   (0.0313) (0.0313) (0.0313) 
      
Steepb    -0.109* -0.115** -0.104* 
   (0.0564) (0.0565) (0.0570) 
      
No. of years of plot 
cultivation  

  -0.0102 -0.00570 -0.00609 

   (0.00917) (0.00954) (0.00953) 
      
Plot manager education 
(yrs) 

   0.000819 0.000818 

    (0.00399) (0.00398) 
      
Plot manager is female 
(1=yes) 

   -0.0161 -0.0163 

    (0.0303) (0.0303) 
Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
Notes: aSandy soil is the comparison category;  b Flat slope is the comparison category 



93 
 

Table 2.9 (cont’d) 

 (1) (2) (3) (4) (5) 

Dep var: Soil fertility 
perception (1=fertile)   

Individual 
soil 

properties 
Maize yield 

Plot 
characteristics 

Plot manager 
characteristics 

Area 
infrastructure 

      
Farming experience (yrs)    0.000439 0.000391 
    (0.000954) (0.000956) 
      
Plot owned (1=yes)    -0.0563 -0.0614 
    (0.0487) (0.0486) 
      
Walking time to plot (mins)    0.00240 0.00228 
    (0.00159) (0.00159) 
      
Distance to extension (km)     -0.00417 
     (0.00277) 
      
Distance to town (km)     -0.00120 
     (0.00112) 
      
Distance to paved road (km)     -0.000621 
     (0.00296) 
      
Regional dummies Yes Yes Yes Yes Yes 
      
Observations 1268 1268 1268 1268 1268 
LR 𝜒ଶ 20.86 31.67 36.78 42.14 45.94 
Prob > 𝜒ଶ 0.0525 0.0027 0.0022 0.0040 0.0045 
Pseudo Rଶ 0.0121 0.0184 0.0214 0.0245 0.0267 

Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 
Notes: aSandy soil is the comparison category;  b Flat slope is the comparison category 

The data shows that 99% of the sample plots had not had their soils tested during the three-year 

period prior to the 2014 survey when soil sampling and testing was conducted as part of the survey. 

This confirms that farmers’ perceptions about soil fertility on their plots is largely not based on 

knowledge about physical, chemical and biological attributes of soil. Farmers were asked in the 

2016 survey to indicate what they consider to conclude that the fertility of soil is wanting. Table 

2.10 displays the frequency distribution of farmer-reported indicators of soil infertility. The 

statistics indicate that farmers overwhelmingly rely on crop performance, including crop health 

(by look), growth and yield, to judge the fertility status of the soil. Farmers also use local 

classifying attributes of soil such as color, texture and depth to assess soil fertility. Soil testing as 
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a way of knowing soil fertility status comes last in the list. This can be problematic because poor 

crop performance may be a result of factors other than soil infertility, such as poor-quality seeds, 

pests, and diseases that may not be visible to the farmer. In addition, even if poor crop performance 

was because of soil infertility, it may not identify the exact deficiency in the soil that is contributing 

to infertility. Meaningful diagnosis of deficiencies in the soil can be only through soil testing. 

Therefore, the result that soil testing is generally a rare practice among maize farmers should raise 

concern about the appropriateness of the soil fertility management practices they apply.  This is 

particularly important because the soils have been cultivated for a long time with intensity of 

cultivation increasing (i.e. less fallowing as inferred from the number of years of cultivation during 

the last decade). Indeed, it is not surprising that farmers’ perceived and measured soil fertility 

largely mismatch in our analysis, and maize yield has stagnated or declined in the long term despite 

evidence of increased use of inorganic fertilizers (mainly DAP) and improved seed varieties. 

Table 2.10: Farmers’ reported indicators of soil infertility 

Indicators Frequency 
Percent of 
responses 

Percent of 
cases 

unhealthy-looking plants 402 27.61 64.42 
poor crop yield 399 27.40 63.94 
retarded plant growth 251 17.24 40.22 
soil color is different from what I expect 135 9.27 21.63 
invasion by particular weeds 103 7.07 16.51 
soil hard to work  (hard to till) 37 2.54 5.93 
texture is too coarse 34 2.34 5.45 
texture is too fine 31 2.13 4.97 
invasion by particular animals/organisms 27 1.85 4.33 
soil is shallow 14 0.96 2.24 
poor water infiltration 13 0.89 2.08 
poor drainage 8 0.55 1.28 
through soil testing 2 0.14 0.32     
Total 1456 100 233.33 
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2.3.2 Adoption of soil fertility management practices 

Before discussing the multivariate probit results of determinants of adoption of soil fertility 

management practices in Table 2.12, we discuss the correlation matrix of the equations in Table 

2.11. The positive and negative signs of the correlation coefficients indicate complementarity and 

substitutability, respectively, in the decision to adopt the soil fertility management practices in 

question. The statistical significance of some of the correlation coefficients indicates simultaneity 

of adoption decisions and validates the suitability of multivariate probit to model adoption of the 

soil fertility management practices. Inorganic fertilizer and manure/compost are significantly 

substitutes, a finding that is consistent with Wainaina et al (2016) and Koppmair et al (2017) but 

differs from Marenya & Barrett (2007) and Arslan et al (2017). This suggests that an average 

farmer in our study may understand manure/compost and inorganic fertilizers as serving the same 

purpose concerning soil fertility, which is not entirely the case. In addition to supplying nutrients 

– mainly nitrogen – manure/compost adds organic materials into the soil and thus contributes to 

enhancing soil quality characteristics that are associated with increased soil organic matter, and 

therefore soil organic carbon, as explained earlier in the introduction. Inorganic fertilizer, on the 

other hand, do not add organic matter into the soil, implying that efficiency of inorganic fertilizer 

can be enhanced with concomitant application of manure/compost. Soil erosion control through 

investment in structures such as grass strips, cut-off drains and terraces are substitutes with both 

crops residue and inorganic fertilizer. The negative correlation of adoption between soil erosion 

and crops residue could be driven by mulching, which, apart from using crops vegetative remains 

to conserve moisture and enhance organic matter in the soil, also protects topsoil from erosion by 

direct impact of rain. We also see a positive correlation between adoption of manure/compost and 

legume intercrop. 
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Table 2.11: Correlation matrix for the regression equations 

 Manure/compost Crops residue Legume intercrop Soil erosion control 

Crops residue 0.0666 
(0.0517) 

   

Legume intercrop 0.102* 
(0.0594) 

-0.0743 
(0.0540) 

  

Soil erosion control -0.0168 
(0.0508) 

-0.181*** 
(0.0475) 

0.0481 
(0.0537) 

 

Inorganic fertilizer -0.289*** 
(0.0895) 

-0.0196 
(0.0763) 

0.0369 
(0.0829) 

-0.156** 
(0.0767) 

Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 

The complementarities and substitutabilities of the soil fertility management practices have 

important implications for policy and strategies to promote their use by farmers, since targeting 

one practice for adoption can enhance or inhibit adoption of another. In Kenya, for example, 

improving agricultural productivity through promotion of widespread use of inorganic fertilizers 

has been a major strategy by the government, evident in fertilizer subsidy programs and, lately, 

building of a fertilizer manufacturing plant. These initiatives, however, are not accompanied by 

efforts to educate farmers about and promote use of organic soil amendments, such as use of 

manure, compost and crops residue, which are necessary for building soil fertility and enhancing 

efficiency of inorganic fertilizer use. Thus, the strategy may be portraying inorganic fertilizers as 

the solution to the problem of soil infertility, making farmers to overemphasize use of inorganic 

fertilizers and undermine organic soil amendments instead of looking at both as necessary 

complements to enhance soil fertility for sustainable productivity improvement. 

The effects of soil fertility perception on adoption shows that on average, the likelihood of applying 

inorganic fertilizer on a plot is significantly lower when a farmer perceives the plot to be fertile 

(Table 2.12). This may imply that plots that are viewed to be fertile are likely to be performing 

well in maize production, the farmers’ main yardstick for soil fertility as we saw earlier, without 

application of inorganic fertilizer. The finding may also imply that on average, farmers are inclined 

to view inorganic fertilizer as a solution to soil infertility. This may be problematic if addressing 
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the soil infertility problem also requires, and it does on the maize plots in this study, soil 

amendments that are different from what inorganic fertilizers do, such as correcting soil pH to 

address acidity problems and increasing organic matter to increase soil organic carbon. This is 

more likely what is happening in the major maize growing areas of Kenya where farmers have 

sustained use of inorganic fertilizers on soils that are generally low in pH and have low organic 

carbon levels in efforts to raise maize productivity. Soil fertility perception also has a negative but 

statistically weak association with adoption of maize-legume intercropping. 

Among plot characteristics, slope has an increasing effect on the likelihood of soil erosion control, 

with erosion control structures more likely on moderate to steep relative to flat plots. Fertilizer 

adoption is also more likely on plots that are steep relative to those that are flat. As would be 

expected, plot size has a reducing effect on the probability of manure/compost use and use of crops 

residue. This can be attributed to the bulkiness of the practices which makes them much labor 

demanding and, therefore, much costlier to apply on large plots. In addition, availability of 

manure/compost and crops residue, which competes with other uses such as livestock feeding, to 

apply on large plots may be a challenge. Plot size, on the other hand, has a positive and significant 

association with inorganic fertilizer use.  

Plot distance from the homestead is negatively correlated with adoption of manure/compost and 

crops residue, similar to findings of Kassie et al (2015). This may be because of the bulkiness of 

manure/compost, which are often made in the homestead and transported to the farm. Similar to 

findings by Kamau et al. (2014), Kassie et al. (2015) and Wainaina et al. (2016), plot ownership, 

which implies tenure security, has a positive association with adoption of manure/compost. This 

is expected since returns to manure/compost application is often not immediate and thus farmers 

are more likely to apply manure/compost on plots for which they have assurance of continued use. 
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Table 2.12: Multivariate probit estimation results of factors affecting adoption of soil management practices (N=1268) 

 Manure/ compost  Crop residue  Legume intercrop 
 Coef. SE  Coef. SE  Coef. SE 
Soil fertility perception (1=fertile) 0.124 (0.0809)  -0.0286 (0.0753)  -0.159* (0.0858) 
Years of plot cultivation  0.0593* (0.0307)  -0.0407 (0.0250)  -0.0475 (0.0290) 
Plot slope (1=moderate)a 0.0927 (0.0900)  -0.0639 (0.0843)  0.0275 (0.0956) 
Plot slope (1=steep)a 0.208 (0.162)  -0.201 (0.151)  0.133 (0.170) 
Plot size (acres) -0.268*** (0.0568)  -0.0546* (0.0332)  -0.0626 (0.0403) 
Walking time to plot (mins) -0.0262*** (0.00618)  -0.0118** (0.00467)  -0.00142 (0.00409) 
Plot owned (1=yes) 0.730*** (0.154)  0.0840 (0.133)  0.139 (0.146) 
Plot manager education (yrs) 0.0161 (0.0122)  -0.0249** (0.0112)  -0.0256** (0.0128) 
Plot manager is female (1=yes) 0.0805 (0.0878)  -0.0907 (0.0825)  0.264*** (0.0957) 
Farming experience (yrs) -0.00100 (0.00286)  0.000566 (0.00266)  0.00410 (0.00305) 
Active adults (#) -0.00597 (0.0255)  0.0567** (0.0235)  -0.0202 (0.0259) 
Group membership (1=yes) -0.0791 (0.0937)  -0.0183 (0.0881)  0.00246 (0.0998) 
HH has non-farm income (1=yes) 0.0421 (0.0973)  0.122 (0.0894)  0.0913 (0.0993) 
Livestock value (KES) (log) 0.105*** (0.0147)  -0.0139 (0.0132)  0.0146 (0.0145) 
HH landholding (acres) -0.000468 (0.00242)  -0.0115 (0.00871)  -0.0447*** (0.0127) 
Asset index 0.636 (1.526)  2.187** (0.868)  0.469 (1.041) 
Distance to extension (km) -0.00937 (0.00850)  -0.0153* (0.00784)  -0.00175 (0.00878) 
Distance to paved road (km) 0.00177 (0.00883)  0.00729 (0.00772)  -0.0159* (0.00838) 
Fertilizer price (KES/kg) -0.000270 (0.00262)  -0.00391 (0.00248)  -0.00194 (0.00275) 
Trans Nzoia -0.0650 (0.172)  0.343** (0.152)  1.157*** (0.163) 
Kakamega 0.533*** (0.141)  0.531*** (0.132)  1.632*** (0.155) 
Kisii 0.522*** (0.160)  1.014*** (0.150)  1.285*** (0.165) 
Machakos 1.397*** (0.169)  0.120 (0.151)  1.021*** (0.161) 
Constant -2.736*** (0.433)  0.249 (0.367)  0.320 (0.411) 

* p < 0.10, ** p < 0.05, *** p < 0.01 
Notes: Log likelihood =  -3137.4466; Wald chi2(115) = 1037.21; a Base category: flat 
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Table 2.12 (cont’d) 
 Soil erosion control  Inorganic fertilizer 
 Coef. SE  Coef. SE 
Soil fertility perception (1=fertile) -0.0517 (0.0740)  -0.253** (0.128) 
Years of plot cultivation  0.0220 (0.0248)  0.0379 (0.0384) 
Plot slope (1=moderate)a 0.447*** (0.0827)  0.165 (0.140) 
Plot slope (1=steep)a 0.297** (0.147)  0.566** (0.243) 
Plot size (acres) 0.0397 (0.0329)  0.295*** (0.115) 
Walking time to plot (mins) -0.000856 (0.00377)  0.0114 (0.00881) 
Plot owned (1=yes) -0.156 (0.129)  0.246 (0.198) 
Plot manager education (yrs) 0.00565 (0.0110)  0.0302 (0.0190) 
Plot manager is female (1=yes) 0.0321 (0.0807)  0.179 (0.137) 
Farming experience (yrs) 0.00123 (0.00262)  -0.00327 (0.00401) 
Active adults (#) -0.0485** (0.0231)  0.0502 (0.0429) 
Group membership (1=yes) -0.0326 (0.0861)  0.520*** (0.145) 
HH has non-farm income (1=yes) 0.237*** (0.0869)  0.0481 (0.144) 
Livestock value (KES) (log) 0.0110 (0.0129)  0.00818 (0.0185) 
HH landholding (acres) 0.0163* (0.00910)  -0.0294* (0.0157) 
Asset index -3.241*** (1.109)  5.051 (3.504) 
Distance to extension (km) -0.00532 (0.00728)  0.0204 (0.0151) 
Distance to paved road (km) 0.00178 (0.00765)  -0.0144 (0.0130) 
Fertilizer price (KES/kg) -0.00467* (0.00242)  -0.00266 (0.00417) 
Trans Nzoia 0.00887 (0.149)  0.0414 (0.254) 
Kakamega -0.0445 (0.130)  0.254 (0.233) 
Kisii 0.137 (0.144)  0.978*** (0.350) 
Machakos 0.489*** (0.148)  -0.672*** (0.246) 
Constant -0.334 (0.360)  0.121 (0.570) 

* p < 0.10, ** p < 0.05, *** p < 0.01 
Notes: Log likelihood =  -3137.4466; Wald chi2(115) = 1037.21; a Base category: flat 
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Contrary to expectations, plot manager education has reducing effects on the likelihood of 

adoption of crops residue and maize-legumes intercrop and no significant effect on adoption of the 

other practices. Kassie et al. (2015) and Wainaina et al. (2016) found a positive effect of education 

of household head on adoption of manure and inorganic fertilizer while Arslan et al. (2017) found 

a positive effect on adoption of soil and water conservation measures. Concerning gender, female 

plot managers are more likely to intercrop maize with legumes compared to their male 

counterparts. 

