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ABSTRACT

GAS AND VAPOR PERMEABILITY OF THE DOUBLE WALL

COMPARED TO SINGLE WALL PLASTIC PACKAGES

By

Istvan Gyeszli

A package should be designed for a certain shelf

life, which is the length of time during which a product

has acceptable quality, when stored under conditions of

its usual channels of distribution. Many factors can

affect the shelf life. If we consider only those factors

which can be determined by the package, two of the most

important are the internal gas and vapor concentrations.

The production researcher should tell the package

designer under what conditions the quality of the product

will not be suitable for consumers. (In this paper we

are considering only the internal gas and water vapor

Concentration as the factors affecting the shelf life.)

If we assume the internal gas and water vapor

concentrations are dependent only on the conditions at

the time of package closure and the permeability of the
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package, for given initial conditions many packages with

different permeabilities can be designed. Different pack-

ages will result in different shelf lives at different

costs. After consultation with the market expert, the

best one can be chosen.

The cost is one of the most important factors.

This paper introduces a hypothesis and its proofs. Using

the hypothesis we can reduce the package material expense.

The hypothesis is: the internal, partial pressure of a

gas or vapor is smaller in the double wall package as

compared with the single wall package until a certain time

tc’ if the quality and quantity of the material used, and

the temperature, and partial pressure in the packages and

between double walls are the same at time t = 0. The

time tC:

--is dependent on properties (material, surface

area, thicknesses, the space between double walls) of the

packages.

--is directly prOportional to the difference of

the external and internal partial pressure (in packages

and between double walls) at time t = 0.

The above hypothesis is proved by mathematical proof and

also by calculation of an analog computer.

If the needed shelf life is t5 and the limit of

the internal partial pressure for the given gas or vapor

is ps, we can design a single wall package which solves
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this problem. We assume we did and that package has the

minimum material expense.

Following the above, we design a double wall pack-

age using the same quality and quantity of the package

material and the same sized package. Then internal partial

pressure will be pd at time ts. Using the hypothesis: if

t<ts c’ then pd < ps. However, the limit for the internal

partial pressure is ps, so pd may increase to p5. But pd

increases if the quantity of the package material decreases.

The size of the package is fixed, so we can reduce the

quantity of package material if we use thinner walls or

if we use a smaller space between the double walls. We

can do those until pd = ps. Then we get the needed shelf

life in spite of the fact we use less package material.
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INTRODUCTION

A package should be designed for a certain shelf

life, which is the length of time during which a product

has acceptable quality, when stored under conditions of

its usual channels of distribution. If we consider only

those factors which can be determined by the package, two

of the most important are the internal gas and vapor con-

centrations. For example, meat changes color, because

of oxygen; apples turn to yellow because of carbon dioxide;

dry food cannot be used over a certain moisture content;

bread is unusable beyond certain moisture levels.

In this work we examine what the differences are

in gas or vapor permeability of single and double wall

plastic packages. We have developed the equation of the

gas and vapor permeability of plastic packages. Using

the developed equation we posed seven problems and we

solved them. Some of them are mathematical proofs, others

are real situations solved by analog computer. To draw

conclusions we find a hypothesis, which can be useful for

package design, because by using the rule we can save

material.

The theory of the gas and vapor permeability of

the plastic materials is very well studied. Some excellent



reference books are available (3, 4, 10) and many articles

were written, summarized by Lebovits (11) until 1966.

Much data on gas and water vapor permeability can be found

in the literature but only for sheet material (2, 6, 9,

12, 13, 16, 17). Some data are about the gas permeability

of the real packages (15). More publications are about

water vapor permeability and the relationship between that

and the shelf life (1, 7, 8).

Loudenslagel and Roe (l4) wrote about simulation

of the gas permeation in plastic containers by analog

computer. Stannett and Szwarc (18) tried to find a simple

relationship for gas permeability between polymer and gas,

which can be used generally, without real tests. They

tried to calculate one permeability constant from others.



