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ABSTRACT

A DEEPER UNDERSTANDING OF THE INPUTS FOR REACTION THEORY
THROUGH UNCERTAINTY QUANTIFICATION

By

Amy Elizabeth Lovell

Nuclear reactions are important for studying the properties of nuclei across the nuclear
chart and in answering the biggest questions in nuclear science, ranging from the formation of
the elements in the universe to societal applications. The exact description of nuclei in terms
of a few degrees of freedom is not known, so models are developed to mimic the resulting
phenomena. Because these prescriptions are, by definition, approximations, it is crucial to
quantify the uncertainties that result from these approximations. These uncertainties arise
not only from the simplifications that are made to the solutions of the scattering problem
and degrees of freedom removed from the model space, but also from the parameterization of
the effective potentials. Although it is important to rigorously quantify each uncertainty, we
take the first step by systematically studying the effect of parametric uncertainties arising
from fitting optical model parameters to elastic-scattering data. To do this, we use simple
reaction models, the distorted-wave Born approximation (DWBA) and the adiabatic wave
approximation (ADWA), for computationally inexpensive calculations. Two methods of
parametric uncertainty quantification were explored in this work, a frequentist approach
and a Bayesian approach.

In the frequentist study, 2 minimization was used to constrain optical model parameters
in the incoming scattering channel, using neutron and deuteron elastic-scattering data. Then
95% confidence bands were constructed around the best-fit calculation for elastic scattering

and were propagated in order to compute 95% confidence bands for predicted (d,p) and (n,n’)



cross sections using DWBA. A correlated x? fitting function was introduced to take into
account the angular correlations within the elastic-scattering model. Using this correlated
y2 function led to broader confidence bands and more physical descriptions of the angular
distributions.

For the Bayesian study, a wide Gaussian prior was used in conjunction with neutron,
proton, and deuteron elastic-scattering data to construct posterior distributions through
a Markov Chain Monte Carlo. From the posterior distributions, 95% confidence intervals
were constructed for the elastic-scattering cross sections and then propagated to predict
95% confidence intervals for (d,p) and (d,n) reactions using either ADWA or DWBA. In
this way, the parametric uncertainties from ADWA and DWBA could be directly compared,
and ADWA was found to have smaller uncertainties. The effect of artificially reducing
the experimental errors on elastic-scattering data was studied, and it was found that the
uncertainties in the transfer cross section decreased but not by the same percent that the
experimental errors were reduced.

Overall, the uncertainties on the predicted cross sections due to fitting optical model
parameters to elastic-scattering data ranged from 20 — 120%, significantly larger than the
10—30% uncertainties that are assumed to be introduced by these fits. Uncertainties beyond
those introduced by fitting to data must also be included, such as those introduced by the
few-body approximations. In addition, the propagation of uncertainties has to be reliable.
A full description of theoretical uncertainties is vital for predictions, especially as we move

toward the edge of the nuclear landscape.
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Chapter 1

Introduction

The nuclear physics community has identified several overarching goals [12]. These goals

include answering:
1. How did visible matter come into being and how does it evolve?

2. How does subatomic matter organize itself and what phenomena emerge from this

organization?

3. To what extent are the fundamental interactions that are critical to the structure of

matter understood?

4. How can the knowledge and technical progress provided by nuclear physics best be

used to benefit society?

Reactions can be used to study each of these points. Because these questions span the
full scope of nuclear physics, a wide range of experimental techniques is required. Reliable
reaction theory is crucial for extracting information using these various probes.

The study of big bang nucleosynthesis aims at answering the question as to how the
elements were formed throughout the history of the universe. For models to correctly re-
produce the observed isotopic abundances, many properties of nuclei have to be measured,
including reaction rates, lifetimes, and masses, often of resonance states in the continuum.

Many of the reactions of interest are neutron or proton capture reactions which take place far



from stability. Since targets for short-lived radioactive isotopes cannot be made, reactions
are instead often studied in inverse kinematics [13, 14, 15, 16] where a radioactive beam is
impinged upon a stable target. However, neutron capture reactions cannot be performed in
this manner, so surrogate reactions are used instead. For example, a (d,p) transfer reaction
can be used to populate the same states that a neutron capture reaction would populate
[17, 18]. Understanding the reaction mechanisms in both cases is crucial in extracting the
same information from both of these studies.

Many novel phenomena emerge across the nuclear chart, especially at the limits of sta-
bility - the neutron and proton driplines, beyond which a nucleus can no longer form bound
states. Neutron and proton halo nuclei have a single nucleon (or multiple nucleons) that is
spatially separated from the remaining nucleons in the core, giving rise to interesting features
such as a 11Be radius that is as large as that of 208Ph (when the radius usually scales with
Al/ 3 and it is only the valence neutron orbital that is the size of 208Pb). This was first
noticed through the extraction of radii from reaction cross sections [19]. Borromean nuclei,
which can be thought of as a core and two valence protons or neutrons, are bound but do not
support any two-body bound states. 11Li, for example, is well-described as n + n+9Li but
neither the nn or n—19Li subsystems are bound [20]. These systems have unusually large
reaction cross sections compared to neighboring nuclei, and they can often only occur for
specific configurations (the valence nucleons have to have low values of angular momentum).
The evolution of these shells can be probed using transfer and knockout reactions [21, 22, 23].
In certain cases, measurements from Penning traps, which can precisely measure properties
of nuclei, are able to provide detailed information into the structure of matter [24], as do -
and ~y-decays (e.g. [25, 26]), but much information is still obtained from reactions.

Finally, two of the most prominent societal applications from nuclear physics are to



energy and medicine. Reactions involving neutrons, deuteron, and tritium play a key role in
development and design of nuclear reactors [27, 28]. Exotic isotopes far from stability can
be harvested during experimental runs at basic science laboratories. These nuclei occur as
by-products of proposed experiments and are used as radiotracers for imaging and therapy
[29, 30]. Whether or not enough of these isotopes can be produced for collection directly
relates to the reaction mechanism that is used to produce them.

A concrete understanding of reaction theory is crucial for extracting information from the
experimental studies used to answer these questions. Extracted quantities are often model-
dependent due to the simplifications or effective interactions that have been developed and
the theoretical methods that are applied. Each model uses different degrees of freedom
and takes into account different reaction mechanisms which can be more or less important
depending on the reaction being studied. The important degrees of freedom change based
on the energy range, mass and charge of the system, and the structure of the projectile and
target. The implementation of many reaction theories relies on phenomenological potentials,
which introduce further ambiguities into the observables. Parameters within the potential
can vary significantly but still give rise to the same elastic angular distributions (which are
typically used to constrain these parameters). A thorough understanding of the limitations
of these reaction models, as well as their inputs, is crucial to accurately interpret reaction

data and make predictions.

1.1 Uncertainty Quantification

It is important not only to have robust input for our theories but also to study the degree to

which these inputs are uniquely constrained and well determined. This has been recognized



for decades in several math and science communities. Mathematical overviews, such as
[31], have been the starting point for analyzing parametric uncertainties and implementing
procedures that correct for model inadequacies. The analysis of high energy experiments
routinely uses advanced statistical techniques for the resulting large data sets, for example
[32, 33]. Astronomy and astrophysics communities have been using Bayesian approaches to
interpret observed quantities such as neutron star radii [34] and luminosities [35]. They have
also studied and understood the importance of explicitly encoding assumptions into their
interpretations of observations. The many examples of [36] show that observations can be
misleading when prior information is not taken into account (e.g. overestimation of the mass
of a distant galaxy because of an incorrect assumption of the shape of the mass function,
which describes the distribution of mass of a group of stars). Climate science has relied on
uncertainty quantification in connecting observations such as solar irradiance, greenhouse
gas concentration, volcanism, tree rings, sediment records, and ice cores to the temperature
[37]. Model and parametric uncertainties have been also been studied in geophysics (e.g.
[38]). Over the past several years, there has been a push in the atomic physics community
to include uncertainties on theoretical calculations whenever possible [39].

Within the past few years, the nuclear theory community has also recognized the im-
portance of rigorously including uncertainties in calculations. Most of the recent work to
systematically quantify uncertainties in nuclear theory has been within the nuclear structure
community [40, 41, 42, 43, 44, 45, 46, 47, 48]. For example, effective field theory (EFT)
methods rely on an order-by-order expansion to calculate observables (such as cross sec-
tions) that are based on potentials (also constructed through an order-by-order expansion)
constrained by nucleon-nucleon interactions (e.g. [49]). Interactions derived from EFT are

written in such a way that two-nucleon forces dominate the interaction and are followed by



three-nucleon interactions, four-nucleon interactions, and so on. This hierarchy introduces
free parameters (low energy constants, LECs) that are constrained by data. The expan-
sion for observables is controlled by a dimensionless quantity which, as the nucleon-nucleon
interaction itself, decreases with every successive term in the expansion.

This type of formulation provides a myriad of opportunities for systematic uncertainty
quantification. Parametric uncertainties can be addressed in the fitting of the LECs. As-
sumptions can be directly tested, such as the expansion coefficients for observable calcula-
tions should be of order one. In addition, because the theory is constructed on a systematic
expansion where each successive order becomes smaller than the previous, there is a straight-
forward way of quantifying the uncertainty on a given order based on the next order’s cal-
culation. All in all, this theory provides a diverse playground for investigating various types
of uncertainties.

Because of this, much progress has been made in recent years to quantify uncertainties
in EFT. Theoretical uncertainties of phase shifts and observables, based on the construction
of the EFT interaction at various orders, was investigated in [50] where this error was shown
to decrease order-by-order. Statistical uncertainties from the constraints on the LECs were
propagated to observables using covariance matrices [40, 41]. Bayesian methods have been
used to calculate uncertainties on the expansion parameters of observables [42, 51| where
the naturalness (order unity) of these parameters can be included as prior knowledge. The
framework is very flexible, allowing for these assumptions to be explicitly included, tested,
and then modified if necessary [43, 52, 44].

Uncertainties are also being systematically quantified in density function theory (DFT).
Density function theory is a microscopic theory that is able to reproduce observables across

the entire nuclear chart. It is commonly used to predict masses and fission properties [53].



Many DFTs are generated from known symmetries, and because the model is not built upon
an underlying theory - like EFT is - parameters must be constrained by experimental data
[45, 54, 46]. Constraining the parameters and computing the associated uncertainties has
been accomplished through covariance analysis as well as using Bayesian techniques [55].
Ambiguities in model parameters arise when various sets of data are used to constrain these
parameters. The information content of these data sets can be evaluated by calculating the
uncertainty associated with each parameterization [47] (and references therein).

Understanding the information content of experimental data with regard to a given model
has also been investigated in heavy ion collisions, where models can have hundreds of param-
eters and are computationally expensive. Techniques, such as principle component analysis
(PCA) and those discussed in [48], are used to understand the correlations between model
parameters, as well as to determine which parameters can be constrained based on the ob-
servables that are calculated [56, 57]. Principle component analysis also aids in the creation
of emulators which replicate the trends and correlations of the theory of interest in order to
decrease computation time but still mirror the results of the full calculation.

This, of course, is not a complete history of uncertainty quantification, but it is represen-
tative of the depth of studies that can be performed. While significant effort has gone into
quantifying uncertainties in nuclear structure and heavy ion collisions, the same cannot be
said of direct nuclear reaction theory. Many of the sources of uncertainties in reaction theory
are similar to those in EFT and DFT. However, the formulation of the models in reaction
theory makes it such that, while we can use similar techniques to quantify our uncertainties,

these techniques have to be re-explored for scattering models.



1.2 Motivation

There are four main sources of uncertainty in few-body reaction theory [58]: 1) the degrees of
freedom left out of the model space, 2) the effective interactions used, 3) structure functions
(such as overlap functions), and 4) approximations made to the few-body problem. Many
of these sources of uncertainty have been investigated through comparative methods (as
will be discussed in this section), but until recently in reaction theory, there have been no
systematic studies aimed at rigorously quantifying these uncertainties. This is important not
only for moving the field forward and keeping up with new implementations in other fields -
as discussed in Section 1.1 - but also for reliably interpreting information from experimental
data.

The first source of uncertainty in reaction theory is the simplification made to cast the
many-body problem into the framework of a more tractable few-body problem. The full
three-body problem for three nucleons can be solved exactly, with and without the Coulomb
potential (which can present a significant challenge) [59, 60]. However, many more compli-
cated reactions are also cast as three-body problems - such as single nucleon transfer, in the
context of A(d,p)B (e.g. [61]) which is often treated within a n+p+ A model. This removal
of degrees of freedom from the model space can have a noticeable affect on calculated ob-
servables. For instance, excited states in the target can influence the reaction mechanism,
as has been shown for 'Be [62, 63]. Including the first excited 27 state in 19Be has a sig-
nificant effect on the transfer cross section for 19Be(d,p)''Be(g.s.) [64]. Being able to take
these effects into account is particularly important for transition nuclei for which a simple
vibrational model, rotational model, or single-particle excitation is not enough to describe

the complex excitations. The ultimate goal in this sector is to a priori understand the un-



certainty associated with each of these simplifications of the model space without having
to compare with the full calculation for each reaction (many of which are out of reach of
present-day reaction theories).

The second source of uncertainty comes from the effective nucleon-target interactions
which are usually taken to be optical potentials. These are constructed to mimic the inter-
action between the projectile and target in a simple, parameterized form. In principle, these
potentials can be built up from nucleon-nucleon interactions, but recent work has shown a
lack of absorption in the potentials constructed this way [65]. Instead, the parameters within
these effective interactions are usually constrained by fitting elastic-scattering data, intro-
ducing ambiguities in the resulting reaction observables. (The same elastic cross sections can
arise from different parameterizations of the potentials.) These ambiguities are not typically
taken into account when experimental results are being interpreted (e.g. [14]); if they are,
this is done by direct comparison between two parameterizations (e.g. [13]), which does not
describe the full extent of the uncertainties introduced in this manner. Global parameteriza-
tions are constructed by fitting mass- and energy-dependent parameters to a large range of
nucleon elastic scattering on nuclei across the nuclear chart, and although these forms tend
to interpolate well to other energies and nuclei within the fitted region, extrapolations away
from stability can be uncontrolled. An analysis of covariance matrices can give an idea of the
uncertainty associated with a given fitted parameterization, but these uncertainties will vary
based on the minimum. It is therefore important to be able to calculate uncertainties for a
single parameterization and understand how these uncertainties propagate to predictions.

The structure functions included in the reaction model provide the third source of un-
certainty. For example, in a single-nucleon transfer reaction, information is needed about

the bound state of the nucleon that is transferred from the projectile onto the target. These



bound states are often described as a single-particle state in a mean field generated by a
Woods-Saxon potential. The geometry of this potential is rather arbitrary and only the
depth is constrained to reproduce the binding energy of that state. This geometry, how-
ever, can greatly influence the magnitude of the transfer cross section which then affects
extracted quantities, such as the spectroscopic factor (e.g. [58]). Asymptotic properties of
the bound-state wave function are known to also be sensitive to the geometry of the mean
field, so constraining these properties directly can reduce the uncertainty in quantities ex-
tracted from the transfer cross section. Understanding how changes in the mean field affect
the magnitude of the transfer cross section will probe the uncertainties introduced from this
source.

For the final source of uncertainty, there are the approximations that are made to the
solution of the few-body problem itself. While the exact three-body problem has been
solved for three nucleons with techniques such as the Faddeev equations for coordinate space
[66] and corresponding Alt-Grassberger-Sandhas (AGS) equations in momentum space [67],
applying these techniques to heavier systems becomes challenging due to the long-distance
nature of the Coulomb interaction between charged bodies. Simpler solutions have been
developed where approximations are made to the exact few-body scattering wave function.
One such approximation is the distorted-wave Born approximation (DWBA) which replaces
the exact three-body wave function by the elastic channel (a distorted wave that describes
the scattering between the projectile and target multiplied by a corresponding bound-state
wave function). However, for reactions involving loosely bound systems, this approximation
falls short and is often replaced by methods that include effects of the continuum, such as
the continuum discretized coupled channel (CDCC) [68] and adiabatic wave approximation

(ADWA) [69] methods. Although these methods compare favorably to the exact three-body



methods for deuteron-induced reactions on targets with mass A < 50 (for example [70]), this
direct comparison is not possible for heavier systems because of the difficulties associated
with the Coulomb force. In addition, these methods may be difficult to converge and are
computationally expensive. For this reason, theories such as DWBA are still widely used.
Similarly to the first point, the goal for this sector is to a priori understand the uncertainties
arising from simplifications to the full three-body wave function.

Although systematic uncertainty quantification has been studied mainly within the nu-
clear structure community discussed in Section 1.1, informal methods of uncertainty evalu-
ation have been used in reaction theory for decades. Several different potential parameteri-
zations can give rise to identical - or nearly identical - elastic-scattering cross sections while
producing significantly different transfer cross sections [58]. Uncertainties are evaluated by
calculating the percent difference between observables produced from the two parameteriza-
tions. Model uncertainties have been historically explored by directly comparing observables
calculated from two reaction models with identical interactions. However, these comparisons
do not provide a systematic path for quantifying uncertainties in general.

Systematically studying all of these sources of uncertainty is imperative. However, the
magnitude of that task is far and beyond the work that could be done here and will continue
in a later stage of this project. In this work, we begin by investigating the uncertainties
related to the effective interactions, specifically those that arise from fitting optical model
parameters to elastic-scattering data. To that end, we need to develop and implement tools
for uncertainty quantification to reaction theory models. We also want to test the validity of
these methods across the range of reaction probes and models of interest. Because the models
that most accurately describe the physics of reactions in all of these areas are in themselves

computationally expensive - and even the simplest forms of uncertainty quantification add
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several orders of magnitude to the computation time - for this work, we restrict ourselves
to simple reaction formalisms. Although these do not take into account the complexity of
most of the reactions that we studied, they are ideal for developing and exploring techniques
for parametric uncertainty quantification. Eventually, these uncertainty quantification tech-
niques will be applied to more state-of-the-art reaction models, but that is beyond the scope

of this thesis.

1.3 Outline

This thesis is organized in the following way. In Chapter 2, the necessary reaction theory
is presented. Chapter 3 formulates the implementation of uncertainty quantification in the
theories previously mentioned, focusing on the uncertainties coming from the parameteriza-
tions of the optical model - and not from the choice of the reaction model. Two separate
methods are discussed here, first a frequentist model and then a Bayesian method. Chapter
4 provides selected results from the frequentist study, including the comparison of the two X2
fittings that were performed. Next, the Bayesian results are presented in Chapter 5, which
includes the various prior choices that were investigated, the dependence of results on the
size of the experimental errors, and the results of the elastics scattering and transfer calcu-
lations. Finally, the conclusions will be drawn in Chapter 6 followed by the future directions
that this work can take.

This thesis also contains several appendices that hold important work that does not nec-
essarily fit into the main body of this text. Appendix A contains the test of the Monte Carlo
code that was developed to calculate posterior distributions for the Bayesian calculations.

It also contains the extensive tests that were performed on the various prior distribution
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shapes. For both the frequentist and Bayesian projects, more reactions were studied than
could be included in the main text; the details of these remaining reactions are provided in
Appendices B and C.

There are also two projects that, although important to the field, do not necessarily fit
under the heading of uncertainty quantification; these are detailed in Appendices D and
E. In the first, the introduction of energy-dependence into non-local potentials is described
[5]. This work connects to Luke Titus’ PhD thesis work [71] and the master thesis work of
Pierre-Loic Bacq [2] and serves as a motivation to reexamine phenomenological non-locality.
Finally, Appendix E presents results from a three-body calculation for 16Be in response to
an experiment run at the National Superconducting Cyclotron Laboratory (NSCL) in 2012
[72] that observed the two-neutron decay of this nucleus. This work is the first three-body
calculation performed for '®Be [3] and involves n-14Be interactions which are very poorly

constrained due to a lack of data.
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Chapter 2

Reaction Theory

Different reaction probes can be used to extract a variety of nuclear properties. Elastic scat-
tering provides information about the interaction between the projectile and target nuclei,
including the size of the nuclear potential and its strength. The diffraction-like patterns that
are seen in the elastic-scattering cross sections are related to the size of the target nucleus.
Inelastic scattering observables contain information about the shape of a nucleus.

A deuteron impinged upon a target can transfer a proton or neutron in a single-particle
transfer reaction. Because the shape of the angular distributions are determined by the
angular momentum transfer of the reaction, these reactions can be used to probe specific
states within the final nucleus that are populated by the transfer. Within the scope of a
given model, the calculated cross section can be decomposed into its partial wave components
and compared to data, for example [73]. Transfer reactions also provide a connection be-
tween structure and reaction, by connecting observables (e.g. cross sections) to theoretically
calculated quantities, such as spectroscopic factors.

Robust reaction theory, as well as a sound understanding of the approximations and
limitations of the different frameworks, is crucial to interpreting experimental results. The
main goal of this work is to study the theoretical uncertainties that are introduced by fit-
ting parameters in optical model potentials to experimental elastic scattering data. Here,

the fitted potentials include those that describe the scattering of projectiles and targets.
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Bound state interactions (such as that between the neutron and proton in the deuteron) are
also constrained by data, but the uncertainties from these potentials are not considered in
this work. There is also uncertainty introduced in the theory from the simplification from
a many-body problem to a few-body problem and in the approximations that are made
within the reaction models (first order expansions, etc.). Even though we do not directly
include uncertainties coming from the approximations within the models, it is important to
understand the applicability of each framework so that our interpretation of the uncertain-
ties coming from the potential parameterizations are not skewed by the limitations of the
model. The following chapter will provide information about the potentials that are used to
describe target-projectile interactions and then discuss the reaction models used within the

remainder of this thesis.

2.1 Optical Model

Throughout this work, the potentials that describe the interactions between the target and
projectile are defined by the optical model. Phenomenological optical potentials consist of
real and imaginary parts; they are local and strongly energy- and mass-dependent. Because
these potentials effectively describe the complexity of the many-body A-N system by two-
body interactions instead, these dependences are intended to take into account effects such
as anti-symmetrization, non-locality, and couplings from the elastic channel to all other
channels not explicitly included in the model space [74, 75, 76, 77].

Even though they are simple, phenomenological potentials still play an important role
in few-body reaction theory. Global parameterizations, which are fit to a wide range of

data across the nuclear chart to constrain mass- and energy-dependences, are particularly
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useful for interpolating between available data sets to make predictions for reactions that
have not yet been measured. There are several commonly used global optical potentials
[1, 78, 79, 80, 81, 82| which were developed between the 1970’s and early 2000’s. In this
work, these are used as is or as the starting point for a local optical potential that is further
constrained by a single set of two-body scattering data.

The optical model describes the interaction between the target and projectile with real

and imaginary components,

UR) =V(R)+i{(W(R)+ Ws(R))+ Vso(R) + Vo(R). (2.1)

The imaginary component takes into account the absorption of flux that occurs at higher
energies when other reaction channels become accessible. The potentials considered in this
work have three parts, a volume term, a surface term, and a spin-orbit term (each of which
can consist of a real and imaginary potential) and are generally parameterized as Woods-

Saxons shapes or their derivatives. The volume term is given as

v
= _ 2.2
VIR) = e 2.2

for the real part, and
W(R) = W (2.3)

_1 + e(R—wa)/aw ’

for the imaginary part, both of which are parameterized by a depth V;, radius R; = riAl/ 3
(where A is the mass number of the target), and diffuseness a;. The geometries of these two
terms tend to be similar, r; ~ 1.2 fm and a; ~ 0.6 fm. The real depths are typically around

40 — 50 MeV, and the imaginary depths are closer to 10 — 20 MeV for £ ~ 10 — 20 MeV
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(these are strongly energy dependent).
The surface potential is typically entirely imaginary and is parameterized as the derivative

of a Woods-Saxon,

d W

Ws(R) — —4asﬁ 1 + e(R—Rs)/as .

(2.4)

As the energy changes, there is an interplay between the two imaginary terms. In the
energy range of 10 —50 MeV, as energy increases, the imaginary volume term becomes more
important (and the surface absorption becomes less important).

Like the surface terms, the spin-orbit potential is generally parameterized as the deriva-

tive of a Woods-Saxon shape and typically only consists of a real part of the form

ho\22L-s d Vo
VS("( ) B dR1 G o Realfass’ (25)

where my is the pion mass. In this definition, the depth of Vs, is between 5 and 8 MeV for
nucleons.

For the scattering of two charged particles, a Coulomb term is included as well. Outside
of the Coulomb radius (R¢g = rcAl/ 3), the potential is defined as the simple point-Coulomb

potential,
_ ZypZye?

Ve(R) I

(2.6)

However, within the Coulomb radius, this term has to take into account the non-zero mean

charge radius of the target. This is parameterized as

Vo(R) = ZyZie” (§ - R—2> . (2.7)
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In both equations, Zpe and Zie are the charges of the projectile and target, respectively.
The phenomenological potentials of Eq. (2.1) are typically fit to elastic-scattering data
to determine the parameters, either globally or locally. Global potentials, as discussed pre-
viously, are fit to a large variety of elastic-scattering data (spanning a few to a few hundred
data sets across a range of masses and energies). These potentials tend to capture trends
across the nuclear chart or within a broad mass and energy range. Optical potentials can also
be constructed for a specific projectile-target combination. In our work, a global potential
is used as the starting point for a fit to data of a given target-projectile combination at a
specific energy, and the parameters are adjusted (through Y2 minimization) such that the

theoretical predictions for the cross sections better reproduce the experimental ones.

2.2 Two-body Scattering

We continue by considering two-body elastic and inelastic scattering. For the cases that are
studied in this work, these two-body interactions describe a neutron, proton, or deuteron
(treated as a single particle) impinged upon a heavier target. The target is treated as a single
body with a total spin and parity, J7, instead of as A individual nucleons. This simple case
is instrumental to not only build upon when considering the three-body theories used in this
work, but also to illustrate the complexity of passing information from the potential itself

to the observable cross sections that can be compared directly to experiment.

2.2.1 Elastic Scattering

For the simplest case of elastic scattering, we begin with the projectile of mass my, charge

Zp, and mass number A, impinging on a target of mass my, charge Z;, and mass number
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Figure 2.1: Two-body coordinate system.

A¢. The interaction between the pair is described by a spherical potential, as in the previous
section, which only depends on the distance between the projectile and center of mass of the
target, R, as shown in Figure 2.1. Fixing the projectile’s momentum, E, along the z-axis,
the corresponding wave function should be cylindrically symmetric. After interacting with

the potential, U(R), the wave function of the system should have the asymptotic form,

cilkR—nlnk2R]

YIVI(R ) = oilkz+nnk(R—z)] + £() T — (2.8)
where 7 is the dimensionless Sommerfeld parameter,
ZpZ1e? 1 \1/2
T=Th (2}3) (2:9)

The asymptotic wave function of Eq. (2.8) is composed of the incoming plane wave plus an
outgoing spherical wave that is modified by the interaction with the potential. The scope
of this modification is captured in f(6), the scattering amplitude, and is used to directly
calculate the elastic-scattering cross section.

When both nuclear and Coulomb potentials are included, the scattering amplitude is com-
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posed of a point-Coulomb amplitude and a Coulomb-distorted nuclear amplitude, f(0) =
fe(@) + f5(0) [83] (akin to the two potential formulation for the T-matrix). Because the
Coulomb potential has infinite range, the point-Coulomb amplitude, f.(6), must be calcu-
lated explicitly. The Coulomb-distorted nuclear amplitude, fy,(#), can be calculated through
a partial-wave expansion.

The point-Coulomb scattering amplitude [83] (chapter 3) is

——Lex —inln(sin2 10 .
Fol®) = = g7y PG’ 0/2)) + 2o, (2:10)

where o((n) is the Coulomb phase shift,
or(n) =argl'(1 + L+ in) (2.11)

for L = 0. The point-Coulomb cross section resulting from this is identical to the classical

Rutherford cross section,

do >
— =— 2.12
(dQ) Ruth 4]{}281114(‘9/2) ( )

To then calculate f,,(6), the asymptotic solution of Eq. (2.8) is matched with the solution

of the time-independent Schriodinger equation (with center of mass motion removed),
T+ U(R)+ Vo(R) — EJY(R,0) =0 (2.13)

where the kinetic energy operator is defined in the typical way (for example [83]).

To solve, ¥(R,0) is written using a partial-wave expansion with Legendre Polynomials,
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Py (cosh),

o0

G(R,0) = (2L + 1)iL Pp (cosh)

ﬁXL(R)' (2.14)
L=0

The Legendre Polynomials are eigenfunctions of L? each with an eigenvalue of L(L + 1).

Thus, the radial equation for each L value,

[ h? ( d?>  L(L+1)

T G i )+V(R)+VC(R)—E XL(R) =0, (2.15)

can be solved independently.
In practice, each of these equations can be solved through numerical integration by taking
X1(R) = Brur(R), and solving Eq. (2.15) for uy(R). This numerical solution then gets

matched to the wave function outside of the range of the nuclear interaction,
XL(R > Rint) — AL [HL_ (777 kR) - SLHZF(% kR)} ) (216)

where Sy, is the S-matrix element for each L value, and Hf(n, kR) are Hankel functions
[84] which include the Coulomb effects through 1. The S-matrix element can be calculated
numerically through the R-matrix which equates the logarithmic derivatives of the interior

and asymptotic wave functions at some point beyond the range of the nuclear interaction, a,

) lugla)
ax’(a) aul(a)

(2.17)

The scattering amplitude can be written in terms of S, by making use of the partial-wave

expansion for e/*% and e*% and matching these with the wave function of Eq. (2.8).
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The Coulomb-distorted nuclear amplitude is then

0]

fn(0) = ﬁ LX:O(QL + 1) Pr,(cost)exp(2ior,(n)) (ST — 1), (2.18)

and the resulting differential cross section is

= 15ul6) + Ta®) (2.19)

which is often calculated as a ratio to the Rutherford cross section of Eq. (2.12) since Eq.
(2.19) goes to infinity at small angles for the scattering of two charged particles.

Equation (2.19) illustrates several difficulties in performing uncertainty quantification
using these formulations. First, there is a clear but not trivial connection between the
parameterization of the potential and the cross section, due to the non-linearity of the
model. All of the information from the potential is contained in Sy, and it is not easy to
write the potential or cross section as a polynomial expansion. Although we understand
how individual parameters change the cross sections, it is not straightforward to know a
priori the effect that combinations of parameters will have or if they will interfere with one
another to negate changes. This has to be explored numerically. Second, the construction
of the cross section using partial-wave decomposition, where all of the angular dependence
is contained in the Legendre Polynomials, causes the fitting of the cross section at one angle
to influence its value at all other angles. This introduces correlations within the model that
are not necessarily taken into account when using a typical y2-based fitting method. (This

will be discussed in more detail in Section 3.1.2.)
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2.2.2 Inelastic Scattering

Not all excited states of a nucleus will have the same spin and parity as the ground state,
and the central nuclear and Coulomb potentials that have been discussed so far are not able
to change either the spin or parity. The simplest model that will cause an inelastic excitation
of the target nucleus is a rotational model that deforms the surface of the target nucleus. In
this work, we only consider coupling to the first excited state of the target nucleus which is
taken to be caused by quadrupole or octupole deformations. The potentials described here
are specific to those couplings.