As expected, number of adults, a measure of labor availability, is positively correlated with 

adoption of crops residue, which may reflect the labor-intensive nature of the practice. However, 

number of adults is inversely related with soil erosion control. As expected, and similar to findings 

of Kassie et al. (2015), group membership, which is an indicator of social capital and may also 

facilitate access to information and credit, has a positive effect on inorganic fertilizer adoption, 

while the presence of non-farm income in a household has a positive effect on soil erosion control. 

As expected, livestock wealth has a positive effect on manure/compost adoption, consistent with 

Kassie et al. (2015) and Wainaina et al. (2016). Household landholding has an inverse relationship 

with maize-legume intercropping and inorganic fertilizer adoption, suggesting that smaller 

landholdings motivate agricultural intensification practices. Landholding has a positive association 

with soil erosion control while the effect of asset index is positive on use of crops residue but 

negative on soil erosion control.  

The effects of distance to extension service provider, distance to paved road and fertilizer price are 

negative and weakly significant on the adoption of crops residue, maize-legume intercrop and soil 

erosion control, respectively. While the sign is as expected, the effect of fertilizer price on fertilizer 
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adoption is insignificant possibly because of little variation in fertilizer prices and the high rate of 

adoption. 

2.4 Conclusion and Implications 

Soil infertility is a major problem in sub-Saharan Africa and is one of the main causes of 

persistently low agricultural productivity. Soil degradation because of land management practices 

that do not replenish soil nutrients and organic matter is the main cause of soil infertility. In Kenya, 

low agricultural productivity in general and poor maize yield in particular, despite notable increase 

in use over time of mineral fertilizers and improved maize varieties, is largely attributed to this 

problem. A particular problem is that continued use of chemical fertilizers, especially acidifying 

ones such as DAP, to soils with low pH and low organic matter can further degrade the soil. 

Replenishing such soils requires applying organic materials such as compost or manure and 

ameliorating soil acidity (Lal, 2006; Chivenge et al., 2011; Kunhikrishnan et al., 2016). Promoting 

recycling of organic matter into the soil and judicious use of appropriate chemical fertilizers is a 

necessary priority to improve agricultural productivity in general and maize yield in particular.  

Several studies have explored factors that promote or hinder adoption of sustainable management 

practices in Kenya and elsewhere. However, often not included in many of the studies is the role 

of farmers’ perceptions about the fertility status of their soil in the adoption choice decisions of 

alternative soil fertility management practices. Using household, farmer and plot-level data from 

major maize growing areas in Kenya, this study has estimated correspondence between maize 

farmers’ perceived and measured soil fertility and investigated the association between farmers’ 

perception about soil fertility and adoption (use) of soil fertility management practices.  
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Five key results have emerged. First, descriptive analysis results have shown that farmers’ 

perceived and measured fertility status of 46% of the plots were consistent, about half were rated 

as fertile by farmers but measured to be infertile, and less than 5% were perceived as infertile by 

farmers but measured to be fertile. In addition, farmers overwhelmingly relied on crops 

performance to judge the fertility status of soil. Soil testing as a mechanism to understand the 

fertility status of soil was extremely rare. Secondly, interrater agreement analysis has shown little 

correspondence between farmers’ perceived and measured soil fertility. About half of the plots 

were rated as fertile by farmers but measured to be infertile, suggesting substantial underestimation 

of soil infertility problem among the maize farmers. Thirdly, probit model results have shown that 

measured soil fertility and soil organic carbon and pH are significant predictors of farmers’ 

perception about soil fertility. However, these effects vanish upon introducing in the model the 

maize yield variable for which the significance of the effect becomes persistent. Fourthly, 

multivariate probit estimation results have shown that farmers’ soil fertility perception has a strong 

relationship with the decision to apply inorganic fertilizer, but not soil fertility management 

practices such as applying manure or compost. The likelihood of applying inorganic fertilizer 

increases when a farmer perceives the soil to be infertile. In addition, farmers appear to regard 

manure/compost and inorganic fertilizers as serving the same purpose concerning soil fertility, 

thus treating them as substitutes.  

These results have important implications for policy and extension efforts to explore ways to 

improve management of soils for improved agricultural productivity. First, the lack of soil testing, 

farmers’ reliance on crop performance as the main yardstick for judging soil fertility condition, 

and the low correspondence between farmers’ perceived and measured soil fertility collectively 

imply that farmers are applying management practices that may not match the fertility needs of 



103 
 

soil on their plots. This is exemplified by the result that there is persistent application of an 

acidifying fertilizer (DAP) to maize and low application of organic soil amendments such as 

manure and compost even on plots with soils that are low to very low in soil pH and organic 

carbon. Data has shown that over 40% of the plots that were low in soil pH and soil organic matter 

had DAP applied without manure or compost application. 

Secondly, farmers’ higher adoption rate of fertilizer relative to other organic soil amendments, 

their treatment of manure/compost and inorganic fertilizers as substitutes rather than complements 

and the strong inverse relationship between farmers’ perception of soil fertility and the decision to 

apply inorganic fertilizer may indicate deficiencies in policy and extension information. The 

government promotes use of inorganic fertilizers, but without accompanying concerted efforts to 

educate farmers about and promote use of organic soil amendments, which are necessary for 

building soil fertility and enhancing efficiency of inorganic fertilizer use. This may erroneously 

valorize inorganic fertilizers as the solution to the problem of soil infertility and lead farmers to 

put less effort in the necessary complementary organic soil amendments, recognizing that manure, 

compost and crops residue are not readily available and are not costless to obtain and their use is 

labor intensive. In addition, the government continues to subsidize DAP, one of the acidifying 

fertilizers, for maize production, despite its own report showing that low soil pH and organic 

carbon levels are widespread on farms in the major maize growing areas. This policy disconnect, 

together with lack of aggressive extension efforts to promote organic soil amendments, may be 

perpetuating improper practices for soil fertility management thereby exacerbating soil 

degradation. 

There is a need for a shift in policy and extension focus to encourage farmers to pay greater 

attention to organic soil amendments and judicious application of appropriate chemical fertilizers 
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to restore and sustain soil fertility. It is acknowledged that organic soil amendments are scarce and 

several factors, such as ability to keep livestock for manure and labor availability for use of crops 

residue, determine farmers’ access to and their application of them. However, there still needs to 

be active policy and extension efforts, perhaps like those for encouraging chemical fertilizer use, 

to encourage farmers to embrace their importance. In addition, policy actions that encourage 

judicious use of appropriate chemical fertilizers are vital. In this regard, encouraging and 

supporting farmers to test their soils and facilitating availability of fertilizers that are suitable for 

the varied soil conditions should be desirable. 
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CHAPTER 3: TECHNICAL EFFICIENCY AND SOIL FERTILITY AND 

AGRONOMIC PRACTICES IN MAIZE PRODUCTION IN KENYA 

 

3.1 Introduction and Study Objectives 

There has been a renewed interest about the role of agriculture in economic development in recent 

years, with increased recognition that it is key to sustainable development and poverty reduction 

in agriculture-based economies. This is particularly true of developing countries in sub-Saharan 

Africa where over three quarters of the population is rural and majority of who depend almost 

entirely on agriculture for livelihood (The World Bank, 2007; Haggblade & Hazell 2010). 

Sustainable agricultural productivity growth is thus essential to broad-based sustainable economic 

progress in these countries (The World Bank, 2007; Diao et al (2007), and fostering that growth 

requires technological progress and/or efficiency improvement in management of productive 

resources. 

The problem of low agricultural productivity in sub-Saharan Africa has been majorly attributed to 

soil infertility due to nutrient depletion (Stoorvogel & Smaling, 1998; Sanchez et al., 1997; The 

Montepellier Panel, 2013; Smaling et al., 1997; Stoorvogel & Windmeijer, 1993). Soil nutrient 

depletion is blamed on unsustainable land management practices that deplete soil organic carbon 

pool (Lal, 2006) and accelerate soil acidification (Kunhikrishnan et al., 2016). Soils that are in 

such depleted  conditions result in reduced response of crops to external inputs such as fertilizers, 

irrigation and high yielding crop varieties (Lal, 2006; Tittonell & Giller, 2013). This in turn lowers 

productivity and reduces efficiency of input use. 
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In Kenya, soil degradation in terms of nutrient imbalance, diminished soil organic carbon pool and 

high acidity is one of the main reasons cited for lack of growth in yield of maize (Government of 

Kenya, 2014; Tittonell et al, 2008; Marenya & Barrett, 2007). Farmers have intensified use of 

external inputs such as chemical fertilizers and high yielding maize varieties over time (e.g. Ariga 

& Jayne, 2009, 2009; Smale & Olwande, 2014; Muyanga & Jayne, 2014), but evidence suggests 

that aggregate maize yield has generally stagnated or declined. This implies that soil infertility 

combined with agronomic practices that may not effectively respond to fertility needs of the soil 

could be affecting maize response to external inputs.  

Because there is little scope for land expansion in Kenya, the onus of increasing agricultural 

production, particularly maize, is on increasing productivity, i.e. output per given amounts of 

inputs. This can be achieved through technological change, increased efficiency in use of existing 

technology and productive resources or both. This study is concerned with efficiency for two 

reasons. First, when soils are degraded and farmers do not apply proper agronomic practices in 

response to the actual conditions of the soil, they are unlikely to realize maximum yield possible 

with the amount of inputs used under a given production technology. This means they are likely 

to be technically inefficient. In this respect, knowledge of the level of technical efficiency of maize 

farmers would be useful in determining potential productivity gains possible through better 

agronomic management under existing technology. Information about specific factors that affect 

variations in efficiency across farms can guide targeted policies to improve efficiency for wide-

scale maize productivity improvement. 

Secondly, higher yields because of increased amount of inputs may not necessarily imply higher 

technical efficiency. A farmer may apply larger amounts of inputs and achieve higher yields but 

remain far below the maximum yield possible with the amount of the inputs applied (Mochebelele 
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& Winter-Nelson, 2000). Therefore, improving technical efficiency is important for sustainable 

agricultural intensification not only economically but also environmentally, since improper use of 

certain external inputs such as inorganic fertilizers, pesticides and herbicides may potentially 

degrade the environment and its productive resources. 

Using a stochastic production frontier (SF) approach due to Meeusen & van Den Broeck (1977) 

and Aigner et al (1977), this study estimates technical efficiency of maize farmers in Kenya while 

controlling for soil fertility conditions and agronomic practices, and identifies factors responsible 

for heterogeneity in technical efficiency across farms. The study addresses the following specific 

questions: 

(a) What is the technical efficiency level of maize farmers? How does technical efficiency 

vary across farms? What does this mean for measures to improve maize productivity? 

(b) What factors explain technical efficiency variations across farms? 

(c) How important are soil fertility conditions and agronomic practices to agricultural 

productivity and efficiency estimation? 

A major contribution of this study is that it evaluates maize productivity and efficiency while 

integrating soil fertility conditions and agronomic practices in the estimation, thus overcoming 

omitted variable bias to which many studies that do not include these conditions and practices may 

be prone. While studies have been conducted in Kenya and elsewhere on agricultural productivity 

and efficiency, such studies have often inadequately specified or ignored environmental variables 

mainly because of data limitations (e.g. Liu & Myers, 2009 and Kibaara, 2005 in Kenya; 

Mochebelele & Winter-Nelson, 2000; Tiedemann & Latacz-Lohmann, 2013). Ali & Byerlee 
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(1991) suggest and Sherlund et al (2002) and Ekbom et al (2013) have shown that omitting 

environmental production conditions from farm technical efficiency analysis would result in 

biased and inconsistent estimates of the production frontier parameters and understated technical 

efficiency. Maize-growing population in Kenya is quite heterogeneous and diversified, with 

biophysical conditions under which farmers operate among the most important sources of 

heterogeneity and diversity. These conditions affect farmers’ input choice decisions hence the need 

to control for them in productivity and efficiency analysis.   

3.3 Methods and Data 

3.3.1 Conceptual Framework 

The conceptual framework for technical efficiency is based on the seminal work of Farrell (1957). 

In the context of a firm, Farrell (1957) defined technical efficiency (TE) as a firm’s ability to 

maximize its production from a given level of inputs under a given technology. Farrell (1957) 

illustrated this concept as in Figure 1 below, obtained from Coelli et al (2005). A firm is assumed 

to produce one output, y, using two inputs, x1 and x2, under constant returns to scale technology. 

