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ABSTRACT

THE DEVELOPMENT AND APPLICATION OF SPATIO-TEMPORAL METHODS TO
UNDERSTAND AND PREDICT BROAD-SCALE PATTERNS OF FOREST CHANGE

By

Malcolm S. Itter

The function, composition, and health of regional forest systems are driven by factors operating at

a range of spatio-temporal scales. Climate shapes regional species composition at centennial-to-

millennial timescales, but may also contribute to more rapid forest change through the occurrence of

climate extremes. Disturbance events operate at scales ranging from individual trees to landscape-

level metacommunities impacting forest dynamics and resetting forest succession and development

over decadal-to-centennial time frames. At the local-scale, forest function, composition, and health

at a given time are determined by forest demographic processes including growth, mortality, and

regeneration. Understanding and predicting broad-scale patterns of forest change requires methods

to integrate these different factors synthesizing information across spatio-temporal scales. The

research presented here focuses on the development and application of spatio-temporal, Bayesian

hierarchical methods to advance understanding of the processes and factors driving large-scale

forest change. The methods seek to make inference about latent forest processes of interest based

on noisy observations of forest demographics, climate, and disturbance events.

The impacts of novel climatic conditions forecast to occur over the next century on forest

ecosystem function are difficult to predict given potential interactions between climate, disturbance

events, and forest characteristics such as species composition, density, and tree size/age distribution.

The first three chapters of the following dissertation focus on the development and application of

methods to advance understanding of such interactions. First, a dynamic Bayesian hierarchical

model is presented allowing forest growth responses to climate variables to vary over time in re-

lation to past climate extremes, disturbance events, and forest dynamics. The model was applied

to tree-ring data from a range of sites within northeastern Minnesota. Results revealed significant

growth responses to soil water availability triggered by large climatic water deficits across multiple



seasons and years, forest tent caterpillar defoliation events, and high forest density following large

regeneration events. Building on these results, the interactive effects of past water deficit and insect

defoliation stress on forest growth were further explored using broad-scale tree-ring and defolia-

tion data from two regions of the Canadian boreal forest with contrasting species compositions,

primary insect defoliators, and regional climates. A series of novel methods were developed to

quantify the ecological memory of boreal trees to antecedent water and insect defoliation stress.

Results highlighted the temporal persistence of drought and defoliation stress on boreal tree growth

dynamics and provided an empirical estimate of their interactive effects. Finally, a Bayesian state

space framework for the assimilation of tree-ring and forest inventory data with a forest growth

and yield model (Forest Vegetation Simulator) was developed to reconstruct forest dynamics with

explicit uncertainty. The framework allows for the use of tree-ring data to inform growth-climate

relationships and inventory data to inform estimates of past forest composition, density, and tree

size/age distribution. The unique inference afforded by the framework is demonstrated through its

application to red pine plantation data from northern Minnesota. The final chapter of the disser-

tation presents a Bayesian point process model for the reconstruction of past fire regimes using

sediment charcoal data. The framework was applied to a network of boreal forest lakes in interior

Alaska demonstrating a significant reduction in the uncertainty of past fire identification compared

to existing methodologies. Further, results highlighted shifts in the regional fire regime coincident

with changes in regional species composition over the past ∼10,000 years.

The methods developed herein and their application to a range of forest data types provide

increased understanding of the multi-scale factors contributing to changes in forest growth and

mortality over time and space. Still missing, however, is a process-based framework that integrates

the various spatio-temporalmethods presented to gainmechanistic understanding of forest responses

to extreme climate and disturbance events. Future work is needed to develop such a framework

and apply it to extensive regional forest data sets to advance mechanistic understanding and predict

forest responses to the novel environmental conditions of the 21st century.
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CHAPTER 1

INTRODUCTION

1.1 Factors Driving Forest Change

Forests are impacted by factors operating at a variety of spatio-temporal scales. Climate

affects regional species composition at centennial-to-millennial timescales (Davis and Shaw, 2001).

The occurrence of climate extremes, such as drought events, affects forests over shorter time

frames, altering demographic processes and in severe cases contributing to large-scale treemortality

(Breshears et al., 2005; Allen et al., 2015). Disturbance events impact forest systems at a range of

scales. Wind, for example, blows down trees within a forest stand creating irregularly-sized canopy

gaps that may be filled by advanced regeneration or newly-recruited individuals increasing diversity

across the forested landscape on a decadal-to-centennial timescale (Bormann and Likens, 1979;

Lorimer and White, 2003). Stand-replacing fire, in contrast, kills the majority of trees within a

stand, releases soil nutrients, and resets successional pathways for centuries to come (Turner et al.,

2007). Finally, the relative abundance of regional species within a given forest stand and the stand’s

structure are shaped on annual-to-decadal scales by forest demographic processes such as growth,

mortality, dispersal, and recruitment (Pacala et al., 1996; Hansen et al., 2001; Clark et al., 2010).

The different factors impacting forest systems are not independent. Rather, there are complex

interactions between climate, disturbance, and forest demographic processes, which likely involve

feedbacks, threshold effects, and non-linear forest responses (Allen et al., 2015). As an example,

consider a lodgepole pine (Pinus contorta Dougl.) forest growing in the Rocky Mountain West.

A mountain pine beetle (Dendroctonus ponderosae Hopk.) outbreak within the forest may impact

the xylem structure of individual trees (Safranyik and Carrol, 2006). Xylem-damaged trees are

more likely to suffer cavitation (an embolism within the xylem) during a subsequent drought event

potentially leading tomortality if drought severity surpasses some unknown physiological threshold

(McDowell et al., 2008, 2011). The existence of standing dead lodgepole pine trees increases the
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risk of catastrophic fire due to the prevalence of ladder fuels (Bigler and Veblen, 2011, but see

Simard et al. (2011) for evidence of reduced probability of crown fire due to bark beetle mortality

in lodgepole pine stands). Worse, if drought conditions continue following the fire, they may

contribute to regeneration failure of lodgepole pine thereby altering the composition and function

of the forest well into the future (Stephens et al., 2013; Harvey et al., 2016).

1.2 Adaptive Forest Management

Forests face an uncertain future as rapidly changing environmental conditions lead to altered

climate and shifts in historic disturbance regimes (Allen et al., 2015). Adaptive forestmanagement is

focused on maintaining healthy, productive, and fully-functional forest ecosystems under changing

environmental conditions (Millar et al., 2007; D’Amato et al., 2011). In the short-term, this includes

managing forests to generate characteristics (e.g., composition, density, structure) which promote

resistance and resilience to changing conditions (Millar et al., 2007). For example, thinning

treatments have been shown to reduce forest growth responses to drought (resistance) and/or speed

return to pre-drought growth rates (resilience) in a variety of forest ecosystem types (Laurent et al.,

2003; McDowell et al., 2006; D’Amato et al., 2013; Sohn et al., 2016; Bottero et al., 2017). Over

the long-term, the goal of adaptive management is to facilitate the formation of robust, complex

adaptive systems capable of maintaining ecosystem function under uncertain and variable future

conditions (Puettmann, 2011).

The development of both short- and long-term adaptive management approaches requires mech-

anistic understanding of the joint effects of the different factors impacting forest demographic pro-

cesses and their interactions (Purves and Pacala, 2008; Vanderwel and Purves, 2014; Clark et al.,

2014). Such understanding enables the prediction of forest change and allows for the development

and testing of adaptive management strategies. Factors affecting demographic processes can be

partitioned into exogenous factors such as climate and disturbance, and endogenous forest factors

including species composition, density, canopy structure, and tree size/age distribution (Bormann

and Likens, 1979). Changes in endogenous factors over time are collectively referred to as forest
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dynamics and are particularly important in adaptive management contexts because they can be

modified through management and may buffer forest responses to climate and disturbance (Oliver

and Larson, 1996). Thus, if we can identify forest conditions promoting robust ecosystems, we

may be able to develop management strategies to maintain critical forest processes in the face of

environmental change (Millar et al., 2007; D’Amato et al., 2011; Puettmann, 2011).

1.3 Ecological Process & Bayesian Hierarchical Models

As discussed above, we seek mechanistic understanding of joint forest demographic responses

to a variety of factors operating at different spatio-temporal scales. This is a common challenge in

ecology where we would like to make inference about ecological processes and the factors that drive

them based on noisy, often indirect observations. Bayesian hierarchical methodologies are ideally

suited to meet this challenge as they allow disparate observations at varying spatio-temporal scales

to be combined within an integrated statistical framework in order to learn about an ecological

process of interest. This is an area of much research and has been developed and described in a

wide range of statistical and ecological literature (Berliner, 1996; Wikle et al., 2001; Wikle, 2003;

Calder et al., 2003; Clark, 2005; Hooten et al., 2007; Ogle and Barber, 2008; Cressie et al., 2009;

Cressie and Wikle, 2011; Dietze et al., 2013; Hobbs and Hooten, 2015). Berliner (1996) offers

a particularly elegant summary of the power of Bayesian hierarchical methods in the context of

time series analysis. Specifically, the mechanics of a Bayesian hierarchical model in which the

inferential goal is advancing understanding of an underlying process can be written as
(i)

[process,parameters|data] ∝
(ii)

[data|process,parameters]×

[process|parameters]
(iii)

× [parameters]
(iv)

,
(1.1)

where in the current context, process refers to an ecological process of interest, parameters are a

collection of unknown functional parameters describing the process and its variability, and data

comprises noisy, potentially indirect observations of the process (Berliner, 1996). In Equation

1.1, distribution (i) represents the posterior distribution providing estimates of the process and its

functional parameters conditional on a set of noisy observations. Distribution (ii) corresponds to
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the likelihood or data model conditional on the latent process of interest and unknown functional

parameters. Distribution (iii) describes the latent process of interest and importantly, variability in

the process given its imperfect representation and uncertainty in unknown functional parameters.

Distribution (iv) is the prior distribution (or set of prior distributions) representing prior knowledge

of all unknown functional and variance parameters.

Central to Bayesian hierarchical models such as the one presented in Equation 1.1 are functions

describing the ecological process of interest (i.e., process models). Process models represent

current scientific understanding of the drivers or mechanisms underlying an ecological process—

they are the mathematical expression of a scientific hypothesis (Wikle et al., 2001). Frequently in

ecology, these models describe changes in ecological processes over time and space. Statistical

data models are integrated alongside process models to account for the structure and variability

of different observations (i.e., likelihood functions as defined by distribution (ii) in Equation 1.1).

The combination of process and data models allows for inference about a latent ecological process

of interest based on noisy observations. In particular, we are able to partition process error (i.e.,

error in scientific understanding of a process) from observation error (i.e., noise due to imperfect

sampling).

The partitioning of process and observation error is extremely powerful for the advancement

of scientific understanding. For example, we can use process-based, Bayesian hierarchical models

to identify sources of uncertainty indicating whether estimates of an ecological process are limited

by poor scientific understanding (a mis-specified process model) or lack of sufficient data. Such

frameworks also allow for competing scientific hypotheses to be tested—does one model signifi-

cantly reduce process error relative to an alternative model? Often overlooked in such frameworks

is the use of prior distributions to further integrate scientific understanding (Hobbs and Hooten,

2015). Specifically, we might use a semi-informative prior to constrain a well-studied parameter

to a scientifically-plausible range. The structure of process-based, Bayesian hierarchical models

(as represented in Equation 1.1) are the foundation for a variety of advanced statistical methods

including Bayesian data assimilation, model-data fusion, state space models, and a wide array of
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spatio-temporal models (Cressie and Wikle, 2011).

1.4 Statistical Models for Forest Ecology and Management

The goal of the research presented here is to advance understanding of the factors impacting

forest demographic processes over time and space in order to inform forest management to maintain

these processes in the face of changing environmental conditions. Bayesian hierarchical models

following the conceptual framework presented in Equation 1.1 are developed and applied to a range

of forest data types. The models synthesize noisy observations of forest demographic processes

such as growth, mortality, and regeneration with mathematical approximations of these processes.

Observations are imperfect and subject to measurement error. Models of demographic processes

may be empirical and serve as the first step toward building a mechanistic model, or they may be

mechanistic and represent current scientific understanding of the demographic process of interest.

Whether they are empirical or mechanistic, the demographic process models are also imperfect

and subject to potential mis-specification and process error. Understanding of the different factors

driving changes in forest demographic processes resulting from the application of the Bayesian

hierarchical models described herein can be used to identify forest characteristics which promote

resistance and resilience to changing environmental conditions. These characteristics serve as

targets for forest management, couching ecological results within an adaptive management context.

1.5 Overview of Chapters

The following dissertation includes four chapters. The first three chapters focus on understand-

ing interactions between climate, non-stand replacing disturbance (e.g., insect defoliation, wind),

and forest dynamics. The chapters are related with the methods evolving and advancing from one

chapter to the next. The fourth chapter develops a model to reconstruct regional fire regimes. It is

distinct from the first three chapters in its focus on paleo-fire reconstruction, although the modeling

approach has many similarities to the models applied in the first three chapters. A brief summary

of each chapter is provided below.

5



Chapter 2 - Time varying effects of climate on tree growth: A state space model was developed,

which allows the effects of seasonal water deficits on inter-annual radial tree growth to vary over

time and in relation to climate extremes, insect defoliation, and forest dynamics. The model was

applied to tree ring-width increment data from a collection of stands of varying composition,

structure, and development stage in northeastern Minnesota. Potential interactions between tree

growth responses to extreme water deficits, insect defoliation events, and endogenous forest factors

(e.g., density) were considered, but not explicitly tested.

Chapter 3 - Ecological memory of boreal tree growth to drought and insect defoliation and

their interaction: A hierarchical model was developed to quantify the ecological memory of tree

growth to past climatic water deficit and insect defoliation, derive antecedent variables reflecting

the persistent and cumulative effects of these stressors on tree growth, and test for their interactive

effects. The model builds on the approach applied in Chapter 2, but importantly allow for the

interactive effects of water deficit and insect defoliation on tree growth to be tested. The model

was applied to extensive tree growth, weather, and defoliation survey data from western and eastern

regions of the Canadian boreal forest characterized by contrasting tree compositions, climates, and

insect defoliators.

Chapter 4 - Assimilation of tree rings and forest census data to model past forest dynamics: An

approach to quantify interactions between climate extremes, disturbance, and forest dynamics was

formalized. Specifically, a state space model was developed to reconstruct past forest dynamics and

their interaction with climate extremes and non-stand replacing disturbance events. The state space

framework is driven by a forest growth and yield model and assimilates individual tree ring-width

series and forest inventory data to constrain estimates of forest dynamics and advance understanding

of the impacts of climate extremes and disturbance events on forest growth and mortality. The

model was applied to a collection of red pine plantations in northern Minnesota defined by different

thinning regimes.

Chapter 5 - Model-based approach to wildland fire reconstruction: A point process model

to reconstruct wildland fire regimes using sediment charcoal records was developed. The model
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explicitly estimates the probability of local fire occurrence associated with sediment charcoal

counts and allows for charcoal records from multiple regional lakes to be pooled in order to reduce

uncertainty in regional fire history. The point process model was applied to sediment charcoal

records from a network of 13 boreal lakes located in the Yukon Flats region of interior Alaska to

reconstruct its fire regime over the past 10,000 years.

A synthesis of the key findings from the four chapters and a discussion of unanswered questions

and future research directions is provided in the final chapter (Chapter 6).
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CHAPTER 2

VARIABLE EFFECTS OF CLIMATE ON FOREST GROWTH IN RELATION TO
CLIMATE EXTREMES, DISTURBANCE, AND FOREST DYNAMICS

2.1 Abstract

Changes in the frequency, duration, and severity of climate extremes are forecast to occur under

global climate change. The impacts of climate extremes on forest productivity and health remain

difficult to predict due to potential interactions with disturbance events and forest dynamics—

changes in forest stand composition, density, size and age structure over time. Such interactions

may lead to non-linear forest growth responses to climate involving thresholds and lag effects.

Understanding how forest dynamics influence growth responses to climate is particularly important

given stand structure and composition can be modified through management to increase forest

resistance and resilience to climate change. To inform such adaptive management, we develop

a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to

vary over time and in relation to past climate extremes, disturbance events, and forest dynamics.

The model is an important step toward integrating disturbance and forest dynamics into predictions

of forest growth responses to climate extremes. We apply the model to a dendrochronology data

set from forest stands of varying composition, structure, and development stage in northeastern

Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events.

Mean forest growthwasmost sensitive towater balance variables representing climatic water deficit.

Forest growth responses to water deficit were partitioned into responses driven by climatic threshold

exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient

to climate extremes with the majority of forest growth responses occurring after multiple climatic

threshold exceedances across seasons and years. Interactions between climate and disturbance

were observed in a subset of years with insect defoliation increasing forest growth sensitivity to

water availability. Forest growth was particularly sensitive to climate extremes during periods of
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high stem density following major regeneration events when average inter-tree competition was

high. Results suggest the resistance and resilience of forest growth to climate extremes can be

increased through management steps such as thinning to reduce competition during early stages of

stand development and small-group selection harvests to maintain forest structures characteristic

of older, mature stands.

2.2 Introduction

Understanding the effects of climate on forest productivity is integral to predicting the response

of forest ecosystems to global climate change. Changing climatic conditions have important

implications for sustainable forest management, a fundamental goal of which is to maintain healthy

and productive forests in perpetuity. Projected consequences of climate change, in addition to

global warming trends, include changes in the frequency, severity, and duration of extreme climate

or weather events (IPCC, 2013). These extreme events have the potential to profoundly alter the

productivity and health of forest ecosystems (Allen et al., 2010, 2015).

The increased frequency of droughts combined with warmer temperatures in the southwestern

US, for example, is projected to lead to growth declines in dominant coniferous species and in severe

cases large-scale forest mortality (Breshears et al., 2005; Williams et al., 2010). Other analyses

predict similar growth declines and mortality in mixed oak and pine forests of the southeastern

US and elsewhere around the globe (Klos et al., 2009; Berdanier and Clark, 2016). The impact

of droughts on forest health and productivity is compounded with potential interactions between

drought and other abiotic and biotic disturbances such as wildfire and forest damaging insects (Dale

et al., 2001). In particular, the occurrence of droughts may facilitate increased insect populations,

or insect damage may exacerbate the effects of drought leading to more severe forest mortality

(McDowell et al., 2008; Anderegg et al., 2015). Forest responses to interactions between climate

extremes and disturbance are expected to be complex and exhibit non-linear behavior involving

lags and threshold effects (Betancourt et al., 2004; Williams et al., 2010; Macalady and Bugmann,

2014).
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Forest sensitivity to climate extremes has been shown to vary depending on endogenous for-

est stand characteristics such as stem density, age, species composition, and developmental or

successional stage (Laurent et al., 2003; Klos et al., 2009; D’Amato et al., 2013). Changes in

these characteristics are driven by forest dynamics (e.g., Oliver and Larson, 1996), altering forest

responses to climate extremes over time and space. Further, stand characteristics can be modi-

fied through forest management to increase forest resistance and resilience to changing climatic

conditions in the short term and facilitate forest adaptation to climate change in the long term

(Millar et al., 2007; Puettmann, 2011). Effective forest management in the face of global climate

change requires understanding and predicting changes in the complex interactions between climate

extremes, disturbance, and forest dynamics (Dale et al., 2001). New analytical approaches capable

of dealing with non-linear forest responses to climate that change over time and space are needed

to inform adaptive forest management (Betancourt et al., 2004).

Tree rings are valuable data for understanding the effects of climate and disturbance on forest

productivity. In particular, tree rings can be used to infer relationships between inter-annual

climate variability and tree growth and to identify past extreme climate/weather and disturbance

events (Cook, 1987; Cook and Kairiukstis, 1990; Babst et al., 2014). In the current study, we are

interested in the combined effects of past climate extremes, disturbance, and forest dynamics as

observed in tree rings. Our goal was to develop a statistical model that allows for inference regarding

if and how disturbance and stand characteristics driven by forest dynamics modify forest growth

responses to climate extremes. Following from our goal, we developed a hierarchical Bayesian state

space model that allows the effects of climate variables on radial tree growth to vary over time. We

hypothesized tree growth responses to climate would change over time in relation to the occurrence

of climate extremes, disturbance, and variation in stand characteristics. The model was motivated

by the need to identify forest conditions that promote resistance and resilience to climate extremes,

which can be used to inform forest management to minimize the impact of future extreme events

on forest productivity.

The hypothesis that forest growth responses to climate vary over time is not new in forest
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ecology. Indeed, a number of dendrochronology methods exist to estimate time-varying climate

response functions, most notably, applications of the Kalman filter to tree-ring analysis (Visser,

1986; Visser and Molenaar, 1988; Van Deusen, 1989), and moving correlation analysis (Biondi,

1997, 2000; Carrer and Urbinati, 2006). The Kalman filter approach, in particular, has been applied

to identify changes in the effects of climate on tree growth attributable to air pollution (Innes and

Cook, 1989), and to interactions with forest dynamics (Van Deusen, 1987). The model developed

herein nests the Kalman filter within a Bayesian hierarchical state space framework with several

important model properties. First, the hierarchical model structure allows for changes in climate

effects over time to be explicitly modeled as a function of past disturbance and forest dynamics

(assuming suitable data are available). Secondly, the model can accommodate non-linear functions

to model changing climate effects through time as well as non-normal error structures. Third, the

hierarchical Bayesian approach provides explicit error quantification from posterior distributions

as well as tractable error propagation across model components. We applied the state space

model to a dendrochronology data set from northeastern Minnesota to demonstrate its potential

to identify changes in forest growth responses to climate driven by interactions between climate

extremes, disturbance, and forest dynamics. The data set includes radial growthmeasurements from

individual trees located in 35 forest stands of varying age and size structure, species composition,

and development stage.

2.3 Modeling Approach

We apply two models to estimate tree growth as a function of climate. The first model moves

the analytical steps involved in a dendrochronology response function analysis—the objective

of which is to estimate the average effects of a set of climate variables on annual tree growth

over a fixed period—into an integrated hierarchical Bayesian model allowing for explicit error

propagation across steps (Schofield et al., 2016). The second model extends the first, allowing

climate effects on tree growth to vary annually over the study period using a hierarchical Bayesian

state space approach. Throughout, we refer to the first model as the fixed climate effects model,
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and the second model as the variable climate effects model. Sources of uncertainty under the fixed

climate effects model include steps to detrend/standardize individual tree growth records, generate

composite growth records or chronologies, and random variability in individual and composite

growth records. The variable climate effects model shares the same sources of uncertainty as the

fixed climate effects model with additional uncertainty associated with the evolution of climate

effects through time. An overview of the fixed and variable climate effects models are included in

the following two subsections. Figure 2.1 provides a schematic representation of the two models.

The statistical details and discussion of Bayesian inference applied to estimate model parameters

are provided in Appendix A.

2.3.1 Fixed Climate Effects

We begin by decomposing individual tree growth measured in terms of radial growth increment

(hereafter growth increment) into component sources of variability to explain the different sub-

models included in the fixed climate effects (FCE) model. Specifically,

Individual Tree Growth = Long-term Trend + Inter-annual Variability + Random Error

where the long-term trend captures low-frequency changes in growth due to tree size and age, the

inter-annual variability captures high-frequency changes in growth potentially driven by climate,

and the random error term captures residual variability.

Long-Term Trend: A smoothing spline is commonly applied in dendrochronology to model

the long-term, low-frequency trend in individual growth attributable to tree size and age (Cook and

Peters, 1981). Smoothing splines are a highly flexible method to model natural phenomena using a

set of polynomial basis functions (Wood, 2006). We apply a penalized spline regression submodel

in the FCE model to capture long-term size and age effects, although a variety of smoothing

approaches can be used here (see Appendix A for a complete discussion).

Inter-Annual Variability: High-frequency, inter-annual variability in tree growth records is

frequently attributed to the effects of climate and forest dynamics (Cook, 1987). We model mean
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inter-annual growth variability with an additive annual stand effect that represents the average

deviation of each tree within a stand from the tree’s long-term growth trend within a given year

(i.e., the stand effect is equivalent to the mean inter-annual variability across all trees in a stand

after controlling for tree size and age). The additive stand effect is modeled as a function of

observed climate. We model the mean stand-level variation rather than tree-level variation because

individual trees within a stand are likely to exhibit differential responses to climate variability and

forest dynamics.

Random Error: The residual error is modeled using an autoregressive process to explicitly

account for temporal autocorrelation in annual tree growth increments. Specifically, we apply a

first order autoregressive (AR1) model for the residual error. We note the residual error can also

be modeled as a function of the mean growth increment to account for heteroscedasticity. We did

not choose to do so here.

Log Transformation: We model growth increments on the log scale to ensure positive growth

estimates consistent with Clark et al. (2007). Log transforming growth increments results in

multiplicative errors equivalent to modeling non-transformed growth increments using a negative

exponential model (Schofield et al., 2016). Log transforming growth increments also reduces the

heteroscedasticity frequently observed in tree-ring records.

Combining the submodels, we model annual tree growth increments in a hierarchical Bayesian

model as follows. Let i index individual trees (i = 1, . . . , n), j index stands ( j = 1, . . . , k), and

t index years (t = 1, . . . ,T) where n, k, and T are the total number of trees, stands, and years,

respectively. Let j(i) indicate the stand j in which the ith tree is located (e.g., j(i) = 3 indicates the

ith tree is located in stand 3). Finally, define y to be the observed growth increment, such that yi,t

is the observed growth increment for tree i in year t. Individual tree growth is modeled as,

log(yi,t)︸   ︷︷   ︸
log-transformed
growth increment

= x′i,tβi︸︷︷︸
long-term
trend

+ α j(i),t︸︷︷︸
inter-annual
variability

+ εi,t︸︷︷︸
random
error

(2.1)

where xi,t includes tree age covariates, βi is a set of tree-specific regression coefficients, α j(i),t is

the additive effect of being located in stand j during year t, and εi,t is the residual error modeled
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as an AR1 process. We assume the error term is normally distributed, εi,t ∼ N
(
0, σ2

pe/(1−φ2)
)
,

where σ2
pe is the pure error variance and φ is the temporal autocorrelation coefficient. Stand

effects reflecting mean inter-annual growth variability across all trees in a stand are modeled using

observed climate as,

α j,t = f′j,tθ + v j,t (2.2)

where f j,t includes observed, standardized climate covariates, θ is a set of stand-level regression

coefficients, and v j,t is a random error term assumed to be independent with respect to time both

within and across stands, v j,t ∼ N
(
0, τ2

)
.

2.3.2 Variable Climate Effects

The variable climate effects (VCE) model extends the FCE model to allow climate regression

coefficients (θ in Equation 2.2) to vary over time. The climate regression coefficients are treated as

state variables in the VCE model and evolve over time such that a unique set of climate coefficients

is estimated for each year in the study period (θ1, θ2, . . . , θT ). Annual climate coefficient estimates

are updated using the Kalman filter and are informed by coefficient values for the previous and

subsequent years (t − 1, t + 1) and annual stand effect estimates (Figure A.1). Annual climate

coefficients are estimated using stand effects for a five-year period centered on the current year

(t − 2 through t + 2). The use of a five-year moving window allows for partial temporal pooling

of tree growth data similar to a moving correlation analysis (Biondi, 1997), and provides increased

sample size to estimate annual climate effects.

The tree-level model (Equation 2.1) is unchanged in the VCE model. The stand-level model

(Equation 2.2) is updated to integrate time-varying climate coefficients.

α j,t = f′j,tθt + v j,t (2.3)

The evolution of climate coefficients over time is modeled using a random walk.

θt = θt−1 + wt (2.4)
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Growth
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Inter-Annual
Variability

αj,t

Long-Term
Trend
x′i,tβi

Residual
Error
εi,t

Auto-Regressive
Process

εi,t = φεi,t−1 + ei,t

Stand
Effects

αj,t = f ′j,tθ + vj,t

Stand
Effects

αj,t = f ′j,tθt + vj,t
θt = θt−1 + wt

βi θ, τ 2
θ0:T ,

τ 2,η,Σ(η) φ, σ2
pe

Figure 2.1: Schematic of fixed climate effects and variable climate effects tree growth models.
Note: Fixed and variable climate effects sub-models are applied separately; 0:T subscript indicates
all time points from 0 to T .

We assume both the stand effect error and random walk error terms follow normal distributions,

v j,t ∼ N(0, τ2), and wt ∼ N(0,Σθ). Equations 2.3 and 2.4 define a state space or dynamic linear

model framework with Equation 2.3 serving as the observation equation and Equation 2.4 the

process or state equation (West and Harrison, 1997). Details on the state space modeling approach

and the numerical methods used to estimate model parameters including the application of the

Kalman filter are provided in Appendix A.

