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ABSTRACT
THE EFFECTS OF SPECIFIC EXERCISE REGIMENS ON THE

MORPHOLOGY OF THE LEFT SOLEUS NERVE
OF THE MALE ALBINO RAT

By

Roland R. Roy

The purpose of this investigation was to determine the effects
of four durations of five specific levels of physical activity on
the population of myelinated fibers in the soleus nerve of the
normal, male albino rat.

Eighty animals were brought into the laboratory and assigned
randomly to seven treatment groups. Due to difficulties in preparation
techniques, only five treatments were utilized in this study: seden-
tary control (CON); short-duration, high intensity running (SHT); long-
duration, low intensity running (LON); electrical stimulus control
(ESC); and endurance swimming (SWM). Animals were provided with food
and water ad libitum. Treatments were administered Monday through
Friday under controlled environmental conditions.

Animals from each group were sacrificed at zero weeks and then
at four, eight and twelve weeks after the onset of training. The
healthiest and best trained animals were selected for sacrifice. The
final sample size consisted of 32 animals.

The left soleus nerve was surgically removed from sodium pento-

barbital anesthetized animals. Upon removal, the nerve was stretched



Roland R. Roy

to its physiological length on an absorbant cardboard square and placed
into Bouin's fixative solution. The myelin sheath then was stained by
immersion of the nerve section into a .5% solution osmium tetroxide,
embedded in paraffin blocks and sectioned at 7 micra.

Visual images of the entire transverse section of the nerve were
projected onto drawing paper with a Bausch and Lomb microprojector at
a magnification of X1,133. Myelin, axon, and total areas of each
myelinated fiber were measured by polar planimetry. Total fiber counts
were recorded during the same process.

Percent frequency graphs were constructed for myelin, axon and
total areas across durations and treatments. Visual inspection of the
plots r;vealed patterns of specificity in the data. SHT and ESCV
animals tended to have a larger percentage of small fibers than did
the CON, LON and SWM groups. The graphs of all experimental groups
were notably different from those of the CON group. Chi square
analyses run on specific pooled groups substantiated the observed
trends. Total fiber counts appeared to be decreased by all training

regimens across durations.
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CHAPTER I

THE PROBLEM

Investigations reporting the effects of exercise or functional
overload on the morphology of peripheral nerves have been extremely
diverse in their findings. Experimental results have ranged from
marked hypertrophy and hyperplasia of the nerve fiber population (85,
25) to atrophy and reduction in total fiber number (5). However, the
evidence presented has often been confounding and impossible to inter-
pret because in many cases the training regimens used have not been
well defined. 1In addition, many of the studies produced increased or
decreased levels of activity through various surgical procedures, e.g.
tenotomy and tenectomy. In many cases, the direct effects of these
procedures on the obtained results was left undetermined.

Recent evidence has suggested that exercise consists of a con-
tinuum of activity levels each eliciting a specific response within
the organism. This information has implied that the effects of a
long-distance, endurance running program may be quite different from
the effects of a short-distance, high intensity running program. Thus,
well defined and closely controlled exercise regimens must be utilized
to determine these specific effects of exercise.

Only one study has attempted to investigate the specificity of
exercise effects on the morphology of the peripheral nervous system

(PNS) (82). Acute, chronic and limited muscular activity were the



three experimental treatments investigated. Only limited muscular

activity resulted in significant changes in the nerve-fiber population.

Statement of the Problem

The purpose of this investigation was to study the chronic effects
of four durations of five well-defined activity levels on selected
morphological characteristics of the soleus nerve of the male, albino
rat. Specifically, the cross-sectional areas of the axis cylinder and
its associated myelin sheath were measured for each nerve fiber in the
population. In addition, the total number of myelinated fibers in each

nerve was recorded.

Significance of the Problem

The nervous system is the functional unit in the human body which
activates, controls and coordinates most of the other systems. Along
with the endocrine system, it provides the control mechanism for all
bodily functions. Consequently, there are many implications in finding
morphological changes within the nervous system.

An increase in the myelin content of the individual nerve fibers
could be one possible explanation for increased speed of movement in
some well-trained performers. >Similar1y, an increase in the number of
myelinated fibers may account for the smooth coordinated and discrete
movements found in highly skilled gymnasts and dancers. However, such
theories have yet to be substantiated.

The importance of the present study rests primarily in the
depiction of the specific effects of well-defined, reproducible exer-
cise regimens on the gross morphological characteristics of a peripheral

nerve.



Limitations of the Study

1. The results of this study cannot be applied directly to the
human being.

2. The durations of the treatment periods were somewhat arbi-
trary and therefore not necessarily optimal for obtaining significant
results,

3. The training programs were selective and therefore not
necessarily representative of other discrete types and intensities
of activity.

4. The measuring techniques employed restricted the accuracy
of the recordings at the.smaller and larger ends~of the fiber spectrum.

5. The total sample size limited the power of the statistical

analyses.



CHAPTER II

REVIEW OF RELATED LITERATURE

The purpose of this study was to determine the effects of five
specific exercise regimens on the morphology of the left soleus nerve
of adult male albino rats. The parameters investigated were the myelin
sheath area, the axonal area and the total number of myelinated fibers
in the nerve trunk.

The following review of related literature will be divided into
three sections: (a) To gain perspective of the problem, the first
section will be devoted to the current ideas and theories on nerve
growth. The variables affecting axonal size and development will be
considered. The mechanism and role of axoplasmic transport as it
relates to cell body-axon-terminal connection interrelationships also
will be briefly discussed. (b) Axon-myelin relationships, with
emphasis on the controlling mechanisms of myelin-sheath thickness,
will be presented in the following section. (c) Finally, the effects
of various levels of activity on the gross morphological characteristics
of the peripheral nerve and, in some cases, its associated alpha motor

neuron will be reviewed.

Nerve Fiber Growth

Nerve-fiber growth involves two distinct processes, elongation
and enlargement. Although concurrent during the development of the

animal or in the early stages of regeneration, these two processes are



quite separate in the adult animal. For clarity, each process will be
discussed separately in the following review.

Elongation begins as a protoplasmic extension from the nerve cell
body (43, 75). The advance of the protoplasm continues until the free
tip of the fiber attaches permanently to a peripheral connection. Con-
tinued lengthening of the fiber is then accomplished passively in
response to the tug of the terminal organ in a process called "towing"
(90). Elongation stops when the animal has reached full maturity.

Enlargement, or true growth, is the result of the production of
new protoplasm at a rate which exceeds the elongation process and
increases the width of the axon. The production of new protoplasm has
been shown to occur solely at the base of the fiber in the nucleated
part of the cell body (46, 80, 88, 89). In the mature animal, the
perikaryon reproduces new axoplasm at a rate determined by the con-
stitutional properties of the cell and by various external conditions.
The nerve fiber is the outlet into which the new axoplasm is siphoned
by an axomotile mechanism. The substances move down the nerve pro-
cesses in response to active constriction and distension of the axis
cylinder (35, 74, 87) and, in some cases, in response to contractions
in the cell body itself (52). The width of the fiber is normally
adjusted so that an unobstructed passage of the axoplasm at a commen-
surate rate is permitted. The moving axoplasm is then consumed in the
metabolic activity of the fiber (93).