Let SS’ represent the isoquant of a technically efficient firm. The isoquant represents the output 

level that the perfectly efficient firm would produce given any combination of the two inputs, x1 

and x2. A firm that produces at point P is technical inefficient because the input amounts can be 

proportionally reduced while the output level is maintained. The distance QP represents the firm’s 

technical inefficiency. The ratio QP/OP measures technical inefficiency of the firm. It is the 

proportion by which all inputs could be downscaled to the technically efficient output level. The 

ratio is one for a perfectly technically efficient firm. Technical efficiency is expressed as 𝑇𝐸 =

1 − 𝑄𝑃 𝑂𝑃⁄ = 𝑂𝑄 𝑂𝑃⁄ .   
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Figure 3.1: Input-oriented technical efficiency illustration (Coelli et al 2005) 

 

This representation of the concept of technical efficiency is input-oriented and has input-reducing 

focus (Coelli et al (2005). A useful analogous representation of the concept is in output-oriented 

fashion, which views technical efficiency in terms of how much output could be proportionally 

increased without reducing input amounts under the same technology. Consider a single input, x, 

and single output, y, and decreasing returns to scale production technology, f(x), in Figure 3.2 

(Coelli et al, 2005). A firm producing at point P is technically inefficient since the maximum output 

possible with C amount of input is at D, which is on the production frontier. The ratio CP/CD 

measures the technical efficiency of the firm producing. 

The case of two outputs, y1 and y2, a single input, x, and constant returns to scale technology is 

represented by Figure 3.3 (Coelli et al, 2005). Point A represents technically inefficient output 

combination because for the given level of the input it is below the maximum possible output 

combination, B, which is on the production possibility frontier (PPF) represented by the curve ZZ’. 

The ratio OA/OB measures technical efficiency of a firm producing at point A. Using the notation 

of Coelli et al (2005), a firm’s technical efficiency can also be generally represented as the distance 

S 

Q 

P 

S’ 

O 

x1/y 

x2/y 



116 
 

function at the firm’s input and output vectors, 𝑑௢(𝐱, 𝐲), a representation that is useful in the case 

of multiple outputs and inputs. 

 

Figure 3.2: Output-oriented technical efficiency with one input and one output (Coelli et al 2005) 

 
 

Figure 3.3: Output-oriented technical efficiency with two outputs and one input (Coelli et al 
2005) 

 

The next sub-section formalizes the framework for estimating a stochastic frontier production 

function in the context of a single output and multiple inputs, the relevant context for this study. 
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3.3.2 Stochastic frontier analysis 

Production is a process that transforms a set of inputs, 𝐱 ∈ R୒
ା , into a set of outputs, 𝐲 ∈ R୑

ା , 

through some technology represented by a production function.  Figure 3.2 above is a graph of 

production technology for the case of a single input and a single output.  The production 

possibilities set is the input-output space bounded above by the production frontier, f(x). It is the 

set of input-output combinations feasible with the production technology. The production 

possibilities frontier, which is the upper boundary of the production possibilities set, is the set of 

maximum output levels that can be produced from any given vector of inputs. Formally, the 

production frontier can be represented as: 

𝑓(𝐱) = max {𝑦:  𝑦 ∈ 𝑃(𝐱)}       (3.1), 

where 𝑃(𝐱) is the production possibilities set, i.e. the set of vectors of output that is feasible to 

produce for each vector of inputs.  

The production frontier is the point of reference in determining technical efficiency of a producing 

unit as illustrated in the conceptual framework. The input-output combination of each producing 

unit, a maize farm in the context of this study, is either below or on the production frontier. Initially, 

technical efficiency analysis was concerned with measuring how far below the production frontier 

each producing unit operates. Later, the analysis has also often been concerned about factors that 

explain variations in technical efficiency across producing units, to provide information that can 

better guide policy interventions to improve efficiency. 

There are two commonly used approaches to technical efficiency analysis. One approach is the 

data envelopment analysis (DEA), which is non-parametric and uses mathematical programming 
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to estimate the efficient production frontier against which individual producing units’ outputs are 

measured. A major criticism against DEA is that it does not separate inefficiency from random 

error and considers all deviation from the frontier as inefficiency (Coelli 1995). Nevertheless, DEA 

has the advantage that it neither requires a functional form for the production frontier nor makes 

any distributional assumptions (Coelli 1995). This approach has not been widely applied in 

efficiency studies in agriculture. The other approach is the stochastic frontier analysis (SFA), 

which relies on functional form specification for the production frontier and distributional 

assumptions about the error terms in the model (Coelli 1995). It applies econometric methods to 

data on producing units to estimate parameters of the production frontier and inefficiency. Unlike 

the DEA, the SFA approach explicitly separates inefficiency from random error. 

This study applies the SFA approach to two cross sections of data on maize farms in Kenya to 

estimate technical efficiency and identify factors that explain variations in technical efficiency 

across farms. Stochastic frontier (SF) approach to technical efficiency analysis was originally 

developed independently by Meeusen & van Den Broeck (1977) and Aigner et al (1977). The idea 

and general setup of the stochastic production frontier in a cross-sectional data setting is as follows. 

Suppose we have a sample of maize producing farms indexed by i=1, 2,…, 𝑁 and 𝑦௜ and 𝐱୧, 

respectively, represent the output and a vector of inputs and other variables that affect the frontier 

output. Let 𝑦௜
∗ ≥ 𝑦௜  be the unobserved frontier output. We can define the frontier output as:  

𝑦௜
∗ = 𝑓(𝐱୧; 𝜷) + v୧,       (3.2) 

where 𝑓(𝐱୧; 𝜷) represents the production technology defining the frontier, 𝜷 is the parameter 

vector to be estimated and v୧ is statistical noise term which captures measurement and specification 
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errors. The observed (actual) output is defined as the frontier output minus a non-negative error 

term, u୧ ≥ 0, representing the farm’s inefficiency: 

𝑦௜  = 𝑦௜
∗ − u୧,        (3.3) 

If we express the actual and frontier output in terms of their natural logs, we can re-arrange (3.3) 

and represent a farm’s technical efficiency measure as the ratio of actual to the frontier output as 

shown in (4): 

exp(−u୧)  =
௬೔

௬೔
∗        (3.4) 

The stochastic production frontier model is as follows: 

𝑦௜ = 𝑓(𝐱୧; 𝜷) + 𝜀௜ ,        (3.5) 

𝜀௜ = v୧ − u୧         (3.6) 

v୧~𝑁(0, 𝜎௩
ଶ),         (3.7) 

u୧~ℱ          (3.8) 

The error term, 𝜀௜ , has two components – the random error term, v୧, and the non-negative error 

term, u୧, which represents inefficiency. It is assumed that the two components of the composed 

error term are independent of each other and of 𝐱୧. Aigner et al (1977) pointed out that the 

inefficiency, representing deviation of a firm’s output from the frontier, originates from factors 

under the control of the firm, such as management effort. The random error, v୧, indicates that the 

frontier is stochastic and is a result of events that are not under a firm’s control and that can be 

favourable and/or unfavourable, such as environmental shocks. The random error also results from 

measurement and observation errors. 
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The main objective of SFA is to disentangle inefficiency (u୧) from random error (v୧) in the 

composed error term. To achieve this, estimation of the model often relies on assumptions about 

statistical distributions of the random error, v୧, and the inefficiency term, u୧, and usually uses 

maximum likelihood (ML) procedure. Meeusen & van Den Broeck (1977) and Aigner et al (1977) 

both assumed a zero-mean normal distribution for v୧, which has been widely maintained in SFA 

studies. For the inefficiency component, u୧, Meeusen & van Den Broeck (1977) assumed 

exponential distribution with a single parameter, i.e. u୧~ℰ(𝜎௨), while Aigner et al (1977) assumed 

half normal distribution, i.e. u୧~𝑁ା(0, 𝜎௨
ଶ). The next step in ML estimation after making 

distributional assumptions is to derive the log-likelihood function of the model, which is thereafter 

maximized with respect to the parameters and parameter values obtained. 

Based on their assumption of mutual independence of v୧ and u୧ and their distributions, Aigner et 

al (1977) derived the density function of the composed error term, 𝜀௜, and obtained the log-

likelihood function of the ith observation as follows: 

𝐿௜ = −𝑙𝑛 ቀ
ଵ

ଶ
ቁ −

ଵ

ଶ
𝑙𝑛(𝜎௩

ଶ + 𝜎௨
ଶ) + 𝑙𝑛𝜙 ቌ

ఌ೔

ටఙೡ
మାఙೠ

మ
ቍ + 𝑙𝑛Φ ቀ

ఓ∗೔

ఙ∗
ቁ   (3.9) 

where 𝜇∗௜ =
ିఙೠ

మఌ೔

ఙೡ
మାఙೠ

మ;  𝜎∗
ଶ =

ఙೡ
మఙೠ

మ

ఙೡ
మାఙೠ

మ;  𝜙(∙) is a standard normal density function; and Φ(∙) is a 

standard normal cumulative distribution function (cdf). Upon maximizing the sum of the log-

likelihood function over individual observations, the parameter estimates, i.e. ൫𝜷෡, 𝜀̂, 𝜎ො௩
ଶ, 𝜎ො௨

ଶ൯, and 

subsequently the values of  𝜇̂∗௜ and 𝜎ො∗
ଶ are obtained.  

The model parameters are then used to derive technical inefficiency index as 𝐸(𝑢௜|𝜀௜) according 

to Jondrow et al (1982) and technical efficiency scores as 𝐸(exp (−𝑢௜)|𝜀௜) according to Battese & 
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Coelli (1988). Jondrow et al (1982) showed the distribution of 𝑢௜ conditional on 𝜀௜ to be truncated 

normal with mean 𝜇∗௜ and variance 𝜎∗
ଶ, i.e. (𝑢௜|𝜀௜)~𝑁ା(𝜇∗௜ , 𝜎∗

ଶ). Based on this distribution, the 

technical ineffiency scores by Jondrow et al (1982) and efficiency scores by the Battese & Coelli 

(1988) methods, respectively, are predicted as: 

𝑢ො௜ =  𝐸(𝑢௜|𝜀௜) =
ఙ∗థቀ

ഋ∗೔
഑∗

ቁ

஍ቀ
ഋ∗೔
഑∗

ቁ
+ 𝜇∗௜       (3.10) 

𝐸(𝑒𝑥𝑝(−𝑢௜)|𝜀௜) = exp (−𝜇∗௜ +
ଵ

ଶ
𝜎∗

ଶ)
థቀ

ഋ∗೔
഑∗

ିఙ∗ቁ

஍ቀ
ഋ∗೔
഑∗

ቁ
     (3.11) 

There have been tremendous developments in methods and empirical applications of SFA 

following the initial studies by Meeusen & van Den Broeck (1977) and Aigner et al (1977). 

Kumbhakar & Lovell (2000 and Parmeter & Kumbhakar (2014 provide detailed accounts of the 

developments. Early studies focused on finding flexible distributions for the inefficiency term. For 

example, Stevenson (1980) proposed gamma distribution and a truncated (at 0) normal 

distribution, which allowed for zero and non-zero modes in the distribution of inefficiency, while 

Greene (1980) proposed a gamma distribution for the inefficiency term. 

Jondrow et al (1982) developed the method for estimating observation-specific technical 

inefficiency parameters as discussed above, overcoming shortcomings in earlier methods that 

estimated only average inefficiency score over a sample of producing units. However, the Jondrow 

et al (1982) method assumes that the technical inefficiency parameter is independently and 

identically distributed. This assumption is problematic in cases where technical inefficiency is 

correlated with characteristics of producing units. 
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Kumbhakar, Ghosh, & McGuckin (1991), Reifschneider & Stevenson (1991), Huang & Liu (1994) 

and Battese & Coelli (1995) extended the stochastic frontier methodology to estimate the 

production frontier and explicit relationship between inefficiency and exogenous factors in a single 

step. This estimation procedure solves the bias problem inherent in the two-step estimation process 

which had dominated in earlier studies (see Wang & Schmidt (2002) for a discussion about the 

bias in a two-step procedure). Caudill & Ford (1993), Caudill, Ford, & Gropper (1995), Hadri 

(1999) and Wang (2002, 2003) considered stochastic frontier models that address 

heteroscedasticity problem through parameterizing the pre-truncated variance of the inefficiency 

term, u୧, and noted that ignoring heteroscedasticity may lead to biased inefficiency estimates. This 

contrasts with the case in linear models where heteroscedasticity in the error term may affect only 

the precision of coefficient estimates. 

Wang & Schmidt (2002) introduced the idea of scaling property in the context of cross-sectional 

data while Alvarez et al (2006) discuss models with the property but in the context of panel data 

and identify its advantages. Models with the scaling property have the feature that changes in the 

exogenous factors hypothesized to affect inefficiency change the scale but not the distribution of 

the inefficiency component of the error term. Alvarez et al (2006) propose a procedure for selection 

of the inefficiency model. 

The first studies to apply panel data methods to stochastic frontier analysis were Pitt & Lee (1981) 

and Schmidt & Sickles (1984), both of which assumed time-invariant technical inefficiency. The 

time-invariant assumption would be acceptable in short panels but obviously is practically 

questionable in long period panels. Another implication of this assumption is that unobserved 

producer-specific effects that are time-invariant are interpreted as inefficiency, which may bias 

estimated inefficiency scores. An additional shortcoming of the conventional fixed-effects model 
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is that it requires sufficient variability of data over time for each producing unit because it uses 

within estimation. Little within-variability of data for producing units would produce imprecise 

fixed-effects estimates. In addition, it is not possible to include time-invariant covariates, such as 

gender, in the model. 

To overcome some of the limitations of the conventional panel data methods, later studies using 

panel data relaxed the time-invariant assumption and considered time-varying inefficiency (e.g. 

Kumbhakar, 1990; Cornwell, Schmidt, & Sickles, 1990; Battese & Coelli, 1995). However, the 

models used in these studies still confound time-invariant unobserved producer-specific effects 

into inefficiency. In efforts to overcome this problem, Greene (2005) extended panel data methods 

to the stochastic frontier models and developed what he calls “true fixed-effects” (TFE) and “true 

random-effects” (TRE) stochastic frontier models. A key feature of these models is that they treat 

inefficiency as time-varying and at the same time separate time-invariant unobserved producer-

specific effects from inefficiency. The TFE stochastic frontier model, however, faces the incidental 

parameters problem (Neyman & Scott, 1948). This problem arises because the number of fixed-

effect parameters (the incidental parameters) to be estimated increases as the sample size increases 

while the time dimension is fixed, resulting in inconsistent estimates of the incidental parameters. 

Greene (2005) found that while the incidental parameter problem does not affect the model slope 

parameters, it biases model residuals, therefore affecting technical inefficiency estimates, which 

are based on the residuals. Some analysts, for example Wang & Ho (2010), Chen, Schmidt, & 

Wang (2014) and Belotti & Ilardi (2015), have proposed estimation methods to resolve this 

problem.  