Criteria for evaluating variable climate effects: Time-varying climate coefficients can be

difficult to interpret. Understanding the factors that contribute to a significant forest growth

response to a climate variable in a given year is especially challenging, particularly when multiple

climate variables are considered. We applied the following criteria to evaluate time-varying climate
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coefficients and facilitate interpretation of VCE model results. A climate variable was considered

to have no effect on mean annual growth at the stand scale in a given year if the 95 percent credible

interval for the climate variable coefficient included zero. A climate variable was considered to

have a weak effect in a given year if the 95 percent credible interval for its coefficient did not

include zero, but the climate regression model (i.e., f′j,tθt in Equation 2.3) explained less than 25

percent of the variability in the five years of annual stand effects centered on the current year (i.e.,

annual r2 < 0.25). Mean annual growth at the stand scale was considered sensitive to a climate

variable in a given year if the 95 percent credible interval for its coefficient did not include zero,

and the climate regression model explained at least 25 percent of the variability in the five years of

annual stand effects centered on the current year (in the remainder we use forest growth response

to describe variable by year combinations for which forest growth sensitivity was observed).

We partitioned years during which there was evidence of growth sensitivity for one or more

climate variables into four categories. First, we defined climatic thresholds as the upper quantiles of

observed mean annual climate variable values across stands (quantile values used varied depending

on the climate variable to ensure identification of at least one year with a growth response; Figure

2.5). Growth sensitivity to a climate variable in a given yearwas attributed to a threshold exceedance

if the threshold for a variable was exceeded within the five-year moving window of annual stand

effects used to estimate climate coefficients. Growth sensitivity to a climate variable was attributed

to a persistent exceedance effect if there were continued years of growth sensitivity following the

five-year period centered on a climatic threshold exceedance. Growth sensitivity was attributed

to interactions with disturbance if years of growth sensitivity coincided with forest tent caterpillar

outbreak years for known host species. Finally, growth sensitivity to a climate variable in a given

year was attributed to unknown sources if it did not meet any of the previous criteria.
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2.4 Data

2.4.1 Tree Growth Data

We applied the FCE and VCE models to previously-published tree growth data collected in 2010

from 35 forest stands in and around Superior National Forest in northeasternMinnesota (Figure 2.2;

Foster et al., 2014, 2016). The current analysis differs from previous applications of the northeastern

Minnesota tree growth data set in that the VCE model estimates time-varying climate coefficients

based on stand-level growth to understand the effects of past forest disturbance and dynamics on

growth responses to climate extremes. The study region has a continental climate defined by cold

winters (mean January temperature -15 °C) and short summers (mean July temperature 19 °C).

Mean annual precipitation is 600 to 800 mm with much of the total precipitation falling as snow.

Stands were selected to represent the predominant forest communities in the broader geographical

area based on National Forest Inventory and Analysis data from 2004 to 2008 and included

a mixture of species compositions, age structures, and development stages. The study region

spans the temperate-boreal forest ecotone and sampled forest types reflected this biogeographic

setting ranging from common temperate forest types, such as Acer saccharum-dominated northern

hardwood forests, to boreal forests dominated by Pinus banksiana, Populus tremuloides, and Picea

spp. Three replicate 400-m2 circular plots were established within each stand. Increment cores

were collected at breast height (1.3 m) from all live trees with a diameter at breast height (DBH)

larger than 10 cm. Increment cores were measured using a Velmex measuring stage and crossdated

according to standard dendrochronological techniques (Holmes, 1983; Yamaguchi, 1991). The

most-recent year in which growth data was available for all study trees was 2007.

The DBH and species of sample trees were recorded and tree locations were mapped (relative

to plot center coordinates). Tree age was estimated by defining the pith as the recruitment year

and counting the number of growth rings from recruitment to present. Data suitable for climate

modeling exist for 2,291 trees representing 15 unique species located across 105 forest plots (Table

2.1). Sampled trees are assumed to have established as a new cohort following a large disturbance
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Figure 2.2: Location of 105 forest plots (35 stands, 3 plots per stand) in relation to Superior National
Forest in northeastern Minnesota, USA.

event (e.g., timber harvest or fire). The year of new cohort establishment (or initiation) was set

equal to the 25th percentile of the tree recruitment year distribution for each stand to account for

the presence of trees from older cohorts (additional details provided in Foster et al., 2014). The

start of the study period was set to 1897 to be consistent with the earliest available climate data,

although the growth records for a subset of trees date back before 1897 (study period = 1897 to

2007). As is the case with nearly all dendrochronology data sets, the number of trees and stands

observed each year increases with time reflecting trees that established between the start and end

of the study period (Figure 2.4).
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Table 2.1: Summary of species sampled.

Species Species Number of Number of First Year Mean % Relative
Code Trees Plots Observed Basal Area

Abies balsamea ABBA 365 59 1897 9 (0, 62)
Acer rubrum ACRU 87 30 1899 3 (0, 23)
Acer saccharum ACSA 175 16 1899 9 (0, 97)
Betula papyrifera BEPA 273 50 1897 13 (0, 70)
Fraxinux nigra FRNI 132 9 1897 7 (0, 97)
Larix laricina LALA 10 6 1903 1 (0, 16)
Picea glauca PIGL 96 30 1929 5 (0, 50)
Picea mariana PIMA 400 36 1897 13 (0, 98)
Pinus banksiana PIBA 383 23 1919 13 (0, 93)
Pinus resinosa PIRE 33 9 1903 3 (0, 47)
Pinus strobus PIST 56 15 1898 5 (0, 77)
Populus grandidentata POGR 23 4 1927 2 (0, 33)
Populus tremuloides POTR 93 25 1925 6 (0, 66)
Quercus rubra QURU 118 11 1919 7 (0, 91)
Thuja occidentalis THOC 47 12 1897 6 (0, 68)
Notes: Number of plots is the number of plots in which each species is found out of a
maximum of 105 plots. First year observed is the first year in the study period a growth
record exists for a tree of the corresponding species (several trees have records that date
back prior to 1897). Mean percent relative basal area is calculated across all study stands
based on tree diameters in 2007; the minimum and maximum percent relative basal areas
across study stands are provided in parentheses.

2.4.2 Forest Tent Caterpillar

The forest tent caterpillar (Malacosoma disstria) is an important native defoliating insect in eastern

North America. There have been several forest tent caterpillar (FTC) outbreaks in the study

region between 1987 and 2007. Most notably, FTC outbreaks resulted in significant defoliation

of susceptible trees during the following periods: 1951-1959; 1964-1972; 1989-1995; 2000-2006

(Reinikainen et al., 2012). FTC defoliation in 2001 was particularly severe with greater than 7.5

million acres of susceptible hardwood forests in the state suffering defoliation (Albers et al., 2014).

Study species that are known FTC hosts include: Acer saccharum, Betula papyrifera, Populus

grandidentata, P. tremuloides, and Quercus rubra.
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Table 2.2: Summary of seasonal aggregations of climate variables. Bullets indicate that a seasonal
aggregation is calculated for a given variable.

Variable Fall Winter Spring Summer Summer Lag
(Sep - Nov)t−1 (Dec - Feb)t (Mar - May)t (Jun - Aug)t (Jun - Aug)t−1

Mean Tmin • • • • •
Mean Tmean • • • • •
Mean Tmax • • • • •
Total AET • • • •
Total PET • • • •
Total DEF • • • •

Mean SNOW •
Notes: Tmin, Tmean, Tmax indicate minimum, mean, and maximum temperature, AET and
PET indicate actual and potential evapotranspiration, DEF indicates climatic water deficit (PET
- AET), SNOW indicates snow pack. Subscripts, t = year of growth, t − 1 = year preceding
growth.

2.4.3 Climate Data

Mean monthly temperature and precipitation estimates were obtained for the study period at a 4-km

resolution from PRISM (PRISM Climate Group, 2013). Climate data were assigned to individual

stands by intersecting plot centroids with the PRISM grid and averaging climate observations

across the three stand plots if they fell within different grid cells (occurs for 3 out of 35 stands).

A number of studies have shown that temperature and precipitation are poorly correlated with

plant distribution and growth in comparison to water balance metrics that translate raw climate

observations into variables with direct physiological relevance to plant function (Stephenson, 1998;

Dyer, 2004; Lutz et al., 2010). We derived monthly values of potential evapotranspiration (PET),

actual evapotranspiration (AET), climatic water deficit (DEF: PET - AET), and mean snow pack

using a modified Thornthwaite-type water balance model (Lutz et al., 2010). We calculated

seasonal aggregations for each variable where relevant as detailed in Table 2.2 for a total of 28

climate variables.

Bayesian Variable Selection: We applied the Bayesian Lasso to select a reduced set of climate

variables with the greatest effect on annual tree growth (Park and Casella, 2008). While not a

formal model-based variable selection technique, the Bayesian Lasso shrinks the coefficient values
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for unimportant variables to zero in a regression model (Hooten and Hobbs, 2015). We chose to

apply the Bayesian Lasso given its ability to accommodate collinear variables since many of our

climate variables were correlated. Additional details on the Bayesian Lasso and its implementation

are provided in Appendix A. Applying the Bayesian Lasso, the 28 climate variables were pared

down to a final set of five climate variables: fall deficit (FAL-DEF), spring deficit (SPR-DEF),

summer deficit (SUM-DEF), summer deficit in the previous growing season (SUM-DEF-LAG),

and mean annual snow pack (SNOW). All model results are restricted to this final set of climate

variables. Intuitively, we expected water deficit variables to have a negative effect on tree growth.

Snow pack, reflecting spring soil water recharge given the parametrization of the water balance

model, was expected to have a positive effect on tree growth, though reduced growing season length

due to prolonged snow cover could negatively affect growth.

2.5 Results

2.5.1 Fixed Climate Effects (FCE) Model

Mean annual stand-level tree growth was sensitive to all five water balance variables in the model as

indicated by the 95 percent credible intervals not overlapping with zero (Figure 2.3). Specifically,

the four variables representing seasonal climatic water deficit (FAL-DEF, SPR-DEF, SUM-DEF,

SUM-DEF-LAG), where larger values indicate greater water deficit, were negatively related to

mean annual growth at the stand level, while snow pack was positively related to mean annual

growth. Climatic deficit in the fall, summer, and summer before the year of growth were most

related to mean annual growth at the stand level (credible interval bounds are farthest from zero).

The climate coefficient estimates in the FCE model represent the average effects of the five climate

variables over the study period.

Posterior variance estimates for the FCE model are provided in Table A.1. Notably, the first-

order autocorrelation coefficient was roughly 0.37 indicating that tree-ring records were moderately

autocorrelated even after detrending. The individual-tree variance was approximately 0.29, while

the inter-annual variance (capturing stand-level variability) was approximately 0.05, both on the log
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Std. Coefficient Value

Figure 2.3: Standardized coefficient values for fixed climate effects model. Note: Points represent
posterior median coefficient estimates; black lines indicate 95 percent credible interval bounds; a
dashed grey line at a coefficient value of zero is provided for reference. Variable abbreviations are
as follows: fall deficit (FAL-DEF), spring deficit (SPR-DEF), summer deficit (SUM-DEF), summer
deficit in the previous growing season (SUM-DEF-LAG), and mean annual snow pack (SNOW).

scale. The individual tree growth variance was roughly six times the stand-level growth variance

on the log scale.

2.5.2 Variable Climate Effects (VCE) Model

Estimates of annual effects for each of the five water balance variables were obtained applying the

VCE model. The evolution of each variable over the study period is presented in Figure 2.4. While

the FCE model demonstrated that mean annual growth at the stand level was sensitive to all five

water balance variables, there is evidence under the VCE model that the sensitivity of mean annual

growth to each variable changed in strength and, in some cases, direction over the study period

following the sensitivity criteria described in Section 2.3.2 (Figure 2.4). Table 2.3 summarizes

the results shown in Figure 2.4 partitioning sensitive years for each climate variable into different

response categories. The most common source of growth sensitivity to any climate variable was a
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threshold exceedance, either during the exceedance year (∼41 percent of all sensitive growth years)

or in the years following an exceedance, i.e., a persistent response (∼13 percent of all sensitive

growth years; Figures 2.4 and 2.5). Growth sensitivity to one or more climate variables coincided

with forest tent caterpillar defoliation of host species in 20 percent of all sensitive growth years.

There is evidence that trees driving large stand-level growth decreases (indicative of defoliation)

during periods of regional forest tent caterpillar defoliation and growth sensitivity to climate were

forest tent caterpillar hosts (Figure 2.6). Finally, growth sensitivity to one or more climate variables

was due to unknown sources (i.e., could not be attributed to a climatic threshold exceedance or

forest tent caterpillar defoliation event) for roughly 26 percent of all sensitive growth years.

Table 2.3: Summary of tree growth sensitivity to climate variables (reference for Figure 2.4).

Variable Threshold Persistent Response Disturbance OtherExceedance Threshold Exceedance

SPR-DEF 1934-1937 NA NA NA1950-1954

SUM-DEF
1908-1912 1913 1954 1902
1934-1938 1939-1943 1991-1993 1907

1963

SUM-DEF-LAG
1933 1940-1943 1953-1954 1946-1947

1937-1939 1991-1993 1950, 1975
1963

FAL-DEF 1975-1979 NA NA

1901-1902
1908-1913
1940-1941

1947

SNOW 1975-1977 NA 1950-1954 1909, 1933
1992-1993 1947

Percent of 41.25 12.5 20 26.25Growth Responses
Notes: Variable abbreviations are as follows: fall deficit (FAL-DEF), spring deficit (SPR-
DEF), summer deficit (SUM-DEF), summer deficit in the previous growing season (SUM-
DEF-LAG), and mean annual snow pack (SNOW).

Posterior variance estimates for the VCE model are provided in Table A.1. The variance

estimates were consistent with the FCE model, except inter-annual stand-level variance, which

was slightly smaller under the VCE model (0.042 vs 0.05). As in the FCE model, individual-tree
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Figure 2.4: Evolution of climate coefficient values for each climate variable over the study period
(1897-2007). Solid black line and points indicate posterior mean coefficient values. Dashed lines
delineate 95 percent credible intervals. Points are colored to indicate different response categories.
Zero Response: credible interval includes zero; Weak Response: credible interval does not contain
zero, but annual r2 < 0.25; Threshold Response: strong response to climate (credible interval
does not contain zero and annual r2 > 0.25) within two years of threshold exceedance; Persistent
Response: strong response to climate in years immediately following a threshold exceedance;
Disturbance Response: strong response to climate in years where forest tent caterpillar is present
in study region; Unknown Response: strong response to climate not attributable to threshold
exceedance, persistent response, or disturbance. The upper right panel indicates the number of
study stands from which tree growth data exists in relation to the study period. The grey shading
in each panel indicates the period during which tree growth data from fewer than 20 study stand
are available (1897-1929). Variable abbreviations are as follows: fall deficit (FAL-DEF), spring
deficit (SPR-DEF), summer deficit (SUM-DEF), summer deficit in the previous growing season
(SUM-DEF-LAG), and mean annual snow pack (SNOW).
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Figure 2.5: Observed climate variable values over the study period (1897-2007). Black lines
indicate mean climate variable values across study stands along with uncertainty levels equal to
two times the standard error (grey shading). The horizontal red line indicates the estimated climate
threshold for each variable (thresholds correspond to the following quantiles, 0.95: summer deficit,
lagged summer deficit; 0.98: fall deficit; 0.85: spring deficit, snow). White filled points indicate
threshold exceedances with no growth response. Red filled points indicate threshold exceedances
for which a growth responsewas observed in the five-year period centered on the year of exceedance.
Orange filled points indicate a disturbance response. Variable abbreviations are as follows: fall
deficit (FAL-DEF), spring deficit (SPR-DEF), summer deficit (SUM-DEF), summer deficit in the
previous growing season (SUM-DEF-LAG), and mean annual snow pack (SNOW).
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Figure 2.6: Violin plots of partial residuals (observed log annual growth increment minus spline-
based estimate) for forest tent caterpillar (FTC) host and non-host individuals located in stands
in the 5th percentile for growth in years a) 1950-1954; b) 1991-1993. Stands in the lowest 5th
percentile for growth are considered likely to have been affected by FTC. Note: Black shading
indicates FTC host trees; grey shading indicates non-FTC host trees.

growth variance was roughly six times the stand-level growth variance on the log scale. The large

tree-level variance relative to stand-level variance in both the FCE and VCE models is consistent

with previous analyses (Foster et al., 2016).

2.6 Discussion

Climate change and associated extreme drought events are expected to fundamentally alter the

structure and functioning of forest ecosystems across wide portions of the globe (Clark et al., 2016).

The localized impacts of these events on forest processes, such as productivity, are likely to vary as

a function of tree- and stand-level characteristics including species, size, age, and density leading to

differential effects across a landscape and over time. Most approaches to modeling climate effects
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on forest growth have focused on “average species” responses limiting our understanding of how

differences in forest conditions may affect the severity of climate impacts. This study presents

a modeling framework that underscores the importance of forest dynamics in predicting forest

growth responses to climate extremes and disturbance, and highlights the potential for management

regimes focused on manipulating stand structure and density to increase resistance and resilience to

future climate change. The current analysis focuses on the interactive effects of climate extremes,

disturbance, and forest dynamics on growth in mesic forests in northeastern Minnesota. We note

the modeling approach developed herein may prove even more useful for understanding forest

growth responses to drought and disturbance in drier ecosystems such as in the southwestern US.

We begin this section with a discussion of the FCE and VCE model results. We then discuss the

broader implications of the VCEmodel results to advance understanding of forest growth responses

to climate extremes and potential forest management applications.

2.6.1 Fixed Climate Effects

We defined a set of 28 climate variables that may affect tree growth in northeastern Minnesota

indicative of temperature, precipitation, evaporative water demand, and climatic water deficit

(Table 2.2). The Bayesian Lasso provides an objective method to identify the subset of variables

to which tree growth is most sensitive by shrinking the coefficient values of unimportant climate

variables to zero (Hooten and Hobbs, 2015, see Figure A.2). The value of such a tool in analyses

of the effects of climate on ecological processes is great and has not been previously employed in

tree-ring analyses. We found water balance variables (climatic water deficit and snow pack) had

the largest impact on inter-annual tree growth in northeastern Minnesota. Results indicate that tree

growth was sensitive to all five water balance variables selected by the Bayesian Lasso over the

study period with climatic water deficit exhibiting negative growth effects regardless of season,

and snow pack (a measure of spring soil water recharge) exhibiting positive growth effects (Figure

2.3). Water availability is important in the study region where summers can be dry and soils are

generally shallow and formed largely from glacial till with poor water retention. The climatic water
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deficit and snow pack variables reflect the interaction between temperature, precipitation, and soil

water holding capacity. The FCE model results indicate that tree growth in the study region was

more sensitive to these interactions than to raw temperature and precipitation values (Figure A.2)

underscoring the importance of translating climate data into physiologically-relevant variables in

studies of tree growth as noted in previous studies (Stephenson, 1998).

2.6.2 Variable Climate Effects

We developed the VCE model to better understand the role of past disturbance and forest dynamics

in shaping forest growth responses to climate extremes. Application of the VCE model to tree

growth data from northeastern Minnesota indicates tree growth was sensitive to water balance

variables in punctuated intervals of one to several years. We partitioned periods of tree growth

sensitivity into four categories to identify climate extremes and elucidate potential interactions

between climate extremes and past forest tent caterpillar defoliation (as defined in Section 2.3.2).

Climatic Threshold Exceedance: The thresholds set for each climate variable in the model

were used to identify extreme climate values (large climatic water deficits) which might lead to a

forest growth response (Figure 2.5). In particular, we sought to identify a threshold for each climate

variable above which a forest growth response is always observed. Forest growth responses to

climate variable threshold exceedances occurred in several ways. There were strong responses to

singular exceedances, e.g., the observed growth response to summer deficit in 1910, a pronounced

drought year in the region (Clark, 1989), and the response to large fall deficit in 1977 (Figures 2.4

and 2.5). There were also responses to an exceedance that closely followed several exceedances

in a short period, e.g., the observed response to summer deficit exceedances in 1933 and 1936

following an exceedance in 1930 (Figure 2.5, Table 2.3). Finally, there were several instances of a

response to an exceedance of one climate variable when exceedances of multiple climate variables

occurred coincidentally, e.g., the negative response to fall deficit in 1977 and the positive response

to a large snow pack in 1975 coincided with large spring deficits in the same year (Figure 2.5).

Figure 2.5 demonstrates that we cannot establish a threshold for each climate variable, above
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which, there is a high probability of a growth response. Rather, there were a number of threshold

exceedances for each variable (except fall deficit) with no forest growth response (Figure 2.5). This

may be due to the study period (111 years) being too short to observe sufficient variability in water

balance variables to establish meaningful thresholds. It also suggests the stands in the study area

are relatively resistant to the effects of isolated climate extremes. As highlighted above, responses

to threshold exceedances coincided with multiple exceedances in a short period or exceedances of

multiple variables.

The persistent response category provides a measure of forest growth resiliency to the ex-

ceedance of a climate variable threshold. A persistent growth response indicates study stands

were sensitive to a climate variable threshold exceedance for several years following the year of

exceedance. There were only three persistent growth responses observed during the study period

despite ten periods where study stands exhibited sensitivity to the exceedance of a climate vari-

able threshold (Figure 2.4, Table 2.3). Specifically, there were persistent growth responses to two

large summer deficits (1910, 1936) and to lagged summer deficit in 1937. The low proportion of

forest growth responses to climate variable threshold exceedances that led to a persistent response

indicates that study stands are relatively resilient to climate extremes.

Forest Disturbance: Contemporary eco-physiological studies note forest growth responses to

large climatic water deficits, as experienced during a drought, may bemodified by biotic disturbance

such as forest tent caterpillar defoliation (McDowell et al., 2008; Anderegg et al., 2015). In the

northeastern Minnesota study stands, 20 percent of forest growth responses coincided with forest

tent caterpillar defoliation within the study region (Table 2.3). Only one period of forest tent

caterpillar defoliation coincided with a period of forest growth sensitivity to a climatic threshold

exceedance: response to spring deficit from 1951 to 1954 (Figure 2.4, Table 2.3). Instead, periods of

forest growth sensitivity to one or more climate variables that coincided with forest tent caterpillar

defoliation of host species in the study region occurred when climate variable values were below

set thresholds suggesting defoliation within study stands increased growth sensitivity to water

availability (Figure 2.5).
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As noted in Anderegg et al. (2015) there can be complex interactive effects of water stress

and insect defoliation on forest productivity. There were two instances in which a forest growth

response to a climate variable occurred in the opposite direction than expected (i.e., positive effect

of climatic water deficit, negative effect of mean snow pack) during periods of forest tent caterpillar

defoliation of host species: a positive response to lagged summer deficit from 1953 to 1954, and

a negative response to snow pack from 1992 to 1993. The positive response to lagged summer

deficit in 1953 and 1954 may have been caused by the presence of drought-weakened trees which

were subsequently killed or further weakened by caterpillar defoliation creating improved growing

conditions for study trees by reducing competition levels. The snow pack variable is indicative of

spring soil water recharge; large snow pack values, however, may cause shortened growing seasons

by delaying leaf flush. The negative response to snow pack in 1992 and 1993, therefore, may have

been due to delayed leaf flush reducing carbon assimilation prior to forest tent caterpillar defoliation

leading to poor growth years. Mean annual snow pack was particularly high in 1992 exceeding

the set threshold value (Figure 2.5). We categorize the growth response to snow pack in 1992 as

a disturbance response, rather than a threshold response given the response coincided with forest

tent caterpillar defoliation of host species in the study region and was in the opposite direction than

expected.

Forest Dynamics: Stand characteristics driven by forest dynamics including age and size struc-

ture, stem density, and species composition are likely to impact forest growth responses to climate

extremes. Stem density, in particular, provides a measure of inter-tree competition for light, water,

nutrients, and growing space. A number of studies have demonstrated the resistance and resilience

of forest growth to drought are sensitive to inter-tree competition levels as measured through stand-

level basal area (a measure of stand density). Specifically, there is evidence that reducing basal area

via thinning increases forest growth resistance and resilience to drought (Aussenac and Granier,

1988; Laurent et al., 2003; Klos et al., 2009; Martínez-Vilalta et al., 2012; D’Amato et al., 2013;

Sohn et al., 2016; Bottero et al., 2017; but see Floyd et al., 2009 for counter example). The benefit

of thinning, however, may last only a few years and, in some cases, can cause stands to become
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more sensitive to drought as they mature given an increased presence of large trees with high water

demand due to large leaf area to sapwood area ratios (McDowell et al., 2006; D’Amato et al., 2013).

One goal of the current analysis was to understand the role of stand characteristics, such as

density, in shaping forest growth responses to climate extremes. Unfortunately, past stand density

cannot be inferred from tree rings alone as no growth records exist from previously deceased

trees (Foster et al., 2014). In the current study, we apply knowledge of the fundamental processes

occurring following initiation of a new cohort of trees within a stand based on general models

of stand development (Oliver and Larson, 1996) to analyze the role of past dynamics on forest

growth responses to climate extremes. Specifically, we considered the cumulative growth response

across all climate variables for the threshold/persistent and unknown response categories as a

function of mean years since initiation excluding the initial study period (1897 to 1929) when

growth data from less than 20 study stands were available (Figure 2.7). Initiation here defines

a large recruitment event leading to the formation of a new cohort of trees within a study stand.

There is evidence of a large increase in the number of threshold/persistent and unknown growth

responses 20 to 45 years following initiation, on average (Figure 2.7). Study stands 20 to 45

years after initiation are likely to have high stem densities corresponding to high levels of inter-tree

competition and density-dependent mortality. The cumulative threshold/persistent growth response

function suggests study stands are more sensitive to climate extremes (as represented by climate

variable threshold exceedances) during periods of high stem density following large regeneration

events when individual trees experience higher levels of competition, on average, than in older,

mature stands. Over 85 percent of all unknown forest growth responses (i.e., responses that did not

coincide with a climate variable threshold exceedance or forest tent caterpillar defoliation event)

occurred within 33 years of initiation, on average (excluding the first 33 years of the study period),

providing evidence that study stands are more sensitive to water availability when they are young

(Figure 2.7).

Management Applications: The results of the VCE model combined with previous studies of

forest resistance and resilience to drought following thinning suggest that forest managers may be
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Figure 2.7: Cumulative distribution of forest growth responses to all climate variables under the
variable climate effects model as a function of years since initiation (initiation marks establishment
a new cohort of trees within a study stand) for the threshold/persistent and unknown response
categories. Note, the cumulative growth response functions exclude growth responses that occurred
early in the study period when growth data from less than 20 study stands were available (1987-
1929). Grey shading highlights responses 20 to 45 years following initiation when understory stem
density and inter-tree competition are high.

able to reduce forest sensitivity to climatic water deficit by thinning stands during periods of peak

density and inter-tree competition (i.e., during the stem exclusion phase of development in even-aged

stands). This period corresponds to the stage at which thinning treatments are traditionally applied

to increase resource levels for residual trees and mimic density-dependent mortality. Thinning

from below (removing only trees in intermediate or suppressed canopy positions) may limit the

formation of large canopy crowns with high leaf area to sapwood area ratios reducing sensitivity

to climatic water deficit as stands mature; further, thinning from below may minimize levels of

evaporative demand at the forest floor due to the high levels of canopy cover it maintains relative

to other thinning approaches. In uneven-aged stands where intermediate thinning treatments may

not be applicable, forest managers may be able to increase forest growth resistance and resilience

to water deficit by minimizing forest gap sizes through individual tree or small group selection
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harvests that limit the amount of forest in the stem exclusion phase of development at a given

time and increase the range of tree sizes and spatial diversity present in a given stand (Churchill

et al., 2013). Moreover, the pronounced influence of forest tent caterpillar outbreaks and their

interaction with climatic water deficit on productivity underscores the importance of maintaining

mixed-species stands with a diversity of host and non-host species to minimize the impact of insect

defoliation on future productivity.

The modeling approach developed here relies on the dynamic nature of forests to advance

understanding of the effects of past disturbance and forest dynamics on forest growth responses

to climate extremes. The model results demonstrate the importance of considering the effects of

disturbance and forest dynamics on forest growth responses to climate extremes if the goal is to

maintain forest productivity under changing climatic conditions. In its current form, the state space

framework applies a random walk to model changes in climate variable coefficients over time,

rather than modeling changes as a function of past disturbance and forest dynamics. Future work

will apply the framework to data sets that provide more specific information on disturbance history

and past forest dynamics allowing climate coefficients to be modeled explicitly as a function of

disturbance and stand characteristics including density and stand age. In particular, the framework

will be applied to data sets with sufficient sample sizes of individuals from forest tent caterpillar

host versus non-host species to explicitly model the effects of insect defoliation on forest growth

responses to climate. Despite the data limitations in the current analysis, the hierarchical state

space framework we have developed provides a novel method to analyze dynamic forest responses

to climate extremes driven by forest disturbance and dynamics.
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CHAPTER 3

BOREAL TREE GROWTH EXHIBITS DECADAL-SCALE ECOSYSTEMMEMORY TO
DROUGHT AND INSECT DEFOLIATION, BUT NO NEGATIVE RESPONSE TO

THEIR INTERACTION

3.1 Abstract

• Interactions between drought and insect defoliation may dramatically alter forest function under

novel climate and disturbance regimes, but remain poorly understood. We empirically tested

two important hypotheses regarding tree responses to drought and insect defoliation: 1) trees

exhibit delayed, persistent, and cumulative growth responses to these disturbances; 2) physiological

feedbacks in tree responses to these disturbances exacerbate their impacts on tree growth. These

hypotheses remain largely untested at a landscape scale, yet are critical to predicting forest function

under novel future conditions given the connection between tree growth and demographic processes

such as mortality and regeneration.

