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ABSTRACT 

MAIZE PRODUCTION IN ZAMBIA AND REGIONAL MARKETING:   
INPUT PRODUCTIVITY AND OUTPUT PRICE TRANSMISSION 

By 

William J. Burke 

Chapter 1 is an analysis of the determinants of maize yield response to fertilizer 

applications using longitudinal data collected in 2004 and 2008 from 7,127 smallholder maize 

fields.  The Instrumented Pooled Correlated Random Effects estimator is employed to control for 

several statistical considerations often overlooked in the social science literature on smallholder 

production.  The model is specified such that response rates to fertilizer application are 

conditional on certain farmer practices and the agro-ecological conditions under which maize is 

grown.   

Findings indicate top dressing is more effective than basal fertilizer on Zambian soils 

with average response rates of 4.3 kg/kg and 3.0 kg/kg respectively.  This however masks a wide 

range of variability in fertilizer’s effectiveness.  Top dressing response rates, for example, can be 

nearly 50% lower on coarse, sandy soils and on plowed fields where the majority of the topsoil is 

disturbed.  Basal fertilizer is vulnerable to nutrient “lockup” in the acidic soils that prevail 

throughout Zambia.  Average marginal yield response to basal fertilizer is just 2.1 kg/kg on the 

highly acidic soils where 51% of our sample fields are located.  On semi-neutral soils, response 

rates can more than triple up to 7.6 kg/kg on average.  Unfortunately, only 2% of our sample 

(and a similar proportion of all Zambian maize fields) are in areas where semi-neutral soils 

prevail.   
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Given transportation costs and average products, this study demonstrates that fertilizer 

use is unprofitable for most Zambian farmers at commercial prices, which has important 

implications for the long-run viability of subsidy programs.  Specifically, if fertilizer is 

unprofitable for farmers commercially, there is no possibility for a successful “phase out” of a 

subsidy program after which farmers would continue to use commercial fertilizer.   

Chapter 2 addresses issues pertaining to marketing and trade policies.  Expensive 

interventionist grain marketing and trade policies in many Southern African countries are 

frequently born from uncertainty regarding potential private sector performance.  These policies 

have limited the activity of the private sector, which perpetuates the uncertainty over its potential 

performance.  Indeed, many studies conclude that grain markets in Southern Africa are not 

integrated with each other and other world markets at least partially due to government policies 

and the transfer costs they impose. 

This study employs the price transmission model introduced by Myers and Jayne 

(forthcoming) using data from various sources to determine whether long-run spatial price 

equilibriums exist, and to measure the speed at which price shocks are transmitted.  The key 

innovation in this research is the focus on markets that are connected through informal trade 

across international borders, specifically focusing on a pair of markets in Zambia and The 

Democratic Republic of Congo and a pair of markets in Malawi and Mozambique. 

In short, this study shows that when we examine the price relationship between markets 

that are relatively unimpeded by interventionist trade policies and when we control, to the extent 

possible, for transfer costs, markets in the Southern Africa region will likely perform in 

accordance with economic theory; a long-run price equilibrium will exist, arbitrage will 

apparently be carried out competitively, and price transmission is going to be fairly rapid.
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INTRODUCTION 

Indicators such as the food crisis of 2008, the ongoing famine in parts of the developing 

world and the stubbornly persistent poverty rates of the past several decades all suggest that a 

deep chasm still exists between the status quo and a world without hunger.  According to the 

United Nations, the world has seen moderate progress towards accomplishing the first 

Millennium Development Goal’s target of halving the proportion of undernourished people in 

developing regions (reducing from 20% to 16% from 1990/92 to 2005/07), but this success has 

been outpaced by population growth.  In fact, there are more undernourished people alive today 

than there were in 1990. 

Particularly in Africa, current population trends coupled with dismal agricultural 

productivity growth clearly demonstrate the urgent need to better understand the vast array of 

hindrances to achieving food security.  Africa is arguably a potential breadbasket for the world, 

yet thus far most countries on the continent struggle to produce enough to feed themselves.  The 

massive amount of food imported by countries in Africa every year in turn affects the availability 

of food in other countries (developing or otherwise) across the globe.  Informing African food 

and agricultural policy discussions is therefore a key component of achieving the Millennium 

Development Goal to end hunger and poverty. 

Throughout Africa, food and agricultural policy discussions invariably revolve around 

two clearly linked issues: low productivity and poor market access for small farmers.  These 

represent two fronts of the same war on poverty and solving one of these problems will 

ultimately be of little use without solving the other.  Land is increasingly in short supply, which 

means land productivity increases and agricultural intensification is the only long-term strategy 
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to avoid a grim Malthusian scenario.  Without improved market access, though, productivity 

gains will do nothing more than maintain the subsistence level of poverty that prevails in the 

developing world.  In turn, without productivity gains and production surpluses, there is not 

much to be gained from improved market access.  The following chapters of this dissertation 

address specific aspects of productivity and market access individually, respectively focusing on 

Zambia and the Southern African region more generally. 

Chapter 1 is an analysis of the determinants of maize yield response to fertilizer 

applications using longitudinal data collected in 2004 and 2008 from 7,262 smallholder maize 

fields.  The Instrumented Pooled Correlated Random Effects estimator is employed to control for 

several statistical considerations often overlooked in the social science literature on smallholder 

production.  The model is specified such that response rates to fertilizer application are 

conditional on certain farmer practices and the agro-ecological conditions under which maize is 

grown.   

Findings indicate top dressing is more effective than basal fertilizer on Zambian soils 

with average response rates of 4.2 kg/kg and 3.0 kg/kg respectively.  This however masks a wide 

range of variability in fertilizer’s effectiveness.  Top dressing response rates, for example, can be 

nearly 50% lower on coarse, sandy soils and on plowed fields where the majority of the topsoil is 

disturbed.   

Soil acidity is a substantial limiting factor in Zambian maize production, both from the 

direct impact it has on maize plants and the impact it has on basal fertilizer’s effectiveness.  

Basal fertilizer is vulnerable to nutrient “lockup” in the acidic soils that prevail throughout 

Zambia.  Lockup is the process whereby phosphorus intended for the plant is converted into iron 
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and aluminum phosphates that are unavailable for plant consumption.  Average marginal yield 

response to basal fertilizer is just 2.2 kg/kg on the highly acidic soils where 51% of our sample 

fields are located.  On semi-neutral soils, response rates can more than triple up to 7.9 kg/kg on 

average.  Unfortunately, only 2% of our sample (and a similar proportion of all Zambian maize 

fields) are in areas where semi-neutral soils prevail.  On the vast majority of Zambian maize 

fields basal fertilizer is generally ineffective. 

Given transportation costs and average products, this study demonstrates that fertilizer 

use is unprofitable for most Zambian farmers at commercial prices.  In fact, fertilizer, if it is the 

only input under consideration, is only profitable for most households when it can be purchased 

(and maize can be sold) at subsidized prices.  This finding has important implications for the 

long-run viability of subsidy programs.  Specifically, if fertilizer is unprofitable for farmers 

commercially, there is no possibility for a successful “phase out” of a subsidy program after 

which farmers would continue to use commercial fertilizer.   

This calls for a shift in the design of agricultural productivity policies and rural poverty 

reduction programs, away from fertilizer subsidies as the cornerstone and towards developing a 

more integrated program.  This may include fertilizer subsidies along with other inputs and 

agronomic practices, but must allow for sustainable and profitable crop intensification, even after 

the subsidies are withdrawn.  Some possible alternatives are discussed in this study, such as 

distributing and demonstrating the acidity mitigating effects of lime or tailoring application 

methods to acidic soil.  The key implication, however, is that research and extension need to be 

given higher priority in the agricultural policy portfolio. 
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Chapter 2 addresses issues pertaining to marketing and trade policies.  Expensive 

interventionist grain marketing and trade policies in many Southern African countries are 

frequently born from uncertainty regarding potential private sector performance.  These policies, 

including export bans, subsidized imports and license restrictions, have limited private sector 

activity, which perpetuates the uncertainty over its potential performance.  Indeed, many studies 

conclude that grain markets in Southern Africa are not integrated with each other and other 

world markets at least partially due to government policies and the transfer costs they impose. 

Chapter 2 is an analysis of maize grain price transmission between markets in Southern 

Africa that trade maize informally.  Informal trade is unlicensed, untaxed and characterized by a 

large number of small scale traders (as few as 1-2 bags of maize at a time) who collectively 

move substantially more grain throughout the region than is traded through formal channels.  

The fact that these transactions are difficult to regulate suggests the relationship between 

informal import and export markets can provide new insights into how international markets 

within the region might perform in the absence of interventionist policies. 

A Threshold Autoregressive Single Equation Error Correction Model is employed using 

data from various NGO and government sources to determine whether, and under what 

conditions, long-run spatial price equilibrium exists, and to measure the speed at which price 

shocks are transmitted between surplus and deficit markets.  The key innovation in this research 

is the focus on markets that are connected through informal trade across international borders.  In 

addition to focusing on these markets, the study also allows the economic relationships to 

potentially differ across multiple regimes according to the varying level of informal trade.  The 

study analyzes price transmission between a pair of markets in Zambia and The Democratic 

Republic of Congo (DRC) as well as a pair of markets in Malawi and Mozambique. 
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In both cases, statistical selection criteria favor the single-regime, no threshold model for 

price transmission. This could partially be explained by the fact that trade between the markets in 

both of our models is effectively continuous (which rules out the most likely threshold value of 

no trade).  However, this could also be an empirical issue related to the sample size (which is 

fairly small with 60-72 observations, depending on the market pair).  Therefore, one conclusion 

of the study is that the research should be revisited after more data has become available. 

Results from single-regime model estimation provide evidence of long-run spatial price 

equilibrium in both market pairings.  In both cases the coefficient estimate for the long-run 

equilibrium suggests competitive arbitrage links the informally trading markets.  That is, price 

ratio estimates are not significantly different than one after controlling for transfer costs.  The 

rate of price transmission was also similar in the two models estimated.  The traditional half-life 

measurement of a transfer is estimated to be roughly 2.7 months between the Zambia and DRC 

markets or 2.5 months between the Mozambique and Malawi markets.  Both of these represent 

fairly rapid price transmission relative to results from other studies.  Through simulation analysis 

the study demonstrates that one month after a shock to equilibrium is introduced, 67% (77%) of 

the total value of the shock will have transferred from Zambia to DRC (Mozambique to Malawi). 

In short, this study shows that when we examine the price relationship between markets 

that are relatively unimpeded by interventionist trade policies and when we control, to the extent 

possible, for transfer costs, markets in the Southern Africa region will likely perform in 

accordance with economic theory; a long-run price equilibrium will exist, arbitrage will 

apparently be carried out competitively, and price transmission is going to be fairly rapid.



CHAPTER 1: Determinants of Maize Yield Response to Fertilizer Application in Zambia:  

Implications for Strategies to Promote Smallholder Productivity  

1.1 INTRODUCTION  

Limited agricultural productivity is an immediate and overwhelmingly important 

challenge to food security and long-run poverty alleviation in Africa.  Despite several decades of 

targeted policies, productivity amongst rural African farmers has stagnated at levels far below 

world averages and too low to support transformative economic growth (Poulton et al, 2006; 

FAOSTAT, 2003).  In policy circles this is often attributed to low adoption of productivity 

enhancing technologies.   

Although a wide array of productivity-improving inputs and technologies exist, policies 

often focus heavily on promoting the adoption of fertilizer, for which application rates in Africa 

stand at just 10-30% of those in Asia, Europe and the Americas (FAOSTAT, 2008).  In recent 

years this has fueled debate and a resurgence of fertilizer subsidy programs in numerous 

countries including Malawi, Zambia, Senegal, Mali and Kenya, among others.  These policies 

are motivated by the notion that such support, designed to compensate farmers for the marketing 

and resource constraints, could initiate a virtuous cycle of technology adoption, productivity 

growth and poverty alleviation (Crawford, Kelley and Ricker-Gilbert, 2011; Chibwana et al, 

2010; Dorward et al, 2008; Xu et al, 2009a).   

It is possible, however, that limited yield response rates and relative prices render 

fertilizer use unprofitable, which could explain low levels of adoption and question whether 

fertilizer use alone can sufficiently increase productivity.  A few recent studies have 
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demonstrated that the profitability of adoption can differ significantly between households and 

fields even in the same local areas with roughly similar agro-ecological conditions (Waithaka et 

al., 2007; Xu et al, 2009b; Marenya and Barrett, 2010, Matsumoto and Yamano, 2010).  In a 

study of hybrid maize seed adoption in Kenya, Suri (2011) demonstrates how variable seed 

productivity and input transaction costs explain farmer behavior.  Specifically, the study 

highlights that adoption and non-adoption are actually the result of rational decision making after 

accounting for heterogeneous costs and benefits.  The same may be true of fertilizer in Zambia. 

The productivity of inputs can depend on farm management, which the farmer can 

control, but also factors such as weather and soil characteristics, which may be perceived as 

exogenous and unchangeable.  If yield response to fertilizer is unprofitable at the field level, then 

marketing and resource constraints are secondary fertilizer’s agronomic limitations, which will 

have important policy implications.  Specifically, it would be appropriate to consider fertilizer as 

part of a broader framework of input strategies available to promote productivity.   

For economists to better understand adoption behavior and input profitability, and for 

policy makers to better design agricultural policies to promote productivity growth, we must 

better understand the agronomics of the smallholder farmer’s yield function.  Modeling yield 

functions has been problematic in the social science literature, because estimating yield functions 

using household data (as social scientists tend to do, rather than using field test data as in 

agronomic literature) presents numerous challenges including uncertain model specification, 

structural endogeneity of input decisions
1
, omitted variables and unobserved heterogeneity.  

                                                 
1
“Structural endogeneity” is used here in reference to the endogeneity of chosen inputs that 

stems from the fact that the yield function itself is part of the structural model from which input 
demand is derived (the production constraint), as opposed to any endogeneity bias which would 
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Failing to adequately account for these problems may lead to biased results that could ill-inform 

farmers and policy makers.  

The objective of this study is to identify the determinants of variable yield response to 

fertilizer application and evaluate their impact on the profitability of fertilizer use.  We will use 

longitudinal data from 7,262 fields farmed by smallholder Zambian maize producers interviewed 

in 2004 and 2008, as well as location specific data on weather and soil characteristics.  In doing 

so we will address a number of agronomic and statistical considerations that have been 

underappreciated in economic research of household fertilizer use and we will demonstrate a 

method that can be used in future analyses to address these issues.  This study will inform policy 

makers’ efforts to promote farmer productivity and demonstrate a method for estimating yield 

determinants that will guide future research on similar subjects.   

We will demonstrate that failure to control for endogeneity and unobserved heterogeneity 

leads to biased estimates of the average partial effect of fertilizer use in the case of Zambian 

smallholder maize yields.  Furthermore, we will demonstrate that ecological conditions such as 

soil type and acidity can cause considerable variation in response rates to top dressing and basal 

fertilizer applications.  We demonstrate that soil acidity in particular has dramatically decreased 

the yield response and profitability of fertilizer use in many parts of Zambia.  This has important 

implications for the design and implementation of input support programs and budget allocations 

in Zambia and perhaps other food insecure countries.  More importantly, it suggests that yields 

could be dramatically improved through a diversified input strategy and investment in agronomic 

research and extension. 

                                                                                                                                                             
stem from correlation between the observed determinants and omitted variables included in the 
error term.  
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Section 1.2 briefly discusses the background information regarding fertilizer use in 

Zambia and the data we will use.  Section 1.3 will present our conceptual framework for 

modeling yield determinants and the agronomic principles guiding our model.  Section 1.4 

discusses the statistical considerations relevant to estimation and provides an approach to 

account for them.  Section 1.5 presents and interprets results.  Section 1.6 concludes with 

implications for policy makers. 
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1.2 BACKGROUND  

Zambia is a nearly middle-income developing country in the Southern Africa region, 

sandwiched between the maize importing countries of Zimbabwe and the Democratic Republic 

of Congo.  Maize is Zambia’s largest staple crop and the most likely agricultural commodity to 

provide substantial and broad-based export revenue.  Most of Zambia’s neighbors, however, 

import maize from the Republic of South Africa (RSA) or other suppliers of the world market.  

This can partially be blamed on Zambia’s dismal land productivity as compared to maize 

exporting countries such as RSA, Argentina or the United States (Figure 1.1).  If Zambia is to 

take advantage of the exporting opportunities that exist in the region and beyond, it is obvious 

that productivity must increase (or costs of production must come down).   

 

 
Figure 1.1: Maize yields in Zambia versus global exporting countries (1961-2009) 
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Usage of inorganic fertilizers
2
 may be one way to achieve productivity gains.   However, 

despite a significant increase in fertilizer subsidies over the past two years, only 51% of Zambian 

smallholders used fertilizer during the 2010 and 2011 growing seasons (CFS 2010, 2011).  

Moreover, among those who did use, the application rates were, on average, 152 kg/ha each for 

basal and top dressing, well below the 200 kg/ha government recommendation.  Since 2006 

roughly two thirds of all fertilizer users apply less than the recommended amount per hectare. 

(ZARI, 2002; CFS, 2006-2011).  

Fertilizer adoption (and application rates among those who do use) may be low due to 

low or variable effectiveness of the technology.  Other heterogeneous factors of production may 

be limiting the effectiveness of fertilizer.  Zambian Crop Forecast Survey (CFS) data indicate 

that smallholder fertilizer users produce a yield of 2.5 metric tons per hectare, on average.  This 

is more than double the yield for non-users, but a third or less of what Zambian commercial 

farmers produce and less than 20% of the average yield for farmers in developed countries (CFS, 

2006-2011; Lungu et al, 2009; Brittan et al, 2008).  To explain the disparity between smallholder 

yields are so dramatically lower than those of their larger scale counterparts we must better 

understand the determinants of smallholder yield.  

Modeling production functions is an old science, dating back further than the popular 

work of Cobb and Douglas in 1928 (see Griliches and Mairesse (1995) for a summary of this and 

other early work).   That said, when estimating these models using survey data there are many 

known statistical problems which may influence results.  Some or all of these issues are  

                                                 
2 For the purpose of this study the phrase “fertilizer” refers to manufactured inorganic fertilizer. 
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Table 1.1: Distribution of the number of maize fields cultivated by the household 

Number of maize fields 
Percent of fields farmed by 

households cultivating 
Percent of households 

cultivating 
1 69.0% 84.0% 
2 20.1% 12.2% 
3 6.9% 2.8% 
4 2.2% 0.7% 
5 0.6% 0.2% 
6 0.7% 0.2% 

more than 6 0.4% 0.1% 
Source: SS04, SS08 

 

frequently ignored in the agricultural economics literature, but in the following sections we will 

outline a conceptual framework and estimation approach to easily accommodate them. 

Specific variables used and the method of computing them (when necessary) are 

discussed in the following sections.
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1.3 CONCEPTUAL FRAMEWORK 

 
1.3.1 Determinants of maize yield 

The general form of the conceptual model for yield functions has not changed much over 

time.  Following Heady (1956), the factors determining yield (Y) can be summarized as: 

(1.1)   SXFfY ,,

where F is a vector of fertilizer applications, X is a vector of other determinants that are 

controlled by the farmer and S is a vector of strictly exogenous yield determinants. 

In agronomic literature F would be treated as a vector of nutrients themselves, primarily 

the quantities of nitrogen (N), or phosphorus (P) that are applied.  In this study, however, we are 

more interested in the perspective of the farmer, who, in Zambia, is far more likely to think in 

terms of quantities of fertilizer mixtures, which are classified as either basal or top dressings.
3
  

That said, because of their chemical make-up, it is important to treat theses mixtures separately 

in the model in order to understand the factors conditioning yield responses.  Basal fertilizer is 

designed to be applied early and is primarily phosphoric.  The basal fertilizer most frequently 

used in Zambia is more commonly known as Compound D.  Top dressing fertilizer, most 

commonly Urea, is entirely N in terms of nutrients and is designed to be applied periodically 

throughout the growing season.  P and N, and by extension basal and top dressing, contribute to 

plant growth in fundamentally different ways, and have different characteristics of nutrient 

dispersion (Eckert, 2010; Griffiths, 2010), and so will be included as separate variables.   

                                                 
3

 Results of estimating this study’s model after converting “fertilizer” measurements into the 
quantities of N and P applied are available in Appendix E.   
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When N is applied to a field is generally consumed by plants within a few weeks of 

application, P applied to a field becomes soil ready over a number of years.  In fact, it is 

estimated that only 20% of P applied is consumed by crops in the year of application (Griffith, 

2010).  Therefore, the amount of “carry-over” P in the soil is at least as relevant to current yields 

as contemporaneous basal fertilizer application rates (Lanzer and Paris, 1981; Goedeken et al, 

1998).  Practically speaking this suggests that lagged values of basal fertilizer should also be 

included in the yield model.  Ideally, we would include contemporaneous and a series of lagged 

values for basal fertilizer dressing, or some indicator of the pre-existing plant-ready phosphorus.  

Unfortunately, data to address this as thoroughly as agronomic principles dictate is not available.  

In preliminary analysis we attempted to capture the carry over effect of P fertilization by 

including one survey period (3-4 years) lagged value for basal application at the household level.  

Recall, however, we are not able to know whether these applications were applied to the same 

fields from which we have our yield observations.  As a result, or perhaps due to collinearity 

stemming from the lack of temporal variation in application rates within households, this 

variable was not significant and its inclusion came with high efficiency costs.  We thus omit 

lagged basal application values from our analysis and are left only with the option of interpreting 

our basal fertilizer variable as representing both contemporaneous applications and as a proxy for 

lagged applications.  We will also attempt to compensate for this omission when discussing the 

profitability of basal application by conducting price sensitivity analysis.  We will adjust the 

prices assigned to basal according to a range of possible absorption rates.  