While its estimation is not problematic, a limitation of the TRE stochastic frontier model is that it 

does not allow for correlation between time-invariant unobserved producer-specific effects and 
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explanatory variables in the model, which can lead to biased estimates. Some analysts have 

proposed adjustments to the TRE specification of stochastic frontier model using Mundlak-

Chamberlain device (Mundlak, 1978; Chamberlain, 1984; Wooldridge, 2010) to account for 

correlation between time-invariant unobserved producer-specific effects and covariates in the 

model (e.g. Farsi, Filippini, & Kuenzle, 2005; Abdulai & Tietje 2007; Filippini, Hunt, & Zorić 

2014; Filippini & Greene, 2016; Griffiths & Hajargasht, 2016). The authors note that unlike in the 

random effects linear model with a normal error term where adjustment using the Mundlak-

Chamberlain device results in coefficient estimates that are similar to within estimators, the 

coefficient estimates from the adjusted TRE stochastic frontier model are not similar to within 

estimators. This is because the adjusted TRE stochastic frontier model has asymmetric composed 

error term and estimation is by maximum likelihood. Nevertheless, the authors suggest that using 

the device in TRE stochastic frontier model reduces heterogeneity bias because some correlation 

between time-invariant unobserved producer-specific effects and explanatory variables is 

captured. However, what remains unknown is the extent to which the heterogeneity bias is reduced. 

Despite the methodological efforts in SFA to disentangle time-invariant unobserved producer-

specific effects from inefficiency, Chen et al. (2014) observe that a philosophical question remains 

as to whether these effects are part of inefficiency, as assumed by the models that do not distinguish 

them from inefficiency, or heterogeneity to control for in estimating inefficiency. Some analysts 

have recently suggested that the ‘true’ inefficiency measure may lie in between the two extreme 

positions and proposed extensions of stochastic frontier panel data models to disentangle persistent 

inefficiency from time-invariant unobserved producer-specific effects (e.g. Colombi, Martini, & 

Vittadini, 2011; Kumbhakar, Lien, & Hardaker, 2014; Filippini & Greene, 2016). 
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The methodological developments in SFA are impressive, but great variability exists in results 

obtained from using different models. For example, Kumbhakar, Lien, & Hardaker (2014) apply 

six panel data models in SFA of technical efficiency in Norwegian grain farming and obtain quite 

different results for each of the models. They conclude that there is no model that can be said to 

measure inefficiency “correctly”. This places the onus of model choice in an empirical study using 

SFA on a careful understanding of the research context and the nature of data available. 

We present model choice and estimation strategy next. 

3.3.3 Model choice and estimation strategy 

3.3.3.1 Model choice 

The focus of the study is on estimating farm-level technical efficiency while controlling for 

environmental conditions, and identifying factors that affect technical efficiency variation across 

farms. It exploits some of the methodological advances discussed above and applies them to pooled 

cross sectional data to meet these objectives.  Reflecting on the objectives and the data, the study 

applies the model proposed by Wang (2002), which combines features of the model of Kumbhakar, 

Ghosh, & McGuckin (1991), Huang & Liu (1994) and Battese & Coelli (1995) (KGMHLBC) and 

that of Caudill & Ford (1993), Caudill, Ford, & Gropper(1995) and Hadri (1999) (CFCFGH). 

Indexing producing units (maize farms in this case) by 𝑖 = 1,2, … , 𝑁, we express the model in a 

cross-sectional setting as follows: 

𝑦௜  = 𝑓(𝐱୧, 𝐰୧; 𝜷, 𝜽) + 𝜀௜        (3.12) 

𝜀௜ =  𝑣௜ − 𝑢௜ ,  𝑢௜ ≥ 0        (3.13) 
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𝑣௜~𝑁(0, 𝜎௩
ଶ),          (3.14) 

u୧~𝑁ା(𝜇௜ , 𝜎௨௜
ଶ ),         (3.15) 

𝜇௜ = 𝒛௜𝜹,          (3.16) 

𝜎௨௜
ଶ = exp (𝒛௜𝝉),         (3.17) 

where 𝑦௜ is the output, 𝑓(𝐱୧, 𝐰୧; 𝜷, 𝜽) represents the production frontier, 𝐱୧ is the vector of inputs 

and includes one, 𝐰୧ is a vector of environmental conditions (soil fertility conditions and 

agronomic practices) and 𝜷 and 𝜽 are the corresponding parameter vectors to be estimated. The 

term 𝑣௜ represents random error that accounts for measurement and specification errors and 𝑢௜ is 

a non-negative random term representing inefficiency. A zero-mean normal distribution is 

assumed for 𝑣௜ (3.14) while 𝑢௜ is assumed to have a truncated normal distribution with mean 𝜇௜௧ 

and variance 𝜎௨௜
ଶ  (3.15) both of which are functions of 𝒛௜((3.16), (3.17)). The vector 𝒛௜(which 

includes one among the elements), represents exogenous factors hypothesized to influence 

inefficiency, while 𝜹 and 𝝉 are the corresponding parameter vectors to be estimated. It is 

assumed that 𝑣௜ and 𝑢௜ are independent of each other and of 𝐱୧ and 𝐰୧. 

The KGMHLBC and CFCFGH models differ in that the former allows the exogenous factors, 𝒛௜, 

to influence inefficiency through the mean, 𝜇௜, of the pre-truncated distribution of 𝑢௜while the 

latter accounts for heteroscedasticity through the variance of 𝑢௜, that is, the exogenous factors are 

allowed to influence inefficiency through the variance, 𝜎௨௜
ଶ , of the pre-truncated distribution of 

𝑢௜. Wang (2002) demonstrates that allowing the exogenous factors to influence inefficiency 

through both the mean and the variance allows for a non-monotonic relationship between 

inefficiency and exogenous factors. In addition, Kumbhakar & Lovell (2000) note that disregard 



127 
 

for heteroscedasticity results in biased estimates of the production frontier parameters and 

technical ineffciency estimates. 

It is important to acknowledge the limitation that the modelling approach used here does not 

accommodate the possibility that some maize farms may be fully efficient. Rho & Schmidt (2015) 

suggest that if some producing units are fully efficient, the traditional stochastic frontier model we 

apply is mis specified and may result in biased production frontier and inefficiency estimates. 

Although this study does not apply them, recent efforts to accommodate the possibility of some 

units being fully efficient include Kumbhakar, Parmeter, & Tsionas (2013), Tran & Tsionas (2015) 

and Rho & Schmidt (2015).  

3.3.3.2 Estimation strategy 

The SFA requires specifying a function for the production frontier, 𝑓(𝒙௜ , 𝒘௜; 𝜷, 𝜽). Many 

production functions in the literature possess the quasi-concavity property suggested by producer 

theory and 𝑓(𝒙௜ , 𝒘௜; 𝜷, 𝜽) can take any of those forms. However, the Cobb-Douglas and translog 

production functions are two most commonly used specifications for the production frontier in 

SFA studies. The Cobb-Douglas functional form has the advantage that it is easier to estimate 

(because of fewer parameters) and the results are easier to interpret. However, it restricts output 

elasticities to be constant and elasticity of substitution between inputs to unity. The translog 

functional form is a generalization of the Cobb-Douglas functional form, and is more flexible 

because it does not impose restrictions on the elasticities; it allows elasticity of substitution to vary 

from point to point on the production function. However, the translog functional form requires 

estimation of many parameters (because of interaction terms) and the results are more difficult to 

interpret than in the Cob-Douglas. Because of its flexibility, we use the translog functional form, 
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and test its suitability against the Cobb-Douglas specification. The model we estimate, i.e. 

equations (12a), (16) and (17), is specified below: 

Frontier: 

ln 𝑦௜ = 𝛽଴ +  ∑ 𝛽ೕೕ 𝑙𝑛൫𝑥೔ೕ൯ +
ଵ

ଶ
∑ 𝛽ೕೕೕ 𝑙𝑛൫𝑥೔ೕ൯

ଶ
+ ∑ ∑ 𝛽ೕೖೖಯೕೕ 𝑙𝑛൫𝑥೔ೕ൯𝑙𝑛(𝑥೔ೖ)   (3.18) 

+ ∑ 𝜃ೞೞ 𝑤೔ೞ + 𝛼𝑇 + 𝜀௜  

Inefficiency: 

𝜇௜ = 𝛿଴ + ෍ 𝛿೗

೗

𝑧௜௟                     

𝜎௨௜
ଶ = 𝑒𝑥𝑝 (𝜏଴ + ∑ 𝜏೗೗ 𝑧௜௟)  

In the model (3.18), i,  j, and s  index maize farm, input, and environmental variable (soil fertility 

attribute or agronomic practice) respectively; 𝑦 is output; 𝒙 is the input vector; 𝒘 is the vector of 

environmental variables (soil fertility conditions and agronomic practices); and 𝜷 (also containing 

the intercept) and 𝜽 are parameter vectors associated with inputs and their interaction terms and 

environmental variables, respectively. As explained earlier, Kenya’s maize production is quite 

diverse with respect to environmental conditions. These conditions, such as soil fertility, are likely 

to affect maize yield while at the same time conditioning farmers’ input use decisions. Failure to 

control for such conditions may result in biased production frontier and inefficiency estimates. We 

also include a dummy variable for year of the survey, 𝑇, to control for year differences and 𝛼 is its 

associated parameter. 𝜀௜ = 𝑣௜ − 𝑢௜ is the composed error term. The vector 𝒛 in the inefficiency 

equations represents exogenous factors that influence technical efficiency and (𝜹, 𝝉) are the 

corresponding parameter vectors to estimate. 
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Model (3.18) is estimated in a single step using maximum likelihood (ML) procedure as outlined 

earlier. The log-likelihood function is presented in Wang (2003) and technical efficiency estimates 

are obtained using Battese & Coelli (1988) method (equation (11)). The model is specified with 

and without including the environmental variables to understand the importance of controlling for 

environmental production conditions in agricultural productivity and efficiency estimation. 

3.3.4 Data sources and variables 

3.3.4.1 Data sources  

The study uses household- and plot-level survey dataset on maize production in Kenya described 

in section 2.2.31. In addition, the study uses rainfall data obtained from the Climate Hazards group 

Infrared Precipitation with Stations (CHIRPS) dataset, developed in support for the United States 

Agency for International Development Famine Early Warning Systems Network (FEWS NET) 

(Funk et al., 2015). The dataset comprises high resolution (0.05°), daily, 5-day mean, and 

monthly precipitation that spans over 30 years (see Funk et al., 2015 for details). Household-level 

GPS coordinates were used to extract from the dataset daily precipitation data for growing periods 

of 2013/2014 and 2015/2016 main seasons of maize production. The daily precipitation data were 

summed over the growing period for each season to generate data on amount of rainfall for that 

season. All households within a sub-location had the same rainfall amount because they were 

within the same 0.05° x 0.05° grid.  
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3.3.4.2 Variables  

Output variable 

The frontier part of the stochastic frontier model specifies the relationship between output and 

inputs, soil fertility conditions and agronomic management practices. The output variable is maize 

yield per acre. Because intercropping maize with other crops, especially common beans, is the 

norm rather than an exception in Kenya, and because it is not possible to meaningfully apportion 

inputs applied on a plot to maize production, it is necessary to adjust for intercropping in 

calculating maize output on a plot. We create an output index for intercropped maize plots using 

the following method proposed by Liu & Myers (2009): 

𝑦௜ =
∑ ௬೔ೕ௉ೕೕ

௉భ
 ,        (3.19) 

where 𝑦೔ is the output index on plot 𝑖, 𝑦௜௝ the yield of crop 𝑗 on plot 𝑖 and 𝑃௝ the sub-county median 

price of crop 𝑗, computed from producer prices  reported by the sample households that sold crop 

𝑗. Crop 1 is maize, so that 𝑃ଵ is the price of maize. 

Input variables 

The inputs are inorganic fertilizers, maize seed, labor, and mechanization3. Because maize farmers 

often use a wide range of fertilizers and in varied amounts and because different fertilizers have 

different amounts of macronutrients, it is reasonable to use amounts of macronutrients rather than 

the quantity of fertilizer applied in the production frontier equation. Compound inorganic 

                                                 
3 While farmers also use organic materials such as manure and compost, we consider their application among 
agronomic practices because farmers apply them with a long-term view of improving the fertility condition of the 
soil rather than for production in a growing season. 
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fertilizers often have three macronutrients - nitrogen (N), phosphorus (P) and potassium (K). The 

nutrient composition of the compound fertilizers is identified by percentages of nitrogen (N), 

phosphate (P2O5) and potash (K2O) (Maguire, Mark, & Flowers, 2009), which, as a standard 

practice internationally, are normally labeled on fertilizer packaging (bags). Such labeling helps 

in determining the amount of the macronutrients in each quantity of fertilizer and is, therefore, 

useful to decisions about appropriate fertilizers and quantities to apply. For example, the most 

commonly used planting fertilizer for maize in Kenya is diammonium phosphate (DAP), which 

has the composition (formula) (18:46:0). This means that any amount of DAP has 18% N, 46% 

P2O5 and 0% K2O. To get the amount of each macronutrient applied on a plot, first we need to 

know the percentage of phosphorus (P) in the available phosphate (P2O5) and potassium (K) in the 

water-soluble potash (K2O), then multiply these with the respective composition percentages and 

eventually by the amount of fertilizer applied. P constitutes approximately 43.6% of P2O5 while K 

constitutes 83% of K2O. Continuing with the DAP example, it means that any amount of DAP 

contains 18% N, about 20% (0.436*46) P and 0% (0.83*0) K. The remaining 62% is filler material. 

Another fertilizer among many that farmers use is NPK (23:23:23). Any amount of this fertilizer 

contains 23% N, 10% (0.436*23) P and 19% (0.83*23) K, and the remaining material is filler. We 

compute the amount of the macronutrients from all the fertilizers that farmers reported for their 

largest maize plots. Because of the fertilizer formulations, farmers apply the macronutrients in 

fixed proportions when they use inorganic fertilizers. There is thus likely to be high collinearity in 

the amount of N, P and K applied on a plot. Indeed, data shows a high correlation coefficient of 

0.74 between N and P applied to maize plots. Therefore, we use the amount of N as a measure of 

the amount of fertilizer applied to a plot. The use of N to represent fertilizer amount is reasonable 

since nitrogen is the most important and often limiting nutrient in the soil.     
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Maize seed is measured as quantity (in kg) of seed planted per acre. Because not all farmers planted 

improved seed varieties (i.e. hybrid or open pollinated variety (OPV)), we control for the effects 

of improved seed variety using a dummy variable. 