To couple to a 27 excited state to a 0™ ground state, for example, the potential can be

expanded in spherical harmonics as

~

U(R,&,R) = Up(R)Y)(R) + BolUs(R)Yy (R)YZ (§), (2.20)

where é is the internal coordinate of the target, R are the angular coordinates of R, and (9
is the quadrupole deformation of the target. This inclusion of the spherical harmonics can
change the state of the deformed nucleus. A similar expansion can be made using the octupole
deformation, f3 instead of the quadrupole deformation. For many cases, it is a reasonable
approximation to only include the first excited state. For the sake of exploring techniques
of uncertainty quantification in inelastic reactions, we want to keep the models simple and
therefore will constrain our applications to the inclusion of only the first excited state. We
understand, however, that the differences in theoretical and experimental cross sections can
be due to neglecting these higher-lying states. Although interesting and important, here, we
take a one-step approach for consistency with the other reaction formalisms presented. The

analysis of the importance of including higher-lying states is beyond the scope of this work.
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2.2.3 Coupled-Channel Equations

Let us consider the target’s ground state to be 07 and it’s first excited state to be 27T.
Because we are now coupling two channels together, the wave function can be written as a

linear combination of the ground state and first excited state

~

(R, &) = x0(R)¢o(§) + x2(R)d2(£), (2.21)

where y; is the scattering wave function and ¢; is the wave function for the internal state of

the system. The internal wave functions satisfy the eigenvalue equation

H;(€)9i(§) = €#i(§), (2.22)

with eigenenergies ¢;. In general, an arbitrary number of coupled channels can be solved

through

[T(R) + Una(R) = Eptlxa(R) + Y UyXor(R) =0, (2.23)
/7&04

where I is the reaction energy minus the excitation energies of the internal states, and the

coupling potentials for the rotational bands are defined as

M: A A A A M, - A
Ui () = (Yy RGOV (R RV, Y (R)65(€). (224)
The simplest method to solve Eq. (2.23) is through direct numerical integration. How-
ever, for many cases, especially when the centrifugal barrier is large, this can lead to sig-
nificant numerical instabilities, so alternative methods - often using basis expansions - have

been developed to provide greater stability. A discussion of each of these methods is outside
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of the scope of this work, but details can be found in [85, 86, 87, 88, 89, 90, 91, 92].
Because we only couple to the first excited state, we have two coupled equations from
Eq. (2.23):

[Tr,(R)Uoo(R) — Ept]xo(R) + Up2(R)x2(R) =0, (2.25)

and

[Tr(R) + Uaa(R) — Ept]x2(R) 4 Uzp(R)xo(R) = 0. (2.26)

Together, these include full couplings between the elastic and inelastic channels. Often, an
approximation is made where the inelastic channel includes couplings from the elastic but
the elastic channel does not include couplings from the inelastic channel; this is the one-step
distorted-wave Born approximation. This amounts to first removing the coupling potential
from Eq. (2.25) to solve

[Tr.(R) + Uno(R) — Elxo(R) =0, (2.27)

and then using this wave function to calculate xo(R) from Eq. (2.26).

2.3 Three-body Scattering

Often, reactions have other degrees of freedom that are not well described in a simple two-
body approach. This is especially true if the mass partitions are rearranged, as in transfer
reactions. For example, in a transfer reaction A(d,p)B, a valence neutron, n, is transferred
from d (d = n + p) onto A forming B (B = A+ n) as shown in the Figure 2.2. Here, it
is useful to calculate the cross section in terms of the T-matrix. For a three-body system
such as this, the T-matrix can be written exactly, using either the coordinates of the initial

system (prior form) or the coordinates of the final system (post form). In the post form, the
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Figure 2.2: Coordinate system for a three-body problem. The solid lines show incoming
coordinates, and the dashed lines show the outgoing coordinates.

T-matrix is written as
Toost: = (@115 (T)X 7 (Bp)|Vap + Vi — Uy | U2, (2.28)

Here, WX jg the exact three-body wave function, each Vi) is the interaction between
bodies j and k, and Uy is the optical potential between B and the scattered proton that
gives rise to the corresponding distorted wave, x s. Typically the post form is used because,
in this coordinate system, the remnant term, Vj, 4 — Uy, is small due to the scaling of the
optical potentials. For a single nucleon transfer reaction, the two potentials in the remnant
differ by one nucleon. In such cases Vi 4 is roughly A/(A + 1)U N(A+1), so for all but light
targets, the remnant term can be neglected.

The exact three-body wave function is defined by the solution of

[TR + Hint(ﬂ + ‘/EDA + Vpa — E]\IjexaCt (Fa é) =0, (2'29)
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where the internal Hamiltonian is defined for the projectile as Hiyy = T 4+ Vip(r). Beyond
the range of the nuclear interaction, the radial part of U2t for each partial wave behaves
like

¢(R> — 50[042'FLZ' (77L7 k:R) + TOéOzin— (nLv kR)a (230)

where « denotes a set of quantum numbers (with «; for the incoming channel) and F7, is
the regular Coulomb function [84]. Often, U is obtained by making approximations
to the exact three-body problem in order to formulate a more tractable problem, one that
is significantly less computationally expensive than solving for the full three-body wave
function. Having a simplified model is particularly important for our initial investigation into
parametric uncertainties. As will be discussed in Chapter 3, the uncertainty quantification
methods that we use rely on running hundreds or thousands of calculations for a single
reaction, adding another three orders of magnitude to the computation time. Therefore, it
is essential that the reaction models we implement are efficient. Two of these three-body

approximations are discussed below.

2.3.1 Distorted-Wave Born Approximation

The distorted-wave Born approximation (DWBA) simplifies the exact three-body wave func-
tion to the elastic channel, namely a distorted wave, Xi(éi)u multiplied by the corresponding
bound state, ®;4(7;). Neglecting the remnant, as we will do for the rest of this work, the

T-matrix then becomes

TDZ.WBA = <(I)IAIB (Ff)XJ; (éf)’vnpm)d(ﬁ))(z(éz» (2'31)

26



However, the projectile can break-up within the field of the target before the valence
nucleon is transfered to the target. Because of the deuteron’s small binding energy, this is
particularly important for deuteron-induced reactions. Several studies have shown (e.g. [93])
that taking into account the break-up of the deuteron is critical for reproducing experimental
results. Using the adiabatic wave approximation (ADWA), we can make an approximation
for the three-body scattering wave function that takes into account break-up of the incoming

deuteron.

2.3.2 Adiabatic Wave Approximation

Adiabatic approximations rely on the separation of fast and slow variables, where the slow
variable can be assumed to not change over the course of the reaction. One such separation
is in the sudden approximation where the internal motion of the projectile is considered
slow compared to the motion of the center of mass of the projectile-target system. The
internal energy spectrum associated with the projectile should be much lower than the beam
energy, and because of this, the excitations of the projectile can be taken to be (practically)
degenerate with its ground state.

Considering the post form of the T-matrix from Eq. (2.28), Vi is the dominating
interaction (since, again, the remnant term is small), and therefore, the three-body wave
function is only needed in the region of V), [69]. The wave function can then be expanded
in terms of Weinberg states, ¢;(7) which describe the relative motion within the projectile,

and y;, the relative motion between the projectile and target,

00
pexact o pad _ Z ¢i(7)xi(R). (2.32)
1=0
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Weinberg states [94] are defined by
(T + AiVap — €q)i = 0, (2.33)

and are only complete within the range of the deuteron interaction. These states are nor-

malized as

[ oivisjar =535 (2.34)

In ADWA [69], we retain only the first Weinberg state so that
9 2 o (7)xo (). (2.35)

which has been shown to be a good approximation [95]. Here, the first Weinberg state, ¢,
is an eigenfunction of the internal Hamiltonian for the deuteron with eigenenergy, —e , the
deuteron binding energy.

The three-body problem of Eq. (2.29) then becomes

[Tr — (E + €2)]00(F)x0(B) = —(Upa + Upa)do(P)x0(R), (2.36)

and can be solved through direct integration methods, as

[Tr — (E + €2)]x0(E) = —(60|Vap(Upa + Una)l0)x0(R). (2.37)

Because the Weinberg states are only complete in the range of Vj,;, the asymptotics of the
resulting yo no longer describe the projectile-target elastic scattering. At short distances,

this method produces a distorted wave that takes into account the breakup of the projectile
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to all orders. The resulting T-matrix is then

TRPVA = (@) 1 ()X f (Bp) [Vip | 9. (2.38)

2.3.3 Transfer Observables

Once the three-body T-matrix has been calculated under either approximation (DWBA or
ADWA), the differential cross section for the transfer reaction can be computed

2

— = 0 2.39
dQ (2Ipi+1)(21‘ti+1)ﬂ Z "fﬂpf‘tﬂpwti() (2:39)
PHERD; it

where f/fgltﬁt Hp;hit (0) is proportional to the three-body T-matrix and I; is the internal spin
of the target or projectile (with Ip, =1 = 1). By using the appropriate nucleon-target
interactions for the distorted waves, this process can be followed for either single-neutron or
single-proton transfer reactions - (d,p) and (d,n) - which are the cases that we are interested
in for this work.

A spectroscopic factor, S, can then be extracted from the transfer angular distributions.
This quantity, which is the probability that a composite nucleus in B behaves like a valence
nucleon sitting on top of a core, A, in a certain configuration, can be extracted experimen-
tally and calculated theoretically. Under the single-particle approximation, the experimental

spectroscopic factor is extracted by comparing the measured and calculated cross sections

da) do
do) L ges (_> | (2.40)
<dQ exp ds2 th

The value of (do/dY);, depends on the reaction formalism used to calculate the theoretical

at the first peak,
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cross section (such as DWBA and ADWA as just discussed), and is therefore model depen-
dent. The theoretical spectroscopic factor is the norm the overlap of the wave function of

the core (A) and core plus valence nucleon (B = A + 1),

S — (U (ry, o4, 7B W A(rL, o 7 2)) 2, (2.41)

and is also model dependent. Because S®P and S™ are model dependent, it is important
that the theory going into the calculation of the cross section is consistent with the Sth of

Eq. (2.41) to be able to make meaningful comparisons.
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Chapter 3

Implementation of Uncertainty

Quantification

As an initial exploration into uncertainty quantification for reaction theory, we begin with
simple reaction models (as described in Chapter 2) and only study the effect that changing the
optical model parameters has on the resulting cross sections. Typically, to constrain optical
model parameters, elastic-scattering data are fit, and then this best-fit parameterization
is used to calculate elastic, inelastic, and transfer cross sections. However, the potentials
constrained in this manner are not unique, and slight changes in the optical model parameters
can lead to significant changes in the predicted (inelastic or transfer) cross sections, as well

as in other observables.

3.1 Non-linear Regression Methods

The purpose of the frequentist method used here is to identify a minimum in the parameter
space and characterize the region around it. Unless we were to systematically search the
entire multi-dimensional parameter space (given a set of physically defined boundaries), it
is impossible to know whether this minimum is the global minimum or merely one of many
local minima. Therefore, we can only discuss properties of a single minimum then compare

various minima for the same reaction to ensure that any conclusions that we draw hold
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regardless of the parameterization. This is described in the following sections, using both

uncorrelated and correlated X2 minimization procedures.

3.1.1 Uncorrelated \? Fitting

The goal of x2 fitting is to describe a true function, ¢(f), with a known model, o®(x, 0).
The true function describes nature, and the model is our representation of these resulting
phenomena. Throughout the course of this work, this model predicts the differential cross
section as a function of angle, 6, and is parameterized by M free parameters, x = (z1,...,Zps),
which are the parameters of the optical model. The model aims to describe N pairs of data,
{(61, O’TXP), e (O, J?\),(p)}, where each pair has an associated experimental error, Ac;. We
assume that the measurements and associated errors are independent of one another such

that each data point can be described as,

with

& ~ N(0,(Ac;)?). (3.2)

Here N is the normal distribution with mean 0 and stand deviation Ag;. To describe all of

the experimental data simultaneously, Eq. (3.1) can be written in matrix form,

P ~ N (o, %), (3.3)

where ¥ is an N x N diagonal matrix with (Ag;)? on the diagonals. The experimental cross

sections are ideally described by the true function while allowing for a normally distributed
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offset for each data point.
Because the theory model, Uth(:c, 0), is our description of the true function, we assume
that the residuals, the difference between the experimental data and the model evaluation

at a given angle, are also normally distributed,

[JTXP - Jth(ﬁl,x), . Uﬁ}?p - Uth(eNyx)] ~ N(0, ). (3-4)

To find the set of parameters that allows the model to best describe the data, we maxi-
mize the associated likelihood of x, where the likelihood, [(x, 0, c®*P) is proportional to the
exponentiated y2. Maximizing the likelihood corresponds to minimizing the uncorrelated y2

function,

N exp th 2
2 g; -0 (917 X)
GEEDY ( A - (35)
i=1

This function is proportional to the standard definition of XQ, and minimizing it gives us the
best-fit parameter set, X. The process of minimizing the residuals ensures that equal numbers
of experimental cross sections are distributed above and below the theoretical calculation,
with most of the data lying closest to the calculation and fewer data farther away.

To construct confidence bands around the differential cross sections, we define a parameter-
space distribution around x that describes the local minimum. Although X contains the best-
fit parameters for this system, these are not the parameters of the true function that exactly
reproduce the data. The true parameters should be distributed around the best-fit parame-
ters. A Gaussian distribution assumes the least amount of information about the parameter

distribution. We therefore assume that the true parameter values are normally distributed
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around the best-fit parameters, described by the multivariate Gaussian distribution,
. 1 T ~—1 .
N(x,Cp) ~ exp[—é(x -x)" C, (x—x)]. (3.6)

Cp is the M x M parameter covariance matrix (see Section 3.1.3), which gives a non-
normalized description of the correlations between the various parameters within the model.
Two-dimensional slices of parameter space, as a function of X%IC” can be used to justify the
assumption of a normally distributed parameter space [96]. (Non-normal distributions are
discussed in Section 3.1.4.) To include the goodness-of-fit in the parameter distribution Eq.

(3.6), the parameter covariance matrix is scaled by

2 X%JO (3.7)
N—-M’
such that C,, — 32Cp. As the y2 value increases, the covariance matrix will be stretched and
a wider range of parameters will be drawn, increasing the size of the confidence bands; the
confidence bands should scale with X2- From this scaled distribution, 200 sets of parameters
are sampled and then run through the model, ath(x, 0). This leads to 200 differential cross
section calculations around the best-fit calculation. At each angle where the model was
evaluated, the highest 2.5% and lowest 2.5% of the calculations are removed. The remaining
calculations form 95% confidence bands around the result of the best-fit parameterization.
To have a quantity with which to compare confidence bands for different systems, we
define the average width of the band,

Ky

_ 1 .
Ve =4 3 (o — gimin), (3.8)
=1
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max

_ min
{

JH1) is the maximum (minimum) theoretically calculated cross-section value

where o (o
of the 95% confidence band at a given angle, 6;, and Ky is the number of angles at which

cross sections were calculated.

3.1.2 Correlated y? Fitting

Correlations within the theoretical model can have an effect on the parameterizations found
through X2 minimization, but they are not taken into account in X2UC as defined in Eq.
(3.5). These correlations can be observed through the ¢; values which are not independent
of one another. Recall, also, single-channel elastic scattering (e.g. Eq. (2.18)): due to the
addition of the Legendre polynomials, fitting to data at a single angle is enough to constrain
the remaining angles which gives rise to strong correlations between angles. This can be
taken into account in the formulation of the x2 function.

These model correlations can be taken into account by defining a model covariance matrix,
Cyn, which describes the correlations between pairs of angles within the model. This is
discussed in more detail in Section 3.1.3.

To then modify the y2? function, we make the assumption that the model is normally

distributed around the true function, o,

[o(x,601), ..., 0" (x,05)] ~ N(0,Ch). (3.9)

Calculating the residuals with this new distribution, they become distributed as,

[aiXp — oth(el,x), s ai\jfp — Uth(GN, x)] ~ N (0,2 + Cp), (3.10)
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where now the residuals are distributed normally around zero, with a covariance matrix
that is the sum of the errors on the data and the model covariance matrix. The resulting

correlated X2 minimization objective function becomes
Xe =2 > Wij(07P — o™ (x,6:))(05P — o™ (x,6;)), (3.11)

where W;; is the (i)™ elements of the matrix W = (X + Cy,)~!. This takes into account
correlations between the residuals at different angles through the model covariance matrix.

Eq. (3.11) reduces to Eq. (3.5) when Cp, = 0 as W = Y1, with diagonal elements of

1
(A2’

)

Typically, X%JC /N = 1 is the definition of a statistically good fit, however, that is not
necessarily true for the correlated case. The model covariance matrix is not normalized, and
its elements are often larger than the errors on the experimental cross sections. This leads
to X% generally being smaller than X2UC” even when the same reactions are studied from
identical starting optical model potentials.

Ninety-five percent confidence bands for the correlated fitting function are defined in the

same way as for the uncorrelated case, substituting X%JC by X%}- We can also again define

the average width of the confidence band as

— 1 .
We = 5 D (o' — gtin). (3.12)
=1

Again, Ky is the number of angles at which the cross section calculations were performed,

max

. min
1

and o ;

(o™ are the maximum (minimum) cross section values for the correlated 95%

confidence bands at 6;.
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3.1.3 Covariance and Correlation Matrices

There are several matrices that need to be defined, either for the x2 analysis of the previous
section or for the analysis of the results from this minimization process. First, the parameter

covariance matrix is defined as

—1
Cp = (JTJ> , (3.13)
where, J, the Jacobian, is calculated through its matrix elements as

_ 9o™(x,0))

Jij = (3.14)

In practice, this derivative is taken numerically using a three-point formula (the symmetric
difference quotient), since it would be impossible to analytically take the derivative of the
cross section with respect to the optical potential parameters.

The parameter correlation matrix, Ceory, is defined by a transformation of the parameter

covariance matrix,

CCOIT - ATCPA (315)

The matrix elements of A are given as

1 o .
—, ifi=

Ajj =4V ©p)ij (3.16)
0, if i

by definition. A is a diagonal matrix that transforms the covariance matrix into one which

has (Ceorr)is = 1 (for the diagonal elements) and (Ceorr)ii € [—1,1] (on the off-diagonal).

ij

A matrix element of zero for ((Ccorr)ij indicates that parameters z; and z; are not at all
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correlated, where an element of one (negative one) indicates that the two parameters are
fully correlated (anti-correlated) [96]. The ones along the diagonal show that, as expected,
every parameter is fully correlated with itself.

The model covariance matrix, C,y,, is defined slightly differently. Because we are inter-
ested in the correlations within the model, not dependent on a specific minimum, we instead
sample the parameter space, constrained by the physical bounds on the parameters, and

define the elements of the covariance matrix as

(Cim)ij = 7— D _(of —ai)(0} — 7)), (3.17)

where K is the total number of parameter sets sampled and &; is the average value of the
differential cross section at ;. These cross section values are calculated for each of the angles
at which the experimental data was taken so that the resulting model covariance matrix has

dimensions N x N.

3.1.4 Non-Gaussian Parameter Space

The assumption that the parameter space is described by a Gaussian distribution as in Eq.
(3.6) does not have to hold in each case. Instead, parameter sets around the best fit can be
sampled from the exact y2 distribution. In this case, X2(X) for each parameter set is tested
against the inequality,

(%) = x*(%) < 9N. (3.18)

The parameter sets that fulfill this inequality are within three standard deviations of the

minimum.
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To understand this, we consider that around a minimum, the X2 /N distribution can be
expanded as in a Taylor series

2(%)/N = xH%)/N + J(x —%)/N + %(x — %) H(x - %), (3.19)

where J is the Jacobian - the matrix of first derivatives of the y2 function with respect to
each of the parameters - and H is the Hessian - the matrix of second derivatives of the y2
function with respect to the parameters. Since this expansion is around a minimum, the
Jacobian is zero, leaving only the v value at the best fit set of parameters and the Hessian
term. The Hessian can be approximated as 2(J7J) which we can identify as 2(Cp)~! from
Eq. (3.13).

Under the assumption that the best fit parameters are described by a Gaussian, as in Eq.
(3.6), the parameters are within three standard deviations of the best fit parameter values
when

(x — %) TCh(x—%) = 9. (3.20)

(The factor of 9 is easily seen if we consider a one-dimensional Gaussian distribution ~
exp|—(z — #)%/(2A2)] and take = & & 3A. This leaves us with a Gaussian distribution
~ exp|—9/2], hence the factor of 9.) Substituting the Hessian for the parameter correlation

matrix from Eq. (3.19), we find
X2(x)/N =~ x*(%)/N +9. (3.21)

Thus, for a parameter set to fall within three standard deviations of the best-fit parameter

set, we are back at the condition of Eq. (3.18).
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Once 200 parameter sets are drawn that fulfill this inequality, they are run through
the reaction model. The area within three standard deviations of the center of a Gaussian
distribution contains 99.7% of the area of the Gaussian. Therefore, to define a 95% confidence
band, instead of removing the highest 2.5% and lowest 2.5% of the cross section calculations,
we remove the highest 2.35% and lowest 2.35%. This trims each 99.7% band to a 95%

confidence band.

3.2 Bayesian Methods

The analysis described in Section 3.1 is one method to explore the properties of a specific
minimum in parameter space. Oftentimes though, we would like to know properties of the
model space constrained by physical limits or other prior knowledge. Bayesian statistics
can be used to this purpose and provide an alternate interpretation of the uncertainties.
Frequentist statistics treat the model’s free parameters as fixed and the resulting observations
as having an uncertainty associated with them (given the parameters, what should the
data tell us - i.e. a 95% confidence band tells us that 95% of the measurements, were
the experiment to be repeated over and over, will fall within that band). On the other
hand, Bayesian statistics takes the opposite approach (given the data, what is known about
the parameter space). Using Bayesian statistics, as probability is defined as the degree
of belief about a given hypothesis which allows probabilities to be defined, not only, for
infinitely repeatable events but also for situations that only occur once. The formulation
allows for physical insight and prior information to be explicitly included in the uncertainty
model; the results can then be explored given this information. It also allows us to ask the

question: how dependent are our results on the assumptions that are incorporated into our
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model? Further, there is a straightforward way to directly compare different models within
a rigorous framework, and although that topic is beyond the scope of this work, this type
of formulation will be important to quantify the more complex uncertainties introduced by

model simplification (or the formulation of the model) [97].

3.2.1 Bayes’ Theorem

Ultimately, Bayes’ Theorem is a result of basic rules of probability, specifically that if one
were to pull two items from a bag - without replacing them - the probability of drawing a

given pair of items does not depend on which item was drawn first (see box below).

Take the example of a bag with six green marbles and four white marbles. The probability
that (i) a green marble is drawn first then a white marble is drawn is the same as if (ii) a
white marble is drawn first then a green marble. This is because for (i)

4

6
p(green, white) = p(green) x p(white|green) = 0 % 10" (3.22)
and for (ii)
4 6
p(white, green) = p(white) x p(green|white) = 0 % 1o (3.23)
Therefore,
p(green) x p(white|green) = p(white) x p(green|white). (3.24)

(Clearly, the two probabilities are identical. This works both with and without replacing the
first marble before drawing the second.

Independent drawing probabilities.

Bayes’ Theorem is given by
p(H)p(D|H)

p(H|D) = D)

(3.25)

which corresponds to making the substitutions green — D and white — H. In Eq. (3.25),
p(H|D) is the posterior - the quantity of interest - which gives the distribution of the pa-

rameter space (H, hypothesis) updated by the data - D, p(H) is the prior which summarizes
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what is predicted for (or known about) the parameter space without knowledge of the data,
p(D|H) is the likelihood which contains information about how well the given parameter set
describes the data (typically containing some sort of x? factor), and p(D) is the Bayesian
evidence (or marginal likelihood) [98].

The prior reflects the knowledge that one has about the system before seeing the data;
this can be motivated by previous experimental results, intuition, or physical constraints.
Since the priors reflect probability, they should be “proper” - normalizable [99]. Contrary to
some thought (as discussed in [99]), this does allow for flat or constant priors over a given
variable, as long as the prior is defined over a fixed range. Other common distributions
are multi-dimensional Gaussian distributions, log-normal distributions, and Jeffreys’ prior
(which is a constant distribution over the logarithm of a variable) [99].

The resulting posterior can either be driven by the prior or by the likelihood. As one
would imagine, for results to be independent of the prior, the posterior must be likelihood-
driven. This is true when the likelihood function is more sharply peaked than the prior
- which is a result of having well-determined data. For example, consider the case of a

Gaussian prior with mean p and variance %2,

p(H) = Hoe™(0=m?/25%, (3.26)

2

and a Gaussian likelihood with mean m and variance o<,

p(H|D) = Loe—(0-m)%/20% (3.27)
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The posterior distribution is found to be proportional to
2 2 2 2
p(D|H) o e~ (0=m)%/20% o=(0—p1)7 /227 (3.28)

which is just a third Gaussian with mean

m+ (o/%)?2
and variance
2 02
— T2 - (0/2)2. (3.30)

The ratio o/% can be used to gain information as to whether the resulting posterior is
data-driven or prior-driven. When o/ < 1, the likelihood mean is smaller than that of
the prior and the posterior is essentially the likelihood - the posterior results are driven by
the data. For cases where this inequality is not as strongly satisfied, it could indicate that
the collection of more data would better constrain the model. Therefore, there is a limit
in the precision of the posterior based on the precision of the data and the assumptions
made in the prior. In principle, the effect of the prior can be entirely removed, either by
having well-constrained data (small o) or a large variety of data. Although these results
were obtained from a simplified example, they hold generally for more complicated prior and
likelihood distributions.

Even if the effect of the prior choice cannot be completely removed, this can also give
information about the constraining power of the data at hand. If different priors lead to
different posteriors, the data is not able to discriminate between the priors, which is a result

within itself. In this case, either the various assumptions that have been made are equally
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valid (or do not matter), or the available data does not have enough resolving power (it
should be measured with better precision or different data is needed to draw a conclusion).
The likelihood contains information about how well the model reproduces the data. Of-

ten, this is encoded in an exponentiated x? function, such as
—x2/2
p(DIH) ox e X' /2, (3.31)

where the y2 function can be defined in several different ways (two examples are given
in Equations (3.5) and (3.11)). When performing parameter estimations, the x> function
is the direct comparison between the experimental data and the theoretical calculations
that are performed with a given set of parameters. Minimizing the y2 is equivalent to
maximizing the likelihood, and in Bayesian statistics, it is the combination of likelihood and
prior distributions that matters. Again, if the likelihood is sharply peaked, the data are
informative enough to render the specific choice of prior inconsequential.

Finally, the evidence is defined as

p(D) = p(D|H)p(H), (3.32)

H

which is the likelihood given a certain hypothesis (model or parameter set) weighted by a
prior for that hypothesis. Because the evidence requires a sum over all possible hypotheses,
there are very few cases where p(D) is known or can be expressed in closed form. Therefore,
the posterior becomes a function that is extremely difficult (or impossible) to calculate
explicitly. Monte Carlo methods are then the techniques that are often used to estimate the

shape of the posterior when exploring uncertainties due to the parameterization of the model.
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For an infinitely long - and computationally impractical - Monte Carlo chain, the shape of
the posterior would be identical to the exact function p(H|D); for practical purposes, it is

enough to collect sufficient statistics.

3.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a general class of statistical methods
that can be used for sampling distributions, such as the Bayesian posterior distribution, for
numerically computing integrals and for optimization problems [100]. Although discussing
the full theory behind these methods is beyond the scope of this work, we give a brief
outline here. Each MCMC is defined by a Markov chain, a sequence of random variables
{Yl, Y2 y3 ...}, where successive quantities are defined probabilistically based on the value
of the previous set (Yi depends on the value of Y1, typically through a probability distri-
bution centered on the it" value). The important property of these chains is that they tend
toward and converge to an equilibrium state (which is the solution of interest). That is, this
limiting distribution does not change as successive quantities are added, which means that
the quantity Y**1 will be sampled from the desired distribution [101] (Chapter 4).

These methods are useful for the Bayesian approach as the joint distribution of the prior
and likelihood can often be numerically computed, but the normalization of the posterior
is not known. This normalization depends heavily on the Bayesian evidence, which is often
challenging or impossible to compute. However, unless model comparisons are being per-
formed, this is just a normalization factor which does not change the shape of the posterior
distribution. Thus, Monte Carlo methods allow for the sampling of the shape of the posterior
distribution without bothering with the overall normalization.

The Bayesian evidence is not needed in these computations due to the nature of the

45



Monte Carlo algorithms. Since each new iteration of the chain is dependent on the previous
one and the evidence is a constant for all occurrences, the ratio that compares the ith and
(i + 1) draws will be independent of its value - this leads to drawing from a distribution
proportional to the true posterior. There are several different algorithms to construct a
Markov chain, including Gibbs sampling, the Metropolis-Hastings algorithm, and the slice
sampler. This work uses the Metropolis-Hastings algorithm which will be discussed below,
but more details about all of these methods can be found in [100].

Nicholas Metropolis and collaborators proposed a prescription to compute properties of
interacting molecules using a Markov chain [102]. They proposed new configurations for
the group of molecules by allowing each one to randomly move within a predefined square
with periodic boundary conditions, and then accepted the proposed move if either the new
configuration had a lower energy or with probability exp(—AFE/ET) if the energy increased.
Wilfred Keith Hastings added a new element to this sampling by proposing that the jump
would be accepted with a probability given by a random number in the interval zero to one
for each new iteration of the chain [103]. It is this version of the algorithm, now called the
Metropolis-Hastings algorithm, that is implemented in this work.

For the Bayesian methods, specifically considering the case of sampling model parameters,
the algorithm works in the following way. An initial parameter set, x;, is chosen and the
prior and likelihood are evaluated for that set, p(H;)p(D|H;). A second parameter set is

"is a vector of numbers sampled from a

chosen based on the first, x; = x; + x| where x
Gaussian distribution N(0, exq), with z( the starting optical potential parameter for each

variable. The prior and likelihood are again calculated for that set, p(H ¢)p(D|H ). The two
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are compared, and if the new parameter set fulfills the condition

p(Hy)p(D|Hy)

W Hp(DIH)

(3.33)

where R € [0, 1] is a uniformly sampled random number, then the new parameter set becomes
the initial parameter set. Otherwise, the set is rejected, the initial set remains the same,
and a new parameter set is chosen, in the same way as x¢. This process is repeated until a
predefined number of parameter sets have been accepted. The dependence on the random
number, R, is important for sampling the distribution. If we were instead interested in
using the MCMC to find a minimum in parameter space, we would want p(H ¢)p(D|H ) >
p(H;)p(D|H;), in order to maximize the likelihood under the constraint of the prior. Allowing
the new parameter set to do slightly worse in describing the data or to fall slightly farther
outside of the maximal value for the prior distribution allows for the sampling of the posterior
distribution.