DEVELOPMENT OF THE EQUATION OF THE GAS AND VAPOR

PERMEABILITY OF THE PLASTIC PACKAGES

Mass transport through polymeric materials occurs

by activated diffusion. This takes place in three steps.

First the permeant dissolves in the permeable membrane on

the side of its higher concentration. Then it diffuses

through the membrane towards the side of lower concentra-

tion, a process which depends on the formation of "holes"

in the plastic network due to thermal agitation of the

chain segments. Finally the permeant becomes desorbed on

the side of the lower concentration. The equation of

diffusion is given by Fick's first law:‘

8c

dn = D 3? dt (1)

n = number of diffused molecules

D = diffusion constant

%% = concentration gradient, which is assumed as constant

t = time

The number of diffused molecules is equal to the

diffusion constant times the concentration gradient times

time, if the area of the diffusion is unity. The concen-

tration gradient is a constant, if we integrate between 11:

12, and c1 and c2 it gives



dn _ C1'C2

11-12 = L, the thickness of membrane

c1 = concentration of the gas molecules on one

side of the membrane

c2 = concentration of the gas molecules on the

other side of the membrane

If the area of the membrane is equal to A,

dn _ C1’C2
2le—1)——];_A (3)

The permeation is a combined process between diffusion and

solution, thus the solubility coefficient must be con-

sidered, which is given from Henry's law.

c = Sp (4)

C = concentration of the gas on the surface of the

membrane

S = solubility coefficient

p = partial pressure of the gas in the gas space

After above:

 

dn = DS C1’C2 A (5)
3f' __r__

D - S E Pm = permeability constant

P = (number of diffused mols. x thickness )

m area x time x concentration difference

dn Cl-CZ

HIE-Pm—TA (6)



Equation 6 is the equation of the mass permeability

of polymeric materials. If we assume ideal gas laws for

gases and vapors (which is not completely true, but use

of them results in only negligible error) then concentration

of the gases and vapors are equal to their partial pres-

sures,

dn _ p1132

3? - Pm _—I—— A (7)

p1 and p2 are the partial pressures of the gas or

vapor on the two sides of the membrane. In the literature

the permeability constant is given commonly as:

volume of diffusedAgas or vapor (STP) x thickness

area x time x pressure difference

 

 

 

 

_ L
Pm - number of mol x A x t x AP

P = volume of diff mol (STP) x A x E x AP

Em = number of mol = n

fi volume Of_moI STP VISTPI

V = volume of mol (STP)

n = m—pov (8)

o

poV p

~ _ - _ - o
Pm — P RT; - P TR (9)

‘V‘ 0

- P -

O



po = 1 atm

= 0

To 273 K

R = Regnard gas constant

Let's take into consideration a real package. We

want to know the internal gas or vapor concentration as

a function of time (which is equal to partial pressure of

gas or vapor). For example:

pe(t) = the external partial pressure of the gas

or vapor

pi(t) = the internal partial pressure of the gas

or vapor

V = volume of the internal gas or vapor space.

This is a constant.

If dn molecules go through the wall of packages,

the internal partial pressure is changed by dp.

n = %¥ (ll)

dn = §E¥ (12)

From equation 10 and equation 12:

 

d V _ p0 pe(t)-pi(t)

‘HT' RTo L

d _

55- = P J;- p0 r: (pectrpicm , (14)



Equation 14 gives the internal partial pressure of

the gas or vapor as a function of time.

We must consider for what condition the equation is

true for determination of package life. We must also con-

sider the possible change of every component of the equation

as a function of time, temperature and pressure.

There may not be any chemical reactions between the

gases and solids (the material of the package or the

packaged product) or liquids (the packaged product). The

commonly considered gases and vapor relatively inert under

usual conditions and package materials ordinarily are

chemically inactive.

The permeation of gases or vapors are independent,

so the equation is true for.each gas or vapor separately.

We assume the velocity of the gases or vapors is

zero inside and also outside of the package.