Following numerous other studies, factors of production controlled by the farmer, X, will 

include seed varieties and application rates, crop mixtures (i.e. whether maize is intercropped 
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with a nitrogen fixing plant
4
, or whether it is forced to compete with another field crop such as 

millet), whether the field is weeded throughout the growing season, tillage method and tillage 

timing (Lichtenberg and Zilberman, 1986; Paris, 1992; Rabbinge, 1993 Chambers and 

Lichtenberg, 1994; Chambers and Lichtenberg, 1996; Carpentier and Weaver, 1997; van 

Ittersum and Rabbinge, 1997; Saha, Shumway and Havenner, 1997; Berck, Geoghegan and 

Stohs, 2000; Oude Lansink and Carpentier, 2001; Holloway and Paris, 2002; van de Ven et al, 

2003; Guan et al, 2006)
5
.  With respect to timing, we control for whether planting took place 

prior to the first rains, when there is annual “nitrogen flush” into the soil from organic material 

that has decomposed throughout the dry season (Haggblade and Plerhoples, 2010).   

Strictly exogenous yield determinants, S, are soil characteristics such as endowment of 

nutrients, texture and acidity, as well as weather factors such as levels and temporal distribution 

of rainfall (Heady, 1956; Tolk et al, 1999; Snyder, 2010; others).  Soil types for the enumeration 

areas in our study, which have been published by the Zambian Ministry of Agriculture and 

Cooperatives (Mambo and Phiri, 2003), will be classified as either Acrisols, Zambia’s most 

common clayish soil that covers 39% of the fields in our study, sandy and less developed soils 

(Arenosols, Leptosols, Podzols and Regosols accounting for 23% of the sample), rich soils that 

are relatively moist or abundant with organic matter (Cambisols, Gleysols, Histosols and 

Luvisols covering 5% of the sample) and other clayish soils (Alisols, Ferralsols, Lixisols and 

                                                 
4

 Nitrogen fixing plants in our sample are groundnuts, soybeans, cowpeas and various beans.  
See Lindemann and Glover (2008) for a discussion on how these plants add nitrogen to soils. 
5
 In this literature other factors identified as yield determinants are pesticides, herbicides, 

fungicides, lime application and irrigation, however these practices are not prevalent in Zambia’s 
rural agriculture sector. 
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Vertisols on 19% of the sample fields).  Other soil types account for the remaining 14% of the 

sample.   

The level of soil organic matter is critical for plant growth, both in terms of having 

nutrients available to plants and having sufficient soil carbon present to sustain microbe 

populations that process nutrients into forms available to plants (Bationo and Mokwunye, 1991; 

Manlay et al, 2007).  Using measurable soil carbon content (SCC), Marenya and Barrett (2009) 

demonstrate how this characteristic affects demand for fertilizer in Kenya.  Although we lack 

such field specific data, our soil type data are a more general control for this important yield 

determinant (note, several of the “rich” soils are defined as such due to the prevailing levels of 

organic material).  At the field level we are also able to include a contemporary dummy variable 

for whether plant or animal manure is applied.   

Soil acidity will be controlled for using potential Hydrogen (pH) soil test results for the 

341 enumeration areas used in this study.  Soil tests were conducted by GRZ and reported in 

Mambo and Phiri (2003).  According to the maize production guide published by the Zambia 

Agricultural Research Institute (ZARI, 2002), 4.4 is a critical pH threshold for maize production 

in Zambia, below which (i.e. in more acidic soils) plants will not have access to necessary soil 

nutrients, leading to limited root growth, wilting and diminished yields.  A second critical 

threshold effecting growth occurs at a pH of 5.5 due to the effect acidity can have on phosphoric 

(basal) fertilization.  In more acidic soils (pH< 5.5) phosphorus can be “locked” in the soil as it 

converts to iron and aluminum phosphates that are unavailable for plant consumption.  The pH 

range of 5.5 - 7 is optimal for phosphoric fertilization since, in this range, phosphorus converts to 

plant-available mono- and di-calcium phosphates (Griffiths, 2010).  In alkaline soils phosphorus 

is vulnerable to becoming locked into tri-calcium phosphates that are also unavailable to plants 
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(Griffiths, 2010), but this risk is not relevant in our model (Zambia pH tests reveal a range of soil 

acidity from 3.1 to 7.1).  We will therefore include pH in our model by including dummy 

variables for which critical pH range is prevalent in each field’s area.  One indicator variable will 

designate those fields where pH is between 4.4 and 5.5, one will designate those in an area where 

pH is between 5.5 and 7.1, while the effects of being in more acidic soils (pH<4.4) is subsumed 

into the intercept term.  Since productivity is expected to be higher in less acidic soil, we expect 

the partial effect of these dummies to be positive.  Maps for Zambia pH test sites and soil types 

can be found in Appendix A. 

Total rainfall levels for the growing season (November to March) will be included using 

data from 36 Zambia Meteorological Department (MET) as well as a variable for rainfall stress 

levels defined as the number of back to back ten day periods with less than 40 mm total rainfall 

during the rains (See Mason (2011) for description of rainfall data collection).  Other net weather 

effects will be controlled for at the provincial level using dummy variables for each province, 

interacted with time trends.   

1.3.2 Functional form of the yield model 

While the factors determining yield are largely undisputed, the functional form of the 

underlying data generating mechanism is less obvious.  A widely accepted contention is that the 

effectiveness of certain factors of production is conditional on other factors.  The most extreme 

form of this model was first posited by organic chemist Justus von Liebig in 1862, which has 

been called the “law of the minimum.”  Consider, for example, a simple model in which yield is 

determined only by fertilizer, f, and something else, x.  The strictest form of von Liebig’s 

function for yield, y, would be: 
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(1.2)  xFy 21 ,min    

If this model is correct and x2  is less than F1 , no amount of fertilizer could be 

added to increase yield.  More recently studies have argued there is a more sophisticated 

relationship between inputs and yield, but the principle of codependence remains (Berk, Stohs 

and Geoghegan, 2000; Guan et al, 2006; Xu, et al, 2009b).  For example, another form may be a 

conditional yield response function: 

(1.3)  xFxFxFy  3
2

2
2

1210 

The debate continues on whether strict von Liebig models similar to equation (1.2) or those 

similar to equation (1.3), sometimes called polynomial models, better fit actual data generating 

mechanisms (Paris, 1992; Chambers and Lichtenberg, 1996; Berk, Stohs and Geoghegan, 2000).  

Tembo et. al. (2008) present the most flexible of the von Liebig options in the “linear response 

stochastic plateau” model, but this and other von Liebig models assume that either the limiting 

factor of production is known, or, if unknown, is the same for all observations.  One could argue, 

however, that heterogeneity among households renders such strict models less applicable to 

survey data as compared to test field data.  That is, even if a strict von Liebig model where 

fertilizer is the limiting factor of production better represented the data generating process for a 

sub-set of the sample, it almost certainly wouldn’t apply to all households.  Therefore, equation 

(1.3) is more appropriate as its flexibility incorporates all households, and presents us with a 

household specific yield response to fertilizer that depends on x:  

(1.4) 
xF

F

y
311 2  



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To demonstrate how such a model could be interpreted, suppose that for two values of x ( x and 

) the yield response function for fertilizer appears as in Figure 1.2, where the profitable yield 

at the yield maximizing level of fertilizer use, 

x 

F  , is indicated by the solid horizontal reference  

 
Figure 1.2: Conditional Yield Response to Fertilizer Application 

Fertilizer Application 

Yield 

Profitable 
yield when 

 xx

FF





Profitable 
yield when 

 xx

FF



 xx   

xx   

F   

 
 

line.  At  one might erroneously conclude that fertilizer use is unprofitable, even at the yield 

maximizing level of application.  Instead, Figure 1.2 demonstrates a condition where fertilizer is 

not the binding constraint on profitability.  Clearly, if we change the value of x to , yield 

maximizing fertilizer application (and a range of non-maximizing application rates) is profitable 

even if we allow the necessary yield level to increase to the dashed horizontal reference line. 

x

x 

Unlike this example, of course, our model consists of two vectors of explanatory 

variables other than fertilizer: farmer choices and exogenous soil and weather effects.  According 
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to the general model in equation 3, our estimation would include a full set of interaction and 

quadratic terms for all right hand side variables in both F and X.  Doing so, however, may 

introduce a large degree of collinearity.   

To avoid this cost, we could focus on the interaction terms relevant to the objectives of 

this study (those for fertilizer variables), and return to agronomic literature to identify the 

interactions we should expect to be important.  This is sometimes described as a “bottom-up” 

approach to model building.  An alternative would be a “top-down” approach whereby we 

estimate a model including all interactions, then impose exclusion restrictions based on 

significance levels.  In this study we take a hybrid approach, estimating the full model, and then 

imposing exclusion restrictions based on significance levels and what we know from the 

agronomic literature.  It is worth noting that the significant interactions in our final results were 

largely significant in the model with the full set of interactions, but were estimated with less 

precision, hence the preference for the relatively parsimonious model described in the remainder 

of this section. 

As previously mentioned, phosphorus is vulnerable to waste in acidic soils.  Specifically, 

below a pH level of 5.5, P converts to iron and aluminum phosphates, which are fairly useless to 

plants (Griffiths, 2010).  Snyder (2010) reports that roughly 77% of phosphoric fertilizer can be 

wasted in soil with a pH lower than 4.5.  In the pH range of 5.5 to 7, on the other hand, P 

converts to mono- and di-calcium phosphates which maximize the availability of phosphorus to 

plants (Griffiths, 2010).  We will therefore include interaction terms between basal application 

and our acidity indicator variables.   

In some ways the productivity of P and N depend on each other.  For example, they are  
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both essential elements in adenosine triphosphates, which are the key “energy unit” that plants 

form during photosynthesis and which is used to store and use the plant’s energy (Eckert, 2010; 

Griffiths, 2010). That said, over time the N in Urea can increase soil acidity, meaning P and N 

could be working against each other.  To test which scenario is prevalent in Zambia we will also 

include an interaction term between basal and top dressing application rates. 

Nitrogen is vulnerable to a similarly unfavorable transformative process called 

volatilization in alkaline soils, but with no pH level in our data greater than 7.1, this interaction 

would not be relevant in this model.  The largest threat to N fertilizer loss, rather, is through 

leaching.  This is when nitrates dissolve in water and essentially get washed away before they 

can be consumed by the plant.  There is a greater potential risk in certain soil types that are 

coarser and allow water to percolate more freely (Eckert, 2010).  There is also a greater risk with 

tillage methods that disturb more soil, such as plowing.  We will therefore include an interaction 

term between top dressing application rates and soil type and a dummy variable for plow tillage. 

Improved and hybrid seed varieties are specifically designed to better ingest both N and 

P, which suggests both basal or top dressing application should interact with our seed variety 

variable.  Unfortunately, including separate interactions results in efficiency losses due to 

collinearity, so our final model will impose the restriction that the interaction with seed type is 

the same for both types of fertilizer
6
 (i.e. seed type will be interacted with the sum of basal and 

top dressing application rates). 

                                                 
6
 The correlation coefficient for basal and top dressing application rates is 0.91, significant at the 

0.01% level.  Modeling separate seed type interactions results in unstable, nonsensical parameter 
estimates.  Including either a top dress or basal interaction term alone results in a similar 
interaction for each.  Imposing the restriction described here, then, seems to be the best feasible 
method for allowing both yield responses to be a function of seed type. 
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1.4. ESTIMATION 

1.4.1 Statistical considerations 

The model described in section 1.3 has numerous characteristics that must be considered 

before estimation.  Specifically, we must acknowledge, understand the potential impact of, and 

as best we can control for omitted variables, the structural endogeneity of input decisions, and 

unobservable heterogeneity. 

Some of the most important determinants of yield are unobserved in our data (and most 

data used by social scientists), such as soil moisture and the pre-existing available nutrients in the 

soil (Griffiths, 2010; Eckert, 2010).  Although we have already described how we will control for 

soil type and acidity and the total rainfall and stress periods, there are undoubtedly micro-

variations between fields with respect to soil content that will depend on past farming practices 

(fertilization, crop rotation, etc.).  There are several ways this omitted information has been dealt 

with in the literature on yield functions in developing countries such as 1) use of trail rather than 

survey data (Traxler and Byerlee, 1993; Kauka et al, 1994; Rötter and van Keulen Mwato et al, 

1999; Sakala et al, 2004), 2) assuming the unobserved effects are time-constant and controlling 

for it via the choice of estimator (Xu et al, 2009b), or 3) testing for the potential bias omission 

may cause and, if none is found, proceeding with interpretation of the model with known omitted 

variables (Guan et al, 2006).  Of course, one could also collect data on soil nutrient content, but 

doing so using survey data from a very large sample would be expensive and impractical.   

That said, two recent studies (Marenya and Barrett, 2009; Matsumoto and Yamano, 

2009) were able to incorporate soil quality data (specifically, field level carbon content as a 
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proxy for available nutrients) into fertilizer demand functions and found that farmers’ use of 

fertilizer is positively correlated with soil quality.  This has important implications for estimation 

of yield models when using survey data.  When an explanatory variable positively affects the 

dependant variable and is positively correlated with an omitted variable that also positively 

affects the dependent variable, we will have an upwardly biased estimate on the effects of the 

observed determinant (Wooldridge, 2002).  In other words, if fertilizer is more likely to be used 

on fields with more productive soil, estimating our model with soil quality missing could make 

fertilizer seem more productive than it is.   

Omitted variables are not the only potential source of bias in our model, because fertilizer 

use is endogenous in the structural model for input demand that is constrained by the yield 

function.  That is, fertilizer demand is determined by maximizing the following:
7
 

(1.5) Cqpqlxf ,,max  

s.t.    lxFqq ,,

        TplpxpFpcqC TlxF   

where q is quantity produced, pj are unit prices of inputs and outputs, T is the transfer cost of 

inputs and outputs, c is unit cost of production, and l is hectares of land (assume this is one-

period rented land for simplicity).  As before, F is fertilizer used and x is the vector of other 

                                                 
7

 One could argue that fertilizer demand is not the result of profit maximization and that farmers 
should rather be considered income and credit constrained utility maximizers, which would 
complicate derivation of the demand function from this conceptual framework.  In this 
discussion, however, we are simply attempting to demonstrate the endogeneity of input selection 
in the yield function.  Moreover, even if farmers are more appropriately considered utility 
maximizers, inputs are endogenous since a shock to yield would relax (or tighten)  the income 
constraint. 

 23



inputs and factors of production as described above.  Since q/l=yield, dividing both sides of the 

first constraint by l, we can see that profit maximization is subject to the yield function. In other 

words, this demonstrates that while the choice of fertilizer used will determine the yield 

outcome, it is the functional form of yield itself that partially determines the level of fertilizer 

used.  Moreover, if we are to treat the production function as a stochastic process, as it clearly is 

in any weather-dependant agricultural system, we can add the disturbance term to the production 

constraint and see that input demand will be a function of shocks to yield, presenting a clear 

endogeneity problem.  When this is ignored results are knowingly inconsistent and, once again, 

inputs have upwardly biased coefficients.
8
   

Finally, unobserved heterogeneity also exists in our model in the form of farmer ability 

and management skill.  As with the omission of soil nutrients, this will put upward bias on our 

estimate of yield response to fertilizer if it is positively correlated with fertilizer use (as one 

would expect).  This too could be controlled for via proxy variables or through our choice of 

estimator, if we are willing to assume ability is a time-constant. 

1.4.2 Methods to account for omitted variables and structural endogeneity 

We can allow for the possibility of a fundamental difference in the soil quality of 

fertilizer users by including an intercept shifter for those applying it as a proxy variable.  This 

will also allow us to test for whether fertilizer is more likely to be used on depleted soils.  If the 

coefficient estimate on the intercept shifter (the fertilizer use dummy variable) is negative and 

significant, it would suggest that the yields of fertilizer users would have been lower than that of 

                                                 
8
 The claim of upward bias is assuming that correlation between the input demand and any 

production shock is positive, and that the effect of using the input is positive. 

 24



non-users if fertilizer had not been applied.  In other words, it would suggest that fertilizer is 

more likely to be used on depleted soils. 

By using this proxy indicator variable for soil quality we need not impose the assumption 

that it is a time-constant, and allow for the fact that fields may degrade (or improve) over time.  

In exchange for this flexibility, admittedly, a structurally endogenous explanatory variable has 

been added to the model, but we will control for this when we control for the endogeneity of 

application rates. 

Other omitted variables we’ve discussed (e.g. farmer ability) can be treated as time-

constant determinants (as in Guan et al, 2006; Xu et al, 2009b), and thus be controlled for using 

estimators available when we have panel data.  These estimators, however, would be inconsistent 

due to the structural endogeneity that remains in our model.  We must, therefore, first deal with 

structural endogeneity. 

The endogeneity of inputs in production function estimation has been one of the key 

criticisms of production analyses since the seminal work of Cobb and Douglas in 1928.  

Traditionally this endogeneity has been dealt with in one of several ways.  Most, despite wide 

acknowledgement of the problem, continue to simply ignore it implicitly, or do so explicitly with 

some attempt at justification (see Griliches and Mairesse (1995) for a summary of this and other 

criticisms).  Initially, attempts to control for endogeneity were made by claiming inputs were 

contemporaneously exogenous (or pre-determined) and the omitted endogeneity effect was time-

constant and employing the fixed effects (FE) estimator (Hoch, 1955; Mundlak, 1961; Mundlak 

and Hoch, 1965).  As Chamberlain (1982) pointed out, however, the necessary assumption for 

the consistency of the FE estimator is strict, not contemporaneous, exogeneity, so this method 
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has since fallen from favor.  More recently intermediate inputs have been used as proxy variables 

to control for the effect of shocks (Olley and Pakes, 1996; Levinsohn and Petrin, 2003).  This is 

not a particularly attractive option in our case, since 1) no such input is readily available, and 2) a 

more direct approach is available.  Specifically, we can use instruments to control for this 

endogeneity via 2SLS.
9
 

Due to the interaction terms outlined in section 1.3, implementation will be slightly more 

complicated than standard 2SLS, but manageable.  To illustrate, recall the simplified version of 

our model in equation 3, adding the stochastic error term, u, and indexes for individuals, i, and 

time, t:   

(1.6)  itititititititit uxFxFxFy  3
2

2
2

1210 

The structural model in section 1.4.1 (equation 5) demonstrates that a very attractive 

instrument for the endogenous  would be exogenous determinants of fertilizer demand, such 

as the price of fertilizer F , if we are willing to assume

F

 E, p   0| Fpu

2

 (an arguably wea

assumption).  That said, if  is endogenous, then so are 

k 

F F  and xF  , but we can still estimate 

the model consistently using only .  First, we regress F on the instruments  to 

obtain the predicted value .  Since E

Fp  Fpx,,1

F̂   0| Fpu , any function of is also exogenous in 

equation (1.6), so we can estimate via standard 2SLS allowing F,   and 

F̂

2F xF   to be 

                                                 
9

 Control function estimation is an alternative to 2SLS that is generally preferred when 
estimating non-linear models, but is difficult to implement with multiple endogenous explanatory 
variables.  Since our model is linear in parameters and we will be treating multiple endogenous 
explanatory variables, 2SLS is preferred.  
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endogenous using , F̂
2F̂  and  as instruments (Wooldridge, 2002).  This method can be 

extended to multiple endogenous explanatory variables, provided that we have a unique 

exogenous variable for each that can be used to generate fitted values to use as instruments.

xF ˆ

10
  

Equation 5 demonstrates that, in fact, all choice explanatory variables are endogenous in 

equation 6, not just F.  Allowing all choice inputs to be endogenous, however, is not always 

going to be feasible due either to a lack of exogenous instruments or the loss of efficiency that 

may come when a large number of variables are treated as endogenous.  In our model we will 

allow all fertilizer variables and their interactions to be endogenous, as well as all seed variables.  

We will use the prices of fertilizer, distance to the nearest town, distance to the nearest fertilizer 

retailer, and the education level of the household head as our exogenous instruments.  To gain 

efficiency we will exploit the corner solution nature of fertilizer application rates and obtain the 

fitted values to be used in 2SLS by fitting Cragg’s (1971) double-hurdle model.  Fitted values for 

the binary indicators of fertilizer and improved seed use will be obtained by fitting the OLS 

linear probability model.  Seed application rate will be fitted via OLS.  

Finally, acknowledging time-constant unobserved heterogeneity, , we can re-write ic

itiit cu  , so that the simplified representation of our model becomes: 

(1.7)  itiititititititit cxFxFy   3
2

2
2

1x 2F10

                                                 
10  Note that all exogenous variables should be included in every regression estimated to obtain 
the fitted values that will be transformed into multiple instruments. 
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Following Mundlak (1978) and Chamberlain (1982, 1984), we will employ the Correlated 

Random Effects (CRE) estimator, which controls for  by modeling its correlation with time-

variant regressors as a function of the temporal means for each observation and estimating the 

reduced form.  See Wooldridge (2010) for a thorough description of this estimator and its 

relative costs and benefits compared to other options such as FE, Random Effects (RE) or First 

Difference (FD) estimators.  In our case this selection is motivated by the need to relax the 

assumption that  is uncorrelated with other regressors (making CRE preferable to the RE 

estimator) and the fact that we wish to observe and interpret the effects of time-constant 

regressors (making CRE preferable to the FE and FD estimators).  We will estimate via Pooled 

CRE (PCRE), which requires less strict exogeneity assumptions for consistency.  One drawback 

is that the CRE estimator adds the time averaged values of endogenous regressors to the model, 

which must also be treated as endogenous, but time averages of fitted values and their 

interactions can simply be added as instruments to accommodate them. 

ic

ic

All together, our approach for estimating conditional yield response to fertilizer is to first 

specify a model where the partial effect of fertilizer application is a function of other factors 

based on the knowledge in agronomic literature.  Second, using demand determinants as 

instruments, conduct tests for the endogeneity of key inputs (or all inputs chosen by the farmer, if 

possible).  We will use the Hausman joint endogeneity test described in Wooldridge (2003, page 

507).  If endogeneity is not empirically significant it can be ignored and estimation can proceed 

via standard methods to control for unobserved heterogeneity.  If it is significant, the third step is 

to compute fitted values for each endogenous variable and the product of fitted values and the 

variables with which endogenous variables are interacted.  Fourth we compute the time average 
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of all time-variant explanatory variables and fitted values.  Finally we add the time averaged 

values to the model and estimate via pooled IV using fitted values as instruments.  We will call 

this the Instrumented Pooled Correlated Random Effects (IPCRE) estimator.     

