— in ~.—-———_—_ _,A :4 Vi w—v v—f MEASUREMENT AND- ANALYSIS OF SOIL PRESSURE DISTRIBUTIW UNDER TRACTOR AND IMPKEMENT TRAFFIC IN AN ARTIFICIAL FIELD Theda fee The Dogma mi M. 5. MICHIGAN SYATE UNIVERSITY Gian Edwin Vanden Berg 1956 ...... i‘xm 1HESI§ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 3 1293 00076 5291 ‘bvisSIUJ RETURNING MATERIALS: PIace in book drop to LIBRARIES . remove this checkout from .—:—. your record. FINES WIII ~ — be charged if book Is returned after the date stamped below. .IEASIIRSICLCNT AND AI‘GAIVSIJ OF SOIL PIIISSSURE iDlSTRIBUTION UNDER TRACTOR AND JNPLEhENT TRAFFIC IN AN ARTIFICIAL FIELD by Glen Edwin Vanden Berg AN ABSTRACT Submitted to the Nichigan State University of Agriculture and Applied Science in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Agricultural Enfiineering Year 1956 Approved by NLL) 0% m - W ._ .... _M.- - 3~S’Lo TH 5515 Glen Edwin Vanden Berg AN ABSTRACT Twelve strain page pressure cells (transducers) were built to make soil pressure readings under traffic in Nau- mee sandy loam soil. The traffic was provided by a plowing demonstration which was part of Powerama staged by the Gen- eral Motors Corporation in Chicago, Illinois, from August 51 to September 25, 1955. The cells were placed at various depths in the soil per- pendicular to the direction of travel, and pressures were recorded with a six channel, direct-inking recording oscillo- graph. The necessary measurements to locate the cells with reapect to the tires of passinc tractors and implements were made and recorded on the oscillocraph charts. Contact areas, weights, pull of implements, and other necessary information were measured to enable calculation of loads carried on each tire or implement. The data from the charts was put in tabular form using only the maximum “ressure readinas for each cell durinfi each pass. It was assumed that the maximum pressure occurred un— der the center of the tires. On the basis of this assumption, the maximum pressure readinns for the same tire were plotted on a graph representing pressure versus depth. A smooth curve was drawn throuflh the points and called "center of tire." The readings of cells adjacent to the cell indicating a maxi- .um reading were averaged and plotted on the same graph as mentioned above. The smooth curve drawn through these points represented the pressures 0.4 of a foot from the center of the tire since that was the spacing of the cells. This was continued until zero pressures were encountered with average readings from each pair of cells determining a curve repre- senting pressures at the same distance from the center of the tire as were the cells. This was done for each tire where pressures had been measured over a large enough span in depth to permit drawing good curves from the contact sur- face to the depth of soil at Powerama. Values from the averaging curves were then used to deter- mine isobars under the tires. The resulting family of iso- bars gave a good visual picture of the distribution of pressure under the tires for the given soil conditions at Towerama. A formula develOped by Froehlich and applied to soils by Soehne was used to calculate theoretical pressures under the center of the tires. These pressures were compared with measured pressures. The following indications for the conditions at Powerama seemed true: greater pressures were transmitted through loose soiksthan through dense soils; the lugs on the rear tractor tires carried the majority of the rear tire load even in freshly plowed soil; the plow bottoms applied a small nega- tive pressure to the soil; the peak pressure under a tire always occurred ahead of the wheel's axle; applying a load in small scattered areas fl© vmahpao .pmom wqflgawp gmwcs pgoomm Umfidmmd wmnm powuaoo HwOHunHHHfl .w UGOH .U mmpm Umuwfiflpmm hp Uo©w>flw vowhhmO vmoa .o .Hfiom Spas pompcoo am mops mSH haze .Q m - p.fi :fl. nde mmm mmnw av. a Aanoxqmmummwmml .11 Hmm mmw P I won ¢0Hm QDH Ommw I p®0hw mQHQfiBB Tl Hm; EsEfiNw@ w I Oomw $.Hm @WH ommw I 3.00% wGHnHfiHwB mom m.&H n.a¢ mom mmmm an I :1. tilrllll m mmm m.wa - . paav ma 4 mmm o.© - m - omna on chap pmoag . 4. ufimflfiflw H pmm m.ma . W . _ mamw ma H mafia nmog a I w m ”Aquagmw m new «.m - M n H mama on . opfle pecan WI .wcflpo at W «mm o.¢a ¢.oH # can bmaw ma mpfia awom w w _ . .mwfipopmrm mam m.m m.na u ooa _ omma on M mafia psopm I 0 Ar mafibfinvflw own m.mH m an a ¢m momw ma w mp“? gmomw . w. JMCHBOng mmm m.n m.mm 0 ma mmm on ” mafia psogmm Aamgv oowwhsm o Awmmv m _ soflmm =0H uofiflagx a A .nHV A.nav Ramav _ 095mmohm OHSmmmAm mend pmwpcoo Umahhwo mafia CH paefimamfiH a oaumm dehummod owmuo>¢ oopwEHpmm vwoq 095mmmhm Lo onfie.g GZH>¢m zo QMOmAm HHOW EmaDiz EH Dmmbmdma mflmbmmflmm sz mLl1o1.\..l¢vlvt .1.. ..u.i!’.v.v6o1 1.i1i1-.01 1.0 ..1 o.