In the classical series of nerve regeneration and constriction
studies performed by Weiss and Hiscoe in 1948 (93), this mechanism of
axonal transport was unequivocally demonstrated. The evidence presented
was in terms of the permanent size deficit at the distal side of a con-

striction imposed on a nerve fiber and the "damming' or buildup of



axoplasm at the proximal side. The authors ultimately concluded that
the caliber of a nerve fiber was essentially determined by two factors,
the amount of synthesis of new axoplasm in the cell body and the rate
of its centrifugal movement. Later evidence of axonal transport came
from radioautographic and biochemical studies on the delivery into the
axon of isotopes incorporated into substances of the cell body (17, 18,
79) and from lapsed-time cinematography of the living nerve fiber (94).
The work accomplished in the area of axonal transport has been exten-
sively reviewed by Lubinska (53) and by Barondes and Samson (7).

A third factor was introduced when the influences of peripheral
factors upon the process of nerve growth were investigated. Several
regenerative studies (3, 4, 24, 28, 67, 68, 95, 96) demonstrated that
the most powerful peripheral influence 1s the contact which is made
with the end organs. The basic result of the lack of peripheral
connections is the atrophy of the nerve fibers (3, 68, 96) and the
related cell body (11). Connections with functionally inappropriate
organs proved to be inadequate substitutes for normal connections (4,
72, 96). However, it also was shown that nerve growth is not dependent
upon a normal contraction of muscle against resistance. Some muscle
substance is essential for the promotion of growth, but the actual
amount does not seem to be critical (28). The maturation is much
greater in a nerve connected with a tenotomized muscle than in one
connected with no periphery at all (4).

The manner in which the terminal connections influence the nerve
cell body and axon is still under investigation. The chromatolytic
reaction of the cell after peripheral severance of its axon indicates

that the perikaryon has received information about the peripheral



disturbance (11, 96). A transport system from the periphery to the
cell body has been suggested on the bases of investigations in which
axons were transected and changes studied in the perikaryon (57) and
in radioactive studies of isolated CNS-nerve trunk-muscle preparations
(50). 1In addition, direct observations of individual nerve fibers in
tissue culture and in vivo have shown bidirectional movements of
granules in the axons and centripetal migration of particles taken up
by pinocytosis at the axon tips (53). This evidence suggests the
existence of a continual migration of neuronal cytoplasm from the
cell body to the nerve endings and from the nerve endings back to the

cell body.

Axon-Myelin Relationships

Light microscopic investigations indicate that the myelin sheath
thickness is in direct proportion to the caliber of the axis cylinder
(19, 69, 101). These findings have recently been substantiated by
electron microscopic work (30, 31, 32, 33, 54, 55). A critical
diameter of the axon for the initiation of myelin production has been
shown to exist, and it ranges from one to two micra in the cat, rat
and cow. Myelination appears to be initiated in this diameter range
regardless of the function of fhe fiber, or the age, size or species
of the animal (19, 55).

Martinez and Friede (54) have demonstrated that the dimensions
of the axon control the myelin forming activity of the Schwann cells.
Axonal growth was explained by studying the changzs in the perikarya
of the nerve cells. An increase in the volume of axoplasm was found
to be almost equal to, and to develep parallel with, an increase in the

volume of cytoplasm in the lower motor neurons. Coupled with the



findings that the formation of myelin lamellae occurs in proportion to
changes in axonal circumference (32, 33), investigators have postulated
the following mechanism of axon-myelin interdependence: (a) the pri-
mary changes occur in the cell body of the neuron which produces and
controls a correlated growth of the perikaryon and its axon. (b) The
resulting increase in axonal caliber controls the myelin formation by
the Schwann cell. In addition, a model of a mechanism controlling

sheath growth itself has been postulated (30).

Effects of Exercise and Functional Overload on Nerve Growth

The effect of increased or decreased activity on the nerve cell
and its processes 1s very controversial at this time. Some work has
been done in this area but the results are inconclusive.

One of the earliest exercise studies was conducted by Dolley in
1913 (15). Dolley attempted to determine the effect of exhaustive
functional activity, as well as depression of such activity, on nerve
cells. The result in both cases was a complete cessation of function.
In effect, the study demonstrated that going to either extreme of the
activity continuum was detrimental to the nerve cell.

Later studies have supported the view held by Dolley. Running
guinea pigs to exhaustion has been shown to deplete the protein stores
in the nerve cells (46) and to decrease the mean diameter and total
number of the nerve fibers (5). A significant decrease in protein
nitrogen following motor activity also was demonstrated in rats swum
to exhaustion (47).

Conversely, other investigations have shown a beneficial effect

of increased activity on the nerve cell and its processes. Agduhr (2)



noted both an increase in the mean fiber number and the mean fiber
diameter in the dorsal and ventral nerve root fibers of mice exercised
in rotating cages. Edds (25) conducted a study designed to show the
effects on the nerve fibers of functionally overloaded muscles. Com-
parative measurements were made on the number and caliber of all
myelinated fibers in nerves to the soleus muscle of adult rats which
had undergone functional hypertrophy following the denervation of some
of their synergists. The results showed an increase in the number of
nerve fibers in experimental as compared to control animals. In
addition, the myelinated fibers increased in size, and the distribution
of fibers shifted from all size classes to larger size classes.
Experiments in partially deneurotized nerves yielded similar
results (24). The plurisegmental, long thoracic nerve of the rat was
deneurotized by removing one of its contributory spinal nerves. The
residual axons in such a nerve produce intramuscular, collateral sprouts
which reinnervate many of the denervated muscle fibers (23) and thus
functionally overload the nerve. Hypertrophy of the residual axons
was reflected in shifts of all fiber size classes to larger size classes.
Functional overload of the medial belly of the gastrocnemius,
induced by denervation of synergists in the rabbit, also has been shown
to increase both the number and size of myelinated nerve fibers (85).
Levels of inactivity have been simulated in various manners.
Tenotony, the surgical removal of a tendon, has been used extensively
to induce levels of depressed muscular activity (21, 44). The influence
of this procedure on the diameter and number of nerve fibers is uncertain.
Aitken et al. (4) reported an increase in total fiber number and no

change in the mean fiber diameter of the myelinated fibers to tha
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tenotomized gastrocnemius muscle of the rabbit. Evans and Vizoso (28),
on the other hand, found decreases in the numbers of fibers with dia-
meters larger than 9 micra in the same nerve. Thus, the results are
inconclusive.

Recently Tomanek and Tipton (82) undertook an experiment to
reinvestigate the influence of increased and decreased muscular activity
on the diameters and number of myelinated fibers comprising the medial
gastrocnemius nerve of the rat. Acute exercise (a single bout), chronic
exercise (training on a motor driven treadmill five to six times per
week for 8 weeks at various times and speeds), and tenectomy (limited
muscular activity brought about by excision of the tendocalcaneous)
were the treatments investigated. The only significant effects found
were with tenectomy. The tenectomized animals showed statistically
significant decreases in both nerve-fiber diameter and number. The

exercise programs did not produce any significant changes.



CHAPTER III

MATERIALS AND METHODS

Sample

As subjects for several concurrent studies, eighty normal, 72-day-
old, male albino rats (Sprague-Dawley strain)! were brought into the
laboratory in two shipments. Each animal was randomly assigned to one
of seven treafment groups and then allowed 12 days to adjust to the
laboratory before treatments began.