We measure labor as person-days per acre. It constitutes family labor by adult household members, 

hired labor and any other labor that is neither family nor hired. Data on children’s labor is available 

for only 2014 and is excluded from the analysis for that reason and because of lack of a standard 

factor for converting it into adult-equivalent labor. As in Liu & Myers (2009), only labor on pre-

harvest activities is included in the analysis because harvest and post-harvest activities are not 

expected to have significant effects on maize yield.  

The effect of mechanization is captured through a dummy variable for tractor and/or oxen use in 

land preparation and/or planting, the two pre-harvest activities for which mechanized operation is 

most common and data were collected. 

Although we measure output and inputs in terms of amount per unit area, we also include plot size 

explicitly in the frontier function so as not to impose constant returns to scale of the production 

technology in land. 

Soil fertility conditions 

As explained earlier, a major contribution of this study is in controlling for the effects of soil 

fertility conditions and agronomic practices in evaluating technical efficiency. This overcomes 

potential omitted variable bias to which many studies that do not do so may be prone. Soil fertility 

conditions affect the responsiveness of crops to inputs, especially fertilizers, and so it is important 

to control for variability in these conditions in a production function estimation. Because of data 
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limitations, some studies have used geographical location dummies and average soil fertility 

conditions at larger geographical scales (e.g. Liu & Myers, 2009; Sheahan, 2011). However, soil 

fertility conditions can dramatically vary even within a very small geographical area, so using 

average soil conditions for large geographical areas to represent soil fertility on cultivated plots 

certainly does not accurately capture the variability in soil fertility across the plots. This study 

overcomes that limitation by using plot-level measures of soil physical and chemical properties to 

control for the effects of soil fertility status on maize yield. 

Doran & Parkin (1994) propose a selection of physical, chemical and biological properties of soil 

that can be useful as indicators for assessment of soil fertility. Based on the soil data available for 

this study, we control for soil fertility using measured soil physical and chemical properties. Soil 

texture, a physical property, is a measure of relative proportion (by weight) of clay, silt and sand 

particles in a soil. Texture influences many soil properties, including drainage, water holding 

capacity, erodibility, organic matter content and aeration. We measure soil texture in terms of sand 

content (i.e. percentage sand). Soils higher in sand content have lower water holding capacity and 

organic matter content, which is important for nutrient storage and availability to plants. We expect 

maize yield to vary inversely with sand content in the soil. 

Among the soil chemical properties proposed by Doran & Parkin (1994) as indicators that can be 

used to assess soil fertility include total organic carbon, total nitrogen, soil pH, electrical 

conductivity and extractable (or plant-available) macronutrients (P, K). Total carbon and total 

nitrogen are indicators of soil fertility and potential crop productivity of the soil and are highly 

correlated. We therefore use amount of total carbon in the soil, measured in percentage. Soil pH is 

a measure of soil acidity, which affects biological and chemical activity in the soil. Lower pH 

levels indicate greater acidity while higher values indicate alkalinity. Most crops require near 
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neutral levels of pH to grow best. Electrical conductivity of soil is a measure of the amount of 

soluble (salt) ions in the soil. It varies depending on a host of soil properties, including texture, 

water holding capacity, organic matter content and cation exchange capacity. Electrical 

conductivity is thus strongly correlated with many soil properties, particularly texture (Grisso et 

al, 2009), and, for this reason, we do not include it in the model.  We include plant-available 

phosphorus among the macronutrients because it is particularly sensitive to soil acidity. 

Agronomic practices 

Agronomic practices refer to farm management actions that farmers take to improve soil fertility, 

enhance utilization of agricultural production resources and improve the environment. While such 

practices are many and cut across different aspects of the farm, this study concentrates on the group 

of practices often targeted at improving soil fertility to increase crop production. A dummy 

variable for use of manure (animal or green) or compost on the plot is included to capture the 

effects on maize yield of management practices that improve soil fertility. Addition of manure or 

compost increases soil organic matter, which acts as a reservoir of nutrients in forms that are 

available to plants and improves soil structure, maintains soil tilth and minimizes erosion (Bot & 

Benites, 2005). Also included are dummy variables for use of crop residues and intercropping 

maize with legumes (e.g. common beans, cowpeas, pigeon peas). Crop residues, upon 

decomposition, add organic matter into the soil while legumes fix nitrogen in the soil hence 

improves soil fertility.  

To control for the effects of rainfall on maize yield, we include two variables; rainfall amount and 

rainfall stress during the growing season. We measure stress as the fraction of 20-day periods that 

received less than 40 mm of rain during the growing season. Rainfall stress is important because 
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it captures rainfall distribution over the growing period. Maize crop demand for water varies with 

growth stages and it is important that at every stage there is sufficient supply of water for better 

yield potential. We control for other differences in environmental, policy and market conditions 

through county dummy variables. This is very important because since 2012 Kenya’s department 

of agriculture, livestock and fisheries has been under the management and policy directives of 

respective county governments, which operate independently in terms of policies and programmes 

they prioritize and implement.  

Exogenous factors influencing efficiency  

Kagin, Taylor, & Yúnez-Naude (2015) note that theory offers little guidance on what explains 

technical efficiency and suggest that its analysis is primarily an empirical endeavor. However, 

literature has established existence of statistical relationship between technical efficiency and a 

range of contextual characteristics under which farms operate. We thus follow the existing 

literature (e.g. Yang et al., 2016; Kumbhakar et al., 2014; Liu & Myers, 2009; Wang, 2002; Battese 

& Coelli, 1995; Kumbhakar et al., 1991) in selecting the variables that go into the inefficiency part 

of the stochastic frontier model. Factors that affect efficiency are primarily those that often 

influence a farmer’s management capacity of the production process. It is possible that different 

groups of farmers can use the same type and amounts of inputs and operate under the same 

environmental conditions but produce different output levels. Such differences can be explained 

by factors that affect how they manage their production process.  

We use education to control for human capital and measure it as the education level of the plot 

manager. Kumbhakar et al. (1991), Battese & Coelli (1995), Liu & Myers (2009) and Yang et al., 

(2016) found a positive relationship between education and technical efficiency. Also related to 
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human capital are skills acquired through experience in farming and so we include as a measure 

of experience the number of years the plot manager’s household has been in farming. To control 

for the effects of gender on technical efficiency, we include a dummy variable for female plot 

manager. It is widely acknowledged that women relative to men are generally disadvantaged in 

terms of agricultural productive resources, including human capital.  

A farmer’s incentives to invest in long run productivity improvement can be affected by the 

attributes of their land, including tenure security (Besley, 1995). Location of the cultivated plot 

can also affect its management, with plots near homesteads receiving greater attention because 

they are easily reachable and monitoring them should be more convenient. Research has also found 

inverse farm size-productivity relationship and farm size-technical efficiency relationship (e.g. 

Benjamin, 1995; Kagin, Taylor, & Yúnez-Naude, 2016). These show that it is important to control 

for the effects of farmers’ land attributes in inefficiency estimation. We use a dummy variable for 

plot ownership to control for effects of tenure security. Two measures are used to control for the 

effects of land size – household total landholding and the size of the maize plot. We also include 

distance from the household’s dwelling to the maize plot. 

Farmers’ perceptions and/or knowledge about the fertility condition of soil on their farms can 

partly influence how they manage their agricultural production on the farm. However, such 

perceptions may not necessarily reflect the actual soil fertility condition and thus may result in 

management practices that mismatch the needs of the soil. If this happens, it may have undesirable 

influence on technical efficiency. We control for the effects of deviation of farmers’ perceptions 

about the fertility conditions of their soils from measured fertility as determined from soil test 

results. Farmers were asked to rate the fertility of soil on their maize plots on a Likert scale of 1 

(very infertile) to 4 (very fertile) based on their own perceptions. We reduce the scale to two 
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categories - infertile (combining 1 and 2) and fertile (combining 3 and 4) - because of very low 

responses on the two extreme categories (1 and 4). From the soil test data, we use three chemical 

properties of soil – total carbon (C), total nitrogen (N) and pH - and their threshold values as 

obtained from recommendations by the Kenya government on critical levels of various soil 

nutrients and pH for maize growth, to determine whether a soil is infertile or fertile. A plot is fertile 

if the soil has total C≥ 2.7%, N≥ 0.2% and 5.5 ≤ pH ≤ 7.0. We compare a farmer’s rating (fertile 

or infertile) against the rating using these threshold values, and construct a binary variable for 

farmer perception deviation that takes the value of 1 if the farmer’s rating differs from the rating 

using threshold values and 0 otherwise.   

We control for the effects of extension services using distance to extension service provider. While 

suitable variables to capture effects of extension services include number of visits to extension 

service provider and whether a farmer received extension advice, such information is, 

unfortunately, lacking in the data. 

We exclude from the analysis maize plots with any of the following characteristics: 1) intercropped 

plots for which the share of maize in total value of crops output is less than 20% because the focus 

of the study is on maize; 2) less than 0.2 acres in size because of potential for measuring error in 

computing rates of input use; 3) labor use rate of less than 3 or more than 3000 person-hours per 

acre; and 4) maize yield less than 80kg/acre. Ultimately, the analysis uses 1102 pooled plot 

observations in 621 households. Summary statistics of the variables is presented in Table 3.1.  
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Table 3.1: Variable description and summary statistics (N=1102) 

Variable Unit of 
measure 

Mean SD Min Median Max 

Output       
Maize yield index Kg/acre 1256.15 842.86 81.14 1089.32 7800.00 
       
Inputs       
Nitrogen amount in fertilizer 
applied 

Kg/acre 19.57 16.48 0.00 16.26 109.00 

Maize seed  Kg/acre 9.50 2.81 2.00 10.00 20.00 
Pre-harvest labor Person-

hours/acre 
229.05 217.90 3.00 172.00 2484.00 

Improved maize seed  1=yes, 0=no 0.94 0.24 0.00 1.00 1.00 
Mechanized land preparation  1=yes, 0=no 0.54 0.50 0.00 1.00 1.00 
Agronomic practices       
Manure/composed use  1=yes, 0=no 0.44 0.50 0.00 0.00 1.00 
No. of crops Number 2.18 1.10 1.00 2.00 9.00 
Maize intercrop with legume  1=yes, 0=no 0.72 0.45 0.00 1.00 1.00 
Use of crop residue  1=yes, 0=no 0.42 0.49 0.00 0.00 1.00 
Soil fertility conditions       
Total organic carbon % (value) 2.12 0.86 0.22 2.00 4.93 
Plant available phosphorus Parts per 

million (ppm) 
17.77 18.90 0.20 12.40 168.00 

Soil pH Value  5.67 0.51 4.40 5.62 8.03 
Soil Texture  % sand 48.13 18.83 7.55 50.00 88.10 
Main season rainfall mm 1015.36 692.67 263.08 843.72 3294.94 
Moisture stress (Fraction of 20-day 
periods with <40 mm of rainfall) 

(0-1) 0.21 0.16 0.00 0.13 0.60 

Inefficiency predictors       
Education of plot manager years 7.97 3.88 0.00 8.00 17.00 
Gender of plot manager 1=female, 

0=male 
0.35 0.48 0.00 0.00 1.00 

Experience of household in farming years 27.51 16.07 1.00 25.00 87.00 
Farmer perception of plot fertility 1=fertile, 

0=infertile 
0.59 0.49 0.00 1.00 1.00 

Consistency of farmer perception 
and measured plot fertility 

1=consistent, 
0=inconsistent 

0.47 0.50 0.00 0.00 1.00 

Plot size acres 1.15 2.08 0.20 0.50 30.00 
Household land holding acres 3.20 5.40 0.00 1.50 49.00 
Distance to plot Walking time 

(minutes) 
4.75 10.65 0.00 2.00 180.00 

Household owns plot 1=yes, 0=no 0.89 0.31 0.00 1.00 1.00 
Distance to extension service  km 5.75 4.98 0.10 5.00 40.00 
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3.4 Results 

Model diagnostic test results are discussed first, followed by maximum likelihood estimation 

results of the stochastic frontier production function, and, finally, technical efficiency estimates 

and implications. 

3.4.1 Model diagnostic test results 

3.4.1.1 Likelihood ratio test of presence of technical inefficiency 

We test for the presence of technical inefficiency using the likelihood ratio test procedure as 

outlined in Kumbhakar, Wang, & Horncastle (2015). We compare the log likelihood ratio of OLS 

regression against that of maximum likelihood estimation of the Wang (2002) stochastic frontier 

model, in which both the pre-truncated mean and variance of technical inefficiency are functions 

of exogenous variables. We conduct the test with and without environmental variables (soil 

fertility conditions and agronomic practices) in the estimation equations, and use the flexible form 

of the translog specification for the production frontier. The likelihood ratio (LR) statistic is 

computed as -2[L(H0 )-L(H1 )]. L(H0 ) is the log-likelihood value of the OLS regression (restricted 

model) while L(H1 ) is that of the stochastic frontier (unrestricted model). The degree of freedom 

is the number of restrictions, which in our case is 22; i.e. 11 parameters in each of the pre-truncated 

mean and variance of the inefficiency term. The LR statistic is compared to the critical values of 

the mixed chi-square distribution. Results show that the LR statistic is 112.509 when 

environmental variables are included and 116.167 when environmental variables are not included. 

Both are larger than the critical value of 39.664 at 1% significance level. We thus reject the null 

hypothesis of no technical inefficiency irrespective of whether environmental variables are 

included in the estimation. The OLS regression results are in Table A3.1 in the Appendix. 
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3.4.1.2 Production frontier functional form test: translog vs Cobb-Douglas 

We conduct a likelihood ratio test comparing the suitability of the translog functional form 

(unrestricted model) against the Cobb-Douglas functional form (restricted model) for the 

production frontier. We conduct the test separately for the model specification with and without 

environmental variables. The number of restrictions is equal to the quadratic and interaction terms 

in the translog functional form, which in this case is six. In the model specification with 

environmental variables, the LR statistic of the test is 41.70 with p<0.001, while in the 

specification without environmental variables the LR test statistic is 33.48 with p<0.001. 