Initially, the Markov chain does not sample the distribution of interest because there is
no guarantee that the starting parameter set is within the posterior distribution. Therefore,
some initial portion of the Markov chain, called the burn-in, should be discarded before any
conclusions are drawn (black circles in Figure 3.1). Once the burn-in has concluded and the
equilibrium distribution is being sampled, the likelihood function should no longer strictly
increase. Also, each of the parameters within the model should not be systematically chang-
ing but should oscillate around a mean value. Depending on the initial parameterization
and the step taken between the initial and new parameter sets, the burn-in portion of the
chain might be shorter or longer. It is therefore necessary to have a conditional cut-off for

the burn-in.
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Figure 3.1: Fictitious MCMC run showing a burn-in period (black circles) followed by the
region of accepted parameter draws (teal triangles). Blue triangles show the parameter draws
that would be recorded (here, one out of every ten).

Independent parameter draws from the distribution are often desired, but the fundamen-
tal base of the Markov chain is that each new chain step depends on the previous instance.
One way to decouple the sequential draws is to use an averaging over the chain where it
is broken down into lengths of 10-50 instances which are then averaged over in order to
compute one step in the Monte Carlo [101]. Another way to do this is to only record one out
of every several accepted chain steps (blue in Figure 3.1). By thinning the accepted values,

independence in the draws is enforced due to the gaps between recorded values.

3.2.3 Diagnostic Tools

After sampling from the posterior distribution, there are several quantities of interest that
can be calculated. One such quantity is the marginal posterior distribution for a given
parameter, say x1, within the model (denoted as H(x1) = Hp). To calculate this, for a

continuous variable

p(H1|D) = /p(H|D)dx2da:3...d:L’M, (3.34)
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for M parameters in the model. This corresponds to integrating the posterior distribution
over all parameters except x1. However, doing this is almost trivial when the posterior
distribution is sampled using a Markov chain. One can simply take all of the samples for
a given variable from the chain, create a sequence of bins over the range of the parameter,
and distribute the elements according to which bin they fall within - creating a histogram
of the sampled values. This density then reflects the shape of the full marginal posterior.
The mean of each parameter can be calculated by averaging over the values of that

parameter within the chain,
K

1 (t)
(wi) = 4 ; z,”, (3.35)

where K is the number of parameter draws that were recorded. The mean can also be

calculated for a function of the parameters,

K
S (D). (3.36)

t=1

(f(x)) =

=[ =

Likewise, the variances can be computed as

2 1 & (t) 2
(@) = = (2" — (x)?, (3.37)

for each parameter and

K
() = 5 ) — (@), (339)

for any function (generally the observables of interest). The standard deviation for any of

these quantities is then defined as the square root of the corresponding variance. We can
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again define a covariance matrix between the parameters, similar to the model covariance

matrix of Eq. (3.17),

K
Clai,ay) = % S — @il — (o). (3.39)
t=1

In the same way as in Section 3.1.3 for the parameter covariance matrix, a correlation
matrix can be defined. Again, every diagonal element in the correlation matrix is one, and
the off-diagonal elements range from zero to (negative) one, where zero indicates the two
parameters are not correlated and (negative) one indicates that the two parameters are fully
(anti-)correlated.

Within the Bayesian model, (1 — «)100% confidence intervals can be constructed for
either the parameters of the model or the resulting observables. To do this, the interval
needs to be determined where (1 —a)100% of the calculations are concentrated. While there
are several regions where this is the case (e.g. remove the high «100% of the calculations
or remove the lowest «100% of the calculations), the calculations that are removed should
be the most extreme outliers - that is the greatest density of calculations should be retained
within the interval. Therefore, the calculations remaining within the (1 — «)100% interval
should span the smallest range, whether this is the smallest parameter range or smallest range
of cross section values. Clearly, using the 95% interval for the parameters to calculate the
95% interval for the cross section values will not give the same results as calculating the 95%
interval for a function as just discussed. However, defining the observable confidence intervals
from the parametric confidence intervals would give a skewed picture of the results, especially
since the parameters considered in this work are highly correlated and are not linearly related

to the calculated observables. Calculating confidence intervals on the observables separately

50



from the parameters folds in these complex correlations and non-linearities.

An interval, C, defines a (1 — «)100% confidence interval if

l—a= | p(H|D)dx. (3.40)
!

Confidence intervals can likewise be defined for numerically sampled posteriors by ordering
the draws, then determine the shortest interval that contains (1 — ) K (the nearest integer)
of the draws. These intervals summarize the degree of belief that we have in our calculations.
For example, if a = 0.05, the 95% confidence interval for parameter i gives the range of values

that we would expect for z; with a 95% confidence.

51



Chapter 4

Regression Results

In this chapter, we will present results from the frequentist interpretation of uncertainties,
Section 3.1, which were published in [4]. Six projectile-target pairs were studied, chosen for
their range of target masses and the availability of elastic and inelastic or transfer differential
cross section data over a wide angular range with small errors. For each pair, elastic-
scattering data were fit, and then inelastic-scattering or transfer cross sections were predicted
and compared to experimental data. Table 4.1 lists the reactions that were studied and
gives the reference of the initial optical model potential and the experimental data set for
each reaction. Here, we describe in detail the results of two of these calculations - one
transfer and one inelastic scattering reaction. The remaining results are then summarized
(details in Appendix B). The reactions that we discuss here are not necessarily well-described
by the single-step approximations that have been presented. However, the goal was to
include uncertainties in a consistent framework, so we use methods where the incoming
elastic channel can be directly fit to elastic-scattering data and the predicted cross sections
use this same elastic potential for the incoming channel.

Therefore, the transfer calculations were performed using the distorted-wave Born ap-
proximation (DWBA, Section 2.3.1), and the inelastic calculations were performed using
the DWBA approximation to the full coupled-channel solution (Section 2.2.3). For the two

transfer reactions, the optical potential in the outgoing channel was defined as in [106] for
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Reaction Energy (MeV) Data Potential

Po@azc 11.8 [104] [105]
2¢(d,p)'3C(gs.) 11.8 [106] —
N7r(d,d)0Zr 12.0 [107] 78]
NDzr(d,p)?Zr(g.s.) 12.0 [108] —
2Cmmn)'2c 17.29 [109] [110]
12C(nn)20(2]) 17.29 [109] —
4BCa(n,n)*¥Ca 7.79 [111] [112]
18Ca(n,n')*®Ca(2]) 7.79 [111] —
94Fe(n,n)"*Fe 16.93 [113] [1]
54Fe(n,n’)**Fe(27) 16.93 [113] —
208Ph(n,n)?8Ph 26.0 [114] [1]
208Ph(n,n’)2%8Pb(3]) 26.0 [115] —

Table 4.1: List of studied reactions. The third column references the experimental data set,
and the fourth column references the optical potential initialization in the fitting.

12¢(d,p) and as in [108] for ?°Zr(d,p). The binding potential between the target and the
transfered neutron was described by a Woods-Saxon shape with a radius of 1.24'/3 fm and
diffuseness of 0.60 fm; the depth of the potential was adjusted to reproduce the experimental
binding energy of the A+ 1 system. A spin-orbit potential was also included in the neutron-
target binding potential, with standard depth, radius, and diffuseness of 7.0 MeV, 1.241/3
fm, and 0.60 fm, respectively. The np interaction for the deuteron was defined as in [116].
Throughout, A is the mass number of the target. For the inelastic scattering calculations, all
99 and 03 values were adjusted from [117] to better reproduce the magnitude of the inelastic
cross sections (note that d9 and d3 were not included as fitted parameters). For 120 48(,
and ®*Fe, the 9 values were 1.0852 fm, 0.85 fm, and 0.967 fm, respectively, and the d3 values
for 208Pb were 0.296 fm for the uncorrelated fit and 0.230 fm for the correlated fit.

Each of the following results (and those in Appendix B) was obtained through the statisti-
cal methods of Section 3.1 which makes use of the reaction codes FRESCO and SFRESCO

[118]. The minimization procedure in SFRESCO employs routines from MINUIT [119].
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4.1 Uncorrelated y? Fitting

Initially, each of the the six sets of elastic-scattering data was fit using the uncorrelated
v2 formula, Eq. (3.5). After the best-fit parameterization was calculated, the shape of the
x2 contours were examined, and 95% confidence bands were constructed for both the fitted
elastic-scattering angular distribution and the predicted inelastic or transfer distribution.

Then, the parameter correlation matrix was constructed as in Eq. (3.15).

Potential FE VR TR ap W] rr ar
2¢(d,a)t?c 11.8

Volume 111.505 1.002 0.731 0.000 0.000 0.000

Surface 0.000  0.000 0.000 27.582 1.235 0.284
N7r(d,d)PZr  12.0

Volume 166.319 0.948 0.655 0.000  0.000  0.000

Surface 0.000  0.000 0.000 18.589 0.934 0.771
PCmmn)’?Cc 1729

Volume 61.925 1.252 0.480 0.000 0.000 0.000

Surface 0.000  0.000 0.000 3.287 1.171 0.755
BCann)®Ca  7.79

Volume 46.685 0.956 0.694 0.000  0.000 0.000

Surface 0.000  0.000 0.000 7.172 1.119 0.189
Fe(n,n)*Fe  16.93

Volume 29.597 1.690 0.450 7.564 1.078 0.560

Surface 0.000  0.000 0.000 21.494 1.504 0.125
208Ph(n,n)28Pb  26.0

Volume 42.932 1.031 0.767 1.196 1.289 0.580

Surface 0.000  0.000 0.000 8.772 1.050 0.419

Table 4.2: Best fit parameter values for each of the reactions listed in Table 4.1 using the
uncorrelated 2 fitting function. Column 1 gives the part of the potential (either volume or
surface - the spin-orbit potential was fixed to its original parameterization), column 2 gives
the reaction energy (MeV), columns 3, 4, and 5 (6, 7, and 8) give the values for the real
(imaginary) depth (MeV), radius (fm), and diffuseness (fm) of each potential part. Values
in italics were initially varied but held constant during the final fitting; bold values were
included in the final fitting.

The first uncorrelated example we show is fitting 12C(d,d)lQC at 11.8 MeV to predict
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12¢(d,p)13C(g.s.). The resulting best-fit parameterization is listed in Table 4.2, giving
x?/N = 4.513. (Note that some of the initially varied parameters were held constant at
during the final fitting process. This was to keep them within physical bounds.) Before
parameter sets could be drawn to construct the confidence bands, the x2 contour plots for
each pair of variable was examined to see whether draws could come from a multivariate
Gaussian of the form of Eq. (3.6) or if pulls had to be made from the exact x? distribution,
as in Section 3.1.4. To calculate the contours, a grid of x2 values was computed for each pair
of parameters within plus and minus one standard deviation of the best-fit parameters; the
remaining parameters were kept fixed at the best-fit value. Contours of constant y? were
then plotted. Elliptical contours indicate that the Gaussian distribution of Eq. (3.6) is a
good description of the parameter space around the minimum. The slope of the resulting
elliptical contour shows how correlated the two parameters are; circular, horizontal, or verti-
cal contours indicate uncorrelated parameters while sloped ellipses indicate highly correlated
parameters. The x? contours for the 12C(d,d) minimum are shown in Figure 4.1. Since all

of these contours are elliptical, we can directly pull from the multivariate Gaussian.
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Figure 4.1: Contours of constant y2 for the fitted parameters of 12C(d,d) elastic scattering at
11.8 MeV, using the uncorrelated 2 function. Black stars indicate the best-fit parameters.
Figure from [4].

The resulting 95% confidence bands for the differential cross sections are shown in Figure

4.2 for (a) the fitted elastic scattering and (b) the predicted transfer reaction. The calculation
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from the best fit parameterization reproduces the data very well for the elastic scattering

except for > 150°, where the best fit no longer passes through the data (this is reflected

overall in the y2 value). The shape of the peak for the transfer reaction is reproduced,
0.019

however, the extracted spectroscopic factor, S*P = ().4351‘01017, is significantly lower than

literature values ([120] and references therein).
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Figure 4.2: 95% confidence bands constructed from the uncorrelated fitting of d+12C elastic-
scattering data for (a) the elastic-scattering angular distribution and (b) the predicted
12¢(d,p)*2C(g.s.) transfer angular distribution, both at an incoming deuteron energy of
11.8 MeV. The calculations from the best-fit parameterization are shown in red (solid), the
95% confidence bands are shown in brown (hatched), and the data is given as the (black)
circles. Figure from [4].

For both calculations, the 95% confidence bands are significantly narrower than is typi-
cally expected from the uncertainty in the parameterization (10 — 30%). This, among other
results, suggests that we may need to consider a correlated 2 calculation which will be

discussed in Section 4.2.
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Last, we calculate the parameter correlation matrix for the five fitted parameters,

r a W Ts Qg
T 1.000 —-0.765 0.380 —0.479 —-0.535
a —0.765 1.000 0.070 0.879 0.102
Ccorr == y (41)
Ws  0.380 0.070 1.000 0.154 —0.941

rs —0.479 0870 0.154 1.000 —0.050

as —0.535 0.102 —-0.941 -0.050 1.000

(the notation here is such that -0.765 gives the correlation between r and a, etc.). Most of
the parameters are highly correlated - only a few of the correlations are closer to zero than
40.5. Those parameters with correlations in this range are r —a, r —ag, rs — a, and Wy —as.

The neutron-scattering example that we consider is fitting 54Fe(n,n)54Fe at 16.929 MeV
to predict the inelastic scattering to the first excited 27 state. The best-fit parameterization
is also listed in Table 4.2 with y2 /N = 151.889. This x2 value is significantly larger than that
of 12C(d,d)*2C (and the ideal condition of x2/N ~ 1); this is produced, in part, by small
experimental errors, which can artificially inflate the x? and over-constrain the fit parameters.
The starting point for this potential [1] has an imaginary volume term in addition to a surface
term, unlike the previous potential (and most of the other starting potentials in Table 4.1).
In principle, adding three more parameters should allow for a better fit to the experimental
data (more flexibility), but here, nearly half of the total parameters had to be held constant
while the remaining were allowed to vary in order to find a well-behaved minimum.

The x?2 contour plots for this minimum are shown in Figure 4.3, and again the multivariate
Gaussian distribution is used to make parameter draws since the contours are elliptical. The

resulting confidence bands for the elastic and inelastic cross sections are shown in Figure
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Figure 4.3: Same as Figure 4.1 for ®*Fe(n,n) elastic scattering at 16.929 MeV.

4.4 (a) and (b). The elastic-scattering best fit better reproduces the data than the 2 value
indicates (the best fit goes through most of the data points), and despite the large ¥2 value,
the 95% confidence bands are still narrow. Moreover, the inelastic-scattering prediction does
not reproduce the data, and the 95% confidence band is not wide enough to encapsulate it.
Typically, the deformation parameter (which influences the magnitude of the calculation)
is extracted from the inelastic scattering prediction; however, in this case, changing the
deformation parameter and refitting the elastic scattering does not improve the description
of the magnitude or shape of the experimental inelastic angular distribution.

There are two processes by which to calculate the elastic and inelastic scattering. Often,
both elastic- and inelastic-scattering data are fit simultaneously to extract the deformation
parameter (which is included as one of the free parameters). Using both sets of data to
determine the interaction should provide more stringent constraints on the optical model
parameters. However, the philosophy here was to construct the predicted (d,p) and (n,n’)
cross sections on the same footing - by just fitting the incoming elastic channel to make
predictions for a separate channel. The ultimate goal of systematic uncertainty studies
is not only to be able to extract information that includes theoretical uncertainties but
to include uncertainties on predictions. Understanding the reduction in uncertainty when

multiple types of data are fitted is important but beyond the scope of this work.
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Figure 4.4: Same as Figure 4.2 for (a) 4Fe(n,n)**Fe and (b) 54Fe(n,n)54Fe(21|') at 16.929

MeV.

The parameter correlation matrix is given by

Vv a W T W
V. 1.000 0.210 0.019 0.284 0.029
a 0.210 1.000 —0.228 0.629 0.239
Ccorr - (4-2)
Ws 0.019 —0.228 1.000 0.065 —0.674
rg¢ 0.284 0.629 0.065 1.000 0.168
W 0.029 0.239 —-0.674 0.168 1.000

These are a small subset of the nine free parameters defined in this potential. If we compare

to the correlations calculated among the parameters for 12C(d,d) in Eq. (4.1), the only pairs

of parameters that are fit in between both cases are a — Ws, a — rg, and Ws — rg. For 54Fe,

the parameters are almost all uncorrelated, except for a and rg, which were also strongly

coupled in the 12C fit. The pairs shown here are typically less correlated to one another

(more in Section 4.3) so there is no contradiction between the two Ceory results discussed in

this section.
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4.2 Correlated y? Fitting

As discussed in Section 3.1.2, correlations are present in the elastic-scattering model which
are not taken into account in the uncorrelated y2? minimization function. Although we
know that these angular correlations should be present, we can also visualize them. To do
this, we randomly draw two hundred optical model parameter sets from a flat distribution
in parameter space, and calculate the elastic cross sections for each set. Figure 4.5 then
shows the correlations between these cross section values at selected angles for the two
elastic-scattering reactions discussed in Section 4.1 (a) 12C(d,d)'2C at 11.8 MeV and (b)
54I*ﬂe(n,n)54Fe at 16.93 MeV. We see strong correlations across the entire angular range for

both reactions, especially at backwards angles.
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Figure 4.5: Selected angular correlations for (a) 12C(d,d)'2C at 11.8 MeV and (b)
%Fe(n,n)%Fe at 16.93 MeV. Each scatter plot shows the values of the differential cross
section at the angle listed on the x-axis compared to the differential cross section at the
angle listed on the y-axis for two hundred calculations with randomly drawn optical model
parameter sets. The histograms along the diagonal show the spread of cross section values
at the given angle.
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Because of this, the six reactions of Table 4.1 were fit using the correlated y2 function
of Eq. (3.11). The starting points for these fits were the corresponding uncorrelated y2
minima. In the following section, we show the correlated fit for the two examples of Section
4.1. The details of the remaining reactions can be found in Appendix B along with a brief

discussion of each one.

Potential E VR TR apn W[ rr ar
Poc@aac 118
Volume 55.126 1.121 0.670 0.000  0.000 0.000
Surface 0.000 0.000 0.000 40.931 1.193 0.196
N7r(d,d)PZr  12.0
Volume 106.868 1.069 0.575 0.000  0.000 0.000
Surface 0.000 0.000 0.000 31.516 1.118 0.368
2Cmn)?Cc 1729
Volume 66.817 1.299 0.370 0.000 0.000 0.000
Surface 0.000 0.000 0.000 17.922 1.070 0.247
BCa(nn)*BCa  7.79
Volume 36.813 1.201 0.456 0.030  1.460 0.490
Surface 0.000 0.000 0.000 13.318 1.015 0.241
Fe(n,n)*Fe  16.93
Volume 47.371  0.932 0.600 2.292 1.161 0.112
Surface 0.000 0.000 0.000 5.433 1.104 0.585
208Ph(n,n)28Ph  26.0
Volume 42.403 1.040 0.696 1.680 1.456 0.580
Surface 0.000 0.000 0.000 11.224 1.052 0.225

Table 4.3: Same as Table 4.2 using the correlated x? fitting function.

We again start by fitting (using X%) 12C(d,d)120 at 11.8 MeV to predict the transfer
cross section for 2C(d,p)'3C(g.s.). The best-fit parameterization for the elastic scattering
is found in Table 4.3, with y?2 /N = 0.283. (This ¥2 is an order of magnitude smaller than
XQUC') The real volume depth for this fit is about half the size of the uncorrelated depth
(~ 100 MeV, consistent with many global deuteron parameterizations), while the imaginary

surface depth has increased by about a third. However, if the real volume depth is fixed at the
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uncorrelated depth, 111.505 MeV - which is more physical - and the remaining parameters are
included in the minimization, the imaginary surface depth increases even more dramatically
to compensate.

The x?2 contours for the fit in Table 4.3 are shown in Figure 4.6. While several of these
pairwise contours are approximately elliptical close to the minimum, far from the minimum,
they are not. In this case, we find it necessary to pull from the exact y2 distribution instead

of a multivariate Gaussian.
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Figure 4.6: Contours of constant x2 for the fitted parameters of 12C(d,d) elastic scattering
at 11.8 MeV, using the correlated x? function.

The resulting 95% confidence bands are shown in Figure 4.7 for the fitted elastic scattering
(a) and the predicted transfer cross section (b). Although the best-fit elastic scattering
does not pass through all of the data points, it reproduces the data up to ~ 60°, and
where the magnitude of the data is not reproduced, the angular dependence is. For the
predicted transfer cross section, the experimental angular distribution around the peak of
the cross section is again well reproduced. As in Section 4.1, the extracted spectroscopic

factor (SP = O.352f8:%§g) is significantly smaller than what is found in literature.
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Figure 4.7: Same as Figure 4.2 using the correlated x? function for (a) 2C(d,d)!2C and (b)
12¢(d,p)'3C(g.s.). Figure from [4].

Here, the parameter correlation matrix is

1.000 —0.568 0.013 —0.910 0.486
—0.568 1.000 0.720 0.307  0.248

Ceorr = | 0.013 0720 1.000 —0.322 0.620 |- (4.3)
—0.910 0.307 —0.322 1.000 —0.704
0486 0.248 0.620 —0.704 1.000

and the order of the parameters is V', rg, a, r, as. Because different parameters were used in
the correlated fit compared to the uncorrelated fit, it is difficult to directly compare individual
correlations. We still see that many of the parameters are highly correlated, especially V'
and 7 (-0.910). Typically, these are two of the most correlated parameters.

We then use the correlated y? function to fit ®*Fe(n,n)**Fe at 16.929 MeV to predict the
inelastic scattering to the first 27 excited state. The best-fit parameterization is found in
the fifth section of Table 4.3 (x2/N = 1.080). This x? value is significantly lower than the

uncorrelated value. A decrease in y2 is typical for the correlated fitting function, but here
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we see a larger decrease than for any of the other reactions.
The X2 contour plots are shown in Figure 4.8. The contours of constant X2 are mostly
elliptical, and although we pull from the exact y2 distribution, the same 95% confidence

bands result if the multivariate Gaussian is used to describe the parameter space.
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Figure 4.8: Same as Figure 4.3 for 54Fe(n,n)54Fe using the correlated y2 function.

These 95% confidence bands are shown in Figure 4.9 (a) and (b) for the elastic and
inelastic scattering. The best-fit elastic scattering exactly passes through the data at forward
angles, and even at larger angles, the overall shape of the experimental angular distribution
is reproduced. It is also important to note that once the calculation falls below the data, it
stays below the data, instead of the parameterization changing such that half of the data are
above the best fit and half are below (as a typical v2 calculation is ensures). This change,
due to the inclusion of the model covariance matrix, leads to a more physical description of
the data. The inelastic-scattering prediction also provides a more physical description of the
data (in comparison to Figure 4.4 (b)). The overall magnitude of the inelastic cross section
has decreased (without changing the deformation parameter), and the diffraction pattern for

the correlated fit better describes the experimental angular distribution.
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Figure 4.9: Same as Figure 4.4 using the correlated x? fitting function, for fitting (a)
%4Fe(n,n)?*Fe and predicting (b) **Fe(n,n')**Fe at 16.93 MeV.

The parameter correlation matrix is

V W w a s
V. 1.000 —0.458 0.551  0.027  0.058
Ws —0.458 1.000 —-0.965 0.249 —0.801
w0551 —-0.965 1.000 —-0.191 0.713

a 0027 0249 -0.191 1.000 —0.615

rs 0.058 —0.801 0.713 —0.615 1.000

Two of the most correlated parameters are Wy and rs. In fact, we often find that the depths

and radii have the largest correlations.

4.3 Discussion

Before discussing the general conclusions that we can draw from all of the reactions that

were studied, we comment on the two examples that were shown in this chapter. First,
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Figure 4.10: Comparison between the uncorrelated (black solid) and the correlated (red
dashed) calculations for (a) 2C(d,d)!?C and (b) C(d,p)'3C(g.s.) at 11.8 MeV.

we comment on the comparison between the uncorrelated and correlated calculations for
12¢(d,d) and C(d,p) which are shown in Figure 4.10. For the elastic scattering in (a),
although the uncorrelated calculation fits the data at all but angles greater than 150°,
the best fit from the correlated formulation provides a more consistent description of the
experimental cross section. At grazing angles, around 30°, the correlated calculation is fitted
better to the data, and at backward angles the upward turn of the data is reproduced by
the correlated calculation, instead of flattening off as in the uncorrelated fit. Even at angles
around 90° where the correlated calculation does not reproduce the magnitude of the data
(as the uncorrelated calculation does), the shape of the experimental angular distribution is
reproduced.

The differences are much less apparent for the predicted transfer calculations, once they
have been normalized to the data. The uncorrelated spectroscopic factor is larger than the
correlated one, but its value falls within the confidence bands of the correlated value. It
is well-understood that DWBA does not provide an accurate description of this reaction

(e.g. [121]) because the effective deuteron optical potential does not explicitly account for
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Figure 4.11: Same as Figure 4.10 for (a) ®*Fe(n,n)**Fe and (b) 54Fe(n,n')54Fe(2T) at 16.93
MeV. Figure from [4].

np breakup - and is therefore unreliable [70].

We also directly compare the correlated and uncorrelated calculations for 54Fe, Figure
4.11. For both the fitted and predicted cross sections, it is clear that the correlated fitting
provides a much better description of the data. Although the magnitude of the uncorrelated
elastic-scattering fit (a) remains consistent with the data across the entire angular range, it
is clear that the standard y2 function causes half of the data to fall above the calculation
and half to fall below which does not necessarily reproduce the shape of the angular distri-
bution. When this condition is removed by the inclusion of model correlations, the shape
of the cross section is much better reproduced. This addition then produces an inelastic-
scattering prediction (b) that agrees with the shape and magnitude of the experimental
angular distribution, even though only the elastic-scattering properties were modified.

In both of these comparisons, X% is smaller than XIQJO by an order of magnitude or more.
The confidence bands for the correlated calculations are wider than those resulting from the
uncorrelated calculation. (54Fe is the exception: the average width for the fitted elastic-

scattering confidence band is narrower for the correlated case, but the correlated confidence
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band is wider for the predicted inelastic scattering. However, this is mainly due to the
difference in magnitude of the elastic-scattering cross sections at forward angles.) Overall,
the fitted parameters are also less strongly correlated when model correlations are taken into
account.

We now turn to the broad conclusions that can be drawn from the fits shown in this
chapter and Appendix B. Table 4.4 gives an overview of some properties of the reactions
that were studied, including the fitted y2 for the elastic cross sections and the average width
(W) and uncertainty (£) of the 95% confidence bands, for the uncorrelated and correlated

fits. These are defined as

L
W=—2) (o™ — g™ (4.5)
Na =1
and
1 Ny gmax _ min
Ny — 7

the average of the width of the 95% confidence band divided by the best-fit cross section
value, ;.

From Table 4.4, we see that the correlated x? values are an order of magnitude (or
more) smaller than the uncorrelated v2 values. Partially, this is due to the difference in
normalization between the model covariance matrix and experimental errors. Since (Cp,);;
is larger than Ag;, W is overweighted by C,, instead of the two contributing equally. To
rigorously compare the y2 values between the uncorrelated and correlated fits, this difference
in normalization would have to be accounted for. Still, the correlated X2 values are much
more consistent among the six elastic-scattering reactions, instead of spanning three orders
of magnitude as in the uncorrelated case.

The confidence bands for the correlated calculations are, on average, wider than the
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Reaction XZUC /M Wye Blite. XQO /M We Ec  Eexp

2¢d,d)?C 4513  1.3577 25.336  0.283  18.181 223.01 8.0
2¢(d,p)BC(gs.) — 0.77888  21.939 7.9226  103.58 15.0
N07r(d,d)?7Zr 1.421  0.086926 57.052 0.142 0.22664 92.208 5.0
W07r(d,p)Zr(g.s) — 1.5235  51.087 2.2567 63.194 10.0
2¢(mmn)t?2c 68.321  204.35 398.10 0.808 85.972 12289 3.6
2C(mn)202]) — 17.212 20551  — 12,681 15040 5.1
BCa(nn)*BCa 22.344 13421 59.823 2.142  380.91 373.91 4.0
8Ca(n,n")*Ca(2]) — 7.1640  91.135 35.586 978.15 8.9
94Fe(n,n)%Fe 158.098  151.89 116.44 1.080 92.191 97.617 3.4
4Fe(n,n’)**Fe(2]) — 1.4722  112.46 2.2338  95.707 14.0
208pp(n,n)?%%Ph 3.678  86.105 42.497 1401 613.57 54020 6.5
28ph(nn)?%®Pb(3y)  — 0.42104  76.874 0.76070 231.34 14.0

Table 4.4: Summary of properties of the reactions studied for this chapter. The first column
lists the reaction, while y2/M values for the uncorrelated (correlated) fits are given in column
two (five), the average width (over all angles) of the uncorrelated (correlated) 95% confidence
bands is given in the third (sixth) column, and the average percent uncertainty (over all
angles) of the uncorrelated (correlated) calculations is given in the fourth (seventh) column.
The eighth column gives the average experimental error (percent).

uncorrelated confidence bands, despite smaller X2 values being used to scale the parameter
covariance matrix. This indicates that the minimum in parameter space is broader when the
correlated fitting function is used, and the decrease in x2 is not large enough to make up for
this difference. Typically, it is assumed that the optical model parameterization contributes
between 10% and 30% uncertainty to the differential cross sections. However, we find that
our average percent uncertainties, €, are significantly larger. These are listed in Table 4.4
for the fitted and predicted cross sections. Just as the confidence bands are wider for the
correlated fits, the corresponding uncertainties are larger as well.

We also examine the change in parameter correlations between the uncorrelated and cor-
related fits. This is difficult to quantify for each individual reaction due to the low number of
fitted parameters. Because many variables were fixed before the final minimization and these

fixed variables were changed between each reaction, there are several pairs that do not have
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correlation matrix elements for both the uncorrelated and correlated fits. Still, there were
several pairs of variables where this comparison could be made, and two trends were noticed.
First, the correlation between a potential depth and its corresponding radius decreased by
10 — 15% from the uncorrelated to correlated fits. The depths and radii were the two most
correlated parameter pairs overall, both for uncorrelated and correlated fitting functions.
We expect this because elastic scattering is sensitive to the volume of the interaction, and
it it likely that the depth and radius cannot be separately constrained. Second, the depths
of the potentials became more correlated by 30 —40% for the correlated fit compared to the
uncorrelated fit.