The time required to reach steady state is negli-

gible compared to the storage time.

The package is faultless. There is no leakage, no

damage, no mechanical distortion.

The sign of an infinitisimally small change of the

internal pressure (dp) depends on the direction of the

permeation. pi is always the internal partial pressure

of the gas or vapor. The sign of dpi is positive, if

the direction of permeation is from outside to inside of

the package.



The infinitesimally short time change (dt) is

practically zero as compared to the storage time.

The area of permeation (A) is the area that gas or

vapor can go through. The area is constant for all time,

temperature, and pressure.

The thickness of package wall (L) must be the same

everywhere, which for a curved surface is sometimes not

true. To correct for this we might use average thickness.

The change of thickness may be a function of time, for

example degradation. It might be estimated, but usually

this is not necessary. The thickness is independent of

time, temperature and pressure.

The volume of gas space (V) is only the actual gas

or void space. For the package of a very porous material

we might consider the volume of the pores. The volume of

the gas space is independent of time, temperature and

pressure.

r
u
n

is the permeability constant.

“
U
s

ED°S

The diffusion constant is assumed independent of

the concentration of the permeant in the membrane. The

solubility coefficient is also assumed independent of the

pressure of the permeant in the phase in equilibrium with

the membrane. In this case the permeability constant is

independent of the pressure. The temperature dependence

of D and S is expressed by Arrhenius type equations.





D

II

DO exp(-Ed/RT) (15)

C
D II So exp(-AHS/RT) (16)

[
'
1
1

II

d activation energy for the diffusion process

HS = the heat consumed on dissolving a mole of

permeant in the membrane

R = Regnard gas constant

P 5 DS = DO exp(-Ed/RT) So exp(-AHS/RT) (17)

F =0 D050 (18)

Ep = Ed + AHS (19)

P = P0 exp(-Ep/RT) (20)

Ep and P0 can be determined from two permeability

constants, which were measured at different temperatures.

The permeability constant is independent of time and

pressure.

po is 1 atm

To is 273°K

T is the temperature at any time. This may be

Changed by function of time.

pe is the external partial pressure of the gas or

vapor. This is constant or zero (N2, 02’ C02) or function

of time and temperature.

7 pi is the internal partial pressure of the gas

or vapor. This is a function of temperature.
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_ T

pi ’ pio 77? (21)

T = temperature °K

= internal partial pressure at 273°K

The internal partial pressure of gas or vapor is

changed by time.

Then equation of gas or vapor permeability of the

plastic package is

A pio(t)T(t)

“a? ‘ o T po Vt (Pe(t) ' 273 I (22)
 
 



PROBLEM I

We have to design a package with volume V. The

package has no product and is filled with N2 gas. The

oxygen concentration is zero at time t = 0. At tf time

the internal partial pressure of the oxygen may not be

more than pf in the closed package. (The increase of the

internal partial pressure of the oxygen is caused by

oxygen permeation only.) The temperature is constant

Tf°K. The external gas is air.

Requirement: The material expense should be a

minimum.

Solution: After we have decided the shape of the

package we can calculate the surface area A of that, from

the volume of the package. We can use the equation of

the gas and vapor permeability of the plastic packages,

equation 22.

dP‘ - E p- (t)T(t)

-3% = P0 exp(-§T%fy) IAEl pO V? (pe(t) - 10273 ) (23)

O

 

T is constant and equal to Tf. Using equation 19,

"
U
n

I
I

f PO exp(-Ep/RTf) ' (24)

11
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PT is constant. p0; T0 are constant also. After

 

 

f

above,

dpi A
*3; = k VI (Pe(t)‘Pi(t)) (25)

where

- Tf

k = P - p (26)
Tf TO 0

and

p- (t) T

pi(t) = 1373 f (27)

The external partial pressure of the oxygen is

constant P, because the external gas is air.

dpi - k A (P - (t 28'3f" VI Pi )) ( )