• We developed a Bayesian hierarchical model to quantify the ecological memory of tree growth to

past water deficits and insect defoliation events, derive antecedent variables reflecting the persistent

and cumulative effects of these stressors on current tree growth, and test for their interactive effects.

The model was applied to extensive tree growth, weather, and defoliation survey data from western

and eastern regions of the Canadian boreal forest characterized by contrasting tree compositions,

climates, and insect defoliators.

• Results revealed persistent tree growth responses to past water and defoliation stress lasting

5-7 and 8-10 years, respectively, depending on study region. Regional differences in ecological

memory highlight the role of climate and insect defoliator dynamics in shaping forest responses

to drought and defoliation. Boreal tree growth was negatively related to antecedent water deficit

and insect defoliation (host trees only) variables. However, there was no evidence of negative

interactions between antecedent variables in either region. Rather, a positive interactive effect was
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observed for non-host trees likely due to reduced water stress following defoliation.

• Synthesis. Tree growth responses to water and insect defoliation stress were found to last up to a

decade in contrasting regions of the boreal forest. Interactions between water and defoliation stress,

however, were not found to exacerbate their impacts on host tree growth even after accounting

for persistent and cumulative effects. This result, consistent with earlier experiments, suggests

negative feedbacks in host tree responses to drought and insect attack may be weaker than predicted

for defoliator-dominated boreal forest systems.

3.2 Introduction

The boreal forest is one of the largest terrestrial ecosystems (∼1135 Mha) and accounts for

roughly 32 percent (272 Pg C) of all forest-stored carbon on earth (Pan et al., 2011). It is an

important natural resource, contributing to national economies in North America, Europe, and

Asia (Brandt, 2009). The boreal forest is a disturbance-driven ecosystem, defined by the interplay

of droughts, insect damage, pathogens/disease, and stand-replacing fire (Fleming et al., 2000;

Girardin et al., 2013). Increased temperatures and aridity forecast for much of the boreal forest

under global climate change have the potential to fundamentally alter historical boreal disturbance

regimes (Price et al., 2013; Allen et al., 2015). In particular, severe drought events characterized

by high temperatures are already occurring in boreal regions of western North America (Hogg

et al., 2002, 2008; Peng et al., 2011; Michaelian et al., 2011). Further, the severity, extent, and

duration of defoliating insect outbreaks have increased in recent decades (Blais, 1983; Roland,

1993; Pureswaran et al., 2015). Changing climatic conditions are likely an important contributor to

changes in defoliator population dynamics (Cooke et al., 2007; Price et al., 2013). Both drought and

insect defoliation can severely impact boreal forest function causing growth reductions and large-

scale forest mortality with lasting impacts on the global carbon cycle, regional timber supplies, and

an array of other ecosystem services (Kurz et al., 2008; Hicke et al., 2012; Pothier et al., 2012;

Price et al., 2013).
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A number of studies have demonstrated spatio-temporal synchrony between drought and defo-

liating insect damage to the boreal forest (Hogg et al., 2008; Flower et al., 2014; DeGrandpré et al.,

2017). Several physiological feedbacks in tree responses to drought and insect defoliation have been

proposed to explain the synchrony of such events. First, insect defoliation may reduce tree growth

and xylem formation making trees more susceptible to future drought (Anderegg and Callaway,

2012; Jacquet et al., 2014). Second, limited available carbon and water in drought-stressed trees

may reduce metabolic defenses against defoliating insects (McDowell et al., 2008, 2011). Finally,

reductions in carbon uptake due to the combination of drought and insect defoliation may deplete

non-structural carbohydrates and increase the risk of carbon starvation (Hogg et al., 2008).

Despite the observed synchrony of drought and defoliation events and proposed negative physi-

ological feedbacks, the nature of interactive effects of drought and insect defoliation on tree growth

and mortality remain unclear (Kolb et al., 2016). For example, water stress may increase the

concentration of secondary metabolites in leaves making them less palatable to defoliating insects

(Mattson and Haack, 1987). Further, moderate defoliation may decrease the impact of drought

events by reducing tree density and leaf area (Jacquet et al., 2014). Previous studies indicate both

positive and negative impacts of drought on tree resistance to insect defoliation and vice versa

depending on the severity of the drought or defoliation event (Jactel et al., 2012).

Uncertainty in physiological mechanisms underlying feedbacks between drought and insect

defoliation stress highlight the importance of empirical studies to test for the interactive effects of

drought and insect defoliation on tree growth and mortality (Anderegg et al., 2015). Few such

studies exist. A notable exception is Jacquet et al. (2014), which found no significant interaction

between drought and defoliation stress on experimentally-manipulated maritime pine plantations.

Further, among a number of studies assessing aspen mortality in western North America (sudden

aspen decline [SAD]) due to severe drought and repeated forest tent caterpillar defoliation (Hogg

et al., 2002, 2008; Worrall et al., 2010; Michaelian et al., 2011; Anderegg and Callaway, 2012;

Anderegg et al., 2012, 2013), none explicitly tested for interactions between disturbance agents.

Detecting interactive effects of drought and insect defoliation on tree growth and mortality is
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complicated given physiological responses to drought and insect defoliation may be delayed or

persist following a disturbance event (Pothier et al., 2005, 2012; Hogg et al., 2008; Worrall et al.,

2010; Anderegg et al., 2013). Further, physiological responses to past disturbance events may

weaken a tree’s ability to respond to future disturbances (Anderegg et al., 2013); that is, there is a

cumulative effect of drought and insect defoliation. Potential delayed, persistent, and cumulative

responses make it difficult to model the interactive effects of drought and insect defoliation using

observations of forest conditions from a single time point. Classical approaches to overcome this

issue involve applying lagged variables (e.g., water availability in the year previous to growth)within

a regression model to estimate growth or mortality. Regression models using lagged variables,

however, can be difficult to interpret, require the researcher to select the number of lags to include,

and often suffer frommulticollinearity issues (Heaton and Gelfand, 2012). An alternative approach,

based on recent advancements in statistical ecology, is to quantify antecedent drought and insect

defoliation variables using ecological memory functions reflecting the cumulative effects, relative

importance, and strength of both disturbance types on forest growth and mortality over a specified

time period (Ogle et al., 2015). The use of ecological memory functions allows for novel insights

into the nature of forest responses to past drought and insect defoliation and improves our ability to

detect interactions due to physiological feedbacks.

In the current study, we developed a Bayesian hierarchical model to quantify the ecosystem

memory of trees to water deficit and insect defoliation allowing for the detection of delayed,

persistent, and cumulative growth responses to these stressors. Further, the model tested for

interactive effects of antecedent water and insect defoliation stress on tree growth where derived

antecedent variables reflect potential delayed, persistent, and cumulative tree responses. The model

was applied to extensive tree-ring width, interpolated climate, and aerial defoliation datasets from

the western and eastern regions of the Canadian boreal forest characterized by contrasting climates,

species compositions, and primary defoliating insect species. The hierarchical model allowed us

to combine multi-scale data in an integrated statistical framework with propagation of uncertainty

among scales. The use of two contrasting boreal study systems highlights the generalizability
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of the model and allows for a robust interpretation of interactions between drought and insect

defoliation. Our analysis focused on tree growth responses alone; however, there is evidence of

strong connections between tree growth and vital forest demographic rates including tree mortality

(Wyckoff and Clark, 2000, 2002; van Mantgem et al., 2003; Das et al., 2007, 2016; Berdanier and

Clark, 2016; Buechling et al., 2017).

Based on current physiological understanding, we hypothesized that in both boreal study re-

gions: 1) tree growth would exhibit persistent responses to water deficit with deficits in the year

previous to the current growing season having the greatest effect on growth; 2) tree growth would

exhibit persistent responses to insect defoliation for multiple years following a defoliation event; 3)

antecedent water and insect defoliation stress would have a negative interactive effect on host tree

growth. In addition to testing each of these hypotheses, we further tested for regional differences in

the ecosystem memory of trees to water deficit and insect defoliation and their antecedent effects

on tree growth. Finally, we tested whether the effects of antecedent water and defoliation stress

vary depending on tree size (large vs. small diameter) and species (defoliator host vs. non-host)

categories within each region.

3.3 Methods

We begin this section by providing information on the forest composition, climate, and defoli-

ating insect population dynamics in the two study regions. We then detail the tree-growth, climate,

and defoliation data applied in the analysis. Finally, we define the Bayesian hierarchical model used

to estimate ecological memory and test for interactive effects of water deficit and insect defoliation

on boreal forest growth.

3.3.1 Study Regions

3.3.1.1 West

The western study region is located in Alberta, Canada and consists of 34 mixed-wood boreal

stands in the western, interior plains extending from 52.0 to 59.0°N and 111.0 to 119.5°W (Figure
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3.1A). Study stands are predominantly composed of trembling aspen (Populus tremuloidesMichx.)

and white spruce (Picea glauca Moench) and established post stand-replacing fire. The higher

growth rate of aspen relative to spruce leads to a bimodal diameter distribution early after stand

establishment until spruce moves into the canopy as a co-dominant species. The region is defined

by a continental climate (cold winters, hot and dry summers) with chronic summer water deficits.

Annual mean monthly temperature and total annual precipitation (1970-2000) ranged from -0.8

to 2.8 °C and 370 to 615 mm (25 to 35 percent falling as snow) across the region (Fick and

Hijmans, 2017). Mean summer (June-August) Standardized Precipitation-Evapotranspiration Index

(SPEI) values, a measure of drought severity relative to average conditions with more negative

values indicative of severe droughts, indicate a period of relative wetness beginning in 1970 and

overlapping the defined study period (1968-2010) with dry years in 1982, 1992, and 2004 (Figure

3.1B). Forest soils in the western study region consist of orthic gray luvisols and brunisols with silty

to clay-loam texture derived from glacial till and glaciolacustrine deposits (Huang et al., 2013).

The forest tent caterpillar (Malascosoma disstria Hub., hereafter “FTC”) is the primary defoliating

insect within western study stands attacking the regionally-abundant trembling aspen (Brandt et al.,

2013). During its larval stage, the FTC, a univoltine lepidopter, defoliates aspen shortly after leaf

out for a 5-6 week period until pupations in mid-to-late June (Parry et al., 1998). Outbreaks can

last for one to several years (Price et al., 2013). Trees are able to produce a second flush of leaves

after the FTC has pupated (Cooke et al., 2007). Outbreaks of the FTC have been linked to regional

growth declines in aspen as well as large-scale mortality when outbreaks co-occur with droughts

or extreme temperatures (Hogg et al., 2005).

3.3.1.2 East

The eastern study region is located in Quebec, Canada and comprises 14 coniferous boreal stands

within the Forest Ecosystem Research and Monitoring Network, extending from 47.0 to 50.1°N

and 66.1 to 75.0°W (Figure 3.1A). Stands are dominated by black spruce (Picea marianaMill.) or

balsam fir (Abies balsamea L.) accompanied by white birch (Betula papyriferaMarsh.), trembling
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Figure 3.1: (A) Location of study stands within western (Alberta: 34 stands) and eastern (Quebec:
14 stands) study regions relative to mean summer (June-August) climate moisture index values
(1970-2000, Fick and Hijmans, 2017). (B) Mean summer 3-month Standardized Precipitation-
Evapotranspiration Index values for western and eastern study stands (1902-2015, Beguería and
Serrano, 2017).

aspen, white spruce, and jack pine (Pinus banksiana Lamb.). Annual mean monthly temperature

(1970-2000) ranged from -0.3 to 3.2 °C while total annual precipitation ranged from 860 to 1600

mm (Fick and Hijmans, 2017). Mean summer SPEI values for eastern study stands indicate a

period of relative wetness beginning in the 1960s and continuing through the study period (1968-

1998) with dry years in 1968 and 1991 (Figure 3.1B). Soils in the eastern study region consist

mainly of orthic ferro-humic podzols and gleysols derived from glacial till as well as glaciofluvial

and glaciolacustrine deposits with soil depths ranging from 30 to 60 cm (Ouimet et al., 2001).

Defoliation in the eastern study region is caused by outbreaks of the eastern spruce budworm

(Choristoneura fumiferana Clem., hereafter “SBW”), which occur every circa 35 years and can

persist 4-12 years or more in a given stand (Gray, 2008). Balsam fir is the primary SBW host in the

East with white and black spruce also susceptible to attack during severe defoliation events (Nealis

and Régnière, 2004). The larval feeding of the SBW, also a univoltine lepidopter, is approximately

6 weeks from early-to-mid May until mid-to-late June depending on the region (Régnière et al.,
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2012). Larva feed primarily on current year foliage and require multiple years to kill a host tree

(Gray, 2008). SBW outbreaks, given their extent and severity, are one of the most damaging natural

disturbance types in the Canadian boreal forest (Fleming et al., 2000).

3.3.2 Data

A total of 34 forest stands were sampled in the western study region using variable-length belt

transects (Figure 3.1A). Approximately ten white spruce trees from a range of size classes and

fifteen dominant or co-dominant aspen trees were sampled within each transect. Either two radial

increment cores were collected on opposite sides of a sampled tree or entire cross-sections were

obtained through harvest. All radial growth sampling was done at breast height (1.3 m). Cores

and cross-sections were dried, mounted, and sanded. Ring-widths were measured using a Velmex

measuring state (increment cores) or WinDendro (cross-sections) to the closest 0.01 mm. A total

of 919 tree growth series were used in the analysis: 471 white spruce and 448 trembling aspen.

Fixed area plots (0.25 ha) were established in each of the 14 eastern study stands in 1986-1998

(Figure 3.1A). Between 1996-1998, radial increment cores were collected at breast height from 25

to 50 healthy, co-dominant trees along the border of each plot. Two increment cores were taken from

opposite sides of each tree. Cores were dried, mounted in wooden blocks, and sanded. Ring widths

of all cores were measured to the nearest 0.01 mm under 40X magnification. A total of 625 tree

growth series were used in the analysis, mostly black spruce (342) and balsam fir (208), as well as

jack pine (35), white spruce (30) and white birch (10). Tree-ring cross-dating in both study regions

was done visually and verified statistically with COFECHA (Grissino-Mayer, 2001). Replicate ring

widths resulting from the collection of multiple increment cores per tree were averaged to produce

a single radial growth record for each sampled tree in the East and West.

We separated trees into large- and small-diameter classes using an 11-cm diameter at breast

height (DBH) threshold in both study regions for use in the tree growth model (see Section 3.3.3).

The 11-cm DBH threshold was determined based on exploratory analysis using detailed plot data

to determine a DBH above which a tree has high probability of being in a co-dominant or dominant
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canopy position. Each tree’s diameter class was updated annually conditional on its tree-ring

reconstructed DBH. The use of an 11-cm diameter threshold led to relatively equal sample sizes of

annual growth increments for large- and small-diameter trees in both study regions.

Monthly weather data (1950-2012) were generated for each study stand using the BioSIM

interpolation model (Régnière, 1996) based on a network of 365 weather stations in the East and

456 in the West. We applied a water balance model adapted from Lutz et al. (2010) to estimate

monthly potential evapotranspiration (PET), actual evapotranspiration (AET), and climatic water

deficit (PET-AET). PET was estimated using a modified Hargreaves equation based on monthly

averages of daily minimum/maximum temperature and incoming solar radiation, total monthly

precipitation, and latitude (Beguería et al., 2014). Monthly climatic water deficit estimates were

converted to annual values by summingmonthly estimates for growing seasonmonths (June through

August). Estimates of soil water holding capacity were necessary to derive AET. Mean soil water

holding capacity was estimated for eastern study stands by converting granulometric content of

unique soil horizons applying equations from Saxton and Rawls (2006) with weights corresponding

to horizon thickness. Granulometric content was estimated based on laboratory analysis of four

1-m2 soil pits dug in each study stand. Less detailed soil data were available for western study

stands. Ordinal estimates of soil water holding capacity for western stands were obtained from the

Canadian Soil Information Service (Soil Landscapes of Canada Working Group, 2010) and were

converted to numeric estimates by taking the median value of each ordinal category.

The provinces of Quebec and Alberta began conducting aerial defoliation surveys in 1967

and 1939, respectively, to estimate the extent and severity of damage caused by major forest

pests (Ministère des Forêts, de la Faune et des Parcs, 2016; C. Whitehouse, Alberta Ministry of

Agriculture and Forestry, personal communication, March 21, 2017). Derivedmaps indicate annual

insect defoliation according to ordinal severity classes. We derived an annual binary defoliation

variable for each study stand based on defoliation maps. A value of 1 was assigned to the defoliation

variable if a mapped defoliation event of moderate (36-70% loss of foliage in the upper half of the

crown of most trees) to high (71-100% loss of foliage over the entire crown length of most trees)
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severity intersected a study stand in a given year with 0 assigned otherwise. The start of the study

period in the eastern and western regions was set to 1968 to be consistent with the availability of

defoliation data in both study regions.

3.3.3 Model Specification

Our Bayesian hierarchical model consists of tree- and stand-level submodels (Figure 3.2). The

tree-level submodel estimates annual radial growth increment on the log scale as a function of a

time-varying stand effect reflecting stand-level growing conditions, and a tree’s diameter in the

previous year. The stand-level submodel estimates the time-varying stand effect as a function of

antecedent climatic water deficit and insect defoliation derived using ecological memory functions.

Based on studies demonstrating forest growth responses to drought and insect defoliation are

modified by stand structure and composition (Bergeron et al., 1995; Nealis and Régnière, 2004;

McDowell et al., 2006; Jactel and Brockerhoff, 2007; D’Amato et al., 2013; Gleason et al., 2017),

we allow the effects of antecedent water deficit to vary by DBH class (large vs. small) and the

effects of antecedent insect defoliation to vary by tree species categories (defoliator host versus

non-host). Primary inferential interest is in the stand-level submodel including the estimation of

ecological memory functions and regression coefficients for derived antecedent variables. The tree-

level submodel is included to control for tree size and its effect on annual radial growth increment.

Combining the different model components results in the following regression equation for the

radial growth increment (y) of the ith tree in year t,

log(yi jhs(t)) = α jhs(t) + xi jhs(t)β + ei jhs(t),

where j indexes the study stand, h indexes whether the tree is in the host or non-host species

category for the dominant regional defoliating insect, and s indexes the DBH class of the tree in

year t (large: > 11 cm; or small: < 11 cm). A time-varying stand effect (α jhs(t)) is uniquely

estimated for each tree species (host/non-host) and size (large/small DBH) category combination,

xi jhs(t) is a tree’s diameter in the previous year, β is an estimated regression coefficient, and ei jhs(t)
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is a tree-level error term. A single linear term for tree diameter in the previous year was sufficient

to control for tree size in the eastern region. Tree growth in the western region, however, differed

by species (aspen versus spruce) and showed evidence of following a sigmoid growth function

with respect to diameter. As such, the tree-level submodel in the West included species-specific

linear and quadratic terms for tree diameter in the year previous to growth (see Web Supplement).

Consistent with a multiple linear regression model, we assume the tree-level errors are normally

distributed, ei jhs(t)
iid
∼ N(0, σ2

y ), where σ2
y is a tree-level variance and “iid” stands for independent

and identically distributed. The time-varying stand effect is estimated according to a separate

regression equation, the stand-level submodel, given by,

α jhs(t) = γ0 + z̃ j(t)γ
(h)
1 + f̃ j(t)γ

(s)
2 + z̃ f j(t)γ

(hs)
3 + u jhs(t),

where z̃ j(t) is the estimated antecedent defoliation value, f̃ j(t) is the estimated antecedent climatic

water deficit value, z̃ f j(t) is an antecedent defoliation-water deficit interaction term (z̃ f j(t) =

z̃ j(t) × f̃ j(t)), the γ’s are estimated regression coefficients, and u jhs(t) is a stand-level error term.

We assume the stand-level errors are also normally distributed, u jhs(t)
iid
∼ N(0, σ2

α), where σ2
α is an

inter-annual, stand-level variance.

Ecological memory is quantified by estimating an antecedent weight function where antecedent

weights reflect the relative importance of past environmental conditions on current ecosystem

function (Ogle et al., 2015). We build on the Bayesian framework presented in Ogle et al. (2015) to

estimate ecological memory using splines and spatio-temporal covariance functions rather than a

Dirichlet prior assigned to antecedent weights. The modified approach allows for efficient (i.e., few

model parameters) estimation of complex memory functions. Our approach to estimate ecological

memory is different for climatic water deficit and insect defoliation reflecting differences in forest

growth responses to these disturbance types.

We used penalized regression splines to estimate antecedent weights for past climatic water

deficit. Regression splines provide a flexible method to model complex, non-linear ecological

processes based on linear combinations of piecewise polynomials (Wood and Augustin, 2002).

Regression splines are penalized through the use of a smoothing parameter to control against over
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fitting. Penalized regression splines have a range of applications in ecology (Wood and Augustin,

2002; Hefley et al., 2017). Use of penalized regression splines in the current analysis allows the

antecedent weight function for water deficit to be entirely determined based on the data (i.e., no

pre-specified functional form). Splines were constructed as a function of time before present up to

a maximum range of years L. We set L = 10 years, but other values can be applied depending on

region and knowledge of forest ecosystem responses to water stress. The antecedent weight value

(w) for a given time lag (`) is estimated as,

w` =
exp

{∑p
i=1 hi(`)ηi

}
∑L
`=0 exp

{∑p
i=1 hi(`)ηi

} ,
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where hi(`) is the value of the ith spline function evaluated at lag ` and ηi is its corresponding

regression coefficient (i = 1, 2, . . . , p). The exponential term (equivalent to modeling weights on

the log scale) constrains weights to be positive, while the sum over ` in the denominator imposes

a sum-to-one constraint among the weights,
∑L
`=0 w` = 1. The antecedent water deficit value

(reflecting cumulative water stress) for stand j in year t is then estimated as the weighted sum of

past water deficit observations,

f̃ j(t) =
L∑
`=0

w` f j(t − `),

where f j(t − `) is the observed climatic water deficit in stand j, ` years before year t. Additional

details on the penalized regression spline approach are provided in Appendix B.

We applied a temporal decay function to model ecological memory to past insect defoliation

given peak defoliation stress levels are expected to occur when a defoliating insect population is

present in a stand. The decay function begins in the year of a defoliation event and decays to zero as

a function of years since defoliation. We applied a spherical decay function in the current analysis

because it achieves a value of zero within a finite interval of time (see Appendix B). The function is

conditional on an estimated temporal range parameter (φ), which reflects the length of ecosystem

memory to past defoliation events. Defoliating insect outbreaks can last more than a single year and,

in some cases, an additional defoliation event can occur before host trees have fully recovered from

a previous defoliation event. To account for defoliator dynamics, we estimate antecedent insect

defoliation as the sum of the decay function values for all defoliation events preceding or coincident

with the current year to capture their cumulative effects. Specifically, antecedent defoliation is

given by,

z̃ j(t) =

Dj (t)∑
i=1

g (t − t(di); φ) ,

where D j(t) is the total number of defoliation events in stand j from the beginning of the study

period through year t, g(x; φ) is the spherical decay function, t(d) indicates the year of a defoliation

event, and i indexes individual defoliation events. Reference plots for antecedent climatic water

deficit and insect defoliation variables are provided in Figures B.1 through B.4 in Appendix B.
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The Bayesian hierarchical model is completed by specifying prior distributions for unknown

parameters. These include tree- and stand-level regression coefficients and variance parameters,

the basis function coefficients for the antecedent water stress weights, and the decay parameter for

the antecedent defoliation memory function. We used Markov chain Monte Carlo (MCMC) to

sample from the joint posterior distribution for all model parameters (Robert and Casella, 2004).

Details on the prior distributions used and the MCMC sampler are provided in Appendix B.

3.4 Results

3.4.1 Ecological Memory

Antecedent weights for climatic water deficit ranged from near zero to 0.4 (Figure 3.3A). Climatic

water deficit in the year previous to growth had the largest antecedent weight in each region (` = 1;

posterior mean: East = 0.23 [0.17,0.29]; West = 0.32 [0.25,0.39]). Weights larger than 0.05 were

also estimated for deficits in the year of growth and 3-5 years previous to growth depending on

the region. Trees within eastern study stands exhibited a more prolonged response to past climatic

water deficit than trees in western study stands. Non-zero antecedent weights were estimated for

climatic water deficit up to 7 years prior to growth in the East compared to 5 years in the West.

Further, the estimated memory function for the West exhibited a faster response to climatic water

deficit than in the East with larger antecedent weights for lags 0-2 and smaller weights for lags

3-10. There was only weak evidence, however, of differences in ecological memory to climatic

water deficit between the two study regions (95 percent credible intervals overlap in Figure 3.3A).

Tree growth in both study regions is estimated to exhibit persistent responses to past climatic water

deficit with multi-year water deficits leading to more persistent responses (Figure 3.4A). Further,

multi-year water deficits are estimated to result in greater antecedent effects reflecting a larger

cumulative tree growth response.

Similar to climatic water deficit, there was weak evidence trees within eastern study stands

exhibited more prolonged memory to past insect defoliation events than trees in western stands

(Figure 3.3B). Based on the posterior distribution of the range parameter (φ), trees in eastern study
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Figure 3.3: Ecological memory functions for climatic water deficit (A) and insect defoliation (B)
based on annual radial tree growth in eastern and western study regions. Lag indicates the number
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stands exhibited ecosystem memory to SBW defoliation events occurring up to 11.2 (95% credible

interval: 7.8-14.7) years before present, while trees in western study stands exhibited memory

to past FTC defoliation events up to 8.3 (95% credible interval: 6.9-9.6) years before present.

The ecosystem memory to past defoliation is estimated to lead to persistent and cumulative tree

growth responses to insect defoliation events in both study regions (Figure 3.4B). The length of

persistent responses and magnitude of antecedent effects are estimated to increase the longer an

insect defoliation outbreak lasts.

3.4.2 Antecedent Effects

Mean host tree growth was negatively related to antecedent insect defoliation in both study regions

(γ1 in Table 3.1). Specifically, the average annual growth of host trees, after controlling for tree

size and assuming zero antecedent water deficit, was 0.63 times smaller per one-unit increase in
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antecedent FTC defoliation in the West, and 0.88 times smaller per one-unit increase in antecedent

SBW defoliation in the East (e.g., 1 + [eγ1 − e0]). There was no evidence mean annual growth of

non-host trees was related to antecedent defoliation after controlling for tree size in either region

(small posterior median coefficient values and 95 percent credible intervals overlap with zero in

Table 3.1).

Mean annual growth of large- and small-diameter trees was negatively related to antecedent

water deficit in both study regions with large-diameter trees exhibiting greater sensitivity to water

deficit than small-diameter trees (Table 3.1). There was stronger evidence of increased sensitivity

of large-diameter trees to antecedent water deficit in the West where the magnitude of the posterior

median coefficient for large-diameter trees (-0.012) was four times as large as the posterior median

coefficient for small-diameter trees (-0.003), and the 95 percent credible intervals for the size classes

did not overlap. Specifically, after controlling for tree size effects and assuming no antecedent

insect defoliation, mean annual tree growth was 0.84 times smaller for large-diameter trees and

0.90 times smaller for small-diameter trees in the East experiencing a simulated antecedent climatic

water deficit of 5 mm, equivalent to the regional average over the study period. Under the same

conditions in the West, mean annual tree growth was 0.79 times smaller for large-diameter trees
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Table 3.1: Posterior summary of stand-level, antecedent variable coefficients. Posterior median
coefficient values are provided for antecedent insect defoliation, antecedent climatic water deficit,
and their interaction for each study region by species (defoliator host vs. non-host) and size (large-
vs. small-diameter) categories. 95 percent credible intervals are given in parentheses. Coefficients
for which credible intervals do not include zero are bolded.

Parameter Category East West
Antecedent Defoliation

γ1
Host -0.128 (-0.187, -0.077) -0.467 (-0.602, -0.335)
Non-Host 0.026 (-0.055, 0.106) 0.083 (-0.03, 0.201)

Antecedent Water Deficit

γ2
Large -0.034 (-0.043, -0.026) -0.012 (-0.014, -0.01)
Small -0.02 (-0.029, -0.011) -0.003 (-0.004, -0.001)
Antecedent Defoliation × Antecedent Water Deficit

γ3

Host|Large 0.005 (-0.003, 0.012) 0.004 (-0.001, 0.008)
Host|Small 0.007 (-0.001, 0.015) 0.001 (-0.003, 0.005)
Non-Host|Large 0.032 (0.012, 0.067) -0.001 (-0.005, 0.003)
Non-Host|Small 0.005 (-0.014, 0.029) 0.002 (-0.002, 0.005)

and 0.95 times smaller for small-diameter trees experiencing a simulated climatic water deficit of

20 mm, again equal to the regional average over the study period.