§o o... 9* u..§ 011v : .. .Oqoa4ii. ....-. co..1‘+o.lou-..1bv1n1 1... ..OII.11¢..I1¢11‘_V.1.0 . . 01¢. 11c11.c-|v..0u lflv-.. A11. 10-1l1.ObI....s ..-tnv..,n w..- it.‘1trvv.WY..78-...1ir... .... . .. .........1 1 o. 1...-.. 1vl191Vo 7.1. 01.5 '1?er 100'. .yoeLO|hVVt.V.uvf.clO-‘,r.|’§c. .YJ-.[.ti r019. .oohl..u. ..1o 41111.9? 1. 1... 41 V 1 4 a, 4 11 4 . 4 4 .1 3.11 .111.§-¢4.-1¢....91..1&+L. 11.?ti..1 v .o. ...1¢ ..1. ..o....11. -... ... .1111. -...fi1... 9 qt”- $.11clb -19.. 9v.o {.11 ..¢O too-1O. OOOaAvc..1.IfAToo-!.b1v1irn~ ...- .... ...! . . .... . . .. a .11. 1 . +n6¢AVv.¢T..$; utov .vou|.1'1.oitzo,6|OLooao. ‘Coik1t1eQA 0?..VAIb¢I.Av..quno.1 11.. .... v1 . .911 1....-.5. 1 1 1T?! ...1 u... .é1e-vi-I.6.r 1... ..1. H.07ATV§.$Y?onl.;|o,?91l6.o. I... ...I .... ...- . .. .... ..i. 1.1- 1-.. 1 . « 1&1. ‘Vuelzvo 196-??1T4Tn r074. .1011?!va 9‘55 III-‘7?! v$». . . .... can. ...» 1c 1 11.9 9... ifit¢+nu . V or... GOrnv Oau‘ «9015.11. 0 V..- v... tA~19Tv1A.§1o-4ie 75.1. . 1....rtnc. 0.1.Auv1o115(IISO6T11619 91.... b 0‘41leblo .... 4“! 01»... use. ...! .... 9140 w...» . . .. ..nluo.ov...u .11: T1111. 1916. .09. Q .1 v 1.16. 41+$LY .... rdeWiedu a.-. :09: 14AC10n1111101o$1$..1 1.- .. ul11101I ..u'1v+-’-.Té$|9 111.11 r 1.. 11 1 1 4 o .1vir.lo. .... prvb 0.. o...b a.1§..ro.t.vlrv-.DO| .101V1A. ..14 .1. . .1. .1 -. v-11.1- .1 . a v A.v[9.1.?1§¢ 0.. ...; \1. v-.. ....ralvvtc 11-1- ....1L171. ... .¢.. - .. .1 . 01. 1 A. . ..e 01-9'3Aillv .l44119111140lon01 1.10 v-IO¢L05601+.1|?6101 ...> a..1 1... 11.11.11 .14111 ..Iht. 111. ....-.j ...- -1.- -..-.l: 11.1-1111}- .-.; .-L. F ' , O09 .... 1 10.. 1. 0; v . 1 fun. .... o . 1 .'.. . a 1 . Y..V. ... 10147.091.lTlino.fi-¢ or I... . ..:-: _._...3. am .:vm. 1m 1va . @fi::. -111m . ...... ?$1$|.1 -1.1.1--. n ..(11‘! 1-»Y.-. . .. an . T . L‘ . . 1 19. .... . .1141111.411113111011-‘1-0114 .. 1 Q .v.1;vv§cl.l6|io. 1....104 . og . I. 1 .I.$ .. . .... ...- .V19 ..1.. .aQ..fi1-4.. .... .... ...? ... 11.1L1I9111ATAQ.V $01.01!? .V.11.11 J I. . .:.:.71111... . .. 171$- . ....€.~ . ... . --..-T.-1. .. 1 - . ... - ...... . -1.-. - --. r u..oA!..9. ...v. n... .voA 1+ 1.. .1... Il‘.o\. . 1 1. ..1 .i..1l. ... .1111Tf1c. .11. . 1 ...1 .... .1111 ....- ..1. 1.4.77..- ..lb-v. 11 sfi.'00 h'QI -Oill I‘Ii uA-t 0-09 0.95 .l.. v .1.-.1 1... 11.1 .. .... ...110... 1 1. v . .... ... .... . .... ..so .. ....v. . 11.. .... . 1. ...1l...1 ...1 1.1l. .. 1 . ... .... ... ... 1a.. .... .... ...l. . .... ... ... .1 1... .... .... . .. . . .- . . . .. ...9 1... 1. .. . . .4.. 1... .11. .... ..e. .... .... .... u .7.-. .... l..-1.--. .- . 1.1. .. . ... 1. . .01. .1..-11.1\.1.. o . . . . .. . .. .. . .... .... .. ¢ . ...; .1.6 .... ...1IY..o .... .... ....To .... ..1. . ... .... .... .... .. o . .... .. . . .. .. .-.. .... .... .... o o .1 . .1. . .. ... .... .... ..11 ..1. . n alt. «vol vl'0o 'Q-A a... ton. '1 A: ...:0. h ’ Vot‘ .I h v.ht 10.1 ‘0‘- 0.. o .1 Glue I - 1.1.111... ..v. .... 0’9? 0... o... n. . n . .ov.1.... ... ..‘i. ...4 .... .... .... . . A VlLA . v 1 1 n u . . o 1.11. +1.. 7.. Y1V. o 1 . . . u .. . . J o 04cole4¢iYT.... .... ...v .1... 1... ...+.. 1691A vqstvlwor.1c0 c.n. u..< nit. ..A- 1... .... 1 o on¢q v.90 ..11.1¢V$. 1... .... .... .... r 1 1 ooicteroo-ont. .... c... ¢1.o $1.1l.1.1 A... . . ..o.+¢v.. ...- ...e e .. .... ... 1.111. .7n10-o 111. 11.. .... ...o .11. Av.. .... . .vo-u1blono. .... .... ..-.Ivo.. ....v1..v . Ol¢fvo....o ‘.+1 ......111..1 vlv.‘ .... .... 1 1.0+.o‘....4.- .... .... .... o... .... .Av.1. 9 9.1.voe11ol7111. ...; .... .1.- ... .... o Liliti. ...- 1.17117... . 1 - .. .a..... ...1..11-1 . .oooA1?.1o‘ cab. 6... .... c... a... u... ..nYTO c .... 11 . .... 11.11.40 4va. .... .n 1 A1-1.vcr .... .... 1..¢ ...fiwfin.. 1... ..1. . . .. . o... .... . . .... .... .1 . .... o . .... .14. o..1 o..1 .... 1... . .1 . .... .... .... . .. .... 11. 1. . . . . I. .1.1.. ... r... .... ... 1. 1 ... 1 1 .1 0A..Vv .kv..1a. o... . . , . .. 1.... a1... ov<1 .... ..I. 11!. ...». c1..41i+.. .1uo .t... . c .... 111111111. . 1 .. .0..1..on ..v .aw1b.. n. OliQL.A\o. .A - O'vo Ina. ..v. 7.0? .4 .. u on. .... ... .... 4 1' UIAI nu. tut! .l'l OVA. V7... .40fi I I III- dluc ¢7A V ‘l. '1‘- I. t it. . . t .A-I.fi‘.-0 o‘A. .1.1 . .. . .... . . . . . . ...1 1. .... .... .1. ...1Y.To .... . . .... . 1 .... . .. .1. 1 ..1. . do . . 1. .111 i .1. . ... 1 ... ....11ol. 1. . . . .. 1. . .... 1... o . .. 1r . ...v.1o¢l.... ..- 1 .... .. .1.. ...1. .. a... .111fi1 . .... -41. . .L 1.. .... .... . .. 1|.1. .... no.-. ovlv1. \l 1 _‘A.L>. 1.. .... .... .... .... .1 ....v........... .... .... 1.1. ..... 1.1.4...- .... .... .... .11 o 1.1: 0.4. 1. 11.. 11. 1... 1... .. . ...Viv9io.wlo1. ..‘1 Wm ....T-V... 1.10 ... .... ...1 9.11. .... .... ..V1. 11..1 .... ... .... . 1.111171. ... .1. . v... ..o. 1 .. 