This study involved only five of the treatment groups since the
investigator was not able to collect data from animals in two of the
groups. Application of selection criteria, to be discussed later, and
difficulties in staining techniques resulted in the final sample con-

sisting of 32 animals (Table 1).

Table 1. Final cell frequencies by treatment and duration

Duration
Treatment 0-wk 4-wk 8-wk 12-wk
CON 5 2 2 2
SHT 2 2 2
LON 2 2 2
ESC 2 2 1
SWM 1 1 2

lobtained from Hormone Assay Laboratory, Chicago, Illinois.

11
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Treatment Groups

The five treatment groups used in this study were as follows:

Control (CON)

These animals received no special treatment and were housed in
individual sedentary cages (24 cm. long by 18 cm. wide by 18 cm. tall)

during both the adjustment and the treatment periods.

Short (SHT)

The animals assigned to the short group were housed in individual
voluntary cages (sedentary cages with access to a freely revolving
activity wheel) during the adjustment period and in individual sedentary
cages during the treatment period. These animals were subjected to a
short-duration, high-intensity program of interval training in individual
controlled-running-wheels for small animals (CRW) (98). The intensity
of the training program was progressive in nature. At the end of thirty-
seven days of training, the animals were expected to complete eight
bouts of exercise with 2.5 minutes of inactivity between bouts. Each
bout consisted of six repetitions of 10 seconds of work alternated with
40 seconds of rest. The required speed was a relatively fast 5.5 ft./
sec. which would be comparable to that used in an anaerobic event in

the human, i.e. the 100-yard dash.

Long (LON)

The animals in the long group were housed under the same conditions
as the short group. These animals were subjected to a long-duration,
low-intensity endurance program of interval training in individual CRW,
The duration of thz training program was progressively increased. At

thie end of thirty-seven days of training, the animals were expected to
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complete four 12.5-minute bouts of exercise with 2.5 minutes of

inactivity between bouts. Each bout consisted of one repetition of
12.5 minutes of continuous running. The required speed was a rela-
tively slow 2.0 ft./sec. which would be comparable to that used in

an aerobic event in the human, i.e. the mile run.

Electrical Stimulus Control (ESC)

These animals were housed in individual voluntary activity cages
during the adjustment period and in individual sedentary cages during
the treatment period. The group consisted of animals which were per-
manently paired with the animals in the SHT group. During each training
period for the SHT group, the ESC animals were placed in adjacent
stimulus control cages (21.5 cm. long by 14 cm. wide by 10.5 cm. tall)
having grid floors electrically comparable to those of the CRW. Each
ESC animal was thus exposed to the same total light and electrical

shock stimuli as its paired counterpart.

Suim (SW1)

These animals were housed in individual voluntary activity cages
during the adjustment period and in individual sedentary cages during
the treatment period. The animals were swum in individual cylindrical
tanks (28 cm. by 76 cm.) with a water temperature of 28°-32° C. The
swimming program was progressive in nature such that on the last four
days of the eighth week of training, each animal was expected to swim
continuously for one hour with an attached tail weight equal to 3% of

its body weight.
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Duration Groups

Animals were sacrificed at zero, four, eight and twelve weeks after
the initiation of the treatments. The training requirement for each
treatment group increased progressively from zero to eight weeks. Twelve-
week animals followed the same program from day 37 to day 60 (Appendix A).
This procedure was followed in an attempt to show the patterns of change

associated with chronic exercise programs.

Treatment Procedures

The treatments began after a 12-day adjustment period when all
animals were 85 days old. Those animals selected as zero-week controls
were sacrificed on the first day of the treatment period. All other
animals began their individual treatment programs ranging from four
weeks to twelve weeks in duration.

The SHT and LON exercise groups and one of the control groups
(ESC) received treatment in the CRW apparatus that has been described
as:

"...a unique animal-powered wheel which is capable

of inducing small laboratory animals to participate

in highly specific programs of controlled reproduc-

ible exercise." (98)
Each animal was placed in an individualiy braked running wheel (CRW)
and induced to run in response to a controlled, low-intensity shock
current applied through the grid running surface of the wheel. A
light stimulus preceeded the electrical stimulus so that the animals
could avoid the electric shock by responding to the light. Most

animals were conditioned to react to the light stimulus in a short

period of time.
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Each running period was initiated by releasing the brake and
simultaneously turning on a light above the wheel. The light remained
on for a predetermined amount of time, the acceleration time. Animals
not attaining the prescribed speed by the end of the acceleration time
were electrically stimulated through the grid apparatus. For those
animals attaining the desired running speed, the light was turned off
and no electric current passed through the bars. Animals running
slower than the specified speed had the light and shock sequence
repeated. During the work periods, the wheel was free to turn; while
during the rest periods, the wheel was automatically braked to prevent
spontaneous activity. A typical running program consisted of alternate
work and rest periods.

Total revolutions run (TRR) and cumulative duration of shock (CDS)
were recorded from a result unit attached to each CRW after every
training period for the SHT and LON groups. The ESC animals used SHT
values. Percent expected revolutions (PER) and percent shock free
time (PSF) were calculated by comparing the recorded values to the
programmed values for total expected revolutions (TER) and total work
time (TWT).

The animals in the SWM group were swum in individual eylindrical
tanks., Taill weights were calculated using body weight before treatment
from the previous Friday and attached to the tips of the tails by means
of miniature plastic clothespins. Expected swim times (EST) were
progressively increased. If an animal was unable to complete the EST,
the animal was removed from the tank and his swim time completed (STC)
was recorded. The STC and EST were then used to calculate the percent

expected swim time (PET).
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The exercise and control (ESC) treatrents were performed once a day,
between 12:30 p.m. and 5:30 p.m., Monday thru Friday, in the Human Energy
Research Laboratory, Michigan State Universi:y, East Lansing, Michigan.
Body weights for SHT, ESC and LON animals were taken before and after
each treatment period. Swim group animals were weighed only before

their daily treatment.

Animal Care

Each animal was housed in a cage which was steam-cleaned every two
weeks. The animals received food (blocks)! znd water ad libitum. The
ambient temperature in both the animal quarters and the treatment room
was maintained between 70° and 72° F., and the relative humidity was
kept between 40 and 60 percent. Standard procedures for CRW cleaning
and maintenance were observed.

The animals were exposed to an automatically controlled daily
sequence of twelve hours of light followed b7 twelve hours without
light., Since the rat is normally a nocturnal animal, the light
sequence was established so that the lights were kept off between
1:00 p.m. and 1:00 a.m. and turned on betweezx 1:00 a.m. and 1:00 p.m.
This lighting pattern reversed the normal dayv-night schedule for the
animals so that they were trained during the active phase of their

diurnal cycle.

Sacrifice Procedures

Six bimonthly sacrifices of seven animals of the same treatment
duration were conducted between June 7 and August 16, 1971. Two

additional sacrifices on November 22, 1971 and December 6, 1971 of

1Wayne Laboratory Blox, Allied Mills, Iac., Chicago, Illinois.
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eight animals each were performed involving only zero-week animals.

All animals were sacrificed on Monday following their last exercise
period on the previous Friday. Approximately seventy-two hours elapsed
between the last exercise period and sacrifice. Fifty-eight rats were
sacrificed in total.