Let's integrate the equation 28 between 0 and t,

and p(o) and p(t).

pict) = P[1 - expc-k (7% tn 4131(0) exp(-k (7% t) (29)

where pi(o) is the internal partial pressure of the oxygen

at t = 0 time. But pi(o) = 0.

pi(t) = P[1 - exp(-k VE‘tII (30)

Since pi(t) may not be larger than pf at time

t = tf we can use

PiLtf) = pf (31)
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Using equation 29 and equation 30,

_ A
pf — P[1 - exp(-k VF tf)] (32)

A and V are constants. So from equation 32,

 

 

Pf

A I (33)

V tf

Using equation 26 and equation 33,

p —

VT in (1 - —£) PT
0 P _ f 4

A T p ‘ ‘r‘ (3 )
l f o

If we assume the expense of the process of package

making is independent of the quality of the material used,

then the minimum material expense will be obtained by use

Of the minimum material. The quantity of the material is

equal to surface area times thickness. The surface area is

fixed, so minimum thickness results in minimum quantity

of material.

From the literature we can pick the oxygen permea-

bility constants of different materials. (We can calculate

the PT from two different oxygen permeability constants,

f

which were measured at two different temperatures. Using

a semi-log graph, where the permeability constants are

plotted against reciprocal of absolute temperature, we

can draw a straight line through the two points. We can

read the oxygen permeability constant for Tf°K tempera-

ture.)
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Using equation 34 we can see the left side of the

equation is constant B, so

"
U
I

L = Tf (35)

T

From PT and B we can calculate L.

f

N = L x A x U (36)

Where N is the cost of material, U is the unit

price. If we make this calculation for many materials,

we can find the minimum material expense.

Conclusion: If the material, M, has an oxygen

permeability constant Pm at temperature Tf, the wall

thickness should be Lm for a given shelf life problem.

We cannot reduce the material expense, because in equation

34 everything is fixed.



PROBLEM 2

How does the internal partial pressure of the

oxygen change as a function of time for a single wall

package compared with a double wall package? Assume

that the internal volume of the package and quantity and

quality of the package material are the same, the tempera-

ture is constant, and the external gas is air.

a. The internal partial pressure of oxygen is

zero at time t = 0 for both packages and between double

wall.

b. The internal partial pressure of oxygen is

the same for both packages, and is not zero at time t = 0.

Solution: The single wall package has volume V1,

surface area A1 and wall thickness L1. The double wall

package can be considered as two packages. The smaller

1 and wall thickness L3.

The larger package has a volume V2 (which is equal to the

package has a volume V1, area A

full volume minus the volume of the smaller package);

surface area A2 and wall thickness L2. The quantity and

quality of material is the same; so

AlLl = A1L3 + AZLZ . (37)

15
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Using equation 22 for single wall package,

dp.

~3§ = 90 exp(-§%) TE pO VIE? p(e)(t) - pi(t)) (38)

but pe(t) is constant because the external gas is air.

Because T is constant

dpi = k A1 (P - (t)) (39)
‘3? VIII Pi

where Po (exp - fig) TE po = k (40)

Using equation 25 for double wall package,

dp: A1 *

~33 = k VII; (pm(t) - pi(t)). (41)

where pm(t) is the internal partial pressure of the oxygen

between the double wall.

Some gas molecules will go into the double walls

from outside.

1

dpm _ A2

*3? - k WEIE'LP ‘ PmLt)) (42)

and some gas molecules will leave from between double walls

and they move into the smaller package at the same time.

dp A1 *

W = k V—2L3 (piCt) - pm(t)) ‘ (43)
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or

dpi _ A1 *

‘3? — ‘k VEE; (PmLt) ‘ PiLt)) (44)

dpm = dpm + dpm (45)

at (It at

Combination of the equation 42, equation 43 and

equation 45,

dpm A2 A

7&- = (75-5-2- (P - pm(t)) - k V2113; (pm(t) - p:(t)) (46)

k is always the same constant, because the same material

and temperature are used.