One drawback of this fitting method became increasingly obvious throughout the project.
In many instances, it was not possible to keep the parameters within their physical limits
which forced us to fix their values during the minimization procedure and only fit the remain-
ing parameters. This made it very difficult to draw conclusions about how the parameter
correlations change between fitting with the uncorrelated and correlated y2 functions. Rarely
are the same set of parameters used in both minimizations. Thus, a method that can a pri-
ori introduce our physics knowledge and provide a hands-off fitting procedure (such as in
Bayesian) would be greatly beneficial. In addition, we have more knowledge of the parameter
space and correlations than is introduced in the y? minimization. Finally,  in Table 4.4
provides parametric uncertainties within a model, but this prescription does not allow us to
quantify model uncertainties. A more sophisticated method to quantifying uncertainties is

necessary.
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Chapter 5

Bayesian Results

Here, we continue the work of the previous chapter, focusing on the uncertainties coming
from constraining optical model parameters by fitting elastic scattering but now using a
Bayesian approach, as described in Section 3.2. We also focus on two models, the adiabatic
wave approximation (ADWA) and the distorted-wave Born approximation (DWBA), which
differ in the approximations made to the three-body wave function to describe deuteron-
target scattering. In doing this, we can directly compare the uncertainties that arise from
these two theories based on the optical potentials in the incoming channel. Further, instead
of just constraining the parametric uncertainties from the incoming deuteron channel, we also
include uncertainties in the optical model of the outgoing (A + 1)-nucleon potential. Because
of the nature of the Bayesian method - and the possibility of dependence on the choice of
the prior - we first investigate the dependence of the prior on the posterior distributions.
There are several potentials that must be constrained in order to run the full adiabatic
calculation. The binding potential between the neutron and the proton in the deuteron, the
(A+1) bound state, neutron-target and proton-target optical potentials at half the deuteron
energy, and proton-target (or proton-(A+ 1)) optical potential at the energy of the outgoing
channel. To compare to DWBA, we also need deuteron elastic-scattering data. Further, it
is useful to have (d,p) data at the incoming deuteron energy to compare to our predictions.

Finding this combination of data, at the correct energies, limits the targets that we can use
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for this study, especially if we want to use a range of targets across the nuclear chart.

We use stable targets with 0T ground states for which there is nucleon-target and
deuteron-target data across a wide angular range (greater than 100° and in most cases,
greater than 150°). All of the nucleon-target reactions fall within the suggested range of
mass and energy of the Becchetti and Greenlees potential [1]. We choose reactions that have
a good chance of being reasonably described within the scope of the single-channel approach.
At this point, because we are focusing on the implementation of uncertainty quantification,

we do not need state-of-the-art models, only a reasonable description.

5.1 Prior Comparison

Depending on the quality of the data that is being used to constrain parameters, the prior
can play a more or less significant role in the posterior distributions that are calculated
using Bayes’ Theorem. Before we blindly apply the Monte Carlo process for the reactions
of interest, we investigate the role of the shape of the prior on data-constrained elastic cross
sections and predicted transfer cross sections. We consider a Gaussian prior and a flat prior,
each with two different widths. As a test case, we consider 9Zr(n,n)?"Zr elastic scattering at
24.0 MeV [122]. The two priors are defined independently for each parameter in the volume
and surface terms of the ?Zr-n optical potential. The narrower of the two priors (M) covers
a range of physical values for each parameter while not overly constraining them; the wider
prior puts almost no constraint on the parameters. Table 5.1 lists the means and widths of
these four priors.

Figure 5.1 shows the posterior distributions (histograms) and initial prior distributions

(solid lines) for the priors listed in Table 5.1. For the real volume parameters (V, r, and
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Figure 5.1: Comparison of prior shapes (with e = 0.005) for the optical model parameters
constrained by 9OZr(n,n)90Zr elastic scattering at 24.0 MeV, for the wide Gaussian (gray
histogram), medium Gaussian (blue histogram), wide linear (green histogram), and medium
linear (pink histogram) posterior distributions, all shown with respect to their associated
prior distribution (lines of the same color).

73



T ToML ToMG ATM TowL Towa ATy
Vv 50.0 46.0 40.0 60.0 46.0 100.0
,
a

1.25 1.17 0.7 1.15 1.17  01.3

0.65 0.75 0.5 0.60 0.75 0.8
Ws 15.0 5.7 30.0  40.0 5.7 80.0
rs  1.25 1.26 0.7 1.15 1.26 1.3
as 045 0.58 0.5 0.45 0.58 0.9
w 2.0 3.7 10.0  20.0 3.7 40.0
rw  1.25 1.26 0.7 1.15 1.26 1.3
ay  0.45 0.58 0.5 0.45 0.58 0.9

Table 5.1: Summary of centers (z,) and widths (Ax;) for the medium linear (ML) prior,
medium Gaussian (MG) prior, wide linear (WL) prior, and wide Gaussian (WG) prior.
Columns four and seven give the widths of the medium and wide priors, respectively. These
are given for 90Zr(n,n)9OZr at 24.0 MeV. For all other reactions, the widths of the priors
and the center of the linear priors remained the same; the center of the Gaussian priors were
defined to be the optical potential values for each parameter, taken from [1]. Depths are
given in MeV, and radii and diffusenesses are given in fm.

a), regardless of the choice of prior, the means and widths are essentially identical. This is
not true for the imaginary volume and surface parameters which are peaked at significantly
different values (except for r5). We also see that for several of the parameters, there is a
sharp cut-off for the posterior distributions using the medium linear prior because of the
fixed limits that are imposed by this prior shape. However, the X2 distributions for the
four priors are nearly identical indicating that the correlations between parameters are more
important than the parameter values themselves.

We know that different parameterizations for the optical potentials can lead to identical
elastic-scattering angular distributions, and it is ultimately the differences in the observables
that illustrate the effect of the prior distribution. Figure 5.2 (a) shows the 95% confidence
intervals for each of the posterior distributions from Figure 5.1. The four confidence intervals
are also nearly identical, which is perhaps not surprising since the X2 distributions are so

similar. It also indicates that the correlations between the parameters are more significant
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Figure 5.2: Comparison of cross sections for the four prior distributions listed in Table 5.1
(with € = 0.005) for (a) 29Zr(n,n)?Zr and (b) P9Zr(d,p)?1Zr(g.s.) at 24.0 MeV for the wide
Gaussian (gray), medium Gaussian (blue), wide linear (green), and medium linear (pink).

(when calculating observables) than the parameter values themselves.

However, it is also known that different parameterizations that give rise to the same
elastic-scattering cross sections do not necessarily lead to similarities in other observables,
such as the transfer cross section. Because we have only constrained neutron-target elastic
scattering, we have to make some approximations in order to calculate a transfer cross
section. For simplicity, we approximate the deuteron-target potential as being twice the
neutron-target potential (which is a reasonable assumption considering that the neutron
and proton potentials are nearly identical except for Coulomb effects); then we use the
distorted-wave Born approximation (DWBA) to calculate the (d,p) transfer cross section.
The results for the 95% confidence intervals for each of the four priors are shown in Figure 5.2
(b). Here, there are some differences between the four priors. The two medium priors have
thinner confidence intervals; the linear prior, in particular, produces a distinct confidence
interval, most likely due to the fixed boundaries of the prior which lead to abrupt cut-offs

for some of the posterior distributions.
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We also see that the two wide priors lead to more similar posterior distributions than
the two smaller priors, so we prefer the wide priors which allow all the parameters to be
fully constrained by the data. In principle, both the Gaussian and linear priors would
work (since they lead to the same observables), however, the flat prior has the chance of
sharply cutting off the parameter space and forcing the parameters into a false minimum
because of this restriction. In that sense, we prefer the Gaussian because it encourages
the parameters to stay within a physical range without this abrupt cut-off. Plus, we do
have more prior knowledge of the parameter space than just the physical ranges for these
parameters. The global optical models parameters that we start with have been fit to large
amounts of data across the nuclear chart, so the initial parameters should already provide
a reasonable description of the data that only needs slight adjustments. For the rest of this
work, we consider a Gaussian prior.

Next, we take the wide Gaussian prior, and consider changing the scaling factor, ¢ (which
controls the step size for each parameter). If too small of a step is taken, not enough of the
parameter space will be sampled because the parameterization will not escape from the
starting local minimum. If too large of a step is taken, the parameters will not be well-
constrained. Also, as the step size becomes larger, more parameter samples do not meet
the condition of Eq. (3.33), the Monte Carlo will take longer to converge (and therefore
more parameter sets will be rejected before the appropriate number are accepted). Ideally,
around 50% of the sampled parameter sets should be accepted [101]. Figure 5.3 shows the
comparison of the e values that were considered. We see that the posterior distributions for
e = 0.001 and ¢ = 0.002 do not peak at the same parameter values as the other three scaling
factors. These are too small and do not explore enough of the parameter space. On the

other hand, ¢ = 0.05 is too large to constrain each parameter. Therefore, using a scaling
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factor in the range of 0.005 or 0.01 is ideal. This also causes ~ 50% of the parameter draws
to be accepted, as desired.

For the rest of this work, we consider a Gaussian prior with e = 0.005. This same study
was performed for three other elastic scattering reactions to ensure that the conclusions
drawn from the 90Zr(n,n) scattering were consistent in other mass and energy regions. These
studies are all shown in Appendix A, and the results are identical to those shown for the
W07y case.

Finally, we can more systematically study the effect that changing the width of the
Gaussian prior distribution has on the mean value and width of the resulting posterior
distribution. Figure 5.4 shows the mean value of the posterior distributions (blue circles)
as a percentage of the mean of the prior distribution for each variable, from [1], plotted
as a function of the width of the prior distribution (as a percentage of the mean of each
prior distribution for each variable). We first see that the mean values of the posterior
distributions remain constant as the width of the prior distributions increase. The error bars
on each of the posterior means give the width of the posterior distribution as a percentage
of the width of the prior distribution. The shrinking error bars show that the widths of the
posterior distributions are becoming a smaller fraction of the widths of the prior distributions;
since the widths of the prior distributions are increasing, this indicates that the widths of the
posterior distributions are staying constant. Taken together, this indicates that the posterior

distributions are driven by the data and not by the prior distribution.
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Figure 5.3: Comparison of the scaling factors for the optical model parameters constrained
by 90Zr(n,n)?Zr elastic scattering at 24.0 MeV, for e = 0.001 (blue), e = 0.002 (pink),

e = 0.005 (green), ¢ = 0.01 (dark blue), and ¢ = 0.05 (gray). The prior distribution was
taken to be the wide Gaussian, as defined in Table 5.1.
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Figure 5.4: A systematic study of the mean and width of the posterior distribution for each
optical model parameter as a function of the width of the prior distribution. The x-axis gives
the width of the Gaussian prior distribution as a percentage of the original optical model
value for each parameter. Blue circles show the means of each of the posterior distributions,
as a percentage of the original prior mean. The error bars give the width of the posterior
distributions as a percentage of the prior widths.

Reaction Energy (MeV) Data

BCa(p,p)*Ca 21.0 [123]
W07 (p,p)?VZr 40.0 [124]
12081 (n,n) 12980 13.9 [125]
W07y (n,n)"7Zr 24.0 [122]

Table 5.2: Reactions used to test the various prior shapes of Table 5.1. All data for the
elastic-scattering reactions come from the references in column three.
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5.2 Numerical Detalils

Now that we have an understanding of the Bayesian method, we can focus on the physics.
Recall from Eq. (2.28) that there are three wave functions that need to be constrained to
calculate the transfer cross section. The bound state between the target and the transferred
nucleon, the outgoing (A+1)-proton (or (A4 1)-neutron) distorted wave, and the exact wave
function for the initial three-body system. In the two three-body approximations discussed
in Section 2.3, the exact wave function is approximated, either by the deuteron bound state
multiplied by a distorted wave for the deuteron-target system in DWBA or in ADWA as
an adiabatic wave function. In ADWA, the wave function is constrained through neutron-
target and proton-target elastic scattering data at half of the incident deuteron energy.
In (DWBA), the constraint is deuteron-target elastic scattering at the incident deuteron
energy. The outgoing (A + 1)-proton (or neutron) wave function is constrained by A-proton
(or neutron) elastic scattering data - as this data is more readily available, and the difference
in the optical potential between the A-nucleon and (A + 1)-nucleon are on the order of 1%.

Continuing from Chapter 4, we explore the parametric uncertainties remain when con-
straining optical model parameters with elastic-scattering data. This includes the uncertain-
ties that enter through the scattering wave function in the incoming and outgoing channels,
but does not include uncertainties associated with the bound states. The bound state of the
deuteron is defined by a Gaussian that reproduces the binding energy of the deuteron (as in
[126]). The bound state of the target plus transferred nucleon is parameterized by a central
potential (Woods-Saxon shape) and spin-orbit term, with standard radius and diffuseness
parameters of 1.2 fm and 0.65 fm. The depth of the Woods-Saxon is fixed to reproduce

the binding energy of this two-body system in the appropriate £; state. The depth of the
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Target Projectile E (MeV) Data

BCa » 14.03 [127]
Ba n 12.0 [128]
BCa P 24.0 [129)]
8Ca d 23.3 [130]
W7y » 12.7 [131]
N7y n 10.0 [122]
N7y p 22.5 [132]
W7y n 24.0 [122]
Wy d 23.2 [130]
H6gp » 22.0 [133]
H6gp n 24.0 [134]
H6gy p 49.35 [135]
208py, » 16.9 [136]
208py, n 16.0 [137]
208pp, p 35.0 [138]
208py, d 28.8 [139]

Table 5.3: Summary of elastic scattering pairs used in this work. Column four gives the
corresponding reference for the experimental data.

spin-orbit potential is the standard value of 6.0 MeV.

Ultimately, there were five single-nucleon transfer reactions that we studied, given in
Table 5.4. In the next sections, we show the results of constraining the nucleon-target optical
model parameters for obtaining the ADWA transfer cross sections and then including the
deuteron-target elastic scattering to construct the transfer cross sections under DWBA for
one of these reactions, *Ca(d,p)*Ca(g.s.). Table 5.3 also lists all of the reactions that were
used to constrain optical model parameters within this work. Table 5.4 lists the references to
any data that were used to compare the magnitude and shape of the transfer cross sections,
in addition to the transfer reactions that were studied.

Within these two reaction frameworks, we also study the impact of the reduction in
experimental error: if the experimental error is reduced by 50%, is there a corresponding

reduction in the widths of the confidence intervals for the elastic scattering and transfer cross

81



System E (MeV) Data

BCa(d,p)¥Ca 24.0 [140]

N07r(d,p)?1 Zr 22.0 [141]

N07r(d,n)?Nb 20.0 —
H6gn(d,p)!7sn 44.0 —
208pp(d,p)2%9Ph 32.0 —

Table 5.4: Transfer reactions that were calculated using either ADWA or DWBA, the energy
at which the calculation was performed (column two), and a reference to experimental data,
if any (column three).

sections? For this purpose, we first take the error on the experimental data to be 10% of the

cross section value at each angle, and then reduce it to 5% at each angle.

5.3 Transfer Reactions with ADWA

We first begin by constraining the optical model parameters for ®Ca-nucleon interactions to
construct the 48Ca(d,p)49Ca transfer cross section to the ground state (g.s.) using ADWA. In
this framework, the incoming neutron- and proton-target potentials have to be calculated at
half of the incoming deuteron energy. For each of the scattering cases, the prior distributions
are centered at the starting parameter values from the Becchetti and Greenlees global optical
potential [1] with a width equal to the initial parameter value.

Figure 5.5 shows the posterior distributions (histograms) compared to the prior distri-
butions (solid lines) for the potential parameters of *¥Ca(n,n)*8Ca at 12.0 MeV, using both
10% errors on the experimental cross section values (gray) and 5% errors (blue). The means
and widths for each parameter in the posterior distribution are listed in Table 5.5, columns
two and three. We see that the posterior distributions are all centered around physical
values, and even though the prior distributions are wide, the posterior distributions are well-

constrained. Using 5% errors, compared to the 10% errors, has little effect on the peak value
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ceap X TD Al TV Agl 90 AW
V45510 2.735 51147 4.043 53490 4.192
r 1.222  0.054 1.242 0.053 1.141 0.049
a 0682 0055 0560 0050 0.726 0.055
Ws  7.376 0538 11749 0.922 6.825 0.549
10% s 1255 0076 1308 0.057 1.335 0.067
as 0202 0.041 0520 0040 0.589 0.047
W 0950 0086 0430 0043 2249 0.330
rw 1.210 0.123 1.313 0.151 1.278 0.127
aw 0601 0.062 —  — 0606 0.074
fep X AW AdD Z0 A 790 AL
V45346 1468 51.339 2246 52.173 2598
r 1.226  0.028 1.240 0.038 1.154 0.030
a 0683 0034 0579 0037 0.717 0.038
Ws 6796 0594 11.780 0.858 7.125 0.670
5% 1s 1260 0.037 1312 0046 1351 0.036
as 0314 0031 0522 0023 0563 0.046
W 1008 0114 0359 0040 2469 0.258
w1133 048 1262 0.166 1173  0.136
aw 0616 0054 —  — 0664 0.065

Table 5.5: Means (z;) and widths (Ax;) for the posterior distributions shown in Figure 5.5
(columns two and three), Figure 5.7 (columns four and five), and Figure 5.8 (columns six
seven) using the 10% experimental errors (top) and 5% errors (bottom).

of the posterior distribution for each parameter, but the widths of the posterior distributions
are much narrower for several of the parameters. In some cases, there is a 50% decrease in
the width of the parameters, but in other cases there is an increase instead (such as for W
and W - which speaks to the ambiguity between the two imaginary terms which is discussed
more in Appendix D).

Figure 5.6 shows the comparison of the 95% confidence intervals (defined as in Eq. (3.40)
with @ = 0.05) that are constructed from the posterior distributions in Figure 5.5. The
data is well-bounded by the 95% confidence intervals, and again, there is a reduction in the
width of the confidence intervals when a smaller error is used - however, this width does not

decrease by 50% as the experimental errors do.
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Figure 5.5: Posterior distributions (histograms) constraining the optical potential parameters
using 48Ca(n,n)480a elastic scattering data at 12.0 MeV, comparing 10% errors on the

experimental cross sections (gray) and 5% errors (blue). Original prior distributions are
shown as gray solid lines.
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Figure 5.6: The 95% confidence interval for (a) %®Ca(nn)*®Ca at 12.0 MeV, (b)
48Ca(p,p)48Ca at 14.03 MeV, and (c) 4SCa(p,p)48Ca at 25.0 MeV, from the posterior dis-
tributions of Figures 5.5, 5.7, and 5.8, using 10% errors (gray) and 5% errors (blue).
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Next, we do the same for the 480a(p,p)480a elastic-scattering optical-model parameters
at 14.03 MeV (still used to constrain the incoming deuteron-target scattering). The posterior
distributions (gray histograms for 10% experimental errors and blue histograms for 5%) are
compared to the initial prior distributions (gray solid) in Figure 5.7. The means and widths
are listed in Table 5.5, columns four and five. Again, there is mostly a reduction in the width
of the posterior distributions when the smaller errors are used, but this is not always the
case. For this reaction, note that a posterior distribution is not shown for a,,; this parameter
was not included as a free parameter in the Monte Carlo because it could not be constrained
by the elastic-scattering data (for an example of this lack of constraint, see Figure A.4 for
the posterior distributions and Figure A.5 (c) for the resulting elastic angular distribution).
Figure 5.6 (b) shows the resulting 95% confidence intervals for the elastic-scattering cross
sections from these two prior distributions.

Finally, we also constrain the outgoing *9Ca-p channel with 480a(p,p)480a elastic scat-
tering data at 25.0 MeV (which, converting to the center of mass, is close to the incident
deuteron energy minus the Q-value for the (d,p) reaction). The posterior distributions using
10% (5%) experimental errors are shown as gray (blue) histograms compared to the prior
distribution (gray solid) in Figure 5.8. The resulting 95% confidence intervals for the elastic
cross sections are shown in Figure 5.6 (c¢), where we again see a reduction in the width of
these intervals when reducing the experimental errors from 10% (gray) to 5% (blue), though
not to the same extent as the reduction in the error.

We can now use the posterior distributions from the three nucleon-target elastic-scattering
reactions to construct the transfer cross sections under ADWA by randomly drawing a pa-
rameter distribution for each potential for a single calculation. It is important to remember

once more that we are constraining the two scattering distorted waves with the nucleon-
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Figure 5.7: Same as Figure 5.5 for 48Ca(p,p)48Ca elastic scattering at 14.03 MeV where ay,
was not included as a free parameter.
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Figure 5.9: 95% confidence intervals for 48Ca(d,p)*?Ca(g.s.) at 24.0 MeV (a), using 10%
(gray) and 5% (blue) error bars on the experimental data for the elastic scattering of the
incoming and outgoing channels and percentage uncertainties (b) using ADWA.

target scattering discussed in the previous section and fixing the properties of the bound
states.

First, we construct the *8Ca(d,p)*Ca(g.s.) cross section at 24.0 MeV using the poste-
rior distributions shown in Figures 5.5, 5.7, and 5.8. The 95% confidence intervals for this
reaction are shown in Figure 5.9 when the nucleon elastic scattering distributions were con-
strained using 10% experimental errors (gray) and 5% experimental errors (blue). To have

a quantifiable way to compare the two distributions, we define percentage uncertainty

95 _ 95
e — Jmax — Tmin o 1000, (5.1)
g

which is the width of the confidence intervals divided by the mean value; this is defined at
each angle. Although it is clear that the 95% confidence intervals are narrower when the 5%
errors were used, this provides an indication of how much narrower (and is especially useful

when comparing between the resulting intervals for different reaction models that might not
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have the same shape). The comparison between the two percentage uncertainties is shown
in Figure 5.9 (b).

In many of the proton scattering reactions (such as 48Ca(p,p) at 14.03 MeV), we were
not able to constrain a,, with the other parameters. This seemed to be true especially at
higher scattering energies. The fact that removing this parameter had very little effect on
the remaining posterior distributions and resulting elastic scattering cross sections shows the
importance of correlations among the parameters and the constraining power of the elastic-
scattering data. In principle, we could have constrained some combination of the optical
model parameters (which could be found from a diagonalization of the covariance matrix),
but significant study would have to go into determining the correct combination of these
parameters across the range of elastic-scattering reactions. In addition, we would lose the
evaluation power we have in knowing whether or not the parameters are reasonable. We
know the range of physical values for the optical potential parameters, but this would be

lost in fitting a combined set of parameters.

5.4 Transfer Reactions with DWBA

To construct transfer cross sections using DWBA instead of ADWA, the incoming chan-
nel has to be constrained with deuteron-target elastic-scattering data rather than nucleon-
target scattering data. In this section, we go through the deuteron-target constraints for
48Ca(d,p)*Ca(g.s.) and construct the resulting transfer cross section using DWBA. The
other three DWBA transfer reactions can be found in Appendix C. (Because deuteron
scattering data was not available, this calculation was not performed for 116Sn(d,p)1178n.)

We constrain the incoming channel for 48Ca(d,p)#?Ca(g.s.) using elastic-scattering data
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Eexp X T48Ca  ATagca  Toozr ATgozr T20sPh  AT208Ph
V  106.133 7.341 89.696 6.890 99.610 6.631

r 1.027 0.050 1.198  0.051 1.146 0.042
a 0.782 0.042 0.676  0.050  0.802 0.068
Ws  8.579 0.630 9.262  0.788  8.159 1.052
10% 1s 1.337 0.051 1.285  0.064 1.401 0.080
as  0.814 0.064  0.873  0.057  0.868 0.048
W 2,695 0.294 2407 0.229  2.855 0.263
rw  1.128 0.132 1.357  0.125 1.356 0.086
aw — — — — — —

X T48Ca AT48Ca  Toozr ATgozr T2osPb  AT208Pb
V  105.488 7.660 90.209 5.208 97.665 5.243

r 1.035 0.057 1.191  0.045 1.167 0.043
a 0.774 0.046  0.687  0.043  0.759 0.064
Ws  8.708 0.546  8.822  0.803  8.220 0.900
5% rs 1.326 0.044 1.308  0.058 1.354 0.082
as  0.818 0.056  0.861  0.048  0.894 0.060
W 2526 0.298 2501  0.269  2.842 0.355
rw  1.113 0.122 1.373  0.110 1.325 0.086
aw — — — — — —

Eexp

Table 5.6: Means (x) and widths (Az) for deuteron elastic scattering posterior distributions
shown in Figure 5.10 (columns two and three), Figure C.18 (columns four and five), and
Figure C.22 (columns six and seven).

for 48Ca(d,d)480a at 23.2 MeV. The resulting posterior distributions are shown in Figure
5.10, again comparing the results using 10% experimental errors (gray histograms) and 5%
experimental errors (blue histograms) as well as the initial prior distributions (gray solid).
There is less of a reduction in the width of the posterior distributions here than there was
for the nucleon-target scattering cases (Figures 5.5, 5.7, and 5.8); this is also seen in the 95%
confidence intervals for the elastic-scattering cross sections, Figure 5.11. It is interesting to
note that there is much less angular coverage for this deuteron elastic-scattering data than
there had been for the corresponding nucleon scattering data.

To construct the transfer cross sections using DWBA | we use the deuteron-target elastic

scattering posterior distributions from Figure 5.10 combined with the outgoing (A + 1)-
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Figure 5.10: Posterior distributions (histograms) constraining the optical potential param-
eters using 48Ca(d,d)48Ca elastic scattering data at 23.2 MeV, comparing 10% errors on
the experimental cross sections (gray) and 5% errors (blue). Original prior distributions are
shown as gray solid lines.
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Figure 5.11: 95% confidence interval for the *¥Ca(d,d)*¥Ca elastic scattering cross sections
at 23.2 MeV from the posterior distributions of Figure 5.10 using 10% errors (gray) and 5%
errors (blue).

nucleon elastic scattering posteriors from Section 5.3. (The outgoing channel is the same
within these two reaction frameworks.) The bound state properties of the deuteron and
transferred nucleon are defined as in Section 5.2. The 95% confidence intervals for the
transfer cross sections are shown in Figure 5.12 using the 10% experimental errors (gray) and
5% errors (blue). These intervals are also compared to data, at 19.3 MeV. There is a slight
mismatch between the energy at which the data was taken and the calculations performed
here, but the comparison is to show that the computed cross sections are reasonable, rather

than to make a statement about the validity of any extracted quantities.

5.5 Discussion

Once all five transfer reactions were calculated (see Appendix C for details of the four
reactions not shown here), we could look for common trends among them. There are three
themes to investigate: uncertainties from the optical potentials, the effect of reducing the

experimental error, and the comparison between DWBA and ADWA. Before discussing each
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Figure 5.12: Same as Figure 5.9 using DWBA.

of these in detail, summaries of the results are presented. Table 5.7 gives an overview of each
of the transfer reactions in terms of the percentage uncertainty (defined as in Eq. (5.1)). The
uncertainty is calculated at the peak of the transfer cross section for both the 95% confidence
intervals (two standard deviations, column six) and 68% confidence intervals (one standard
deviation, column seven); the value at the peak is listed in column four, and the angle
corresponding to this peak is given in column three. The extracted spectroscopic factors are
listed in column five (where data was available). The theory used to calculate the transfer
cross section (column two) is listed in terms of either ADWA or DWBA and the 10 or 5
indicates the experimental errors used in the calculation, corresponding to 10% or 5% of the
experimental cross section value. Note that the DWBA calculations were not performed for
11GSn(d,p)H78n because of a lack of (d,d) elastic scattering data near 44.0 MeV.

From Table 5.7, we can calculate two reduction factors, Acyp and Ay, both shown in
Table 5.8. The first, columns three and four (for the 95% and 68% confidence intervals,
respectively) shows the reduction in the uncertainty at the peak of the transfer cross section

for the reaction model (column one) between the 10% and 5% experimental errors and is

94



Reaction Theory 6 (deg) Peak™ (mb/sr) SF 95 (%) 63 (%)
48Ca(d,p) ADWAILO 6 34.09 1.07  35.76 16.47
48Ca(d,p) ADWAS5 6 33.38 1.09  24.24 11.53
48Ca(d,p) DWBAI10 3 41.56 1.02  47.93 22.57
48Ca(d,p) DWBAS5 4 40.73 1.02  42.03 22.36
NZr(dn) ADWA1L0 31 2.16 — 4444 17.59
W07r(dn)  ADWAS5 31 2.13 — 20.19 9.91
NO7Zr(dn) DWBAI0O 31 3.04 — 3882 21.52
N07r(dn)  DWBA5 30 3.15 —  26.35 13.29
N7r(d,p) ADWA10 14 16.63 0.74  47.62 21.95
V7r(d,p) ADWA5 14 17.94 0.69  30.88 14.99
NV7r(d,p) DWBAIL0 16 17.09 0.72  58.86 29.02
N07r(d,p) DWBAS5 16 17.41 0.71  30.61 14.26
H6Sn(d,p) ADWAI10 1 4.64 — 121.77 4831
H6sn(d,p) ADWA5 1 5.93 — 10152 55.12
208ph(d,p) ADWAIL0 11 13.32 — 3784 18.95
208ph(d,p) ADWAS 14 13.97 — 2548 11.42
208ph(d,p) DWBAL0 9 7.44 — 7272 43.84
208ph(d,p) DWBAS5 7 8.38 —  63.01 30.08

Table 5.7: Overview of the errors for each transfer calculation. Column one lists the transfer
reaction, and column two lists the reaction theory used (ADWA or DWBA) with 5 or 10
indicating the percentage experimental errors used. The angle (in degrees) at which the cross
section peaks is listed in column three, and the value of the cross section at the peak (in
mb/sr) is listed in column four. The spectroscopic factors are given in column five (for the
reactions that have been measured experimentally). Column six (seven) lists the percentage
error (width of the confidence interval divided by the mean multiplied by 100%) at the peak
assuming a 95% (68%) confidence interval. *Peak values are given in terms of the 95%
confidence intervals. These values change by 5-10% at most when 68% confidence intervals
are calculated (and fall within the 95% intervals).
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Reaction | Theory (Aexp)gf) (Aexp)GS Error (Ath)95 (Ath)68

BCa(d,p) | ADWA  32.22 30.03 10% 2539 27.03
BCa(d,p) | DWBA  12.30 0.91 5% 4233 4843
VZr(dn) | ADWA 5458 43.69 10%  -14.48  18.26
D7r(dn) | DWBA  32.12 38.24 5% 2338 2543
N7r(d,p) | ADWA  35.15 31.68 10%  19.10  24.36
D7r(d,p) | DWBA  47.99 50.87 5% -0.88 -5.12

H0Sn(d,p) | ADWA  16.63 -14.10 — — —
208ph(d,p) | ADWA  32.65 39.71 10%  47.96  56.77
208ph(d,p) | DWBA  13.35 31.39 5% 14729  62.03

Table 5.8: Overview of the reduction (or increase) factor between calculations using the
10% and 5% experimental errors for the reaction model listed in column two as well as the
reduction (or increase) factor between the DWBA and ADWA calculations for the 10% and
5% experimental error calculations (column five). This is done for both the 95% and 68%
confidence intervals. Details in text.

defined as
SZ(ADWAl()) — & (ADWA5)
Aeocp =
EZ(ADWAM))

x 100%. (5.2)

All of the calculations show a reduction in uncertainty when the experimental error bars are
decreased, except for 116Sn(d,p)t17Sn but only for the 68% confidence interval. (This will be
discussed in greater detail in Section 5.5.1.) Columns six and seven show the reduction factor
between the DWBA and ADWA calculations for the experimental error listed in column five,

£;(DWBA) — £;(ADWA)
5@(DWBA)

Ay, = x 100%. (5.3)

A negative value indicates that the uncertainty from Table 5.7 was smaller for the DWBA
calculation than for the ADWA calculation. Here, there were a few outliers (negative values),
but these cases will also be discussed in more detail in Section 5.5.1. This factor could not
be calculated for 116Sn(d,p)'17Sn because the DWBA calculation was not performed for this

reaction.
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5.5.1 Outlying Cases

As mentioned previously, there were a few reactions in Table 5.8 that do not match the
trends of the others from this table. These cases will be discussed briefly in this section.