In order to examine the costs of ignoring the statistical considerations outlined in section 

1.4.1, we will report results from OLS, IV and PCRE estimators alongside the IPCRE results.  

For this study we will make one adjustment to the strict application of the PCRE and IPCRE 

estimators.  Recall that one of our explanatory variables is the interaction of the basal fertilizer 

application rate and an indicator variable for whether pH is greater than 5.5.  As will be shown 

below, there are relatively few observations in this pH range, and very few in this range who use 

basal fertilizer.  The PCRE and IPCRE estimators effectively double the number of parameters 

one must estimate when we add the time-averages of each regressor, meaning many observations 

may be needed to estimate parameters with any degree of efficiency.  Given the relatively small 

number of basal fertilizer users in the high pH range, we will ease the burden on the estimator by 

omitting the time averaged interaction term from our estimation.  This is tantamount to making 

the assumption that, conditional on having controlled for the structural endogeneity of fertilizer 

use, the correlation between unobserved heterogeneity and fertilizer use is no different for 

farmers in the high pH range than it is for farmers in the low pH range.
11

 

                                                 
11

 If we relax this assumption, the only meaningful difference in results is that our estimate of 
the interaction term’s effect is greater and more significant between households (the coefficient 
on the time-averaged regressor) than within a household (the coefficient on the time-variant 
regressor). 
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1.5. DATA 

This study will be carried out using longitudinal household data from two surveys carried 

out in 2004 and 2008 that were supplements to the 1999/2000 post harvest survey conducted by 

the Zambian Central Statistics Office (CSO).  Data from the 1999/2000 survey can not be 

employed (i.e. we will have a 2 wave panel, rather than 3 waves) due to a lack of key variables 

such as seed variety in earlier data.  There are 4,221 field level observations for maize yield from 

2004 and 4,431 from 2008.  Many farmers have more than one field but because field numbers 

were not consistently assigned, we can only claim our panel is balanced at the household (not 

field) level.  Where farmers had more than one field under maize cultivation in a given year, data 

will be stacked so that each household may potentially have more than one observation per year 

(note, 69% of the fields in our sample are held by the 84% of households that planted only 1 

maize field, Table 1.1). 

Of the 8,652 fields with available data, 683 were held by farmers who only planted maize 

in one of the two survey years.  These fields are omitted to maintain the balanced panel.  To 

control for the potential selection bias these omissions may introduce, we will include an inverse 

Mills ratio (IMR) as a regressor (Heckman, 1976).  The IMR will be computed based on a probit 

regression on the likelihood of growing maize in both years with the gender of the household 

head (male=1), the farm size and the number of adult equivalents as explanatory variables, along 

with the yield determinants.  Each of these additional regressors is positively and significantly 

related to continuous maize production.   

The fact that we are using household data presents numerous statistical issues that have 

already been discussed, but it also introduces two types of data challenges: 1) cases where valid 
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observations contribute to misleading results and 2) suspected cases of measurement error.  In 

the first case, for example, a portion of the sample will experience either full or partial crop loss 

due to flood or drought.  This will lower our estimated response to fertilizer application, which, 

in the discussion of the determinants of variations in yield response, would be misleading.  When 

crop loss occurs early in the rainy season, farmers frequently “re-plant” all or a portion of their 

fields.  This additional quantity of seed applied will be reflected in our data, but the fact that the 

field has been re-seeded will not.  This is another example of how valid responses could cause 

misleading results. 

The second data challenge is measurement error.  For example, to estimate our model we 

standardize many input and the harvest figures at the per hectare level.  This is important for our 

econometric analysis, but a side-effect is that any measurement errors on very small fields 

become amplified. 

To address both of these challenges, we put the data through a series of filters.  First, we 

also omit 356 fields that were farmed by households where we observe more seed planted than 

maize was harvested, likely reflecting crop loss or abandonment and high levels of re-seeding.  

There are several observations yields higher than seed rates, but that do report extremely high 

seed applications.  Once again these are likely fields that were re-seeded (or measurement error), 

so we omit 194 fields that were in the top 1% of the distribution of seed application rate (greater 

than 138.3 kg of seed per hectare).  In order to omit cases where crop loss wasn’t reflected in the 

seed data, we also omit the 131 fields whose yield is in the bottom 1% of the remaining yield 

distribution as “failed” crops (harvesting less than 115 kg/ha).  To address the problems 

stemming from small field measurement error, we omit 153 of the fields that were in the lowest 

1% of the remaining distribution of field size (fields smaller than 0.1 hectares).  Finally, 4 
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observations with missing data were omitted, leaving us with a panel, balanced at the household 

level, of 7,127 maize fields (3,448 from 2004 and 3,679 from 2008).  

All of this said, while considering fields where the crop was lost could be misleading in 

the yield response variance discussion, to ignore those fields in the profitability discussion could 

be equally misleading since farmers consider the risk of crop failure when making investment 

choices.  So, after discussing the profitability of fertilizer use given a successful harvest, we will 

briefly discuss the expected profitability  

Each observation has been assigned an analytical weight by the CSO to make the sample 

nationally representative at the time it was selected.  These weights were developed following 

the recommendations described in detail in Megill (2004), and are computed using population 

distribution data from the 2000 census.  In short, these are the product of the inverse probabilities 

of being selected into the sample at each stage of stratification (within each district, the selection 

stages in this study are the census supervisory area (CSA), the standard enumeration area (SEA) 

and the household levels) (Megill, 2004), We will also use the inverse probability of re-interview 

weight (IPW) to correct for potential attrition bias.  The IPW used was developed by Mather et al 

(2011).  Results un-weighted for attrition bias are reported in Appendix B, which demonstrates 

that our results are robust.   

The variables used in our regression analysis are described in Tables 1 and 2.  Table 1.2 

shows the percentile distribution and mean of the dependant variable, maize yield measured in 

kilograms per hectare (kg/ha), as well as the continuous explanatory variables which includes 

fertilization and seed rates (kg/ha), as well as the total growing season (November to March) 

rainfall (mm) and the number of 20 day periods during which less than 40mm of rain fell, or 

“stress periods”.  Among other things, Table 1.2 highlights the fact that the distribution of yields  
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Table 1.2: Distribution of smallholder maize yield and yield determinants in Zambia (2004, 
2008) 

 Percentiles of distribution  
Yield and Determinants 5 25 50 75 95 Mean 
Maize yield (kg/ha) 268 710 1,241 2,070 4,020 1,562.2 
Basal application rate (kg/ha) 0 0 0 83 200 51.9 
Top dressing application rate (kg/ha) 0 0 0 100 225 53.8 
Seed application rate (kg/ha) 10 19 23 35 57 28.3 

Growing season
a
 rainfall (mm) 698 838 938 1053 1335 971.1 

Number of rainfall stress
b
 periods  0 1 2 2 4 1.8 

Source: Supplemental Surveys to the 1999/2000 Post Harvest Survey: 2004, 2008 
Notes: a- “Growing season” is November to March. b- “Rainfall stress” is the number of 20-day 
periods during the growing season with less than 40 mm total rainfall 

 

 

is fairly skewed amongst Zambian smallholders.  In 2004 and 2008 the mean yield was over 1.5 

metric tons (mt) per ha, but note that the majority of fields harvested less than 1.3 mt/ha, and 5% 

harvested more than 4 mt/ha).  Table 1.2 also illustrates that fewer than half of Zambian 

smallholders used fertilizer during the period of our study, with the average field (including non-

fertilized) having roughly 106 kg/ha of basal and top dressing fertilizers applied combined.  The 

seed application rate on the average field is 28 kg/ha, which is 40% higher than the 

recommended rate of 20 kg/ha (ZARI, 2002).  The median seed rate is closer to the 

recommendation (23 kg/ha), but only 25% of the fields are seeded in the 19-23 kg/ha range.  In 

fact, according the ZARI (2002) and the results in Table 1.2, the majority of fields are too 

densely seeded and a fourth of all fields are planted with at least 75% more seed than 

recommended. 

Table 1.3 shows the distribution of the binary determinants of yield that will be used in 

our regression analysis, both in terms of the share of fields and the share of total hectares  
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Table 1.3: Distribution of binary yield determinants in Zambia (2004, 2008) 

Agricultural year 
2003/04 2007/08 2003/04 2007/08 

Yield determinants ----Share of fields---- ---Share of hectares---
Animal or green manure applied .10 .12 .12 .12 

Planted with nitrogen fixer
a .05 .03 .03 .02 

Planted with non-N-fixing crop
b
 .02 .01 .02 .00 

Tillage done before the rains .38 .34 .36 .30 
Tillage done using traditional hand hoe .49 .30 .40 .23 

Tillage done using planting basins .02 .01 .02 .01 
Zero tillage used to prepare field .02 .03 .02 .03 

Tillage done using plow .34 .41 .44 .52 
Tillage done using ripping .01 .01 .01 .01 
Tillage done using ridging .12 .23 .11 .21 

Weeded once .40 .41 .37 .40 
Weeded twice .50 .50 .53 .52 

Weeded three or more times .09 .09 .10 .08 
pH below 4.4 .52 .50 .46 .46 

pH between 4.4 and 5.5 .46 .48 .53 .53 
pH between 5.5 and 7.1 .02 .02 .01 .01 

Acrisol Soil .38 .37 .35 .35 

Other clayish soils
c .19 .18 .24 .23 

Sandy/undeveloped soils
d .24 .25 .23 .23 

Developed/organic soils
e .05 .05 .05 .06 

Other soils .14 .15 .13 .13 
Fertilizer applied .36 .38 .45 .50 

Planted with hybrid or open pollinated 
seed variety

.40 .45 .48 .58 

Source: Supplemental Surveys to the 1999/2000 Post Harvest Survey: 2004, 2008 
Notes: a-Nitrogen fixing crops are groundnuts, soybeans, cowpeas and various beans.  b-Any 
crop other than those listed as nitrogen fixing are planted in the field.  c- “Clayish” soil types 
include Alisols, Ferralsols, Lixisols and Vertisols.  d- “Sandy/undeveloped” soil types include 
Arenosols, Leptosols, Podzols and Regosols.  e- “Developed/organic” soil types include 
Camisols, Gleysols, Histosols and Luvisols. 
 

 34



planted, by year.  The determinant is more commonly found on smaller fields when the share of 

fields for a given determinant is greater than the share of hectares 

For example, we are equally likely to find conservative tillage methods such as ripping, 

planting basins or zero tillage on any field size, but these three methods apply to only 5% of all 

maize fields combined in both 2004 and 2008.  Hand hoeing, which is more common on smaller 

plots, became a less common practice between our survey periods.  By 2008 some 30% of all 

fields (down from 49%), accounting for 23% of the total area planted with maize (down from 

40%) were tilled by hand hoe.  The most common tillage method in 2008 (and more common on 

large fields) was plowing, which was the chosen method on 41% of all fields (accounting for 

52% of the total maize hectares planted). 

We can also note from Table 1.3 that, while fertilizer (either basal or top dressing) was 

applied only about 37% of Zambian maize fields in 2004 and 2008, they account for nearly half 

of the total area planted over the same period, meaning fertilizer use was more common on larger 

fields.  Finally, note that only 2% of the fields in Zambia (accounting for just 1% of the area 

under maize cultivation) are on semi-neutral soils (pH in the range of 5.5 to 7.1), while roughly 

47% (or 53% of total area) are on acidic soils (pH in the range of 4.4 to 5.5) and 51% (or 46% of 

total area) are on very acidic soil (pH below 4.4).  To understand how these factors affect yield 

and yield responsiveness to fertilizer, we now turn to regression results. 
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1.6. RESULTS AND INTERPRETATION 

Selected regression results are reported in Table 1.4.
12  Column (i) reports results from 

OLS estimation in order to demonstrate the difference, if any, when we ignore potential 

endogeneity and unobserved effects.  Column (ii) reports results of IV estimation, ignoring 

unobserved heterogeneity.  When obtaining the fitted values to be used in computing 

instruments, the exogenous price, distance and education variables were jointly significant at the 

0.01% level or lower in each of the 5 models for basal application rate, top dressing application 

rate, the fertilizer use dummy variable, the improved seed use variable and the seed application 

rate, which supports their selection as instruments.  The Hausman joint test rejects exogeneity (p-

value = 0.00).  After allowing for the endogeneity of these inputs, the Hausman test for the 

significance of unobserved heterogeneity rejects no effect (p-value = 0.00).  Results estimated 

via PCRE (ignoring endogeneity) are reported in column (iii), and IPCRE results are reported in 

column (iv).
13

   

We will first discuss the effects of inputs other than fertilizer and the robustness of our 

results to the choice of estimator.  We will then evaluate the cost of ignoring endogeneity and 

unobserved effects, focusing on the average partial effects (APE) of fertilizer use from each  

                                                 
12 Coefficients on the provincial level net weather effect control variables (i.e. provincial 
dummies interacted with time trends) and the time-averaged components of the CRE estimators 
are not reported here.  Full results are available upon request. 
13

 An alternative method of combining an IV and unobserved effects estimator that allows for 
time-constant variables would be to analyze estimation results from the regression based 
Hausman test for whether Fixed Effects IV (FEIV) is preferable to Random Effects IV.  This 
yields the FEIV estimator on time variant regressors as well as an estimate for “between 
household” effects of time constant regressors.  These results are reported in Appendix C 
alongside out IPCRE results to demonstrate robustness.  Notably, the IPCRE estimator is able to 
explain slightly more variation in the data. 
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Table 1.4: Selected results from yield response estimates  
Estimator 

OLS  IV PCRE IPCRE 
Explanatory variables (i) (ii) (iii) (iv) 
Fertilizer use     

Fertilizer user (1=yes) y -332.556*** -329.3706*** -337.7956*** -345.4989*** 

 (0.00) (0.00) (0.00) (0.00) 
2.209*** 2.1215** 2.5520*** 2.5625*** Basal application rate 

(kg/ha) y (0.01) (0.01) (0.01) (0.01) 

Basal rate squared y  -0.005*** -0.0046** -0.0041** -0.0039** 

 (0.01) (0.01) (0.02) (0.03) 
6.053*** 6.0623*** 5.4690*** 5.4721*** Top dress application 

(kg/ha) y (0.00) (0.00) (0.00) (0.00) 

Top dress rate squared y  -0.003*** -0.0028*** -0.0020*** -0.0019*** 

 (0.00) (0.00) (0.00) (0.00) 
Other inputs and tillage     

221.958*** 217.4828*** 181.2930*** 183.1064*** Improved seed use 

(1=yes) y (0.00) (0.00) (0.00) (0.00) 

20.189*** 19.8225*** 21.4929*** 20.7972*** Seed application rate 

(kg/ha) y (0.00) (0.00) (0.00) (0.00) 

Seed rate squared y -0.117*** -0.1125*** -0.1135*** -0.1062*** 

 (0.00) (0.00) (0.00) (0.00) 
183.065** 173.9976* 382.9672*** 377.0041*** Planted with an N fixer 

(1=yes) (0.05) (0.06) (0.00) (0.00) 
Other mixed crop (1=yes) -24.788 -28.3596 192.0790 190.6695 

 (0.85) (0.83) (0.15) (0.15) 
39.047 39.5826 21.2478 23.1003 Applied plant or animal 

manure  (1=yes) (0.44) (0.43) (0.74) (0.72) 
Planting before the rains  -10.635 -11.6556 21.3072 20.8432 

(1=yes) (0.76) (0.74) (0.65) (0.66) 
Planting basins (1=yes) 44.576 42.5153 140.8068 141.8314 

 (0.69) (0.71) (0.26) (0.26) 
Zero tillage (1=yes) 145.710* 142.1479* 56.5342 51.7677 

 (0.06) (0.07) (0.63) (0.66) 
Plowing (1=yes) 234.180*** 228.3830*** 178.9874** 171.7717** 

 (0.00) (0.00) (0.02) (0.03) 
Ripping (1=yes) 2.921 9.7704 183.0193 190.4936 

 (0.99) (0.95) (0.43) (0.41) 
Ridging (1=yes) 44.719 44.2043 127.7026** 126.7231** 

 (0.36) (0.36) (0.04) (0.04) 
Bunding (1=yes) -249.508 -243.3199 -77.0254 -72.2638 

 (0.16) (0.16) (0.74) (0.76) 
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Table 1.4 (cont’d)     
 OLS  IV PCRE PCRE IV 
 (i) (ii) (iii) (iv) 

Weed once (1=yes) 330.174** 320.2510** 350.5080* 341.8989* 
 (0.03) (0.04) (0.06) (0.06) 

Weed twice (1=yes) 368.419** 357.8286** 389.1368** 380.0669** 
 (0.02) (0.02) (0.04) (0.04) 

Weed three times (1=yes) 397.149** 383.7406** 447.4851** 438.4622** 
 (0.02) (0.02) (0.02) (0.03) 

4.4   pH  5.5 (1=yes)  166.993*** 163.2562*** 177.6978*** 177.7879*** 
 (0.00) (0.00) (0.00) (0.00) 

5.5   pH  7.1 (1=yes)  413.063*** 400.1734*** 430.6062*** 419.5940*** 
 (0.00) (0.00) (0.00) (0.00) 

-241.507*** -243.2450*** -240.5323*** -242.3512*** Clayish soils (excl. 
acrisols) (0.00) (0.00) (0.00) (0.00) 

Sandy/undeveloped soils -164.7682** -157.4276** -163.3278** -156.3618** 
 (0.02) (0.03) (0.03) (0.04) 

Developed/organic soils 30.9856 21.6836 17.6884 4.9952 
 (0.78) (0.84) (0.87) (0.96) 

Other soils -227.991*** -211.0373*** -227.1971*** -208.5235*** 
 (0.00) (0.00) (0.00) (0.00) 

Weather     
Rainfall (mm) 0.2925 0.2829 -0.2482 -0.2604 

 (0.51) (0.52) (0.63) (0.62) 
Rainfall squared -0.0002 -0.0002 0.0000 0.0000 

 (0.33) (0.33) (0.87) (0.86) 
-24.3191 -25.3915 -2.5405 -3.0743 Stress periods 

(<20mm/dekad) (0.16) (0.15) (0.93) (0.92) 
Provincial weather effect Yes Yes Yes Yes 

Fertilizer interactions     
1.0425 1.2032* 1.2337 1.4766* Basal 

rate*1[pH ]
y
 )5.5,4.4[ (0.12) (0.07) (0.15) (0.08) 

4.5741*** 4.5844*** 4.9442*** 4.9971*** Basal rate*1[pH ]
 y

 ]1.7,5.5[
(0.00) (0.00) (0.00) (0.00) 

Basal rate*top dress rate y 0.0003 0.0001 -0.0013 -0.0015 

 (0.87) (0.94) (0.39) (0.32) 

Top dress rate*clay soil y -0.7777 -0.8125 -0.8002 -0.8527 

 (0.23) (0.22) (0.24) (0.22) 

Top dress rate*sandy soil y -1.8421** -2.0587** -1.8564** -2.0764** 

 (0.03) (0.02) (0.04) (0.02) 

Top dress rate*rich soil y 0.2898 0.5131 0.3019 0.5431 

 (0.82) (0.68) (0.81) (0.67) 

Top dress rate*other soil y -0.4695 -0.8788 -0.4048 -0.8496 

 (0.61) (0.34) (0.66) (0.36) 
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Table 1.4 (cont’d)     
 OLS  IV PCRE PCRE IV 
 (i) (ii) (iii) (iv) 

-1.1272** -1.0830** -0.8280 -0.7364 Top dress rate*Plow 

tillage y (0.02) (0.03) (0.24) (0.29) 

0.6049** 0.5680** 0.4164 0.3451 Fertilization 

rate*improved seed use y (0.02) (0.04) (0.20) (0.31) 

84.8048 33.6675 109.7845 72.9007 Inverse Mills ratio for 
growing maize both years (0.80) (0.92) (0.74) (0.83) 

Constant 303.2773 339.3642 -159.8328 -97.9246 
 (0.35) (0.30) (0.83) (0.89) 

Observations 7127 7127 7127 7127 
R-squared 0.260 0.259 0.265 0.265 

Robust p-values in parentheses.  Notes: y-treated as endogenous in IV regressions. *, **, ***  -
significant at the 10%, 5% and 1% levels 

 

estimator.  We will then discuss the variation of the APEs and their determinants and the 

profitability of fertilizer use. 

1.6.1 Determinants of yield (excluding fertilizer) 

Use of improved seed does have positive independent effect on yields, though the 

estimate of its effect declines by roughly 15% when we control for the time-constant 

heterogeneity.  All else equal, fields planted with hybrid or OPV seeds will yield 194 maize 

kg/ha, on average.  Seed application rate (and the diminishing returns thereof) is significant at 

the 1% level, with this result very robust to estimator selection.   

The current price of hybrid seed in Zambia ranges as high as 11,000 ZMK/kg and, for 

example, in Choma (one of Zambia’s most productive districts) the real (2010) price of maize 

during the 2004 and 2008 harvest and marketing months was 782 ZMK/kg.  At these prices and 

ignoring transportation costs, the IPCRE results suggest the net revenue maximizing seed 
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application rate is 32 kg/ha (p-value = 0.00).  This is greater than the recommended application 

rate of 20 kg/ha (ZARI, 2002), but very much in line with our observations.  Sensitivity analysis 

on calculation of the net revenue maximizing seed rate with respect to prices transportation costs 

are reported in Appendix D and indicate that the rate will exceed the ZARI recommendation 

under most conditions, which may explain the distribution of seed rates observed in Table 1.2.   

Maize that shares its field with a nitrogen fixing plant produces significantly more per 

hectare than mono-cropped maize.  IPCRE results suggest this alone could increase yields by 

nearly 368 kg/ha.  This result is highly statistically significant regardless of estimator choice, but 

notice the benefits of intercropping with a N-fixing plant are estimated to be twice as great when 

unobservable time-constant effects are controlled for.   