1.0.7.... .. . . .. .... .1. . - . .... ... .. .... ...1 .11.. . .9.. . .. 11, . .Tifii... . a 1..1 1.1 .. . .. ... 11.1 .... 11¢ . .... ... .11. ... ..1. .... 1.1. ...- .1.. ..1- .1.& 111,1.-1111l.-..1.1 ..-1.......1 7.1. ..--.... .... 1... ...1 .....9... ... . ...1 1. ..- .. . - .... . .. .11 .... .... .... .-.. .... V... v... .... v... s-.. 1... .11. .... A... .. 1 .... .. 11.. .... ... . 11.1 1.-. .o.. .. . .. .. 1. . . ... .no. .... .1 . . .... .. . ... .1u¢1..oa 1 .1 ..-. 1... y 01 I. u .....1... 10.1 .. r.... .. . 11 I ...r..-. ..u. T..OA101. 1 ... .........1-1.. ........11.1.. .. ‘1.- IVA; 1. . I...‘ 0‘1 I~I§Y101Oll I. . ......... .... .... ... rv1oaoo.. .. . ., .... .- .Y‘...- 1. . .... ..1. ~ .. ......... .-.. .... ... ,..1 .... . . .. <1.. 1... .. -l.-..a .... .... .... BuAvuho.04 11-ol..a. .1-.lLMJ1lTO.O. 11 . -... ...1 . .1lv‘-.v-oi o -.- 1..v ...v. .1.0.Ap:.|11 -?1¢rl .11L1 ... ....-..1 .1.. -IIOA‘Y-I I... DI.1QIIA‘ . .... 1 1A #1.. . ..o1111 . . .. 11-1-. -1- 1.1L 1 1b P ’ll. L r > L b D 'h I IDII 3 .mi . ..10|.PO.101 I... 1.1? 1 1..- 1.4... . +0? A t 1 TTolo1. .... .... 11... 1. . .1 .... .. . . ..1.f.1.. ....H.... 1111.111. .1... .11.. ..-. 1 .... 1, -AA7 T.-.-1 ,1 . ., N 1 .... .-..111... ... .... . .. . . .1 . -- ... ......I.. '0 O c11L 111. 0.1 1. a . . I1 1 1 o 0... .11 1 n q . . . II. , .0 1 . o . o. .1. 11.1.1. . . I . . . 1 I . 1 u . . . . . 1 . . . . 1 . 1 . v . . . 1 . 1 . 1 b . . 161.1111 1.... 1.11 ....1 ... ..11 , p 4 , 1.1... ..Q -.Ql..‘ll+11.-1..o--1 111..- .... . 11 .-.-..11. ..10 o. . 1|.1W..1. .. ‘, , , 1 . 19.011.111.11 .... .... 11... ..v.. o... f... ...1.111.11.1.|......1 .1...111-11 .1...T111 ... -1...,....Y.... ....*.... . 1 . O . 1 1 1. 0 1 . .1. o . . o . n A. v o . . . T7110 ... . t 1 . I 1.10 11-11.11 71 . ... I1. . L . 1 ...14 1 11 a v. 1 . . . . . 1 n . . o . I 1 .1. 1..AY...1 1......- 4... .... 9. ..91 1 II4. 1.1- $1.. ...hI...1 .... ...... 1.1.1.0.. .10- l . . 4 11 1. 110 4 u a O 1015 l .114 110 v t .1. .1 . 1 A .11. .1 .1 . .16 H o - 1.. O V I O. . . .1..|. [.1 ..I . 191 0 1 1 A 1. . v n I 1.. 1 . . I . 1-1.1.1. .1... 1’11. ..11LT1..... ... r .....1. 1.1.11.11911..111 11.. I. 1....-. 4.... 1... . 1 v o . . 1 -. 1:. 1.. . .111. ...1 1.. o 0 u b . O n. u . Q 0 I . . 1 . . . . . . 1 a . . o . A . 4 h . . 1.49 b . . .v. . 0 o 1. 7.11.11 . 1 O 1.9 1.11.194 « 1 . n u . g . 11.. 1.11.11111 0101.- 1... o . 11 o . 01A . 0-1.. 111 v F.-. 1 V . . . . . 1 1 1 '14 I. . A . I I I I 1 . u . 1 7.51.1111? 11711.1 i 14 . . . k 1 11111111111 4 .111 .. 1 111 . ’- 0 c 4.. 1.11 n o 1 . . < o #11111 11.1. f 1 1. 1+1 11.1. . c 911 TY. . 1111.1. 9. J 1.. I4 ’., 1 O . . _. F. . 1 . +1 11.1 . 1 1 .. . . . . . . 1 1 1 11; 11'. 1h . ... 1‘111 1 1 1 1 , , , a 4 , , .111 1'11vvl+.¢11vlt.‘t 1.11.1. 1Y1-010Lvl'v1oT1.v1...‘.4|.l1Yv.. .... 1.61....01111114 A... 1'90 #1 oiTchi-11Y’v1o ‘11... .... .l$§l11110111‘1-.r.11.. . . . .... .... .. . .111111111.v..11 01.1 .11. .1.. 191 11.. 11.1 ...».11.. .1..J1 1.. .... 1... ...41-1... 1.... 1.. 11111117....111914.1....1 .... ...- 111.11. 1.1-1.7.... V . 1.1 . .1 ...1 .... ..-]. .11. 1.... 111. ........1 P01111i1o1... 1... .11.. 1... 1... ....Lwloo. a... V... .....1t1 ... Duct .... 1|.v.oA.t11A +01. .... .... 6.‘..1.T1I.1 .10. ...1 .... 1, 1.11 . .. I 1.-. .1... .....A1t1u. ...¢.1..1.v . .1 1.. ....A- .. ..1. ..V. Y..1 ..14..... .1... ...- ...,1L...o.1.1w....¢ ....1.... ..111 ...1. .....1 1-1.11-1.o 1.1. .1 . 1.1fi-11111 1 .-....111w.1.. .... .T. .11111111-1111 +1.. ....I. 1............. .-.. ... 1 . . 1 . 1 1 1 1 1 v . 1+. 11 Y. 1 1.1TVIA 11.1.1 .1. 1 A . 1 11. T511- 1 . 1. . . .. . 1 . . . . . 1 . . . . n . 11111.1. ...1 . .11. T1 1 .1111. w. . .. . I . 1.1. 1. 1 . . . .- 1. . . . . . . 1- .... -111..11191.. .11. .1 .... 1.111.r.v.l. .... .... 1... .... .... .-..1..11lr11.11 .I v .... .... .... 1.1... 1... .... .... ...- ..--r1... .IY1AT11..A11? a... .1 ..11......... ..-- .... ..111 I . . 0 . .11 .1; 1 1‘1. $111.1 1.41 . . 1 11111110 11* I I 1 1.11 v o I .1. .111 1 9 1 .1. .1111 4 1 ....vv... .91....1. 1.... .11.A11.. .... 111. 1....1:|.1.. ...1 1. 1... 1... ....T .. 1 .. 1m... . .... .. - . . ..1 ... .... ... .... .. . ... 7.... .. . ... 1.. 1.... .\. 1 ...0.; 1 . .... u .. .... ....v..! .... .... .... .... .... .... .S $19.11. .. . .. . .. . 1 .... .... .... .... .... .... .1111.... 1. . . ... .... 1 . . . ... 1o..1 .. . . . . .... .1111 1.1. 1.. .1. 11.1 .... . . . .. ...k1 .... 11.1 . .. 1... 111. 111%.... T , d ..1 .111..911 ..1. ..111 .11..1 1. .111..... 11.1.1.1-.. 1.111v..10 1.- v 1. V..... ..-. .. . 1. 1 :11.Y .. . .... .11. .11. ...171.... ...4 .3 I11 I 1 . fi .1 unun file. I: ’ coll 41¢. |‘0t I... hit. II! I.‘ . . . 1 1 - 1 1 t 1 . . . 1 p . . .. n 9 O.- o 1 . o . I. 1 . . .ifi+111. . 1 . 1 o 1 . o . I. 1 1| V11. . 4 l .l-. I I. .u . ‘-I 1". ‘.1“ Il.‘ .O.i Il‘v .Ol. AIQI ‘00. U. .