The first case that we discuss is that of 11GSm(d,p)lNSn. Here, the theoretical uncer-
tainties increased in the 68% confidence interval when smaller experimental error bars were
used to constrain the posterior distributions. This is due to the distribution of cross section
values in the posterior distribution. For the 68% confidence intervals, there is no strong peak
in the distribution of values at each angle in the transfer cross section which results in the
mean value being arbitrarily defined.

The next case we discuss is the single nucleon transfer onto 907y, From Table 5.8, there
are three cases where the DWBA calculation had a smaller theoretical uncertainty at the
peak than the ADWA calculation. In principle, we would expect the ADWA calculation
to have smaller uncertainties because the nucleon scattering data that is used to constrain
the optical potentials that are included in the calculation are generally of better quality
than deuteron elastic scattering data of DWBA - covering both a larger angular range and
being measured more precisely. In addition, because ADWA explicitly takes into account
the breakup of the deuteron in the field of the target, it should provide a more physical
description of the reaction process compared to DWBA - which could be reflected in the
theoretical uncertainty. Since this reduction of uncertainty between DWBA and ADWA is
seen in every other reaction, it is worthwhile to investigate why these are different than the
rest. One reason for this could be the quality of the deuteron-target optical potential [142]
which seems to be particularly well-defined for 0Zr-d scattering. Over the range of energies

investigated in [142], the authors quote an overall x2 of 4.03 for 99Zr; on the other hand,
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x2 = 123.58 for #3Ca and % = 17.42 for 208pb,

5.5.2 Uncertainties from the Optical Potential

We first focus on the uncertainties being introduced by the optical model parameters. Taking
the 95% confidence intervals for the ADWA calculations from Table 5.7, the theoretical
uncertainties range from 20% to 120% which are larger than the 10% to 30% that is naively
assumed to come from the parameterization of the optical model. The uncertainties for the
95% confidence intervals for the DWBA calculations are, on average, larger, but this will be
discussed in Section 5.5.4.

These uncertainties can be decomposed into the uncertainty that comes from each nucleon-
target potential. This is shown in Table 5.9. For each reaction, we use only the posterior from
one of the nucleon-target potential and fix the other two at the original potential values from
[1]. (The only exception to this is for the entries marked d;,, where the incoming neutron-
target and proton-target posteriors are both varied and the outgoing nucleon-target potential
is kept fixed. This mimics changing the incoming deuteron potential.) For each reaction,
the largest uncertainties are introduced by the outgoing channel. For the 116Sn(d,p)'7Sn
reaction the most notable difference in the outgoing channel is that there is only data up to
88° (column five); however, this is the only case where there is such a drastic difference in
the angular coverage of the data between the incoming channels and the outgoing one. For
each of the other reactions, the angular coverage in the outgoing channel is as good as or
better than in the incoming channels.

Table 5.9 also lists the quadrature uncertainty, for the 95% confidence intervals, calculated

as

—_ 2 2 2
ADgyad = \/gpm + e, TEN, (5.4)
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Reaction Projectile ¢ €5 Omaz (deg)

BCa(d,p) Din 22.90 11.82 158
48Ca(d,p) g, 1582 7.96 143
48Ca(d,p) Pout 26.70  17.37 170
48Ca(d,p) di, 26.08  15.61 —
BCa(d,p)  ADguaa  38.57 2247 —
N07r(d,n) Din 18.44  15.28 165
N07r(d,n) iy 16.96  9.17 150
N07r(d,n) Nyt 26.04  12.08 159
07r(d,n) dip, 28.72  17.17 —
N7Zr(dn)  ADgyaa 3614  21.53 —
ND7r(d,p) Din 17.53 12.81 165
07r(d,p) N, 13.78  8.92 150
W07r(d,p) Pout 38.24  19.96 154
W07y (d,p) dip 23.77  19.18 —
N7Zr(dp)  ADguaq  44.27  25.34 —
165n(d,p) Din 80.50  64.60 169
H6sn(d,p) n;, 35.26  18.43 155
H6gn(d,p) Pout 87.05  79.64 88
16gn(d,p) djn, 88.65  64.16 —
1168n(d,p)  ADquaq  123.70 104.19 —
208Ph(d,p) Din 16.42  7.76 165
208pPh(d,p) iy 22.35  12.92 154
208ph(d,p) Pout 33.00 21.41 168
208ph(d,p) din, 30.98  19.62 —
28ph(d,p)  ADguaq  43.11  26.69 —

Table 5.9: For the reaction given in column one, percent errors, using 10% (5%) experimental
errors, extracted at the peak of the cross section, column three (four). The projectile in
column two indicates which part of the potential was varied (while the remaining nucleon-
target potentials were fixed at their original parameterizations from [1]). (Here, the error
on the deuteron channel comes from varying the incoming neutron and proton potentials
simultaneously, and AD,q are calculated as in Eq. (5.4).) Column five shows the maximum
angle for which there is experimental data.
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where ¢; gives the uncertainty coming from only varying either the incoming proton, incoming
neutron, or outgoing proton/neutron potential while fixing the other two. All but three
of these quadrature uncertainties are within 10% of the total uncertainty when all three
potentials are varied simultaneously (as in Table 5.7), and all are within 20%. The quadrature
uncertainties in DWBA show the same result when compared to the total uncertainties. This
is a somewhat surprising result, as one might expect the total uncertainty to be less than
the quadrature uncertainty, just considering the non-linearity of the models being studied.

There does not appear to be a strong correlation between the widths of the parameter
posteriors and the uncertainties in the transfer cross sections. Over all, the potentials with
wider posterior distributions (and larger uncertainties, not shown) do not contribute larger
uncertainties on the associated transfer cross sections. Generally, the real volume depth,
radius, and diffuseness have smaller uncertainties (defined as the width compared to the
mean value of the distribution) than the imaginary terms. The imaginary volume depth,
radius, and diffuseness have larger uncertainties (~ 10% instead of a few percent). Ideally,
we would like a quantifiable measurement of how the uncertainties between the parameters
and the cross sections are correlated, but further study is needed to investigate this due to
the nonlinearity of the models.

We also studied the effect of the angular range of the elastic-scattering data. To do this,
we compared the posterior distributions of elastic and transfer cross sections when the entire
range of data was used to constrain the optical model parameters and when only data up to
100° was used to constrain the parameters. Although the parameter posterior distributions
are not shown, the resulting elastic scattering cross sections and transfer cross section are
shown in Figure 5.13 and Figure 5.14. Especially for the proton scattering (Figure 5.13 (b)

and (c)), the confidence intervals broaden significantly at backwards angles when only data
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up to 100° is included. The resulting transfer distribution only shows noticeable differences

at angles less than 10°. There is ~ 20% reduction in the theoretical uncertainty when the

whole angular range of data is used to constrain the parameters, which is less of a reduction

than in the comparison of experimental error sizes and model approximations.
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Figure 5.13: 95% confidence intervals when scattering data up to 100° (gray) and 180° (blue)
was used to constrain the optical model parameters for (a) 48Ca(n,n) at 12.0 MeV, 48Ca(p,p)
at 14.03 MeV, and 48C8L(p,p) at 25.0 MeV.
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Figure 5.14: Same as Figure 5.9 when elastic-scattering data up to 100° (gray) and 180°
(blue) were used to constrain the optical model parameters using ADWA.
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5.5.3 Reduction of the Experimental Errors

We next study the effect that reducing the experimental error bars has on the resulting pa-
rameter distributions and the uncertainties of the cross sections. Although the experimental
error bars are reduced by 50%, this reduction does not propagate to the uncertainties of
the parameters or cross sections. We explore this in detail in Table 5.5 which lists the
means and widths (standard deviation) for each of the parameter posterior distributions for
48Ca-nucleon elastic scattering. The means are similar when the errors are reduced, and
the widths decrease for many of the parameter distributions considered, although they are
not all by ~ 50%. The real depths, radii, and diffusenesses scale closer to 50% when the
experimental error is reduced by that much, but this is not as notable for the imaginary
parameters. In particular, we see several cases where the parameter widths actually increase
when the experimental errors decrease, such as for ry,.

When we consider the 95% confidence intervals for the transfer cross sections, the the-
oretical uncertainties are smaller when 5% error bars are included on the data than when
10% error bars are used, for every case that was studied. However, it is clear from Table
5.8 (columns three and four) that the reduction of theoretical uncertainty at the peak of the
calculation is not equal to the reduction in experimental uncertainty. While the reduction
in experimental uncertainty was 50%, the only cases where the theoretical uncertainty was
reduced this much were for two of the 90Zr reactions. For most of the reactions, we find an
~ 30% reduction in the theoretical uncertainty.

Naively, since we have an exponentiated X2 as our likelihood, it appears that the only
effect of reducing the experimental errors should be a factor in the likelihood, which would

then simply scale the posterior distributions. However, we do not see a constant scaling
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in the widths of the posterior distributions when the errors are reduced, nor do we see a
constant reduction in the uncertainty in the transfer cross sections. In fact, for the 48Ca(d,d)
scattering, reducing the experimental errors reduces the widths of only half of the parameters
causing only a slight reduction in the width of the confidence interval for the elastic cross
section (Figure 5.11), and an ~ 10% reduction in the uncertainty in the DWBA calculation.
This reduction (or lack thereof) is not consistent between models or among the targets

studied.

5.5.4 Comparison between DWBA and ADWA

Finally, we directly compare the parametric uncertainties of the two reaction models. While
this is not a substitution for rigorous model comparison and a more thorough evaluation
of model uncertainties, comparing these two frameworks within the same parametric un-
certainty quantification allows us to begin to form a picture of which model gives a more
accurate description of the data. Table 5.8 shows the reduction factor between the the-
oretical uncertainty in ADWA and DWBA. In all cases (except the 99Zr-d cases discussed
previously), the ADWA calculations had a smaller uncertainty than the DWBA calculations.
For 8Ca(d,p)*Ca and PZr(d,p)? Zr (which are the only two reactions where data has been
taken at corresponding energies), the ADWA calculations better reproduce the shape of
the experimental angular distributions. However, because of the width of the parametric
uncertainty intervals, we cannot fully rule out one model or the other.

In each calculation, the reduction in the theoretical uncertainty from DWBA to ADWA is
between 20% and 50% (with the exception of 2%¥Pb(d,p) which has an even larger reduction).
The adiabatic calculations should better describe the physics of each reaction since they

explicitly take into account the breakup of the deuteron in the field of the target which
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has been shown to be important in many reactions [70]. Here, we provide another piece of
evidence for this assumption. However, if we consider the spectroscopic factors extracted
for 4¥Ca(d,p) and 9Zr(d,p) (see Table 5.7), there are differences between the two models
of only a few percent. This is significantly smaller than the uncertainty introduced by the
parameterization. To more rigorously compare between models, model selection methods
must be introduced and consistent angular ranges for the data should be used - so that the

models are being compared one-to-one with no external influence.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

There are many sources of uncertainties within reaction theory, each of which should be
investigated in a systematic way. In this work, we take the first step toward that ultimate
goal by calculating the parametric uncertainties that arise from fitting the optical model pa-
rameters to elastic-scattering data. The two methods of uncertainty quantification discussed
here create a path forward for further uncertainty studies.

First, we implemented a frequentist method based on using y2 minimization to construct
95% confidence bands. These bands were calculated from best-fit elastic-scattering angu-
lar distributions and then propagate to predicted transfer and inelastic cross sections. We
fit six sets of elastic-scattering data for deuteron and neutron projectiles on targets with
A =12-208 and F =5 — 25 MeV /u. Deuteron elastic-scattering data was fit to constrain
the incoming scattering channel for constructing (d,p) transfer cross sections, and neutron
elastic-scattering data was fit to predict inelastic cross sections. Because of the strong cor-
relations in the elastic-scattering model, a correlated y2 function was introduced. These
correlations were shown to be important for fitting elastic-scattering data: the fits produced
were more physical and better reproduced the shape of the experimental angular distribu-

tions, the 95% confidence bands became wider, and the X2 values were lower than those

105



obtained when using the uncorrelated 2 function.

However, frequentist approaches are limited when taking non-parametric uncertainties
into account. There is no clear path forward for calculating uncertainties arising from model
simplifications which are particularly important considering the few-body approximations
that are commonly used in reaction theory. Also, correlations in the model must be built
in by hand, as was done for the angular correlations in X2C' Because of this, the second
uncertainty quantification method implemented was a Bayesian approach. This served to
further quantify parametric uncertainties and opened the door for computing uncertainties
from other sources.

Within the Bayesian framework, we used nucleon elastic-scattering data to constrain
optical model parameters in order to construct (d,N) transfer cross sections using ADWA.
We first investigated the effect of a variety of prior shapes on the posterior distributions for
optical model parameters and found that a wide Gaussian prior allowed the experimental
data to completely determine the resulting parameters. The widths of these parameter pos-
terior distributions were significantly narrower than the original prior distributions. With
this wide prior, elastic-scattering data was used to constrain parameters for nucleon-target
interactions to predict (d,N) transfer cross sections with uncertainties defined by 95% con-
fidence intervals. This study was also performed using deuteron elastic-scattering data to
constrain the deuteron-target scattering wave function. Then, transfer cross sections were
constructed with uncertainties using DWBA.

These studies were performed for five different transfer reactions for A = 48 — 208 and
E =10 — 25 MeV /u, assuming errors of 10% and 5% on the experimental elastic-scattering
cross sections. Although the 95% confidence intervals for the elastic-scattering cross sections

were well-constrained, this was not the case for the 95% intervals of the resulting transfer
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cross sections, regardless of the reaction model. Uncertainties at the peak of the transfer cross
section range from 20% to 120%, depending on the target, although the uncertainties under
ADWA are smaller than those from DWBA for nearly all cases. Still, these uncertainties
are large enough that transfer data cannot distinguish between the two reaction frameworks.
Decreasing the experimental errors by a factor of two decreases the resulting uncertainties
in the transfer cross sections but by less than 50%.

There are many differences between these two uncertainty quantification methods. Com-
putationally, the fitting process requires more time for the Monte Carlo than the standard
frequentist y2 minimization, but the MCMC is significantly more autonomous. Once suffi-
cient input parameters (step size, prior shape, etc.) have been identified, the MCMC requires
no human interaction, unlike the X2 minimization in which a multi-step process is often re-
quired to find a minimum within the physical parameter space. As long as the data drive
the minimization in both methods, the “best-fit” parameter sets should be similar. There
are also philosophical differences between the two methods. Frequentist methods rely on
the standard construction of probability, which gives the likelihood of an outcome relative
to other possibilities. In this case, confidence bands define regions that the data should fall
within given the values of parameters that we have defined as the best fit. Instead, Bayesian
methods define the probability for a single event without direct comparison to others. In
this interpretation, posterior distributions denote the likelihood of the parameterization be-
ing reality based on the data.

Ultimately, the Bayesian philosophy provides a more consistent interpretation of the un-
certainties. It also makes explicit the assumptions that go into this interpretation, something
that is hidden in frequentist methods. Furthermore, there is a more natural framework on

top of which to build future uncertainty quantification studies, especially those related to
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the simplifications of the model. Although these two methods of uncertainty quantifica-
tion have philosophical and practical differences in their implementations, one message is
absolutely clear: the 10-30% uncertainties that have been assumed in association with the
choice of optical model parameters have been greatly underestimated, at least when only
elastic scattering is used to constrain the parameters of the optical potentials. This calls for
both a better understanding of the range of data that is necessary to fully constrain these

parameters and the impact of the data on the level of correlations between parameters.

6.2 Outlook

The parametric uncertainties that we have investigated here are just the beginning. Beyond
the uncertainties associated with the parameters in the scattering states, there are also
uncertainties associated with the bound state of the deuteron and the transferred nucleon to
the target. The deuteron bound state is well-described in so much as the transfer reactions
discussed here are insensitive to the differences in the various nucleon-nucleon potentials that
have been developed [143]. The mean-field parameters of the nucleon-target bound states are
not as well-defined. The type of data that is used to constrain this interaction could greatly
change the shape of the mean field producing this bound state (binding energies contain
different information than a quantity that probes the external region of the reaction).

In addition to parametric uncertainties, systematic uncertainties coming from the choice
of the model must be taken into account. These uncertainties will add to the already large
parametric uncertainties, and in order for the model uncertainties to be meaningful, the
parametric uncertainties must be under control (since these caused the models studied in this

work to be indistinguishable). The reaction models implemented here represent significant
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simplifications to the full three-body solution on top of simplifications that were already made
to the many-body solution. Several studies have shown that the physics that is incorporated
within these more exact models is important to describe experimental results (such as the
necessity of including deuteron break-up [70]), but it is possible that incorporating this extra
physics within the model still makes the sophisticated model identical to the simplified model,
within uncertainties. If two calculations are identical within the full theoretical uncertainties,
there is no longer a reason to prefer one over the other (outside of physical arguments) until
the uncertainties are reduced. This, in principle, makes a powerful (and perhaps somewhat
unsatisfactory) argument as to when an approximate calculation can replace an exact one.

However, model uncertainties can provide a better understanding as to where model im-
provements can be most impactful. From the Bayesian results presented in this thesis, it was
found that the largest parametric uncertainty in the transfer cross sections comes from the
elastic-scattering potential in the outgoing channel. This could indicate that the description
of this channel is insufficient. Model uncertainties could provide similar insight, allowing us
to pin-point specific areas of the theory that can be improved instead of overhauling entire
frameworks.

The methods that we have developed here should be integrated into more complex reac-
tion frameworks. These frameworks become increasingly important as more complex reac-
tions are described (multi-step, breakup, halo nuclei, etc.). At this point, interpolations and
extrapolations are often made beyond the region of validity of a given parameterization or
reaction formalism, and uncertainties will also have to be propagated. Having a reliable way
to do this is another important path to pursue, as uncertainty quantification gains wider
acceptability and use.

As it becomes increasingly important to always include theoretical uncertainties, the
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codes for performing these uncertainty quantification calculations should be integrated into
the current available reaction theory framework. New codes should then be developed with
this goal in mind. This includes optimizing any numerical algorithms and parallelizing codes.
This also calls for the development of uncertainty quantification methods that do not rely on
fitting to experimental data since it is likely that data will not be available for many cases
far from stability.

Finally, it is becoming increasingly important to understand the information content
of experimental data as it pertains to constraining model parameters. In this work, we
only used elastic-scattering data to fit the optical model parameters, but it has been shown
[144] that additional data, such as total cross sections, provide further constraints. As we
look ahead to constructing new global optical potentials (with uncertainties), it is crucial to
identify the data sets that will be best for this purpose (whether that includes a range of
beam energies, targets, asymmetries, or observables). A principle component analysis (PCA)
which identifies unique degrees of freedom should be particularly useful. We have performed
preliminary studies demonstrating that elastic, inelastic, and transfer angular distributions
do not provide independent constraints on the optical model parameters. However, this type
of correlation study should also be performed for other observables such as total and reaction
cross sections, cross sections of higher-lying inelastic states, and nuclear radii. Including a
greater variety of observables in a fit could reduce the theoretical parametric uncertainties
to a greater extent than was seen by reducing the experimental error bars on the elastic
scattering data alone. The PCA would also identify the number of independent parameters
within the models and identify if there is any chance of fully constraining each individually.

Overall, the future of uncertainty quantification and reaction theory is bright. There are

new and exciting projects which will significantly increase the knowledge in the field and

110



provide opportunities for students as well as experts. The work that has been done here
only skims the surface of what is available and hopefully opens the door for many future

studies as described above.
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Appendix A

Tests of MCMC Code

Before using the Monte Carlo technique described in Section 3.2.2 to compute posterior
distributions for the reactions of interest, the code that was written as a wrapper for FRESCO
[118] had to be tested in order to make sure that we understood the way it worked, its
limitations, and how the inputs affected the resulting posterior distributions. This testing
is described here. This appendix also provides the remaining prior shape tests referenced in

Section 5.1.

Numerical Tests

A crucial part of the Monte Carlo process is the burn-in stage, which contains the accepted
parameter draws before the posterior distribution is being sampled. The length of the burn-
in, Npyrn—in, varies based on the step size in parameter space as well as how close the
initial parameter set is to the maximum likelihood. It is hard to determine a fixed number
of steps after which the burn-in will always be completed. For this reason, the burn-in
within this code is implemented in a variable manner. Once 500 parameter sets have been
rejected in a row (without another parameter set being accepted by the MCMC criteria of
Eq. (3.33)), the burn-in finishes and parameter sets are recorded. This condition of five
hundred parameter sets was found to be a sufficient indication that the Monte Carlo had

found a relative minimum and was not still exploring the parameter space.
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The burn-in also uses a step size that is five times larger than the step size defined in
the input file. This not only causes the burn-in to run more quickly but allows more of the
parameter space to be sampled; also, the minimum that is ultimately found during the burn-
in will be sampled more finely than the initial search. During the burn-in, parameter sets are
accepted such that the likelihood weighted by the prior distribution is strictly maximized,
instead of being subject to the criteria of Eq. (3.33) which samples around the currently
accepted parameter set.

Once the burn-in is completed, the x2 values no longer steadily decrease but remain
bounded within a certain region (depending on the minimum value and the shape of the
parameter space). Therefore, a successful burn-in can be evaluated based on the v2 values
that result from the Monte Carlo draws. An example of this is shown in Figure A.1, for
N7Zr(n,n) elastic scattering at 24.0 MeV. It can be seen that the x? values (bottom) are not
decreasing but rather jump randomly across all of the runs that were performed.

Because the code was parallelized, the independence of the processors also had to be
tested. In addition, this verifies the independence of the random number generator for
each processor - so parameter sets are not being pulled in the same order across all of the
processors. In Figure A.1, the recorded values of each parameter are shown as a function
of run number, where each color indicates a draw using a different processor for the same
reaction. In every case, the first draw of all processors has the same value, due to the design
of the code. Each processor performs a separate burn-in, after which the likelihoods from
each processor are compared. The largest likelihood - and corresponding parameter set -
is then given as the starting point of the Monte Carlo sampling for each of the processors,
hence the identical starting points for each variable.

However, after this initial parameter set, each of the processors follows an independent
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Figure A.1: Recorded parameter values as a function of run number from the Monte Carlo
process, constrained by elastic scattering data for 90Zr(n,n)9OZr at 24.0 MeV. Each color
denotes the processor that was used to make the parameter draws.
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path through parameter space in the vicinity of the minimum, as seen by the diverging
trajectories in Figure A.1. We also see that, although each parameter fluctuates, its value
does not change drastically over the course of the calculation - and the parameter values
fluctuate around a mean, instead of all drifting toward a different value (which would be
an indication that the burn-in is not complete). This fluctuation also indicates that the
sampling is coarse enough. Finally, when parameter sets are written, only one out of every
ten accepted parameter sets is saved to file as part of a thinning process. This ensures that
the parameter draws within the posterior are independent of one another (since parameter
draws from Monte Carlo methods are by definition not independent). As can be seen in
Figure A.1, for a given processor, the parameter values do not follow a smoothly varying
curve but instead fluctuate around some mean value.

It is clear that some of the parameters, for a single processor, tend to deviate from
the rest of the runs (for example, the purple points in the draws for W). However, in
the corresponding y2 /N plot, these values are not following any sort of distinctive trend.
This indicates that the minimum is being sampled instead of a path being followed through

parameter space.

Step Size Comparison

In Section 5.1, we showed one example of the effect of the step size on the posterior distri-
bution and resulting cross-section confidence intervals. (Again, recall that the step size is
defined based on the original parameterization for each system. Quoted here are the scaling
factors, €, used to compute each step size, where the new parameter set is drawn from a

Gaussian distribution centered around the previous parameter set, X ~ N (x;,exq).) Three
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more examples, neutron and proton scattering on a range of target masses at several ener-
gies, are examined in this section, to insure that the conclusions that were drawn from the

N07r-n scattering cases are robust.

Parameter Vv r a Ws rs as W rw aw
Width (L) 1000 1.3 0.8 80.0 1.3 0.9 400 1.3 09
Width (M) 40.0 0.7 0.5 30.0 0.7 05 100 0.7 0.5

Table A.1: Row two (three) shows the widths for the wide (medium) Gaussian prior for
each of the listed parameters. The mean for each of the prior distributions was the original
parameter value for each target-projectile system, defined by Becchetti and Greenlees [1].
Depths are given in MeV and radii and diffusenesses are given in fm.

Figure A.2 shows the values of e tested for fitting 120Sn(n,n) elastic scattering at 13.9
MeV, using the wide Gaussian prior defined in Table A.1. This assumption was also used
to compare scaling factors for 48Ca(p,p) elastic scattering at 21.0 MeV (Figure A.3) and
D7r(p,p) elastic scattering at 40.0 MeV (Figure A.4). For nearly all examples, ¢ = 0.001
was too small; the minimum here is significantly different than those for the other values
of e. It is also clear that € = 0.05 is to large - the y2 values have a large spread and
the parameters are not constrained. With this value, many of the parameters extend far
beyond their physical ranges. The parameter distributions for ¢ = 0.002,0.005,0.01 have
nearly the same behavior as one another (which we expect to happen once the step size for
each parameter becomes large enough), and the decision comes down to the percentage of
parameters accepted. Ideally, 50% of the parameter sets should be accepted by the Monte
Carlo criteria of Eq. (3.33) and 50% should be rejected [101]. The value of € for which this
happens is between 0.005 and 0.01.

Also for 90Zr(p,p) elastic scattering shown in Figure A.4, the a,, values range anywhere
from 0 to 12 fm when the Gaussian priors were used. This is significantly outside of a

physically allowable range, and the relatively flat distribution suggests that this parameter
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is not well constrained by this data. This was also observed for several of the fits shown
in Chapter 5 with little to no effect on the cross section confidence intervals. Thus, even
though these parameters are unrealistic, it should not affect the conclusions that we draw
from the tests presented here. (For the physics cases we study, a, is kept constant.)

Figure A.5 shows the elastic-scattering cross sections using the five € values for each of
these reactions. It is again clear that e = 0.05 is much too large. In all cases, except for
12081 (n,n) elastic scattering, the angular distribution for this factor is completely different
than the others. In only one case (0Zr(p,p), Figures A.5 c)), € = 0.001 is radically different:
the confidence bands formed from this set of parameter draws is much narrower than the
others. This is consistent with the very narrow parameter distributions for ¢ = 0.001 in
Figure A.4. In all three cases, the cross sections resulting from the scaling factors of 0.005
and 0.01 are nearly identical, and as mentioned previously, this is also the range where half

of the Monte Carlo draws are accepted.

Comparison of Prior Shapes

The comparison of prior shapes for each e values for 9OZr(n,n)QOZr at 24.0 MeV have been
previously shown in 5.1, but the same exercise was repeated for other three scattering reac-
tions. Here, € = 0.005 was chosen to compare the four prior types, two flat priors and two
Gaussian priors. The widths of the wide and medium Gaussian priors are given in Table
A.1 (the means for each Gaussian were the original parameter values defined in [1]); the
parameter limits for the two flat priors are given in Table A.2. The posterior distributions
are shown in Figures A.6, A.7, and A.8 for the elastic scattering of 129Sn(n,n) at 13.9 MeV,

48Ca(p,p) at 21.0 MeV, and 22Zr(p,p) at 40.0 MeV, respectively.
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Parameter Min (W) Max (W) Min (M) Max (M)

A% 10.0 110.0 30.0 70.0
r 0.5 1.8 0.9 1.6
a 0.2 1.0 0.4 0.9
Ws 0.0 80.0 0.0 30.0
rs 0.5 1.8 0.9 1.6
as 0.0 0.9 0.2 0.7
W 0.0 40.0 0.0 10.0
r'w 0.5 1.8 0.9 1.6
as 0.0 0.9 0.2 0.7

Table A.2: Minimum and maximum parameter values for the wide (columns two and three)
and medium (columns four and five) flat prior distributions. (Prior distributions were not
centered around the original parameterization.) Minima and maxima are given in MeV for
the depths and fm for the radii and diffusenesses.

In each case (akin to what was shown in Section 5.1), the posterior distributions for the
real depth, radius, and diffuseness are nearly identical, regardless of the prior shape. For
the imaginary parts of the potential - both the volume term and surface term - this is not
the case. Especially for the imaginary depths, each of the priors can give rise to distinct
peaks within a realistic parameter range. These distinct peaks are often seen within the
corresponding radius or diffuseness as well for the same potential term. For the two flat
priors, one can often see sharp cut-offs in the parameter space of the posterior distribution
where the parameter came upon the edge of the prior distribution, although this is more
common for the medium than for the wide flat prior.

However, looking at the elastic-scattering cross sections, Figure A.9, each of the angular
distributions is nearly identical. The only exception to this is for the flat priors when
some parameter ran up against its boundary, as for 29Zr(p,p) (c). In cases such as this,
the cross section bands are narrower than the bands formed by taking the Gaussian prior
distributions. The similarities in the majority of the cross sections is indicative that it is the

correlations between the parameters, more so than the parameter distributions themselves,
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that determine the width of the cross-section confidence bands.
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Figure A.2: Comparison between five values of € (given by the legend on the x?/N plot) for
the wide Gaussian prior using 120Sn(n,n) elastic scattering at 13.9 MeV. The experimental
errors on the data used in the Monte Carlo were taken to be 10% of the data values for each
angle.
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Figure A.3: Same as Figure A.2 for 48Ca(p,p) elastic scattering at 21.0 MeV.
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elastic scattering of (a) 129Sn(n,n) at 13.9 MeV, (b) *¥Ca(p,p) at 21.0 MeV, and (c) 2Zr(p,p)
at 40.0 MeV.
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Appendix B

Details of Regression Results

In this appendix, we show results for the four reactions in Table 4.1 that were not discussed
in detail in Chapter 4. First, the uncorrelated x? fitting is presented for the remaining
transfer and neutron scattering reactions; then, the same is presented for the correlated y2

fitting.