Let's say:

k VEIE'LPmLt) ' PiLt)) = Z(t) (47)

Z(o) = 0 because of the same initial condition.

*

Z(w) = 0 because after t = w, pm and pi will be equal

to P.

*

Z(t) > 0 pm(t) is always larger than pi(t).

If we assume Z(t) = 0, then equation 46 will be:

+

dpm A2
.3? = k 7—1—22 (P - pm(t)) (48)

but, because Z(t) ; O,
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+

dp dp

m m

‘H—t' 3- 7E (49)

The combination of equation 48 and equation 49,

dpm > k .121. (P - (t)) (50)
—HE-= VZLZ pm

If we integrate the equation 50 between 0 and t,

pm(o) and pm(t).

A A

pm(t) ; P (l-expc-k V§%; t)) + pm(o) exp(—k vgf; t) (51)

if pm(o) = 0 (situation a),

A2
PmLt) ; P[l-exp(-k vgfg't3I (52)

t

For p(o) = 0, pi(o) = 0, pm(o) = 0 (situation a)

we can combine equation 41 and equation 52.

dp: A1 A2 *

“af'é k VIE; [P (l-exp(-k vgr; t)) ‘ PiLt)I (53)

or

dp: A1 * A2

Compare equation 54 with equation 39.

dpi A

—df = VI%I (P ‘ Pi(t))

A A
1 1 . . I

k v—lrg- > k Vl-Ti- because L1 > L3. BUt untll a certaln t1me
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A A
2 1 . .

- P exp(-k V—L_ t) k VPL—' is larger than the difference

2 2 1 3

which is caused by L1 > L3. It can be seen that the certain

A

- - 2
time tC 15 dependent on the constants. If L3 and k'VZf;

decrease, then tC increases. It can be proven if V2 and A2

are increasing, A2 is decreasing. In this way we need

2

large L3, A2, V2 and L2. Equation 37 gives a relationship

among them for problem 2.

A1L1 = A1L3 + Asz

Since A1 and L1 are fixed, so increase of all

factors (A2, L2, L3) is impossible, so we can suppose we

have to find an optimum value for A2, L2, L3 which gives

the longest tC.

For pi(o) = p:(o) = pm(o) f 0 (situation b) we

can combine equation 41 and equation 51.

*

dpi A A

75.: k VIE} (P - p:(t) - (P - pm(o)) exp(-k (312,—; t)) (55)

Compare equation 55 with equation 39 and it can be

seen if pi(o) = p:(o) = pm(o) increase, the time tc de-

creases and approaches zero, but never can reach that if

pi(o) = p;(o) = pm(o) < P, because we can always find time

when the second part of the right side of equation 55 is

larger than the difference which was caused by L1 > L3.
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Conclusion: The internal partial pressure of

the oxygen is always smaller in the double wall package

Compared with single wall package until a certain time tC,

if the quality and quantity of the used material are the

same and the temperature and partial pressure in the

packages and between double walls are the same. The time

tC is dependent on the properties of the package (material,

surface area, volume, wall thicknesses, the space between

double walls), and the internal partial pressure of the oxygen

in the packages and between double walls at time t = 0.

The time tC can not be zero ever, if the external partial

pressure of the oxygen is higher than the internal partial

pressure of the oxygen at time t = 0.



PROBLEM 3

This is the same as problem 1, but uses a double

wall package and results of the problem 2. tf < tc.

*

Solution: If tf < tc’ then dpi < dpi (from problem

at at

2). But pi(o) = p:(o), so

*

*

BUt Pi(tf) = Pf, 50 piLtf) < Pf-

The internal partial pressure may not be more than

*

pf, so can be pf. So pi(tf) may increase to pf. But

*

pi(tf) is increasing, then we use less material. We can

a!

use always less and less material until pi(tf) = pf. In

this way we can reduce the quantity of materials. We can

do this two ways, using thinner L2 and L or using smaller
3,

A2, which is given by smaller V2.