In general, mean annual tree growth in stands from both study regions was not strongly related

to the interaction between antecedent insect defoliation and climatic water deficit (γ3 in Table 3.1).

The one exception was for large-diameter, non-host trees in the East where there was evidence

mean annual growth was positively related to the interaction between the antecedent variables.

Specifically, mean annual growth among large-diameter, non-host trees experiencing 5 mm of

antecedent water deficit was estimated to be 1.17 times greater for an antecedent defoliation value

of one versus zero after controlling for tree size. Figure 3.5 presents the sum of estimated effects

for antecedent insect defoliation, antecedent climatic water deficit, and their interaction relative to

regional mean annual tree growth over the study period after controlling for tree size. Based on

Figure 3.5, the positive interaction between antecedent variables for large-diameter, non-host trees

in the East is estimated to have the greatest impact at moderate antecedent water deficits and high

antecedent defoliation levels. We observed no evidence of such an interaction in the West where

large-diameter, non-host trees were equally sensitive to antecedent water deficit regardless of the
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Figure 3.5: Estimated effects of antecedent insect defoliation, antecedent climatic water deficit,
and their interaction on tree growth in eastern and western study regions by species (defoliator
host vs. non-host) and size (large- vs. small-diameter) categories. Points represent posterior
median antecedent variable values based on study data. Relative response surfaces correspond to
mean tree growth under antecedent conditions relative to regional mean tree growth over the study
period (East: 1968-1998, West: 1968-2010) after controlling for tree size. Response surfaces were
generated by imposing a dense grid over the range of modeled antecedent variable values.

amount of antecedent defoliation. Additional model coefficients of reduced inferential interest,

including the effects of diameter on tree-level growth and tree- and stand-level variances for both

regions are summarized in Table B.1.

3.5 Discussion

3.5.1 Ecological Memory

The estimated ecological memory functions provide evidence of persistent tree growth responses to

climatic water deficit and insect defoliation in both regions of the Canadian boreal forest supporting

hypotheses 1 and 2, respectively (Figure 3.3). The derived antecedent water deficit and defoliation

variables reflect the cumulative effects of these forest stressors over time (Figure 3.4). The estimated
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ecological memory functions for climatic water deficit indicate memory to water conditions up to

5 (West) to 7 (East) years in the past (Figure 3.3A). Water deficits in the growing season prior to

the year of growth had the highest antecedent weight in both study regions providing evidence in

support of hypothesis 1. The form of the memory functions indicates strong tree growth response

to water deficits in the current growing season and preceding 1-4 growing seasons followed by a

decline in responsiveness to water deficits more than 4 years in the past (Figure 3.3A). These results

are consistent with previous studies indicating water availability in past years has greater impact

on tree growth and mortality than current growing season conditions (Michaelian et al., 2011;

D’Amato et al., 2013; D’Orangeville et al., 2013). Novel here is the quantification of the relative

importance of water deficits up to 10 years in the past for current tree growth. Estimating the

antecedent effects of multi-year water deficits illustrates the persistent and cumulative effects they

have on boreal tree growth. Specifically, a five-year climatic water deficit of 10 mm is estimated to

have a measurable effect on boreal tree growth for up to 8 (West) to 10 (East) years with maximum

antecedent effects in the fifth consecutive year of water deficit (Figure 3.4A).

There was only weak evidence of regional differences in ecosystem memory to past climatic

water deficit (posterior median weights differ, but 95 percent credible intervals overlap in Figure

3.3A). The form of the estimated ecological memory functions, however, suggests trees within

western study stands are more responsive to water deficits in the current and previous growing

season and less responsive to water deficits 3-5 years in the past than trees in eastern study stands

(Figure 3.3A). The specific drivers underlying regional differences in ecosystemmemory to climatic

water deficit are uncertain and warrant future analysis. It is likely regional species composition,

climate, and soils contribute to the different memory functions estimated for the eastern and western

regions. In particular, chronic summerwater deficits in theWest may lead to drought-adapted stands

in terms of stand density and structure, while favorable growing conditions punctuated by periodic

water deficits in the East may cause structural overshoot contributing to longer-term sensitivity to

past deficits (Jump et al., 2017).

The estimated ecologicalmemory functions for insect defoliation indicatememory to defoliation
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events 8 (West) to 11 (East) years in the past consistent with hypothesis 2 (Figure 3.3B). Such

memory results in persistent effects of insect defoliation on boreal tree growth, which lengthen the

longer a defoliation event lasts (Figure 3.4B). The magnitude of antecedent effects increases for

multi-year defoliation events (Figure 3.4B), or if the time between defoliation events is less than

the ecosystem memory range (Figures B.3-B.4). These increases in antecedent defoliation values

reflect the accumulation of insect defoliation damage over the course of repeated attacks leading

to reduced tree growth and potential mortality (McDowell et al., 2008; Anderegg and Callaway,

2012). Additionally, the increase in cumulative effects over consecutive years of defoliation leads

to maximum antecedent variable values one or more years after the initiation of a defoliation event

(Figure 3.4B) consistent with previous studies (Pothier et al., 2005, 2012).

While the ecological memory functions for insect defoliation were similar for the two study

regions (as evidenced by overlapping 95 percent credible intervals in Figure 3.3B), there was

evidence the memory of trees in eastern stands to SBW defoliation events was longer than the

memory of trees in western stands to FTC defoliation events (as indicated by the larger range

parameter, φ, in the East). Additional analysis is needed to explore potential mechanisms underlying

regional differences in ecosystem memory to insect defoliation. Still, there are several reasons why

ecosystem memory to insect defoliation may be longer for spruce-fir trees in the East. SBW

outbreaks last an average of 5-15 years (Fleming et al., 2000), and in severe cases can impact forest

stands for up to 20 years (Price et al., 2013). Comparatively, FTC outbreaks last an average of 2-4

years (Price et al., 2013). SBW preferentially attacks new spruce-fir needles immediately following

bud break (Gray, 2008). The needles of balsam fir trees can last up to 4-6 years (Fleming and

Piene, 1992). Thus, an SBW defoliation event occurring in a single year may reduce leaf area in

spruce-fir forests for several years to come with corresponding reductions in growth. While the

FTC is also an early-season defoliator attacking leaves soon after bud break, aspen is able to reflush

leaves several times during a growing season albeit at a significant carbohydrate cost (Anderegg

and Callaway, 2012). While the loss of leaves and the energy requirement to reflush new leaves

reduce annual growth, aspen stands are able to regenerate their leaf area more quickly following a
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defoliation event than spruce-fir stands.

3.5.2 Antecedent Effects

Antecedent climatic water deficit was negatively related to mean annual growth of both large- and

small-diameter trees in eastern and western study stands (Table 3.1). Further, antecedent insect

defoliation was negatively related to mean annual growth of host trees in both study regions, but

did not have an observable effect on the mean growth on non-host trees. Contrary to hypothesis

3, however, there was no evidence of negative interactive effects of antecedent water and insect

defoliation stress on host tree growth (Table 3.1). These results run counter to current physiological

theory (McDowell et al., 2011; Anderegg et al., 2015), yet are consistent with previous studies

assessing tree responses to interactions between drought and defoliation stress (Jactel et al., 2012;

Jacquet et al., 2014; Kolb et al., 2016). The lack of negative interactive effects observed among

host trees even after accounting for persistent and cumulative tree growth responses to water and

defoliation stress, combinedwith similar results from previous studies, implies negative interactions

between drought and defoliating insects have minimal effects on tree growth. Instead, insect

defoliation, though damaging to host trees, may offset the impacts of water stress leading to

negative additive effects of water deficit and insect defoliation, but no interactive effects (Table

3.1). The positive interactive effect we observed for non-host trees underscores this potential offset.

Specifically, we found evidence of increased growth of large-diameter, non-host trees in eastern

stands at moderate antecedent water stress when there was high antecedent defoliation (Figure

3.5). This result supports the hypothesis that insect defoliation has a positive effect on non-host

tree growth during droughts by lessening evaporative water demands through leaf area reduction

(Jacquet et al., 2014), and has been demonstrated in previous studies in the eastern Canadian boreal

forest (Duchesne and Ouimet, 2008).

Our Bayesian hierarchical model can be used in a range of forest ecosystems characterized

by different species compositions, climates, and insect disturbance agents (as the current analysis

demonstrates). While offsets in water stress may reduce negative interactions between drought and
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defoliating insects, such interactions are more likely to be detected among bark beetles given their

impact on tree xylem structure (McDowell et al., 2011; Anderegg et al., 2015). Importantly, our

model can be used to test for persistent and cumulative tree responses to bark beetle attack and the

interactive effects of drought and bark beetles on tree growth and mortality.

Potential non-negative interactions between drought and defoliating insects on tree growth and

mortality warrant further investigation. Several factors, in particular, may have contributed to the

lack of observed negative interactive effects among host trees in the current study.

i) There were no severe droughts in either boreal region during the study period. Figure 3.1B

indicates study periods in the East and West coincide with periods of relative wetness over

the past century. The climate was drier, on average, in both regions prior to circa 1960. More

severe water stress may trigger stronger tree growth responses leading to interactions with

antecedent defoliation not observed in the current study. Indeed, ecological theory indicates

there are likely drought thresholds beyond which tree responses occur, but below which, trees

are able to maintain basic physiological function (Allen et al., 2015).

ii) The current analysis utilizes tree-ring records collected from live trees alone. Trees that

suffered drought- or insect defoliation-induced mortality in the recent past may exhibit differ-

ent ecosystem memory to these disturbances and stronger responses to their interaction than

surviving trees. The extensive research demonstrating prolonged radial growth suppression

in trees that die during or following a drought relative to surviving trees suggests there is the

potential for stronger interactions among trees suffering mortality (Wyckoff and Clark, 2002;

van Mantgem et al., 2003; Das et al., 2007, 2016; Berdanier and Clark, 2016). Future work

will focus on comparing live versus recently-dead tree responses to antecedent water deficit

and insect defoliation.

iii) The lack of a mechanistic model for interactions between drought and insect defoliation

may also contribute to no observable negative interactive effects among host trees. Once

developed (see Anderegg et al., 2015), such models can be integrated into the Bayesian
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hierarchical model developed here taking the place of the empirical, linear interaction term

between antecedent variables andmay reveal negative interactions not identified in the current

analysis.

If non-negative interactions are confirmed, it would alter forecasts of the impacts of changing

climate and insect disturbance regimes on the boreal forest where the primary biotic disturbance

is insect defoliation, with corresponding impacts to the global carbon cycle, potentially modifying

management approaches within this globally-important ecosystem (Price et al., 2013; Kurz et al.,

2013).

3.6 Conclusions

We found evidence of decadal-scale memory to climatic water deficit and insect defoliation in

the growth of trees from western and eastern regions of the Canadian boreal forest characterized

by different species compositions, climates, and primary defoliating insect populations. Ecological

memory functions for water deficit and insect defoliation indicated slightly different ecosystem

memory between the two study regions with trees from eastern stands exhibiting longer-term

memory to both stressors than trees from western stands. Counter to current physiological theory

and initial hypotheses, we found no evidence of negative interactive effects between antecedent

water and insect defoliation stress even after accounting for persistent and cumulative tree growth

responses to these stressors. This counter-intuitive result, consistent with previous studies, suggests

negative interactions between droughts and insect outbreaks may have minimal effects on tree

growth in defoliator-dominated systems such as the boreal forest due to offsets in water stress

caused by defoliation. Future analysis will apply the Bayesian hierarchical model developed here to

additional data sets including the occurrence of severe droughts, live and recently-dead tree growth

records, and non-defoliating insect damage to further explore interactions between drought and

insect outbreaks. The potential lack of interactive effects between drought and insect defoliation

on boreal tree growth and mortality has important implications for our understanding of future

impacts to the boreal forest under changing climate and insect disturbance regimes and associated

56



future impacts to the global carbon cycle.
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CHAPTER 4

ASSIMILATION OF TREE-RING AND FOREST INVENTORY DATA TOMODEL
INTERACTIONS BETWEEN CLIMATE AND FOREST DYNAMICS

4.1 Abstract

Rapid changes to long-term temperature and precipitation trends already occurring globally

may contribute to altered climate and disturbance regimes. Managing forest ecosystems in the face

of changing climate and disturbance regimes requires we understand interactions between climate

extremes, disturbance, and forest dynamics—changes in forest composition, density, size, age, and

spatial structure over time. Analyses focused on modeling these interactions face a data challenge.

Tree rings provide sufficiently long records to model climate and disturbance effects on growth,

but provide little information on past forest dynamics. Forest inventory data provide detailed

measurements of forest growth, mortality, composition, and structure over time, but are rarely of

sufficient length or resolution to understand forest responses to climate. We nested a forest growth

and yield model (the Forest Vegetation Simulator [FVS]) within a Bayesian state space framework

to assimilate tree-ring and forest inventory data in order to reconstruct past forest dynamics,

advance understanding of their interactions with climate extremes and disturbance, and identify

forest characteristics promoting resistance and resilience to changing conditions. The state space

model was applied to data from a long-term red pine thinning experiment in northern Minnesota.

The assimilation of tree-ring and forest inventory data constrained estimates of forest growth and

mortality throughout the study period with forest inventory observations reducing uncertainty in

forest density (trees/acre, basal area/acre) 13 to 44 percent, and tree-ring data reducing uncertainty

in individual tree diameter growth by 77 percent (based on 95 percent credible intervals). The

state space model resulted in estimates of forest growth and mortality more closely aligned with

observed values and regional projections of forest dynamics than unconstrained runs of the FVS

model. Future workwill integrate climate and disturbance as drivers of forest dynamics within FVS,
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test for interactions between drought and forest growth and mortality, and quantify the resistance

and resilience of experimental red pine stands to drought stress.

4.2 Introduction

Forests face an uncertain future. Projected shifts in long-term temperature and precipitation

trends have the potential to increase the frequency, severity, and duration of climate extremes such

as droughts, and disturbance events including insect outbreaks, fire, and disease (IPCC, 2013;

Clark et al., 2016). Changes in historical climate and disturbance regimes may have profound

impacts on forest demographic processes including growth, mortality, dispersal, and recruitment

(Hansen et al., 2001; Breshears et al., 2005; van Mantgem and Stephenson, 2007; Price et al.,

2013; Allen et al., 2015; Zhang et al., 2015). Forecasting potential forest responses to changing

environmental conditions requires understanding interactions among the various factors impacting

forest demographic processes (Purves and Pacala, 2008; Dietze and Moorcroft, 2011; Clark et al.,

2014; Vanderwel and Purves, 2014). Factors affecting these processes can be partitioned into

exogenous factors such as climate and disturbance, and endogenous factors including species

composition, density, canopy structure, and tree size/age distribution (Bormann and Likens, 1979).

Endogenous factors (hereafter referred to as “forest characteristics”) are particularly important in

applied forest ecology contexts because they can be modified through management and may buffer

forest responses to climate extremes and disturbance. Thus, if we can identify forest characteristics

promoting ecosystem resistance (little-to-no change in demographic processes due to disturbance)

and resilience (rapid return of demographic processes to pre-disturbance rates), we may be able to

develop adaptive management strategies to maintain vital forest demographic processes in the face

of environmental change (Millar et al., 2007; D’Amato et al., 2011).

Forest dynamics refer to changes in forest stand composition and structure (i.e., the forest

characteristics described above) over time, including stand behavior during and after the occurrence

of disturbance events (Oliver and Larson, 1996). Records of past forest dynamics, when combined

with records of historic meteorological conditions and disturbance chronologies, provide valuable
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information to advance understanding of interactions between climate, disturbance, and forest

demographic processes. Further, we may use these records to begin to identify forest characteristics

promoting resistance and resilience of demographic processes to climate extremes and disturbance

events. For example, a number of studies have demonstrated reductions in stem density (i.e., forest

thinning treatments) increase the resistance and resilience of forest growth to drought in the short

term (Laurent et al., 2003; Sohn et al., 2016; Bottero et al., 2017), but may lead to the formation of

large canopy trees making forests more sensitive to drought over the long term (McDowell et al.,

2006; D’Amato et al., 2013). As described below, modeling the interactive effects of climate and

disturbance on forest dynamics is hindered by several data challenges.

Common data sources to study interactions between climate, disturbance, and forest dynamics

include forest inventory data and radial ring-width increment records (Clark et al., 2007; Evans et al.,

2017). Forest inventory data (i.e., periodic measurements of fixed sample plots) provide detailed

estimates of forest growth, mortality, regeneration, and composition at a stand scale over time

(Avery andBurkhart, 2002). Inventory records, however, are rarely of sufficient length to infer forest

responses to long-term climatic conditions. Further, plot re-measurements occur periodically, rather

than annually, providing temporally-coarse observations of demographic processes. For example,

annual inventory records from the USDA Forest Service, Forest Inventory and Analysis Program

exist only since 1999 (less than 20-years of data available) with individual plots re-measured on

a 5- or 10-year cycle depending on the region (United States Department of Agriculture, Forest

Service, 2007).

Radial ring-width increment cores (i.e., tree rings) collected for all live trees within an inventory

plot (e.g., all live trees with a diameter at breast height larger than some threshold) provide annual

observations of radial tree growth. Tree-ring records (dating decades to centuries) are sufficiently

long to model climatic effects on forest growth (Babst et al., 2014); however, inferring stand-scale

growth (e.g., basal area increment/acre) from tree rings alone is difficult as no growth records exist

for trees which died before the collection date (Clark et al., 2001; Foster et al., 2014). This is

commonly referred to as the fading record in paleoecology contexts (Swetnam et al., 1999). As a
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result of the fading record, tree-ring derived estimates of past stand-scale growth are downwardly

biased with the magnitude of the bias increasing as a function of years in the past (Dawson et al.,

Unpublished Data). Further, tree rings alone do not provide estimates of stand-scale mortality or

density (e.g., trees/acre, basal area/acre) critical to reconstructing forest dynamics (but see Lorimer

and Frelich (1989) for a method to reconstruct canopy gap formation and growth release events

from tree rings).

Here we develop a Bayesian state space framework to synthesize tree-ring and repeat forest

inventory data in order to reconstruct past forest dynamics and advance understanding of their

interactions with climate and disturbance. The utility of Bayesian state space frameworks to

advance understanding of complex ecological processes is well documented in recent scientific

literature (Calder et al., 2003; Wikle, 2003; Clark et al., 2007; Dietze et al., 2013). In particular,

Clark et al. (2007) applied such a framework to assimilate tree-ring and diameter-tapemeasurements

to infer past tree growth. The Bayesian state space framework developed here applies a similar

approach to Clark et al. (2007), but utilizes a forest growth and yield model as a driver of forest

dynamics to jointly estimate forest growth and mortality and incorporate observations of tree

density over time. The framework allows for explicit incorporation of climate and disturbance by

building interaction terms for these variables into growth, mortality, and regeneration functions

included in the growth and yield model. The interaction terms need not be linear and may include

threshold effects consistent with recent ecological hypotheses (Allen et al., 2015). Additional

benefits of the Bayesian state space approach include explicit uncertainty quantification and the

partitioning of process error (uncertainty in growth and yield model projections) from observation

error (uncertainty in tree-ring and forest inventory measurements), which can be used to test

hypotheses regarding interactions between climate, disturbance, and forest dynamics, and refine

growth and yield models (as described in Section 4.5).

Forest growth and yield models vary in their complexity, structure (empirical versus mechanis-

tic), and the level at which forest processes are represented (tree versus stand scale). At a minimum,

growth and yield models predict forest growth and mortality over time as a function of species
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composition, competition level, tree size and age (or their distributions), and site quality (Weiskittel

et al., 2011). Forest growth and yield models are the primary quantitative tool used by foresters to

forecast future conditions and develop management plans (Avery and Burkhart, 2002). Importantly,

outputs of forest growth and yield models—state variables in the current analysis—are in terms

forest managers understand and in contexts they can use to inform management decisions. As such,

the use of a forest growth and yield model in the current analysis helps bridge the gap between

fundamental ecological research into the effects of climate and disturbance on forest demographic

processes and adaptive forest management.

We apply the Bayesian state space framework to tree-ring and forest inventory data from a

collection of red pine (Pinus resinosa Aiton) plantation stands in northern Minnesota, USA to

achieve the following research objectives: (i) test for the effects of drought on forest dynamics;

(ii) quantify the resistance and resilience of forest growth and mortality to drought; (iii) identify

forest characteristics promoting resistance and resilience to drought (target characteristics); and,

(iv) demonstrate the capability of a Bayesian state space model to assimilate tree-ring and forest

inventory data to reconstruct past forest dynamics with explicit uncertainty.

4.3 Data and Methods

We begin this section by providing background on the structure of the growth and yield model

used to approximate forest dynamics (Section 4.3.1). We then define a Bayesian state space

framework to assimilate tree-ring and forest inventory data in order to reconstruct past forest

dynamics and advance understanding of their interaction with climate extremes (Section 4.3.2).

Finally, we detail the red pine plantation data used to demonstrate the application of the state space

model in the current analysis (Section 4.3.3).

4.3.1 Forest Vegetation Simulator

The USDA Forest Service, Forest Vegetation Simulator (FVS) is an individual-tree, distance-

independent forest growth and yield model (Dixon, 2002). That is, FVS models growth, mortality,
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and regeneration within a forest stand (the population unit) at the individual-tree scale, but does

not keep track of the relative position of individual trees within a stand. Tracking individual

tree locations is computationally intensive, but allows for the use of spatially-explicit competition

indices, which account for the size and species of trees in a local neighborhood centered on the

target tree (Canham et al., 2004). In lieu of such indices, FVS calculates a competition modifier as

a function of a tree’s basal area relative to the total basal area of all larger trees (Dixon, 2002). This

approach is commonly applied in distance-independent growth and yield models and is thought to

provide a more accurate estimate of competition than stand density (Weiskittel et al., 2011).

A number of FVS variants have been developed for different regions of North America (Dixon,

2002). While the variants have the same general structure (i.e., individual tree, distance inde-

pendent), the specific functions used to approximate forest growth and yield vary slightly among

variants. Growth and yield functions are parameterized based on detailed tree- and stand-level data

collected within the regional domain of each variant. Currently, 22 variants of FVS exist and are

available for use (see https://www.fs.fed.us/fvs/documents/guides.shtml). We use the Lake States

variant of FVS (FVS-LS) in the current analysis. The FVS-LS variant is applicable to common

tree species located within a geographic range spanning Michigan, Wisconsin, Minnesota, and

eastern portions of North and South Dakota (Dixon and Keyser, 2008). The model was originally

developed in 1993 and updated in 2006.

FVS-LS projects diameter at breast height (DBH) growth as a function of tree-level variables

including current DBH, crown ratio, and the competition modifier discussed above, and stand-level

variables including site index. Tree height is projected as a function of current tree height, age,

the competition modifier, relative height (current height of a tree relative to the average height of

the 40 largest-diameter trees in the stand), as well as site index. FVS-LS grows large- (DBH ≥

5.0) and small-diameter (DBH < 5.0) trees separately with large tree growth driven by diameter

(DBH projected first, then height) and small tree growth driven by height (height projected first,

then DBH). Both density-independent and density-dependent mortality are represented in FVS-LS.

The stand density index (SDI), a derived value based on the empirical relationship between the
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number of trees per unit area (e.g., trees/acre) and the quadratic mean diameter (QMD = DBH

of tree with average basal area) approximating the maximum stand density for a given mean tree

size (Avery and Burkhart, 2002), is used to determine the type of mortality. Density-independent

mortality is applied when stand density is less than a threshold percentage of the SDI (55 percent

by default) and is estimated as a function of tree diameter. Density-dependent mortality is applied

when stand density exceeds the threshold SDI percentage and includes two components. First,

stand-level mortality is estimated depending on stand density relative to the SDI; second, mortality

is assigned to individual trees as a function of their relative height. A tree list is maintained for

each modeled tree in FVS-LS including its DBH and the number of trees it represents per unit area

(the tree’s expansion factor). The mortality component of FVS-LS acts by reducing the number of

trees per unit area a tree represents—it does not remove individual trees from the tree list as dead

(Dixon and Keyser, 2008). Additional details on the functions used to represent growth, mortality,

and regeneration within FVS-LS and their associated parameter values can be found in Dixon and

Keyser (2008).

We created a reduced version of FVS-LS (hereafter, “FVS-LSlite”) for use in the state space

framework (Section 4.3.2). FVS-LSlite comprises the growth and mortality components of FVS-

LS for planted red pine (see Section 4.3.3). Regeneration functions are excluded as regeneration

is not modeled in the current analysis (focus on single-cohort red pine plantations). The base

version of FVS applies an additive random effect term to the projected basal area increment for

each modeled tree to account for stochastic variability in tree growth (Dixon, 2002). We exclude

the random effect term in FVS-LSlite as this variability is captured by process and observation

variance components of the state space model (Section 4.3.2). Further, the state space model

requires deterministic growth and mortality functions. FVS-LSlite is programmed in R providing

a callable function for use in the state space model (see FVS-LSlite in supplementary material; R

Core Team, 2016).
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4.3.2 State Space Model

A state space model is used to assimilate tree-ring and repeat forest inventory data in order to

reconstruct past forest dynamics and advance understanding of their interaction with climate. FVS-

LSlite serves as the process model within the state space framework, driving forest dynamics

through time (Figure 4.1). State variables, inputs and outputs of FVS-LSlite at each time point,

include individual tree DBH and forest density expressed as the number of trees per unit area for

each year in a defined study period. The state space framework is setup to accommodate inventory

data collectedwithin a fixed area plot (or complete stand census data) and tree-ring data collected for

a subset of trees within the inventory plot (Section 4.3.3). The DBH of all trees sampled during the

first forest inventory (`) are estimated within the state space model. Each of these trees is assigned a

unique record within the FVS-LSlite tree list and tracked over the study period. Let Di,t denote the

true, unobserved DBH of tree i (i = 1, 2, . . . , `) and Nt denote the true, unobserved tree density for

a target forest stand in year t (t = 0, 1, . . . ,T , where T is the last year in the study period). We define

(≡) a state vector θt including all state variable values at time t (θt ≡ (D1,t,D2,t, . . . ,D`,t, Nt)
ᵀ,

where ᵀ indicates the transpose of a vector or matrix). FVS-LSlite is used to forecast state variable

values at the next time point subject to a process error (wt) given their value at the current time

point. Specifically,

θt = f (θt−1 |Ω) + wt, (4.1)

where f (·|Ω) represents FVS-LSlite conditional on a set of growth and yield functional parameters

(Ω). The Markov property is implicit in Equation 4.1; the current value of θt depends only on

its value at the previous time point. Importantly, stand-scale variables including basal area per

unit area (BA) and QMD in a given year t can be calculated conditional on the state vector (θt) as

follows,

BA(t)|θt =
∑̀
i=1

g(Di,t)(ei,t) given, g(x) = x2
{

π

(2 · 12)2

}
QMD(t)|θt = g−1

(
BA(t)∑`
i=1 ei,t

)
given, g−1(y) =

√
(y)(2 · 12)2

π
,
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Figure 4.1: Overview of state space model to approximate forest dynamics driven by FVS-LSlite
and constrained by tree-ring and forest inventory data.

where ei,t is the per-unit-area expansion factor for tree i in year t, BA is assumed to be expressed in

ft2, and QMD in inches. Further, the basal area increment per unit area (BAI) in year t, reflecting

the diameter accretion of live trees, and the amount of basal area loss due to tree mortality per unit

area (BAM) can also be derived conditional on the state vector,

BAI(t)|θt =
∑̀
i=1

{
g(Di,t) − g(Di,t−1)

}
(ei,t)

BAM(t)|θt =
∑̀
i=1

g(Di,t)
{
ei,t − ei,t−1

}
,

where g(x) is as defined above.

Tree-ring derived diameter estimates (DBH at time of coring minus sum of ring widths between

target year and collection year) exist for a subset of modeled trees (nc 6 ` where nc denotes the

number of trees for which tree-ring data exist) on an annual basis. Let d(TR)i,t denote the tree-ring

derived DBH for tree i in year t. DBH observations based on diameter-tape measurements collected

during forest inventories exist for each modeled tree on a periodic basis unless a tree dies prior to
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the inventory date. Let d(FC)i,t denote the taped DBH for tree i in year t. Tree density is derived

from forest inventory data on a periodic basis by multiplying the within-plot tree count observed in

a given inventory by a stand-level expansion factor (ratio of area of interest [acre, hectare] to plot

area). Let n(FC)t denote the inventory-derived forest density estimate in year t. Both tree-ring and

diameter-tape measurements are used to constrain individual tree diameter values, while inventory

data alone are used to constrain tree density values. Let yt denote an observation vector including

all tree diameter and tree density observations in year t.

yt ≡


(d(TR)1,t , d(TR)2,t , . . . , d(TR)nc,t , d

(FC)
1,t , d(FC)2,t , . . . , d(FC)

`,t , n(FC)t )ᵀ t = inventory year

(d(TR)1,t , d(TR)2,t , . . . , d(TR)nc,t )
ᵀ t = non-inventory year

Modeled trees have inventory-based DBH observations alone if they are not cored. Further, trees

that suffer mortality during the study period are missing DBH observations between the year of

death and year T . The DBH of these trees continues to be modeled after death with no data to

constrain estimates. Although a tree dies within the fixed area plot, it still represents trees of the

same species and size within the stand. Observations of individual tree DBH and tree density in

year t are equal to the estimated state values in the same year subject to an observation error (vt).