Soil acidity is highly significant and confirms that plants in less acidic soils will produce 

greater yields.  All else equal, yield on fields where pH is in the 4.4 to 5.5 range will be 191 

kg/ha greater than yield on more acidic fields, while yield on semi-neutral fields (pH between 5.5 

and 7.1) will be 384 kg/ha greater.  Compared to the mean yield on the very acidic (pH less than 

4.4) fields, this represents a 13% to 26% difference in yield.  Notice also, this result is very 

robust to choice of estimator.   

Yields tend to be worst on clayish soils (excluding Acrisols) and our general “other” soil 

types.  Yield on undeveloped or sandy soils are also worse than those on Acrisols (the omitted 

soil type), while those on richer soils with more organic material are greater, however the latter is 

not a statistically significant difference.   

Weeding is a significant yield improving practice, unsurprisingly.  It is somewhat 

surprising that all three of these variables are significant, considering the fact that 99.6% of the 
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fields are weeded at least once (i.e., we might have expected one of these to necessarily have 

been dropped due to near perfect collinearity with the intercept term).  Most likely, the 0.4% of 

fields that were not weeded represents those which were partially abandoned. 

According to our IPCRE results, yields on fertilized fields would have been roughly 344 

kg/ha lower than those on unfertilized fields had fertilizers not been used. This result is 

consistent with anecdotal evidence from Zambia that more productive land is desired by 

smallholders precisely because it doesn’t “need” fertilization, and that fertilizer is necessary only 

after soils have been extensively farmed for a number of years.
14

  Economically, it stands to 

reason that demand for fertilizer would be greater on depleted soils, where the average and 

marginal product of application would be greater (assuming there are diminishing returns to N 

and P availability, which our results confirm).   Notably, when we omit the intercept shifting 

dummy variable for fertilization, the APE estimates for both basal and top dressing are 24% 

lower than the IPCRE estimates. 

1.6.2 The cost of estimating via OLS   

The APEs of basal and top dressing applications for each of these estimators are reported in 

Table 1.4.  In short, the results are mixed.  When we control for the endogeneity of seed and 

fertilizer as well as the unobserved household heterogeneity (Table 1.5, column iv), our estimate 

for the APE of top dressing is 14% lower than that estimated via OLS (column i).  The effect of 

basal application, on the other hand, is 20% greater when we control for unobserved 

heterogeneity and endogeneity.  This may suggest that better farmers with better knowledge are   

                                                 
14

 Anecdotal evidence comes from farmer interviews conducted for the analysis in Sitko (2010), 
which were shared by the author. 
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Table 1.5: Average partial effects of fertilizer use from various conditional response 
model estimates (kg of maize output per kg of fertilizer input) 

Estimator 
OLS IV PCRE IPCRE 

Average partial effect (i) (ii) (iii) (iv) 
Basal dressing y 2.519*** 2.520*** 2.875*** 2.983***

 (0.00) (0.00) (0.00) (0.00) 
Top dressing y 4.942*** 4.846*** 4.402*** 4.296***

 (0.00) (0.00) (0.00) (0.00) 
Robust p-values in parentheses.  Notes: y-treated as endogenous in IV regressions. *, **, ***  -
significant at the 10%, 5% and 1% levels 

 

more likely to use top dressing because it is more effective, leading to contradicting differences 

for each type of fertilizer between IPCRE and OLS estimation. 

1.6.3 Yield response to fertilizer and profitability 

The effect of basal fertilizer is relatively small in magnitude compared to top dressing (Table 

1.5).  This may partially be explained by the slow absorption rate of P, the primary chemical in 

basal fertilizer discussed in Section 1.3.  This will be addressed further in the following sub-

section.  The difference in yield response might also be explained by the factors determining the 

variation in yield response to basal application, which our results show to be significantly 

conditional on soil acidity.   

Figure 1.3 plots a Lowess regression (with a 0.3 bandwidth) and a scatter plot of our estimates of 

the incremental yield gains from basal fertilizer application on the vertical axis against soil pH 

levels on the horizontal axis.  Notice that in the pH range below 4.4 yield response to basal 

application is minimal (2.14 incremental kg of maize per kg of fertilizer, Table 1.6).  We see 

slightly higher response to basal application over the pH range from 4.4 to 5.5 at which levels the  
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Figure 1.3: Marginal yield response to basal fertilizer application by soil pH 
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Note: Marginal yield response computed conditional on application rate and soil acidity 
following regression results in Table 1.2 
 
 
Table 1.6: Maize yield response to basal fertilizer over soil acidity ranges 
Soil pH 3.1 - 4.3 4.4 - 5.4 5.5 - 7.1 
Average partial effect 
of basal fertilizer 
application (kg/kg) 

2.140** 
(0.01) 

3.735*** 
(0.00) 

7.552*** 
(0.00) 

% of sample 51% 47% 2% 
 

 

average effect is 3.74 kg/kg (Table 1.6).  Above the 5.5 pH level yield response increases 

considerably, more than doubling, on average to 7.55 kg/kg. 

Admittedly the latter is a thin estimate (recall that only 5% of these observations use 

fertilizer), but this result is certainly within reason by international standards.  For example, field 

trails in Kenya conducted by Smailing et al (1992, Table3) showed, on average, 45 additional 
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kgs of maize per kg of P applied, with outcomes ranging as high as 127.3 kg/kg on one plot.  In 

Cameroon, The et al (2001) present field trail data from 1997 to 2000 showing that mean yields 

on fields where local seed varieties were planted were 9.1 kg of maize greater per kg of P 

applied.  Soil pH in those fields was reported at 4.5.  Where P-fertilization was supplemented 

with lime application to mitigate low pH effects yields were nearly double those where fertilizer 

alone was applied, on average.  

Furthermore, this result is highly consistent with the agronomic principle that P-fertilizers 

are very vulnerable to being immobilized into iron and aluminum phosphates at pH levels below 

5.5 (Griffiths, 2010).  There is a vast agronomic literature on the limited effectiveness of 

phosphoric fertilizers on acidic soils for maize and other crops which corroborates these findings 

(examples include Omenyo et al, 2010; Gudu et al, 2005; Anetor and Akinrinde, 2007; Zhang et 

al, n.d.; and many others).  The unfortunate fact for Zambia, however, is that very few of their 

maize fields are on neutral to semi-neutral soils.  In fact, the majority of Zambian maize fields 

are on acidic soils where basal fertilizer is relatively ineffective (Table 1.5).   

Note also, there is a negative and significant interaction effect between basal and top 

dressing applications.  As can be seen in Figure 1.3, this (and perhaps over fertilization of basal 

itself) has resulted in a negative estimate for the partial effect of basal application on a small 

share of the fields in our study (1%).  On pH neutral soils this result would be rather surprising, 

because P and N are jointly elements that form adenosine triphosphates, which are the key 

“energy unit” that plants form during photosynthesis and which is used to store and use the 

plant’s energy (Eckert, 2010; Griffiths, 2010).  In other words, we would expect a positive 

relationship between P and N fertilizers.  In Zambia, however, N fertilization is apparently 

compounding the P consumption problems that are experienced on acidic soils.  In other words,  
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Figure 1.4: Simulated profitability of basal application near Choma 
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field level variations in acidity are causing an even greater impact on the (lack of) effectiveness 

of both P and N fertilization.   

Soil acidity has important implications for the profitability of fertilizer adoption and may 

contribute to the explanation as to why many Zambian farmers do not use or “under-use” 

fertilizer.  Consider, for example, the effect of soil acidity on profitability in Choma, one of 

Zambia’s most productive districts.  The average real cost of basal fertilizer at planting time 

(October to December) in 2003 and 2007 was 3,556 ZMK/kg (measured in 2010 Kwacha), and 

the real marketing season (May to July) price for maize in Choma was 782 ZMK/kg.
15

  

According to Sitko et al (forthcoming), the cost of transporting maize in Zambia is 7.1 Kwacha 

per kilogram per kilometer (ZMK/kg/km), and analysis from Burke et al (2011) indicates that the 

cost of transporting fertilizer is 10.6 ZMK/kg/km.
16

 Our data shows the median distance from 

farm gate to Choma is 33.5 km in that district.  Several simulations of the average value cost 

ration (AVCR) a farmer would face based on these parameters are illustrated in Figure 1.4. 

If we assume these transport costs are factored into commercial farm gate prices for the 

farmer’s inputs and output (simulation 1 in Figure 1.4), basal fertilizer use in the district for this 

representative example would not be profitable
17

 at any pH level, even if we ignore all non-

                                                 
15

 Nominal prices are from the Agricultural Market Information Center (AMIC) inflated to real 
2010 prices using the Central Statistics Office’s published Consumer Price Index (CPI). 
16

 It stands to reason that the cost of transporting fertilizer would be greater per kg/km because it 
is generally transported on a smaller scale, by the farmer rather than a medium or large scale 
grain assembler. 
17

 “Profitable” is defined as a value cost ratio greater than 1.0.  Crawford and Kelly (2002) and 
others suggest defining profitable as an AVCR greater than 2 to account for transfer costs.  We 
use 1 since we include transportation in our simulations.  Given the certain existence of other 
transfer costs (e.g. information gathering), we consider ours a liberal definition. 
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transportation transfer costs.  If we assume all fertilizer on the field is subsidized at a price of 

1,000 ZMK/kg (simulation 2), basal application is reasonably profitable at pH levels above 5.5, 

marginally profitable in the pH range of 4.4 to 5.5, but still not profitable where pH is below 4.4.   

In simulation 3 we return fertilizer to its commercial price, but assume the household is 

able to sell their maize at the subsidized price of 1,300 ZMK/kg (e.g. sell to the Food Reserve 

Agency (FRA)).  In this scenario basal application would be profitable on semi-neutral soil 

(AVCR=1.9), but not so for any soil where pH is below 5.5.  Finally, in simulation 4 we assume 

our farmer receives both subsidized fertilizer and a subsidized sale price.  In this scenario basal 

application is clearly profitable for the high pH range (AVCR=5.5) and, considering we’ve 

accounted for transport costs, the 4.4 to 5.5 pH range as well (AVCR=2.5).  In the lowest pH 

range, however, basal use is only marginally profitable even if both input and output prices are 

subsidized non-transport transfer costs are ignored (AVCR=1.3).  Sixty-four percent of the maize 

fields farmed in Choma are in an area where prevailing pH is between 5 and 5.4, meaning use is 

not profitable at commercial prices, marginally profitable if fertilizer is subsidized, and only 

clearly worth the farmer’s investment if inputs and output prices are both subsidized.  The other 

fields in Choma are on soils where pH is below 4.4.  Only 2% of our nationally representative 

sample is in an area where pH is greater than 5.5, meaning acidity, if unchecked, is likely to 

render basal fertilizer application unprofitable on nearly all Zambian soils.
18

 

In this discussion, we must acknowledge that the profitability analysis for basal fertilizer 

assumes the full real price of fertilizer should be applied.  As discussed previously, many of the 

                                                 
18

 An interactive Excel spreadsheet is available upon request to test the sensitivity of this 
finding.  The finding that basal use is not profitable on the overwhelming majority of maize 
fields, barring subsidized inputs or outputs, is quite robust. 
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benefits of phosphoric fertilization are not realized in the year of application due to the time it 

takes for phosphorus to convert to consumable phosphates (if it is going to do so).  So, the 

“actual” real relevant price is the real price times the ratio of nutrients that are consumed in the 

first year (and the carry over nutrients captured by proxy) to the total fertilizer nutrients that will 

eventually be consumed by one of the farmer’s crops.  Estimating this ratio presents a significant 

challenge, but we can establish a reasonable range of assumptions for testing the sensitivity of 

our profitability conclusions.   

The high end assumption is that all of the nutrients are consumed in the first year.  This is 

the assumption imposed in Figure 1.4.  If farmers are unaware of the physics of phosphoric 

fertilization (i.e. the carry-over effects), then note, this is the perceived relevant price, and 

applying this assumption allows us to demonstrate the perceived profitability of basal fertilizer 

application.  If farmers are aware of carry over effects, they would know that real profitability 

will depend on some lower share of the fertilizer’s price. 

The low end assumption of this ratio can be derived based on knowledge of basal 

fertilizer’s composition.  Phosphorus constitutes roughly half of the major nutrients delivered in 

basal dressing.  The other half includes nitrogen, potassium and some minor nutrients that are 

either consumed or washed away in the year of application.  According to Griffiths (2010), at a 

minimum, 20% of the phosphorus that will ever be consumed will be taken in the year of 

application.  We will also assume that, on average, an additional 20% of the phosphorus in basal 

fertilizer will never be consumed by the farmer’s crops.  On Zambia’s primarily acidic soils, this 

is a very conservative assumption.  Therefore, the minimum share of the price of basal that we 

should consider relevant to our profitability analysis is 0.7, or 70 percent (i.e. the 50% attributed 

to other nutrients, plus 40% of the half that is attributed to phosphorus).   
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Figure 1.5: Simulated profitability of basal application near Choma: Actual relevant price 
ratio sensitivity analysis 
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Again based on the characteristics of maize marketing in the Choma region, sensitivity 

analysis to this ratio assumption is presented in Figure 1.5.  Here we apply a range of 

assumptions on actual real prices in the range of 70-90% of the perceived real price.  Notably, 

even at the most conservative assumption for relevant price ratio (70%), basal fertilizer 

application at commercial prices is only marginally profitable on semi-neutral soils and 

unprofitable on the acidic soils that prevail in the region. 

Fortunately, the situation illustrated in Figure 1.3 is not fixed, and there are measures that 

can be taken to make basal fertilizer use profitable on acidic soils and increase Zambian 

productivity.  First, certain fertilizer application methods could shift up the response rates in 

Figure 1.3, so that higher response levels are seen at pH levels more commonly found in Zambia.  

For example, it has been shown that applying small bands of fertilizer very near, around or under 

the seed makes P-fertilization more effective in acidic soil (Boman et al, 1992).  This is known 

as “banding” application, as opposed to evenly spreading fertilizer over the entire field, or 

“broadcasting,” as is commonly practiced in Zambia.  Also, private firms in developed countries 

produce “phosphorus enhancing” fertilizer supplements which claim to harmlessly alter the soil 

chemistry near the fertilizer to protect it from becoming unavailable to plants.
19

  These fertilizer 

supplements have been tested extensively on U.S. soil, where they have a 15-20% effect on 

increasing yields, but the benefits may be greater on more acidic soils.  

Second, it is important to realize that fertilizer is one of many available maize production 

inputs.  Specifically, other inputs could be used to shift the distribution of fields in Table 1.5 up 

to the pH levels at which P-fertilization is naturally more productive.  This is the primary reason 

                                                 
19

 For example, see http://www.chooseavail.com/Science.aspx 
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farmers throughout the world apply lime to their fields.  Moreover, certain types of lime have the 

added benefit of adding Calcium and Magnesium (useful elements) to the soil, while neutralizing 

Manganese and Aluminum (harmful elements) (Snyder, 2010).   

Alternatively, management practices could be designed to both increase pH and basal 

fertilizer’s resistance to acidity, in order to find a productive middle-ground.  That said, the 

optimal solution is not obvious.  Finding this solution will require substantial research, and will 

require more funding allocated to institutions such as the government funded Zambia 

Agricultural Research Institute (ZARI, in the Ministry of Agriculture and Cooperatives) or the 

donor funded International Institute of Tropical Agriculture (IITA), which recently selected 

Zambia to be the home of its regional offices.
20

 

Top dressing is more effective on most Zambian fields with an APE of 4.3 incremental 

kgs of maize per kg of fertilizer applied (p-value = 0.00, Table 1.5).  With respect to acidity, this 

is not surprising since the N in top dressing is more vulnerable to volatilization in alkaline soils, 

which are generally not found in Zambia.  Note from regression results, however, that this figure, 

too, masks a range of yield response rates. 

For example, fields on one of Zambia’s sandy/undeveloped soil types will see, on 

average and all else equal, 2.1 kg/kg lower response rate to top dressing fertilizer than a farmer 

on the clayish Acrisol soil most common in Zambia (p-value =  0.02, Table 1.4).  This is likely 

due to the fact that water more readily percolates through these soils, causing the N provided by 

top dressing to leach away from the plant faster.  Plow tillage and improved seed variety use also 

have expected impacts on the effectiveness of top dressing, though these are only significant at  

                                                 
20

 see http://www.daily-mail.co.zm/media/news/viewnews.cgi?category=19&id=1256193183 
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Table 1.7: Yield response to top dressing fertilizer by tillage and soil types 
Tillage method 

Plowing Other tillage methods 
Soil type ------Average partial effect of top dressing (kg/kg)----- 

Sandy soils 2.625** 3.285*** 
 (0.02) (0.00) 

Other soil types 4.197*** 4.978*** 
 (0.00) (0.00) 

Source: regression results reported in Table 1.4 
Note: robust p-values in parentheses.  *** significant at 1% , **significant at 5%  
 
 

the 29% and 31% levels respectively when our model is estimated via IPCRE (notably, both 

effects are of greater magnitude and statistical significance if we ignore unobserved 

heterogeneity).   Farmers who plow their fields will see yield response to top dressing 0.74 kg/kg 

lower than a farmer with less soil-disruptive tillage such as ripping, basin planting or hand 

hoeing.  Again, this is likely caused by increased nutrient loss as water is more able to seep 

through loosened soil.   

Together these and other effects can cause considerable variance in yield responses.  

Table 1.7 presents the APE of top dressing fertilizer according to whether plow tillage is 

employed and whether the field is in a region of sandy/undeveloped soil or some other soil 

type.
21

  While the average effects of top dressing are statistically significantly different from 

zero at the 2% level or lower in each case, response rate is 90% higher in non-sandy soils which 

are not tilled via plow (4.98 kg/kg) compared to that in plowed, sandy soil (2.63 kg/kg).  When 

soils are either sandy and unplowed or plowed and not sandy, response to top dressing fertilizer 

is 3.29 kg/kg and 4. 20 kg/kg respectively, on average. 

 
                                                 
21 Note from regression results that other soil interactions indicate response rates on them were 
not statistically significantly different form those on Acrisols, so they are grouped together here. 
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Figure 1.6: Cumulative distribution of average product of fertilizer use (kg/kg) 
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As with basal fertilizer, although yield response to top dressing is statistically significant, 

it is not necessarily profitable to use it in Zambia.  Based on average real wholesale prices for 

maize in several towns throughout Zambia during harvest months in 2004 and 2008, and national 

fertilizer prices in during the planting months in 2003 and 2007,
22

 a farmer would require, on 

average, a yield response rate of 4.1 kg/kg in order to achieve a AVCR greater than 1 (i.e. be 

profitable if we ignore all transfer costs).  Figure 1.6 shows the cumulative distribution of the 

average product of basal and top dressing fertilizer estimated for the fertilizer users in our sample  

                                                 
22

 Wholesale maize prices for Kabwe, Ndola, Choma, Lusaka and Chipata for the post-harvest 
months of May to July 2003 and 2007 (881 ZMK/kg of maize, on average), and fertilizer prices 
from October to December 2004 and 2008 (3591 ZMK/kg of fertilizer) are from AMIC.  Prices 
are inflated to 2010 values using the CSO Consumer Price Index. 
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with a horizontal reference line at an average product of 4.1.  Thus, observations to the left of 

where the reference line bisects the distribution represent fields where fertilizer use is not 

profitable.  At these commercial prices, fertilizer use was not profitable on 39% of all fields with 

respect to top dressing, and 92% of all fields with respect to basal fertilizer.  To achieve an 

AVCR of 2 (i.e. the “rule of thumb” profitable value that would account for transfer costs 

(Crawford and Kelly, 2002)), we require an average product of 8.2.  This is estimated for just 1 

fertilized field in our sample with respect to basal fertilizer and 2 fertilized fields with respect to 

top dressing.   

 While this figure may be surprising, bear in mind these results are based on the 

assumption that there will be a successful harvest (i.e. these estimates are based on data that 

filtered out crop failures).  If we factor in the regionally variant likelihood of crop failure 

(computed as described in the data section
23

), expected profitability is even lower.  Figure 1.7 

presents the cumulative distribution of the expected AP of fertilizer application among users in 

our sample.  Using the same commercial prices described for Figure 1.6, top dressing fertilizer 

would expectedly be unprofitable 42% of those applying top dressing and 99% of those applying 

basal. 

Beyond explaining why some farmers choose not to use fertilizer, the profitability 

analysis conducted here, particularly for basal dressing, makes one wonder why fertilizer is 

being used at all in Zambia.  There are a number of possible explanations.  First of all, for 

farmers who don’t sell maize, and particularly for those who supplement their own production 

with maize purchases, this AVCR is an irrelevant measurement of fertilizers usefulness.  For  

 
                                                 
23

 The means of the probability of successful harvest are presented by province in Appendix F 
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Figure 1.7: Expected average product of fertilizer applications in Zambia 
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these farmers the per kg value of what they grow should be measured by the amount they save 

from not having to purchase maize, rather than how much they earn from selling.  Moreover, 

farmers may not trust the market’s reliability to provide maize, and thus place an unmeasured 

value on having their own production.  

Secondly, as our previous simulations analysis demonstrates, subsidized input and output 

prices affect farmer incentives.  For example, if we apply the subsidized fertilizer price (1,000 

ZMK/kg) to our analysis in Figure 1.6, we only need a response rate of 2.8 for use to be 

profitable (ignoring transfer costs).  Thus, at the subsidized fertilizer price basal fertilizer use is 

not profitable on just 54% of the fertilized fields in our study and top dressing is not profitable 

for only 11%.  This begs the question as to whether government policies that distort the market 
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induce farmers to employ economically inefficient production technologies.  In the least, the fact 

that fertilizer use is only profitable when subsidized on the majority of Zambian maize fields has 

implications for the long-run viability of subsidy programs.  Specifically, this suggests subsidies 

will not successfully induce adoption that will last after subsidies have been removed.   