Conclusion: If the needed shelf life time tf is

shorter than tc, then by using the double wall package, we

can save package materials.

21



PROBLEM 4

We have a cylindrical package. The height of the

package is equal to the diameter. The package is empty,

and it is filled up with nitrogen gas. The material is

polyethylene. The package is closed and the oxygen con-

centration is zero at time t = 0. The diameter of the

package is 10 cm. The temperature is constant 25°C. The

external gas is air.

The oxygen permeability constant of the poly-

ethylene at 25°C is 0.66 cm3 x mm
 

cm? x month x atm

The wall thickness is 1 mm. What will the internal

partial pressure of the oxygen be at 0.25, 0.5, 1.0 and

1.5 months?

Solution: Using the equation of the gas permea—

bility of the packages, equation 22,

dp

 

' - T A

“3% = P T_ po VI (Pe(t) ‘ PiLt))

o

3

P = 0.66 2 cm X cm

cm x month x atm

T = 298°K

T = 273°K

o

22
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pe(t) = 0.21. The oxygen concentration is a

constant 21% in the air.

p0 = 1 atm

After the above,

dpl _ A 0

‘3? — 0.734 VI ( .21 - Pi(t))

D = diameter 10 cm

H = weight of package 10 cm

2

A = £211 + DUH

but D = H

A _ 3Dzn

__2_

v = Dzn-H = D30

‘"1"' 4

Using equation 58 and equation 57,

<
m
>

I

D
I
G
)

‘ 0.6

<
m
>

ID = 10 cm, so

After the above,

dpi

at
0.440 (0.21 - pi(t))

(56)

(57)

(58)

(59)

To solve this problem we can make a simple analog

computer circuit in Figure 1.
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Because of p(o) = 0, the initial condition is 0.

The results are given in Table 1.

Conclusion: The internal partial pressure of the

oxygen reaches 50% of the external partial pressure after

1.5 months.

Table 1. Internal partial pressure of the

oxygen in the single wall package

at different times.

 

 

Time (months)

0.25 0.5 1.0 1.5

 

Internal partial

pressure of the 0.022 0.042 0.076 0.104

oxygen (atm)
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PROBLEM 5

The problem is the same as problem 4, but we use

double wall package instead of single. The quantity and

quality of the used material are the same. The partial

pressure of the oxygen is zero between double wall t = 0

time. The conditions are the same. What will be the

internal partial pressure of the oxygen at 0.25, 0.5, 1.0

and 1.5 months?

Solution: The double wall package consists of

two single packages. Symbols are the same as in problem

2.

D2 = XD1 and H2 = XH1

From equation 57,

3Din 3D§n

A = A =

l 2 2 2

3X2Din

But D2 = XDl’ so A2 = ——7———-

D30

v=1
1T

3 3 3 3 3
D20 X D10 D10 D10
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Using equation 41 and equation 46,

3

dpi - A1 *

—af" k VIE; (PmLt) ' PiLt))

dpm — A2 A1 *

—3f - k vgf; (P ' PmLt) ‘ k var; (PmLt) ' PiLt))

k = 0.734 (from problem 4).

The used material should be the same as in problem 4.

AlLl = A1L3 + AZLZ (60)

or

A2
L1 = L3 + KT L2 (61)

L1 = 1 mm (from problem 4)

3Dln 3X2Din

A1=—T Az‘T‘

After the above,

1 = L + XZL (62)
3 2

Because D1 = 10 cm

 

 

 

k A1 = 0.734 - 0.6 = 0.44

51133 L3 I3

k A2 = 0.734 - 0.6 x2 = 0.44 x2

U2E2 L2(x3-1) L2(x3-1)

k A1 = 0.734 - 0.6 = 0.44

U2E3 (x3-1)L3 (xx-1n3
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*

95? = #05:“ (pm(t) - p:(t)) (63)

dpm 0 44 x2 0 44 *= - (p _ (t)) - ° ( (t) " -(t)) (64)

7*? {Tl—(353‘?) pm (x3-1)L3 p’“ p1

where P is 0.21 (the partial pressure of the oxygen in the

air).