Specifically,

yt = Atθt + vt, (4.2)

where At is an incidence matrix mapping state variable values to corresponding observations.

Equation 4.2 indicates observations at time t (yt) are independent of observations at other time

points (t = 1, 2, . . . , t − 1, t + 1, . . . ,T − 1,T) conditional on the state vector, θt .

Any state spacemodel is defined by a process and observation equation. Here, these are given by

Equations 4.1 and 4.2, respectively. Missing from the state space model specification are variances

corresponding to the process and observation error terms. We model separate observational errors

for tree-ring and diameter-tape measurements of tree diameter, and inventory measurements of

tree density. Further, we model separate process errors for tree diameter and density. A normal

distribution is applied to model all observation and process errors. This results in the following
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Figure 4.2: Graphical depiction of state space model including (A) the estimation of individual
tree diameter at breast height, and (B) the estimation of tree density. Arrows indicate dependence
structure.

error distributions,

w(Di,t)
iid
∼ N(0, τ2

D)

w(Nt)
iid
∼ N(0, τ2

N )

v(d(TR)i,t )
iid
∼ N(0, σ2

dtr)

v(d(FC)i,t )
iid
∼ N(0, σ2

dfc
)

v(n(FC)t )
iid
∼ N(0, σ2

nfc),

where w(·) and v(·) reference individual components of wt and vt , respectively, “iid” indicates

independent and identically distributed, and τ2
D, τ

2
N , σ

2
dtr

, σ2
dfc

, σ2
nfc are unknown, scalar vari-

ances. The state space framework is represented graphically in Figure 4.2, including the temporal

dependence structure of state variables, tree-ring, and forest inventory data.

The state space model is fit using a Bayesian hierarchical approach. Unknown parameters

including the latent state vector at the initial time point (θ0) and scalar variances are assigned prior

distributions as defined in Appendix C. A Metropolis-within-Gibbs Markov chain Monte Carlo

(MCMC) algorithm written in R (R Core Team, 2016) is used to sample from the joint posterior
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distribution of all model parameters (Robert and Casella, 2004). Details on the MCMC sampler

are provided in Appendix C.

4.3.3 Birch Lake Data

The FVS state space model is applied to tree-ring and forest inventory data from a collection of

red pine (Pinus resinosa Aiton) plantation stands part of the long-term Birch Lake research forest

maintained by the USDA Forest Service in northeastern Minnesota (47°42’N, 91°56’W). Red pine

stands were planted in 1912 at a density of ∼1012 trees per acre. A thinning experiment was

established in 1957 to assess variation in forest stand structure, growth, and mortality as a function

of thinning intensity and method. Forest thinning at five intensity levels (residual basal areas: 30,

61, 91, 122, and 148 ft2·ac−1) were applied to three replicate 2-acre stands at approximately 5-10

year intervals (thinning years: 1957, 1962, 1972, 1982, 1992, 2003). Three thinning methods were

used (one replicate per intensity level): thinning from above, below, and proportional. Additionally,

three replicate control stands were established in which no thinning occurred. Treatments were

randomly assigned to the 18 study stands (Bradford and Palik, 2009; Powers et al., 2010; D’Amato

et al., 2013).

Experimental stands were sampled using a single ∼0.2 acre fixed area plot (per-acre expansion

factor ≈ 5) located randomly within each stand beginning in 1957 and at ∼5 year intervals thereafter

(10 plot inventories between 1957-2009). The DBH and species of each tree with a DBH greater

than 3.5 inches were recorded within each plot during sampling events. Ring-width increment

cores were collected at breast height from all live trees greater than ∼2 in DBH within each sample

plot in 2009 (D’Amato et al., 2013). Increment cores were prepared, analyzed, and cross-dated

using standard dendrochronological procedures.

The Birch Lake data have been used in previous studies to analyze temporal trends in stand

structure and growth (Bradford and Palik, 2009); tree mortality (Powers et al., 2010); and resistance

and resilience to drought (D’Amato et al., 2013) under different thinning regimes. The Birch

Lake experiment is optimal to test the application of the FVS state space model given it is a
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simplified system consisting of single cohort, single species stands of known planting density

and establishment year. The frequency (∼5 years) and length (1957-2009) of forest inventory

observations combined with censused tree-ring records make for a unique forest data set. Further,

the experimental data provide an opportunity to test the efficacy of different thinning regimes to

generate target forest characteristics in order to maintain growth and mortality at average rates

during and after climate extreme events.

Here we apply the FVS-driven state space model described in Section 4.3.2 to a single control

stand (9C) from the Birch Lake red pine experiment. Given the lack of data to constrain the seedling

growth stage of FVS, the state space model was initialized 26 years after stand establishment when

the mean tree DBH was estimated to have reached 4.0 inches based on FVS diameter-height growth

relationships. Thus, the study period begins in 1938 (t = 1) and continues through the final forest

inventory in 2009 (t = T).

4.4 Results

The number of trees per acre declined from a posterior mean of 651 (95 percent credible

interval: 606, 713) to 460 (451, 469) over the course of the study period (Figure 4.3A). The basal

area per acre increased from a posterior mean of 113 ft2 (104, 127) to 285 ft2 (272, 303) over

the study period (Figure 4.3B). Finally, the QMD of the study stand increased from 5.64 inches

(5.56, 5.73) to 10.67 inches (10.42, 10.94) over the study period (Figure 4.3C). Forest inventory

observations of tree density reduced uncertainty in all stand-scale variables (note, tree-ring data

was available for all years in the study period). Specifically, mean credible interval widths for tree

density, basal area, and QMD were reduced by 16.3 trees per acre, 2.3 ft2·ac−1, and 0.01 inches,

during forest inventory years relative non-inventory years. The relatively large uncertainty in tree

per acre estimates prior to 1950 reflects the lack of forest density observations to constrain state

value estimates.

Annual basal area increment declined slowly over the model period from a posterior mean of

5.5 ft2·ac−1 (5.1, 6.0) in 1938 to 1.9 ft2·ac−1 (1.5, 2.1) in 2009 (Figure 4.4). Increased stand-scale
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competition and corresponding tree density reductions (i.e., self thinning) likely contributed to

reductions in basal area increment through time. Annual basal area mortality increased smoothly

from a posterior mean of 0.34 ft2·ac−1 (0.31, 0.38) in 1938 to 0.76 ft2·ac−1 (0.38, 0.80) in 1983

(Figure 4.4). The smooth increase in mortality from 1938 to 1983 was due to density-independent

mortality, which is driven by tree diameter in FVS—larger diameters lead to greater background

mortality rates. Density-dependent mortality began circa 1984 at a stand age of 71 when the

posterior mean basal area mortality increased to 0.83 ft2·ac−1 (0.18, 2.21). The greatest basal area

mortality was estimated to occur in 2009 when the posterior mean was equal to 3.24 ft2·ac−1 (0.49,

4.13). The increased uncertainty in basal area mortality following the onset of density-dependent

mortality reflects uncertainty in stand density estimates relative to the SDI.

Although the primary inferential goal of the current analysis is at the stand scale, we obtain

estimates of individual-tree diameter growth from the state space model (Figure 4.5). Posterior

mean tree DBH ranged from 5.29 inches (90 percent credible interval: 0.68, 7.58) at the start of the

study period (1938) to 10.17 inches (5.80, 13.34) at the end of the study period (2009). Similar to

stand-scale variables, forest inventory and tree-ring based observations of DBH reduced uncertainty

in diameter estimates. Specifically, the mean 95 percent credible interval width for DBH in years

with no data available was 3.53 inches compared to 0.80 inches during years where only tree-ring

data were available, and 0.75 inches during years where both tree-ring and forest inventory data

were available.

The posterior mean variance for both tree-ring and diameter-tape observations of tree diameter

were significantly larger than the posterior mean process variance for tree diameter (σ2
dtr
= 0.094,

σ2
dfc
= 0.370, τ2

D = 0.071 in Table 4.1). The posterior mean variance for diameter-tape observations

was roughly 4 times larger than the posterior mean variance for tree-ring reconstructed diameter

values. Further, the posterior mean variance for forest inventory observations of tree density

(σ2
nfc = 51.0) was 5 times larger than the posterior mean process variance for tree density (τ2

N =

10.6) reported in Table 4.1.
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Figure 4.4: Posterior summary of annual basal area increment and basal area mortality relative
to forest inventory estimates equal to the average annual basal area growth or mortality between
inventory observations.
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Figure 4.5: Posterior summary of diameter at breast height state space estimates relative to tree-ring
and forest inventory diameter observations for a selection of five red pine trees.

Table 4.1: Posterior summary of observation and process variance parameters.

Variance Posterior Credible interval
parameter mean 2.5% 97.5%
σ2

dtr
0.094 0.093 0.095

σ2
dfc

0.370 0.361 0.380
σ2

nfc 51.0 41.9 62.0
τ2

D 0.071 0.067 0.074
τ2

N 10.6 8.43 13.3
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4.5 Discussion

Few methods exist to reconstruct forest dynamics. The state space model developed here

assimilates common forest data types including tree-ring and forest inventory observations in order

to reconstruct past forest dynamics with explicit uncertainty and improve understanding of their

interactions with climate extremes and disturbance. Model results indicate the importance of

assimilating tree-ring and forest inventory observations to constrain estimates of forest dynamics

generated by FVS. Uncertainty in all stand-scale variables of interest (trees per acre, basal area

per acre, QMD) was reduced during years in which a forest inventory occurred as evidenced by

narrower credible intervals. Uncertainty in stand-scale variables was further reduced as a function

of the number of trees for which tree-ring diameter estimates existed in a given year. The mean 95

percent credible interval width was reduced by 4.5 ft2·ac−1 for basal area and 0.17 inches for QMD

when using tree-ring measurements from 87 versus 80 trees.

Comparing stand-scale growth and mortality estimates for red pine resulting from the state

space model to a bare ground run of FVS indicates that without data to constrain model estimates,

FVS over predicts tree density up to a stand age of roughly 60 (in 1970), then slightly under

predicts densities at older stand ages (Figure C.1). Further, the unconstrained run of FVS predicts

higher diameter growth rates than observed throughout the study period as reflected in the QMD

(Figure C.1). The combination of higher tree density and QMD results in unconstrained FVS

estimates of basal area per acre equal to the maximum basal area for the stand (340 ft2·ac−1) by

a stand age of roughly 65 years (in 1975) whereas state space estimates never reach the maximum

basal area per acre during the study period (Figure C.1). Mapping unconstrained FVS growth

and density estimates on a red pine stand density management diagram for the northern Great

Lakes region indicates estimates are along or exceed the maximum size-density line given high

tree density and large QMD (Smith and Woods, 1997, results not shown). State space estimates,

conversely, are well containedwithin the zone of imminent competition andmortality after the onset

of density-dependent mortality. In general, the state space model provides stand-scale estimates

consistent with forest inventory observations and suggests low diameter growth rates delay the
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onset of density-dependent mortality until an approximate stand age of 70-75 years (1980-1985 in

Figure 4.4).

4.5.1 Model Applications

The Bayesian state space framework partitions process and observation variances for tree density

and diameter. These variance estimates provide a powerful tool to refine the FVS growth and

yield model (or other growth and yield models). Specifically, we can compare the magnitude of

the process variance relative to the observation variance to determine whether estimates of forest

growth and yield may be improved through increased sampling (if observation variance exceeds

process variance) or by modifying FVS to better approximate forest dynamics (if process variance

exceeds observation variance). In the latter case, the state space model provides a mechanism to

test whether changes to FVS improve the model. That is, a significant reduction in process variance

resulting from a modification to FVS relative to its current structure (e.g., implementing a new

diameter growth equation) would provide evidence the modification better approximates observed

forest demographic processes. In the current analysis, the process variance for all parameters

was significantly less than the observation variance (Table 4.1). This suggests model estimates of

growth and mortality may be improved through increased forest inventory sampling and a larger

number of cored trees. This is consistent with expectations given there are only 10 forest inventory

events over the 72-year study period and only 87 trees cored out of 400-500 trees per acre. We

note, however, the necessity of informed prior distributions to ensure the identifiability of variance

parameters in the current analysis (see Appendix C) may limit conclusions about process variance

relative to observation variance.

In addition to variance partitioning, the hierarchical structure of the state space model allows

for tractable propagation of uncertainty to estimates of forest growth and mortality. Here, we found

strong evidence of reduced uncertainty in estimates of forest demographic processes following

the assimilation of tree-ring and forest inventory observations to constrain the FVS model. The

hierarchical structure also allows for the integration of climate variables as drivers of forest dynamics
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in a straightforward and testable manner. Comparing differences in the magnitude of process

variance parameters based on alternative models for climatic effects on growth and mortality

within FVS provides a tool to test competing hypotheses regarding interactions between climate

and forest dynamics (see Section 4.5.3).

4.5.2 Management Applications

The FVS-driven state spacemodel can be used to identify forest characteristics promoting resistance

and resilience to climate extremes such as drought events. Specifically, if data from a number of

forest stands with different densities and structures exist, the state space framework can be used to

reconstruct forest dynamics within each stand in relation to the occurrence of past climate extremes.

We can then compare the growth and mortality of each stand during and after the occurrence of

a climate extreme event to average growth and mortality rates over the study period to identify

characteristics (i.e., trees per acre, basal area per acre, QMD) which result in reduced responses

to extreme conditions (resistance) or accelerated recovery to pre-extreme growth and mortality

(resilience). The state space framework can also be used to test different management scenarios to

achieve target forest characteristics and increase resistance and resilience to climate extremes. In

particular, alternative thinning regimes may be modeled using the FVS-driven state space model to

determine which regime, if any, generates the desired forest density and size distribution. Further,

the model provides a mechanism to identify which thinning regime, if any, results in increased

resistance and resilience to climate extremes (in terms of forest growth and mortality) relative to

unthinned stands. Importantly, the output of the state space model developed here including trees

per acre, basal area per acre, QMD, and the testing of management regimes, are in terms and

contexts forest managers understand and can apply in the development of long-term management

plans.
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4.5.3 Future Steps

Future work on the state space model will include steps to ensure individual tree diameters and

growth rates are positive, both within FVS and data models. Further, a selection of critical growth

and mortality functional parameters will be treated as random variables within FVS (currently

these are fixed). We will assign prior distributions to these parameters constraining their values

to scientifically-plausible ranges and allow forest growth and mortality observations to inform

posterior parameter estimates. Most importantly, we will integrate climate variables into FVS to

model interactions between climate extremes and forest dynamics. There are several potential

approaches to integrate climate into FVS. One intuitive approach, based on recent studies of the

interactive effects of climate and competition on tree growth (Rollinson et al., 2016; Buechling

et al., 2017), is to adjust potential tree growth and mortality using a multiplicative factor estimated

as a function of climate variables. Specifically, FVS models diameter growth (X) of a tree i in a

given year t as

Xi,t = (X
∗
i,t) f (competition) + a,

where X∗i,t is the maximum potential diameter growth for tree i in year t, f (competition) is a

function of stand-scale competition whose range is zero to one ( f (·) ∈ [0, 1]), and a is an additive

adjustment factor (Dixon and Keyser, 2008). Similarly, FVS models density-independent percent

mortality (M) for a given tree i in year t as

Mi,t = m(1 + exp(ρ0 + ρ1Di,t))
−1,

where m is the maximum potential percent mortality, and (ρ0, ρ1) are mortality coefficients (Dixon,

2002). Amultiplicative factor estimated as a function of climate (similar to the competitionmodifier

f (climate)) can be added to both equations to scale diameter growth and percent mortality up or

down depending on climatic growing conditions. We will conduct model selection to identify

meaningful climate variables (e.g., temperature, precipitation, climatic water deficit) and test

different formulations for multiplicative factors. Selection criteria will include changes in process
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variance relative to observation variance and score functions such as the posterior predictive loss

(Hooten and Hobbs, 2015).

Three known drought events occurred at the Birch Lake research forest during the study period

(1948, 1961, 1988) based historic documents and meteorological records (D’Amato et al., 2013).

The drought events present an opportunity tomodel interactions between climate extremes and forest

dynamics and quantify resistance and resilience of growth and mortality during and after drought

conditions (see Section 4.5.2). We will apply the updated state space framework with climate

integrated as a driver of forest dynamics (see above) to model growth and mortality responses and

quantify ecosystem resistance and resilience to drought within the Birch Lake experimental stands.

Model results will contribute to advanced understanding of interactions between drought and forest

dynamics by providing functions for climatic impacts on forest growth and mortality as well as

estimates of climatic effects on forest function during and after drought.

4.6 Conclusions

The Bayesian state space model presented here provides a framework to reconstruct forest

dynamics and advance understanding of their interaction with climate extremes including identi-

fying key climate drivers to forest growth and mortality over time. Further, it allows alternative

management scenarios to be tested in terms of their efficacy in promoting resistance and resilience

of vital forest demographic processes to climate extremes over the rotation of a forest stand (i.e.,

the lifetime of a stand). Finally, the state space framework provides a mechanism to refine forest

growth and yield models such as FVS leading to improved estimation and understanding of forest

dynamics. The limiting factor in the applicability of the state space framework to other forest

ecosystems (beyond red pine plantations) is the existence of a suitable growth and yield model (or

any other model of forest dynamics). Assuming a suitable model of forest dynamics exists for a

given region and forest ecosystem type, the state space model may be applied as it is presented here

after replacing FVS-LSlite with the chosen model of forest dynamics. As such, the state space

framework provides an array of opportunities to explore interactions between climate extremes
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and forest dynamics and test the effectiveness of alternative adaptive management scenarios in a

range of forest ecosystems characterized by different species compositions, regional climates, and

disturbance regimes.
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CHAPTER 5

A MODEL-BASED APPROACH TOWILDLAND FIRE RECONSTRUCTION USING
SEDIMENT CHARCOAL RECORDS

5.1 Abstract

Lake sediment charcoal records are used in paleoecological analyses to reconstruct fire history

including the identification of past wildland fires. One challenge of applying sediment charcoal

records to infer fire history is the separation of charcoal associated with local fire occurrence and

charcoal originating from regional fire activity. Despite a variety of methods to identify local

fires from sediment charcoal records, an integrated statistical framework for fire reconstruction

is lacking. We develop a Bayesian point process model to estimate probability of fire associated

with charcoal counts from individual-lake sediments and estimate mean fire return intervals. A

multivariate extension of the model combines records from multiple lakes to reduce uncertainty

in local fire identification and estimate a regional mean fire return interval. The univariate and

multivariate models are applied to 13 lakes in the Yukon Flats region of Alaska. Both models

resulted in similar mean fire return intervals (100-350 years) with reduced uncertainty under the

multivariate model due to improved estimation of regional charcoal deposition. The point process

model offers an integrated statistical framework for paleo-fire reconstruction and extends existing

methods to infer regional fire history from multiple lake records with uncertainty following directly

from posterior distributions.

5.2 Introduction

Charcoal particles deposited in lake sediments during and following wildland fires serve as

records of local to regional fire history. Sediment charcoal records are used in paleoecological

analyses to identify individual fire events and to estimate fire frequency and regional biomass

burned (i.e., the amount of organic plant matter consumed due to fire) at centennial to millennial
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time scales (Clark, 1988, 1990; Whitlock and Millspaugh, 1996; Long et al., 1998; Power et al.,

2008). When combined with sediment pollen records, charcoal deposits can be used to infer

relationships between changing climate, vegetation, and fire regimes including fire frequency, size,

and severity (Clark and Royall, 1996; Clark et al., 1996; Long et al., 1998; Carcaillet et al., 2001;

Higuera et al., 2009; Kelly et al., 2013). In particular, combined sediment charcoal records from

multiple lakes have been used to correlate changes in regional biomass burnedwith shifts in regional

vegetation and/or climate (Power et al., 2008; Higuera et al., 2009; Marlon et al., 2012; Kelly et al.,

2013).

Charcoal deposits in lake sediments arise from several different sources. Large charcoal particles

(> 100 µm) have small dispersal distances and exhibit strong correlation with fire occurrence within

roughly 500 to 1000 meters of lakes (Clark, 1988; Whitlock and Millspaugh, 1996; Gavin et al.,

2003; Lynch et al., 2004; Peters and Higuera, 2007). Small charcoal particles (< 50 µm) have

larger dispersal distances (typically 1-20 km) and are indicators of regional biomass burned (Clark,

1988; Clark et al., 1996). Sediment charcoal deposits arise from primary sources—direct transport

during a fire—and secondary sources, including surface transport via wind and water of charcoal

deposited within a lake catchment (Whitlock and Millspaugh, 1996; Higuera et al., 2007). Further,

lake sediments mix over time, redistributing charcoal particles vertically and concentrating charcoal

in the lake center (Whitlock andMillspaugh, 1996). The different depositional sources and sediment

mixing increase the variability in sediment charcoal records and make inference regarding the size

and location of individual fire events difficult (Higuera et al., 2007). Despite the noise present in

sediment charcoal records, the use of such data to accurately identify local fire events has been

consistently demonstrated (Clark, 1990; Gavin et al., 2003; Lynch et al., 2004; Higuera et al., 2007).

Charcoal deposition is often expressed in terms of charcoal accumulation rate to account for

different sedimentation rates over time (CHAR; particles · cm−2· yr−1). Analytical approaches to

identify individual, local fire events based on sediment charcoal records decompose CHAR into

background and peak components. The background component captures low-frequency variability

associated with time-varying charcoal production rates (e.g., changes in biomass burned), sec-
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ondary charcoal deposition, sediment mixing, and charcoal arising from regional sources. The

peak component captures high-frequency variability associated with local fire events as well as

measurement and random error (Clark et al., 1996; Long et al., 1998). Approaches to estimate

background accumulation include low-pass filters applied to Fourier-transformed CHAR (Clark

et al., 1996; Carcaillet et al., 2001) and locally-weighted regression models (Long et al., 1998;

Gavin et al., 2006; Higuera et al., 2009). Charcoal peaks are defined as the residuals resulting

from raw CHAR series minus background CHAR or the ratio between raw and background CHAR.

A threshold is used to distinguish charcoal peaks indicative of local fire events from false peaks

attributable to elevated background deposition (Clark and Royall, 1996). Optimal thresholds, in

terms of correct identification of local fires, are estimated using sensitivity analysis (Clark and Roy-

all, 1996) or upper quantiles of a Gaussian mixture model (Gavin et al., 2006), lacking independent

fire records to identify and validate optimal threshold values (Higuera et al., 2009).

While methods to identify local fire events based on sediment charcoal records have been

well developed over the past 30 years, an integrated statistical framework for fire identification is

still lacking (Higuera et al., 2010). We build upon existing charcoal analysis methods to develop

a hierarchical Bayesian point process model for fire identification and estimation of fire return

intervals (FRIs). The point process model offers a fully model-based approach to charcoal analysis

with several important properties. The model operates on charcoal counts directly, using an offset

term to control for sedimentation rate. We generate an explicit estimate of the probability of fire

for each charcoal count. The hierarchical Bayesian approach makes for tractable error propagation

allowing for a complete treatment of uncertainty sources in sediment charcoal records including

uncertainty associated with sediment age models. The model is easily extended to multivariate data

sets, allowing for pooling of sediment charcoal records among lakes. While methods currently exist

to pool charcoal records (Power et al., 2008), the point process model requires no transformation

or interpolation of charcoal counts, improving interpretability of results and avoiding potential

introduction of non-quantifiable error to charcoal data sets. The modeling approach objectively

identifies parameter values controlling the decomposition of sediment charcoal into background
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and peak components via regularization. Most importantly, our hierarchical Bayesian point process

model provides an integrated probabilistic framework to identify local fires and estimate FRIs across

multiple lake records with explicit uncertainty quantification.

The remainder of this chapter is organized as follows. In Section 5.3, we develop a point

process model for charcoal deposition using data from a single lake (Section 5.3.1) and a regional

network of lakes (Section 5.3.2). Estimation of local fire probability and mean FRIs are described

in the context of developing the single-lake model and the multiple-lake model. Implementation

of the two models applying Bayesian inference is described in Section 5.3.3. We demonstrate

the application of the single-lake and multiple-lake models to both simulated data and observed

data from a regional network of lakes (Section 5.4). We conclude with a discussion of modeling

properties and results (Section 5.5).

5.3 Bayesian Point Process Model for Charcoal Deposition

We construct a Bayesian point process model that relates charcoal deposition in lake sediments

to local and regional fire occurrence. Central to the model is the separation of charcoal arising

from regional and secondary sources from charcoal attributable to local fires (as depicted in Figure

5.1). In practice, charcoal particles arising from different sources (i.e., regional and secondary

sources versus local fire events) are indistinguishable in sediment charcoal records (apart from the

size distinction noted earlier). We separate background from peak deposition by assuming charcoal

particles are generated by independent processes in time: a smooth background process, exhibiting

low-frequency changes in charcoal deposition rates over time, and a highly variable foreground (or

peak) process, exhibiting high-frequency changes in charcoal deposition rates associated with local

fire events. Total charcoal deposition is proportional to the sum of the background and foreground

processes (Clark and Royall, 1996). The separation of total charcoal deposition into background

and foreground processes provides the necessary analytical mechanism to identify local fire events

from noisy sediment charcoal records. We begin this section by defining a univariate point process

model to identify local fires events. We then extend the univariate model to accommodate sediment
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Figure 5.1: Illustration of theoretical charcoal deposition to a lake if charcoal particles arising
from regional fires were distinguishable from particles arising from local fires (in practice, charcoal
particles from different sources are indistinguishable, i.e., we observe only y(τj,i) = yb(τj,i) +
y f (τj,i)). The figure also depicts the formation of a sediment charcoal record from deposited
charcoal and the structure of the charcoal data (i.e., counts of charcoal over discrete, non-overlapping
time intervals. Note, the figure does not depict charcoal arising from secondary sources such as
surface water runoff or sediment mixing.

charcoal records from a regional network of lakes using a multivariate model.

5.3.1 Univariate Model

Charcoal counts are observed over time intervals spanned by the bottom and top ages of a sediment

core section: τj,i = t(b)j,i −t(a)j,i , where t(b)j,i and t(a)j,i are the bottom and top ages of sediment core section

i (i = 1, . . . , n j) from lake j ( j = 1, . . . , k). The τj,i correspond to non-overlapping time intervals

such that
⋃nj

i=1 τj,i = D j where D j is the temporal domain of lake j. Throughout, we useτ j to denote

the set of observed time intervals, the temporal support, for lake j (i.e., τ j = (τj,1, τj,2, . . . , τj,nj )
′).

Let y(τj,i) equal the observed charcoal count for τj,i defining yτ j = (y(τj,1), y(τj,2), . . . , y(τj,nj ))
′.

We model the accumulated charcoal particles over each observed time interval using a Poisson

likelihood conditional on a latent, continuous intensity process mapped to the observed temporal
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support. Specifically, we let

yτ j |λ j ∼

nj∏
i=1

Poisson(µ(τj,i)), (5.1)

where µ(τj,i) arises as the temporal aggregation of the continuous intensity process,

µ(τj,i) =

∫
τj,i

λ j(t)dt, t ∈ τj,i,

for i = 1, . . . , n j and j = 1, . . . , k. We assume the latent continuous intensity process λ j can

be decomposed into additive continuous background and foreground intensity processes: λ j =

λ j,b + λ j, f , where λ j,b and λ j, f denote the background and foreground intensities, respectively.

This assumption allows us to model the arrival of charcoal particles from regional/secondary

sources and local fire events as separate, independent Poisson point processes conditional on λ j,b

and λ j, f (Figure 5.1).

The background and foreground intensities both vary with changes in environmental conditions,

but at different frequencies. The background intensity varies with climate and regional vegetation

patterns on a centennial-to-millennial scale; the foreground intensity varies with local fuel loads

and weather patterns on an annual-to-decadal scale. We model changes in the background and

foreground intensities at the observed temporal support τ j , assuming intensity values are constant

within each observed time interval. This represents a discretization of the continuous intensity

functions. The length of observed time intervals, however, are extremely short relative to the span

of sediment charcoal records (|τj,i |/|Dj | ≈ 1.0 × 10−3 where |·| represents the length) such that the

approachmimics an inhomogeneous Poisson point process over D j . Importantly, the environmental

conditions driving changes in the intensities are unlikely to vary substantially in the observed time

intervals.