Animals were selected for sacrifice on the basis of their health
and their performance during the treatment period. Only those animals
subjectively determined to be in good health were picked for sacrifice.
In addition, for CRW animals, only those rats completing at least 75
percent expected revolutions (PER) and maintaining no less than 75 per-
cent shock free time (PSF) met the predetermined criteria for selection.
A mean percent expected swim time (PET) of approximately 100 percent
was used as the basic criteria for selecting animals from the SWM group.

Each animal was weighed and then sacrificed under anesthesia by an
intraperitoneal injection of 4 mg./100 g. body weight of 6.48 percent
sodium pentobarbital solution.! The left hindlimb was skinned and the
superficial posterior crural muscles were exposed by reflecting the
overlying tissue. The left triceps sural group (gastrocnemius and
soleus) and plantaris were identified and dissected as a unit to their
common attachment at the Achilles tendon. The soleus tendon was
isolated and clamped with a hemostat. The tendon then was cut distal
to the hemostat and the soleus was gently dissected towards its proximal
attachment on the posterior femur. All fascia and connective tissue
was cleared away with a blunt probe. The soleus nerve was identified in

the proximal third of the muscle and ligated at both ends with fine white

l¥rom Jensen-Salsberg Lahoratories, Division of Richardson-Merrell,
Inc., Kansas City, Missouri.
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thread. The nerve was cut as close to the muscle as possible so that
the largest possible section was extricated.

Upon removal, the nerve section was placed on a precut piece of
dry, absorbant cardboard and gently stretched to approximate its
physiological length. All extraneous fascia and connective tissue
were dissected from around the nerve sheath. A razor blade was used
to cut through the nerve and to remove the pieces of string at either
end. The remaining section adhered to the cardboard and maintained
the desired tension. Each cardboard and nerve were immediately submer-

ged in separate jars of Bouin's solution.

Preparation and Staining Techniques

After a one-to-eight-day period, the nerve sect@ons were removed
from the Bouin's solution, put through two one-half hour washings in
distilled water and placed in a .57 solution osmium tetroxide for
staining of the myelin sheath. After four hours, the sections were
removed from the osmic acid solution and placed in a plastic container
with running tap water for 24 hours. The following day, the nerve
section was dehydrated and infiltrated with paraffin in the manner
described by Adams (1). Within two hours after the last paraffin
exchange, the nerve tissue was embedded in standard paraffin blocks
and allowed to cool overnight.

Sectioning took place within one week. The paraffin sections were
cut 7 micra thick on a sliding microtome placed in a water bath regulated
at 30°-33° C., mounted on glass slides and air dried. The slides then
were placed in a 37° C. oven for incubation for a least 24 hours.

To remove the excess paraffin, the incubated slides were totally
immersed in xylene for approximately 20-30 minutes. The sections then

were covered with permount, mounted and allowed to dry.
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Measurement and Counting Techniques

Visual images of the entire transverse section of the nerve were
projected onto drawing paper with a Bausch and Lomb microprojector at
a magnification of X1,133. The outline of each myelinated fiber was
traced with a sharp pencil. For each fiber, both the inside area,
corresponding to the axon area, and the outside area, corresponding to
the axon area plus the myelin area, were measured using a No. 620005
compensating polar planimeter. FEach area was traced ten times and the
mean recorded for each fiber. This procedure insured better accuracy
than relying on one measurement alone. Immediately after each fiber
was measured, it was numbered. This procedure reduced the possibility
of repeating or omitting fibers. A total myelinated fiber count for

each nerve was recorded from the above procedure.

Statistical Procedures

The training data were analyzed by treatment groups and training
days. Means, standard deviations and simple correlation coefficients
were calculated for training performance, environmental conditions and
pre- and post-treatment body weights.

Fiber calibre data were tabled and plotted by treatment and
duration. Analysis of contingency tables (ACT) were used to determine
if there were any significant differences in distribution between
selected pooled groups of animals. Pooling of data was made necessary
by the small number of experimental units in many of the cells. (See
Chapter IV for details.)

An alpha level of .05 was required to denote statistical signi-

ficance for all comparisoms.
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Treatment Results

On the basis of the programmed values of TER for the CRW treatments
(Appendix A), animals of the LON group should have had a steady increase
in TRR over the training period. The SHT group, however, was expected
to have displayed a slight increase in TRR followed by a gradual decrease.
It can be seen from Figure 1 that the two running groups met their
respective program requirements.

The SHT and LON animals generally exceeded the PER criteria of 75
percent set as a minimum standard for execution of the CRW programs
(Figures 2 and 3). This level of performance compares favorably with
other groups of animals subjected to similar training programs (36, 61,
78). The animals generally responded to the light stimulus rather than
to the electrical shock as reflected in the observed high PSF values
(Figures 1 and 2). Comparisons across treatment durations of PSF
values for SHT and LON groups showed that the SHT animals received
more electrical shock than the LON animals.

The PET values for the SWM group were invariably 100% (Table B-2,
Appendix B). Consequently, PET values were not plotted across duration

for the SWM animals.

Treatment Environment and Body Weight Results

The CRW animals were exercised under relatively constant conditions
of air temperature, humidity and barometric pressure. These variables
did not affect the PER and PSF values as reflected by the low correlations
among the parameters (Table B-1, Appendix B). A moderate inverse relation- °
ship existed between pre-treatment body weight and PER. That is, animals
with high pre-treatment body weights tended to display low PER values.
The moderate positive correlation between PSF and PER confirms the nearly

parallel plots of these two values (Figures 1 and 2).
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The SWM animals were exercised under controlled conditions comparable
to the CRW animals (Table B-2, Appendix B). In addition, the water
temperature was regulated at approximately 32° C. None of the environ-
mental or pretreatment body weight values were highly correlated with

PET.

Training Results

Five distinct types and levels of chronic physical activity were
utilized in the study. The CON animals were sedentary throughout the
experimental period and represented the lowest level of activity.
Similarly, the ESC animals were not subjected to any scheduled training
regimen. However, the response of these animals to the noxious stimuli
distinguished the ESC animals from those in the CON group. The SHT and
LON running programs resulted in mean daily TRR values which were
markedly different (Figure 1). Program expectations for the CRW and
SWM groups differentiated the trained groups into three separate

categories (Appendix A).
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CHAPTER IV

RESULTS AND DISCUSSION

The morphological data will be presented and analyzed separately
for each independent variable: myelin area, axon area and total area.
Statistical procedures utilizing a system of pooling techniques will
be summarized in the second part of the chapter. A brief section on
the findings involving fiber counts will follow. Finally, a discussion
attempting to relate the morphological findings with physiological and

related processes will be offered.

Morphological Results

The distributions of the three dependent variables were plotted
and are presented by percent fre;uency: (a) for each experimental
treatment across duration (Figures 4 to 18), and (b) for each duration
across treatment (Figures 19 to 27). This procedure was followed in
an attempt to better illustrate the general trends and shifts in fiber
distributions by treatments and durations.

Due to limitations in measurement and recording techniques,
extreme fiber sizes were grouped at the upper and/or lower ends of
the distributions. Bar graphs are used to represent the grouped values.
Percenﬁ frequencies above eight percent are indicated by broken bars.
In no instance does the grouping technique involve more than seven,

nine or twenty-four percent of the total number of fibers in the myelin,

total or axonal plots respectively.