Therefore, the translog functional form fits the data better than the Cobb-Douglas irrespective of 

whether environmental variables are included in the production frontier equation. Maximum 

likelihood estimation results of the Cobb-Douglas production frontier (with and without 

environmental variables) are in Table A3.2 in the Appendix. Subsequent tests and analyses proceed 

with the flexible translog functional form specification for the production frontier. 

3.4.1.3 Stochastic frontier model test 

This study uses the Wang (2002) model in which both the pre-truncated mean and variance of 

technical inefficiency are modelled as functions of exogenous variables, thus combining features 

of the model of Kumbhakar, Ghosh, & McGuckin (1991), Huang & Liu (1994) and Battese & 

Coelli (1995) (KGMHLBC) and that of Caudill & Ford (1993), Caudill, Ford, & Gropper (1995) 

and Hadri (1999) (CFCFGH) models. For completeness, we test the suitability of this model 

against the KGMHLBC and CFCFGH models. We also test its suitability against the truncated-

normal model of Stevenson (1980) in which exogenous variables do not influence the distribution 

of inefficiency. We use LR test where the Wang (2002) model is the unrestricted model and the 

others the restricted models. We conduct the tests for the specifications with and without 
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environmental variables. Test results are shown in Table 3.2 (Maximum likelihood estimates of 

the restricted models are presented in Table A3.3 in the Appendix). Clearly, the Wang (2002) 

model best fits the data. Further, rejection of the Stevenson model in favor of the  Wang (2002) 

model affirms that inefficiency is affected by the exogenous factors as specified in the Wang 

(2002) model. Subsequent analyses and results are based on the Wang (2002) model. 

Table 3.2: Likelihood ratio test results of the Wang (2002) model against KGMHLBC, CFCFGH 
and Stevenson models  

Models 
No. of 

restrictions 

With 
environmental 

variables 

 
With environmental 

variables 5% 
critical 
value 

Decision 
LR 

statistic 
p-

value 

 
LR statistic 

p-
value 

Wang vs 
KGMHLBC 

10 33.73 0.0002 
 

25.58 0.0044 18.307 
Reject 
KGMHLBC 

Wang vs 
CFCFGH 

10 31.04 0.0006 
 

28.68 0.0014 18.307 
Reject 
CFCFGH 

Wang vs 
Stevenson 

20 97.89 0.0000 
 

97.51 0.0000 31.410 
Reject  
Stevenson 

 

3.4.2 Stochastic production frontier estimation results 

The joint maximum likelihood estimates of the frontier part of model (3.18), specified in flexible 

translog functional form, are presented in Table 3.3. The estimation was conducted with and 

without environmental variables and both sets of results are presented. Likelihood ratio test shows 

that the model specification with environmental variables fits the data better; the LR statistic (with 

13 degrees of freedom) is 139.95 with p<0.001. Under the specification with environmental 

variables, maize yield is positively and significantly correlated with fertilizer (N) and seed. The 

positive and significant coefficients of the first and second order terms of the fertilizer variable 

indicates that for the entire range of the data, increased use of nitrogen fertilizer would, on average, 
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have increasing effects on maize yield. Although weakly significant, the negative sign on the 

second order term of fertilizer and labor indicate that the two inputs are substitutes. As expected, 

maize yield is positively correlated with use of improved seed varieties. In addition, yield has a 

positive association with mechanized land preparation. There is an inverse relationship between 

maize yield and plot size, which is consistent with findings in majority of empirical studies on 

farm size-productivity relationship (see Barrett, 1996; Barrett, Bellemare, & Hou, 2010; Carletto, 

Savastano, & Zezza, 2013). The positive association of maize yield with the number of crops on a 

plot indicates that on average, intercropped maize plots would have higher yield than monocropped 

plots.  

The coefficient estimates of the production frontier without environmental variables included are 

qualitatively similar to those in the specification with environmental variables. The only major 

differences are that in the specification without environmental variables, the coefficient on the first 

order term for fertilizer is not statistically significant at any reasonable significance level, while 

the coefficient on improved seed is strongly significant. 

Regarding environmental variables, manure/compost use, higher total organic carbon in the soil 

and soil pH are each associated with higher maize yield. Holding other things constant, 

manure/compost use is associated with approximately 15% higher maize yield, on average, while 

the coefficient on soil pH indicates that increasing the pH by 10% is associated with 1.7% increase 

in maize yield, suggesting that the sample maize plots are acidic, on average. Indeed 39% of the 

plots in the sample had soil pH values below the recommended minimum of 5.5, and 52% had 

values below the sample average of 5.7. Therefore, high soil acidity on maize farms in Kenya is 

an issue that needs to be addressed.  
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Table 3.3: Stochastic production frontier estimates  

Response variable: Log of maize yield 

With environmental 
variables 

 
Without environmental 

variables 

Coefficient Std. error  Coefficient 
Std. 
error 

Explanatory Variables      
Log of fertilizer (lnN) 0.249* 0.149  0.178 0.162 
Log of seed (lnseed) 0.814** 0.384  0.840** 0.415 
Log of labor (lnlabour) -0.0549 0.173  0.0271 0.184 
lnN x lnN 0.128*** 0.0250  0.145*** 0.0261 
lnseed x lnseed -0.221 0.186  -0.104 0.199 
lnlabour x lnlabour 0.0169 0.0229  0.00820 0.0234 
lnN x lnseed -0.145 0.0991  -0.126 0.105 
lnN x lnlabour -0.0636* 0.0366  -0.0760* 0.0403 
lnseed x lnlabour 0.0944 0.118  0.0409 0.126 
Improved seed (1=yes) 0.127* 0.0762  0.292*** 0.0793 
Mechanized land preparation (1=yes) 0.147*** 0.0511  0.252*** 0.0478 
Log of plot size -0.149*** 0.0285  -0.120*** 0.0335 
No. of crops on plot 0.117*** 0.0203  0.0825*** 0.0174 
Year dummy (1=2016) 0.177*** 0.0555  0.282*** 0.0369 
Manure/compost use (1=yes) 0.142*** 0.0363    
Maize-legume intercrop (1=yes) -0.0711 0.0497    
Crops residue use (1=yes) 0.0367 0.0351    
Total organic carbon 0.0460* 0.0276    
Phosphorus -0.00162 0.00101    
Soil pH 0.171*** 0.0357    
Sand content -0.00181 0.00159    
Rainfall 0.0000409 0.0000369    
Moisture stress -0.217 0.136    
Transnzoia county dummya -0.137** 0.0585    
Kakamega county dummya -0.341*** 0.0717    
Kisii county dummya -0.697*** 0.0868    
Machakos county dummya -0.377*** 0.0833    
Constant 3.933*** 0.732  4.310*** 0.771 
𝜎௩

ଶ -1.623*** 0.101  -1.563*** 0.132 
Log-likelihood -863.1077   -933.0820  
Observations 1102   1102  

* p < 0.10, ** p < 0.05, *** p < 0.01 
Note: aUasin Gishu is the comparison county 

Coefficients on the other environmental variables – plant available phosphorus, soil texture (sand 

content), rainfall and moisture stress – are not statistically significant although all but plant 

available phosphorus have expected signs. The unexpected sign of the coefficient on plant 
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available phosphorus is similar to results found by Ekbom et al (2013) in their study of effects of 

soil capital on maize productivity in central Kenya. They attribute their result in part to high soil 

acidity, which, as explained earlier, has the effect of causing phosphorus to form insoluble 

compounds, which makes it unavailable to plants. In highly acidic soils, tests may indicate high 

levels of phosphorus but phosphorus deficiency in plants may occur and reduce output.   

The input coefficients in Table 3.3 are not quite informative by themselves about the relationship 

between maize yield and the inputs because the interaction terms confound such relationships. We, 

therefore, computed output elasticities of the inputs, which have straightforward and meaningful 

interpretation. The elasticity estimates were computed for each plot and the means are presented 

in Table 3.4.  Output elasticity of N is particularly of interest, since fertilizer often seems to be the 

most limiting input in maize production and which has drawn much interest among policy makers 

and researchers in Kenya and the region. The average elasticity of N is 0.262 when environmental 

variables are controlled for. This estimate is statistically larger than the 0.226 average estimate 

without controlling for environmental variables (a paired sample t-test of difference in mean has 

t= 59.815). In both model specifications, the elasticities vary considerably across the counties, with 

Uasin Gishu having the highest and Machakos the lowest estimates. The elasticity estimates for N 

compare well with those obtained by other researchers using data from Kenya. For example, 

Mghenyi (2015) found output elasticity of N of 0.18 while Liu & Myers (2009) found it to be 

0.224 among hybrid maize seed users and 0.209 among  local seed users. These studies, however, 

did not control for environmental variables.  
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Table 3.4: Maize output elasticity with respect to inputs (mean) 

County 
With environmental variables  Without environmental variables 

Fertilizer 
(N) 

Seed Labor  
Fertilizer 

(N) 
Seed Labor 

        
Uasin Gishu 0.317 0.294 0.0336  0.293 0.504 -0.00154 
 (0.00887) (0.00706) (0.00262)  (0.0101) (0.00484) (0.00260) 
        
Trans Nzoia 0.290 0.330 0.0463  0.260 0.521 0.00594 
 (0.00891) (0.00661) (0.00243)  (0.0101) (0.00482) (0.00265) 
        
Kakamega 0.295 0.362 0.0431  0.263 0.536 0.00425 
 (0.00765) (0.00688) (0.00210)  (0.00868) (0.00473) (0.00228) 
        
Kisii 0.241 0.421 0.0593  0.200 0.572 0.0198 
 (0.00678) (0.00684) (0.00197)  (0.00767) (0.00451) (0.00202) 
        
Machakos 0.174 0.470 0.0745  0.123 0.611 0.0399 
 (0.00839) (0.00781) (0.00223)  (0.00952) (0.00529) (0.00251) 
        
Overall 0.262 0.376 0.0517  0.226 0.550 0.0141 
 (0.00401) (0.00372) (0.00112)  (0.00458) (0.00248) (0.00119) 

Standard errors in parentheses 
Note: Elasticities are computed at plot level 

The average elasticities of seed are 0.376 and 0.550, respectively, with and without controlling for 

environmental variables, and vary across the counties, with the estimates highest in Machakos and 

lowest in Uasin Gishu, an exactly opposite pattern to the one for the elasticity of N.  Liu & Myers 

(2009) estimated elasticities of seed to be 0.336 and 0.293 among hybrid and local seed users, 

respectively, while, surprisingly,  Mghenyi (2015) found a negative elasticity of -0.3 for seed.  

Output elasticity of labor averages 0.0517 and 0.0141 for the specification with and without 

environmental variables, respectively, and differs across counties. These estimates are quite 

different from those obtained by Liu & Myers (2009) (0.177 and 0.300 among hybrid and local 

seed users, respectively) but are close to Mghenyi's (2015) estimate (0.04).  

The elasticity estimates point to the importance of controlling for environmental variables in 

agricultural production function estimation. Controlling for soil fertility conditions is especially 



146 
 

important for accurate estimation of the effects of fertilizer on yield. This point will be clearer 

below when we discuss technical efficiency estimates and, subsequently, marginal physical 

product of the inputs. 

3.4.3 Technical efficiency estimation results 

The main aim of this study is to estimate technical efficiency of maize farmers and identify factors 

responsible for variation of technical efficiency across farms, and to understand how important it 

is to account for environmental conditions in the analysis. We first present results on the marginal 

effects of exogenous factors on technical inefficiency from the joint maximum likelihood 

estimation of model (3.18). Next, we discuss technical efficiency estimates and how these vary 

across regions (counties), and the difference in the estimates when we do and not account for 

environmental conditions. Marginal products of the variable inputs are also computed and 

compared across regions to understand regional variations in potential output response to the 

variable input use.  

3.4.3.1 Determinants of technical (in)efficiency 

Marginal effects of exogenous variables on the unconditional mean and variance of inefficiency 

are presented in Table 3.5. The marginal effect on unconditional mean measures how expected 

inefficiency changes when the exogenous variable in question increases, while marginal effect on 

unconditional variance measures the effect of an increase in the exogenous variable on uncertainty 

of technical inefficiency (Wang, 2002; Kumbhakar et al., 2015). It is important to note that for 

continuous variables, a negative sign of the marginal effect on expected inefficiency implies an 

increasing effect on the level of technical efficiency for a positive change in the variable, and vice 
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versa. For binary variables, a negative sign of the marginal effect on the expected inefficiency 

implies that technical efficiency is, on average, higher compared to the base (omitted) category.  

Table 3.5: Marginal effects of exogenous determinants of technical inefficiency (sample means) 

Variables 
With environmental variables  

Without environmental 
variables 

Marginal effect 
Bootstrap 
std. error 

 
Marginal 

effect 
Bootstrap 
std. error 

Mean function (𝜇)      
Plot manager education (yrs) -0.0213*** 0.000340  -0.0144*** 0.000170 
Plot manager is female (1=yes) -0.0546*** 0.00592  -0.0221*** 0.00698 
Soil fertility perception (1=fertile) -0.191*** 0.00716  -0.236*** 0.00295 
Farmer perception consistent with 
soil test (1=yes) 

-0.0286*** 0.00643  -0.0502*** 0.00322 

Plot size (acres) -0.0478*** 0.000953  -0.0812*** 0.00193 
HH landholding (acres) 0.000746*** 0.000190  -0.00659*** 0.000266 
Walking time to plot (mins) -0.00240*** 0.000151  -0.00220*** 0.0000797 
Plot owned (1=yes) 0.328*** 0.0171  0.0651*** 0.00253 
Distance to extension (km) 0.000207* 0.000120  0.00154*** 0.000130 
Farming experience (yrs) -0.00193*** 0.000188  -0.00137*** 0.000138 
      
Variance function (𝜎௨

ଶ)      
Plot manager education (yrs) -0.0103*** 0.000223  -0.00630*** 0.0000938 
Plot manager is female (1=yes) -0.0636*** 0.00283  -0.0754*** 0.00242 
Soil fertility perception (1=fertile) -0.144*** 0.00490  -0.144*** 0.00275 
Farmer perception consistent with 
soil test (1=yes) 

-0.0523*** 0.00272 
 

-0.0554*** 0.00143 

Plot size (acres) -0.0218*** 0.000444  -0.0256*** 0.000362 
HH landholding (acres) -0.000672*** 0.0000624  -0.00581*** 0.000137 
Walking time to plot (mins) -0.00216*** 0.0000841  -0.00186*** 0.0000429 
Plot owned (1=yes) 0.0849*** 0.00360  0.0112*** 0.000416 
Distance to extension (km) -0.000572*** 0.0000424  -0.000379*** 0.0000305 
Farming experience (yrs) 0.00000600 0.0000500  0.000549*** 0.0000344 
      
Observations 1102   1102  

* p < 0.10, ** p < 0.05, *** p < 0.01 
Note: A negative sign of the marginal effect on the mean function implies a contribution to 
efficiency while a positive sign is a contribution to inefficiency for a positive change in the 
variable. 