~ 1 . . . . . .... .... .. . .... -.1. ..1.... .1-1T-1- .. . ..11 .-.. .... .. ... .1... .1 .11... 111.. ..-..r...1 ... .... 1.1L .... 1?...111. A ... . 1.1 .... .... .... .... ....VT..1 1 .1 11.1. ....1 .... 1..11A Y11 1..- 1... .... .... .... .... .... .... . .. .... 1... .. ...- ..-.A 1... ...1AT1ub. I... .-.. ..11 .111 .... ....1v1vnnivv1p. 1..1.J4 , 1 111..1.OI .... ...- ..-. ...V ..1. .... .... ...»..-.l... $11-11.... .. . 1.11.1..-1...-. .. . ....To1'.- ....11 ..1. . . .1111 .... 11... .... 1.. 1.1.. .... .111- .11.. 11-1 ...- .... .... . .. .... 11-.. -.|- -.111 1.1. Q - ‘ O Y 0 ’1. ‘1 V O O D p I o I U ‘ t r l A 4 I I i I Q I I u ‘ v I I a Q h I . I ~ g t v V 0 ‘1 V VI 1' ' I1. I a I l I 4 a p t I . a Q . V1. - I I 0 w 0 0 I1. C 141’ T11 Al 1 Q . 1 A o v a V l I a o w u I v Q 1.11 ‘1 V a A ’1' 1 1 I | fi I 1‘ D ..Y. v.... .1 . . .... .... . .. .. .... ... .11. ....111.1.Y1... ... .... .1...11...-.... 1... 1... 1... .... . .11. OIVO .1. nt.. .... ....Y.1. L10. 1 1. . ..l. . a 1... .01. o... ..Iv1lval1 1111‘ 01.. I... 1.0. .... .1.v 0.1. 1. . . o- 1 u I . v. . n . 1 . 1 1 . .1 . a 11.1.11 V . . . . . . . . . . . . 1 . v 1 . . . s 1 1 . . . 11 . .. .1. T. 1 1 V 4 1 . s . . . o c . 11 I n 9.1 9111 1141.1. 1 . . . . 1. 1 .11 Ilod .... .... 1 .1 .... ...- .... .... .... ...-.1... 1 .. 1. . .... . ..._1..11..-.. .... . ..111. .... .... .... ....f.... .... -3 . 1 1 1 . . 1 .1. . 1 . . 1 . . . 1 . . . . 1 1 1 . 1 . . . 1 1 . . 1 1 1 . . . . . . . . . . 1-1. .1111..- . . . . . . a . . . . . . . . . .1. . c . 1 1 . . . ..T1- 1 . 1. A 1 1 . . . . . . ..11 11.. .... .... .... ...- ...11. .. . 1 .. .... .... 1117.1.... 11.. ,. . . .. .... .. . ... ....1 .... 1-11 .1.. .... .... 1. 1.1. -... .... ...- 11-..111..?.r1-....... .... A.1.,111-.- .... .---1.1... 11.. 1- 1.11.44..... .... -1..-111.11.....1 11.111111. ‘ . ... 4... 1.. .... .. 1 ...- .... .... 1.1 .1.. .. . .... .... ...- ... .... -11. ...-......A1111.. ... ... Y... .. . .1 . 1 . ...1 ..11 1. . 1 .I.. o..1v1.1.. . .. .. . .... .... .... .... 111.. ..1. .91. 1... 1... .... .... .... .11. . .. 1 1. ... .. 1..Y .... .. 1 ...1 .... .11..1A.... .. . .... .11. 1...... 1.1. .. . .... 1... ....v.... 7.111. .... .. 1 ... ..11... .1 . ... ... .... .Io. .... .1.1 1.1.11... .... .... .. . ..IV 11.. .... .... .... 1.1.v11911 ...1A1nI111 .1. . .... .... .1l.. .... .-. .1. 1.. 4 .... .... .. . .. ... ...- 1. . .. . 1 .. .... ... .. .1....... .... .... ....11 ... 1.... -... ....TT.1.. . . .... 1 . .... ... ... .... . . .... .. . . .. .... .... .... .-1.iT.1t.1 ...1. ... .. . .... .... . . .... ... . . .. Ilo' 'lll I‘.‘ I... . t 1... ‘1 1- .1 .. TVIO 1VIv .911. I-.. 10.: o..- I t .l.. .111 oV'. >1 . no . .1 TI! . 9- .... ....11.. . . 1 . . ..A 1. . - ..11 .... .... . .1 .... . .1 -111 ..A.111.11v1..1 a... .... ...1 .... 1.1. .».1-. 1 ...I ... ... ... ... . l . . A .. ... .... .... .1.1 1... .... .... .... .... ..1. 1.111 .11. . .. .. . ... . .. ...- ... ... .... . . . 1.1.1 .1 . .A.| .... -... .. ...- . .. .... .1. . .. ... .1 1. 1... ..l .1. .11- .1 .1 .. .. _ . .. 1A.. ..A. . . ... . . .... .. I. 11. .. ... . 1. 1.1.1.1111 .11. .1... ... . . . .. . . . . .. .1. 1... ...1 . 1 ..1. 1. .... ... .... ... .... ,. . 1.1111 . . ... no. t .0 4 A .OI l . c o 1 1 A a I D D... .. n. v I s .- ll. . ... .... ....;.. - . .. 1. 1 .. - .. . . . ..- ... .1. . 1. 1... .. 1. ... .1. .. . . . - 1 . .... . .. . . .1.. . 1. . 1. .11 ... . . .1 .- .. . . . . 1 .. 1. .1. 1.... 1 1.... ... . 1 .111 .. . 91. . . . . .... .... . . . . . . . ... .. .s .. .. .... .-111111... 1 1. 1.-. . ..-..1.1.-,. .. - ... ... .... .... .... . . . .. u .. r .o I. 1. . 1' o. I 10.. .... . 1 1...I . 1. 1 .1 .11? I... u..l v... a... 1.1‘ . .. .a A. 1... ...-1 n .. 1 10. .I11 V71. ... . . . .. 1.1... .. . . . . ... .. .... . .. .... . 1 .. 1... .... 1... 1.1 .11 11 1. . . 1... .1.. ... . . .... . .. .... . . ... ....A ..1. .1 . .111 .... .... 1... . .. . 1. .. , .. ... .1. 1... .... V . ,. . .... ..1 .1.. O O ., .... ... .,.. .A. ... .... . .- . ,. . . . . . . . ... .. A .. .. . . ... O .1. . .f . . . . 1... .... .. . .. ...- .... .... ... .... ..... .... ... . .... .... «1.. ... .1. a .p .P 111. 11. b . . 