We apply a basis expansion in time to approximate the temporal dynamics of the background

and foreground intensities as a proxy for changing environmental conditions. Specifically, we

model the background and foreground intensity processes at temporal support τ j on the log scale
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as,
log

(
λ j,b(τj,i)

)
= β
(b)
0, j + x(τj,i)

′β
(b)
j

log
(
λ j, f (τj,i)

)
= β
( f )
0, j + x(τj,i)

′β
( f )
j

(5.2)

where β(b)0, j and β
( f )
0, j are intercept terms, β(b)j and β

( f )
j are p-dimensional vectors of regression

coefficients, and x(τj,i) is a p-dimensional set of known covariate values corresponding to basis

function values at p knots. We assume the latent intensity processes λ j,b and λ j, f are independent

conditional on their respective regression coefficients. We apply natural cubic splines as our basis

functions in (5.2), although alternative spline or predictive process basis functionsmay also be used.

Following from the previous discussion of the environmental factors driving changes in the two

intensities over time, we assume the background intensity process is smooth, while the foreground

process is highly variable. We regularize β
(b)
j and β

( f )
j to control the relative smoothness and

volatility of the two processes (Hooten and Hobbs, 2015). Specifically, we apply separate scalar

penalties to β
(b)
j and β

( f )
j (equivalent to informed prior variances, see Section 5.3.3.1) to constrain

the background intensity to be smooth and allow the foreground intensity to be sufficiently flexible

to capture short periods with high charcoal counts attributable to local fires. Optimal penalties are

identified based on out-of-sample prediction (Section 5.3.3.3). Lacking observations of background

and foreground charcoal counts (as depicted in Figure 5.1), the coefficients in (5.2) would be

unidentifiable given identical covariate values, without the above assumption and corresponding

regularization.

Following from (5.2), we can express the mean background (µb) and foreground (µ f ) charcoal

counts at temporal support τ j as

µb(τj,i) =

∫
τj,i

λ j,b(τj,i) dt = e
β
(b)
0, j+x(τj,i)

′β
(b)
j |τj,i |

µ f (τj,i) =

∫
τj,i

λ j,b(τj,i) dt = e
β
( f )
0, j +x(τj,i)

′β
( f )
j |τj,i |.

(5.3)

The mean in (5.1) can then be expressed as µ(τj,i) = µb(τj,i) + µ f (τj,i), defining the total charcoal

count in τj,i as a function of independent, homogeneous Poisson point processes conditional on
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λ j,b(τj,i) and λ j, f (τj,i). The point process model applied is similar to a Cox process in that charcoal

counts are observed over disjoint time intervals (τj,i) that span D j conditional on the sum of

variable intensity functions. Unlike a Cox process, however, the latent background and foreground

intensities are non-stochastic. For example, adding normally-distributed random error terms to the

background and foreground intensity functions in (5.2) results in two independent log-Gaussian

Cox processes. The variances associated with such random error terms are unidentifiable in the

current application given we do not observe background and foreground charcoal counts.

5.3.1.1 Probability of Fire

Charcoal influx at time t arising from local fire events is distinguished from regional/secondary

sources according to Pj(τj,i) ≡ Pr{fire event local to lake j at time t} for t ∈ τj,i. That is, a charcoal

particle arriving at lake j at time t generated conditional on λ j(τj,i) = λ j,b(τj,i) + λ j, f (τj,i) for

t ∈ τj,i, is labeled as a background or foreground particle according to independent Bernoulli

trials with probability Pj(τj,i) (Diggle, 2014). It follows that λ j, f (τj,i) = Pj(τj,i)λ j(τj,i), and

λ j,b(τj,i) = (1 − Pj(τj,i))λ j(τj,i) (Ross, 2010, see Figure 5.1), so that

Pj(τj,i) =
λ j, f (τj,i)

λ j, f (τj,i) + λ j,b(τj,i)
. (5.4)

While the coefficients in (5.2) may not all be statistically identifiable, even with the constraints

placed on the background and foreground intensities, the resulting probability of fire as defined in

(5.4) is identifiable (see Appendix D).

5.3.1.2 Mean Fire Return Interval

A chronology of local fire events is derived after fitting the point process model by establishing

a probability of fire threshold, which indicates a local fire event when exceeded. Specifically, we

transform Pj(τj,i) into a binary variable Z j(τj,i) with one indicating a local fire event according to
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Pj(τj,i)
f
−→ Z j(τj,i) where

f
(
Pj(τj,i)|ξ

)
=


1 if Pj(τj,i) > ξ,

0 if Pj(τj,i) 6 ξ
,

for a defined probability of fire threshold ξ. The fire chronology generated depends on the specific

probability of fire threshold applied. We discuss selection of an optimal threshold in Section

5.3.3.4.

The series of estimated fire events resulting from the application of the probability of fire

threshold constitute a temporal Poisson process defined by a rate parameter (α−1). A property

of Poisson processes is the interarrival times, in this case, the time intervals between local fire

events are independently and identically distributed as exponential random variables with mean

α. The exponential mean represents the mean FRI, while its inverse, the Poisson rate parameter

represents the frequency of local fires. The maximum likelihood estimate (MLE) for α is equal to

the observation period divided by the number of fire events observed for a given lake, for example,

α̂ j =
|D j |∑nj

i=1 Z j(τj,i)
.

We apply Bayesian inference to estimate the exponential mean parameter (α) as described in

Section 5.3.3.4, rather than calculating theMLE, to allow for estimation of a regional mean FRI (see

Section 5.3.2.1). It is common in fire ecology to apply a Weibull likelihood function to estimate

the mean FRI. Applying a Weibull likelihood function allows for the probability of a fire event to

increase as a function of time elapsed since the last fire event. We did not apply aWeibull likelihood

function in the current analysis because sediment charcoal records were of relatively short length

for a number of study lakes, leading to poor estimation of the two Weibull likelihood parameters.

5.3.2 Multivariate Model

The multivariate model follows directly from the univariate model and allows for joint estimation

of fire probabilities and mean FRIs across multiple lakes. We combine observations from all lakes
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τ1,1 τ1,n1

τ2,1 τ2,n2

τ3,1 τ3,n3

τ ∗
1 τ ∗

n∗

Lake 1

Lake 2

Lake 3

Combined

Figure 5.2: Example creation of new temporal support τ∗ from three individual lake records. Note
the temporal misalignment across lakes and τ∗.

yτ ≡ (y′τ1, y
′
τ2 . . . , y

′
τk
)′ and define new temporal support τ∗ =

(
τ∗1, τ

∗
2, . . . , τ

∗
n∗

)′
to accommodate

the temporal misalignment among individual lake records (Figure 5.2). τ∗ is defined by non-

overlapping intervals of equal length |τ∗i | = |τ
∗
i′ |, ∀ i, i′ = 1, . . . , n∗, that span D∗, the temporal

domain spanned by all lakes combined D∗ =
⋃n∗

i=1 τ
∗
i .

The background intensity process for each lake is defined at temporal support τ∗ allowing

charcoal counts to be pooled across lakes to estimate a regional mean background intensity. Com-

parable with the univariate model, we model the background intensity process for each lake on the

log scale, but apply a new set of cubic regression splines defined for p∗ knots corresponding to

temporal support τ∗. Specifically,

log
(
λ j,b(τ

∗
i )

)
= β
(b)
0, j + x(τ∗i )

′β
(b)
j ,

where x(τ∗i ) is a p∗-dimensional set of known cubic regression spline covariate values equal to the

ith row of the n∗ × p∗ matrix X.

The background intensity process defined at temporal support τ∗ is mapped back to the observed

temporal support for each lake τ j by an N × n∗ matrix A where N =
∑k

j=1 n j . Specifically, given

A ≡ (A′1, . . . ,A
′
k )
′ where each A j is an n j × n∗ dimensional matrix,

λ j,b(τj,i) = a′j,iexp
(
β
(b)
0, j 1 + Xβ

(b)
j

)
where a j,i is a n∗-dimensional vector equal to the ith row of A j and 1 is a n∗-dimensional vector of
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ones. The lth entry of a j,i is equal to

a j,i(τ
∗
l ) = |τj,i ∩ τ

∗
l | l = 1, . . . , n∗

such that,
n∗∑
l=1

a j,i(τ
∗
l ) = |τj,i |, i = (1, . . . , n j), j = (1, . . . , k).

A joint, regional background intensity would ideally bemodeled as a spatio-temporal process across

multiple lakes at temporal support τ∗. Given the time and challenges associated with collecting

sediment charcoal records, however, sediment samples from regional lake networks are rarely of

sufficient size (in terms of the number of lakes sampled) to allow estimation of a spatio-temporal

background intensity process. In the current analysis, charcoal counts are pooled across lakes to

estimate a regional mean background intensity process by assigning the β(b)0, j and β
(b)
j exchangeable

normal prior distributions, as described in Section 5.3.3, in lieu of estimating a spatio-temporal

background intensity process. The foreground intensity process is modeled exactly as in the

univariate model. Specifically, the foreground process is modeled at the observed temporal support

for each lake (τ j) using lake-specific foreground coefficients (β( f )j ) corresponding to a set of p

knots. Probability of fire estimates are calculated for each lake independently according to (5.4).

5.3.2.1 Regional Mean Fire Return Interval

We seek inference regarding the regional mean FRI in addition to individual-lake mean FRIs

under the multivariate model. We apply a partial pooling approach to estimate the regional mean

FRI across lakes. Specifically, individual-lake mean FRI values (α j) are assigned exchangeable

log-normal priors centered on the log of a regional mean FRI (log α∗) with variance σ2
fri. The

partial pooling approach allows charcoal records from each lake to inform the regional average,

but penalizes lakes with large uncertainty in their mean FRI value estimate. The regional mean

FRI variance parameter (σ2
fri) quantifies the deviation of individual-lake mean FRI values from the

regional average.
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5.3.3 Bayesian Implementation

The univariate and multivariate models are completed by specifying prior distributions for remain-

ing unknown parameters. These include background and foreground regression coefficients and

mean FRI parameters.

5.3.3.1 Univariate Model

We assigned normal priors to regression coefficients under the univariate model: β(b)0, j ∼ N(0, σ2
0 ),

β
(b)
j ∼ N(0, σ2

b, jS
−1
j ), β

( f )
0, j ∼ N(0, σ2

0 ), and β
( f )
j ∼ N(0, σ2

f , jS
−1
j ). In our specification, σ2

0 is fixed

at a large value defining a diffuse normal prior. Theσ2
b, j andσ

2
f , j terms represent scalar penalties (or

regulators) that ensure the background process is smoothwhile the foreground process is sufficiently

flexible to capture irregular charcoal counts subject to the constraint σ2
b, j < σ2

f , j (identification of

optimal penalties is described in Section 5.3.3.3). The p×pmatrix S j consists of known coefficients

defined as a function of the selected knot values (Wood, 2006). Note that S j is not full column

rank, rather its rank is p − 2 given that the second derivative of the boundary knots are equal to

zero for natural cubic splines. Thus, the priors for β(b)j and β
( f )
j are improper, but can be shown to

result in proper posterior distributions. Combining the likelihood from (5.1) with the priors for the

regression parameters, the joint posterior distribution for a single lake under the univariate model,

using notation similar to Gelman et al. (2014), is proportional to:

nj∏
i=1

Pois(y(τj,i)|µ(τj,i)) × N(β
(b)
0, j |σ

2
0 ) × N(β

(b)
j |σ

2
b, j, S j) × N(β

( f )
0, j |σ

2
0 ) × N(β

( f )
j |σ

2
f , j, S j). (5.5)

5.3.3.2 Multivariate Model

We specified identical normal priors for the foreground regression coefficients under the mul-

tivariate model as in the univariate model, and exchangeable normal priors for the background

coefficients: β
(b)
0 ∼ N(µ0,b1, τ2

bIk ) and β(b) ∼ N(Rµb,Σb) where β
(b)
0 ≡

(
β
(b)
0,1, β

(b)
0,2 . . . , β

(b)
0,k

)′
,

β(b) ≡
(
β
(b)′

1 , β
(b)′

2 , . . . , β
(b)′

k

)′
, µ0,b and τ2

b are univariate mean and variance parameters, 1
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is a k-dimensional vector of ones, Ik denotes a k-dimensional identity matrix, µb is a p∗-

dimensional mean vector, Σb is a kp∗ × kp∗ covariance matrix, and R is a kp∗ × p∗ incidence

matrix equal to 1 ⊗ Ip∗ . The univariate variance τ2
b quantifies inter-lake variation in the intercept

of the background intensity. The covariance matrix Σb can be decomposed into inter-lake and

within-lake covariance in background coefficients. Defining a kp∗ × kp∗ block diagonal matrix

Sb ≡ Diag(σ2
b,1S∗−1, σ2

b,2S∗−1, . . . , σ2
b,kS∗−1) where S∗ is a p∗ × p∗ matrix of known coefficients

associated with the p∗ knots defined for τ∗, we can express the background coefficient covariance

matrix as Σb = LSbL′ where LL′ is the Cholesky decomposition of H ⊗ Ip∗ where H is a k-

dimensional covariance matrix. The matrix Sb accounts for covariance in background coefficients

within lakes, while H captures covariance among lakes. We apply a spatial covariance function to

construct H, although any valid covariance function can be used. Specifically, H ≡ Hs(θb) where

(Hs(θb)) j, j′ = c(| |s j − s j′ | |; θb) given s j indicates the geographic location of lake j and θb are

unknown spatial covariance parameters.

In the current analysis, we assigned normal priors to the mean intercept µ0,b ∼ N
(
0, σ2

0

)
and

mean regression coefficients µb ∼ N
(
0, ψ2I

)
where σ2

0 is fixed at a large value, while ψ2 is set to

an appropriate order of magnitude for the β
(b)
j based on univariate model results. The univariate

among-lake standard deviation parameter τb was assigned a uniform prior: τb ∼ Unif(aτ, bτ).

The scalar penalty on the background deposition process for each lake (σ2
b, j) was set equal to the

optimal background penalty value from the univariate model σ2
b ≡ (σ

2
b,1, σ

2
b,2, . . . , σ

2
b,k ). We ap-

plied an exponential spatial covariance function to form H: (Hs(θb)) j, j′ = σ
2
s exp

(
−φ| |s j − s j′ | |

)
where θb ≡ (σ

2
s , φ)

′. The partial sill (σ2
s ) represents spatial variance in background regression

coefficients among lakes and has the potential, if it is large, to generate highly-variable, uncon-

strained background deposition processes for individual lakes. To avoid the generation of overly

flexible background deposition processes, we fixed the partial sill at one (σ2
s = 1). The spatial

decay parameter was treated as a free parameter and estimated applying a diffuse uniform prior:

φ ∼ Unif(aφ, bφ). Combining the joint likelihood for charcoal counts from all lakes with the priors

for the multivariate regression model parameters, the joint posterior distribution for all lakes under
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the multivariate model is proportional to:

k∏
j=1

nj∏
i=1

Pois(y(τj,i)|µ(τj,i)) × N(β
(b)
0 |µ0,b, τ

2
b ) × N(β

(b) |µb,σ
2
b, S
∗, φ)×

k∏
j=1

N(β( f )0, j |σ
2
0 ) ×

k∏
j=1

N(β( f )j |σ
2
f , j, S j) × N(µ0,b |σ

2
0 )×

N(µb |ψ
2) × Unif(τb |aτ, bτ) × Unif(φ|aφ, bφ).

(5.6)

We use a Metropolis-within-Gibbs MCMC algorithm (Robert and Casella, 2004) to sample

from the posterior distributions in (5.5) and (5.6).

5.3.3.3 Identification of Optimal Penalties

Optimal background (σ2
b, j) and foreground (σ

2
f , j) penalties (prior variances) were identified based

on out-of-sample model prediction. Specifically, we conducted a grid search over a range of

penalty values based on initial exploratory modeling with five unique penalty values assigned to the

background and foreground: 25 total combinations. The gridded search was conducted applying

the univariate point process model to a single validation data set for each lake with 25 percent

of observations held out. Prediction of held-out charcoal counts was carried out via composition

sampling using posterior samples of background and foreground coefficients (β(b)0, j , β
(b)
j , β

( f )
0, j , β

( f )
j )

to generate λ j,b(τj,i) and λ j, f (τj,i). We sampled yho(τj,i) ∼ Pois(µ(τj,i)) in a one-for-one fashion,

where yho(τj,i) indicates a held-out observation. The resulting samples of yho(τj,i) represent

the posterior predictive distribution of yho(τj,i). Optimal penalty terms were identified as the

background and foreground variances that minimized the posterior predictive loss calculated for

the hold-out data (Gelfand and Ghosh, 1998). The posterior predictive loss rewards accuracy of

predictions with a penalty for large variance in predictions indicative of over parameterization. For

themultivariate model, we applied the optimal background and foreground penalty values identified

for each lake under the univariate model.
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5.3.3.4 Mean FRI

The mean FRI under the univariate and multivariate models is estimated using FRIs calculated

after applying a probability of fire threshold to sampled posterior probability of fire values at each

iteration of the Gibbs sampler. Specifically, for the `th iteration of the Gibbs sampler, we obtain

a set of fire event times
(
t(fire)j,1 , t(fire)j,2 , . . . , t(fire)j,mj

)(`)
, where m j is the total number of fire events

observed for lake j, by conditioning samples on Z(τj,i)
(`) = 1. A given FRI is equal to the elapsed

time between two consecutive fire events. For example, for lake j and iteration `, the rth FRI is

given by FRI(`)j,r =
(
t(fire)j,r+1 − t(fire)j,r

)(`)
, for r = (1, 2, . . . ,m j − 1).

We assigned a semi-informative, conjugate inverse-gamma prior to the mean FRI parameter

α j ∼ InvGamma(aα, bα) under the univariate model centering its density over the possible range

of FRIs for study lakes based on previous analyses (Kelly et al., 2013). Combining the prior with

the exponential likelihood of the FRIs (see Section 5.3.1.2), we obtain an inverse-gamma posterior

distribution for α j conditional on the derived set of FRIs. Specifically, for the `th iteration of

the Gibbs sampler, FRI(`)j =
(
FRI j,1, FRI j,2, . . . , FRI j,mj−1

)′
and α(`)j |FRI

(`)
j ∼ InvGamma(aα +

m(`)j − 1, bα +
∑m(`)j −1

r=1 FRI(`)j,r ).

We seek inference regarding the regional mean FRI in addition to individual-lake mean FRIs

under the multivariate model. We assigned diffuse uniform priors to the regional mean FRI (α∗)

and the inter-lake standard deviation (σfri). Combining the priors and the exponential likelihood

of the FRIs, the joint posterior distribution conditional on the model parameters defined in (5.6) is

proportional to:

k∏
j=1

mj−1∏
r=1

Exp(FRI j,r |α j) ×
k∏

j=1
N(log α j |log α∗, σ2

fri) × Unif(α
∗ |a∗, b∗) × Unif(σfri |aσ, bσ).

We estimated mean FRI values under the univariate and multivariate models using a range of

probability of fire thresholds: ξ = (0.50, 0.55, . . . , 1.00)′. Ideally, we would select the probability

of fire threshold yielding the greatest accuracy in terms of identifying local fire events (i.e., the

most-accurate mean FRI estimate). A common challenge with the use of sediment charcoal records,

however, is the lack of independent fire history data to conduct model validation. In the absence
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of independent fire history data, we sought an optimal probability of fire threshold in the sense

of providing a precise mean FRI estimate based on a consistent fire chronology for each posterior

sample of P j(τ j) ≡ (P(τj,1), P(τj,2), . . . , P(τj,nj ))
′. We estimated the coefficient of variation for

posterior mean FRI samples (σ̃/µ̃ where σ̃ and µ̃ are the posterior sample standard deviation and

mean, respectively). We selected the probability of fire threshold that minimized the coefficient

of variation as the optimal threshold. The optimal threshold provided the most-consistent mean

FRI estimate based on posterior samples. This approach is similar to previous paleoecological

approaches relying on sensitivity analysis to identify an optimal threshold (Clark et al., 1996).

5.4 Model Application

We apply the point process model to both simulated data and to sediment charcoal records from

a 13-lake network in interior Alaska. The use of simulated data allows for proper model validation,

which is difficult using sediment charcoal records due to the lack of observed fire data to compare

with probability of fire estimates.

5.4.1 Simulation Study

We tested the accuracy of the point process model by applying it to simulated sediment charcoal

records generated using CharSim (Higuera et al., 2007). CharSim is a semi-mechanistic model that

generates fires on a landscape and maps the subsequent deposition of charcoal particles to a target

lake. The amount of charcoal deposited in the target lake is proportional to the size of the fire, its

proximity to the target lake, the atmospheric injection height of charcoal particles during the fire,

and secondary charcoal deposition and sediment mixing within the lake (see Higuera et al., 2007,

for additional details).

We applied the univariate point processmodel to a simulated sediment charcoal record generated

by CharSim to mimic a fire regime consistent with historic fire regimes in the Alaskan boreal forest

(as described in Table 2 of Higuera et al., 2007). We defined a binary variable for each sample

interval of the simulated record with one indicating a local fire event within 100 m of the target lake
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within an interval, and 0 indicating no local fires within an interval. Probability of fire estimates

from the point process model were converted to binary fire occurrences as described in Section

5.3.1.2 and compared with true fire occurrence values to determine the percentage of fires correctly

identified.

The simulated record was 4760 years long divided into 238 equal-length sample intervals (each

interval was 20 years). There were 41 fires within 100 m of the target lake leading to a true mean

FRI of 116 years. The point process model correctly identified 38 of the 41 fires occurring over the

simulated study period applying an optimal threshold value of 0.95, corresponding to a 93 percent

fire identification rate (Figure 5.3). The model was accurate in its identification of local fires with

only a single falsely identified fire between 1880 to 1920 years before present (YBP). Despite the

accuracy of the point process model in identifying true local fires, the mean FRI was over estimated:

posterior mean FRI equaled 191 years (95 percent credible interval: 135 to 271 years). The upward

bias of the point process model in estimating the mean FRI was due to the model’s inability to

separate fires occurring in close temporal proximity as unique fire events. For example, there were

40 sample intervals that included a true fire in the simulated record (note, two fires occurred within

a single sample interval), but only 25 unique threshold exceedances (or peaks) were estimated. A

more in-depth discussion of source of bias is provided in Section 5.5. Model results were sensitive

to the definition of a local fire event. Specifically, if a local fire is defined as occurring within 1000

m of the target lake (rather than 100 m), the fire identification rate drops to 75 percent.

5.4.2 Yukon Flats

We applied the univariate and multivariate point process models to previously-published sediment

charcoal records from 13 lakes in the Yukon Flats region of Alaska (Figure 5.4; Kelly et al., 2013).

The Yukon Flats region is dominated by boreal forests and has a fire regime characterized by

stand-replacing fires with return intervals of several decades to centuries.
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Figure 5.3: Univariate model results for simulated sediment charcoal record generated by CharSim.
Upper panel indicates observed charcoal counts along with the posterior mean charcoal count (blue
line). Second panel illustrates posterior mean foreground (orange line) and background (black line)
intensities. Third panel plots posterior mean probability of fire estimates for each observed time
interval (black line) along with the upper and lower bounds of the 95 percent credible interval (gray
shading) and the optimal threshold (red line). The points in the third panel correspond to true fire
events occurring during the sample interval with black dots delineating correctly identified fires
and red open dots delineating missed fires. The arrow highlights the single falsely identified fire
during the simulated study period. Lower panel indicates observed charcoal counts with the color
and shape indicating whether the count was correctly identified as a true fire (black points), no fire
(gray points), missed true fire (red open circles), or falsely identified fire (red points).
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Figure 5.4: Location of study lakes within the Yukon Flats region of Alaska relative to areas burned
in wildland fire since 1940 Common Era.

5.4.2.1 Univariate Model

We applied the univariate model to each of the 13 lakes in the Yukon Flats data set and the

multivariate model to all lakes jointly. Mean FRI values from the univariate model varied from

roughly 134 years for fires local to Chopper Lake to roughly 356 years for fires local to Screaming

Lynx Lake. Table 5.1 providesmean FRI value estimates for each of the 13 lakes. Optimal threshold

values providing the most-precise mean FRI estimate for each lake varied from 0.50 to 0.75 (Table

5.1). Results of the univariate model for Chopper and Screaming Lynx Lakes are provided in Figure

5.5 (similar plots are provided for all lakes in Appendix D along with additional plots for Chopper

and Screaming Lynx Lakes illustrating the identification of an optimal threshold and uncertainty
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in local fire chronologies; Chopper and Screaming Lynx Lakes are selected to illustrate the lakes

with the shortest and longest mean FRI, respectively).

Geospatial fire perimeter data for the state of Alaska date back to 1940 Common Era (CE;

Alaska Fire Service, 2016). Restricting the fire perimeter data to fires local to lakes within the

Yukon Flats data set, there were five fires since 1940 within 100 m of one or more of the 13 study

lakes (a threshold of 100 m from lake edge was used to distinguish local fire events based on results

of the simulation study) the earliest of which occurred in 1985. Although the local fire record is

insufficient in length to conduct proper model validation (i.e., roughly 70 years of local fire data

for a study period of over 10,000 years is less than 1 percent data coverage), we can compare the

true occurrence of local fires to local fires identified by the point process model to assess model

performance. Two of the five fires local to at least one study lake occurred after the end of the

sediment charcoal records for local lakes: Big Creek Fire in 2009, Discovery Creek Fire in 2013.

The Preacher Creek Fire in 2004 occurred local to Picea and Epilobium Lakes, however, the point

process model did not identify a local fire for either of these lakes in the most-recent 50 years.

There were two unnamed fires, the first in 1985 and the second in 1988, local to several study lakes.

A fire event was identified by the point process model within the past 25 years in four out of seven

lakes local to the 1985 fire and two of five lakes local to the 1988 fire.

5.4.2.2 Multivariate Model

Joint probability of fire estimates generated using the multivariate model varied in magnitude from

the univariate model results. Figure 5.6 presents the multivariate model results for Chopper and

Screaming Lynx Lakes. Comparing the results presented in Figure 5.6 to those from the univariate

model (Figure 5.5), the probability of fire estimates for Chopper Lake are slightly higher under the

multivariate model than the univariate model, while the probability of fire estimates for Screaming

Lynx Lake are roughly consistent between the two models. In general, probability of fire estimates

were higher under the multivariate model than the univariate model. The different magnitudes

of probability of fire estimates under the multivariate model necessitated calculating new optimal
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Table 5.1: Summary of univariate and multivariate Poisson process model results for each lake
in the Yukon Flats data set. Mean FRI is equal to the posterior mean fire return interval with 95
percent credible intervals in parentheses.

Lake
Univariate Model Multivariate Model

Optimal Mean Cred. Int. Optimal Mean Cred. Int.
Threshold FRI Width Threshold FRI Width

Chopper 0.60 134 (91,197) 106 0.85 144 (97,216) 119
Epilobium 0.50 197 (133,292) 159 0.50 201 (136,293) 157
Granger 0.55 286 (187,436) 249 0.50 246 (165,368) 203
Jonah 0.50 159 (111,228) 117 0.55 148 (107,207) 100
Landing 0.70 303 (206,445) 239 0.70 291 (201,419) 218
Latitude 0.75 158 (106,235) 129 0.75 137 (96,194) 98
Lucky 0.75 136 (92,200) 108 0.75 138 (93,206) 114
Picea 0.50 318 (227,448) 221 0.50 312 (223,429) 206
Reunion 0.70 244 (167,354) 186 0.70 237 (165,345) 180
Robinson 0.55 142 (94,213) 119 0.80 124 (87,180) 93
Screaming Lynx 0.60 356 (255,497) 242 0.55 357 (255,502) 247
West Crazy 0.50 204 (133,315) 182 0.70 200 (129,306) 177
Windy 0.50 162 (110,239) 128 0.65 155 (107,226) 119

fire thresholds for each lake (Table 5.1). Optimal threshold values ranged from 0.50 to 0.85 for

the multivariate model consistent with slightly higher probability of fire estimates compared to the

univariate model. Mean FRI values estimated using the multivariate model were consistent with the

mean FRI values estimated for each lake using the univariate model; however, the credible interval

widths for the multivariate model were narrower than under the univariate model. Specifically, 10

out of 13 lakes had narrower credible intervals under the multivariate model than the univariate

model (Table 5.1). The average credible interval width for the mean FRI was 156 years under the

multivariate model versus 168 years under the univariate model. In addition to lake-specific, local

mean FRIs, we applied the joint probability of fire estimates and optimal thresholds for each lake

to estimate a joint regional mean FRI as described in Section 5.3.2.1. We estimated a regional

mean FRI over the study period (10,680 to -59 YBP, relative to 1950 CE) of roughly 187 years (95

percent credible interval: 136 to 261 years) for the Yukon Flats region based on the lake network

data.