We observe qualitatively similar (in terms of signs) marginal effects of the exogenous variables 

between the model specification with and without environmental variables. The only exception is 
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in the landholding variable in the mean function for which the effects are positive in the 

specification with but negative in that without environmental variables. Quantitatively, however, 

the marginal effects are quite different between the two model specifications but with no distinct 

pattern, although the magnitudes of the effects are generally small in both specifications. With 

respect to the unconditional mean and variance in each of the two model specifications, the signs 

of the marginal effects of nearly all the exogenous variables are the same. We focus the discussion 

on the marginal effects in the model specification with environmental variables. 

On average, both the level and uncertainty of technical inefficiency tend to reduce with increased 

education level of plot manager, plot size and distance to plot, and when plot manager is female, 

while they tend to be higher when the plot is owned (rather than rented). Increased farming 

experience has a decreasing effect on the level of technical inefficiency. Increased landholding and 

distance to extension service provider have increasing effects on the level but decreasing effects 

on uncertainty of technical inefficiency. These effects are largely as expected, except for the effects 

of gender of plot manager, distance to plot, plot ownership and landholding. The unexpected effect 

of distance to plot and plot ownership may reflect management efforts farmers put on rented plots, 

which the data show are located on average three times farther from the homestead than are owned 

plots. Paying rent on a plot may incentivize a farmer to apply management practices for better crop 

yield to increase returns to investment. The effects of gender of plot manager contradicts findings 

by other studies that have shown that female-headed households are more technically inefficient 

than their male-headed counterparts (e.g.  Liu & Myers, 2009).   

Concerning farmer perception about soil fertility status, the first notable result is that farmers that 

view their plots as fertile have, on average, 19% lower technical inefficiency than do their 

counterparts that consider their plots infertile. They also have less uncertainty of inefficiency. The 
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second is that those whose perceptions of the fertility status of their plots are consistent with that 

determined from soil test have 2.9% lower technical inefficiency than do those with inconsistent 

view and they also have less uncertainty of inefficiency, although these are only significant at 10% 

level. These effects indicate the importance of farmer perceptions about the fertility conditions of 

their soils and underscores the need for farmer access to information that can enhance their 

knowledge about correct soil fertility conditions on their farms.   

3.4.3.2 Technical efficiency estimates 

Technical efficiency estimates were computed using Battese & Coelli (1988) method: 

𝐸(𝑒𝑥𝑝(−𝑢௜)|𝜀௜). Figure 3.4 shows kernel densities of technical efficiency for model specification 

with and without environmental variables. Clearly, technical efficiency estimates based on the 

model specification with environmental variables are higher compared to those based on the 

specification without environmental variables. The mode of technical efficiency for the 

specification with environmental variables is around 0.83 while it is around 0.79 for the 

specification without environmental variables. The distribution of efficiency estimates is left-

skewed in both specifications. Descriptive statistics in Table 3.6 show that technical efficiency 

ranges from 0.12 to 0.99, with the mean at 0.76, for the specification with environmental variables, 

while without environmental variables the estimates range from 0.19 to 0.98, with mean at 0.70.  

The difference in the two means is statistically significant (t=9.021, p<0.001). This is evidence 

that failure to account for the effects of environmental variables in SFA  underestimates technical 

efficiency, a finding that is consistent with Sherlund et al (2002) in a study of technical efficiency 

in rice production in Ivory Coast.  
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Figure 3.4: Kernel density of technical efficiency estimates 

 

Table 3.6: Technical efficiency estimates (mean) 

County 
With environmental variables  Without environmental variables 

Mean Median Minimum Maximum  Mean Median Minimum Maximum 
Uasin Gishu 0.751 0.798 0.123 0.985  0.755 0.784 0.217 0.978 
Trans Nzoia 0.766 0.783 0.305 0.983  0.738 0.754 0.314 0.981 
Kakamega 0.750 0.785 0.248 0.984  0.669 0.707 0.218 0.893 
Kisii 0.740 0.769 0.303 0.952  0.629 0.659 0.191 0.895 
Machakos 0.747 0.797 0.169 0.917  0.683 0.727 0.205 0.892 
Overall 0.751 0.789 0.123 0.985  0.696 0.730 0.191 0.981 

Note: Technical efficiency estimates are computed using Battese & Coelli (1988) method: 𝐸(𝑒𝑥𝑝(−𝑢௜)|𝜀௜) 
 

While the pattern of the difference in technical efficiency estimates between the two model 

specifications remains qualitatively the same within each county, except for Uasin Gishu where 

there appears to be hardly any difference, it is notable that controlling for environmental variables 

makes significant difference in the average technical efficiency estimates in Kisii, Kakamega and 

Machakos. Wald test shows that differences in average technical efficiency across the five counties 

is statistically significant only in the specification without environmental variables, suggesting that 

after controlling for environmental variables, technical efficiency in maize production is pretty 
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much the same across different regions of Kenya. These results affirm that failure to account for 

differences in environmental conditions can give misleading results on the level of technical 

efficiency and its variation across regions. 

Using equation (4) and estimated technical efficiency levels, we computed frontier maize yield 

and generated inefficiency-induced foregone output. Results show that inefficiency-induced maize 

yield loss in model specifications with and without environmental variables is 0.34 and 0.45 tonnes 

per acre, respectively (Table 3.7). Because technical efficiency is underestimated in the 

specification without environmental variables, the computed foregone yield appears to be higher. 

Nevertheless, the yield loss of one third of a tonne/acre is substantial, given that the average 

reported (actual) yield is just 1.3 tonnes/acre.  Across the counties, yield losses due to inefficiency 

are highest in Uasin Gishu and Trans Nzoia and lowest in Kisii (in the model specification with 

environmental variables). 

Table 3.7: Actual, frontier and foregone output (mean) 

County 
Actual 
output 

(kg/acre) 

 
With environmental variables 

 
Without environmental variables 

Frontier output 
(kg/acre) 

Foregone output 
(kg/acre) 

Frontier output 
(kg/acre) 

Foregone output 
(kg/acre) 

Uasin 
Gishu 

1497  1921 424  1912 416 

Trans 
Nzoia 

1563  1985 423  2042 480 

Kakamega 1213  1548 336  1728 515 
Kisii 846  1087 241  1272 425 
Machakos 1128  1415 287  1525 398 
Overall 1256  1599 343  1702 446 

Note: Foregone output computed at the mean of actual and frontier output 
 

Results on average marginal product (MP) of fertilizer (N), seed and labor are presented in Table 

3.8. The marginal products are computed for each plot from the elasticity estimates. Overall, the 

MP of N, seed and labor are all positive, on average, suggesting that at the current average 
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application rates, farmers would realize positive maize yield returns if they increased their rate of 

use of each of the inputs. There is significant variation in the average MP of inputs between the 

two model specifications. Focusing on the specification with environmental variables, the MP of 

fertilizer is 18.63 kg/acre, on average, and varies considerably across the counties. The MP of N 

is particularly high in Trans Nzoia and Uasin Gishu but below the total average in Kisii and 

Kakamega. The result on the MP of N is pretty close to those found by Mghenyi (2015) (14.81 

kg/kg) and Marenya & Barrett (2009) (17.64 kg/kg). It is worth noting that Marenya & Barrett 

(2009) controlled for some soil properties and other environmental production conditions while 

Mghenyi (2015) did not. It is interesting to note that Mghenyi's (2015) estimate is only slightly 

larger than our estimate in the specification without environmental variables (13.01 kg/kg). 

Therefore, the fact that the estimate by Mghenyi (2015) is much lower than ours, which is larger 

than Marenya & Barrett (2009)’s estimate, affirms that omission of environmental variables from 

agricultural productivity analysis can lead to biased results. 

The MP of seed averages 44.9 kg/kg while that of labor is quite low (0.15 kg/person-hour). These 

also vary across the counties, with Machakos having the highest MP of seed and Kisii the lowest. 

Trans Nzoia has the highest MP of labor while Uasin Gishu has the lowest and is negative. Our 

estimate of the MP of seed is incomparable to Mghenyi (2015) who found a large negative estimate 

(-49.70 kg/person-hour) (Marenya & Barrett (2009) did not include seed among the inputs in their 

estimation). However,  our estimate of MP of labor, although above that of Marenya & Barrett 's 

(2009) estimate of 0.08 kg/man-day, is equally quite low. 
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Table 3.8: Marginal product of inputs 

County 

With environmental variables  Without environmental variables 

Fertilizer 
(N) (kg/kg) 

Seed 
(kg/kg) 

Labor 
(kg/person-

hour) 
 

Fertilizer 
(N) (kg/kg) 

Seed 
(kg/kg) 

Labor 
(kg/person-

hour) 
        
Uasin Gishu 20.11 39.14 -0.356  12.97 62.36 -1.478 
 (2.237) (1.417) (0.212)  (4.994) (1.363) (0.319) 
        
Trans Nzoia 21.65 46.36 0.365  16.92 68.87 -0.134 
 (0.569) (1.480) (0.0207)  (0.596) (1.507) (0.0331) 
        
Kakamega 17.02 44.11 0.242  15.91 70.26 -0.0501 
 (0.376) (1.443) (0.0150)  (0.336) (1.790) (0.0180) 
        
Kisii 14.55 37.51 0.177  11.90 57.97 0.0706 
 (0.404) (1.144) (0.00985)  (0.514) (1.513) (0.0106) 
        
Machakos 19.57 56.48 0.318  7.417 72.12 0.177 
 (1.885) (2.081) (0.0521)  (4.195) (1.974) (0.0551) 
        
Overall 18.63 44.88 0.150  13.01 66.46 -0.284 
 (0.619) (0.727) (0.0450)  (1.339) (0.756) (0.0681) 

Standard errors in parentheses 

3.5 Conclusion and implications 

Sustainable agricultural productivity growth is essential to broad-based economic progress in 

agriculture-based economies. This is particularly relevant in many sub-Saharan African countries 

where agriculture plays a major role as livelihood source for majority of the population. Yet, 

agricultural productivity growth in these countries is stymied by, among other things, widespread 

soil infertility mainly because of improper land management practices.  

In Kenya, soil infertility combined with agronomic practices that may not effectively respond to 

fertility needs of the soil is manifest in the stagnation of aggregate maize yield over time despite 

increasing mineral fertilizer application and planting of improved maize varieties.  Because there 

is virtually no land for expansion to increase agricultural production, the onus is on increasing 
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agricultural productivity through technological change, increased efficiency in use of existing 

technology and productive resources or both.  

This study focused on technical efficiency in maize production in Kenya. The first objective was 

to understand the level of technical efficiency in smallholder maize farming and its variation across 

farms, and the factors that are responsible for that variation with a focus on farmers’ subjective 

soil fertility perception. The second was to evaluate the importance of controlling for 

environmental production conditions (soil conditions and agronomic practices) in agricultural 

productivity and technical efficiency estimation. The study applied the stochastic production 

frontier approach due to Meeusen & van Den Broeck (1977) and Aigner et al (1977). 

Three key results have emerged from the study. First, maize farmers in Kenya are generally 

technically inefficient and the level of technical efficiency varies across regions. The mean of 

technical efficiency is 0.75 when environmental variables are controlled for and 0.70 without 

controlling for them in the model estimation. On average, the inefficiency-induced foregone maize 

yield is 0.34 tonnes/acre when environmental variables are controlled for and 0.45 tonnes/acre 

without controlling for environmental variables.  These forgone yield levels are significant 

considering that the reported (actual) yield averaged only 1.3 tonnes/acre. Secondly, estimation of 

technical efficiency without controlling for environmental production conditions in the model 

results in underestimated technical efficiency levels, as evident in the dissimilar results between 

the model specifications with and without environmental variables. Lastly, results have shown that 

farmers that view their plots as fertile have, on average, 19% lower technical inefficiency than do 

those that consider their plots infertile. In addition, farmers whose perceptions about the fertility 

status of their plots are consistent with measured soil fertility have 2.9% lower technical 

inefficiency, on average, than do those with perceptions that do not match measured soil fertility.  
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We conclude that smallholder farmers are technically inefficient and inefficiency varies across 

regions. Therefore, different regions may require different strategies to improve farmers’ 

management of inputs to raise maize productivity. The result that farmers’ perceptions about soil 

fertility explains variation in technical efficiency underscores the importance of farmers’ access to 

information that can enhance their knowledge and understanding about the correct soil fertility 

conditions on their farms. Such information would help them make better choices about 

appropriate inputs and agronomic management practices to apply. Finally, failure to account for 

environmental production conditions in agricultural productivity analysis may produce results that 

are less accurate and unreliable. 
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APPENDIX 
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Table A3.1: OLS regression results 

Response variable: Log of maize 
yield 

With environmental 
variables 

 
Without environmental 
variables 

Coefficient Std. error  Coefficient Std. error 
Explanatory Variables      
Log of fertilizer (lnN) 0.229 0.160  0.162 0.162 
Log of seed (lnseed) 0.639 0.417  0.721* 0.423 
Log of labor (lnlabour) -0.0599 0.186  -0.0645 0.189 
lnN x lnN 0.154*** 0.0263  0.141*** 0.0265 
lnseed x lnseed -0.102 0.200  -0.140 0.203 
lnlabour x lnlabour 0.0250 0.0251  0.0281 0.0255 
lnN x lnseed -0.140 0.107  -0.0968 0.109 
lnN x lnlabour -0.0745* 0.0387  -0.0697* 0.0392 
lnseed x lnlabour 0.0727 0.125  0.0660 0.127 
Improved seed (1=yes) 0.189** 0.0785  0.217*** 0.0797 
Mechanized land preparation 
(1=yes) 