1 I L ILI III. - 2 mi penetrate the soil enoueh to permit the slots between lugs to touduthe soil. Usina the total contact area of the rear tractor tire while watering, the calculated mean pressure applied was 10.4 psi. Obviously, more pressure than 10.4 psi must have been applied bv the tire. Thus the load carried by the con- tact area could not have been uniform. Either the lugs carried more weight than the slots between the lugs or the pressure under the center of the tire was much greater than the mean applied pressure or both. The area of the lugs in contact with the soil while plowine was 84 square inches. The elliptical area, includ- ing the space between the lugs, was 332 square inches. If we assume only the lugs supported the load while waterine, the area of lugs in contact with the soil would be 84/333 of the measured elliptical area (59 square inches) since the ratio of lug area to total area is a constant. assuming this lug area supported the load, the calculated applied pressure is 41.1 psi which seems much more loqical in View *3 5' H. U) [—10 of the measured pressure in the soil. ndicates that the load carried by the slots between lugs of the tires must hwve been small. Thus it seems likely that the lufis carried the majority of the load even in loose soil. The apparent reversal of Soehne's findinrs does not indicate his work was in error, since the heiaht of luqs on the tires he used is not known. The lugs on the tires r] (3 at Powerama were one and one half inches hifih, which may have been higher than the lues on the tires he used. Thus it is entirely possible that for a lower lus height Soehne's findines could be right. However, we must conclude that under these soil conditions, with 3 lug height of one and one half inches, most of the load is supported by the luvs, even in loose soil. LogatiOnMoI‘- 1" 0.1 nt.- of- Limimyajrassyrs With Heepect to_wheel;§xlg Three tests were run to try to determine the location of the point of maximum pressure under the tractor tires with relation to the axle of each tire. Each test was conducted in the following manner: A transit was set up so that its vertical hairline determined the vertical plane in which the line of pressure cells laid. The chart Speed on the recordina instrument was set at ten centimeters per second. One observer held a pen- cil near the ends of the tracinn pens and close to the chart. Another observer sighted throush the transit and have a ver- bal signal when the center of the rear axle of the passing tractor was in the vertical plane determined by the transit. As quickly as possible after hearing the signal, the first observer made a mark on the chart. Although this method was crude, its simplicity probably permitted reasonable accuracy at the slow tractor sreeds used. also time lost in human 4O reflexes was partially compensated for, since the pencil could not be held exactly adjacent to the points of the pens. Thus the chart had to travel a short distance before the exact point representinp the axle was under the pencil. The speed of the tractor as indicated by the tachometer on the tractor was also recorded on the chart. It was heped to use the speed in determinins the relation between dis- tances representind the tractor and those recorded on the chart. An attempt to do this was only partially successful. It was noted that small changes in the recorded Speed of the tractor would alter the results considerably and it was felt that the speed of the tractor had not been measured precisely enough. Therefore a different approach was tried. Pen traces were recorded under both the front and the rear tractor tires. Assuminn the point of peak pressure occurred the same dis— tance ahead of the front tire as the rear tire, the distance on the chart between the two peaks would represent the wheel- base of the tractor (BC inches.) Thus a ratio was established so that all distances on the chart could be converted to dis- tances representing the tractor. Using the ratio, all dis— tances on the chart could then be measured from the line locating the axle and converted to distances representing the tractor. This was done by averagine the three cells nearest the center of the tire to obtain each value recorded in Table II. 41 .moeocH NH 0» OH Haoa eo enema eomeHpma .30 a o % amp emcee was HwOm exp m pmoe H p U was .UeBOHQ hasmoaa mes HHow on» m use A name "opoz .5 -1 =1, . o - ,:;Vl .A‘ | uliav ‘I _ aaxgl v. stthx KJe¢ a tJe\n\ ..4 oak ems.snw_ _ km... rink 76* W CH ,EsaukkOLodxt w we Coioof. T .maxd esp mo Geese pmaasooo wmaSmmead seed Had : 3. \O ‘1 ‘L W m.¢e m.mm w.em e.ma mm.) a, omsgmpa m.me m.om m.em m.ea em.m H e.m aka a a W s.¢e n.Hm m.am s.HH em.m l ms.H mtg al h M m.me H.mm s.em >.sH ee.m _ m.a w H W a, w ll A.aac A.aav A.eav A.nav A.cac m Angel N w amom paonh nmmm nachm paom _ m _ meme mmmpmmmxm memes easemema a mmeoeeme we: AHom moama wszDQ BmmHm nae mmbmmmmm AHom Mme 2H mmbmmmmm wozaemHm He>ema qeeoe mona ea mozaemHo mama means as ezHom swamm same QHOm WEB mm>o UZH>OE mi; moeofima HEB qume magma moeutme mme mo mdmm HEB OB 92¢ m0 Gamma QflBomBHQ mfimwmmmmm HHow HH mamde 42 It was noted that the peak pressures always occurred ahead of the axle. From this we must conclude that the major portion of the contact area lies ahead of the vertical plane containing the rear axle. This seems logical when remembering that the tire is compacting soil