Uncorrelated Y? Fitting

We first discuss the second transfer case, fitting ?°Zr(d,d)?0Zr at 12.0 MeV. The best fit
parameterization is listed back in Table 4.2, with y2 /N = 1.421. The y2 contours for the
five fitted parameters are shown in Figure B.1, and since they are not elliptical, samples are
pulled from the exact x?2 distribution. (This was the only set of uncorrelated contours that

were not elliptical.)
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Figure B.1: Contours of constant y2 for the fitted parameters of 90Zr(d,d) elastic scattering
at 12.0 MeV, using the uncorrelated y2 function. Black stars indicate the best-fit parameters.
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The 95% confidence bands are shown in Figure B.2 for the (a) elastic scattering fit and
(b) transfer cross section prediction. The best-fit parameterization describes the elastic-
scattering data well (which is reflected in the x? value), however, the confidence bands are
extremely asymmetric. The predicted transfer cross section (b) reproduces the shape of
the experimental angular distribution at forward angles, but once past 30°, the calculated
cross section is systematically shifted from the data. The predicted spectroscopic factor,
SEXP — 0.720+8:828, is smaller than the values extracted from [108], as in the 12C(d,p) case,

although the mismatch between this work and the literature values is not as large.
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Figure B.2: 95% confidence bands from the uncorrelated fitting of d+90Zr elastic-scattering
data for (a) 20Zr(d,d)?Zr and (b) 29Zr(d,p)?1Zr(g.s.) at 12.0 MeV. The calculations from
the best-fit parameterizations are shown in red (dashed), the 95% confidence bands are
shown in brown (hatched), and the data is given as (black) circles.
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We compute the parameter covariance matrix,

\% r a W rg
V. 1.000 —-0.997 0.972 —-0.949 0.926
r —0.997 1.000 —-0.987 0.967 —0.951
Ccorr = (B-l)
a 0.972 —0.987 1.000 —0.990 0.987
Ws —0.949 0.967 —0.990 1.000 —0.993
rs 0926 —0.951 0.987 —0.993 1.000

(remember in this notation, the V' — r correlation is -0.997, etc.). In this case, all of the
parameters are extremely correlated - there is only one matrix element with absolute value
less than 0.950, between V and Wy (-0.949). Although we expect the parameters to be
significantly correlated, this is extreme compared to the other cases that were studied.

Next, we focus on fitting neutron elastic-scattering data used to predict inelastic cross
sections. The first reaction we show here is the uncorrelated fitting of 12C(n,n)'2C at 17.29
MeV to predict the inelastic scattering to the first excited 27 state. The best-fit parame-
terization is found in Table 4.2 with X2/N = 68.321. Although this x? value is higher than
the ideal value of x2/N ~ 1 (like 94Fe), it is a significant reduction from the original y?/N
value of 473.186, and the 2 value is most likely inflated by the small error bars on the data
(which are ~ 3.5% for the elastic scattering).

The y2 contour plots are shown in Figure B.3, and since the contours are all elliptical,
we draw parameters from the multivariate Gaussian. The 95% confidence bands for (a)
the elastic-scattering fit and (b) the inelastic-scattering prediction are shown in Figure B.4.
Although the best-fit calculation for the elastic scattering does not pass through all of the

data points, the magnitude of the calculation is correct, and about half of the data points are
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Figure B.3: Same as Figure B.1 for 12C(n,n) elastic scattering at 17.29 MeV.

above and half below the data - as the typical x2 calculation should ensure. Still, the 95%

confidence band encloses nearly all of the data, with only two or three data points falling

outside of the band. The prediction for t

he inelastic-scattering cross section describes the

overall trend of the experimental data, but the forward angles are underestimated; this is

unusual considering that these calculations are more accurate at forward angles compared

to backwards angles. However, the width

all of the data fall completely within it.
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Figure B.4: Same as Figure B.2 for (a) 12C

(n,0)!2C and (b) 12C(n,n")12C(27]) at 17.29 MeV.
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The parameter covariance matrix is

Vv T rg a Qs
V. 1.000 -0.918 0.488 —0.161 —-0.650
r —0.918 1.000 —-0.669 0.050 0.695
(Ccorr == . (B2)
re 0.488 —0.669 1.000 0.317 —0.888

a —0.161 0.050 0317 1.000 —0.094

as —0.650 0.695 —0.888 —0.094 1.000

All parameters are highly correlated, except for the pairs a — r and a — as. (In this case,
a does not appear to be strongly correlated with any of the other variables.) The most
correlated pair of variables is V' and r, as seen in most of the other reactions for the depths
and corresponding radii.

Next, we fit 48Ca(n,n)48Ca at 7.97 MeV to predict inelastic scattering to the first 27
excited state. The best-fit parameterization is found in Table 4.2. Here, the best-fit param-
eterization has 2 /N = 22.344. This is again larger than the typical Y2 /N = 1 that is ideal
for a statistical fit, but this data set also has very small error bars, mostly ~ 2 — 3%. The
X2 contour plots, which are shown in Figure B.5, are all elliptical, allowing for pulls from

the multivariate Gaussian distribution.
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Figure B.5: Same as Figure B.1 for Ca(n,n) elastic scattering at 7.97 MeV.
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Despite this larger y?2 /N value, the best-fit parameterization reproduces the shape and
magnitude of the experimental angular distribution in Figure B.6 (a). The x2/N value
also does not cause the 95% confidence bands to become broad for the elastic scattering.
However, the inelastic scattering prediction Figure B.6 (b) does not show the same well-
constrained behavior. The prediction for inelastic scattering does not follow the shape of
the experimental angular distribution, and the width of the 95% confidence band allows it

to captures all but two data points.
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Figure B.6: Same as Figure B.2 for (a) *¥Ca(n,n)*¥Ca and (b) 48Ca(n,n/)48Ca(2f) at 7.97
MeV.

The parameter correlation matrix is

\% W r Ts a
Vo 1.000 -0.173 —-0.952 0.279 —-0.322
Ws —0.173 1.000 0.008 —0.617 0.884
(CCOI'I' = . (BB)
r  —0.952 0.008 1.000 0.454 0.171

rs —0.279 —0.617 0.454 1.000 —0.489

a —0322 0884 0171 —-0.489 1.000

134



Because of the parameters that were fit, it is more clear that both V' — r and Wy — r¢ have

significant correlations (although this is slightly higher for the real volume pair than the

imaginary surface pair).
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Figure B.7: Same as Figure B.1 for 298Pb(n,n) elastic scattering at 26.0 MeV.

The last uncorrelated reaction we investigate is fitting 208Pb(n,n)zong at 26.0 MeV to

predict the inelastic scattering to the first excited 3~

state. The best-fit parameterization

is found in the last section of Table 4.2 with y2 /N = 3.678. This x2 value is particularly

interesting because the starting parameterization for this and 54Fe(n,n) from Section 4.1 are

the same (nine free parameters at most), and the error on the data points for the 208pp,

clastic scattering is a few percent or less - the same as the experimental error for 9*Fe. Yet,
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for 298P, the x2 value is orders of magnitude smaller than that of **Fe.

Parameter sets can again be pulled from the multivariate Gaussian distribution since the
pairwise X2 contours, Figure B.7, are elliptical. The resulting 95% confidence bands for the
elastic and inelastic cross sections are shown in Figure B.8 (a) and (b). As indicated by the
small x2 value, the elastic-scattering fit almost exactly reproduces the data at all angles.
The 95% confidence band is extremely narrow, but because the best fit well-reproduces the
data, nearly all of the data is enclosed within this band. The prediction for the inelastic
cross section shows a similarly small 95% confidence band, however, the prediction does
not describe the data. In this case, varying the quadrapole deformation parameter is not
enough to change the shape of the diffraction pattern, and several studies have shown that

Coulomb-excitations are important contributions to the inelastic states [145].
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Figure B.8: Same as Figure B.2 for (a) 2"8Ph(n,n)2%Pb and (b) 2OSPb(m,n’)208Pb(31_) at
26.0 MeV.
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The parameter correlation matrix for the fitted parameters is,

\% W W T a T Qs Tw
V. 1000 —-0.441 —-0.530 —-0.994 0.701 —-0.521 0.450 0.577
W —0.441 1.000 0.006  0.479 —0.469 0.495 —0.476 —0.436
Ws —0.530 0.006 1.000 0.563 —0.068 0.619 —0.782 0.065
Ceorr = | r —0.994 0479 0563 1.000 —0.690 0.479 —0.503 —0.570
a 0.701 —-0.469 —-0.068 —0.690 1.000 0.016  0.228  0.395
rs —0.521 0.495 0.619 0579 0.016 1.000 —-0.612 —0.362

as 0450 —-0476 —-0.782 —-0.503 0.228 —0.612 1.000 —0.196

re 0577 —0436 0.065 —0.570 0.395 —0.362 —0.196 1.000
(B.4)

Here, it is very clear that each radius is highly correlated with the corresponding potential

depth, and most of the correlations are around or above 0.5 (either positive or negative).

Correlated y? Fitting

The correlations in the four elastic-scattering reactions discussed in this appendix should be
just as strong as those shown in Figure 4.5. This is shown in Figure B.9 for (a) PZr(d,d),
(b) 12C(n,n), (¢) ¥Ca(n,n), and (d) 2°8Ph(n,n). There is again high correlation between
the angular pairs, especially at backwards angles. However, this is less obvious in 48Ca(n,n)
elastic scattering (c¢) where many of the angles between 60° and 100° do not show significant
correlation with one another. Still, there is enough evidence of correlation among all of the
angles to warrant the study of the correlated X2 function for these reactions as well.

Using the correlated x? function, we first fit 90Zr(d,d)?Zr at 12.0 MeV to predict the
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transfer reaction 9Zr(d,p)?'Zr(g.s.). The best fit parameterization is given in Table 4.3,
with X2 /N = 0.142. The X2 contours are shown in Figure B.10 and are not elliptical, so
parameter sets are pulled from the exact y2 distribution. It is interesting to note that there
are hints of another minimum, especially in the V-r contour plot. The parameter space
around this minimum appears to be quite complicated.

The resulting 95% confidence bands are shown in Figure B.11 for the elastic scattering fit
(a) and the transfer prediction (b). The correlated elastic-scattering fit (a) reproduces the
data at forward angles and then remains above the data. Still, at these angles, the shape of
the fitted angular distribution mirrors the shape of the experimental angular distribution.
Except at backwards angles, the data falls within the 95% confidence band. The resulting
predicted transfer cross section (b) reproduces the experimental peak, but the diffraction
pattern of the prediction is significantly different from the data past the first peak, both
of which were also seen in the uncorrelated case. Here, S®*P = O.689f8:é%, which is again
smaller than the values found in the literature but, within errors, consistent with the uncor-
related spectroscopic factor. It is interesting that the correlated and uncorrelated transfer
cross sections are so similar, even though the deuteron potentials are significantly different.

The parameter covariance matrix is

\% r a W rg
Vo 1.000 —-0.981 0.825 —0.289 0.358
r  —0981 1.000 -0.904 0.375 —0.495
Ccorr = . (B5)
a 0825 —-0.904 1.000 —-0.585 0.737
Ws —0.289 0.375 —0.585 1.000 —0.793

rs 0358 —0.495 0.737 —0.793 1.000
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This is one of the few cases that was examined where the same parameters are fitted in both
the uncorrelated and correlated cases so the changes in correlation can be directly evaluated.
The parameters have decoupled compared to the uncorrelated fitting case, besides V' and 7.
It is not necessarily obvious that the parameters should decouple when model correlations are
taken into account (since we specifically correlate angles), but it should not be unexpected.
Because the formulation of the correlated x2 give the model more influence over the fitting,
correlations are taken into account there and the parameter space decouples.

Next, we fit neutron elastic scattering to predict the inelastic scattering to the first excited
state, beginning by fitting 12C(n,n)12C at 17.29 MeV to predict the inelastic scattering to
the first excited 2T state. The best-fit parameterization is listed in Table 4.3, and the
minimum has X2 /N = 0.483. Figure B.12 shows the pairwise X2 contour plots, which are
nearly elliptical so we can draw from the multivariate Gaussian. (There is no difference in
the resulting cross sections if draws are made from the exact x2 distribution instead of the
multivariate Gaussian as has been mentioned for several of these distributions.)

The resulting 95% confidence bands are given in Figure B.13 for the elastic-scattering
fit (a) and the inelastic-scattering prediction (b). For the elastic scattering, even though,
again, the best-fit calculation does not pass through all of the data, we see that the the
calculated cross section follows the shape of the experimental angular distribution, and the
95% confidence bands capture the majority of the data. The same is true for the predicted
inelastic cross section. The general trend of the experimental inelastic angular distribution
is followed although the details are not reproduced. The data do, however, fall within the

95% confidence band.
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The parameter correlation matrix is again calculated,

\% r a W rs
V. 1.000 —-0.983 0.653 —0.781 —0.866
r —0.983 1.000 —-0.697 0.816 0.920
(Ccorr = . (B6)
a 0.653 —0.697 1.000 —0.580 —0.539

Ws —0.781 0.816 —0.580 1.000  0.768

rs —0.866 0.920 —0.539 0.768  1.000

Many of the parameters here are still strongly correlated, and a is more strongly correlated
with the other parameters than it was in the uncorrelated case; however, again, because the
same pairs of parameters were not fitted in both cases, it is hard to directly compare.

48Ca(n,n)*®Ca at 7.97 MeV was then fitted to predict the inelastic scattering to the first
excited 2% state. The best fit for this reaction is shown in Table 4.3 with y?/N = 2.142,
which is significantly lower than XQUC /N for the same reaction. The v2 contours, Figure B.14,
are elliptical, although they are all asymmetric (there is a steeper gradient in one direction
than the others). Nevertheless, pulling parameter sets from the exact X2 distribution and
from the multivariate Gaussian give rise to the same 95% confidence bands.

The resulting confidence bands are shown in Figure B.15 (a) and (b) for the fitted elastic
scattering and predicted inelastic scattering respectively. The best-fit calculation reproduces
the data almost exactly up to 60° where we expect this model to be most accurate. At
backwards angles, the diffraction pattern of the data is reproduced only shifted forward 10-
20°. The 95% confidence bands are wide enough that all of the data falls within them. The
95% confidence bands for the inelastic scattering data (b) are very wide as well, and because

of this, all of the data falls within this band even though the cross section calculated from
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the best-fit parameterization does not reproduce the data. In this case, the uncorrelated
fit provides a better description of the data than the correlated fit (the y2 is larger for the
uncorrelated fit only because of the normalization of C;,). The correlated confidence band
for the predicted transfer encloses all of the data because of its large width.

The parameter correlation matrix is

\%4 W r

V. 1.000 0.655 —0.979
CCOI’I‘ = . (B?)

Ws 0.655 1.000 —0.659

r  —0.979 —-0.659 1.000

Again, even though there were 9 free parameters, not all of them could be simultaneously
minimized, and the vast majority of the parameters had to be fixed before the final mini-
mization.

The final study is again fitting 2Ong(n,n)QOSPb to predict inelastic scattering to the first
excited 3~ state. The best-fit parameterization is given in Table 4.3, which has y2 /N =
1.401. Many of the contours of constant y2 are more egg shaped than elliptical so parameter
sets are pulled from the exact y2 distribution, shown in Figure B.16.

The 95% confidence bands for the fitted elastic scattering and the predicted inelastic
scattering are shown in Figure B.17 (a) and (b). The best-fit calculation accurately describes
the experimental angular distributions both at forward and backwards angles, as in the
uncorrelated fit. (The parameters for the real part of the potential are identical to the
uncorrelated best fit, but there are noticeable differences in the imaginary parts, so the
similarity in the cross section should not be assumed). Also like the uncorrelated fitting

case, the prediction for the inelastic scattering does not reproduce the data, except at the
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first peak. The 95% confidence bands are significantly wider for the correlated calculation

than they were for the correlated calculation.

The parameter correlation matrix is given below,

Ccorr -

W
Ts
Qg

14

Vv T

a W

1.000 —0.865 0.606 —0.632

—0.865 1.000
0.606 —0.651
—-0.632 0.701
—0.477 0.124

—-0.651 0.701
1.000 —0.710
—0.710  1.000
0.097  0.052

0.645 —0.674 0.767 —0.873

—0.493 0.385

—0.676  0.644

T's as
—0.477  0.645
0.124 —-0.674
0.097  0.767
0.052 —0.873
1.000 —0.228
—0.228 1.000
0.359 —0.876

w

—0.493

0.385

—0.676

0.644

0.359

—0.876

1.000

where the parameters are given in the order V', r, a, Wy, rg, ag, and W. Once more, the

real volume depth and radii are two of the most correlated parameters. However, unlike in

other cases, there is almost no correlation between the depth and radius of the imaginary

surface term. The three depth parameters are also fairly correlated with one another - their

correlation parameters are around or above 0.5.
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Figure B.9: Selected angular correlations for (a) 0Zr(d,d) at 12.0 MeV, (b) 12C(n,n) at
17.29 MeV, (c) ¥Ca(n,n) at 7.79 MeV, and (d) 298 Ph(n,n) at 26.0 MeV. Each scatter plot
show the values of the differential cross section at the angle listed on the x-axis compared
to the differential cross section at the angle listed on the y-axis for two hundred calculations
with randomly drawn optical model parameters sets. The histograms along the diagonal
show the spread of cross section values at the given angle.
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Figure B.11: Same as Figure B.2 for (a) Zr(d,d)?Zr and (b) ?9Zr(d,p)?'Zr(g.s.) at 12.0
MeV using the correlated y2 function.
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Figure B.16: Same as Figure B.1 for 208Pb(n,1r1)208Pb now using the correlated y2 function.
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Figure B.17: Same as Figure B.2 for (a) 2°8Pb(n,n)?®Pb and (b) 208Pb(11,11’)208Pb(31_) at
26.0 MeV using the correlated y2 function.
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Appendix C

Details of Bayesian Results

As in Chapter 5, there is a specific set of data we use to predict transfer reactions. For
the adiabatic calculations, we need elastic scattering for the incoming neutron-target and
proton-target pairs at half of the incoming deuteron energy and outgoing nucleon-target
elastic scattering data at center of mass energy of E;— Q<d7p). Ideally, we would want elastic
scattering data for the (A + 1) + N system instead of the A 4+ N system, but typically, this
data is much less widely available. There is also only a 1% difference between the optical
potentials using nucleus A and A + 1 as the target; because this uncertainty is significantly
smaller than the uncertainty that is introduced by the parameterization of the potentials,
using this substitution is an acceptable alternative.

In addition, we would like to have transfer data near the incident deuteron energy. Be-
sides, 48Ca(d,p) shown in Chapter 5, the only other reaction with available (d,N) data in
the correct energy range was “0Zr(d,p). Data is available for 10Sn(d,p) and 208Pb(d,p)
[146, 147, 148], but it is either not at the deuteron energy available from the elastic scatter-
ing data, or the transfer data were at backwards angles which is not conducive to comparing
with these models (as the first peak in the transfer data is the most informative). In addi-
tion, most of this data was taken at energies below the Coulomb barrier, at which point the
cross section is not sensitive to the nuclear potential.

Last, in order to compare ADWA and DWBA, we need deuteron-target elastic scattering
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data at the same deuteron incident energy as the adiabatic calculations. This was available
for all but 1'0Sn(d,d). Although this reduces the number of cases where we can directly
compare the two approximations, we decided that being able to compare four out of five
reactions was sufficient to understand any trends that might arise. The remaining transfer

calculations are described below.

Nucleon Elastic Scattering

First, we consider nucleon scattering on 97r to construct both the (d,p) transfer cross
section and (d,n) transfer cross section. In the adiabatic framework, these two reactions are
constrained by the same incoming channel, and only the outgoing nucleon scattering channel
is different. Therefore, there are four potentials for which we have to define priors.

The first in this set is °Zr(n,n)?%r elastic scattering at 10.0 MeV, common to both
reactions. The prior distributions are shown in Figure C.1 using both the 10% experimental
errors (gray histograms) and 5% experimental errors (blue histograms) compared to the
prior distributions (gray solid). The means and widths of each posterior distribution are
listed in Table C.1, columns two and three. All of the parameters have physical values for
their means, and their widths are constrained significantly compared to the width of the
prior. The resulting 95% confidence intervals using both 10% and 5% experimental errors
are shown in Figure C.2 panel (a) (gray and blue intervals respectively).

Then, we constrain the proton-target elastic scattering using 90Zr(p,p)90Zr at 12.7 MeV.
The posterior distributions for each parameter are shown in Figure C.3 again with gray
histograms for the 10% experimental errors and blue histograms for the 5% experimental

errors, compared to the prior distribution for each parameter, and the values for the means
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Eexp X a Azt .:Tci)n Aa:i)n zout A gout .i:‘f,ut A:Egut
V  48.049 2.673 49.253 2.110 45.343 1934 54.784 2.575

r 1.217 0.036 1.288 0.053 1.187 0.035 1.138 0.031

a 0.694 0.050 0.553 0.046 0.603 0.067 0.796 0.056

Ws  6.217 0.848 8932 0.990 6.657 0.432 7.322 0.692

10% rs 1.287 0.070 1.153 0.096 1.232 0.055 1.345 0.075
as 0.459 0.047 0.609 0.061 0.611 0.041 0.662 0.050

W 0.621 0.060 0.207 0.023 2.623 0.404 1.759 0.216

rw  1.288 0.128 1.203 0.128 0.457 0.123 1.416 0.130

aw  0.539 0.057 0.612 0.071 0.448 0.082 0.588 0.069

x 20 Al a0 AgD g9 AW pout Apou
Vo 49.253 2.110 52.093 2.450 45.319 1.056 54.331 2.204
r 1.204 0.028 1.288 0.029 1.186 0.018 1.146 0.030
a 0694 0037 0546 0043 0605 0.032 0.778 0.053
Ws 6911 0941 9141 1.037 5819 0388 6761 0.499
5% rs 1267 0070 1140 0.091 1222 0032 1341 0.045
as 0444 0052 0596 0060 0702 0.048 0.681 0.039
W 0527 0060 0195 0020 2563 0423 1.779 0.216
rw 1.379 0.142 1319 0.166 0.315 0.124 1416 0.119

aw 0595 0.077 0586 0.058 0.631 0.049 0.523  0.075

Eexp

Table C.1: Means (z;) and widths (Ax;) for the posterior distributions shown in Figure C.1
(columns two and three), Figure C.3 (columns four and five), Figure C.4 (columns six and
seven), and Figure C.5 (columns eight and nine) using the 10% experimental errors (top)
and 5% errors (bottom).
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Figure C.1: Posterior distributions (histograms) constraining the optical potential param-
eters using 9OZr(n,n)9OZr elastic scattering data at 10.0 MeV, comparing 10% errors on
the experimental cross sections (gray) and 5% errors (blue). Original prior distributions (a
Gaussian with the width equal to the mean) are shown as gray solid lines.
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Figure C.2: The 95% confidence intervals for the (a) 90Zr(n,n)?Zr at 10.0 MeV, (b)
D71 (p,p)?7r at 12.7 MeV, (c), °Zr(n,n)?Zr at 24.0 MeV, and (d) *9Zr(p,p)Zr at 22.5
MeV constructed from the prior distributions of Figures C.1, C.3, C.4, and C.5, using 10%
errors (gray), and 5% errors (blue).
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and widths of these distributions are shown in Table C.1, columns six and seven. All of
the parameters take on physical values. The resulting 95% confidence intervals are shown
in Figure C.2 panel (b) using the 10% experimental errors (gray) and 5% experimental
errors (blue). These bands provide a good description of the data, and there is only a slight
reduction from the 10% error calculation to the 5% error one.

For the (d,n) calculation, we need to constrain the outgoing I7rn channel, which is done
using 90Zr(n,n)9OZr elastic-scattering data at 24.0 MeV. The resulting posterior distributions
are shown in Figure C.4 using 10% (5%) experimental error bars indicated as gray (blue)
histograms. These are compared to the prior distributions for each variable (gray solid).
Here, 1, takes on a value that is about a third its normal value; this does not affect the 95%
confidence intervals, as in Figure C.2 (c), for elastic scattering, but it could have an affect
on the resulting transfer calculations. (This is a case in which we would want to find a fit of
similar quality but constrained more by the prior for this parameter instead of the data.)

Finally, for the (d,p) calculation, we need to constrain the outgoing ?1Zr-p channel, which
is done using 90Zr(p,p)90Zr elastic-scattering data at 22.5 MeV. The resulting posterior
distributions are shown in Figure C.5 using 10% experimental errors (gray histograms) and
5% errors (blue histograms) compared to the prior distributions (gray solid). Each parameter
distribution is centered on a physically reasonable value with a width that is significantly
narrower than the width of the prior distributions. The resulting 95% confidence intervals
for the elastic scattering cross sections are shown in Figure C.2 (d).

We can then use these parameter posterior distributions to construct 2Zr(d,p)?'Zr(g.s.)
and ?9Zr(d,n)? Nb(g.s) cross sections. The 95% confidence intervals are given in (a) of Figure
C.6 for the (d,n) calculation at 20.0 MeV. The gray band shows the resulting cross section

using posterior distributions constrained with 10% experimental errors, and the blue band

152



200

150

100

50

200

150

100

50

150

100

50

D

8 10 12

Ws (MeV)

fl
0.15

0.20

W (MeV)

0.25

200

150

100

50

150

200

250

- 0%
200 5%

150
100

r (fm)

rs (fm)

[

2

5 1520

10
/N

200

150

100

50

150

200

150

100

50

“a (fm)

04 05 0.6 0.7
aw (fm)

Figure C.3: Same as Figure C.1 for 90Zr(p,p)QOZr elastic scattering at 12.7 MeV.
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Figure C.4: Same as Figure C.1 for 2Zr(nn)?Zr elastic scattering at 24.0 MeV.
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Figure C.5: Same as Figure C.1 for 90Zr(p,p)QOZr elastic scattering at 22.5 MeV.
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Figure C.6: (a) 95% confidence intervals for PZr(d,n)?1Nb(g.s.) at 20.0 MeV with 10%
(gray) and 5% (blue) error bars on the experimental data for the elastic scattering of the
incoming and outgoing channels and (b) percentage uncertainties, using ADWA.

are the same only using 5% experimental errors. The panel (b) of the same figure then shows
the corresponding percentage uncertainty calculated for each of the cross sections, defined
by Eq. (5.1).

By switching out the outgoing 29Zr-n potential with the 9Zr-p potential at 22.5 MeV,
the transfer cross section for the 9Zr(d,p)?1Zr(g.s.) can be calculated; this is done at
22.0 MeV. The comparison between this cross section using 10% experimental errors on the
nucleon scattering potentials (gray) and 5% errors (blue) are shown in Figure C.7 (a). The
corresponding percentage errors as defined in Eq. (5.1) are shown in the same figure in
panel (b). As we saw for 8Ca, there is a reduction in the width of the confidence intervals
and percentage uncertainty when the experimental errors are reduced for both 90Zr(d,N)
calculations.

The next case we consider is the (d,p) transfer on 165y This case will only appear in
the adiabatic framework because of the lack of deuteron-target elastic-scattering data at the

required incident energy. For the nucleon-target potentials needed to constrain the elastic
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Figure C.7: Same as Figure C.6 for 20Zr(d,p)?1Zr(g.s.) at 22.0 MeV.

scattering channels, we begin with 1168n(n,n)1168n at 24.0 MeV. The posterior distributions
for each of the variables in the potential are shown in Figure C.8 using both 10% and 5%
errors on the experimental cross section values as the gray and blue histograms, respectively.
These are compared to the prior distributions for each variable which are shown as the gray
solid lines. From here, the 95% confidence intervals for each of the resulting elastic scattering
cross sections can be calculated. These can be found in Figure C.9 panel (a) as the gray and
blue intervals showing the results of constraining with the 10% and 5% errors respectively.
To further constrain the incoming deuteron channel, we use 116Sn(p,p)1168n elastic scat-
tering at 22.0 MeV. The posterior distributions for the optical model parameters are shown
in Figure C.10 where the distributions resulting from the use of 10% (5%) errors on the
experimental cross sections are given as gray (blue) histograms. These are compared to the
prior distributions which are the gray solid lines in each subplot. These posterior distri-
butions can then be used to construct 95% confidence intervals for each set of parameters,
shown in Figure C.9 panel (b), for the 10% and 5% experimental errors in gray and blue,

respectively.
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Eexp X it Azt Ty Az igut Axgm
V  46.819 2.411 62.786 3.956 36.968 3.111
r 1.158 0.041 1.108 0.046 1.227 0.035
a 0.719 0.077 0.799 0.067 0.680 0.056
Ws 5155 0.592 6.992 0.748 1.059 0.110
10% s 1.306 0.049 1.479 0.085 1.405 0.092
as 0.628 0.046 0.761 0.036 0.600 0.073
W 2661 0.324 1.655 0.242 3.791 0.637
rw  1.161 0.134 1.233 0.164 1.553 0.078
aw 0.513 0.063 — — — —

ferp X T Adll E A gt A
V' 47162 0891 59.110 2.715 35666 2.132
ro 1148 0018 1162 0040 1255 0.023
a 0734 0034 0.751 0055 0.620 0.069
Ws 4981 0464 6.903 058 1.054 0.105
5% s 1306 0028 1408 0081 1358 0.103
as  0.632 0048 0764 0029 0539 0.079
W 2338 0334 1554 0279 3.194  0.400
rw o 1233 0.012 1254 0.147 1.643  0.072

aw 0.615 0.071 — — - -

Table C.2: Same as Table C.1 for the posterior distributions of Figure C.8 (columns two and
three), Figure C.10 (columns four and five), and Figure C.11 (columns six and seven).
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Figure C.9: The 95% confidence interval for the (a) 110Sn(n,n)10Sn elastic scattering cross
sections at 24.0 MeV, (b) M68n(p,p)16Sn at 22.0 MeV, and (c¢) 19Sn(p,p)t16Sn at 49.35
MeV, from the posterior distributions of Figures C.8, C.10, and C.11, using 10% errors (gray)
and 5% errors (blue).
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Figure C.10: Same as Figure C.8 for 11GSn(p,p)HGSn elastic scattering at 22.0 MeV.
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To complete this transfer calculation, we constrain the outgoing 117Sn-p channel using
11GSn(p,p)IMSn elastic scattering data at 49.35 MeV. The posterior distributions using 10%
(5%) experimental errors are shown as the gray (blue) histograms in Figure C.11 compared to
the prior distributions for each of the parameters (solid gray). These posterior distributions
can then be used to construct 95% confidence intervals, shown in Figure C.9 (c). The gray
(blue) regions are the 95% confidence intervals resulting from the 10% (5%) experimental
errors. For all three 16Sn-nucleon scattering reactions, the parameters are centered around
physical values (although ry, for the outgoing proton channel is larger than normal values
of ~ 1.2) with widths that are significantly narrower than the original prior widths. The
cross section confidence intervals for the outgoing proton channel also seem to not be able to
describe the data at forward angles - though this could be due to the fixed Coulomb radius
and not the nuclear potential.