25
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Pooling of all zero-week animals was utilized as presented in
Chapter I1I. Consequently zero-week graphs are identical across
treatments for each dependent variable, For example, zero-week graphs

are the same for total area in Figures 14 to 18.

Myelin Area

The control group showed a general increase in myelination across
duration (Figure 4). The bimodal distribution evident at zero-weeks
duration flattened out with time. Shifts in the distribution to the
right were evident at both modes. This observation might have been
anticipated as a direct result of maturation and normal growth processes.

The SHT CRW program resulted in an initial shift to the right at
four weeks followed by dramatic shifts to the left at eight- and twelve-
weeks duration (Figure 5). The multipeaked effect seen at twelve weeks
is inexplicable but showed up in many of the final duration graphs. The
ESC plots were similar to those of the SHT group (Figure 7).

At the end of twelve weeks of training, the LON group demonstrated
shifts towards both ends of the curve (Figure 6). A larger percentage
of both small and large fibers were present at twelve weeks than at
zero weeks.

Shifts to the left were evident in the SWM data at four and eight
weeks (Figure 8). By twelve weeks, the curve was similar to that at
zero weeks.

Comparisons across treatment by duration revealed additional
trends in the distributions (Figures 17 to 21). At four weeks, the SHT
and ESC groups showed shifts towards larger myelin areas while the LON
and SWM distributions shifted to the left. After twelve weeks of

training, all treatment groups had an increased percentage of small
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myelinated fibers. This outcome was most evident in the SHT and ESC
groups. The LON distribution was the only one which showed any increase
at the upper end of the curve.

The tendency was for the power-type anaerobic treatment group
(SHT) to have the largest increase in percentage of small fibers across
duration. The ESC group showed similar patterns. Conversely, the
endurance-type aerobic activity programs resulted in distributions
resembling the control group. Shifts to larger myelin areas were more
evident within the LON group than in the SWM group. However, both

had fewer small fibers than either the SHT or ESC groups.

Axon Area

Axon areas of the control group tended to shift slightly to the
left at four-weeks duration and then shift back to the right at eight
and twelve weeks (Figure 9). At twelve weeks, the shift to the right
was evident at both the upper and the lower ends of the curve. The
small number of fibers at the extreme upper end of the curve possibly
could be accounted for by artifact.

The SHT group plots demonstrated a shift to the right at four
weeks, an extreme reversal at eight weeks, and a less dramatic shift
back to the right at twelve weeks (Figure 10). The ESC graphs
followed a similar pattern except that the eight-week shift is much
less prominent (Figure 12). (Note the multipeaked curves at twelve
weeks duration.)

The two long-endurance groups had similar patterns (Figures 11 and
13). A large percentage of small fibers are evident at four and eight

weeks. Proninent shifts back to the right and curves resembling zero-
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week data are observed at the end of the training programs. Extremely
small changes are seen at the upper end of the curves for either the
LON or the SWM groups.

At four-weeks duration, the SHT and ESC graphs had definite shifts
to the right at both ends of the curve (Figure 22). The LON and SWM
groups showed an increase in small axon areas and a very slight
increase at the large end of the size spectrum. By eight weeks, all
treatment groups had a much larger percentage of small axons than did
the control group (Figure 23). The ESC group also showed a slight
increase in large axonal areas. The twelve-week plots are similar to
the eight-week curves (Figure 24). The highly peaked nature of the
SHT, ESC and SWM distributions are notable.

The control group demonstrated a shift towards larger axonal areas
with time (Figures 22 to 24). Therefore a time related increase in
axonal size was assumed to be operating.

All experimental treatments resulted in an increased percentage

of small fibers. This was most evident for the SHT and ESC groups.

Total Area

The total area is presented as an indicator of the effects of
exercise on the combined areas of the axon and the myelin sheath.
Several previous investigations have limited their morphological
analyses to this single index (5, 25, 82, 85). Interpretation of the
graphs is more difficult than for the previous measures due to the
broadness and flatness of the curves.

The control treatment graphs indicated a shift to the right across
duration (Figure 14). This effect was found at both ends of the curve.

All experimental groups showed definite shifts to the left (Figures 15 to 138).
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For the SHT, LON and SWM groups, the shift towards small fibers was
most evident at eight weeks (Figure 26). A slight shift back to the
right was seen at both ends of the graphs after twelve weeks of
training (Figure 27). A peculiarity in the ESC graphs is seen at
four and eight weeks. A large percentage of fibers are grouped at
the extreme upper end of the scale. No explanation can be offered

for this observation.

Pooling Techniques and Statistical Results

Difficulties in the preparation techniques described in Chapter III
resulted in gross reductions of the sample size. Consequently, the use
of pooling techniques was seen as a necessity in presenting and inter-
preting the morphological data.

In an attempt to determine if the exercise regimens did alter the
population of neurons in the nerve, the data were pooled and analyzed
in two ways. First, the distribution of fibers of the control animals
at each duration was compared with the distribution of fibers of the
four other treatments pooled within duration. For example, the four-
week CON data were compared with the four-week SHT, ESC, LON and SWi
data pooled.

Table 2 indicates that the fiber distributions of the trained
animals (TR) were significantly different from the controls for all
three variables at the end of twelve weeks. A change in axon area
found at four weeks disappeared at eight weeks and then reappeared at
twelve weeks. No attempt was made to explain this phenomenon.

A second way to extract the exercise effect was to pool treatments

across durations and compare these results to those of the controls
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pooled across duration. For example, the four-, eight- and twelve-
week CON data were pooled and compared with the four-, eight- and

twelve-week SHT pooled data.

Table 2. Summary of analyses of chi square contingency tables
between controls and pooled experimental groups
within duration for axon, myelin and total areas

Comparisons Axon Myelin Total
4-wk CON vs 4-wk TR S N N
8-wk CON vs 8-wk TR N S S

12-wk CON vs 12-wk TR S S S

N = not significant.
S = gsignificant distribution difference at the .05 level.
TR = a pooled distribution of SHT, LON, ESC, and SWM data.

The results summarized in Table 3 indicate that the pooled fiber
caliber distributions of the individual treatment groups are significantly
different from the pooled distribution of the controls in all cases except
two. No attempt has been made to explain these exceptions.

Table 3. Summary of analyses of chi square contingency tables

between controls and individual treatments pooled across
durations for axon, myelin and total areas

Comparisons Axon Myelin Total
4-8-12 wk CON vs 4-8-12 wk SHT S S S
4-3-12 wk CON vs 4-8-12 wk LON N S S
4-8-12 wk CON vs 4-8-12 wk ESC S S N
4-8-12 wk CON vs 4-8-12 wk SWM S S S

N = not significant.
S = significant distribution difference at the .05 level.



The possibility of a duration effect has been purs:ed in two
manners. First, the comparisons between the zero-week pooled distri-
bution and the individual treatments pooled across duration were
analyzed. For example, the zero-week pooled distribution was compared
with the four-, eight- and twelve-week CON pooled distribution.

The results of this analysis showed a significant change in myelin
distributions across durations for all activity levels including the
CON group (Table 4). All total area comparisons except for the CON
group also were significant. However, axonal changes were evident only
within the SHT and ESC groups. The implication of a possible specific
treatment-duration interaction effect, inherent in this data, was the
major impetus for the following second method of analysis.