0.199*** 0.0540  0.198*** 0.0549 

Log of plot size -0.106*** 0.0267  -0.117*** 0.0269 
No. of crops on plot 0.117*** 0.0213  0.109*** 0.0182 
Year dummy (1=2016) 0.209*** 0.0585  0.274*** 0.0364 
Manure/compost use (1=yes) 0.179*** 0.0384    
Maize-legume intercrop (1=yes) -0.0488 0.0523    
Crops residue use (1=yes) 0.000824 0.0375    
Total organic carbon 0.0277 0.0289    
Phosphorus -0.00151 0.00107    
Soil pH 0.172*** 0.0376    
Sand content -0.00226 0.00169    
Rainfall 0.0000648* 0.0000390    
Moisture stress -0.209 0.147    
Transnzoia county dummya -0.0738 0.0616  -0.0748 0.0588 
Kakamega county dummya -0.304*** 0.0758  -0.351*** 0.06 30 
Kisii county dummya -0.602*** 0.0911  -0.558*** 0.0789 
Machakos county dummya -0.275*** 0.0878  -0.342*** 0.0776 
Constant 3.596*** 0.791  4.538*** 0.763 
      
Adjusted R-squared 0.385   0.359  
Observations 1102   1102  

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A3.2: Maximum likelihood results of stochastic frontier model with Cobb-Douglas 
specification 

Response variable: Log of maize yield 
With environmental 

variables 
 

Without environmental 
variables 

Coef. Std. error  Coef. Std. error 
Frontier      
Log of fertilizer (lnN) 0.203*** 0.0192  0.172*** 0.0186 
Log of seed (lnseed) 0.470*** 0.0570  0.510*** 0.0575 
Log of labor (lnlabour) 0.0384 0.0234  0.0419* 0.0232 
Improved seed (1=yes) 0.106 0.0762  0.147* 0.0786 
Mechanized land preparation (1=yes) 0.143*** 0.0523  0.133** 0.0532 
Log of plot size -0.156*** 0.0298  -0.189*** 0.0320 
No. of crops on plot 0.110*** 0.0209  0.0970*** 0.0181 
Year dummy (1=2016) 0.209*** 0.0553  0.293*** 0.0345 
Manure/compost use (1=yes) 0.145*** 0.0374    
Maize-legume intercrop (1=yes) -0.0565 0.0506    
Crops residue use (1=yes) 0.0559 0.0360    
Total organic carbon 0.0389 0.0296    
Phosphorus -0.00164 0.00102    
Soil pH 0.155*** 0.0365    
Sand content -0.00193 0.00164    
Rainfall 0.0000426 0.0000382    
Moisture stress -0.191 0.138    
Transnzoia county dummya -0.109* 0.0593  -0.0890 0.0568 
Kakamega county dummya -0.344*** 0.0716  -0.380*** 0.0604 
Kisii county dummya -0.725*** 0.0881  -0.675*** 0.0765 
Machakos county dummya -0.372*** 0.0852  -0.424*** 0.0767 
Constant 4.363*** 0.314  5.194*** 0.204 
𝜎௩

ଶ -1.624*** 0.110  -1.559*** 0.123 
Inefficiency      
Mean function (𝜇)      
Plot manager education (yrs) -0.0471** 0.0234  -0.0462** 0.0183 
Plot manager is female (1=yes) -0.0726 0.182  -0.170 0.123 
Soil fertility perception (1=fertile) -1.430** 0.716  -0.733*** 0.185 
Farmer perception consistent with soil test 
(1=yes) 

-0.631** 0.280  -0.455*** 0.173 

Plot size (acres) -0.146** 0.0659  -0.276*** 0.0935 
HH landholding (acres) 0.0418* 0.0215  0.0365*** 0.0130 
Walking time to plot (mins) -0.00418 0.00802  -0.000623 0.00480 
Plot owned (1=yes) -0.442 0.269  -0.585** 0.260 
Distance to extension (km) 0.00498 0.0146  0.0142* 0.00750 
Farming experience (yrs) 0.00284 0.00772  -0.00164 0.00551 
Constant 1.193*** 0.435  1.476*** 0.286 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A3.2 (cont’d) 

Response variable: Log of maize yield 
With environmental 

variables 
 

Without environmental 
variables 

Coef. Std. error  Coef. Std. error 
Variance function (𝜎௨

ଶ)      
Plot manager education (yrs) -0.0204 0.0300  -0.00747 0.0321 
Plot manager is female (1=yes) -0.103 0.203  0.117 0.214 
Soil fertility perception (1=fertile) 0.560* 0.301  -0.0173 0.249 
Farmer perception consistent with soil test 
(1=yes) 

0.617*** 0.236  0.538* 0.280 

Plot size (acres) 0.0570 0.0826  0.167 0.108 
HH landholding (acres) -0.142*** 0.0527  -0.157** 0.0798 
Walking time to plot (mins) 0.00794 0.00810  0.0115 0.00988 
Plot owned (1=yes) 1.133** 0.472  2.666 1.739 
Distance to extension (km) -0.000173 0.0182  -0.0167 0.0178 
Farming experience (yrs) -0.00666 0.00853  -0.00313 0.00828 
Constant -1.700** 0.809  -3.382* 1.970 
      
Log-likelihood -883.959   -905.144  
Observations 1102   1102  

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A3.3: Maximum likelihood results of stochastic frontier model of KMHLBC 

Response variable: Log of maize yield With EV  W/o EV 
Coef. Std. error  Coef. Std. error 

Frontier      
Log of fertilizer (lnN) 0.228 0.179  0.0819 0.159 
Log of seed (lnseed)  0.795** 0.398  0.870** 0.414 
Log of labor (lnlabour) -0.0752 0.184  -0.0424 0.182 
lnN x lnN 0.133*** 0.0267  0.127*** 0.0256 
lnseed x lnseed -0.174 0.192  -0.227 0.200 
lnlabour x lnlabour 0.0215 0.0235  0.0130 0.0239 
lnN x lnseed -0.162 0.101  -0.0971 0.107 
lnN x lnlabour -0.0507 0.0459  -0.0282 0.0375 
lnseed x lnlabour 0.0740 0.122  0.0590 0.121 
Improved seed (1=yes) 0.137 0.0835  0.166** 0.0767 
Mechanized land preparation (1=yes) 0.149*** 0.0515  0.182*** 0.0571 
Log of plot size -0.148** 0.0682  -0.310*** 0.0686 
No. of crops on plot 0.118*** 0.0209  0.115*** 0.0178 
Year dummy (1=2016) 0.191*** 0.0601  0.277*** 0.0353 
Manure/compost use (1=yes) 0.144*** 0.0404    
Maize-legume intercrop (1=yes) -0.0630 0.0568    
Crops residue use (1=yes) 0.0307 0.0369    
Total organic carbon 0.0302 0.0288    
Phosphorus -0.00186* 0.00103    
Soil pH 0.164*** 0.0364    
Sand content -0.00191 0.00163    
Rainfall 0.0000419 0.0000380    
Moisture stress -0.222 0.147    
Transnzoia county dummya -0.119** 0.0599  -0.0862 0.0563 
Kakamega county dummya -0.325*** 0.0734  -0.362*** 0.0611 
Kisii county dummya -0.656*** 0.0887  -0.644*** 0.07 72 
Machakos county dummya -0.346*** 0.0995  -0.453*** 0.0774 
Constant 4.155*** 0.947  5.617*** 0.761 
𝜎௩

ଶ -1.730*** 0.405  -2.276*** 0.363 
Inefficiency      
Mean function (𝜇)      
Plot manager education (yrs) -0.0628 0.130  -0.0228*** 0.00596 
Plot manager is female (1=yes) -0.102 0.318  -0.00623 0.0417 
Soil fertility perception (1=fertile) -0.795 1.929  -0.281*** 0.0584 
Farmer perception consistent with soil test 
(1=yes) 

-0.221 0.708  -0.0681 0.0531 

Plot size (acres) -0.188 0.316  -0.167*** 0.0476 
HH landholding (acres) 0.00829 0.0334  -0.00135 0.00556 
Walking time to plot (mins) 0.0000886 0.00859  -0.000753 0.00203 
Plot owned (1=yes) 0.184 0.319  0.0463 0.0659 
Distance to extension (km) 0.00226 0.0115  0.00291 0.00397 
Farming experience (yrs) -0.00474 0.0110  -0.00214 0.00141 
Constant 0.884* 0.463  1.600*** 0.287 
Log-likelihood -879.972   -901.194  
Observations 1102   1102  

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A3.4: Maximum likelihood results of various stochastic frontier model of CFCFGH 

Response variable: Log of maize yield 
With EV  W/o EV 

Coef. Std. error  Coef. Std. error 
Frontier      
Log of fertilizer (lnN) 0.233 0.151  0.170 0.152 
Log of seed (lnseed) 0.785** 0.393  0.924** 0.400 
Log of labor (lnlabour) -0.0717 0.176  -0.0659 0.179 
lnN x lnN 0.132*** 0.0251  0.120*** 0.0253 
lnseed x lnseed -0.179 0.190  -0.229 0.194 
lnlabour x lnlabour 0.0211 0.0230  0.0213 0.0233 
lnN x lnseed -0.154 0.101  -0.125 0.102 
lnN x lnlabour -0.0555 0.0372  -0.0456 0.0377 
lnseed x lnlabour 0.0800 0.120  0.0661 0.122 
Improved seed (1=yes) 0.150* 0.0767  0.174** 0.0782 
Mechanized land preparation (1=yes) 0.151*** 0.0513  0.144*** 0.0523 
Log of plot size -0.154*** 0.0291  -0.168*** 0.0291 
No. of crops on plot 0.117*** 0.0207  0.104*** 0.0178 
Year dummy (1=2016) 0.189*** 0.0557  0.267*** 0.0348 
Manure/compost use (1=yes) 0.145*** 0.0368    
Maize-legume intercrop (1=yes) -0.0622 0.0501    
Crops residue use (1=yes) 0.0380 0.0356    
Total organic carbon 0.0281 0.0275    
Phosphorus -0.00186* 0.00101    
Soil pH 0.167*** 0.0362    
Sand content -0.00205 0.00162    
Rainfall 0.0000439 0.0000377    
Moisture stress -0.226 0.138    
Transnzoia county dummya -0.116** 0.0585  -0.101* 0.0558 
Kakamega county dummya -0.322*** 0.0719  -0.368*** 0.0606 
Kisii county dummya -0.660*** 0.0880  -0.623*** 0.0758 
Machakos county dummya -0.337*** 0.0839  -0.404*** 0.0754 
Constant 4.091*** 0.748  4.920*** 0.724 
𝜎௩

ଶ -1.693*** 0.117  -1.666*** 0.116 
Inefficiency      
Variance function (𝜎௨

ଶ)      
Plot manager education (yrs) -0.0751*** 0.0214  -0.0711*** 0.0206 
Plot manager is female (1=yes) -0.177 0.145  -0.113 0.141 
Soil fertility perception (1=fertile) -0.830*** 0.220  -0.905*** 0.220 
Farmer perception consistent with soil test 
(1=yes) 

-0.122 0.179  -0.174 0.179 

Plot size (acres) -0.221** 0.0979  -0.230** 0.0988 
HH landholding (acres) 0.000220 0.0169  -0.00153 0.0167 
Walking time to plot (mins) 0.00188 0.00708  0.00326 0.00692 
Plot owned (1=yes) 0.301 0.234  0.198 0.222 
Distance to extension (km) 0.00357 0.0136  0.00799 0.0133 
Farming experience (yrs) -0.00460 0.00469  -0.00521 0.00466 
Constant 0.200 0.389  0.364 0.376 
Log-likelihood -878.626   -902.744  
Observations 1102   1102  

* p < 0.10, ** p < 0.05, *** p < 0.01  
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Table A3.5: Maximum likelihood results of various stochastic frontier model of Stevenson 
(1980) 

Response variable: Log of maize 
yield 

With EV  W/o EV 

Coef. Std. error  Coef. Std. error 
Frontier      
Log of fertilizer (lnN) 0.167 0.156  0.0984 0.158 
Log of seed (lnseed) 0.834** 0.406  1.004** 0.410 
Log of labor (lnlabour) -0.110 0.183  -0.104 0.184 
lnN x lnN 0.147*** 0.0256  0.134*** 0.0258 
lnseed x lnseed -0.186 0.193  -0.239 0.196 
lnlabour x lnlabour 0.0261 0.0242  0.0302 0.0244 
lnN x lnseed -0.154 0.102  -0.118 0.104 
lnN x lnlabour -0.0433 0.0394  -0.0352 0.0404 
lnseed x lnlabour 0.0728 0.124  0.0477 0.126 
Improved seed (1=yes) 0.160** 0.0770  0.183** 0.0790 
Mechanized land preparation 
(1=yes) 

0.179*** 0.0516  0.168*** 0.0525 

Log of plot size -0.0981*** 0.0256  -0.107*** 0.0257 

No. of crops on plot 0.118*** 0.0208  0.104*** 0.0179 

Year dummy (1=2016) 0.190*** 0.0568  0.255*** 0.0351 

Manure/compost use (1=yes) 0.166*** 0.0375    

Maize-legume intercrop (1=yes) -0.0696 0.0513    

Crops residue use (1=yes) 0.0205 0.0365    

Total organic carbon 0.0385 0.0282    

Phosphorus -0.00147 0.00105    

Soil pH 0.165*** 0.0367    

Sand content -0.00159 0.00165    

Rainfall 0.0000504 0.0000381    

Moisture stress -0.224 0.142    

Transnzoia county dummya -0.0962 0.0599  -0.0916 0.0570 

Kakamega county dummya -0.307*** 0.0733  -0.362*** 0.0616 

Kisii county dummya -0.586*** 0.0881  -0.568*** 0.0762 

Machakos county dummya -0.265*** 0.0843  -0.332*** 0.0755 

Constant 4.167*** 0.781  4.963*** 0.754 

      

𝜎௩
ଶ -1.728*** 0.136  -1.649*** 0.142 

Log-likelihood -912.054   -937.162  
Observations 1102   1102  

* p < 0.10, ** p < 0.05, *** p < 0.01 
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