The multivariate model provides inference on regional background charcoal deposition. Ap-
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Figure 5.5: Univariate model results for Chopper Lake (a) and Screaming Lynx Lake (b). Upper
panel indicates observed charcoal counts along with the posterior mean charcoal count (blue line).
Middle panel illustrates posterior mean foreground (orange line) and background (black line)
intensities. Lower panel plots posterior mean probability of fire estimates for each observed time
interval (black line) along with the upper and lower bounds of the 95 percent credible interval (gray
shading) and the optimal threshold (red line).
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Figure 5.6: Multivariate model results for Chopper Lake (a) and Screaming Lynx Lake (b). Upper
panel indicates observed charcoal counts along with the posterior mean charcoal count (blue line).
Middle panel illustrates posterior mean foreground (orange line) and background (black line)
intensities. Lower panel plots posterior mean probability of fire estimates for each observed time
interval (black line) along with the upper and lower bounds of the 95 percent credible interval (gray
shading) and the optimal threshold (red line).
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plying an exponential spatial covariance function to describe spatial correlation in background

regression coefficients (as described in Section 5.3.3.2) resulted in an estimated effective spatial

range of approximately 16.5 km (95 percent credible interval: 14.4 to 19.1 km) where the effective

spatial range is defined as the distance at which the correlation drops to 0.05. This suggests the

parameters describing local, background charcoal intensity for individual lakes are similar for lakes

within 20 km of each other. Finally, the multivariate model provides an estimate of the background

charcoal deposition in each lake over the entire study period, although the sediment charcoal records

for most lakes are shorter than the full study period. The background charcoal intensities for each

lake in the Yukon Flats network are plotted together in Figure 5.7 along with a regional loess smooth

function. The background charcoal deposition for most lakes exhibited a similar pattern, with a

long-term increase in background charcoal deposition from 6000 YBP to present, a sharp increase

in background deposition roughly 3000 YBP, and a secondary increase 1000 YBP followed by a

decrease in background deposition roughly 500 YBP.

5.5 Discussion

The use of sediment charcoal records to reconstruct past fire regimes is challenging given

charcoal counts rather than past fire occurrences are observed. Further, observed charcoal counts

include charcoal generated during local fires as well as charcoal stemming from regional fire activity

and secondary sources. The goal of our analysis was to construct an integrated statistical framework

for local fire identification and the estimation of mean FRIs based on sediment charcoal records

from individual lakes building on previous approaches to paleo-fire reconstruction. We further

sought to advance existing approaches to reconstruct regional fire history through the development

of a multivariate model, which combines sediment charcoal records from multiple lakes to identify

local fires and jointly estimate mean FRIs at individual-lake and regional scales. Here, we discuss

the key results of the application of the univariate and multivariate point process models to the

Yukon Flats data set and connect the results of the current analysis to previous studies in the same

region.
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Figure 5.7: Background charcoal deposition intensity for each lake in the Yukon Flats data set over
the entire study period (10,680 to -59 YBP, relative to 1950 CE) based on the multivariate point
process model. The bold line in the upper panel is a regional loess smooth function reflecting mean
changes in background charcoal deposition across all lakes (fit using a span of 0.15). The lower
panel indicates the number of lake records used to estimate background charcoal deposition over
time.
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Mean FRI estimates from the univariate and multivariate point process models applied to the

Yukon Flats data set ranged from 100 to 350 years (Table 5.1). The lakes with the largest mean

FRI estimates have sediment charcoal records dating back the longest among study lakes: Reunion,

Granger, Landing, Picea, and Screaming Lynx Lakes all have records that date back at least 5000

YBP. This pattern in consistent with previous interpretations of Holocene fire history in Alaskan

boreal forests, which highlight increased fire activity over the last several thousand years beginning

with the local arrival of black spruce between 6000 to 3000 YBP (Lynch et al., 2004; Higuera

et al., 2009; Kelly et al., 2013).We observe a similar pattern of increased fire activity in plots of

the background charcoal deposition intensity for each lake over the study period derived from the

multivariate model (Figure 5.7). The increase in fires across the Yukon Flats region from 6000 to

3000 YBP reflected in the background intensity suggests that lakes with sediment charcoal records

dating back prior to 3000 YBP should have longer mean FRI values than lakes with relatively short

records. A secondary peak in the background charcoal deposition intensity is observable around

500 YBP coincident with the Medieval Climate Anomaly, a period of increased temperatures

and drought frequency (1000-500 YBP), followed by the Little Ice Age, a period of cooler and

wetter climatic conditions (500-80 YBP). Finally, modeled background charcoal intensities for

individual lakes indicate an increase in biomass burned in recent decades, although the increase

is not reflected in the regional loess smoother (Figure 5.7). The modeled background charcoal

intensities are consistent with composite CHAR records (i.e., mean charcoal accumulation rate

among lakes) calculated using the Yukon Flats data (Kelly et al., 2013).

The univariate Bayesian point process model provides a model-based approach to estimate

probability of fire values associated with sediment charcoal records from a single lake and convert

those probabilities into mean FRI estimates. The multivariate model allows for correlation among

lakes in the parameters used to estimate the background charcoal deposition intensity. The back-

ground intensity reflects regional charcoal sources and exhibits low-frequency changes over time

associated with factors such as species composition and climate. As such, background charcoal

deposition should be similar among lakes in the same region with a high potential for correlation
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in background deposition process parameters. As expected, mean FRI estimates for each lake

are similar based on the univariate and multivariate models (Table 5.1). The multivariate model,

however, resulted in mean FRI estimates with reduced uncertainty. Specifically, the 95 percent

credible interval for the mean FRI was narrower in 10 out of 13 lakes in the Yukon Flats network

with a mean credible interval width of 156 years for the multivariate model versus 168 years for

the univariate model. The reduced uncertainty in mean FRI estimates under the multivariate model

provides some evidence that background charcoal deposition is indeed correlated among lakes

located in the same region and that we can reduce uncertainty in estimates of background char-

coal deposition by accounting for such correlation. The effective spatial range for the background

process regression parameters (β(b)j ) was estimated to be 16.5 km and provides some indication of

the distance within which background charcoal deposition is similar among lakes within the Yukon

Flats region. This estimate is consistent with the previous analysis using the Yukon Flats data set,

which found significant correlation between composite CHAR and regional area burned within a

20-km radius (Kelly et al., 2013).

We estimated a regional mean FRI of roughly 187 years (95 percent credible interval: 136

to 261 years) for the Yukon Flats over the study period applying the partial pooling approach

described in Section 5.3.2.1. The partial pooling approach also produces estimates of mean FRI

values for individual lakes similar to the univariate and multivariate results presented in Table 5.1.

However, we do not see the same reduction in uncertainty in individual-lake mean FRI estimates

when conducting partial pooling. Specifically, credible interval widths were narrower in only 6

out of 13 lakes with the remaining intervals comparable to univariate model results. The partial

pooling approach adds two additional parameters (α∗, σ2
fri) and combines uncertainty in mean FRI

values across lakes. As such, it is not surprising the partial pooling approach does not lead to

the same reductions in uncertainty as generating individual-lake mean FRI estimates based on the

multivariate model. We envision the partial pooling approach being applied only in the setting

where a researcher is interested in estimating a regional mean FRI, otherwise, the individual-lake

approach is preferred.
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The univariate point process model we developed achieves our goal of developing an integrated

statistical framework for local fire identification and estimation of mean FRIs based on sediment

charcoal records for individual lakes. The Bayesian hierarchical model structure allows for tractable

propagation of additional uncertainty sources in paleo-fire reconstructions. In particular, uncer-

tainty in sediment age models can be integrated by treating the ages of sediment core sections as

unobserved, latent variables in the point process model. Themultivariate extension of the point pro-

cess model provides a novel approach for paleo-fire reconstruction applying multiple lake records

to make inferences at both individual-lake and regional scales. Specifically, the multivariate model

provides estimates of individual-lake mean FRIs, a regional mean FRI, and background charcoal

deposition intensity indicative of regional biomass burned. When applied to the Yukon Flats data

set, pooling of individual-lake records under the multivariate model led to reduced uncertainty in

individual-lake mean FRIs. We expect the multivariate model to provide even greater reductions

in uncertainty in individual-lake mean FRI values, and improved estimates of regional parameters

including the regional mean FRI, when applied to larger regional lake networks (i.e., networks with

20 plus lakes), assuming all lakes share a common regional fire regime.
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CHAPTER 6

CONCLUSIONS

6.1 Research Synthesis

The preceding chapters demonstrate a range of spatio-temporal modeling methodologies ap-

plied to forest growth, mortality, and disturbance data. Chapter 5 develops a stand alone model to

reconstruct regional fire regimes using sediment charcoal records. Chapters 2-4 build upon one

another with a common research goal in mind: to advance understanding of interactions between

climate extremes, disturbance, and forest dynamics. Understanding these interactions is a neces-

sary step toward predicting forest responses to future environmental conditions and is critical to

informing adaptive forest management aimed at maintaining forest function under changing climate

and disturbance regimes.

There was evidence in Chapter 2 that tree growth responses to water deficits varied over time

depending on the severity of water stress, their co-occurrence with insect defoliation events, and

forest density. In particular, there was evidence water deficit thresholds might exist below which

tree growth is unaffected, but above which water deficit triggers strong growth reductions. This is

consistent with contemporary physiological theory (McDowell et al., 2011; Allen et al., 2015), and

is important given tree growth is correlated with a range of forest demographic processes including

mortality and is an indicator of forest health (Buechling et al., 2017). Further, the results of Chapter

2 underscored the dependence of tree growth on past water deficits and their potential interaction

with insect defoliation events.

Building on the results of Chapter 2, we developed a modeling framework in Chapter 3 to

quantify the persistent and cumulative effects of water deficit and insect defoliation on current tree

growth applying the concept of ecosystem memory. The framework allowed for the interactive

effects of cumulative water and defoliation stress on tree growth to be explicitly tested. The

model framework was applied to two contrasting regions of the Canadian boreal forest with results
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revealing persistent tree growth responses to both water deficit and insect defoliation lasting up

to a decade. There was evidence of a positive interactive effect of cumulative water deficit and

insect defoliation among non-defoliator-host trees suggesting these trees benefit from reduced

competition for limited water following defoliation events. There was little evidence, however, of

negative interactive effects among host trees even after accounting for persistent and cumulative

tree responses. These results are counter to the physiological hypothesis that feedbacks in tree

responses to drought and insect defoliation exacerbate their effects on tree growth and mortality

(McDowell et al., 2011; Anderegg et al., 2015). Combined with the lack of evidence for negative

interactions in previous studies (Jactel et al., 2012; Jacquet et al., 2014; Kolb et al., 2016), our

results imply negative interactions between water and defoliation stress on host tree growth may

not be as strong as expected due to insect defoliation offsetting the impacts of water deficits.

Finally, Chapter 4 builds on the methods and results of Chapters 2 and 3 to develop a state space

framework to model the interactions between climate extremes, disturbance, and forest dynamics.

The state space framework is similar to the framework presented in Chapter 2, but critically replaces

the random walk for climate effects with an empirical model of forest dynamics providing joint

estimates of demographic processes (growth, mortality, regeneration). The framework provides a

tool to test alternative functions describing the effects of climate extremes and disturbance on forest

dynamics. In particular, based on the results of Chapter 2, we can test whether there is evidence

to support the use of growth and mortality functions incorporating a threshold for climatic water

deficit, and further, quantify the value of such a threshold. The state space framework allows

for the identification of forest characteristics promoting ecosystem resistance and resilience to

climate extremes and disturbance events. Further, it provides a tool to test alternative management

scenarios to maintain forest health and productivity under variable future conditions in terms and

contexts forest managers understand and can implement within long-term management plans. The

framework is a valuable tool for adaptive forest management and connects fundamental forest

ecology research with the applied management goals described in Chapter 1.
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6.2 Future Research

The analyses presented here represent a step toward improved understanding of interactions

between climate extremes, disturbance, and forest dynamics. Many important questions, however,

remain unanswered and there are myriad opportunities to continue exploring such interactions in

future work. Several of these opportunities are described below.

Ecosystem memory: The concept of ecosystem memory is important because it allows ecol-

ogists to quantify the strength, relative importance, and cumulative effects of past environmental

conditions on current ecosystem function (Ogle et al., 2015). A wide range of ecological pro-

cesses likely exhibit persistent responses to past conditions. Ecological memory functions offer a

tool to quantify and understand the dynamics of these persistent responses. While frameworks to

quantify memory functions are just emerging in ecology, there is a precedent for such frameworks

in spatial statistics where methods exist to estimate spatially-averaged covariates reflecting the re-

sponse of a process to environmental conditions within a local neighborhood (Heaton and Gelfand,

2012). There is a terrific opportunity to bring these methods to bear in ecological contexts. Future

methodological research will focus on expanding the spline-based approach to quantify ecosystem

memory introduced in Chapter 3 to spatio-temporal processes. That is, develop a flexible approach

to quantify ecological memory functions in time and space reflecting ecosystem responses to en-

vironmental conditions in the recent past within a local neighborhood. An ecosystem memory R

package will ultimately be developed to facilitate the use of such methods in ecology.

Analysis of dead trees: The tree growth analyses presented here are limited to tree rings

collected from live trees. Numerous studies have demonstrated trees suffering drought-induced

mortality exhibit reduced radial growth rates relative to the growth of surviving conspecific trees of

similar size for a number of years prior to death (Wyckoff andClark, 2002; vanMantgem et al., 2003;

Das et al., 2007, 2016; Berdanier and Clark, 2016). Tree death, in general, is thought to be a slow

process occurring over a number of years and resulting from interactions among multiple factors

including tree age/size, water and nutrient availability, insect and wind damage, fungal infection,

and disease (Franklin et al., 1987; McDowell et al., 2011). The approach to quantify the ecological
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memory of tree growth to past water and insect defoliation stress presented in Chapter 3 provides a

unique opportunity to explore the factors contributing to tree death. Future research will apply the

modeling approach to tree-ring records collected from both live and recently-dead trees following

drought and insect defoliation events to test for differences in their ecological memory to water

and insect defoliation stress. Tree-ring data exist for white spruce trees suffering drought-induced

mortality in Alberta and spruce-fir trees suffering spruce budworm defoliation-induced mortality

in Quebec in addition to the data used in Chapter 3. Ultimately, the tree-ring based approach to

quantify the ecological memory of tree growth to past drought and insect disturbance events can

be expanded to regional scales using data from the International Tree Ring Data Bank to advance

understanding of the mechanisms underlying tree mortality.

Regional modeling of forest dynamics using SORTIE-ND: The state space framework pre-

sented in Chapter 4 offers a unique approach to combine disparate tree-ring and forest inventory

data to advance understanding of interactions between climate extremes, disturbance, and forest

dynamics, and inform adaptive forest management. The results of Chapter 4 represent a proof of

concept that past forest dynamics can be reconstructed using a growth and yield model constrained

by common forest growth and mortality data. Future work will replace the FVS model with a

process-based model of forest dynamics, SORTIE-ND (Pacala et al., 1996). SORTIE-ND is an

individual-tree, distance-dependent model of forest dynamics and affords several benefits over the

FVS model. In particular, SORTIE-ND represents competition at the individual tree scale us-

ing well known competition indices (Canham et al., 2004). Further, SORTIE-ND accommodates

unevenly aged, multi-species forests. Finally, the SORTIE-ND model offers increased flexibility,

in terms of modifying underlying growth and mortality functions, and improved computational

efficiency relative to FVS. The SORTIE-ND-driven state space model will be applied to regional

forest data sets for which historic meteorological records and disturbance chronologies exist. This

will enable the identification of forest characteristics promoting ecosystem resistance and resilience

to climate extremes and disturbance events and can be used to inform regional silvicultural systems.

Regional data for northeastern North America spanning northern New England to southern Quebec,
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Canada has been procured and will be analyzed once the SORTIE-ND-driven state space model

has been developed and validated.

Understanding the role of population genetics in forest demographic processes: There

is a range of individual-scale variability in tree growth, mortality, and fecundity. Accounting

for individual-scale variability is integral to understanding how forest demographic processes are

impacted by climate extremes and disturbance (Clark et al., 2011). Variability in individual-tree

responses to similar growing conditions is commonly attributed to unobserved micro-site factors,

genetics, and tree health. Future research will modify growth, mortality, and regeneration functions

from the SORTIE-ND model to allow for individual random effects driven by tree genotypes. The

model will be applied to a mixed, white oak (Quercus alba L.) experimental forest for which

extensive tree-ring, forest inventory, and genetic data exist for a collection of forest stands (the

population unit) to assess the role of population genetics in shaping demographic responses to

drought and insect disturbance. Ecological memory functions will be applied to account for

persistent and cumulative tree responses to past water stress and insect damage. Further, we

will account for competition among trees using spatially-explicit competition indices and forest

stem maps. The analysis will identify within-population variability in growth, mortality, and

fecundity during and following drought events and insect outbreaks. Recent analyses have applied

a similar approach to understand tree growth responses to climate (Housset et al., 2018), but

have not integrated the concept of ecosystem memory, competition, or modeled joint demographic

responses.

6.3 Concluding Remarks

Models are critical to understanding changes in forest processes given the long timescales

(decades to millennia) over which forests persist. Predictions of future changes to forest ecosystems

can be used to inform current management decisions to maintain the productivity, health, and

function of forest systems or tomove them in new directions better adapted to future conditions. The

research presented here sought to combine spatio-temporal statistical models, fundamental forest
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ecology, and applied forest management in order to advance understanding of forest ecosystems

and facilitate their sustainable management. Future research will continue toward these same

fundamental goals building on the methods and results of this dissertation.
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APPENDIX A

VARIABLE EFFECTS OF CLIMATE ON FOREST GROWTH IN RELATION TO
CLIMATE EXTREMES, DISTURBANCE, AND FOREST DYNAMICS

A.1 Detailed Model Specification

In this section we provide detailed model specifications for the fixed climate effects (FCE)

and variable climate effects (VCE) models. Model specification includes details on the prior

distributions assigned to all model parameters. We discuss specification of hyperparameter values

in the Bayesian Inference section that follows.

A.1.1 Fixed Climate Effects (FCE) Model

We model annual tree growth increments under the FCE model as follows. Let i index individual

trees (i = 1, . . . , n), j index stands ( j = 1, . . . , k), and t index years (t = 1, . . . ,T) where n, k, and T

are the total number of trees, stands, and years, respectively. Let j(i) indicate the stand j in which

the ith tree is located (e.g. j(i) = 3 indicates the ith tree is located in stand 3). Finally, define y to

be the observed growth increment, such that yi,t is the observed radial growth increment for tree i

in year t. Individual tree growth is modeled as,

log(yi,t) = x′i,tβi + α j(i),t + εi,t

εi,t = φεi,t−1 + ei,t

ei,t ∼ N
(
0, σ2

pe

)
where xi,t is a p-dimensional vector of known covariate values corresponding to a set of natural

cubic spline basis functions defined for tree age at p knots, βi is a p-dimensional vector of tree-

specific spline regression coefficients, α j(i),t is the additive effect of being located in stand j during

year t, and εi,t is the residual error. The residual error is modeled as an AR1 process where φ

is an unknown correlation coefficient and ei,t is a pure error term. Growth increments of zero
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(i.e. missing rings) represented an extremely small portion of the data (less than 1 percent of all

observed growth increments). We applied an additive factor of 0.001 to growth increments of zero

prior to applying the log transformation. We assume the pure error term follows a zero-centered

normal distribution with pure error variance σ2
pe. The AR1 error model and normality assumption

for ei,t induces the follow distribution for εi,t ,

εi,t ∼ N

(
0,

σ2
pe

1 − φ2

)
where the εi,t’s are temporally correlated. Specifically, Cor

(
εi,t, εi,t−h

)
= φh where h is the lag,

h = 0, . . . ,Ti, given tree i is observed for a total ofTi years. We assume the growth of individual trees

within and across stands is independent based on exploratory analysis assessing spatial dependence

(εi,t ⊥ εi′,t′ ∀ i , i′, t = 1, . . . ,Ti, and t′ = 1, . . . ,Ti′). Stand effects are modeled using observed

climate as,

α j,t = f′j,tθ + v j,t

v j,t ∼ N
(
0, τ2

)
where f j,t is an l-dimensional vector of observed, standardized climate covariates, θ is an l-

dimensional vector of regression coefficients, and v j,t is a random error term assumed to follow

a zero-centered normal distribution with inter-annual variance τ2. We assume stand effects are

independent with respect to time both within and across stands.

We apply conjugate normal priors for the individual tree-level spline and stand-level climate

regression coefficients,

βi ∼ Np

(
µβ, σ

2
βS−1

)
θ ∼ Nl

(
µθ, σ

2
θ I

)
where S is a p × p penalty matrix defined based on knot locations (see details in Appendix A), I is

an l-dimensional identity matrix, and µβ, σ2
β
, µθ , and σ2

θ
are hyperparameters. We apply uniform

priors for the AR1 correlation coefficient (ensuring the autoregressive process is stationary) and
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the pure error and inter-annual standard deviation parameters (Gelman, 2006),

φ ∼ Unif (−1, 1)

σpe ∼ Unif (a1, b1)

τ ∼ Unif (a2, b2) .

The hierarchical model is fully specified after setting hyperparameter values for prior distributions

(µβ, σ2
β
, µθ, σ

2
θ
, a1, b1, a2, b2). We discuss hyperparameter values in theBayesian Inference section.

A.1.2 Variable Climate Effects (VCE) Model

The climate regression coefficients are treated as state variables in the VCE model and evolve

over time such that a unique set of climate coefficients is estimated for each year in the study

period (θ1, θ2, . . . , θT ). The time-varying process is initialized at θ0 with all subsequent θt

values informed by the set of stand effects in a five-year moving window centered on the cur-

rent year αt = (α1,t−2, . . . , αkt−2,t−2, . . . , α1,t+2, . . . , αkt+2,t+2)
′ where kt is the number of stands

with growth observations in year t. Note, the five-year window is truncated for the first two

and last two years in the study period where data does not exist before and after the cur-

rent year, respectively. The stand effects are informed by individual tree growth observations

yt = (y1,t−2, . . . , ynt−2,t−2, . . . , y1,t+2, . . . , ynt+2,t+2)
′where nt is the number of trees with observed

growth increments in year t. The time-varying climate coefficient model structure is represented

graphically in Figure A.1.

The tree-level model is unchanged in the VCE model. The stand-level model is updated to

integrate time-varying climate coefficients. We also add a model for the evolution of climate effects

over time. We apply a first order random walk to model changes in the climate coefficients as
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follows,

α j,t = f′j,tθt + v j,t (A.1)

θt = θt−1 + wt (A.2)

v j,t ∼ N
(
0, τ2

)
wt ∼ Nl (0,Σθ)

where wt is an l-dimensional process error vector following a zero-centered multivariate normal

distribution with covariance matrix Σθ . Equations A.1 and A.2 define a state space or dynamic

linear model framework with (A.1) serving as the observation equation and (A.2) the process or

state equation (West and Harrison, 1997).

θ0 θ1 . . . θt−1 θt θt+1 . . . θT

α1 αt−1 αt αt+1 αT

y1 yt−1 yt yt+1 yT

Climate Coefficients

Stand Effects

Tree Growth Data

Figure A.1: Graphical depiction of climate coefficient evolution and variable climate effects (VCE)
model dependencies with arrows indicating direct dependence.

We apply a conjugate normal prior to initialize the climate coefficient process and a scaled

inverse-Wishart prior for the process error covariance matrix (as described in Gelman et al. 2014),

θ0 ∼ Nl (m0,C0)

Σθ = Diag(η)Σ(η)Diag(η)

Σ(η) ∼ Inv-Wish (ν,V)

ηs
iid
∼ Unif(a3, b3) s = 1, . . . , l

where η is an l-dimensional vector of scale parameters each assigned a uniform prior distribution,

Diag(η) indicates an l-dimensional diagonal matrix with values of η on the diagonal, and Σ(η)

is an l-dimensional correlation matrix. All other priors remain the same as in the FCE model.

Again, the model is fully specified after setting hyperparameter values for prior distributions

(m0,C0, ν,V, a3, b3).
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A.2 Bayesian Inference

We use Markov chain Monte Carlo (MCMC) algorithms to estimate model parameters using

Gibbs sampling (Gelfand and Smith, 1990). Specific implementation of our Gibbs sampler is

discussed in the following section. We apply diffuse normal prior distributions for the FCE

regression parameters setting µβ and µθ equal to zero, σ2
β
equal to 250, and σ2

θ
equal to 1e7/k.

The scalar variance hyperparameter for βi serves as a tuning parameter controlling the degree of

smoothness of the penalized spline regressionmodel. We selected a value of 250 based on a gridded

search matching as closely as possible penalized spline regression residuals with residuals from a

relatively stiff smoothing spline representative of those applied in conventional dendrochronology

analyses (i.e. 50 percent frequency response; see Penalized Spline Regression section below).

We apply non-informative uniform priors for the pure error (σpe) and inter-annual (τ) standard

deviations, but constrain values to an appropriate order of magnitude based on exploratory analysis

setting a1 and a2 to 0.0001 and b1 and b2 to 10.

The same hyperparameter values for σ2
β
, a1, b1, a2 and b2 are used in the VCE model. The

climate coefficient evolution is initialized using a diffuse normal distribution with m0 = 0 and

C0 = Diag(1e3). The temporally-varying climate coefficient estimates are updated using a Kalman

filter nested within a Gibbs sampler. We set ν = l + 1 and V = I (per Gelman et al. 2014). Finally,

we set a3 = 0 and b3 = 1 constraining the ηs’s to an appropriate order of magnitude based on

exploratory analysis.

A.3 Gibbs Sampler

We apply Gibbs sampling, a Markov chain Monte Carlo (MCMC) technique, to sample the

joint posterior distribution for all model parameters (Gelfand and Smith, 1990). Here we present

conditional distributions for each parameter and the algorithms used to sample from them. We

begin by defining additional notation used throughout the appendix. All other notation is as defined

in article.
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A.3.1 Notation

tr .yrs =
T∑

t=1
nt

std.yrs =
T∑

t=1
kt

yi =
(
yi,1, . . . , yi,Ti

)′
i = 1, . . . , n

y =
(
y′1, . . . , y

′
n

)′
α =

(
α′1, . . . , α

′
T

)′
β =

(
β′1, . . . , β

′
n

)′
Θ =

(
θ′1, . . . , θ

′
T

)′
A = tr .yrs × std.yrs incidence matrix

X = ⊕n
i=1Xi where Xi = Ti × p design matrix

FFCE = tr .yrs × l design matrix

FVCE = ⊕
T
t=1Ft where Ft =

t+2∑
t−2

kt × l design matrix

Σy = ⊕
n
i=1Σi where Σi = ni × ni AR1 correlation matrix

σ2
res =

σ2
pe

1 − φ2

Notes: ⊕ indicates a direct sum forming a block diagonal matrix. The matrix A selects the

corresponding scalar stand effect for each yi,t . The elements of X are known knot values defined for

each tree based on age. The elements of FFCE and FVCE are known standardized climate covariate

values. FVCE is truncated for the first two and last two years in the study period where data previous

to and after the current year do not exist. The ta : tb notation indicates all time points from ta to

tb. Finally, we use Ω to indicate all model parameters and Ω(−) to indicate all model parameters
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minus the parameter currently being updated.

A.3.2 Climate Coefficients

Under the fixed climate effects (FCE) model, climate coefficients (θ) are sampled from a normal

conditional posterior distribution as follows.

θ |y,Ω(−) ∼ N(Vv,V)

where

V =
(F′FCEFFCE

τ2 + C−1
0

)−1

v =
F′FCEα
τ2 +m0C−1

0 .

The state space framework of the variable climate effects (VCE) model sets up a dynamic linear

model for the climate coefficients and stand effects at time t as defined by the following observation

and process equations

Obs: αt = Ftθt + vt vt ∼ N
(
0, τ2Ikt

)
Proc: θt = θt−1 + wt wt ∼ N (0,Σθ)

initialized at t = 0 using θ0 ∼ N (m0,C0). Climate coefficient values are sampled from their

joint conditional posterior distribution N (θ0:T |y,Σθ) using the forward filtering backward sam-

pling (FFBS) algorithm (Carter and Kohn, 1994), which applies the Kalman filter and smoothing

equations. The following steps define the FFBS algorithm (adapted from Petris et al., 2009):

(1) update filtering distribution for θt (t = 1, . . . ,T) using θt |y1:t ∼ N (mt,Ct) where

(a) (b) (c)

mt = at + RtF′tQ
−1
t (αt − ft) at = mt−1 ft = Ftat

Ct = Rt − RtF′tQ
−1
t FtRt Rt = Ct−1 + Σθ Qt = FtRtF′t + τ

2Ikt
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(a) filtering parameters; (b) one-step ahead prediction parameters for θt ; (c) one-step ahead

prediction parameters for yt .

(2) sample θT from its posterior conditional distribution θT |y1:T,Σθ ∼ N (mT,CT )

(3) sample θt from its conditional smoothing distribution θt |θt+1, y1:T,Σθ ∼ N (st, St) for

(t = T − 1, ..., 1, 0) where

st = mt + CtR−1
t+1 (θt+1 − at+1)

St = Ct − CtR−1
t+1Ct .