Finally, farmers may not differentiate between basal and top dressing fertilizers, and thus 

comingle the benefits when considering fertilizer decisions.  That is, the farmer may not expect a 

5 kg/kg response from top dressing and a 2 kg/kg response to basal fertilizer, but rather a 3.5 

kg/kg response from each when they’re applied simultaneously.  At subsidized prices, this may 

well be considered a profitable response for both fertilizers.  To more rigorously answer this 

question is beyond our scope, but what is clear from these results is that low profitability of 

fertilizer use is prevalent in Zambia. 
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1.7 SUMMARY AND IMPLICATIONS 

Indicators such as the food crisis of 2008, the ongoing famine in parts of the developing 

world and the stubbornly persistent poverty rates of the past several decades all suggest that a 

deep chasm still exists between the status quo and a world without hunger.  Particularly in 

Africa, current population trends in terms of growth and concentration imply that increased small 

holder productivity through improved yields will be absolutely necessary if we are to achieve the 

goal of ending global poverty and hunger.  Many African countries in recent years have returned 

to input subsidies, particularly for fertilizer, in an effort to achieve this goal with underwhelming 

results.  To better inform agricultural policies designed to benefit small farmers, one must 

understand the determinants of their yields and how they respond to input investments. 

In this study we estimate the determinants of maize yields in Zambia using data from 

7,262 fields from households that grew maize and were interviewed in 2000, 2004 and 2008.  

Following known agronomic principles, we allowed the effects of some inputs, particularly 

fertilizer, to be conditional on other factors of the maize’s growing condition.  Our discussion 

highlights that many unobserved but very important factors are frequently omitted from yield 

models that use household data, such as soil quality and moisture content.  We recommend an 

approach for estimating these models to mitigate the potential bias that could stem from said 

omissions and from the structural endogeneity of input use.   

Our results indicate that top dressing is generally more effective on Zambian maize crops, 

but significantly less so on sandy and plowed fields, where more of the nutrients in the fertilizer 

will be vulnerable to leaching.  Consistent with agronomic principles, we find that phosphoric 

basal fertilizer is significantly less effective on acidic soils.  Both types of fertilizer are more 
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effective when used in conjunction with improved seed varieties, but for the vast majority of our 

sample fertilizer use would not be profitable at commercial prices.  The results of this study have 

several important implications for researchers and policy makers alike.  

First, while the method used here seems to have successfully controlled for many of the 

omitted variables and structural endogeneity inherent in our model, one of the key lessons 

learned is that household economic models would benefit greatly from improved agronomic data 

availability.  Note, for example, our results showed no significant relationship between rainfall 

and yield.  Obviously, this does not come from the lack of rainfall’s influence on rain-fed maize 

crops, but rather from the fact that total rainfall data in the growing season is not always a good 

proxy for the soil moisture conditions throughout the growing season, the true determinant of 

yield. The distribution of rainfall is likely to be a more important determinant of crop yield than 

the total quantity of rainfall.   We would also very likely find a much stronger relationship 

between soil acidity and yields if our data were at the field level.  As collecting this information 

becomes more affordable, it would be extremely valuable to incorporate it into household survey 

data.  Beyond affecting yield itself, these factors could potentially add considerable explanatory 

power to models of input demand (as in Marenya and Barrett, 2009) and output market 

participation. 

Following the approach to circumvent this lack of data, our results demonstrate that 

failing to account for unobserved heterogeneity and endogeneity increased our estimate of yield 

response to top dressing fertilizer and decreased our estimate of basal dressing.  This suggests 

that the farmers in our sample with better unobservable productivity are more likely to have top 

dressing applied and less likely to have basal applied.  This could be a reflection of the fact that 
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farmers with better knowledge and skill are aware of the fact that top dressing is more effective 

than basal dressing on most of Zambia’s acidic soils.   

We find that top dressing fertilizer, which provides nitrogen, is more effective than 

phosphoric basal fertilizer on Zambian soils, but response rates are less attractive in coarse, 

sandy soils and on plowed fields where the majority of the topsoil is disturbed.  Moreover, given 

transportation costs and response rates (4.2 kg/kg on average), adoption of top dressing fertilizer 

would be unprofitable for many Zambian farmers at commercial prices. 

Soil acidity is a substantial limiting factor in Zambian maize production, both from the 

direct impact on maize plants and the impact it has on fertilizer effectiveness.  Basal fertilizer in 

particular is vulnerable to nutrient “lockup” in the acidic soils that prevail throughout Zambia, 

rendering its nutrients largely unavailable to plants and its application even less profitable for 

farmers, at least at commercial prices.  In fact, fertilizer (if it is the only input under 

consideration) is only profitable for many households when it can be purchased at subsidized 

prices, which has important implications for the long-run viability of subsidy programs.  

Specifically, this essentially eliminates the possibility of a successful “phase out” of the program 

after which farmers would continue to use fertilizer at commercial prices.   

This calls for a shift in the design of agricultural and rural poverty reduction programs 

away from fertilizer subsidies and distribution as the cornerstone to a more integrated program 

that may include fertilizer subsidies along with other inputs and agronomic practices to allow for 

sustainable and profitable crop intensification even after the fertilizer subsidies are withdrawn.  

In Zambia, ZARI is the government funded agricultural research institute where this 

development would most likely take place.  In a follow-up to this analysis, several researchers 
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and officials were interviewed to discuss the results presented here.  Every agronomist and 

official interviewed was fully aware of the scientific fact that acidity affects the productivity of 

maize plants both directly and through its impact on the effectiveness of fertilizer, and not 

surprised in the least by our results. 

In the opinion of senior ZARI researchers, one approach to address this and other 

productivity limitations is to develop acid resistant seed varieties that are specifically designed to 

prosper on Zambian soils.  There are, however, very limited resources dedicated to such 

endeavors.  According to one official, the budget allocated to improved plant development for all 

of Zambia is less than $100,000 annually, and the laboratories most often actually receive less 

than half of that.  The remainder is frequently re-allocated to the FISP or FRA programs that 

respectively subsidize input purchases and output sales in the maize market.   

That said, additional research may not be necessary to improve yields in the short term 

because results from existing Zambia-specific research has generated existing knowledge that 

has never been fully exploited.  Specifically, it is known to Zambian agronomists that lime 

application is the most direct management practice to solve the problem of soil acidity.  So, if 

Zambian officials are aware of both the acidity problem and the solution to it, one must wonder 

why lime is not being applied to smallholder fields (less than 2% of our sample applied lime, and 

those who did applied at just 5-10% of the recommended rate, on average).  According to 

officials, there are two primary constraints. 

First is the cost of getting the appropriate amount of lime on to the field.  The product 

itself is relatively inexpensive (the per kilogram retail price is approximately 10% that of basal 

fertilizer), but ZARI application recommendations are 1-2 tonnes per hectare (or 2.5-5 times 
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greater than the recommended fertilization rate).  Moving that quantity of lime, according to 

officials, has been cost prohibitive.  For example, while a 50 kg bag of lime may cost 25,000 

ZMK at the retailer, officials estimate the cost at the farm gate can be as high as 80,000 ZMK.   

If we accept this as fact, distributing sufficient lime would indeed cost more than twice 

the cost of distributing the current amount of basal fertilizer.  However, the added benefit would, 

by all anecdotal accounts, outweigh the added cost.  Unfortunately, we are unable to do a proper 

analysis of the profitability of lime use because there simply isn’t enough data.  For example, 

less than 2% of the fields in our sample had lime applied, and on the rare occasions it was, rates 

were very low.  In a 2001 publication, The et al. demonstrated that lime alone could more than 

double yields on acidic soils in Cameroon, while phosphoric fertilization alone will have 

extremely limited impact.  ZARI has experimental results demonstrating the same is true in 

Zambia, but their results have never been made easily accessible.   

The second constraint is the lack of farmer awareness regarding the negative impacts of 

soil acidity and the mitigating effects of lime application.  There was a brief period during which 

the Program Against Malnutrition (PAM, a government funded safety net to provide resources to 

the poorest Zambian smallholders) included lime in the package of goods distributed to their 

beneficiaries.  Not realizing the potential benefits, or in some cases believing lime would damage 

rather than enhance their soil, officials say the majority of the recipients either disposed of the 

input or mixed it with water to use as paint for their houses. 

At current budget allocations, extension officials claim they are not adequately equipped 

to convince farmers to alter their input strategies.  For example, ZARI has produced “production 

guides” for several crops, including one for maize which discusses the importance of liming.  
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Funding, however, has limited production of these guides to about 2,000 copies per crop.  In a 

nation of more than 1,500,000 small farming households, this is staggeringly inadequate.  That 

said, several members of the Ministry of Agriculture and Cooperatives claim that putting a guide 

in every household would not change behavior without sustained extension efforts.  Many claim 

on-the-ground evidence will be necessary through example plots that iteratively demonstrate the 

benefits of soil pH management for several years.  Resources for maintaining such plots, 

however, have not been made available.   

It is estimated that one plot per District Camp would be sufficient to sensitize farmers to 

the benefits of managing pH and other soil characteristics.  There are roughly 1,700 such Camps 

in Zambia, each with a resident extension agent in place.  Similar to the distribution in our 

sample, officials estimate that roughly half of them are in areas where highly acidic soil is 

prevalent.  By their reckoning, the additional cost of installing and managing such a plot would 

be ZMK 2.5-5 million per year.  For a pilot program of 100 Camps over 3 years, this would be a 

total commitment of less than roughly 1% of the government’s allocation to FISP in 2011 alone.  

By the conservative cost estimation, to manage one of these demonstration plots in every one of 

the 800 Camps where soil acidity is the worst would cost 4 billion Kwacha per year.  This is less 

than the 5.2 billion allocated to the annual Agricultural Show, a three day event held in the 

capital every year, which, incidentally, is partially meant to be a farmer outreach program. 

Liming, of course, is not the only solution to the productivity limitations of acidic soil.  

For example, it has been shown that applying small bands of fertilizer very near, around or under 

the seed at the time of planting makes P-fertilization more effective in acidic soil (Boman et al, 

1992).  This is known as “banding” application, as opposed to evenly spreading fertilizer over 

the entire field, or “broadcasting,” as is commonly practiced in Zambia.  Extension officials say 
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farmers are willing to try the new application method, but insist on waiting until after 

germination to avoid potentially wasting resources.  This is unfortunate, because the nutrients in 

basal fertilizer, which are critical in the early stages of plant life, require the time between 

planting and germination to become ready for the plant’s consumption.  Late application, 

therefore, may dramatically reduce fertilizer effectiveness.  Again, more extension work and 

demonstrations may be required to combat this problem.   

Also, private firms in developed countries produce “phosphorus enhancing” fertilizer 

supplements which claim to harmlessly alter the soil chemistry near the fertilizer to protect it 

from becoming unavailable to plants.  These fertilizer supplements have been tested extensively 

on U.S. soil, where they have a 15-20% effect on increasing yields, but the benefits may be 

greater on more acidic soils.  Resources should be allocated so that such alternatives can be 

tested in Zambia. 

Alternatively, some combination of inputs management practices could be designed to 

both increase pH and basal fertilizer’s resistance to acidity in order to find the most productive 

maize farming practices.  Finding the optimal solution will require research and funding 

allocated to institutions like ZARI.     

Fertilizer use is often cited as one of the key differences between African countries and 

the Green Revolution success stories like India, where application rates are many times higher.  

The recent resurgence of fertilizer subsidy programs throughout Africa confirms that policy 

makers are keen to promote fertilizer use among their smallholders at almost any cost.  In 

separate studies the Economist Intelligence Unit (2008) and the International Food Policy 

Research Institute (Fan et al 2007) ranked fertilizer subsidies during the Green Revolution 
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among the least effective policies in terms of benefit/cost ratio and poverty reduction.  

Consistently in the top of these rankings is agricultural research and development. 

 Fertilizer (along with irrigation and tailored hybrid seed use) may have been the appropriate 

technology for the agricultural systems of Asia’s Green Revolution.  This does not imply, 

however, a mono-focus on fertilizer alone is the appropriate technology for many areas of Africa, 

even though increasing fertilizer use will be required.  The challenge is to find packages of 

inputs and agronomic practices that will be profitable for farmers to adopt sustainably.  Our 

results demonstrate that in countries farming on acidic soil, alternative measures will need to be 

taken if yields are to increase to the levels required to support economic transformation.  This 

may be through tailored application methods and tillage practices, or through the use of 

supplementary inputs such as lime and phosphorus enhancers.  The optimal prescription is 

unknown and finding it will require a investment in agronomic research specific to each county 

or region’s agricultural system.  It is clear, on the other hand, that uninformed subsidy policies 

are not likely to succeed in producing long-term economic growth.
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APPENDIX A 
Figure A.1: pH and soil type maps of Zambia 
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Figure A.2: Soil Map of Zambia 

Soil Research Team, Mt. Makulu, Chilanga (2002)
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APPENDIX B 
 
Table B.1: Select results from yield response estimates un-weighted for attrition bias 

OLS  IV PCRE IPCRE 
 (i) (ii) (iii) (iv) 
Fertilizer use     

Fertilizer user (1=yes) y -321.292*** -320.8636*** -323.2965*** -332.0191*** 

 (0.00) (0.00) (0.00) (0.00) 
2.1643** 2.0875** 3.1121*** 3.1090*** Basal application rate 

(kg/ha) y (0.01) (0.02) (0.00) (0.00) 

Basal rate squared y  -0.0045** -0.0041** -0.0046*** -0.0043*** 

 (0.02) (0.02) (0.00) (0.00) 
6.2809*** 6.3275*** 5.6336*** 5.6851*** Top dress application 

(kg/ha) y (0.00) (0.00) (0.00) (0.00) 

Top dress rate squared y  -0.0029*** -0.0029*** -0.0020*** -0.0020*** 

 (0.00) (0.00) (0.00) (0.00) 
Other inputs and tillage     

243.723*** 240.2565*** 216.6267*** 218.5080*** Improved seed use 

(1=yes) y (0.00) (0.00) (0.00) (0.00) 

22.0193*** 21.6226*** 22.5534*** 21.8066*** Seed application rate 

(kg/ha) y (0.00) (0.00) (0.00) (0.00) 

Seed rate squared y -0.1336*** -0.1295*** -0.1218*** -0.1141*** 

 (0.00) (0.00) (0.00) (0.00) 
219.036*** 218.8710*** 358.8799*** 358.6640*** Planted with an N fixer 

(1=yes) (0.01) (0.01) (0.00) (0.00) 
Other mixed crop (1=yes) -56.2685 -57.3608 121.7717 121.9097 

 (0.59) (0.59) (0.30) (0.30) 
73.6087 73.7688 65.9419 66.9046 Applied plant or animal 

manure  (1=yes) (0.14) (0.13) (0.28) (0.27) 
Planting before the rains  18.0235 18.0287 40.1343 40.2256 

(1=yes) (0.58) (0.58) (0.37) (0.36) 
Planting basins (1=yes) 51.6056 50.6198 138.7752 138.2669 

 (0.66) (0.66) (0.27) (0.27) 
Zero tillage (1=yes) 136.9593* 134.9510* 42.1195 38.5208 

 (0.06) (0.06) (0.71) (0.73) 
Plowing (1=yes) 264.517*** 263.7214*** 196.8665*** 193.5208*** 

 (0.00) (0.00) (0.00) (0.00) 
Ripping (1=yes) 44.5209 46.8629 221.4980 225.2132 

 (0.79) (0.77) (0.28) (0.27) 
Ridging (1=yes) 55.2042 56.2856 113.4178* 113.4221* 

 (0.21) (0.20) (0.05) (0.05) 
Bunding (1=yes) -170.4319 -166.8851 90.9730 92.6726 

 (0.30) (0.31) (0.67) (0.66) 
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Table B.1: (cont’d)     
 OLS  IV PCRE PCRE IV 
 (i) (ii) (iii) (iv) 

Weed once (1=yes) 425.107*** 423.3512*** 437.2456** 435.5213** 
 (0.00) (0.00) (0.01) (0.01) 

Weed twice (1=yes) 459.430*** 457.3851*** 457.4049*** 455.2685*** 
 (0.00) (0.00) (0.01) (0.01) 

Weed three times (1=yes) 477.403*** 474.6010*** 519.1867*** 518.2911*** 
 (0.00) (0.00) (0.00) (0.00) 

Soil characteristics     
4.4   pH  5.5 (1=yes)  125.230*** 124.3582*** 126.2784*** 126.9407*** 

 (0.01) (0.01) (0.01) (0.01) 
5.5   pH  7.1 (1=yes)  318.3120** 312.7045** 343.4986*** 337.2888*** 

 (0.01) (0.01) (0.01) (0.01) 
Clayish soils (excl. 

acrisols) 
-197.908*** -198.5336*** -207.0411*** -207.3878*** 

 (0.00) (0.00) (0.00) (0.00) 
Sandy/undeveloped soils -136.2594** -131.9179* -135.0685* -130.0181* 

 (0.04) (0.05) (0.05) (0.06) 
Developed/organic soils 74.0828 59.4174 63.3488 47.7495 

 (0.49) (0.57) (0.56) (0.65) 
Other soils -152.5237** -142.9610** -156.2458** -144.5014** 

 (0.02) (0.03) (0.02) (0.04) 
Weather     

Rainfall (mm) 0.0724 0.0655 -0.1403 -0.1554 
 (0.86) (0.87) (0.78) (0.75) 

Rainfall squared -0.0001 -0.0001 -0.0001 -0.0000 
 (0.56) (0.57) (0.81) (0.83) 

Stress periods 
(<20mm/dekad) 

-23.0017 -23.6562 -20.5949 -20.6126 

 (0.18) (0.16) (0.47) (0.47) 
Provincial weather effect Yes Yes Yes Yes 

Fertilizer interactions     
0.9973 1.0975 0.7448 0.9374 Basal 

rate*1[pH ]
 y

 )5.5,4.4[ (0.14) (0.11) (0.38) (0.27) 

4.6162*** 4.4737*** 4.8063*** 4.7160*** Basal 

rate*1[pH ]
 y

 ]1.7,5.5[ (0.00) (0.01) (0.00) (0.00) 

Basal rate*top dress rate y -0.0001 -0.0002 -0.0013 -0.0015 

 (0.98) (0.90) (0.36) (0.27) 

Top dress rate*clay soil y -0.6225 -0.6697 -0.6178 -0.6840 

 (0.32) (0.30) (0.33) (0.29) 

Top dress rate*sandy soil y -1.5272* -1.7074* -1.5428* -1.7383* 

 (0.09) (0.06) (0.09) (0.06) 
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Table B.1: (cont’d) 
 OLS  IV PCRE PCRE IV 
 (i) (ii) (iii) (iv) 

Top dress rate*rich soil y 0.2817 0.5071 0.3275 0.5553 

 (0.83) (0.70) (0.80) (0.68) 

Top dress rate*other soil y -0.6051 -0.8903 -0.5101 -0.8239 

 (0.53) (0.36) (0.60) (0.40) 
-1.0478** -1.0232** -0.7326 -0.6649 Top dress rate*Plow 

tillage y (0.04) (0.05) (0.30) (0.35) 

0.4754* 0.4517 0.2142 0.1512 Fertilization 

rate*improved seed use y (0.07) (0.12) (0.50) (0.66) 

Constant 268.2505 285.3525 35.0534 69.4362 
 (0.35) (0.32) (0.96) (0.92) 

Observations 7262 7262 7262 7262 
R-squared 0.261 0.261 0.265 0.265 
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APPENDIX C 
 
Table C.1: Instrumented, Pooled Correlated Random Effects estimation results 
compared to Fixed Effects Instrumental Variable estimation results 
 Estimator 
 IPCRE FEIV 
Explanatory variables (i) (ii) 
Fertilizer use   

Fertilizer user (1=yes) y -345.4989*** -344.8795*** 

(0.00) (0.00) 

Basal application rate (kg/ha) y 2.5625*** 2.6583*** 

(0.01) (0.01) 

Basal rate squared y -0.0039** -0.0041** 

(0.03) (0.02) 

Top dress application (kg/ha) y 5.4721*** 5.5416*** 

(0.00) (0.00) 

Top dress rate squared y -0.0019*** -0.0020*** 

(0.00) (0.00) 
Other inputs and tillage   

Improved seed use (1=yes) y 183.1064*** 184.8419*** 

(0.00) (0.00) 

Seed application rate (kg/ha) y 20.7972*** 20.5921*** 

(0.00) (0.00) 

Seed rate squared y -0.1062*** -0.1032*** 

(0.00) (0.00) 
Planted with an N fixer (1=yes) 377.0041*** 179.6058* 

(0.00) (0.05) 
Other mixed crop (1=yes) 190.6695 -37.4358 

(0.15) (0.76) 
Applied plant or animal manure (1=yes) 23.1003 44.3713 

(0.72) (0.37) 
Planting before the rains (1=yes) 20.8432 -10.2484 

(0.66) (0.77) 
Planting basins (1=yes) 141.8314 44.4658 

(0.26) (0.69) 
Zero tillage (1=yes) 51.7677 145.7218* 

(0.66) (0.06) 
Plowing (1=yes) 171.7717** 227.4446*** 

(0.03) (0.00) 
Ripping (1=yes) 190.4936 22.4789 

(0.41) (0.89) 
Ridging (1=yes) 126.7231** 52.4627 

(0.04) (0.27) 
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Table C.1: (cont’d)   
 PCRE IV FE IV 
 (i) (ii) 

Bunding (1=yes) -72.2638 -232.2502 
(0.76) (0.17) 

Weed once (1=yes) 341.8989* 328.3955** 
(0.06) (0.03) 

Weed twice (1=yes) 380.0669** 367.8507** 
(0.04) (0.02) 

Weed three times (1=yes) 438.4622** 395.2880** 
(0.03) (0.02) 

Soil characteristics   
4.4   pH  5.5 (1=yes) 177.7879*** 161.2311*** 

(0.00) (0.00) 
5.5   pH  7.1 (1=yes) 419.5940*** 400.8690*** 

(0.00) (0.00) 
Clayish soils (excl. acrisols) -242.3512*** -243.7009*** 

(0.00) (0.00) 
Sandy/undeveloped soils -156.3618** -154.4745** 

(0.04) (0.04) 
Developed/organic soils 4.9952 18.8047 

(0.96) (0.86) 
Other soils -208.5235*** -213.1332*** 

(0.00) (0.00) 
Weather   

Rainfall (mm) -0.2604 0.2566 
(0.62) (0.56) 

Rainfall squared 0.0000 -0.0002 
(0.86) (0.37) 

Stress periods (<20mm/dekad) -3.0743 -26.8415 
(0.92) (0.13) 

Provincial weather effect Yes Yes 
Fertilizer interactions   

Basal rate*1[pH ]
 y

)5.5,4.4[ 1.4766* 1.2768* 

(0.08) (0.06) 

Basal rate*1[pH ]
 y

]1.7,5.5[ 4.9971*** 4.8421*** 

(0.00) (0.00) 

Basal rate*top dress rate y -0.0015 -0.0015 

(0.32) (0.35) 

Top dress rate*clay soil y -0.8527 -0.7748 

(0.22) (0.25) 

Top dress rate*sandy soil y -2.0764** -2.1184** 

(0.02) (0.02) 
  

 72



 73

Table C.1: (cont’d)   
 PCRE IV FE IV 
 (i) (ii) 

Top dress rate*rich soil y 0.5431 0.4389 

(0.67) (0.73) 

Top dress rate*other soil y -0.8496 -0.9157 

(0.36) (0.32) 

Top dress rate*Plow tillage y -0.7364 -0.8210 

(0.29) (0.22) 
0.3451 0.3563 Fertilization rate*improved seed use y

(0.31) (0.29) 
72.9007 64.8138 Inverse Mills ratio for growing maize 

both years (0.83) (0.85) 
Constant -97.9246 338.6581 

(0.89) (0.30) 
Observations 7127 7127 

R-squared 0.265 0.261 
 
 



APPENDIX D 
 
Table D.1: Net revenue maximizing seed rate sensitivity analysis 
  Maize output prices (ZMK/kg) 

 ` Commercial 
Commercial 
less transport FRA 

FRA less 
transport 

  (782) (569) (1300) (1087) 
Seed input prices (ZMK/kg) ------------Net revenue maximizing seed rate------------ 

Recycled/local (5000) 68.7 57.3 80.9 77.3 
Recycled plus transport (5213) 67.4 55.5 80.1 76.4 

Cheap hybrid (7000) 56.5 40.5 73.6 68.5 
Cheap hybrid plus transport (7213) 55.2 38.7 72.8 67.6 

Expensive hybrid (11000) 32.1 6.9 58.9 50.9 
Expensive hybrid plus transport (11213) 30.8 5.1 58.1 50.0 

Source: Author’s calculation based on regression results in Table 1.4, column iv.  Distance to seed seller and maize purchaser is 
assumed to be 30 kilometers with transportation costs of 7.1 ZMK per kilogram per kilometer for both.  Interactive Excel spreadsheet 
is available upon request for further sensitivity analysis. 