Table 4. Summary of analyses of chi square contingency tables
between the zero-week pooled distribution and the

distributions for individual treatments pooled across
duration for axon, myelin and total areas

Comparisons Axon Myelin Total
0 wk P vs 4-8-12 wk CON N S N
. 0 wk P vs 4-8-12 wk SHT S S S
0 wk P vs 4-8-12 wk LON N S S
0 wk P vs 4-8-12 wk ESC S S S
0 wk P vs 4-8-12 wk SWM N S S

N = not significant.
S = gignificant distribution difference at the .05 level.
P = pooled.

The zero-week pooled distributions were compared with the distributions

for each individual treatment-duration cell (Table 5). Since the frequency
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for each individual cell was either one or two, the power of the

statistical analyses are limited. However, general patterns may be

derived from such comparisons.

Table 5. Summary of analyses of chi square contingency tables
between the zero-week pooled distributions and the

distributions for each individual treatment-duration
cell for axon, myelin and total areas

Comparisons Axon Myelin Total

O-wk P vs 4-wk CON N N N
O-wk P vs 8-wk CON N S S
O-wk P vs 12-wk CON N S S
O-wk P vs 4-wk SHT S S S
O-wk P vs 8-wk SHT S S S
O-wk P vs 12-wk SHT S S S
O-wk P vs 4-wk LON N N S
O-wk P vs 8-wk LON N S S
O-wk P vs 12-wk LON N S S
O-wk P vs 4-wk ESC S S S
O-wk P vs 8-wk ESC S S S
O-wk P vs 12-wk ESC S S N
O-wk P vs 4-wk SWM N S S
O-wk P vs 8-wk SWM N S S
O-wk P vs 12-wk SWM N S N

N = not significant.
S = gignificant distribution difference at the .05 level.
P = pooled.

As could be expected from the previous analyses, the myelin area
distributions of the separate treatment groups were generally signi-
ficantly different from the zero-week pooled distribution at all
durations. At the end of eight weeks, all comparisons were signifi-
cantly differeﬂt. In contrast, the axonal area distributions exhibited
specificity. That is, the CON, LON and ESC groups showed no changes
from the zero-weak pooled distribution across durations. However, the

SHT and ESC groups demonstrated significant alterations in axonal size

at each duration. The total area comparisons masked this specificity



phenomenon and resulted in significant differences in most cases.

Total Fiber Numbers

Total myelinated fiber counts were recorded for each animal.

Table 6 summarizes the observed results.

Table 6. Individual cell means for total fiber numbers

Duration ‘

Treatment O-wk. bk, 8-wk. 12-wk.
CON 1021(5)2 115(2) 120(2) 107(2)
SHT 107(2) 116(2) 106(2)
LON 103(2) 107(2) 109(2)
ESC 103(2) 118(2) 92(1)
SWM 125(1) 94 (1) 100(2)

lMean fiber count in each cell.

2Number of animals in each cell.

Since the sample size was extremely limited, no statistical analyses
were performed. However, some general patterns are evident in the data.
In most instances, the treatment groups had fewer myelinated fibers
than the control group at any specific duration. Across durations, the
CON, SHT and ESC groups demonstrated similar trends: a slight increase
at four weeks followed by a larger increase at eight weeks and a
dramatic decrease at twelve weeks. No explanations are attempted for

these phenomena.

Discussion
Several trends in the morphological data have heen presented in

the results sections. In the following discussion, an attempt has



been made to organize these trends into correlated patterns and to
offer possible explanations for the findings.

The control group demonstrated increases in myelin, axon and total
areas across duration. Normal maturation and growth processes have
been considered as the probable causes of these results. Total fiber
counts followed a similar patterm.

Most experimental group graphs indicate shifts towards smaller
areas for the dependent variables across durations. The SHT and ESC
groups showed the most notable decreases. A possible specific effect
of power-type anaerobic exercise is postulated as the cause of these
extreme reductions in size. The likelihood of such an effect is
enhanced by a closer examination of the data for the electrical stimulus
control group. The ESC animals may, in fact, have performed a power-
type isometric exercise rather than acting simply as electrical controls.
Thus, the similarities in recorded data for the SHT and ESC groups may
be due to the participation of both groups at an anaerobic activity
level.

Chi square analyses reflected significant alterations in fiber
distributions across treatments and durations. The system of pooling
utilized did not negate the fact that observable differences existed
within treatments and durations which were made obvious by the plots.

Speculations as to the causes of these alterations in the size of
myelinated fibers are innumerable. However, mechanisms involved in
the normal process of nerve growth must certainly be investigated. As
defined by Weiss (86), enlargement, or true growth, of the nerve fiber
is the result of the production of new protoplasm at a rate which exceeds

the elongation or 'towing'" process and increases the width of the axon.
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In their classical series of nerve regeneration and constriction
studies (93), Weiss and Hiscoe ultimately concluded that the caliber
of a nerve fiber essentially is determined by two factors: the amount
of synthesis of new axoplasm in the cell body and the rate of its
centrifugal movement (ie: axoplasmic transport). The effects of
specific levels of activity on these parameters have yet to be
investigated.

A third factor to be scrutinized is the importance of peripheral
factors upon the process of nerve growth. Several regenerativeistudies
have demonstrated that the most powerful peripheral influence is the
contact which is made with the end organs (3, 4, 24, 28, 67, 68, 95, 96).
In the present study, a nerve-muscle interdependence is implied. How
specific exercise regimens effect this interrelationship is unproven

at this time.
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CHAPTER V

SUMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The purpose of the present investigation was to determine the
effects of four durations of five specific levels of physical activity
on the population of myelinated fibers in the soleus nerve of the
normal, male albino rat.

Eighty animals were brought into the laboratory and assigned
randonly to seven treatment groups. Due to difficulties in techniques,
only five treatment groups were utilized in this study: CON, SHT, LON,
ESC and SWM. Animals from each group were sacrificed at zero weeks and
then at four, eight and twelve weeks after the onset of training.

The left soleus nerve was surgically removed from sodium
pentobarbital anesthetized animals. Upon removal, the nerve was fixed,
stained, embedded in paraffin, sectioned and mounted on glass slides
within two weeks of sacrifice.

Visual images of the entire transverse section of the nerve were
projected onto drawing paper with a microprojector. Myelin, axon, and
total areas of each myelinated fiber were measured by polar planimetry.
Total fiber counts were recorded during the same process.

Percent frequency graphs were constructed for myelin, axon and
total areas across durations and treatments. Visual inspection of the
plots revealed patterns of specificity in the data. SHT and ESC

animals tended to have a larger percentage of small fibers than did
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the CON, LON and SWM groups. The graphs of all experimental groups
were notably different from those of the CON group. Chi square
analyses run on specific pooled groups substantiated the observed

trends.

Conclusions
The results of the study have led to the following conclusions:
1. The morphological characteristics of the rat soleus nerve are
altered by chronic physical activity.
2. Anaerobic exercise regimens seem to have more notable effects

on myelin, axon and total areas than do aerobic programs.

Recommendations

1. The study should be repeated using electron microscopy to
confirm the observed results.

2. Many of the plots across duration revealed shifts towards
alternate ends at different durations. An extension of the treatment
period to 16 or 20 weeks is needed to determine when the direction of
the shifts stabilize.