ahead of it as it moves over the soil. This would be eSpecially true in a loose soil and that fact is observed in the data since dur- ina Test 2 the point of peak pressure ahead of the tractor was less than during the other two tests. P38582398. Pads? flow .3 stat oms Pressures under the plow bottoms were recorded while the plow was Operating. These values were negative since the pen traces indicated a reduction in pressure. It was possible for the cells used to indicate such a reading since they were under a small pressure load while in the soil; this lead would not be present if the aflls were out in the atmOSphere. Thus the cell: indicated a negative pressure but in reality the neaative pressure was a reduction in pressure already applied by the soil. At a depth of from 2.5 to 5.5 inches below the plow bottoms, the average of 24 cell read- lnRS was nemative 1.05 psi with the maximum being 1.9? psi. Not all pressures observed under the plow bottoms were neeative. Small positive pressures were observed which.may possibly have been caused by the fallinn of overturned soil 45 from the adjacent plow bottoms. The pen trace would jump up and down with great variability whereas the pen trace under the tractor tires was relatively smooth. Thus the impressed pressures under the plow bottoms changed very rapidly. Also rather large pressures were noted under the as plow tires. Some of the pressures were as great in magni- tude as those under the tractor tires. Therefore under the conditions of the tests, it seems that nearly all of the I' load on the plow was carried by its wheels whereas the plow * bottoms did, in fact, create negative pressures. No attempt to include the plow tires in the analysis was made since the load carried by the tires was unknown. The author feels that a characteristic of the pressure cells used to make the soil pressure readings should be men- tioned. These cells measured only soil pressures that were normal to the face of the cells. It is highly probable that the pressures in the soil were not always vertical; thus the cells indicated only the vertical component of the soil pres— sure. However, under the center of the tires the soil pres- sures probably were vertical and there the cells indicated the total pressure. Also the soil pressures probably were close to vertical until they were past the edges of the tires. Therefore, the pressures indicated by the isobars beyond the tires' edges may be lower than actual pressures present in the soil. Other parts of the analysis would not be affected since pressures under the‘center of the tires were used. 44 CONCLUSIONS The use of strain name pressure cells with a multiple channel recorder provides an effective and rapid means for measurina pressures in soils. The ratio number may be a quick way of evaluating effects of different tires in the same soil, or different soil conditions for the same tire. The graphical analysis used to plot isobars results in a family of smooth curves clearly showing the distribution of pressures under a tire for a given condition. Since in any field work one would expect variations in soil conditions and loads applied as well as pressure meas- ured, the method of graphical analysis may be a simple way to obtain smooth curves representing average values. Froehlich's formula as used by Soehne apparently gives close approximations of pressure under the center of a tire. The more pliable a soil the more pressure it transmits. The high lugs on rear tractor tires carried the majority of the load in the Naumee sandy loam soil. loads applied over scattered contact areas caused less pressure in the soil under the center of the load than loads applied over one continuous area. The maximum pressure always occurred ahead of the axle on each wheel. The plow bottoms applied a slight negative pressure. The greatest part of the load of the plow was carried by its wheels. RECOinNDJTIONS FOR FURTWJR STFDIES Determine the distribution of pressure at the contact surface of tires. Determine the distribution of pressure in a normal field under various soils and soil conditions. Investigate the effect of varying contact area for a given load on pressure in soil. Investinate the possibility of using vector analysis to develOp mathematical relationships representing pres- sure distribution in soil. Determine the extent of soil compaction due to pressures in soil. Investigate and develOp means for lowering pressures in the soil under tires by using scattered contact areas or greater tire flexibility. 47 LI 'PEJRATUR :1 C] TED 1. Soehne, Halter. Druckverteilung in Boden und Bodenver- formung unter Schlepperreifen. (Distribution of Pressure in the Soil and Soil Deformation under Trac- tor Tires.) Grdlpn d. Landtechn. 5:49-65, 1955. 