 74



APPENDIX E 
 
Table E.1: Selected results from yield response estimates for quantities of Nitrogen 
and Phosphorus 

Estimator 
OLS  IV PCRE IPCRE 

Explanatory variables (i) (ii) (iii) (iv) 
Fertilizer use     

Fertilizer user (1=yes) y -333.958*** -331.1359*** -338.3046*** -346.1022*** 

 (0.00) (0.00) (0.00) (0.00) 

Phosphorus rate (kg/ha) y 5.7178 5.2571 7.6456 7.6909 

 (0.24) (0.28) (0.17) (0.17) 

Phosphorus rate squared y  -0.1142** -0.1042* -0.0844* -0.0767 

 (0.04) (0.05) (0.10) (0.14) 

Nitrogen rate (kg/ha) y 12.7779*** 12.8134*** 11.6151*** 11.6275*** 

 (0.00) (0.00) (0.00) (0.00) 

Nitrogen rate squared y  -0.0133*** -0.0132*** -0.0096*** -0.0092*** 

 (0.00) (0.00) (0.00) (0.00) 
Other inputs and tillage     

223.198*** 218.9245*** 180.2142*** 182.3408*** Improved seed use 

(1=yes) y (0.00) (0.00) (0.00) (0.00) 

20.1287*** 19.7589*** 21.4384*** 20.7406*** Seed application rate 

(kg/ha) y (0.00) (0.00) (0.00) (0.00) 

Seed rate squared y -0.1162*** -0.1118*** -0.1129*** -0.1056*** 

 (0.00) (0.00) (0.00) (0.00) 
183.0391** 174.1369* 382.7085*** 376.9016*** Planted with an N fixer 

(1=yes) (0.05) (0.06) (0.00) (0.00) 
Other mixed crop (1=yes) -25.3239 -28.7940 191.6873 190.4080 

 (0.85) (0.83) (0.15) (0.15) 
38.5694 39.0638 20.7332 22.5477 Applied plant or animal 

manure (1=yes) (0.45) (0.44) (0.75) (0.73) 
Planting before the rains  -10.3577 -11.3667 21.4012 20.9489 

(1=yes) (0.77) (0.75) (0.65) (0.66) 
Planting basins (1=yes) 44.5066 42.5595 140.7991 141.8740 

 (0.69) (0.71) (0.26) (0.26) 
Zero tillage (1=yes) 145.1570* 141.5658* 56.5381 51.8175 

 (0.06) (0.07) (0.63) (0.66) 
Plowing (1=yes) 233.959*** 228.5035*** 180.0028** 173.0150** 

 (0.00) (0.00) (0.02) (0.03) 
Ripping (1=yes) 3.2847 10.2106 183.6101 191.1802 

 (0.98) (0.95) (0.43) (0.41) 
Ridging (1=yes) 44.7112 44.2000 127.5074** 126.4577** 

 (0.36) (0.36) (0.04) (0.04) 
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Table E.1: (cont’d)     
 OLS  IV PCRE IPCRE 
 (i) (ii) (iii) (iv) 

Bunding (1=yes) -249.1835 -242.9858 -77.5609 -72.9201 
 (0.16) (0.16) (0.74) (0.75) 

Weed once (1=yes) 330.0369** 320.2822** 350.0009* 341.5968* 
 (0.03) (0.04) (0.06) (0.06) 

Weed twice (1=yes) 368.3921** 357.9670** 388.6086** 379.6600** 
 (0.02) (0.02) (0.04) (0.04) 

Weed three times (1=yes) 397.1221** 384.0413** 447.0500** 438.2906** 
 (0.02) (0.02) (0.02) (0.03) 

Soil characteristics     
4.4   pH  5.5 (1=yes)  164.5800*** 160.5193*** 175.0973*** 174.8300*** 

 (0.00) (0.00) (0.00) (0.00) 
5.5   pH  7.1 (1=yes)  410.4628*** 397.3711*** 427.9988*** 416.6282*** 

 (0.00) (0.00) (0.00) (0.00) 
Clayish soils (excl. 

acrisols) 
-239.5355*** -240.9423*** -238.0959*** -239.5104***

 (0.00) (0.00) (0.00) (0.00) 
Sandy/undeveloped soils -161.7011** -154.2497** -159.9352** -152.8558** 

 (0.03) (0.04) (0.03) (0.04) 
Developed/organic soils 33.2519 24.1157 20.5983 8.0954 

 (0.76) (0.83) (0.85) (0.94) 
Other soils -225.3741*** -208.3845*** -224.4293*** -205.6920***

 (0.00) (0.00) (0.00) (0.01) 
Weather     

Rainfall (mm) 0.2905 0.2813 -0.2464 -0.2586 
 (0.51) (0.52) (0.64) (0.62) 

Rainfall squared -0.0002 -0.0002 0.0000 0.0000 
 (0.33) (0.33) (0.88) (0.87) 

-24.4845 -25.5716 -3.0180 -3.5836 Stress periods 
(<20mm/dekad) (0.16) (0.14) (0.92) (0.90) 

Provincial weather effect Yes Yes Yes Yes 
Fertilizer interactions     

P-rate * 1[pH ]
y
 5.5,4.4[ 5.5736 6.4282* 6.5662 7.8338* 

 (0.10) (0.06) (0.13) (0.07) 
23.2858*** 23.4128*** 25.1482*** 25.5038*** P-rate * 

1[pH ]
 y

 ]1.7,5.5[ (0.00) (0.00) (0.00) (0.00) 

P-rate * N-rate y 0.0114 0.0093 -0.0096 -0.0126 

 (0.53) (0.60) (0.55) (0.44) 

N-rate *clay soil y -1.4995 -1.5785 -1.5491 -1.6631 

 (0.21) (0.19) (0.22) (0.19) 

N-rate * sandy soil y -3.4489** -3.8479** -3.4836** -3.8899** 

 (0.03) (0.02) (0.03) (0.02) 
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Table E.1: (cont’d)     
 OLS  IV PCRE IPCRE 
 (i) (ii) (iii) (iv) 

N-rate * rich soil y 0.4462 0.8356 0.4572 0.8785 

 (0.84) (0.72) (0.84) (0.71) 

N-rate * other soil y -0.9926 -1.7415 -0.8839 -1.6999 

 (0.55) (0.30) (0.60) (0.32) 

N-rate * Plow tillage y -2.0186** -1.9470** -1.5253 -1.3660 

 (0.02) (0.03) (0.23) (0.28) 
1.5477** 1.4450* 1.1064 0.9127 Fertilization 

rate*improved seed use y (0.02) (0.05) (0.19) (0.31) 

83.7789 33.4891 109.9451 73.8904 Inverse Mills ratio for 
growing maize both years (0.80) (0.92) (0.74) (0.82) 

Constant 305.0357 340.7693 -160.6450 -100.1533 
 (0.35) (0.30) (0.83) (0.89) 

Observations 7127 7127 7127 7127 
R-squared 0.260 0.259 0.265 0.265 
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APPENDIX F 
 
Table F.1: Likelihood of successful harvest and fertilizer use by province 

Province 
Successful 

harvests over time Fertilizer used Basal rates 
Top dress 

rates 
 ------------Share of fields------------ -------kg/ha among users------ 

Central 0.96 0.57 140.5 148.2 
Copperbelt 0.99 0.50 144.9 157.4 

Eastern 0.98 0.32 102.8 114.8 
Luapula 0.96 0.32 186.3 175.1 
Lusaka 0.91 0.61 141.6 146.6 

Northern 0.97 0.43 191.2 191.3 
North Western 0.96 0.24 153.6 151.3 

Southern 0.90 0.36 125.4 127.7 
Western 0.80 0.07 134.0 124.1 
Zambia 0.93 0.35 142.2 146.5 

Note: “Successful harvests over time” is the percentage of fields from 2006-2011 
harvesting 115 kg/ha or more of maize, based on CSO Crop Forecast Surveys.  All other 
data come from the full sample of maize fields from the 2004 and 2008 Supplemental 
Surveys, not the selected observations described in this study’s data section. 
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CHAPTER 2: Competitive and Effective: Informal trade, spatial equilibrium and rapid 

price transmission in Southern Africa 

 
2.1 INTRODUCTION 
 

Expensive interventionist grain marketing policies in many countries in Southern Africa 

(SA) are frequently born from uncertainty regarding potential private sector performance 

(Tschirley and Jayne, 2008; Mwanawamo et al., 2005; Tschirley et al., 2004; more).  These 

policies, including export bans, exclusively state owned import rights and other license 

restrictions, have limited private sector activity and perpetuated the uncertainty over its potential 

performance.  Many studies conclude that grain markets in SA are not integrated with each other 

and world markets at least partially due to government policies (both market interventions and 

infrastructural investments) and the transfer costs they impose (Myers and Jayne, forthcoming; 

Rashid and Minot, 2010; Keats et al., 2010; more) 

 Despite these policies, however, data collected in recent years shows that a considerable 

amount of staple grains are traded across borders throughout the SA region through informal 

channels (FEWSNET, 2009).  Informal traders deal in small quantities (usually just 50 to 100 

kilograms at a time), without trading licenses and with no official record of their transactions.  

Often times, for example, this could be a farmer on a bicycle, crossing the border to fetch a 

higher price when liquidating some of the household’s stored grain.  With thousands of small 

informal traders operating, however, the aggregate volume of informal trade within the region is 

substantial.
24

  The fact that these transactions are difficult to regulate suggests the relationship 

                                                 
24 Relatively speaking, formal (i.e. licensed) trade occurs very rarely and data on these 
transactions are largely unavailable.  In the few instances where it is available (e.g. Zambia to 
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between informal import and export markets can provide new insights into how international 

markets within the region might perform in the absence of interventionist policies.  

The objective of this essay is to analyze intra-regional price transmission in Southern 

Africa by determining whether, and under what conditions, long-run spatial price equilibrium 

exists, and by measuring the speed at which price shocks are transmitted between surplus and 

deficit markets. A key innovation in this research is the focus on markets that are connected 

through informal trade across international borders, and the use of data on the amount of this 

informal trade that is occurring to inform the analysis.  This study will improve the overall 

understanding of intra-regional price transmission so that more informed policies can be 

developed.   

The objective will be met by employing the Myers and Jayne (forthcoming) extension of 

the threshold autoregressive (TAR) model.  Specifically, we use the amount of inter-regional 

informal trade as a threshold variable and allow the long-run spatial price equilibrium and the 

speed of adjustment to differ across potentially multiple trade regimes.  As in Myers and Jayne 

(forthcoming), transfer costs will be explicitly incorporated into the model, rather than assumed 

constant as in most previous price transmission analyses (e.g. Obstfeld and Taylor, 1997; 

Goodwin and Piggot, 2001; Shepton, 2003; Balcombe, Bailey and Brooks, 2007; Aker, 2007; 

others).  The number and value of regime defining thresholds will be selected based on the 

Gonzalo and Pitarakis (2002) penalty function approach.   

We focus on two informal trade routes: 1) Kitwe in Zambia to Kasumbalesa in The 

Democratic Republic of Congo (DRC) and 2) Cuamba in Mozambique to Liwonde in Malawi.  

                                                                                                                                                             
DRC data from COMESA), data suggests that informal trade accounts for at least 78% of the 
total traded maize in a given month, but usually more than 90% and frequently 100%. 
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In both cases we find evidence of long-run equilibrium and price transmission that is fairly rapid 

compared to results from other studies.  We find no evidence of multiple regimes, which further 

indicates the functioning of the informal markets are not as vulnerable to exogenous limitations 

to trade, such as policy restrictions and transport capacity constraints, as more formal trade flows 

as found by Myers and Jayne (forthcoming). 

The next section will describe the data to be used in this study, followed by a section 

detailing the method employed.  Then results will be presented and the final section will detail 

the conclusions of this study.  

 86



2.2 DATA 

This study will combine data on informal trade volumes, maize grain prices, diesel fuel prices 

and exchange rates from several sources. 

2.2.1 Informal trade volumes 

Informal trade flow data are collected and reported as national level statistics by the 

Famine Early Warning Systems Network (FEWSNET) in the monthly bulletin series “Informal 

Cross Border Food Trade in Southern Africa” (For example see FEWSNET, 2009).
25

  Due to 

the nature of this trade and the porous borders throughout the region, collecting accurate 

informal trade data obviously presents numerous challenges.  The FEWSNET method is to hire 

“border monitors” stationed at various border points that were identified through a consultant 

study as locations where the largest amount of informally traded maize crosses over.  These 

enumerators take a daily count of the number of bags informal traders carry across borders

usually on bicycles.  These counts are then converted to tonnage in the monthly reports bas

bag weights (the bags used to transport the maize are designed to hold dry maize at spec

size/weight ratios.  The most common, for example, is the “50 kg bag”). 

, 

ed on 

ific 

                                                

There are two monitored border locations in the area between Kitwe and Kasumbalesa.  

These account for all the data on maize traded between these countries.  On the border between 

Mozambique and Malawi there are 11 monitor stations, 6 of which are in the area between 

Cuamba and Liwonde.  These 6 stations account for the majority of the informal trade between 

these countries.   

 
25

 In addition to the bulletins, much of the information in Section 2.2.1 comes from personal 
communication with Chansa Mushinge, Country FEWSNET Representative for Zambia, and 
other members of the FEWSNET/Zamia staff whose assistance is greatly appreciated. 
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Admittedly, this cannot be considered an exhaustive measurement of all the maize grain 

informally traded between these countries.  FEWSNET estimates that they are counting roughly 

80% of the trade between Mozambique and Malawi and about a third of the trade from Zambia 

to DRC.  That said, based on consultant studies, FEWSNET officials believe the share of total 

trade which is actually captured through their data collection is consistent, so we consider the 

figures reported to be a good proxy for actual trade volume.  Potential measurement error should 

thus not affect our ability to test for threshold effects based on trade volumes.  The data cover a 

period from July 2004 to August 2010, providing 74 monthly observations.   

2.2.2 Retail maize grain prices 

Prices from numerous markets in Zambia are collected weekly by the Central Statistics Office 

(CSO) and reported as monthly averages in nominal Zambian Kwacha (ZMK) through 

FEWSNET.  Time series data covering the same period covered by informal trade data are 

available for over 30 different markets in Zambia.
26

  This study will focus on Kitwe; a large 

town near the DRC border from which informally traded maize is exported. 

Price data are available for only one market in the DRC, Kasumbalesa, near its southern 

border with Zambia.  Travelling on the tarmac road that connects them, Kasumbalesa is 98 

kilometers from Kitwe.  Kasumbalesa prices are collected by FEWSNET and reported in 

nominal US dollars.  Price data collection in DRC did not begin until July 2005 (one year after 

the collection of trade data began), so the price transmission model for Kitwe and Kasumbalesa 

will be estimated using 62 monthly observations. 

 
26

 A map of all 30 markets is available upon request. 



Figure 2.1: Map of markets considered in the spatial price transmission analysis 
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The Ministry of Agriculture and Rural Development in Mozambique collects weekly 

retail maize grain prices in several northern markets near the Malawi border through its 

Agricultural Market Information System.  This study will focus Cuamba, in north eastern 

Mozambique’s surplus producing region where much of the informally traded maize is grown.   

In Malawi, weekly retail maize prices are collected by the Ministry of Agriculture (MOA) as part 

of the Retail Price Survey.  This study will focus on Liwonde, near Malawi’s eastern border, 258 

kilometers from Cuamba and along the road from Cuamba to Blantyre (Malawi’s largest 

southern city).  The road between these towns is a combination of graded soil and tarmac.  A 

map of the markets used in this study can be found in Figure 2.1. 

There is one missing value in the Cuamba price series.  This was replaced with an 

imputed value using the best subset regression of all other available prices, including many not 

included in the price transmission analysis.  All prices were converted to the currency of the 

exporting market (either Zambian Kwacha, ZMK or Mozambique New Metical (MZN) using 

monthly averages of daily exchange rates reported at oanda.com and fxtop.com.
27

  Although the 

DRC currency is the Congolese Franc, Kasumbalesa prices are reported in USD by FEWSNET.  

These prices were converted to Kwacha using the product of the Dollar-to-Franc and Franc-to-

Kwacha exchange rates. 

2.2.3 Transfer costs 

Diesel price is an important time-varying component of transfer costs and will be included using 

per liter diesel price in Lusaka and Nampula for the Zambian and Mozambican models 

                                                 
27

 Oanda.com does not provide exchange rates for Congelese francs prior to 2006, hence the use 
of fxtop.com for supplemental data. 

 90



respectively
28

.  Zambian diesel prices are reported by the Energy Regulation Board (ERB), and 

Mozambican diesel prices come from Direccao Nacional de Energia
29

.  Since fuel prices are 

tightly regulates in both countries, the Lusaka and Nampula prices should track diesel price 

movements in the exporting markets of our study very closely.   

 Although an important component of transfer costs, it is unlikely that diesel prices alone 

will control for all transfer costs.  For example, costs unrelated to transportation such as 

uncertainty premiums, or search and price discovery costs are likely independent of diesel prices.  

Such costs, however, are often difficult or impossible to observe.  To the extent possible 

unobserved transfer costs will be controlled for through model specification, as will be discussed 

in the following section. 

                                                 
28

 Though most informally traded maize moves across borders on bicycles or other man and 
animal powered vehicles, it will have otherwise been moved throughout the region on diesel 
powered trucks or mini-vans. 
29

 Many thanks to the authors of Tostao and Brorson (2005) for sharing the Mozambique diesel 
price data. 
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2.3 METHODS 

The study of market integration and price transmission has evolved substantially over the past 

few decades.
30

  This class of models has grown from early work that focused on correlation 

coefficients between price series (Cummings, 1967; Lele, 1967; Blyne, 1973), to simple 

cointegration models (Harriss, 1979, and references therein), and more recently to non-linear 

models that allow for the presence of transfer costs that had previously been ignored.  Two main 

prevailing modeling approaches have emerged: the parity bounds model (PBM) and the 

threshold autoregressive models introduced by Balke and Fomby (1997).  Traditional TAR 

models are estimated with a single threshold based on the size of the price margin between the 

two markets.   Price transmission is allowed to occur at different speeds depending on whether 

the current price difference is above or below the threshold.  The threshold value in such models 

is interpreted as the transfer costs of getting product from one market to the other.  Van 

Campenhout (2007) argues convincingly for the superiority of TAR, citing, among other 

concerns, the PBM’s questionable distributional assumptions for changes in price margins that 

are initially lower than transfer costs. 

This study will employ a variation on the TAR model.  As with the PBM, the TAR model 

has been popular in numerous prior applications (Obstfeld and Taylor, 1997; Abdulai, 2000; 

Goodwin and Piggot, 2001; Shepton, 2003; Balcombe, Bailey, and Brooks, 2007; Van 

Campenhout, 2007; Aker, 2007; others). However, traditional TAR models also have their 

drawbacks.  First, nearly all applications impose the (frequently implicit) assumption that 

                                                 
30

 See Aker (2007) or Van Campenhout (2007) for a more thorough review of the methods for 
measuring price transmission and market efficiency over the past few decades.  Also see Rashid 
and Minot (2010) for a review of price transmission literature focused on Africa. 
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transfer costs are constant over time in order to estimate the threshold parameter
31

.  This 

simplifying assumption is often applied with the justification that many of the factors driving 

transfer costs are unobservable, and it is better to assume transfer costs are constant than to 

ignore them altogether.  While this may be true, traditional TAR models leave no room to 

include time-varying factors driving transfer costs that are observable, such as the price of fuel. 