Using different ratios, X of the diameters, we can

calculate the constants.

We can solve this problem by an analog computer

circuit in Figure 2. Because p:(o) = pm(o) = 0, the initial

conditions are 0.

Choosing X = 1.05, 1.10, 1.2, and using L = 0.3,
2

0.4, 0.5, 0.6 mm after calculation of constants and use of

analog computer circuit, Figure 2, the results are given

in Table 2.

Conclusion: The internal partial pressure of the

oxygen is smaller than in the single wall package (problem

4) until a certain time tc' This way the conclusion of

problem 2 is proved. Using larger ratios X of the diameters

time tC increases. If the ratio X of the diameters is

constant, time tC increases if the ratio of wall thick-

nesses approaches 1.
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Table 2.

30

Internal partial pressure of the

oxygen for the double wall package

at different times, different wall

thicknesses and different ratios

of the diameters.

 

 

L

Internal partial pressure of the

oxygen at time (in atm)

 

cm?) (mi) .34: .23. 2.2. man-.3.

.05 0.685 0.300 0.017 0.038 0.074 0.103

.05 0.580 0.400 0.016 0.038 0.076 0.107

.05 0.475 0.500 0.018 0.039 0.075 9.105

.05 0.370 0.600 0.017 0.039 0.076 0.103

.10 0.637 0.300 0.014 0.034 0.072 0.104

.10 0.516 0.400 0.014 0.034 0.073 0.105

.10 0.395 0.500 0.014 0.036 0.073 0.105

.10 0.274 0.600 0.015 0.038 0.075 0.107

.20 0.856 0.100 0.014 0.036 0.072 0.101

.20 0.568 0.300 0.011 0.032 0.069 0.104

.20 0.424 0.400 0.010 0.030 0.068 0.103

.20 0.280 0.500 0.013 0.034 0.073 0.107

.20 0.136 0.600 0.015 0.037 0.075 0.109

.20 0.092 0.700 0.017 0.039 0.076 0.110

 



PROBLEM 6

Everything is the same as in problem 5. How will

the results change:

a. If we use only 90% of the material decreasing

b. If we use only 96%, 93%, 90% of the material

decreasing L2 and L3?

Solution:

a. Using equation 54,

A A

_ 2 2 _ 2
Ll-L3+KIL2,bUtK1-‘Xo

For equation 55,

 

L1 = L3 + x L2

X2 _ L1'L3

- I:2

but

* —

L1 - 0.9 L1

*

§2 _ L1'L3

- I:2

X ‘ L
2
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*

If L2 and L3 are given, we can calculate X and

t

X can be used in equation 63 and equation 64 instead of

X. To do this calculation for

L2 0.400 0.500 0.600

L3 0.424 0.280 0.136

and using an analog computer in Figure 2, the results are

shown in Table 3.

b. Using equation 62,

If we use Y% of the material (Y = 90, 93, 96),

YL1 = YL3 + YXZLZ, but X is constant, so if we multiply

L3 and L2 by Y we will use Y% of the material.

Using YL3 and YL2 in equation 63 and equation 64

instead of L3 and L2, we can get the answer using analog

computer. The results are in Table 4 for X = 1.2 and

L2 = 0.4 and 0.500, L3 = 0.424 and 0.280.

Conclusion: To reduce the quantity of the package

material, time tC decreases. The time tC decreases at a

slower rate if the quantity of package material is reduced

in wall thickness, and tC decreases at a faster rate than

noted above if the quantity of material is reduced by

decreasing the space between the double walls.
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Table 3. Internal partial pressure of the

oxygen in the double wall package

using 90%, 93%, 96% of original

quantity of the package material

(wall thicknesses dedreased).