3. Axoplasmic transport processes should be investigated in an

attenpt to relate physiological processes with morphological changes.
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TABLE A-I|

Standard eight-week, short-duration, high-speed
endurance training program for postpubertal and
adult male rats in controlled running wheels

Total Total

Acc- Repe- Time Time  Exp. Total
elor- Work ti- Bet~ Run ot Ravo- Work
Day Day ation Time Rest tions No. ween Speed Proq. lu- Time
or ot Time (min: Time per ot Bouts Shock (ft/ (min: tlons (sec)
wk, Wk, Tr, (sec) sec) (sec) Bout Bouts (min) (ma) sec) sec) TEN TWT
0 4T -2 3.0 40:00 10 ! | 5.0 0.0 1.5 40:00 --- ---
5=F =| 3.0 40:00 10 | [} 5.0 0.0 1.5 40:00 - -—
I =M [} 3.0 00:10 10 40 3 5.0 1.2 1.5 49:3 450 1290
2=7 2 3.0 00:10 10 40 3 5.0 1.2 1.5 49:30 450 1239
3=w 3 3.0 00:10 10 40 3 5.0 1.2 1.5 49:30 450 1200
4= 4 2.5 00:10 10 40 3 5.0 1.2 2.0 49:30 600 1200
5=F 5 2.0 00:10 10 40 3 5.0 1.2 2.0 49:3 600 1200
2 I1=M 6 1.5 00:10 10 28 4 5.0 1.2 2.5 51:40 700 1120
2=T 7 1.5 00:10 15 27 4 5.0 1.2 3.0 59:00 810 1080
3=W 8 1.5 00:10 15 27 4 5.0 1.2 3.0 59:00 810 1080
4T 9 1.5 00:10 15 27 4 5.0 1.2 3.0 59:00 810 1080
5=F 10 1.5 00:10 15 27 4 5.0 1.2 3.0 59:00 810 1080
3 =M ) 1.5 00:10 15 27 4 5.0 1.2 3.0 59:00 810 080
2=T 2 1.5 00:10 220 23 4 5.0 1.2 3.5 59:40 805 920
3=W 13 1.5 00:10 20 23 4 5.0 1.2 3.5 59:40 B80S 920
4=T |4 1.5 00:10 20 23 4 5.0 1.2 3.5 59:40 805 920
5=F |5 1.5 00:10 20 23 4 5.0 1.2 3.5 59:40 805 920
4 (=M 16 1.5 00:10 20 23 4 5.0 1.2 3.5 59:40 805 920
2=T 17 1.5 00:10 25 20 4 5.0 1.0 4.0 60:00 800 800
3:W 18 1.5 00:10 25 20 4 5.0 1.0 4.0 60:00 800 80
4=T |9 1.5 00:10 25 20 4 5.0 1.0 4.0 60:00 800. 800
5=F 20 1.5 00:10 25 20 4 5.0 1.0 4.0 60:00 800 BOO
5 1=M 2} 1.5 00:10 25 20 4 5.0 1.0 4.0 60:00 800 800
2=T 22 1.5 00:10 30 16 4 5.0 1.0 4.5 55:40 T20 640
3=w 23 1.5 00:10 3 16 L] 5.0 1.0 4.5 55:40 720 6430
4=T 24 1.5 00:10 30 16 4 5.0 1.0 4.5 55:40 720 640
5zF 25 1.5 00:10 30 16 4 5.0 1.0 4.5 55:40 720 640
6 =M 26 1.5 00:10 30 16 4 5.0 1.0 4.5 55:40 720 640
2:7T 27 2.0 00:10 35 10 5 5.0 1.0 5.0 54:35 625 500
3=W 28 2.0 00:10 35 10 5 5.0 1.0 5.0 54:35 625 500
4:7 29 2.0 00:10 35 10 5 5.0 1.0 5.0 54:384 625 500
5=F 30 2.0 00:10 35 10 5 5.0 1.0 5.0 54:35 625 570
7 1=M 31 2.0 00:10 35 10 5 5.0 1.0 5.0 54:35 625 500
2=T 32 2.0 00:10 35 7 8 2.5 1.0 5.0 54:50 700 560
3=Ww 33 2.0 00:10 35 7 8 2.5 1.0 5.0 54:50 700 560
4=T 34 2.0 00:10 35 7 8 2.5 1.0 5.0 54:50 700 560
5sF 35 2.0 00:10 35 7 8 2.5 1.0 5.0 54:50 700 560
8 I=M 36 2.0 00:10 35 7 8 2.5 1.0 5.0 54:50 700 560
2=T 37 2.0 00:10 40 6 8 2.5 1.0 5.5 52.10 660 480
3=w 38 2.0 00:10 40 6 8 2.5 1.0 5.5 52:10 66C 480
4=T 39 2.0 00:10 40 6 8 2.5 1.0 5.5 52:10 660 480
5=F 40 2.0 00:10 40 6 8 2.5 1.0 5.5 52:10 660 480
This standard program was designed using male rats of the Sprague-Dawley strain,

All animals were between 70 and 170 days-of-age at the beginning of the program.
The duration and Intensity of the program were established so that 75 per cent of
all such animals should have PSP and PER scores ot 75 or higher during the flnal
two weeks. Alterations in the work time, rest time, repetitions per bout, number
of bouts, or time between bouts can be used to aftfect changes in these values.
Other strains or ages of animals could be expected to respond ditterently to the
program,

All anlmals should be exposed to a minimum of one week of voluntary running
in & wheel prior to the start of the program. Failure to provide this adjustment
period will Impose a double learning situation on the animals and will seriously
impalr the effectiveness of the training program.

tancard short-duration, high-speed endurance maintenance program for postpubertal

and adult male rats in controlled running wheels.

Total Total

Acc- Repe~ Tire Time  Exp. Total
eler- Wwork ti- Bet- Run ot Revo- Wnrk
ation Time Rest tions No, ween Speed Prog.  lu- Time
Tire (min; Tima per of Bouts Shock (tr/ {min: tlons (sec)

(sec) sec) (sec) Bout Bouts (min) (ma) sac) sec) TER TwT

1.5 02:3 30 6 3 5.0 1.0 4.0 26:3 540 540







TABLE A-2

Standard eight-week, long-duration, low-speed
endurance training program for postpubertal and
adult male rats in controlled running wheels

Total Total

Acc- Repe- Time Time Exp. Total

vler- Work ti- Bat- Run ot Revo~ Work

Day Day ation Time Rest tions No. ween Speed Prog. lu- Time

ot of Time (min: Time per ot Bouts Shock (ft/ (min: tions (sec)