Secondly, the traditional TAR model allows for a long-run equilibrium when the price 

margin is below the estimated transfer costs.  According to the economic theory motivating such 

models, however, there is no spatial arbitrage opportunity when transfer costs exceed price 

margins.  In other words, traditional TAR models assume spatial price equilibrium when 

economic theory suggests that none should exist.  This model mis-specification could be a 

potentially costly source of parameter estimation bias.  

Thirdly, traditional TAR models are estimated using observations on prices only, while 

quantities traded are implicitly assumed to exist or not depending on whether price transmission 

occurs.  If data are available, however, trade volume would provide a more theoretically sound 

variable upon which to base a threshold estimate, since trade (or the possibility of trade) is the 

actual mechanism through which price transmission occurs. 

2.3.1 Price transmission with transfer costs  

Myers and Jayne (forthcoming) address many of these shortcomings by introducing a multiple-

regime price transmission model with explicit inclusion of transfer costs and using the volume of 

trade as the threshold variable. For a start, they consider a model that explicitly controls for 

                                                 
31

 A notable exception is Van Campenhout (2007), who allows the transfer cost threshold to 
adjust according to a linear time trend. 
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transportation costs.  Following that work, we first introduce the equilibrium relationship 

(assuming trade is occurring): 

(2.1)  Att
B
t

A
t ukpp  210 

where  is the price in market A in time t,  is the price in market B in time t, kt is the 

unit cost of transferring a good from market B to market A, and uAt is the random shock to 

equilibrium.  If unit costs are unobservable, kt could alternatively be considered as a vector of 

observable determinants of transfer costs.  Note, this equilibrium equation implicitly assumes 

market A is the importer and B the exporter.   

A
tp B

tp

 As Myers and Jayne (forthcoming) explain, if the stochastic term is serially uncorrelated, 

then adjustment to equilibrium is immediate after a shock.  If there is autocorrelation, on the 

other hand, adjustment is a dynamic process whose duration depends on the structure of 

autocorrelation in uAt. We would have perfect spatial arbitrage if 00   and 121   , 

but this is seldom observed  empirically because there are a variety of unobserved factors that 

may cause deviations from the perfect spatial arbitrage conditions (Myers and Jayne, 

forthcoming).  Moreover, allowing 00   helps address some of the difficulties fully 

measuring transfer costs by enabling the model to control for any time-constant unobservable 

transfer costs that may exist. 

The long-run relationship between prices is represented by the value of 1 , but equation 

(2.3) does not tell us anything about the speed of adjustment if a dynamic process does exit.  To 

understand this, again following Myers and Jayne (forthcoming), we must further specify 
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equations for the origin market price, the unit transfer costs, and the potential autocorrelation 

structure: 

(2.2)  tB
B
t up  0

(2.3) ktt uk  0   

(2.4) a(L)ut = εt 

where ut = (uAt, uBt, ukt) ,  εt = (εAt , εBt , εkt ) is an i.i.d. (0, Ω) error vector and 

a(L)  is a matrix polynomial in the lag operator with = I.  Notice that no 

assumptions have yet been made on roots of a(L) (on whether price are stationary or 

nostationary) Then, following the derivation outlined in Myers and Jayne (forthcoming), 

equations (2.1) - (2.4) can be written in  a single equation error correction form  (SEECM) as 

follows





n
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i
i Lc
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 There are a number of valid ways to estimate this system depending on the stochastic 
properties of the data series, however the SEECM is most convenient when considering the 
possibility of multiple regimes. 
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where the parameters ,     ,ib ,ic ,id 1 , 2 , 1  and ,2  are functions of the parameters 

in the error structure defined in equation (2.4).  See Myers and Jayne (2010) for a more thorough 

derivation of these parameters, but note that 1  and 2  represent the direct correlation between 

the error terms εAt , εBt  and εkt.  The composite intercept term,  , is a function of ,, 00   

and 0 .  As before, the long-run relationship between prices is represented by the value of 1 , 

with variable transfer costs controlled for by allowing 02  , and now we have  , which 

measures whether and how quickly prices will return to equilibrium after a shock.   

Equation (2.5) represents a model for spatial price transmission in its general form, and is 

quite flexible in that variables can be either stationary or nonstationary and cointegrated, but 

which is under-identified.  Identification depends on assumptions regarding the stochastic and 

cointegrating characteristics of the underlying data.  Myers and Jayne (2010) present different 

sets of assumptions and their corresponding empirical models, summarized in Table 2.1.    

For now ignoring the possibility of trade thresholds, suppose we assume all prices are 

nonstationary and a cointegrating vector exits (the cointegration model).  Then we can restrict 

021   , and allow 0 , in which case equation (2.5) is now just identified.  In the 

identified model, n is chosen to eliminate autocorrelation in the residual term, and fitting with  

 
Table 2.1: Alternate identification assumptions for spatial price transmission models 

Version 
Stationary 
Variables 

Exogenous 
Variables 

Parametric 
assumptions Model Name 

i None None 021    Cointegration 

ii t
B
t

A
t kpp ,,  t

B
t kp ,  021   Stationary 

Summarized from Myers and Jayne (2010) 

 96



NLS provides optimal asymptotic Gaussian inference (Phillips and Loretan, 1991).  Note that 

1  and 2  are derived from cross correlations in the structural error terms (see Myers and  

Jayne, 2010).  Therefore, allowing 01   and 02   implies that we need not make 

exogeneity assumptions regarding  and .
B
tp tk 33

  If all variables are nonstationary but not 

cointegrated, then no long run equilibrium relationship exists and =0.   

 If there is evidence that all variables are stationary we can restrict 021    and 

estimate equation (2.5) allowing 01   and 02  .  In this case we do assume export market 

prices and transfer costs are exogenous (Myers and Jayne, 2010).  The characteristics of other 

potential identifying assumptions are discussed in Myers and Jayne (2010). 

2.3.2 Trade-based thresholds 

Part of the objective of this paper is to allow for informal trade based thresholds that allow for 

structural differences in spatial equilibrium and price transmission, which is not addressed in 

equation (2.5).  There are several reasons one might expect there to be trade-based thresholds for 

price transmission.  For example, we might find a low-level trade threshold if policy restricts 

trade that would otherwise be encouraged by price incentives.  On the other hand, we might find 

a higher-level regime change as trade volume approaches the capacity limit for transportation 

between markets (Coleman, 2009; Myers and Jayne, forthcoming).    

                                                 
33

 In other words, the cointegration form of this model is robust to violation of the “central 
market” assumption that is made by Ravallion (1986) and many others. 
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To introduce the potential for trade-based thresholds we re-write equation (2.5) as 

f(X A
tp ,t ), where Xt is the vector of the relevant prices from equation 5 and their lags, 

and   is the relevant parameter vector, the possibility of thresholds can be expressed as: 

(2.6) f(X A
tp mt , ), if   mtm q   `1 ,  for all  1...1 *  mm  

where q is the variable upon which the threshold is based (the quantity of maize informally 

traded in our case).  The threshold parameters,  , represent the levels of that variable at which 

equilibrium and price transmission structurally changes.  The   parameters with an m subscript, 

therefore, are unique to each trading regime.  There are  thresholds and +1 trading 

regimes. Note that when trade is unidirectional 

*m *m

00  , and in any case 1*m .   

Estimating parameters within each regime has already been discussed.  Equation (2.6), 

however, introduces +1 new parameters to identify: 
*m  *1... m  and  itself (the 

number of thresholds).  For any given , the threshold parameters can be identified employing 

the Gonzalo-Pitarakis (GP) penalized criterion function approach, where the threshold 

parameter(s) is (are) chosen to maximize the objective function: 

*m

m

(2.7) 
   

 
Km

T

Tg

SS

SS
mQ

T

T
T 











lnmax  

where K is the number of parameters to estimate in the single-regime (i.e. no threshold) model
34

, 

 is the sum of squared residuals for that model and TSS  TSS  is the sum of squared 

residuals of the m-threshold model.  The function  g  is defined to finalize the criterion 

                                                 
34

 For example, in our case, if we’re estimating the n=1 model, K=9. 
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function.  Gonzalo and Pearakis (2002) simulate results for 5 alternative specifications where 

BIC, AIC, HQ, BIC2 and BIC3 respectively define  g  as  ln , 2,   lnln , 2  and 3 ln  ln .  

The GP approach is based on the fact that the distribution of a conventional likelihood-ratio test 

statistic to compare such alternatives is unknown due to the nuisance parameter issue under the 

null hypothesis of no thresholds
35

 (Hansen, 1996; Gonzalo and Pitarakis, 2002).  For any given 

m, the GP criterion function approach is analogous to the sup-Wald grid search employed by 

most single threshold studies for identifying the optimal threshold.  Over a range of values of m, 

the right hand term of the GP criterion penalizes the objective function for model over-

parameterization.  Though there is not an explicit test available for the existence, number or 

value of multiple-thresholds, the GP criterion is the most direct method for allowing the data to 

discover the “best” multiple-threshold model. 

 At this stage, however, it may appear as though this method faces a paradox.  To identify 

the optimal thresholds, we need some functional form of the price relationship (i.e. we need to be 

able to compute   TSS

 

 to employ the GP criterion).  However, in order to properly identify 

the functional form, we need to know which value of qt denotes the optimal threshold (i.e. we 

can examine the stochastic properties of prices within each regime).  Fortunately, although each 

would provide different coefficient estimates for long-run equilibrium and speed of price 

transmission, each model discussed in Table 2.2 is just identified, and thus for any given   each 

provides the same TSS  value.  Therefore, we can optimize equation (2.7) to discover 

                                                 
35

 Hansen (2000) describes a Monte-Carlo approach for regime testing when m=1, however 
implementation of that test has proven infeasible with our data, likely due to collinearity 
resulting from small within-regime sample sizes (Hansen, 2011).  This was true even when the 
threshold was forced to be held at the median value of the threshold variable (i.e. when the 
sample was split in half). 
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optimal threshold values by applying naïve identification assumptions to equation (2.5), at no 

cost.  In fact, the “Stationary” model from Table 2.2 reduces to a linear form, so we can employ 

the OLS regression of pt
A on pt

B, kt  and the appropriate number of differences and lags to 

execute maximization of equation (2.7) (Myers and Jayne, forthcoming). 

Finally, to identify , first note that it will be some integer such that 

, where 

*m

 Mm ...,1,0*        111/1int  nTKnTM  .  The numerator 

within the integer function (T-n-1) is the number of usable observations.  The denominator 

 11  nTK   is the minimum number of observations we will allow within each regime 

where K+1 is number of observations needed for each regime to have enough degrees of freedom 

to estimate with inference and  1,0  determines the additional share of the sample which will 

be included in each regime to avoid over-parameterization.  Following the recommendation of 

Balke (2000) we will set 15.0 .  The resulting integer is thus the maximum number of 

regimes into which we could split our sample.  We subtract 1 because there is one less threshold 

than there are regimes. Then, the GP criterion suggests that we can identify the optimal number 

of thresholds according to: 

(2.8) 
 mQm T

Mm

maxarg
0

*




 

In practice this approach can be employed either sequentially or non-sequentially.  It should be 

noted that in our case we must assume  is contemporaneously exogenous. We argue  can 

be considered exogenous because market information faces delays when travelling across 

borders in informal markets and informal traders may face delays in getting to market.  

tq tq
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Therefore, it is reasonable to assume trading decisions in time t are made based on prices in time 

t-1.
36

 

2.3.3 Non-sequential threshold estimation 

Sequential threshold estimation as described in Gonzalo and Piterakis (2002) is asymptotically 

consistent and less computationally demanding.  However, due to our small sample size we can 

apply non-sequential estimation which should lead to more accurate small sample results.  The 

approach used for non-sequential estimation is: 

1.  Identify the GP-optimal threshold of a 2 regime model, initially assuming n=1. 

2.  Identify the GP-optimal thresholds of a 3 regime model, disregarding the information 

learned in step 1, and re-examining all possible GP criterion values for a lower and upper 

threshold. 

3.  Repeat step 2, disregarding previous estimates and adding a potential regime each time.  

Stop after estimating the model with M+1 regimes.  

4.  Compare the GP criterion value for each optimal multiple-threshold models identified 

under the various assumptions in steps 1-3, and choose the model with the highest value  

(again, if no GP values are greater than 0, all multiple-threshold models should be 

rejected in lieu of the single-regime model). 

5.  Analyze stochastic properties of variables w/in each regime. 

6.  Estimate the appropriate SEECM within each regime, again restricting n=1. 

7.  Test for autocorrelation in the residuals. 

8.  If autocorrelation persists, add a lag and return to step 1. 

                                                 
36

 Obviously, this argument would be even stronger with higher frequency data.  If this is not 
convincing or accurate, it may be more appropriate to choose the threshold parameter using 
lagged values of q. 
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9.  Analyze results. 

The advantage of non-sequential selection is that it will result in a model that is at least no 

“worse”, and may identify a “better” model than the sequential estimation, which maintains 

previously identified threshold values when additional regimes are considered.  This is because 

all potential models that could be identified sequentially will also be considered when identifying 

models non-sequentially.  The cost is that non-sequential selection is more computationally 

demanding, potentially requiring the comparison of many thousands more models.  In the 

univariate-based multiple-threshold model this is not an overwhelming requirement.  When 

estimating a multivariate-based multiple-threshold model, on the other hand, the demands of this 

approach grow exponentially with the number of variables allowed to determine thresholds.  

2.3.4 Analyzing Results 

In price transmission studies the primary unit of analysis is often the half-life, h, of a 

price shock, or the amount of time it takes for half of the adjustment back to long-run 

equilibrium to occur after a shock.  Half lives are computed either as a function of regression 

results, where )(1ln(0.5)/ln h  (Van Camenhout (2007) and others), or via simulation using 

regression results (Myers (2009) and others).  It is also useful to examine the effect of a shock 

graphically, where we can see how simulated markets in equilibrium would react to a one-time 

permanent shock in the price of the exporting market.  In addition to quantifying the overall time 

it takes for shocks to transfer, graphical simulations can show us the path of adjustment back to 

equilibrium, accounting for the dynamic processes not explicitly represented by 1  and  . 
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2.4. RESULTS 

2.4.1 Results from Kitwe, Zambia and Kasumbalesa, The DRC 

We first look at the relationship between prices in Kitwe, an urban center in northern 

Zambia, and Kasumbalesa, a smaller urban center located 98 kilometers away and across the 

border in The DRC.  The road from Zambia’s surplus producing regions to the export market in 

Kasumbalesa runs through Kitwe.  Therefore, barring some other prohibitive market conditions, 

it would seem quite reasonable to find price transmission between these markets when the 

opportunity for spatial arbitrage exists.   

Prices and trade data are examined descriptively in Figure 2.2, where we plot time on the 

horizontal axis, trade volume on the left vertical axis, and price difference on the right vertical 

axis with a horizontal reference line at zero.  Graphically, it appears there is generally co-

movement between price difference and informal trade volume, though quantities vary greatly. 

In the period from the end of 2005 into 2006, it seems that as price difference dropped to 

zero, trade volume decreased at a similar rate.  Throughout 2006 spikes in the price difference 

appear to have been met with similar spikes in trade, though evidently not enough to pull the 

price difference down to close to zero.  Then, around March/April in 2007 (the beginning of a 

good harvest season in Zambia) informal trade spikes and the previously positive price 

difference quickly drops to zero.  When it does, trade drops, then price differences slightly rise, 

followed by trade which nudges the difference back to around zero, and so on into 2008.  

During 2008 there is a prolonged period where trade is relatively low, reaching a 

minimum of nearly zero exports in March 2009, and absolute price differences grow fairly 

 103



Figure 2.2: Price difference between Kitwe and Kasumbalesa and informal trade  
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consistently.  Notice, however, the price difference is negative (DRC prices are lower) and since 

DRC is not a surplus producer it is reasonable that the trade would be low and prices may have a 

different long run equilibrium.  DRC is not a self-sufficient maize producer, so this was likely a 

period when that country was importing from elsewhere.  There is no empirical evidence 

suggesting maize trade (formal or informal) ever flowed from DRC to Zambia during this period, 

which anecdotal evidence confirms (Mushinge, 2011) 

Around mid-2009 price difference again jumps above zero, which corresponds to a 

similar spike in informal trade volume.  After a brief dip back to nearly zero, the price difference 

between these markets bounces around 10 cents per 50kg bag, with corresponding movements in 

the volume of informal trade throughout the remainder of the period covered by our data.  While 
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this apparent co-movement is interesting it does not directly address our objective of determining 

whether there are long-run equilibrium states between these markets and whether price 

transmission actually occurs.  To that end, we now turn to estimating the multiple-threshold price 

transmission model. 

With the initial one lag model there are 9 parameters to estimate and 60 usable 

observations.  Based on the criterion described in Section 2.3, this implies we can have two 

thresholds and three regimes at most.  Results from the GP selection process are presented in 

Table 2.2.   

The first potential threshold identified is at the trade level of 1095 metric tons of maize.  

According to the BIC criterion (GP = 0.03) this model is slightly superior to the single regime 

model, while the AIC and HQ criterions lend a bit more support with GP values of 0.34 and 0.22 

respectively.  On the other hand, the BIC2 and BIC3 criterions, which more heavily penalize 

over-parameterization, strongly favor the single-regime model (respectively returning GP values 

of -0.59 and -1.20).   

The three regime model identifies optimal thresholds at 555 and 1095.3 metric tons of 

informally traded maize
37

.  The BIC, BIC2 and BIC3 criterions all have their lowest GP values 

for this model (-0.09, -1.31 and -2.54 respectively), and all would favor the single-regime over 

the triple-regime.    On the other hand, the AIC and HQ criterions both have the highest GP 

values for the three-regime model (0.54 and 0.30 respectively). 

 

                                                 
37 Interestingly, we notice that, if we were performing this analysis sequentially and if we had 
accepted the first threshold, our results would not have differed from non-sequential estimation 
presented here. 
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Table 2.2: GP threshold selection for price transmission between Kitwe & Kasumbalesa 
 Penalty criterion function 

Model 

Threshold value 
(metric tons of 
traded maize) BIC AIC HQ BIC2 BIC3

 1  2 ----------------------GP values------------------------
Two regime 1095.3 0.0268 0.3409 0.2181 -0.5874 -1.2015

Three regime 555.0 1095.3 -0.0858 0.5425 0.2968 -1.3141 -2.5424

 

Unfortunately, these results are not definitive.  At least one of these criterion support 

either the single regime model or one of the potential threshold models being considered, leaving 

us to decide which criterion to trust.  In simulated examples presented by Gonzalo and Pitarakis 

(2002) the BIC2 and BIC3 criterions have the best performance by far when their DGM has no 

threshold (correctly identifying the model in nearly 100% of the simulations).  In the same 

simulations the AIC and HQ criterions perform rather poorly.  When their DGM has two-

regimes the criterions most frequently correctly identify the model are AIC, HQ and BIC (in that 

order), but the BIC2 criterion also performs fairly well.  Based on these results, they conclude 

“BIC and to a lesser extent BIC2 display the best overall performance, with an excellent ability 

to point to the true model even for moderately small sample sizes,” such as the one used in this 

study.   

On an un-weighted average the BIC and BIC2 criterions favor the single-regime model.  

Even if we were to only consider the BIC criterion, support for the threshold model is fairly 

weak (i.e. the GP is very close to zero).  In such a case Hansen’s (2000) bootstrap test would be 

an informative addition to the evidence on which model is best, but performing this test was not 
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feasible with our data.
38

  This is likely due to within regime collinearity stemming from our 

fairly small sample size (Hansen, 2011).  So, based on the sum of evidence we will proceed 

estimating our model without a trade threshold.  

Next we examine the stochastic properties of the prices in our model using the full 

sample under the single-regime model.  Table 2.3 summarizes the p-values from augmented 

Dickey-Fuller (ADF), augmented Phillips-Perron (APP) and Kwiatkowski, Phillips, Schmidt, 

and Shin (KPSS) unit root tests as well as the Engle Granger cointegration test.  In each case 

these tests fail to reject the non-stationary (or non-trend-stationary) null hypothesis using either 

the ADF or APP tests.  Furthermore, the majority of the KPSS tests reject the stationary null 

hypothesis at the 10% level or lower, again with or without including a trend.  The only 

exception is the diesel price which fails to reject the trend stationary null hypothesis at the 10.1%  

 
Table 2.3: Diagnostic tests for price series stochastic properties (Kitwe & Kasumbalesa) 
Test Kasumbalesa Kitwe Diesel 
Unit root (Non-stationary null) 

ADF 0.78 0.40 0.20 
ADF, trend 0.55 0.18 0.24 

APP 0.43 0.34 0.47 
APP, trend 0.17 0.53 0.48 

Unit root (Stationary null) 
KPSS <0.03 <0.03 <0.05 

KPSS, trend <0.01 <0.10 <0.101 
Cointegration 

EG 0.00 
Notes: MacKinnon (1994) approximate p-values reported for ADF and APP tests.  Relative p-
values for KPSS tests are based on approximate critical values reported in Kwiatkowski et al. 
(1992). 

                                                 
38 Specifically, when running Hansen’s Gauss code for the bootstrap test the program returned 
the error message “matrix not positive definite.”  Personal communication with Hansen (2011) 
confirms this “occurs most typically when you try to estimate a regression with too few 
observations in each ‘regime’ defined by the threshold.”  This occurred for every minimum 
within-regime sample size setting attempted.   
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level (the test statistic is 0.118 against the 10% critical value of 0.119).  The Engle Granger 

cointegration test of all regressors in the dynamic model strongly rejects the hypothesis of non-

stationary residuals, indicating a cointegration relationship exists.   

All together, these results indicate we should estimate equation (2.5) for these markets 

applying the “cointegration model” assumptions described in Table 2.1.  These results are 

presented in Table 2.4.   