2. COOper, A. N. Investigation of and 1nstrumentation for Measuring Pressure Distribution in Soil. Unpublished Ph.D. thesis, Nichipan State University, 1956. 5. McKibben, E. G. The Soil Dynamic Problem. Page 412, Agricultural Engineering, December, 1926. 4. Nichols, M. L. Dynamic Pronerties of Soil I. Page 259, agricultural Engineering, July, 1951. 5. Nichols, M. L. Dynamic Preperties of Soil II. Page 521, Agricultural Engineering, August, 1951. 6. Baver, L. D. Physical Preperties of Soil. Page 524, Agricultural Engineering, December, 1952. OTHER REFERENCES: 7. Randolph, J. w. and Nichols, M. L. A Method of Studying Soil Stresses. Page 154. agricultural Engineering, June, 1925. 8. Kummer, F. A. The Dynamic Properties of Soil. Page 75, Agricultural Engineering, February, 1958. 9. Seaton, L. F. Compaction of Soil Due to Tractors. Page 68, Agricultural Engineering Transactions, 1916. 10. McGeorqe, H. T. and Breazeale, J. F. Studies on Soil Structure. Pages 411-447, Arizona Station Technical Bulletin No. 72, 1958. 11. Cooper, A. J. and Kummer, F. A. The Dynamic Properties of Soils. Agricultural Engineering, January 1945. 12. Randolph J. W. Tractor Lug Studies on Sandy Soil. Page 178. agricultural Engineering, May 1926. 14. 15. 16. 17. Gilboy, G. Soil Mechanics Research. American Society of Civil Engineering (N.Y.) Proceedings 57, No. 8PP 1165—1188, 1951. Jensen, J. K. Experimental Stress Analysis, Agricul- tural Engineering, September, 1954. Lee, G. H. an Introduction to Experimental Stress Analysis. John niley a Sons, Pages 114-147, 1950. Lucas, D. B. Plowing Draft Tests on Fertilizer Plots. Page 555, Agricultural Engineering, November, 1928. Schwantes, A. J. flowing with Rubber Tire Equipped Tractor. Page 66, agricultural dngineerinfi, February, 1954. - Jilliams, Ira L. Keasurement of Soil Hardness. Page 25, agricultural engineerinr, January, 1959. Nichols, N. L. Shear Values of Uncemented Soil. Page 47, Agricultural Enaineerina Transactions, 1952. pun. .mp5. Fug -.-- '. , ‘H "r .- ._ —._...--..u 49 {if} 1.51%D1X The weight transfer in the tractor while plowing was calculated as follows: /Cfi980’¥ Vérf’f cal F/in a of ##CPGfer 0; 9r,v;f, I lé—--——- - - _ at 7 l l V i l _ __ ground IFVF/ 7V "_ — _ "'- F’ _ —' (.— - 8'3, ——._. _ ) “r .v 2930 8030 fro/1" M/hPE/ I’Eckf' WUPFI F€CL- xon r~eac+lon Eig. 18. Weight Distribution of Tractor Under Static Conditions To determine location of center of gravity from Fig. 18: 25/“4 =5? ='€3C>5CDA 8<‘- /O‘?8:?A‘1 fronftvnaei E%O:TC>W<9:3 /O?80 H CL 2 58-0 /‘/7. Distance from rear axle to center of gravity will be 80” - 58.6” I 21.4" SC .. 13 [0480 _ U ‘ eral-4 w :000 a ' :9 W , T fl ....-. «up-......“ . fix ‘0- l | il ‘l I l U) oil I | l L-4 J no Fig. 19. Weight Distribution of Tractor while Plowing To determine front tire reaction while plowing from Fig. 19: - EMR203 /098OX21.9~—5000x15.5‘——F)(80 F: _Q980x3L4-5boyw56 . + 8C) _/969 F: /770 raundpa of; 5V=O'=/0980—/97o—R R 2 9010/0. Thus each rear tire carried 4505 lb. and each front tire carried 985 lb. weight transfer for other operations was calculated in a similar manner. The elliptical contact areas were calculated by use of the formula: flI‘STTCL-b (\ Ky Fig. 20. Tire Contact Area where a and b are semi-axes of an ellipse. Thus for the front tire on a hard surface: Area-I TTxg—X—g-E— :: 33.01%; The weight of water in the Sprayer tank was determined as follows: at the start of the watering process the amount of waterwas _35X69>(4E. ‘_ 53 7 7574.3 1728 " The amount of water at the end of the watering process was approximately 20 X69 X 43 :3 I 7‘25; 2 3 3:f7fff Average water in the sprayer was than 58.7 + 3 3-5 52 The weight of water in the sheeps-foot tamper was calculated as follows: Equation of curve would be: 26+)”; m"- X = i- ‘//72.— y? Fig. 21. Drum of Sheeps-Foot Tamper Circular Curve Representing From the calculus we know the area would be: /2 PW: [2 ’19 : ° 2"“ A f dX 0/) : f X] '0’)’ _/9 —/9 ”bf/“7.1:? when)” I2 : 2f /—---9 z_ )2 d), ~19 H 2 ’2 gap/91:31 r 19‘ an"—/%jj —/9 [,3 M36, ”.149 + 36/ s/‘ndfl—gfl—E + 36/s}n”/(‘{_;’.)] -' - /77 +36/(gg) — 36/{-afl) : 993 me Jach drum (two drums on the tamper) was 40 inches long. Therefore total volume was: :3 92 X a (so) 60 7‘3 /723 4} f H 46.0x 62.4 : 2870 Ho OfWCU‘W 54 Quad CH on on Seem no: vac hmzu omzwomn com: pom mous> omega .mwsfivmoh posuo Spas .~ I... o o I m.o m.o I m.o m.o b.o H.H o.¢H m.o m.o I n.o w.o m.o 0.0 o.H m.o o.H ©.n m.o m.o I m.o m.o m.o m.a N.H $.H I o.na o I o m.o >.o n.o w.H w.a I m.H m.mH o I o m. v.0 m.o m.m H.m ¢.m m.m m.oa o o I * H.m H.m I ¢.m w.m I m.n 0.0H o o I o.H o.H I ¢.m1I ¢.m I &.n 0.0H o I o ¢.H ¢.H o m.m m.m H.> ¢.ma o.© o o I o o o >.m m.m m.m m.ba o.m o o I o o m m.m o >.