Internal partial pressure of the

L L oxygen at time (in atm)

X 3 2

(mm) (mm) 0.25 0.5 1.0 1.5

month month month month

1.2 0.407 0.384 0.013 0.035 0.075 0.109***

1.2 0.395 0.372 0.014 0.036 0.079 0.111**

1.2 0.383 0.360 0.015 0.038 0.082 0.115*

1 2 0.269 0.480 0.014 0.037 0.078 0.115***

1.2 0.262 0.465 0.015 0.039 0.082 0.119**

1.2 0.255 0.450 0.016 0.043 0.087 0.122*

 

* = 90% ** = 93% *** = 96° 0
\

 

 

 

Table 4. Internal partial pressure of the

oxygen in the double wall package

using 90% of original quantity of

package material (ratios of

diameters decreased)

Internal partial pressure of the

L L oxygen at time (in atm)

X 3 2

(mm) (mm) 0.25 0.5 1.0 1.5

month month month month

1.104 0.424 0.400 0.022 0.040 0.084' 0.116

1.090 0.280 0.500 0.020 0.045 0.088 0.126

 



PROBLEM 7

How are results of problem 4 and problem 5 changed

if p,(o) = pm(o) = p:(o) P 0?

Solution: Using the analog computer circuits in

Figure 1 and Figure 2, we use initial conditions for the

integrations. The results are in Table 5 for

*

pi(o) = pm(o) = pi(o) = 0.042; 0,064; 0.084; 0.105;

0.147; 0.168 atm. X = 1.2; L2 = 0.4; L3 = 0.424.

Conclusion: Time tC decreases if pi(o) = pm(o)

*

= pi(o) increase.
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Table 5. Internal partial pressure of the

oxygen in the double wall package

at different initial conditions

and at different times.

 

 

Internal partial pressure of

the oxygen at time (in atm)

 

igigigi°n wgiikigethe 0.5 1.0 1.5

month month month

0.042 Single 0.078 0.102 0.127

0.064 " 0 092 0.117 0.137

0.084 " 0.111 0.131 0.148

0.105 " 0.128 0.145 0.158

0.147 " 0.166 0.171 0.179

0.168 " 0.176 0.181 0.189

0 042 Double 0.067 0.100 0.129

0.064 " 0.084 0.113 0.139

0.084 " 0.103 0.128 0.150

0.105 H 0.119 0.143 0.160

0.147 " 0.155 0.169 0.181

0.168 " 0.172 0.183 0.191

 



SUMMARY AND CONCLUSIONS

If we evaluate the solutions and results of the

seven problems, we see the following:

The internal partial pressure of a gas or vapor is

always smaller in the double wall package compared with

single wall package until a certain time tC if the quality

and quantity of the used material are the same, and the

temperature and partial pressure in the packages and

between double walls are the same at time t = 0.

Time tC increases if the space between double walls

increases.

For a given double wall package time tC is longer

as the ratio of the wall thicknesses approaches 1.

The time tC decreases at a slower rate if the

quantity of material is reduced in wall thickness and

tC decreases at a faster rate than noted above if the

quantity of material is reduced by decreasing the space

between the double walls.

The time tC is inversely proportional to the

internal partial pressure at time t = 0.

The time tC can be very small but cannot be zero

ever if the external partial pressure is higher than the

internal partial pressure at time t = 0.
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If the required shelf life for a package (considering

internal partial pressure) is shorter than time tC using

a double wall package material can be saved.

After above we can formulate the hypothesis: The

internal partial pressure of a gas or vapor is always

smaller in the double wall package compared with single wall

package until a certain time tc, if the quality and quantity

of the material used and the temperature are the same and

partial pressure in the packages and between double walls

are the same at time t = 0. The time tC

--is dependent on properties of the packages

(material, volume, surface area, wall thickness, the

space between double walls).

--is directly pr0portiona1 to the difference of

the external and internal partial pressure (in packages

and between the double walls) at time t = 0.
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