 First note from the Lung-Box tests reported at the bottom of this table that there is no 

evidence of autocorrelation in the residual terms, and thus no need to add further lags to the 

model.  Our estimate of 1  is 0.9988 with a 1 =0 null hypothesis p-value of 0.02.  The t-test 

for whether this estimate is significantly different from 1 yields a p-value of 0.998 (i.e. this 

estimate is significantly different than zero, but not significantly different than one).  The 95% 

confidence interval for this estimate is 0.13 to 1.86.  It is noteworthy that the coefficient estimate 

is almost exactly what one would expect if we have controlled for transfer costs sufficiently and 

price transmission occurred over the long-run through competitive arbitrage.  The estimate for 

the speed of price transmission parameter, , is -0.2236, which translates into a half life of 2.74 

months.   The 95% confidence interval for this estimate is -0.424 to -0.023, which translates to a 

half life interval of 1.26 to 29.89 months.  Surprisingly our estimate of 2  is not statistically 

significant at any meaningful level, suggesting that diesel prices do not explain any of the 

difference between Kitwe and Kasumbalesa maize prices.  This may be a reflection of the fact 

that, although they are separated by a national border, these markets are separated by fewer than 

100 km of tarmac.  Therefore, diesel costs for transportation between them are not very high and 

will not change much with diesel price changes.  Furthermore, at least a portion of the  
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Table 2.4: Price transmission estimation results for Kitwe & Kasumbalesa 

Parameter 
SEECM under 
cointegration [95% Confidence Interval] 

µ: Constant  129.776 [-297.55, 557.10] 
 (212.85)   

β1: Long-run relationship 0.9988 [0.13, 1.86] 
 (0.43)   

β2: Diesel Prices -0.0727 [-0.40, 0.25] 
 (0.16)   

: Speed of transmission -0.2236 [-0.42, -0.02] 
 (0.10)   

-0.6859 [-0.34, 0.22] 
1  

(0.14)   
0.1162 [-1.50, 0.13] 

2  
(0.41)   

b1 -0.0617 [-0.26, 0.59] 
 (0.21)   

c1 0.1633 [-0.24, 0.47] 
 (0.18)   

d1 0.0614 [-0.14, 0.26] 
 (0.10)   
 

Half-life (months)
a
 2.74 

  

Goodness of Fit: 

            
2R 0.19   

Adjusted-
2R  0.06   

Residual autocorrelation: 
Q(1) 0.86   
Q(3) 0.62   
Q(5) 0.49   
Q(7) 0.43   

Note: Standard errors in parentheses.  a) Half life is calculated as ln(0.5)/ln(1+).  

Residual autocorrelation tests (Q(j)) are p-values for portmanteau tests for j
th

 
degree white noise in the residuals.  Insignificant results suggest white noise (i.e. 
no autocorrelation). 
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Figure 2.3: Simulated shock to equilibrium prices in Kitwe and Kasambulesa 
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transportation is frequently done on the back of a bicycle, the cost of which is not directly 

associated with diesel price.  Other parameter estimates have no significant economic 

interpretation individually (Myers and Jayne, forthcoming).   

Figure 2.3 simulates a year-long relationship between Kitwe and Kasumbalesa prices The 

simulation is initiated holding Kitwe maize price, represented by the dashed line, and Lusaka 

diesel price (not shown) at their data means (1,171 ZMK/kg and 5,799 ZMK/liter respectively).  

The predicted equilibrium price of maize in Kasumbalesa is 1,329 ZMK/kg, which is reasonably 

close to the actual mean price (1,316 ZMK/kg).  In the third month a one-time permanent 

increase in Kitwe price is introduced in the amount of 150 ZMK/kg (the average month-to-month 

change in Kitwe price over the sample period).    
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We see fairly rapid price shock transmission, which was expected based on the half-life 

calculation.  Kasumbalesa prices begin to respond in the month of the shock itself, and by the 

month after the shock 67% of the shock has been transferred.  From this month onward the shock 

adjustment gradually levels off so that by the 8
th

 month after the shock (month 12 in Figure 2.3), 

Kasumbalesa price has effectively reached the new equilibrium price around 1,479 ZMK/kg.   

Although there is not strong evidence of informal trade based threshold effects, it is clear 

that the informal trade that regularly takes place draws prices in theses spatially separated 

markets towards an equilibrium, and that the speed of adjustment is rapid.  We will compare the 

speed of transmission estimated here to that between Mozambique and Malawi as well as to 

results from other studies in the following sub-section.   

2.4.2 Results from Cuamba, Mozambique and Liwonde, Malawi 

Next we will examine the relationship between prices in Cuamba, Mozambique, and Liwonde, 

Malawi.  Cuamba is situated in one of the highest surplus production regions in Mozambique 

which is the source of a major trade flow into Malawi (Haggblade et al., 2008).  Liwonde is 

inside the Malawian border along the road that runs from Cuamba to Blantyre, Southern 

Malawi’s largest city.  The majority of the informal maize traded between Malawi and 

Mozambique crosses the border area between Cuamba and Liwonde (Mushinge, 2011), so, one 

would expect to see a long-run equilibrium between these market prices and price transmission if 

the markets are working well. 

Prices and trade data are examined descriptively in Figure 2.4.  Unlike the case with 

Zambia and The DRC, there is occasionally reverse trade flow between Malawi and 

Mozambique (i.e. informal Malawian traders occasionally sell to Mozambique).  Thus, in Figure  
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Figure 2.4: Price difference between Liwonde and Cuamba and informal trade levels 
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2.4, we plot time on the horizontal axis, total trade volume and the share of total trade flowing 

from Malawi to Mozambique on the left vertical axis, and price difference on the right vertical 

axis.  There is a horizontal reference line indicating zero price difference.  The fact that our data 

reports simultaneous bi-directional trade presents two concerns for this study.  First we must 

explain why this would occur.  Secondly we must discuss whether this has an impact on the 

appropriateness of our empirical approach. 

In theory, trade would only occur when there is opportunity for spatial arbitrage, or when 

the price difference between spatially separated markets exceeds transfer costs.  This obviously 

rules out any economic justification for simultaneous bi-directional trade between integrated 
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competitive markets.  Nevertheless, we find that informal trade flows in both directions 66% of 

the time.   

Data aggregation could partially explain this apparent paradox.  That is, we are using 

monthly data on prices and trade flows, but prices can fluctuate within a month.  Thus, on any 

given day price incentives may encourage trade to flow to Mozambique, even if during the 

majority of the month incentive is for trade to flow to Malawi.  There are also possible 

explanations beyond data aggregation.  For example, the theory precluding bi-directional trade 

assumes perfect information, which is not most likely the case for informal traders on the 

Malawi/Mozambique border.  In fact, it would be a very strong assumption to say the quality of 

price information is even homogenous across traders, much less perfect.  Thus, it is feasible that 

some traders make the decision to export grain based on ill-informed price expectations and 

counter to the behavior of their colleagues.  In fact, imperfect information is one of the reasons 

we expect to see dynamics in the price transmission between markets at all.   

The second issue is whether our model is appropriate when there is bi-directional trade.  

One might be concerned that bi-directional trade implies bi-directional price transmission.
39

  

The structural model in equations (1) - (4), on the other hand, has Malawian market price being 

explained by Mozambican market price, but not vice versa.  Recall, however, the autocorrelation 

structure in equation (2.4) allows us to proceed without making any exogeneity assumptions, so 

our model does allow for bi-directional price transmission implicitly (i.e. through the correlation  

                                                 
39

 In fact, bi-directional price transmission could exist even if trade was uni-directional but the 
importing and exporting markets were comparable in economic size.  Specifically, if factors 
affecting domestic supply and demand in one market occur simultaneously with and 
independently of factors affecting the domestic supply and demand of the market with which it 
trades, both prices could be disturbing the spatial equilibrium. 
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Table 2.5: GP threshold selection for price transmission between Cuamba & Liwonde 
 Penalty criterion function 

Model 

Threshold value 
(metric tons of 
traded maize) BIC AIC HQ BIC2 BIC3

 1  2 ----------------------GP values------------------------
Two regime 2398.0 -0.2943 -0.0097 -0.1230 -0.8289 -1.3634

Three regime 2398.0 5608.6 -0.4913 0.0779 -0.1487 -1.5604 -2.6296

 

in the error terms) see Myers and Jayne (forthcoming).  We thus conclude that equation (2.5) is 

appropriate to carry out the remainder of our analysis.  The only difference is that we will now 

use net trade as our potentially threshold-defining variable
40

.  

With the initial model there are 9 parameters to estimate and we have 72 usable 

observations.  Based on the criterion described in Section 2.3, this implies we can once again 

have 2 thresholds and 3 regimes at most.  Results from the GP selection process are presented in 

Table 2.5.  These results are far less ambiguous than those for the Kitwe/Kasumbalesa model and 

almost exclusively favor the single regime model.  The only exception comes from comparing 

the three-regime model to the single regime model according to the AIC criterion.  This produces 

a GP value of less than 0.08 suggesting the threshold model is weakly superior.  Based on the 

results of every other criterion, however, we conclude the single-regime model is most 

appropriate.  Once again, it would be informative to compare this conclusion to the results of a 

Hansen (2000) test, but this was once again not feasible due to sample size (Hansen, 2011).
41

 

                                                 
40 Total trade is an alternative threshold variable, but we note that using this does not change the 
conclusions of our GP selection process described here. 
41

 Once again, these tests invariably returned the “matrix not positive definite” error message in 
Gauss, which according the Hansen (2011) is most likely caused by small within-regime sample 
sizes. 
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Table 2.6: Diagnostic tests for price series stochastic properties (Cuamba & Liwonde) 
Test Liwonde Cuamba Diesel 
Unit root (Non-stationary null) 

ADF 0.32 0.05 0.35 
ADF, trend 0.26 0.11 0.13 

APP 0.27 0.04 0.43 
APP, trend 0.17 0.09 0.09 

Unit root (Stationary null) 
KPPS >0.03 >0.10 >0.10 

KPSS, trend >0.10 >0.10 >0.10 
Cointegration 

EG 0.00 
Notes: MacKinnon (1994) approximate p-values reported for ADF and APP tests.  Relative p-
values for KPSS tests are based on approximate critical values reported in Kwiatkowski et. al. 
(1992). 

 

Next we examine the stochastic properties of the prices in our model using the full 

sample under the single-regime model.  Table 2.6 summarizes the p-values from ADF, APP and 

KPSS unit root tests as well as the EG cointegration test.  For the Liwonde maize prices tests fail 

to reject the non-stationary null hypothesis using either the ADF or APP tests with and without 

including trends and the KPPS tests reject the stationary and trend-stationary null hypotheses at 

the 10% level or lower.  For Cuamba maize prices, ADF and APP do reject the non-stationary 

null at the 4-5% level, but only reject the non-trend-stationary hypothesis at the 11 and 9% levels 

respectively.  Conversely the KPSS tests reject the stationary and trend-stationary null at the 

10% level.  Diesel price results fail to reject the non-stationary null (although the APP results 

reject the non-trend stationary hypothesis at the 9% level) and reject the stationary null at the 

10% level.  If we accept that all variables are non-stationary, the Engle Granger cointegration 

test strongly rejects the hypothesis of non-stationary residuals, indicating a cointegration 

relationship exists.   
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 The sum of evidence in these results suggests we should once again continue our analysis 

applying the cointegration model assumptions described in Table 2.1 to estimate equation (2.5).  

However, the evidence is not as unambiguous as in the Kitwe/Kasumbalesa case, so we might 

conclude that Cuamba price is stationary while Liwonde and diesel prices are non-stationary.  In 

such a case there could be no long-run equilibrium, but this scenario is unlikely since spatial 

arbitrage continuously takes place between these markets.  The existence of a statistically 

significant long-run equilibrium with price transmission would further question the possibility of 

such a scenario.  Results of these estimations are presented in Table 2.7.   

First note from the Lung-Box tests reported at the bottom of this table that there is no 

evidence of autocorrelation in the residual terms, and thus no need to add further lags to the 

model.  Our estimate of 1  is 0.822 with a p-value of 0.00 and a 95% confidence interval of 

0.52 to 1.12.  This coefficient estimate is also close to what one would expect if we have 

controlled for transfer costs sufficiently and these markets were integrated over the long-run 

through competitive arbitrage.  We fail to reject the competitive arbitrage null hypothesis (i.e. 

1: 10 H ) with a p-value of 0.24.  We again find fairly rapid price transmission with a 

 estimate of -0.246 that translates into a half life of 2.46 months.  The 95% confidence interval 

is -0.416 to -0.076, translating to a half life range of 1.29 to 8.94 months.  Note this coefficient 

estimate is similar to the Kitwe/Kasumbalesa model estimate; however results are more precise 

in this case.  This may represent a stronger relationship between Malawi and Mozambique, but 

we also note the 20% difference in sample size, which may also improve efficiency.  Unlike the 

model for Kitwe and Kasumbalesa, here we find a significant estimate of 2 .  Given that these 

markets are much farther apart than Kitwe and Kasumbalesa, it is not surprising to see diesel  
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Table 2.7: Price transmission estimation results for Cuamba and Liwonde 

Parameter 
SEECM under 
cointegration [95% Confidence Interval] 

µ: Constant  -1.864 [-3.38, -0.35] 
 (0.76)   

β1: Long-run relationship  0.822 [0.52, 1.12] 
 (0.15)   

β2: Diesel Prices  0.336 [0.11, 0.57] 
  (0.12)   

: Speed of transmission -0.246 [-0.42, -0.07] 
 (0.09)   

-0.342 [-0.34, 0.16] 
1  

(0.13)   
-0.310 [-0.63, -0.05] 

2  
(0.14)   

b1 -0.092 [-0.11, 0.19] 
 (0.08)   

c1  0.040 [-0.54, -0.08] 
 (0.11)   

d1 -0.040 [-0.20, 0.12] 
 (0.08)   
 

Half-life (months)
a
: 

 2.46 
   

Goodness of Fit: 

            
2R 0.62   

Adjusted-  
2R 0.57   

Residual autocorrelation: 
Q(1) 0.94   
Q(3) 0.27   
Q(5) 0.55   
Q(7) 0.72   

Note: Standard errors in parentheses.  a) Half life is calculated as ln(0.5)/ln(1+).  

Residual autocorrelation tests (Q(j)) are p-values for portmanteau tests for j
th

 
degree white noise in the residuals.  Insignificant results suggest white noise (i.e. 
no autocorrelation). 
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Figure 2.5: Simulated shock to equilibrium prices in Cuamba and Liwonde 
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price is more significant in this model.  Other parameter estimates have no discernable economic 

interpretation individually (Myers and Jayne, forthcoming).   

Figure 2.4 simulates a year-long relationship between Cuamba (dashed line) and Liwonde 

(solid line) prices.  The simulation is initiated holding Cuamba maize price and Nampula diesel 

price (not shown) at their data means (5.63 MZN/kg and 27.91 MZN/liter respectively).  The 

predicted equilibrium price of maize in Liwonde is 6.40 MZN/kg, which is reasonable but 

slightly higher than the actual mean price (6.18 MZN/kg).  In the third month a one-time 

permanent increase in Cuamba price is introduced in the amount of 0.84 MZN/kg (the average 

month-to-month change in Cuamba price over the sample period).    
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Once again based on the half-life calculation, we expect to see fairly rapid price 

transmission.  By the month after the change in Cuamba price, 77% of the shock has already 

transferred, which is slightly more than our estimation of Kitwe/Kasumbalesa price transmission.  

From the month after the shock onward the shock adjustment gradually levels off so that by the 

8
th

 month after the shock (month 12 on Figure 2.4), Liwonde price has effectively reached the 

new equilibrium price around 7.09 MZN/kg.   

Although there is not strong evidence of informal trade based threshold effects, it is clear 

that the informal trade that regularly takes place is drawing these spatially separated markets 

towards an equilibrium and that price transmission is fairly rapid.  For example, Van 

Campenhout (2007) estimates maize grain price transmission half lives within Tanzania using 

the traditional TAR model.  When price difference exceeds estimated transfer costs, that study 

estimates transmission at 3.7 weeks when markets are relatively close together (355 km) up to 

11.6 weeks for markets that are farther apart (503 km).   Myers and Jayne (forthcoming) estimate 

speed of transmission between South Africa and Zambia at a half life rate of 1.2 to 7.8 months, 

depending on trade regimes.  Compared to these results and other studies, the price transmission 

speed of 2.74 and 2.46 months for Kitwe/Kasumbalesa and Cuamba/Liwonde is fairly rapid.  
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2.5 SUMMARY AND CONCLUSION 

The objective of this study was to analyze intra-regional market price transmission in 

Southern Africa, focusing on informal trading partners in Zambia and the DRC as well as 

Mozambique and Malawi.  Specifically, we sought to determine whether and under what 

conditions long-run spatial price equilibrium exists and the speed at which price shocks are 

transmitted between Kitwe and Kasumbalesa (in Zambia and DRC respectively), and Cuamba 

and Liwonde (in Mozambique and Malawi respectively).   

The majority of the existing literature suggests Southern African markets are relatively 

isolated from outside price changes due to prohibitive policies (including export bans, 

exclusively state owned import rights and other license restrictions) and high transfer costs.  

There is less evidence available on how these markets could be expected to perform in the 

absence of these institutional barriers.  The existence of informal trading partners with transfer 

costs that are relatively low (compared to transfers from between the region and the rest of the 

world) and which trade relatively outside the realm of political influence gives us the opportunity 

to examine the performance potential these markets have.  This evidence will also inform policy 

decisions that must be made when trade opportunities or isolated deficits occur within the region. 

Following Myers and Jayne (forthcoming) we employed a single-equation error 

correction price transmission model that allows for time varying transfer costs and allows the 

relationship between markets to vary depending on trade levels.  Although formal trade seldom 

takes place between countries north of South Africa, informal trade transfers a substantial 

amount of grain throughout the region.   
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Unexpectedly, we did not find evidence strong enough to support estimation of a model 

with trade-based threshold effects.  Although this is somewhat surprising, it is also encouraging 

to discover that the functioning of the informal markets are not as vulnerable to exogenous 

limitations to trade, such as policy restrictions and transport capacity constraints, particularly in 

comparison to the formal trade markets that have been the focus of most previous studies. 

In the single-regime models thus estimated we find significant evidence of long-run 

spatial price equilibrium in both market pairings.  In both cases the coefficient estimate for the 

long-run equilibrium suggests competitive arbitrage links the informal trading markets with price 

ratio estimates close to one after controlling for transfer costs.  The rate of price transmission 

was also similar in the two models estimated.  The traditional half-life of a transfer is estimated 

to be roughly 2.7 months between Kitwe and Kasumbalesa or 2.5 months between Cuamba and 

Liwonde both of which represent fairly rapid price transmission compared to other findings in 

the literature on price transmission.  Through simulation analysis we demonstrate that one month 

after a shock to equilibrium is introduced, 67% (77%) of the total value of the shock will have 

transferred from Kitwe to Kasumbalesa (Cuamba to Liwonde).   

In short, this study shows that when we examine the price relationship between markets 

that are relatively unimpeded by interventionist trade policies and when we control, to the extent 

possible, for transfer costs, markets in the Southern Africa region will likely perform in 

accordance with economic theory; a long-run price equilibrium will exist, arbitrage appears to be 

carried out competitively, and price transmission is fairly rapid.
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	CHAPTER 1: Determinants of Maize Yield Response to Fertilizer Application in Zambia:  Implications for Strategies to Promote Smallholder Productivity 
	1.1 INTRODUCTION 
	Limited agricultural productivity is an immediate and overwhelmingly important challenge to food security and long-run poverty alleviation in Africa.  Despite several decades of targeted policies, productivity amongst rural African farmers has stagnated at levels far below world averages and too low to support transformative economic growth (Poulton et al, 2006; FAOSTAT, 2003).  In policy circles this is often attributed to low adoption of productivity enhancing technologies.  
	Although a wide array of productivity-improving inputs and technologies exist, policies often focus heavily on promoting the adoption of fertilizer, for which application rates in Africa stand at just 10-30% of those in Asia, Europe and the Americas (FAOSTAT, 2008).  In recent years this has fueled debate and a resurgence of fertilizer subsidy programs in numerous countries including Malawi, Zambia, Senegal, Mali and Kenya, among others.  These policies are motivated by the notion that such support, designed to compensate farmers for the marketing and resource constraints, could initiate a virtuous cycle of technology adoption, productivity growth and poverty alleviation (Crawford, Kelley and Ricker-Gilbert, 2011; Chibwana et al, 2010; Dorward et al, 2008; Xu et al, 2009a).  
	The general form of the conceptual model for yield functions has not changed much over time.  Following Heady (1956), the factors determining yield (Y) can be summarized as:

	1.4. ESTIMATION
	1.4.1 Statistical considerations
	The model described in section 1.3 has numerous characteristics that must be considered before estimation.  Specifically, we must acknowledge, understand the potential impact of, and as best we can control for omitted variables, the structural endogeneity of input decisions, and unobservable heterogeneity.
	Some of the most important determinants of yield are unobserved in our data (and most data used by social scientists), such as soil moisture and the pre-existing available nutrients in the soil (Griffiths, 2010; Eckert, 2010).  Although we have already described how we will control for soil type and acidity and the total rainfall and stress periods, there are undoubtedly micro-variations between fields with respect to soil content that will depend on past farming practices (fertilization, crop rotation, etc.).  There are several ways this omitted information has been dealt with in the literature on yield functions in developing countries such as 1) use of trail rather than survey data (Traxler and Byerlee, 1993; Kauka et al, 1994; Rötter and van Keulen Mwato et al, 1999; Sakala et al, 2004), 2) assuming the unobserved effects are time-constant and controlling for it via the choice of estimator (Xu et al, 2009b), or 3) testing for the potential bias omission may cause and, if none is found, proceeding with interpretation of the model with known omitted variables (Guan et al, 2006).  Of course, one could also collect data on soil nutrient content, but doing so using survey data from a very large sample would be expensive and impractical.  
	That said, two recent studies (Marenya and Barrett, 2009; Matsumoto and Yamano, 2009) were able to incorporate soil quality data (specifically, field level carbon content as a proxy for available nutrients) into fertilizer demand functions and found that farmers’ use of fertilizer is positively correlated with soil quality.  This has important implications for estimation of yield models when using survey data.  When an explanatory variable positively affects the dependant variable and is positively correlated with an omitted variable that also positively affects the dependent variable, we will have an upwardly biased estimate on the effects of the observed determinant (Wooldridge, 2002).  In other words, if fertilizer is more likely to be used on fields with more productive soil, estimating our model with soil quality missing could make fertilizer seem more productive than it is.  
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