> 0.0m 0.0 o I o o I o m.m m.m 0.0 m.ma m.m o I o o I o * H.HH m.mm I m.mm m.m o o I o o o m. m.a o * H.Hw m.H Afimgv Afimgv Afimgo Afimgo Afimgo Aflmav Afimgo Aflmgo Afimgo Henge mmmno>w pmma pnwfip omwhm>w aged pzmfip mmmpo>w pmma psmfip . hmpflmo Sopm .m.H pounce 50pm .w.o popcmo 80pm .¢.o howsoo MPMWW opHB Mo nmpnoo on poommom Spa; mflaoo mo sofipmooq UZH>¢m zo Qmodqm QHom Edoq Nazam mflfibda Mmmma 2H mmHB $0904m9 EZoma mflQZD meHQ¢flm Aqmo mmbmmmmm HHH mgmfia 55 .Eonp Am>o 00000000 pom 0003 mmza 0050009 300 0903 ws000ou OH I .0000 0G0 G0 000: pom mafia 0909000 00:00» 00039 ‘0 fl.\ \ 0.0 0.0 I 0.0 0.0 I 0.0 0.0 0.0 = 0.00 .00 0.0 I 0.0 0.0 0.0 0.0 0.0 0.0 0.0L?.0.0 0.00 0.0 I 0.0 0.0 0.0 0.0 0.0 0.0 I 0.00 0.00 0.0 I 0.0 I I I 0.0 0.0 0.0 0.0 0.00 0.0 I 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.00 0.00 0 0 I 0.0 0.0 I 0.00 0.00 0.0 0.00 0.00 0.0 0.0 I 0.0 0.0 I 0.00 0.00 0.00 0.00 0.00 0.0 I 0.0 0.0 0.0 0.00;..IlmeH 0.00 0.00 0.00 0.0 0.0 0.0 I 0.0 0.00 0.0 0.00 0.00 0.00 0.00 0.0. 0.0 0.0 I 0.0 0.0 I 0.00 0.00 0.00 0.00 0.0 0 I 0 0.00 0.00 0.0 0.00 0.00 $0.0 0.00 0.0 0.0 I 0.0 0.0 I 0.0 0.00 00.0 0.00 0.00 0.0 0.0 0.0 I 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.0 A0000 00.00 “0.00 A0000 00.00 00000 A0000 00.00 00.00 “0.00 omwampm puma p£w0p owwno>0. puma pflwHA owmhmpw puma p£w00 nopcmo A.QHV Monaco Soak .m.0 noncoo £00m .m.o popcoo S009 .0.0 magma 0009 Mo nmpcmo 0p poommom 3003 00000 mo G00u0000 000>00 mo QHOdAm AHom WmHB mOBommH mH mqmde 2000 000:0 000020 00000 00 C}! (I) TAB] ..3 V PRESSURE CELL RMDINGS UNDER TiiE CENTER OF THE FRONT TRACTOR TIRE 1N FRESUIY PLOHSD LAUMEE SANDY LOgh SOIL PLACED ON PAVlNG Depth Cell Readings Depth Cell Readings (in.) (psi) (in.) (p81) 9.8 5.7 10.2 5.8 10.0 8.1 11.8 5.8 10.0 5.1 12.8 5.5 3 10.0 4.7 14.7 4.1 TABLE V1 PRESSURJ CELI READIKGS UNDER THE CENTER OF THE REAR TRACTOR T186 IN FRDSHLY PLOJED NAUMEE SANDY LOAN SOIL PLACED ON PAVING Depth Cell Readings Depth Cell Readings (in.) (psi) (in.) (psi) 9.8 11.4 10.0 15.5 10.0 12.5 10.2 12.5 10.0 12.5 11.8 15.7 10.0 17.5 12.8 12.8 10.0 12.4 14.7 11.8 I .. a .. - 00 A.” ..--scan 1“ 57 TABLE VI 1 DI:5TRIBI“T10N ULJDISR THE TIRE a THEOREPICAI FRASSUIMS CENTER 01“ TEE; FRUIT 'I‘R;‘«.CTOR Depth tancx b 0“ COSa\ cos4¢~ Pressure (in.) (degrees) (psi) ‘ 2 1.65 58.5 0.522 0.074 27.5 5 1.09 47.5 0.676 0.209 25.6 L 4 .815 59.2 0'775_ 0.560 19.1 E 6 .545 28.5 0.880 0.600 11.9 if 8 .407 22.2 0.926 0.755 7.9 E 10 .526 18.0 0.952 0.822 5.5 E 12 .271 15.2 0.965 0.867 E 4.0 E 14 .L .255 E 15.1 0.974 0.900 ¥T 5.0 E 16 I_ .202 E 11.4 0.980 0.922 2.5 2. Calculated from formula C:'= F5n(/":osfi“) b. with Pm:: 29.8 psi and effective radius 0\ is arc tan and x is depth. 1’ .— '2 _ L). 26 in. where r is effective radius 58 T1218 V111 THEORETICAL PRSSSURE DISTRIBPTION UNDSR THE CEKTflR 0E Tum RRAR TRACTOR TIRE WITH 5.00" RADIUS a :Depth tancfl b 7’ coscx cos4d9 Pressure (in.) (degreeS) (psi) 2 1.50 56.5 0.555 0.095 48.5 5 1.00 45 0.707 0.250 40.2 4 .750 56.9 0.800 0.410 51.6 6 .500 E 26.5 0.885 0.614 20.7 I s .575 E 20.6 0.956 0.768 12.4 10 .500 16.7 0.958 0.842 8.5 12 .250 14.0 0.970 0.885 6.2 . ..11_1.““4. 14 .212 12.0 0.979 0.919 4.8 -r-~—-— -r---—~- »«~— -—~- 16 .187 I 10.6 0.985 0.954 5.5 ., Q C\=P (/—cos"a\} a. Calculated from formula 2 ’” with Pm : 55.6 psi and effective radius : 5.00 in. b. GA is are tan i where r is effective radius and x is depth. THEORETICAL PRESSLRE DIJTRJBDTION UNDER THE TABLE 1X C (‘3 l 13 CENTER OF THE 8818 TRACTOR T1RE 91TH 5.16” 840105 3 Depth tancfi b C‘ 00384! c034d1 Pressure (in.) (degrees) (psi) 2 2.58 68.8 0.562 0.017 52.7 5 1.72 59.9 0.500 0.062 50.5 _J F 4 1.29 52.2 0.615 0.141 46.1#] E7 6 .860 40.6 0.759 0.552 55.8 E E 8 _ .645 52.8 0.841 0.499 26.8 E ’ 10 ET .516 27.5 5 0.888 0.622 20.2 E ; 12 e; .450 i 25.5 E 0.925 f 0.752 14.4 E {—14 E .568 .9 20.2 E 0.958E 0.774 12.1 E ##16 E .522 _*17.8 £0,952 E 0.821 9.6 E 8. Calculated from formula 575" FT"(/-COS I“) with Pm::55.6 psi and effective radius ._ 5.16 in. b. x is depth. cx is are tan E where r is effective radius and SUILIGzafiY 0F STATI C I 01sz , LOADS CARR I LCD, TABLE X PULL 60 A ND SEEI-AXES 0F CONTACT AREAS FOR TRACTOR AND IMPLELENT TIRES Tire or I Static Pull Causing Working Major Minor Implement Load Weight Transfer Load Axis Axis 1b. lb. 1b. in. in. F t T P§2$1n81r° 1465 5000 985 7 6 Eigxifiére 1 4025 5000 4505 - - n . f 1 agggfiigére ; 1457 900 1550 17 g 7.5 1 i . f Ezggrfige ; 4040 900 4127 28 ' 18 T 1L Front Tire 1 ‘ Tamping i 1457 1800 1265 e j fizigigér° 4040 1800 4212 - i - rent Tire ’ 1 Rear Tire : Z 1 s 7 1 ‘1 mgizyer 2852 - 2852 11 ; 8 a L : . i T T .eet ; 8550 - 8550 . 5.25 : 2.03 C T Efiier 4565 - 4565 8 j 6 a. Rectangular area calculated. b. 24 feet in contact with soil. column were pneumatic tires. c. 8 tires on the roller. All other items in MAR 19 1962 N" ' 1 u" ,.; "7'11 1'11 11711111111117 I TIES