We can then construct the 11(SSrl(d,p)117Sn(g.s..) transfer cross section with the posterior
distributions from Figures C.8, C.10, and C.11. The 95% confidence intervals for the transfer
cross section, considering 10% experimental errors on the nucleon-target data shown in
gray (5% errors shown in blue) is given in Figure C.12 (a). The corresponding percentage
uncertainties are shown in panel (b) of the same figure. As listed in Table 5.8, the width of the
68% confidence interval was larger using 5% experimental errors than for 10% experimental
errors. This is discussed in more detail in Section 5.5.1 but is due to the asymmetry of the
confidence intervals around the mean cross section value. We also see that the 5% errors cause
a wider confidence band in 116Sm(p,p) elastic scattering than the 10% errors which could
cause this broadening in the transfer cross section (since the outgoing channel introduces the
most uncertainty). In Table 5.9, the uncertainty is reduced when using 5% errors compared

to 10% errors when the uncertainty is only considered from the two incoming channels (d;;,).
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Figure C.11: Same as Figure C.8 for 116Sn(p,p)HGSn elastic scattering at 49.35 MeV.
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Figure C.12: Same as Figure C.6 for the 116Sn(d,p)117Sn(g.s) transfer reaction at 44.0 MeV.

Finally, we are interested in calculating the 208Pb(d,p)2??Pb(g.s.) transfer cross section
under the adiabatic approximation. To do this, we use 28Pb(n,n)?Y8Pb scattering at 16.0
MeV to constrain the posterior distributions for each of the optical model parameters. These
posteriors are shown in Figure C.13, comparing the distributions using 10% and 5% experi-
mental errors (gray and blue histograms respectively) as well as the initial prior distribution
(gray solid). The 95% confidence intervals for the elastic-scattering cross section that result
from these posterior distributions are shown in Figure C.14 (a) as the gray (blue) regions
for the 10% (5%) experimental errors.

The incident 208Pb—p interaction is constrained with 208Pb(p,p)208Pb elastic scattering
data at 16.9 MeV. The posterior distributions for each of the optical model parameters are
shown in Figure C.15 as gray (blue) histograms when the 10% (5%) experimental errors were
used. These are compared to the prior distributions for each parameter (gray solid lines).
These posterior distributions can then be used to construct 95% confidence intervals that

result from using the 10% (5%) experimental errors, given as gray (blue) regions shown in

Figure C.14 (b).

164



200

150

100

50

200

150

200

150

100

50

150

100

50

200

100

50

-

08 0.0 1.0 11 12
rs (fm)

250

20

10
YN

200

150

200

150

100

50

aw (fm)

Figure C.13: Posterior distributions (histograms) constraining the optical potential param-
eters using 208Pb(n,n)208Pb elastic scattering data at 16.0 MeV, comparing 10% errors on
the experimental cross sections (gray) and 5% errors (blue). Original prior distributions are

shown as gray solid lines.
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Eexp X it Azt Ty Az igut Axgm
V 43893 2.134 62.500 5.126 51.089 3.161
r 1.226 0.035 1.195 0.057 1.189 0.029
a 0.662 0.055 0.591 0.078 0.690 0.060
Ws 5933 0.506 11.913 0.867 5.361 0.657
10% s 1.001 0.057 1.100 0.111 1.295 0.054
as  0.427 0.058 0.516 0.067 0.763 0.050
W 1915 0.165 1.028 0.108 4.736 0.312
rw 1470 0.084 1.216 0.117 1.295 0.085
aw  0.577 0.070 0.633 0.069 — —

Ceap X T AdlEM AL g0 AL
V  43.685 1.115 66.836 3.304 50.801 2.424
v 1228 0018 1153 0.031 1196 0.024
a 0657 0025 0608 0044 0.669 0.051
Ws 5455 0.614 11508 0.959 4.860 0.493
5% s 1009 0.032 1.061 0073 1273 0.036
as 0496 0.050 0598 0051 0.772  0.062
W L760 0157 1016 0.094 4.304 0458
rwo 1449 0.082 1190 0.123 1374  0.086

aw  0.657 0.052 0.600 0.056 — —

Table C.3: Same as Table C.1 for the posterior distributions of Figure C.13 (columns two
and three), Figure C.15 (columns four and five), and Figure C.16 (columns six and seven).
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Figure C.14: 95% confidence interval for the (a) 29¥Ph(n,n)2%Pb elastic scattering cross
sections at 16.0 MeV, (b) 298Ph(p,p)2%8Pb at 16.9 MeV, and (c) 298Ph(p,p)2"8Pb at 35.0
MeV, from the posterior distributions of Figures C.13, C.15, and C.16, using 10% errors
(gray) and 5% errors (blue).
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Figure C.15: Same as Figure C.13 for 208Pb(p,p)208Pb elastic scattering at 16.9 MeV.
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The outgoing 209Pb-p channel is constrained using 208Pb(p,p)QOSPb elastic-scattering
data at 35.0 MeV. The resulting posterior distributions, using 10% and 5% experimental
errors to constrain the parameter distributions, are shown in Figure C.16 in gray and blue
respectively. The resulting 95% confidence intervals for the elastic scattering cross sections
are shown in Figure C.16 (c) as the gray and blue intervals, respectively. Again, for all three
elastic scattering reactions, the parameters are well-constrained within physical limits (and
have narrow widths). We do see, however, that the Coulomb radius for 116Sn(p,p) elastic
scattering at 16.9 MeV does not correctly describe the data at forward angles. There is
also a slight down-turn in the 116Sn(p,p) at 35.0 MeV that is not reproduced by the 95%
confidence intervals.

Finally, we construct the 208Ph(d,p)?%?Ph(g.s.) transfer cross section with the posterior
distributions displayed in Figures C.13, C.15, and C.16. These are shown in Figure C.17
(a), the 95% confidence intervals from the 10% and 5% experimental errors (gray and blue
bands respectively). Panel (b) shows the percentage uncertainties for both of the calculations

across the given angular range.

Deuteron Elastic Scattering

For the (d,p) and (d,n) transfer reactions on ?°Zr within the DWBA framework, we need to
constrain the 9OZr(d,d) elastic scattering optical potential parameters. This is done using
data at 23.2 MeV. The posterior distributions are shown in Figure C.18 as gray (blue)
histograms when 10% (5%) experimental errors were included on the data, compared to
the prior distributions (gray solid). These posterior distributions are then used to create

95% confidence intervals for the 90Zr(d,d)?Zr elastic scattering cross sections shown in
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Figure C.16: Same as Figure C.13 for 208Pb(p,p)208Pb elastic scattering at 35.0 MeV.
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Figure C.17: Same as Figure C.6 for the 28Ph(d,p)2??Pb(g.s.) transfer reaction at 32 MeV.

Figure C.19. Even though this reaction is at the same energy and over the same angular
range as 4SCa(d,d), there are more noticeable differences between the 10% and 5% cross
section calculations than between the two for 48Ca(d,d), especially at backwards angles.
(The parameter posterior distributions, however, are not significantly different when using
5% errors compared to 10%.)

To calculate the transfer cross sections with DWBA, we use the posterior distributions
from Figure C.18 for the incoming deuteron channel and the outgoing nucleon scattering
from the previous section. First considering the %0Zr(d,n)?'Nb(g.s.) calculation again at 20.0
MeV, the transfer cross sections using both 10% experimental errors and 5% experimental
errors to constrain all of the elastic scattering potential parameters are given in Figure C.20
(a), gray and blue respectively, along with the corresponding percentage uncertainties in
panel (b). We again see a reduction in the width of the confidence interval - as well as in
the percentage uncertainty - but not to the same extent that the experimental error was
reduced.

We can do the same calculation, exchanging the outgoing 9OZr(n,n)90Zr channel for the
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Figure C.18: Posterior distributions (histograms) constraining the optical potential param-
eters using 90Zr(d,d)90Zr elastic scattering data at 23.2 MeV, comparing 10% experimental
errors (gray) and 5% experimental errors (blue). Original prior distributions are shown as
gray solid lines.

172



— 10%

100 o%

10

-3
0 20 40 60 80 1001201401601&0
6 (deQ)

Figure C.19: 95% confidence interval for the ?Zr(d,d)?Zr elastic scattering cross sections

at 23.2 MeV from the posterior distributions of Figure C.18 using 10% errors (gray) and 5%
errors (blue).
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Figure C.20: Same as Figure C.6 for 0Zr(d,n)?!Nb(g.s.) at 20.0 MeV using DWBA.
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Figure C.21: Same as Figure C.6 for 0Zr(d,p)?1Zr(g.s) at 22.0 MeV using DWBA.

outgoing 9OZr(p,p)9OZr to calculate the 90Zr(d,p)91Zr(g.s.) transfer cross section instead.
(This includes replacing the relevant Q-value, single-particle bound state, and binding energy,
as well.) The 95% confidence intervals for these cross sections using 10% (5%) experimental
errors are shown in Figure C.21 (a) as the gray (blue) bands. There percentage uncertainties
are shown in the corresponding colors in (b).

Although there is no deuteron elastic-scattering data for the 116Sn target (and therefore,
no DWBA calculation, as mentioned in a previous section), we can still consider the final case
for 208Ph(d,p)?"Ph(g.s) within this formalism using 2*Ph(d,d)?"8Pb data at 28.8 MeV to
constrain the parameters of the optical model. The comparison of the posterior distributions
using both 10% and 5% experimental errors on the elastic-scattering data is shown in Figure
C.22 as the gray and blue histograms, respectively. These distributions are compared to the
prior distribution for each parameter, given as the solid gray lines. The posterior distributions
are then used to compute the 95% confidence intervals for the elastic-scattering cross sections,
as in Figure C.23. The gray (blue) region is produced from the posterior distributions of

the 10% (5%) experimental error calculations. Here, there is more angular coverage than for
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either the ¥Ca(d,d) or ?°Zr(d,d) data, but there is almost no noticeable difference between
the 10% and 5% calculations. Over all, reducing the experimental errors appears to have
less effect on the deuteron elastic-scattering calculations.

Finally, the transfer cross section, using DWBA, can be calculated for 2%¥Ph(d,p)2%Ph(g.s.).
This calculation, again, uses the 208p},-d potential posterior distribution shown in Figure
C.22 and the outgoing 208ph-p potential posterior distribution from the previous section,
using both 10% and 5% experimental errors. The 95% confidence intervals are shown in Fig-
ure C.24 (a) for the 10% errors (gray) and 5% errors (blue). Panel (b) gives the percentage

uncertainty as defined in Eq. (5.1).
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Figure C.22: Same as Figure C.18 for 298Ph(d,d)208Pb elastic scattering at 28.8 MeV.
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Figure C.23: 95% confidence interval for 20%Pb(d,d)28Pb elastic scattering at 28.8 MeV
from the posterior distributions of Figure C.22 using 10% errors (gray) and 5% errors (blue).
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Figure C.24: Same as Figure C.6 for 298Pb(d,p)299Ph(g.s.) at 32.0 MeV using DWBA.
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Appendix D

Energy Dependence in Non-local

Optical Potentials

As has been discussed throughout this work, optical potentials are a useful tool to describe
the interactions between projectile-target pairs. These effective interactions take into ac-
count the complexities that arise from simplifying the many-body to a two-body problem.
Once the shape of the potential has been defined, the parameters within it are typically
determined by fitting to elastic-scattering differential cross sections. These interactions are
generally assumed to be local and strongly energy-dependent. This energy dependence is
typically included to take into account the nonlocality. However, recent work has shown that
including non-locality in reaction theory formulations such as the adiabatic distorted wave
approximation (ADWA) is important [71]. Energy-dependent potentials are not enough to
fully taken into account these effects.

This non-locality in the effective interactions arises intrinsically from many-body struc-
ture and it is also seen at the mean field level where the exchange term in Hartree-Fock
introduces an explicit non-local potential [74]. In addition to non-locality originating from
antisymmetrization, couplings from the elastic channel to all other channels not included
in the model space can introduce non-locality [75, 149]. It had previously been assumed

that the non-locality in these types of theories could be encapsulated in the energy de-
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pendence of local potentials, but several studies over the past few years have shown that
an explicit inclusion of non-locality in the calculation of reaction observables is important
(150, 151, 71, 152, 153, 154, 155].

Although the potential is not an observable, it is well-known that non-locality is required
in microscopic theories, and therefore, these theories should be able to provide insight into
the form of the non-locality and energy dependence in phenomenological potentials. Effort
has gone into deriving optical potentials from microscopic theories, in the dispersive optical
model (DOM) [156, 157] which utilizes the link between the self-energy and the optical
potential [158], and from ab initio theories, such as in [65]. The non-locality described by
these studies is not a simple Gaussian and is larger than assumed in the original formulations
of non-local potentials [151, 157, 65]. However, the non-local nucleon optical potentials
derived from state-of-the-art ab initio theories, such as in [65] are still unable to provide a
detailed description of the data.

While these microscopic potentials are still under development, global optical potentials
should be improved upon. Such global potentials are important to the few-body commu-
nity as effective interactions to model complex nuclear reactions such as transfer, breakup,
and knock-out when few-body-like projectiles are involved. Having simple, easy-to-use pa-
rameterizations for complex reaction theory is still crucial for this field. Just as the phe-
nomenological potential can be improved with insights from microscopic calculations, the
behavior of microscopic potentials can be constrained by well-constructed phenomenological
potentials. Towards that goal, here, we investigate whether the explicit introduction of an
energy dependence in a non-local global optical potential improves the description of neutron

scattering on spherical targets.
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Non-local Potentials

Titus, et. al. [71] implemented non-locality into the adiabatic wave approximation (ADWA)
[126] to understand its importance in the central nuclear potentials for (d,p) transfer re-
actions. As expected, they found that nonlocality causes a reduction in the bound-state
wave function in the nuclear interior and a reduction of its asymptotic normalization. This
typically causes an increase in the magnitude of the transfer cross sections relative to a com-
pletely local potential for peripheral reactions. This enhancement can be as large as 40%.
Many of the same effects are seen in (d,n) transfer reactions as well [152]. Over the past few
decades, there have been a few studies that aim to provide a completely non-local descrip-
tion of the optical potential, including works by Perey and Buck (PB) [159] and Tian, Pang,
and Ma (TPM) [160]. The two parameterizations that were developed are briefly discussed
below.

The Perey-Buck potential [159] is a phenomenological potential, assumed to be energy
and mass independent, and was fit to two sets of data - neutrons on 298Pb at 7.0 and
14.5 MeV. The range of the non-locality, 3, was fixed at 0.85 fm, about the size of the
nucleon. Even with the limited set of data that was fit, the PB potential does a reasonable
job reproducing a variety of neutron elastic-scattering data, although mostly at energies less
than 20 MeV.

Like the PB potential, the non-local potential of Tian, Pang, and Ma [160] was assumed
to be energy and mass independent. It was fit to a larger variety of data sets than the PB
potential, both in mass and energy, and a separate potential was developed for neutrons and
protons. The range of the non-locality, § was taken as a free parameter in the TPM fit,

however, the range of the non-locality is similar to that in the PB potential for both the
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neutron and proton potentials. The TPM potential performs better than PB (has lower 2

values) for 20 < £ < 30 MeV, but the description of data for £ < 20 MeV is similar.

Exploring Energy Dependence

In each of the previous non-local potentials, one assumed there was no mass or energy depen-
dence. This stems from the assumption that most of the strong energy dependence present
in local potentials arises from the non-locality of the interactions. The energy dependence of
PB and TPM was investigated in the master’s thesis of Bacq [2]. First, for the PB potential,
the real volume depth and the imaginary surface depth were each independently fit to 24
sets of data, 0Ca (E=9.9, 11.9, 13.9, 16.9, 21.7, 25.5, 30.1, 40.1 MeV), ?9%Zr (E=5.9, 7.0,
8.0, 10.0, 11.0, 24.0 MeV), and 208Pb (E=7.0, 9.0, 11.0, 14.6, 16.9, 20.0, 22.0, 26.0, 30.3,
40.0 MeV) [161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172]. The same was done
for the TPM potential, except additionally, the imaginary volume depth was also fit to these
same 24 sets of data. For both cases, the real volume depth barely changed across the data
sets, regardless of the mass or energy of the reaction.

Using each potential as a starting point, pairs of potential depths were fit simultaneously
to each data set, and for the TPM potential, all three potential depths were fit simultane-
ously. Even in the cases where the real volume depth was varied simultaneously with either
imaginary depth, the values of the this depth did not change significantly with energy. Fur-
thermore, for the TPM potential, it was found that the energy dependence of both imaginary
depths could not be determined by simultaneous fitting. Therefore, as a starting point, the
depth of the imaginary surface term was fitted to each data set individually. For the three

targets, the depth appeared to increase linearly with increasing energy.
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System a (PB) b (PB) a (TPM) b (TPM)

EUeH 0.24 11.73 0.48 9.26
907y 0.19 11.97 0.24 12.53
208pp, 0.41 10.43 0.25 15.87

Table D.1: Summary of the slope and intercept values for the Wy values from [2] using Eq.
D.1 for the TPM and PB potentials.

L L | 1 L L L | L L
0 10 20 30 40 0 10 20 30 40
Energy (MeV) Energy (MeV)

Figure D.1: Comparison of the linearizations of Table D.1 for the individually-fitted Wy
values for the a) PB and b) TPM potentials.

In [2], the values for the imaginary surface depths, Wy, were fitted to

for each scattering pair. The resulting parameters are given in Table D.1. Plotting these
linearizations (as shown in Figure D.1), it is difficult to tell whether the three fits are consis-
tent with one another - even within error bands (which can be calculated using the method
of Section 3.1.1).

However, the high energy W values had a significant impact on the linearization that

was calculated in [2]. If we instead fit Eq. (D.1) using a consistent energy range for the three
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System a (PB) b (PB) a (TPM) b (TPM)

Wy 0.531 6.807 0.726 4.436
907y 0.193  11.885 0.239 12.505
208pp, 0.376  11.536 0.042 19.052

Table D.2: Same as Table D.1 excluding fitted Wy values above E = 26 MeV.

systems - excluding the W values above 26 MeV, for 49Ca and 203PD - we find the results
shown in Table D.2. For the TPM potential, slopes (a) decrease with increasing mass of
the target and the intercepts (b) increase with increasing mass, which indicates that the fits
might be consistent with one another if a mass dependence is included. Mass dependences
of A, A1/2, and A3 can be fit to the TPM slopes and intercepts, but the best description
is found when an asymmetry dependence is included, in the form (N — Z)/A. Fitting the

PB and TPM results separately, we find the following dependences for W (E, (N — Z)/A):

N-2Z N-2Z N-2Z
wrB (EL 1 ):: (0206 1 +—0289)E—+ (12033 1 +—9555>, (D.2)

and

N-2Z N-2Z N-2Z
Md;pwi(fa - ) ::(_41235 T +—0341)E-+ (26279 1 +—9264). (D.3)

The first term in Eq. (D.3) and (D.2) which couples the asymmetry and energy is
significantly smaller than the other three terms. Dropping this term, the remaining three
energy and asymmetry dependences were fit directly to the W values found in [2]. The

resulting equations for Wy are

A

N-Z
whB (EL ) = 0.304FE + 15.036 +9.332, (D.4)

A
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and

N-2Z
W IPM (E —) = 0.330F + 21.655 +9.518. (D.5)

A

The coefficients for each term are strikingly similar between the PB and TPM potentials,
and this form for the energy and asymmetry dependences are reminiscent of those of Becchetti
and Greenlees [1], which uses for its potential depths:

N—-Z
A

W = 0.22E— 16, (D.6)
N-Z

V = 54—-032E—-24

Ws = 13-0.20F —12

Although we found no energy or asymmetry dependence in the real volume potential term
(V), we do see a strong energy and asymmetry dependence in the imaginary surface term
(Ws) which is about the same magnitude of Eq. (D.6) although opposite in signs for both
parts. This leads us to directly fit the neutron scattering data for 48Ca, 97r, and 208PD to

a form like Eq. (D.6) for the imaginary potential depths, through 2 minimization.

Energy and Asymmetry Dependences

Now, instead of fitting Wy for each reaction individually and then performing a join fit
over the energy and asymmetry dependences, we instead fit all 24 data sets simultaneously,

starting from both the PB and TPM parameterizations. Along with the form for Wj:

A

N—-Z
A

W, (E ) —aE+b to (D.7)
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PB-C TPM-C PB-C100 TPM-C100

0.141 £ 0.015  0.597 £ 0.018 -0.017 £ 0.015 0.200 £ 0.014
-1.737 £ 0.366  -3.145 £ 0.592  0.738 £ 0.458  4.477 £ 0.480
10.397 £ 0.327  5.019 £ 0.406 11.935 & 0.377 12.154 £ 0.397
0.233 £0.011 -0.062 £ 0.011  0.335 £ 0.011  0.183 £ 0.009
-0.708 £ 0.234  5.507 £ 0.262 -2.003 £ 0.245 0.363 £ 0.255

O Q0 T W

Table D.3: Fitted parameters resulting from the simultaneous fit of all 24 data sets for the
PB (TPM) potentials using data over the entire angular range (column two (three)) and
only using data up to 100° (column four (five)).

we also parameterize the imaginary depth of the volume term, W (despite this term being
zero in the PB parameterization). This depth is taken to only depend on energy and not
asymmetry as in [1],

W(E) = dE +e. (D.8)

The resulting parameters for a, b, ¢, d, and e are given in Table D.3 in columns two and
three for the PB and TPM potentials, respectively, along with the associate error for each
parameter. The errors are calculated as the square root of the diagonal of the parameter
covariance matrix and give an indication as to whether or not the fitted parameters are
consistent with zero. Although the comparison between the parameters of the PB and TPM
fits are not nearly as close as when the double fit was performed (at an extreme, d and
e switch signs between the two parameterizations), none of the parameters are consistent
with zero. The X2 values resulting from these fits are shown in Table D.4 columns four
and seven for the PB and TPM potentials respectively. The X2 values decrease, sometimes
significantly, from the original values, especially, in the energy range where the potential was
not originally fit.

The approximations that are used for elastic-scattering calculations with optical model

potentials typically provide a more accurate description at forward angles than at backwards
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angles. Therefore, in order to confirm that the backwards angles were not skewing the energy
dependence, we performed the join fit excluding data at angles greater than 100°. This fit
is given in Table D.3, columns four (PB) and five (TPM). The x? values compared to the
original values and the values when the fit was performed over all angles are shown in Table
D.4 for the PB (column five) and TPM (column eight) potentials, respectively. The energy
dependence has now shifted to the imaginary volume term for PB and the imaginary surface
potential for TPM. For the PB potential, a is consistent with zero, within errors, getting
rid of the energy dependence in the imaginary surface term. The same is true of the TPM
potential, only this time d is consistent with zero, removing the energy dependence in the
imaginary volume term. Where as Wy, is a constant in the TPM potential, Wy is a constant
for the PB potential. The errors on the remaining parameters are at least an order of
magnitude smaller than the parameter values themselves. (The exception to this is b - the
asymmetry term - in PB.)

This shift in the energy dependence between the imaginary surface and volume terms is
consistent with what was found in [2]: these two depths could not be constrained simultane-
ously. The differences in the asymmetry terms between the two potentials make it plausible
that either this is not a robust form for the asymmetry-dependence, or the asymmetry in
these data sets does not span a wide enough range to determine its dependence. Still the
inclusion of an energy dependence term in the imaginary potential does significantly improve
the description of these systems. The improvement is seen not only in the x2 values but also
in the description of the experimental cross sections, as shown for select cases in Figure D.2.

Because the original PB parameterization does not contain an imaginary volume term,
its geometry (radius and diffuseness) was arbitrary. In the fit outlined above, the geometry

was the same as the geometry of the TPM potential. However, we could instead constrain
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2 2 2 2 2 P)
System E (MeV)  Xxpp  Xpp.¢ XpB_ci00 XTPM XTPM-C XTPM-C100

0Ca 9.91 16.497  13.842 14517  19.248  12.413 13.089
40Cq 11.9 3.341  3.288 2.843 21.621  3.901 4.749
40Ca 13.9 7.059  6.377 7.907 19.539  9.938 12.057
400y 16.916 9.115  11.514 6.128 10.930  13.474 6.780
40Ca 21.7 16.343  15.457 10.203  20.107  23.406 29.758
400a 24.5 20.004  9.389 3.966 6.756  13.646 7.168
400a 30.1 24.029  7.235 5.73 8.655  10.610 8.687
400a 40.1 20.427  20.149 3.37 4867  42.154 4.349
N7y 5.9 2.163  5.757 3.504 5.743 7.099 3.295
N7y 6.95 1.714  5.239 2.888 8.426 8.867 6.929
N7y 8.0 8.93  12.079 9.824 12.160  14.543 12.659
N7y 10.0 4.862 7.652 5.083 13.278  10.747 7.934
W07y 11.0 11.176  6.750 6.992 10.187  8.806 9.594
W07,y 24.0 13.507  8.891 3.993 5.449  12.122 5.324
208 pt, 7.0 14.075  14.038 12.729 22295  18.327 12.113
208 p, 9.0 4894 9475 5.158 10.074  17.617 3.831
208 pt, 11.0 3.965  8.393 3.857 7.241 8.079 5.676
208 pt, 14.6 8484  1.716 1.634 4.559 3.937 4.732
208 pt, 16.9 20.114  10.215 9.078 5.329 6.678 5.359
208pt, 20.0 4773 12.734 9.078 7.150 7.082 6.117
208pt, 22.0 62.200  12.390 8.183 13.664  12.153 9.713
208py, 26.0 58.686  11.598 9.765 7.677  11.220 10.222
208 pt, 30.3 160.319  5.498 3.017 24611  6.213 3.938
208 p, 40.0 216.962 12.233 5.509 59.407  10.405 3.990

Table D.4: x? /N values comparing the various PB and TPM parameterizations. Column one
lists the target and column two gives the energy of the neutron elastic scattering reaction.
Column three (six) lists the x? values for the original PB (TPM) parameterization, only
including angles up to 100°. Column four (seven) lists the x? values for the PB (TPM)
parameterization using the full angular distribution of each data set - column two (three)
of Table D.3. Column five (eight) lists the x? values for the PB (TPM) parameterization
including only angles up to 100° - using fitting parameters from column four (five) of Table
D.3.
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Figure D.2: Select cross section calculations comparing the original PB (black solid) and
original TPM (green dotted) potentials to those calculated using the PB-C100 (red dashed)
and TPM-C100 (blue dot dashed) parameterizations from Table D.3 for a) *°Ca(n,n)*Ca,
b) DZr(n,n)?Zr, and c) 28Pb(n,n)2%8Pb (from [5]) elastic scattering at the listed energy.
Cross sections are arbitrarily scaled for legibility.
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PB-G100a PB-G100b

a 0.017 £ 0.0044 0.14 £ 0.0075
b 1.3 £ 0.59 0.066 £ 0.57
c 12.60 £ 0.097 9.3 £ 0.15

d 0.31 £ 0.0056 0.23 £ 0.065

e -233+0.068 9.6 x107°+ 5.4 x10~3

Table D.5: Fitted parameters resulting from the fit of all 24 data sets for the PB poten-
tials using the same geometry between the two imaginary terms (column two) and further
imposing e > 0 (column three), only fitting data with 6 < 100°.

the geometry to be the same as that of the imaginary surface term of PB (as is imposed
by many local potentials). Fitting with this geometry instead, only including angles less
than 100°, we find the parameterization shown in column two of Table D.5. Comparing
this to the fourth column of Table D.3, we now find a non-zero energy dependence in both
imaginary terms as well as robust asymmetry dependences in both terms. However, e is
significantly more negative in this new fit, giving a negative imaginary volume term for any
energy less than 7.52 MeV (defined by £ < —e/d). This is a larger cutoff than the previous
parameterization (—e/d = 3.04 MeV).

We can instead impose e > 0 when performing the fit using this consistent PB geometry.
The resulting parameters are shown in column three of Table D.5. Now, e is consistent
with zero, indicating that this is not a true minimum but a result of the parameter hitting
a boundary. However, this illustrates the differences that can arise when imposing various
constraints on the fitting process. The energy dependence is still robust in both imaginary
terms, but the asymmetry dependence now cannot be determined within its associated error.
In each of the cases discussed above, there is a definite need for an energy-dependence, but

the asymmetry dependence is not as well determined.

189



E + Data
1x10°E b) |~ PB
-- PB-C100
’E - TPM o
= - =+ TPM-C100 7
5 1x10' ESEaNg
S i

------------- S o
Q ..... Q 1x10 g
] 1107 E + Data (o) le()’zg
© E|l— PB o E
-|-- PB-C100 1x10°E
1x1075| " TPM uF
= - TPM-C100 1x10°E
I N S TR B R R st ‘ L [
1107 30 60 90 120 150 180 X107 30 60 90 120 150 180

0 (deg) 0 (deg)

Figure D.3: Predicted angular distributions using PB-C100 (red dashed) and TPM-C100
(blue dot-dashed) for a) 27Al(n,n)27Al and b) 118Sn(n,n)18Sn elastic scattering compared
to the original PB (black solid) and TPM (green dotted). Cross sections are scaled arbitrarily
for legibility, and are calculated at the noted energies. Data from [6, 7, 8, 9]. Figures from

5].

Predictions

Using the PB-C100 and TPM-C100 fits from Table D.3, we can make predictions of the
neutron scattering cross sections on various nuclei that were not included in the fit. For
this, we used neutron scattering on 27A1, 56Fe, 60Ni, and 1881 at several energies between
7 MeV and 26 MeV [6, 7, 8,9, 173, 174, 175, 176]. The y2 values for the predicted cross
sections are shown in Table D.6 compared to the values from the original parameterization
(TPM, column three and PB, column five). In the case of 27Al and 183n, the x? values
are reduced when using the fitted parameterization. The visual comparison to the data also
improves, as shown in Figure D.3.

However, for °°Fe and 99Ni, the description was worsened for nearly all energies regardless
of whether the PB or TPM potential is used as a starting point. Most likely, this is because
these two nuclei are not spherical nuclei, unlike the three nuclei used in the fit and 2TAl and

1189y, In general, we find that the fit we acquired is limited to the energy and mass range
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System Energy (MeV) PB PB-C100 TPM TPM-C100

2TAl 10.159 9.086 9.043 23.278 14.551
2T Al 18.0 10.668 9.267 22.026 9.532
27 Al 26.0 10.251 7.027 8.190 4.794
56Fe 7.96 32.380  75.533  11.190 4.794
56Fe 11.0 11.362  18.588  20.896 73.294
56 20.0 21.369  14.701 4.069 32.689
56 26.0 24.677  16.465 8.906 29.540
60N 7.904 35.881  89.927  12.612 120.228
60Ni 9.958 49.979  81.225 9.508 87.922
60Ni 11.952 21.124  27.778  17.674 44.157
60Ni 13.941 13.923  23.801  12.745 43.495
60N 24.0 19.163 7.531 4.570 10.581
H8gy, 11.0 9.058 8.365 7.753 16.799
H8gy 14.0 6.680 5.811 16.041 15.051
H8gy 18.0 12.121  11.355  16.871 8.151
118gy, 24.0 20.935 5.526 9.243 8.533

Table D.6: x? values for the systems that were predicted using the parameterizations from
columns four and five of Table D.3. The first column lists the target, the second column lists
the experimental energy at which the reaction had been performed. Column three (five) lists
the y2 values calculated using the original PB (TPM) parameterization, and column four
(six) lists the x2 values resulting from the fitted parameterization.