Wk, Wk, Tr. (sec) sec) (sec) Bout Bouts (min) (ma) sec) sec) TER TwWT

0 4=T -2 3.0 40:00 10 ! [ 5.0 0.0 1.5 40:00 =--- -—-
5=F -| 3.0 40:00 10 | 1 5.0 0.0 1.5 40:00 --- ---

] =M | 3.0 00:10 10 40 3 5.0 1.2 1.5 49:30 470 1200
2=T 2 3.0 00:10 10 40 3 5.0 1.2 1.5 49:30 40 1200

3=W 3 3.0 00:10 10 40 3 5.0 1.2 1.5 49:30 450 1200

4=T 4 2.5 00:20 10 30 2 5.0 1.2 1.5 34:40 £50 1200

5=F 5 2.5 00:% 5 20 2 5.0 1.2 1.5 34:30 150 1200

2 I=M 6 2.0 00:40 20 15 2 5.0 1.2 2.0 34:20 600 1200
2=T 7 2.0 00:50 25 12 2 5.0 1.2 2.0 34:10 600 1200

3=w 8 1.5 01:00 30 10 2 5.0 1.2 2.0 34:00 600 1200

4=T 9 1.5 02:30 60 4 2 5.0 1.2 2.0 31:00 600 1200

5=F )0 1.0 02:30 60 4 2 5.0 1.2 2.0 31:00 600 1200

3 =M 1.0 02:30 60 4 2 5.0 1.2 2.0 31:00 600 1200
2=T 12 1.0 05:00 0 | 5 2.5 1.2 2.0 35:00 750 1500

3:=W 13 1.0 05:00 0 [ 5 2.5 1.2 2.0 35:90 750 1500

4=T 14 1.0 05:00 0 | 5 2.5 1.2 2.0 35:.00 750 1500

5=F 15 1.0 05:00 (] [ 5 2.5 V.2 2.0 35:00 750 1500

4 I=M |6 1.0 05:00 o | 5 2.5 1.2 2.0 55:00 750 1500
2=T 17 1.0 07:30 0 | 4 2.5 1.0 2.0 37:30 900 1800

3=W 18 1.0 07:% 1] ! L} 2.5 1.0 2.0 37:30 900 - 1800

4=T 19 1.0 07:% 0 \ 4 2.5 1.0 2.0 37:30 900 1800

5=F 20 1.0 07:3% V] ] L} 2.5 1.0 2.0 37:30 900 1800

5 =M 21 1.0 07:30 ] [} 4 2.5 1.0 2.0 37:30 900 1800
2=T 22 1.0 07:30 [} | 5 2.5 1.0 2.0 47:30 1125 22%

3=w 23 1.0 07:3 V] | 5 2.5 1.0 2.0 47:3 1125 2250

4=T 24 1.0 07:30 ()] | 5 2.5 1.0 2.0 47:% 1125 2250

5:F 25 1.0 07:3 0 1 5 2.5 1.0 2.0 47:30 1125 2250

6 I=M 26 1.0 07:30 [} [} 5 2.5 1.0 2.0 47:30 1125 2250
2=T 27 1.0 10:00 0 | 4 2.5 1.0 2.0 47:30 1200 2400

3-Ww 28 1.0 10:00 0] [} 4 2.5 1.0 2.0 47:30 1200 2400

=T 29 1.0 10:00 0 ! 4 2.5 1.0 2.0 47:30 1200 2400

5=F 30 1.0 10:00 0o | 4 2.5 1.0 2.0 47:% 1200 2400

7 =M 31 1.0 10:00 0 | 4 2.5 1.0 2.0 47:30 1200 2400
2=T 32 1.0 10:00 o | 5 2.5 1.0 2.0 60:00 150 3000

3= 33 1.0 10:00 ] \ 5 2.5 1.0 2.0 60:00 1500 3000

4=T 34 1.0 10:00 0 | 5 2.5 1.0 2.0 60:00 1500 3000

5=F 35 1.0 10:00 0 | 5 2.5 1.0 2.0 60:00 1500 3000

8 I1=M 36 1.0 10:00 [} | 5 2.5 1.0 2.0 60:00 1500 3000
2=T 37 1.0 12:30 0 | 4 2.5 1.0 2.0 57:3 1500 3000

3=W 38 1.0 12:30 0 | 4 2.5 1.0 2.0 57:3 150 3000

4=T 3 1.0 12:30 o] | 4 2.5 1.0 2.0 57:30 150 3000

S=F 40 1.0 12:3% 0 | 4 2.5 1.0 2.0 57:30 1500 3000

This standard program was designed using male rats of the Sprague-Dawley
strain. All animals were between 70 and 170 days-of-age at the beginning ot
the program. The duration and intensity of the program were established so
that 75 per cent of all such animals should have PSF and PER scores of 15 or
higher during the tinal two weeks. Alterations in the work time, number of
bouts, or time between bouts can be used to atfect changes in these values.
Other strains or ages of animals could be expected to respond differently to
the program.

All animals should be exposed to a minimum of one week of voluntary ruaning
in & wheel prior to the start of the program., Failure to provide this adjustment
period will impose a double learning situation on the animals and will seriousty
impair the etfectiveness ot the training programs.

Standard long-duration, low-speed endurance malntenance program for postpubertal
and adult male rats In controlled running wheels.

Total Total

Acc- Repe- Tire Time €Exp. Total
eler- Work ti- Bet- Run ot Revo- Work
ation Time Rest tions No. ween Speed Prog. lu- Time
Time (min: Time per ot Bouts Shock (tt/ (min: tlons (sec)
(sec) sec) (sec) Rout Bouts (min) (ma) sec) sec) TER ™wT

1.0 12:30 0 ! 2 2.5 1.0 2.0 27:3 750 1500




TABLE A-3

Standard eight-week, endurance, swimming
training program for postpubertal and
adult male rats

Expacted

Per Swim

Day Day Cent Tire

ot ot Tail (min)

Wi, Wk, Tr. Aeight EST
! 1=M | 0 X
2=T 2 0 40
3=W 3 ct 50
4=T 4 C 60
5=F 5 [ 60
2 1=M 6 2 40
2=T 7 2 40
3=w 8 2 40
4=T 9 2 45
5=F 10 2 50
3 1=M " 3 30
2=T 12 3 30
3=W 13 3 30
4=7 14 3 35
5=F 15 3 35
4 1=M 16 3 35
2=T () b] 40
3=w 18 3 40
4=T 19 3 40
5=F 20 3 ac
5 I=M 21 3 40
2=7 22 3 45
3=W 23 3 45
4=7 24 3 45
5=F 25 3 45
6 1=M 26 3 45
2=T 27 3 50
3=w 26 3 50
4=T 29 3 50
5=" 30 3 50
7 I=M 31 3 50
2=T 32 3 55
3=wW 33 3 55
4=T 34 3 55
5=F 35 3 55
8 1=M 36 3 55
2=T 37 3 60
3=W 38 3 60
4=T 39 3 60
SaF 40 3 60

*C = clothes pin only.

This standard program was designed using male rats of the Sprague-Dowley
strain. All animals were between 70 and 30 days-of-age at the beginning ot
the program, The duration and intensity ot the program were established so
that 75 per cent of all such animals should have PET scores ot 75 or higher
during the final two weeks. Alterations in the per cent tail weight or
expected swim time can be used to affect changes in those valuas. Other strains
or ages of animals could be expected to respond differently to the program.

All animals should be exposed to a minimum ot one week of voluntary running
in a wheel prior to the start of the program. Failure to provide this adjustmen:
pericy will impose A severe, sudden exercise stress upon the animals and will
cseriously impair the effectiveness of the training program,

Standard endurance swimming maintenance projram for postpubertal and adult
male rats.

Expucted
Per Cent Swim Tire
Tail weight (min) ST

2 40




APPENDIX B

ENVIRONMENTAL CONDITIONS AND BODY WEIGHT VALUES
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