We use a singular value decomposition (SVD) form for the covariancematrices (Rt,Ct, St) included

in the FFBS algorithm to improve numerical stability and ensure that each matrix is symmetric

positive-definite. Specifically, we apply the SVD version of the Kalman filter described in Wang

et al. (1992) to complete FFBS steps 1-2. The SVD approach is extended to calculate St relevant

to step 3 as follows:

(1) form Pt =


(L∗)′U+t(

D+t
)−1

 where L∗L∗′ = Σ−1
θ

and U+t ,D
+
t are as defined in Wang et al. (1992);

(2) solve for the SVD of Pt retaining the singular values D◦
t and right singular vectors V◦

t ;

(3) form Ub
t = U+t V◦

t and Db
t =

(
D◦

t
)−1;

(4) then, St = Ub
t
(
Db

t
)2 (

Ub
t
)′ and st = mt + StΣ

−1
θ
(θt+1 − at+1).

A.3.3 Stand Effects

Stand effects under the FCE andVCEmodels (α) are sampled from conditional normal distributions

as follows.

α |y,Ω(−) ∼ N(Vv,V)
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where under the FCE model,

V =

(
A′Σ−1

y A

σ2
res

+
I
τ2

)−1

v =
A′Σ−1

y (y − Xβ)

σ2
res

+
FFCEθ

τ2 .

FFCE and θ are replaced by FVCE and Θ in the formula for v under the VCE model.

A.3.4 Smoothing Spline Regression Coefficients

The individual tree penalized smoothing spline regression parameters (β) are sampled from the

same conditional posterior normal distribution under the FCE and VCE models as follows.

β |y,Ω(−) ∼ N(Vv,V)

where

V = ©­«
X′Σ−1

y X

σ2
res

+
S
σ2
β

ª®¬
−1

v =
X′Σ−1

y (y − Aα)

σ2
res

+
µβS

σ2
β

A.3.5 Autoregressive Error Process Parameters

The pure error standard deviation (σpe) and correlation coefficient (φ) parameters corresponding to

the first order autoregressive process (AR1) used for the individual tree residual errors are updated

using aMetropolis step applying normal proposal densities for each variable centered on the current

parameter value and proposal variance tuned to achieve an acceptance rate of approximately 44

percent. We propose a logit-transformed
(
g(x) = log

{ x−a
b−x

}
for x ∈ (a, b)

)
value for the pure error

standard deviation parameter such that it has support equal to the whole real line. The normal

proposal density for the correlation coefficient is truncated such that is has support -1 to 1. The log
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target density function used to update the AR1 parameters is as follows,

l
(
σpe, φ|y,Ω(−)

)
= −

tr .yrs
2

log
(
σ2

res

)
+

1
2
log|Σ−1

y |−

1
2σ2

res
(y − Aα − Xβ)′Σ−1

y (y − Aα − Xβ)+

log
(
σpe − a1

)
+ log

(
b1 − σpe

)
with the last two terms equal to the Jacobian correction applied to back transform the proposed

value for σpe.

A.3.6 Inter-annual Standard Deviation

The inter-annual standard deviation (τ) is updated using a Metropolis step with a normal proposal

density centered on the current value of τ and variance tuned to achieved an acceptance rate of

approximately 44 percent. We again propose a logit-transformed value for τ such that is has support

equal to the whole real line. The log target density function used to update τ in the FCE model is

as follows.

l
(
τ |y,Ω(−)

)
= −

std.yrs
2

log
(
τ2

)
−

1
2τ2 (α − FFCEθ)

′ (α − FFCEθ)+

log (τ − a2) + log (b2 − τ)

For the VCE model FFCE and θ are replaced with FVCE and Θ.

A.3.7 RandomWalk Process Error

The process error variance for the variable climate effects under the VCE model (Σθ) is given a

scaled inverse-Wishart prior. As such, its value is sampled by updating the scale parameters (ηs’s)

and correlation matrix (Σ(η)) separately. The scale parameters are updated using independent

Metropolis steps proposing logit-transformed values from a normal proposal density centered on

the current parameter value. We apply an adaptation step to achieve a target acceptance rate of
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44 percent (Roberts and Rosenthal, 2009). The log target density function used to update ηs for

s = 1, . . . , l is as follows,

l
(
ηs |y,Ω(−)

)
= −T log (ηs) −

1
2

[
1
η2

s
SS(θ)s,sΣ(η)−1

s,s

]
−

1
2


1
ηs

l∑
s′,s

(
1
ηs′

SS(θ)s,s′Σ(η)
−1
s,s′

) +
log (ηs − a3) + log (b3 − ηs)

where SS(θ) =
∑T

t=1 (θt − θt−1) (θt − θt−1)
′ and Zi, j = Z[i, j], the i, jth element of the matrix Z.

The correlation matrix (Σ(η)) is updated using a Gibbs step sampling directly from an inverse-

Wishart conditional posterior distribution as follows,

Σ(η)|y,Ω(−) ∼ Inv-Wish(ν∗,V∗)

where

ν∗ = ν + T

V∗ = V + Diag(η)−1SS(θ)Diag(η)−1

where the inverse-Wishart distribution is defined as in Gelman et al. (2014).

A.4 Penalized Spline Regression

Smoothing splines are a highly flexible method to model natural phenomena using a set of

polynomial basis functions (Wood, 2006). Alternatives to a smoothing spline include a negative

exponential regression model or a generalized additive model (Cook, 1987; Fajardo and Mcintire,

2012). We apply a penalized spline regression model instead of a smoothing spline as it achieves

equivalent smoothing with fewer model parameters (Wood, 2006). Unlike a smoothing spline in

which knots are defined for every observation, in a penalized spline regression model, a set of

knots less than or equal to the number of observations is specified and regression coefficients are

penalized such that the coefficient values for non-informative knots are forced to zero.
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We fit a penalized spline regression model using natural cubic regression splines. That is, we

estimate the value for βi that minimizes the following target function:

| |yi − Xiβi | |
2 + λ

∫ 1

0

[
f ′′(x)

]2 dx

where λ is the penalty term. As noted in Wood (2006),
∫ 1
0 [ f

′′(x)]2 dx can be rewritten as β′iSβi

where S is a matrix of known coefficients defined as a function of the selected knot values for tree

i. The target function is then given by

| |yi − Xiβi | |
2 + λβ′iSβi .

Note that S is not full column rank, rather its rank is equal to the total number of knots defined

minus two given that the second derivatives of the boundary knots are equal to zero for natural

cubic splines. Assuming yi |Ω ∼ N(•) and placing a normal prior on βi, we seek a hyperprior

covariance matrix for βi such that the kernel of the conditional posterior distribution has the form

of the above target function. This is achieved by assigning βi ∼ N(0, σ2
β
S−1). Although S is not

invertible, i.e. the prior placed on βi is improper, we obtain a valid posterior distribution.

The value ofσ2
β
serves as a tuning parameter controlling the level of smoothing. We determined

an optimal value of 250 forσ2
β
based on a gridded searchmatching as closely as possible the residuals

from a classic dendrochronology smoothing spline. Specifically, we fit 50 percent frequency

response smoothing splines to each individual tree growth record using the dplR package for R

(Bunn, 2008). We then calculated the correlation and spectral coherence between the smoothing

spline and penalized spline regression residuals for each tree varying σ2
β
across a range of values.

We selected the value of σ2
β
that maximized the mean correlation and mean coherence across all

sample trees.

A.5 Bayesian Lasso

The Bayesian Lasso (short for: least absolute shrinkage and selection operator) is applied

within the stand effects sub-model of the FCE model using the Gibbs sampling approach presented

in Park and Casella (2008) to identify the most important climate variables from a set of 28
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potential climate covariates. The set of climate variables identified was then used in both the FCE

and VCE models. Implementation of the Bayesian Lasso requires alternative priors for the climate

coefficients (θ) and cannot be applied within the VCE model framework since climate coefficients

vary over time through a first order random walk initialized by specifying a prior for θ0. We note

variable selection would not be necessary if the Bayesian Lasso could be implemented within the

VCE model. In this case, the Bayesian Lasso would appropriately shrink the coefficient values of

unimportant climate covariates to zero in both models. This would allow us to compare whether

the same set of climate variables are important under the FCE model versus VCE model. Given

the Bayesian Lasso is not applicable to the VCE model, we apply it to the FCE model, select the

most important climate variables, then use this reduced set of variables in both the FCE and VCE

models throughout the analysis.

Although the Bayesian Lasso can accommodate collinear variables, pairs of variables that are

highly correlated may still lead to erroneous coefficient values (Hooten and Hobbs, 2015). The

climatic water deficit is a linear function of potential and actual evapotranspiration (DEF = PET

- AET). This results in a singular design matrix (F) if all three variables (DEF, PET, AET) are

included in the model. Thus, we apply the Bayesian Lasso twice: once using all climate variables

except PET seasonal aggregations; and, once using all climate variables except AET seasonal

aggregations. In both cases, seasonal aggregations of climatic water deficit and mean annual snow

pack are identified as the most important variables (Figure A.2).

A.6 Variance Partitioning

Posterior variance estimates for the FCE and VCE models are provided in Table A.1. Notably,

the first-order autocorrelation coefficient under both models was roughly 0.37 indicating that tree

ring records were moderately autocorrelated even after detrending. The individual-tree variance

was approximately 0.29 under both models, while the inter-annual variance (capturing stand-level

variability) was approximately 0.05 under the FCE model, and 0.04 under the VCE model, all on

the log scale. The individual-tree growth variance was roughly six times the stand-level growth
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Figure A.2: Results of application of the Bayesian Lasso to full set of climate variables excluding
seasonal aggregations of actual evapotranspiration (AET). Results are similar when seasonal ag-
gregations of AET are included and seasonal aggregations of potential evapotranspiration (PET)
are excluded. Points represent the posterior median coefficient value for each climate variable with
95 percent credible intervals (CIs) indicated with solid lines. A dashed line corresponding to a
coefficient value of zero is provided for reference. Points and lines are color coded according to
whether 95 percent CIs overlap zero: green - the lower bound of the 95 percent CI is greater than
zero, red - the upper bound of the 95 percent CI is less than zero, grey - the 95 percent CI includes
zero.

variance on the log scale under both the FCE andVCEmodels. The large tree-level variance relative

to stand-level variance in both the FCE and VCE models is consistent with previous analyses using

the same dataset (Foster et al., 2016).
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Table A.1: Posterior distribution summary for model variance terms. Posterior mean values are
provided with 95 percent credible intervals in parentheses. FCE = fixed climate effects model, VCE

= variable climate effects model. Note, σ2
y =

σ2
pe

1−φ2 .

Parameter FCE VCE
φ 0.369 (0.362, 0.376) 0.369 (0.362, 0.376)

σ2
pe 0.248 (0.246, 0.250) 0.247 (0.245, 0.249)

σ2
y 0.287 (0.283, 0.290) 0.286 (0.283, 0.290)

τ2 0.050 (0.047, 0.054) 0.042 (0.039, 0.045)

129



APPENDIX B

BOREAL TREE GROWTH EXHIBITS DECADAL-SCALE ECOSYSTEMMEMORY TO
DROUGHT AND INSECT DEFOLIATION, BUT NO NEGATIVE RESPONSE TO

THEIR INTERACTION

B.1 Model Specification

B.1.1 Tree-Level Submodel

A single linear term for tree diameter in the previous year was sufficient to control for tree size

in the eastern region. Tree growth in the western region, however, differed by species (trembling

aspen versus white spruce) and showed evidence of following a sigmoid growth function with

respect to diameter. As such, the tree-level submodel in the West included species-specific linear

and quadratic terms for tree diameter in the year previous to growth (xi jhs(t)β in the tree-level

submodel→ xi jhs(t)β
(h)
1 + xi jhs(t)2β

(h)
2 where h distinguishes trembling aspen [host] from white

spruce [non-host]).

B.1.2 Antecedent Weights

Climatic Water Deficit

Penalized regression splines were used to estimate antecedent weights for past climatic water deficit

(Section 3.3.3). We used cubic spline functions defined for k = 10 equally-spaced knots between 0

and L = 10 years in the past calculated using the mgcv package in R (Wood, 2006; R Core Team,

2016). Spline basis functions include an identifiability constraint allowing for the estimation of an

intercept (see Wood, 2006). This constraint results in one fewer spline basis function than there are

knots (p = k − 1). Selection of a smoothing parameter to penalize the regression coefficients for

individual splines is described in Section B.2.
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Insect Defoliation

We applied a spherical decay function to estimate antecedent weights for past insect defoliation

events. Specifically,

g(x; φ) =


1 −

(
3
2

) (
x
φ

)
+

(
1
2

) (
x
φ

)3
0 < x ≤ φ

0 x > φ
,

where x is the number of years since a defoliation event and φ is the estimated range parameter. A

spherical decay function was selected given it achieves a value of zero within a finite interval of

time (i.e., x > φ).

B.2 Bayesian Model Implementation

We assigned normal priors for all regression coefficients within the tree and stand submodels.

Specifically, each of the following regionally-specific tree-level parameters (β [East], β(H)1 [West],

β
(NH)
1 [West], β(H)2 [West], β(NH)2 [West]) and stand-level parameters (γ0, γ

(H)
1 , γ(NH)1 , γ(L)2 , γ(S)2 ,

γ
(L-H)
3 , γ(L-NH)3 , γ(S-H)3 , γ(S-NH)3 ) where “H” indicates host trees, “NH” indicates non-host trees,

“L” indicates large-diameter trees, and “S” indicates small-diameter trees, were assigned a N(0, σ2
0 )

prior. σ2
0 is fixed at a large value (1 × 105) defining a diffuse normal prior. The cubic spline

basis function coefficients used to model antecedent climatic water deficit weights were assigned

a multivariate normal prior η ∼ Nk (0, σ2
ηS−1). Here, S is a k × k matrix of known coefficients

defined as a function of the selected knot values (Wood, 2006). The scalar variance (σ2
η ) acts as

a smoothing parameter controlling the smoothness of the estimated antecedent weight function.

We assigned σ2
η a value of 0.1 in the current analysis based on a series of experimental model

runs. The decay parameter for the antecedent defoliation spherical decay function was assigned

a uniform prior distribution φ ∼ Unif(aφ, bφ) where aφ = 1/15 and bφ = 1. Finally, the tree- and

stand-level standard deviation parameters were assigned identical diffuse uniform prior distributions

σy ∼ Unif(aσ, bσ) and σα ∼ Unif(aσ, bσ) where aσ = 1 × 10−4 and bσ = 100.

Combining the likelihood for observed radial growth increments and latent time-varying stand

effects with the above priors, the joint posterior distribution for the combined tree and stand
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submodels is proportional to (using notation similar to Gelman et al., 2014)

T∏
t=1

N(t)∏
j=1

2∏
h=1

2∏
s=1

njhs(t)∏
i=1

N(log(yi jhs(t))|α jhs(t), β, σ
2
y )×

T∏
t=1

N(t)∏
j=1

2∏
h=1

2∏
s=1

N(α jhs(t)|γ, η, φ, σ
2
α)×

N(β |σ2
0 ) × N(γ0 |σ

2
0 ) ×

2∏
h=1

N(γ(h)1 |σ
2
0 ) ×

2∏
s=1

N(γ(s)2 |σ
2
0 ) ×

2∏
h=1

2∏
s=1

N(γ(hs)
3 |σ2

0 )×

Nk (η |σ
2
η , S) × Unif(φ|aφ, bφ) × Unif(σy |aσ, bσ) × Unif(σα |aσ, bσ),

(B.1)

where T is the total number of years in the study period, N(t) is the number of study stands

for data exist in year t, n jhs(t) is the number of trees in stand j of species class h (host/non-host)

and diameter class s (large/small) for which radial growth increment observations exist in year

t, and γ ≡ (γ0, γ
(H)
1 , γ

(NH)
1 , γ

(L)
2 , γ

(S)
2 , γ

(L-H)
3 , γ

(L-NH)
3 , γ

(S-H)
3 , γ

(S-NH)
3 )′. All other values are as

previously defined. Note, for the western study region the single β is replaced with species-class

specific linear and quadratic coefficients (see β(H)1 , β(NH)1 , β(H)2 , β(NH)2 above).

We used a Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC) algorithm (Robert

and Casella, 2004) to sample from the posterior distribution in (B.1) written in R (R Core Team,

2016). For each study region, three chains were run for a total of 5,000 iterations following a 5,000

sample burn-in period. Convergence was assessed visually and using Gelman-Rubin statistics.
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B.3 Supplementary Results

Table B.1: Posterior summary of tree size effect coefficients and tree- and stand-level variances
for the East and West study regions. Posterior median values are reported along with 95 percent
credible intervals in parentheses. Note a single linear term is used to control for tree size in the
East, whereas host/non-host specific linear and quadratic terms are used in the West.

Parameter Description East West
Stand Effect Coefficients

γ0 Intercept -0.561 (-0.637, -0.483) -0.093 (-0.139, -0.048)
Tree Size Effects

β All Trees Linear 0.087 (0.083, 0.091) NA
β
(H)
1 Host Tree Linear NA 0.189 (0.185, 0.194)

β
(NH)
1 Non-Host Tree Linear NA 0.12 (0.115, 0.126)
β
(H)
2 Host Tree Quadratic NA -0.005 (-0.005, -0.005)

β
(NH)
2 Non-Host Tree Quadratic NA -0.003 (-0.003, -0.002)

Variance
σ2
y Tree-Level 0.324 (0.317, 0.331) 0.25 (0.247, 0.254)

σ2
α Stand-Level 0.236 (0.213, 0.262) 0.35 (0.333, 0.367)
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Modeled Climatic Water Deficit

Posterior Mean Antecedent Value

95% Credible Interval

Figure B.1: Antecedent climatic water deficit values for the 14 eastern (Quebec) study stands over the study period (1968-1998) estimated
by applying posterior samples of antecedent weights to modeled climatic water deficit.
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Modeled Climatic Water Deficit

Posterior Mean Antecedent Value

95% Credible Interval

Figure B.2: Antecedent climatic water deficit values for the 34 western (Alberta) study stands over the study period (1968-2010) estimated
by applying posterior samples of antecedent weights to modeled climatic water deficit.
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Observed Defoliation Event

Posterior Mean Antecedent Value

95% Credible Interval

Figure B.3: Antecedent defoliation values for the 14 eastern (Quebec) study stands over the study period (1968-1998) estimated by
applying a spherical decay function using posterior samples of the decay parameter (φ) to observed defoliation events.
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Observed Defoliation Event

Posterior Mean Antecedent Value

95% Credible Interval

Figure B.4: Antecedent defoliation values for the 34 western (Alberta) study stands over the study period (1968-2010) estimated by
applying a spherical decay function using posterior samples of the decay parameter (φ) to observed defoliation events.
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APPENDIX C

ASSIMILATION OF TREE-RING AND FOREST INVENTORY DATA TOMODEL
INTERACTIONS BETWEEN CLIMATE AND FOREST DYNAMICS
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C.1 Supplementary Results
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Forest inventory observations

Unconstrained FVS

Figure C.1: Posterior summary of stand-scale variables including trees per acre (A), basal area
per acre (B), and quadratic mean diameter (C) relative to forest census observations relative to
an unconstrained run of the Lake States Variant of the USDA Forest Service Forest Vegetation
Simulator (FVS) growth and yield model for a red pine plantation started from bare ground.
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C.2 Bayesian State Space Model Implementation

The assumption of normally-distributed observation errors (vt) induces a normal likelihood

function for the data (y1:T where “1 : T” indicates all time points between 1 and T). We assigned

a normal prior for the initial state vector θ with mean m0 and covariance matrix C0. Consistent

with the initialization of state space frameworks we set the prior mean m0 equal to a rough

estimate of the mean tree diameter at breast height (DBH) and tree density at the start of the

study period (approximated through linear and spline-based interpolation). The prior covariance

matrix has a diagonal structure with large variance values along the diagonal (1E+05) reflecting low

confidence in the prior mean state values. The assumption of normally-distributed process errors

(wt) induces a normal likelihood for all state vectors following the initial time point (θ1:T ). All

scalar variance parameters (σ2
dtr

,σ2
dfc

,σ2
nfc ,τ

2
D,τ

2
N ) were assigned inverse gamma prior distributions.

Process and observation variance parameters for DBH and tree density are difficult to identify

given similar likelihoods for the data and latent state variables combined with a large amount of

missing observations (unconstrained state estimates) without the use of informed prior distributions.

Moment matching was used to select shape and scale hyperparameters for each variance term

based on prior mean values consistent with previous analyses using tree-ring and diameter-tape

measurements and shape values reflecting the amount of weight to place on observations (Clark

et al., 2007). The shape and scale hyperparameter values for observation and process variances are

presented in Table C.1.

Table C.1: Shape (ax) and scale (bx) hyperparameter values for inverse gamma prior distributions
for each observation and process variance parameter (x indicates the variable: dtr, dfc, nfc, D, N).

Variance
ax bxParameter

σ2
dtr

5 · `dtr 0.10(adtr − 1)
σ2

dfc
5 · `dfc 0.39(adfc − 1)

σ2
nfc 10 · `fc 50(anfc − 1)
τ2

D /̀500 5(aD − 1)
τ2

N T 10(aN − 1)

140



Combining the data and latent state vector likelihood functions with the prior distributions for

the initial state vector and variance parameters, the joint posterior distribution for the state space

model is proportional to (using notation similar to Gelman et al., 2014)

T∏
t=1

N(yt |Atθt,Vt) ×
T∏

t=1
N(θt | f (θt−1 |Ω),W)×

N(θ0 |m0,C0) × InvGamma(σ2
dtr |adtr, bdtr) × InvGamma(σ2

dfc
|adfc, bdfc)×

InvGamma(σ2
nfc |anfc, bnfc) × InvGamma(τ2

D |aD, bD)×

InvGamma(τ2
N |aN, bN ),

(C.1)

where Vt and W are observation and process block-diagonal covariance matrices, respectively,

defined as

Vt =


σ2

dtr
I`dtr (t)

σ2
dfc

I`dfc (t)

σ2
dtr


,

and

W =


τ2

DI`

τ2
N

 ,
where Ip is an identity matrix of dimension p and `·(t) is the number of diameter estimates based

on tree-rings, diameter-tape measurements, or tree density estimates in year t.

We used aMetropolis-within-GibbsMarkov chainMonte Carlo (MCMC) algorithm (Robert and

Casella, 2004) to sample from the posterior distribution in (C.1) written in R (R Core Team, 2016).

Details on the sampling algorithm are provided in Section C.3. For each red pine experimental

stand, three chains were run for a total of 500,000 iterations following a 50,000 sample burn-in

period. Convergence was assessed visually and using Gelman-Rubin statistics.

C.3 Sampling Algorithm

Parameter values were updated within the MCMC sampler applying a Gibbs step based on

the conditional posterior distribution for a parameter wherever conjugate priors were a used
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(θT, σ
2
dtr
, σ2

dfc
, σ2

nfc, τ
2
D, τ

2
N ). All other parameter values (θ0:T−1) were updated with Metropo-

lis steps applying a normal proposal density for each parameter centered on its current value and

proposal variance tuned to achieve an acceptance rate of approximately 23 percent. We present full

conditional distributions where they exist and target log-likelihood functions (L) for all remaining

parameters below. We use “|·” to denote conditional on the data and all model parameters not

including the parameter being updated.

Update state values:

θt |·



L ∝ −(θ0 −m0)
ᵀC−1

0 (θ0 −m0) − (θ1 − f (θ0 |Ω))
ᵀW−1(θ1 − f (θ0 |Ω)) t = 0

L ∝ (θt − Ss)ᵀS−1(θt − Ss) − (θt+1 − f (θt |Ω))
ᵀW−1(θt+1 − f (θt |Ω)) 1 6 t < T

θT |· ∼ N(Ss, S) t = T

where,

S = (Aᵀt V−1
t At +W−1)−1

s = Aᵀt V−1
t yt +W−1 f (θt−1 |Ω)

Update variance parameters:

All variance parameters have inverse gamma conditional posterior distributions given normal

likelihood functions and inverse gamma priors. Conditional posterior shape (a∗) and scale (b∗)

parameter values are provided for each variance parameter below. Note H(x)t indicates an incidence

matrix selecting observations and state values corresponding to variable x in year t. Further, fc

denotes an `fc-dimensional vector containing forest census years; fc(i) indexes the ith census year.
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σ2
dtr
|·

a∗ = adtr +
`dtr
2

b∗ = bdtr +
1
2

T∑
t=1
(H(dtr)t (yt − Atθt))

ᵀ(H(dtr)t (yt − Atθt))

σ2
dfc
|·

a∗ = adfc +
`dfc
2

b∗ = bdfc +
1
2

fc(`fc)∑
t=fc(1)

(H(dfc)t (yt − Atθt))
ᵀ(H(dfc)t (yt − Atθt))

σ2
nfc |·

a∗ = anfc +
`fc
2

b∗ = bnfc +
1
2

fc(`fc)∑
t=fc(1)

(H(nfc)t (yt − Atθt))
ᵀ(H(nfc)t (yt − Atθt))

τ2
D |·

a∗ = aD +
`

2

b∗ = bD +
1
2

T∑
t=1
(H(D)t (θt − f (θt−1 |Ω)))

ᵀ(H(D)t (θt − f (θt−1 |Ω)))

τ2
N |·

a∗ = aD +
T
2

b∗ = bD +
1
2

T∑
t=1
(H(N)t (θt − f (θt−1 |Ω)))

ᵀ(H(N)t (θt − f (θt−1 |Ω)))
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APPENDIX D

A MODEL-BASED APPROACH TOWILDLAND FIRE RECONSTRUCTION USING
SEDIMENT CHARCOAL RECORDS

D.1 Probability of Fire Identification

The probability of fire for a given sample interval τj,i as defined in (5.4) can be expressed as

e
β
( f )
0, j +x(τj,i)

′β
( f )
j

e
β
( f )
0, j +x(τj,i)′β

( f )
j + e

β
(b)
0, j+x(τj,i)′β

(b)
j

which can be simplified to
1

1 + e
−

(
β∗0, j+x(τj,i)′β

∗
j

)
where β∗0, j = β

( f )
0, j − β

(b)
0, j and β∗j = β

( f )
j − β

(b)
j , thereby proving the identifiability of the probability

of fire Pj(τj,i). The simplified probability of fire is equivalent to the mean response of a logistic

regression model fit using a binary variable indicating the occurrence of a local fire within a given

sample interval. Specifically, we can express the odds of a local fire in a given sample interval as

λ j, f (τj,i)

λ j,b(τj,i)
=

e
β
( f )
0, j +x(τj,i)

′β
( f )
j

e
β
(b)
0, j+x(τj,i)′β

(b)
j

such that the log-odds are given by: β∗0, j +x(τj,i)
′β∗j . Thus, there is a direct connection between the

mean probability of fire function defined using Poisson count data in (5.4) and a logistic regression

model used to estimate the probability of fire using Bernoulli observations of fire occurrence/non-

occurrence.
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D.2 Supplementary Figures

Figure D.1: Uncertainty in local fire identification for Chopper Lake based on the univariate
point process model. Upper panel presents the coefficient of variation (CV) for the mean fire
return interval as a function of the probability of fire threshold. The probability of fire threshold
corresponding to the minimum CV is selected as the optimal threshold value. Lower panel presents
the proportion of posterior samples (1,000 samples, post burn-in) which identify a local fire in year
t applying the optimal probability of fire threshold. The number of fires refers to the posterior
median number of local fires identified over the length of the sediment charcoal record (the 95
percent credible interval is provided in parentheses).
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Figure D.2: Uncertainty in local fire identification for Screaming Lynx Lake based on the univariate
point process model. Upper panel presents the coefficient of variation (CV) for the mean fire
return interval as a function of the probability of fire threshold. The probability of fire threshold
corresponding to the minimum CV is selected as the optimal threshold value. Lower panel presents
the proportion of posterior samples (1,000 samples, post burn-in) which identify a local fire in year
t applying the optimal probability of fire threshold. The number of fires refers to the posterior
median number of local fires identified over the length of the sediment charcoal record (the 95
percent credible interval is provided in parentheses).
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Figure D.3: Univariate model results for lakes in Yukon Flats network. Upper panel indicates observed charcoal counts along with the
posterior mean charcoal count (blue line). Middle panel illustrates posterior mean foreground (orange line) and background (black line)
intensities. Lower panel plots posterior mean probability of fire estimates for each observed time interval (black line) along with the
upper and lower bounds of the 95 percent credible interval (gray shading) and the optimal threshold (red line).
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Figure D.3 (cont’d)
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Figure D.3 (cont’d)
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Figure D.4: Multivariate model results for lakes in Yukon Flats network. Upper panel indicates observed charcoal counts along with
the posterior mean charcoal count (blue line). Middle panel illustrates posterior mean foreground (orange line) and background (black
line) intensities. Lower panel plots posterior mean probability of fire estimates for each observed time interval (black line) along with
the upper and lower bounds of the 95 percent credible interval (gray shading) and the optimal threshold (red line).
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Figure D.4 (cont’d)
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Figure D.4 (cont’d)
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