(specifically spherical nuclei) over which it was fit. A reasonable description is provided for
interpolated masses but extrapolations are not trustworthy.

We also used the parameterization of Eq. (D.7) and (D.8) to fit this set of data for 27Al,
%6Fe, 60Ni, and 129Sn to test the robustness of the values of Table D.3 (new fitted parameters
given in Table D.7). The resulting fit was completely different from those given in Tables D.3
and D.5. Although the PB-O100 and TPM-0O100 parameterizations are strikingly consistent
with one another, the asymmetry term, in particular, is significantly larger than in the PB-
C100 and TPM-C100 fits. This parameterization also did not provide as good a prediction
for the previously fitted nuclei, 48Ca, 99Zr, and 298Pb. This is once more indicative that

the asymmetry dependence is not well-constrained, and that this theory is not correct to
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PB-0100 TPM-0100

a 0411 £0.013 0.309 £ 0.011
b -28.14 £242 -27.15 £ 294
c 5.64 £0.368 10.34 £ 0.25
d -0.118 £0.013 -0.775 £ 0.065
e 7.96 £ 0.223 5.32 £ 0.12

Table D.7: Fitted parameters resulting from a fit to the data sets listed in Table D.6 (instead
of to the data sets for *VCa, 997Zr, and 208Pb), only fitting data with 6 < 100°.

describe both spherical and non-spherical nuclei.

Summary

Using 24 sets of data in the energy range of 5 — 40 MeV, we investigated the energy de-
pendence of the imaginary depths of two non-local potentials that describe neutron elastic
scattering from a target. Fitting the imaginary surface and volume depths of the PB and
TPM potentials to three different targets at a variety of energies, we found that an energy-
dependent interaction significantly improves the description of the elastic scattering cross
sections for these targets in this energy range. Although the energy and asymmetry de-
pendences were not robust among the different data sets that were fitted, in all cases, an
energy dependence was necessary to improve the description of the angular distributions of
the fitted and predicted systems. Even though non-locality is included explicitly in these
calculations, this is not enough to completely remove the strong energy dependence that is
found in local potentials.

This study calls for a new global non-local potential to be developed that includes an
explicit energy dependence, is fit over a wider range of data than the PB and TPM potentials,
and does not necessarily assume a Gaussian nonlocality. Informed decisions about the best

span of data sets to consider when constructing and fitting this new non-local potential can
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be approached using a principle component analysis. Recently, ab initio theories have been
used in an attempt to derive a nucleon optical potential [65] which can guide assumptions
about the shape and range of the non-locality in non-local potentials.

This same study can be performed using proton elastic scattering data across a variety of
energies. In principle, one should be able to use the same form for the energy and asymmetry
dependences as for neutrons; as in local interactions, the main differences between the proton
and neutron interactions are in the depths of the potentials, due to the Coulomb interaction.
However, preliminary studies [177] have shown that using the same form for the imaginary
potential depths (and including a mass-dependent volume depth) does not provide the same
level of improvement in the description of the data as the neutron study discussed in this

Appendix. Further studies of a non-local global interaction for protons are underway.
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Appendix E

Two-neutron Decay of 1'Be

Exotic nuclei, such as neutron and proton halo systems, are found across the nuclear chart,
not only in the lightest mass nuclei but also in nuclei as heavy as neon [178]. These exotic
systems are typically found near the neutron and proton driplines and can unsurprisingly
lead to exotic decay modes, two-nucleon decay for example. Two-proton decay was first
theorized in 1960 [179] but was not observed experimentally until almost 40 years later in
45Fe [180, 181]. There are three possible mechanisms that allow two protons to decay from
a parent nucleus, A. If there is a state in the A — 1 nucleus that is below the ground state
of A, the two protons can be emitted sequentially, stepping through the A — 1 system. If
there is no state in this region, the two protons can be emitted simultaneously, in a true
three-body decay. However, if the two are correlated and the ground state of the A — 1
system is energetically inaccessible to decay, the protons can be emitted in a diproton decay.

Although these decay mechanisms should also be present in neutron-rich systems, dipro-
ton decay was first observed in proton-rich systems, in two independent experiments at
GANIL [180] and GSI [181]. Since then, several other nuclei have been observed to decay by
diproton emission from the ground state [182, 183, 184], as well as from excited states [185].
These systems lend themselves naturally to three-body calculations because the degrees of
freedom relevant in the decay are those related to the emission of the two protons from the

parent nucleus. Varying the structural configuration of the parent nucleus causes differences
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in the extracted values for the width, half-life, and energy shared between the three particles.
Three-body models have been used in comparison with experimental data to gain insights
into these exotic nuclei [186, 187]; the differentiation between a correlated decay and an
uncorrelated three-body decay is based on model calculations such as these.

The diproton phenomenon is very hard to observe due to the Coulomb interaction which
repels the two protons away from one another as soon as they exit the parent nucleus. This
makes it difficult to observe the correlations between the two protons that were present in
the parent nucleus. Nevertheless, diproton decay was observed before the equivalent process
in neutron-rich material. Dineutron decay posses its own challenges. The neutron dripline
generally extends farther from stability than the proton dripline, making it harder to reach.
The statistics for neutron-rich decays in this region are also generally very low, as they rely
on two-neutron coincidences.

In contrast to the large amount of literature on two-proton emitters, relatively few stud-
ies have been completed - theoretically or experimentally - for two-neutron emissions. Grig-
orenko performed one of the first theoretical studies of two-neutron emission [188], discussing
the existence of one-, two-, and four-neutron emitters and compared their widths in a three-
body frameworks. The first two-neutron decay from the ground state of a nucleus was ob-
served in a 2012 experiment at the National Superconducting Cyclotron Laboratory through
the decay of 19Be to 14Be plus two neutrons [72]. Since then, a few other cases have been
observed [189, 190], mainly in the oxygen isotopes.

16Be is an ideal case in which to investigate the possibility of dineutron decay. Before the
observation of 10Be, a lower limit of 1.54 MeV had been placed on the ground state of 19Be
[191]. In [72], the ground state of 'Be was measured to be 1.35 MeV with a width of 0.8

MeV, which, depending on the width of this ground state of *Be, could make one-neutron
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emission energetically inaccessible.

Comparisons of the 16Be data in [72] to dineutron, sequential, and three-body decay
models showed that the data was best described by the emission of a dineutron, this result
caused some controversy due to the extreme models that were used to delineate between
the dineutron and three-body decays [192, 193]. For the dineutron decay, the dineutron was
modeled as a cluster and the decay as a two-body decay of 16Be —1 Be + 2n, in an s-wave
relative motion. The three-body breakup was calculated only by the phase space factor.
A full three-body calculation (modeling 4Be +n + n), as has been used to describe the

continuum states of 260 [194, 195], would be useful to help clarify this mode of decay.

Theoretical Framework

To model the relevant degrees of freedom within a three-body model, the form of 0Be is
taken to be core + n + n, a formulation which should satisfy the three-body Schrodinger
equation:

where 7 and § are the standard Jacobi coordinates, as shown in Figure E.1. Here, 7 is
the distance between two of the bodies, and s is the distance between the third body and
the center of mass of the first two. (This formalism can be extended to higher dimension,
as in [196].) For three bodies, three sets of Jacobi coordinates can be defined, X, Y, or
T - (a), (b), and (c) in Figure E.1 respectively. With two identical neutrons, the X and
Y coordinate systems are identical, and it is most convenient to work in the T-basis; this
choice will be used throughout the rest of this appendix. Vep, and Vp, are the pairwise

interactions between the core and one neutrons and between the two neutrons, respectively.
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V3p is the three-body interaction that accounts for the additional binding typically needed

to reproduce the experimental binding energy caused by freezing the degrees of freedom in

a) b) c) : , :
l‘% fs Si %r )

Figure E.1: Three sets of Jacobi coordinates, (a) Jacobi X system, (b) Jacobi Y system, and
(c) Jacobi T system.

the core.

Equation (E.1) is a six-dimensional equation, where 7 and § do not separate as the
pairwise interactions depend on both coordinates. Instead, a transformation can be made to

hyperspherical coordinates where first, the scaled Jacobi coordinates,  and ¥ are defined,

(E.2)

7=

7:’
\/5’

| 244
y = S E.

where Ajg is the mass number of the 14Be core in the Jacobi T-basis. These are then used

and

to define the hyperspherical coordinates

pe=a"+y, (E.4)
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and

x
tanf = —, E.5
y (E.5)

where p is the hyperradius and € is the hyperangle. Even though we are focusing on the
T-basis, it is worthwhile to note that p is invariant among the three Jacobi bases while
depends on the specific choice of basis.

A transformation of the kinetic energy operators T, and Ty into hyperspherical coordi-

nates gives

210 (50 1 8 (. o 0 L2 L2
T=—|—— — —_ 20— r_ _ 4 E.6
[ <p ) - p2sin226 o0 (sm 90)  p2in20  p2cos0|’ (E-6)
where m is the unit mass (m = 938.0 MeV/c?), and L, and L, are the angular momentum
operators.
As discussed in Section 2.2, it is usual to perform a partial wave decomposition for the

wave function, here giving

= > wfflayu ){([%@%L@[X01®Xg2}5)j®¢1} , (E.7)

zxzylsjf JM

where [ is the total orbital angular momentum, [, is the relative orbital angular momentum
of the 2n system, I, is the relative orbital angular momentum of the core + 2n system, I is

the spin of the core, S is the total spin of the two neutrons, j is the total angular momentum

of the two neutrons relative to the core. Next, wlS] U(x, y) is expressed using hyperspherical
functions,
1Sj1J —5/2 ZSI]J lacly
wlxly (z,y) =p Z lely (9), (E.8)
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lpl
where ¢ Iaé Y(0) is defined to be an eigenfunction of the angular operator in Eq. (E.6), with

the eigenvalue K (K + 4). This gives

S (0) = NEW (sind) (cosp)ly P P2 (cos29), (E.9)

1/2 1/2
where Pf{ﬁ (2t (cos20) are the Jacobi Polynomials, n is constrained through the rela-

Izl
tion K = 2n + [y + Iy, and N I? Y is a normalization factor defined by

/2
"1 ()07 (6)sin?0cos20d0 = o B.1
v (0)@,, (0)sin"fcos = dpe gt (E.10)
0

For compactness, we introduce the hyperspherical harmonic functions,

Iyl
VM (Q5,01,00,€) = o5 Y (6) {([sz ® Yzy]l ® [Xoy ® X02]5>j ® ¢I}JM, (E.11)

with v containing the set { K1STjl;l,}. Then, the total wave function can be written in the

form

M = p 52N T () VM (05,01, 09, €). (E.12)

To solve for the hyperradial part of the wave function, Eq. (E.12) is substituted into Eq.

(E.1), resulting in a set of coupled hyper-radial equations:

( 12 {(p - (K+3/2)(K+5/2)] _ E3B) + V(0 (p) =0, (E.13)
’7,

2m d_p2 p?
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where the coupling potentials are defined as

V..i(p) = <37 M(Q5,01,09,€) |Z VM (Q5,01,09,€)). (E.14)

j>i=1

When the system is unbound, the hyperradial wave functions of Eq. (E.13), )d , are

regular at the origin and behave asymptotically as

J : - J g+
X9y 7 5 5WHK+3/2( p) =S5y, HK+3/2( )]’ (E.15)

as p — 0o, where ~; are plane wave components of the incoming channel. The final wave
function is summed over +; since a specific incoming wave is not assumed for the 16Be system.
For this calculation, we also focus on the state (J, M) = (0,0), which corresponds to the
ground state of Be.

The hyperradial equation, Eq. (E.13), could in principle be solved using direct numerical
integration for each set of quantum numbers, v. However, at low scattering energies, the
centrifugal barrier, (K + 3/2)(K + 5/2), which is found in every channel including K =
0, would likely cause this method to develop numerical inaccuracies. Instead, we use the
hyperspherical R-matrix method [83] (Chapter 6).

In this method, a basis w? is first created by solving the uncoupled equations from Eq.

(E.13) in a box of size pmax, setting all of the coupling potentials to zero except for the

diagonal:

[Ty(p) + Vyy(p) — eny] wh(p) = 0. (E.16)
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At p = pmax, the logarithmic derivatives,

5 (o)

0 (E.17)

are required to be equal, which causes the set of functions, wg, to form a complete, orthogonal
basis with the box, p < pmax. The scattering equation inside of the box can be solved by

expanding in this R-matrix basis:

N
Ap) =3 &ul(p) (E.18)

[T(p) + Var ()] 5(0) + D V()3 (p) = et (p)- (E.19)

In order to find the coefficients cf;p , Eq. (E.18) is inserted into Eq. (E.19), multiplied by

wg; , and integrated over the size of the box. The resulting matrix equation
/
ey’ + Y Y (W), ()l (p) = epch”, (E.20)
V#Ey

provides the coefficients cgp . The functions gg(p) are only complete inside of the box and
do not have the correct normalization or asymptotic behavior of the full scattering wave

function. The full three-body wave function is then given by a superposition of these solutions

201



and matched to the correct asymptotic form of the wave function

P
(o) = S AL (), (E.21)
p=1

where the expansion parameter p tracks the number of poles considered in the R-matrix
expansion. The asymptotic behavior of Eq. (E.15) is connected to the wave function inside

of the box through the normalization coefficients, Agi, which have the explicit form

p - J—
A%‘ 2m ep — E Z g ~ (Pmax) [ (HK+3/2(/€,Y/PmaX) — BHK+3/2<K'7/PmaX))
_S'Vl’)’z’ (H§+3/2(R’y/pmax) - 6H;+3/2(ﬁ7/pmax)>] .

The S-matrix,
-1 _ _ _
S=[H" - pmaxRHE" —sHT)] " [H™ — pmaxRH" = pH7)], (E.22)

can be directly computed from the R-matrix, which is determined by the values of gg(p) at

the edge of the box,

R K2 i gg (pmax)g];/<,0max) (E.23)
T 2mpmax = — B3 '
Each pole has a width, defined as
272 P(F)
= 0" E.24
1+~28"(E)’ ( )

where S and P are the shift function and penetrability at the pole energy (E = e)) with

FF + GG

S(EF)=k —_—
() PmaXF2+G27

(E.25)
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and

kpmax

Here, F' and G are the regular and irregular Coulomb functions.
The phase shifts for each channel can be extracted from the diagonal elements of the
S-matrix,

Soy = 21077 (E.27)

However, the S-matrix does not have to be diagonal (it generally has strong off-diagonal
components), and due to all of these off-diagonal terms, the diagonal does not have any
special significance. Therefore, instead of using Sy directly to find the phase shifts, it is
common to diagonalize the S-matrix and extract the eigenphases, ¢ [197]. The resonance
energies and widths can then be extracted from the eigenphases.

If a Breit-Wigner shape is assumed for the resonances, resonant properties for a single-
channel calculation can be directly extracted from a phase shift (or eigenphase) using

/2

tand = ——-
E3B - Eres

(E.28)

where I is the width of the resonance and Eyeg is the resonance energy. In situations where
this is valid, the width of the state at Eres can be computed as the full width at half maximum

(FWHM) of the energy derivative of the phase shift

2

.
06 /0E;

(E.29)

If there are multiple channels with weak couplings, the partial widths of the multiple channels
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extracted this way can simply be added together to obtain the total width of the three-body
resonance. For a strongly coupled problem, as is expected here, the pure Breit-Wigner
approach is not expected to be valid, but we can still identify channels where this approach
could be applied. Comparisons between the addition of the partial widths and the extraction
of a width from the eigenphases can give some indication of how strongly coupled the system
is.

The total three-body elastic cross section can also be defined [197],

1
ofs(Byp) o 75 | [ =Sy (Byp)|” + D [Sy(Bap)[* | - (E.30)
Y !

Because this quantity automatically couples all of the channels within the model space,
it should provide a consistent way to extract a resonance energy (seen as a peak in the
cross section), verifying that the resonance energy extracted from the eigenphase is indeed

associated with the resonance of the full three-body system.

Numerical Details

In three-body models, each two-body interaction is typically constrained by experimental
data. However, since only one state in "Be is known [198], shell model calculations are
used to supplement the available data. Shell model calculations for Be were provided [10]
using the WBP interaction [199]. The resulting levels are shown in Figure E.2, first column,
compared with the measured experimental level, third column. Because the 1ds /2 level in
the shell model calculation is 1.0 MeV higher than the experimental state, the levels used

to constrain the 14Be — n states were the shell model levels lowered by 1.0 MeV, Figure E.2
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middle column.

TO0MeV g, ,

6.0 MeV g,

4.0 MeV

2512
2.8 MeV 1ds s 3.0 MeV 251 /2
L8MeV g, ,  L8MeV 4
MBe threshold  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Shell model This work Experimental

Figure E.2: Level scheme for Be. First column: shell model provided by [10], second
column: Be levels used in this work (shell model levels lowered by 1.0 MeV so the 1ds /2

state reproduces the experimentally measured | = 2 state, shown in column three). Figure
from [3].

The 14Be-n interaction for each partial wave had a Woods-Saxon shape with a = 0.65
fm and R = 1.241/3 fm, where A is the mass number of the 14Be core. The depths of each
potential are angular momentum dependent and are obtained by fitting the single particle
resonances in 1°Be, Figure E.2, middle column. These depths were fitted using the code
POLER [200] where a spin-orbit interaction could be included to reproduce the splitting
between the 1d5/2 and 1d3/2 levels.

Core degrees of freedom are taken into account with the [-dependent potentials. A spin-
orbit interaction was also included with the same geometry as the central nuclear force,
where the depth was adjusted to reproduce the splitting of the 1dx /2 and 1ds /2 states. The
definition of the spin-orbit strengths are the same as those of FaCE [201].

In this model for MBe, the lowest s- and p-orbitals are assumed to be full. To remove
the effect of these occupied states in the lige core, the 131/2, 1p3/2, and 1p1/2 states were

projected out through a phase-equivalent supersymmetric transformation [201].
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Parameter D3B D DNN S

Vs -26.182 -26.182 -26.182 —41.182
Vp -30.500 -30.500 -30.500  30.500
Vy -42.730 -42.730 -42.730 -42.730

Vso (1#2)  —10.000 -10.000 -10.00 —10.000

Vso (1=2) 33770 -33.770 -33.770 —33.770
Vap -7.190  0.000  -7.190  0.000
aNN 1.000 1.000 0.000 1.000

Table E.1: Interaction parameters for the various models considered. All depths are given
in MeV. Table from [3].

Ultimately, four three-body models for 1°Be were considered. In D3B, the ground state
of 19Be is a Ldyg /2 state and a three-body force is included to reproduce the experimental
three-body ground state energy of 16Be. A Woods-Saxon form is also taken for the three-
body interaction, with a radius of 3.02 fm, and a diffuseness of 0.65 fm. In D, the ground
state of 19Be is still a 1ds /2 but there is no three-body force included. In S, the ground
state of °Be is taken to be a 254 /2 but no three-body force is included. The depths of the
interactions producing these configurations are summarized in Table E.1.

All three of these models include the Gogny, Pires, and Tourreil (GPT) NN interaction
[202], which has been used in previous three-body studies, as in [203, 204, 205, 206]. The
GPT interaction reproduces NN observables up to 300 MeV, which is a suitable range for
this calculation - even though the interaction itself is simpler than the AV18 [207] or Reid
soft-core [208] interactions. We finally consider another model where the NN interaction is
removed completely, model DNN. Table E.1 also includes the scaling apy which is the
multiplicative factor for the GPT interaction in each calculation.

The energies for the 1dx /2 and 2s; /2 states in 1°Be for each model are given in Table E.2.
Except for the s-wave states close to threshold, approximate values are given for the 2sy /2

state. Resonances in s-wave states are more difficult to calculate than ¢ # 0 channels, since
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there is no potential barrier to trap the particle. Instead of being able to define resonances
as energies where the phase shift goes through 90° or a pole in S(E), the pole is found on
the imaginary k-axis at k, = i/ag, where qg is the scattering length. The position of the
resonance can then be found by defining the phase shift as §(k) = —arctan(agk), instead of
using the Breit Wigner form in Eq. (E.28). As resonances go up in energy, they become
broad, making them difficult to define exactly. However, each of the 2s; /2 states in the 1°Be
models are near 3 MeV (except for S, which has the 2s; /2 state as its ground state). For

each of these models, the 1dg /2 state was placed at 6.0 MeV.

D3 B D DNN S
DBe(1ds;5) 180 1.80 180  1.80
PBe(2s19) ~3 ~3  ~3 048

16Be(g.s.) 132 1.88 3.08 1.60*

Table E.2: Energy levels, in MeV, for 16Be and 1°Be for the various models considered.
Energies are measured with respect to the 14Be threshold. Table from [3]. *This is an
excited state.

Because these methods rely heavily on basis expansions to compute the wave function,
the model space is determined by a number of numerical parameters - all of which must be
tested for convergence. The subplots in Figure E.3 shows the convergence of several of these
expansions parameters, including K, Nj,. (number of points in the hyperangular integrals
of Eq. (E.14)), and the combination of ppax and N. In (a), the phase shift as a function of
three-body energy is shown for increasing values of Ky,ax where all other parameters are held
constant. Convergence is reached for the shape of the phase shift around Kyax = 28. The
convergence of the phase shift with regards to number of Jacobi polynomials, Nj,. is shown
in panel (b). The resonance energy and width of the resonance remain essentially consistent
throughout the range of Nj,. shown here, but the low-energy behavior of the phase shift

converges around Nj,. = 65. Panel (c) shows the convergence of the resonance energy as
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Figure E.3: Convergence of the various expansion parameters in the wave function, (a)
convergence of Kyqz, (b) convergence of Ny,., (¢) convergence of the combination of pmax
and N (both parameters must increase simultaneously to maintain a converged phase shift),
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and (d) convergence of N for several values of ppax.

the number of R-matrix basis states, N, is increased for three values of ppax. Clearly, as
Pmax 1s increased, the number of R-matrix basis states needed to reach convergence also
increase. This is shown in (d), where the shape of the three-body phase shift is unchanged

after pmax = 60 fm, as long as N is large enough. The complete minimum requirements for

convergence are given in Table E.3.
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Parameter Value

Kmax 28
lz(max), ly(max) 10
Niac 65

Pmaz (fm) 60

N 95

Table E.3: Minimum convergence values for the three-body wave function expansion. Table
from [3].

Results and Discussion

Although convergence was studied using the phase shifts, the results that follow examine the
eigenphases for each of the models described above. We first examine the eigenphases for
model D, shown in Figure E.4 (a) (solid black). A clear resonance can be seen at 1.88 MeV,
and as is expected for this type of three-body system, this is underbound with respect to the
experimental resonance. Adding a three-body interaction, as in Table E.1 for model D3B,
serves to further bind the 19Be system, lowering the resonance energy extracted from the
eigenphase in order to reproduce the experimental resonance energy. This is seen in panel
(a) of Figure E.4 (dashed red). The shape of the resonance of D3B is nearly identical to
that of D, although including the three-body interaction narrows the resonance somewhat.
The width extracted from the FWHM of the derivative of the eigenphase is 0.17 MeV. This
is consistent with the width of the R-matrix pole closest to the resonance energy, I' = 0.17
MeV, as in Eq. (E.24).

We can also extract a width from the three-body cross section, shown in Figure E.4 (b).
Ideally, one would like to remove any of the background contribution from the elastic cross
section to be able to isolate the peak to extract the resonance. However, there is no clean
way to do this. At first thought, one might attempt to calculate the cross section from

Eq. (E.30) for the plane wave and then use that as a background measure, the plane wave
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Figure E.4: As a function of three-body energy, (a) eigenphase shifts, (b) three-body cross
section, and three-body phase shifts for the (¢) K = 0 channel, (d) K =4,1; =0,l; =0
channel for D (solid black), D3B (dashed red), DNN (dotted green), and S (double-dash
dotted blue). Panels (a) and (b) from [3].

cross section does not follow a smooth, nearly exponential decay. Instead, we rely on finding
the approximate width of the peak in the cross section. This gives a width of 0.16 MeV,
consistent with the widths extracted from the eigenphase and the R-matrix pole.

Finally, it is worthwhile to note that out of all phase shifts (before diagonalization to
the eigenphase shifts), one channel, the K = 0, I = 0, I, = 0 channel, contained a nearly
identical resonance to that extracted from the eigenphase. This is shown in Figure E.4 (c).

The width extracted from the FWHM of this channel is 0.16 MeV, consistent with the other
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extracted widths. However, each of these theoretical widths is nearly an order of magnitude
lower than the experimental width of [72]. This is most likely due to experimental resolution
and other effects that were not taken into account when extracting the width in this work.

In this project, we can also calculate the three-body spatial probability density of the two
neutrons relative to the 4Be core. This is done, using the wave function from Eq. (E.12)

calculated at the resonance energy, through the following calculation,
2
P(z,y) = / ‘\IJ‘]M (x, y)‘ Q€Y. (E.31)

This quantity contains information on all channels included in the wave function, not just
the channel that contributes most strongly to the resonance. The regions of highest density
show whether the internal configuration is mostly dineutron, helicopter, or three-body, as in

Figure E.5 (a), (b), and (c) respectively.

a) @@ b) ) ‘
| e
D

Figure E.5: Examples of three-body configurations, (a) dinucleon, (b) helicopter, and (c)
three-body.

The density distribution for model D3B calculated at the extracted resonance energy
of 1.32 MeV (Figure E.6 (a)), shows mainly a dineutron configuration, although a small
helicopter component is also present. This is consistent with what was seen experimentally

in [72]. Changing the three-body interaction does not change this picture. Even when the

211



three-body interaction is completely removed, the strength of the dineutron contribution

relative to the helicopter contribution does not change.
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Figure E.6: Three-body density distributions for 16 Be as a function of the distance between
the two neutrons (n-n) and the distance between the nn pair and the core for (a) D3B, (b)
DNN, (c¢) no two- or three-body interactions (planewave), and (d) the model proposed by
Kuchera, et. al. [11]. Panels (a), (b), and (c) from [3].

We can then investigate how robust the dineutron conclusion is under changes to the
internal 1°Be structure or to weakening on the nn interaction. First, we can remove the nn
interaction completely from model 3BD, as in model DNN. The eigenphase, Figure E.4
(a) (green dotted), still shows a resonance, although pushed out to 3 MeV, compared to
the 1.32 MeV resonance when the nn interaction was included. A small signature of this

resonance is also seen in the three-body elastic-scattering cross section, Figure E.4 (b) (green

dotted). Looking at the three-body density distribution in Figure E.6 (b), there are equal
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contributions from the dineutron and helicopter configurations. This picture remains the
same regardless of the magnitude of the three-body interaction that is included. Therefore,
it is likely that the nn interaction is the cause of the strong dineutron seen. For comparison,
panel (c) shows the density distribution when no two- or three-body interactions are included.

Next, we can explore how the internal configuration of 1°Be changes the previous results.
Although the lowest experimentally measured state in ®Be was measured to be a d-wave,
low-lying, hard to measure, s-wave ground states have historically been important in nuclei
such as 19Li. A low-lying s-wave exists in 1Li but was only experimentally observed after
higher-lying resonances were discovered [209]. This is the motivation behind model S de-
scribed in Table E.1. Using the same model space as in Table E.3, the 1dy /2 Was kept at
1.8 MeV while the 2s; /2 Was lowered to 0.48 MeV. The geometry of the potentials was kept
the same, only the depth of the s-wave potential was changed to produce this lowered state.
Even though the eigenphase in Figure E.4 panel (a) (blue double-dashed dotted) appears
to have a signature of a resonance, the three-body elastic-scattering cross section in panel
(b) of Figure E.4 (blue double-dashed dotted) does not show any signature of a resonance
in the same region - not even a small one as for model DINN. The three-body ground state
in this model is actually a bound state, meaning that a low-lying s-wave in 1°Be will not
reproduce the experimentally observed 10Be, and it is not needed in this model. (This case
is not shown in Figure E.6.)

Finally, we consider the configuration suggested by Kuchera et. al. [11] where it was
suggested, using two-neutron coincidences, that there could be a slight chance of finding the
ldg /2 state in 15Be at 2.69 MeV, instead of the 6.0 MeV predicted by the shifted shell model
calculation. With this state, keeping the 1d /2 at 1.8 MeV, and using the s-wave interaction

of models D3B and D, we found the ground state energy of 16Be to be E3p = 1.05 MeV,
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without including a three-body interaction. In order for this configuration to reproduce the
experimental 0Be, any three-body interaction that would be included would have to be
repulsive, which is atypical. Still the density distribution for this configuration, without a
three-body interaction, (Figure E.6, panel (d)) is nearly identical to that of model D (Figure
E.6 panel (a)). This change in configuration is not required to reproduce the experimentally
observed ground state of 16Be, and it is more likely that the ldg /2 is above 2.69 MeV as an
atypical, repulsive three-body interaction would be needed to reproduce the experimentally

observed results.

Conclusion

In this work, a three-body model for 16Be was developed to investigate the properties of
this continuum system. Hyperspherical harmonics and the hyperspherical R-matrix were
used to solve the three-body scattering problem. 14Be-n interactions were constrained by
experimental data for »Be and supplemented with shell model calculations. A three-body
potential was included to reproduce the experimental ground state energy of 10Be, as is
typical for three-body models. As these systems rely on basis expansions for the wave
functions, we obtained convergence for phase shifts, density distributions, and three-body
elastic cross sections.

A strong dineutron component was found around the resonance energy of 16Be, which is
consistent with experimental observations, although the width extracted from our calcula-
tions is smaller than the experimental value (despite being consistent among several methods
to extract it) [72]. The nn interaction is critical to produce the strong dineutron configura-

tion in the ground state of 6Be, and the structure of the resonance is completely different
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when this component is switched off. The three-body interaction, however, plays almost
no role in giving rise to the dineutron component. Several other configurations for 19Be
were explored, including a low-lying 2sy /9 (below the experimentally observed 1dg /2) and a
slightly lower 1dg /2- However, neither of these configurations, regardless of the three-body
interaction, produced the experimentally observed ground state of 16Be at 1.35 MeV.

That data in [72] was presented in terms of several correlation observables, and it would
be interesting to make predictions for these based on our three-body model. This involves
introducing the predictions described here into a full experimental simulation code that
includes the appropriate three-body assumptions as well as all of the information about the

detector set-ups and efficiencies. Investigations along these lines have started.
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